
The Journal of Machine Learning Research
Volume 6
Print-Archive Edition

Pages 1–1098

Microtome Publishing
Brookline, Massachusetts
www.mtome.com

The Journal of Machine Learning Research
Volume 6
Print-Archive Edition

The Journal of Machine Learning Research (JMLR) is an open
access journal. All articles published in JMLR are freely available
via electronic distribution. This Print-Archive Edition is published
annually as a means of archiving the contents of the journal in
perpetuity. The contents of this volume are articles published
electronically in JMLR in 2005.

JMLR is abstracted in ACM Computing Reviews, INSPEC, and
Psychological Abstracts/PsycINFO.

JMLR is a publication of Journal of Machine Learning Research,
Inc. For further information regarding JMLR, including open
access to articles, visit http://www.jmlr.org/.

JMLR Print-Archive Edition is a publication of Microtome
Publishing under agreement with Journal of Machine Learning
Research, Inc. For further information regarding the Print-Archive
Edition, including subscription and distribution information and
background on open-access print archiving, visit Microtome
Publishing at http://www.mtome.com/.

Collection copyright © 2005 The Journal of Machine Learning
Research, Inc. and Microtome Publishing. Copyright of individual
articles remains with their respective authors.

ISSN 1532-4435 (print)
ISSN 1533-7928 (online)

Editor-in-Chief

Leslie Pack Kaelbling,

Massachusetts Institute

of Technology,USA

Managing Editor

Christian R. Shelton, University of

California at Riverside, USA

Production Editor

Erik G. Learned-Miller,

University of Massachusetts,

Amherst, USA

JMLR Action Editors

Peter Bartlett, University of California

 at Berkeley, USA

Yoshua Bengio,

Université de Montréal, Canada

Léon Bottou ,

NEC Research Institute, USA
Craig Boutilier,

University of Toronto, Canada
Claire Cardie,

Cornell University, USA
David Maxwell Chickering,

Microsoft Research, USA

William W. Cohen,

Carnegie-Mellon University, USA
Nello Cristianini, UC Davis, USA
Peter Dayan,

University College, London, UK
Stephanie Forrest,

University of New Mexico, USA
Donald Geman,

Johns Hopkins University, USA

Isabelle Guyon, ClopiNet, USA

Ralf Herbrich,

Microsoft Research, Cambridge, UK

Haym Hirsh,

Rutgers University, USA
Aapo Hyvärinen,

University of Helsinki, Finland
Tommi Jaakkola, Massachusetts Institute

of Technology, USA
Thorsten Joachims,

Cornell University, USA

Michael Jordan, University of California

at Berkeley, USA
John Lafferty,

Carnegie Mellon University, USA
Michael Littman, Rutgers University, USA
David Madigan, Rutgers University, USA
Sridhar Mahadevan, University of

Massachusetts, Amherst, USA
Andrew McCallum, University of

Massachusetts, Amherst, USA
Melanie Mitchell,

Oregon Graduate Institute, USA

Fernando Pereira,

University of Pennsylvania, USA
Pietro Perona,

California Institute of Technology, USA
Greg Ridgeway, RAND, USA
Dana Ron, Tel-Aviv University, Israel
Sam Roweis,

University of Toronto, Canada

Stuart Russell,

University of California at Berkeley, USA

Claude Sammut, University of

New South Wales, Australia
Bernhard Schölkopf, Max-Planck-Institut

für Biologische Kybernetik, Germany
Dale Schuurmans,

University of Alberta, Canada
John Shawe-Taylor,

Southampton University, UK

Yoram Singer,

Hebrew University, Israel
Manfred Warmuth, University of

California at Santa Cruz, USA
Chris Williams,

University of Edinburgh, UK
Stefan Wrobel, Universität Bonn

and Fraunhofer AiS, Germany

Bin Yu, University of California at

Berkeley, USA

JMLR Editorial Board
Naoki Abe, IBM TJ Watson

Research Center, USA
Christopher Atkeson,

Carnegie Mellon University, USA
Andrew G. Barto, University of

Massachusetts, Amherst, USA
Jonathan Baxter,

Panscient Pty Ltd, Australia
Richard K. Belew, University of

California at San Diego, USA
Tony Bell,

Salk Institute for Biological Studies, USA
Yoshua Bengio,

University of Montreal, Canada
Kristin Bennett,

Rensselaer Polytechnic Institute, USA
Christopher M. Bishop,

Microsoft Research, UK
Lashon Booker,

The Mitre Corporation, USA
Henrik Boström,

Stockholm University/KTH, Sweden
Justin Boyan, ITA Software, USA
Ivan Bratko,

Jozef Stefan Institute, Slovenia
Carla Brodley, Purdue University, USA
Peter Bühlmann,

ETH Zürich, Switzerland
David Cohn, Google, Inc., USA
Walter Daelemans,

University of Antwerp, Belgium
Sanjoy Dasgupta, University of California

at San Diego, USA
Luc De Raedt,

University of Freiburg, Germany
Saso Dzeroski,

Jozef Stefan Institute, Slovenia
Usama Fayyad, DMX Group, USA
Douglas Fisher,

Vanderbilt University, USA
Peter Flach, Bristol University, UK
Nir Friedman, Hebrew University, Israel
Dan Geiger, The Technion, Israel
Zoubin Ghahramani,

University College London, UK

Sally Goldman,

Washington University, St. Louis, USA

Russ Greiner,

University of Alberta, Canada
David Heckerman,

Microsoft Research, USA
David Helmbold, University of California

at Santa Cruz, USA
Geoffrey Hinton,

University of Toronto, Canada
Thomas Hofmann,

Brown University, USA
Larry Hunter,

University of Colorado, USA
Daphne Koller, Stanford University, USA
Yi Lin, University of Wisconsin, USA
Wei-Yin Loh,

University of Wisconsin, USA
Yishay Mansour,

Tel-Aviv University, Israel
David J. C. MacKay,

Cambridge University, UK
Marina Meila,

University of Washington, USA
Tom Mitchell,

Carnegie Mellon University, USA
Raymond J. Mooney,

University of Texas, Austin, USA
Andrew W. Moore,

Carnegie Mellon University, USA
Klaus-Robert Muller,

University of Potsdam, Germany
Stephen Muggleton,

Imperial College London, UK
Una-May O'Reilly, Massachusetts

Institute of Technology, USA
Foster Provost, New York University, USA
Lorenza Saitta, Universita del Piemonte

Orientale, Italy
Lawrence Saul,

University of Pennsylvania, USA
Robert Schapire,

Princeton University, USA
Jonathan Shapiro,

Manchester University, UK
Jude Shavlik,

University of Wisconsin, USA
Satinder Singh,

University of Michigan, USA
Alex Smola, Australian National

University, Australia
Padhraic Smyth,

University of California, Irvine, USA
Richard Sutton,

University of Alberta, Canada
Moshe Tennenholtz, The Technion, Israel
Sebastian Thrun,

Carnegie Mellon University, USA
Naftali Tishby,

Hebrew University, Israel
David Touretzky,

Carnegie Mellon University, USA
Larry Wasserman,

Carnegie Mellon University, USA
Chris Watkins, Royal Holloway,

University of London, UK

Journal of Machine Learning Research Vol. 6 2005

 1 Asymptotic Model Selection for Naive Bayesian Network
 Dmitry Rusakov, Dan Geiger

 37 Dimension Reduction in Text Classi!cation with Support
 Vector Machines
 Hyunsoo Kim, Peg Howland, Haesun Park

 55 Stability of Randomized Learning Algorithms
 Andre Elissee", #eodoros Evgeniou, Massimiliano Pontil

 81 Learning Hidden Variable Networks: "e Information
 Bottleneck Approach
 Gal Elidan, Nir Friedman

129 Di#usion Kernels on Statistical Manifolds
 John La"erty, Guy Lebanon

165 Information Bottleneck for Gaussian Variables
 Gal Chechik, Amir Globerson, Na$ali Tishby, Yair Weiss

189 Multiclass Boosting for Weak Classi!ers
 Günther Eibl, Karl-Peter Pfei"er

211 A Classi!cation Framework for Anomaly Detection
 Ingo Steinwart, Don Hush, Clint Scovel

233 Denoising Source Separation
 Jaakko Särelä, Harri Valpola

273 Tutorial on Practical Prediction "eory for Classi!cation
 John Langford

307 Generalization Bounds and Complexities Based on Sparsity
 and Clustering for Convex Combinations of Functions
 from Random Classes
 Savina Andonova Jaeger

341 A Modi!ed Finite Newton Method for Fast Solution of
 Large Scale Linear SVMs
 S. Sathiya Keerthi, Dennis DeCoste

363 Core Vector Machines: Fast SVM Training on Very
 Large Data Sets
 Ivor W. Tsang, James T. Kwok, Pak-Ming Cheung

 www.jmlr.org

393 Generalization Bounds for the Area Under the ROC Curve
 Shivani Agarwal, #ore Graepel, Ralf Herbrich,
 Sariel Har-Peled, Dan Roth

427 Learning with Decision Lists of Data-Dependent Features
 Mario Marchand, Marina Sokolova

453 Estimating Functions for Blind Separation When Sources
 Have Variance Dependencies
 Motoaki Kawanabe, Klaus-Robert Müller

483 Characterization of a Family of Algorithms for Generalized
 Discriminant Analysis on Undersampled Problems
 Jieping Ye

503 Tree-Based Batch Mode Reinforcement Learning
 Damien Ernst, Pierre Geurts, Louis Wehenkel

557 Learning Module Networks
 Eran Segal, Dana Pe’er, Aviv Regev, Daphne Koller, Nir Friedman

589 Active Learning to Recognize Multiple Types of Plankton
 Tong Luo, Kurt Kramer, Dmitry B. Goldgof, Lawrence O. Hall,
 Scott Samson, Andrew Remsen, #omas Hopkins

615 Learning Multiple Tasks with Kernel Methods
 #eodoros Evgeniou, Charles A. Micchelli, Massimiliano Pontil

639 Adaptive Online Prediction by Following the Perturbed Leader
 Marcus Hutter, Jan Poland

661 Variational Message Passing
 John Winn, Christopher M. Bishop

695 Estimation of Non-Normalized Statistical Models
 by Score Matching
 Aapo Hyvärinen

711 Smooth ε-Insensitive Regression by Loss Symmetrization
 Ofer Dekel, Shai Shalev-Shwartz, Yoram Singer

743 Quasi-Geodesic Neural Learning Algorithms Over the
 Orthogonal Group: A Tutorial
 Simone Fiori

783 Machine Learning Methods for Predicting Failures in Hard
 Drives: A Multiple-Instance Application
 Joseph F. Murray, Gordon F. Hughes, Kenneth Kreutz-Delgado

 817 Multiclass Classi!cation with Multi-Prototype
 Support Vector Machines
 Fabio Aiolli, Alessandro Sperduti

 851 Prioritization Methods for Accelerating MDP Solvers
 David Wingate, Kevin D. Seppi

 883 Learning from Examples as an Inverse Problem
 Ernesto De Vito, Lorenzo Rosasco, Andrea Caponnetto,
 Umberto De Giovannini, Francesca Odone

 905 Loopy Belief Propagation: Convergence and E#ects
 of Message Errors
 Alexander T. Ihler, John W. Fisher III, Alan S. Willsky

 937 Learning a Mahalanobis Metric from Equivalence Constraints
 Aharon Bar-Hillel, Tomer Hertz, Noam Shental, Daphna Weinshall

 967 Algorithmic Stability and Meta-Learning
 Andreas Maurer

 995 Matrix Exponentiated Gradient Updates for On-line
 Learning and Bregman Projection
 Koji Tsuda, Gunnar Rätsch, Man%ed K. Warmuth

1019 Gaussian Processes for Ordinal Regression
 Wei Chu, Zoubin Ghahramani

1043 Learning the Kernel with Hyperkernels
 (Kernel Machines Section)
 Cheng Soon Ong, Alexander J. Smola, Robert C. Williamson

1073 A Generalization Error for Q-Learning
 Susan A. Murphy

1099 Learning the Kernel Function via Regularization
 Charles A. Micchelli, Massimiliano Pontil

1127 Analysis of Variance of Cross-Validation Estimators of
 the Generalization Error
 Marianthi Markatou, Hong Tian, Shameek Biswas, George Hripcsak

1169 Semigroup Kernels on Measures
 Marco Cuturi, Kenji Fukumizu, Jean-Philippe Vert

1199 Separating a Real-Life Nonlinear Image Mixture
 Luís B. Almeida

1231 Concentration Bounds for Unigram Language Models
 Evgeny Drukh, Yishay Mansour

1265 An MDP-Based Recommender System
 Guy Shani, David Heckerman, Ronen I. Brafman

1297 Universal Algorithms for Learning "eory
 Part I : Piecewise Constant Functions
 Peter Binev, Albert Cohen, Wolfgang Dahmen,
 Ronald DeVore, Vladimir Temlyakov

1323 E&cient Computation of Gapped Substring
 Kernels on Large Alphabets
 Juho Rousu, John Shawe-Taylor

1345 Clustering on the Unit Hypersphere using
 von Mises-Fisher Distributions
 Arindam Banerjee, Inderjit S. Dhillon,
 Joydeep Ghosh, Suvrit Sra

1383 Inner Product Spaces for Bayesian Networks
 Atsuyoshi Nakamura, Michael Schmitt,
 Niels Schmitt, Hans Ulrich Simon

1405 Maximum Margin Algorithms with Boolean Kernels
 Roni Khardon, Rocco A. Servedio

1431 A Bayes Optimal Approach for Partitioning the Values
 of Categorical Attributes
 Marc Boullé

1453 Large Margin Methods for Structured and Interdependent
 Output Variables
 Ioannis Tsochantaridis, #orsten Joachims,
 #omas Hofmann, Yasemin Altun

1485 Frames, Reproducing Kernels, Regularization and Learning
 Alain Rakotomamonjy, Stéphane Canu

1517 Local Propagation in Conditional Gaussian Bayesian Networks
 Robert G. Cowell

1551 A Bayesian Model for Supervised Clustering with the Dirichlet
 Process Prior
 Hal Daumé III, Daniel Marcu

1579 Fast Kernel Classi!ers with Online and Active Learning
 Antoine Bordes, Seyda Ertekin, Jason Weston, Léon Bottou

1621 Managing Diversity in Regression Ensembles
 Gavin Brown, Jeremy L. Wyatt, Peter Tino

1651 Active Coevolutionary Learning of Deterministic
 Finite Automata
 Josh Bongard, Hod Lipson

1679 Assessing Approximate Inference for Binary Gaussian
 Process Classi!cation
 Malte Kuss, Carl Edward Rasmussen

1705 Clustering with Bregman Divergences
 Arindam Banerjee, Srujana Merugu,
 Inderjit S. Dhillon, Joydeep Ghosh

1751 Combining Information Extraction Systems Using
 Voting and Stacked Generalization
 Georgios Sigletos, Georgios Paliouras,
 Constantine D. Spyropoulos, Michalis Hatzopoulos

1783 Probabilistic Non-linear Principal Component Analysis
 with Gaussian Process Latent Variable Models
 Neil Lawrence

1817 A Framework for Learning Predictive Structures from
 Multiple Tasks and Unlabeled Data
 Rie Kubota Ando, Tong Zhang

1855 Feature Selection for Unsupervised and Supervised Inference:
 "e Emergence of Sparsity in a Weight-Based Approach
 Lior Wolf, Amnon Shashua

1889 Working Set Selection Using Second Order Information
 for Training Support Vector Machines
 Rong-En Fan, Pai-Hsuen Chen, Chih-Jen Lin

1919 New Horn Revision Algorithms
 Judy Goldsmith, Robert H. Sloan

1939 A Unifying View of Sparse Approximate Gaussian
 Process Regression
 Joaquin Quiñonero-Candela, Carl Edward Rasmussen

1961 What’s Strange About Recent Events (WSARE):
 An Algorithm for the Early Detection of Disease Outbreaks
 Weng-Keen Wong, Andrew Moore,
 Gregory Cooper, Michael Wagner

1999 Change Point Problems in Linear Dynamical Systems
 Onno Zoeter, Tom Heskes

2027 Asymptotics in Empirical Risk Minimization
 Leila Mohammadi, Sara van de Geer

2049 Convergence "eorems for Generalized Alternating
 Minimization Procedures
 Asela Gunawardana, William Byrne

2075 Kernel Methods for Measuring Independence
 Arthur Gretton, Ralf Herbrich, Alexander Smola,
 Olivier Bousquet, Bernhard Schölkopf

2131 E&cient Margin Maximizing with Boosting
 Gunnar Rätsch, Man%ed K. Warmuth

2153 On the Nyström Method for Approximating a Gram Matrix
 for Improved Kernel-Based Learning
 Petros Drineas, Michael W. Mahoney

2177 Expectation Consistent Approximate Inference
 Man%ed Opper, Ole Winther

Journal of Machine Learning Research 6 (2005) 1-35 Submitted7/03; Revised 2/04; Published 1/05

Asymptotic Model Selection for Naive Bayesian Networks

Dmitry Rusakov RUSAKOV@CS.TECHNION.AC.IL
Dan Geiger DANG@CS.TECHNION.AC.IL
Computer Science Department
Technion - Israel Institute of Technology
Haifa, 32000, Israel

Editor: David Madigan

Abstract
We develop a closed form asymptotic formula to compute the marginal likelihood of data given a
naive Bayesian network model with two hidden states and binary features. This formula deviates
from the standard BIC score. Our work provides a concrete example that the BIC score is generally
incorrect for statistical models that belong to stratified exponential families. This claim stands in
contrast to linear and curved exponential families, where the BIC score has been proven to provide
a correct asymptotic approximation for the marginal likelihood.
Keywords: Bayesian networks, asymptotic model selection, Bayesian information criterion (BIC)

1. Introduction

Statisticians are often faced with the problem of choosing the appropriate model that best fits a given
set of observations. One example of such problem is the choice of structure in learning of Bayesian
networks (Heckerman et al., 1995; Cooper and Herskovits, 1992). Insuch cases the maximum
likelihood principle would tend to select the model of highest possible dimension, contrary to the
intuitive notion of choosing the right model. Penalized likelihood approachessuch as AIC have
been proposed to remedy this deficiency (Akaike, 1974).

We focus on the Bayesian approach to model selection by which a modelM is chosen according
to the maximum posteriori probability given the observed dataD:

P(M|D) ∝ P(M,D) = P(M)P(D|M) = P(M)
Z

Ω
P(D|M,ω)P(ω|M)dω,

whereω denotes the model parameters andΩ denotes the domain of the model parameters. In
particular, we focus on model selection using large sample approximation forP(M|D), calledBIC -
Bayesian Information Criterion.

The critical computational part in using this criterion is evaluating the marginal likelihood in-
tegralP(D|M) =

R

Ω P(D|M,ω)P(ω|M)dω. Given an exponential modelM we writeP(D|M) as a
function of the averaged sufficient statisticsYD of the dataD, and the numberN of data points inD:

I[N,YD,M] =
Z

Ω
eL(YD,N|ω,M)µ(ω|M)dω, (1)

whereµ(ω|M) is the prior parameter density for modelM, andL is the log-likelihood function
of model M. Recall that the sufficient statistics for multinomial samples ofn binary variables

c©2005 Dmitry Rusakov and Dan Geiger.

RUSAKOV AND GEIGER

(X1, . . . ,Xn) is simply the countsN ·YD for each of the possible 2n joint states. Often the prior
P(M) is assumed to be equal for all models, in which case Bayesian model selectionis performed
by maximizingI[N,YD,M]. The quantity represented byS(N,YD,M) ≡ lnI[N,YD,M] is called the
BIC scoreof modelM.

For many types of models the asymptotic evaluation of Eq. 1, asN→∞, uses a classical Laplace
procedure. This evaluation was first performed for Linear Exponential (LE) models (Schwarz,
1978) and then for Curved Exponential (CE) models under some additional technical assumptions
(Haughton, 1988). It was shown that

S(N,YD,M) = N · lnP(YD|ωML)−
d
2

lnN+R, (2)

where lnP(YD|ωML) is the log-likelihood ofYD given the maximum likelihood parameters of the
model andd is the model dimension, i.e., the number of parameters. The error termR= R(N,YD,M)
was shown to be bounded for a fixedYD (Schwarz, 1978) and uniformly bounded for allYD→Y in
CE models (Haughton, 1988) asN→∞. For convenience, the dependence onM is suppressed from
our notation in the rest of this paper.

The use of BIC score for Bayesian model selection for Graphical Models is valid for Undirected
Graphical Models without hidden variables because these are LE models (Lauritzen, 1996). The
justification of this score for Directed Graphical Models (called Bayesian Networks) is somewhat
more complicated. On one hand discrete and Gaussian DAG models are CE models (Geiger et al.,
2001; Spirtes et al., 1997). On the other hand, the theoretical justification of the BIC score for CE
models has been established under the assumption that the model contains the true distribution - the
one that has generated the observed data. This assumption limits the applicabilityof the proof of
BIC score’s validity for Bayesian networks in practical setups.

Haughton (1988) proves that if at least one of several models containsthe true distribution,
then the BIC score is the correct approximation toI[N,YD] and the correct model will be chosen
by BIC score with probability 1 asN→ ∞. However, this claim does not guarantee correctness of
the asymptotic expansion ofI[N,YD] for models that do not contain the true distribution, nor does it
guarantee correctness of model selection for finiteN. The last problem is common to all asymptotic
methods, but having a correct asymptotic approximation forI[N,YD] provides some confidence in
this choice.

The evaluation of the marginal likelihoodI[N,YD] for Bayesian networks with hidden variables
is a wide open problem because the class of distributions represented by Bayesian networks with
hidden variables is significantly richer than curved exponential models andit falls into the class of
Stratified Exponential (SE) models (Geiger et al., 2001). The evaluation ofthe marginal likelihood
for this class is complicated by two factors. First, some of the parameters of themodel may be
redundant, and should not be accounted in the BIC score (Geiger et al.,1996; Settimi and Smith,
1998). Second, the set of maximum likelihood points is sometimes a complex self-intersecting
surface rather than a single maximum likelihood point as in the proven cases for linear and curved
exponential models. Recently, major progress has been achieved in analyzing and evaluating this
type of integrals (Watanabe, 2001). Herein, we apply these techniques tomodel selection among
Bayesian networks with hidden variables.

The focus of this paper is the asymptotic evaluation ofI[N,YD] for a binary naive Bayesian model
with binary features. This model, described fully in Section 3, is useful in classification of binary
vectors into two classes (Friedman et al., 1997). Our results are derivedunder similar assumptions

2

ASYMPTOTIC MODEL SELECTION FORNAIVE BAYESIAN NETWORKS

to the ones made by Schwarz (1978) and Haughton (1988). In this sense,our paper generalizes
the mentioned works, providing valid asymptotic formulas for a new type of marginal likelihood
integrals. The resulting asymptotic approximations, presented in Theorem 4,deviate from the stan-
dard BIC score. Hence the standard BIC score is not justified for Bayesian model selection among
Bayesian networks with hidden variables. Moreover, no uniform scoreformula exists for such mod-
els; ouradjusted BIC scorechanges depending on the different types of singularities of the sufficient
statistics, namely, the coefficient of the lnN term (Eq. 2) is no longer−d

2 but rather a function of the
sufficient statistics. An additional result presented in Theorem 5 describes the asymptotic marginal
likelihood given a degenerate (missing links) naive Bayesian model; it complements the main result
presented by Theorem 4.

The rest of this paper is organized as follows. Section 2 introduces the concept of asymptotic
expansions and presents methods of asymptotic approximation of integrals. Section 3 reviews naive
Bayesian models and explicates the relevant marginal likelihood integrals forthese models. Sec-
tion 4 states and explains our main results and Section 5 gives a proof outline of Theorem 4 that
demonstrates the mathematical techniques used herein. The full proof of our theorems is deferred to
Appendices A and B. Section 6 discusses our contributions and outlines future research directions.

2. Asymptotic Approximation of Integrals

Exact analytical formulas are not available for many integrals arising in practice. In such cases
approximate or asymptotic solutions are of interest. Asymptotic analysis is a branch of analysis
that is concerned with obtaining approximate analytical solutions to problems where a parameter or
some variable in an equation or integral becomes either very large or very small. In this section we
review basic definitions and results of asymptotic analysis in relation to the integral I[N,YD] under
study.

Let z represent a large parameter. We say thatf (z) is asymptotically equalto g(z) for z→ ∞ if
limz→∞ f/g = 1, and write

f (z)∼ g(z), asz→ ∞.

Equivalently,f (z) is asymptotically equal tog(z) if lim z→∞ r/g= 0, denotedr = o(g), wherer(z) =
f (z)−g(z) is the absolute error of approximation.

We often approximatef (z) by several terms via an iterative approximation of the error terms.
An asymptotic approximation bym terms has the formf (z) = ∑m

n=1angn(z)+o(gm(z)), asz→ ∞,
where{gn} is anasymptotic sequencewhich means thatgn+1(z) = o(gn(z)) asz→∞. An equivalent
definition is

f (z) =
m−1

∑
n=1

angn(z)+O(gm(z)), asz→ ∞,

where the big ’O’ symbol states that the error term is bounded by a constant multiple ofgm(z). The
latter definition of asymptotic approximation is often more convenient and we useit herein, mostly
for m= 3. A good introduction to asymptotic analysis can be found in (Murray, 1984).

The objective of this paper is deriving asymptotic approximation of marginal likelihood integrals
as represented by Eq. 1, which for exponential families have the form

I[N,YD] =
Z

Ω
e−N f(ω,YD)µ(ω)dω (3)

3

RUSAKOV AND GEIGER

a b
0

0.2

0.4

0.6

0.8

1

e−
N

 [
f(

x)
−

f(
x 0)

]

x
0

 ← N=1

 ← N "large"

−1
−0.5

0
0.5

1

−1

−0.5

0

0.5

1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x
y

e−
 [

x2 −
xy

+
y2]

(a) (b) (c)

Figure 1: The classical Laplace procedure for approximation of integrals
R

e−N f(x)µ(x)dx, where
f achieves single minimum in the range of integration. (a) The exponential inte-
grand functions in one dimension, for differentN. The largeN the more mass of
the function is concentrated in the small neighborhood of the extremum. (b) The two
dimensional integrand functione−(x2−xy+y2), (N = 1). The isosurfaces are ellipses.
(c) Ellipsoid-like isosurfaces of the three dimensional log-likelihood function function
f =− [0.2lnθ1 +0.2lnθ2 +0.2lnθ3 +0.4ln(1−θ1−θ2−θ3)].

wheref (ω,YD) =−L(YD|ω) is the minus log-likelihood function. We focus on exponential models,
for which the log-likelihood of sampled data is equal toN times the log-likelihood of the averaged
sufficient statistics. Note that the specific models discussed in this paper areindeed exponential.

Consider Eq. 3 for some fixedYD. For largeN, the main contribution to the integral comes
from the neighborhood of the minimum off , i.e., the maximum of−N f(ω,YD). See illustration on
Figure 1(a,b). Thus, intuitively, the approximation ofI[N,YD] is determined by the form off near
its minimum onΩ. In the simplest casef (ω) achieves a single minimum atωML in the interior of
Ω and this minimum is non-degenerate, i.e., the Hessian matrixH f (ωML) of f at ωML is of full
rank. In this case the isosurfaces of the integrand function near the minimumf are ellipsoids (see
Figure 1b,c) and the approximation ofI[N,YD] for N→ ∞ is the classical Laplace approximation
(see, e.g., Wong, 1989, page 495) as follows.

Lemma 1 (Laplace Approximation) Let

I(N) =
Z

U
e−N f(u)µ(u)du,

where U⊂ Rd. Suppose that f is twice differentiable and convex (i.e.,H f (u) is positive definite),
the minimum of f on U is achieved on a single internal point u0, µ is continuous and µ(u0) 6= 0. If
I(N) absolutely converges, then

I(N)∼Ce−N f(u0)N−d/2, (4)

where C= (2π)d/2µ(u0)[detH f (u0)]
− 1

2 is a constant.

Note that the logarithm of Eq. 4 yields the form of BIC score as presented by Eq. 2.
However, in many cases, and, in particular, in the case of naive Bayesian networks to be defined

in the next section, the minimum off is achieved not at a single point inΩ but rather on a variety
W0 ⊂ Ω. Sometimes, this variety may bed′-dimensional surface (smooth manifold) inΩ in which

4

ASYMPTOTIC MODEL SELECTION FORNAIVE BAYESIAN NETWORKS

case the computation of the integral is locally equivalent to thed−d′ dimensional classical case.
The hardest cases to evaluate happen when the varietyW0 contains self-intersections.

Recently, an advanced mathematical method for approximating this type of integrals has been
introduced to the machine learning community by Watanabe (2001). Below we briefly describe this
method and state the main results. First, we introduce the main theorem that enables us to evaluate
the asymptotic form ofI[N,YD] asN→ ∞ computed in a neighborhood of a maximum likelihood
point.1

Theorem 2 (based on Watanabe, 2001) Let

I(N) =
Z

Wε

e−N f(w)µ(w)dw

where Wε is some closedε-box around w0, which is a minimum point of f in Wε, and f(w0) = 0.
Assume that f and µ are analytic functions, µ(w0) 6= 0. Then,

ln I(N) = λ1 lnN+(m1−1) ln lnN+O(1)

where the rational numberλ1 < 0 and the natural number m1 are the largest pole and its multiplicity
of the meromorphic (analytic + poles) function that is analytically continued from

J(λ) =
Z

f (w)<ε
f (w)λµ(w)dw (Re(λ) > 0) (5)

whereε > 0 is a sufficiently small constant.2

The above theorem states the main claim of the proof of Theorem 1 in (Watanabe, 2001). Con-
sequently, the approximation of the marginal likelihood integralI[N,YD] (Eq. 3) can be determined
by the poles of

Jw0(λ) =
Z

Wε

[f (w)− f (w0)]
λ µ(w)dw

evaluated in the neighborhoodsWε of pointsw0 on which f attains its minimum. This claim, which
is further developed in Section 5, holds because the minimum off (w)− f (w0) is zero and the main
contribution toI[N,YD] comes from the neighborhoods around the minimums off .

Often, however, it is not easy to find the largest pole and multiplicity ofJ(λ) defined by Eq. 5.
Here, another fundamental mathematical theory is helpful. Theresolution of singularitiesin alge-
braic geometry transforms the integralJ(λ) into a direct product of integrals of a single variable.

Theorem 3 (Atiyah, 1970, Resolution Theorem) Let f(w) be a real analytic function defined in a
neighborhood of0∈ Rd. Then there exists an open set W that includes0, a real analytic manifold
U, and a proper analytic map g: U →W such that:

1. g: U \U0→W \W0 is an isomorphism, where W0 = f−1(0) and U0 = g−1(W0).

1. Throughout this paper we use styled ’I’ symbol to denote our particular marginal likelihood integrals rather than
standard ’I ’ symbol that denote general integrals appearing in theorems, examples and auxiliary derivations.

2. Recall that the pole of the complex functionf (z) is the point where it has a finite number of negative terms in its
Laurent expansion, i.e.,f (z) = a−m/(z−z0)

m+ . . .+a0 +a1(z−z0)+ In this case it is said thatf (z) has a pole
of order (or multiplicity)matz0. (See, e.g., Lang (1993), Section 5.3.)

5

RUSAKOV AND GEIGER

2. For each point p∈U there are local analytic coordinates(u1, . . . ,ud) centered at p so that,
locally near p, we have

f (g(u1, . . . ,ud)) = a(u1, . . . ,ud)u
k1
1 . . .ukd

d ,

where ki ≥ 0 and a(u) is an analytic function with analytic inverse1/a(u).

This theorem is based on the fundamental results of Hironaka (1964) andthe process of changing
to u-coordinates is known as resolution of singularities.

Theorems 2 and 3 provide an approach for computing the leading terms in the asymptotic ex-
pansion of lnI[N,YD]:

1. Cover the integration domainΩ by a finite union of open neighborhoodsWα. This is possible
under the assumption thatΩ is compact.

2. Find a resolution mapgα and manifoldUα for each neighborhoodWα by resolution of sin-
gularities. Note that in the process of resolution of singularitiesUα may be further divided
into subregionsUαβ by neighborhoods of different pointsp∈Uα, as specified by Theorem 3.
Select a finite cover ofUα by Uαβ, this is possible since closure of eachUα is also compact.

3. Compute the integralJ(λ) (Eq. 5) in each regionWαβ = gα(Uαβ) and find its poles and their
multiplicity. This integral, denoted byJαβ, becomes

Jαβ(λ) =
R

Wαβ
f (w)λµ(w)dw

=
R

Uαβ
f (gα(w))λµ(gα(u))|g′α(u)|du

=
R

Uαβ
a(u)λ uλk1

1 uλk2
2 . . .uλkd

d µ(gα(u)) |g′α(u)| du.

(6)

where |g′a(u)| is the Jacobian determinant. The last integration (up to a constant) is done
by boundinga(u) andµ(gα(u)), using the Taylor expansion for|g′α|, and integrating each
variableui separately. The largest poleλαβ of Jαβ and its multiplicitymαβ are now found.

4. The largest pole and multiplicity ofJ(λ) are λ(αβ)∗ = max(αβ) λαβ and the corresponding
multiplicity m(αβ)∗ . If the (αβ)∗ values that maximizeλαβ are not unique, then the(αβ)∗

value that maximizes the corresponding multiplicitym(αβ)∗ is chosen.

In order to demonstrate the above method, we conclude this section with an example, approxi-
mating the integral

I [N] =
Z +ε

−ε

Z +ε

−ε

Z +ε

−ε
e−N(u2

1u2
2+u2

1u2
3+u2

2u2
3) du1du2du3 (7)

asN tends to infinity. This approximation ofI [N] is an important component in establishing our
main results. The key properties of the integrand function in Eq. 7 are illustrated in Figure 2.

Watanabe’s method calls for the analysis of the poles of the following function

J(λ) =
Z +ε

−ε

Z +ε

−ε

Z +ε

−ε
(u2

1u2
2 +u2

1u2
3 +u2

2u2
3)

λ du1du2du3. (8)

To find the poles ofJ(λ) we transform the integrand function into a more convenient form by
changing to new coordinates via the process of resolution of singularities.To obtain the needed

6

ASYMPTOTIC MODEL SELECTION FORNAIVE BAYESIAN NETWORKS

(a) (b)

Figure 2: Part (a) depicts an isosurface ofe−N(u2
1u2

2+u2
1u2

3+u2
2u2

3) (or alternatively ofu2
1u2

2+u2
1u2

3+u2
2u2

3)
and its set of maximum (minimum) points which coincide with the three axis. Part (b)
depicts four isosurfaces of the same function for its different values. The isosurfaces are
not ellipsoids as in the classical Laplace case of a single maximum (see Figure1c).

transformations for the integral under study, we apply a technique calledblowing-upwhich consists
of a series ofquadratic transformations. For an introduction to these techniques see (Abhyankar,
1990).

Rescaling the integration range to(−1,1) and then taking only the positive octant yields

J(λ) = 8ε4λ+3 R

(0,1)3(u2
1u2

2 +u2
1u2

3 +u2
2u2

3)
λdu

= 8ε4λ+3
(

R

0<u2,u3<u1<1+
R

0<u1,u3<u2<1+
R

0<u1,u2<u3<1

)

(u2
1u2

2 +u2
1u2

3 +u2
2u2

3)
λdu.

The three integrals are symmetric, so we evaluate only the first. Using the quadratic transformation
u2 = u1u2, u3 = u1u3, which modifies the integration range 0< u2,u3 < u1 < 1 to be(0,1)3, yields

J1(λ) =
Z

0<u2,u3<u1<1
(u2

1u2
2 +u2

1u2
3 +u2

2u2
3)

λdu=
Z

(0,1)3
u4λ+2

1 (u2
2 +u2

3 +u2
2u2

3)
λdu.

We now divide the range(0,1)3 to the regions 0< u3 < u2 < 1 and 0< u2 < u3 < 1. Again these
cases are symmetric and so we continue to evaluate only the first using the transformationu3 = u2u3,

J11(λ) =
Z

0<u3<u2<1
u4λ+2

1 (u2
2 +u2

3 +u2
2u2

3)
λdu=

Z

(0,1)3
u4λ+2

1 u2λ+1
2 (1+u2

3 +u2
2u2

3)du.

Since the function(1+ u2
3 + u2

2u2
3) is bounded on the region of integration, namely 1≤ 1+ u2

3 +
u2

2u2
3≤ 3 for all 0≤ u2,u3≤ 1, it follows that

8ε4λ+3
Z

(0,1)2
u4λ+2

1 u2λ+1
2 du1du2 ≤ J(λ) ≤ 24ε4λ+3

Z

(0,1)2
u4λ+2

1 u2λ+1
2 du1du2, (9)

yielding

8ε4λ+3 1
(4λ+3)(2λ+2)

≤ J(λ) ≤ 24ε4λ+3 1
(4λ+3)(2λ+2)

.

7

RUSAKOV AND GEIGER

X1 X2 Xn

C

Figure 3: A naive Bayesian model. Class variableC is latent.

ThusJ(λ) has poles atλ =−3/4 andλ =−1 with multiplicity m= 1. The largest pole isλ =−3/4
with multiplicity m= 1. We conclude, using Theorem 2, thatI [N] defined by Eq. 7 is asymptotically
equal tocN−

3
4 .

We note that in this process of resolution of singularities we have implicitly computed the terms
k1, k2, k3, the functiona(u) and the Jacobian determinant|g′(u)| (in Eq. 6). In particular, we have
established thatk1 = 4, k2 = 2, k3 = 0, a(u) = 1+u2

3 +u2
2u2

3 and|g′(u)|= u2
1u2 for the appropriate

range under study. The mappingg (of Theorem 3) is the composition of the two transformations
we used and is defined viau1 = u1, u2 = u1u2 andu3 = u1u2u3. However, this explicit form is not
needed for the evaluation of the target integral, as long as the values ofki and|g′(u)| are derived.

In the proof of our theorems we perform a similar process of resolution ofsingularities pro-
ducing implicitly the mappingg which is guaranteed to exist according to Theorem 3, and which
determines the values ofki and|g′(u)| needed for evaluation of poles of functionJ(λ) as required
by Theorem 2.

3. Naive Bayesian Models

A naive Bayesian modelM for discrete variablesX = {X1, . . . ,Xn} is a set of joint distributions for
X that factor according to the tree structure depicted on Figure 3, where theclass variableC is never
observed. Formally, a probability distributionP(X = x) belongs to a naive Bayesian model if and
only if

P(X = x) =
r

∑
j=1

P(C = c j)
n

∏
i=1

P(Xi = xi |C = c j),

wherex = (x1, . . . ,xn) is then-dimensional binary vector of values ofX, r is the number of hidden
states andc j denotes a particular unobserved state (class). Intuitively, this model describes the
generation of datax that comes fromr sourcesc1, . . . ,cr . Naive Bayesian models are a subclass
of Bayesian networks (Pearl, 1988) and they are widely used in clustering (Cheeseman and Stutz,
1995).

In this work we focus on naive Bayesian networks that have two hidden states (r = 2) and
n binary feature variablesX1, . . . ,Xn. We denote the parameters definingp(xi = 1|c1) by ai , the
parameters definingp(xi = 1|c2) bybi , and the parameters definingp(c1 = 1) by t. These parameters
are called themodel parameters. We denote thejoint space parameters P(X = x) by θx. The
following mapping, namedT, relates these two sets of parameters:

θx = t
n

∏
i=1

axi
i (1−ai)

1−xi +(1− t)
n

∏
i=1

bxi
i (1−bi)

1−xi , (10)

8

ASYMPTOTIC MODEL SELECTION FORNAIVE BAYESIAN NETWORKS

and the marginal likelihood integral (Eq. 1) for these models becomes

I[N,YD] =
Z

(0,1)2n+1
eN∑xYx lnθx(ω)µ(ω)dω (11)

whereω = (a1, . . . ,an,b1, . . . ,bn, t) are the model parameters,N is the sample size, and the averaged
sufficient statisticsYx is the number of samples for whichX = x divided by the sample sizeN.

4. Main Results

This section presents an asymptotic approximation of the integralI[N,YD] (Eq. 11) for naive Bayesian
networks consisting of binary variablesX1, . . . ,Xn and two hidden states. It is based on two results.
First, the classification of singular points for these types of models (Geiger et al., 2001). Second,
Watanabe’s approach as explained in Section 2, which provides a method toobtain the correct
asymptotic formula ofI[N,YD] for the singular points not covered by the classical Laplace approxi-
mation scheme.

Let ϒ = {(y1, . . . ,y2n)|yi ≥ 0,∑yi = 1} be the set of possible values of the averaged sufficient
statisticsYD = (Y1, . . . ,Y2n) for dataD = {(xi,1, . . . ,xi,n)}Ni=1. In our asymptotic analysis we let the
sample sizeN grow to infinity.

Let ϒ0⊂ ϒ be the points(y1, . . . ,y2n) that correspond to the joint space parameters of the distri-
butions that can be represented by binary naive Bayesian models withn binary variables. In other
words, assuming the indices ofyi are written as vectors(δ1, . . . ,δn) of n zeros and ones, points in
ϒ0 are those that can be parameterized via

y(δ1,...,δn) = t
n

∏
i=1

aδi
i (1−ai)

1−δi +(1− t)
n

∏
i=1

bδi
i (1−bi)

1−δi (12)

wheret, a = (a1, . . . ,an) andb = (b1, . . . ,bn) are the 2n+ 1 model parameters, as defined in Sec-
tion 3.

Geiger et al. (2001) classify the singular points of the algebraic variety ofthe parameters of
binary naive Bayesian networks into two classesSandS′. This classification is used here to classify
the possible statistics arising from binary naive Bayesian networks with different parameters; The
setS is the set of points(y1, . . . ,y2n) such that Eq. 12 holds and allai = bi except for at most two
indices in{1, . . . ,n}. Intuitively, each such point represents a probability distribution that canbe
defined by a naive Bayesian model (Figure 3) with all links removed except at most two.

The setS′ ⊂ S is the set of points represented by a naive Bayesian model, just as the setSdoes,
but with all links removed; namely, a distribution where all variables are mutuallyindependent
and independent of the class variable as well. These statistics are parameterized viay(δ1,...,δn) =

∏n
i=1aδi

i (1−ai)
1−δi .

ClearlyS′ ⊂ S⊂ ϒ0⊂ ϒ. We call points inϒ0\S regular points, and points in setsS\S′ andS′

type1 andtype2 singularities, respectively. We now present our main result.

Theorem 4 (Asymptotic Marginal Likelihood Formula) LetI[N,YD] (Eqs. 10 and 11) be the marg-
inal likelihood of data with averaged sufficient statistics YD given the naive Bayesian model with
binary variables and two hidden states with parametersω = (a,b, t). Namely,

I[N,YD] =
R

(0,1)2n+1 eN∑xYx lnθx(ω)µ(ω)dω,

θ(x1,...,xn) = t ∏n
i=1axi

i (1−ai)
1−xi +(1− t)∏n

i=1bxi
i (1−bi)

1−xi ,

(13)

9

RUSAKOV AND GEIGER

where x= (x1, . . . ,xn) denotes the binary vector of length n and the vectors YD andθ of length2n

are indexed by x. Let YD and µ satisfy the following assumptions:

A1 Bounded density.The density µ(ω) is bounded and bounded away from zero onΩ = (0,1)2n+1.

A2 Positive statistics.The statistics YD = (Y1, . . . ,Y2n) are such that Yi > 0 for i = 1, . . . ,2n.

A3 Statistics stability.There exists a sample size N0 such that the averaged sufficient statistics YD

is equal to a limiting statistics Y for all sample sizes N≥ N0.

Then, for n≥ 3 as N→ ∞:

(a) If Y ∈ ϒ0\S (regular point)

lnI[N,YD] = N lnP(Y|ωML)−
2n+1

2
lnN+O(1), (14)

(b) If Y ∈ S\S′ (type1 singularity)

lnI[N,YD] = N lnP(Y|ωML)−
2n−1

2
lnN+O(1), (15)

(c) If Y ∈ S′ (type2 singularity)

lnI[N,YD] = N lnP(Y|ωML)−
n+1

2
lnN+O(1), (16)

whereωML are the maximum likelihood parameters for the averaged sufficient statistic Y.
Moreover, for n= 2, S= ϒ0 = ϒ and

(d) If Y 6∈ S′ (namely, Y∈ S\S′),

lnI[N,YD] = N lnP(Y|ωML)−
3
2

lnN+O(1), (17)

(e) If Y∈ S′,

lnI[N,YD] = N lnP(Y|ωML)−
3
2

lnN+2ln lnN+O(1), (18)

and for n= 1,

(f) lnI[N,YD] = N lnP(Y|ωML)−
1
2

lnN+O(1),

(19)
as N→ ∞.

The first assumption that the prior densityµ is bounded has been made by all earlier works; in some
applications it holds and in some it does not. The proof and results, however, can be easily modified
to apply to any particular kind of singularity ofµ, as long as the form of singularity is specified. The
second and third assumptions are made to ease the proof; the third assumptionwas also made by
(Schwarz, 1978). Removing these assumptions is beyond the scope of thispaper.

10

ASYMPTOTIC MODEL SELECTION FORNAIVE BAYESIAN NETWORKS

Note that Eq. 15 corresponds to selectingλ1 = −2n−1
2 andm1 = 1 in Watanabe’s method and

Eq. 16 corresponds to selectingλ1 =−n+1
2 andm1 = 1. Both formulas are different from the stan-

dard BIC score, given by Eq. 14, which only applies to regular points, namely, the points inϒ0\S.
In contrast to the standard BIC score, which is uniform for all pointsYD, the asymptotic approxi-
mation given by ouradjusted BIC scoredepends on the value ofY = YD through the coefficient of
lnN.

One might be tempted to think that the coefficient of the− lnN term can be guessed by vari-
ous intuitive considerations. We now discuss three such erroneous attempts. First, the number of
parameters of the model that generates a singular pointYD is n+ 1 for case (c) because there are
n+ 1 independent binary variables (the class variable andn feature variables). This may seem to
explain the coefficient of lnN in case (c). However, using the same reasoning for case (b) yields
the coefficient(n+3)/2 which differs from the correct coefficient. Another attempt is to claim that
the coefficient of− lnN is half the number of parameters in the naive Bayesian model minus the
number of redundant parameters in the model that generatesYD. In particular, for case (b), the num-
ber of redundant parameters in the generative model is(n+3)− (n+1) = 2 and so the speculated
coefficient should be(2n+1−2)/2 = (2n−1)/2 which is the correct coefficient. However, using
the same reasoning for case (c) yields the coefficient 2n/2 which is wrong. Finally, computing the
maximum rank of the Jacobian of the map from the model parameters to the joint space parameters
(defined by Eq. 22) at the maximum likelihood parameterswML for singular statisticsYD yields the
correct coefficient for case (b) but the wrong coefficient(2n−1)/2 for case (c).

The next theorem specifies the asymptotic behavior of marginal likelihood integrals for degener-
ate naive Bayesian models, namely, when some of the links are missing. This theorem complements
Theorem 4 and its proof is explicated in Appendix B.

Theorem 5 Let M be the degenerate naive Bayesian model with two hidden states and n binary
feature variables of which m are independent of the hidden state and let

ω = (a1, . . . ,an−m,b1, . . . ,bn−m, t,cn−m+1, . . . ,cn)

be the2n−m+ 1 model parameters of M. LetI[N,YD] be the marginal likelihood of data D with
averaged sufficient statistics YD given model M. Namely,

I[N,YD] =
R

(0,1)2n+1 eN∑xYx lnθx(ω)µ(ω)dω,

θx =
(

t ∏n−m
i=1 axi

i (1−ai)
1−xi +(1− t)∏n−m

i=1 bxi
i (1−bi)

1−xi
)

∏n
i=n−m+1cxi

i (1−ci)
1−xi ,

(20)

where x= (x1, . . . ,xn) denotes the binary vector of length n and the vectors YD andθ of length2n

are indexed by x. Let YD and µ satisfy the following assumptions:

A1 Bounded density.The density µ(ω) is bounded and bounded away from zero onΩ = (0,1)2n+1.

A2 Positive statistics.The statistics YD = (Y1, . . . ,Y2n) are such that Yi > 0 for i = 1, . . . ,2n.

A3 Statistics stability.There exists a sample size N0 such that the averaged sufficient statistics YD

is equal to a limiting statistics Y for all sample sizes N≥ N0.

Assume also that Y∈ ϒ0 and that the parameterization of Y (as is Eq. 12) corresponds to a binary
naive Bayesian model M′, which shares k links with model M. Then, for m≤ n−3 as N→ ∞:

11

RUSAKOV AND GEIGER

(a) If k≥ 3 (regular point)

lnI[N,YD] = N lnP(Y|ωML)−
2n+1−m

2
lnN+O(1),

(b) If k = 2 (type1 singularity)

lnI[N,YD] = N lnP(Y|ωML)−
2n−1−m

2
lnN+O(1),

(c) If k = 0 or k = 1 (type2 singularity)

lnI[N,YD] = N lnP(Y|ωML)−
n+1

2
lnN+O(1),

whereωML are the maximum likelihood parameters of statistics Y .
Furthermore, for m= n−2

(d) If k = 2 (type1 singularity)

lnI[N,YD] = N lnP(Y|ωML)−
n+1

2
lnN+O(1).

Note that here n+1 = 2n−m−1, since m= n−2.

(e) If k= 0 or k = 1 (type2 singularity)

lnI[N,YD] = N lnP(Y|ωML)−
n+1

2
lnN+2ln lnN+O(1),

and for m= n−1 or m= n,

(f) lnI[N,YD] = N lnP(Y|ωML)−
n
2

lnN+O(1),

regardless of k as N→ ∞.

An adversary may argue that evaluating the marginal likelihood on singular points is not needed
because one could exclude from the model all singular points which only have measure zero. The
remaining set would be a smooth manifold defining a curved exponential model,and so the standard
BIC score would be a correct asymptotic expansion as long as the pointYD has not been excluded.
However, this proposed remedy is not perfect because in some situationsthe data may come from a
model that yields singular statistics relative to the models being compared.

As an example of incorrect Bayesian model selection by the standard BIC score, consider the
problem of selecting between two naive Bayesian modelsM1 and M2, as depicted on Figure 4.
Suppose that the data is generated by the third modelMT . Both modelsM1 andM2 can not represent
the target distribution (MT) exactly, therefore, given a large enough sample, the choice of the model
depends on the particular distribution represented byMT and its parameters. Intuitively, if the
dependencies ofX1 andX2 on the hidden nodeC in modelMT are stronger than the dependency of
X4 on the hidden node, then one should prefer modelM1 over modelM2, and vice versa.

12

ASYMPTOTIC MODEL SELECTION FORNAIVE BAYESIAN NETWORKS

C

X6X5X4X3X2X1

C

X6X5X4X3X2X1

C

X6X5X4X3X2X1

MT M1 M2

Figure 4: An example of incorrect Bayesian model selection by the standard BIC score.MT repre-
sents the generating model, andM1, M2 represent models being compared. If the max-
imum likelihoods of data givenM1 andM2 happen to be equal, e.g., for true model pa-
rametersa1 = 0.75, a2 = 0.2, a3 = 0.12, a4 = 0.17, b1 = 0.33, b2 = 0.12, b3 = 0.07, b4 =
0.77, a5 = b5 = 0.2, a6 = b6 = 0.6, t = 0.42, then the model selection procedure based on
the standard BIC score will prefer modelM1, as it is less penalized compared toM2. Us-
ing the adjusted BIC formula (Theorem 5), on the other hand, gives an advantage toM2,
reflecting its higher marginal likelihood.

Now, if the maximum likelihoods of the data given modelM1 and given modelM2 happen to be
equal, which is possible whenX4 depends strongly onC in MT (Figure 4), then the standard choice
of the model is dictated by the penalty term of the BIC score (Eq. 2). The penalty term is smaller for
M1, which contains less parameters thanM2, and, consequently, the model preferred by the standard
BIC score isM1. However, the adjusted BIC approximation formula for the marginal likelihoodfor
models with hidden variables penalizes modelM2 less than modelM1 (Theorem 5). Therefore, the
marginal likelihood of the data given modelM2 is asymptotically larger than that of modelM1 and
it should be chosen according to a Bayesian model selection procedure,given enough data.

Note that when comparing a naive Bayesian model versus a sub-model, where the data comes
from the smaller model, then the standard BIC score may underevaluate the larger model, but this
would not lead to an incorrect model selection.

5. Proof Outline of Theorem 4

The proof of Theorem 4 consists of two logical parts. The first part is the proof of claim (a) of The-
orem 4 that follows from the fact that for regular statisticsY ∈ ϒ0\Sthere are only two (symmetric)
maximum likelihood points at each of which the log-likelihood function is properlyconvex. Hence,
the marginal likelihood integral can be approximated by the classical Laplacemethod (Lemma 1).
The proof of Theorem 4a, which reflects standard practice, is provided in Appendix A.2. The sec-
ond logical part consists of the proofs of claims (b) and (c) of Theorem4 and requires the advanced
techniques of Watanabe (Section 2). First, the integralI[N,YD] is transformed by a series of trans-
formations into a simpler one. Second, the sets of extremum points of the exponent (maximum
log-likelihood points) are found, and then the new integral is computed in the neighborhoods of
extremum points. Finally, the logarithm of the largest contribution gives the desired asymptotic
approximation of the original integral. We focus on one thread of our proof, which demonstrates
this method, deferring the full proof to Appendix A.

13

RUSAKOV AND GEIGER

5.1 Useful Transformations

Decomposing the transformationT from the model parameters(a,b, t) to the joint space parameters
θx, as defined by Eq. 13, facilitates the evaluation of the integralI[N,YD]. We decomposeT into a
series of three transformationsT1, T2, T3 such thatT = T3 ◦T2 ◦T1. We call the model parameters
(a,b, t) - the source coordinatesand the parametersθx - the target coordinates. The transformations
T1 andT3 are diffeomorphisms, namely, one-to-one differentiable mappings with differentiable in-
verses, that change the source and target coordinates, respectively, and are defined in such a way
that the intermediate transformationT2, which carries all the information about the singularities, is
simple to analyze. These transformations are from (Geiger et al., 2001).

Denote the domain of the model parameters byΩ = [0,1]2n+1 and the domain of the joint space
parameters byΘ = ∆̄2n−1, where∆̄2n−1 = {(α1, . . . ,α2n−1)|αi ≥ 0,∑αi ≤ 1} is the closed 2n− 1
dimensional unit simplex. LetU = T1(Ω) be the image ofT1, Λ = T−1

3 (Θ) be the preimage ofT3,
andT2 : U → Λ be the transformation that relates these sets. These transformations are chained as
follows:

Ω(a,b,t)
T1←→U(x,u,s)

T2−→ Λ(z)
T3←→Θ(θ)

where the indices denote the names of the coordinates used to describe the corresponding spaces.
We now present these three transformations.

Transformation T1: We defineT1 : Ω→U via

s= 2t−1, ui =
ai−bi

2
, xi = tai +(1− t)bi , i = 1, . . . ,n. (21)

The mappingT1 is a diffeomorphism with|detJT1|= 2−n+1. The inverse transformation is given by

t = (s+1)/2, ai = xi +(1−s)ui , bi = xi− (1+s)ui , i = 1, . . . ,n. (22)

Furthermore, it can be verified thatU is the set of points(x,u,s) ∈ Rn×Rn×R such that

0≤ xi ≤ 1, −1≤ s≤ 1, −xi ≤ (1−s)ui ≤ 1−xi , xi−1≤ (1+s)ui ≤ xi . (23)

Transformation T3: We defineT3 : Λ→ Θ as the inverse of a composition of two transformations
T31 andT32. First, consider the nonsingular transformationT31 : Θ→ Λ′ defined by

νi j ...k = ∑
(x1,...,xn), s.t. xi=x j=...=xk=1

θ(x1,...,xn)

whereνi stands for the probability of theith feature being true,νi j stands for the probability that the
ith and jth features are both true, etc. We now expressνi j ...k using the model parameters(a,b, t)
via

νi j ...k = taia j . . .ak +(1− t)bib j . . .bk. (24)

Using Eq. 22, we rewrite Eq. 24 obtaining

νi = xi , νi j = xix j +(1−s2)uiu j ,
νi jk = xix jxk +(1−s2)(xiu juk +uix juk +uiu jxk)−2s(1−s2)uiu juk

ν12...r = x1x2 · · ·xr +∑r
i=2 pi(s)(∑ “products ofi u′s andr− i x′s′′)

(25)

14

ASYMPTOTIC MODEL SELECTION FORNAIVE BAYESIAN NETWORKS

wherepi(s) = 1/2
[

(1−s)i(1+s)+(−1−s)i(1−s)
]

, and, in particular,p2(s) = 1−s2 andp3(s) =
−2s(1−s2).

Now we subtract products of the firstn coordinates to remove the leading terms. So, we do
zi j = νi j −νiν j . Then we subtract products of the firstn coordinates with one of the new coordinates
to remove the second terms, namely,zi jk = νi jk−νiν jνk−zi j νk−zikν j−zjkνi , and so forth. We end
up with the transformationT32 : Λ′→ Λ defined by

zi = νi , zi j = νi j −νiν j , zi jk = νi jk −νiν jνk−zi j νk−zikν j −zjkνi , etc. (26)

where the indices of thez coordinates are non-empty subsets of{1, . . . ,n}. In particular, thez
coordinate corresponding to a setI ⊆ {1, . . . ,n} is zI , thezcoordinate corresponding to{i} is zi , and
thez coordinate corresponding to{i, j,k} ⊆ {1, . . . ,n} is zi jk , etc.

The transformationsT31 andT32 are diffeomorphisms with Jacobian determinant 1. The trans-
formationT3 is defined byT3 = T−1

31 ◦T−1
32 : Λ→ Θ. Hence,T3 is a diffeomorphism with Jacobian

determinant equal to 1.

Transformation T2: We defineT2 : U ⊂ R2n+1→ Λ⊂ R2n−1 via

zi = xi , zi j = p2(s)uiu j , . . . , z12...r = pr(s)u1u2 . . .ur (27)

obtained by combining Eqs. 25 and 26. We use the notationzI (x,u,s) when the dependence ofzI on
(x,u,s) needs to be explicated. Note that this transformation is not a diffeomorphism for n > 3.

TransformationsT1, T2 andT3 are similar to transformations used by (Settimi and Smith, 2000)
in the study of the geometry of parametric spaces for Bayesian networks with hidden variables.
These transformations can be regarded as reparameterizations of the naive Bayesian models in terms
of moments. In particular, if the hidden and observable nodes are assumedto have states−1 and 1,
thens= E[C], ui = Cov(Xi ,C)/Var(C), pi(s) = E[(C−s)i] andz12...r = E[∏r

i=1(Xi−E[Xi])].

5.2 Preliminary Lemmas

Based on the transformationsT1, T2 andT3, we present two lemmas that facilitate the evaluation
of the integralI[N,YD]. The first lemma states that under AssumptionsA1 andA3, the integral
I[N,YD] can be asymptotically evaluated in the(x,u,s) coordinates for a limiting statisticsY, while
dismissing the contribution of the density functionµ. The second lemma shows that the resulting
integralĨ[N,Y] can be evaluated using the quadratic form in thez coordinates.

Lemma 6 Let I[N,YD] be defined by Eq. 13, namely,

I[N,YD] =
Z

(0,1)2n+1
eN∑xYx lnθx(ω)µ(ω)dω

and assume µ is bounded (A1) and YD is stable (A3). Let

Ĩ[N,Y] =
Z

U
e−N f(θ[x,u,s])dxduds (28)

where
f (x,u,s) = fY−∑2n

i=1Yi lnθi [x,u,s],

θ[x,u,s] = (T3◦T2)[x,u,s], θ2n[x,u,s] = 1−∑2n−1
i=1 θi [x,u,s],

(29)

15

RUSAKOV AND GEIGER

and where fY = max(x,u,s)∈U ∑2n

i=1Yi lnθi [x,u,s] and Y is the limiting statistics of YD as specified by
Assumption A3, namely, YD = Y for N≥ N0.

Then, fY = P(Y|ωML) and

lnI[N,YD] = N fY + ln Ĩ[N,Y]+O(1) (30)

for all N > 1.

Proof: SinceT1 is a diffeomorphism,fY = P(Y|ωML) and the integralI[N,YD] can be evaluated in
(x,u,s) coordinates by introducing the constant factor of Jacobian determinant of transformationT1,
JT1 = 2−n+1. Moreoverµ(ω) is bounded and thus the integral evaluated withµ(ω) ≡ 1 is within
a constant factor ofI[N,YD] and sinceYD is equal toY starting fromN0, fixing YD to Y introduces
finite number of approximation errors forN < N0 that can be bounded. Thus,Ĩ[N,Y] is within a
constant factor of the integralI[N,YD] multiplied byeN fY with the constants independent onN and
YD. Eq. 30 expresses this fact in a logarithmic scale.�

Lemma 7 ConsiderĨ[N,Y] and f(x,u,s) as defined in Lemma 6 (Eqs. 28 and 29). Let the zero set
U0 = argmin(x,u,s)∈U f (x,u,s) be the set of minimum points of f(x,u,s) in U. Let

J[N,Y] = max
p0∈U0

Jp0[N,Y] and Jp0[N] =
Z

Uε∩U
e−N∑I (zI (x,u,s)−z′I)

2
dxduds, (31)

where zI (x,u,s) is the I-th coordinate of z(x,u,s) = T2[x,u,s], z′I is the I-th coordinate of T2[x′,u′,s′]
and Uε is anε-box neighborhood of p0 = (x′,u′,s′) ∈U0. (Note thatJp0[N] does not depend on Y,
whileJ[N,Y] depends on Y through the form of set U0.)

If Y is positive (A2) and Y∈ ϒ0, then

ln Ĩ[N,Y] = lnJ[N,Y]+O(1) for all N > 1. (32)

The proof of this lemma uses the facts thatT3 is a diffeomorphism,U is compact, the contributions
of non-maximum regions of− f are exponentially small, and the 2n dimensional pointY > 0 corre-
sponds to a maximum likelihood parameters of naive Bayesian network with binary variables and
two hidden states. The proof is explicated in Appendix A.1.

Lemmas 6 and 7 jointly state that the asymptotic forms of lnJ[N,Y] and lnI[N,YD] are identical
up to an additive termN fY and a constant provided thatY is the limiting statistics ofYD (Assumption
A3).

5.3 Analysis of Type 2 Singularity

We now focus on the proof of Theorem 4c that deals with the singular pointsin S′. Let Y ∈ S′.
Our starting point in proving Theorem 4c is integralJ[N,Y] (Eq. 31), which by Lemmas 6 and 7
specifies the asymptotic form ofI[N,YD]. We evaluate the contributionsJp0[N] to J[N,Y] from the
neighborhoods of extremum pointsp0 = (x′,u′,s′) ∈U0. The largest contribution determines the
asymptotic form of integralI[N,YD] asN→ ∞ andYD = Y.

Let γ = (γ1, . . . ,γn) be the model parameters of then independent variables that define the 2n

dimensional pointY ∈ S′, namely

γ j = ∑
δ∈{0,1}n,s.t. δ j=1

Y(δ1,...,δn), j = 1, . . . ,n. (33)

16

ASYMPTOTIC MODEL SELECTION FORNAIVE BAYESIAN NETWORKS

Furthermore,Y ∈ S′ if and only if for all δ ∈ {0,1}n, equalityY(δ1,...,δn) = ∏n
i=1 γδi

i (1− γi)
1−δi holds

for γ = {γ1, . . . ,γn} given by Eq. 33.
Let V̄ denote the closure of a setV. The zero setU0 can be written as the union ofn+2 sets

U0 = Ū0−∪Ū0+∪
n

[

j=1

Ū0 j , (34)

where

U0− =
{

(x = γ,u,s=−1) | ui ∈
(

−γi
2 , 1−γi

2

)

, i = 1, . . . ,n
}

, W0− = {(a,b = γ, t = 0) | ai ∈ (0,1)} ,

U0+ =
{

(x = γ,u,s= 1) | ui ∈
(

γi−1
2 , γi

2

)

, i = 1, . . . ,n
}

, W0+ = {(a = γ,b, t = 1) | bi ∈ (0,1)} ,

U0 j =















(x = γ,u,s) |
ui = 0,∀i 6= j;
u j ∈

(

− 1
2 , 1

2

)

;s∈ (−1,1);
−γ j < (1−s)u j < 1− γ j ,
γ j −1 < (1+s)u j < γ j















, W0 j =

{

(a,b, t) | ai = bi = γi ,∀i 6= j;
ta j +(1− t)b j = γ j

}

,

(35)

and whereW0− = T−1
1 (U0−), W0+ = T−1

1 (U0+), andW0 j = T−1
1 (U0 j) are the same sets expressed

using the model parameters(a,b, t).
The zero setU0, namely the minimum points off , is divided into five disjoint sets:

C1: (x′,u′,s′) ∈U0 j \
S

i 6= j U0i .

C2: (x′,u′,s′) ∈T

j U0 j .

C3: (x′,u′,s′) ∈U0−∪U0+ \
S

j Ū0 j .

C4: (x′,u′,s′) ∈S

j

[

U0−∪U0+∩Ū0 j \
S

i6= j Ū0i
]

.

C5: (x′,u′,s′) ∈ (U0−∪U0+)
T

j Ū0 j .

These five disjoint sets and their boundaries coverU0, becauseU0+ ∩U0− = /0 andU0i ∩U0 j =
T

kU0k. The setU0 is shown in Figure 5 along with a representative point fromC1 throughC5.
Note thatU0 is a union of twon-dimensional planesU0−, U0+ andn two-dimensional planes

U0 j , j = 1, . . . ,n. Consequently, one could perhaps guess from the classical Laplace approximation
analysis that because the zero subsetsU0−, U0+ have dimensionn, the coefficient of the lnN term
would be at least−(2n+1−n)/2 =−(n+1)/2. Indeed this happens, but a formal proof requires
to closely examine the form off near the different minimum points. This evaluation is complicated
by the fact that the zero planes intersect (see Figure 5), and such cases (C2,C4,C5) are not covered
by the classical Laplace approximation analysis.

The proof proceeds case by case by evaluating the integralsJp0[N] (Eq. 31) around points
p0 = (x′,u′,s′) from the setsC1 throughC5. Then, the maximal asymptotic value ofJp0[N] is
the approximation ofJ[N,Y], as specified by Lemma 7. We now treat caseC2 which demonstrates
the main ideas, deferring the other cases to Appendix A.

According to caseC2, (x′,u′,s′) =
T

j U0 j . Each point of caseC2 satisfiesu′i = 0 andx′i = γi for
i = 1, . . . ,n ands′ 6=±1. Furthermore, itsz coordinates satisfyz′i = x′i for all i = 1, . . . ,n andz′I = 0
for all other indices. Letφ(x,u,s) = ∑I [zI (x′+x,u′+u,s′+s)−z′I]

2. Note thatφ(x,u,s) is term

17

RUSAKOV AND GEIGER

Figure 5: The setU0 projected on(s,ui ,u j), for xi = γi = 0.2, x j = γ j = 0.3. Examples of points of
typesC1-C5 are marked.

in the exponent of the integrand ofJ[N,Y] centered around the minimum point(x′,u′,s′). Using
transformationT2 (Eq. 27), we obtain

φ(x,u,s) = ∑I [zI (x′+x,u′+u,s′+s)−z′I]
2

= ∑i [zi−z′i]
2 +∑i j ,i6= j [zi j −z′i j]

2 +∑i jk,i6= j 6=k[zi jk −z′i jk]
2 + . . .

= ∑i [(x
′
i +xi)−x′i]

2 +∑i j ,i6= j

[

(1− (s′+s)2)uiu j −0
]2

+ “higher order terms′′

= ∑i x
2
i +∑i j ,i6= j

[

(1−s′2)uiu j − (s+2s′)suiu j
]2

+ “higher order terms′′.

(36)

The higher order terms are multiplication of three, four and moreui ’s and their contribution is
bounded by the terms explicitly written in Eq. 36. For example, third terms are of form (zi jk −
z′i jk)

2 = 4(s′+s)2(1−(s′+s)2)2u2
i u2

j u
2
k ≤ 5ε2u2

i u2
j for all s,ui ,u j ,uk < ε for ε small enough. Similar

bounds can be obtained for all high order terms in Eq. 36. Thus, the principal part ofφ, that bounds
φ within the multiplicative constant near zero, is given by

φ̃(x,u,s) = ∑
i

x2
i + ∑

i j ,i6= j

u2
i u2

j . (37)

andφ̃(x,u,s)≤ φ(x,u,s)≤ 2φ̃(x,u,s) for all s,ui ,u j < ε for ε small enough.
Since the multiplicative constants in the exponent can be transferred to the multiplicative con-

stants of integral itself by changing the integration range around zero andrescaling, we only need to
evaluate the asymptotic form of integral

R

e−N(∑i x
2
i +∑i j ,i 6= j u

2
i u2

j)dxdudsin order to get the asymptotic
form of integralJ[N,Y ∈ S′] (Eq. 31) within a constant multiply.

18

ASYMPTOTIC MODEL SELECTION FORNAIVE BAYESIAN NETWORKS

The quadratic form inxi ’s contributes anN−n/2 factor to the integral̃J[N]. This can be shown by
decomposing the integral and integrating out thexi ’s. We are left with the evaluation of the integral

J̃[N] =
Z

(−ε,+ε)n
e−N∑i j ,i 6= j u

2
i u2

j du.

Forn= 3, this is precisely the integral evaluated as example in Section 2 which was found to be
asymptotically equal tocN−

3
4 . Generalizing the approach demonstrated in the example in Section 2

to n≥ 3 we obtain that the largest pole ofJ(λ) is λ1 = −n/4 with multiplicity m= 1, soJ̃[N] is
asymptotically equal tocN−

n
4 . Thus the contribution of the neighborhood of(x′,u′,s′) ∈ T

j U0 j to

J[N,Y ∈ S′] is cN−
3n
4 .

In summary, we have analyzed caseC2, showing that the contribution toJ[N,Y ∈ S′] is cN−
3n
4 .

The dominating contributions in the casesC3,C4, andC5, are all equal tocN−
n+1

2 (the proof of this
claim is given in Appendix A). The dominating contribution in caseC1 is onlycN−

2n−1
2 . Also, the

various border points ofU0 do not contribute more than the corresponding internal points. Thus,
J[N,Y] = cN−

n+1
2 for Y′ ∈ S. Consequently, due to Lemmas 6 and 7, lnI[N,YD] = N ·P(Y|ωML)−

n+1
2 lnN+O(1), as claimed by Theorem 4c.�

6. Discussion

This paper presents an asymptotic approximation of the marginal likelihood of data given a naive
Bayesian model with binary variables (Theorem 4). This Theorem proves that the classical BIC
score that penalizes the log-likelihood of a model byd

2 lnN is incorrect for Bayesian networks with
hidden variables and suggests an adjusted BIC score. Moreover, no uniform penalty term exists for
such models in the sense that the penalty term, i.e., the coefficient of lnN, depends on the averaged
sufficient statistics. This result resolves an open problem regarding thevalidity of the classical BIC
score for stratified exponential families, raised in (Geiger et al., 2001).

The major limitation of Theorem 4 arises from AssumptionsA2 andA3. While Assumption
A1 (bounded density) is often satisfied in applications, AssumptionA2 (positive statistics) is only
sometimes satisfied and AssumptionA3 (statistics stability) is never satisfied in practice. Never-
theless, this Theorem is an essential advance towards developing asymptotic Bayesian methods for
model selection among naive Bayesian models in particular, and for Bayesian networks with hidden
variables in general. We now highlight the steps required for obtaining a valid, practical asymptotic
model selection score for arbitrary latent Bayesian networks, namely, for Bayesian networks with
hidden variables.

1. Develop a closed form asymptotic formula for marginal likelihood integrals for all types of
statisticsY given an arbitrary latent Bayesian model.

2. Extend these solutions by developinguniformasymptotic approximations valid for converg-
ing statisticsYD → Y asN→ ∞. A uniform asymptotic approximation is an approximation
that has the error term bounded for allYD nearY and for allN.

3. Develop an algorithm that, given a Bayesian network with hidden variables and a data set with
statisticsYD, determines the possible singularity types of the limit statisticsY and applies the
appropriate asymptotic formula developed in step 2.

19

RUSAKOV AND GEIGER

Our work provides a first step for naive Bayesian networks and a concrete framework to pursue
these tasks.

Theorem 4 shows that when comparing the classical BIC score with our adjusted BIC score
(Eq. 2 versus Eqs. 15, 16), one can see that a naive Bayesian network with all links present is some-
what under-evaluated using the classical BIC score for singular statisticsY because the penalty term
reduces from(2n+1)/2 in the classical score to(2n−1)/2 (or(n+1)/2) in the adjusted score. We
conjecture that such under evaluation occurs for general Bayesian networks with hidden variables.
As a result, when the data shows weak dependencies for some links, oftenresulting in evaluation of
the marginal likelihood near singular points of the model, then those models with more links might
be under evaluated using BIC, but correctly evaluated with a uniform asymptotic formula that takes
the proximity to a singular points into account. An illustrative example of incorrect model choice
by the standard BIC score has been presented in Figure 4.

We conclude with two remarks. First, we note that the adjusted penalty term (Eqs. 15, 16) falls
within the range of penalty terms, studied by Keribin (2000), that lead to sureconsistency estimators
in a frequentist’s interpretation.

Second, we note that, the sets of singular pointsSandS′ are defined in (Geiger et al., 2001) as
the singular points of the algebraic varieties of distributions represented bybinary naive Bayesian
networks in the joint space parameters space, while here the same sets are defined as sets ofstatis-
tics pointsY which give rise to singular maximum likelihood in the model parameters space. At
the singular points of the joint space parameters space, regular local coordinates do not exist and
the usual coordinates (i.e., the model parameters) that parameterize the rest of the model variety
have a number of coordinates crushed into a single point. This results in complex surfaces of maxi-
mum likelihood points in the model parameter space and, consequently, a non-standard behavior of
marginal likelihood integrals which we have started to explore in this paper. Another ramification
of this observation is that a bounded prior density defined on the model parameters may accumu-
late massively on a single point on the model variety in the joint space parameterspace, violating
the boundedness assumption of the prior density and thus yielding non-standard approximations to
marginal likelihood integrals in the joint space parameters.

Acknowledgments

The second author thanks David Heckerman and Chris Meek for years of collaboration on this
subject. An early version of this paper, without proofs and without Theorem 5, has been presented
at the 18th UAI Conference (Rusakov and Geiger, 2002).

Appendix A. Proof of Theorem 4 (The Main Theorem)

We start with the proof of Lemma 7, which requires two additional lemmas. Then we proceed with
a case by case proof of Theorem 4.

A.1 Proof of Lemma 7

The proof of Lemma 7 uses Lemmas 8 and 9. In particular, Lemma 8 states that a local version of
the claim made by Lemma 7 (Eq. 32) holds in the neighborhood of extremum pointsp0 under two

20

ASYMPTOTIC MODEL SELECTION FORNAIVE BAYESIAN NETWORKS

additional assumptions denoted byB1 andB2. Lemma 9 shows thatB1 andB2 hold. Finally, the
proof of Lemma 7 elevates the local version to the global claim.

Lemma 8 Let

f (x,u,s) = fY−∑2n

i=1Yi lnθi [x,u,s],

θ[x,u,s] = (T3◦T2)[x,u,s], θ2n[x,u,s] = 1−∑2n−1
i=1 θi [x,u,s],

(38)

where fY = max(x,u,s)∈U ∑2n

i=1Yi lnθi [x,u,s] and Y= (Y1, . . . ,Y2n) is a non-negative vector with sum
of elements equal to1. Let the zero set U0 = argmin(x,u,s)∈U f (x,u,s) be the set of minimum points
of f(x,u,s) on U, let p0 = (x′,u′,s′) be a point in U0 and let

Ĩp0[N,Y] =
Z

Uε

e−N f(x,u,s)dxduds, (39)

where Uε is some small neighborhood of p0. Also, let

Jp0[N] =
Z

Uε

e−N∑I (zI (x,u,s)−z′I)
2
dxduds,

where zI (x,u,s) is the I-th coordinate of z(x,u,s)= T2[x,u,s] and z′I is the I-th coordinate of T2[x′,u′,s′].
Further assume that(x′,u′,s′) satisfies

B1. θ′ = T3◦T2(x′,u′,s′) is a minimum of f as function ofθ, f (θ′) = 0 and∇θ f (θ′) = 0.

B2. f , as a function ofθ, is strictly convex atθ′ = θ(x′,u′,s′), i.e., the matrixHθ f (θ′) is positive
definite.

Then,
ln Ĩp0[N,Y] = lnJp0[N]+O(1) for all N > 1. (40)

(The right hand side of Eq. 40 depends on Y through the O(1) term.)

Proof: Since∇θ f (θ′) = 0, Hθ f (θ′) is positive definite andT3 : Λ(z)→ Θ(θ) is a diffeomorphism, it
follows that∇z f (z′) = 0 andHz f (z′) is positive definite. Also,f (z′) = 0. Therefore,f as a function
of zcan be approximated by a quadratic form nearz′ = T2(x′,u′,s′) via

η1∑
I

(zI −z′I)
2 < f (z) < η2∑

I

(zI −z′I)
2, for z∈ Λε, (41)

whereΛε is some sufficiently small neighborhood ofz′, andη1,η2 > 0 are slightly smaller and
larger, respectively, than all eigenvalues ofHz f (z′). Consequently, sinceT2 : U → Λ is continuous,
there exists neighborhoodUε of p0 such thatT2(Uε) ⊆ Λε and Inequality 41 holds forz(x,u,s) =
T2(x,u,s) for all points(x,u,s) in Uε. Using Inequality 41 for evaluating̃Ip0[N,Y] (Eq. 39) yields

Z

Uε

e−η2N∑I (zI (x,u,s)−z′I)
2
dxduds< Ĩp0[N,Y] <

Z

Uε

e−η1N∑I (zI (x,u,s)−z′I)
2
dxduds.

Due to Theorem 2, the bounding integrals are asymptotically equivalent up toa multiplicative con-
stant, because the poles and multiplicities of the correspondingJ(λ) functions (Eq. 5) that determine
their asymptotic behavior are the same for any constant multiplies of∑(zI (x,u,s)−z′I)

2, and in par-
ticular, for the multipliersη1, η2 and 1.�

21

RUSAKOV AND GEIGER

Lemma 9 Let f(u,x,s) be as defined by Eq. 38, namely,

f (x,u,s) = fY−∑2n

i=1Yi lnθi [x,u,s],

θ[x,u,s] = (T3◦T2)[x,u,s], θ2n[x,u,s] = 1−∑2n−1
i=1 θi [x,u,s],

where fY = max(x,u,s)∈U ∑2n

i=1Yi lnθi [x,u,s] and Y= (Y1, . . . ,Y2n) is a vector inϒ0 (defined by Eq. 12)
such that Yi > 0 (A2). Let the zero set U0 = argmin(x,u,s)∈U f (x,u,s) be the set of minimum points of
f , and let(x′,u′,s′) be a point in U0. Then f(x′,u′,s′) = 0, and

B1. θ′= T3◦T2(x′,u′,s′) is a minimum point of f as function ofθ onΘ, f (θ′) = 0 and∇θ f (θ′) = 0.
Furthermore,θ′ = (Y1, . . . ,Y2n−1) and∇ f (x′,u′,s′) = 0.

B2. f as a function ofθ is strictly convex atθ′, i.e.,Hθ f (θ′) is positive definite.

B3. If n≥ 3 and Y∈ ϒ0\S, then f(x,u,s) is strictly convex at(x′,u′,s′), that is, the matrix
H(x,u,s) f (x′,u′,s′) is positive definite.

B4. Also, if n≥ 3 and Y∈ ϒ0 \S, then U0 consists only of two distinct points(x′,u′,s′) and
(x′′,u′′,s′′), such that x′ = x′′, u′ =−u′′ and s′ =−s′′.

Proof: The claim f (x′,u′,s′) = f (θ′) = 0 follows directly from the definitions off , θ′ and fY.
Consider ClaimB1. The pointθ0 = (Y1, . . . ,Y2n−1) is the unique minimum off , as a function

of θ, on Θ, becausefY − f (θ) = ∑i Yi lnθi [x,u,s] is the logarithm of a multinomial distribution.
SinceY ∈ ϒ0, the distribution specified byθ0 can be represented by the model parameters, namely,
θ0∈ (T3◦T2)[U0]. Consequently,θ0 = (T3◦T2)[U0] becauseθ0 is the unique minimum off . So,θ′=
θ0 = (Y1, . . . ,Y2n−1). Furthermore, becauseY > 0, θ′ is an internal point ofΘ yielding∇θ f (θ′) = 0.
Finally ∇ f (x0,u0,s0) = JT

(T3◦T2)
(x0,u0,s0)∇θ f (θ′) = 0 as well.

ClaimB2 is established by explicit calculations. The Hessian matrixHθ f (θ′) atθ′= (Y1, . . . ,Y2n−1)
is given by

[

Hθ f (θ′)
]

i j =

{

1
Y2n

for i 6= j
1
Yi

+ 1
Y2n

for i = j

Consequently, for anya∈ R2n−1, a 6= 0, it follows that

aT ·Hθ f (θ′) ·a =
2n−1

∑
i=1

a2
i

Yi
+

1
Y2n

[

2n−1

∑
i=1

ai

]2

> 0.

Claim B3 follows from the proof of Theorem 12 of (Geiger et al., 2001), which shows that
the Jacobian of the transformationT2 is of maximal rank forn≥ 3 for points(x′,u′,s′) that satisfy
θ′ = T2[x′,u′,s′] ∈ ϒ0\S. The mentioned theorem and claimB2 imply that for alla∈ R2n+1, a 6= 0,

aT ·H(x,u,s) f (x0,u0,s0) ·a = aT ·
[

JT
(T3◦T2)

(x0,u0,s0) ·Hθ f (θ′) ·J(T3◦T2)(x0,u0,s0)
]

·a
=
[

J(T3◦T2)(x0,u0,s0) ·a
]T ·Hθ f (θ′) ·

[

J(T3◦T2)(x0,u0,s0) ·a
]

= bT ·Hθ f (θ′) ·b > 0,

whereb= J(T3◦T2)(x0,u0,s0) ·a. This proves ClaimB3 becauseHθ f (θ′) is positive definite andb 6= 0
lestJ(T3◦T2) would not be of maximal rank.

22

ASYMPTOTIC MODEL SELECTION FORNAIVE BAYESIAN NETWORKS

ClaimB4 follows from claimB1 thatθ′ = (Y1, . . . ,Y2n−1) and from Theorem 13 in (Geiger et al.,
2001), which states that forθ′ ∈ ϒ0 \S, there are exactly two source points(x,u,s), precisely the
ones specified by ClaimB4, that satisfyθ′ = T2[x,u,s]. �

Proof of Lemma 7: Lemma 8 combined with Lemma 9 establish the asymptotic behavior of
Ĩ[N,Y] in the εp0 neighborhood of a single minimump0 (Eq. 40). Now, sinceU is closed and
bounded (Eq. 23), it iscompact. Hence, from an arbitrary infinite set ofε-neighborhoods of points
in U , there exist a finite subset of disjoint neighborhoods of points inU that coverU . The neighbor-
hoods that do not contain minimum points can be discarded since their contribution to the integral is
exponentially small, i.e., a contribution bounded bye−Nc1 versuse−Nc2 wherec1 > c2. LetU ′0⊆U0

denote the finite set of points fromU0, the neighborhoods of which are chosen to coverU0. Also,
let J[N,Y] denote the maximal contribution toĨ[N,Y], as in Lemma 7 (Eq. 31). We obtain

J[N,Y] ≤ Ĩ[N,Y] ≤ ∑
p0∈U ′0

Jp0[N]≤ k ·J[N,Y], (42)

wherek is the number of points inU ′0. Taking the logarithm of Eq. 42 yields Eq. 32 which establishes
Lemma 7.�

ClaimsB3 andB4 of Lemma 9 have not been used in the proof of Lemma 7. These claims are
needed in the next section.

A.2 Proof of Theorem 4a (Regular Statistics Case)

Theorem 4a rephrases standard facts regarding asymptotic expansionof integrals around a single
extremum point. Recall that Theorem 4a states that ifYD =Y for N≥N0, Yi > 0 for i = 1, . . . ,2n and
Y∈ϒ0\S, then asymptotic approximation of lnI[N,YD] (Eq. 13) equalsN lnP(Y|wML)− 2n+1

2 lnN+
O(1) (Eq. 14). To prove this claim we use Lemma 6 which states thatI[N,YD] andĨ[N,Y] have the
same asymptotic approximation up to a multiplicative constanteN fY and computẽI[N,Y] using
Lemma 1 (Laplace approximation).

We start by noticing thatI[N,YD] absolutely converges for anyN≥ 1 andYD≥ 0. That is because
the integrand functioneN∑xYx lnθx(w) = ∏x θx(w)NYx satisfies 0≤ θx(w)NYx ≤ 1 for all N, YD, i and
w = (a,b, t) ∈Ω and becauseµ(a,b, t) is a probability density function onΩ, thus integralI[N,YD]
is finite (and less than 1). Consequently,Ĩ[N,Y] also absolutely converges for anyN ≥ 1 and any
Y ≥ 0, as required in order to use Lemma 1.

Consider now the integralĨ[N,Y] =
R

U e−N f(x,u,s)dxduds. Since the value ofe−N f(x,u,s) outside
the small neighborhoods of the minimumsf is exponentially small, so the asymptotic behavior of
Ĩ[N,Y] onU is actually described by integration ofĨ[N,Y] in the small neighborhoods of minimums
of f (Lemma 7). SincẽI[N,Y] converges and ClaimsB1, B3 andB4 of Lemma 9 hold, it follows
that in sufficiently small neighborhoods of the two internal minimum points off , the integral̃I[N,Y]
can be computed by Lemma 1 (Laplace Approximation).

Consequently, integrating̃I[N,Y] in the full neighborhoods of the maximum likelihood points
(x′,u′,s′) ∈U0, that lie on the border ofU , introduces only a constant multiplicative errors to the
approximation. This is shown by considering the integralĨ[N,Y] around minimum points off in
the equivalent (sinceT1 is a diffeomorphism) coordinates(a,b, t), which have the full integration
domainΩ = (0,1)2n+1. In these coordinates, approximatingf by a quadratic form (as performed
by Laplace approximation) on(a,b, t) and integrating in a full neighborhood of border point results
in multiplicative error factor of 2k wherek is the number of border coordinates.

23

RUSAKOV AND GEIGER

We now apply Lemma 1 to the small neighborhoods of the two minimum points off and by
combining Eq. 30 with the logarithm of sum of two approximations described by Eq. 4 we obtain
the Theorem 4a.�

Theorem 4a does not specify theO(1) term. The constant termC is well known in explicit form
when the minimum off is achieved on a single point, as specified by Lemma 1. In our case, the min-
imum of f is achieved on two points(x′,u′,s′) and(x′′,u′′,s′′) and by taking the integralsJ(x′,u′,s′)[N]
andJ(x′′,u′′,s′′)[N] in (a,b, t) coordinates and accounting for the partial integration domains for the
border points we obtain

C =
2n+1

2
ln(2π)+ ln

[

µ(a′,b′, t ′)
√

detH f (a′,b′, t ′)
+

µ(a′′,b′′, t ′′)
√

detH f (a′′,b′′, t ′′)

]

−k ln2,

where(a′,b′, t ′) = T−1
1 (x′,u′,s′), (a′′,b′′, t ′′) = T−1

1 (x′′,u′′,s′′) andk is the number of border coordi-
nates of(a′,b′, t ′) (or equivalently of(a′′,b′′, t ′′)). Note thata′ = b′′, b′ = a′′ andt ′ = 1− t ′′.

A.3 Proof of Theorem 4b (Type 1 Singularity)

Theorem 4b states that ifYD = Y for N≥ N0, Yi > 0 for i = 1, . . . ,2n andY ∈ S\S′, then lnI[N,YD]
(Eq. 13) is asymptotically equal toNP(Y|wML)− 2n−1

2 lnN + O(1) (Eq. 15). To prove this claim
we first employ Lemma 6, which relatesI[N,YD] with Ĩ[N,Y] (Eqs. 28 and 30) and Lemma 7,
which relates̃I[N,Y] with J[N,Y] (Eqs. 31 and 32). Consequently, it remains to evaluateJ[N,Y] =
maxp0∈U0 Jp0[N]. For this task, one needs to examine the neighborhoods of arbitrary minimum
points p0 ∈ U0 of f . However, forY ∈ S\S′ (singularity of type 1), the functionf can not be
approximated by quadratic form and Lemma 1 (Laplace Approximation) no longer applies. Instead
we use Watanabe’s method.

Let (a,b, t) be the parameterization ofY ∈ S as described by the definition ofS (Eq. 12) with
ai = bi for all i 6= l ,k. Also, letz′lk = T−1

3 (Y)lk = (1− (2t−1)2) · al−bl
2 · ak−bk

2 . The zero setU0 is
given by

U0 =























(x,u,s) ∈U |

xi = ai , ∀i = 1, . . . ,n, i 6= l ,k,
xl = tal +(1− t)bl ,
xk = tak +(1− t)bk;
ui = 0, ∀i = 1, . . . ,n, i 6= l ,k,
ul ,uk,s, such that(1−s2)ul uk = z′lk























. (43)

Note thatz′lk 6= 0 andu′l ,u
′
k 6= 0, s′ 6=±1 for (x′,u′,s′) ∈U0, becauseY 6∈ S′. The setU0 is depicted

in Figure 6.

We now apply the method of Watanabe, as described in Section 2, to evaluate the integrals
Jp0[N,Y] for p0 ∈U0. We examine the form of the exponent function inJp0[N,Y], φ(x,u,s) which
is equal to∑I [zI (x,u,s)−z′I]

2, in a small neighborhood ofp0 = (x′,u′,s′) ∈U0. The coordinates of
z′ = T2(x′,u′,s′) arez′i = xi for all i, z′lk = (1− s′2)u′l u

′
k and all otherz′I ’s are zero. SubstitutingzI

as a function of(x,u,s) into φ and translating the(x,u,s) coordinates so that(x′,u′,s′) becomes the

24

ASYMPTOTIC MODEL SELECTION FORNAIVE BAYESIAN NETWORKS

−1

−0.5

0

0.5

1

−0.5

0

0.5
−0.5

0

0.5

s

Projection of U
0
 onto (s,u

i
,u

j
)

u
i

u j

(a) (b)

Figure 6: The projection of setU0 onto(s,u1,u2) space. The zero setU0 is defined by type 1 singu-
larity statistics. (a) Illustration is forx′1 = 0.18,x′2 = 0.28,z′12 = 0.0096, that correspond
to statisticsY generated by true distribution:a1 = 0.1, a2 = 0.2, b1 = 0.3, b2 = 0.4 and
t = 0.6. Upper and lower bounds onu1 are shown by mesh-grid. (b) Illustration of set
U0 for extreme (almost type 2) singular statistics of type 1 that is generated bya1 = 0.1,
a2 = 0.2, b1 = 0.3, b2 = 0.4 andt = 0.005. The zero set is very close to the zero set for
type 2 singularity statistics depicted in Figure 5(b).

origin, yields

φ(x,u,s) = ∑I [zI (x′+x,u′+u,s′+s)−z′I]
2

= ∑i [zi(x′+x,u′+u,s′+s)−z′i]
2

+
[

zlk(x′+x,u′+u,s′+s)−z′lk
]2

+∑i 6=l ,k

[

zil (x′+x,u′+u,s′+s)−z′il
]2

+
[

zik(x′+x,u′+u,s′+s)−z′ik
]2

+∑i, j 6=l ,k

[

zi j (x′+x,u′+u,s′+s)−z′i j

]2
+ . . .

= ∑n
i=1[(x

′
i +xi)−x′i]

2

+
[

(1− (s′+s)2)(u′l +ul)(u′k +uk)− (1−s′2)u′l u
′
k

]2

+∑i 6=l ,k

[

(1− (s′+s)2)(u′l +ul)ui−0
]2

+
[

(1− (s′+s)2)(u′k +uk)ui−0
]2

+∑i, j 6=l ,k

[

(1− (s′+s)2)uiu j −0
]2

+ . . .

= ∑n
i=1x2

i

+
[

−2s′u′l u
′
ks+(1−s′2)u′kul +(1−s′2)u′l uk + “smaller terms′′

]2

+∑i 6=l ,k

[

(1−s′2)u′l ui + “smaller terms′′
]2

+
[

(1−s′2)u′kui + . . .
]2

+∑i, j 6=l ,k

[

(1−s′2)uiu j + “smaller terms′′
]2

+

(44)

The phrase “smaller terms” and dots denotes higher order terms that includevariables that are
present in the explicit terms of the sum and can be discarded for sufficiently small (x,u,s). In

25

RUSAKOV AND GEIGER

particular, the termzlk(x,u,s)−z′lk is rewritten via

zlk(x′+x,u′+u,s′+s)−z′lk = (1− (s+s′)2)(ul +u′l)(uk +u′k)− (1−s′2)u′l u
′
k

= −(2s′+s)u′l u
′
ks+((1−s′2)−2s′s−s2)(u′k +uk)ul

+((1−s′2)−2s′s−s2)u′l uk.

Consequently fors′ 6= 0, sufficiently smallε and s,ul ,uk ∈ (−ε,ε) it follows that C-
1 < −(2s′+

s)u′l u
′
k < C+

1, C-
2 < [(1−s′2)−2s′s−s2][u′k +uk] < C+

2 andC-
3 < [(1−s′2)−2s′s−s2]u′l < C+

3 for C-
1,

C+
1, C-

2, C+
2, C-

3, C+
3 slightly smaller and larger thanC1 =−2s′u′l u

′
k, C2 = (1−s′2)u′k, C3 = (1−s′2)u′l .

Consequently, in order to approximate the integralJp0[N] (Eq. 31) forp0 = (x′,u′,s′) with s′ 6= 0,
it remains to approximate the integral

J̃1[N] =
R

e−Nφ̃1(x,u,s)dxduds,

where φ̃1(x,u,s) = ∑i x
2
i +
[

C̃1s+C̃2ul +C̃3uk
]2

+∑i6=l ,k c̃iu2
i

(45)

and whereC̃1, C̃2, C̃3 andc̃i are non-zero constants.
Similar analysis of the principal part ofφ(x,u,s) (Eq. 44) function can be applied for the

neighborhoods ofp0 = (x′,u′,s′) with s′ = 0. It reveals that in order to approximateJp0[N] for
p0 = (x′,u′,s′) with s′ = 0 we should approximate the integral

J̃2[N] =
R

e−Nφ̃2(x,u,s)dxduds,

where φ̃2(x,u,s) = ∑i x
2
i +
[

Ĉ1s2 +Ĉ2ul +Ĉ3uk
]2

+∑i6=l ,k ĉiu2
i ,

(46)

and whereĈ1, Ĉ2, Ĉ3 andĉi are non-zero constants that are slightly larger or smaller thanu′l u
′
k, u′k,

u′l andu′2l +u′2k .
From Eq. 45, by changing the coordinates tov= C̃1s+C̃2ul +C̃3uk, we obtain that in the neigh-

borhoods of the points inU0 with s′ 6= 0, that f can be described by quadratic form in 2n− 1
variables, so their contribution toJ[N,Y] is cN

2n−1
2 .

The analysis of neighborhoods of points inU0 with s′ = 0 is harder. Integrating outxi and
ui variables yieldsN−

2n−2
2 multiplicative factor to the asymptotic approximation ofJ̃2[N], leaving

us to compute of the contribution of
R

e−N[Ĉ1s2+Ĉ2ui+Ĉ3u j]
2
dsdui duj . The changes of variablest =

(C̃2ui +C̃3u j)/C̃1 transforms the remaining part ofJ̃2[N] to

J̃3[N] =
Z +ε1

−ε1

Z +ε2

−ε2

e−N(s2+t)2
dsdt.

The zero set of the exponent function is a one-dimensional curvet =−s2, so we expect̃J3[N] be at
leastcN−

1
2 , as verified below.

Watanabe’s method for̃J3[N] calls for the analysis of the poles of the function

J(λ) =
Z

(−1,1)2
(s2 + t)2λdsdt.

Here, we transform the original integration range into(−1,1) by rescaling, introducing only con-
stant multipliers to the integral. The analysis of the poles ofJ(λ) is in the spirit of example shown
in Section 2. We present this analysis completely to demonstrate a number of important subtle

26

ASYMPTOTIC MODEL SELECTION FORNAIVE BAYESIAN NETWORKS

points in the evaluation of integrals by resolution of singularities. E.g., we can not use the binomial
formula for expanding(s2 + t)2λ, sinceλ is not necessarily an integer.

The integralJ(λ) is symmetric relative tos, so we consider onlys> 0 for the evaluation of its
poles. Changing the coordinates viat =±t2 we obtain

1
2

J(λ) =
Z 1

−1

Z 1

0
(s2 + t)2λdsdt=

Z 1

0

Z 1

0
2t(s2 + t2)2λdsdt+

Z 1

0

Z 1

0
2t(s2− t2)2λdsdt.

The first integral is easy to evaluate by standard substitutionss= ts for 0 < s< t < 1 andt = st for
0 < t < s< 1. Thus, the first integral contributes a pole atλ =−3

4 with multiplicity 1. The second
integral, however, can not be evaluated in this way, since, the substitutions= ts for 0 < s< t < 1
gives the integral

R 1
0

R 1
0 2t4λ+2(s2−1)2λdsdt, where the term(s2−1) is not bounded away from zero

on (0,1) and thus can not be ignored when identifying the poles.
To overcome this difficulty letv = s+ t andu = s− t, yielding

Z 1

0

Z 1

0
2t(s2− t2)2λdsdt=

1
2

Z 2

0

Z min(v,2−v)

max(−v,v−2)
(v−u)u2λv2λdudv

and

1
2

Z 1

0

Z v

−v
(v−u)u2λv2λdudv<

Z 1

0

Z 1

0
2t(s2− t2)2λdsdt<

1
2

Z 2

0

Z v

−v
(v−u)u2λv2λdudv. (47)

Computing the lower bound in Eq. 47, we obtain

1
2

R 1
0

R v
−v(v−u)u2λv2λdudv= 1

2

R 1
0

[

v2λ+1 1
2λ+1u2λ+1−v2λ 1

2λ+2u2λ+2
∣

∣

v

−v

]

dv

= 1
2

R 1
0

2
2λ+1v4λ+2dv= 1

(2λ+1)(4λ+3) .

The upper limit is correspondingly 24λ+3

(2λ+1)(4λ+3) . Hence, the largest pole ofJ(λ) is λ = −1
2, with

multiplicity m = 1 and the overall contribution of the neighborhoods of pointsp0 with s′ = 0 to
J[N,Y] is againcN−

2n−1
2 , and it is the same as for pointsp0 for which s′ 6= 0. The point(x′,u′,s′)

need not be an internal point ofU . Such border points have a smaller domain of integration than an
internal point, therefore they do not contribute more toJ[N,Y] than internal points.�

It is interesting to compare Figure 6b and Figure 5, to see that as a pointY ∈ S\Sapproaches
Y′ ∈ S′, the zero set forY depicted by Figure 6 approaches the zero set forY′ depicted in Figure 5.

A.4 Proof of Theorem 4c (Type 2 Singularity)

The outline of the proof of Theorem 4c is presented in Section 5.3 including the specification of the
zero setU0 and five principal casesC1-C5 that correspond to different locations of extremum points
(x′,u′,s′) ∈U0. Recall that we are interested in the evaluation of the contribution of the neighbor-
hood of each of the points of typesC1-C5 to the integralJ[N,Y] (Eq. 31). The maximal contribution
determine, according to Lemmas 6 and 7, the asymptotic behavior of the integralI[N,YD] (Eq. 11)
of interest. We now treat these cases one by one.

Case C1:(x′,u′,s′) ∈U0 j \∪i6= jU0i for some j. Each such point(x′,u′,s′) satisfiesu′i = 0, for
all i = 1, . . . ,n, i 6= j; u′j 6= 0; s′ 6= ±1; z′i = x′i ; andz′i j ..k = 0. Using the approach of Watanabe

27

RUSAKOV AND GEIGER

we analyze the form of the exponent functionφ of integrand ofJp0[N] near the minimum point
p0 = (x′,u′,s′). Centering(x,u,s) around(x′,u′,s′) we obtain

φ(x,u,s) = ∑I [zI (x′+x,x′+u,s′+s)−z′I]
2

= ∑i [zi(x′+x,u′+u,s′+s)−z′i]
2 +∑i 6= j [zi j (x′+x,u′+u,s′+s)−z′i j]

2

+∑i,k6= j [zik(x′+x,u′+u,s′+s)−z′ik]
2 + “higher order terms′′

= ∑i [(x
′
i +xi)−x′i]

2 +∑i 6= j

[

(1− (s′+s)2)(u′j +u j)ui−0
]2

+∑i,k6= j

[

(1− (s′+s)2)uiuk−0
]2

+ “higher order terms′′

= ∑i x
2
i +∑i 6= j

[

(1−s′2)u′jui + “smaller terms′′
]2

+∑i,k6= j

[

(1−s′2)uiuk− (s+2s′)suiuk
]2

+ “higher order terms′′.

Since,u′j 6= 0 ands 6=±1, the principal part ofφ, that boundsφ within a multiplicative constant, is

φ̃(x,u,s) = ∑
i=1,...,n

x2
i + ∑

i=1,...,n; i6= j

u2
i .

Hence,Jp0[N] is cN−
2n−1

2 . One should have expected this result because the zero setU0, j is a 2-
dimensional surface, yielding a dimensionality drop of 2 due to two locally redundant parameters.

Case C2:(x′,u′,s′) =
T

j U0 j . This case is analyzed in Section 5.3.

Case C3: (x′,u′,s′) ∈ U0− ∪U0+ \ ∪ jŪ0 j . Each such point(x′,u′,s′) satisfiesu′j 6= 0 for all
j = 1, . . . ,n ands′ =±1. We have

φ(x,u,s) = ∑I [zI (x′+x,u′+u,s′+s)−z′I]
2

= ∑i [zi(x′+x,u′+u,s′+s)−z′i]
2 +∑i, j [zi j (x′+x,u′+u,s′+s)−z′i j]

2

+∑i, j,k[zi jk(x′+x,u′+u,s′+s)−z′i jk]2 + . . .

= ∑i [(x
′
i +xi)−x′i]

2 +∑i, j

[

(1− (s′+s)2)(u′i +ui)(u′j +u j)−0
]2

+∑i, j,k

[

−2(s′+s)(1− (s′+s)2)(u′i +ui)(u′j +u j)(u′k +uk)−0
]2

+ . . .

= ∑i x
2
i +∑i, j

[

−2s′u′iu
′
js+ “smaller terms′′

]2

+∑i, j,k

[

4u′iu
′
ju
′
ks+ “smaller terms′′

]2
+ “higher order terms′′.

So, the principal part ofφ is of the form∑i x
2
i +s2. The fact that integration range fors is one sided,

i.e. s> 0 (or s< 0) changes the integralJp0[N] only by a constant multiply (1/2) relatively to the

“full” neighborhood. Thus the contribution of this region toJ[N,Y] is cN−
n+1

2 .

28

ASYMPTOTIC MODEL SELECTION FORNAIVE BAYESIAN NETWORKS

Case C4:(x′,u′,s′) ∈ S

j

[

U0−∪U0+∩Ū0 j \∩i6= jŪ0i
]

, for some j. Each such point(x′,u′,s′)
satisfiesu′j 6= 0 for somej; u′i = 0 for all i 6= j; ands′ =±1. We have

φ(x,u,s) = ∑I [zI (x′+x,u′+u,s′+s)−z′I]
2

= ∑i [zi(x′+x,u′+u,s′+s)−z′i]
2 +∑i 6= j [zi j (x′+x,u′+u,s′+s)−z′i j]

2

+∑i,k6= j [zik(x′+x,u′+u,s′+s)−z′ik]
2 + “higher order terms′′

= ∑i [(x
′
i +xi)−x′i]

2 +∑i 6= j

[

(1− (s′+s)2)(u′j +u j)ui−0
]2

+∑i,k6= j

[

(1− (s′+s)2)uiuk−0
]2

+ “higher order terms′′

= ∑i x
2
i +∑i 6= j

[

∓2su′jui∓2sujui−s2u′jui−s2u jui

]2

+∑i,k6= j

[

∓2suiuk−s2uiuk
]2

+ “higher order terms′′

≈ ∑i x
2
i +s2 ∑i 6= j u

2
i .

(48)

Integrating out the∑i x
2
i terms fromJp0[N], we see that they contribute factor ofN−

n
2 to Jp0[N]. So,

we are left with analysis of the poles of

J(λ) =
Z

Wε

s2λ

(

n−1

∑
i=1

u2
i

)λ

dsdu.

The standard change of variables toui = u1ui for i = 2, . . . ,n−1 gives

J(λ) = c
Z

(0,1)n
s2λu2λ+n−2

1 (1+
n−1

∑
i=2

u2
i)

λdsdu.

Thus the largest pole ofJ(λ) (for n > 2) is λ =−1
2 with multiplicity m= 1 and the contribution of

the neighborhood of this(x′,u′,s′) is cN−
n+1

2 .
Case C5: (x′,u′,s′) ∈ (U0−∪U0+)

T

j Ū0 j . Each such point(x′,u′,s′) satisfiesu′i = 0 for all
i = 1, . . . ,n ands′ =±1. This is the deepest singularity, the crossing of all (except one) zeroplanes
of U0. We have

φ(x,u,s) = ∑I [zI (x′+x,u′+u,s′+s)−z′I]
2

= ∑i [zi(x′+x,u′+u,s′+s)−z′i]
2 +∑i, j [zi j (x′+x,u′+u,s′+s)−z′i j]

2

+∑i, j,k[zi jk(x′+x,u′+u,s′+s)−z′i jk]2 + . . .

= ∑i [(x
′
i +xi)−x′i]

2 +∑i, j

[

(1− (s′+s)2)uiu j −0
]2

+∑i, j,k

[

−2(s′+s)(1− (s′+s)2)uiu juk−0
]2

+ “higher order terms′′

= ∑i x
2
i +∑i, j

[

∓2suiu j −s2uiu j
]2

+∑i, j,k [4suiu juk + “smaller terms′′]2 + “higher order terms′′

≈ ∑i x
2
i +s2 ∑i, j u

2
i u2

j .

(49)

The higher order terms are bounded by somes2u2
i u2

j term, because of the special form ofpi(s) term
in z12...i (Eq. 27). I.e., the functionpi(s′+s) = 1/2(1−(s′+s)2)[(1−(s′+s))i−1−(−1)i−1(1+(s′+

29

RUSAKOV AND GEIGER

s))i−1] can be rewritten arounds=±1 aspi(s′+s) = s·1/2(2s′+s)[(1−(s′+s))i−1−(−1)i−1(1+
(s′+s))i−1]. Thus, any high-order termz2

i j ...r(x
′+x,u,±1+s) is of form

z2
i j ...k(x

′+x,u,±1+s) = s2u2
i u2

j . . .u
2
k · p̃(s),

wherep̃(s) = 1/4(2s′+s)2[(1− (s′+s))r−1− (−1)r−1(1+(s′+s))r−1]2 and wherer is the size of
index set{i j . . .k}. Consequently, this term is bounded bys2u2

i u2
j for s andu small enough.

The ∑i x
2
i terms contributeN−

n
2 multiplicative factor toJp0[N], so we should only analyze the

poles of

J(λ) =
Z

(0,1)n+1
s2λ

(

∑
l ,k

u2
l u2

k

)λ

dsdu.

The analysis is similar to the one presented in Section 2, but with additional variable s. Thus the
largest pole ofJ(λ) this time isλ =−1

2 and notλ =−n/4. The multiplicity of the poleλ =−1
2 is

one and so the contribution of the neighborhoods of(x′,0,±1) is cN−
n+1

2 . This analysis is incorrect
for n = 2 because then the sum∑l ,k u2

l u2
k contains only one term and this results in increasing the

multiplicity of the poleλ =−1/2.
The interesting fact about the last two cases is that in the neighborhood ofU0− andU0+ the

growth of the functionφ is dominated bys2 and thus the multiplicity of the maximal pole ofJ(λ)
is always one and the ln lnN terms do not appear in the approximation of lnJp0[N]. This changes in
the casen = 2, where the dimensionalities ofU0− andU0+ are the same as ofU0 j ’s, as explicated in
the next section.

Summary of Proof of Theorem 4 for type2 singularity, Y∈ S′: Among the possible casesC1-C5
the largest contribution to theJ[N,Y] comes from points withs′ = ±1. Note that various bor-
der points ofU0 that we do not consider in the above analysis do not contribute more than the
corresponding internal points because their domain of integration is smaller.Thus, lnJ[N,Y] =
−n+1

2 lnN + O(1) and due to Lemmas 6 and 7, lnI[N,YD] = NP(Y|wML)− n+1
2 lnN + O(1) as

claimed.�

A.5 Proof of Claims (d,e) of Theorem 4 (Case n = 2)

Claims (d,e) of Theorem 4 state that ifn = 2, YD = Y for N ≥ N0 andYi > 0 for i = 1, . . . ,2n,
lnI[N,YD] (Eq. 13) is asymptotically equal toNP(Y|wML)− 3

2 lnN + O(1) (Eq. 17) forY 6∈ S′ and
asymptotically equal toNP(Y|wML)− 3

2 lnN + 2ln lnN + O(1) (Eq. 18) forY ∈ S′. Similar to the
proofs of Claims (b,c), we first employ Lemma 6, which relatesI[N,YD] with Ĩ[N,Y] (Eqs. 28 and 30)
and Lemma 7, which relates̃I[N,Y] with J[N,Y] (Eqs. 31 and 32). Consequently, it remains to
evaluateJ[N,Y] = maxp0∈U0 Jp0[N]. For this task, one needs examine the neighborhoods of arbitrary
minimum pointsp0 ∈U0 of the functionf . From the definition ofϒ, ϒ0 andS(Section 4) it follows
that S= ϒ0 = ϒ for n = 2. Note that there is no regular points in this case. We now modify the
proofs of type 1 and type 2 singularities to fit to the casen = 2.

Type1 singularity: The zero setU0 is the same set as described by Eq. 43 withl = 1 andk = 2.
The analysis of the form of the exponent functionφ of the integrand ofJp0[N] gives Eqs. 45 and 46
without the∑l 6=i, j cl u2

l terms. Thus, by the same analysis, the contribution of these regions to the

integralJ[N,Y] is cN−
3
2 and application of Lemmas 6 and 7 concludes the proof.

30

ASYMPTOTIC MODEL SELECTION FORNAIVE BAYESIAN NETWORKS

Type2 singularity: The zero setU0 = Ū0− ∪ Ū0+ ∪ Ū01∪ Ū02 is the same set as described by
Eqs. 34 and 35. Now, however,̄U0−, Ū0+, Ū01 andŪ02 are of the same dimension, namely, two.
This fact changes the asymptotic approximation.

Consider the casesC1-C5 one by one. There is no change in casesC1 andC3 where the point
(x′,u′,s′) lies on the proper two dimensional surfacesU01, U02 or U0−, U0+. Here, the functionφ
can be approximated by 3 variables, resulting in the contributioncN−3/2 of these regions toJ[N,Y].

The more complex situation is inC2,C4 andC5 cases, where zero planes of the same dimension
meet. Generally, the intersection points of zero surfaces of the same dimension are expected to give
rise to a ln lnN term. While this is not always a case, e.g., see example in Section 2, the ln lnN term
does appear now. We have:

C2: The principal part ofφ is x2
1 +x2

2 +u2
1u2

2, as specified by Eq. 37. Integrating out thex2
i terms

we obtain through the analysis of the poles ofJ(λ) =
R

u2λ
1 u2λ

2 du1du2 that the largest pole of
J(λ) is λ = −1/2 with multiplicity m= 2. Thus the contribution of this region toJ[N,Y] is
cN−3/2 lnN.

C4: The principal part ofφ is x2
1 + x2

2 + s2u2
2 or x2

1 + x2
2 + s2u2

1 (see Eq. 48). Similarly to the case
C2, the contribution of this region toJ[N,Y] is cN−3/2 lnN.

C5: Here, the principal part ofφ isx2
1+x2

2+s2u2
1u2

2 (see Eq. 49). Once again, we integrate out thexi

variables and analyze the poles ofJ(λ) =
R

s2λu2λ
1 u2λ

2 dsdu1du2. The largest pole isλ =−1/2
with multiplicity m = 3, and thus the contribution of this region toJ[N,Y], including the
factors from integrating out thexi ’s, is cN−3/2 ln2N.

Summarizing the contributions of the neighborhoods of various critical pointsfor Y ∈ S′, we see
thatJ[N,Y]∼ cN−3/2 ln2N and, consequently, lnI[N,Y] = N fY− 3

2 lnN+2ln lnN+O(1). �

A.6 Proof of Theorem 4f (Case n = 1)

Theorem 4f states that ifn = 1, YD = Y for N ≥ N0 andY1,Y2 > 0, then lnI[N,YD] (Eq. 13) is
asymptotically equal toNP(Y|wML)− 1

2 lnN+O(1) (Eq. 19). Once again, we first employ Lemma 6,
which relatesI[N,YD] with Ĩ[N,Y] (Eqs. 28 and 30) and Lemma 7, which relatesĨ[N,Y] with J[N,Y]
(Eqs. 31 and 32). Consequently, it remains to evaluateJ[N,Y] = maxp0∈U0 Jp0[N]. For this task, one
needs examineJp0[N] in the neighborhoods of arbitrary minimum pointsp0 ∈U0 of the functionf .

From the definitions ofϒ, ϒ0 andS′, for n = 1, there is no distinction between different type
of statistics andϒ = ϒ0 = S′. Moreover, according to Theorem 2 the asymptotic form of the in-
tegral Jp0[N] =

R

Uε
e−N(z1(x,u,s)−z′1)

2
dxdudsis determined by the poles ofJ(λ) =

R

Uε
(z1(x,u,s)−

z′1)
2λdxduds, where, in this case,z1(x,u,s)−z′1 = x2

1. Once again, contributions of pointsp0 ∈U0

lying on the boundary ofU can be ignored, since their domains of integration are smaller than do-
mains of integration of the corresponding internal points. Thus, the largest pole ofJ(λ) is λ =−1/2
with multiplicity m= 1 and lnI [N,YD] is asymptotically equal toN fY− 1

2 lnN+O(1). �

We can also compute the integralI[N,YD] (Eq. 11) directly forn = 1 andYD = Y. It is

I[N,Y] =
Z

(0,1)3
eN(Y0 ln[at+b(1−t)]+Y1 ln[(1−a)t+(1−b)(1−t)])µ(a,b, t)dadbdt

31

RUSAKOV AND GEIGER

whereY1 = 1−Y0. Ignoring the densityµ(a,b, t) by using the assumption of bounded density (A1)
and changing the variables tox= at+b(1− t), we rewriteI[N,Y] is asymptotically equivalent form

Ĩ[N,Y] =
Z 1

0

Z 1

0

1
b−a

Z b

a
eN(Y0 lnx+Y1 ln[1−x])dxdadb.

Consider now

I1[N,Y] =
Z b

a
eN(Y0 lnx+Y1 ln(1−x))dx

for some 0≤ a < b≤ 1 (the caseb > a is symmetric). This is the integral of the beta distribution
with α = NY0 +1 andβ = NY1 +1 (DeGroot, 1970, page 40). Letf (x) = Y0 lnx+Y1 ln(1−x). The
maximum of the integrand functionf (x) on [0,1] is achieved atx0 = Y0 and it iseN f(Y0). There are
three cases to consider according to the location ofx0 relative to(a,b).

1. Internal point, x0 = Y0 ∈ (a,b). In this case

f (Y0 +x) = f (Y0)+Y0 ln
(

1+ x
Y0

)

+(1−Y0) ln
(

1− x
1−Y0

)

= f (Y0)+Y0

(

x
Y0
− x2

2Y2
0

+O(x3)
)

+(1−Y0)
(

−x
1−Y0
− x2

2(1−Y0)2 +O(x3)
)

= f (Y0)− 1
2Y0(1−Y0)

x2 +O(x3).

Thus, in the small neighborhood ofx0, f can be approximated by quadratic form and the
classic Laplace approximation (Lemma 1) can be applied yieldingI1[N,Y] ∼ c1eN fYN−1/2.
Moreover, sinceI1[N,Y] and eN f(Y0) are continuous functions ofN and x0 = Y0, uniform
asymptotic bounds onI1[N,Y] exists for allx0 in a proper closed subset of(a,b) asN→
∞. I.e., the integralI1[N,Y] is bounded within a constant multiplies ofeN fYN−

1
2 and these

constants are independent ofx0 andN for all x0∈ [a+ε,b−ε] andN≥ 1. Note that the above
approximation off is only valid forY0 6= 0,1 (AssumptionA2). Otherwise, the approximation
of f is non-quadratic.

2. Border point, x0 = Y0 ∈ {a,b}. The expansion forf (Y0 +x) is the same, but the integration is
performed only on the half of the interval, which results in half the constant factor to the final
approximation compared with the previous case.

3. Maximum of f is outside of[a,b]. Let m denote the maximum ofef (x) on [a,b], i.e., m =
maxx∈[a,b] e

f (x). We haveI1[N,Y]≤ (b−a)mN < c3eN fYN−1/2, for some appropriate constant
c3.

The above analysis shows thatI1[N,Y] < cuppeN fYN−1/2 for some constantcupp for all a andb. Fur-
thermore,I[N,Y] > cloweN fYN−1/2 for someclow > 0 for (a,b)∈ {(a,b)|a<Y0,b>Y0,b−a> 2ε >
0}. Since the later region has a non-zero Lebesgue measure, it follows thatI[N,Y] ∼ ceN fYN−1/2

and lnI[N,Y] = N fY− 1
2 lnN+O(1).

Appendix B. Proof of Theorem 5

Theorem 5 states the asymptotic approximation for the marginal likelihood givena degenerate bi-
nary naive Bayesian modelM that hasm missing links. In order to prove this theorem we examine
the log-likelihood function of the degenerate model and decompose it into a degenerate part and

32

ASYMPTOTIC MODEL SELECTION FORNAIVE BAYESIAN NETWORKS

a naive Bayesian part. These parts define two probability functions that are independent and the
marginal likelihood of data is computed relevant to each one of them. Combining the results gives
Theorem 5.

Let ψ be the log-likelihood function of the marginal likelihood integral (Eq. 20) forthe degen-
erate binary naive Bayesian network described in Theorem 5. We have

1
N ψ(a,b, t,c) = ∑xYx lnθx(ω)

= ∑xYx
[

lnθ(x1,...,xn−m)(a,b, t)+∑n
i=n−m+1(xi lnci +(1−xi) ln(1−ci))

]

= ∑(x1,...,xn−m)

[

lnθ(x1,...,xn−m)(a,b, t) ·∑(xn−m+1,...,xn)Yx
]

+∑n
i=n−m+1(∑xYxxi lnci +∑xYx(1−xi) ln(1−ci))

= ∑(x1,...,xn−m)Y(x1,...,xn−m) lnθ(x1,...,xn−m)(a,b, t)
+∑n

i=n−m+1 (Yi lnci +(1−Yi) ln(1−ci))

where(x1, . . . ,xk) are binary vectors of lengthk, Y(x1,...,xn−m) = ∑(xn−m+1,...,xn)Y(x1,...,xn) andYi =

∑(x1,...,xi−1,1,xi+1,...,xn)Yx. The new statisticsY(x1,...,xn−m) andYi ’s are positive, becauseY is positive (A2).
Using the assumptions of bounded density (A1) and stable statistics (A3), the marginal likelihood
integralI[N,Y] (Eq. 20) can be rewritten as

I[N,YD]∼ Î[N,Y] =

[

n

∏
i=n−m+1

Z 1

0
cNYi

i (1−ci)
N(1−Yi)dci

]

Z

(0,1)2n−2m+1
eN∑x̃Yx̃ lnθx̃(ω)dω. (50)

wherex̃ = (x1, . . . ,xn−m). The firstm integrals are integrals over the beta distribution (DeGroot,
1970, page 40) and

Z 1

0
cNYi

i (1−ci)
N(1−Yi)dci =

Γ(NYi +1)Γ(N(1−Yi)+1)

Γ(N+2)

The asymptotic behavior of Gamma function is well understood and it is described by Stirling
formula,Γ(z) = e−zzz− 1

2
√

2π
[

1+O(z−1)
]

(Murray, 1984, page 38), and thus lnΓ(z) = −z+(z−
1
2) lnz+O(1). Using the equality ln(YN+1) = lnYN+O(1), we obtain

ln Γ(NYi+1)Γ(N(1−Yi)+1)
Γ(N+2)

= (NYi +
1
2) ln(NYi +1)+(N(1−Yi)+ 1

2) ln(N(1−Yi)+1)− (N+ 3
2) ln(N+2)+O(1)

= (NYi +
1
2) lnNYi +(N(1−Yi)+ 1

2) lnN(1−Yi)− (N+ 3
2) lnN+O(1)

=−1
2 lnN+N(Yi lnYi +(1−Yi) ln(1−Yi))+O(1).

Hence, the contribution of the firstm integrals to ln̂I[N,Y] is N ln p(Yn−m+1, . . . ,Yn|cML)− m
2 lnN.

The second integral in Eq. 50 is exactly of the type analyzed in Theorem 4,and the theorem follows
by summing up the contributions of these two parts.�

References

Shreeram S. Abhyankar.Algebraic Geometry for Scientists and Engineers. Number 35 in Mathe-
matical Surveys and Monographs. American Mathematical Society, 1990.

33

RUSAKOV AND GEIGER

Hirotugu Akaike. A new look at the statistical model identification.IEEE Transactions on Automatic
Control, 19(6):716–723, December 1974.

M.F. Atiyah. Resolution of singularities and division of distributions.Communications on Pure and
Applied Mathematics, 13:145–150, 1970.

Peter Cheeseman and John Stutz. Bayesian classification (AutoClass): Theory and results. In
U. Fayyad, G. Piatesky-Shapiro, P. Smyth, and R. Uthurusamy, editors,Advances in Knowledge
Discovery and Data Mining, pages 153–180. AAAI Press, 1995.

Gregory F. Cooper and Edward Herskovits. A Bayesian method for the induction of probabilistic
networks from data.Machine Learning, 9(4):309–347, October 1992.

Morris H. DeGroot.Optimal Statistical Decisions. McGraw-Hill Book Company, 1970.

Nir Friedman, Dan Geiger, and Moises Goldszmidt. Bayesian network classifiers.Machine Learn-
ing, 29(2-3):131–163, 1997.

Dan Geiger, David Heckerman, Henry King, and Christopher Meek. Stratified exponential families:
Graphical models and model selection.Annals of Statistics, 29(2):505–529, 2001.

Dan Geiger, David Heckerman, and Christopher Meek. Asymptotic model selection for directed
networks with hidden variables. In Eric Horvitz and Finn Jensen, editors,Proceedings of the
Twelfth Conference on Uncertainty in Artificial Intelligence, pages 283–290. Morgan Kaufmann
Publishers, Inc., 1996.

Dominique Haughton. On the choice of a model to fit data from an exponentialfamily. Annals of
Statistics, 16(1):342–355, 1988.

David Heckerman, Dan Geiger, and David M. Chickering. Learning Bayesian networks: The com-
bination of knowledge and statistical data.Machine Learning, 20(3):197–243, 1995.

Heisuke Hironaka. Resolution of singularities of an algebraic variety overa field of characteristic
zero.Annals of Mathematics, 7(1,2):109–326, 1964.

Christine Keribin. Consistent estimation of the order of mixture models.Sankhya, Series A, 62(1),
February 2000.

Serge Lang.Complex Analysis. Springer-Verlag, 3rd edition, 1993.

Steffen L. Lauritzen.Graphical Models. Number 17 in Oxford Statistical Science Series. Clarendon
Press, 1996.

James D. Murray.Asymptotic Analysis. Number 48 in Applied Mathematical Sciences. Springer-
Verlag, 1984.

Judea Pearl.Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. Mor-
gan Kaufmann, 1988.

Dmitry Rusakov and Dan Geiger. Asymptotic model selection for naive Bayesian networks. In
Adnan Darwiche and Nir Friedman, editors,Proceedings of the Eighteenth Conference on Un-
certainty in Artificial Intelligence (UAI-02), 2002.

34

ASYMPTOTIC MODEL SELECTION FORNAIVE BAYESIAN NETWORKS

Gideon Schwarz. Estimating the dimension of a model.Annals of Statistics, 6(2):461–464, 1978.

Raffaella Settimi and Jim Q. Smith. On the geometry of Bayesian graphical modelswith hidden
variables. In Gregory F. Cooper and Serafin Moral, editors,Proceedings of the Fourteenth Con-
ference on Uncertainty in Artificial Intelligence, pages 472–479. Morgan Kaufmann Publishers,
Inc., 1998.

Raffaella Settimi and Jim Q. Smith. Geometry, moments and conditional independence trees with
hidden variables.Annals of Statistics, 28:1179–1205, 2000.

Peter Spirtes, T Richardson, and Christopher Meek. The dimensionality ofmixed ancestral graphs.
Technical Report CMU-PHIL-83, Philosophy Department, Carnegie Mellon University, 1997.

Sumio Watanabe. Algebraic analysis for nonidentifiable learning machines.Neural Computation,
13(4):899–933, 2001.

Roderick Wong.Asymptotic Approximations of Integrals. Computer Science and Scientific Com-
puting. Academic Press, 1989.

35

Journal of Machine Learning Research 6 (2005) 37–53 Submitted 3/03; Revised 9/03; Published 1/05

Dimension Reduction in Text Classification
with Support Vector Machines

Hyunsoo Kim HSKIM@CS.UMN .EDU

Peg Howland HOWLAND@CS.UMN .EDU

Haesun Park HPARK@CS.UMN .EDU

Department of Computer Science and Engineering
University of Minnesota
200 Union Street S.E., 4-192 EE/CS Building
Minneapolis MN 55455, USA

Editor: Nello Christianini

Abstract

Support vector machines (SVMs) have been recognized as one of the most successful classifica-
tion methods for many applications including text classification. Even though the learning ability
and computational complexity of training in support vectormachines may be independent of the
dimension of the feature space, reducing computational complexity is an essential issue to effi-
ciently handle a large number of terms in practical applications of text classification. In this paper,
we adopt novel dimension reduction methods to reduce the dimension of the document vectors
dramatically. We also introduce decision functions for thecentroid-based classification algorithm
and support vector classifiers to handle the classification problem where a document may belong to
multiple classes. Our substantial experimental results show that with several dimension reduction
methods that are designed particularly for clustered data,higher efficiency for both training and
testing can be achieved without sacrificing prediction accuracy of text classification even when the
dimension of the input space is significantly reduced.

Keywords: dimension reduction, support vector machines, text classification, linear discriminant
analysis, centroids

1. Introduction

Text classification is a supervised learning task for assigning text documents to pre-defined classes
of documents. It is used to find valuable information from a huge collection oftext documents
available in digital libraries, knowledge databases, the world wide web (WWW), and company-wide
intranets, to name a few. Several characteristics have been observed invector space based methods
for text classification (20; 21), including the high dimensionality of the input space, sparsity of
document vectors, linear separability in most text classification problems, and the belief that few
features are irrelevant. It has been conjectured that an aggressivedimension reduction may result in
a significant loss of information, and therefore, result in poor classification results (13).

Assume that training data(xi ,yi) with yi ∈ {−1,+1} for 1≤ i ≤ n are given. The dual formula-
tion of soft margin support vector machines (SVMs) with a kernel functionK and control parameter

c©2005 Hyunsoo Kim, Peg Howland and Haesun Park.

K IM , HOWLAND AND PARK

C is

max
αi

n

∑
i=1

αi −
1
2

n

∑
i, j=1

αiα jyiy jK(xi ,x j), (1)

s.t.
n

∑
i=1

αiyi = 0, 0≤ αi ≤C, i = 1, . . . ,n.

The kernel function
K(xi ,x j) =< φ(xi),φ(x j) >,

where<,> denotes an inner product between two vectors, is introduced to handle nonlinearly
separable cases without any explicit knowledge of the feature mappingφ. The formulation (1) shows
that the computational complexity of SVM training depends on the number of training data samples
which is denoted asn. The dimension of the feature space does not influence the computational
complexity of training or testing due to the use of the kernel function.

However, an often neglected fact is that the computational complexity of training depends on
thedimension of the input space. This is clear when we consider some typical kernel functions such
as the linear kernel

K(x,xi) =< x,xi >,

the polynomial kernel
K(x,xi) = [< x,xi > +β]d ,

whered is the degree of the polynomial, and the Gaussian RBF (radial basis function) kernel

K(x,xi) = exp(−γ‖x−xi‖2),

whereγ is a parameter to control. The evaluation of the kernel functiondepends on the dimension of
the input data, since the kernel functions contain the inner product of two input vectors for the linear
or polynomial kernels or the distance of two vectors for the Gaussian RBF kernel. Letα∗

i denote
the optimal solution for (1). The optimal separating hyperplanef (x,α∗,b) also requires evaluation
of the kernel function since

f (x,α∗,b) = ∑
xi∈SV

αiyiK(xi ,x)+b

whereSV denotes the set of support vectors,b is a bias given by

b = −minyi=1 < w∗,φ(xi) > +maxyi=−1 < w∗,φ(xi) >

2

and

w∗ =
l

∑
i=1

yiαi
∗φ(xi).

Therefore, more efficient testing as well as training is expected from dimension reduction.
Throughout the paper, we will assume that the document set is represented in anm×n term-

document matrixA = (ai j), in which each column represents a document, and each entryai j repre-
sents the weighted frequency of termi in documentj (1; 2). The clustering of data is assumed to be
performed previously.

38

DIMENSION REDUCTION IN TEXT CLASSIFICATION WITH SVMS

In the next section, we review Latent Semantic Indexing (LSI) (2; 1), which uses the truncated
singular value decomposition (SVD) as a low-rank approximation ofA. Although the truncated SVD
provides the closest approximation toA in Frobenius orL2 norm, LSI ignores the cluster structure
while reducing the dimension of the data. In contrast, in Section 3, we review several dimension
reduction methods that are especially effective for classification of clustered data: two methods
based on centroids (16; 12), and one method which is a generalization of linear discriminant analysis
(LDA) using the generalized singular value decomposition (GSVD) (10). With dimension reduction,
computational complexity can be dramatically reduced for all classifiers including support vector
machines and k-nearest neighbor classification. For k-nearest neighbor classification (kNN), the
distances of vector pairs need to be computed when finding k nearest neighbors. Therefore, one can
significantly reduce computational complexity by dimension reduction.

In many document data sets, documents can be assigned to more than one cluster upon clas-
sification. To handle this problem more effectively, we introduce a threshold based extension of
several classification algorithms in Section 4. Our numerical experiments illustrate that the cluster-
preserving dimension reduction algorithms we employ reduce the data dimensionwithout any sig-
nificant loss of information. In fact, in many cases, they seem to have the effect of noise reduction,
since prediction accuracy becomes better after dimension reduction when compared to that in the
original high dimensional input space.

2. Low-Rank Approximation Using Latent Semantic Indexing

LSI is based on the assumption that there is some underlying latent semantic structure in the term-
document matrix that is corrupted by the wide variety of words used in documents and queries. This
is referred to as the problem of polysemy and synonymy (6). The basic idea is that if two document
vectors represent the same topic, they will share many associating words with a keyword, and they
will have very close semantic structures after dimension reduction via SVD. Thus LSI/SVD breaks
the original relationship of the data into linearly independent components (6), where the original
term vectors are represented by left singular vectors and document vectors by right singular vectors.
That is, if l ≤ rank(A), then

A≈Ul ΣlV
T
l

, where the columns ofUl are the leadingl left singular vectors,Σl is anl × l diagonal matrix with
the l largest singular values in nonincreasing order along its diagonal, and thecolumns ofVl are
the leadingl right singular vectors. ThenΣlVT

l is the reduced dimensional representation ofA, or
equivalently, a new documentq ∈ R

m×1 can be represented in thel -dimensional space asq̂ = UT
l q.

This low-rank approximation has been widely applied in information retrieval (2). Since the
complete orthogonal decomposition such as ULV or URV has computational advantages over the
SVD including easier updating (22; 23; 24) and downdating (17), dimension reduction by these
faster low-rank orthogonal decompositions has also been exploited (3).However, LSI ignores the
cluster structure while reducing the dimension. In addition, since there is no theoretical optimum
value for the reduced dimension, potentially expensive experimentation may be required to deter-
mine a reduced dimensionl . As we report in Section 5, classification results after LSI vary de-
pending upon the reduced dimension, classification method, and similarity measure employed. The
experimental results confirm that when the data set is already clustered, the dimension reduction
methods we present in the next section are more effective for classification of new data.

39

K IM , HOWLAND AND PARK

Algorithm 1 : Centroid algorithm for Dimension Reduction

Given a data setA ∈ R
m×n with p clusters and a vectorq ∈ R

m×1, this algorithm computes ap
dimensional representationq̂ ∈ R

p×1 of q.

1. Compute the centroidci of the ith cluster, 1≤ i ≤ p

2. SetC =
[

c1 c2 · · · cp
]

3. Solve min̂q ‖Cq̂−q‖2

Algorithm 2 : Orthogonal Centroid algorithm for Dimension Reduction

Given a data setA ∈ R
m×n with p clusters and a vectorq ∈ R

m×1, this algorithm computes ap
dimensional representationq̂ of q.

1. Compute the centroidci of the ith cluster, 1≤ i ≤ p

2. SetC =
[

c1 c2 · · · cp
]

3. Compute the reduced QR decomposition ofC, which isC = QpR

4. q̂ = QT
pq

3. Dimension Reduction Algorithms for Clustered Data

To achieve greater efficiency in manipulating data represented in a high dimensional space, it is
often necessary to reduce the dimensiondramatically. In this section, several dimension reduction
methods that preserve the cluster structure are reviewed. Each method attempts to choose a projec-
tion to a reduced dimensional space that will capture the cluster structure ofthe data collection as
much as possible.

3.1 Centroid-based Algorithms for Dimension Reduction of ClusteredData

Suppose we are given a data matrixA whose columns are grouped intop clusters. Instead of
treating each column of the matrixA equally regardless of its membership in a specific cluster as
in LSI/SVD, we want to find a lower dimensional representationY of A so that thep clusters are
preserved inY. Given a term-document matrix, the problem is to find a transformation that maps
each document vector in them dimensional space to a vector in thel dimensional space for some
l < m. For this, either the dimension reducing transformationGT ∈ R

l×m is computed explicitly
or the problem is formulated as a rank reducing approximation where the given matrixA is to be
decomposed into two matricesB andY. That is,

A≈ BY (2)

whereB ∈ R
m×l with rank(B) = l andY ∈ R

l×n with rank(Y) = l . The matrixB accounts for the
dimension reducing transformation. However, it is not necessary to compute the dimension reducing
transformationG from B explicitly, as long as we can find the reduced dimensional representation
of a given data item. If the matrixB is already determined, the matrixY can be computed by solving

40

DIMENSION REDUCTION IN TEXT CLASSIFICATION WITH SVMS

the least squares problem (8; 12; 16)

min
B,Y

‖BY−A‖F . (3)

Any given documentq ∈ R
m×1 can be transformed to the lower dimensional space by solving the

minimization problem
min

q̂∈Rl×1
‖Bq̂−q‖2. (4)

Latent Semantic Indexing that utilizes the SVD (LSI/SVD) can be viewed as a variation of the
model (2) withB = Ul (16), whereUl ΣlVT

l is the rankl truncated SVD ofA. Then q̂ = UT
l q is

obtained by solving the least squares problem

min
q̂∈Rl×1

‖Bq̂−q‖2 = min
q̂∈Rl×1

‖Ul q̂−q‖2. (5)

In the Centroid dimension reduction algorithm (see Algorithm 1), theith column of B is the
centroid vector of theith cluster, which is the average of the data items in theith cluster, for 1≤ i ≤ p.
This matrixB is called the centroid matrix. Then, any vectorq ∈ R

m×1 can be represented in the
p dimensional space aŝq, the solution of the least squares problem (4), whereB is the centroid
matrix. In the Orthogonal Centroid algorithm (see Algorithm 2), thep dimensional representation
of a data vectorq ∈ R

m×1 is given asq̂ = QT
pq whereQp is an orthonormal basis for the centroid

matrix obtained from its QR decomposition.
The centroid-based dimension reduction algorithms are computationally less costly than LSI/SVD.

They are also more effective when the data are already clustered. Although the centroid-based
schemes can be applied only when the data are linearly separable, they aresuitable for text classifi-
cation problems, since text data is usually linearly separable in the original dimensional space (13).
For a nonlinear extension of the Orthogonal Centroid method that utilizes kernel functions, see (18).

3.2 Generalized Discriminant Analysis based on the Generalized Singular Value
Decomposition

Recently, a new algorithm has been developed for cluster-preserving dimension reduction based
on the generalized singular value decomposition (GSVD) (10). This algorithm generalizes classi-
cal discriminant analysis, by extending its application to very high-dimensional data such as that
encountered in text classification.

Classical discriminant analysis (7; 25) preserves cluster structure by maximizing the scatter
between clusters while minimizing the scatter within clusters. For this purpose, thewithin-cluster
scatter matrixSw and the between-cluster scatter matrixSb are defined. If we denote byNi the set
of column indices that belong to the clusteri, ni the number of columns in clusteri, andc the global
centroid, then

Sw =
p

∑
i=1

∑
j∈Ni

(a j −ci)(a j −ci)
T ,

and

Sb =
p

∑
i=1

∑
j∈Ni

(ci −c)(ci −c)T

=
p

∑
i=1

ni(ci −c)(ci −c)T .

41

K IM , HOWLAND AND PARK

Algorithm 3 LDA/GSVD
Given a data matrixA∈ R

m×n with p clusters, this algorithm computes the columns of the matrix
G ∈ R

m×(p−1), which preserves the cluster structure in the reduced dimensional space, and it also
computes thep−1 dimensional representationY of A.

1. ComputeHb ∈ R
m×p andHw ∈ R

m×n from A according to Eqns. (7) and (6), respectively.

2. Compute the complete orthogonal decomposition ofH = (Hb,Hw)T ∈ R
(p+n)×m, which is

PTHQ =

(

R 0
0 0

)

.

3. Let t = rank(H).

4. Compute W from the SVD ofP(1 : p,1 : t), which isUTP(1 : p,1 : t)W = ΣA.

5. Compute the firstp−1 columns of

X = Q

(

R−1W 0
0 I

)

,

and assign them toG.

6. Y = GTA

Since

trace(Sw) =
p

∑
i=1

∑
j∈Ni

‖a j −ci‖2
2

measures the closeness within the clusters, and

trace(Sb) =
p

∑
i=1

∑
j∈Ni

‖ci −c‖2
2

measures the remoteness between the clusters, the goal is to minimize the former while maximizing
the latter in the reduced dimensional space. Once again lettingGT ∈R

l×m denote the transformation
that maps a column ofA in the m dimensional space to a vector in thel dimensional space, the
goal can be expressed as the simultaneous minimization of trace(GTSwG) and maximization of
trace(GTSbG).

WhenSw is nonsingular, this simultaneous optimization is commonly approximated by maxi-
mizing

J1(G) = trace((GTSwG)−1(GTSbG)).

It is well known that the global maximum is achieved when the columns ofG are the eigenvectors
of S−1

w Sb that correspond to thel largest eigenvalues (7; 25). In fact, when the reduced dimension
l ≥ p−1, trace(S−1

w Sb) is exactly preserved upon dimension reduction, and equalsλ1 + · · ·+λp−1,
where eachλi ≥ 0. Without loss of generality, we assume that the term-document matrixA is parti-
tioned as

A = [A1, · · · , Ap]

42

DIMENSION REDUCTION IN TEXT CLASSIFICATION WITH SVMS

where the columns of each blockAi ∈ R
m×ni belong to the clusteri. Defining the matrices

Hw = [a1−c1,a2−c1, . . . ,an−cp] ∈ R
m×n (6)

and
Hb = [

√
n1(c1−c), . . . ,

√
np(cp−c)] ∈ R

m×p, (7)

then
Sw = HwHT

w and Sb = HbHT
b .

As the product of anm×n matrix with ann×m matrix, Sw will be singular when the number of
termsm exceeds the number of documentsn. In that case, classical discriminant analysis fails.
However, if we rewrite the eigenvalue problemS−1

w Sbxi = λixi as

β2
i HbHT

b xi = α2
i HwHT

wxi ,

it can be solved by the GSVD.
The resulting algorithm, called LDA/GSVD, is summarized in Algorithm 3. It followsthe

construction of the Paige and Saunders (15) proof, but only computes the necessary part of the
GSVD. The most expensive step of LDA/GSVD is the complete orthogonal decomposition of the
compositeH matrix in Step 2. When max(p,n) � m, the SVD ofH = [HT

b ,HT
w] ∈ R

(p+n)×m can be
computed by first computing the reduced QR decompositionHT = QHRH , and then computing the
SVD of RH ∈ R

(p+n)×(p+n) as

RH = Z

(

ΣH 0
0 0

)

PT .

This gives

H = RT
HQT

H = P

(

ΣH 0
0 0

)

ZTQT
H ,

where the columns ofQHZ ∈ R
m×(p+n) are orthonormal. There exists othogonalQ∈ R

m×m whose
first p+n columns areQHZ. Hence

H = P

(

ΣH 0
0 0

)

QT ,

where there are nowm− t zero columns to the right ofΣH . SinceRH ∈ R
(p+n)×(p+n) is a much

smaller matrix thanH ∈ R
(p+n)×m, the required memory is substantially reduced. In addition, the

computational complexity of the algorithm is reduced toO(mn2)+ O(n3) (8), since this step is the
dominating part.

4. Classification Methods

To test the effect of dimension reduction in text classification, three different classification methods
were used: centroid-based classification, k-nearest neighbor (kNN), and support vector machines
(SVMs). Each classification method is modified by introducing some threshold values to perform
classification correctly when a document has membership in multiple classes. Inthis section, we
briefly review the three classification methods and discuss their modifications.

43

K IM , HOWLAND AND PARK

Algorithm 4 : Centroid-based Classification
Given a data matrixA with p clusters andp corresponding centroids,ci , 1≤ i ≤ p, and a vector
q ∈ R

m×1, this method finds the indexj of the cluster in which the vectorq belongs.

• find the indexj such thatsim(q,ci), 1≤ i ≤ p, is minimum (or maximum), wheresim(q,ci)
is the similarity measure betweenq andci . (For example,sim(q,ci) = ‖q−ci‖2 using theL2

norm, and we take the index with the minimum value. Using the cosine measure,

sim(q,ci) = cos(q,ci) =
qTci

‖q‖2‖ci‖2
,

and we take the index with the maximum value.)

4.1 Centroid-based Classification

Centroid-based classification, summarized in Algorithm 4, is one of the simplestclassification meth-
ods. A test document is assigned to a class that has the most similar centroid. Using the cosine
similarity measure, we can classify a test documentq by computing

arg max
1≤i≤p

qTci

‖q‖2‖ci‖2
(8)

whereci is the centroid of theith cluster of the training data. When dimension reduction is per-
formed by the Centroid algorithm, the centroids of the full space become the columnsei ∈ R

p×1 of
the identity matrix. Then the decision rule becomes

arg max
1≤i≤p

q̂Tei

‖q̂‖2‖ei‖2
, (9)

whereq̂ is the reduced dimensional representation of the documentq. This shows that classification
can be performed by simply finding the indexi of the vector̂q with the largest component. Centroid-
based classification has the advantage that the computation involved is extremely simple. We can
also classify using theL2 norm similarity measure by finding the centroid that is closest toq in L2

norm.
The original form of centroid-based classification finds the nearest centroid and assigns the

corresponding class as the predicted class. To allow an assignment of any document to multiple
classes, we introduce the decision rule for centroid-based classificationas

y(x, j) = sign{sim(x,c j)−θc
j}, (10)

wherey(x, j) ∈ {+1,−1} is the classification for documentx with respect to classj (if y > 0 then
the class isj, else the class is notj), sim(x,c j) is the similarity between the test documentx and the
centroid vectorc j for the classj, andθc

j is the class specific threshold for the binary decision for
y(x, j) in centroid-based classification. In this way, documentx will be a member of classj if its
similarity to the centroid vectorc j for the class is above the threshold.

44

DIMENSION REDUCTION IN TEXT CLASSIFICATION WITH SVMS

Algorithm 5 : k Nearest Neighbor (kNN) Classification

Given a data matrixA = [a1, . . . ,an] with p clusters and a vectorq ∈ R
m×1, this method finds the

cluster in which the vectorq belongs.

1. Using the similarity measuresim(q,a j) for 1≤ j ≤ n, find thek nearest neighbors ofq.

2. Among thesek vectors, count the number belonging to each cluster.

3. Assignq to the cluster with the greatest count in the previous step.

4.2 k-Nearest Neighbor Classification

The kNN algorithm, summarized in Algorithm 5, is one of the most commonly used classification
methods. To correctly predict the membership of a document which belongs tomultiple classes, we
used the following modified decision rule for kNN (29):

y(x, j) = sign{ ∑
di∈kNN

sim(x,di)y(di , j)−θkNN
j } (11)

wherekNN is the set of k nearest neighbors for documentx, y(di , j)∈ {+1,−1} is the classification
for documentdi with respect to classj (if y > 0 then the class isj, else the class is notj), sim(x,di)
is the similarity between the test documentx and the training documentdi , andθkNN

j is the class
specific threshold for kNN classification.

4.3 Support Vector Machines

The optimal separating hyperplane of the one-vs-rest binary classifiercan be obtained by conven-
tional SVMs. We introduce the following decision rule for support vector machines as

y(x, j) = sign{ ∑
xi∈SV

αiyiK(x,xi)+b−θSVM
j }, (12)

wherey(x, j) ∈ {+1,−1} is the classification for documentx with respect to classj, SV is the set
of support vectors, andθSVM

j is the class specific threshold for the binary decision. This threshold is
set so that a new documentx must not be classified to belong to classj when it is located very close
to the optimal separating hyperplane, i.e. when the decision is made with a low reliability. We use
the linear kernelK =< x,xi >, the polynomial kernelK = [< x,xi > +1]d , whered is the degree of
the polynomial, and the Gaussian RBF (radial basis function) kernelK = exp(−γ‖x−xi‖2), where
γ is a parameter that controls the width of the Gaussian function.

5. Experimental Results

Prediction results are compared for the test documents in the full space without any dimension re-
duction as well as those in the reduced space obtained by LSI/SVD, Centroid, Orthogonal Centroid,
and LDA/GSVD dimension reduction methods. For SVMs, we optimized the regularization param-
eterC, polynomial degreed for the polynomial kernel, andγ for the Gaussian RBF (radial basis
function) kernel for each full and reduced dimension data set.

45

K IM , HOWLAND AND PARK

classification The rank-l approximation of LSI/SVD
methods l=5 l=100 l=200 l=300 l=500 l=1000 l=1246 l=1247 Full
centroid (L2) 71.6 82.2 83.4 83.9 84.8 84.9 85.2 85.2 85.2
centroid (Cosine) 78.5 86.9 87.1 87.6 88.0 88.2 88.3 88.3 88.3
5NN (L2) 77.8 68.8 55.4 49.2 63.8 76.9 79.0 79.0 79.0
15NN (L2) 77.5 69.7 52.7 50.3 76.3 74.7 83.4 83.4 83.4
30NN (L2) 77.5 64.3 47.8 58.0 80.8 73.2 83.8 83.8 83.8
5NN (Cosine) 77.8 82.2 79.1 79.6 79.4 78.7 77.8 77.8 77.8
15NN (Cosine) 80.2 83.1 82.5 83.6 82.9 82.5 82.5 82.5 82.5
30NN (Cosine) 79.8 83.4 83.8 84.1 84.2 84.1 83.8 83.8 83.8
SVM 79.1 87.6 88.4 88.5 88.6 89.2 89.7 89.7 88.9

Table 1: Text classification accuracy (%) using centroid-based classification, k-nearest neighbor
classification, and SVMs, with LSI/SVD dimension reduction on the MEDLINE data set.
The Euclidean norm (L2) and the cosine similarity measure (Cosine) were used for the
centroid-based and kNN classification.

The first data set that we used was a subset of the MEDLINE database with 5 classes. Each class
has 500 documents. The set was divided into 1250 training documents and 1250 test documents.
After stemming and stoplist removal, the training set contains 22095 distinct terms. For this data,
each document belongs to only one class, and we used the original form of the three classification
algorithms without introducing the threshold.

The second data set was the “ModApte” split of the Reuter-21578 text collection. We only used
90 classes for which there is at least one training and one test example in each class. It contains
7769 training documents and 3019 test documents. The training set contains11941 distinct terms
after preprocessing with stoplist removal and stemming. The Reuter data setcontains documents
that belong to multiple classes, so the classification methods utilize thresholds.

We used a standard weight factor for each word stem:

φi(x) =
t fi log(id fi)

κ
, (13)

wheret fi is the number of occurrences of termi in documentx, id fi = n/d is the ratio between
the total number of documentsn and the number of documentsd containing the term, andκ is the
normalization constant that makes‖φ‖2 = 1.

Table 1 reports text classification accuracy for the MEDLINE data set using LSI/SVD with a
range of values for the reduced dimension. The smallest reduced dimension, l = 5, is included in
order to compare with centroid-based and LDA/GSVD methods, which reduce the dimension to 5
and 4, respectively. Since the training set has the nearly-full rank of 1246, we include the reduced
dimensions 1246 and 1247 at the high end of the range. For a training set of size 1250, the reduced
dimensionl = 300 is generous. However, we observe that kNN classification withL2 norm simi-
larity produces poor classification results forl values from 100 to 500. This is consistent with the
common belief that cosine similarity performs better with unnormalized text data. Also, classifica-
tion accuracy using 5NN lags that for higher values of k, suggesting thatk=5 is too small for classes

46

DIMENSION REDUCTION IN TEXT CLASSIFICATION WITH SVMS

kernel Dimension reduction methods
Full Centroid Orthogonal LDA/ LDA/

Centroid GSVD4 GSVD5
22095×1250 5×1250 5×1250 4×1250 5×1250

linear (C=1.0) 88.1 88.9 85.9 86.5 86.6
linear (C=10.0) 88.9 88.5 88.3 86.7 86.7
linear (C=50.0) 88.9 87.7 88.8 87.1 87.1
linearopt 88.9 88.9 89.0 87.4 87.4
polynomial(d=2) 88.6 88.9 88.9 87.3 87.3
polynomial(d=3) 88.0 89.0 88.8 87.4 87.4
polynomial(d=4) 87.5 88.9 88.8 87.2 87.2
polynomial(d=5) 86.5 88.6 88.8 87.1 87.1
polynomialopt 88.6 89.0 88.9 87.4 87.4
RBF (γ = 0.5) 88.5 89.0 89.0 87.1 87.2
RBF (γ = 1.0) 87.6 89.2 89.0 87.3 87.2
RBF (γ = 1.5) 86.3 89.1 88.8 87.4 87.3
RBFopt 88.7 89.2 89.0 87.4 87.3

Table 2: Text classification accuracy (%) with different kernels in SVMswith and without dimen-
sion reduction on the MEDLINE data set. The regularization parameterC for each case
was optimized by numerical experiments. Dimension of each training term-document ma-
trix is shown. LDA/GSVD4 and LDA/GSVD5 represent the results from LDA/GSVD
where the reduced dimensions are 4 and 5, respectively.

of size 250. It is noteworthy that even with LSI, which makes no attempt to preserve the cluster
structure upon dimension reduction, SVM classification achieves very consistent classification re-
sults for reduced dimensions of 100 or greater, and the SVM accuracy exceeds that of the other
classification methods.

Table 2 shows text classification accuracy (%) with different kernels in SVMs, with and without
dimension reduction on the MEDLINE data set. Note that the linearopt values are optimal over all
the values of the regularization parameterC that we tried, and the RBFopt values are optimal over
all theγ values we tried. This table shows that the prediction results in the reduced dimension are
similar to those in the original full dimensional space, while achieving a significant reduction in
time and space complexity. In the reduced space obtained by the OrthogonalCentroid dimension
reduction algorithm, the classification accuracy is insensitive to the choice ofthe kernel. Thus, we
can choose the linear kernel in this case instead of the computationally more expensive polynomial
or RBF kernel.

Table 3 shows classification accuracy obtained by all three classification methods – centroid-
based, kNN with three different values of k, and the optimal result from SVM – for each dimension
reduced data set and the full space. For the LDA/GSVD dimension reduction method, the classi-
fication accuracy with cosine similarity measure is lower with centroid-based classification as well
as with kNN, while the results withL2 norm are better. This is due to the formulation of trace
optimization criteria in terms of theL2 norm. With LDA/GSVD, documents from the same class in

47

K IM , HOWLAND AND PARK

classification Dimension reduction methods
methods Full Centroid Orthogonal LDA/ LDA/

Centroid GSVD4 GSVD5
22095×1250 5×1250 5×1250 4×1250 5×1250

centroid (L2) 85.2 88.0 85.2 88.7 88.7
centroid (Cosine) 88.3 88.0 88.3 83.9 83.9
5NN (L2) 79.0 88.4 88.6 81.5 86.6
15NN (L2) 83.4 88.3 87.8 88.7 88.6
30NN (L2) 83.8 88.8 88.5 88.7 88.5
5NN (Cosine) 77.8 88.6 88.2 83.8 84.1
15NN (Cosine) 82.5 88.2 88.5 83.8 84.1
30NN (Cosine) 83.8 88.3 88.6 83.8 84.1
SVM 88.9 89.2 89.0 87.4 87.4

Table 3: Text classification accuracy (%) using centroid-based classification, k-nearest neighbor
classification, and SVMs, with and without dimension reduction on the MEDLINEdata
set. The Euclidean norm (L2) and the cosine similarity measure (Cosine) were used for
centroid-based and kNN classification.

class Dimension reduction
Full Centroid Orthogonal LDA/ LDA/

Centroid GSVD4 GSVD5
22095×1250 5×1250 5×1250 4×1250 5×1250

heart attack 92.4 94.4 94.4 92.4 92.4
colon cancer 84.8 84.8 86.0 83.2 83.2
glycemic 95.6 97.6 98.0 95.2 95.2
oral cancer 82.0 75.2 73.6 78.8 78.8
tooth decay 89.6 94.0 92.8 87.2 87.2
microavg 88.9 89.2 89.0 87.4 87.4

Table 4: Text classification accuracy (%) of the 5 classes and the microaveraged performance over
all 5 classes on the MEDLINE data set. All results are from SVMs using optimal kernels.

the full dimensional space tend to be transformed to a very tight cluster or even to a single point in
the reduced space, since the LDA/GSVD algorithm tends to minimize the trace of the within cluster
scatter. This seems to make it difficult for SVMs to find a binary classifier with low generalization
error.

Table 4 shows text classification accuracy for the 5 classes using SVMs with and without dimen-
sion reduction methods on the MEDLINE data set. The colon cancer and oral cancer documents
were relatively hard to classify correctly.

The REUTERS data set has many documents that are classified to more than 2 classes, whereas
no document is classified to belong to more than one class in the MEDLINE data set. While we

48

DIMENSION REDUCTION IN TEXT CLASSIFICATION WITH SVMS

classification Dimension reduction
methods Full Centroid Orthogonal

Centroid
11941×9579 90×9579 90×9579

centroid(L2) 78.89 73.32 78.00
centroid(Cosine) 80.45 74.79 80.46
15NN 78.65 81.70 85.51
30NN 80.21 81.94 86.19
45NN 80.29 81.01 84.79
SVM 87.11 84.54 87.03

Table 5: Comparison of micro-averagedF1 scores for 3 different classification methods with and
without dimension reduction on the REUTERS data set. The Euclidean norm (L2) and the
cosine similarity measure (Cosine) were used for the centroid-based classification. The
cosine similarity measure was used for the kNN classification. The dimension ofthe full
training term-document matrix is 11941×9579 and that of the reduced matrix is 90×9579.

could handle relatively large matrices using a sparse matrix representation and sparse QR decom-
position in the Centroid and Orthogonal Centroid dimension reduction methods,results for the
LDA/GSVD dimension reduction method are not reported, since we ran out of memory while com-
puting the GSVD. For this data set, we built a series of threshold-based classifiers, optimizing the
thresholds to capture the multiple class membership. All class specific thresholds (θkNN

j , θc
j , θSVM

j)
are determined by numerical experiments. Though we obtained precision/recall break even points
by optimizing the thresholds, we report values of theF1 measure (26) which is defined as

F1 =
2rp
r + p

, (14)

wherer is recall andp is precision for a binary classification. Table 5 shows that the effectiveness
of classification was preserved for the Orthogonal Centroid dimension reduction algorithm, while it
became worse for the Centroid dimension reduction algorithm. This is due to a property of the Cen-
troid algorithm that the centroids of the full space are projected to the columnsof the identity matrix
in the reduced space. This orthogonality between the centroids may make it difficult to represent the
multiclass membership of a document by separating closely related classes after dimension reduc-
tion. The pattern of prediction measureF1 for each class is also preserved by Orthogonal Centroid
in Table 6. The macro-averagedF1 and micro-averagedF1 for the 10 most frequent classes are also
presented.

6. Conclusion and Discussion

In this paper, we applied three methods, Centroid, Orthogonal Centroid, and LDA/GSVD, which are
designed for reducing the dimension of clustered data. For comparison, we also applied LSI/SVD,
which does not attempt to preserve cluster structure upon dimension reduction. We tested the ef-
fectiveness in classification with dimension reduction using three differentclassification methods:

49

K IM , HOWLAND AND PARK

class Dimension reduction
Full Centroid Orthogonal

Centroid
11941×9579 90×9579 90×9579

earn 98.25 97.49 96.60
acq 95.57 95.45 94.94
money-fx 75.78 77.97 79.44
grain 92.88 86.62 92.26
crude 88.11 86.49 87.70
trade 75.32 75.11 77.25
interest 77.99 78.13 83.21
ship 84.09 85.71 88.00
wheat 84.14 81.94 84.06
corn 87.27 74.78 89.47
microavg (top 10) 92.21 91.32 92.21
avg (top 10) 85.94 83.96 87.32
microavg(all) 87.11 84.54 87.03

Table 6: F1 scores of the 10 most frequent classes and micro-averaged performance over all 90
classes on the REUTERS data set. All results are from SVMs using optimal kernels.
The dimension of the full training term-document matrix is 11941×9579 and that of the
reduced matrix is 90×9579.

SVMs, kNN, and centroid-based classification. For the three cluster-preserving methods, the re-
sults show surprisingly high prediction accuracy, which is essentially the same as in the original
full space, even with very dramatic dimension reduction. They justify dimension reduction as a
worthwhile preprocessing stage for achieving high efficiency and effectiveness. Especially for kNN
classification, the savings in computational complexity in classification after dimension reduction
are significant. In the case of SVM the savings are also clear, since the distance between two pairs
of input data points need to be computed repeatedly with and without the use ofthe kernel function,
and the vectors become significantly shorter with dimension reduction.

We have also introduced threshold based classifiers for centroid-based classification and SVMs
in order to capture the overlap structure between closely related classes.Prediction results with the
Centroid dimension reduction method became better compared to those from the full space for the
completely disjoint MEDLINE data set, but became worse for the REUTERS data set. Since the
Centroid dimension reduction method maps the centroids to unit vectorsei which are orthogonal
to each other, it is helpful for the disjoint data set, but not for a data set which contains documents
belonging multiple classes. We observed that prediction accuracy with the Orthogonal Centroid di-
mension reduction algorithm was preserved for SVMs as well as with centroid-based classification.
The Orthogonal Centroid dimension reduction method maximizes the between cluster relationship
using the relatively inexpensive reduced QR decomposition, compared to LDA/GSVD which also
considers the within cluster relationship but requires a more expensive rank revealing decomposition
such as the singular value decomposition (10; 11).

50

DIMENSION REDUCTION IN TEXT CLASSIFICATION WITH SVMS

The better prediction accuracy using SVMs is due to low generalization error by maximizing
the margin, and the capability to handle non-linearity by kernel choice. Although most classes of
the Reuters-21578 data set are linearly separable (13), there seems to be some level of non-linearity.
For non-linearly separable data, SVMs with appropriate nonlinear kernel functions would work as a
better classifier. Another way to handle non-linearly separable data is to apply nonlinear extensions
of the dimension reduction methods, including those presented in (18; 19). All of the dimension
reduction methods presented here can also be applied to visualize the higherdimensional structure
by reducing the dimension to 2- or 3-dimensional space.

We conclude that dramatic dimension reduction of text documents can be achieved, without
sacrificing classification accuracy. For the document sets we tested, the Orthogonal Centroid method
did particularly well at preserving the cluster structure from the full dimensional representation.
That is, the prediction accuracies for Orthogonal Centroid rival thoseof the full space, even though
the dimension is reduced to the number of clusters. The savings in computational complexity are
significant using either kNN classification or SVM.

Acknowledgments

This material is based upon work supported by the National Science Foundation Grant No. CCR-
0204109. Any opinions, findings and conclusions or recommendations expressed in this material
are those of the authors and do not necessarily reflect the views of the National Science Foundation
(NSF). The authors would also like to thank University of Minnesota Supercomputing Institute
(MSI) for providing the computing facilities.

References

[1] M. W. Berry, Z. Drmac, and E. R. Jessup. Matrices, vector spaces, and information retrieval.
SIAM Review, 41:335–362, 1999.

[2] M. W. Berry, S. T. Dumais, and G. W. O’Brien. Using linear algebra for intelligent information
retrieval.SIAM Review, 37:573–595, 1995.

[3] M. W. Berry and R. D. Fierro. Low-rank orthogonal decompositions for information retrieval
applications.Numerical Linear Algebra with Applications, 3(4):301–327, 1996.

[4] Å. Björck. Numerical Methods for Least Square Problems. SIAM, Philadelphia, PA, 1996.

[5] N. Cristianini and J. Shawe-Taylor.Support Vector Machines and Other Kernel-based Learn-
ing Methods. Cambridge University Press, 2000.

[6] S. Deerwester, S.T. Dumais, G.W. Furnas, T.K. Landauer, and R. Harshman. Indexing by latent
semantic analysis.Journal of the Society for Information Science, 41:391-407, 1990.

[7] K. Fukunaga,Introduction to Statistical Pattern Recognition, Second ed., Academic Press,
1990.

[8] G. H. Golub and C. F. Van Loan.Matrix Computations, third edition. Johns Hopkins Univer-
sity Press, Baltimore, 1996.

51

K IM , HOWLAND AND PARK

[9] M. Heiler. Optimization Criteria and Learning Algorithms for Large Margin Classifiers.
Diploma Thesis, University of Mannheim., 2002.

[10] P. Howland, M. Jeon, and H. Park. Structure Preserving Dimension Reduction for Clustered
Text Data based on the Generalized Singular Value Decomposition.SIAM Journal of Matrix
Analysis and Applications, 25(1):165–179, 2003.

[11] P. Howland and H. Park. Generalizing discriminant analysis using thegeneralized singular
value decomposition,IEEE Transactions on Pattern Analysis and Machine Intelligence, 26(8):
995-1006, 2004.

[12] M. Jeon, H. Park, and J. B. Rosen. Dimensional reduction basedon centroids and least squares
for efficient processing of text data. InProceedings for the First SIAM International Workshop
on Text Mining. Chicago, IL, 2001.

[13] T. Joachims. Text categorization with support vector machines: Learning with many relevant
features. InProceedings of the European Conference on Machine Learning, pages 137–142,
Berlin, 1998.

[14] H. Lodhi, N. Cristianini, J. Shawe-Taylor, and C. Watkins. Text classification using string
kernels.Advances in Neural Information Processing Systems, 13:563–569, 2000.

[15] C. C. Paige and M. A. Saunders, Towards a generalized singularvalue decomposition,SIAM
Journal of Numerical Analysis, 18, pp. 398–405, 1981.

[16] H. Park, M. Jeon, and J. B. Rosen. Lower dimensional representation of text data based on
centroids and least squares,BIT Numerical Mathematics, 42(2):1–22, 2003.

[17] H. Park and L. Eld́en. Downdating the rank-revealing URV decomposition.SIAM Journal of
Matrix Analysis and Applications, 16, pp. 138–155, 1995.

[18] C. Park and H. Park. Nonlinear feature extraction based on centroids and kernel functions.
Pattern Recognition, to appear.

[19] C. Park and H. Park. Kernel discriminant analysis based on the generalized singular value
decomposition. Technical report 03-017, Department of Computer Science and Engineering,
University of Minnesota, 2003.

[20] G. Salton,The SMART Retrieval System, Prentice Hall, 1971.

[21] G. Salton and M. J. McGill,Introduction to Modern Information Retrieval, McGraw-Hill,
1983.

[22] G. W. Stewart. An updating algorithm for subspace tracking.IEEE Transactions on Signal
Processing, 40:1535–1541, 1992.

[23] G. W. Stewart. Updating URV decompositions in parallel.Parallel Computing, 20(2):151–
172, 1994.

[24] M. Stewart and P. Van Dooren. Updating a generalized URV decomposition.SIAM Journal of
Matrix Analysis and Applications, 22(2):479–500, 2000.

52

DIMENSION REDUCTION IN TEXT CLASSIFICATION WITH SVMS

[25] S. Theodoridis and K. Koutroumbas,Pattern Recognition, Academic Press, 1999.

[26] C. J. van Rijsbergen.Information Retrieval. Butterworths, London, 1979.

[27] V. Vapnik. The Nature of Statistical Learning Theory. Springer-Verlag, New York, 1995.

[28] V. Vapnik. Statistical Learning Theory. John Wiley & Sons, New York, 1998.

[29] Y. Yang and X. Liu. A re-examination of text categorization methods. In22nd Annual Inter-
national SIGIR, pages 42–49, Berkeley, August 1999.

53

Journal of Machine Learning Research 6 (2005) 55–79 Submitted 2/04; Revised 8/04; Published 1/05

Stability of Randomized Learning Algorithms

Andre Elisseeff AEL@ZURICH.IBM .COM

IBM Zurich Research Lab
8803 Rueschlikon, Switzerland

Theodoros Evgeniou THEODOROS.EVGENIOU@INSEAD.EDU

Technology Management
INSEAD
77300 Fontainebleau, France

Massimiliano Pontil M .PONTIL@CS.UCL.AC.UK

Department of Computer Science
University College London
Gower Street, London WC1E, UK

Editor: Leslie Pack Kaelbling

Abstract

We extend existing theory on stability, namely how much changes in the training data influence the
estimated models, and generalization performance of deterministic learning algorithms to the case
of randomized algorithms. We give formal definitions of stability for randomized algorithms and
prove non-asymptotic bounds on the difference between the empirical and expected error as well
as the leave-one-out and expected error of such algorithms that depend on their random stability.
The setup we develop for this purpose can be also used for generally studying randomized learning
algorithms. We then use these general results to study the effects of bagging on the stability of
a learning method and to prove non-asymptotic bounds on the predictive performance of bagging
which have not been possible to prove with the existing theory of stability for deterministic learning
algorithms.1

Keywords: stability, randomized learning algorithms, sensitivity analysis, bagging, bootstrap
methods, generalization error, leave-one-out error.

1. Introduction

The stability of a learning algorithm, namely how changes to the training data influence the result of
the algorithm, has been used by many researchers to study the generalization performance of several
learning algorithms (Devroye and Wagner, 1979; Breiman, 1996b; Kearns and Ron, 1999; Bousquet
and Elisseeff, 2002; Kutin and Niyogi, 2002; Poggio et al., 2004). Despite certain difficulties with
theories about stability, such as the lack so far of tight bounds as well as lower bounds (Bousquet
and Elisseeff, 2002), the study of learning methods using notions of stabilityis promising although
it is still at its infancy. For example, recently Poggio et al. (2004) have shown conditions for the
generalization of learning methods in terms of a stability notion that have possibleimplications for
new insights on diverse learning problems.

1. This work was done while A.E. was at the Max Planck Institute for Biological Cybernetics in Tuebingen, Germany.

c©2005 Andre Elisseeff, Theodoros Evgeniou, Massimiliano Pontil.

ELISSEEFF, EVGENIOU AND PONTIL

The existing theory, however, is developed only for deterministic learning algorithms (Bous-
quet and Elisseeff, 2002), therefore it cannot be used to study a large number of algorithms which
are randomized, such as bagging (Breiman, 1996a), neural networks, or certain Bayesian learning
methods. Thegoal of this paperis to improve upon this analysis. To this end, we present a nat-
ural generalization of the existing theory to the case of randomized algorithms, thereby extending
the results of (Bousquet and Elisseeff, 2002), and formally prove bounds on the performance of
randomized learning algorithms using notions of randomized stability that we define. To prove
our results we have also extended the results of (Bousquet and Elisseeff 2002) that hold only for
symmetric learning algorithms to the case of asymmetric ones. We then prove, as an application
of our results, new non-asymptotic bounds for bagging (Breiman, 1996a), a randomized learning
method. Finally, we note that our work also provides an approach that canbe used for extending
other studies, for example other results on stability, done for deterministic algorithms to the case of
randomized learning algorithms.

The paper is organized as follows. For completeness and comparison we first replicate in Sec-
tion 2 the key notions of stability and the generalization bounds we extend derived for deterministic
methods in the literature. We then extend these notions — Definitions 7, 10, and 13 — and gen-
eralization bounds — Theorems 9, 12 and 15 — to the case of randomized methods in Section 3.
Finally, in Section 4 we present an analysis of bagging within the stability theoryframework.

2. Stability and Generalization for Deterministic Algorit hms

In this section we briefly review the results in (Devroye and Wagner 1979;Kearns and Ron, 1999;
Bousquet and Elisseeff, 2002) that show that stability is linked to generalization for deterministic
learning methods. We assume here that all algorithms are symmetric, that is, theiroutcome does not
change when the elements in the training set are permuted. In the next section, we will extend sta-
bility concepts to the case of randomized learning methods and remove this symmetry assumption.

2.1 Basic Notation

In the following, calligraphic font is used for sets and capital letters referto numbers unless explic-
itly defined. LetX be a set,Y a subset of a Hilbert space and defineZ = X ×Y . X is identified
as the input space andY as the output space. Given a learning algorithmA we definefD to be the
solution of the algorithm when the training setD = {zi = (xi ,yi), i = 1, . . . ,m} ∈ Zm drawn i.i.d.
from a distributionP is used. AlgorithmA is thus interpreted as a function fromZm to (Y)X , the set
of all functions fromX to Y , and we use the notationA(D) = fD . We denote byD\i the training
setD \{zi} obtained by removing point(xi ,yi). More formally, pointi is replaced by the empty set
which we assume the learning method treats as having this point simply removed – we will need
this for our analysis below. We denote byD i the training set obtained by changing point(xi ,yi)
from D into z′ = (x′,y′), that is the set(D \{zi})∪z′.

For any pointz = (x,y) and function f (real valued or binary) we denote by`(f ,z) the loss
(error) whenf (x) is predicted instead ofy (` is the loss function). We define the expected error off
also known asgeneralization errorby the equation

Rgen[f] = Ez[`(f ,z)] .

56

STABILITY OF RANDOMIZED LEARNING ALGORITHMS

We also define theempirical erroras

Remp[f] =
1
m

m

∑
i=1

`(f ,zi)

and theleave–one–out erroras

Rloo [f] =
1
m

m

∑
i=1

`(fD\i ,zi).

Note that the last two errors are functions ofD. For the case of classification we useθ(−y f(x))
as the loss functioǹ, whereθ(·) is the Heavyside function. The analysis we will do concerns
classification as well as regression. For the latter we will mainly focus on the case that̀ is a
Lipschitzian loss function, that is, we assume that there exists a positive constantB such that, for
every f1, f2 ∈ (Y)X andz= (x,y) ∈ Z, there holds the inequality|`(f1,z)− `(f2,z)| ≤ B|y1− y2|.
Note that the absolute value satisfies this condition withB = 1, whereas the square loss satisfies the
condition provided the setY is compact.

2.2 Hypothesis Stability

The first notion of stability we consider has been stated in (Bousquet and Elisseeff, 2002) and is
inspired by the work of Devroye and Wagner (1979). It is very close towhat Kearns and Ron
(1999) defined as hypothesis stability:

Definition 1 (Hypothesis Stability) An algorithm A hashypothesis stabilityβm w.r.t. the loss func-
tion ` if the following holds:

∀i ∈ {1, . . . ,m}, ED,z[|`(fD ,z)− `(fD\i ,z)|] ≤ βm.

It can be shown (Bousquet and Elisseeff, 2002) that when an algorithm has hypothesis stabilityβm

and forall training setsD we have, for everyz∈ Z, that 0≤ `(fD ,z) ≤ M, M being a positive
constant, then the following relation between the leave-one-out error andthe expected error holds:

Theorem 2 (Hypothesis stability leave-one-out error bound)Let fD be the outcome of a learn-
ing algorithm with hypothesis stabilityβm (w.r.t. a loss functioǹ such that0≤ `(f ,z) ≤ M). Then
with probability1−δ over the random draw of the training setD,

Rgen[fD] ≤ R̀ oo[fD]+

√

δ−1M2 +6Mmβm

2m
. (1)

The proof consists of first bounding the second order moment of (Rgen[fD]− R̀ oo[fD]) and then
applying Chebychev’s inequality. A similar bound on(Rgen[fD]− R̀ oo[fD])2 holds. Theorem 2
holds for any loss functions as long as stability can be proved w.r.t. this loss function.
In the following, we will say that an algorithm is stable when its stability scales like 1/m, in which
case the difference between the generalization and leave-one-out error is of the orderO(1/

√
m).

Many algorithms are stable according to this definition, see (Devroye et al., 1996; Bousquet and
Elisseeff, 2002) for a discussion. For example, with respect to the classification loss,k-Nearest
Neighbor (k−NN) is k/mstable. This is discussed in the next example.

57

ELISSEEFF, EVGENIOU AND PONTIL

Example 1 (Hypothesis Stability ofk-Nearest Neighbor (k-NN)) With respect to the classifica-
tion loss, k-NN is at leastkm stable. This can be seen via symmetrization arguments. For the sake of
simplicity we give here the proof for the1-NN only. Let vi be the neighborhood of zi such that the
closest point in the training set to any point of vi is zi . The1−NN algorithm computes its output via
the following equation (we assume here that the probability that xi appears twice in the training set
is negligible):

fD(x) =
m

∑
i=1

yi1x∈vi (x)

where1S is the indicator function of set S. The difference between the losses`(fD ,z) and`(fD\i ,z)
is then defined by the set vi . Here we assume that` is the classification loss. We then have that

Ez[|`(fDm,z)− `(fD\i ,z)|] ≤ P(vi).

Note that vi depends onD. Now averaging overD we need to computeED [P(vi)] which is the same
for all i because the zi are drawn i.i.d. from the same distribution. But, we have,

1 = ED,z[| fD(x)|] = ED,z

[∣
∣
∣
∣
∣

m

∑
i=1

yi1x∈vi (x)

∣
∣
∣
∣
∣

]

= ED,z

[
m

∑
i=1

1x∈vi (x)

]

.

The last equality comes from the fact that for fixedD and z, only one1x∈vi (x) is non-zero. We also
have that

1 = ED,z

[
m

∑
i=1

1x∈vi (x)

]

= mED [P(vi)] .

Consequently,ED [P(vi)] =
1
m and the1-NN has hypothesis stability bounded above by1/m.

A bound similar to Equation (1) can be derived for the empirical error whena slightly different
notion of stability is used (Bousquet and Elisseeff, 2002).2

Definition 3 (Pointwise hypothesis stability) An algorithm A haspointwise hypothesis stability
βm w.r.t. the loss functioǹ if the following holds :

∀i ∈ {1, . . . ,m}, ED,z
[∣
∣`(fD ,zi)− `(fD\i∪z,zi)

∣
∣
]
≤ βm.

Note that we adopted the same notationβm for all notions of stability since it should always be
clear from the context which is the referred notion. As for the case of hypothesis stability and leave-
one-out error above, it can also be shown (Bousquet and Elisseeff, 2002) that when an algorithm has
pointwise hypothesis stabilityβm and if for all training setsD, 0≤ `(f ,z) ≤ M, then the following
relation between the empirical error and the expected error holds:

Theorem 4 (Pointwise hypothesis stability empirical error bound) Let fD be the outcome of a
learning algorithm with pointwise hypothesis stabilityβm (w.r.t. a loss functioǹ such that0 ≤
`(fD ,z) ≤ M). Then with probability1−δ over the random draw of the training setD,

Rgen[fD] ≤ Remp[fD]+

√

δ−1M2 +12Mmβm

2m
. (2)

2. We slightly changed the definition to correct one mistake that has been pointed out by Poggio et al., (2004): the
difference of losses is taken here between two outcomes trained on datasets of equal sizes.

58

STABILITY OF RANDOMIZED LEARNING ALGORITHMS

2.3 Uniform Stability

The application of bound (1) to different algorithmsf1, . . . , fQ with stabilitiesβq
m, q = 1, . . . ,Q, is

usually done by using the union bound (Vapnik, 1998). Applying Theorem 2 Q times, we get with
probability 1−δ,

∀q∈ {1, . . . ,Q}, Rgen[fq] ≤ R̀ oo[fq]+

√

δ−1Q
M2 +6Mmβq

m

2m
. (3)

In such situations, we would like to have a dependence in log(Q) so that we can have large values of
Q without increasing the bound too much. To this end, we need a stronger notion of stability called
uniform stability (Bousquet and Elisseeff, 2002).

Definition 5 (Uniform Stability) An algorithm A hasuniform stabilityβm w.r.t. the loss functioǹ
if the following holds

∀D ∈ Zm, ∀i ∈ {1, . . . ,m}, ‖`(fD , .)− `(fD\i , .)‖∞ ≤ βm. (4)

It is easily seen that the uniform stability is an upper bound on hypothesis and pointwise hy-
pothesis stability (Bousquet and Elisseeff, 2002). Uniform stability can beused in the context of
regression to get bounds as follows (Bousquet and Elisseeff, 2002):

Theorem 6 Let fD be the outcome of an algorithm with uniform stabilityβm w.r.t. a loss functioǹ
such that0≤ `(fD ,z) ≤ M, for all z∈ Z and all setsD. Then, for any m≥ 1, and anyδ ∈ (0,1),
each of the following bounds holds with probability1−δ over the random draw of the training set
D,

Rgen[fD] ≤ Remp[fD]+2βm+(4mβm+M)

√

log(1/δ)

2m
, (5)

and

Rgen[fD] ≤ R̀ oo[fD]+βm+(4mβm+M)

√

log(1/δ)

2m
. (6)

The dependence onδ is
√

log(1/δ) which is better than the bounds given in terms of hypothesis
and pointwise hypothesis stability.

It is important to note that these bounds hold only for regression. Uniformstability can also be
used for classification with margin classifiers to get similar bounds, but we donot pursue this here
for simplicity. In the next section, for simplicity we also consider random uniform stability only for
regression. Classification can be treated with appropriate changes like in (Bousquet and Elisseeff,
2002).

Example 2 (Uniform Stability of regularization methods) Regularization-based learning algo-
rithms such as Regularization Networks (RN’s) (Poggio and Girosi, 1990) and Support Vector Ma-
chines (SVM’s), see, for example, (Vapnik, 1998), are obtained by minimizing the functional

m

∑
i=1

`(f ,zi)+λ‖ f‖2
K

59

ELISSEEFF, EVGENIOU AND PONTIL

whereλ > 0 is a regularization parameter and‖ f‖K is the norm of f in a reproducing kernel Hilbert
space associated to a symmetric and positive definite kernel K: X×X → R. A typical example is
the Gaussian, K(x, t) = exp(−‖x− t‖2/2σ2), whereσ is a parameter controlling the width of the
kernel. Depending on the loss function used, we obtain different learning methods. RN’s use the
square loss while SVM’s regression uses the loss`(f ,z) = | f (x)−y|ε, where|ξ|ε = |ξ|−ε if |ξ|> ε,
and zero otherwise.3

It can be shown (Bousquet and Elisseeff, 2002) that for Lipschitz lossfunctions, the uniform
stability of these regularization methods scales as1/λ. This results is in agreement with the fact
that for smallλ, the solution tends to fit perfectly the data and Theorem 6 does not give an interesting
bound. On the contrary, whenλ is large the solution is more stable and Theorem 6 gives a tight
bound. Hence, there is a trade-off between stability and deviation betweengeneralization and
empirical error that is illustrated here by the role of the regularization parameterλ.

Finally, we note that the notion of uniform stability may appear a little restrictive since the
inequality in Equation (4) has to hold over all training setsD. A weaker notion of stability has been
introduced by Kutin and Niyogi (2002) with related exponential bounds. We do not discuss this
issue here for simplicity, and we conjecture that the analysis we do below canbe generally adapted
for other notions of stability.

3. Stability and Generalization for Randomized Algorithms

The results summarized in the previous section concern only deterministic learning algorithms. For
example they cannot be applied to certain neural networks as well as bagging methods. In this
section we generalize the theory to include randomized learning algorithms.

3.1 Informal Reasoning

Let A be a randomized learning algorithm, that is a function fromZm×R onto (Y)X whereR is
a space containing elementsr that model the randomization of the algorithm and is endowed with
a probability measurePr . For notational convenience, we will use the shorthandfD,r to denote the
outcome of the algorithmA applied on a training setD with a random parameterr . We should
distinguish between two types of randomness that are exemplified by the following examples.

Example 3 (Bootstrapping once)Let R = {1, . . . ,m}p, p≤ m, and definePr , for r ∈ R , to be a
multinomial distribution with m parameters(1/m, . . . ,1/m). This random process models the sub-
sampling with replacement of p elements from a set of m distinct elements. Analgorithm A that
takes as input a training setD, performs a sub-sampling with replacement and runs a method such
as a decision tree on the sub-sampled training set is typically modeled as a randomized algorithm
taking as inputs a training set and an elementr ∈ R just described.

In this first example we see that the randomness depends onm, which is different from what the
second example describes.

3. Note that in the statistical learning theory literature (Vapnik, 1998), SVM are usually presented in term of mathe-
matical programming problems and the parameterλ is replaced byC = 1/(2λ) which now appears in front of the
empirical error.

60

STABILITY OF RANDOMIZED LEARNING ALGORITHMS

Example 4 (Initialization weights) Let R = [0,1]k and definePr to be the uniform distribution
overR . Such a random process appear in the initialization procedure of NeuralNetworks when the
initial weights are chosen randomly. In the latter case, a multi-layer perceptron with k weights can
be understood as an algorithm A taking a training set and a random vectorr ∈ R as inputs.

We consider the following issues for the definitions of stability for randomizedalgorithms be-
low.

• We give stability definitions that reduce to deterministic stability concepts when there is no
randomness, that is,R is reduced to one element with probability 1.

• We assume that the randomness of an algorithm (randomness ofr) is independent of the
training setD, althoughr may depend on the size of this set,m. There are two main reasons
for this: first, it simplifies the calculations; second, the randomness ofr has generally nothing
to do with the randomness of the training setD. Most of the time our knowledge about the
distribution overr is known perfectly, like in the examples above, and we would like to take
advantage of that. Adding some dependencies betweenr andD reduces this knowledge since
nothing is assumed about the distribution overZ from whichD is drawn.

• We also consider the general case that the randomization parameterr ∈ R T is decomposed
as a vector of independent random parametersr = (r1, . . . , rT) where eachr t is drawn from
the distributionP

t
r t

. For example, this model can be used to model the randomization of
bagging (Breiman, 1996a), where eachr t corresponds to one random subsampling from the
data, and theT subsamples are all drawn independently. To summarize, we will make use of
the following assumption:

Assumption 1: We assume thatr = (r1, . . . , rT) wherer t , t = 1, . . . ,T are random elements
drawn independently from the same distribution and writer ∈ R T to indicate the product
nature ofr .

• Finally we assume that we can re-use a draw ofr for different training set sizes, for example
for m andm−1. We need this assumption for the definitions of stability below to be well
defined as well as for the leave-one-out error definition we use for randomized methods.

To develop the last issue further, let us consider how to compute a leave-one-out error estimate
when the algorithm depends on a random vectorr that changes with the number of training exam-
ples. One way is to sample a new random vectorr (which in this case will concern onlym− 1
training points) for each fold/iteration. This is done, for example, by Kearns and Ron (1999) when
they introduce the notion of the random error stability. However, this introduces more instabilities
to the algorithms whose behavior can be different not only because of changes in the training set but
also because of changes in the random partr . A more stable leave-one-out procedure for a random-
ized algorithm would be to fixr and to apply the leave-one-out method only on the sampling of the
training set – a deterministic leave-one-out error (Evgeniou et al., 2004). Therefore for each leave-
one-out iteration, when we leave one point out — which is replaced, as wediscussed in Section 2.1,
with an empty set which we assume the learning method does not use — we use thesamer for the
remainingm−1 points. For instance, in Example 3.1 we would use the same bootstrap samples

61

ELISSEEFF, EVGENIOU AND PONTIL

that we used when having allm points, with the point left out replaced by the empty set that is not
used for training, for each leave-one-out iteration. In that case, we don’t need to re-sampler and
the leave-one-out estimate concerns an algorithm that is closer to what we consider onmpoints.

Therefore, in what follows, keeping in mind Example 3, we assume the following:

Assumption 2: The samer can be applied to fD and fD\i whereD\i is the setD where point i
is replaced by the empty set. We also consider the deterministic leave-one-out error computed as
described above.

Note that this assumption is not restrictive about the kind of learning methods we can consider. For
example both in Example 3.1 and 3.2 the samer (i.e. subsamples or initialization of neural network
weights) can be used form andm−1 training points.

3.2 Random Hypothesis Stability

The first definition we consider is inspired by the hypothesis stability for deterministic algorithms.

Definition 7 (Random Hypothesis Stability) A randomized algorithm A hasrandom hypothesis
stability βm w.r.t. the loss functioǹ if the following holds:

∀i ∈ {1, . . . ,m},ED,z,r

[∣
∣
∣`(fD,r ,z)− `(fD\i ,r ,z)

∣
∣
∣

]

≤ βm. (7)

Note that the value in the left hand side (l.h.s.) of Equation (7) can vary for different indexes
i. If r is fixed then the random hypothesis stability is exactly the same as the hypothesisstability
except that the resulting algorithm need not be symmetric anymore: if we samplethe training data
using a fixedr , permuting two data points might lead to different samplings and hence to a different
outcome. This means that we cannot apply the results for the case of deterministic algorithms and
we have to consider other bounds on the variance of the difference between the generalization and
empirical (or leave-one-out) errors. We prove in the appendix the following lemma.

Lemma 8 For any (non-symmetric) learning algorithm A and loss function` such that0≤ `(f ,z)≤
M we have for the leave-one-out error:

ED

[
(Rgen− R̀ oo)

2]≤ 2M2

m
+

12M
m

m

∑
i=1

ED,z[|`(fD ,z)− `(fD\i ,z)|] . (8)

Using Chebychev’s inequality, this lemma leads to the inequality

PD

(
Rgen[fD,r]− R̀ oo[fD,r] ≥ ε | r

)
≤ 2M2

mε2 +
12M ∑m

i=1ED,z

[∣
∣
∣`(fD,r ,z)− `(fD\i ,r ,z)

∣
∣
∣ , r
]

mε2 , (9)

where we use the notationE[X,Y] for the expectation ofX conditioned onY, andP[.|r] for the condi-
tional probability. By integrating Equation (9) with respect tor and using the propertyEY [EX[g(X,Y)|Y]] =
EX,Y[g(X,Y)] we derive the following theorem about the generalization and leave-one-out errors of
randomized learning methods:

62

STABILITY OF RANDOMIZED LEARNING ALGORITHMS

Theorem 9 Let fD,r be the outcome of a randomized algorithm with random hypothesis stability
βm w.r.t. a loss functioǹ such that0≤ `(f ,z) ≤ M, for all y ∈ Y , r ∈ R and all setsD. Then with
probability1−δ with respect to the random draw of theD andr ,

Rgen(fD,r) ≤ R̀ oo[fD,r]+

√

δ−12M2 +12Mmβm

m
. (10)

Notice that in the case that we make Assumption 1 nothing changes since the integration of (9)
w.r.t. r does not depend on the decomposition nature ofr made in Assumption 1.

As in the deterministic case, it is possible to define a different notion of stability toderive bounds
on the deviation between the empirical error and the generalization error ofrandomized algorithms:

Definition 10 (Random Pointwise Hypothesis Stability)A randomized algorithm A hasrandom
pointwise hypothesis stabilityβm w.r.t. the loss functioǹ if the following holds:

∀i ∈ {1, . . . ,m},EDm,r ,z

∣
∣
∣`(fD,r ,zi)− `(fD\i∪z,r ,zi)

∣
∣
∣≤ βm. (11)

Using the following lemma proved in the appendix,

Lemma 11 For any (non-symmetric) learning algorithm A and loss function` such that0≤ `(f ,z)≤
M we have for the empirical error,

ED

[
(Rgen−Remp)

2]≤ 2M2

m
+

12M
m

m

∑
i=1

ED,z
[
|`(fD ,zi)− `(fD\i∪z,zi)|

]
. (12)

we can derive as before the theorem:

Theorem 12 Let fD,r be the outcome of a random algorithm with random pointwise hypothesis
stability βm w.r.t. a loss functioǹ such that0≤ `(f ,z) ≤ M, for all y ∈ Y , r ∈ R and all setsD.
Then with probability1−δ with respect to the random draw of theD andr ,

Rgen(fD,r) ≤ Remp[fD,r]+

√

δ−12M2 +12Mmβm

m
. (13)

We note that both for Theorems 9 and 12 (Lemmas 8 and 11) one can furtherimprove the
constants of the bounds – as is typically the case with bounds in the literature.

The parallel with the deterministic case is striking. However when we considera random space
R reduced to only one element, then the bounds we obtain here are worse since we assume non-
symmetric learning algorithms.

63

ELISSEEFF, EVGENIOU AND PONTIL

3.3 Random Uniform Stability

The uniform stability definition (Definition 5) for deterministic algorithms can be extended as fol-
lows:

Definition 13 (Uniform Stability of Randomized Algorithms) We say that a randomized learn-
ing algorithm has uniform stabilityβm w.r.t. the loss functioǹ if, for every i= 1, . . . ,m

sup
D,z

∣
∣
∣Er
[
`(fD,r ,z)

]
−Er

[

`(fD\i ,r ,z)
]∣
∣
∣≤ βm. (14)

Note that this definition is consistent with Definition 5 which holds for deterministic symmetric
learning algorithms.

To link uniform stability to generalization, the following result by McDiarmid (1989), see also
(Devroye et al., 1996), is central.

Theorem 14 (Bounded Difference Inequality)Letr = (r1, . . . , rT)∈R be T independent random
variables (r t can be vectors, as in Assumption 1, or scalars) drawn from the same probability
distributionPr . Assume that the function G: R T → R satisfies

sup
r1,...,rT ,r ′t

∣
∣G(r1, . . . , rT)−G(r1, . . . , r t−1, r ′t , r t+1, . . . , rT)

∣
∣≤ ct , t = 1, . . . ,T. (15)

where ct is a nonnegative function of t. Then, for everyε > 0

P [G(r1, . . . , rT)−Er [G(r1, . . . , rT)] ≥ ε] ≤ exp

{

−2ε2/
T

∑
t=1

c2
t

}

. (16)

For the next theorem we replace theG of Theorem 14 with̀ (fD,r ,z) and require that, for every
D ∈ Zm andz∈ Z, `(fD,r ,z) satisfies the inequality in Equation (15). This is a mild assumption but
the bounds below will be interesting only if, forT → ∞, ct goes to zero at least as 1/

√
T. We useρ

as the supremum of thects of Theorem 14.

Theorem 15 Let fD,r be the outcome of a randomized learning algorithm satisfying Assumptions 1
and 2 with uniform stabilityβm w.r.t. the loss functioǹ. Letρ be such that for all t

sup
r1,...,rT ,r ′t

sup
z

∣
∣`(fD,(r1,...,rT),z)− `(fD,(r1,...,r t−1,r ′t ,r t+1,...,rT),z)

∣
∣≤ ρ,

as in Equation (15) for G being̀(fD,r ,z) and r = (r1, . . . , rT). The following bound holds with
probability at least1−δ with respect to the random draw of theD andr ,

Rgen(fD,r) ≤ Remp(fD,r)+2βm+

(
M +4mβm√

2m
+
√

2Tρ
)

(
√

log2/δ), (17)

and,

Rgen(fD,r) ≤ R̀ oo(fD,r)+βm+

(
M +2mβm−1 +2mβm√

2m
+
√

2Tρ
)

(
√

log(2/δ)). (18)

64

STABILITY OF RANDOMIZED LEARNING ALGORITHMS

Furthermore, assuming thatβm−1, the random uniform stability for training sets of size m−1, is
greater thanβm, we can simplify Equation (18) to:

Rgen(fD,r) ≤ R̀ oo(fD,r)+βm+

(
M +4mβm−1√

2m
+
√

2Tρ
)

(
√

log(2/δ)). (19)

Notice that the assumption for the simplification we make in the theorem thatβm−1 is greater
thanβm is natural: when points are added to the training set, the outcome of a learning algorithm
is usually more stable. Moreover, bounds onβm can be used here so that the conditionβm−1 ≥ βm

can be replaced by a condition on these bounds: we would require that thebounds onβm are non-
increasing inm.

We note thatρ may depend both on the number of random variablesT and the number of
training datam. In the bagging example below we estimate a bound onρ that depends only onT,
the number of subsamples we do for the bagging process – it may or may not be possible to show
that ρ depends onm, too, but this is an open question. We do not know of an example whereρ
also depends onm or, alternatively, of a case where it can be shown that it is not possible tohaveρ
depend onm. The latter case would imply that for fixedT the empirical (leave-one-out) error does
not converge to the expected error asm increases. This is, however, an open question and potentially
a weakness for the framework we develop here.

Finally note that, as in the deterministic case discussed in Section 2, results similar tothose in
Theorem 15 can be given for classification following the same line as in (Bousquet and Elisseeff,
2002).

4. Stability of Bagging and Subbagging

In this section we discuss an application of the results derived above to bagging (Breiman, 1996a)
and subbagging, see, for example, (Andonova et al., 2002), two randomized algorithms which work
by averaging the solutions of a learning algorithm trained a number of times on random subsets of
the training set. We will analyze these methods within the stability framework presented above. To
this end, we need to study how bagging and subbagging “affect” the stabilityof the base (underlying)
learning algorithm. First we present more formally what we mean by bagging.

4.1 Bagging

Bagging consists of training the same learning algorithm on a numberT of different bootstrap sets
of a training setD and by averaging the obtained solutions. We denote these bootstrap sets byD(r t)
for t = 1, . . . ,T, where ther t ∈ R = {1, . . . ,m}m are instances of a random variable corresponding
to samplingwith replacement ofmelements from the training setD (recall the notation in Example
3). Such random variables have a multinomial distribution with parameters(1

m, . . . , 1
m). The overall

bagging model can thus be written as:

FD,r =
1
T

T

∑
t=1

fD(r t). (20)

65

ELISSEEFF, EVGENIOU AND PONTIL

Here we assume that the base learning method (fD) treats multiple copies of a training point
(for example when many copies of the same point are sampled) as one point.4 Extending the results
below to the case where multiple copies of a point are treated as such is an open question.

The reader should also keep in mind that the base learning algorithm may be itself randomized
with random parameters. When trained on thet−th bootstrap set,D(r t), this algorithm will output
the solutionfD(r t),st

. However, to simplify the notation, we suppress the symbolst in our discussion
below.

In what follows, we compute an upper bound on the random hypothesis stability for bagging.
For regression, we have then the following proposition:

Proposition 4.1 (Random hypothesis stability of bagging for regression) Assume that the loss̀
is B−lipschitzian w.r.t. its first variable. Let FD,r , r ∈ R T , be the outcome of a bagging algorithm
whose base machine (fD) has (pointwise) hypothesis stabilityγm w.r.t. the`1 loss function. Then the
random (pointwise) hypothesis stabilityβm of FD,r with respect tò is bounded by

βm ≤ B
m

∑
k=1

kγk

m
Pr [d(r) = k] ,

where d(r), r ∈ R , is the number of distinct sampled points in one bootstrap iteration.

Proof
We first focus on hypothesis stability. Let us assume first thatD is fixed andz too. We would

like to bound:

I(D,z) = Er1,...,rT

[∣
∣
∣
∣
∣
`

(

1
T

T

∑
t=1

fD(r t),z

)

− `

(

1
T

T

∑
t=1

fD\i(r t)
,z

)∣
∣
∣
∣
∣

]

wherer1, . . . , rT are i.i.d. random variables modeling the random sampling of bagging and having
the same distribution asr . Since` is B−lipschitzian, and ther t are i.i.d.,I(D,z) can be bounded as:

I(D,z) ≤ B
T

Er1,...,rT

[∣
∣
∣
∣
∣

T

∑
t=1

(

fD(r t)(x)− fD\i(r t)
(x)
)
∣
∣
∣
∣
∣

]

≤ B
T

T

∑
t=1

Er t

[∣
∣
∣ fD(r t)(x)− fD\i(r t)

(x)
∣
∣
∣

]

= B Er

[∣
∣
∣ fD(r)(x)− fD\i(r)(x)

∣
∣
∣

]

.

To simplify the notation we denote by∆(D(r),x) the difference betweenfD\i(r)(x) and fD(r)(x).
We have that

Er [|∆(D(r),x)|] = Er [|∆(D(r),x)|(1i∈r +1i /∈r)]

= Er [|∆(D(r),x)|1i∈r]+Er [|∆(D(r),x)|1i /∈r] .

Note that the second part of the last line is equal to zero because wheni is not inr , pointzi does not
belong toD(r) and, thus,D(r) = D\i(r). We conclude that

I(D,z) ≤ BEr [|∆(D(r),x)|1i∈r] .

4. This means that if for example the underlying learning algorithm is a neural network, this algorithm is modified by a
preprocessing step so that the training set consists only of distinct data points.

66

STABILITY OF RANDOMIZED LEARNING ALGORITHMS

We now take the average w.r.t.D andz:

ED,z[I(D,z)] ≤ BEr ,D,x [|∆(D(r),x)|1i∈r] =

= BEr
[
ED,x [|∆(D(r),x)|]1i∈r

]
= BEr

[
γd(r)1i∈r

]
, (21)

where the last equality follows by noting thatED,x [|∆(D(r),x)|] is bounded by the hypothesis sta-
bility γd(r) of a training set of sized(r). We now note that when averaging w.r.t.r , the important
variable aboutr is the sized(r):

Er
[
γd(r)1i∈r

]
=

m

∑
k=1

Pr [d(r) = k]γkEr [1i∈r ;d(r) = k] .

Now note that, by symmetry,Er [1i∈r ;d(r) = k] = k/m. This concludes the proof for hypothesis
stability. The proof for pointwise stability is exactly the same except that in Equation (21) there is
no expectation w.r.t.z andz is replaced byzi .

The bounds we just proved depend on the quantitiesPr [d(r) = k], where, we recall thatd(r),
r ∈ R , is the number of distinct sampled points in one bootstrap iteration. It can be shown, for
example by applying Theorem 14, that the random variabled(r) is sharply concentrated around its
mode which is fork = (1− 1

e)m≈ 0.632m. For that reason, in what follows we will assume that the
previous bounds can be approximately rewritten as:

βm ≤ .632Bγ.632m.

For example ifB = 1 andγm scales appropriately withm the bounds on the random (pointwise)
hypothesis stability of the bagging predictor are better than those on the (pointwise) hypothesis
stability of a single predictor trained on the whole training set. Notice also that.632 is the probability
that the bootstrapped set will contain a specific (any) point, also used to justify the .632 bootstrap
error estimates (Efron and Tibshirani, 1997).

Similar results can be shown for the random (pointwise) hypothesis stability for classification.
In particular:

Proposition 4.2 (Random hypothesis stability of bagging for classification) Let FD,r be the out-
come of a bagging algorithm whose base machine has (pointwise) hypothesis stabilityγm w.r.t. the
classification loss function. Then, the (pointwise) random hypothesis stabilityβm of FD,r w.r.t. the
`1 loss function is bounded by

βm ≤ 2
m

∑
k=1

kγk

m
Pr [d(r) = k] .

Proof The proof is the same as in the above proposition except that the loss appearing therein is the
`1 loss and, so,B = 1. The functionsf (t) being{+1,−1} valued, the term:

ED,z[| fD(x)− fD\i (x)|]

is equal to the term
2ED,z[θ(−y fD(x))−θ(−y fD\i(x))] .

67

ELISSEEFF, EVGENIOU AND PONTIL

So that stability w.r.t. thè1 loss function can be replaced by stability w.r.t. the classification loss,
and the proof can be transposed directly.

Example 5 (k-NN) As previously seen, k-NN has hypothesis stability equal tok
m such that bagging

k-NN has stability with respect to classification loss bounded by

2
m

∑
j=1

jβ j

m
Pr [d(r) = j] = 2

m

∑
j=1

j k
j

m
Pr [d(r) = j] = 2

k
m

m

∑
j=1

Pr [d(r) = j] = 2
k
m

So bagging does not improve stability, which is also experimentally verified by Breiman (1996a).

The next proposition establishes the link between the uniform stability of bagging and that of
the base learning algorithm for regression. As before, classification can be treated similarly, see
(Bousquet and Elisseeff, 2002).

Proposition 4.3 (Random uniform stability of bagging for regression)Assume that the loss̀is
B-lipschitzian with respect to its first variable. Let FD,r be the outcome of a bagging algorithm
whose base machine has uniform stabilityγm w.r.t. the`1 loss function. Then the random uniform
stability βm of FD,r with respect tò is bounded by

βm ≤ B
m

∑
k=1

kγk

m
Pr [d(r) = k] . (22)

Proof The random uniform stability of bagging is given by

βm = sup
D,z

∣
∣
∣
∣
∣
Er1,...,r t

[

`

(

1
T

T

∑
t=1

fD(r t),z

)

− `

(

1
T

T

∑
t=1

fD\i(r t)
,z

)]∣
∣
∣
∣
∣
.

This can be bound by taking the absolute valued inside the expectation. Then, following the same
lines as in the proof of Proposition 4.1 we have:

βm ≤ Bsup
D,x

{Er [∆(D(r),x)1i∈r]}

where, we recall,∆(D(r),x) = | fD(r)− fD\i(r)| and function1i∈r is equal to one if pointi is sampled
during bootstrapping and zero otherwise. We then have

βm ≤ B Er

[

sup
D,x

{∆(D(r),x)}1i∈r

]

.

Now we observe that

sup
D,x

{∆(D(r),x)} = sup
D(r),x

{∆(D(r),x)} = γd(r).

Placing this bound in the previous one gives

βm ≤ Er
[
γd(r)1i∈r

]
.

The proof is now exactly the same as in the final part of Proposition 4.1.

68

STABILITY OF RANDOMIZED LEARNING ALGORITHMS

Example 6 (SVM regression)We have seen in Example 2 that the uniform stability of a SVM w.r.t.
the `1 loss is bounded by1/λ. The uniform stability of bagging SVM is then roughly bounded by
0.632/λ if the SVM is trained on all bootstrap sets with the sameλ. So that the bound on the random
uniform stability of a bagged SVM is better than the bound on the uniform stability fora single SVM
trained on the whole training set with the sameλ.

4.2 Subbagging

Subbagging is a variation of bagging where the setsD(r t), t = 1, . . . ,T are obtained by sampling
p≤ mpoints fromD withoutreplacement. Like in bagging, a base learning algorithm is trained on
each setD(r t) and the obtained solutionsfD(r t) are combined by average.

The proofs above can then be used here directly which gives the following upper bounds on
stability for subbagging:

Proposition 4.4 (Stability of subbagging for regression)Assume that the loss̀is
B-lipschitzian w.r.t. its first variable. Let FD,r be the outcome of a subbagging algorithm whose base
machine is symmetric and has uniform (resp. hypothesis or pointwise hypothesis) stabilityγm w.r.t.
the `1 loss function, and subbagging is done by sampling p points without replacement. Then the
random uniform (resp. hypothesis or pointwise hypothesis) stabilityβm of FD,r w.r.t. ` is bounded
by

βm ≤ Bγp
p
m

.

For classification, we have also the following proposition, again only for hypothesis or pointwise
hypothesis stability as in Section 2:

Proposition 4.5 ((P.) Hypothesis stability of subbagging for classification) Let FD,r be the out-
come of a subbagging algorithm whose base machine is symmetric and hashypothesis (resp. point-
wise hypothesis) stabilityγm with respect to classification loss, and subbagging is done by sampling
p points without replacement. Then the random hypothesis (resp. pointwise hypothesis) stabilityβm

of FD,r with respect to thè1 loss function is bounded by

βm ≤ 2γp
p
m

.

4.3 Bounds on the Performance of Subbagging

We can now prove bounds on the performance of bagging and subbagging. We present the following
theorems for subbagging but the same statements hold true for bagging where, in the bounds below,
pγp

m is replaced by∑m
k=1

kγk
m Pr [d(r) = k] which is roughly equal to 0.632γ0.632m whenm is sufficiently

large.

Theorem 16 Assume that the loss̀is B-lipschitzian w.r.t. its first variable. Let FD,r be the outcome
of a subbagging algorithm. Assume subbagging is done with T sets of size psubsampled without
replacement fromD and the base learning algorithm has hypothesis stabilityγm and pointwise

69

ELISSEEFF, EVGENIOU AND PONTIL

hypothesis stabilityγ′m, both stabilities being w.r.t. thèloss. The following bounds hold separately
with probability at least1−δ

Rgen(FD,r) ≤ R̀ oo(FD,r)+

√

δ−12M2 +12MBpγp

m
(23)

Rgen(FD,r) ≤ Remp(FD,r)+

√

δ−1
2M2 +12MBpγ′p

m
. (24)

Proof The inequalities follow directly from plugging the result of Proposition 4.4 in Theorems 9
and 12 respectively.

Note that, as in Proposition 4.2, the same result holds for classification if we set B = 2 and
M = 1.

The following theorem holds for regression. The extension to the case ofclassification can be
done again as in (Bousquet and Elisseeff, 2002).

Theorem 17 Assume that the loss̀is B-lipschitzian w.r.t. its first variable. Let FD,r be the outcome
of a subbagging algorithm. Assume subbagging is done with T sets of size psubsampled without
replacement fromD and the base learning algorithm has uniform stabilityγm w.r.t. the` loss. The
following bounds hold separately with probability at least1−δ in the case of regression

Rgen(FD,r) ≤ R̀ oo(FD,r)+
Bpγp

m
+

(

M +4B(m/m−1)pγp√
2m

+

√
2BM√

T

)
√

log(2/δ), (25)

and

Rgen(FD,r) ≤ Remp(FD,r)+2
Bpγp

m
+

(

M +4Bpγp√
2m

+

√
2BM√

T

)
√

log2/δ. (26)

Proof We recall thatr = (r1, . . . , rT) and introducethe notation

r t = (r1, . . . , r t−1, r ′, r t+1, . . . , rT).

Note that

∣
∣`(FD,r ,z)− `(FD,r t ,z)

∣
∣=

∣
∣
∣
∣
∣
`

(
T

∑
s=1

fD(rs),z

)

− `

(
T

∑
s=1,s6=t

fD(rs) + fD(r ′),z

)∣
∣
∣
∣
∣
≤

≤ B
T

∣
∣ fD(r ′)

∣
∣≤ B

T
M

Thus, the constantρ in Theorem 15 is bounded as

ρ = sup
r ,r ′t

∣
∣`(FD,r ,z)− `(FD,r t ,z)

∣
∣≤ B

T
M.

The result then follows by using this theorem and Proposition 4.4.

We comment on some characteristics of the above bounds for subbagging:

70

STABILITY OF RANDOMIZED LEARNING ALGORITHMS

• In Theorem 16 if, asm→ ∞, pγp

m → 0 then the empirical or leave-one-out error converge to
the expected error. In particular, ifp = O(1) asm→ ∞ the empirical or leave-one-out error
converge to the expected one asO(1/

√
m). This convergence is in probability as opposed to

the convergence provided by Theorem 17 which is almost surely.

• Although we can derive bounds for bagging using our theory in section 3that were not possi-
ble to derive with the existing theory summarized in Section 2, our results for bagging do not
show that bagging actually improves performance. Indeed, for example comparing Theorems
17 and 6, it is not clear which bound is tighter as that depends on the constants (e.g.M, B, and
other constants) and the behavior ofγp as p increases. Developing tighter bounds or lower
bounds within our analysis for bagging is needed for this purpose. This isan open problem.

• Theorem 17 indicates that the effects of the number of subsamplesT is of the form 1√
T

, so
there is no need for a largeT, as also observed in practice (Breiman, 1996a). For example,
it is sufficient thatT scales as

√
m. This result improves upon the analysis of (Evgeniou et

al., 2004) where in order to have convergence of the empirical or leave-one-our error to the
expected error it was required thatT is infinite.

• The bounds provided by Theorem 17 imply that the empirical or leave-one-out error converge
to the expected error provided, asm→ ∞, that pγp√

m → 0 and T→ ∞. The latter condition is

not a problem in practice, for example one could chooseT = O(
√

m) to get convergence,
but it indicates a weak point of the uniform stability analysis as opposed to thehypothesis
stability analysis above. As we discussed above, it may be possible to show that parameter
ρ appearing in Theorem 15 depends onm for the case of bagging, or to show that this is not
possible in which case it will be a limitation of our approach. This is an open problem.

5. Conclusions

We presented a theory of random stability for randomized learning methods that we also applied to
study the effects of bagging on the stability of a learning method. This is an extension of the existing
theory about the stability and generalization performance of deterministic (symmetric) learning
methods (Bousquet and Elisseeff 2002). We note that the setup that we developed for this analysis,
such as the issues and assumptions that we considered in Section 3, may be also used for other
studies of randomized learning algorithms – such as extensions of other theories about stability from
deterministic to randomized learning methods. The bounds we proved show formally the relation
of the generalization error to the stability of the (random) algorithm. There is currently no lower
bound hence we cannot practically use the bounds when the number of datam is small (e.g., several
hundreds or thousands, which is the case in many current applications).This issue concerns both
the deterministic (Bousquet and Elisseeff, 2002) as well as the random case. Developing tighter
bounds as well as lower bounds in order to be able to use the theory developed here in practice is an
open question.

Acknowledgments

We wish to thank Sayan Mukherjee, Tomaso Poggio, Ryan Rifkin, and the anonymous reviewers
for their useful comments.

71

ELISSEEFF, EVGENIOU AND PONTIL

Appendix A. Proofs of Lemmas 3.1 and 3.2

The proofs of Lemmas 3.1 and 3.2 follow directly the proof that has been given in (Bousquet and
Elisseeff, 2002). We reproduce the proof here with the changes that are required to handle non
symmetric algorithms. Before entering the core of the calculations, let us introduce some convenient
notation. We will denote by

`i j (z,z
′,z′′) = `(fDi j (z,z′),z

′′) (27)

the loss of an algorithmA trained on

Di, j(z,z
′) =

(
z1, . . . ,zi−1,z,zi+1, . . . ,zj−1,z

′,zj+1, . . . ,zm
)

which represents the training setD wherezi andzj have been replaced byz andz′. When i = j,
it is required thatz= z′. Note that the position ofzi andzj matters here since the algorithm is not
symmetric. Since we haveDi, j(zi ,zj) = Dk,l (zk,zl) for any i, j andk, l in {1, . . . ,m}, we use the
notation`(z) to denotè i j (zi ,zj ,z) for all i and j in {1, . . . ,m}. According to these notations we
have

`i j (/0,zj ,zi) = `(fD\i ,zi),

that is, we replacezi by the empty set when it is removed from the training set. Since`i j (/0,zj ,zi)
does not depend onj, we will denote it bỳ i .

Different tricks such as decomposing sums, renaming and permuting variables will be used in
the following calculations. Since the proofs are very technical and mostly formal, we explain here
more precisely what these steps are. Decomposing sums is the main step of the calculations. The
idea is to transform a differencea−b into a suma−b= ∑k

i=1ai −ai+1 (a1 = a andak+1 = b) so that
the quantitiesai −ai+1 in the sum can be bounded by terms of the formED,z

[∣
∣`i j (z,zj ,zi)− `(zi)

∣
∣
]
,

the latter being directly related to the notion of stability we defined. Renaming variables corre-
sponds to simply changing the name of one variable into another one. Most oftime, this change
will be done betweenz, zi andzj using the fact thatz and thezi ’s are independently and identically
distributed so that averaging w.r.t.z is the same as w.r.t.zi . The last technique we use is symmetriza-
tion. The following simple lemma will allow us to perform some symmetrization without changing
significantly the outcome of a (stable) learning algorithm.

Lemma 18 Let A be a (non-symmetric) algorithm and let` be as defined in Equation (27), we have
∀(i, j) ∈ {1, . . . ,m}2

ED,z
[∣
∣`(z)− `i j (zj ,zi ,z)

∣
∣
]
≤ 3

2

(
ED,z,z′

[∣
∣`i j (z

′,zj ,z)− `(z)
∣
∣
]

+ED,z,z′
[∣
∣`i j (zi ,z

′,z)− `(z)
∣
∣
])

. (28)

Proof We have

ED,z
[∣
∣`(z)− `i j (zj ,zi ,z)

∣
∣
]
≤ ED,z,z′

[∣
∣`(z)− `i j (z

′,zj ,z)
∣
∣
]

+ED,z,z′
[∣
∣`i j (z

′,zj ,z)− `i j (z
′,zi ,z)

∣
∣
]
+ED,z,z′

[∣
∣`i j (z

′,zi ,z)− `i j (zj ,zi ,z)
∣
∣
]

(29)

Since the distribution overD is i.i.d., integrating with respect tozi is the same as integrating w.r.t.
zj or z′, and we can swap the role ofz′ andzi in the second term of the r.h.s. , and ofzi andzj in the
last term.

ED,z,z′
[∣
∣`i j (z

′,zj ,z)− `i j (z
′,zi ,z)

∣
∣
]

= ED,z,z′
[∣
∣`(z)− `i j (zi ,z

′,z)
∣
∣
]

ED,z,z′
[∣
∣`i j (z

′,zi ,z)− `i j (zj ,zi ,z)
∣
∣
]

= ED,z,z′
[∣
∣`i j (z

′,zj ,z)− `(z)
∣
∣
]
,

72

STABILITY OF RANDOMIZED LEARNING ALGORITHMS

which gives the following result:

ED,z
[∣
∣`(z)− `i j (zj ,zi ,z)

∣
∣
]

≤ 2ED,z
[∣
∣`i j (z

′,zj ,z)− `(z)
∣
∣
]

+ ED,z
[∣
∣`i j (zi ,z

′,z)− `(z)
∣
∣
]

(30)

If instead of (29) we used the following decomposition,

ED,z
[∣
∣`(z)− `i j (zj ,zi ,z)

∣
∣
]
≤ ED,z,z′

[∣
∣`(z)− `i j (zi ,z

′,z)
∣
∣
]

+ED,z,z′
[∣
∣`i j (zi ,z

′,z)− `(zj ,z
′,z)
∣
∣
]
+ED,z,z′

[∣
∣`(zj ,z

′,z)− `i j (zj ,zi ,z)
∣
∣
]
,

it would have led to

ED,z
[∣
∣`(z)− `i j (zj ,zi ,z)

∣
∣
]
≤ ED,z

[∣
∣`i j (z

′,zj ,z)− `(z)
∣
∣
]
+2ED,z

[∣
∣`i j (zi ,z

′,z)− `(z)
∣
∣
]
.

Averaging this inequality with (30), we get the final result.

Note that the quantity appearing in the r.h.s. of Equation (28) can be boundedby different quantities
related to pointwise hypothesis stability or to hypothesis stability. We have indeed

ED,z
[∣
∣`(z)− `i j (zj ,zi ,z)

∣
∣
]
≤ 3

(
ED,z

[∣
∣`i j (z,zj ,zi)− `(zi)

∣
∣
]

+ED,z
[∣
∣`i j (zi ,z,zj)− `(zj)

∣
∣
])

, (31)

which is related to the definition of pointwise hypothesis stability and will be used when the focus
is on empirical error. We have also

ED,z
[∣
∣`(z)− `i j (zj ,zi ,z)

∣
∣
]
≤ 3

(
ED,z

[∣
∣`i j (/0,zj ,z)− `(z)

∣
∣
]

+ED,z
[∣
∣`i j (zi , /0,z)− `(z)

∣
∣
])

,

which is related to bounds on the leave-one-out error. Both bounds have the same structure and it
will turn out that the following calculations are almost identical for leave-one-out error and empirical
error. We can now start the main part of the proofs. The notations are difficult to digest but the ideas
are simple and use only the few formal steps we have described before. We first state the following
lemma as in (Bousquet and Elisseeff, 2002):

Lemma 19 For any (non-symmetric) learning algorithm A, we have

ED

[
(Rgen−Remp)

2]≤ 1
m2 ∑

i6= j

ED,z,z′
[
`(z)`(z′)

]
− 2

m2

m

∑
i6= j

ED,z[`(z)`(zi)]

+
1

m2 ∑
i 6= j

ED [`(zi)`(zj)]+
1

m2

m

∑
i=1

(
ED,z,z′

[
`(z)`(z′)

]
−2ED,z[`(z)`(zi)]+ED

[
`(zi)

2])

and

ED

[
(Rgen− R̀ oo)

2]≤ 1
m2 ∑

i6= j

ED,z,z′
[
`(z)`(z′)

]
− 2

m2 ∑
i6= j

ED,z[`(z)`i]

+
1

m2 ∑
i6= j

ED [`i`i j (zi , /0,zj)]

+
1

m2

m

∑
i=1

(
ED,z,z′

[
`(z)`(z′)

]
−2ED,z[`(z)`i]+ED

[
`2

i

])
.

73

ELISSEEFF, EVGENIOU AND PONTIL

Proof We have

ED

[
R2

gen

]
= ED

[

Ez`(z)
2
]

= ED,z,z′
[
`(z)`(z′)

]

=
1

m2 ∑
i6= j

ED,z,z′
[
`(z)`(z′)

]
+

1
m2

m

∑
i=1

ED,z,z′
[
`(z)`(z′)

]
,

and also

ED [RgenRemp] = ED

[

Rgen
1
m

m

∑
i=1

`(zi)

]

=
1
m

m

∑
i=1

ED [Rgeǹ (zi)]

=
1
m

m

∑
i=1

ED,z[`(z)`(zi)]

=
1

m2 ∑
i6= j

ED,z[`(z)`(zi)]+
1

m2

m

∑
i=1

ED,z[`(z)`(zi)] ,

and also

ED [RgenR̀ oo] = ED

[

Rgen
1
m

m

∑
i=1

`i

]

=
1
m

m

∑
i=1

ED [Rgeǹ i]

=
1
m

m

∑
i=1

ED,z[`(z)`i]

=
1

m2

m

∑
i6= j

ED,z[`(z)`i]+
1
m

m

∑
i=1

ED,z[`(z)`i] .

Also we have

ED

[
R2

emp

]
=

1
m2

m

∑
i=1

ED

[
`(zi)

2]+
1

m2 ∑
i6= j

ED [`(zi)`(zj)]

and

ED

[
R2

`oo

]
=

1
m2

m

∑
i=1

ED

[
`2

i

]
+

1
m2 ∑

i6= j

ED [`i`i j (zi , /0,zj)] ,

which concludes the proof.

74

STABILITY OF RANDOMIZED LEARNING ALGORITHMS

Continuing the proof of Lemma 3.2, we now formulate the first inequality of Lemma 19 as

ED

[
(Rgen−Remp)

2]≤ 1
m2 ∑

i6= j

ED,z,z′
[
`(z)`(z′)

]
−ED,z[`(z)`(zi)]

︸ ︷︷ ︸

I

+
1

m2

m

∑
i6= j

ED [`(zi)`(zj)]−ED,z[`(z)`(zi)]
︸ ︷︷ ︸

J

+
1

m2

m

∑
i=1

ED,z,z′
[
`(z)`(z′)

]
−2ED,z[`(z)`(zi)]+ED

[
`(zi)

2]

︸ ︷︷ ︸

K

.

Using the fact that the loss is bounded byM, we have

K = ED,z,z′
[
`(z)

(
`(z′)− `(zi)

)]
+ED,z[`(zi)(`(zi)− `(z))]

≤ 2M2.

Now we rewriteI as
ED,z,z′

[
`(z)`(z′)

]
−ED,z[`(z)`(zi)] =

= ED,z,z′
[
`(z)`(z′)− `i j (z

′,zj ,z)`i j (z
′,zj ,z

′)
]
,

where we renamedzi asz′ in the second term. We have then

I = ED,z,z′
[
(`(z)− `i j (z,zj ,z))`(z

′)
]

+ED,z,z′
[
(`i j (z,zj ,z)− `i j (z

′,zj ,z))`(z
′)
]

+ED,z,z′
[
(`(z′)− `i j (z

′,zj ,z
′))`i j (z

′,zj ,z)
]
.

Thus,
|I | ≤ 3MED,z,z′

[∣
∣`i j (z,zj ,z)− `(z)

∣
∣
]
. (32)

Next we rewriteJ as

ED [`(zi)`(zj)]−ED,z[`(z)`(zi)] = ED,z,z′
[
`i j (z,z

′,z)`i j (z,z
′,z′)− `(z)`(zi)

]

where we renamedzj asz′ andzi asz in the first term. We have also

J = ED,z,z′
[
`i j (z,z

′,z)`i j (z,z
′,z′)− `i j (z

′,zi ,z)`i j (z
′,zi ,z

′)
]

where we renamedzi asz′ andzj aszi in the second term. Using Equation 31, we have

J ≤ ED,z,z′
[
`i j (z,z

′,z)`i j (z,z
′,z′)− `i j (zi ,z

′,z)`i j (z
′,zi ,z

′)
]

︸ ︷︷ ︸

J1

+3M
(
ED,z

[∣
∣`i j (z,zj ,zi)− `(zi)

∣
∣
]

+ED,z
[∣
∣`i j (zi ,z,zj)− `(zj)

∣
∣
])

. (33)

Let us focus onJ1, we have

J1 = ED,z,z′
[
(`i j (z,z

′,z′)− `i j (z,zi ,z
′)`i j (z,z

′,z)
]

+ED,z,z′
[
(`i j (z,z

′,z)− `i j (zi ,z
′,z))`i j (z,zi ,z

′)
]

+ED,z,z′
[
(`i j (z,zi ,z

′)− `i j (z
′,zi ,z

′))`i j (zi ,z
′,z)
]

75

ELISSEEFF, EVGENIOU AND PONTIL

and

J1 = ED,z,z′ [(`i j (zi ,zj ,zj)− `i j (zi ,z,zj))`i j (zi ,zj ,zi)]

+ED,z,z′ [(`i j (zi ,zj ,zi)− `i j (z,zj ,zi))`i j (zi ,z,zj)]

+ED,z,z′ [(`i j (z,zj ,zi)− `i j (zi ,zj ,zi))`i j (zj ,zi ,z)]

where we replacedz by zi , zi by zandz′ by zj in the first term, andz by zi andz′ by zj andzi by z in
the second term and, in the last term, we renamedz′ by zi andzi by zj . Thus,

|J1| ≤ 2MED,z
[∣
∣`i j (z,zj ,zi)− `(zi)

∣
∣
]
+MED,z,z′

[∣
∣`i j (zi ,z,zj)− `(zj)

∣
∣
]
. (34)

Summing Equation (32) with the inequality onJ derived from Equations (34) and (33), we obtain

I +J ≤ 8MED,z
[∣
∣`i j (z,zj ,zi)− `(zi)

∣
∣
]
+4MED,z

[∣
∣`i j (zi ,z,zj)− `(zj)

∣
∣
]
.

To boundI +J, we can swap the role ofi and j (note thati and j are under a sum and that we can
permute the role ofi and j in this sum without changing anything). In that case, we obtain

I +J ≤ 4MED,z
[∣
∣`i j (z,zj ,zi)− `(zi)

∣
∣
]
+8MED,z

[∣
∣`i j (zi ,z,zj)− `(zj)

∣
∣
]
.

Averaging over this bound and the previous one, we finally obtain

I +J ≤ 6M
(
ED,z

[∣
∣`i j (z,zj ,zi)− `(zi)

∣
∣
]

+ED,z
[∣
∣`i j (zi ,z,zj)− `(zj)

∣
∣
])

.

The above concludes the proof of the bound for the empirical error (Lemma 3.2).
The bound for the leave-one-out error (Lemma 3.1) can be obtained in a similar way. Indeed,

we notice that if we rewrite the derivation for the empirical error, we simply have to remove from
the training set the point at which the loss is computed. That is, we simply have toreplace all the
quantities of the form̀ i j (z,z′,z) by `i j (/0,z′,z). It is easy to see that the above results are modified
in a way that gives the correct bound for the leave-one-out error.

Appendix B. Proof of Theorem 3.4

Proof We first prove Equation (17) and then show how to derive Equation (19). Both proofs are
very similar except for some calculations.

Let K(D, r) = Rgen(fD,r)−Remp(fD,r) the random variable which we would like to bound. For
this purpose, we first show thatK is close to its expectation w.r.t.r and then show how this average
algorithm is controlled by its stability.

For everyr ,s∈ R T , andT ∈ N, we have

|K(D, r)−K(D,s)| =

=

∣
∣
∣
∣
∣
Ez
[
`(fD,r ,z)− `(fD,s,z)

]
− 1

m

m

∑
i=1

(
`(fD,r ,zi)− `(fD,s,zi)

)

∣
∣
∣
∣
∣

≤ Ez
[∣
∣`(fD,r ,z)− `(fD,s,z)

∣
∣
]
+

1
m

m

∑
i=1

∣
∣`(fD,r ,zi)− `(fD,s,zi)

∣
∣ .

76

STABILITY OF RANDOMIZED LEARNING ALGORITHMS

Thus, using the definition ofρ, this equation implies (whenr ands differ only in one of theT
coordinates) that

sup
r1,...,rT ,r ′t

∣
∣K(D, r1, . . . , rT)−K(D, r1, . . . , r t−1, r ′t , r t+1, . . . , rT)

∣
∣≤ 2ρ

and applying Theorem 14 we obtain (note thatD is independent ofr)

Pr [K(D, r)−Er [K(D, r)] ≥ ε | D] ≤ exp
{
−ε2/2Tρ2} .

We also have
ED [Pr [K(D, r)−Er K(D, r) ≥ ε]] =

= ED [Pr [K(D, r)−Er K(D, r) ≥ ε | D]] ≤ exp
{
−ε2/2Tρ2} .

Setting the r.h.s. equal toδ and writingε as a function ofδ we have that with probability at least
1−δ w.r.t. the random sampling ofD andr :

K(D, r)−Er K(D, r) ≤
√

2Tρ
√

log(1/δ). (35)

We first bound the expectation ofK(D, r). We defineG(D,z) := Er [`(fD,r ,z)]. We have

ED,r [K(D, r)] = ED

[

Ez

[

G(D,z)− 1
m

m

∑
i=1

G(D,zi)

]]

= ED,z[G(D,z)]− 1
m

m

∑
i=1

ED [G(D,zi)]

(a)

≤ 2βm+ED\i ,z

[

G(D\i ,z)
]

− 1
m

m

∑
i=1

ED

[

G(D\i ,zi)
]

(b)
= 2βm (36)

where(a) is derived from the fact that the algorithm has random uniform stabilityβm, that is,

sup
D,z

∣
∣
∣G(D,z)−G(D\i,z)

∣
∣
∣≤ βm,

and (b) comes fromED

[
G(D\i ,zi)

]
= ED\i ,z

[
G(D\i ,z)

]
(it amounts to changingzi into z). We

would like now to apply Theorem 14 toEr [K(D, r)]. To this aim, we bound (recall thatD i =
D\i ∪z′):

∣
∣Er
[
Er
[
K(D, r)−K(D i, r)

]]∣
∣=

∣
∣
∣
∣
∣
∣
∣
∣

1
m

(
Er
[
`(fD i ,r ,z

′)
]
−Er

[
`(fD,r ,zi)

])

︸ ︷︷ ︸

(a)

+
1
m∑

i6= j

Er [`(fD\i ,r ,zj)]−Er
[
`(fD,r ,zj)

]

︸ ︷︷ ︸

(b)

+
1
m∑

i 6= j

Er
[
`(fD i ,r ,zj)

]
−Er [`(fD\i ,r ,zj)]

︸ ︷︷ ︸

(c)

+Er
[
Ez
[
`(fD,r ,z)− `(fD i ,r ,z)

]]

︸ ︷︷ ︸

(d)

∣
∣
∣
∣
∣
∣
∣
∣

(37)

77

ELISSEEFF, EVGENIOU AND PONTIL

where(a) is bounded byM
m, (b), (c) are bounded byβm and(d) is similarly bounded by 2βm. So

that supD,z′,z

∣
∣Er [K(D, r)]−Er

[
K(D i , r)

]∣
∣≤ M

m +4βm and we derive that

PD [Er [K(D, r)] ≥ ε+2βm] ≤ exp

{

− 2mε2

(M +4mβm)2

}

,

which implies that with probability at least 1−δ w.r.t. the random sampling ofD andr

Er [K(D, r)] ≤ 2βm+
M +4mβm√

2m

√

log(1/δ). (38)

Observe that the inequalities in Equations (35) and (38) hold simultaneously with probability at
least 1−2δ. The result follows by combining those inequalities and settingδ = δ/2.

The proof of Equation (19) follows the same reasoning except that the chain of Equations (36)
and (37) are different. We have

ED,r [K(D, r)] = ED

[

Ez[G(D,z)]− 1
m

m

∑
i=1

G(D\i ,zi)

]

= ED,z[G(D,z)]− 1
m

m

∑
i=1

ED,z

[

G(D\i ,z)
]

≤ βm,

and denotingD\i, j the setD wherezi andzj have been removed, andD i\ j the setD i wherezj has
been removed (forj 6= i),

∣
∣Er [K(D, r)]−Er

[
K(D i , r)

]∣
∣=

∣
∣
∣
∣
∣
∣
∣
∣

1
m

(

Er

[

`(fD\i ,r ,zi)
]

−Er

[

`(fD\i ,r ,z
′)
])

︸ ︷︷ ︸

(a)

+
1
m∑

i6= j

Er

[

`(fD\ j ,r ,zj)
]

−Er

[

`(fD\i, j ,r ,zj)
]

︸ ︷︷ ︸

(b)

+
1
m

m

∑
j 6= j

Er

[

`(fD\i, j ,r ,zj)
]

−Er

[

`(fD i\ j ,r ,zj)
]

︸ ︷︷ ︸

(c)

+Er
[
Ez
[
`(fD,r ,z)− `(fD i ,r ,z)

]]

︸ ︷︷ ︸

(d)

∣
∣
∣
∣
∣
∣
∣
∣

.

Finally, note that(a) is bounded byMm, (b) and(c) are bounded byβm−1 and(d) by 2βm.

References

[1] Andonova, S., Elisseeff, A., Evgeniou, T., and Pontil, M. (2002), “A simple algorithm to learn
stable machines”, Proceedings of the 15th European Conference on Artificial Intelligence
(ECAI) 2002.

[2] Bousquet, O., and Elisseeff, A. (2002), “Stability and generalization”, Journal of Machine
Learning Research, 2:499–526.

78

STABILITY OF RANDOMIZED LEARNING ALGORITHMS

[3] Breiman, L. (1996a), “Bagging predictors”,Machine Learning, 26(2):123–140.

[4] Breiman, L. (1996b), “Heuristics of instability and stabilization in model selection”, Annals
of Statistics, 24(6):2350–2383.

[5] Devroye, L., Gÿorfi, L., and Lugosi, G. (1996),A Probabilistic Theory of Pattern Recognition,
Number 31 in Applications of Mathematics, Springer, New York.

[6] Devroye, L., and Wagner, T. (1979), “Distribution-free performance bounds for potential
function rules”,IEEE Transactions on Information Theory, 25(5):601–604.

[7] Evgeniou, T., Pontil, M., and Elisseeff, A. (2004), “Leave-one-out error, stability, and gener-
alization of voting combinations of classifiers”,Machine Learning, 55:1, 2004 .

[8] Kearns, M., and Ron, D. (1999), “Algorithmic stability and sanity checkbounds for leave-
one-out cross validation bounds”,Neural Computation, 11(6):1427–1453.

[9] Kutin, S., and Niyogi, P. (2002), “Almost-everywhere algorithmic stabilityand generalization
error”, Uncertainty in Artificial Intelligence (UAI), August, 2002, Edmonton, Canada.

[10] McDiarmid, C. (1989), “On the method of bounded differences”, In Survey in Combinatorics,
p. 148–188. Cambridge University Press, Cambridge.

[11] Poggio, T., and Girosi, F. (1990), “Networks for approximation and learning”,Proceedings of
the IEEE, 78 (9).

[12] Poggio, T., Rifkin, R., Mukherjee, S. and Niyogi, P. (2004), “Learning Theory: general
conditions for predictivity”,Nature, Vol. 428, 419-422.

[13] Vapnik, V. (1998),Statistical Learning Theory. Wiley, New York, 1998.

79

Journal of Machine Learning Research 6 (2005) 81–127 Submitted 9/04; Revised 12/04; Published 1/05

Learning Hidden Variable Networks:
The Information Bottleneck Approach

Gal Elidan GALEL@CS.HUJI.AC.IL
Department of Engineering and Computer Science
The Hebrew University
Jerusalem, 91904, Israel

Nir Friedman NIR@CS.HUJI.AC.IL
Department of Engineering and Computer Science
The Hebrew University
Jerusalem, 91904, Israel

Editor: David Maxwell Chickering

Abstract
A central challenge in learning probabilistic graphical models is dealing with domains that involve
hidden variables. The common approach for learning model parameters in such domains is the
expectation maximization(EM) algorithm. This algorithm, however, can easily get trapped in sub-
optimal local maxima. Learning the modelstructureis even more challenging. Thestructural EM
algorithm can adapt the structure in the presence of hidden variables, but usually performs poorly
without prior knowledge about the cardinality and locationof the hidden variables. In this work, we
present a general approach for learning Bayesian networks with hidden variables that overcomes
these problems. The approach builds on theinformation bottleneckframework of Tishby et al.
(1999). We start by proving formal correspondence between the information bottleneck objective
and the standard parametric EM functional. We then use this correspondence to construct a learning
algorithm that combines an information-theoretic smoothing term with a continuation procedure.
Intuitively, the algorithm bypasses local maxima and achieves superior solutions by following a
continuous path from a solution of, an easy and smooth, target function, to a solution of the desired
likelihood function. As we show, our algorithmic frameworkallows learning of the parameters
as well as the structure of a network. In addition, it also allows us to introduce new hidden vari-
ables during model selection and learn their cardinality. We demonstrate the performance of our
procedure on several challenging real-life data sets.

Keywords: Bayesian networks, hidden variables, information bottleneck, continuation, variational
methods

1. Introduction

Probabilistic graphical models have been widely used to model real world domains and are par-
ticularly appealing due to their natural interpretation. Despite extensive research in learning these
models from data (Pearl, 1988; Heckerman, 1998), learning withhidden(or latent) variables has

A preliminary version of this paper appeared in the Proceedings of the Nineteenth Conference on Uncertainty in
Artificial, 2003 (UAI ’03).

c©2005 Gal Elidan and Nir Friedman.

ELIDAN AND FRIEDMAN

remained a central challenge in learning graphical models in general, and Bayesian networks in
particular. Hidden entities play a central role in many real-life problems: an unknown regulating
mechanism can be the key to complex biological systems; correlating symptoms might hint at a hid-
den fundamental problem in a diagnostic system; an intentionally masked economic power might
be the cause of related financial phenomena. Indeed, hidden variablestypically serve as a summa-
rizing mechanism that “captures” information from some of the observed variables and “passes”
this information to some other part the network. As such, hidden variables can simplify the network
structure and consequently lead to better generalization.

When learning the parameters of a Bayesian network with missing values or hidden variables,
the most common approach is to use some variant of theexpectation maximization(EM) algorithm
(Dempster et al., 1977; Lauritzen, 1995). This algorithm performs a greedy search of the likelihood
surface and converges to a local stationary point (usually a local maximum). Unfortunately, in
challenging real-life learning problems, there are many local maxima that can trap EM in a poor
solution. Attempts to address this problem use a variety of strategies (e.g., Glover and Laguna
(1993); Kirkpatrick et al. (1983); Rose (1998); Elidan et al. (2002)). When learning structure, the
structural EM(SEM) algorithm (Friedman, 1997; Meila and Jordan, 1998; Thiesson etal., 1998)
can adapt the network topology. In this approach, as in the classical parametric EM algorithm, we
use the distribution induced by our current model, to probabilisticallycompletethe data. Unlike
parametric EM, we then use the completed data to evaluate different candidatestructures. This
allows us to perform structure improvement steps in theM-Stepof a structural EM iteration. As
in the case of EM, while convergence is guaranteed, the algorithm typically converges to a local
maximum.

An even more challenging problem is that ofmodel selectionwith hidden variables. This in-
volves choosing the number of hidden variables, their cardinalities and the dependencies between
them and the observed entities of the domain. These decisions are crucial toachieve good gen-
eralization. In particular, in hard real-life learning problems, structural EM will perform poorly
unless some prior knowledge of the interaction between the hidden and observed variables exists or
if the cardinality of the hidden variables is not (at least approximately) known. These challenging
problems have received surprisingly little attention.

In this paper, we introduce a new approach to learning Bayesian networks with hidden variables.
We pose the learning problem as an the optimization of a target function that includes a tradeoff
between two information theoretic objectives. The first objective is to compress information about
the training data. Intuitively, this is required when we want to generalize from the training data
to new unseen instances. The second objective is to make the hidden variables informative about
the observed attributes to ensure they preserve therelevantinformation. This objective is directly
related to maximizing the likelihood of the training data. By exploring different relative weightings
of these two objectives, we are able to bypass local maxima and learn better models.

Our approach builds on theinformation bottleneckframework of Tishby et al. (1999) and its
multivariate extension (Friedman et al., 2001). This framework provides methods for constructing
a set of new variablesT that are stochastic functions of one set of variablesY and at the same time
provide information on another set of variablesX. The intuition is that the new variablesT capture
the relevant aspects ofY that are informative aboutX. We show how to pose the learning problem
within the multivariate information bottleneck framework and derive a target Lagrangian for the
hidden variables. We then show that this Lagrangian is an extension of the Lagrangian formulation
of EM of Neal and Hinton (1998), with an additional regularization term. By controlling the strength

82

LEARNING HIDDEN VARIABLE NETWORKS

of this information theoretic regularization term using ascale parameter, we can explore a range of
target functions. On the one end of the spectrum there is a trivial target where compression of the
data is total and all relevant information is lost. On the other extreme is the targetfunction of EM.

This continuum of target functions allow us to learn using a procedure motivated by thedeter-
ministic annealingapproach (Rose, 1998). We start with the optimum of the trivial target function
and slowly change the scale parameter while tracking the local optimum solution at each step on
the way. To do so, we present an alternative view of the optimization problem inthe joint space of
the model parameters and the scale parameter. This provides an appealing method for scanning the
range of solutions as inhomotopy continuation(Watson, 2000).

We generalize ourinformation bottleneck expectation maximization(IB-EM) framework for
multiple hidden variables and any Bayesian network structure. To make learning feasible for large,
real-life problems we show how to introduce variational approximation assumptions into the frame-
work. We further show that, similarly to the case of standard parametric EM, there is a formal
relation between the information bottleneck objective in this case and thevariational EM func-
tional (Jordan et al., 1998).

We then extend the approach to deal with structure learning. As we show, we can easily in-
corporate our method into the structural EM framework to deal withmodel selectionwith hidden
variables. In doing so, we perform continuation interleaved with model selection steps that change
the structure and the scope of the model. On top of standard structure modification steps of adding
and removing edges, we introduce two model enrichment operators that take advantage of emergent
information cues during the continuation process. The first operator canadapt the cardinality of a
hidden variable. Specifically, the cardinality of a hidden variable can increase during the contin-
uation process, increasing the likelihood as long as it is beneficial to do so.The second operator
introduces new hidden variables into the network structure. Intuitively, a hidden variable is intro-
duced as a parent of a subset of nodes whose interactions are poorlyexplained by the current model.

We demonstrate the effectiveness of our information bottleneck EM algorithmin several learn-
ing scenarios. First, we learn parameters in general Bayesian networksfor several challenging
real-life data sets and show significant improvement in generalization performance on held-out test
data. Second, we demonstrate the importance of cardinality adaptation for good generalization. We
then show how our operator for enriching the network structure with new hidden variables leads to
significantly superior models, for several complex real-life problems. Finally, we show that com-
bining both structure enrichment and cardinality adaptation results in furtherimprovement of test
performance.

The paper is organized as follows. In Section 2, we give a short background on learning
Bayesian networks and on theMultivariate information bottleneckof Friedman et al. (2001). In
Section 3, we present the basic framework of our IB-EM algorithm. In Section 4, we show how
to combine this algorithm with continuation to bypass local maxima. In Section 5 we extend the
framework to multiple hidden variables. In Section 6, we demonstrate the method for parameter
learning in real-life scenarios. In Section 7, we show how our method can be combined with the
structural EM algorithm to learn the structure of a network with hidden variables. In Section 8,
we take advantage of emergent structure during the continuation process, and present a method for
learning the cardinality of the hidden variables. We apply this method to real-lifedata in Section 9.
In Section 10, we address the model selection challenge of learning new hidden variables. We
present experimental evaluation for several real-life problems in Section11. In Section 12, we give

83

ELIDAN AND FRIEDMAN

a brief overview of relevant works, and in Section Section 13 we end with adiscussion and future
directions.

2. Background

In this section we briefly present the basics of learning Bayesian networks from data followed by the
essentials of themultivariate information bottleneckframework that forms the basis of our approach.

2.1 Bayesian Networks

Consider a finite setX = {X1, . . . ,Xn} of random variables, where each variableXi may take on
values from a finite set, denoted byVal(Xi). We use capital letter such asX,Y,Z for variable names
and lower case letters such asx,y,z to denote specific values taken by those variables. We use bold
letters such asX,Y,Z when referring to sets of variables. ABayesian network(Pearl, 1988) is
an annotated directed acyclic graph that encodes a joint probability distribution overX . Formally,
a Bayesian network overX is a pairB = 〈G ,Θ〉. The first component,G , is a directed acyclic
graph whose vertices correspond to the random variables inX . The edges in the graph represent
direct dependencies between the variables. The graphG represents independence properties that are
assumed to hold in the underlying distribution: EachXi is independent of its non-descendants given
its parentsPai denoted by(Xi ⊥ NonDescendantsi | Pai). The second component,Θ, represent the
set of parameters that quantify the network. Each node is annotated with aconditional probability
distribution P(Xi | Pai), representing the conditional probability of the nodeXi given its parents in
G , defined by the parametersθxi |pai

for each value ofXi andPai . A Bayesian network defines a
unique joint probability distribution overX given by

P(X1, . . . ,Xn) =
n

∏
i=1

P(Xi | Pai).

In this distribution, a variableXi is independent of the rest of the variables given itsMarkov blanket
variables. These include the variable’s parents, direct children and theparents of those children
(spouses).

Given a network structureG , the problem of learning a Bayesian network can be stated as fol-
lows: Given a training setD = {x[1], . . . ,x[M]} of instances ofX ⊂ X , we want to learn parameters
for the network. In theMaximum Likelihoodsetting we want to find the parameter valuesθ that
maximize the log-likelihood function

logP(D | G ,θ) = ∑
m

logP(x[m] | G ,θ).

This function can be equivalently (up to a multiplicative constant) written asIEP̂[logP(X | G ,θ)]
whereP̂ is the empirical distribution inD. When all instances inD are complete, estimating the
maximum likelihoodparameters can be done efficiently using a closed form solution. This involves
empirical sufficient statistics in the form of joint counts

N(xi ,pai) = ∑
m

1{Xi [m] = xi ,Pai [m] = pai}, (1)

where 1{} is the indicator function. When learning multinomial conditional parameterization,using
Dirichlet priors (DeGroot, 1970) amounts to augmenting the empirical counts with pseudo-counts

84

LEARNING HIDDEN VARIABLE NETWORKS

α(xi ,pai).
1 These can thought of as adding imaginary instances that are distributed according to a

certain distribution (e.g., uniform) to the training data (Heckerman, 1998). Consequently, from this
point on we view priors as modifying the empirical distributionP̂ with additional instances, and
then apply the maximum likelihood principle.

When learning with hidden variables, the problem is more complex. Since we observe only
partial instances, learning also involves “guessing” the values of the hidden variables. In theexpec-
tation maximization(EM) algorithm (Dempster et al., 1977; Lauritzen, 1995) and its variants (Neal
and Hinton, 1998), this issue is addressed by using an auxiliary distributionQ that provides a proxy
for the empirical distribution. In the M-step of EM we estimate parameters as though this was the
true empirical distribution. In the E-step, we use the data and the current model to optimize the
auxiliary distribution over the hidden values resulting in acompletedempirical distribution. Each of
these steps is simpler than the original problem and is guaranteed not to decrease the likelihood. Un-
fortunately, EM iterations are prone to getting trapped at local maxima, since each step is biased by
the choices made by the previous ones. Attempts to address this problem use avariety of strategies
(e.g., Glover and Laguna (1993); Kirkpatrick et al. (1983); Rose (1998); Elidan et al. (2002)).

Learning the structure of a network poses additional challenges as the number of possible struc-
tures is super-exponential. In practice, structure learning is typically done using a local search
procedure, which examines local structure changes that are easily evaluated (add, delete or reverse
an edge). This search is usually guided by a scoring function such as theMDL principle based
score (Lam and Bacchus, 1994) or theBayesian score(BDe) (Heckerman et al., 1995). Both scores
penalize the likelihood of the data to limit the model complexity. An important characteristic of
these scoring functions is that when the data instances are complete (that is,each training instance
assigns values to all of the variables) the score isdecomposable. More precisely, the score can be
rewritten as the sum

Score(G : D) = ∑
i

FamScoreXi (Pai : D),

where FamScoreXi is thelocal contribution ofXi to the total network score. This term depends only
on values ofXi andPaXi in the training instances. In particular, the BDe score is defined as

ScoreBDe(G : D) = ∑
i

∑
pai

(
log

Γ(α(pai))

Γ(N(pai)+α(pai))
+∑

xi

log
Γ(N(xi ,pai)+α(xi ,pai))

Γ(α(xi ,pai))

)
, (2)

whereΓ is the Gamma function that generalizes the factorial function for real numbers, the terms
α() are hyper-parameters of the prior distributions over the parameterizationsand the termsN() are
the corresponding empiricalsufficient statistics.

In the presence of incomplete data or hidden variables, the structural EM framework (Fried-
man, 1997; Meila and Jordan, 1998; Thiesson et al., 1998) can adapt the network structure. In this
approach, as in classicalparametricEM, we use the distribution induced by our current model to
probabilistically complete the data. Unlike parametric EM, we then use the completeddata to eval-
uate different candidate structures, and perform structure improvement steps in theM-stepof the
structural EM iteration. As in the case of EM, convergence is guaranteed, albeit to a local maxi-
mum. Scoring candidate structures in this scenario is more complex, and computation of the score is
typically intractable. Thus, we need to resort to approximations such as theCheeseman-Stutz(CS)

1The use of pseudo-counts is slightly different depending on whether wedo MAP or Bayesian estimation and depends
on the representation used (see (Thiesson, 1997) for more details).

85

ELIDAN AND FRIEDMAN

score (Cheeseman et al., 1988; Chickering and Heckerman, 1997), which combines the likelihoods
of the parameters found by EM, with an estimate of the penalty term associated withstructure.

2.2 Multivariate Information Bottleneck

The information bottleneckmethod (Tishby et al., 1999) is a general non-parametric information-
theoretic clustering framework. Given a joint distributionQ(Y,X) of two variables, it attempts to
extract the relevant information thatY contains aboutX. We can think of such information extraction
as partitioning the possible values ofY into coarser distinctions that are still informative aboutX.
(The actual details are more complex, as we shall see shortly). For example, we might want to
partition the words (Y) appearing in several documents in a way that is most relevant to the topics
(X) of these documents.

To achieve this goal, we first need a relevance measure between two random variablesX andY
with respect to some probability distributionQ(X,Y). The symmetricmutual informationmeasure
(Cover and Thomas, 1991)

IIQ(X;Y) = ∑
x,y

Q(x,y) log
Q(x,y)

Q(x)Q(y)

is a natural choice as it measures the average number of bits needed to convey the informationX
contains aboutY and vice versa. It is bounded from below by zero when the variables are indepen-
dent, and attains its maximum when one variable is a deterministic function of the other.

The next step is to introduce a new variableT. This variable provides thebottleneckrelation
betweenX andY. In our words and documents example, we wantT to maintain the distinctions
between words (Y) that provide information for determining the topic of a document (X). For
example, the words ’music’ and ’lyrics’ typically occur together and are typical of the same topic,
and thus the distinction between them does not contribute to the prediction of thetopic. At the
same time, we wantT to distinguish between ’music’ and ’politics’ as they correlate with markedly
different topics. Formally, we defineT using a stochastic functionQ(T | Y). On the one hand we
wantT to compressY, while on the other hand we want it to preserve information that is relevant
to X. Using the mutual information defined above, a balance between these two competing goals is
achieved by minimization of the Lagrangian

L [Q] = IIQ(Y;T)−βIIQ(T;X), (3)

where the parameterβ controls the tradeoff. Tishby et al. (1999) show that the optimal partition for
a given value ofβ satisfies

Q(t | y) =
Q(t)

Z(y,β)
exp{−βID(Q(X | y)||Q(X | t))} ,

where

ID(P(X)||Q(X)) = ∑
x

P(x) log
P(x)

Q(x)

is the Kulback Leibler divergence between the distributionsP andQ over the set of random variables
X (Cover and Thomas, 1991). Repeated iterations of these equations for all t andy converge to a
(local) maximum where all equations are satisfied. Practical application of thisapproach for various
clustering problems was demonstrated in several works (e.g., (Slonim and Tishby, 2000, 2001)).

86

LEARNING HIDDEN VARIABLE NETWORKS

Y

T

X1 XnY

T

X1 XnX1 Xn

Gin = Q Gout = P

T

X1 XnX1 Xn Y

Figure 1: Definition ofGin andGout for the multivariate information bottleneck framework.Gin

encodes the distributionQ that compressesY. Gout encodes the distributionP that we
want to approximate usingQ.

The multivariate extension of this framework (Friedman et al., 2001) allows usto consider the
interactions of multiple observed variables using several bottleneck variables. For example, we
might want to compress words (Y) in a way that preserves information both on the topic of the
document (X1) and on the author of that document (X2). In addition, there probably is a strong
correlation between the author and the topics he writes about. Evidently, the number of possible
interactions may be large, and so the framework allows us to specify the interactions we desire.
These interactions are represented via two Bayesian networks. The first, calledGin, represents the
required compression, and the second, calledGout, represents the independencies that we are striving
for between the bottleneck variables and the target variables. In Figure 1, Gin specifies thatT is a
stochastic function of its parent in the graphY. Gout specifies that we wantT to makeY and the
variablesXi ’s independent of each other.

Formally, the framework of Friedman et al. (2001), attempts to minimize the Lagrangian

L (1)[Gin,Gout] = I Gin −βI Gout,

where
I G = ∑

i

II (Xi ;PaG
i)

and the information is computed with respect to the probability distribution represented by the net-
work G . This objective is a direct generalization of Eq. (3), and as before, tractable self-consistent
equations characterize the optimal partitioning. Note that, as in the basic information bottleneck
formulation, the two objective of the above Lagrangian are competing. On theone hand we want to
compress the information between all bottleneck variablesT and their parents inGin. On the other
hand we want to preserve, or maximize, the information between the variablesand their parents in
Gout.

Friedman et al. (2001) also present an analogous variational principalthat will be useful in our
framework. Briefly, the problem is reformulated as a tradeoff between compression of mutual in-
formation inGin so that the bottleneck variable(s)T help us describe a joint distribution that follows
that form of a target Bayesian networkGout. Formally, they attempt to minimize the following
objective function

L (2)[Q,P] = IIQ(Y;T)+ γID(Q(Y,T,X)||P(Y,T,X)), (4)

87

ELIDAN AND FRIEDMAN

whereQ and P are joint probabilities that can be represented by the networks ofGin and Gout,
respectively. The two principals are analogous under the transformationβ = γ

1+γ and assuming

I Gin = IIQ(Y;T). See Friedman et al. (2001) for more details of the relation between the two princi-
pals.

The minimization of the above Lagrangian is over possible parameterizations ofQ(T |Y) (the
marginalQ(Y,X) is given and fixed) and over possible parameterizations ofP(Y,T,X) that can be
represented byGout. In other words, we want to compressY in such a way that the distribution
defined byGin is as close as possible to desired distribution ofGout. The analogous principal gives
us a new view on why these two objectives are conflicting: Consider a distribution that is consistent
with Gin so thatT is independent ofX givenY. On the other hand, a distribution consistent with a
specific choice ofGout may require thatX is independent ofY givenT. Constructing a distribution
where both of these requirements actually hold is not useful, may results inT that is equal to either
X or Y, making this bottleneck variable redundant.

The scale parameterγ balances the above two factors. Whenγ is zero we are only interested in
compressing the variableY and we resort to the trivial solution of a single cluster (or an equivalent
parameterization). Whenγ is high we concentrate on choosingQ(T |Y) that is close to a distribution
satisfying the independencies encoded byGout. Returning to our word-document example. We
might be willing to forgo the distinction between ’football’ and ’baseball’ in which case we would
setγ to a relatively low value. On the other hand, we might even want to make a minute distinction
between ’Pentium’ and ’Celeron’ in which case we would setγ to a high value. Obviously, there is
no single correct value ofγ but rather a range of possible tradeoffs. Accordingly, several approaches
were devised to explore the spectrum of solutions asγ varies. These include Deterministic annealing
like approaches that start with small value ofγ and progressively increase it (Friedman et al., 2001),
as well as agglomerative approaches that start with a highly refined solution and gradually compress
it (Slonim and Tishby, 2000, 2001; Slonim et al., 2002).

3. Information Bottleneck Expectation Maximization

The main focus of the multivariate information bottleneck (see is on distributionQ(T | Y) that
is a local maxima solution of the Lagrangian This distribution can be thought of as a soft clus-
tering of the original data. Our emphasis in this work is somewhat different. Given a data set
D = {x[1], . . . ,x[M]} over the observed variablesX, we are interested in learning a better genera-
tive model describing the distribution of the observed attributesX. That is, we want to give high
probability to new data instances from the same source. In the learned network, the hidden variables
will serve to summarize some part of the data while retaining the relevant information on (some) of
the observed variablesX.

We start by extending the multivariate information bottleneck framework for thetask of gener-
alization where, in addition to the task of clustering, we are also interested in learning the generative
modelP. We emphasize that this is a conceptually different task. In particular, the common view
of the information bottleneck framework is as a non-parametric information-theoretic method for
clustering (the obvious exception is the work of Slonim and Weiss (2002) mentioned below). In
generative learning, on the other hand, we are interested in modeling the distribution. That is, we
are ultimately interested inparameterizinga specific model so that our generalization prediction on
unseen future instances is improved. We start by considering this task forthe case of a single hidden
variableT and then, in Section 5, extend the framework to several hidden variables.

88

LEARNING HIDDEN VARIABLE NETWORKS

3.1 The Information Bottleneck EM Lagrangian

If we were only interested in thetraining data and the cardinality of the hidden variable allows
it, each state of the hidden variable would have been assigned to a different instance. Consider,
for example, a variableT with |T| states that defines a soft clustering on the specific identity of
words (Y) appearing in documents while preserving the information relevant to the topic(X) of
these documents. Now suppose we are given a set of instancesD = {word[i], topic[i]} where i
goes from 1 toM, the number of instances. If|T| = M then we could simply deterministically set
Q(T = i |word[i]) = 1 and then predicttopic[i] perfectly. While this model achieves perfect training
performance, it will clearly have no generalization abilities. Since we are also interested in unknown
future samples, we intuitively require that the learned model “forget” the specifics of the training
examples. However, in doing so we will also deteriorate the (previously deterministic) prediction of
the observed variables. Thus, there is a tradeoff between the compression of the identity of specific
instances and the preservation of the information relevant to the observedvariables.

We now formalize this idea for the task of learning a generative model over the variablesX and
the hidden variableT. We define an additional variableY to be the instance identity in the training
dataD. That is,Y takes values in{1, . . . ,M} andY[m] = m. We defineQ(Y,X) to be the empirical
distribution of the variablesX in the data, augmented with the distribution of the new variableY.
For each instancey, x[y] are the valuesX take in the specific instance. We now apply the information
bottleneck framework with the graphGin of Figure 1. The choice of the graphGout depends on the
network model that we want to learn. We take it to be the target Bayesian network, augmented by
the additional variableY, where we setT asY’s parent. For simplicity, we consider as a running
example the simple clustering model ofGout whereT is the parent ofX1, . . . ,Xn. In practice, and
as we show in Section 6 any choice ofGout can be used. We now want to optimize the Bottleneck
objective as defined by these two networks. This will attempt to define a conditional probability
Q(T |Y) so thatQ(T,Y,X) = Q(T |Y)Q(Y,X) can be approximated by a distribution that factorizes
according toGout. This construction will aim to findT that captures the relevant information the
instance identity has about the observed attributes. The following proposition concretely defines the
objective function for the particular choice ofGin andGout we are dealing with.

Proposition 1
Let

1. Y be the instance identity as defined above;

2. Gin be a Bayesian network structure such that such that T is independent ofX given Y; and

3. Gout be a Bayesian network structure such that Y is a leaf with T as its only parent.

Then, minimizing the information bottleneck objective function in Eq. (4) is equivalent to minimizing
the Lagrangian

LEM = IIQ(T;Y)− γ(IEQ[logP(X,T)]− IEQ[logQ(T)]) ,

as a function of Q(T |Y) and P(X,T).

Note that once the above conditions are satisfied, we can still arbitrarily choose the structure of
Gout, which encodes independencies of the distributionP we ultimately wish to learn.

89

ELIDAN AND FRIEDMAN

Proof: Using the chain rule and the fact thatY andX are independent givenT in Gout), we can
write P(Y,X,T) = P(Y | T)P(X,T). Similarly, using the chain rule and the fact thatX andT are
independent givenY in Gin, we can writeQ(Y,X,T) = Q(Y | T)Q(T)Q(X |Y). Thus,

ID(Q(Y,X,T)||P(Y,X,T)) = IEQ

[
log

Q(Y | T)Q(T)Q(X |Y)

P(Y | T)P(X,T)

]

= ID(Q(Y | T)||P(Y | T))

+ IEQ[logQ(X |Y)]

+ IEQ[logQ(T)]

− IEQ[logP(X,T)].

By settingP(Y | T) = Q(Y | T), the first term reaches zero, its minimal value. The second term is
a constant since we cannot change the input distributionQ(X |Y). Thus, we need to minimize the
last two terms and the result follows immediately.

An immediate question is how this target function relates to standard maximum likelihood learn-
ing. To explore the connection, we use a formulation of EM introduced by Neal and Hinton (1998).
Although EM is usually thought of in terms of changing the parameters of the target functionP,
Neal and Hinton show how to view it as a dual optimization ofP and an auxiliary distributionQ.
This auxiliary distribution replaces the given empirical distributionQ(X) with a completed empir-
ical distributionQ(X,T). Using our notation in the above discussion, we can write the functional
defined by Neal and Hinton as

F [Q,P] = IEQ[logP(X,T)]+ IHQ(T |Y), (5)

whereIHQ(T |Y) = IEQ[− logQ(T |Y)], andQ(X,Y) is fixed to be the observed empirical distribu-
tion.

Theorem 2 (Neal and Hinton, 1998)If (Q∗,P∗) is a stationary point ofF , then P∗ is a stationary
point of the log-likelihood functionIEQ[logP(X)].

Moreover, Neal and Hinton show that an EM iteration corresponds to maximizing F [Q,P] with
respect toQ(T | Y) while holdingP fixed, and then maximizingF [Q,P] with respect toP while
holdingQ(T |Y) fixed. The form ofF [Q,P] is quite similar to the IB-EM Lagrangian, and indeed
we can relate the two.

Theorem 3 LEM = (1− γ)IIQ(T;Y)− γF [Q,P] .

Proof: Plugging the identityIHQ(T |Y) = −IEQ[logQ(T)]− IIQ(T;Y) into the EM functional we
can write

F [Q,P] = IEQ[logP(X,T)]− IEQ[logQ(T)]− IIQ(T;Y).

If we now multiply this byγ, and re-arrange terms, we get the form of Proposition 1.

As a consequence,minimizingthe IB-EM Lagrangian is equivalent tomaximizingthe EM func-
tional combined with an information theoretic regularization term. Whenγ = 1, the solutions of

90

LEARNING HIDDEN VARIABLE NETWORKS

the Lagrangian and the EM functional coincide and finding a local minimum ofLEM is equivalent
to finding a local maximum of the likelihood function. Slonim and Weiss (2002) provide a similar
result for the specific case where the generative model is a mixture model of a univariateX. Their
formulation is different than ours in several subtle details that do not allow adirect relation between
the two methods. Nonetheless, both Slonim and Weiss (2002) and Theorem 3show that for a par-
ticular value ofγ, the information bottleneck Lagrangian coincides with the likelihood objective of
EM. The main difference between the two results is the choice of generativemodels, in our case
general multi-variate Bayesian networks, and in the case of Slonim and Weiss (2002), univariate
mixture models.

3.2 The Information Bottleneck EM Algorithm

Using the above results, we can now describe theInformation Bottleneck EMalgorithm given a
specific value ofγ. The algorithm can be described similarly to the EM iterations of Neal and
Hinton (1998).

• E-step: Maximize−LEM by varyingQ(T |Y) while holdingP fixed.

• M-step: Maximize−LEM by varyingP while holdingQ fixed.

Note that the algorithm is formulated in terms of maximizing−LEM rather than minimizingLEM to
enhance the relation between the Lagrangian and the EM objective.

The M-Step is essentially the standard maximum likelihood optimization of Bayesian networks.
To see that, note that the only term that involvesP is IEQ[logP(X,T)]. This term has the form of a
log-likelihood function, whereQ plays the role of the empirical distribution. Since the distribution
is over all the variables, we can use sufficient statistics ofP for efficient estimates, just as in the case
of complete data. Thus, theM step consists of computing expected sufficient statistics givenQ, and
then using a closed form formula for choosing the parameters ofP.

The E-step is a bit more involved. We need to maximize with respect toQ(T |Y). To do this we
use the following two results that are variants of Theorem 7.1 and Theorem8.1 of Friedman et al.
(2001) and proved using similar techniques (see Appendix A for the full proof).

Proposition 4 Let LEM be defined viaGin and Gout as in Proposition 1. Q(T | Y) is a stationary
point of LEM with respect to a fixed choice of P if and only if for all values t and y of T andY,
respectively,

Q(t | y) =
1

Z(y,γ)
Q(t)1−γP(x[y], t])γ, (6)

where Z(y,γ) is a normalizing constant:

Z(y,γ) = ∑
t ′

Q(t ′)1−γP(x[y], t ′])γ.

Note that, as can be expected from Theorem 3, whenγ = 1 the update equation reduces toQ(t | y) ∝
P(x[y], t) which is equivalent to the standard EM update equation.

Proposition 5 A stationary point ofLEM is achieved by iteratively applying the self-consistent equa-
tions of Proposition 4.

91

ELIDAN AND FRIEDMAN

Combining this result with the result of Neal and Hinton that show that optimizationof P increases
F(P,Q), we conclude that both the E-step and the M-step increase−LEM until we reach a stationary
point. As in standard EM, in most cases the stationary convergence point reached by applying these
self-consistent equations will be a local maximum of−LEM, or a local minimum ofLEM.

4. Bypassing Local Maxima using Continuation

As discussed in the previous section, the parameterγ balances between compression of the data
and the fit of parameters toGout. When γ is close to 0, our only objective is compressing the
data and the effective dimensionality ofT will be 1, leading to a trivial solution (or an equivalent
parameterization). At larger values ofγ we pay more and more attention to the distribution ofGout,
and we can expect additional states ofT to be utilized. Ultimately, we can expect each sample to
be assigned to a different cluster (if the dimensionality ofT allows it), in which case there is no
compression ofY and the information about theXs is fully preserved. Theorem 3 also tells us that
at the limit of γ = 1 our solution will actually converge to one of the standard EM solutions. In
this section we show how to utilize the inherent tradeoff determined byγ to bypass local maxima
towards a better solution atγ = 1.

Naively, we could allow a large cardinality for the hidden variable, setγ to a high value and find
the solution of the bottleneck problem. There are several drawbacks to thisapproach. First, we will
typically converge to a sub-optimal solution for the given cardinality andγ, all the more so forγ = 1
where there are many such maxima. Second, we often do not know the cardinality that should be
assigned to the hidden variable. If we use a cardinality forT that is too large, learning will be less
robust and might become intractable. IfT has too low a dimensionality, we will not fully utilize
the potential of the hidden variable. We would like to somehow identify the beneficial number of
clusters without having to simply try many options.

To cope with this task, we adopt thedeterministic annealingstrategy (Rose, 1998). In this
strategy, we start withγ = 0 where a single cluster solution is optimal and compression is total.
We then progress toward higher values ofγ. This gradually introduces additional structure into the
learned model. Intuitively, the algorithm starts at a place where a single, easy to compute solution
exists, and tracks it through various stages of progressively complex solutions hopefully bypassing
local maxima by staying close to the optimal solution at each value ofγ. There are several ways of
executing this general strategy. The common approach is simply to increaseγ in fixed steps, and
after each increment apply the iterative algorithm to re-attain a (local) maxima withthe new value
of γ. On the problems we examine in Section 6, this naive approach did not provesuccessful.

Instead, we use a more refined approach that utilizescontinuation methodsfor executing the
annealing strategy. This approach automatically tunes the magnitude of changes in the value ofγ,
and also tracks the solution from one iteration to the next. To perform continuation, we view the
optimization problem in the joint space of the parameters andγ. In this space we want to follow a
smooth path from the trivial solution atγ = 0 to a solution atγ = 1. Furthermore, we would like this
path to follow a local maximum ofLEM. As was shown above, this is equivalent to requiring that the
fixed point equations hold at all points along the path. Continuation theory (Watson, 2000) guaran-
tees that, excluding degenerate cases, such a path, free of discontinuities, indeed exists. Figure 2
shows a synthetic illustration of the setup. (a) shows the likelihood function ofthe two extremes of
the easy solution atγ = 0 and the EM function atγ = 1 in the joint(γ,Q)-space. (b) shows the range
of solutions between these extremes and marks the desired path we would like tofollow.

92

LEARNING HIDDEN VARIABLE NETWORKS

0

1

L
E

M

γγγγ
Q

easy

EM

L
E

M

γγγγ
Q

0

1

∇∇∇∇G

γγ γγ

Q

0

1

∆∆∆∆

(a) (b) (c)

Figure 2: Synthetic illustration of the continuation process. (a) shows the easy likelihood function
at γ = 0 and the complex EM function atγ = 1. (b) spans the full range of functions and
marks the desired path for following the maximum. (c) demonstrates a single step inthe
continuation process. The gradient∇Q,γG is computed and then the orthogonal direction
is taken.

We start by characterizing such paths. Note that once we fix the parametersQ(T |Y), the M-step
maximization of the parameters inP is fully determined as a function ofQ. Thus, we takeQ(T |Y)
andγ as the only free parameters in our problem. As we have shown in Proposition4, when the
gradient of the Lagrangian is zero, Eq. (6) holds for each value oft andy. Thus, we want to consider
paths where all of these equations hold. Rearranging terms and taking a logof Eq. (6) we define

Gt,y(Q,γ) = − logQ(t | y)+(1− γ) logQ(t)+ γ logP(x[y],y)− logZ(y,γ). (7)

Clearly, Gt,y(Q,γ) = 0 exactly when Eq. (6) holds for allt andy. Our goal is then to follow an
equi-potential path where allGt,y(Q,γ) functions are zero starting from some small value ofγ up to
the desired EM solution atγ = 1.

Suppose we are at a point(Q0,γ0), whereGt,y(Q0,γ0) = 0 for all t andy. We want to move in a
direction∆ = (dQ,dγ) so that(Q0 +dQ,γ0 +dγ) also satisfies the fixed point equations. To do so,
we want to find a direction∆, so that

∀t,y, ∇Q,γGt,y(Q0,γ0) ·∆ = 0, (8)

where∇Q,γGt,y(Q0,γ0) is the gradient ofGt,y(Q0,γ0) with respect to the parametersQ andγ. Com-
puting these derivatives with respect to each of the parameters results in aderivative matrix

Ht,y(Q,γ) =
(

∂Gt,y(Q,γ))
∂Q(t|y)

∂Gt,y(Q,γ)
∂γ

)
. (9)

Rows of the matrix correspond to each of theL = |T|× |Y| functions of Eq. (7), corresponding to
joint combinations of the|T| states of the bottleneck variableT and the|Y|= M number of possible
values of the instance identity variableY. The columns correspond to theL parameters ofQ as well
asγ. The entries correspond to the partial derivative of the function associated with the row with
respect to the parameter associated with the column.

93

ELIDAN AND FRIEDMAN

To find a direction∆ that satisfies Eq. (8) we need to satisfy the matrix equation

Ht,y(Q0,γ0)∆ = 0. (10)

In other words, we are trying to find a vector in the null-space ofHt,y(Q0,γ0)(Q0,γ0). The matrixH
is anL× (L+1) matrix and its null-space is defined by the intersection ofL tangent planes, and is
of dimensionL+1−Rank(Ht,y(Q,γ)). Numerically, excluding measure zero cases (Watson, 2000),
we expect Rank(Ht,y(Q0,γ0)) to be full, i.e., L. Thus, a unique line that (up to scaling) defines the
null space, and we can choose any vector along it. To follow the path to ourtarget objective at
γ = 1 we choose the direction that always increasesγ (we discuss the choice of the length of this
vector below). Returning to Figure 2, (c) illustrates this process. Shown isjoint (γ,Q)-space with
the grey-level denoting the value of the likelihood function. At each point inthe learning process
the gradient ofG is evaluated and the orthogonal direction is taken to follow the desired path.

Finding this direction, however, can be costly. Notice thatHt,y(Q,γ) is of sizeL(L + 1). This
number is quadratic in the training set size, and full computation of the matrix is impractical even
for small data sets. Instead, we resort to approximatingHt,y(Q,γ) by a matrix that contains only

the diagonal entries∂Gt,y(Q,γ)
∂Q(t|y) and the last column∂Gt,y(Q,γ)

∂γ . While we cannot bound the extent of
this diagonal approximation, we note that the diagonal terms are also the most significant ones and
many off diagonal terms are zero. Once we make the approximation, we can solve Eq. (10) in time
linear in L. (See Appendix B for a full development ofH and the computation of the orthogonal
direction.)

Note that once we find a vector∆ that satisfies Eq. (10), we still need to decide on its length,
or the size of the step we want to take in that direction. There are various standard approaches,
such as normalizing the direction vector to a predetermined size. However, inour problem, we have
a natural measure of progress that stems from the tradeoff defined by the target LagrangianLEM ,
whereII (T;Y) increases whenT captures more and more information about the samples during the
annealing procedure. That is, the “interesting” steps in the learning process occur whenII (T;Y)
grows. These are exactly the points where the balance between the two termsin the Lagrangian
changes and the second term grows sufficiently to allow the first term to increaseII (T;Y). Using
II (T;Y) to gauge the progress of the annealing procedure is appealing since it is anon-parametric
measure that does not involve the form of the particular distribution of interest P. In addition, in
all runsII (T;Y) starts at 0, and is upper-bounded by the log of the cardinality ofT and we are thus
given a scale of progress.

With this intuition at hand, we want to normalize the step size by the expected change inII (T;Y).
That is, we calibrate our progress with respect to theactualamount of regularization applied at the
current value ofγ. At regions whereII (T;Y) is not sensitive to changes in the parameters, we can
proceed rapidly. On the other hand, if small changes in the parameters result in significant changes
of II (T;Y), then we want to carefully track the solution. Figure 3 illustrates the difference between
using a predetermined step ofγ and partitioningII (T;Y) in order to determine the step size. It is
evident the usingII (T;Y) causes the method to concentrate on the region of interest in terms of rapid
change of the Lagrangian.

Formally, we compute∇Q,γII (T;Y) and rescale the direction vector so that

(∇Q,γIIQ(T;Y))′ ·∆ = ε, (11)

94

LEARNING HIDDEN VARIABLE NETWORKS

γγγγ0 0.2 0.4 0.6 0.8 1

0.5

1

1.5
I(

T
;Y

)

γγγγ0 0.2 0.4 0.6 0.8 1

0.5

1

1.5

I(
T

;Y
)

(a) (b)

Figure 3: Illustration of the step size calibration process. Both graphs show the change in informa-
tion betweenT andY as a function ofγ. The circles denote values ofγ to be evaluated.
(a) shows naive calibration when fixed steps are taken in theγ range. (b) shows calibra-
tion that uses fixed steps in the information range. The grey circle shows theregion of
dramatic change of the Lagrangian.

whereε is a predetermined step size that is a fraction of log|T|. We also bound the minimal and
maximal change inγ so that we do not get trapped in too many steps or alternatively overlook the
regions of change.

Finally, although the continuation method takes us in the correct direction, the approximation as
well as inherent numerical instability can lead us to a suboptimal path. To copewith this situation,
we adopt a commonly used heuristic used in deterministic annealing. At each value ofγ, we slightly
perturb the current solution and re-iterate the self-consistent equationsto converge on a solution. If
the perturbation leads to a better value of the Lagrangian, we take it as our current solution.

To summarize, our procedure works as follows: we start withγ = 0 for which only trivial
solutions exists. At each stage we compute the joint direction ofγ andQ(T |Y) that will leave the
fixed point equations intact. We then take a small step in this direction and apply IB-EM iterations
to attain the fixed point equilibrium at the new value ofγ. We repeat these iterations until we reach
γ = 1.

5. Multiple Hidden Variables

The framework we described in the previous sections can easily accommodate learning networks
with multiple hidden variables simply by treatingT as a vector of hidden variables. In this case, the
distributionQ(T |Y) describes thejoint distribution of the hidden variables for each value ofY, and
P(T,X) describes their joint distribution with the attributesX in the desired network. Unfortunately,
if the number of variablesT is large, the representation ofQ(T | Y) grows exponentially, and this
approach becomes infeasible.

One strategy to alleviate this problem is to forceQ(T |Y) to have a factorized form. This reduces
the cost of representingQ and also the cost of performing inference. As an example, we can require
that Q(T | Y) is factored as a product∏i Q(Ti | Y). This assumption is similar to themean field
variational approximation(e.g., Jordan et al. (1998)).

95

ELIDAN AND FRIEDMAN

Gin = Q

X1 XnX1 XnY

T0 Tk

Gout = P

X1 Xn Y

T0

T1 Tk

Figure 4: Definition of networks for the multivariate information bottleneck framework with mul-
tiple hidden variables. Shown areGin with the mean fieldassumption, and a possible
choice forGout.

In the multivariate information bottleneck framework, different factorizations of Q(T |Y) cor-
respond to different choices of networksGin. For example, the mean field factorization is achieved
whenGin is such that the only parent of eachTi is Y, as in Figure 4. In general, we can consider
other choices where we introduce edges between the differentTi ’s. For any such choice ofGin, we
get exactly the same Lagrangian as in the case of a single hidden variable. The main difference is
that sinceQ has a factorized form, we can decomposeIIQ(T;Y). For example, if we use the mean
field factorization, we get

IIQ(T;Y) = ∑
i

IIQ(Ti ;Y).

Similarly, we can decomposeIEQ[logP(X,T)] into a sum of terms, one for each family inP. These
two factorization can lead to tractable computation of the first two terms of the Lagrangian as written
in Proposition 1. Unfortunately, the last termIEQ[logQ(T)] cannot be evaluated efficiently. Thus, we
approximate this term as∑i IEQ[logQ(Ti)]. For the mean field factorization, the resulting Lagrangian
(with this lower bound approximation) has the form

L
+

EM = ∑
i

IIQ(Ti ;Y)− γ

(
IEQ[logP(X,T)]−∑

i

IEQ[logQ(Ti)]

)
. (12)

The form ofL
+

EM is valid, if Proposition 1 still holds for the case of multiple hidden variables.
This is immediate if we make the following requirements, similar to those made for the case of a
single hidden variable:

1. Y is the instance identity;

2. Gin is a Bayesian network structure such that all of the variablesT are independent ofX given
Y; and

3. Gout is a Bayesian network structure such thatY is a child ofT and has no other parents. This
implies that inGout, Y is independent of allX givenT.

96

LEARNING HIDDEN VARIABLE NETWORKS

The last requirement is needed so that we can setP(Y | T) = Q(Y | T) in the proof of Proposition 1.
As in the case of a single hidden variable, we can now characterize fixed point equations that hold
in stationary points of the Lagrangian.

Proposition 6 Let L
+

EM be defined viaGin andGout as in Eq. (12). Assuming amean fieldapproxi-
mation for Q(T |Y), a (local) maximum ofL

+

EM is achieved by iteratively solving, independently for
each hidden variable i, the self-consistent equations

Q(ti | y) =
1

Z(i,y,γ)
Q(ti)

1−γ exp{γEP(ti ,y)} ,

where
EP(ti ,y) ≡ IEQ(T|ti ,y)[logP(x[y],T)]

and Z(i,y,γ) is a normalizing constant that equals to

Z(i,y,γ) = ∑
t ′i

Q(t ′i)
1−γ exp

{
γEP

(
t ′i ,y
)}

.

See Appendix A for the proof.
The only difference from the case of a single hidden variables is in the form of the expecta-

tion EP(ti ,y). It is easy to see that when a single hidden variable is considered, andEP(ti ,y) ≡
logP(x[y], t), the two forms coincide. It is also easy to see that this term decomposes into a sum of
expectations, one for each factor in the factorization ofP. We note that only terms that average over
factors that involveTi are of interest inEP(ti ,y). All other terms do not depend on the value ofTi ,
and can be absorbed by the normalizing constant. Thus,EP(ti ,y) can still be computed efficiently.

A more interesting consequence (see theorem below) of this discussion is that whenγ = 1,
maximizingL

+

EM is equivalent to performingmean field EM(Jordan et al., 1998). Thus, by using
the modified Lagrangian we generalize this variational learning principle, and as we show below
manage to reach better solutions.

The formulation is easily extensible to a general variational approximation ofQ whereGin

allows, in addition to the dependence of eachTi onY, dependencies between the differentTi ’s. In
this case, we get

IIQ(T;Y) = ∑
i

IIQ(Ti ;PaGin
i).

Similarly, IEQ[logP(X,T)] decomposes according to thejoint families ofTi in P and inQ. That is,

each term in the decomposition depends onTi , its parentsPaGin
i in Gin, and its parentsPaGout

i in Gout.
As in the case of the mean field variational approximation, the last termIEQ[logQ(T)] cannot be
evaluated efficiently. We approximate it using a decomposition that follows the structure ofGin as

IEQ[logQ(T)] ≈ ∑
i

IEQ

[
logQ(Ti | T∩PaGin

i)
]
. (13)

We can now reformulate the results of Theorem 3 for this general case:

Theorem 7 Let Q(T |Y) decompose according to any structureGin where all Ti ’s are descendents
of Y and replaceIEQ[logQ(T)] by a decomposition as defined in Eq. (13). Then for the resulting
Lagrangian

L
+

EM = (1− γ)∑
i

IIQ(Ti ;PaGin
i)− γF + [Q,P] ,

97

ELIDAN AND FRIEDMAN

0 20 40 60 80 100

-435.5

-434.5

-433.5

Percentage of random runs

T
es

t
L

L
 /

in
st

an
ce

mean field EM
~2.6 hours

single IB-EM ~85 hours

each exact EM
> 17 hours

(a) (b)

Figure 5: (a) A quadrant based hierarchy structure with 21 hidden variables for modeling 16×16
images in theDigit domain. (b) Test log-loss of theIB-EM algorithm for the model of (a)
compared to the cumulative performance of 50 random EM and mean field EM runs.

whereF + [Q,P] is defined as in Eq. (5), except that the above decomposition for bothIEQ[logP(X,T)]
andIHQ(T |Y) is used.

Proof: This is a direct result of the fact that in the proof of Theorem 3, no assumptions were made
of the form ofQ.

The above theorem extends the formal relation of the information bottleneck target Lagrangian
and the EM functional for any form of variational approximation encodedby Gin. In particular, when
γ = 1, finding a local minimum ofL

+

EM is equivalent to finding a local maximum of the likelihood
function when the same variational approximation is used in the EM algorithm. Similarly, we can
derive the fixed point equations with each for different choices ofGin. The change to Proposition 6
is simply a different decomposition forEP(i,y)

To summarize, the IB-EM algorithm of Section 3.2 can be easily generalized to handle multiple
hidden variables by simply altering the form ofEP(ti ,y) in the fixed point equations. All other
details, such as the continuation method, remain unchanged.

6. Experimental Validation: Parameter Learning

To evaluate the IB-EM method for the task of parameter learning, we examine itsgeneralization
performance on several types of models on three real-life data sets. In each architecture, we consider
networks with hidden variables of different cardinality, where for now we use the same cardinality
for all hidden variables in the same network. We now briefly describe the data sets and the model
architectures we use.

• The Stock data set records up/same/down daily changes of 20 major US technology stocks
over a period of several years (Boyen et al., 1999). The training setincludes 1213 samples and
the test set includes 303 instances. We trained a Naive Bayes hidden variable model where
the hidden variable is a parent of all the observations.

98

LEARNING HIDDEN VARIABLE NETWORKS

• The Digits data set contains 7291 training instances and 2007 test instances from theUSPS
(US Postal Service) data set of handwritten digits (see http://www.kernel-machines.org/data.html).
An image is represented by 256 variables, each denoting the gray level ofone pixel in a
16×16 matrix. We discretized pixel values into 10 equal bins.

On this data set we tried several network architectures. The first is a Naive Bayes model with
a single hidden variable. In addition, we examined more complex hierarchicalmodels. In
these models we introduce a hidden parent to each quadrant of the image recursively. The
3-level hierarchy has a hidden parent to each 8x8 quadrant, and thenanother hidden variable
that is the parent of these four hidden variables. The 4-level hierarchy starts with 4x4 pixel
blocks each with a hidden parent. Every 4 of these are joined into an 8x8 quadrant by another
level of hidden variables, totaling 21 hidden variables, as illustrated in Figure 5(a).

• TheYeast data set contains measurements of the expression of the Baker’s yeast genes in 173
experiments (Gasch et al., 2000). These experiments measure the yeast response to changes
in its environmental conditions. For each experiment the expression of 6152 genes were
measured. We discretized the expression levels of genes into ranges down/same/up by using a
threshold of one standard deviation from above and below the gene’s mean expression across
all experiments. In this data set, we treat each gene as an instance that is described by its
behavior in the different experiments. We randomly partitioned the data into 4922 training
instances (genes) and 1230 test instances.

The model we use for this data set has an hierarchical structure with 19 hidden variables in
a 4-level hierarchy that was determined by the biological expert based on the nature of the
different experiments, as illustrated schematically in Figure 6. In this structure, 5–24 similar
conditions (filled nodes) such as different hypo-osmotic shocks are children of a common
hidden parent (unfilled nodes). These hidden parents are in their turn children of further ab-
straction of conditions. For example, the heat shock and heat shock with oxidative stress
hidden nodes, are both children of a common more abstract heat node. A root hidden vari-
able is the common parents of these high-level abstractions. Intuitively, each hidden variable
encodes how the specific instance (a gene) is altered in the relevant groups of conditions.

As a first sanity check, for each model (and each cardinality of hidden variables) we performed
50 runs of EM with random starting points. The parameter sets learned in these different runs have
a wide range of likelihoods both on the training set and the test set. These results (on which we
elaborate below), indicate that these learning problems are challenging in thesense that EM runs
can be trapped in markedly different local maxima.

Next, we considered the application of IB-EM on these problems. We performed a single IB-EM
run on each problem and compared it to the 50 random EM runs, and also to50 random mean field
EM runs. For example, Figure 5 compares the test set performance (log-likelihood per instance) of
these runs on theDigit data set with a 4-level hierarchy of 21 hidden variables with 2 states each.
The solid line shows the performance of the IB-EM solution atγ = 1. The two dotted lines show
the cumulative performance of the random runs. As we can see, the IB-EM model is superior to
all the mean field EM runs, as well as all of the exact EM runs. Figure 6 shows the result for the
biological expert constructed hierarchy ofYeast data set with binary variables. As can be seen, in
this harder domain, the superiority of the exact EM runs over mean field EM runs is more evident.
Yet, the IB-EM run which also use the mean field approximation, is still able to surpass all of the
50 random exact EM runs.

99

ELIDAN AND FRIEDMAN

mean field EM
~0.5 hours/run

single IB-EM ~6 hours

exact EM
> 60 hours/run

-151.5

-150.5

-149.5

-148.5

-147.5

0 20 40 60 80 100

Percentage of random runs

T
es

t
L

L
 /

in
st

an
ce

(a) (b)

Figure 6: (a) A structure constructed by the biological expert for theYeast data set based on prop-
erties of different experiments. 5-24 similar conditions (filled nodes) are aggregated by
a common hidden parent (unfilled nodes). These hidden nodes are themselves children
of further abstraction nodes of similar experiments, which in their turn are children of
the single root node. (b) Comparison of test performance when learningthe parameters
of the structure of (a) with binary variables. Shown is test log-likelihood per instance of
the IB-EM algorithm and the cumulative performance of 50 random EM as well as 50
random mean field EM runs.

It is important to note the time required by these runs, all on a Pentium IV 2.4 GHzmachine.
For theDigit data set, a single mean field EM run requires approximately 2.5 hours, an exact EM
run requires roughly 17 hours, and the single IB-EM run requires justover 85 hours. As the IB-EM
run reaches a solution that is better than all of this runs, it offers an appealing performance to time
tradeoff. This is even more evident for theYeast data set where the structure is somewhat more
complex and the difference between exact learning and the mean field approximation is greater. For
this data set, the single IB-EM is still superior and takes significantly less time thana single exact
EM.

Figure 7 compares the test log-likelihood per instance performance of ourIB-EM algorithms
and 50 random EM runs for a range of models for theStock, Digit andYeast data sets. In most
cases, IB-EM is better than 80% of the EM runs and is often as good or better than the best of
them. The advantage of IB-EM is particularly pronounced for the more complex models with
higher cardinalities. Table 1 provides more details of these runs including train performance and
comparison to 50 random mean field EM runs.

We also compared the IB-EM method to the perturbation method of Elidan et al. (2002). Briefly,
their method alters the landscape of the likelihood by perturbing the relative weight of the samples
and progressively diminishing this perturbation as a factor of the temperature parameter. In the
Stockdata set, the perturbation method initialized with a starting temperature of 4 and cooling factor
of 0.95, had performance similar to that of IB-EM. However, the running time of the perturbation
method was an order of magnitude longer. For the other data sets we considered above, running
the perturbation method with the same parameters proved to be impractical. When we used more

100

L
E

A
R

N
IN

G
H

ID
D

E
N

V
A

R
IA

B
L

E
N

E
T

W
O

R
K

S

Train Log-Likelihood Test Log-Likelihood
Model IB-EM Random EM Mean Field EM IB-EM Random EM Mean Field EM

%< 100% 80% %< 100% 80% %< 100% 80% %< 100% 80%
Stock
C=3 -19.91 62% -19.90 -19.90 -19.90 76% -19.88 -19.89
C=4 -19.47 98% -19.46 -19.52 -19.52 96% -19.52 -19.62
C=5 -19.16 94% -19.15 -19.24 -19.31 98% -19.30 -19.39
Digit
C=5 -429.95 36% -428.67 -429.11 -439.91 56% -439.03 -439.47
C=10 -411.44 100% -411.72 -413.96 -425.33 100% -425.36 -427.05
DigH3
C=2 -442.02 100% -442.02 -442.29 100% -442.03 -442.20 -450.812 92% -450.76 -450.92 82% -450.76 -450.84
C=3 -428.77 100% -428.85 -429.02 100% -428.83 -429.02 -437.798 98% -437.74 -438.20 98% -437.74 -438.04
DigH4
C=2 -425.43 100% -425.54 -425.81 100% -425.61 -425.94 -433.279 100% -433.30 -433.55 100% -433.40 -433.71
C=3 -407.60 100% -407.75 -408.56 100% -408.49 -408.83 -415.798 100% -415.88 -416.48 100% -416.37 -416.77
Yeast
C=2 -148.13 100% -148.32 -148.79 100% -148.89 -149.71 -147.48 100% -147.51 -147.87 100% -147.92 -148.78
C=3 -139.44 100% -139.58 -140.05 100% -140.09 -140.87 -138.38 100% -138.57 -139.00 100% -139.06 -139.92
C=4 -136.36 100% -136.72 -136.97 100% -137.72 -138.28 -135.65 100% -135.96 -136.16 100% -136.92 -137.34

Table 1: Comparison of the IB-EM algorithm, 50 runs of EM with random starting points, and 50 runs of mean field EM from the same
random starting points. Shown are train and test log-likelihood per instancefor the best and 80th percentile of the random runs.
Also shown is the percentile of the runs that are worse than the IB-EM results. Data sets shown include a Naive Bayes model for the
Stock data set and theDigit data set; a 3 and 4 level hierarchical model for theDigit data set (DigH3 andDigH4); and an hierarchical
model for theYeast data set. For each model we show several cardinalities for the hidden variables, shown in the first column.

101

ELIDAN AND FRIEDMAN

T
es

t l
og

-li
ke

lih
oo

d
/ i

ns
ta

nc
e

Stock
C=3 C=4 C=5 C=6 C=7 C=8 C=9 C=10

-20.4

-20

-19.6

-19.2

-18.8

Range of random EM runsRange of random EM runs
20%-80% precentile
IB-EM

Digit Digit Hier
C=5 C=10C=5 C=10 C=2 C=3C=2 C=3

-430

-420

-410

Yeast
C=2 C=3 C=4

-152

-148

-144

-140

-136

Figure 7: Comparison of log-likelihood per instance test performance of the IB-EM algorithm
(black ’X’) and 50 runs of EM with random starting points. The vertical lineshows
the range of the random runs and boxes mark the 20%-80% range. Data sets shown (x-
axis) include a Naive Bayes model for theStock data set and theDigit data set; a 4 level
hierarchical model for theDigit data set (Digit Hier); a hierarchical model for theYeast
data set. For each model we show several cardinalities for the hidden variables, shown in
the x-axis.

efficient parameter settings, the perturbation method’s performance was significantly inferior to
that of IB-EM. These results do not contradict those of Elidan et al. (2002) who showed some
improvement for the case of parameter learning but mainly focused on structure learning, with and
without hidden variables.

To demonstrate the effectiveness of the continuation method we examineIB-EM during the
progress ofγ. Figure 8 illustrates the progression of the algorithm on theStock data set. (a) shows
training log-likelihood per instance of parameters in intermediate points in the process. This panel
also shows the values ofγ evaluated during the continuation process (circles). These were evaluated
using the predicted change inII (T;Y) shown in (b). As we can see, the continuation procedure fo-
cuses on the region where there are significant changes inII (T;Y) approximately corresponding the
areas of significant changes in the likelihood. For both theStock andDigit data sets, we also tried
changingγ naively from 0 to 1 as in standard annealing procedures, without performing continua-
tion. This procedure often “missed” the superior local maxima even when a large number (1000) of
γ values were used in the process. In fact, in most runs the results were nobetter than the average
random EM run emphasizing the importance of the continuation in the annealing process.

7. Learning Structure

Up until now, we were only interested in parameter learning. However, in real life it is often not
the case that the structure is given. A structure that is too simple will not be able to faithfully cap-
ture the distribution, while an overly complex structure will deteriorate our abilityto learn. In this
section we consider the case where the set of hidden variables is fixed and their cardinalities are
known, and we want to learn the network structure. Clearly, this problem isharder than simple

102

LEARNING HIDDEN VARIABLE NETWORKS

γγγγ0 0.2 0.4 0.6 0.8 1

-23

-21

-19

T
ra

in
 li

ke
lih

o
o

d
IB-EM

Best of EM

0 0.2 0.4 0.6 0.8 1

0.5

1

1.5

I(
T

;Y
)

γγγγ
(a) (b)

Figure 8: The continuation process for a Naive Bayes model on theStock data set. (a) Shows the
progress of training likelihood as a function ofγ compared to the best of 50 EM random
runs. Black circles illustrate the progress of the continuation procedure by denoting the
value of γ at the end of each continuation step. Calibration is done using information
between the hidden variableT and the instance identityY shown in (b) as a function ofγ.

parameter learning, which is just one of the tasks we have to perform in this scenario. The common
approach to this model selection task is to use ascore-based approachwhere we search for a struc-
ture that maximizes some score. Common scores such as the BDe score (Heckerman et al., 1995)
balance the likelihood achieved by the model and its complexity. Thus, model selection is achieved
independently of the search procedure used (see Section 2.1 for more details).

We now aim to extend theIB-EM framework for the task of structure learning using a score-
based approach. Naively, we could simply consider different structures and for each one apply the
IB-EM procedure to estimate parameters, and then evaluate its generalizationability using the score.
Such an approach is extremely inefficient, since it spends a non-trivial amount of time to evaluate
each potential candidate structure. In this work we advocate a strategy that is based on the structural
EM framework of Friedman (1997). In structural EM, we use the completiondistributionQ that is
a result of the E-Step to computeexpected sufficient statistics. That is, instead of Eq. (1), we use

IEQ(T|Y)[N(xi ,pai)] = ∑
m

∑
t

Q(X [m] = xi ,Pai = pai , t |Y = m).

These statistics are then used in theM-stepwhen structure modification steps are evaluated. Thus,
instead of assuming that the target structureGout is fixed, we define the Lagrangian as a function of
the pair(Gout,θ). Then, in the M-step, we can consider different choices ofGout and evaluate how
each of them changes the score. Given the expected statistics, the problem is identical in form to
learning from a fully observed data set and computation of the score is similar. This facilitates an
efficient greedy search procedure that uses local edge modification tothe network structure. The
EM procedure of Section 3.2 is thus revised as follows:

• E-step: Maximize−LEM by varyingQ(T |Y) while holdingP fixed.

• M-step: While holdingQ fixed:

103

ELIDAN AND FRIEDMAN

– Search for the structureGout of P that maximizes ScoreBDe(G : D), using the sufficient
statistics ofQ.

– Maximize−LEM by varying the parameters ofP using the structureGout selected.

In practice, since the BDe score is not a linear function of the sufficient statistics, we approx-
imate it in theM-step using the Cheeseman-Stutz (Cheeseman et al., 1988) approximation. It is
important to note the distinction between the optimization of the Lagrangian and thatof the score.
Specifically, optimizing the Lagrangian involves maximization of the likelihood alongwith an infor-
mation theoretic regularization term that does not depend onP. On the other hand, optimization of
the structure is performed using the BDe model selection score. This is mathematically valid since
each optimization step is ignorant of the inner mechanics of the other step. However, one might
wonder why the use of a score is needed at all if regularization is alreadypresent in the form of the
information theoretic term in the Lagrangian. It is easy to understand the reason for this if we look
at the final stage of learning whenγ = 1. At this point, as we have shown, optimizing the Lagrangian
is equivalent to optimizing the EM objective. Using the same objective to adapt structure will result
in dense structures. In particular, it will be beneficial to add an edge between any two variables
that are not perfectly independent in the training data. Thus, while the regularization encoded in the
Lagrangian is needed to smooth the parametric EM problem, a model selection regularization via a
score is also needed to constrain the network structure.

Using the structural EM framework allows us to apply our framework to structure learning and
to use various search operators as simple plug-ins. For general Bayesian networks, for example, one
can consider the standard add, delete and reverse edge operators. The only requirement in this case
is that a hidden variable is constrained to be non-leaf, in which case it becomes redundant and can
be marginalized out. In addition, as in the case of learning parameters, we are still guaranteed to
converge for a given value ofγ. However, as in parametric EM, convergence is typically to a local
maximum. In fact, the problem now has two facets: First, local maxima that resultfrom evaluation
of Q in the E-step. Second, local maxima in the discrete structure search space due to the greedy
nature of the search algorithm.

Although the method described above applies for any Bayesian network structure, for concrete-
ness we focus on learninghierarchiesof hidden variables in the following sections. In this sub-class
of networks each variable has at most one parent, and that parent hasto be a hidden variable. This
implies that the hierarchy of hidden variables captures the dependencies between the observed at-
tributes. Since we are dealing with hierarchies we consider search steps that replace the parent of a
variable by one of the hidden variables. Such moves preserve the overall hierarchy structure, repo-
sitioning a single observed variable, or a sub-hierarchy. We apply thesesteps in a greedy manner,
from the one that leads to the largest improvement, as long as the resulting hierarchy is acyclic.

8. Learning Cardinality

In real life, it is often the case that we do not know the cardinality of a hidden variable. In a
clustering application, for example, we typically do not know of a beneficialnumber of clusters
and need to either use some arbitrary choice or spend time evaluating several possibilities. Naively,
we might try to set a high cardinality so that we can capture all potential clusters. However, this
approach can lead to bad generalization performance due to over-representation. The discussion in
Section 4 on the behavior of the model as a function ofγ provides insight on the effect of cardinality

104

LEARNING HIDDEN VARIABLE NETWORKS

0 0.2 0.4 0.6 0.8 1

1

2

3

4

5

6

7

8

γ

E
ffe

ct
iv

e
C

ar
di

na
lit

y

Figure 9: Effective cardinality as a function ofγ during the learning process for theStock data set
using a Naive Bayes model. Cardinality is evaluated using local decompositionof the
BDe score.

selection. When examining the models during the continuation process, we observe that for lower
values ofγ theeffectivecardinality of the hidden variable is smaller than its cardinality in the model
(we elaborate on how this is measured below). Figure 9 shows an example ofthis phenomenon for
the Naive Bayes model of theStock data set. Thus, limiting the cardinality of the hidden variable is
in effect similar to stopping the continuation process at someγ < 1. This is, by definition, equivalent
to using a regularized version of the EM objective, which can avoid overfitting.

The most straightforward approach to learning the cardinality of a hidden variable is simply to
try a few values, and for each value apply IB-EM independently. We canthen compare the value
of the EM objective (atγ = 1) corresponding to the different cardinalities. However, models with
higher cardinality will achieve a higher likelihood and will thus always be chosen as preferable by
the Lagrangian, at the risk of overfitting the training data. In the previous section we discussed
the use of a model selection score as a measure for preferring one network structure over another.
The same score can also be readily applied for this scenario of cardinality selection. Whether the
complexity is a result of a dense structure or an increased number of parameters due to a high
cardinality of a variable, all common scores balance the likelihood with the modelcomplexity,
either explicitly as in the case of the MDL score (Lam and Bacchus, 1994) or implicitly as in the
case of the Bayesian (BDe) score (Heckerman et al., 1995). Thus, similarly to structure learning, we
use the Lagrangian when estimating parameters and turn to the score when performing the black-
box model selection step. One problem with this simple approach is that it can beextremely time
consuming. If we want to tryK different cardinalities for each hidden variable, we have to carry out
|H|K independent IB-EM runs, where|H| is the number of hidden variables.

The intuition that the “effective” cardinality of the hidden variable will increase as we consider
larger values ofγ suggests that we increasing the model complexity during the continuation process.

105

ELIDAN AND FRIEDMAN

A simple method is as follows. At each stage allow the model an extra, seemingly redundant, state
for the hidden variable. As soon as this state is utilized, we increase the cardinality by adding a
new “spare” state. The annealing process, by nature, automatically utilizesthis new state when it
is beneficial to do so. The task we face is to determine when all the states of a hidden variables
are being utilized and therefore a new redundant state is needed. Intuitively, a state of a variable is
being used if it captures a distinct behavior that is not captured by other states. That is, for any state
i, no other statej is similar.

To determine whether statei is different than all other states, we start by evaluating the cost
that we incur due to the merging of statei with another statej. We denote bŷi j a new state that
combines bothi and j and alterQ so that

Q(T = î j |Y = y) = Q(T = i |Y = y)+Q(T = j |Y = y). (14)

We then use this to reestimate the parameters ofP in the M-step, and examine the resulting change
to the Lagrangian. As shown in Slonim et al. (2002), the difference in the Lagrangian before and
after the merge is a sum of Jensen-Shannon divergence terms that measure the difference between
the conditional distribution of each child variable given the two states of the hidden variable. This is
in fact the change in likelihood of the model resulting from merging the states and can be computed
efficiently.

Now that we have the change in the Lagrangian due to the merging of statei with state j, we
have to determine whether this change is significant. As already noted, usingmore states will always
improve the likelihood so that the difference in the Lagrangian is not sufficient for model selection.
Instead, we can use the BDe score to take into account both the improvementto the likelihood and
the change in the model complexity as in Elidan and Friedman (2001). One appealing property
of the BDe score is that it islocally decomposable. That is, Eq. (2) decomposes according to the
different values of each variables. Thus, the difference between theBDe score after and before the
merge of statesi and j is only in the terms whereT appears:

ScoreBDe(Gî j : D)−ScoreBDe(Gi, j : D) =

∑pat

[
log Γ(N+(T=i, j,pat))

Γ(α(T=i, j,pat))
− log Γ(N+(T=i,pat))

Γ(α(T=i,pat))
− log Γ(N+(T= j,pat))

Γ(α(T= j,pat))

]
+

∑C ∑pac

[
log Γ(α(pac,T=i, j))

Γ(N+(pac,T=i, j)) +∑c log Γ(N+(c,pac,T=i, j))
Γ(α(c,pac,T=i, j))

− log Γ(α(pac,T=i))
Γ(N+(pac,T=i)) −∑c log Γ(N+(c,pac,T=i))

Γ(α(c,pac,T=i))

− log Γ(α(pac,T= j))
Γ(N+(pac,T= j)) −∑c log Γ(N+(c,pac,T= j))

Γ(α(c,pac,T= j))

]
,

where the first summation correspond to the family ofT and its parents, and the second summation is
over allC that are children ofT and corresponds to the families of the children ofT and their parents.
N+(x) = N(x)+α(x) and correspond tototal count statistics that include the imaginary prior counts
(see Section 2.1). As all the terms are functions of these simple sufficient statistics, the above
difference can be computed efficiently. Moreover, as in the case of the likelihood computation, the
sufficient statistics needed when merging two states are simply the sum of the statistics needed for
scoring the individual states. Thus, we can easily evaluate all pairwise state merges to determine if
anytwo states ofT are similar.

106

LEARNING HIDDEN VARIABLE NETWORKS

-20.5

-19.5

-20.5

-19.5

0 5 10 15 20 25 30

-20.5

-19.5

-18.5
T

ra
in

 L
L

/ i
ns

ta
nc

e

0 5 10 15 20 25 30
Cardinality

T
es

t L
L

/ i
ns

ta
nc

e

Adaptive cardinality
Fixed cardinality
Adaptive cardinality
Fixed cardinality

0 10 20 30 40 50 60 70 80

-19

-17

-15

0 10 20 30 40 50 60 70 80

-19.5

-18.5

-17.5

Cardinality

Adaptive cardinality
Fixed cardinality
Adaptive cardinality
Fixed cardinality

T
ra

in
 L

L
/ i

ns
ta

nc
e

T
es

t L
L

/ i
ns

ta
nc

e

(a) Stock (b) Yeast

Figure 10: Evaluating adaptive cardinality selection for theStock and theYeast data sets with a
Naive Bayes model. The ’X’ marks the performance of runs with adaptivecardinality
selection. The line shows performance of individual runs with a fixed cardinality. The
top panel shows training set performance, and the bottom one test set performance.

To summarize, the resulting procedure is as follows. We start with a binary cardinality for the
hidden variables atγ = 0. At each stage, beforeγ is increased, we determine for each hidden variable
if all its states are utilized: For each pair of states we evaluate the BDe score difference between
the model with the two states and the model with the states merged. If the difference is positive for
all pairs of states then all states are considered utilized and a new state is added. Optimizing the
Lagrangian using IB-EM will utilize this new state automatically when it will be beneficial to do so,
causing the introduction of a new “spare” state, and so on.

In an early work leading to the formulation of the Information Bottleneck framework, (Pereira
et al., 1993) used a similar idea to gauge the effective number of clusters. Briefly, for each cluster
a slightly perturbed cluster (twin state) was incorporated in the model allowing each cluster to split
into two distinct ones. Similar procedures were used in deterministic annealing (Rose, 1998) and
later information bottleneck implementations (Tishby et al., 1999; Slonim et al., 2002). The method
we presented in this section differs in two important aspects. First, we use a model selection score to
determine when it is beneficial to declare that a redundant cluster is actuallybeing used. This allows
us to avoid using an arbitrary distance measure to determine if two clusters diverge. Second, the
above allows us to use a single redundant cluster rather than a twin for each state, which significantly
reduces the model complexity. While this may not be crucial in standard clustering scenario, it is of
great importance for the large models with many hidden variables that we consider in this paper.

9. Experimental Validation: Learning Cardinality

We now want to evaluate the effectiveness of our method for adapting cardinality during the anneal-
ing process. For this, we would like to compare the cardinality and model achieved by the method
to naive selection of the cardinality. To make this feasible, we look at the context of a Naive Bayes
model with a single hidden variable for theStock and theYeast data set introduced in Section 6.

107

ELIDAN AND FRIEDMAN

We trained the models using the IB-EM algorithm where the hidden variable wasassigned a fixed
cardinality, and repeated this for different cardinalities. We then applied our adaptive cardinality
method to the same model. Figure 10 compares the adaptive cardinality selection run (’X’ mark)
vs. the fixed cardinality runs for both data sets. As we can see, the adaptive run learns models that
generalize nearly as well as the best models learned with fixed cardinality. These results indicate
that our method manages to increase cardinality while tracking a high likelihood solution, and that
the decision when to add a new state manages to avoid adding spurious states.

A more complex scenario is where, for theYeast data set, we learn the hierarchy supplied by
the biological expert for 62 of the experiments. In this hierarchy there are 6 hidden variables that
aggregate similar experiments, aHeatnode that aggregates 5 of these hidden variables and a root
node that is the parent of bothHeatand the additionalNitrogen Depletionnode. Figure 11 shows the
structure along with the cardinalities of the hidden variables learned by our method and compares
the performance of our method to model learned with different fixed cardinalities. As can be seen
in (b), the performance of our final model is close to the optimal performance with fixed cardinality.
(c) shows that this is achieved with a similar complexity to the simpler of the superiormodels (at a
fixed cardinality of 10).

10. Learning New Hidden Variables

The ideas presented in Section 7 are motivated by the fact that in real life weare typically not
given the structure of the Bayesian network. The situation is often even more complex. Hidden
variables, as their name implies, are not only unobserved but can also be unknown entities. In this
case, we do not even know which variables to include in our model. Thus, wewant to determine
the number of hidden variables, their cardinality, their relation to the observed variables, and their
inter-dependencies. This situation is clearly much more complex than structurelearning and might
seem hopeless at first. However, as in the case of cardinality adaptation discussed in Section 8, we
can use emergent cues of the continuation process to suggest an effective method.

Recall the behavior of our target Lagrangian as a function ofγ. For small values ofγ, the
emphasis of the Lagrangian is on compressing the instance identity, and the hidden variables are
(almost) independent of the observed attributes. Thus, at this stage, a simple model would be able
to perform just as well as a complex one. In fact, to increase learning robustness, we will want
to favor the simpler model and avoid redundant representational complexity. As we increaseγ,
the hidden variables start capturing properties of the data. In this scenario the need for the more
complex structure becomes relevant as it will allow the learning procedure toimprove performance.

The above intuition suggests that at small values ofγ we start with a simple hierarchy (say, one
with only a single hidden variable). When the continuation reaches larger values ofγ, the Lagrangian
can tolerate more complex structures. Thus, we want to adapt the complexity of the hierarchy as
we progress. To do so, we consider a search operator that enrichesthe structure of hierarchy with
a new hidden variable. (This operator is much in the spirit of the “top-down”strategy explored by
Adachi and Hasegawa (1996) in learning evolutionary trees.)

Suppose that we want to consider the addition of a new hidden variables intothe network struc-
ture. For simplicity, consider the scenario shown in Figure 12, where we start with a Naive Bayes
network with a hidden variableT1 as root and want to add a hidden variableT2 as a parent of a
subsetC of T1’s children. Intuitively, we want to select a subsetC that is not “explained well” by
T1 and where we expect to gain a lot by the introduction ofT2. Formally, we evaluate the change in

108

LEARNING HIDDEN VARIABLE NETWORKS

(a)

5 10 15 20 25 30 35 40 45 505 10 15 20 25 30 35 40 45 50

Cardinality

T
es

t L
L

/ i
ns

ta
nc

e

-50

-48

-46

-44

Fixed Cardinality
Adaptive Cardinality
Fixed Cardinality
Adaptive Cardinality

5 10 15 20 25 30 35 40 45 505 10 15 20 25 30 35 40 45 50

0.5

1

1.5

2

pa

ra
m

et
er

s
x

10
00

0

Fixed Cardinality
Adaptive Cardinality
Fixed Cardinality
Adaptive Cardinality

Cardinality

(b) (c)

Figure 11: Cardinality learning for theYeast data set on the structure provided by the biological ex-
pert. (a) shows the structure along with the nodes annotated with the cardinality learned
by our adaptive approach. (b) shows the test set log-likelihood performance of models
learned with different fixed cardinalities (solid line). The horizontal dashed line marks
the performance of our adaptive cardinality method. (c) shows plot the number of pa-
rameters for each of these models (solid line) with the dashed horizontal line marking
the number of parameters of the model learned by our method.

our target Lagrangian as the result of insertingT2 into the network structure

LEM −L ′
EM =

−IIQ(T2;Y)+ γIEQ[logP′(T2 | T1)− logQ(T2)+∑i∈C [logP′(Xi | T2)− logP(Xi | T1)]],

whereP andP′ are the models before and after the change to the network, respectively.The term
logP(Xi |T1) can be readily evaluated from the current model for eachX ∈C and the termsIIQ(T2;Y)
andIEQ[logQ(T2)] can be easily bounded. However, to evaluate logP′(T2 | T1) or ∑i∈C logP′(X | T2)
we need to actually chooseC, addT2 to the current structure and optimizeQ(T2 |Y). This can be
too costly as the number of possible subsetsC can be large even for a relatively small number of
variables. Thus, we want to somehow approximate the above terms efficientlyusing only the current
model. The following bound allows us to do so by bounding the contribution of ahidden variable.

109

ELIDAN AND FRIEDMAN

T1

X1 Xn

T1

Xn

T2

X1 Xk

Figure 12: Example of enrichment with new hidden variablesT2 as parent of a subsetC of the
observed variablesX1 . . .Xn.

Proposition 8 Let P be a Bayesian network model with a hidden variable T1 and denote byC an
observed subset of T1’s children. Let P′ be the result of replacing T1 as a parent ofC by T2, making
T2 a child of T1 and optimizing the parameters of the model using the IB-EM algorithm for anyvalue
of γ. Then

IEQ[logQ(C | T1)] ≥ IEQ

[

∑
i∈C

logP′(Xi | T2)+ logP′(T2 | T1)

]
.

Proof: Using the chain rule and positivity of entropy, we can write

IEQ[logQ(C | T1)] ≡ −IHQ(C | T1)

= −
[
IHQ(C,T2 | T1)− IHQ(T2 | C,T1)

]

≥ −IHQ(C,T2 | T1)

= −
[
IHQ(C | T2,T1)+ IHQ(T2 | T1)

]

= −
[
∑
i∈C

IHQ(Xi | X1 . . .Xi−1,T2,T1)+ IHQ(T2 | T1)
]

≥ −
[
∑
i∈C

IHQ(Xi | T2)+ IHQ(T2 | T1)
]

≡ IEQ

[

∑
i∈C

logP′(Xi | T2)+ logP′(T2 | T1)

]
.

The last inequality result from the fact that entropy conditioned on less variables can only increase.
The final equivalence is a result of the construction of the M-Step of IB-EM, whereQ is used when
in the optimization of the parameters ofP′.

The above proposition provides a bound on the extent to which a hidden variable induces cor-
relations in the marginal distribution. The result is intuitive — the contribution of insertion of a
new hidden variable cannot exceed the entropy of its children given theircurrent hidden parent. If
we use the bound instead of the original term, we get an over-optimistic estimate of the potential
profitability of adding a new hidden variable. However, the scenarios we are interested in are those
in which the information between the hidden variable and its children is high and the entropy of

110

LEARNING HIDDEN VARIABLE NETWORKS

X1 X2 X3 X4

T2

T1

(a)

X1 X2 X3 X4

T1

(b) 0 0.2 0.4 0.6 0.8 1

0.1

0.3

0.5

0.7

0.9

Gamma

M
ut

ua
l I

nf
or

m
at

io
n

Total

I({X 3,X4};T 1)

I({X 1,X2};T 1)

(c)

Figure 13: Synthetic example demonstrating the information signal for adding new hidden vari-
ables. (a) shows the original structure that generated the samples. (b) shows the structure
used in learning without the hidden variableT2. (c) shows the information as a function
of γ between the hidden variables and the observed variables. As learning progresses,
the total information rises and the distribution of the direct children ofT1 is captured
significantly better (dotted). The information with the original children ofT2 (dashed)
remains small.

the hidden variable is low (or there would be no need for it in the network). In such cases, we can
expect the bound to be tight in both inequalities.

The above bound provides us with an information signal for putative new hidden variables.
In practice, searching for the best subsetC can be impractical even for relatively small networks.
Instead, we use the following greedy approach: first, for each hiddenvariable, we limit our attention
to up toK (we use 20) of its children with the highest entropy individually. We then considerall
three-node subsets of these children whose entropy level passes somethreshold (see details in the
experiments below). Intuitively, such seeds will capture the core of the signal needed to attract other
nodes when structure change is allowed.2

Another complication in using the above signal is a consequence of the annealing process itself.
For small values ofγ we can expect, and indeed we want,Q to smooth out all statistical signals.
This will make most subsets appear equally appealing for adding a hidden variable, sinceT1 will
not be informative about them. In Section 4, we have shown thatIIQ(Y;T) is a natural measure for
the progress of the continuation process. To demonstrate the phenomenonin the structure learning
scenario, Figure 13 shows a simple synthetic experiment where the samples were generated from

2In synthetic experiments for different structures where the network size still made computations feasible, these three
node seeds always included two or three variables of the optimal larger subset.

111

ELIDAN AND FRIEDMAN

the structure shown in (a) and a Naive Bayes model withoutT2 was used when learning. (c) shows
the information between the hidden variableT1 and the observed children (solid), its direct children
in the generating distribution (dotted) and the children ofT2 (dashed). Up to some point in the
annealing process, the information content of the hidden variable is low andthe information with
both subsets of variables is low. When the hidden variable starts to capture the distribution of
the observed variables, the two subsets diverge and whileT1 captures its original direct children
significantly better, the children ofT2 still have high entropy givenT1. Thus, we want to start
considering our information “cue” only when the hidden parent becomes meaningful, that is only
whenIIQ(Y;T1) passes some threshold.

Finally, we note that although the discussion so far assumed that we have a Naive Bayes model
and considered the addition of a single new hidden variable, it is easily generalized for any forms of
P where inP′ we separate a hidden variables inP from its observed children by introducing a new
hidden variable.

To summarize, our approach for learning a new hidden variableT (or several such variables) is
as follows: At each value ofγ, we first evaluateIIQ(Y;T) to determine if it is above the threshold,
signifying that the hidden variable is capturing some of the distribution over therest of the variables.
If this is the case, we greedily search for subsets of children of the hidden variable that have high
entropy. These are subsets that are not predicted well by their hidden parent. For the subset with the
highest entropy, we suggest a putative new hidden variable that is the parent of the variables in the
subset. The purpose of this new variable is to improve the prediction of the subset variables, which
are not sufficiently explained by the current model. We then continue with theparameter estimation
and structure learning procedure as is. If, after structure search, ahidden variable has at most one
child, it is in fact redundant and can be removed from the structure. We iterate the entire procedure
until no more hidden variable are added and the structure learning procedure converges.

11. Full Learning — Experimental Validation

We want to evaluate the effectiveness of our method when learning structure with and without the
introduction of new hidden variables into the model. We examined two real-life data sets: The
Stock data set and theYeast data set (see Section 6). For theYeast data set we look at a subset of 62
experiments related to heat conditions and Nitrogen depletion.

In Figure 14 we consider average test set performance on theStock data set. To create a baseline
for hierarchy performance, we train aNaive hierarchy with a single hidden variable and cardinality
of 3 totaling 122 parameters. We start by evaluating structure learning without the introduction of
new hidden variables. To do this, we generated 25 random hierarchies with 5 binary hidden variables
that are parents of the observed variables and a common root parent totaling 91 parameters. We then
use structural EM (Friedman, 1997) to adapt the structure by using areplace-parentoperator where
at each local step an observed node can replace its hidden parents. Ascan be seen in Figure 14,
standard structure learning applied to the IB-EM framework significantly improves the model’s
performance. In fact, many of the 25 random runs with theSearch operator surpass the performance
of theNaive model using fewer parameters.

Next, we evaluate the ability of the new hidden variable enrichment operator toimprove the
model. We denote byEnrich the IB-EM run with the automatic enrichment operator. We denote by
Enrich+Search the run with this operator augmented with structure search operators in the M-steps.
As can be seen in Figure 14, the performance ofEnrich by itself was not able to compete with the

112

LEARNING HIDDEN VARIABLE NETWORKS

-20.4

-19.8

T
es

t l
og

-lo
ss

 /
in

st
an

ce

Search

Naive

Enrich

Enrich + Search

0 0.2 0.4 0.6 0.8 1

Percentage of runs

-20.1

-19.5

Figure 14: Comparison of performance on theStock data set of Naive hierarchy (Naive), 25 hierar-
chies with replace-parent search (Search) , hierarchy learned with enrichment operator
(Enrich) and hierarchy learned with enrichment and replace-parent search (Enrich+).

Naive or theSearch method. This is not surprising as we cannot expect the information signal to
introduce “perfect” hidden variables into the hierarchy. Indeed, whencombining the enrichment
operator with structure adaptation (Enrich+Search), our method was able to exceed all other runs.
The learned hierarchy had only two hidden variables (requiring only 85 parameters). These results
show the enrichment operator effectively added useful hidden variables and that the ability to adapt
the structure of the network is crucial for utilizing these hidden variables to the best extent.

There are two thresholds used by our algorithm for learning new hidden variables. First, as
noted in Section 10, due to the nature of the annealing process we consideradding new hidden
variable only when the informationIIQ(Y;T) of a hidden variableT in the current structure passes
some threshold. In the results presented in this section we use a threshold of20% of the maximum
value the information can reach which is limited by the cardinality ofT. Lowering this threshold
to as far as 10% or raising it to 40% had negligible effect on the results. We hypothesize that this
robustness is caused by the fact that, typically, the cardinality ofT will be much lower thanY. Thus,
whenT undergoes the transition from being redundant to being informative, its information content
rises drastically, even if it captures only a small aspect ofY.

The threshold used to limit the number of candidate subsets, however, is moreinteresting. Re-
call from Section 10 that the greedy procedure only considers subsetswhose entropy passes some
threshold. More precisely, we consider only subsets whose entropy passes some percentage of the
maximum entropy possible for this subset. Thus, using a lower threshold potentially allows more
hidden variables. This is observed empirically in Figure 15(a) for theYeast data set. A possible
concern is that lowering the threshold too much will results in many hidden variables leading to
overfitting. However, as is evident in Figure 15(b), even when the number of hidden variables is 20,
these new variables are effective in that they improve the generalization performance on unseen test

113

ELIDAN AND FRIEDMAN

80 84 88 92 96 10080 84 88 92 96 100

2

6

10

14

18

2

6

10

14

18

% of max entropy

of

 h
id

de
n

va
rs

80 84 88 92 96 10080 84 88 92 96 100

-49

-47

-45

-49

-47

-45

% of max entropy

T
es

t L
L

/ i
ns

ta
nc

e

expert model

(a) (b)

Figure 15: Learning new hidden variables for theYeast data set. (a) shows the number of variables
learned as a function of the threshold on the percentage of entropy of a subset used in
the greedy procedure. (b) shows the corresponding test set log-likelihood per instance
performance and the performance of the model supplied by the biological expert.

data. In fact, with just a few extra variables, our method successfully surpassed the performance of
the structure supplied by the biological expert. Obviously, at some point, having too many variables
will lead to overfitting. We could not examine this scenario due to the running time required to learn
such large networks.

To qualitatively assess the value of our method, we show in Figure 16 the structure learned for
the Stock data set with binary variables and the entropy threshold set at 95% (structures at 92.5%
and 97.5% were almost identical for this data set). The emergent structure isevident with the “High-
tech giants” and “Internet” group dominating the model. The “Varied” group contains “Canon” and
“Sony” that manufacture varied technology products such as electronics, photographic, computer
peripheral, etc. The “Japanese” relation of “Toyota” to these companieswas interestingly stronger
than the relation to the “Car” group.

Finally, we applied runs that combine both automatic cardinality adaptation and enrichment of
the structure with new hidden variables. Table 2 shows the train and test performance for theStock
data set. Shown are several runs with theEnrich operator and fixed cardinality. For each run, the
number of hidden variables added during the learning process (excludingthe initial root node) is
noted. Also shown is the automatic cardinality method using theBDe score along with the different
cardinalities of the 6 hidden variables introduced into the network structure.The combined method
was able to surpass the best of the fixed cardinality models in terms of test setperformance with
fewer than 70% of the parameters. In addition, the fact that the combined method improves test
performance but has worse training likelihood, demonstrates its ability to avoidoverfitting.

12. Related Work

To define the IB-EM algorithm, we introduced a formal relation between the information bottleneck
(IB) target Lagrangian and the EM functional. This allowed us to formulate an information-theoretic
regularization for our learning problem. Given this objective, we used twocentral ideas to make
learning feasible. First, following all annealing methods, we slowly diminish the level of “pertur-
bation” as a way to reach a solution of the hard objective. Second, we usecontinuation to define a
stable traversal from an easy problem to our goal problem.

114

LEARNING HIDDEN VARIABLE NETWORKS

Internet

T2

AOL

Cisco

Intel

T0

T1

Varied

High-tech giants

Yahoo Amazon

InfoSeek

Netscape

Nissan GatewayMicrosoft

3COM DellCompaq

AMDMotorola

GM

Ford

Cannon

Sony Toyota

Cannon

Sony Toyota
T4T3

Cars

Figure 16: Structure learned for theStock data set using the enrichment operator augmented with
structure search that use the replace-parent operator. All the hiddenvariables (circles)
are binary and the subset entropy threshold was set at 95%. The children of each leaf
are annotated with a plausible interpretation.

A multitude of regularization forms are used in machine learning, typically depending on the
specific form of the target function (see Bishop (1995) and references within). Information-theoretic
regularization has been used for classification with partially labeled data by Szummer and Jaakkola
(2002) and for general scenarios in deterministic annealing (Rose, 1998).

Of the annealing methods, the well knownSimulated annealing(Kirkpatrick et al., 1983) is
least similar to ours. Rather than changing the form of the objective function, Simulated annealing
allows the search procedure to make “downhill” moves with some diminishing probability. This
changes the way the procedure traverses the search space and allowsit to potentially reach pre-
viously unattainable solutions. Several papers (Heckerman et al., 1994;Chickering, 1996; Elidan
et al., 2002) have shown that Simulated annealing is not effective when learning Bayesian networks.

Weight annealing(Elidan et al., 2002), on the other hand, skews the target function directlyby
perturbing the weights of instances in diminishing magnitudes. Thus, like our method it changes
the form ofQ directly but does not use an information-theoretic regularization. Weight annealing
can actually be applied to a wider variety of problems than our method, includingstructure search
with complete data. However, like other annealing methods, it requires a cooling scheme. For the
large problems with hidden variables we explored in this paper, Weight annealing proved inferior
with similar running times, and impractical with the settings of Elidan et al. (2002).

Finally, like our method, deterministic annealing (Rose, 1998) alters the problem by explicitly
introducing an information-theoretic regularization term. Specifically, following the widely recog-
nizedmaximum entropy principle(Jaynes, 1957), deterministic annealing penalizes the objective

115

ELIDAN AND FRIEDMAN

Log-likelihood # of # of
Cardinality Train Test hiddens parameters
2 -19.62 -19.62 5 89
3 -19.32 -19.37 5 146
5 -18.87 -19.04 6 304
10 -18.53 -18.96 5 769
20 -18.43 -18.98 5 2340
BDe (9,6,7,7,7,7) -18.65 -18.94 6 526

Table 2: Effect of cardinality when inserting new hidden variables into the network structure with
theEnrich operator for theStock data set. A 95% entropy threshold was used for the hidden
variable discovery algorithm. The table shows results for several fixed cardinalities as well
as the automatic cardinality method using the BDe score. Shown is the log-likelihood per
instance for training as well as test data, the number of hidden variables and the number
of parameters in the model. For the automatic method, the cardinalities of each hidden
variable is noted.

with a term that is the entropy of the model. A concrete application of deterministic annealing to
graphical models was suggested by Ueda and Nakano (1998). However, when learning graphical
models, the deterministic annealing was not found to be superior to standard EM (e.g., (Smith and
Eisner, 2004)).3 In particular, Whiley and Titterington (2002); Smith and Eisner (2004)) show why
applying deterministic annealing to standard unsupervised learning of Bayesian networks with hid-
den variables is problematic. One possible explanation for why our method works well for these
methods is the difference in motivation of the regularization term. Specifically, our term was moti-
vated by the need for generalization where one want to compress the identityof specific instances.
Another important difference between the two methods is that, like Weight annealing, deterministic
annealing requires the specification of a cooling policy which makes it potentially impractical for
large generative problems. This problem may be avoided using a method similarto the one we used
in this work. We leave this prospect as well as the challenge of better understanding the relation
between the entropy and information regularization terms for future study.

Continuation methods are a well developed field in mathematics (Watson, 2000).While these
methods are used extensively and successfully to solve practical engineering challenges such as
complex polynomial systems, they have not been frequently used in machine learning. Recently,
Corduneanu and Jaakkola (2002) used continuation to determine a beneficial balance between la-
beled and unlabeled data. To our knowledge this is the first work in learninggraphical models to
use continuation to traverse from an easy solution to the desired maximum likelihood problem.

A complementary aspect of our work is the introduction of modification operators for hidden
variables. Our method both for learning the cardinality of a hidden variable,and for introducing
new hidden variables into the network structure, relies on the annealing process and utilizes emer-
gent signals. The problem of evaluating the cardinality of a hidden variablein a graphical model

3Smith and Eisner (2004) also suggest a variant of the deterministic annealing algorithm that appears to work well
but is only applicable in the context of semi-supervised learning or when an initial informed starting point for the EM
algorithm is at hand.

116

LEARNING HIDDEN VARIABLE NETWORKS

was explored in several works (e.g., Chang and Fung (1990); Elidan and Friedman (2001)). The
work of Stolcke and Omohundro (1993) for HMMs was the first to use evaluation of pairwise state
merges to determine adapt the cardinality. In Elidan and Friedman (2001), weextend their method
for general Bayesian networks, and Slonim et al. (2002) used a similar approach within the infor-
mation bottleneck framework. All of these methods start with a large number of states, and then
apply bottom-up agglomeration to merge overlaps in the state space and reduceredundancies. By
contrast, our method is able to take an “add-when-needed” approach and state mergers are evaluated
not to collapse states but rather to determine if a new one is needed. Several papers also explored
methods for introducing new hidden variables into the network structure, either for specific classes
of Bayesian networks (e.g., Martin and VanLehn (1995); Spirtes et al. (1993); Zhang (2004)) or
for general models using a structural signature approach (Elidan et al.,2001). Our contribution in
enriching the structure with new hidden variables is twofold. First, we suggested a natural informa-
tion signature as a “cue” for the presence of a hidden variable. Unlike thestructural signature this
signature is flexible and is able to weight the influence of different child nodes. Second, we use the
enrichment approach in conjunction with the continuation approach for bypassing local maxima.
As in cardinality learning, we are able to utilize emergent signals allowing the introduction of new
hidden variables into simpler models rendering them more effective.

13. Discussion and Future Work

In this work we addressed the challenge of learning models with hidden variables in real-life scenar-
ios. We presented a general approach for learning the parameters of hidden variables in Bayesian
networks and introduced model selection operators that allow learning of new hidden variables and
their cardinality. We showed that the method achieves significant improvementon challenging real-
life problems.

The contribution of this work is threefold. First, we made a formal connectionbetween the
objective functionals of the information bottleneck framework (Tishby et al.,1999; Friedman et al.,
2001) and maximum likelihood learning for graphical models. The information bottleneck and
its extensions are originally viewed as methods to understand the structure ofa distribution. We
showed that in some sense the information bottleneck and maximum likelihood estimation are two
sides of the same coin. The information bottleneck focuses on the distribution of variables in each
instance, while maximum likelihood focuses on the projection of this distribution onthe estimated
model. This understanding extends to general Bayesian networks the recent results of Slonim and
Weiss (2002) that relate the original information bottleneck and maximum likelihood estimation in
univariate mixture distributions.

Second, the introduction of the IB-EM principle allowed us to use an approach that starts with
a solution atγ = 0 and progresses toward a solution in the more complex landscape ofγ = 1. This
general scheme is common indeterministic annealingapproaches (Rose, 1998; Ueda and Nakano,
1998). These approaches “flatten” the posterior landscape by raisingthe likelihood to the power of
γ. The main technical difference of our approach is the introduction of a regularization term that
is derived from the structure of the approximation of the probability of the latent variables in each
instance. This was combined with a continuation method for traversing the path from the trivial
solution atγ = 0 to a solution atγ = 1. Unlike standard approaches in deterministic annealing
and information bottleneck, our procedure can automatically detect important regions where the

117

ELIDAN AND FRIEDMAN

solution changes drastically and ensure that they are tracked closely. Inpreliminary experiment the
continuation method was clearly superior to standard annealing strategies.

Third, we introduced model enrichment operators for inserting new hidden variables into the
network structure and adapting their cardinality. These operators were specifically geared toward
utilizing the emergent cues resulting from the annealing procedure. This resulted in models that
generalize better and achieve equivalent or better results with a relativelysimple model.

The methods presented here can be extended in several directions. First, we can improve the
introduction of new hidden variables into the structure by formulating better “signals” that can be
efficiently calculated for larger clusters. Second, we can use alternative variational approximations
as well as adaptive approximation during the learning process. Third, wewant to explore methods
for stopping atγ < 1 as an alternative way for improving generalization performance.

Acknowledgments

We thank R. Bachrach, Y. Barash, G. Chechik, T. Kaplan, D. Koller, M. Ninio, D. Pe’er, A. Regev,
T. Tishby, and Y. Weiss for discussions and comments on earlier drafts ofthis paper. This work was
supported, in part, by a grant from the Israeli Ministry of Science and agrant by Intel Corporation.
G. Elidan was also supported by the Horowitz fellowship. N. Friedman was also supported by an
Alon Fellowship and by the Harry & Abe Sherman Senior Lectureship in Computer Science.

Appendix A. Fixed Point Equations

We now develop the fixed point equations use for solving the target Lagrangian of our approach.
We start with the case of a single hidden variables and then address the moregeneral scenario of
multiple hidden variables.

A.1 Single Hidden Variable

Proposition 4: Let LEM be defined viaGin andGout as in Proposition 1. Q(T |Y) is a stationary
point of LEM with respect to a fixed choice of P if and only if for all values t and y of T andY,
respectively,

Q(t | y) =
1

Z(y,γ)
Q(t)1−γP(x[y], t])γ,

where Z(y,γ) is a normalizing constant and equals to

Z(y,γ) = ∑
t ′

Q(t ′)1−γP(x[y], t ′])γ. (15)

To prove the proposition we use the following

Lemma 9 (El-Hay and Friedman, 2001) Let Q(X) be a joint distribution over a set of random
variablesX, that decomposes according to Q(X) = ∏i Q(Xi | Ui). Then

∂IEQ[f (X)]

∂Q(xi | ui)
= Q(ui)IEQ(·|xi ,ui)[f (X)]+ IEQ

[
∂ f (x)

∂Q(xi ,ui)

]
.

118

LEARNING HIDDEN VARIABLE NETWORKS

The following is an immediate results of that fact thatQ(t) = ∑y′ Q(y′)Q(t|y′)

∂Q(T)

∂Q(t0 | y0)
= Q(y0)1{T = t0}. (16)

We use this and an instantiation of the above lemma to prove the following:

Lemma 10

∂IIQ(T;Y)

∂Q(t0 | y0)
= Q(y0) log

Q(t0|y0)

Q(t0)
.

Proof: We definef (T,Y) ≡ log Q(T,Y)
Q(T)Q(Y) = log Q(T|Y)

Q(T) so that using Eq. (16), we can write

∂ f (T,Y)

∂Q(t0 | y0)
=

∂ logQ(T |Y)

∂Q(t0 | y0)
−

∂ logQ(T)

∂Q(t0 | y0)

=
1

Q(t0 | y0)
1{T = t0,Y = y0}−

Q(y0)

Q(t0)
1{T = t0}.

Plugging this into Lemma 9, we get

∂IIQ(T;Y)

∂Q(t0 | y0)
= Q(y0)IEQ(·|t0,y0)

[
log

Q(T |Y)

Q(T)

]
+ IEQ




∂ log Q(T|Y)

Q(T)

∂Q(t0,y0)





= Q(y0) log
Q(t0 | y0)

Q(t0)
+Q(y0)

Q(t0 | y0)

Q(t0 | y0)
−∑

y
Q(y)Q(t0 | y)

Q(y0)

Q(t0)

= Q(y0) log
Q(t0 | y0)

Q(t0)
+Q(y0)

[
1−

1
Q(t0)

∑
y

Q(y)Q(t0 | y)

]

= Q(y0) log
Q(t0 | y0)

Q(t0)
+Q(y0) [1−1]

= Q(y0) log
Q(t0 | y0)

Q(t0)
.

Using Eq. (16) and Lemma 9 withf (T,Y) ≡ logQ(T), the following is immediate.

Lemma 11

∂IEQ[logQ(T)]

∂Q(t0 | y0)
= Q(y0) logQ(t0)+Q(t0)

1
Q(t0)

Q(y0) = Q(y0) [logQ(t0)+1] .

Proof of the proposition: We want to findQ(T | Y) that are stationary points of the Lagrangian
LEM and where the constraints∑t Q(t | y) = 1 hold for anyy. Thus, using Lagrange multipliers, we
want to optimize

L = IIQ(T;Y)− γ(IEQ[logP(X,T)]− IEQ[logQ(T)])+∑
y

λy

(

∑
t ′

Q(t ′ | y)−1

)
.

119

ELIDAN AND FRIEDMAN

SinceP is fixed, using Lemma 9 withf (Y,X,T) ≡ logP(X,T), we can write

∂IEQ[logP(X,T)]

∂Q(t0 | y0)
= Q(y0) logP(x[y0], t0).

Combining this with Lemma 10 and Lemma 11, we get

∂LEM

∂Q(t0 | y0)
= Q(y0) [logQ(t0 | y0)− (1− γ) logQ(t0)+ γ− γ logP(x[y0], t0)]+λy0.

Dividing by Q(y0) and equating to 0, we get after rearranging of terms

Q(t0|y0) = eλy0/Q(y0)+γQ(t0)
1−γP(x[y0], t0)

γ. (17)

This must hold for any valuet0 andy0. Using∑t Q(t | y0) = 1 we get

eλy0/Q(y0)+γ =
1

∑t Q(t)1−γP(x[y0], t)γ .

We get the desired result by plugging this into Eq. (17).

A.2 Multiple Hidden Variables

Proposition 6: LetL
+

EM be defined viaGin andGout as in Eq. (12). Assuming amean fieldapproxi-
mation for Q(T |Y), a (local) maximum ofL

+

EM is achieved by iteratively solving, independently for
each hidden variable i, the self-consistent equations

Q(ti | y) =
1

Z(i,y,γ)
Q(ti)

1−γ expγEP(ti ,y),

where
EP(ti ,y) ≡ IEQ(T|ti ,y)[logP(x[y],T)]

and Z(i,y,γ) is a normalizing constant that equals to

Z(i,y,γ) = ∑
t ′i

Q(t ′i)
1−γ expγEP(t ′i ,y) .

Proof: Using themean fieldassumption, the information and entropy terms in the Lagrangian
decompose as follows

L
+

EM = ∑
i

IIQ(Ti ;Y)− γ

(
IEQ[logP(X,T)]−∑

i

IEQ[logQ(Ti)]

)
.

When computing the derivative with respect to the parameters of a specific variablesTi , the only
change from the case of single hidden variable, is in the derivative ofIEQ[logP(X,T)] given fixed
P. Again using Lemma 9 withf (Y,X,T) ≡ logP(X,T) we get

∂IEQ[logP(X,T)]

∂Q(ti0 | y0)
= IEQ(T|ti0,y0)[logP(x[y0],T)],

from which we get the change from Proposition 4 to Proposition 6 for the case of multiple hidden
variables.

120

LEARNING HIDDEN VARIABLE NETWORKS

Appendix B. Computing the Continuation Direction

We now develop the precise computations needed to perform continuation asdescribed in Section 4.
We start with the case of a single hidden variablesT.

B.1 Single Hidden Variable

Consider again Eq. (7), where we now write the normalization termZ(y,γ) explicitly:

Gt,y(Q,γ) = − logQ(t | y)+(1− γ) logQ(t)+ γ logP(x[y], t)

− log∑
t ′

exp(1−γ) logQ(t ′)+γ logP(x[y],t ′)

︸ ︷︷ ︸
Z(y,γ)

. (18)

We want to compute the derivative ofGt,y(Q,γ) with respect to the parameters andγ, and and then
use the orthogonal direction for continuation. The will follow a direction in which the fix point
equations remain unchanged, and the local maximum is tracked. To do so, westart by expressing
logP(x[y], t) as a function of the parametersQ.

The maximum likelihood parameters of logP(X,T) for the conditional distribution of the chil-
drenXi of T in Gout are

θxi |pai ,t =
∑yQ(y)Q(t|y)1{xi [y] = xi ,pai [y] = pai}+α(xi ,pai , t)

∑yQ(y)Q(t|y)1{pai [y] = pai}+α(pai , t)
≡

N (xi ,pai , t)
N (pai , t)

, (19)

where 1{} is the indicator function,α() are the hyper-parameters of the Dirichlet prior distribution
(see Section 2.1) andN are used to denote the total counts (including prior) used for estimation.
Similarly the maximum likelihood parameters of the distribution ofT given its parents are

θt|pat
=

∑yQ(y)Q(t|y)1{pat [y] = pat}+α(pat , t)

∑yQ(y)1{pat [y] = pat}+α(pat)
≡

N (pat , t)
N (pat)

. (20)

We now consider each term inGt,y(Q,γ) and compute its derivative with respect to these parameters
of Q.

COMPUTATION OF
∂ logP(x[y],t)

∂Q(t0|y0)

The derivatives of the parameters expressed in Eq. (19) are

∂θxi |pai ,t

∂Q(t0|y0)

= Q(y0)
N (pai ,t)2

[
1{xi [y0] = xi ,pai [y0] = pai}N (pai , t)−1{pai [y0] = pai}N (xi ,pai , t)

]

= Q(y0)1{pai [y0]=pai}
N (pai ,t)2

(
1{xi [y0] = xi}N (pai , t)−N (xi ,pai , t)

)
(21)

for t = t0 and are zero otherwise. Similarly, the derivatives of the parameters of Eq. (20) are

∂θt|pat

∂Q(t0 | y0)
=

Q(y0)

N (pat)
2 [1{pat [y0] = pat}N (pat)−0] =

Q(y0)

N (pat)
1{pat [y0] = pat} (22)

121

ELIDAN AND FRIEDMAN

for t = t0, and are zero otherwise. The log-probability of a specific instance can be written as

logP(x[y], t) = logθt|pat
[y]+ ∑

i∈Cht

logθxi |pai ,t [y]+ ∑
i6=t,Cht

logθxi |pai
[y], (23)

whereCht denotes the children ofT in Gout andθt|pat
[y] is the parameter corresponding to the values

appearing in instancey. We note that the last summation does not depend on the parametersQ(t | y),
and by plugging Eq. (21) and Eq. (22) into Eq. (23), we get

∂ logP(x[y], t)
∂Q(t0 | y0)

=
1

θt|pat
[y]

∂θt|pat
[y]

∂Q(t0 | y0)
+ ∑

i∈Cht

1
θxi |pai ,t [y]

∂θxi |pai ,t [y]

∂Q(t0 | y0)

= Q(y0)

[
1{pat [y0]=pat [y]}
N (pat)θt|pat [y0]

+∑i∈Cht

1{pai [y0]=pai [y]}
N (pai ,t)2θxi |pai

[y0]

(
1{xi [y] = xi [y0]}N (pai , t)−N (xi ,pai , t)

)]

≡ Q(y0)D(y, t),

(24)

where in the last line we useD(y, t) to denote the expression in the square brackets.

COMPUTATION OF
∂ logZ(y0,γ)

∂Q(t0|y0)

Using Eq. (16) from Appendix A and the above, we can write

∂ (1− γ) logQ(t)+ γ logP(x[y], t)
∂Q(t0 | y0)

= Q(y0)

[
1− γ
Q(t)

+ γD(y, t)

]
. (25)

We can now use Eq. (25) to write the derivative ofZ(y,γ) since it is a summation over similar
expressions

∂ logZ(y0,γ)
∂Q(t0|y0)

= 1
Z(y0,γ) exp(1−γ) logQ(t0)+γ logP(x[y],t0) Q(y0)

[
1−γ
Q(t0)

+ γD(y0, t0)
]

= 1
Z(y0,γ)Q(y0)Q(t0)1−γP(x[y], t0)γ

[
1−γ
Q(t0)

+ γD(y0, t0)
]

= Q(y0)Q(t0 | y0)
[

1−γ
Q(t0)

+ γD(y0, t0)
]
,

(26)

where the last equality follows from Proposition 4.

COMPUTATION OF
∂Gt,y(Q,γ)
∂Q(t0|y0)

We combine Eq. (25) and Eq. (26) to write

∂Gt,y(Q,γ)
∂Q(t0 | y0)

= −1{y = y0}+Q(y0) [1−Q(t0 | y0)]

[
1− γ
Q(t0)

+ γD(y0, t0)

]
. (27)

COMPUTATION OF
∂ logZ(y,γ)

∂γ

The only term that is not immediate is the derivative ofZ(y,γ) with respect toγ
∂ logZ(y,γ)

∂γ
=

1
Z(y,γ) ∑

t ′
exp(1−γ) logQ(t ′)+γ logP(x[y],t ′) [− logQ(t ′)+ logP(x[y], t ′)

]

= ∑
t ′

1
Z(y,γ)

Q(t ′)1−γP(x[y], t ′)γ [− logQ(t ′)+ logP(x[y], t ′)
]

= ∑
t ′

Q(t ′|y)
[
logP(x[y], t ′)− logQ(t ′)

]
,

122

LEARNING HIDDEN VARIABLE NETWORKS

from which follows

∂Gt,y(Q,γ)
∂γ

= logP(x[y], t)− logQ(t)−∑
t ′

Q(t ′|y)
[
logP(x[y], t ′)− logQ(t ′)

]
. (28)

COMPUTATION OF THE CONTINUATION DIRECTION

We can now compute all the elements of the derivative matrix of Eq. (9)

Ht,y(Q,γ) =
(

∂Gt,y(Q,γ))
∂Q(t|y)

∂Gt,y(Q,γ)
∂γ

)
.

To compute the orthogonal direction to the derivative, we solve Eq. (10)

H(Q,γ)∆ = 0.

As noted in Section 4, this can be prohibitively expensive and we resort toH(Q,γ) with a diagonal

approximation for elements of∂Gt,y(Q,γ)
∂Q(t|y) computed in Eq. (27). We denote byhy,t the diagonal entry

for Y = y andT = t andhγ
y,t the corresponding derivative with respect toγ. We then have to solve a

set of equations of the form
dt,yhy,t +dγh

γ
y,t = 0,

wheredt,y anddγ are the elements of∆. Settingdγ = 1 (an equivalent solution up to scaling) we get
the unique solution

dt,y = −
hγ

y,t

hy,t
.

Normalizing∆ using the derivative ofIIQ(T;Y) as described in Eq. (11) can now be easily computed
given the Lemma 10 in Appendix A.

B.2 Multiple Hidden Variables

When computing the derivative with respect to the parameters associated witha specific hidden
variableti , the only change inGt,y(Q,γ) is that logP(x[y], t) is replaced byIEQ(T|ti ,y)[logP(x[y],T)].
In this case we simply compute the expectation of Eq. (24) over theT ’s that are in the Markov
blanket ofti . The rest of the details remain the same.

References

J. Adachi and M. Hasegawa. Molphy version 2.3, programs for molecular phylogenetics based on
maximum likelihood. Technical report, The Institute of Statistical Mathematics, Tokyo, Japan,
1996.

S. Becker, S. Thrun, and K. Obermayer, editors.Advances in Neural Information Processing Sys-
tems 15. MIT Press, Cambridge, Mass., 2002.

C. M. Bishop.Neural Networks for Pattern Recognition. Oxford University Press, Oxford, United
Kingdom, 1995.

X. Boyen, N. Friedman, and D. Koller. Discovering the hidden structure of complex dynamic sys-
tems. In K. Laskey and H. Prade, editors,Proc. Fifteenth Conference on Uncertainty in Artificial
Intelligence (UAI ’99), pages 91–100, San Francisco, 1999. Morgan Kaufmann.

123

ELIDAN AND FRIEDMAN

J.S. Breese and D. Koller, editors.Proc. Seventeenth Conference on Uncertainty in Artificial Intel-
ligence (UAI ’01). Morgan Kaufmann, San Francisco, 2001.

K. Chang and R. Fung. Refinement and coarsening of bayesian networks. In P. P. Bonissone,
M. Henrion, L. N. Kanal, and J. F. Lemmer, editors,Proc. Sixth Annual Conference on Uncer-
tainty Artificial Intelligence (UAI ’90), pages 475–482, San Francisco, 1990. Morgan Kaufmann.

P. Cheeseman, J. Kelly, M. Self, J. Stutz, W. Taylor, and D. Freeman. Autoclass: a Bayesian
classification system. InProc. Fifth International Workshop on Machine Learning, pages 54–64.
Morgan Kaufmann, San Francisco, 1988.

D. M. Chickering. Learning equivalence classes of Bayesian networkstructures. In E. Horvitz and
F. Jensen, editors,Proc. Twelfth Conference on Uncertainty in Artificial Intelligence (UAI ’96),
pages 150–157, San Francisco, 1996. Morgan Kaufmann.

D. M. Chickering and D. Heckerman. Efficient approximations for the marginal likelihood of
Bayesian networks with hidden variables.Machine Learning, 29:181–212, 1997.

A. Corduneanu and T. Jaakkola. Continuation methods for mixing heterogeneous sources. In
A. Darwich and N. Friedman, editors,Proc. Eighteenth Conference on Uncertainty in Artificial
Intelligence (UAI ’02), pages 111–118, San Francisco, 2002. Morgan Kaufmann.

T. M. Cover and J. A. Thomas.Elements of Information Theory. John Wiley & Sons, New York,
1991.

M. H. DeGroot.Optimal Statistical Decisions. McGraw-Hill, New York, 1970.

A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood from incomplete data via the
EM algorithm.Journal of the Royal Statistical Society, B 39:1–39, 1977.

T. El-Hay and N. Friedman. Incorporating expressive graphical models in variational approxima-
tions: Chain-graphs and hidden variables. In Breese and Koller (2001), pages 136–143.

G. Elidan and N. Friedman. Learning the dimensionality of hidden variables. In Breese and Koller
(2001), pages 144–151.

G. Elidan, N. Lotner, N. Friedman, and D. Koller. Discovering hidden variables: A structure-based
approach. In Leen et al. (2001), pages 479–485.

G. Elidan, M. Ninio, N. Friedman, and D. Schuurmans. Data perturbation for escaping local maxima
in learning. InProc. National Conference on Artificial Intelligence (AAAI ’02), pages 132–139.
AAAI Press, Menlo Park, CA, 2002.

N. Friedman. Learning belief networks in the presence of missing values and hidden variables. In
D. Fisher, editor,Proc. Fourteenth International Conference on Machine Learning, pages 125–
133. Morgan Kaufmann, San Francisco, 1997.

N. Friedman, O. Mosenzon, N. Slonim, and N. Tishby. Multivariate information bottleneck. In
Breese and Koller (2001), pages 152–161.

124

LEARNING HIDDEN VARIABLE NETWORKS

A. P. Gasch, P. T. Spellman, C. M. Kao, O. Carmel-Harel, M. B. Eisen, G.Storz, D. Botstein,
and P. O. Brown. Genomic expression program in the response of yeast cells to environmental
changes.Molecular Biology of the Cell, 11:4241–4257, 2000.

F. Glover and M. Laguna. Tabu search. In C. Reeves, editor,Modern Heuristic Techniques for
Combinatorial Problems, Oxford, England, 1993. Blackwell Scientific Publishing.

D. Heckerman. A tutorial on learning with Bayesian networks. In M. I. Jordan, editor,Learning in
Graphical Models. Kluwer, Dordrecht, Netherlands, 1998.

D. Heckerman, D. Geiger, and D. M. Chickering. Learning Bayesian networks: The combination
of knowledge and statistical data. In R. López de Mantarás and D. Poole, editors,Proc. Tenth
Conference on Uncertainty in Artificial Intelligence (UAI ’94), pages 293–301, San Francisco,
1994. Morgan Kaufmann.

D. Heckerman, D. Geiger, and D. M. Chickering. Learning Bayesian networks: The combination
of knowledge and statistical data.Machine Learning, 20:197–243, 1995.

E. T. Jaynes. Information theory and statistical mechanics.Physical Review, 106:620–630, 1957.

M. I. Jordan, Z. Ghahramani, T. Jaakkola, and L. K. Saul. An introduction to variational approx-
imations methods for graphical models. In M. I. Jordan, editor,Learning in Graphical Models.
Kluwer, Dordrecht, Netherlands, 1998.

S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimization by simulated annealing. Science, 220
(4598):671–680, 1983.

W. Lam and F. Bacchus. Learning Bayesian belief networks: An approach based on the MDL
principle. Computational Intelligence, 10:269–293, 1994.

S. L. Lauritzen. The EM algorithm for graphical association models with missing data.Computa-
tional Statistics and Data Analysis, 19:191–201, 1995.

T. K. Leen, T. G. Dietterich, and V. Tresp, editors.Advances in Neural Information Processing
Systems 13. MIT Press, Cambridge, Mass., 2001.

J. Martin and K. VanLehn. Discrete factor analysis: Learning hidden variables in Bayesian net-
works. Technical report, Department of Computer Science, Universityof Pittsburgh, 1995.

M. Meila and M. I. Jordan. Estimating dependency structure as a hidden variable. In M. I. Jordan,
M. J. Kearns, and S. A. Solla, editors,Advances in Neural Information Processing Systems 10,
pages 584–590, Cambridge, Mass., 1998. MIT Press.

R. M. Neal and G. E. Hinton. A new view of the EM algorithm that justifies incremental and other
variants. In M. I. Jordan, editor,Learning in Graphical Models. Kluwer, Dordrecht, Netherlands,
1998.

J. Pearl.Probabilistic Reasoning in Intelligent Systems. Morgan Kaufmann, 1988.

F. Pereira, N. Tishby, and L. Lee. Distributional clustering of English words. In31st Annual Meeting
of the ACL, pages 183–190, 1993.

125

ELIDAN AND FRIEDMAN

K. Rose. Deterministic annealing for clustering, compression, classification, regression, and related
optimization problems.Proc. IEEE, 86:2210–2239, 1998.

N. Slonim, N.Friedman, and T.Tishby. Agglomerative multivariate information bottleneck. In T. G.
Dietterich, S. Becker, and Z. Ghahramani, editors,Advances in Neural Information Processing
Systems 14, pages 929–936, Cambridge, Mass., 2002. MIT Press.

N. Slonim and N. Tishby. Agglomerative information bottleneck. In S. A. Solla, T. K. Leen,
and K. Müller, editors,Advances in Neural Information Processing Systems 12, pages 617–623,
Cambridge, Mass., 2000. MIT Press.

N. Slonim and N. Tishby. Data clustering by markovian relaxation and the information bottleneck
method. In Leen et al. (2001), pages 640–646.

N. Slonim and Y. Weiss. Maximum likelihood and the information bottleneck. In Becker et al.
(2002), pages 351–358.

N. A. Smith and J. Eisner. Annealing techniques for unsupervised statistical language learning. In
Proc. 42nd Annual Meeting of the Association for Computational Linguistics, 2004.

P. Spirtes, C. Glymour, and R. Scheines.Causation, Prediction and Search. Number 81 in Lecture
Notes in Statistics. Springer-Verlag, New York, 1993.

A. Stolcke and S. Omohundro. Hidden Markov Model induction by bayesian model merging. In
Stephen Jośe Hanson, Jack D. Cowan, and C. Lee Giles, editors,Advances in Neural Information
Processing Systems, volume 5, pages 11–18. Morgan Kaufmann, San Mateo, CA, 1993.

M. Szummer and T. Jaakkola. Information regularization with partially labeled data. In Becker
et al. (2002), pages 640–646.

B. Thiesson. Score and information for recursive exponential models with incomplete data. In
D. Geiger and P. Shanoy, editors,Proc. Thirteenth Conference on Uncertainty in Artificial Intel-
ligence (UAI ’97), San Francisco, 1997. Morgan Kaufmann.

B. Thiesson, C. Meek, D. M. Chickering, and D. Heckerman. Learningmixtures of Bayesian
networks. In G. F. Cooper and S. Moral, editors,Proc. Fourteenth Conference on Uncertainty in
Artificial Intelligence (UAI ’98), pages 504–513, San Francisco, 1998. Morgan Kaufmann.

N. Tishby, F. Pereira, and W. Bialek. The information bottleneck method. InB. Hajek and R. S.
Sreenivas, editors,Proc. 37th Allerton Conference on Communication, Control and Computation,
pages 368–377. University of Illinois, 1999.

N. Ueda and R. Nakano. Deterministic annealing EM algorithm.Neural Networks, 11(2):271–282,
1998.

L. T. Watson. Theory of globally convergent probability-one homotopiesfor non-linear program-
ming. Technical Report TR-00-04, Department of Computer Science, Virginia Tech, 2000.

M. Whiley and D. M. Titterington. Applying the deterministic annealing expectationmaximization
algorithm to Naive Bayes networks. Technical Report 02-5, Department of Statistics, University
of Glasgow, 2002.

126

LEARNING HIDDEN VARIABLE NETWORKS

N. L. Zhang. Hierarchical latent class models for cluster analysis.Journal of Machine Learning
Research, 5:697–723, 2004.

127

Journal of Machine Learning Research 6 (2005) 129–163 Submitted 1/04; Published 1/05

Diffusion Kernels on Statistical Manifolds

John Lafferty LAFFERTY@CS.CMU.EDU

Guy Lebanon LEBANON@CS.CMU.EDU

School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213 USA

Editor: Tommi Jaakkola

Abstract
A family of kernels for statistical learning is introduced that exploits the geometric structure of

statistical models. The kernels are based on the heat equation on the Riemannian manifold defined
by the Fisher information metric associated with a statistical family, and generalize the Gaussian
kernel of Euclidean space. As an important special case, kernels based on the geometry of multi-
nomial families are derived, leading to kernel-based learning algorithms that apply naturally to
discrete data. Bounds on covering numbers and Rademacher averages for the kernels are proved
using bounds on the eigenvalues of the Laplacian on Riemannian manifolds. Experimental results
are presented for document classification, for which the useof multinomial geometry is natural and
well motivated, and improvements are obtained over the standard use of Gaussian or linear kernels,
which have been the standard for text classification.

Keywords: kernels, heat equation, diffusion, information geometry,text classification

1. Introduction

The use of Mercer kernels for transforming linear classification and regression schemes into nonlin-
ear methods is a fundamental idea, one that was recognized early in the development of statistical
learning algorithms such as the perceptron, splines, and support vectormachines (Aizerman et al.,
1964; Kimeldorf and Wahba, 1971; Boser et al., 1992). The resurgence of activity on kernel methods
in the machine learning community has led to the further development of this important technique,
demonstrating how kernels can be key components in tools for tackling nonlinear data analysis
problems, as well as for integrating data from multiple sources.

Kernel methods can typically be viewed either in terms of an implicit representation of a high
dimensional feature space, or in terms of regularization theory and smoothing (Poggio and Girosi,
1990). In either case, most standard Mercer kernels such as the Gaussian or radial basis function
kernel require data points to be represented as vectors in Euclidean space. This initial processing
of data as real-valued feature vectors, which is often carried out in anad hocmanner, has been
called the “dirty laundry” of machine learning (Dietterich, 2002)—while the initial Euclidean fea-
ture representation is often crucial, there is little theoretical guidance on howit should be obtained.
For example, in text classification a standard procedure for preparing the document collection for
the application of learning algorithms such as support vector machines is to represent each docu-
ment as a vector of scores, with each dimension corresponding to a term, possibly after scaling by
an inverse document frequency weighting that takes into account the distribution of terms in the

c©2005 John Lafferty and Guy Lebanon.

LAFFERTY AND LEBANON

collection (Joachims, 2000). While such a representation has proven to beeffective, the statistical
justification of such a transform of categorical data into Euclidean space isunclear.

Motivated by this need for kernel methods that can be applied to discrete, categorical data,
Kondor and Lafferty (2002) propose the use of discrete diffusion kernels and tools from spectral
graph theory for data represented by graphs. In this paper, we propose a related construction of
kernels based on the heat equation. The key idea in our approach is to begin with a statistical
family that is natural for the data being analyzed, and to represent data aspoints on the statistical
manifold associated with the Fisher information metric of this family. We then exploit the geometry
of the statistical family; specifically, we consider the heat equation with respect to the Riemannian
structure given by the Fisher metric, leading to a Mercer kernel defined on the appropriate function
spaces. The result is a family of kernels that generalizes the familiar Gaussian kernel for Euclidean
space, and that includes new kernels for discrete data by beginning with statistical families such as
the multinomial. Since the kernels are intimately based on the geometry of the Fisher information
metric and the heat or diffusion equation on the associated Riemannian manifold, we refer to them
here asinformation diffusion kernels.

One apparent limitation of the discrete diffusion kernels of Kondor and Lafferty (2002) is the
difficulty of analyzing the associated learning algorithms in the discrete setting.This stems from
the fact that general bounds on the spectra of finite or even infinite graphs are difficult to obtain,
and research has concentrated on bounds on the first eigenvalues for special families of graphs. In
contrast, the kernels we investigate here are over continuous parameter spaces even in the case where
the underlying data is discrete, leading to more amenable spectral analysis. We can draw on the
considerable body of research in differential geometry that studies the eigenvalues of the geometric
Laplacian, and thereby apply some of the machinery that has been developed for analyzing the
generalization performance of kernel machines in our setting.

Although the framework proposed is fairly general, in this paper we focuson the application
of these ideas to text classification, where the natural statistical family is the multinomial. In the
simplest case, the words in a document are modeled as independent drawsfrom a fixed multino-
mial; non-independent draws, corresponding ton-grams or more complicated mixture models are
also possible. Forn-gram models, the maximum likelihood multinomial model is obtained simply
as normalized counts, and smoothed estimates can be used to remove the zeros. This mapping is
then used as an embedding of each document into the statistical family, where the geometric frame-
work applies. We remark that the perspective of associating multinomial modelswith individual
documents has recently been explored in information retrieval, with promising results (Ponte and
Croft, 1998; Zhai and Lafferty, 2001).

The statistical manifold of then-dimensional multinomial family comes from an embedding
of the multinomial simplex into then-dimensional sphere which is isometric under the the Fisher
information metric. Thus, the multinomial family can be viewed as a manifold of constant positive
curvature. As discussed below, there are mathematical technicalities due to corners and edges on
the boundary of the multinomial simplex, but intuitively, the multinomial family can be viewed in
this way as a Riemannian manifold with boundary; we address the technicalities by a “rounding”
procedure on the simplex. While the heat kernel for this manifold does not have a closed form, we
can approximate the kernel in a closed form using the leading term in the parametrix expansion,
a small time asymptotic expansion for the heat kernel that is of great use in differential geometry.
This results in a kernel that can be readily applied to text documents, and that is well motivated
mathematically and statistically.

130

DIFFUSION KERNELS ONSTATISTICAL MANIFOLDS

We present detailed experiments for text classification, using both the WebKB and Reuters data
sets, which have become standard test collections. Our experimental results indicate that the multi-
nomial information diffusion kernel performs very well empirically. This improvement can in part
be attributed to the role of the Fisher information metric, which results in points near the boundary
of the simplex being given relatively more importance than in the flat Euclidean metric. Viewed
differently, effects similar to those obtained by heuristically designed term weighting schemes such
as inverse document frequency are seen to arise automatically from the geometry of the statistical
manifold.

The remaining sections are organized as follows. In Section 2 we review therelevant concepts
that are required from Riemannian geometry, including the heat kernel for a general Riemannian
manifold and its parametrix expansion. In Section 3 we define the Fisher metric associated with a
statistical manifold of distributions, and examine in some detail the special casesof the multinomial
and spherical normal families; the proposed use of the heat kernel or itsparametrix approximation
on the statistical manifold is the main contribution of the paper. Section 4 derivesbounds on cov-
ering numbers and Rademacher averages for various learning algorithmsthat use the new kernels,
borrowing results from differential geometry on bounds for the geometricLaplacian. Section 5
describes the results of applying the multinomial diffusion kernels to text classification, and we
conclude with a discussion of our results in Section 6.

2. The Heat Kernel

In this section we review the basic properties of the heat kernel on a Riemannian manifold, together
with its asymptotic expansion, the parametrix. The heat kernel and its parametrix expansion contains
a wealth of geometric information, and indeed much of modern differential geometry, notably index
theory, is based upon the use of the heat kernel and its generalizations.The fundamental nature of the
heat kernel makes it a natural candidate to consider for statistical learning applications. An excellent
introductory account of this topic is given by Rosenberg (1997), and an authoritative reference for
spectral methods in Riemannian geometry is Schoen and Yau (1994). In Appendix A we review
some of the elementary concepts from Riemannian geometry that are required, as these concepts
are not widely used in machine learning, in order to help make the paper more self-contained.

2.1 The Heat Kernel

The Laplacian is used to model how heat will diffuse throughout a geometricmanifold; the flow is
governed by the following second order differential equation with initial conditions

∂ f
∂t

−∆ f = 0

f (x,0) = f0(x) .

The valuef (x, t) describes the heat at locationx at timet, beginning from an initial distribution of
heat given byf0(x) at time zero. The heat or diffusion kernelKt(x,y) is the solution to the heat
equationf (x, t) with initial condition given by Dirac’s delta functionδy. As a consequence of the
linearity of the heat equation, the heat kernel can be used to generate thesolution to the heat equation
with arbitrary initial conditions, according to

f (x, t) =
Z

M
Kt(x,y) f0(y)dy .

131

LAFFERTY AND LEBANON

As a simple special case, consider heat flow on the circle, or one-dimensional sphereM = S1,
with the metric inherited from the Euclidean metric onR

2. Parameterizing the manifold by angleθ,
and letting f (θ, t) = ∑∞

j=0a j(t) cos(jθ) be the discrete cosine transform of the solution to the heat
equation, with initial conditions given bya j(0) = a j , it is seen that the heat equation leads to the
equation

∞

∑
j=0

(
d
dt

a j(t)+ j2a j(t)

)
cos(jθ) = 0,

which is easily solved to obtaina j(t) = e− j2t and thereforef (θ, t) = ∑∞
j=0a j e− j2t cos(jθ). As the

time parametert gets large, the solution converges tof (θ, t) −→ a0, which is the average value of
f ; thus, the heat diffuses until the manifold is at a uniform temperature. To express the solution in
terms of an integral kernel, note that by the Fourier inversion formula

f (θ, t) =
∞

∑
j=0

〈 f ,ei j θ〉e− j2t ei j θ

=
1
2π

Z

S1

∞

∑
j=0

e− j2tei j θ e−i j φ f0(φ)dφ ,

thus expressing the solution asf (θ, t) =
R

S1 Kt(θ,φ) f0(φ)dφ for the heat kernel

Kt(φ,θ) =
1
2π

∞

∑
j=0

e− j2t cos(j(θ−φ)) .

This simple example shows several properties of the general solution of theheat equation on a
(compact) Riemannian manifold; in particular, note that the eigenvalues of the kernel scale asλ j ∼
e− j2/d

where the dimension in this case isd = 1.
WhenM = R, the heat kernel is the familiar Gaussian kernel, so that the solution to the heat

equation is expressed as

f (x, t) =
1√
4πt

Z

R

e−
(x−y)2

4t f0(y)dy,

and it is seen that ast −→ ∞, the heat diffuses out “to infinity” so thatf (x, t) −→ 0.
WhenM is compact, the Laplacian has discrete eigenvalues 0= µ0 < µ1 ≤ µ2 · · · with corre-

sponding eigenfunctionsφi satisfying∆φi = −µiφi . When the manifold has a boundary, appropriate
boundary conditions must be imposed in order for∆ to be self-adjoint. Dirichlet boundary con-

ditions setφi |∂M = 0 and Neumann boundary conditions require∂φi
∂ν

∣∣∣
∂M

= 0 whereν is the outer

normal direction. The following theorem summarizes the basic properties forthe kernel of the heat
equation onM; we refer to Schoen and Yau (1994) for a proof.

Theorem 1 Let M be a complete Riemannian manifold. Then there exists a function K∈C∞(R+×
M × M), called the heat kernel, which satisfies the following properties for all x,y ∈ M, with
Kt(·, ·) = K(t, ·, ·)

1. Kt(x,y) = Kt(y,x)

2. limt→0Kt(x,y) = δx(y)

132

DIFFUSION KERNELS ONSTATISTICAL MANIFOLDS

3.
(

∆− ∂
∂t

)
Kt(x,y) = 0

4. Kt(x,y) =
R

M Kt−s(x,z)Ks(z,y)dz for any s> 0 .

If in addition M is compact, then Kt can be expressed in terms of the eigenvalues and eigenfunctions
of the Laplacian as Kt(x,y) = ∑∞

i=0e−µitφi(x)φi(y).

Properties 2 and 3 imply thatKt(x,y) solves the heat equation inx, starting from a point heat
source aty. It follows that et∆ f0(x) = f (x, t) =

R

M Kt(x,y) f0(y)dy solves the heat equation with
initial conditions f (x,0) = f0(x), since

∂ f (x, t)
∂t

=
Z

M

∂Kt(x,y)
∂t

f0(y)dy

=
Z

M
∆Kt(x,y) f0(y)dy

= ∆
Z

M
Kt(x,y) f0(y)dy

= ∆ f (x, t),

and limt→0 f (x, t) =
R

M limt→0Kt(x,y)dy= f0(x). Property 4 implies thatet∆es∆ = e(t+s)∆, which
has the physically intuitive interpretation that heat diffusion for timet is the composition of heat
diffusion up to timeswith heat diffusion for an additional timet−s. Sinceet∆ is a positive operator,

Z

M

Z

M
Kt(x,y)g(x)g(y)dxdy =

Z

M
f (x)et∆g(x)dx

= 〈g,et∆g〉 ≥ 0.

ThusKt(x,y) is positive-definite. In the compact case, positive-definiteness follows directly from
the expansionKt(x,y) = ∑∞

i=0e−µitφi(x)φi(y), which shows that the eigenvalues ofKt as an integral
operator aree−µit . Together, these properties show thatKt defines a Mercer kernel.

The heat kernelKt(x,y) is a natural candidate for measuring the similarity between points be-
tweenx,y ∈ M, while respecting the geometry encoded in the metricg. Furthermore it is, unlike
the geodesic distance, a Mercer kernel—a fact that enables its use in statistical kernel machines.
When this kernel is used for classification, as in our text classification experiments presented in
Section 5, the discriminant functionyt(x) = ∑i αi yi Kt(x,xi) can be interpreted as the solution to the
heat equation with initial temperaturey0(xi) = αi yi on labeled data pointsxi , and initial temperature
y0(x) = 0 elsewhere.

2.1.1 THE PARAMETRIX EXPANSION

For most geometries, there is no closed form solution for the heat kernel. However, the short
time behavior of the solutions can be studied using an asymptotic expansion called theparametrix
expansion. In fact, the existence of the heat kernel, as asserted in the above theorem, is most directly
proven by first showing the existence of the parametrix expansion. In Section 5 we will employ the
first-order parametrix expansion for text classification.

Recall that the heat kernel on flatn-dimensional Euclidean space is given by

KEuclid
t (x,y) = (4πt)−

n
2 exp

(
−‖x−y‖2

4t

)

133

LAFFERTY AND LEBANON

where‖x−y‖2 = ∑n
i=1 |xi −yi |2 is the squared Euclidean distance betweenx andy. The parametrix

expansion approximates the heat kernel locally as a correction to this Euclidean heat kernel. To
begin the definition of the parametrix, let

P(m)
t (x,y) = (4πt)−

n
2 exp

(
−d2(x,y)

4t

)
(ψ0(x,y)+ψ1(x,y)t + · · ·+ψm(x,y)tm) (1)

for currently unspecified functionsψk(x,y), but whered2(x,y) now denotes the square of the geodesic
distance on the manifold. The idea is to obtainψk recursively by solving the heat equation approxi-
mately to ordertm, for small diffusion timet.

Let r = d(x,y) denote the length of the radial geodesic fromx to y∈Vx in the normal coordinates
defined by the exponential map. For any functionsf (r) andh(r) of r, it can be shown that

∆ f =
d2 f
dr2 +

d
(
log

√
detg

)

dr
d f
dr

∆(f h) = f ∆h+h∆ f +2
d f
dr

dh
dr

.

Starting from these basic relations, some calculus shows that
(

∆− ∂
∂t

)
P(m)

t = (tm∆ψm)(4πt)−
n
2 exp

(
− r2

4t

)
(2)

whenψk are defined recursively as

ψ0 =

(√
detg

rn−1

)− 1
2

(3)

ψk = r−kψ0

Z r

0
ψ−1

0 (∆φk−1) sk−1ds for k > 0. (4)

With this recursive definition of the functionsψk, the expansion (1), which is defined only locally,
is then extended to all ofM ×M by smoothing with a “cut-off function”η, with the specification
thatη : R+ −→ [0,1] is C∞ and

η(r) =

{
0 r ≥ 1

1 r ≤ c

for some constant 0< c < 1. Thus, the order-mparametrix is defined as

K(m)
t (x,y) = η(d(x,y))P(m)

t (x,y) .

As suggested by equation (2),K(m)
t is an approximate solution to the heat equation, and satisfies

Kt(x,y) = K(m)
t (x,y)+O(tm) for x andy sufficiently close; in particular, the parametrix is not unique.

For further details we refer to (Schoen and Yau, 1994; Rosenberg, 1997).
While the parametrixK(m)

t is not in general positive-definite, and therefore does not define a
Mercer kernel, it is positive-definite fort sufficiently small. In particular, define the functionf (t) =
minspec(Km

t), where minspec denotes the smallest eigenvalue. Thenf is a continuous function

with f (0) = 1 sinceK(m)
0 = I . Thus, there is some time interval[0,ε) for which K(m)

t is positive-
definite in caset ∈ [0,ε). This fact will be used when we employ the parametrix approximation to
the heat kernel for statistical learning.

134

DIFFUSION KERNELS ONSTATISTICAL MANIFOLDS

3. Diffusion Kernels on Statistical Manifolds

We now proceed to the main contribution of the paper, which is the application ofthe heat kernel
constructions reviewed in the previous section to the geometry of statistical families, in order to
obtain kernels for statistical learning.

Under some mild regularity conditions, general parametric statistical families comeequipped
with a canonical geometry based on the Fisher information metric. This geometryhas long been
recognized (Rao, 1945), and there is a rich line of research in statistics,with threads in machine
learning, that has sought to exploit this geometry in statistical analysis; see Kass (1989) for a survey
and discussion, or the monographs by Kass and Vos (1997) and Amari and Nagaoka (2000) for
more extensive treatments. The basic properties of the Fisher information metric are reviewed in
Appendix B.

We remark that in spite of the fundamental nature of the geometric perspective in statistics,
many researchers have concluded that while it occasionally provides aninteresting alternative in-
terpretation, it has not contributed new results or methods that cannot be obtained through more
conventional analysis. However in the present work, the kernel methods we propose can, arguably,
be motivated and derived only through the geometry of statistical manifolds.1

The following two basic examples illustrate the geometry of the Fisher information metric and
the associated diffusion kernel it induces on a statistical manifold. The spherical normal family
corresponds to a manifold of constant negative curvature, and the multinomial corresponds to a
manifold of constant positive curvature. The multinomial will be the most importantexample that
we develop, and we report extensive experiments with the resulting kernels in Section 5.

3.1 Diffusion Kernels for Gaussian Geometry

Consider the statistical family given byF = {p(· |θ)}θ∈Θ where θ = (µ,σ) and p(· |(µ,σ)) =
N (µ,σ2In−1), the Gaussian having meanµ∈ R

n−1 and varianceσ2In−1, with σ > 0. Thus,Θ =
R

n−1×R+. A derivation of the Fisher information metric for this family is given in AppendixB.1,
where it is shown that under coordinates defined byθ′

i = µi for 1≤ i ≤ n−1 andθ′
n =

√
2(n−1)σ,

the Fisher information matrix is given by

gi j (θ′) =
1

σ2 δi j .

Thus, the Fisher information metric givesΘ = R
n−1×R+ the structure of the upper half plane in

hyperbolic space. The distance minimizing or geodesic curves in hyperbolicspace are straight lines
or circles orthogonal to the mean subspace.

In particular, the univariate normal density has hyperbolic geometry. As ageneralization in
this 2-dimensional case, any location-scale family of densities is seen to havehyperbolic geometry
(Kass and Vos, 1997). Such families have densities of the form

p(x|(µ,σ)) =
1
σ

f

(
x−µ

σ

)

where(µ,σ) ∈ R×R+ and f : R → R.

1. By a statistical manifoldwe mean simply a manifold of densities together with the metric induced by the Fisher
information matrix, rather than the more general notion of a Riemannian manifold together with a (possibly non-
metric) connection, as defined by Lauritzen (1987).

135

LAFFERTY AND LEBANON

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 1: Example decision boundaries for a kernel-based classifier using information diffusion
kernels for spherical normal geometry withd = 2 (right), which has constant negative
curvature, compared with the standard Gaussian kernel for flat Euclidean space (left).
Two data points are used, simply to contrast the underlying geometries. The curved
decision boundary for the diffusion kernel can be interpreted statisticallyby noting that
as the variance decreases the mean is known with increasing certainty.

The heat kernel on the hyperbolic spaceH
n has the following explicit form (Grigor’yan and

Noguchi, 1998). For oddn = 2m+1 it is given by

Kt(x,x
′) =

(−1)m

2mπm

1√
4πt

(
1

sinhr
∂
∂r

)m

exp

(
−m2t − r2

4t

)
, (5)

and for evenn = 2m+2 it is given by

Kt(x,x
′) =

(−1)m

2mπm

√
2

√
4πt

3

(
1

sinhr
∂
∂r

)mZ ∞

r

sexp
(
− (2m+1)2t

4 − s2

4t

)

√
coshs−coshr

ds, (6)

wherer = d(x,x′) is the geodesic distance between the two points inH
n. If only the meanθ = µ is

unspecified, then the associated kernel is the standard Gaussian RBF kernel.
A possible use for this kernel in statistical learning is where data points are naturally represented

as sets. That is, suppose that each data point is of the formx = {x1,x2, . . .xm} wherexi ∈ R
n−1.

Then the data can be represented according to the mapping which sends each group of points to
the corresponding Gaussian under the MLE:x 7→ (µ̂(x), σ̂(x)) whereµ̂(x) = 1

m ∑i xi and σ̂(x)2 =
1
m ∑i (xi − µ̂(x))2.

In Figure 3.1 the diffusion kernel for hyperbolic spaceH
2 is compared with the Euclidean space

Gaussian kernel. The curved decision boundary for the diffusion kernel makes intuitive sense, since
as the variance decreases the mean is known with increasing certainty.

Note that we can, in fact, considerM as a manifold with boundary by allowingσ ≥ 0 to be
non-negative rather than strictly positiveσ > 0. In this case, the densities on the boundary become
singular, as point masses at the mean; the boundary is simply given by∂M ∼= R

n−1, which is a
manifold without boundary, as required.

136

DIFFUSION KERNELS ONSTATISTICAL MANIFOLDS

3.2 Diffusion Kernels for Multinomial Geometry

We now consider the statistical family of the multinomial overn+ 1 outcomes, given byF =
{p(· |θ)}θ∈Θ whereθ = (θ1,θ2, . . . ,θn) with θi ∈ (0,1) and∑n

i=1 θi < 1. The parameter spaceΘ
is the openn-simplexPn defined in equation (9), a submanifold ofR

n+1.

To compute the metric, letx = (x1,x2, . . . ,xn+1) denote one draw from the multinomial, so that
xi ∈ {0,1} and∑i xi = 1. The log-likelihood and its derivatives are then given by

logp(x|θ) =
n+1

∑
i=1

xi logθi

∂ logp(x|θ)

∂θi
=

xi

θi

∂2 logp(x|θ)

∂θi∂θ j
= − xi

θ2
i

δi j .

SincePn is ann-dimensional submanifold ofRn+1, we can expressu,v∈TθM as(n+1)-dimensional
vectors inTθR

n+1 ∼= R
n+1; thus, u = ∑n+1

i=1 uiei , v = ∑n+1
i=1 viei . Note that due to the constraint

∑n+1
i=1 θi = 1, the sum of then+1 components of a tangent vector must be zero. A basis forTθM is

{
e1 = (1,0, . . . ,0,−1)>,e2 = (0,1,0, . . . ,0,−1)>, . . . ,en = (0,0, . . . ,0,1,−1)>

}
.

Using the definition of the Fisher information metric in equation (10) we then compute

〈u,v〉θ = −
n+1

∑
i=1

n+1

∑
j=1

uiv jEθ

[
∂2 logp(x|θ)

∂θi∂θ j

]

= −
n+1

∑
i=1

uiviE
{
−xi/θ2

i

}

=
n+1

∑
i=1

uivi

θi
.

While geodesic distances are difficult to compute in general, in the case of themultinomial
information geometry we can easily compute the geodesics by observing that the standard Euclidean
metric on the surface of the positiven-sphere is the pull-back of the Fisher information metric on
the simplex. This relationship is suggested by the form of the Fisher informationgiven in equation
(10).

To be concrete, the transformationF(θ1, . . . ,θn+1) = (2
√

θ1, . . . ,2
√

θn+1) is a diffeomorphism
of the n-simplex Pn onto the positive portion of then-sphere of radius 2; denote this portion of
the sphere asS+

n =
{

θ ∈ R
n+1 : ∑n+1

i=1 θ2
i = 2, θi > 0

}
. Given tangent vectorsu = ∑n+1

i=1 uiei , v =

137

LAFFERTY AND LEBANON

Figure 2: Equal distance contours onP2 from the upper right edge (left column), the center (center
column), and lower right corner (right column). The distances are computed using the
Fisher information metricg (top row) or the Euclidean metric (bottom row).

∑n+1
i=1 viei , the pull-back of the Fisher information metric throughF−1 is

hθ(u,v) = gθ2/4

(
F−1
∗

n+1

∑
k=1

ukek,F
−1
∗

n+1

∑
l=1

vl el

)

=
n+1

∑
k=1

n+1

∑
l=1

ukvl gθ2/4(F
−1
∗ ek,F

−1
∗ el)

=
n+1

∑
k=1

n+1

∑
l=1

ukvl ∑
i

4

θ2
i

(F−1
∗ ek)i (F

−1
∗ el)i

=
n+1

∑
k=1

n+1

∑
l=1

ukvl ∑
i

4

θ2
i

θkδki

2
θl δli

2

=
n+1

∑
i=1

uivi .

Since the transformationF : (Pn,g) → (S+
n ,h) is an isometry, the geodesic distanced(θ,θ′) on

Pn may be computed as the shortest curve onS+
n connectingF(θ) andF(θ′). These shortest curves

are portions of great circles—the intersection of a two dimensional plane and S+
n —and their length

is given by

d(θ,θ′) = 2arccos

(
n+1

∑
i=1

√
θi θ′

i

)
. (7)

138

DIFFUSION KERNELS ONSTATISTICAL MANIFOLDS

Figure 3: Example decision boundaries using support vector machines withinformation diffusion
kernels for trinomial geometry on the 2-simplex (top right) compared with the standard
Gaussian kernel (left).

In Appendix B we recall the connection between the Kullback-Leibler divergence and the in-
formation distance. In the case of the multinomial family, there is also a close relationship with the
Hellinger distance. In particular, it can easily be shown that the Hellinger distance

dH(θ,θ′) =

√

∑
i

(√
θi −

√
θ′

i

)2

is related tod(θ,θ′) by
dH(θ,θ′) = 2sin

(
d(θ,θ′)/4

)
.

Thus, asθ′ → θ, dH agrees with1
2d to second order:

dH(θ,θ′) =
1
2

d(θ,θ′)+O(d3(θ,θ′))

The Fisher information metric places greater emphasis on points near the boundary, which is
expected to be important for text problems, which typically have sparse statistics. Figure 2 shows
equal distance contours onP2 using the Fisher information and the Euclidean metrics.

While the spherical geometry has been derived as the information geometry for a finite multi-
nomial, the same geometry can be used non-parametrically for an arbitrary subset of probability
measures, leading to spherical geometry in a Hilbert space (Dawid, 1977).

3.2.1 THE MULTINOMIAL DIFFUSION KERNEL

Unlike the explicit expression for the Gaussian geometry discussed above, there is not an explicit
form for the heat kernel on the sphere, nor on the positive orthant ofthe sphere. We will therefore
resort to the parametrix expansion to derive an approximate heat kernelfor the multinomial.

Recall from Section 2.1.1 that the parametrix is obtained according to the localexpansion given
in equation (1), and then extending this smoothly to zero outside a neighborhood of the diagonal,

139

LAFFERTY AND LEBANON

as defined by the exponential map. As we have just derived, this results inthe following parametrix
for the multinomial family:

P(m)
t (θ,θ′) = (4πt)−

n
2 exp

(
−arccos2(

√
θ ·

√
θ′)

t

)
(
ψ0(θ,θ′)+ · · ·+ψm(θ,θ′)tm) .

The first-order expansion is thus obtained as

K(0)
t (θ,θ′) = η(d(θ,θ′))P(0)

t (θ,θ′) .

Now, for then-sphere it can be shown that the functionψ0 of (3), which is the leading order correc-
tion of the Gaussian kernel under the Fisher information metric, is given by

ψ0(r) =

(√
detg

rn−1

)− 1
2

=

(
sinr

r

)− (n−1)
2

= 1+
(n−1)

12
r2 +

(n−1)(5n−1)

1440
r4 +O(r6)

(Berger et al., 1971). Thus, the leading order parametrix for the multinomialdiffusion kernel is

P(0)
t (θ,θ′) = (4πt)−

n
2 exp

(
− 1

4t
d2(θ,θ′)

)(
sind(θ,θ′)

d(θ,θ′)

)− (n−1)
2

.

In our experiments we approximate this kernel further as

P(0)
t (θ,θ′) = (4πt)−

n
2 exp

(
−1

t
arccos2(

√
θ ·

√
θ′)

)

by appealing to the asymptotic expansion in (8) and the explicit form of the distance given in (7);
note that(sinr/r)−n blows up for larger. In Figure 3 the kernel (3.2.1) is compared with the
standard Euclidean space Gaussian kernel for the case of the trinomial model,d = 2, using an SVM
classifier.

3.2.2 ROUNDING THE SIMPLEX

The case of multinomial geometry poses some technical complications for the analysis of diffusion
kernels, due to the fact that the open simplex is not complete, and moreover,its closure is not a dif-
ferentiable manifold with boundary. Thus, it is not technically possible to apply several results from
differential geometry, such as bounds on the spectrum of the Laplacian,as adopted in Section 4. We
now briefly describe a technical “patch” that allows us to derive all of theneeded analytical results,
without sacrificing in practice any of the methodology that has been derived so far.

Let ∆n = P n denote the closure of the open simplex; thus∆n is the usual probability simplex
which allows zero probability for some items. However, it does not form a compact manifold with
boundary since the boundary has edges and corners. In other words, local chartsϕ : U → R

n+

cannot be defined to be differentiable. To adjust for this, the idea is to “round the edges” of∆n to

140

DIFFUSION KERNELS ONSTATISTICAL MANIFOLDS

Figure 4: Rounding the simplex. Since the closed simplex is not a manifold with boundary, we
carry out a “rounding” procedure to remove edges and corners. The δ-rounded simplex
is the closure of the union of allδ-balls lying within the open simplex.

obtain a subset that forms a compact manifold with boundary, and that closely approximates the
original simplex.

Forδ > 0, letBδ(x) = {y|‖x−y‖ < δ} denote the open Euclidean ball of radiusδ centered atx.
Denote byCδ(Pn) theδ-ball centersof Pn, the points of the simplex whoseδ-balls lie completely
within the simplex:

Cδ(Pn) = {x∈ Pn : Bδ(x) ⊂ Pn} .

Finally, let P δ
n denote theδ-interior of Pn, which we define as the union of allδ-balls contained in

Pn:
P δ

n =
[

x∈Cδ(Pn)

Bδ(x) .

Theδ-rounded simplex∆δ
n is then defined as the closure∆δ

n = P δ
n .

The rounding procedure that yields∆δ
2 is suggested by Figure 4. Note that in general theδ-

rounded simplex∆δ
n will contain points with a single, but not more than one component having zero

probability. The set∆δ
n forms a compact manifold with boundary, and its image under the isometry

F : (Pn,g) → (S+
n ,h) is a compact submanifold with boundary of then-sphere.

Whenever appealing to results for compact manifolds with boundary in the following, it will
be tacitly assumed that the above rounding procedure has been carried out in the case of the multi-
nomial. From a theoretical perspective this enables the use of bounds on spectra of Laplacians for
manifolds of non-negative curvature. From a practical viewpoint it requires only smoothing the
probabilities to remove zeros.

4. Spectral Bounds on Covering Numbers and Rademacher Averages

We now turn to establishing bounds on the generalization performance of kernel machines that use
information diffusion kernels. We first adopt the approach of Guo et al.(2002), estimating covering
numbers by making use of bounds on the spectrum of the Laplacian on a Riemannian manifold,
rather than on VC dimension techniques; these bounds in turn yield bounds on the expected risk of
the learning algorithms. Our calculations give an indication of how the underlying geometry influ-
ences the entropy numbers, which are inverse to the covering numbers. We then show how bounds

141

LAFFERTY AND LEBANON

on Rademacher averages may be obtained by plugging in the spectral bounds from differential ge-
ometry. The primary conclusion that is drawn from these analyses is that from the point of view of
generalization error bounds, diffusion kernels behave essentially the same as the standard Gaussian
kernel.

4.1 Covering Numbers

We begin by recalling the main result of Guo et al. (2002), modifying their notation slightly to
conform with ours. LetM ⊂R

d be a compact subset ofd-dimensional Euclidean space, and suppose
thatK : M×M −→ R is a Mercer kernel. Denote byλ1 ≥ λ2 ≥ ·· · ≥ 0 the eigenvalues ofK, that is,
of the mappingf 7→ R

M K(·,y) f (y)dy, and letψ j(·) denote the corresponding eigenfunctions. We

assume thatCK
def
= supj

∥∥ψ j
∥∥

∞ < ∞.
Givenm pointsxi ∈ M, the kernel hypothesis class forx = {xi} with weight vector bounded by

R is defined as the collection of functions onx given by

FR(x) = { f : f (xi) = 〈w,Φ(xi)〉 for some‖w‖ ≤ R} ,

whereΦ(·) is the mapping fromM to feature space defined by the Mercer kernel, and〈·, ·〉 and‖·‖
denote the corresponding Hilbert space inner product and norm. It is of interest to obtain uniform
bounds on the covering numbersN (ε,FR(x)), defined as the size of the smallestε-cover ofFR(x)
in the metric induced by the norm‖ f‖∞,x = maxi=1,...,m| f (xi)|.

Theorem 2 (Guo et al., 2002)Given an integer n∈N, let j∗n denote the smallest integer j for which

λ j+1 <

(
λ1 · · ·λ j

n2

)1
j

and define

ε∗n = 6CKR

√√√√ j∗n

(
λ1 · · ·λ j∗n

n2

) 1
j∗n

+
∞

∑
i= j∗n

λi .

Thensup{xi}∈Mm N (ε∗n,FR(x)) ≤ n.

To apply this result, we will obtain bounds on the indicesj∗n using spectral theory in Riemannian
geometry.

Theorem 3 (Li and Yau, 1980) Let M be a compact Riemannian manifold of dimension d with
non-negative Ricci curvature, and let0 < µ1 ≤ µ2 ≤ ·· · denote the eigenvalues of the Laplacian
with Dirichlet boundary conditions. Then

c1(d)

(
j

V

) 2
d

≤ µj ≤ c2(d)

(
j +1
V

) 2
d

where V is the volume of M and c1 and c2 are constants depending only on the dimension.

142

DIFFUSION KERNELS ONSTATISTICAL MANIFOLDS

Note that the manifold of the multinomial model (afterδ-rounding) satisfies the conditions of
this theorem. Using these results we can establish the following bounds on covering numbers for
information diffusion kernels. We assume Dirichlet boundary conditions; asimilar result can be
proven for Neumann boundary conditions. We include the constantV = vol(M) and diffusion coef-
ficient t in order to indicate how the bounds depend on the geometry.

Theorem 4 Let M be a compact Riemannian manifold, with volume V, satisfying the conditions of
Theorem 3. Then the covering numbers for the Dirichlet heat kernel Kt on M satisfy

logN (ε,FR(x)) = O

((
V

t
d
2

)
log

d+2
2

(
1
ε

))
. (8)

Proof By the lower bound in Theorem 3, the Dirichlet eigenvalues of the heat kernelKt(x,y), which

are given byλ j = e−tµj , satisfy logλ j ≤−tc1(d)
(

j
V

) 2
d
. Thus,

−1
j
log

(
λ1 · · ·λ j

n2

)
≥ tc1

j

j

∑
i=1

(
i
V

) 2
d

+
2
j
logn ≥ tc1

d
d+2

(
j

V

) 2
d

+
2
j
logn,

where the second inequality comes from∑ j
i=1 ip ≥ R j

0 xpdx= j p+1

p+1 . Now using the upper bound of
Theorem 3, the inequalityj∗n ≤ j will hold if

tc2

(
j +2
V

) 2
d

≥ − logλ j+1 ≥ tc1
d

d+2

(
j

V

) 2
d

+
2
j
logn

or equivalently
tc2

V
2
d

(
j(j +2)

2
d − c1

c2

d
d+2

j
d+2

d

)
≥ 2logn.

The above inequality will hold in case

j ≥




(
2V

2
d

t(c2−c1
d

d+2)
logn

) d
d+2




≥




(
V

2
d (d+2)

tc1
logn

) d
d+2




since we may assume thatc2 ≥ c1; thus, j∗n ≤
⌈

c1

(
V

2
d

t logn

) d
d+2

⌉
for a new constantc1(d). Plug-

ging this bound onj∗n into the expression forε∗n in Theorem 2 and using
∞

∑
i= j∗n

e−i
2
d = O

(
e− j∗n

2
d

)
,

we have after some algebra that

log

(
1
εn

)
= Ω

((
t

V
2
d

) d
d+2

log
2

d+2 n

)
.

Inverting the above expression in logn gives equation (8).

We note that Theorem 4 of Guo et al. (2002) can be used to show that this bound does not, in fact,

depend onm andx. Thus, for fixedt the covering numbers scale as logN (ε,F) = O
(

log
d+2

2
(

1
ε
))

,

and for fixedε they scale as logN (ε,F) = O
(

t−
d
2

)
in the diffusion timet.

143

LAFFERTY AND LEBANON

4.2 Rademacher Averages

We now describe a different family of generalization error bounds that can be derived using the ma-
chinery of Rademacher averages (Bartlett and Mendelson, 2002; Bartlett et al., 2004). The bounds
fall out directly from the work of Mendelson (2003) on computing local averages for kernel-based
function classes, after plugging in the eigenvalue bounds of Theorem 3.

As seen above, covering number bounds are related to a complexity term ofthe form

C(n) =

√√√√ j∗n

(
λ1 · · ·λ j∗n

n2

) 1
j∗n

+
∞

∑
i= j∗n

λi .

In the case of Rademacher complexities, risk bounds are instead controlledby a similar, yet simpler
expression of the form

C(r) =

√
j∗r r +

∞

∑
i= j∗r

λi

where now j∗r is the smallest integerj for which λ j < r (Mendelson, 2003), withr acting as a
parameter bounding the error of the family of functions. To place this into somecontext, we quote
the following results from Bartlett et al. (2004) and Mendelson (2003), which apply to a family of
loss functions that includes the quadratic loss; we refer to Bartlett et al. (2004) for details on the
technical conditions.

Let (X1,Y1),(X2,Y2) . . . ,(Xn,Yn) be an independent sample from an unknown distributionP
on X × Y , whereY ⊂ R. For a given loss functioǹ : Y × Y → R, and a familyF of mea-
surable functionsf : X → Y , the objective is to minimize the expected lossE[`(f (X),Y)]. Let
E` f ∗ = inf f∈FE` f , where` f (X,Y) = `(f (X),Y), and let f̂ be any member ofF for which En` f̂ =
inf f∈FEn` f whereEn denotes the empirical expectation. TheRademacher averageof a family
of functionsG = {g : X → R} is defined as the expectationERnG = E

[
supg∈GRng

]
with Rng =

1
n ∑n

i=1 σi g(Xi), whereσ1, . . . ,σn are independent Rademacher random variables; that is,p(σi =
1) = p(σi = −1) = 1

2.

Theorem 5 (Bartlett et al., 2004) LetF be a convex class of functions and defineψ by

ψ(r) = aERn
{

f ∈ F : E(f − f ∗)2 ≤ r
}

+
bx
n

where a and b are constants that depend on the loss function`. Then when r≥ ψ(r),

E
(
` f̂ − ` f ∗

)
≤ cr +

d x
n

with probability at least1−e−x, where c and d are additional constants.
Moreover, suppose that K is a Mercer kernel andF =

{
f ∈ HK : ‖ f‖K ≤ 1

}
is the unit ball in

the reproducing kernel Hilbert space associated with K. Then

ψ(r) ≤ a

√
2
n

∞

∑
j=1

min{r,λ j}+
bx
n

.

144

DIFFUSION KERNELS ONSTATISTICAL MANIFOLDS

Thus, to bound the excess risk for kernel machines in this framework it suffices to bound the
term

ψ̃(r) =

√
∞

∑
j=1

min{r,λ j}

=

√
j∗r r +

∞

∑
i= j∗r

λi

involving the spectrum. Given bounds on the eigenvalues, this is typically easy to do.

Theorem 6 Let M be a compact Riemannian manifold, satisfying the conditions of Theorem 3.
Then the Rademacher term̃ψ for the Dirichlet heat kernel Kt on M satisfies

ψ̃(r) ≤C

√(
r

t
d
2

)
log

d
2

(
1
r

)
,

for some constant C depending on the geometry of M.

Proof We have that

ψ̃2(r) =
∞

∑
j=1

min{r,λ j}

= j∗r r +
∞

∑
j= j∗r

e−tµj

≤ j∗r r +
∞

∑
j= j∗r

e−tc1 j
2
d

≤ j∗r r +Ce−tc1 j∗r
2
d

for some constantC, where the first inequality follows from the lower bound in Theorem 3. But
j∗r ≤ j in case logλ j+1 > r, or, again from Theorem 3, if

t c2(j +1)
2
d ≤− logλ j < log

1
r

or equivalently,

j∗r ≤
C′

t
d
2

log
d
2

(
1
r

)
.

It follows that

ψ̃2(r) ≤ C′′
(

r

t
d
2

)
log

d
2

(
1
r

)

for some new constantC′′.

From this bound, it can be shown that, with high probability,

E
(
` f̂ − ` f ∗

)
= O

(
log

d
2 n

n

)
,

145

LAFFERTY AND LEBANON

which is the behavior expected of the Gaussian kernel for Euclidean space.
Thus, for both covering numbers and Rademacher averages, the resulting bounds are essentially

the same as those that would be obtained for the Gaussian kernel on the flatd-dimensional torus,
which is the standard way of “compactifying” Euclidean space to get a Laplacian having only dis-
crete spectrum; the results of Guo et al. (2002) are formulated for the case d = 1, corresponding to
the circleS1. While the bounds for diffusion kernels were derived for the case of positive curva-
ture, which apply to the special case of the multinomial, similar bounds for general manifolds with
curvature bounded below by a negative constant should also be attainable.

5. Multinomial Diffusion Kernels and Text Classification

In this section we present the application of multinomial diffusion kernels to the problem of text
classification. Text processing can be subject to some of the “dirty laundry” referred to in the
introduction—documents are cast as Euclidean space vectors with specialweighting schemes that
have been empirically honed through applications in information retrieval, rather than inspired from
first principles. However for text, the use of multinomial geometry is natural and well motivated;
our experimental results offer some insight into how useful this geometry maybe for classification.

5.1 Representing Documents

Assuming a vocabularyV of sizen+1, a document may be represented as a sequence of words over
the alphabetV. For many classification tasks it is not unreasonable to discard word order; indeed,
humans can typically easily understand the high level topic of a document by inspecting its contents
as a mixed up “bag of words.” Letxv denote the number of times termv appears in a document.
Then{xv}v∈V is the sample space of the multinomial distribution, with a document modeled as
independent draws from a fixed model, which may change from documentto document. It is nat-
ural to embed documents in the multinomial simplex using an embedding functionθ̂ : Z

n+1
+ → Pn.

We consider several embeddingsθ̂ that correspond to well known feature representations in text
classification (Joachims, 2000). Theterm frequency(tf) representation uses normalized counts; the
corresponding embedding is the maximum likelihood estimator for the multinomial distribution

θ̂tf(x) =

(
x1

∑i xi
, . . . ,

xn+1

∑i xi

)
.

Another common representation is based onterm frequency, inverse document frequency(tfidf).
This representation uses the distribution of terms across documents to discount common terms;
the document frequency d fv of term v is defined as the number of documents in which termv
appears. Although many variants have been proposed, one of the simplest and most commonly used
embeddings is

θ̂tfidf(x) =

(
x1 log(D/d f1)

∑i xi log(D/d fi)
, . . . ,

xn+1 log(D/d fn+1)

∑i xi log(D/d fi)

)

whereD is the number of documents in the corpus.
We note that in text classification applications the tf and tfidf representations are typically nor-

malized to unit length in theL2 norm rather than theL1 norm, as above (Joachims, 2000). For
example, the tf representation withL2 normalization is given by

x 7→
(

x1

∑i x
2
i

, . . . ,
xn+1

∑i x
2
i

)

146

DIFFUSION KERNELS ONSTATISTICAL MANIFOLDS

and similarly for tfidf. When used in support vector machines with linear or Gaussian kernels,L2-
normalized tf and tfidf achieve higher accuracies than theirL1-normalized counterparts. However,
for the diffusion kernels,L1 normalization is necessary to obtain an embedding into the simplex.
These different embeddings or feature representations are comparedin the experimental results
reported below.

To be clear, we list the three kernels we compare. First, the linear kernel isgiven by

KLin(θ,θ′) = θ ·θ′ =
n+1

∑
v=1

θv θ′
v .

The Gaussian kernel is given by

KGauss
σ (θ′,θ′) = (2πσ)−

n+1
2 exp

(
−‖θ−θ′‖2

2σ2

)

where‖θ− θ′‖2 = ∑n+1
v=1 |θv−θ′

v|2 is the squared Euclidean distance. The multinomial diffusion
kernel is given by

KMult
t (θ,θ′) = (4πt)−

n
2 exp

(
−1

t
arccos2(

√
θ ·

√
θ′)

)
,

as derived in Section 3.

5.2 Experimental Results

In our experiments, the multinomial diffusion kernel using the tf embedding wascompared to the
linear or Gaussian (RBF) kernel with tf and tfidf embeddings using a support vector machine clas-
sifier on the WebKB and Reuters-21578 collections, which are standard data sets for text classifica-
tion.

The WebKb dataset contains web pages found on the sites of four universities (Craven et al.,
2000). The pages were classified according to whether they were student, faculty, course, project
or staff pages; these categories contain 1641, 1124, 929, 504 and 137 instances, respectively. Since
only the student, faculty, course and project classes contain more than 500 documents each, we
restricted our attention to these classes. The Reuters-21578 dataset is a collection of newswire
articles classified according to news topic (Lewis and Ringuette, 1994). Although there are more
than 135 topics, most of the topics have fewer than 100 documents; for this reason, we restricted
our attention to the following five most frequent classes: earn, acq, moneyFx, grain and crude, of
sizes 3964, 2369, 717, 582 and 578 documents, respectively.

For both the WebKB and Reuters collections we created two types of binary classification tasks.
In the first task we designate a specific class, label each document in the class as a “positive”
example, and label each document on any of the other topics as a “negative” example. In the second
task we designate a class as the positive class, and choose the negative class to be the most frequent
remaining class (student for WebKB and earn for Reuters). In both cases, the size of the training
set is varied while keeping the proportion of positive and negative documents constant in both the
training and test set.

Figure 5 shows the test set error rate for the WebKB data, for a representative instance of the one-
versus-all classification task; the designated class was course. The results for the other choices of
positive class were qualitatively very similar; all of the results are summarizedin Table 1. Similarly,

147

LAFFERTY AND LEBANON

40 80 120 200 400 600
0

0.02

0.04

0.06

0.08

0.1

0.12

40 80 120 200 400 600
0

0.02

0.04

0.06

0.08

0.1

0.12

Figure 5: Experimental results on the WebKB corpus, using SVMs for linear(dotted) and Gaussian
(dash-dotted) kernels, compared with the diffusion kernel for the multinomial (solid).
Classification error for the task of labeling course vs. either faculty, project, or student is
shown in these plots, as a function of training set size. The left plot uses tfrepresentation
and the right plot uses tfidf representation. The curves shown are the error rates averaged
over 20-fold cross validation, with error bars representing one standard deviation. The
results for the other “1 vs. all” labeling tasks are qualitatively similar, and aretherefore
not shown.

40 80 120 200 400 600
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

40 80 120 200 400 600
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Figure 6: Results on the WebKB corpus, using SVMs for linear (dotted) andGaussian (dash-dotted)
kernels, compared with the diffusion kernel (solid). The course pagesare labeled positive
and the student pages are labeled negative; results for other label pairs are qualitatively
similar. The left plot uses tf representation and the right plot uses tfidf representation.

148

DIFFUSION KERNELS ONSTATISTICAL MANIFOLDS

80 120 200 400 600
0

0.02

0.04

0.06

0.08

0.1

80 120 200 400 600
0

0.02

0.04

0.06

0.08

0.1

80 120 200 400 600
0

0.02

0.04

0.06

0.08

0.1

0.12

80 120 200 400 600
0

0.02

0.04

0.06

0.08

0.1

0.12

Figure 7: Experimental results on the Reuters corpus, using SVMs for linear (dotted) and Gaussian
(dash-dotted) kernels, compared with the diffusion kernel (solid). Theclasses acq (top),
and moneyFx (bottom) are shown; the other classes are qualitatively similar. The left
column uses tf representation and the right column uses tfidf. The curves shown are
the error rates averaged over 20-fold cross validation, with error bars representing one
standard deviation.

149

LAFFERTY AND LEBANON

40 80 120 200 400
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

40 80 120 200 400
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

40 80 120 200 400
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

40 80 120 200 400
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

Figure 8: Experimental results on the Reuters corpus, using SVMs for linear (dotted) and Gaussian
(dash-dotted) kernels, compared with the diffusion (solid). The classesmoneyFx (top)
and grain (bottom) are labeled as positive, and the class earn is labeled negative. The left
column uses tf representation and the right column uses tfidf representation.

150

DIFFUSION KERNELS ONSTATISTICAL MANIFOLDS

tf Representation tfidf Representation

Task L Linear Gaussian Diffusion Linear Gaussian Diffusion
40 0.1225 0.1196 0.0646 0.0761 0.0726 0.0514
80 0.0809 0.0805 0.0469 0.0569 0.0564 0.0357

course vs. all 120 0.0675 0.0670 0.0383 0.0473 0.0469 0.0291
200 0.0539 0.0532 0.0315 0.0385 0.0380 0.0238
400 0.0412 0.0406 0.0241 0.0304 0.0300 0.0182
600 0.0362 0.0355 0.0213 0.0267 0.0265 0.0162

40 0.2336 0.2303 0.1859 0.2493 0.2469 0.1947
80 0.1947 0.1928 0.1558 0.2048 0.2043 0.1562

faculty vs. all 120 0.1836 0.1823 0.1440 0.1921 0.1913 0.1420
200 0.1641 0.1634 0.1258 0.1748 0.1742 0.1269
400 0.1438 0.1428 0.1061 0.1508 0.1503 0.1054
600 0.1308 0.1297 0.0931 0.1372 0.1364 0.0933

40 0.1827 0.1793 0.1306 0.1831 0.1805 0.1333
80 0.1426 0.1416 0.0978 0.1378 0.1367 0.0982

project vs. all 120 0.1213 0.1209 0.0834 0.1169 0.1163 0.0834
200 0.1053 0.1043 0.0709 0.1007 0.0999 0.0706
400 0.0785 0.0766 0.0537 0.0802 0.0790 0.0574
600 0.0702 0.0680 0.0449 0.0719 0.0708 0.0504

40 0.2417 0.2411 0.1834 0.2100 0.2086 0.1740
80 0.1900 0.1899 0.1454 0.1681 0.1672 0.1358

student vs. all 120 0.1696 0.1693 0.1291 0.1531 0.1523 0.1204
200 0.1539 0.1539 0.1134 0.1349 0.1344 0.1043
400 0.1310 0.1308 0.0935 0.1147 0.1144 0.0874
600 0.1173 0.1169 0.0818 0.1063 0.1059 0.0802

Table 1: Experimental results on the WebKB corpus, using SVMs for linear,Gaussian, and multi-
nomial diffusion kernels. The left columns use tf representation and the right columns
use tfidf representation. The error rates shown are averages obtained using 20-fold cross
validation. The best performance for each training set sizeL is shown in boldface. All
differences are statistically significant according to the pairedt test at the 0.05 level.

Figure 7 shows the test set error rates for two of the one-versus-all experiments on the Reuters data,
where the designated classes were chosen to be acq and moneyFx. All ofthe results for Reuters
one-versus-all tasks are shown in Table 3.

Figure 6 and Figure 8 show representative results for the second type of classification task,
where the goal is to discriminate between two specific classes. In the case ofthe WebKB data the
results are shown for course vs. student. In the case of the Reuters data the results are shown for
moneyFx vs. earn and grain vs. earn. Again, the results for the other classes are qualitatively similar;
the numerical results are summarized in Tables 2 and 4.

In these figures, the leftmost plots show the performance of tf features while the rightmost plots
show the performance of tfidf features. As mentioned above, in the case of the diffusion kernel we

151

LAFFERTY AND LEBANON

tf Representation tfidf Representation

Task L Linear Gaussian Diffusion Linear Gaussian Diffusion
40 0.0808 0.0802 0.0391 0.0580 0.0572 0.0363
80 0.0505 0.0504 0.0266 0.0409 0.0406 0.0251

course vs. student 120 0.0419 0.0409 0.0231 0.0361 0.0359 0.0225
200 0.0333 0.0328 0.0184 0.0310 0.0308 0.0201
400 0.0263 0.0259 0.0135 0.0234 0.0232 0.0159
600 0.0228 0.0221 0.0117 0.0207 0.0202 0.0141

40 0.2106 0.2102 0.1624 0.2053 0.2026 0.1663
80 0.1766 0.1764 0.1357 0.1729 0.1718 0.1335

faculty vs. student 120 0.1624 0.1618 0.1198 0.1578 0.1573 0.1187
200 0.1405 0.1405 0.0992 0.1420 0.1418 0.1026
400 0.1160 0.1158 0.0759 0.1166 0.1165 0.0781
600 0.1050 0.1046 0.0656 0.1050 0.1048 0.0692

40 0.1434 0.1430 0.0908 0.1304 0.1279 0.0863
80 0.1139 0.1133 0.0725 0.0982 0.0970 0.0634

project vs. student 120 0.0958 0.0957 0.0613 0.0870 0.0866 0.0559
200 0.0781 0.0775 0.0514 0.0729 0.0722 0.0472
400 0.0590 0.0579 0.0405 0.0629 0.0622 0.0397
600 0.0515 0.0500 0.0325 0.0551 0.0539 0.0358

Table 2: Experimental results on the WebKB corpus, using SVMs for linear,Gaussian, and multi-
nomial diffusion kernels. The left columns use tf representation and the right columns
use tfidf representation. The error rates shown are averages obtained using 20-fold cross
validation. The best performance for each training set sizeL is shown in boldface. All
differences are statistically significant according to the pairedt test at the 0.05 level.

useL1 normalization to give a valid embedding into the probability simplex, while for the linear and
Gaussian kernels we useL2 normalization, which works better empirically thanL1 for these kernels.
The curves show the test set error rates averaged over 20 iterations of cross validation as a function
of the training set size. The error bars represent one standard deviation. For both the Gaussian and
diffusion kernels, we test scale parameters (

√
2σ for the Gaussian kernel and 2t1/2 for the diffusion

kernel) in the set{0.5,1,2,3,4,5,7,10}. The results reported are for the best parameter value in
that range.

We also performed experiments with the popular Mod-Apte train and test split for the top 10
categories of the Reuters collection. For this split, the training set has about7000 documents and
is highly biased towards negative documents. We report in Table 5 the test set accuracies for the
tf representation. For the tfidf representation, the difference between the different kernels is not
statistically significant for this amount of training and test data. The providedtrain set is more
than enough to achieve outstanding performance with all kernels used, and the absence of cross
validation data makes the results too noisy for interpretation.

In Table 6 we report the F1 measure rather than accuracy, since this measure is commonly used
in text classification. The last column of the table compares the presented results with the published

152

DIFFUSION KERNELS ONSTATISTICAL MANIFOLDS

tf Representation tfidf Representation

Task L Linear Gaussian Diffusion Linear Gaussian Diffusion
80 0.1107 0.1106 0.0971 0.0823 0.0827 0.0762

120 0.0988 0.0990 0.0853 0.0710 0.0715 0.0646
earn vs. all 200 0.0808 0.0810 0.0660 0.0535 0.0538 0.0480

400 0.0578 0.0578 0.0456 0.0404 0.0408 0.0358
600 0.0465 0.0464 0.0367 0.0323 0.0325 0.0290

80 0.1126 0.1125 0.0846 0.0788 0.0785 0.0667
120 0.0886 0.0885 0.0697 0.0632 0.0632 0.0534

acq vs. all 200 0.0678 0.0676 0.0562 0.0499 0.0500 0.0441
400 0.0506 0.0503 0.0419 0.0370 0.0369 0.0335
600 0.0439 0.0435 0.0363 0.0318 0.0316 0.0301

80 0.1201 0.1198 0.0758 0.0676 0.0669 0.0647∗

120 0.0986 0.0979 0.0639 0.0557 0.0545 0.0531∗

moneyFx vs. all 200 0.0814 0.0811 0.0544 0.0485 0.0472 0.0438
400 0.0578 0.0567 0.0416 0.0427 0.0418 0.0392
600 0.0478 0.0467 0.0375 0.0391 0.0385 0.0369∗

80 0.1443 0.1440 0.0925 0.0536 0.0518∗ 0.0595
120 0.1101 0.1097 0.0717 0.0476 0.0467∗ 0.0494

grain vs. all 200 0.0793 0.0786 0.0576 0.0430 0.0420∗ 0.0440
400 0.0590 0.0573 0.0450 0.0349 0.0340∗ 0.0365
600 0.0517 0.0497 0.0401 0.0290 0.0284∗ 0.0306

80 0.1396 0.1396 0.0865 0.0502 0.0485∗ 0.0524
120 0.0961 0.0953 0.0542 0.0446 0.0425∗ 0.0428

crude vs. all 200 0.0624 0.0613 0.0414 0.0388 0.0373 0.0345∗

400 0.0409 0.0403 0.0325 0.0345 0.0337 0.0297
600 0.0379 0.0362 0.0299 0.0292 0.0284 0.0264∗

Table 3: Experimental results on the Reuters corpus, using SVMs for linear, Gaussian, and multi-
nomial diffusion kernels. The left columns use tf representation and the right columns use
tfidf representation. The error rates shown are averages obtained using 20-fold cross vali-
dation. The best performance for each training set sizeL is shown in boldface. An asterisk
(*) indicates that the difference is not statistically significant according to the pairedt test
at the 0.05 level.

results of Zhang and Oles (2001), with a+ indicating the diffusion kernel F1 measure is greater
than the result published in Zhang and Oles (2001) for this task.

Our results are consistent with previous experiments in text classification using SVMs, which
have observed that the linear and Gaussian kernels result in very similar performance (Joachims
et al., 2001). However the multinomial diffusion kernel significantly outperforms the linear and
Gaussian kernels for the tf representation, achieving significantly lower error rate than the other
kernels. For the tfidf representation, the diffusion kernel consistently outperforms the other kernels
for the WebKb data and usually outperforms the linear and Gaussian kernels for the Reuters data.

153

LAFFERTY AND LEBANON

tf Representation tfidf Representation

Task L Linear Gaussian Diffusion Linear Gaussian Diffusion
40 0.1043 0.1043 0.1021∗ 0.0829 0.0831 0.0814∗

80 0.0902 0.0902 0.0856∗ 0.0764 0.0767 0.0730∗

acq vs. earn 120 0.0795 0.0796 0.0715 0.0626 0.0628 0.0562
200 0.0599 0.0599 0.0497 0.0509 0.0511 0.0431
400 0.0417 0.0417 0.0340 0.0336 0.0337 0.0294

40 0.0759 0.0758 0.0474 0.0451 0.0451 0.0372∗

80 0.0442 0.0443 0.0238 0.0246 0.0246 0.0177
moneyFx vs. earn 120 0.0313 0.0311 0.0160 0.0179 0.0179 0.0120

200 0.0244 0.0237 0.0118 0.0113 0.0113 0.0080
400 0.0144 0.0142 0.0079 0.0080 0.0079 0.0062

40 0.0969 0.0970 0.0543 0.0365 0.0366 0.0336∗

80 0.0593 0.0594 0.0275 0.0231 0.0231 0.0201∗

grain vs. earn 120 0.0379 0.0377 0.0158 0.0147 0.0147 0.0114∗

200 0.0221 0.0219 0.0091 0.0082 0.0081 0.0069∗

400 0.0107 0.0105 0.0060 0.0037 0.0037 0.0037∗

40 0.1108 0.1107 0.0950 0.0583∗ 0.0586 0.0590
80 0.0759 0.0757 0.0552 0.0376 0.0377 0.0366∗

crude vs. earn 120 0.0608 0.0607 0.0415 0.0276 0.0276∗ 0.0284
200 0.0410 0.0411 0.0267 0.0218∗ 0.0218 0.0225
400 0.0261 0.0257 0.0194 0.0176 0.0171∗ 0.0181

Table 4: Experimental results on the Reuters corpus, using SVMs for linear, Gaussian, and multi-
nomial diffusion kernels. The left columns use tf representation and the right columns use
tfidf representation. The error rates shown are averages obtained using 20-fold cross vali-
dation. The best performance for each training set sizeL is shown in boldface. An asterisk
(*) indicates that the difference is not statistically significant according to the pairedt test
at the 0.05 level.

The Reuters data is a much larger collection than WebKB, and the document frequency statistics,
which are the basis for the inverse document frequency weighting in the tfidf representation, are
evidently much more effective on this collection. It is notable, however, thatthe multinomial in-
formation diffusion kernel achieves at least as high an accuracy without the use of any heuristic
term weighting scheme. These results offer evidence that the use of multinomial geometry is both
theoretically motivated and practically effective for document classification.

6. Discussion and Conclusion

This paper has introduced a family of kernels that is intimately based on the geometry of the Rie-
mannian manifold associated with a statistical family through the Fisher information metric. The
metric is canonical in the sense that it is uniquely determined by requirements ofinvariance (̌Cencov,
1982), and moreover, the choice of the heat kernel is natural because it effectively encodes a great

154

DIFFUSION KERNELS ONSTATISTICAL MANIFOLDS

Category Linear RBF Diffusion

earn 0.01159 0.01159 0.01026
acq 0.01854 0.01854 0.01788
money-fx 0.02418 0.02451 0.02219
grain 0.01391 0.01391 0.01060
crude 0.01755 0.01656 0.01490
trade 0.01722 0.01656 0.01689
interest 0.01854 0.01854 0.01689
ship 0.01324 0.01324 0.01225
wheat 0.00894 0.00794 0.00629
corn 0.00794 0.00794 0.00563

Table 5: Test set error rates for the Reuters top 10 classes using tf features. The train and test sets
were created using the Mod-Apte split.

Category Linear RBF Diffusion ±
earn 0.9781 0.9781 0.9808 −
acq 0.9626 0.9626 0.9660 +

money-fx 0.8254 0.8245 0.8320 +

grain 0.8836 0.8844 0.9048 −
crude 0.8615 0.8763 0.8889 +

trade 0.7706 0.7797 0.8050 +

interest 0.8263 0.8263 0.8221 +

ship 0.8306 0.8404 0.8827 +

wheat 0.8613 0.8613 0.8844 −
corn 0.8727 0.8727 0.9310 +

Table 6: F1 measure for the Reuters top 10 classes using tf features. Thetrain and test sets were
created using the Mod-Apte split. The last column compares the presented results with the
published results of Zhang and Oles (2001), with a+ indicating the diffusion kernel F1
measure is greater than the result published in Zhang and Oles (2001) forthis task.

deal of geometric information about the manifold. While the geometric perspective in statistics has
most often led to reformulations of results that can be viewed more traditionally,the kernel methods
developed here clearly depend crucially on the geometry of statistical families.

The main application of these ideas has been to develop the multinomial diffusion kernel. A
related use of spherical geometry for the multinomial has been developed byGous (1998). Our ex-
perimental results indicate that the resulting diffusion kernel is indeed effective for text classification
using support vector machine classifiers, and can lead to significant improvements in accuracy com-
pared with the use of linear or Gaussian kernels, which have been the standard for this application.
The results of Section 5 are notable since accuracies better or comparableto those obtained using
heuristic weighting schemes such as tfidf are achieved directly through the geometric approach. In

155

LAFFERTY AND LEBANON

part, this can be attributed to the role of the Fisher information metric; because of the square root in
the embedding into the sphere, terms that are infrequent in a document are effectively up-weighted,
and such terms are typically rare in the document collection overall. The primary degree of freedom
in the use of information diffusion kernels lies in the specification of the mappingof data to model
parameters. For the multinomial, we have used the maximum likelihood mapping. The use of other
model families and mappings remains an interesting direction to explore.

While kernel methods generally are “model free,” and do not make distributional assumptions
about the data that the learning algorithm is applied to, statistical models offer many advantages, and
thus it is attractive to explore methods that combine data models and purely discriminative meth-
ods. Our approach combines parametric statistical modeling with non-parametric discriminative
learning, guided by geometric considerations. In these aspects it is relatedto the methods proposed
by Jaakkola and Haussler (1998). However, the kernels proposed inthe current paper differ sig-
nificantly from the Fisher kernel of Jaakkola and Haussler (1998). Inparticular, the latter is based
on the score∇θ logp(X | θ̂) at a single point̂θ in parameter space. In the case of an exponential
family model it is given by a covarianceKF(x,x′) = ∑i

(
xi −Eθ̂[Xi]

)(
x′i −Eθ̂[Xi]

)
; this covariance

is then heuristically exponentiated. In contrast, information diffusion kernels are based on the full
geometry of the statistical family, and yet are also invariant under reparameterization of the family.
In other conceptually related work, Belkin and Niyogi (2003) suggest measuring distances on the
data graph to approximate the underlying manifold structure of the data. In thiscase the underlying
geometry is inherited from the embedding Euclidean space rather than the Fisher geometry.

While information diffusion kernels are very general, they will be difficult tocompute in many
cases—explicit formulas such as equations (5–6) for hyperbolic spaceare rare. To approximate
an information diffusion kernel it may be attractive to use the parametrices and geodesic dis-
tance between points, as we have done for the multinomial. In cases where thedistance itself is
difficult to compute exactly, a compromise may be to approximate the distance between nearby
points in terms of the Kullback-Leibler divergence, using the relation with the Fisher information
that is noted in Appendix B. In effect, this approximation is already incorporated into the ker-
nels recently proposed by Moreno et al. (2004) for multimedia applications,which have the form
K(θ,θ′) ∝ exp(−αD(θ,θ′)) ≈ exp(−2αd2(θ,θ′)), and so can be viewed in terms of the leading
order approximation to the heat kernel. The results of Moreno et al. (2004) are suggestive that dif-
fusion kernels may be attractive not only for multinomial geometry, but also for much more complex
statistical families.

Acknowledgments

We thank Rob Kass, Leonid Kontorovich and Jian Zhang for helpful discussions. This research was
supported in part by NSF grants CCR-0122581 and IIS-0312814, and by ARDA contract MDA904-
00-C-2106. A preliminary version of this work was published in Advancesin Neural Information
Processing Systems 15 (Lafferty and Lebanon, 2003).

Appendix A. The Geometric Laplacian

In this appendix we briefly review some of the elementary concepts from Riemannian geometry that
are used in the construction of information diffusion kernels, since these concepts are not widely

156

DIFFUSION KERNELS ONSTATISTICAL MANIFOLDS

used in machine learning. We refer to Spivak (1979) for details and further background, or Mil-
nor (1963) for an elegant and concise overview; however most introductory texts on differential
geometry include this material.

A.1 Basic Definitions

An n-dimensional differentiable manifoldM is a set of points that is locally equivalent toR
n by

smooth transformations, supporting operations such as differentiation. Formally, a differentiable
manifoldis a setM together with a collection oflocal charts{(Ui ,ϕi)}, whereUi ⊂ M with ∪iUi =
M, andϕi : Ui ⊂ M −→ R

n is a bijection. For each pair of local charts(Ui ,ϕi) and(U j ,ϕ j), it is
required thatϕ j(Ui ∩U j) is open andϕi j = ϕi ◦ϕ−1

j is a diffeomorphism.
The tangent spaceTpM ∼= R

n at p∈ M can be be thought of as directional derivatives operating
onC∞(M), the set of real valued differentiable functionsf : M →R. Equivalently, the tangent space
TpM can be viewed in terms of an equivalence class of curves onM passing throughp. Two curves
c1 : (−ε,ε) −→ M andc2 : (−ε,ε) −→ M are equivalent atp in casec1(0) = c2(0) = p andϕ ◦ c1

andϕ ◦ c2 are tangent atp for some local chartϕ (and therefore all charts), in the sense that their
derivatives at 0 exist and are equal.

In many cases of interest, the manifoldM is a submanifold of a larger manifold, oftenRm,
m≥ n. For example, the openn-dimensional simplex, defined by

Pn =
{

θ ∈ R
n+1 : ∑n+1

i=1 θi = 1, θi > 0
}

(9)

is a submanifold ofRn+1. In such a case, the tangent space of the submanifoldTpM is a subspace
of TpR

m, and we may represent the tangent vectorsv ∈ TpM in terms of the standard basis of the
tangent spaceTpR

m∼= R
m, v= ∑m

i=1vi ei . The openn-simplex is a differential manifold with a single,
global chart.

A manifold with boundaryis defined similarly, except that the local charts(U,ϕ) satisfyϕ(U)⊂
R

n+, thus mapping a patch ofM to the half-spaceRn+ = {x∈R
n |xn ≥ 0}. In general, ifU andV are

open sets inRn+ in the topology induced fromRn, and f : U −→V is a diffeomorphism, thenf in-
duces diffeomorphisms Intf : IntU −→ IntV and∂ f : ∂U −→ ∂V, where∂A= A∪(Rn−1×{0}) and
IntA = A∪{x∈ R

n |xn > 0}. Thus, it makes sense to define theinterior IntM = ∪Uϕ−1(Int(ϕ(U)))
andboundary∂M = ∪Uϕ−1(∂(ϕ(U))) of M. Since IntM is open it is ann-dimensional manifold
without boundary, and∂M is an(n−1)-dimensional manifold without boundary.

If f : M → N is a diffeomorphism of the manifoldM onto the manifoldN, then f induces a
push-foward mapping f∗ of the associated tangent spaces. A vector fieldX ∈ TM is mapped to the
push-forwardf∗X ∈ TN, satisfying(f∗X)(g) = X(g◦ f) for all g ∈ C∞(N). Intuitively, the push-
forward mapping transforms velocity vectors of curves to velocity vectorsof the corresponding
curves in the new manifold. Such a mapping is of use in transforming metrics, asdescribed next.

A.2 The Laplacian

The construction of our kernels is based on the geometric Laplacian.2 In order to define the gener-
alization of the familiar Laplacian∆ = ∂2

∂x2
1
+ ∂2

∂x2
2
+ · · ·+ ∂2

∂x2
n

on R
n to manifolds, one needs a notion

2. As described by Nelson (1968), “The Laplace operator in its variousmanifestations is the most beautiful and central
object in all of mathematics. Probability theory, mathematical physics, Fourier analysis, partial differential equations,
the theory of Lie groups, and differential geometry all revolve aroundthis sun, and its light even penetrates such
obscure regions as number theory and algebraic geometry.”

157

LAFFERTY AND LEBANON

of geometry, in particular a way of measuring lengths of tangent vectors. ARiemannian manifold
(M,g) is a differentiable manifoldM with a family of smoothly varying positive-definite inner prod-
uctsg = gp on TpM for eachp∈ M. Two Riemannian manifolds(M,g) and(N,h) areisometricin
case there is a diffeomorphismf : M −→ N such that

gp(X,Y) = hf (p)(f∗X, f∗Y)

for everyX,Y ∈ TpM and p∈ M. Occasionally, hard computations on one manifold can be trans-
formed to easier computations on an isometric manifold. Every manifold can be given a Riemannian
metric. For example, every manifold can be embedded inR

m for somem≥ n (the Whitney embed-
ding theorem), and the Euclidean metric induces a metric on the manifold under theembedding. In
fact, every Riemannian metric can be obtained in this way (the Nash embedding theorem).

In local coordinates,g can be represented asgp(v,w) = ∑i, j gi j (p)vi w j whereg(p) = [gi j (p)]
is a non-singular, symmetric and positive-definite matrix depending smoothly onp, and tangent
vectorsv andw are represented in local coordinates atp asv = ∑n

i=1vi ∂i|p andw = ∑n
i=1wi ∂i|p. As

an example, consider the openn-dimensional simplex defined in (9). A metric onR
n+1 expressed

by the symmetric positive-definite matrixG = [gi j] ∈ R
(n+1)×(n+1) induces a metric onPn as

gp(v,u) = gp
(
∑n+1

i=1 uiei ,∑n+1
i=1 viei

)
=

n+1

∑
i=1

n+1

∑
j=1

gi j uiv j .

The metric enables the definition of lengths of vectors and curves, and therefore distance be-
tween points on the manifold. The length of a tangent vector atp∈M is given by‖v‖=

√
〈v,v〉p, v∈

TpM and the length of a curvec : [a,b] → M is then given byL(c) =
R b

a ‖ċ(t)‖dt whereċ(t) is the
velocity vector of the pathc at timet. Using the above definition of lengths of curves, we can define
the distanced(x,y) between two pointsx,y∈M as the length of the shortest piecewise differentiable
curve connectingx andy. This geodesic distance dturns the Riemannian manifold into a metric
space, satisfying the usual properties of positivity, symmetry and the triangle inequality. Rieman-
nian manifolds also support convex neighborhoods. In particular, ifp∈ M, there is an open setU
containingp such that any two points ofU can be connected by a unique minimal geodesic inU .

A manifold is said to begeodesically completein case every geodesic curvec(t), t ∈ [a,b], can
be extended to be defined for allt ∈ R. It can be shown (Milnor, 1963), that the following are
equivalent: (1)M is geodesically complete, (2)d is a complete metric onM, and (3) closed and
bounded subsets ofM are compact. In particular, compact manifolds are geodesically complete.
The Hopf-Rinow theorem (Milnor, 1963) asserts that ifM is complete, then any two points can
be joined by a minimal geodesic. This minimal geodesic is not necessarily unique, as seen by
considering antipodal points on a sphere. Theexponential mapexpx maps a neighborhoodV of
0∈ TxM diffeomorphically onto a neighborhood ofx ∈ M. By definition, expxv is the pointγv(1)
whereγv is a geodesic starting atx with initial velocity v = dγv

dt |t=0. Any such geodesic satisfies
γrv(s) = γv(rs) for r > 0. This mapping defines a local coordinate system onM called normal
coordinates, under which many computations are especially convenient.

For a functionf : M −→ R, the gradient gradf is the vector field defined by

〈gradf (p),X〉 = X(f) .

In local coordinates, the gradient is given by

(gradf)i = ∑
j

gi j ∂ f
∂x j

,

158

DIFFUSION KERNELS ONSTATISTICAL MANIFOLDS

where
[
gi j (p)

]
is the inverse of[gi j (p)]. The divergence operator is defined to be the adjoint of

the gradient, allowing “integration by parts” on manifolds with special structure. An orientation of
a manifold is a smooth choice of orientation for the tangent spaces, meaning that for local charts
ϕi andϕ j , the differentialD(ϕ j ◦ϕi)(x) : R

n −→ R
n is orientation preserving, so the sign of the

determinant is constant. If a Riemannian manifoldM is orientable, it is possible to define avolume
form µ, where ifv1,v2, . . . ,vn ∈ TpM (positively oriented), then

µ(v1, . . . ,vn) =
√

det〈vi ,v j〉 .

A volume form, in turn, enables the definition of thedivergenceof a vector field on the manifold.
In local coordinates, the divergence is given by

divX =
1√
detg ∑

i

∂
∂xi

(√
detgXi

)

where detg denotes the determinant of the matrixgi j .
Finally, theLaplace-Beltrami operatoron functions is defined by

∆ = div ◦grad,

which in local coordinates is thus given by

∆ f =
1√
detg ∑

j

∂
∂x j

(

∑
i

gi j
√

detg
∂ f
∂xi

)
.

These definitions preserve the familiar intuitive interpretation of the usual operators in Euclidean
geometry; in particular, the gradient points in the direction of steepest ascent and the divergence
measures outflow minus inflow of liquid or heat.

Appendix B. Fisher Information Geometry

Let F = {p(· |θ)}θ∈Θ be ann-dimensional regular statistical family on a setX . Thus, we assume
thatΘ ⊂ R

n is open, and that there is aσ-finite measureµ on X , such that for eachθ ∈ Θ, p(· |θ)
is a density with respect toµ, so that

R

X p(x|θ)dµ(x) = 1. We identify the manifoldM with Θ by
assuming that for eachx∈ X the mappingθ 7→ p(x|θ) is C∞.

Let ∂i denote∂/∂θi , and`θ(x) = logp(x|θ). TheFisher information metric atθ ∈ Θ is defined
in terms of the matrixg(θ) ∈ R

n×n given by

gi j (θ) = Eθ [∂i`θ ∂ j`θ] =
Z

X
p(x|θ)∂i logp(x|θ)∂ j logp(x|θ)dµ(x) .

Since the scoresi(θ) = ∂i`θ has mean zero,gi j (θ) can be seen as the variance ofsi(θ), and is
therefore positive-definite. By assumption, it is smoothly varying inθ, and therefore defines a
Riemannian metric onΘ = M.

An equivalent and sometimes more suggestive form of the Fisher informationmatrix, as will be
seen below for the case of the multinomial, is

gi j (θ) = 4
Z

X
∂i

√
p(x|θ)∂ j

√
p(x|θ)dµ(x) .

159

LAFFERTY AND LEBANON

Yet another equivalent form isgi j (θ) = −Eθ[∂ j∂i`θ]. To see this, note that

Eθ[∂ j∂i`θ] =
Z

X
p(x|θ)∂ j∂i logp(x|θ)dµ(x)

= −
Z

X
p(x|θ)

∂ j p(x|θ)

p(x|θ)2 ∂i p(x|θ)dµ(x)−
Z

X
∂ j∂i p(x|θ)dµ(x)

= −
Z

X
p(x|θ)

∂ j p(x|θ)

p(x|θ)

∂i p(x|θ)

p(x|θ)
dµ(x)−∂ j∂i

Z

X
p(x|θ)dµ(x)

= −
Z

X
p(x|θ)∂ j logp(x|θ)∂i logp(x|θ)dµ(x)

= −gi j (θ) .

Since there are many possible choices of metric on a given differentiable manifold, it is impor-
tant to consider the motivating properties of the Fisher information metric. Intuitively, the Fisher
information may be thought of as the amount of information a single data point supplies with respect
to the problem of estimating the parameterθ. This interpretation can be justified in several ways,
notably through the efficiency of estimators. In particular, the asymptotic variance of the maximum
likelihood estimator̂θ obtained using a sample of sizen is (ng(θ))−1. Since the MLE is asymptot-
ically unbiased, the inverse Fisher information represents the asymptotic fluctuations of the MLE
around the true value. Moreover, by the Cramér-Rao lower bound, the variance of any unbiased
estimator is bounded from below by(ng(θ))−1. Additional motivation for the Fisher information
metric is provided by the results ofČencov (1982), which characterize it as the only metric (up to
multiplication by a constant) that is invariant with respect to certain probabilistically meaningful
transformations called congruent embeddings.

The connection with another familiar similarity measure is worth noting here. Ifp andq are
two densities onX with respect toµ, the Kullback-Leibler divergenceD(p,q) is defined by

D(p,q) =
Z

X
p(x) log

p(x)
q(x)

dµ(x) .

The Kullback-Leibler divergence behaves at nearby points like the square of the information dis-
tance. More precisely, it can be shown that

lim
q→p

d2(p,q)

2D(p,q)
= 1,

where the convergence is uniform asd(p,q) → 0. As we comment in the text, this relationship may
be of use in approximating information diffusion kernels for complex models.

B.1 Fisher information for the Spherical Gaussian

Here we derive the Fisher information for the special case of the familyF = {p(· |θ)}θ∈Θ where
θ = (µ,σ) andp(· |(µ,σ)) = N (µ,σIn−1), the Gaussian having meanµ∈ R

n−1 and varianceσIn−1,
with σ > 0. The parameter space is thusΘ = R

n−1×R+.
To compute the Fisher information metric for this family, it is convenient to use the general

expression given by equation (10). Let∂i = ∂/∂µi for i = 1. . .n−1, and∂n = ∂/∂σ. Then simple

160

DIFFUSION KERNELS ONSTATISTICAL MANIFOLDS

calculations yield, for 1≤ i, j ≤ n−1

gi j (θ) = −
Z

Rn−1
∂i∂ j

(
−

n−1

∑
k=1

(xk−µk)
2

2σ2

)
p(x|θ)dx

=
1

σ2 δi j

gni(θ) = −
Z

Rn−1
∂n∂i

(
−

n−1

∑
k=1

(xk−µk)
2

2σ2

)
p(x|θ)dx

=
2

σ3

Z

Rn−1
(xi −µi) p(x|θ)dx

= 0

gnn(θ) = −
Z

Rn−1
∂n∂n

(
−

n−1

∑
k=1

(xk−µk)
2

2σ2 − (n−1) logσ

)
p(x|θ)dx

=
3

σ4

Z

Rn−1

n−1

∑
k=1

(xk−µk)
2 p(x|θ)dx− n−1

σ2

=
2(n−1)

σ2 .

Letting θ′ be new coordinates defined byθ′
i = µi for 1≤ i ≤ n−1 andθ′

n =
√

2(n−1)σ, it is
seen that the Fisher information matrix is given by

gi j (θ′) =
1

σ2 δi j .

Thus, the Fisher information metric givesΘ = R
n−1×R+ the structure of the upper half plane in

hyperbolic space.

References

Mark A. Aizerman, Emmanuel M. Braverman, and Lev I. Rozonoér. Theoretical foundations of the
potential function method in pattern recognition and learning.Automation and Remote Control,
25:821–837, 1964.

Shun-ichi Amari and Hiroshi Nagaoka.Methods of Information Geometry, volume 191 ofTransla-
tions of Mathematical Monographs. American Mathematical Society, 2000.

Peter L. Bartlett, Olivier Bousquet, and Shahar Mendelson. Local Rademacher complexities.The
Annals of Statistics, 2004. To appear.

Peter L. Bartlett and Shahar Mendelson. Rademacher and Gaussian complexities: Risk bounds and
structural results.Journal of Machine Learning Research, 3:463–482, 2002.

Mikhail Belkin and Partha Niyogi. Using manifold structure for partially labeledclassification. In
Advances in Neural Information Processing Systems, 2003.

161

LAFFERTY AND LEBANON

Marcel Berger, Paul Gauduchon, and Edmond Mazet. Le spectre d’une variet́e Riemannienne.
Lecture Notes in Mathematics, Vol. 194, Springer-Verlag, 1971.

Bernhard E. Boser, Isabelle Guyon, and Vladimir Vapnik. A training algorithm for optimal margin
classifiers. InComputational Learing Theory, pages 144–152, 1992.

Nikolai NikolaevichČencov.Statistical Decision Rules and Optimal Inference, volume 53 ofTrans-
lation of Mathematical Monographs. American Mathematical Society, 1982.

Mark Craven, Dan DiPasquo, Dayne Freitag, Andrew K. McCallum, Tom M. Mitchell, Kamal
Nigam, and Séan Slattery. Learning to construct knowledge bases from the World Wide Web.
Artificial Intelligence, 118(1/2):69–113, 2000.

A. Philip Dawid. Further comments on some comments on a paper by Bradley Efron. The Annals
of Statistics, 5(6):1249, 1977.

Tom Dietterich. AI Seminar. Carnegie Mellon, 2002.

Alan T. Gous.Exponential and Spherical Subfamily Models. PhD thesis, Stanford University, 1998.

Alexander Grigor’yan and Masakazu Noguchi. The heat kernel on hyperbolic space.Bulletin of the
London Mathematical Society, 30:643–650, 1998.

Ying Guo, Peter L. Bartlett, John Shawe-Taylor, and Robert C. Williamson.Covering numbers for
support vector machines.IEEE Trans. Information Theory, 48(1), January 2002.

Tommi S. Jaakkola and David Haussler. Exploiting generative models in discriminative classifiers.
In Advances in Neural Information Processing Systems, volume 11, 1998.

Thorsten Joachims.The Maximum Margin Approach to Learning Text Classifiers Methods, Theory
and Algorithms. PhD thesis, Dortmund University, 2000.

Thorsten Joachims, Nello Cristianini, and John Shawe-Taylor. Composite kernels for hypertext
categorisation. InProceedings of the International Conference on Machine Learning (ICML),
2001.

Robert E. Kass. The geometry of asymptotic inference.Statistical Science, 4(3), 1989.

Robert E. Kass and Paul W. Vos.Geometrical Foundations of Asymptotic Inference. Wiley Series
in Probability and Statistics. John Wiley & Sons, 1997.

George Kimeldorf and Grace Wahba. Some results on Tchebychean splinefunctions.J. Math. Anal.
Applic., 33:82–95, 1971.

Risi Imre Kondor and John Lafferty. Diffusion kernels on graphs andother discrete input spaces. In
C. Sammut and A. Hoffmann, editors,Proceedings of the International Conference on Machine
Learning (ICML). Morgan Kaufmann, 2002.

John Lafferty and Guy Lebanon. Information diffusion kernels. In S.Thrun S. Becker and K. Ober-
mayer, editors,Advances in Neural Information Processing Systems 15, pages 375–382. MIT
Press, Cambridge, MA, 2003.

162

DIFFUSION KERNELS ONSTATISTICAL MANIFOLDS

Stefan L. Lauritzen. Statistical manifolds. In S. I. Amari, O. E. Barndorff-Nielsen, R. E. Kass, S. L.
Lauritzen, and C. R. Rao, editors,Differential Geometry in Statistical Inference, pages 163–216.
Institute of Mathematical Statistics, Hayward, CA, 1987.

David D. Lewis and Marc Ringuette. A comparison of two learning algorithms for text categoriza-
tion. In Symposium on Document Analysis and Information Retrieval, pages 81–93, Las Vegas,
NV, April 1994. ISRI; Univ. of Nevada, Las Vegas.

Shahar Mendelson. On the performance of kernel classes.Journal of Machine Learning Research,
4:759–771, 2003.

John W. Milnor.Morse Theory. Princeton University Press, 1963.

Pedro J. Moreno, Purdy P. Ho, and Nuno Vasconcelos. A Kullback-Leibler divergence based kernel
for SVM classification in multimedia applications. InAdvances in Neural Information Processing
Systems 16. MIT Press, Cambridge, MA, 2004.

Edward Nelson.Tensor Analysis. Princeton University Press, 1968.

Tomaso Poggio and Frederico Girosi. Regularization algorithms for learningthat are equivalent to
multilayer networks.Science, 247:978–982, 1990.

Jay Ponte and W. Bruce Croft. A language modeling approach to informationretrieval. InProceed-
ings of the ACM SIGIR, pages 275–281, 1998.

Calyampudi R. Rao. Information and accuracy attainable in the estimation of statistical parameters.
Bull. Calcutta Math. Soc., 37:81–91, 1945.

Steven Rosenberg.The Laplacian on a Riemannian Manifold. Cambridge University Press, 1997.

Richard Schoen and Shing-Tung Yau.Lectures on Differential Geometry, volume 1 ofConference
Proceedings and Lecture Notes in Geometry and Topology. International Press, 1994.

Michael Spivak.Differential Geometry, volume 1. Publish or Perish, 1979.

Chengxiang Zhai and John Lafferty. A study of smoothing methods for language models applied to
ad hoc information retrieval. InProceedings of SIGIR’2001, pages 334–342, Sept 2001.

Tong Zhang and Frank J. Oles. Text categorization based on regularized linear classification meth-
ods. Information Retrieval, 4:5–31, April 2001.

163

Journal of Machine Learning Research 6 (2005) 165–188 Submitted 2/04; Revised 7/04; Published 1/05

Information Bottleneck for Gaussian Variables

Gal Chechik∗ GAL@ROBOTICS.STANFORD.EDU

Computer Science Department
Stanford University
Stanford CA 94305-9025, USA

Amir Globerson∗ GAMIR@CS.HUJI.AC.IL
Naftali Tishby TISHBY@CS.HUJI.AC.IL
Yair Weiss YWEISS@CS.HUJI.AC.IL
School of Computer Science and Engineering and
The Interdisciplinary Center for Neural Computation
The Hebrew University of Jerusalem
Givat Ram, Jerusalem 91904, Israel

Editor: Peter Dayan

Abstract

The problem of extracting the relevant aspects of data was previously addressed through theinfor-
mation bottleneck(IB) method, through (soft) clustering one variable while preserving information
about another -relevance- variable. The current work extends these ideas to obtain continuous rep-
resentations that preserve relevant information, rather than discrete clusters, for the special case of
multivariate Gaussian variables. While the general continuous IB problem is difficult to solve, we
provide an analytic solution for the optimal representation and tradeoff between compression and
relevance for the this important case. The obtained optimalrepresentation is a noisy linear projec-
tion to eigenvectors of the normalized regression matrixΣx|yΣ−1

x , which is also the basis obtained
in canonical correlation analysis. However, in Gaussian IB, the compression tradeoff parameter
uniquely determines the dimension, as well as the scale of each eigenvector, through a cascade
of structural phase transitions. This introduces a novel interpretation where solutions of different
ranks lie on a continuum parametrized by the compression level. Our analysis also provides a
complete analytic expression of the preserved informationas a function of the compression (the
“information-curve”), in terms of the eigenvalue spectrumof the data. As in the discrete case, the
information curve is concave and smooth, though it is made ofdifferent analytic segments for each
optimal dimension. Finally, we show how the algorithmic theory developed in the IB framework
provides an iterative algorithm for obtaining the optimal Gaussian projections.

Keywords: information bottleneck, Gaussian processes, dimensionality reduction, canonical cor-
relation analysis

1. Introduction

Extracting relevant aspects of complex data is a fundamental task in machine learning and statistics.
The problem is often that the data contains many structures, which make it difficult to define which
of them are relevant and which are not in an unsupervised manner. Forexample, speech signals may

∗. Both authors contributed equally.

c©2005 Gal Checkik, Amir Globerson, Naftali Tishby and Yair Weiss.

CHECHIK, GLOBERSON, TISHBY AND WEISS

be characterized by their volume level, pitch, or content; pictures can be ranked by their luminosity
level, color saturation or importance with regard to some task.

This problem was addressed in a principled manner by the information bottleneck (IB) approach
(Tishby et al., 1999). Given the joint distribution of a “source” variableX and another “relevance”
variableY, IB operates to compressX, while preserving information aboutY. The variableY thus
implicitly defines what is relevant inX and what is not. Formally, this is cast as the following
variational problem

min
p(t|x)

L : L ≡ I(X;T)−βI(T;Y) (1)

whereT represents the compressed representation ofX via the conditional distributionsp(t|x),
while the information thatT maintains onY is captured by the distributionp(y|t). This formulation
is general and does not depend on the type of theX,Y distribution. The positive parameterβ
determines the tradeoff between compression and preserved relevant information, as the Lagrange
multiplier for the constrained optimization problem minp(t|x) I(X;T)−β(I(T;Y)−const). SinceT
is a function ofX it is independent ofY givenX, thus the three variables can be written as the Markov
chainY−X−T. From the information inequality we thus haveI(X;T)−βI(T;Y)≥ (1−β)I(T;Y),
and therefore for all values ofβ≤ 1, the optimal solution of the minimization problem is degenerated
I(T;X) = I(T;Y) = 0. As we will show below, the range of degenerated solutions is even larger for
Gaussian variables and depends on the eigen spectrum of the variables covariance matrices.

The rationale behind the IB principle can be viewed as model-free “looking inside the black-
box” system analysis approach. Given the input-output(X,Y) “black-box” statistics, IB aims to
construct efficient representations ofX, denoted by the variableT, that can account for the observed
statistics ofY. IB achieves this using a single tradeoff parameter to represent the tradeoff between
the complexity of the representation ofX, measured byI(X;T), and the accuracy of this representa-
tion, measured byI(T;Y). The choice of mutual information for the characterization of complexity
and accuracy stems from Shannon’s theory, where information minimization corresponds to optimal
compression in Rate Distortion Theory, and its maximization corresponds to optimal information
transmission in Noisy Channel Coding.

From a machine learning perspective, IB may be interpreted as regularized generative modeling.
Under certain conditionsI(T;Y) can be interpreted as an empirical likelihood of a special mixture
model, andI(T;X) as penalizing complex models (Slonim and Weiss, 2002). While this interpreta-
tion can lead to interesting analogies , it is important to emphasize the differences. First, IB views
I(X;T) not as a regularization term, but rather corresponds to the distortion constraint in the origi-
nal system. As a result, this constraint is useful even when the joint distribution is known exactly,
because the goal of IB is to obtain compact representations rather than to estimate density. Inter-
estingly,I(T;X) also characterizes the complexity of the representationT as the expected number
of bits needed to specify thet for a givenx. In that role it can be viewed as an expected “cost” of
the internal representation, as in MDL. As is well acknowledged now source coding with distortion
and channel coding with cost are dual problems (see for example Shannon, 1959; Pradhan et al.,
2003). In that information theoretic sense, IB isself dual, where the resulting source and channel
are perfectly matched (as in Gastpar and Vetterli, 2003).

The information bottleneck approach has been applied so far mainly to categorical variables,
with a discreteT that represents (soft) clusters ofX. It has been proved useful for a range of applica-
tions from documents clustering (Slonim and Tishby, 2000) through neural code analysis (Dimitrov

166

GAUSSIAN INFORMATION BOTTLENECK

and Miller, 2001) to gene expression analysis (Friedman et al., 2001; Sinkkonen and Kaski, 2001)
(for a more detailed review of IB clustering algorithms see Slonim (2003)). However, its general
information theoretic formulation is not restricted, both in terms of the nature of the variablesX and
Y, as well as of the compression variableT. It can be naturally extended to nominal, categorical, and
continuous variables, as well as to dimension reduction rather than clustering techniques. The goal
of this paper is apply the IB for the special, but very important, case of Gaussian processes which
has become one of the most important generative classes in machine learning. In addition, this is the
first concrete application of IB to dimension reduction with continuous compressed representation,
and as such exhibit interesting dimension related phase transitions.

The general solution of IB for continuousT yields the same set of self-consistent equations
obtained already in (Tishby et al., 1999), but solving these equations forthe distributionsp(t|x), p(t)
and p(y|t) without any further assumptions is a difficult challenge, as it yields non-linear coupled
eigenvalue problems. As in many other cases, however, we show here that the problem turns out to
be analytically tractable whenX andY are joint multivariate Gaussian variables. In this case, rather
than using the fixed point equations and the generalized Blahut-Arimoto algorithm as proposed in
(Tishby et al., 1999), one can explicitly optimize the target function with respect to the mapping
p(t|x) and obtain a closed form solution of the optimal dimensionality reduction.

The optimal compression in the Gaussian information bottleneck (GIB) is defined in terms of the
compression-relevance tradeoff (also known as the “Information Curve”, or “Accuracy-Complexity”
tradeoff), determined by varying the parameterβ. The optimal solution turns out to be a noisy linear
projection to a subspace whose dimensionality is determined by the parameterβ. The subspaces are
spanned by the basis vectors obtained as in the well knowncanonical correlation analysis(CCA)
(Hotelling, 1935), but the exact nature of the projection is determined in a unique way via the
parameterβ. Specifically, asβ increases, additional dimensions are added to the projection variable
T, through a series of critical points (structural phase transitions), while at the same time the relative
magnitude of each basis vector is rescaled. This process continues until all the relevant information
aboutY is captured inT. This demonstrates how the IB principle can provide a continuous measure
of model complexity in information theoretic terms.

The idea of maximization of relevant information was also taken in theImax framework of
Becker and Hinton (Becker and Hinton, 1992; Becker, 1996), which followed Linsker’s idea of
information maximization (Linsker, 1988, 1992). In the Imax setting, there aretwo one-layer feed
forward networks with inputsXa, Xb and outputs neuronsYa, Yb; the output neuronYa serves to
define relevance to the output of the neighboring networkYb. Formally, the goal is to tune the
incoming weights of the output neurons, such that their mutual informationI(Ya;Yb) is maximized.
An important difference betweenImax and the IB setting, is that in theImax setting,I(Ya;Yb) is
invariant to scaling and translation of theY’s since the compression achieved in the mappingXa→Ya

is not modeled explicitly. In contrast, the IB framework aims to characterize thedependence of the
solution on the explicit compression termI(T;X), which is ascale sensitivemeasure when the
transformation is noisy. This view of compressed representationT of the inputsX is useful when
dealing with neural systems that are stochastic in nature and limited in their responses amplitudes
and are thus constrained to finiteI(T;X).

The current paper starts by defining the problem of relevant informationextraction for Gaussian
variables. Section 3 gives the main result of the paper: an analytical characterization of the optimal
projections, which is then developed in Section 4. Section 5 develops an analytical expression for
the GIB compression-relevance tradeoff - the information curve. Section6 shows how the general IB

167

CHECHIK, GLOBERSON, TISHBY AND WEISS

algorithm can be adapted to the Gaussian case, yielding an iterative algorithmfor finding the optimal
projections. The relations to canonical correlation analysis and coding withside-information are
discussed in Section 9.

2. Gaussian Information Bottleneck

We now formalize the problem of information bottleneck for Gaussian variables. Let(X,Y) be two
jointly multivariate Gaussian variables of dimensionsnx, ny and denote byΣx,Σy the covariance
matrices ofX,Y and byΣxy their cross-covariance matrix.1 The goal of GIB is to compress the vari-
ableX via a stochastic transformation into another variableT ∈ Rnx, while preserving information
aboutY. The dimension ofT is not explicitly limited in our formalism, since we will show that the
effective dimension is determined by the value ofβ.

It is shown in Globerson and Tishby (2004) that the optimum for this problemis obtained by
a variableT which is also jointly Gaussian withX. The formal proof uses the entropy power
inequality as in Berger and Zamir (1999), and is rather technical, but an intuitive explanation is
that sinceX andY are Gaussians, the only statistical dependencies that connect them are bi-linear.
Therefore, a linear projection ofX is sufficient to capture all the information thatX has onY. The
Entropy-power inequality is used to show that a linear projection ofX, which is also Gaussian in
this case, indeed attains this maximum information.

Since every two centered random variablesX andT with jointly Gaussian distribution can be
presented through the linear transformationT = AX+ξ, whereξ∼N(0,Σξ) is another Gaussian that
is independent ofX, we formalize the problem using this representation ofT, as the minimization

min
A,Σξ

L ≡ I(X;T)−βI(T;Y) (2)

over the noisy linear transformations ofA, Σξ

T = AX+ξ; ξ ∼ N(0,Σξ). (3)

ThusT is normally distributedT ∼ N(0,Σt) with Σt = AΣxAT +Σξ.

Interestingly, the termξ can also be viewed as an additive noise term, as commonly done in
models of learning in neural networks. Under this view,ξ serves as a regularization term whose
covariance determines the scales of the problem. While the goal of GIB is to find the optimal
projection parametersA,Σξ jointly, we show below that the problem factorizes such that the optimal
projectionA does not depend on the noise, which does not carry any information about Y.

3. The Optimal Projection

The first main result of this paper is the characterization of the optimalA,Σξ as a function ofβ

1. For simplicity we assume thatX andY have zero means andΣx,Σy are full rank. OtherwiseX andY can be centered
and reduced to the proper dimensionality.

168

GAUSSIAN INFORMATION BOTTLENECK

Theorem 3.1 The optimal projection T= AX + ξ for a given tradeoff parameterβ is given by
Σξ = Ix and

A =



















[

0T ; . . . ;0T
]

0≤ β ≤ βc
1

[

α1vT
1 ,0T ; . . . ;0T

]

βc
1 ≤ β ≤ βc

2
[

α1vT
1 ;α2vT

2 ;0T ; . . . ;0T
]

βc
2 ≤ β ≤ βc

3
...



















(4)

where{vT
1 ,vT

2 , . . . ,vT
nx
} are left eigenvectors ofΣx|yΣ−1

x sorted by their corresponding ascending
eigenvaluesλ1,λ2, . . . ,λnx, βc

i = 1
1−λi

are critical β values,αi are coefficients defined byαi ≡
√

β(1−λi)−1
λi r i

, ri ≡ vT
i Σxvi , 0T is an nx dimensional row vector of zeros, and semicolons separate

rows in the matrix A.

This theorem asserts that the optimal projection consists of eigenvectors ofΣx|yΣ−1
x , combined in

an interesting manner: Forβ values that are smaller than the smallest critical pointβc
1, compression

is more important than any information preservation and the optimal solution is the degenerated one
A ≡ 0. As β is increased, it goes through a series of critical pointsβc

i , at each of which another
eigenvector ofΣx|yΣ−1

x is added toA. Even though the rank ofA increases at each of these transition
points,A changes continuously as a function ofβ since at each critical pointβc

i the coefficientαi

vanishes. Thusβ parameterizes a sort of “continuous rank” of the projection.
To illustrate the form of the solution, we plot the landscape of the target function L together

with the solution in a simple problem whereX ∈ R2 andY ∈ R. In this caseA has a single non-zero
row, thusA can be thought of as a row vector of length 2, that projectsX to a scalarA : X → R,
T ∈ R. Figure 1 shows the target functionL as a function of the (vector of length 2) projectionA. In
this example, the largest eigenvalue isλ1 = 0.95, yieldingβc

1 = 20. Therefore, forβ = 15 (Figure
1A) the zero solution is optimal, but forβ = 100> βc (Figure 1B) the corresponding eigenvector
is a feasible solution, and the target function manifold contains two mirror minima. As β increases
from 1 to ∞, these two minima, starting as a single unified minimum at zero, split atβc, and then
diverge apart to∞.

We now turn to prove Theorem 3.1.

4. Deriving the Optimal Projection

We first rewrite the target function as

L = I(X;T)−βI(T;Y) = h(T)−h(T|X)−βh(T)+βh(T|Y) (5)

whereh is the (differential) entropy of a continuous variable

h(X) ≡−
Z

X
f (x) log f (x)dx.

Recall that the entropy of ad dimensional Gaussian variable is

h(X) =
1
2

log
(

(2πe)d|Σx|
)

169

CHECHIK, GLOBERSON, TISHBY AND WEISS

A.

A
1

A
2

−5 −2.5 0 2.5 5

−5

−2.5

0

2.5

5

−5

0

5 −5
0

5

0

2

4

A
1

A
2

L=
I(

T
;X

)−
β

I(
T

;Y
)

B.

A
1

A
2

−5 −2.5 0 2.5 5

−5

−2.5

0

2.5

5

−5

0

5 −5
0

5

−2

0

2

4

A
1

A
2

L=
I(

T
;X

)−
β

I(
T

;Y
)

Figure 1: The surface of the target functionL calculated numerically as a function of the optimiza-
tion parameters in two illustrative examples with a scalar projectionA : R2 → R. Each
row plots the target surfaceL both in 2D (left) and 3D (right) as a function of the (two
dimensional) projectionsA. A. For β = 15, the optimal solution is the degenerated so-
lution A ≡ 0. B. For β = 100, a non degenerate solution is optimal, together with its
mirror solution. TheΣx|yΣ−1

x - eigenvector of smallest eigenvalue, with a norm computed
according to Theorem 3.1 is superimposed, showing that it obtains the global minimum
of L . Parameters’ valuesΣxy = [0.1 0.2], Σx = I2, Σξ = 0.3I2×2.

170

GAUSSIAN INFORMATION BOTTLENECK

where|x| denotes the determinant ofx, andΣx is the covariance ofX. We therefore turn to calcu-
late the relevant covariance matrices. From the definition ofT we haveΣtx = AΣx, Σty = AΣxy and
Σt = AΣxAT + Σξ. Now, the conditional covariance matrixΣx|y can be used to calculate the covari-
ance of the conditional variableT|Y, using the Schur complement formula (see e.g., Magnus and
Neudecker, 1988)

Σt|y = Σt −ΣtyΣ−1
y Σyt = AΣx|yA

T +Σξ.

The target function can now be rewritten as

L = log(|Σt |)− log(|Σt|x|)−β log(|Σt |)+β log(|Σt|y|). (6)

= (1−β) log(|AΣxA
T +Σξ|)− log(|Σξ|)+β log(|AΣx|yA

T +Σξ|)

AlthoughL is a function of both the noiseΣξ and the projectionA, Lemma A.1 in Appendix A
shows that for every pair(A,Σξ), there is another projectioñA such that the pair(Ã, I) obtains

the same value ofL . This is obtained by setting̃A =
√

D−1VA whereΣξ = VDVT , which yields
L(Ã, I) = L(A,Σξ).

2 This allows us to simplify the calculations by replacing the noise covariance
matrix Σξ with the identity matrixId.

To identify the minimum ofL we differentiateL with respect to the projectionA using the
algebraic identityδ

δA log(|ACAT |) = (ACAT)−12AC which holds for any symmetric matrixC:

δL

δA
= (1−β)(AΣxA

T + Id)
−12AΣx +β(AΣx|yA

T + Id)
−12AΣx|y. (7)

Equating this derivative to zero and rearranging, we obtain necessaryconditions for an internal
minimum ofL , which we explore in the next two sections.

4.1 Scalar Projections

For clearer presentation of the general derivation, we begin with a sketch of the proof by focusing
on the case whereT is a scalar, that is, the optimal projection matrixA is a now a single row vector.
In this case, bothAΣxAT andAΣx|yA

T are scalars, and we can write

(

β−1
β

)

(

AΣx|yA
T +1

AΣxAT +1

)

A = A
[

Σx|yΣ−1
x

]

. (8)

This equation is therefore an eigenvalue problem in which the eigenvalues depend onA. It has two
types of solutions depending on the value ofβ. First,A may be identically zero. Otherwise,A must

be the eigenvector ofΣx|yΣ−1
x , with an eigenvalueλ = β−1

β
AΣx|yA

T+1
AΣxAT+1

To characterize the values ofβ for which the optimal solution does not degenerate, we find when
the eigenvector solution is optimal. Denote the norm ofΣx with respect toA by r = AΣxAT

||A||2 . WhenA

is an eigenvector ofΣx|yΣ−1
x , Lemma B.1 shows thatr is positive and thatAΣx|yΣ−1

x ΣxAT = λr||A||2.
Rewriting the eigenvalue and isolating||A||2, we have

0 < ||A||2 =
β(1−λ)−1

rλ
. (9)

2. Although this holds only for full rankΣξ, it does not limit the generality of the discussion since low rank matrices
yield infinite values ofL and are therefore suboptimal.

171

CHECHIK, GLOBERSON, TISHBY AND WEISS

A. B.

1 10 100 1000
0

0.2

0.4

0.6

0.8

1

Feasible region

β

λ

1

10

100

0

0.5

1
0

5

10

βλ

lo
g(

||A
||2)

Figure 2: A. The regions of (β,λ) pairs that lead to the zero (red) and eigenvector (blue) solutions.
B. The norm||A||2 as a function ofβ andλ over the feasible region.

This inequality provides a constraint onβ and λ that is required for a non-degenerated type of
solution

λ ≤ β−1
β

or β ≥ (1−λ)−1
, (10)

thus defining a critical valueβc(λ) = (1− λ)−1. For β ≤ βc(λ), the weight of compression is
so strong that the solution degenerates to zero and no information is carriedaboutX or Y. For
β ≥ βc(λ) the weight of information preservation is large enough, and the optimal solution for A is
an eigenvector ofΣx|yΣ−1

x . The feasible regions for non degenerated solutions and the norm||A||2
as a function ofβ andλ are depicted in Figure 2.

For someβ values, several eigenvectors can satisfy the condition for non degenerated solutions
of Equation (10). Appendix C shows that the optimum is achieved by the eigenvector ofΣx|yΣ−1

x
with the smallest eigenvalue. Note that this is also the eigenvector ofΣxyΣ−1

y ΣyxΣ−1
x with the largest

eigenvalue. We conclude that for scalar projections

A(β) =







√

β(1−λ)−1
rλ v1 0 < λ ≤ β−1

β
0 β−1

β ≤ λ ≤ 1
(11)

wherev1 is the eigenvector ofΣx|yΣ−1
x with the smallest eigenvalue.

4.2 The High-Dimensional Case

We now return to the proof of the general, high dimensional case, which follows the same lines as
the scalar projection case. Setting the gradient in Equation (7) to zero and reordering we obtain

β−1
β
[

(AΣx|yA
T + Id)(AΣxA

T + Id)
−1]A = A

[

Σx|yΣ−1
x

]

. (12)

Equation (12) shows that the multiplication ofΣx|yΣ−1
x by A must reside in the span of the rows

of A. This means thatA should be spanned by up tont eigenvectors ofΣx|yΣ−1
x . We can therefore

172

GAUSSIAN INFORMATION BOTTLENECK

represent the projectionA as a mixtureA=WV where the rows ofV are left normalized eigenvectors
of Σx|yΣ−1

x andW is a mixing matrix that weights these eigenvectors. The form of the mixing matrix
W, that characterizes the norms of these eigenvectors, is described in the following lemma, which
is proved in Appendix D.

Lemma 4.1 The optimum of the cost function is obtained with a diagonal mixing matrix W of the
form

W = diag





√

β(1−λ1)−1
λ1r1

, . . . ,

√

β(1−λk)−1
λkrk

,0, . . . ,0



 (13)

where{λ1, . . . ,λk} are k≤ nx eigenvalues ofΣx|yΣ−1
x with critical β valuesβc

1, . . . ,βc
k ≤ β. ri ≡

vT
i Σxvi as in Theorem 3.1.

The proof is presented in Appendix D.

We have thus characterized the set of all minima ofL , and turn to identify which of them achieve
the global minima.

Corollary 4.2
The global minimum ofL is obtained with allλi that satisfyλi <

β−1
β .

The proof is presented in Appendix D.

Taken together, these observations prove that for a given value ofβ, the optimal projection is
obtained by taking all the eigenvectors whose eigenvaluesλi satisfyβ ≥ 1

1−λi
, and setting their norm

according toA = WV with W determined as in Lemma 4.1. This completes the proof of Theorem
3.1.

5. The GIB Information Curve

The information bottleneck is targeted at characterizing the tradeoff between information preserva-
tion (accuracy of relevant predictions) and compression. Interestingly, much of the structure of the
problem is reflected in theinformation curve, namely, the maximal value of relevant preserved in-
formation (accuracy),I(T;Y), as function of the complexity of the representation ofX, measured by
I(T;X). This curve is related to the rate-distortion function in lossy source coding,as well as to the
achievability limit in source coding with side-information (Wyner, 1975; Coverand Thomas, 1991).
It was shown to be concave under general conditions (Gilad-Bachrach et al., 2003), but its precise
functional form depends on the joint distribution and can reveal properties of the hidden structure of
the variables. Analytic forms for the information curve are known only for very special cases, such
as Bernoulli variables and some intriguing self-similar distributions. The analytic characterization
of the Gaussian IB problem allows us to obtain a closed form expression for the information curve
in terms of the relevant eigenvalues.

173

CHECHIK, GLOBERSON, TISHBY AND WEISS

0 5 10 15 20 25
0

I(T;X)

I(
T

;Y
)

Σ log(λ
i
)

β−1 = 1−λ
1

Figure 3: GIB information curve obtained with four eigenvaluesλi = 0.1,0.5,0.7,0.9. The informa-
tion at the critical points are designated by circles. For infiniteβ, curve is saturated at
the log of the determinant∑ logλi . For comparison, information curves calculated with
smaller number of eigenvectors are also depicted (all curves calculated for β < 1000).
The slope of the un-normalized curve at each point is the correspondingβ−1. The tangent
at zero, with slopeβ−1 = 1−λ1, is super imposed on the information curve.

To this end, we substitute the optimal projectionA(β) into I(T;X) andI(T;Y) and rewrite them
as a function ofβ

Iβ(T;X) =
1
2

log
(

|AΣxA
T + Id|

)

(14)

=
1
2

log
(

|(β(I −D)− I)D−1|
)

=
1
2

n(β)

∑
i=1

log

(

(β−1)
1−λi

λi

)

Iβ(T;Y) = I(T;X)− 1
2

n(β)

∑
i=1

logβ(1−λi),

whereD is a diagonal matrix whose entries are the eigenvalues ofΣx|yΣ−1
x as in Appendix D, and

n(β) is the maximal indexi such thatβ ≥ 1
1−λi

. Isolatingβ as a function ofIβ(T;X) in the correct
range ofnβ and thenIβ(T;Y) as a function ofIβ(T;X) we have

I(T;Y) = I(T;X)− nI

2
log

(

nI

∏
i=1

(1−λi)
1
nI +e

2I(T;X)
nI

nI

∏
i=1

λi
1
nI

)

(15)

where the products are over thefirst nI = nβ(I(T;X)) eigenvalues, since these obey the criticalβ
condition, withcnI ≤ I(T;X) ≤ cnI +1 andcnI = ∑nI−1

i=1 log
λnI
λi

1−λi
1−λnI

.

174

GAUSSIAN INFORMATION BOTTLENECK

The GIB curve, illustrated in Figure 3, is continuous and smooth, but is built of several seg-
ments: asI(T;X) increases additional eigenvectors are used in the projection. The derivative of the
curve, which is equal toβ−1, can be easily shown to be continuous and decreasing, therefore the
information curve is concave everywhere, in agreement with the generalconcavity of information
curve in the discrete case (Wyner, 1975; Gilad-Bachrach et al., 2003). Unlike the discrete case
where concavity proofs rely on the ability to use a large number of clusters,concavity is guaranteed
here also for segments of the curve, where the number of eigenvectors are limited a-priori.

At each value ofI(T;X) the curve is bounded by a tangent with a slopeβ−1(I(T;X)). Generally
in IB, the data processing inequality yields an upper bound on the slope at the origin,β−1(0) < 1,
in GIB we obtain a tighter bound:β−1(0) < 1−λ1. The asymptotic slope of the curve is always
zero, asβ → ∞, reflecting the law of diminishing return: adding more bits to the description of
X does not provide higher accuracy aboutT. This relation between the spectral properties of the
covariance matrices raises interesting questions for special cases where the spectrum can be better
characterized, such as random-walks and self-similar processes.

6. An Iterative Algorithm

The GIB solution is a set of scaled eigenvectors, and as such can be calculated using standard tech-
niques. For example gradient ascent methods were suggested for learning CCA (Becker, 1996;
Borga et al., 1997). An alternative approach is to use the general iterative algorithm for IB prob-
lems (Tishby et al., 1999). This algorithm that can be extended to continuousvariables and repre-
sentations, but its practical application for arbitrary distributions leads to a non-linear generalized
eigenvalue problem whose general solution can be difficult. It is therefore interesting to explore the
form that the iterative algorithm assumes once it is applied to Gaussian variables. Moreover, it may
be possible to later extend this approach to more general parametric distributions, such as general
exponential forms, for which linear eigenvector methods may no longer be adequate.

The general conditions for the IB stationary points were presented by Tishby et al. (1999) and
can be written for a continuous variablex by the following self consistent equations for the unknown
distributionsp(t|x), p(y|t) andp(t):

p(t) =
Z

X
dx p(x)p(t|x) (16)

p(y|t) =
1

p(t)

Z

X
dx p(x,y)p(t|x)

p(t|x) =
p(t)
Z(β)

e−βDKL[p(y|x)||p(y|t)]

whereZ(β) is a normalization factor (partition function) and is independent ofx. It is important
to realize that those conditions assume nothing about the representation variable T and should be
satisfied byanyfixed point of the IB Lagrangian. WhenX, Y andT have finite cardinality, those

175

CHECHIK, GLOBERSON, TISHBY AND WEISS

equations can be iterated directly in a Blahut-Arimoto like algorithm,

p(tk+1|x) =
p(tk)

Zk+1(x,β)
e−βDKL[p(y|x)||p(y|tk)] (17)

p(tk+1) =
Z

X
dx p(x)p(tk+1|x)

p(y|tk+1) =
1

p(tk+1)

Z

X
dx p(x,y)p(tk+1|x).

where each iteration results in a distribution over the variablesTk, X andY. The second and third
equations calculatep(tk+1) andp(y|tk+1) using standard marginalization, and the Markov property
Y−X−Tk. These iterations were shown to converge to the optimalT by Tishby et al. (1999).

For the general continuousT such an iterative algorithm is clearly not feasible. We show here,
how the fact that we are confined to Gaussian distributions, can be used toturn those equations into
an efficient parameter updating algorithm. We conjecture that algorithms for parameters optimiza-
tions can be defined also for parametric distribution other than Gaussians, such as other exponential
distributions that can be efficiently represented with a small number of parameters.

In the case of Gaussianp(x,y), whenp(tk|x) is Gaussian for somek, so arep(tk), p(y|tk) and
p(tk+1|x). In other words, the set of Gaussiansp(t|x) is invariant under the above iterations. To see
why this is true, notice thatp(y|tk) is Gaussian sinceTk is jointly Gaussian withX. Also, p(tk+1|x)
is Gaussian sinceDKL[p(y|x)||p(y|tk)] between two Gaussians contains only second order moments
in y andt and thus its exponential is Gaussian. This is in agreement with the general fact that the
optima (which are fixed points of 17) are Gaussian (Globerson and Tishby, 2004). This invariance
allows us to turn the IB algorithm that iterates over distributions, into an algorithmthat iterates over
the parameters of the distributions, being the relevant degrees of freedom in the problem.

Denote the variableT at timek by Tk = AkX + ξk, whereξk ∼ N (0,Σξk
). The parametersA

andΣ at timek+ 1 can be obtained by substitutingTk in the iterative IB equations. As shown in
Appendix E, this yields the following update equations

Σξk+1
=

(

βΣ−1
tk|y− (β−1)Σ−1

tk

)−1
(18)

Ak+1 = βΣξk+1
Σ−1

tk|yAk
(

I −Σy|xΣ−1
x

)

whereΣtk|y,Σtk are the covariance matrices calculated for the variableTk.
This algorithm can be interpreted as repeated projection ofAk on the matrixI − Σy|xΣ−1

x (whose
eigenvectors we seek) followed by scaling withβΣξk+1

Σ−1
tk|y. It thus has similar form to the power

method for calculating the dominant eigenvectors of the matrixΣy|xΣ−1
x (Demmel, 1997; Golub and

Loan, 1989). However, unlike the naive power method, where only the single dominant eigenvector
is preserved, the GIB iterative algorithm maintains several different eigenvectors, and their number
is determined by the continuous parameterβ and emerges from the iterations: All eigenvectors
whose eigenvalues are smaller than the criticalβ vanish to zero, while the rest are properly scaled.
This is similar to an extension of the naive power method known asOrthogonal Iteration, in which
the projected vectors are renormalized to maintain several non vanishing vectors (Jennings and
Stewart, 1975).

Figure 4 demonstrates the operation of the iterative algorithm for a four dimensionalX andY.
The tradeoff parameterβ was set to a value that leads to two vanishing eigenvectors. The norm of
the other two eigenvectors converges to the correct values, which are given in Theorem 3.1.

176

GAUSSIAN INFORMATION BOTTLENECK

1 10 100 1000
0

2

4

6

8

α
1

α
2

α
3 ,α

4

iterations

A
 in

v(
V

)

α
1

α
2

α
3 ,α

4

α
1

α
2

α
3 ,α

4

α
1

α
2

α
3 ,α

4

α
1

α
2

α
3 ,α

4

α
1

α
2

α
3 ,α

4

α
1

α
2

α
3 ,α

4

α
1

α
2

α
3 ,α

4

α
1

α
2

α
3 ,α

4

α
1

α
2

α
3 ,α

4

Figure 4: The norm of projection on the four eigenvectors ofΣx|yΣ−1
x , as evolves along the operation

of the iterative algorithm. Each line corresponds to the length of the projectionof one row
of A on the closest eigenvector. The projection on the other eigenvectors alsovanishes
(not shown). β was set to a value that leads to two non vanishing eigenvectors. The
algorithm was repeated 10 times with different random initialization points, showing that
it converges within 20 steps to the correct valuesαi .

The iterative algorithm can also be interpreted as a regression ofX onT viaY. This can be seen
by writing the update equation forAk+1 as

Ak+1 = Σξk+1
Σ−1

tk|y
(

ΣytkΣ
−1
y

)(

ΣyxΣ−1
x

)

. (19)

SinceΣyxΣ−1
x describes the optimal linear regressor ofX onY, the operation ofAk+1 on X can be

described by the following diagram

X
ΣyxΣ−1

x−−−−→ µy|x
ΣytkΣ−1

y−−−−→ µtk|µy|x

Σξk+1
Σ−1

tk|y−−−−−→ Tk+1 (20)

where the last step scales and normalizesT.

7. Relation To Other Works

The GIB solutions are related to studies of two main types: studies of eigenvalues based co-
projections, and information theoretic studies of continuous compression. We review both below.

7.1 Canonical Correlation Analysis and Imax

The Gaussian information bottleneck projection derived above uses weighted eigenvectors of the
matrixΣx|yΣ−1

x = I −ΣxyΣ−1
y ΣyxΣ−1

x . Such eigenvectors are also used incanonical correlation anal-
ysis(CCA) (Hotelling, 1935; Thompson, 1984; Borga, 2001), a method of descriptive statistics that

177

CHECHIK, GLOBERSON, TISHBY AND WEISS

finds linear relations between two variables. Given two variablesX,Y, CCA finds a set of basis vec-
tors for each variable, such that the correlation coefficient between theprojection of the variables on
the basis vectors is maximized. In other words, it finds the bases in which the correlation matrix is
diagonal and the correlations on the diagonal are maximized. The bases are the eigenvectors of the
matricesΣ−1

y ΣyxΣ−1
x Σxy andΣ−1

x ΣxyΣ−1
y Σyx, and the square roots of their corresponding eigenvalues

are thecanonical correlation coefficients. CCA was also shown to be a special case of continu-
ous Imax (Becker and Hinton, 1992; Becker, 1996), when the Imax networks are limited to linear
projections.

Although GIB and CCA involve the spectral analysis of the same matrices, theyhave some
inherent differences. First of all, GIB characterizes not only the eigenvectors but also their norm,
in a way that that depends on the trade-off parameterβ. Since CCA depends on the correlation
coefficient between the compressed (projected) versions ofX andY, which is anormalizedmeasure
of correlation, it is invariant to a rescaling of the projection vectors. In contrast, for any value ofβ,
GIB will choose one particular rescaling given by Theorem 3.1.

While CCA is symmetric (in the sense that bothX andY are projected), IB is non symmetric
and only theX variable is compressed. It is therefore interesting that both GIB and CCA use the
same eigenvectors for the projection ofX.

7.2 Multiterminal Information Theory

The information bottleneck formalism was recently shown (Gilad-Bachrach etal., 2003) to be
closely related to the problem of source coding with side information (Wyner,1975). In the lat-
ter, twodiscretevariablesX,Y are encoded separately at ratesRx,Ry, and the aim is to use them
to perfectly reconstructY. The bounds on the achievable rates in this case were found in (Wyner,
1975) and can be obtained from the IB information curve.

When considering continuous variables, lossless compression at finite rates is no longer pos-
sible. Thus, mutual information for continuous variables is no longer interpretable in terms of the
actual number of encoding bits, but rather serves as an optimal measure of information between vari-
ables. The IB formalism, although coinciding with coding theorems in the discretecase, is more
general in the sense that it reflects the tradeoff between compression and information preservation,
and is not concerned with exact reconstruction.

Lossy reconstruction can be considered by introducing distortion measures as done for source
coding of Gaussians with side information by Wyner (1978) and by Bergerand Zamir (1999) (see
also Pradhan, 1998), but these focus on the region of achievable rates under constrained distortion
and are not relevant for the question of finding the representations which capture the information
between the variables. Among these, the formalism closest to ours is that of Berger and Zamir
(1999) where the distortion in reconstructingX is assumed to be small (high-resolution scenario).
However, their results refer to encoding rates and as such go to infinity asthe distortion goes to
zero. They also analyze the problem for scalar Gaussian variables, but the one-dimensional setting
does not reveal the interesting spectral properties and phase transitions which appear only in the
multidimensional case discussed here.

7.3 Gaussian IB with Side Information

When handling real world data, the relevance variableY often contains multiple structures that are
correlated toX, although many of them are actually irrelevant. The information bottleneck with

178

GAUSSIAN INFORMATION BOTTLENECK

side information (IBSI) (Chechik and Tishby, 2002) alleviates this problem using side information
in the form of anirrelevancevariableY− about which information is removed.IBSI thus aims to
minimize

L = I(X;T)−β
(

I(T;Y+)− γI(T;Y−)
)

(21)

This formulation can also be extended to the Gaussian case, in a manner similar tothe original
GIB functional. Looking at its derivative with respect to the projectionA yields

δL

δA
= (1−β+βγ)(AΣxA

T + Id)
−12AΣx

+ β (AΣx|y+AT + Id)
−12AΣx|y+

− βγ (AΣx|y−AT + Id)
−12AΣx|y− .

While GIB relates to an eigenvalue problem of the formλA = AΣx|yΣ−1
x , GIB with side information

(GIBSI) requires to solve of a matrix equation of the formλ′A+ λ+AΣx|y+Σ−1
x = λ−AΣx|y−Σ−1

x ,
which is similar in form to a generalized eigenvalue problem. However, unlike standard generalized
eigenvalue problems, but as in the GIB case analyzed in this paper, the eigenvalues themselves
depend on the projectionA.

8. Practical Implications

The GIB approach can be viewed as a method for finding the best linear projection ofX, under a
constraint onI(T;X). Another straightforward way to limit the complexity of the projection is to
specify its dimension in advance. Such an approach leaves open the question of the relative weight-
ing of the resulting eigenvectors. This is the approach taken in classical CCA, where the number of
eigenvectors is determined according to a statistical significance test, and their weights are then set
to

√
1−λi . This expression is the correlation coefficient between theith CCA projections onX and

Y, and reflects the amount of correlation captured by theith projection. The GIB weighting scheme
is different, since it is derived to preserve maximum information under the compression constraint.
To illustrate the difference, consider the case whereβ = 1

1−λ3
, so that only two eigenvectors are

used by GIB. The CCA scaling in this case is
√

1−λ1, and
√

1−λ2. The GIB weights are (up to

a constant)α1 =
√

λ3−λ1
λ1r1

,α2 =
√

λ3−λ2
λ2r2

,, which emphasizes large gaps in the eigenspectrum, and
can be very different from the CCA scaling.

This difference between CCA scaling and GIB scaling may have implications ontwo aspects of
learning in practical applications. First, in applications involving compressionof Gaussian signals
due to limitation on available band-width. This is the case in the growing field of sensor networks in
which sensors are often very limited in their communication bandwidth due to energy constraints. In
these networks, sensors communicate with other sensors and transmit information about their local
measurements. For example, sensors can be used to monitor chemicals’ concentrations, temperature
or light conditions. Since only few bits can be transmitted, the information has to be compressed
in a relevant way, and the relative scaling of the different eigenvectorsbecomes important (as in
transform coding Goyal, 2001). As shown above, GIB describes the optimal transformation of the
raw data into information conserving representation.

The second aspect where GIB becomes useful is in interpretation of data. Today, canonical
correlation analysis is widely used for finding relations between multi-variate continuous variables,

179

CHECHIK, GLOBERSON, TISHBY AND WEISS

in particular in domains which are inherently high dimensional such as meteorology (von Storch
and Zwiers, 1999) chemometrics (Antti et al., 2002) and functional MRI ofbrains (Friman et al.,
2003). Since GIB weights the eigenvectors of the normalized cross correlation matrix in a different
way than CCA, it may lead to very different interpretation of the relative importance of factors in
these studies.

9. Discussion

We applied the information bottleneck method to continuous jointly Gaussian variables X andY,
with a continuous representation of the compressed variableT. We derived an analytic optimal
solution as well as a new general algorithm for this problem (GIB) which is based solely on the
spectral properties of the covariance matrices in the problem. The solutionsfor GIB are character-
ized in terms of the trade-off parameterβ between compression and preserved relevant information,
and consist of eigenvectors of the matrixΣx|yΣ−1

x , continuously adding up vectors as more complex
models are allowed. We provide an analytic characterization of the optimal tradeoff between the
representation complexity and accuracy - the “information curve” - which relates the spectrum to
relevant information in an intriguing manner. Besides its clean analytic structure, GIB offers a way
for analyzing empirical multivariate data when only its correlation matrices can be estimated. In that
case it extends and provides new information theoretic insight to the classical canonical correlation
analysis.

The most intriguing aspect of GIB is in the way the dimensionality of the representation changes
with increasing complexity and accuracy, through the continuous value of the trade-off parameter
β. While both mutual information values vary continuously on the smooth information curve, the
dimensionality of the optimal projectionT increases discontinuously through a cascade of structural
(second order) phase transitions, and the optimal curve moves from oneanalytic segment to another.
While this transition cascade is similar to the bifurcations observed in the application of IB to
clustering through deterministic annealing, this is the first time such dimensional transitions are
shown to exist in this context. The ability to deal with all possible dimensions in a single algorithm
is a novel advantage of this approach compared to similar linear statistical techniques as CCA and
other regression and association methods.

Interestingly, we show how the general IB algorithm which iterates over distributions, can be
transformed to an algorithm that performs iterations over the distributions’parameters. This algo-
rithm, similar to multi-eigenvector power methods, converges to a solution in which the number of
eigenvectors is determined by the parameterβ, in a way that emerges from the iterations rather than
defined a-priori.

For multinomial variables, the IB framework can be shown to be related in some limiting cases
to maximum-likelihood estimation in a latent variable model (Slonim and Weiss, 2002).It would
be interesting to see whether the GIB-CCA equivalence can be extended and give a more general
understanding of the relation between IB and statistical latent variable models.

While the restriction to a Gaussian joint distribution deviates from the more general distribution
independent approach of IB, it provides a precise example to the way representations with differ-
ent dimensions can appear in the more general case. We believe that this type of dimensionality-
transitions appears for more general distributions, as can be revealed insome cases by applying
the Laplace method of integration (a Gaussian approximation) to the integrals in the general IB
algorithm for continuousT.

180

GAUSSIAN INFORMATION BOTTLENECK

The more general exponential forms, can be considered as a kernelized version of IB (see Mika
et al., 2000) and appear in other minimum-information methods (such as SDR, Globerson and
Tishby, 2003). these are of particular interest here, as they behave like Gaussian distributions in
the joint kernel space. The Kernel Fisher-matrix in this case will take the role of the original cross
covariance matrix of the variables in GIB.

Another interesting extension of our work is to networks of Gaussian processes. A general
framework for that problem was developed in Friedman et al. (2001) andapplied for discrete vari-
ables. In this framework the mutual information is replaced by multi-information, and the depen-
dencies of the compressed and relevance variables is specified throughtwo Graphical models. It
is interesting to explore the effects of dimensionality changes in this more general framework, to
study how they induce topological transitions in the related graphical models,as some edges of the
graphs become important only beyond corresponding critical values of the tradeoff parameterβ.

Acknowledgments

G. C. and A. G. were supported by the Israeli Ministry of Science, the Eshkol Foundation. This work
was partially supported by a center of excellence grant of the Israeli Science Foundation (ISF).

Appendix A. Invariance to the Noise Covariance Matrix

Lemma A.1 For every pair(A,Σξ) of a projection A and a full rank covariance matrixΣξ, there
exist a matrixÃ such thatL(Ã, Id) = L(A,Σξ), where Id is the nt ×nt identity matrix.

Proof: Denote byV the matrix which diagonalizesΣξ, namelyΣξ =VDVT , and byc the determinant

c≡ |
√

D−1V| = |
√

D−1VT |. SettingÃ≡
√

D−1VAwe have

L(Ã, I) = (1−β) log(|ÃΣxÃ
T+Id|)− log(|Id|)+β log(|ÃΣx|yÃ

T+Id|) (22)

= (1−β) log(c|AΣxA
T+Σξ|c)− log(c|Σξ|c)+β log(c|AΣx|yA

T+Σξ|c)
= (1−β) log(|AΣxA

T+Σξ|)− log(|Σξ|)+β log(|AΣx|yA
T+Σξ|)

= L(A,Σξ)

where the first equality stems from the fact that the determinant of a matrix product is the product
of the determinants.

Appendix B. Properties of Eigenvalues of Σx|yΣ−1
x and Σx

Lemma B.1 Denote the set of left normalized eigenvectors ofΣx|yΣ−1
x by vi (||vi || = 1) and their

corresponding eigenvalues byλi . Then

1. All the eigenvalues are real and satisfy0≤ λi ≤ 1

2. ∃r i > 0 s.t. vT
i Σxv j = δi j r i .

3. vT
i Σx|yv j = δi j λir i .

The proof is standard (see e.g. Golub and Loan, 1989) and is broughthere for completeness.
Proof:

181

CHECHIK, GLOBERSON, TISHBY AND WEISS

1. The matricesΣx|yΣ−1
x andΣxyΣ−1

y ΣyxΣ−1
x are positive semi definite (PSD), and their eigenval-

ues are therefore positive. SinceΣx|yΣ−1
x = I −ΣxyΣ−1

y ΣyxΣ−1
x , the eigenvalues ofΣx|yΣ−1

x are
bounded between 0 and 1.

2. Denote byV the matrix whose rows arevT
i . The matrixVΣ

1
2
x is the eigenvector matrix of

Σ− 1
2

x Σx|yΣ− 1
2

x since

(

VΣ
1
2
x

)

Σ− 1
2

x Σx|yΣ− 1
2

x = VΣx|yΣ− 1
2

x =
(

VΣx|yΣ−1
x

)

Σ
1
2
x = DVΣ

1
2
x . From the

fact thatΣ− 1
2

x Σx|yΣ− 1
2

x is symmetric,VΣ
1
2
x is orthogonal, and thusVΣxVT is diagonal.

3. Follows from 2:vT
i Σx|yΣ−1

x Σxv j = λivT
i Σxv j = λiδi j r i .

Appendix C. Optimal Eigenvector

For someβ values, several eigenvectors can satisfy the conditions for non degenerated solutions
(Equation 10). To identify the optimal eigenvector, we substitute the value of||A||2 from Equation
(9) AΣx|yA

T = rλ||A||2 andAΣxAT = r||A||2 into the target functionL of Equation (6), and obtain

L = (1−β) log

(

(1−λ)(β−1)

λ

)

+β log(β(1−λ)) . (23)

Sinceβ≥ 1, this is monotonically increasing inλ and is minimized by the eigenvector ofΣx|yΣ−1
x

with the smallest eigenvalue. Note that this is also the eigenvector ofΣxyΣ−1
y ΣyxΣ−1

x with the largest
eigenvalue.

Appendix D. Optimal Mixing Matrix

Lemma D.1 The optimum of the cost function is obtained with a diagonal mixing matrix W of the
form

W = diag





√

β(1−λ1)−1
λ1r1

, . . . ,

√

β(1−λk)−1
λkrk

,0, . . . ,0



 (24)

where{λ1, . . . ,λk} are k≤ nx eigenvalues ofΣx|yΣ−1
x with critical β valuesβc

1, . . . ,βc
k ≤ β. ri ≡

vT
i Σxvi as in Theorem 3.1.

Proof: We writeVΣx|yΣ−1
x = DV whereD is a diagonal matrix whose elements are the corre-

sponding eigenvalues, and denote byR the diagonal matrix whoseith element isr i . Whenk = nx,
we substituteA = WV into Equation (12), and eliminateV from both sides to obtain

β−1
β
[

(WDRWT + Id)(WRWT + Id)
−1]W = WD

Use the fact thatW is full rank to multiply byW−1 from the left and byW−1(WRWT + Id)W from
the right

β−1
β

(DRWTW+ Id) = D(RWTW+ Id)

182

GAUSSIAN INFORMATION BOTTLENECK

Rearranging, we have
WTW = [β(I −D)− I](DR)−1

, (25)

which is a diagonal matrix.
While this does not uniquely characterizeW, we note that using properties of the eigenvalues

from lemma B.1, we obtain

|AΣxA
T + Id| = |WVΣxV

TWT + Id| = |WRWT + Id|.

Note thatWRWT has left eigenvectorsWT with corresponding eigenvalues obtained from the di-
agonal matrixWTWR. Thus if we substituteA into the target function in Equation (6), a similar
calculation yields

L = (1−β)
n

∑
i=1

log
(

||wT
i ||2r i +1

)

+β
n

∑
i=1

log
(

||wT
i ||2r iλi +1

)

(26)

where||wT
i ||2 is the ith element of the diagonal ofWTW. This shows thatL depends only on the

norm of the columns ofW, and all matricesW that satisfy (25) yield the same target function. We
can therefore choose to takeW to be the diagonal matrix which is the (matrix) square root of (25)

W =
√

[β(I −D)− I](DR)−1 (27)

which completes the proof of the full rank (k = nx) case.
In the low rank (k < nx) caseW does not mix all the eigenvectors, but onlyk of them. To prove

the lemma for this case, we first show that any such low rank matrix is equivalent (in terms of the
target function value) to a low rank matrix that has onlyk non zero rows. We then conclude that the
non zero rows should follow the form described in the above lemma.

Consider anx×nx matrixW of rankk < nx, but without any zero rows. LetU be the set of left
eigenvectors ofWWT (that is,WWT = UΛUT). Then, sinceWWT is Hermitian, its eigenvectors
are orthonormal, thus(UW)(WU)T = Λ andW′ = UW is a matrix withk non zero rows andnx−k
zero lines. Furthermore,W′ obtains the same value of the target function, since

L = (1−β) log(|W′RW′T +Σ2
ξ|)+β log(|W′DRW′T +Σ2

ξ|) (28)

= (1−β) log(|UWRWTUT+UUTΣ2
ξ|)+β log(|UWDRWTUT+UUTΣ2

ξ|)
= (1−β) log(|U ||WRWT+Σ2

ξ||UT |)+β log(|U ||UWDRWTUT+Σ2
ξ||UT |)

= (1−β) log(|WRWT+Σ2
ξ|)+β log(|WDRWTT +Σ2

ξ|),

where we have used the fact thatU is orthonormal and hence|U | = 1. To complete the proof note
that the non zero rows ofW′ also havenx−k zero columns and thus define a square matrix of rankk,
for which the proof of the full rank case apply, but this time by projecting to adimensionk instead
of nx.

This provides a characterization of all local minima. To find which is the globalminimum, we
prove the following corollary.

Corollary D.2
The global minimum ofL is obtained with allλi that satisfyλi <

β−1
β .

183

CHECHIK, GLOBERSON, TISHBY AND WEISS

Proof: Substituting the optimalW of Equation (27) into Equation (26) yields

L =
k

∑
i=1

(β−1) logλi + log(1−λi)+ f (β). (29)

Since 0≤ λ ≤ 1 andβ ≥ 1
1−λ , L is minimized by taking all the eigenvalues that satisfyβ >

1
(1−λi)

.

Appendix E. Deriving the Iterative Algorithm

To derive the iterative algorithm in Section 6, we assume that the distributionp(tk|x) corresponds
to the Gaussian variableTk = AkX + ξk. We show below thatp(tk+1|x) corresponds toTk+1 =
Ak+1X +ξk+1 with ξk+1 ∼ N(0,Σξk+1

) and

Σξk+1
=

(

βΣ−1
tk|y− (β−1)Σ−1

tk

)−1
(30)

Ak+1 = βΣξk+1
Σ−1

tk|yAk
(

I −Σy|xΣ−1
x

)

We first substitute the Gaussianp(tk|x) ∼ N(Akx,Σξk
) into the equations of (17), and treat the

second and third equations. The second equationp(tk) =
R

x p(x)p(tk|x)dx, is a marginal of the
GaussianTk = AkX +ξk, and yields a Gaussianp(tk) with zero mean and covariance

Σtk = AkΣxA
T
k +Σξk

(31)

The third equation,p(y|tk) = 1
p(tk)

R

x p(x,y)p(tk|x)dx defines a Gaussian with mean and covariance
matrix given by:

µy|tk = µy +ΣytkΣ
−1
tk (tk−µtk) = ΣytkΣ

−1
tk tk ≡ Bktk (32)

Σy|tk = Σy−ΣytkΣ
−1
tk Σtky = Σy−AkΣxyΣ−1

tk ΣyxA
T
k

where we have used the fact thatµy = µtk = 0, and define the matrixBk ≡ ΣytkΣ
−1
tk as the regressor

of tk ony. Finally, we return to the first equation of (17), that definesp(tk+1|x) as

p(tk+1|x) =
p(tk)

Z(x,β)
e−βDKL[p(y|x)||p(y|tk)]. (33)

We now show thatp(tk+1|x) is Gaussian and compute its mean and covariance matrix.
The KL divergence between the two Gaussian distributions, in the exponent of Equation (33) is

known to be

2DKL[p(y|x)||p(y|tk)] = log
|Σy|tk|
|Σy|x|

+Tr(Σ−1
y|tkΣy|x) (34)

+ (µy|x−µy|tk)
TΣ−1

y|tk(µy|x−µy|tk).

The only factor which explicitly depends on the value oft in the above expression isµy|tk derived in
Equation (32), is linear int. The KL divergence can thus be rewritten as

DKL[p(y|x)||p(y|tk)] = c(x)+
1
2
(µy|x−Bktk)

TΣ−1
y|tk(µy|x−Bktk).

184

GAUSSIAN INFORMATION BOTTLENECK

Adding the fact thatp(tk) is Gaussian we can write the log of Equation (33) as a quadratic form in
t:

logp(tk+1|x) = Z(x)+(tk+1−µtk+1|x)
TΣξk+1

(tk+1−µtk+1|x),

where

Σξk+1
=

(

βBT
k Σ−1

y|tkBk +Σ−1
tk

)−1
(35)

µtk+1|x = Ak+1x

Ak+1 = βΣξk+1
BT

k Σ−1
y|tkΣyxΣ−1

x x.

This shows thatp(tk+1|x) is a GaussianTk+1 = Ak+1x+ξk+1, with ξ ∼ N(0,Σξk+1
).

To simplify the form ofAk+1,Σξk+1
, we use the two following matrix inversion lemmas,3 which

hold for any matricesE,F,G,H of appropriate sizes whenE,H are invertible:

(E−FH−1G)−1 = E−1 +E−1F(H −GE−1F)−1GE−1 (36)

(E−FH−1G)−1FH−1 = E−1F(H −GE−1F)−1
.

UsingE ≡ Σtk, F ≡ Σytk, H ≡ Σy, G≡ Σytk, Bk = ΣytkΣ
−1
tk in the first lemma we obtain

Σ−1
tk|y = Σ−1

tk +BT
k Σ−1

y|tkBk.

Replacing this into the expression forΣξk+1
in Equation (35) we obtain

Σξk+1
=
(

βΣ−1
tk|y− (β−1)Σ−1

tk

)−1
. (37)

Finally, using againE ≡ Σtk, F ≡ Σtky, H ≡ Σy, G≡ Σytk in the second matrix lemma, we have
Σ−1

tk|yΣtkyΣ−1
y = Σ−1

tk ΣtkyΣ−1
y|tk, which turns the expression forAk+1 in Equation (35) into

Ak+1 = βΣξk+1
Σ−1

tk|yΣtkyΣ−1
y ΣyxΣ−1

x (38)

= βΣξk+1
Σ−1

tk|yAkΣxyΣ−1
y ΣyxΣ−1

x

= βΣξk+1
Σ−1

tk|yAk(I −Σx|yΣ−1
x) ,

which completes the derivation of the algorithm as described in (17).

References

H. Antti, E. Holmes, and J. Nicholson. Multivariate solutions to metabo-
nomic profiling and functional genomics. part 2 - chemometric analysis, 2002.
http://www.acc.umu.se/ tnkjtg/chemometrics/editorial/oct2002.

S. Becker. Mutual information maximization: Models of cortical self-organization.Network: Com-
putation in Neural Systems, pages 7,31, 1996.

3. The first equation is the standard inversion lemma (see e.g., Kay, 1993, page 571). The second can be easily verified
from the first.

185

CHECHIK, GLOBERSON, TISHBY AND WEISS

S. Becker and G. E. Hinton. A self-organizing neural network that discovers surfaces in random-dot
stereograms.Nature, 355(6356):161–163, 1992.

T. Berger and R. Zamir. A semi-continuous version of the berger-yeungproblem.IEEE Transactions
on Information Theory, pages 1520–1526, 1999.

M. Borga. Canonical correlation: a tutorial. http://people.imt.liu.se/magnus/cca, January 2001.

M. Borga, H. Knutsson, and T. Landelius. Learning canonical correlations. InProceedings of the
10th Scandinavian Conference on Image Analysis, Lappeenranta, Finland, June 1997. SCIA.

G. Chechik and N. Tishby. Extracting relevant structures with side information. In S. Becker,
S. Thrun, and K. Obermayer, editors,Advances in Neural Information Processing Systems 15,
Vancouver, Canada, 2002.

T. M. Cover and J. A. Thomas.The elements of information theory. Plenum Press, New York, 1991.

J. W. Demmel.Applied numerical linear algebra. Society for Industrial and Applied Mathematics,
Philadelphia, 1997. ISBN 0-89871-389-7.

Alexander G. Dimitrov and John P. Miller. Neural coding and decoding: Communication chan-
nels and quantization.Network: Computation in Neural Systems, 12(4):441–472, 2001. URL
citeseer.nj.nec.com/dimitrov01neural.html.

N. Friedman, O. Mosenzon, N. Slonim, and N. Tishby. Multivariate information bottleneck. In J. S.
Breese and D. Koller, editors,Uncertainty in Artificial Intelligence: Proceedings of the Seven-
teenth Conference (UAI-2001), pages 152–161, San Francisco, CA, 2001. Morgan Kaufmann.

O. Friman, M. Borga, P. Lundberg, and H. Knutsson. Adaptive analysis of fMRI data.NeuroImage,
19(3):837–845, 2003.

Rimoldi Gastpar and Vetterli. To code, or not to code: lossy source-channel communication revis-
ited. Information Theory, 49(5):1147–1158, 2003.

R. Gilad-Bachrach, A. Navot, and N. Tishby. An information theoretic tradeoff between complexity
and accuracy. InProceedings of the COLT, Washington, 2003.

A. Globerson and N. Tishby. Sufficient dimensionality reduction.Journal of Macine Learning
Research, 3:1307–1331, 2003. ISSN 1533-7928.

A. Globerson and N. Tishby. Tbd. Technical report, Hebrew University, January 2004.

G. H. Golub and C. F. V. Loan.Matrix Computations. The Johns Hopkins University Press, Balti-
more, 1989.

V. K. Goyal. Theoretical foundations of transform coding.Signal Processing Magazine, IEEE, 18
(5):9–21, 2001.

H. Hotelling. The most predictable criterion.Journal of Educational Psychology,, 26:139–142,
1935.

186

GAUSSIAN INFORMATION BOTTLENECK

A. Jennings and G. W. Stewart. Simultaneous iteration for partial eigensolution of real matrices.J.
Inst. Math Appl, 15:351–361, 1975.

S. M. Kay. Fundamentals of Statistical Signal Processing Volume I Estimation Theory. Prentice-
Hall, 1993.

R. Linsker. Self-organization in a perceptual network.Computer, 21(3):105–117, 1988.

R. Linsker. Local synaptic learning rules suffice to maximize mutual information in a linear network.
Neural Computation, 4:691–702, 1992.

J. R. Magnus and H. Neudecker.Matrix Differential Calculus with Applications in Statistics and
Econometrics. John Wiley and Sons, 1988.

S. Mika, G. Ratsch, J. Weston, B. Scholkopf, A. Smola, and K. Muller. Invariant feature extraction
and classification in kernel spaces. In S. A. Solla, T. K. Leen, and K. R. Muller, editors,Advances
in Neural Information Processing Systems 12, pages 526–532, Vancouver, Canada, 2000.

S. S. Pradhan. On rate-distortion function of gaussian sources with memory with side information
at the decoder. Technical report, Berkeley, 1998.

S. S. Pradhan, J. Chou, and K. Ramchandran. Duality between sourcecoding and channel coding
and its extension to the side information case.Information Theory, 49(5):1181–1203, 2003.

C. E. Shannon. Coding theorems for a discrete source with a fidelity criterion. In Institute for Radio
Engineers, International Convention Record, volume 7, part 4, pages 142–163, New York, NY,
USA, March 1959.

J. Sinkkonen and S. Kaski. Clustering based on conditional distributions inan auxiliary space.
Neural Computation, 14:217–239, 2001.

N. Slonim. Information Bottleneck theory and applications. PhD thesis, Hebrew University of
Jerusalem, 2003.

N. Slonim and N. Tishby. Document clustering using word clusters via the information bottleneck
method. In P. Ingwersen N. J. Belkin and M-K. Leong, editors,Research and Development in
Information Retrieval (SIGIR-00), pages 208–215. ACM press, new york, 2000.

N. Slonim and Y. Weiss. Maximum likelihood and the information bottleneck. In S.Becker,
S. Thrun, and K. Obermayer, editors,Advances in Neural Information Processing Systems 15,
Vancouver, Canada, 2002.

B. Thompson.Canonical correlation analysis: Uses and interpretation., volume 47. Thousands
Oak, CA Sage publications, 1984.

N. Tishby, F. C. Pereira, and W. Bialek. The information bottleneck method.In Proc. of 37th
Allerton Conference on communication and computation, 1999.

H. von Storch and F. W. Zwiers.Statistical Analysis in Climate Research. Cambridge University
Press, 1999.

187

CHECHIK, GLOBERSON, TISHBY AND WEISS

A. D. Wyner. On source coding with side information at the decoder.IEEE Transactions on Infor-
mation Theory, IT-21:294–300, 1975.

A. D. Wyner. The rate distortion function for source coding with side information at the decoder ii:
General sources.IEEE Transactions on Information Theory, IT-38:60–80, 1978.

188

Journal of Machine Learning Research 6 (2005) 189–210 Submitted 6/03; Revised 7/04; Published 2/05

Multiclass Boosting for Weak Classifiers

Günther Eibl GUENTHER.EIBL@UIBK .AC.AT

Karl–Peter Pfeiffer KARL -PETER.PFEIFFER@UIBK .AC.AT

Department of Biostatistics
University of Innsbruck
Scḧopfstrasse 41, 6020 Innsbruck, Austria

Editor: Robert Schapire

Abstract
AdaBoost.M2 is a boosting algorithm designed for multiclass problems with weak base classifiers.
The algorithm is designed to minimize a very loose bound on the training error. We propose two
alternative boosting algorithms which also minimize bounds on performance measures. These
performance measures are not as strongly connected to the expected error as the training error, but
the derived bounds are tighter than the bound on the trainingerror of AdaBoost.M2. In experiments
the methods have roughly the same performance in minimizingthe training and test error rates. The
new algorithms have the advantage that the base classifier should minimize the confidence-rated
error, whereas for AdaBoost.M2 the base classifier should minimize the pseudo-loss. This makes
them more easily applicable to already existing base classifiers. The new algorithms also tend to
converge faster than AdaBoost.M2.
Keywords: boosting, multiclass, ensemble, classification, decisionstumps

1. Introduction

Most papers about boosting theory consider two-class problems. Multiclass problems can be either
reduced to two-class problems using error-correcting codes (Allwein et al., 2000; Dietterrich and
Bakiri, 1995; Guruswami and Sahai, 1999) or treated more directly using base classifiers for multi-
class problems. Freund and Schapire (1996 and 1997) proposed the algorithm AdaBoost.M1 which
is a straightforward generalization of AdaBoost using multiclass base classifiers. An exponential
decrease of an upper bound of the training error rate is guaranteed aslong as the error rates of the
base classifiers are less than 1/2. For more than two labels this condition can be too restrictive for
weak classifiers like decision stumps which we use in this paper. Freund andSchapire overcame
this problem with the introduction of the pseudo-loss of a classifierh : X×Y → [0,1] :

εt =
1
2

(

1−ht(xi ,yi)+
1

|Y|−1 ∑
y6=yi

ht(xi ,y)

)

.

In the algorithm AdaBoost.M2, each base classifier has to minimize the pseudo-loss instead of the
error rate. As long as the pseudo-loss is less than 1/2, which is easily reachable for weak base
classifiers as decision stumps, an exponential decrease of an upper bound on the training error rate
is guaranteed.

In this paper, we will derive two new direct algorithms for multiclass problems with decision
stumps as base classifiers. The first one is called GrPloss and has its originin the gradient descent

c©2005 G̈unther Eibl and Karl-Peter Pfeiffer.

EIBL AND PFEIFFER

framework of Mason et al. (1998, 1999). Combined with ideas of Freundand Schapire (1996, 1997)
we get an exponential bound on a performance measure which we call pseudo-loss error. The second
algorithm was motivated by the attempt to make AdaBoost.M1 work for weak baseclassifiers. We
introduce the maxlabel error rate and derive bounds on it. For both algorithms, the bounds on the
performance measures decrease exponentially under conditions which are easy to fulfill by the base
classifier. For both algorithms the goal of the base classifier is to minimize the confidence-rated
error rate which makes them applicable for a wide range of already existingbase classifiers.

Throughout this paperS= {(xi ,yi); i = 1, . . . ,N)} denotes the training set where eachxi belongs
to some instance or measurement spaceX and each labelyi is in some label setY. In contrast to the
two-class case,Y can have|Y| ≥ 2 elements. A boosting algorithm calls a given weak classification
algorithmh repeatedly in a series of roundst = 1, . . . ,T. In each round, a sample of the original
training setS is drawn according to the weighting distributionDt and used as training set for the
weak classification algorithmh. Dt(i) denotes the weight of examplei of the original training set
S. The final classifierH is a weighted majority vote of theT weak classifiersht whereαt is the
weight assigned toht . Finally, the elements of a setM that maximize and minimize a functionf are
denoted argmax

m∈M
f (m) and arg min

m∈M
f (m) respectively.

2. Algorithm GrPloss

In this section we will derive the algorithm GrPloss. Mason et al. (1998, 1999) embedded Ad-
aBoost in a more general theory which sees boosting algorithms as gradient descent methods for the
minimization of a loss function in function space. We get GrPloss by applying thegradient descent
framework especially for minimizing the exponential pseudo-loss. We first consider slightly more
general exponential loss functions. Based on the gradient descent framework, we derive a gradient
descent algorithm for these loss functions in a straight forward way in Section 2.1. In contrast to the
general framework, we can additionally derive a simple update rule for thesampling distribution as
it exists for AdaBoost.M1 and AdaBoost.M2. Gradient descent does notprovide a special choice
for the “step size”αt . In Section 2.2, we define the pseudo-loss error and deriveαt by minimization
of an upper bound on the pseudo-loss error. Finally, the algorithm is simplified for the special case
of decision stumps as base classifiers.

2.1 Gradient Descent for Exponential Loss Functions

First we briefly describe the gradient descent framework for the two-class case withY = {−1,+1}.
As usual a training setS= {(xi ,yi); i = 1, . . . ,N)} is given. We are considering a function space
F = lin(H) consisting of functionsf : X → R of the form

f (x;~α,~β) =
T

∑
t=1

αtht(x;βt), ht : X →{±1}

with ~α = (α1, . . . ,αT) ∈ R
T , ~β = (β1, . . . ,βT) andht ∈ H . The parametersβt uniquely determine

ht therefore~α and~β uniquely determinef . We choose a loss function

L(f) = Ey,x[l(f (x),y)] = Ex[Ey[l(y f(x))]] l : R → R≥0

190

MULTICLASS BOOSTING FORWEAK CLASSIFIERS

where for example the choice ofl(f (x),y) = e−y f(x) leads to

L(f) =
1
N

N

∑
i=1

eyi f (xi).

The goal is to findf ∗ = argmin
f∈F

L(f).

The gradient in function space is defined as:

∇L(f)(x) :=
∂L(f +e1x)

∂e
|e=0 = lim

e→0

L(f +e1x)−L(f)
e

where for two arbitrary tuplesv andṽ we denote

1v(ṽ) =

{

1 ṽ = v
0 ṽ 6= v.

A gradient descent method always makes a step in the “direction” of the negative gradient−∇L(f)(x).
However−∇L(f)(x) is not necessarily an element ofF , so we replace it by an elementht of F

which is as parallel to−∇L(f)(x) as possible. Therefore we need an inner product〈 , 〉 : F ×F →R,
which can for example be chosen as

〈 f , f̃ 〉 =
1
N

N

∑
i=1

f (xi) f̃ (xi).

This inner product measures the agreement off and f̃ on the training set. Using this inner product
we can set

βt := argmax
β

〈−∇L(ft−1),h(· ; β)〉

andht := h(· ; βt). The inequality〈−∇L(ft−1),h(βt)〉 ≤ 0 means that we can not find a good “direc-
tion” h(βt), so the algorithm stops, when this happens. The resulting algorithm is givenin Figure 1.

————————————————————————————————–
Input: training setS, loss functionl , inner product〈 , 〉 : F ×F → R, starting valuef0.

t := 1
Loop: while 〈−∇L(ft−1),h(βt)〉 > 0

• βt := argmax
β

〈−∇L(ft−1),h(β)〉

• αt := argmin
α

(L(ft−1 +αht(βt)))

• ft = ft−1 +αtht(βt)

Output: ft , L(ft)
————————————————————————————————–

Figure 1: Algorithm gradient descent in function space

Now we go back to the multiclass case and modify the gradient descent framework in order to
treat classifiersf of the form f : X×Y → R, where f (x,y) is a measure of the confidence, that an

191

EIBL AND PFEIFFER

object with measurementsx has the labely. We denote the set of possible classifiers withF . For
gradient descent we need a loss function and an inner product onF . We choose

〈 f , f̂ 〉 :=
1
N

N

∑
i=1

|Y|

∑
y=1

f (xi ,y) f̂ (xi ,y),

which is a straightforward generalization of the definition for the two-class case. The goal of the
classification algorithm GrPloss is to minimize the special loss function

L(f) :=
1
N ∑

i

l(f , i) with l(f , i) := exp

[

1
2

(

1− f (xi ,yi)+ ∑
y6=yi

f (xi ,y)
|Y|−1

)]

. (1)

The term

− f (xi ,yi)+ ∑
y6=yi

f (xi ,y)
|Y|−1

compares the confidence to label the examplexi correctly with the mean confidence of choosing one
of the wrong labels. Now we consider slightly more general exponential loss functions

l(f , i) = exp[v(f , i)] with exponent− lossv(f , i) = v0 +∑
y

vy(i) f (xi ,y) ,

where the choice

v0 =
1
2

andvy(i) =

{

−1
2 y = yi

1
2(|Y|−1) y 6= yi

leads to the loss function (1). This choice of the loss function leads to the algorithm given in Fig-
ure 2. The properties summarized in Theorem 1 can be shown to hold on this algorithm.

————————————————————————————–
Input: training setS, maximum number of boosting roundsT

Initialisation: f0 := 0, t := 1,∀i : D1(i) := 1
N .

Loop: For t = 1, . . . ,T do

• ht = argmin
h

∑i Dt(i)v(h, i)

• If ∑i Dt(i)v(ht , i) ≥ v0 : T := t −1, goto output.

• Chooseαt .

• Updateft = ft−1 +αtht andDt+1(i) = 1
Zt

Dt(i)l(αtht , i)

Output: fT , L(fT)
————————————————————————————–

Figure 2: Gradient descent for exponential loss functions

192

MULTICLASS BOOSTING FORWEAK CLASSIFIERS

Theorem 1 For the inner product

〈 f ,h〉 =
1
N

N

∑
i=1

|Y|

∑
y=1

f (xi ,y)h(xi ,y)

and any exponential loss functions l(f , i) of the form

l(f , i) = exp[v(f , i)] with v(f , i) = v0 +∑
y

vy(i) f (xi ,y)

where v0 and vy(i) are constants, the following statements hold:
(i) The choice of ht that maximizes the projection on the negative gradient

ht = argmax
h

〈−∇L(ft−1),h〉

is equivalent to that minimizing the weighted exponent-loss

ht = argmin
h

∑
i

Dt(i)v(h, i)

with respect to the sampling distribution

Dt(i) :=
l(ft−1, i)

∑
i′

l(ft−1, i′)
=

l(ft−1, i)
Z′

t−1
.

(ii) The stopping criterion of the gradient descent method

〈−∇L(ft−1),h(βt)〉 ≤ 0

leads to a stop of the algorithm, when the weighted exponent-loss gets positive

∑
i

Dt(i)v(ht , i) ≥ v0.

(iii) The sampling distribution can be updated in a similar way as in AdaBoost using the rule

Dt+1(i) =
1
Zt

Dt(i)l(αtht , i),

where we define Zt as a normalization constant

Zt := ∑
i

Dt(i)l(αtht , i),

which ensures that the update Dt+1 is a distribution.
In contrast to the general framework, the algorithm uses a simple update rule for the sampling

distribution as it exists for the original boosting algorithms. Note that the algorithm does not specify
the choice of the step sizeαt , because gradient descent only provides an upper bound onαt . We
will derive a special choice forαt in the next section.

193

EIBL AND PFEIFFER

Proof. The proof basically consists of three steps: the calculation of the gradient, the choice for base
classifierht together with the stopping criterion and the update rule for the sampling distribution.
(i) First we calculate the gradient, which is defined by

∇L(f)(x,y) := lim
k→0

L(f +k1(x,y))−L(f)

k

for 1(x,y)(x
′,y′) =

{

1 (x,y)=(x′,y′)
0 (x,y)6=(x′,y′) .

So we get forx = xi :

L(f +k1xiy) =
1
N

exp

[

v0 +∑
y′

vy′(i) f (xi ,y
′)+kvy(i)

]

=
1
N

l(f , i)ekvy(i).

Substitution in the definition of∇L(f) leads to

∇L(f)(xi ,y) = lim
k→0

l(f , i)(ekvy(i)−1)

k
= l(f , i)vy(i).

Thus

∇L(f)(x,y) =

{

0 x 6= xi

l(f , i)vy(i) x = xi
. (2)

Now we insert (2) into〈−∇L(ft−1),ht〉 and get

〈−∇L(ft−1),ht〉 = − 1
N ∑

i
∑
y

l(ft−1, i)vy(i)h(xi ,y) = − 1
N ∑

i

l(ft−1, i)(v(h, i)−v0). (3)

If we define the sampling distributionDt up to a positive constantCt−1 by

Dt(i) := Ct−1l(ft−1, i), (4)

we can write (3) as

〈−∇L(ft−1),ht〉 = − 1
Ct−1N ∑

i

Dt(i)(v(h, i)−v0) = − 1
Ct−1N

(

∑
i

Dt(i)v(h, i)−v0

)

. (5)

Since we requireCt−1 to be positive, we get the choice ofht of the algorithm

ht = argmax
h

〈−∇L(ft−1),h〉 = argmin
h

∑
i

Dt(i)v(h, i).

(ii) One can verify the stopping criterion of Figure 2 from (5)

〈−∇L(ft−1),ht〉 ≤ 0⇔ ∑
i

Dt(i)v(ht , i) ≥ v0.

(iii) Finally, we show that we can calculate the update rule for the sampling distributionD.

Dt+1(i) = Ct l(ft , i) = Ct l(ft−1 +αtht , i)

= Ct l(ft−1, i)l(αtht , i) =
Ct

Ct−1
Dt(i)l(αtht , i).

194

MULTICLASS BOOSTING FORWEAK CLASSIFIERS

This means that the new weight of examplei is a constant multiplied withDt(i)l(αtht , i). By com-
paring this equation with the definition ofZt we can determineCt

Ct =
Ct−1

Zt
.

Sincel is positive and the weights are positive one can show by induction, that alsoCt is positive,
which we required before.

2.2 Choice ofαt and Resulting Algorithm GrPloss

The algorithm above leaves the step lengthαt , which is the weight of the base classifierht , unspec-
ified. In this section we define the pseudo-loss error and deriveαt by minimization of an upper
bound on the pseudo-loss error.

Definition: A classifier f : X×Y → R makes a pseudo-loss error in classifying an examplex with
labelk, if

f (x,k) <
1

|Y|−1 ∑
y6=k

f (x,y).

The corresponding training error rate is denoted byplerr:

plerr :=
1
N

N

∑
i=1

I

(

f (xi ,yi) <
1

|Y|−1 ∑
y6=yi

f (xi ,y)

)

.

The pseudo-loss error counts the proportion of elements in the training setfor which the confi-
dence f (x,k) in the right label is smaller than theaverageconfidence in the remaining labels
∑

y6=k
f (x,y)/(|Y| − 1). Thus it is a weak measure for the performance of a classifier in the sense

that it can be much smaller than the training error.
Now we consider the exponential pseudo-loss. The constant term of thepseudo-loss leads to a

constant factor which can be put into the normalizing constant. So with the definition

u(f , i) := f (xi ,yi)−
1

|Y|−1 ∑
y6=yi

f (xi ,y)

the update rule can be written in the shorter form

Dt+1(i) =
1
Zt

Dt(i)e
−αtu(ht ,i)/2, with Zt :=

N

∑
i=1

Dt(i)e
−αtu(ht ,i)/2.

We present our next algorithm, GrPloss, in Figure 3, which we will deriveand justify in what
follows.
(i) Similar to Schapire and Singer (1999) we first boundplerr by the product of the normalization
constants

plerr ≤
T

∏
t=1

Zt . (6)

To prove (6), we first notice that

plerr ≤ 1
N ∑

i

e−u(fT ,i)/2. (7)

195

EIBL AND PFEIFFER

————————————————————————————————–
Input: training setS= {(x1,y1), . . . ,(xN,yN); xi ∈ X, yi ∈Y},

Y = {1, . . . , |Y|}, weak classification algorithm with outputh : X×Y → [0,1]
OptionallyT: maximal number of boosting rounds

Initialization: D1(i) = 1
N .

For t = 1, . . . ,T:

• Train the weak classification algorithmht with distributionDt , whereht should maximize
Ut := ∑i Dt(i)u(ht , i).

• If Ut ≤ 0: goto output withT := t −1

• Set

αt = ln

(

1+Ut

1−Ut

)

.

• Update D:

Dt+1(i) =
1
Zt

Dt(i)e
−αtu(ht ,i)/2.

whereZt is a normalization factor (chosen so thatDt+1 is a distribution)

Output: final classifierH(x):

H(x) = argmax
y∈Y

f (x,y) = argmax
y∈Y

(

T

∑
t=1

αtht(x,y)

)

————————————————————————————————–

Figure 3: Algorithm GrPloss

Now we unravel the update rule

DT+1(i) =
1

ZT
e−αTu(hT ,i)/2DT(i)

=
1

ZTZT−1
e−αTu(hT ,i)/2e−αT−1u(hT−1,i)/2DT−1(i)

= . . . = D1(i)
T

∏
t=1

e−αtu(ht ,i)/2 1
Zt

=
1
N

exp

(

−
T

∑
t=1

αtu(ht , i)/2

)

T

∏
t=1

1
Zt

=
1
N

e−u(fT ,i)/2
T

∏
t=1

1
Zt

where the last equation uses the property thatu is linear inh. Since

1 = ∑
i

DT+1(i) = ∑
i

1
N

e−u(fT ,i)/2
T

∏
t=1

1
ZT

196

MULTICLASS BOOSTING FORWEAK CLASSIFIERS

we get Equation (6) by using (7) and the equation above

plerr ≤ 1
N ∑

i

e−u(fT ,i)/2 =
T

∏
t=1

Zt .

(ii) Derivation of αt :
Now we deriveαt by minimizing the upper bound (6). First, we plug in the definition ofZt

T

∏
t=1

Zt =
T

∏
t=1

(

∑
i

Dt(i)e
−αtu(ht ,i)/2

)

.

Now we get an upper bound on this product using the convexity of the function e−αtu between−1
and +1 (fromh(x,y) ∈ [0,1] it follows thatu∈ [−1,+1]) for positiveαt :

T

∏
t=1

Zt ≤
T

∏
t=1

(

∑
i

Dt(i)
1
2
[(1−u(ht , i))e

+ 1
2αt +(1+u(ht , i))e

− 1
2αt]

)

. (8)

Now we chooseαt in order to minimize this upper bound by setting the first derivative with respect
to αt to zero. To do this, we define

Ut := ∑
i

Dt(i)u(ht , i).

Since eachαt occurs in exactly one factor of the bound (8) the result forαt only depends onUt and
not onUs, s 6= t, more specifically

αt = ln

(

1+Ut

1−Ut

)

.

Note thatUt has its values in the interval[−1,1], becauseut ∈ [−1,+1] andDt is a distribution.
(iii) Derivation of the upper bound of the theorem:
Now we substituteαt back in (8) and get after some straightforward calculations

T

∏
t=1

Zt ≤
T

∏
t=1

√

1−U2
t .

Using the inequality
√

1−x≤ (1− 1
2x) ≤ e−x/2 for x∈ [0,1] we can get an exponential bound on

∏t Zt
T

∏
t=1

Zt ≤ exp

[

T

∑
t=1

−U2
t /2

]

.

If we assume that each classifierht fulfills Ut ≥ δ, we finally get

T

∏
t=1

Zt ≤ e−δ2T/2.

(iv) Stopping criterion:
The stopping criterion of the slightly more general algorithm directly results in the new stopping
criterion to stop, whenUt ≤ 0. However, note that the bound depends on the square ofUt instead of
Ut leading to a formal decrease of the bound even whenUt > 0.

197

EIBL AND PFEIFFER

We summarize the foregoing argument as a theorem.

Theorem 2If for all base classifiers ht : X×Y → [0,1] of the algorithm GrPloss given in Figure 3

Ut := ∑
i

Dt(i)u(ht , i) ≥ δ

holds forδ > 0 then the pseudo-loss error of the training set fulfills

plerr ≤
T

∏
t=1

√

1−U2
t ≤ e−δ2T/2. (9)

2.3 GrPloss for Decision Stumps

So far we have considered classifiers of the formh : X×Y → [0,1]. Now we want to consider base
classifiers that have additionally the normalization property

∑
y∈Y

h(x,y) = 1 (10)

which we did not use in the previous section for the derivation ofαt . The decision stumps we used
in our experiments find an attributea and a valuev which are used to divide the training set into two
subsets. If attributea is continuous and its value onx is at mostv thenx belongs to the first subset;
otherwisex belongs to the second subset. If attributea is categorical the two subsets correspond
to a partition of all possible values ofa into two sets. The predictionh(x,y) is the proportion of
examples with labely belonging to the same subset asx. Since proportions are in the interval[0,1]
and for each of the two subsets the sum of proportions is one our decisionstumps have both the
former and the latter property (10). Now we use these properties to minimize a tighter bound on the
pseudo-loss error and further simplify the algorithm.

(i) Derivation ofαt :
To getαt we can start with

plerr ≤
T

∏
t=1

Zt =
T

∏
t=1

(

∑
i

Dt(i)e
−αtu(ht ,i)/2

)

which was derived in part (i) of the proof of the previous section. First,we simplifyu(h, i) using the
normalization property and get

u(h, i) =
|Y|

|Y|−1
h(xi ,yi)−

1
|Y|−1

(11)

In contrast to the previous section,u(h, i) ∈ [− 1
|Y|−1,1] for h(xi ,yi) ∈ [0,1], which we will take into

account for the convexity argument:

plerr ≤
T

∏
t=1

N

∑
i=1

Dt(i)
(

h(xi ,yi)e−αt/2 +(1−ht(xi ,yi))eαt/(2(|Y|−1))
)

(12)

198

MULTICLASS BOOSTING FORWEAK CLASSIFIERS

Setting the first derivative with respect toαt to zero leads to

αt =
2(|Y|−1)

|Y| ln

(

(|Y|−1)rt

1− rt

)

,

where we defined

rt :=
N

∑
i=1

Dt(i)ht(xi ,yi).

(ii) Upper bound on the pseudo-loss error:
Now we plugαt in (12) and get

plerr ≤
T

∏
t=1

(

rt

(

1− rt

rt(|Y|−1)

)(|Y|−1)/|Y|
+(1− rt)

(

rt(|Y|−1)

1− rt

)1/|Y|)

. (13)

(iii) Stopping criterion:
As expected forrt = 1/|Y| the corresponding factor is 1. The stopping criterionUt ≤ 0 can be
directly translated intort ≥ 1/|Y|. Looking at the first and second derivative of the bound one can
easily verify that it has a unique maximum atrt = 1/|Y|. Therefore, the bound drops as long as
rt > 1/|Y|. Note again that sincert = 1/|Y| is a unique maximum we get a formal decrease of the
bound even whenrt > 1/|Y|.
(iv) Update rule:
Now we simplify the update rule using (11) and insert the new choice ofαt and get

Dt+1(i) =
Dt(i)

Zt
e−α̃t(ht(xi ,yi)−1/|Y|) for α̃t := ln

(

(|Y|−1)rt

1− rt

)

Also the goal of the base classifier can be simplified, because maximizingUt is equivalent to maxi-
mizing rt .

We will see in the next section, that the resulting algorithm is a special case ofthe algorithm
BoostMA of the next chapter withc = 1/|Y|.

3. BoostMA

The aim behind the algorithm BoostMA was to find a simple modification of AdaBoost.M1 in order
to make it work for weak base classifiers. The original idea was influenced by a frequently used
argument for the explanation of ensemble methods. Assuming that the individual classifiers are
uncorrelated, majority voting of an ensemble of classifiers should lead to better results than using
one individual classifier. This explanation suggests that the weight of classifiers that perform better
than random guessing should be positive. This is not the case for AdaBoost.M1. In AdaBoost.M1
the weight of a base classifierα is a function of the error rate, so we tried to modify this function
so that it gets positive, if the error rate is less than the error rate of random guessing. The resulting
classifier AdaBoost.M1W showed good results in experiments (Eibl and Pfeiffer, 2002). Further
theoretical considerations led to the more elaborate algorithm which we call BoostMA which uses
confidence-rated classifiers and also compares the base classifier with the uninformative rule.

In AdaBoost.M2, the sampling weights are increased for instances for which the pseudo-loss
exceeds 1/2. Here we want to increase the weights for instances, wherethe base classifierh :

199

EIBL AND PFEIFFER

X ×Y → [0,1] performs worse than the uninformative or what we call the maxlabel rule. The
maxlabel rule labels each instance as the most frequent label. As a confidence-rated classifier, the
uninformative rule has the form

maxlabel rule :X×Y → [0,1] : h(x,y) :=
Ny

N
,

whereNy is the number of instances in the training set with labely. So it seems natural to investigate
a modification where the update of the sampling distribution has the form

Dt+1(i) = Dt(i)
e−αt(ht(xi ,yi)−c)

Zt
, with Zt :=

N

∑
i=1

Dt(i)e
−αt(ht(xi ,yi)−c),

wherec measures the performance of the uninformative rule. Later we will set

c := ∑
y∈Y

(

Ny

N

)2

and justify this setting. But up to that point we let the choice ofc open and just requirec∈ (0,1).
We now define a performance measure which plays the same role as the pseudo-loss error.

Definition 1 Let c be a number in(0,1). A classifier f: X×Y → [0,1] makes a maxlabel error in
classifying an example x with label k, if

f (x,k) < c.

The maxlabel error for the training set is called mxerr:

mxerr:=
1
N

N

∑
i=1

I (f (xi ,yi) < c) .

The maxlabel error counts the proportion of elements of the training set forwhich the confidence
f (x,k) in the right label is smaller thanc. The numberc must be chosen in advance. The higherc is,
the higher is the maxlabel error for thesameclassifier f ; therefore to get a weak error measure we
setc very low. For BoostMA we choosec as the accuracy for the uninformative rule. When we use
decision stumps as base classifiers we have the propertyh(x,y) ∈ [0,1]. By normalizingα1, . . . ,αT ,
so that they sum to one, we ensuref (x,y) ∈ [0,1] (Equation 15).

We present the algorithm BoostMA in Figure 4 and in what follows we justify and establish
some properties about it. As for GrPloss the modus operandi consists of finding an upper bound on
mxerrand minimizing the bound with respect toα.
(i) Bound ofmxerr in terms of the normalization constantsZt :
Similar to the calculations used to bound the pseudo-loss error we begin by boundingmxerrin terms
of the normalization constantsZt : We have

1 = ∑
i

Dt+1(i) = ∑
i

Dt(i)
e−αt(ht(xi ,yi)−c)

Zt
= . . .

=
1

∏
s

Zs

1
N ∑

i

t

∏
s=1

e−αs(hs(xi ,yi)−c) =
1

∏
s

Zs

1
N ∑

i

e
−(f (xi ,yi)−c∑

s
αs)

.

200

MULTICLASS BOOSTING FORWEAK CLASSIFIERS

—————————————————————————————————
Input: training setS= {(x1,y1), . . . ,(xN,yN); xi ∈ X, yi ∈Y},

Y = {1, . . . , |Y|}, weak classification algorithm of the formh : X×Y → [0,1].
OptionallyT: number of boosting rounds

Initialization: D1(i) = 1
N .

For t = 1, . . . ,T:

• Train the weak classification algorithmht with distributionDt , whereht should maximize

rt = ∑
i

Dt(i)ht(xi ,yi)

• If rt ≤ c: goto output withT := t −1

• Set

αt = ln

(

(1−c)rt

c(1− rt)

)

.

• Update D:

Dt+1(i) = Dt(i)
e−αt(ht(xi ,yi)−c)

Zt
.

whereZt is a normalization factor (chosen so thatDt+1 is a distribution)

Output: Normalizeα1, . . . ,αT and set the final classifierH(x):

H(x) = argmax
y∈Y

f (x,y) = argmax
y∈Y

(

T

∑
t=1

αtht(x,y)

)

—————————————————————————————————

Figure 4: Algorithm BoostMA

So we get

∏
t

Zt =
1
N ∑

i

e
−(f (xi ,yi)−c∑

t
αt)

. (14)

Using
f (xi ,yi)

∑
t

αt
< c ⇒ e

−(f (xi ,yi)−c∑
t

αt)
> 1 (15)

and (14) we get
mxerr≤ ∏

t
Zt . (16)

(ii) Choice ofαt :
Now we bound∏

t
Zt and then we minimize it, which leads us to the choice ofαt . First we use the

definition ofZt and get

∏
t

Zt = ∏
t

(

∑
i

Dt(i)e
−αt(ht(xi ,yi)−c)

)

. (17)

201

EIBL AND PFEIFFER

Now we use the convexity ofe−αt(ht(xi ,yi)−c) for ht(xi ,yi) between 0 and 1 and the definition

rt := ∑
i

Dt(i)ht(xi ,yi)

and get

mxerr ≤ ∏
t

∑
i

Dt(i)
(

ht(xi ,yi)e
−αt(1−c) +(1−ht(xi ,yi))e

αtc
)

= ∏
t

(

rte
−αt(1−c) +(1− rt)e

αtc
)

.

We minimize this by setting the first derivative with respect toαt to zero, which leads to

αt = ln

(

(1−c)rt

c(1− rt)

)

.

(iii) First bound onmxerr:
To get the bound onmxerrwe substitute our choice forαt in (17) and get

mxerr≤ ∏
t

(

(

(1−c)rt

c(1− rt)

)c

∑
i

Dt(i)

(

c(1− rt)

(1−c)rt

)ht(xi ,yi)
)

. (18)

Now we bound the term
(

c(1−rt)
(1−c)rt

)ht(xi ,yi)
by use of the inequality

xa ≤ 1−a+ax for x≥ 0 anda∈ [0,1],

which comes from the convexity ofxa for a between 0 and 1 and get

(

c(1− rt)

(1−c)rt

)ht(xi ,yi)

≤ 1−ht(xi ,yi)+ht(xi ,yi)
c(1− rt)

(1−c)rt
.

Substitution in (18) and simplifications lead to

mxerr≤ ∏
t

(

rc
t (1− rt)

1−c

(1−c)1−ccc

)

. (19)

The factors of this bound are symmetric aroundrt = c and take their maximum of 1 there. Therefore
if rt > c is valid the bound onmxerrdecreases.
(iv) Exponential decrease ofmxerr:
To prove the second bound we setrt = c+δ with δ ∈ (0,1−c) and rewrite (19) as

mxerr≤ ∏
t

(

1− δ
1−c

)1−c(

1+
δ
c

)c

.

We can bound both terms using the binomial series: all terms of the series of thefirst term are
negative, we stop after the terms of first order and get

(

1− δ
1−c

)1−c

≤ 1−δ.

202

MULTICLASS BOOSTING FORWEAK CLASSIFIERS

The series of the second term has both positive and negative terms, we stop after the positive term
of first order and get

(

1+
δ
c

)c

≤ 1+δ.

Thus
mxerr≤ ∏

t
(1−δ2).

Using 1+x≤ ex for x≤ 0 leads to
mxerr≤ e−δ2T .

We summarize the foregoing argument as a theorem.

Theorem 3If all base classifiers ht with ht(x,y) ∈ [0,1] fulfill

rt := ∑
i

Dt(i)ht(xi ,yi) ≥ c+δ

for δ ∈ (0,1− c) (and the condition c∈ (0,1)) then the maxlabel error of the training set for the
algorithm in Figure 4 fulfills

mxerr≤ ∏
t

(

rc
t (1− rt)

1−c

(1−c)1−ccc

)

≤ e−δ2T . (20)

Remarks: 1.) Choice ofc for BoostMA: since we use confidence-rated base classification algorithms
we choose the training accuracy for the confidence-rated uninformative rule forc, which leads to

c =
1
N

N

∑
i=1

Nyi

N
=

1
N ∑

y
∑

i;yi=y

Ny

N
= ∑

y∈Y

(

Ny

N

)2

. (21)

2.) For base classifiers with the normalization property (10) we can get a simpler expression for the
pseudo-loss error. From

∑
y6=k

f (x,y) = ∑
y6=k

∑
t

αtht(x,y) = ∑
t

αt(1−ht(x,k)) = ∑
t

αt − f (x,k)

we get

f (x,k) <
1

|Y|−1 ∑
y6=k

f (x,y) ⇔ f (x,k)

∑
t

αt
<

1
|Y| . (22)

That means that if we choosec = 1/|Y| for BoostMA the maxlabel error is the same as the pseudo-
loss error. For the choice (21) ofc this is the case when the group proportions are balanced, because
then

c = ∑
y∈Y

(

Ny

N

)2

= ∑
y∈Y

(

1
|Y|

)2

= |Y| 1
|Y|2 =

1
|Y| .

For this choice ofc the update rule of the sampling distribution for BoostMA gets

Dt+1(i) =
Dt(i)

Zt
e−αt(ht(xi ,yi)−1/|Y|) and αt = ln

(

(|Y|−1)rt

1− rt

)

,

203

EIBL AND PFEIFFER

which is just the same as the update rule GrPloss for decision stumps. Summarizingthese two re-
sults we can say that for base classifiers with the normalization property, thechoice (21) forc of
BoostMA and data sets with balanced labels, the two algorithms GrPloss and BoostMA and their
error measures are the same.
3.) In contrast to GrPloss the algorithm does not change when the base classifier additionally fulfills
the normalization property (10) because the algorithm only usesht(xi ,yi).

4. Experiments

In our experiments we focused on the derived bounds and the practicalperformance of the algo-
rithms.

4.1 Experimental Setup

To check the performance of the algorithms experimentally we performed experiments with 12 data
sets, most of which are available from the UCI repository (Blake and Merz, 1998). To get reliable
estimates for the expected error rate we used relatively large data sets consisting of about 1000
cases or more. The expected classification error was estimated either by a test error rate or 10-fold
cross-validation. A short overview of the data sets is given in Table 1.

Database N] Labels] Variables Error Estimation Labels

car * 1728 4 6 10-CV unbalanced
digitbreiman 5000 10 7 test error balanced
letter 20000 26 16 test error balanced
nursery * 12960 4 8 10-CV unbalanced
optdigits 5620 10 64 test error balanced
pendigits 10992 10 16 test error balanced
satimage * 6435 6 34 test error unbalanced
segmentation 2310 7 19 10-CV balanced
waveform 5000 3 21 test error balanced
vehicle 846 4 18 10-CV balanced
vowel 990 11 10 test error balanced
yeast * 1484 10 9 10-CV unbalanced

Table 1: Properties of the databases

For all algorithms we used boosting by resampling with decision stumps as base classifiers.
We used AdaBoost.M2 by Freund and Schapire (1997), BoostMA withc = ∑y∈Y (Ny/N)2 and the
algorithm GrPloss for decision stumps of Section 2.3 which corresponds to BoostMA with c =
1/|Y|. For only four databases the proportions of the labels are significantly unbalanced so that
GrPloss and BoostMA should have greater differences only for these four databases (marked with
a *). As discussed by Bauer and Kohavi (1999) the individual samplingweightsDt(i) can get very
small. Similar to was done there, we set the weights of instances which were below 10−10 to 10−10.

204

MULTICLASS BOOSTING FORWEAK CLASSIFIERS

We also set a maximum number of 2000 boosting rounds to stop the algorithm if thestopping
criterion is not satisfied.

4.2 Results

The experiments have two main goals. From the theoretical point of view one isinterested in the
derived bounds. For the practical use of the algorithms, it is important to look at the training and
test error rates and the speed of the algorithms.

4.2.1 DERIVED BOUNDS

First we look at the bounds on the error measures. For the algorithm AdaBoost.M2, Freund and
Schapire (1997) derived the upper bound

(|Y|−1)2T−1
T

∏
t=1

√

εt(1− εt) (23)

on the training error. We have three different bounds on the pseudo-loss error of Grploss: the term

∏
t

Zt (24)

which was derived in the first part of the proof of Theorem 2, the tighterbound (9) of Theorem
2 and the bound (13) for the special case of decision stumps as base classifiers. In Section 3, we
derived two upper bounds on the maxlabel error for BoostMA: term (24) and the tighter bound (20)
of Theorem 3.

For all algorithms their respective bounds hold for all time steps and for all data sets. Bound
(23) on the training error of AdaBoost.M2 is very loose – it even exceeds1 for eight of the 12 data
sets, which is possible due to the factor|Y|−1 (Table 2). In contrast to the bound on the training
error of AdaBoost.M2, the bounds on the pseudo-loss error of GrPloss and the maxlabel error of
BoostMA are below 1 for all data sets and all boosting rounds. In that sense, they are tighter than
the bounds on the training error of AdaBoost.M2.

As expected, bound (13) derived for the special case of decision stumps as base classifiers on
the pseudo-loss error is smaller than bound (9) of Theorem 2 which doesn’t use the normalization
property (10) of the decision stumps.

For both GrPloss and BoostMA, bound (24) is the smallest bound since it contains the fewest
approximations. For BoostMA, term (24) is a bound on the maxlabel error and for GrPloss term
(24) is a bound on the pseudo-loss error. For unbalanced data sets, the maxlabel error is the “harder”
error measure than the pseudo-loss error, so for these data sets bound (24) is higher for BoostMA
than for GrPloss. For balanced data sets the maxlabel error and the pseudo-loss error are the same.
Bound (9) for GrPloss is higher for these data sets than bound (20) of BoostMA. This suggests that
bound (9) for GrPloss could be improved by more sophisticated calculations.

4.2.2 COMPARISON OF THEALGORITHMS

Now we wish to compare the algorithms with one another. Since GrPloss and BoostMA differ only
for the four unbalanced data sets, we focus on the comparison of GrPloss with AdaBoost.M2 and
make only a short comparison of GrPloss and BoostMA. For the subsequent comparisons we take

205

EIBL AND PFEIFFER

AdaBoost.M2 GrPloss BoostMA
training error [%] pseudo-loss error [%] maxlabel error [%]

Database trerr BD23 plerr BD24 BD13 BD9 mxerr BD24 BD20
car * 0 33.9 0 3.4 11.1 31.9 7.8 63.1 71.9
digitbreiman 25.5 327.4 0.5 3.7 19.9 81.0 1.0 11.9 35.6
letter 46.1 1013.1 0.4 7.2 27.8 94.3 0.4 8.1 29.5
nursery * 14.2 78.7 0 0 0.5 11.1 0 0.8 7.6
optdigits 0 421.1 0 0 2.0 51.4 0 0 0.1
pendigits 13.8 190.2 0 0 0.1 42.6 0 0 0.1
satimage * 15.9 118.5 0.1 1.8 13.2 62.3 3.8 26.0 50.1
segmentation 7.5 96.2 0 0.4 2.8 30.5 0 0.4 3.5
vehicle 26.5 101.2 0.1 2.8 14.7 50.0 0.1 3.3 16.5
vowel 30.9 273.8 0 0 0.1 40.4 0 0.1 3.0
waveform 12.5 48.4 0 0.5 6.3 23.3 0 0.4 6.0
yeast * 60.2 365.0 0.4 6.6 26.0 83.6 49.2 99.2 99.6

Table 2: Performance measures and their bounds in percent at the boosting round with minimal
training error. trerr, BD23: training error of AdaBoost and its bound (23); plerr, BD24
,BD13 ,BD9: pseudo-loss error of GrPloss and its bounds (24), (13) and (9); mxerr, BD24,
BD20: maxlabel error of BoostMA and its bounds (24) and (20).

all error rates at the boosting round with minimal training error rate as was done by Eibl and Pfeiffer
(2002).

First we look at the minimum achieved training and test error rates. The theory suggests Ad-
aBoost.M2 to work best in minimizing the training error. However, GrPloss seems to have roughly
the same performance with maybe AdaBoost.M2 leading by a slight edge (Tables 3 and 4, Figure
5). The difference in the training error mainly carries over to the difference in the test error. Only
for the data sets digitbreiman and yeast do the training and the test error favor different algorithms
(Table 4). Both the training and the test error favor AdaBoost.M2 for six data sets and GrPloss for
four data sets with two draws (Table 4).

While GrPloss and AdaBoost.M2 were quite close for the training and test error rates, this is
not the case for the pseudo-loss error. Here, GrPloss is the clear winner against AdaBoost.M1 with
eight wins and four draws (Table 4). The reason for this might be the fact that bound (13) on the
pseudo-loss error of GrPloss is tighter than bound (23) on the training error of AdaBoost.M2 (Table
2). For the data set nursery, bound (13) on the pseudo-loss error of GrPloss (0.5%) is smaller than
the pseudo-loss error of AdaBoost.M2 (1.9%). So for this data set, bound (13) can explain the
superiority of GrPloss in minimizing the pseudo-loss error.

Due to the fact that only four data sets are significantly unbalanced, it is not easy to assess the
difference between GrPloss and BoostMA. GrPloss seems to have a lead regarding the training and
test error rates (Tables 3 and 5). For the experiments, the constantc of BoostMA was chosen as
the training accuracy for the confidence-rated uninformative rule (21). For the unbalanced data sets,
this c exceeds 1/|Y|, which is the corresponding choice for GrPloss (22). A change ofc – maybe
even adaptively during the run – could possibly improve the performance.We wish to make further

206

MULTICLASS BOOSTING FORWEAK CLASSIFIERS

training error test error
Database AdaM2 GrPloss BoostMA AdaM2 GrPloss BoostMA
car * 0 0 7.75 0 0 7.75
digitbreiman 25.49 25.63 25.63 27.51 27.13 27.38
letter 46.07 40.02 40.14 47.18 41.70 41.70
nursery * 14.16 12.37 12.63 14.27 12.35 12.67
optdigits 0 0 0 0 0 0
pendigits 13.82 17.17 17.20 18.61 20.44 20.75
satimage * 15.85 15.69 16.87 18.25 17.80 18.90
segmentation 7.49 9.05 8.90 8.40 9.31 9.48
vehicle 26.46 30.15 30.19 35.34 38.16 36.87
vowel 30.87 41.67 42.23 54.33 67.32 67.32
waveform 12.45 14.55 14.49 16.63 18.17 17.72
yeast * 60.18 59.31 60.61 60.65 61.99 62.47

Table 3: Training and test error at the boosting round with minimal training error; bold and italic
numbers correspond to high(>5%) and medium(>1.5%) differences to the smallest of the
three error rates

GrPloss vs. AdaM2
Database trerr testerr plerr speed
car * o o o +
digitbreiman - + + +
letter + + + +
nursery * + + + +
optdigits o o o -
pendigits - - + +
satimage * + + + +
segmentation - - o +
vehicle - - + +
vowel - - o +
waveform - - + +
yeast * + - + -
total 4-2-6 4-2-6 8-4-0 10-0-2

Table 4: Comparison of GrPloss with AdaBoost.M2: win-loss-table for the training error, test error,
pseudo-loss error and speed of the algorithm (+/o/-: win/draw/loss for GrPloss)

investigations about a systematic choice ofc for BoostMA. Both algorithms seem to be better in
the minimization of their corresponding error measure (Table 5). The small differences between
GrPloss and BoostMA occurring for the nearly balanced data sets can not only come from the small

207

EIBL AND PFEIFFER

1 10 100 1000 10000
0

0.05

0.1
car

1 10 100 1000 10000

0.4

0.6

0.8 digitbreiman

1 10 100 1000 10000
0.4

0.6

0.8
letter

1 10 100 1000 10000
0.1

0.2

0.3 nursery

1 10 100 1000 10000
0

0.2

0.4

0.6
optdigits

1 10 100 1000 10000

0.2

0.4

0.6

0.8
pendigits

1 10 100 1000 10000

0.2

0.4

0.6
satimage

1 10 100 1000 10000

0.2

0.4

0.6 segmentation

1 10 100 1000 10000

0.3

0.4

0.5

0.6
vehicle

1 10 100 1000 10000

0.4

0.6

0.8 vowel

1 10 100 1000 10000
0.1

0.2

0.3

0.4 waveform

1 10 100 1000 10000
0.55

0.6

0.65
yeast

Figure 5: Training error curves: solid: AdaBoost.M2, dashed: GrPloss, dotted: BoostMA

differences in the group proportions, but also from differences in theresampling step and from the
partition of a balanced data set into unbalanced training and test sets duringcross-validation.

Performing a boosting algorithm is a time consuming procedure, so the speed of an algorithm
is an important topic. Figure 5 indicates that the training error rate of GrPlossis decreasing faster
than the training error rate of AdaBoost.M2. To be more precise, we look atthe number of boosting
rounds needed to achieve 90% of the total decrease of the training errorrate. For 10 of the 12 data
sets, AdaBoost.M2 needs more boosting rounds than GrPloss, so GrPlossseems to lead to a faster
decrease in the training error rate (Table 4). Besides the number of boosting rounds, the time for
the algorithm is also heavily influenced by the time needed to construct a base classifier. In our
program, it took longer to construct a base classifier for AdaBoost.M2 because the minimization of
the pseudo-loss which is required for AdaBoost.M2 is not as straightforward as the maximization
of rt required for GrPloss and BoostMA. However, the time needed to construct a base classifier
strongly depends on programming details, so we do not wish to over-emphasize this aspect.

208

MULTICLASS BOOSTING FORWEAK CLASSIFIERS

GrPloss vs. BoostMA
Database trerr testerr plerr mxerr speed
car * + + + o -
nursery * + + o o +
satimage * + + + - o
yeast * + + + - -
total 4-0-0 4-0-0 3-1-0 0-2-2 1-0-2

Table 5: Comparison of GrPloss with BoostMA for the unbalanced data sets:win-loss-table for
the training error, test error, pseudo-loss error, maxlabel error and speed of the algorithm
(+/o/-: win/draw/loss for GrPloss)

5. Conclusion

We proposed two new algorithms GrPloss and BoostMA for multiclass problems with weak base
classifiers. The algorithms are designed to minimize the pseudo-loss error and the maxlabel error
respectively. Both have the advantage that the base classifier minimizes the confidence-rated error
instead of the pseudo-loss. This makes them easier to use with already existing base classifiers.
Also the changes to AdaBoost.M1 are very small, so one can easily get the new algorithms by
only slight adaption of the code of AdaBoost.M1. Although they are not designed to minimize
the training error, they have comparable performance as AdaBoost.M2 in our experiments. As
a second advantage, they converge faster than AdaBoost.M2. AdaBoost.M2 minimizes a bound
on the training error. The other two algorithms have the disadvantage of minimizing bounds on
performance measures which are not connected so strongly to the expected error. However the
bounds on the performance measures of GrPloss and BoostMA are tighterthan the bound on the
training error of AdaBoost.M2, which seems to compensate for this disadvantage.

References

Erin L. Allwein, Robert E. Schapire, Yoram Singer. Reducing multiclass tobinary: A unifying
approach for margin classifiers.Machine Learning, 1:113–141, 2000.

Eric Bauer, Ron Kohavi. An empirical comparison of voting classification algorithms: bagging,
boosting and variants.Machine Learning, 36:105–139, 1999.

Catherine Blake, Christopher J. Merz. UCI Repository of machine learning databases
[http://www.ics.uci.edu/ mlearn/MLRepository.html]. Irvine, CA: University of California, De-
partment of Information and Computer Science, 1998

Thomas G. Dietterrich, Ghulum Bakiri. Solving multiclass learning problems via error-correcting
output codes.Journal of Artificial Intelligence Research2:263–286, 1995.

Günther Eibl, Karl–Peter Pfeiffer. Analysis of the performance of AdaBoost.M2 for the simulated
digit-recognition-example.Machine Learning: Proceedings of the Twelfth European Conference,
109–120, 2001.

209

EIBL AND PFEIFFER

Günther Eibl, Karl–Peter Pfeiffer. How to make AdaBoost.M1 work for weakclassifiers by chang-
ing only one line of the code.Machine Learning: Proceedings of the Thirteenth European Con-
ference, 109–120, 2002.

Yoav Freund, Robert E. Schapire. Experiments with a new boosting algorithm. Machine Learning:
Proceedings of the Thirteenth International Conference, 148–56, 1996.

Yoav Freund, Robert E. Schapire. A decision-theoretic generalizationof online-learning and an
application to boosting.Journal of Computer and System Sciences, 55(1):119–139, 1997.

Venkatesan Guruswami, Amit Sahai. Multiclass learning, boosting, and error-correcting codes.
Proceedings of the Twelfth Annual Conference on Computational Learning Theory, 145–155,
1999.

Llew Mason, Peter L. Bartlett, Jonathan Baxter. Direct optimization of marginsimproves general-
ization in combined classifiers.Proceedings of NIPS 98, 288–294, 1998.

Llew Mason, Peter L. Bartlett, Jonathan Baxter, Marcus Frean. Functional gradient techniques for
combining hypotheses.Advances in Large Margin Classifiers, 221–246, 1999.

Ross Quinlan. Bagging, boosting, and C4.5.Proceedings of the Thirteenth National Conference on
Artificial Intelligence, 725–730, 1996.

Gunnar R̈atsch, Bernhard Schölkopf, Alex J. Smola, Sebastian Mika, Takashi Onoda, Klaus R.
Müller. Robust ensemble learning.Advances in Large Margin Classifiers, 207–220, 2000a.

Gunnar R̈atsch, Takashi Onoda, Klaus R. Müller. Soft margins for AdaBoost.Machine Learning
42(3):287–320, 2000b.

Robert E. Schapire, Yoav Freund, Peter L. Bartlett, Wee Sun Lee. Boosting the margin: A new
explanation for the effectiveness of voting methods.Annals of Statistics, 26(5):1651–1686, 1998.

Robert E. Schapire, Yoram Singer. Improved boosting algorithms using confidence-rated predic-
tions. Machine Learning37:297-336, 1999.

210

Journal of Machine Learning Research 6 (2005) 211–232 Submitted 11/04; Published 3/05

A Classification Framework for Anomaly Detection

Ingo Steinwart INGO@LANL .GOV

Don Hush DHUSH@LANL .GOV

Clint Scovel JCS@LANL .GOV

Modeling, Algorithms and Informatics Group, CCS-3
Los Alamos National Laboratory
Los Alamos, NM 87545, USA

Editor: Bernhard Scḧolkopf

Abstract
One way to describe anomalies is by saying that anomalies arenot concentrated. This leads to the
problem of finding level sets for the data generating density. We interpret this learning problem as
a binary classification problem and compare the corresponding classification risk with the standard
performance measure for the density level problem. In particular it turns out that the empirical
classification risk can serve as an empirical performance measure for the anomaly detection prob-
lem. This allows us to compare different anomaly detection algorithmsempirically, i.e. with the
help of a test set. Furthermore, by the above interpretationwe can give a strong justification for the
well-known heuristic of artificially sampling “labeled” samples, provided that the sampling plan is
well chosen. In particular this enables us to propose a support vector machine (SVM) for anomaly
detection for which we can easily establish universal consistency. Finally, we report some experi-
ments which compare our SVM to other commonly used methods including the standard one-class
SVM.
Keywords: unsupervised learning, anomaly detection, density levels, classification, SVMs

1. Introduction

Anomaly (or novelty) detection aims to detect anomalous observations from a system. In the ma-
chine learning version of this problem we cannot directly model the normal behaviour of the system
since it is either unknown or too complex. Instead, we have some sample observations from which
the normal behaviour is to be learned. This anomaly detection learning problem has many important
applications including the detection of e.g. anomalous jet engine vibrations (seeNairac et al., 1999;
Hayton et al., 2001; King et al., 2002), abnormalities in medical data (see Tarassenko et al., 1995;
Campbell and Bennett, 2001), unexpected conditions in engineering (seeDesforges et al., 1998) and
network intrusions (see Manikopoulos and Papavassiliou, 2002; Yeungand Chow, 2002; Fan et al.,
2001). For more information on these and other areas of applications as well as many methods for
solving the corresponding learning problems we refer to the recent survey of Markou and Singh
(2003a,b).

It is important to note that a typical feature of these applications is that only unlabeled samples
are available, and hence one has to make some a-priori assumptions on anomalies in order to be
able to distinguish between normal and anomalous future oberservations. One of the most common
ways to define anomalies is by saying thatanomalies are not concentrated(see e.g. Ripley, 1996;

c©2005 Ingo Steinwart, Don Hush and Clint Scovel.

STEINWART, HUSH AND SCOVEL

Scḧolkopf and Smola, 2002). To make this precise letQ be ourunknown data-generating distribu-
tion on the input spaceX which has a densityh with respect to aknown reference distribution µon
X. Obviously, the density level sets{h > ρ}, ρ > 0, describe the concentration ofQ. Therefore to
define anomalies in terms of the concentration one only has to fix a threshold level ρ > 0 so that a
samplex∈ X is considered to be anomalous wheneverh(x) ≤ ρ. Consequently, our aim is to find
the set{h≤ ρ} to detect anomalous observations, or equivalently, theρ-level set{h> ρ} to describe
normal observations.

We emphasize that given the data-generating distributionQ the choice ofµ determines the den-
sity h, and consequentlyanomalies are actually modeled by both µ andρ. Unfortunately, many pop-
ular algorithms are based on density estimation methods that implicitly assumeµ to be the uniform
distribution (e.g. Gaussian mixtures, Parzen windows andk-nearest neighbors density estimates)
and therefore for these algorithms defining anomalies is restricted to the choice of ρ. With the lack
of any further knowledge one might feel that the uniform distribution is a reasonable choice forµ,
however there are situations in which a differentµ is more appropriate. In particular, this is true
if we consider a modification of the anomaly detection problem whereµ is not known but can be
sampled from. We will see that unlike many others our proposed method can handle both problems.

Finding level sets of an unknown density is also a well known problem in statistics which has
some important applications different from anomaly detection. For example, itcan be used for the
problem of cluster analysis as described in by Hartigan (1975) and Cuevas et al. (2001), and for
testing of multimodality (see e.g. M̈uller and Sawitzki, 1991; Sawitzki, 1996). Some other appli-
cations including estimation of non-linear functionals of densities, density estimation, regression
analysis and spectral analysis are briefly described by Polonik (1995). Unfortunately, the algo-
rithms considered in these articles cannot be used for the anomaly detection problem since the
imposed assumptions onh are often tailored to the above applications and are in general unrealistic
for anomalies.

One of the main problems of anomaly detection—or more precisely density level detection—is
the lack of an empirical performance measure which allows us to compare the generalization perfor-
mance of different algorithms by test samples. By interpreting the density level detection problem as
binary classification with respect to an appropriate measure, we show thatthe corresponding empir-
ical classification risk can serve as such an empirical performance measure for anomaly detection.
Furthermore, we compare the excess classification risk with the standard performance measure for
the density level detection problem. In particular, we show that both quantitiesare asymptotically
equivalent and that simple inequalities between them are possible under mild conditions on the
densityh.

A well-known heuristic (see e.g. Fan et al., 2001; González and Dagupta, 2003; Yu et al., 2004;
Theiler and Cai., 2003) for anomaly detection is to generate a labeled data setby assigning one
label to the original unlabeled data and another label to a set of artificially generated data, and
then apply a binary classification algorithm. By interpreting the density level detection problem as
a binary classification problem we can show that this heuristic can be strongly justified provided
that the sampling plan for the artificial samples is chosen in a certain way and theused classification
algorithm is well-adopted to this plan. We will work out this justification in detail by showing how to
modify the standard support vector machine (SVM) for classification, andestablishing a consistency
result for this modification. Finally we report some experiments comparing the modified SVM with
some other commonly used algorithms including Gaussian maximum-likelihood methods,and the
standard one-class SVM proposed by Schölkopf et al. (2001).

212

A CLASSIFICATION FRAMEWORK FORANOMALY DETECTION

2. Detecting Density Levels is a Classification Problem

We begin with rigorously defining the density level detection (DLD) problem. To this end let(X,A)
be a measurable space andµ a knowndistribution on(X,A). Furthermore, letQ be anunknown
distribution on(X,A) which has anunknowndensityh with respect toµ, i.e. dQ= hdµ. Given a
ρ > 0 the set{h> ρ} is called theρ-level setof the densityh. Throughout this work we assume that
{h = ρ} is aµ-zero set and hence it is also aQ-zero set. For the density level detection problem and
related tasks this is a common assumption (see e.g. Polonik, 1995; Tsybakov,1997).

Now, the goal of the DLD problem is to find an estimate of theρ-level set ofh. To this end
we need some information which in our case is given to us by a training setT = (x1, . . . ,xn) ∈
Xn. We will assume in the following thatT is i.i.d. drawn fromQ. With the help ofT a DLD
algorithm constructs a functionfT : X → R for which the set{ fT > 0} is an estimate of theρ-level
set{h > ρ} of interest. Since in general{ fT > 0} does not excactly coincide with{h > ρ} we need
aperformance measurewhich describes how well{ fT > 0} approximates the set{h> ρ}. Probably
the best known performance measure (see e.g. Tsybakov, 1997; Ben-David and Lindenbaum, 1997,
and the references therein) for measurable functionsf : X → R is

Sµ,h,ρ(f) := µ
(

{ f > 0} M {h > ρ}
)

,

whereM denotes the symmetric difference. Obviously, the smallerSµ,h,ρ(f) is, the more{ f > 0}
coincides with theρ-level set ofh and a functionf minimizesSµ,h,ρ if and only if{ f > 0} is µ-almost
surely identical to{h> ρ}. Furthermore, for a sequence of functionsfn : X →R with Sµ,h,ρ(fn)→ 0
we easily see that signfn(x)→ 1{h>ρ}(x) for µ-almost allx∈X, and sinceQ is absolutely continuous
with respect toµ the same convergence holdsQ-almost surely. Finally, it is important to note, that
the performance measureSµ,h,ρ is insensitive toµ-zero sets. Since we cannot detectµ-zero sets using
a training setT drawn fromQn this feature is somehow natural for our model.

AlthoughSµ,h,ρ seems to be well-adapted to our model, it has a crucial disadvantage in that we
cannot computeSµ,h,ρ(f) since{h > ρ} is unknown to us. Therefore, we have toestimateit. In
our model the only information we can use for such an estimation is atest set W= (x̂1, . . . , x̂m)
which is i.i.d. drawn fromQ. Unfortunately, there is no method known to estimateSµ,h,ρ(f) from
W with guaranteedaccuracy in terms ofm, f , µ andρ, and we strongly believe that such a method
cannot exist. Because of this lack, we cannotempiricallycompare different algorithms in terms of
the performance measureSµ,h,ρ.

Let us now describe another performance measure which has merits similar toSµ,h,ρ but addi-
tionally has an empirical counterpart, i.e. a method to estimate its value with guaranteed accuracy
by only using a test set. This performance measure is based on interpretingthe DLD problem as
a binary classification problem in whichT is assumed to be positively labeled and infinitely many
negatively labeled samples are available by the knowledge ofµ. To make this precise we write
Y := {−1,1} and define

Definition 1 Let µ and Q be probability measures on X and s∈ (0,1). Then the probability measure
Q	sµ on X×Y is defined by

Q	sµ(A) := sEx∼Q1A(x,1)+(1−s)Ex∼µ1A(x,−1)

for all measurable subsets A⊂ X×Y. Here we used the shorthand1A(x,y) := 1A((x,y)).

213

STEINWART, HUSH AND SCOVEL

Roughly speaking, the distributionQ	s µ measures the “1-slice” ofA⊂ X ×Y by sQand the
“−1-slice” by (1− s)µ. Moreover, the measureP := Q	s µ can obviously be associated with a
binary classification problem in which positive samples are drawn fromsQ and negative samples
are drawn from(1− s)µ. Inspired by this interpretation let us recall that the binary classification
risk for a measurable functionf : X → R and a distributionP onX×Y is defined by

RP(f) = P
(

{(x,y) : sign f (x) 6= y}
)

,

where we define signt := 1 if t > 0 and signt = −1 otherwise. Furthermore, theBayes riskRP of P
is the smallest possible classification risk with respect toP, i.e.

RP := inf
{

RP(f)
∣

∣ f : X → R measurable
}

.

We will show in the following that learning with respect toSµ,h,ρ is equivalent to learning with
respect toRP(.). To this end we begin by computing the marginal distributionPX and thesupervisor
η(x) := P(y = 1|x), x∈ X, of P := Q	sµ:

Proposition 2 Let µ and Q be probability measures on X such that Q has a density h with respect
to µ, and let s∈ (0,1). Then the marginal distribution of P:= Q	sµ on X is PX = sQ+(1− s)µ.
Furthermore, we PX-a.s. have

P(y = 1|x) =
sh(x)

sh(x)+1−s
.

Proof As recalled in the appendix,P(y= 1|x), x∈ X, is a regular conditional probability and hence
we only have to check the condition of Corollary 19. To this end we first observe by the definition
of P := Q	sµ that for all non-negative, measurable functionsf : X×Y → R we have

Z

X×Y
f dP = s

Z

X
f (x,1)Q(dx)+(1−s)

Z

X
f (x,−1)µ(dx) .

Therefore, forA∈ A we obtain
Z

A×Y

sh(x)
sh(x)+1−s

P(dx,dy)

= s
Z

A

sh(x)
sh(x)+1−s

h(x)µ(dx)+(1−s)
Z

A

sh(x)
sh(x)+1−s

µ(dx)

=
Z

A
sh(x)µ(dx)

= s
Z

A
1X×{1}(x,1)Q(dx)+(1−s)

Z

A
1X×{1}(x,−1)µ(dx)

=
Z

A×Y
1X×{1}dP.

Note that the formula for the marginal distributionPX in particular shows that theµ-zero sets
of X are exactly thePX-zero sets ofX. As an immediate consequence of the above proposition we
additionally obtain the following corollary which describes theρ-level set ofh with the help of the
supervisorη:

214

A CLASSIFICATION FRAMEWORK FORANOMALY DETECTION

Corollary 3 Let µ and Q be probability measures on X such that Q has a density h with respect to
µ. Forρ > 0 we write s:= 1

1+ρ and define P:= Q	sµ. Then forη(x) := P(y= 1|x), x∈ X, we have

µ
(

{η > 1/2} M {h > ρ}
)

= 0,

i.e.{η > 1/2} µ-almost surely coincides with{h > ρ}.

Proof By Proposition 2 we see thatη(x) > 1
2 is µ-almost surely equivalent to sh(x)

sh(x)+1−s > 1
2 which

is equivalent toh(x) > 1−s
s = ρ.

The above results in particular show that every distributionP := Q	s µ with dQ := hdµ and
s∈ (0,1) determines a triple(µ,h,ρ) with ρ := (1− s)/s and vice-versa. In the following we
therefore use the shorthandSP(f) := Sµ,h,ρ(f).

Let us now compareRP(.) with SP(.). To this end recall, that binary classification aims to
discriminate{η > 1/2} from {η < 1/2}. In view of the above corollary it is hence no surprise that
RP(.) can serve as a surrogate forSP(.) as the following theorem shows:

Theorem 4 Let µ and Q be probability measures on X such that Q has a density h with respect
to µ. Letρ > 0 be a real number which satisfies µ({h = ρ}) = 0. We write s:= 1

1+ρ and define
P := Q	s µ. Then for all sequences(fn) of measurable functions fn : X → R the following are
equivalent:

i) SP(fn) → 0.

ii) RP(fn) → RP.

In particular, for a measurable function f: X → R we haveSP(f) = 0 if and only ifRP(f) = RP.

Proof Forn∈ N we defineEn := { fn > 0} M {h > ρ}. Since by Corollary 3 we knowµ({h > ρ} M

{η > 1
2}) = 0 it is easy to see that the classification risk offn can be computed by

RP(fn) = RP +
Z

En

|2η−1|dPX . (1)

Now, {|2η−1| = 0} is aµ-zero set and hence aPX-zero set. The latter implies that the measures
|2η−1|dPX andPX are absolutely continuous with respect to each other, and hence we have

|2η−1|dPX(En) → 0 if and only if PX(En) → 0.

Furthermore, we have already observed after Proposition 2 thatPX andµ are absolutely continuous
with respect to each other, i.e. we also have

PX(En) → 0 if and only if µ(En) → 0.

Therefore, the assertion follows fromSP(fn) = µ(En).

Theorem 4 shows that instead of usingSP as a performance measure for the density level de-
tection problem one can alternatively use the classification riskRP(.). Therefore, we will estab-
lish some basic properties of this performance measure in the following. To thisend we write
I(y, t) := 1(−∞,0](yt), y∈Y andt ∈ R, for the standard classification loss function. With this nota-
tion we can computeRP(f):

215

STEINWART, HUSH AND SCOVEL

Proposition 5 Let µ and Q be probability measures on X. Forρ > 0 we write s:= 1
1+ρ and define

P := Q	sµ. Then for all measurable f: X → R we have

RP(f) =
1

1+ρ
EQI(1,sign f)+

ρ
1+ρ

EµI(−1,sign f) .

Furthermore, for the Bayes risk we have

RP ≤ min
{ 1

1+ρ
,

ρ
1+ρ

}

and

RP =
1

1+ρ
EQ1{h≤ρ} +

ρ
1+ρ

Eµ1{h>ρ} .

Proof The first assertion directly follows from

RP(f) = P
(

{(x,y) : sign f (x) 6= y}
)

= P
(

{(x,1) : sign f (x) = −1}
)

+P
(

{(x,−1) : sign f (x) = 1}
)

= sQ
(

{sign f = −1}
)

+(1−s)µ
(

{sign f = 1}
)

= sEQI(1,sign f)+(1−s)EµI(−1,sign f) .

The second assertion directly follows fromRP ≤ RP(1X) ≤ s andRP ≤ RP(−1X) ≤ 1−s. Finally,
for the third assertion recall thatf = 1{h>ρ}−1{h≤ρ} is a function which realizes the Bayes risk.

As described at the beginning of this section our main goal is to find a performance measure for
the density level detection problem which has an empirical counterpart. In view of Proposition 5
the choice of an empirical counterpart forRP(.) is rather obvious:

Definition 6 Let µ be a probability measure on X andρ > 0. Then for T= (x1, . . . ,xn) ∈ Xn and a
measurable function f: X → R we define

RT(f) :=
1

(1+ρ)n

n

∑
i=1

I(1,sign f (xi))+
ρ

1+ρ
EµI(−1,sign f) .

If we identify T with the corresponding empirical measure it is easy to see thatRT(f) is the
classification risk with respect to the measureT 	sµ for s := 1

1+ρ . Then for measurable functions
f : X → R, e.g. Hoeffding’s inequality shows thatRT(f) approximates the true classification risk
RP(f) in a fast and controllable way.

It is highly interesting that the classification riskRP(.) is strongly connected with another ap-
proach for the density level detection problem which is based on the so-called excess mass(see
e.g. Hartigan, 1987; M̈uller and Sawitzki, 1991; Polonik, 1995; Tsybakov, 1997, and the refer-
ences therein). To be more precise let us first recall that the excess mass of a measurable function
f : X → R is defined by

EP(f) := Q({ f > 0})−ρµ({ f > 0}) ,

whereQ, ρ andµ have the usual meaning. The following proposition shows thatRP(.) andEP(.)
are essentially the same:

216

A CLASSIFICATION FRAMEWORK FORANOMALY DETECTION

Proposition 7 Let µ and Q be probability measures on X. Forρ > 0 we write s:= 1
1+ρ and define

P := Q	sµ. Then for all measurable f: X → R we have

EP(f) = 1− (1+ρ)RP(f) .

Proof We obtain the assertion by the following simple calculation:

EP(f) = Q({ f > 0})−ρµ({ f ≥ 0})

= 1−Q({ f ≤ 0})−ρµ({ f > 0})

= 1−Q
(

{sign f = −1}
)

−ρµ
(

{sign f = 1}
)

= 1− (1+ρ)RP(f) .

If Q is an empirical measure based on a training setT in the definition ofEP(.) then we obtain
am empirical performance measure which we denote byET(.). By the above proposition we have

ET(f) = 1−
1
n

n

∑
i=1

I(1,sign f (xi))−ρEµI(−1,sign f) = 1− (1+ρ)RT(f) (2)

for all measurablef : X → R. Now, given a classF of measurable functions fromX to R the
(empirical) excess mass approach considered e.g. by Hartigan (1987);Müller and Sawitzki (1991);
Polonik (1995); Tsybakov (1997), chooses a functionfT ∈ F which maximizesET(.) within F .
By equation (2) we see that this approach is actually a type of empirical risk minimization (ERM).
Surprisingly, this connection has not been observed, yet. In particular, the excess mass has only been
considered as an algorithmic tool, but not as a performance measure. Instead, the papers dealing
with the excess mass approach measures the performance bySP(.). In their analysis an additional
assumption on the behaviour ofh around the levelρ is required. Since this condition can also be
used to establish a quantified version of Theorem 4 we will recall it now:

Definition 8 Let µ be a distribution on X and h: X → [0,∞) be a measurable function with
R

hdµ=
1, i.e. h is a density with respect to µ. Forρ > 0 and0≤ q≤ ∞ we say that h hasρ-exponentq if
there exists a constant C> 0 such that for all sufficiently small t> 0 we have

µ
(

{|h−ρ| ≤ t}
)

≤ Ctq . (3)

Condition (3) was first considered by Polonik (1995, Thm. 3.6). This paper also provides an
example of a class of densities onRd, d ≥ 2, which has exponentq = 1. Later, Tsybakov (1997,
p. 956) used (3) for the analysis of a density level detection method which isbased on a localized
version of the empirical excess mass approach.

Interestingly, condition (3) is closely related to a concept for binary classification called the
Tsybakov noise exponent (see e.g. Mammen and Tsybakov, 1999; Tsybakov, 2004; Steinwart and
Scovel, 2004) as the following proposition proved in the appendix shows:

Proposition 9 Let µ and Q be distributions on X such that Q has a density h with respect to µ.For
ρ > 0 we write s:= 1

1+ρ and define P:= Q	sµ. Then for0 < q≤ ∞ the following are equivalent:

217

STEINWART, HUSH AND SCOVEL

i) h hasρ-exponentq.

ii) P has Tsybakov noise exponent q, i.e. there exists a constant C> 0 such that for all sufficiently
small t> 0 we have

PX
(

|2η−1| ≤ t
)

≤ C · tq (4)

In recent years Tsybakov’s noise exponent has played a crucial role for establishing learning
rates faster thann−

1
2 for certain algorithms (see e.g. Mammen and Tsybakov, 1999; Tsybakov,2004;

Steinwart and Scovel, 2004). Remarkably, it was already observed byMammen and Tsybakov
(1999), that the classification problem can be analyzed by methods originally developed for the
DLD problem. However, to our best knowledge the exact relation betweenthe DLD problem and
binary classification has not been presented, yet. In particular, it has not been observed yet, that this
relation opens anon-heuristicway to use classification methods for the DLD problem as we will
discuss in the next section.

As already announced we can also establish inequalities betweenSP andRP(.) with the help of
theρ-exponent. This is done in the following theorem:

Theorem 10 Let ρ > 0 and µ and Q be probability measures on X such that Q has a density h with
respect to µ. For s:= 1

1+ρ we write P:= Q	sµ. Then the following statements hold:

i) If h is bounded then there exists a constant c> 0 such that for all measurable f: X → R we
have

RP(f)−RP ≤ cSP(f) .

ii) If h has ρ-exponent q∈ (0,∞] then there exists a constant c> 0 such that for all measurable
f : X → R we have

SP(f) ≤ c
(

RP(f)−RP
)

q
1+q .

Proof The first assertion directly follows from (1) and Proposition 2. The second assertion follows
from Proposition 9 and a result of Tsybakov (2004, Prop. 1).

Remark 11 We note that many of the results of this section can be generalized to the casewhere
Q is not absolutely continuous with respect to µ. Indeed, select an auxilliary measureν such that
both Q and µ are absolutely continuous with respect toν. For example one could chooseν =
Q+µ

2 . Consequently we have Q= h1ν and µ= h2ν for some real valued functions h1 and h2. Then

Proposition 2 holds with h(x) := h1(x)
h2(x)

, where one defines the righthand side to be0 when h1(x) =

h2(x) = 0. One can also show that h is PX-a.s. independent of the choice ofν. Corollary 3 holds
where the measure of the symmetric difference is evaluated with either Q or µ. However it appears
that only the “RP(fn) → RP ⇒ SP(fn) → 0” assertion of Theorem 4 holds instead of equivalence.
Finally, Propositions 5 and 7 hold, Proposition 9 holds with a suitable generalization of Definition
8 of ρ-exponent, and the second assertion of Theorem 10 holds.

218

A CLASSIFICATION FRAMEWORK FORANOMALY DETECTION

3. A Support Vector Machine for Density Level Detection

In the previous section we have shown that the DLD problem can be interpreted as a binary clas-
sification problem in which one conditional class probability is known. We nowshow that this
interpretation has far reaching algorithmic consequences. To this end let us assume that we give
each sample of our training setT = (x1, . . . ,xn) drawn fromQ the label 1. Additionally we gen-
erate a second training setT ′ = (x′1, . . . ,x

′
n′) from µ and label each sample of it with−1. Merging

these labeled sample sets gives a new training set which then can be used bya binary classifica-
tion algorithm. By our considerations in the previous section it seems reasonable to expect that
the used classification algorithm actually learns the DLD problem provided that the algorithm is
well-adjusted to the sample set sizes and the parameterρ.

In the following we work this high-level approach out by constructing an SVM for the DLD
problem. To this end letk : X×X → R be a positive definite kernel with reproducing kernel Hilbert
space (RKHS)H. Furthermore, letµ be a known probability measure onX andl : Y×R → [0,∞)
be thehinge loss function, i.e.l(y, t) := max{0,1− yt}, y ∈ Y, t ∈ R. Then for a training set
T = (x1, . . . ,xn) ∈ Xn, a regularization parameterλ > 0, andρ > 0 we initially define

fT,µ,λ := argmin
f∈H

λ‖ f‖2
H +

1
(1+ρ)n

n

∑
i=1

l(1, f (xi))+
ρ

1+ρ
Ex∼µl(−1, f (x)) , (5)

and

(f̃T,µ,λ, b̃T,µ,λ) := argmin
f∈H
b∈R

λ‖ f‖2
H +

1
(1+ρ)n

n

∑
i=1

l(1, f (xi)+b)+
ρ

1+ρ
Ex∼µl(−1, f (x)+b) . (6)

The decision function of theSVM without offsetis fT,µ,λ : X → R and analogously, theSVM with
offsethas the decision functioñfT,µ,λ + b̃T,µ,λ : X → R.

Although the measureµ is known, almost always the expectationEx∼µl(−1, f (x)) can only
be numerically computed which requires finitely many function evaluations off . If the integrand
of this expectation was smooth we could use some known deterministic methods to choose these
function evaluations efficiently. However, since the hinge loss is not differentiable there is no such
method known to us. According to our above plan we will therefore use points T ′ := (x′1, . . . ,x

′
n′)

which are randomly sampled fromµ to approximateEx∼µl(−1, f (x)) by 1
n′ ∑n′

i=1 l(−1, f (x′i)). We
denote the corresponding approximate solutions of (5) and (6) byfT,T ′,λ and(f̃T,T ′,λ, b̃T,T ′,λ), re-
spectively. Furthermore, in these cases the formulations (5) and (6) areidentical to the standard
L1-SVM formulations besides the weighting factors in front of the empirical error terms. There-
fore, the derivation of the corresponding dual problems is straightforward. For example, the dual
problem for (6) can be written as follows:

max
n
∑

i=1
αi +

n′

∑
i=1

α′
i −

1
2

n
∑

i, j=1
αiα jk(xi ,x j)−

1
2

n′

∑
i, j=1

α′
iα′

jk(x
′
i ,x

′
j)+

n,n′

∑
i, j=1

αiα′
jk(xi ,x′j)

s.t.
n
∑

i=1
αi −

n′

∑
i=1

α′
i = 0,

0 ≤ αi ≤
2

λ(1+ρ)n, i = 1, ...,n,

0 ≤ α′
i ≤

2ρ
λ(1+ρ)n′ , i = 1, ...,n′.

(7)

219

STEINWART, HUSH AND SCOVEL

The fact that the SVM for DLD essentially coincides with the standard L1-SVM also allows us to
modify many known results for these algorithms. For simplicity we will only state a consistency
result which describes the case where we usen′ = n random samples fromµ in order to approximate
the expectation with respect toµ. However, it is straight forward to extend the result to the more
general case ofn′ = rn samples for some positiver ∈ Q. In order to formulate the result we have to
recall the notion of universal kernels (see Steinwart, 2001). To this end let X be a compact metric
space, say a closed and bounded subset ofRd. We denote the space of all continuous functions on
X byC(X). As usual, this space is equipped with the supremum norm‖.‖∞. Then the RKHSH of a
continuous kernelk onX is embedded intoC(X), i.e.H ⊂C(X), where the inclusion is continuous.
We say that the kernelk is universal, if in additionH is dense inC(X), i.e. for everyf ∈C(X) and
everyε > 0 there exists ag∈ H with ‖ f −g‖∞ < ε. Some examples of universal kernels including
the Gaussian RBF kernels were presented by Steinwart (2001).

Now we can formulate the announced result:

Theorem 12 (Universal consistency)Let X be a compact metric space and k be a universal kernel
on X. Furthermore, letρ > 0, and µ and Q be probability measures on X such that Q has a density
h with respect to µ. For s:= 1

1+ρ we write P:= Q	s µ. Then for all sequences(λn) of positive

numbers withλn → 0 and nλ2
n → ∞ and for all ε > 0 we have

(Q⊗µ)n
(

(T,T ′) ∈ Xn×Xn : RP(fT,T ′,λn
) ≤ RP + ε

)

→ 0,

for n → ∞. The same result holds for the SVM with offset if one replaces the condition nλ2
n → ∞

by the slightly stronger assumption nλ2
n/ logn → ∞. Finally, for both SVMs it suffices to assume

nλ1+δ
n → ∞ for someδ > 0 if one uses a Gaussian RBF kernel.

Sketch of the Proof Let us introduce the shorthandν = Q⊗µ for the product measure ofQ andµ.
Moreover, for a measurable functionf : X → R we define the functionl � f : X×X → R by

l � f (x,x′) :=
1

1+ρ
l(1, f (x))+

ρ
1+ρ

l(−1, f (x′)) , x,x′ ∈ X.

Furthermore, we writel ◦ f (x,y) := l(y, f (x)), x∈ X, y∈Y. Then it is easy to check that we always
haveEνl � f = EPl ◦ f . Analogously, we seeET⊗T ′ l � f = ET	sT ′ l ◦ f , if T⊗T ′ denotes the product
measure of the empirical measures based onT andT ′. Now, using Hoeffding’s inequality forν it is
easy to establish a concentration inequality in the sense of Steinwart (2005, Lem. III.5). The rest of
the proof is analogous to the steps of Steinwart (2005).

Recall that by Theorem 4 consistency with respect toRP(.) is equivalent to consistency with
respect toSP(.). Therefore we immediately obtain the following corollary

Corollary 13 Under the assumptions of Theorem 12 both the DLD-SVM with offset and without
offset are universally consistent with respect toSP(.), i.e.SP(f̃T,µ,λ + b̃T,µ,λ)→ 0andSP(fT,T ′,λn

)→ 0
in probability.

Remark 14 We have just seen that our DLD-SVM whose design was based on the plandescribed
in the beginning of this section can learn arbitrary DLD problems. It shouldbe almost clear that

220

A CLASSIFICATION FRAMEWORK FORANOMALY DETECTION

a similar approach and analysis is possible for many other classification algorithms. This gives a
strong justification for the well-known heuristic of adding artificial samples to anomaly detection
problems with unlabeled data. However, it is important to note that this justification only holds for
the above sampling plan and suitably adjusted classification algorithms, and that other, heuristic
sample plans may actually lead to bad learning performance (cf. the second part of Section 5)

4. Experiments

We present experimental results for anomaly detection problems where the set X is a subset ofRd.
A total of four different learning algorithms are used to produce functions f which declare the set
{x : f (x) ≤ 0} anomalous. A distinct advantage of the formulation in Section 2 is that it allows us
to makequantitativecomparisons of different functions by comparing estimates of their riskRP(f)
which can be computed from sample data. In particular consider a data set pair (S,S′) whereS
contains samples drawn fromQ andS′ contains samples drawn fromµ (in what follows(S,S′) is
either training data, validation data, or test data). Based on Definition 6 we define the empirical risk
of f with respect to(S,S′) to be

R(S,S′)(f) =
1

(1+ρ)|S| ∑x∈S

I(1,signf (x))+
ρ

(1+ρ)|S′| ∑
x∈S′

I(−1,signf (x)). (8)

A smaller risk indicates a better solution to the DLD problem. Since the riskRP (·) depends ex-
plicitly on ρ additional insight into the performance off can be obtained from the two error terms.
Specifically the quantity1

|S| ∑x∈SI(1,signf (x)) is an estimate ofQ({ f ≤ 0}) which we call the
alarm rate (i.e. the rate at which samples will be labeled anomalous byf), and the quantity

1
|S′| ∑x∈S′ I(−1,signf (x)) is an estimate ofµ({ f > 0}) which we call thevolumeof the predicted
normal set. There is an obvious trade-off between these two quantities, i.e.for the optimal solu-
tions for fixedρ smaller alarm rates correspond to larger volumes and vice versa. Also, from the
expression for the risk in Proposition 5 it is clear that for any two functionswith the same alarm rate
we prefer the function with the smaller volume and vice versa. More generally, when comparing
different solution methods it is useful to consider the values of these quantities that are achieved
by varying the value ofρ in the design process. Suchperformance curvesare presented in the
comparisons below.

We consider three different anomaly detection problems, two are synthetic and one is an applica-
tion in cybersecurity. In each case we define a problem instance to be a triplet consisting of samples
from Q, samples fromµ, and a value for the density levelρ. We compare four learning algorithms
that accept a problem instance and automatically produce a functionf : the density level detec-
tion support vector machine (DLD–SVM), the one-class support vectormachine (1CLASS–SVM),
the Gaussian maximum-likelihood (GML) method, the mixture of Gaussians maximum-likelihood
(MGML) method.1 The first is the algorithm introduced in this paper, the second is an algorithm
based on the the one-class support vector machine introduced by Schölkopf et al. (2001) and the
others (including the Parzen windows method) are based on some of the mostcommon paramet-
ric and non-parametric statistical methods for density-based anomaly detection in Rd. Each of the
four learning algorithms is built on a core procedure that contains one or more free parameters. The
availability of a computable risk estimate makes it possible to determine values for these parameters

1. We also experimented with a Parzen windows method, but do not includethe results because they were substantially
worse than the other methods in every case.

221

STEINWART, HUSH AND SCOVEL

using a principled approach that is applied uniformly to all four core procedures. In particular this
is accomplished as follows in our experiments. The data in each problem instance is partitioned into
three pairs of sets; the training sets(T,T ′), the validation sets(V,V ′) and the test sets(W,W′). The
core procedures are run on the training sets and the values of the free parameters are chosen to min-
imize the empirical risk (8) on the validation sets. The test sets are used to estimateperformance.
We now describe the four learning algorithms in detail.

In the DLD–SVM algorithm we employ the SVMwith offsetdescribed in Section 3 with a
Gaussian RBF kernel

k(x,x′) = e−σ2‖x−x′‖2
.

With λ andσ2 fixed and the expected valueEx∼µl(−1, f (x)+ b) in (6) replaced with an empirical
estimate based onT ′ this formulation can be solved using, for example, theC-SVC option in the
LIBSVM software (see Chang and Lin, 2004) by settingC = 1 and setting the class weights tow1 =
1/

(

λ|T|(1+ρ)
)

andw−1 = ρ/
(

λ|T ′|(1+ρ)
)

. The regularization parametersλ andσ2 are chosen to
(approximately) minimize the empirical riskR(V,V ′)(f) on the validation sets. This is accomplished
by employing a grid search overλ and a combined grid/iterative search overσ2. In particular, for
each value ofλ from a fixed grid we seek a minimizer overσ2 by evaluating the validation risk at a
coarse grid ofσ2 values and then performing a Golden search over the interval defined bythe two
σ2 values on either side of the coarse grid minimum.2 As the overall search proceeds the(λ,σ2)
pair with the smallest validation risk is retained.

The 1CLASS–SVM algorithm is based on the one-class support vector machine introduced
by Scḧolkopf et al. (2001). Recall that this method neither makes the assumption thatthere is a
reference distributionµ nor usesT ′ in the production of its decision functionf . Consequently
it may be harder to compare the empirical results of the 1CLASS–SVM with thoseof the other
methods in a fair way. Again we employ the Gaussian RBF kernel with width parameterσ2. The
one-class formulation of Schölkopf et al. (2001) contains a parameterν which controls the size of
the set{x∈ T : f (x) ≤ 0} (and therefore controls the measureQ({ f ≤ 0}) through generalization).
With ν andσ2 fixed a solution can be obtained using theone-class-SVM option in theLIBSVM
software. To use this 1-class algorithm to solve an instance of the DLD problem we determineν
automatically as a function ofρ. In particular bothν andσ2 are chosen to (approximately) minimize
the validation risk using the search procedure described above for the DLD–SVM where the grid
search forλ is replaced by a Golden search (over[0,1]) for ν.

The GML algorithm produces a functionf = g− t wheret is an offset andg is a Gaussian
probability density function whose mean and inverse covariance are determined from maximum
likelihood estimates formed from the training dataT (see e.g. Duda et al., 2000). In particular
the inverse covariance takes the form(Σ + λI)−1 whereΣ is the maximum likelihood covariance
estimate and the regularization termλI is a scaled identity matrix which guarantees that the inverse is
well-defined and numerically stable. Once the parameters ofg are determined the offsett is chosen
to minimize the training riskR(T,T ′). The regularization parameterλ is chosen to (approximately)
minimize the validation risk by searching a fixed grid ofλ values.

The MGML algorithm is essentially the same as the GML method except thatg is a mixture ofK
Gaussians whose maximum likelihood parameter estimates are determined using theExpectation-
Maximization (EM) algorithm of Dempster et al. (1977). The same regularization parameter is used

2. If the minimum occurs at more than one grid point or at an end point theGolden search interval is defined by the
nearest grid points that include all minimal values.

222

A CLASSIFICATION FRAMEWORK FORANOMALY DETECTION

Train Validate Test
Number ofQ samples 1000 500 100,000
Number ofµ samples 2000 2000 100,000

λ grid (DLD–SVM/GML/MGML) 1.0, 0.5, 0.1, 0.05, 0.01, ..., 0.0000005, 0.0000001
σ2 grid (DLD–SVM/1CLASS–SVM) 0.001, 0.01, 0.05, 0.1, 0.5, 1.0, 5.0, 10.0, 100.0

Table 1: Parameters for experiments 1 and 2.

for all inverse covariance estimates and bothλ andK are chosen to (approximately) minimize the
validation risk by searching a fixed grid of(λ,K) values.

Data for the first experiment are generated using an approach designed to mimic a type of real
problem wherex is a feature vector whose individual components are formed as linear combi-
nations of raw measurements and therefore the central limit theorem is used toinvoke a Gaussian
assumption forQ. Specifically, samples of the random variablex∼Q are generated by transforming
samples of a random variableu that is uniformly distributed over[0,1]27. The transform isx = Au
whereA is a 10–by–27 matrix whose rows contain betweenm= 2 andm= 5 non-zero entries with
value 1/m (i.e. each component ofx is the average ofm uniform random variables). ThusQ is
approximately Gaussian with mean(0.5,0.5) and support[0,1]10. Partial overlap in the nonzero
entries across the rows ofA guarantee that the components ofx are partially correlated. We choseµ
to be the uniform distribution over[0,1]10. Data for the second experiment are identical to the first
except that the vector(0,0,0,0,0,0,0,0,0,1) is added to the samples ofx with probability 0.5. This
gives a bi-modal distributionQ that approximates a mixture of Gaussians. Also, since the support
of the last component is extended to[0,2] the corresponding component ofµ is also extended to this
range. A summary of the data and algorithm parameters for experiments 1 and2 is shown in Table
1. Note that the test set sizes are large enough to provide very accurateestimates of the risk.

The four learning algorithms were applied for values ofρ ranging from.01 to 100 and the results
are shown in Figure 1. Figures 1(a) and 1(c) plot the empirical riskR(W,W′) versusρ while Figures
1(b) and 1(d) plot the corresponding performance curves. Since thedata is approximately Gaussian
it is not surprising that the best results are obtained by GML (first experiment) and MGML (both
experiments). However, for most values ofρ the next best performance is obtained by DLD–SVM
(both experiments). The performance of 1CLASS–SVM is clearly worse than the other three at
smaller values ofρ (i.e. larger values of the volume), and this difference is more substantial in the
second experiment. In addition, although we do not show it, this differenceis even more pronounced
(in both experiments) at smaller training and validation set sizes. These results are significant be-
cause values ofρ substantially larger than one appear to have little utility here since they yield alarm
rates that do not conform to our notion that anomalies are rare events. Inadditionρ � 1 appears
to have little utility in the general anomaly detection problem since it defines anomalies in regions
where the concentration ofQ is much larger than the concentration ofµ, which is contrary to our
premise that anomalies are not concentrated.

The third experiment considers an application in cybersecurity. The goal isto monitor the
network traffic of a computer and determine when it exhibits anomalous behavior. The data for
this experiment was collected from an active computer in a normal working environment over the
course of 16 months. The features in Table 2 were computed from the outgoing network traffic.

223

STEINWART, HUSH AND SCOVEL

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.01 0.1 1 10 100

DLD–SVM
1CLASS–SVM

GML
MGML

ρ

R
(W

,W
′)

(a) Risk curves forQ≈ Gaussian.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0 0.1 0.2 0.3 0.4 0.5

DLD–SVM
1CLASS–SVM

GML
MGML

volume

al
ar

m
ra

te

(b) Performance curves forQ≈ Gaussian.

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.01 0.1 1 10 100

DLD–SVM
1CLASS–SVM

GML
MGML

ρ

R
(W

,W
′)

(c) Risk curves forQ≈ Gaussian mixture.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0 0.1 0.2 0.3 0.4 0.5

DLD–SVM
1CLASS–SVM

GML
MGML

volume

al
ar

m
ra

te

(d) Performance curves forQ≈ Gaussian mixture.

Figure 1: Synthetic data experiments.

The averages were computed over one hour time windows giving a total of 11664 feature vectors.
The feature values were normalized to the range[0,1] and treated as samples fromQ. ThusQ
has support in[0,1]12. Although we would like to chooseµ to capture a notion of anomalous
behavior for this application, only the DLD–SVM method allows such a choice.Thus, since both
GML and MGML define densities with respect to a uniform measure and we wish to compare with
these methods, we choseµ to be the uniform distribution over[0,1]12. A summary of the data and
algorithm parameters for this experiment is shown in Table 3. Again, we wouldlike to point out that
this choice may actually penalize the 1CLASS-SVM since this method is not basedon the notion
of a reference measure. However, we currently do not know any other approach which treats the
1CLASS-SVM with its special strucure in a fairer way.

The four learning algorithms were applied for values ofρ ranging from.005 to 50 and the results
are summarized by the empirical risk curve in Figure 2(a) and the corresponding performance curve
in Figure 2(b). The empirical risk values for DLD–SVM and MGML are nearly identical except for
ρ = 0.05 where the MGML algorithm happened to chooseK = 1 to minimize the validation risk

224

A CLASSIFICATION FRAMEWORK FORANOMALY DETECTION

Feature Number Description
1 Number of sessions
2 Average number of source bytes per session
3 Average number of source packets per session
4 Average number of source bytes per packet
5 Average number of destination bytes per session
6 Average number of destination packets per session
7 Average number of destination bytes per packet
8 Average time per session
9 Number of unique destination IP addresses
10 Number of unique destination ports
11 Number of unique destination IP

addresses divided by total number of sessions
12 Number of unique destination

ports divided by total number of sessions

Table 2: Outgoing network traffic features.

Train Validate Test
Number ofQ samples 4000 2000 5664
Number ofµ samples 10,000 100,000 100,000

λ grid (DLD–SVM/GML/MGML) 0.1, 0.01, 0.001, . . . , 0.0000001
σ2 grid (DLD–SVM/1CLASS–SVM) 0.001, 0.01, 0.05, 0.1, 0.5, 1.0, 5.0, 10.0, 100.0

Table 3: Parameters for cybersecurity experiment.

225

STEINWART, HUSH AND SCOVEL

(i.e. the MGML and GML solutions are identical atρ = 0.05). Except for this case the empirical
risk values for DLD–SVM and MGML are much better than 1CLASS–SVM andGML at nearly
all values ofρ. The performance curves confirm the superiority of DLD–SVM and MGML, but
also reveal differences not easily seen in the empirical risk curves. For example, all four methods
produced some solutions with identical performance estimates for differentvalues ofρ which is
reflected by the fact that the performance curves show fewer points than the corresponding empirical
risk curves.

 0

 0.0005

 0.001

 0.0015

 0.002

 0.0025

 0.003

 0.01 0.1 1 10 100

DLD–SVM
1CLASS–SVM

GML
MGML

ρ

R
(W

,W
′)

(a) Risk curves.

 0.001

 0.01

 1e-06 1e-05 1e-04 0.001 0.01

DLD–SVM
1CLASS–SVM

GML
MGML

volume

al
ar

m
ra

te

(b) Performance curves.

Figure 2: Cybersecurity experiment.

5. Discussion

A review of the literature on anomaly detection suggests that there are many ways to characterize
anomalies (see e.g. Markou and Singh, 2003a,b). In this work we assumedthat anomalies are not
concentrated. This assumption can be specified by choosing a reference measureµwhich determines
a density and a level valueρ. The density then quantifies the degree of concentration and the density
level ρ establishes a threshold on the degree that determines anomalies. Thus,µ andρ play key
roles in thedefinitionof anomalies. In practice the user choosesµ andρ to capture some notion of
anomaly that he deems relevant to the application.

This paper advances the existing state of “density based” anomaly detectionin the following
ways.

• Most existing algorithms make an implicit choice ofµ (usually the Lebesgue measure) whereas
our approach allowsµ to be any measure that defines a density. Therefore we accommodate
a larger class of anomaly detection problems. This flexibility is in particular important when
dealing with e.g. categorical data. In addition, it is the key ingredient when dealing with
hidden classification problems, which we will discuss below.

• Prior to this work there have been no methods known to rigorously estimate the performance
based onunlabeleddata. Consequently, it has been difficult to compare different methods
for anomaly detection in practice. We have introduced an empirical performance measure,

226

A CLASSIFICATION FRAMEWORK FORANOMALY DETECTION

namely the empirical classification risk, that enables such a comparision. In particular, it can
be used to perform a model selection based on cross validation. Furthermore, the infinite
sample version of this empirical performance measure is asymptotically equivalent to the
standard performance measure for the DLD problem and under mild assumptions inequalities
between them have been obtained.

• By interpreting the DLD problem as a binary classification problem we can use well-known
classification algorithms for DLD if we generate artificial samples fromµ. We have demon-
strated this approach which is a rigorous variant of a well-known heuristicfor anomaly de-
tection in the formulation of the DLD-SVM.

These advances have created a situation in which much of the knowledge onclassification can now
be used for anomaly detection. Consequently, we expect substantial advances in anomaly detection
in the future.

Finally let us consider a different learning scenario in which anomaly detection methods are also
commonly employed. In this scenario we are interested in solving a binary classification problem
given only unlabeled data. More precisely, suppose that there is a distribution ν on X ×{−1,1}
and the samples are obtained from themarginal distributionνX on X. Since labels exist but are
hidden from the user we call this ahidden classification problem (HCP). Hidden classification
problems for example occur in network intrusion detection problems where it isimpractical to
obtain labels. Obviously, solving a HCP is intractable if no assumptions are madeon the labeling
process. One such assumption is that one class consists of anomalous, lowly concentrated samples
(e.g. intrusions) while the other class reflects normal behaviour. Making this assumption rigorous
requires the specification of a reference measureµ and a thresholdρ. Interestingly, whenνX is
absolutely continuous3 with respect toν(. |y = 1) solving the DLD problem with

Q := νX

µ := ν(. |y = 1)

ρ := 2ν(X×{1})

gives the Bayes classifier for the binary classification problem associated with ν. Therefore, in
principle the DLD formalism can be used to solve the binary classification problem. In the HCP
however, although information aboutQ = νX is given to us by the samples, we must rely entirely
on first principle knowledge toguess µandρ. Our inability to chooseµ andρ correctly determines
themodel errorthat establishes the limit on how well the classification problem associated withν
can be solved with unlabeled samples. This means for example that when an anomaly detection
method is used to produce a classifierf for a HCP its anomaly detection performanceRP(f) with
P := Q	sµ ands := 1

1+ρ may be very different from its hidden classification performanceRν(f).
In particularRP(f) may be very good, i.e. very close toRP, while Rν(f) may be very poor, i.e. far
aboveRν. Another consequence of the above considerations is that the common practice of mea-
suring the performance of anomaly detection algorithms on (hidden) binary classification problems
is problematic. Indeed, the obtained classification errors depend on the model error and thus they
provide an inadequate description how well the algorithms solve the anomaly detection problem.

3. This assumption is actually superfluous by Remark 11.

227

STEINWART, HUSH AND SCOVEL

Furthermore, since the model error is strongly influenced by the particularHCP it is almost impos-
sible to generalize from the reported results to more general statements on thehidden classification
performance of the considered algorithms.

In conclusion although there are clear similiarities between the use of the DLD formalism for
anomaly detection and its use for the HCP there is also an important difference. In the first case the
specification ofµ andρ determines thedefinitionof anomalies and therefore there is no model error,
whereas in the second case the model error is determined by the choice ofµ andρ.

Acknowledgments

We would like to thank J. Theiler who inspired this work when giving a talk on a recent paper
(Theiler and Cai., 2003).

Appendix A. Regular Conditional Probabilities

In this apendix we recall some basic facts on conditional probabilities and regular conditional prob-
abilities. We begin with

Definition 15 Let (X,A ,P) be a probability space andC ⊂ A a sub-σ-algebra. Furthermore, let
A ∈ A and g: (X,C) → R be P|C -integrable. Then g is called a conditional probability of A with
respect toC if

Z

C
1AdP =

Z

C
gdP

for all C ∈ C . In this case we write P(A|C) := g.

Furthermore we need the notion of regular conditional probabilities. To this end let (X,A)
and(Y,B) be measurable spaces andP be a probability measure on(X×Y,A ⊗B). Denoting the
projection ofX×Y ontoX by πX we writeπ−1

X (A) for the sub-σ-Algebra ofA ⊗B which is induced
by πX. Recall, that this sub-σ-Algebra is generated by the collection of the setsA×Y, A∈ A . For
later purpose, we also notice that this collection is obviously stable against finite intersections.
Finally, PX denotes the marginal distribution ofP onX, i.e.PX(A) = P(π−1

X (A)) for all A∈ A .
Now let us recall the definition of regular conditional probabilities:

Definition 16 A map P(. | .) : B ×X → [0,1] is called aregular conditional probabilityof P if the
following conditions are satisfied:

i) P(. |x) is a probability measure on(Y,B) for all x ∈ X.

ii) x 7→ P(B|x) is A-measurable for all B∈ B.

iii) For all A ∈ A , B∈ B we have

P(A×B) =
Z

A
P(B|x)PX(dx) .

Under certain conditions such regular conditional probabilities exist. To bemore precise, recall
that a topological space is calledPolishif its topology is metrizable by a complete, separable metric.
The following theorem in the book of Dudley (2002, Thm. 10.2.2) gives a sufficient condition for
the existence of a regular conditional probability:

228

A CLASSIFICATION FRAMEWORK FORANOMALY DETECTION

Theorem 17 If Y is a Polish space then a regular conditional probability P(. | .) : B ×X → [0,1]
of P exists.

Regular conditional probabilities play an important role in binary classificationproblems. In-
deed, given a probability measureP on X ×{−1,1} the aim in classification is to approximately
find the set{P(y = 1|x) > 1

2}, where “approximately” is measured by the classification risk.
Let us now recall the connection between conditional probabilities and regular conditional prob-

abilities (see Dudley, 2002, p. 342 and Thm. 10.2.1):

Theorem 18 If a conditional probability P(. | .) : B ×X → [0,1] of P exists then we P-a.s. have

P(B|x) = P
(

X×B|π−1
X (A)

)

(x,y) .

As an immediate consequence of this theorem we can formulate the following “test” for regular
conditional probabilities.

Corollary 19 Let B∈ B and f : X → [0,1] beA-measurable. Then f(x) = P(B|x) PX-a.s. if

Z

A×Y
f ◦πXdP=

Z

A×Y
1X×BdP

for all A ∈ A .

Proof The assertion follows from Theorem 18, the definition of conditional probabilities and the
fact that the collection of the setsA×Y, A∈ A is stable against finite intersections.

Appendix B. Proof of Proposition 9

Proof of Proposition 9 By Proposition 2 we have|2η−1| =
∣

∣

h−ρ
h+ρ

∣

∣ and hence we observe

{

|2η−1| ≤ t
}

=
{

|h−ρ| ≤ (h+ρ)t
}

=
{

− (h+ρ)t ≤ h−ρ ≤ (h+ρ)t
}

=
{1− t

1+ t
ρ ≤ h≤

1+ t
1− t

ρ
}

,

whenever 0< t < 1.
Now let us first assume thatP has Tsybakov exponentq > 0 with some constantC > 0. Then

using
{

|h−ρ| ≤ tρ
}

=
{

(1− t)ρ ≤ h≤ (1+ t)ρ
}

⊂
{1− t

1+ t
ρ ≤ h≤

1+ t
1− t

ρ
}

we find
PX

({

|h−ρ| ≤ tρ
})

≤ PX
({

|2η−1| ≤ t
})

≤ Ctq ,

which byPX = 1
ρ+1Q+ ρ

ρ+1µ shows thath hasρ-exponentq .

229

STEINWART, HUSH AND SCOVEL

Now let us conversely assume thath hasρ-exponentq with some constantC > 0. Then for
0 < t < 1 we have

Q
({

|h−ρ| ≤ t
})

=
Z

X
1{|h−ρ|≤t}hdµ

=
Z

{h≤1+ρ}
1{|h−ρ|≤t}hdµ

≤ (1+ρ)
Z

{h≤1+ρ}
1{|h−ρ|≤t}dµ

= (1+ρ)µ
({

|h−ρ| ≤ t
})

.

UsingPX = 1
ρ+1Q+ ρ

ρ+1µ we hence find

PX
({

|h−ρ| ≤ t
})

≤ 2µ
({

|h−ρ| ≤ t
})

≤ 2Ctq

for all sufficiently smallt ∈ (0,1). Let us now definetl := 2t
1+t andtr := 2t

1−t . This immediately gives
1− tl = 1−t

1+t and 1+ tr = 1+t
1−t . Furthermore, we obviously also havetl ≤ tr . Therefore we find

{1− t
1+ t

ρ ≤ h≤
1+ t
1− t

ρ
}

=
{

(1− tl)ρ ≤ h≤ (1+ tr)ρ
}

⊂
{

(1− tr)ρ ≤ h≤ (1+ tr)ρ
}

=
{

|h−ρ| ≤ trρ
}

.

Hence for all sufficiently smallt > 0 with t < 1
1+2ρ , i.e. trρ < 1, we obtain

PX
({

|2η−1| ≤ t
})

≤ PX
({

|h−ρ| ≤ trρ
})

≤ 2C(trρ)q ≤ 2C(1+2ρ)qtq .

From this we easily get the assertion.

References

S. Ben-David and M. Lindenbaum. Learning distributions by their density levels: a paradigm for
learning without a teacher.J. Comput. System Sci., 55:171–182, 1997.

C. Campbell and K. P. Bennett. A linear programming approach to novelty detection. In T. K. Leen,
T. G. Dietterich, and V. Tresp, editors,Advances in Neural Information Processing Systems 13,
pages 395–401. MIT Press, 2001.

C.-C. Chang and C.-J. Lin. LIBSVM: a library for support vector machines, 2004.

A. Cuevas, M. Febrero, and R. Fraiman. Cluster analysis: a further approach based on density
estimation.Computat. Statist. Data Anal., 36:441–459, 2001.

A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood from incomplete data via the
EM algorithm.J. Royal Statist. Soc. Ser. B (methodology), 39:1–38, 1977.

230

A CLASSIFICATION FRAMEWORK FORANOMALY DETECTION

M. J. Desforges, P. J. Jacob, and J. E. Cooper. Applications of probability density estimation to the
detection of abnormal conditions in engineering.Proceedings of the Institution of Mechanical
Engineers, Part C—Mechanical engineering science, 212:687–703, 1998.

R. O. Duda, P. E. Hart, and D. G. Stork.Pattern Classification. Wiley, New York, 2000.

R. M. Dudley.Real Analysis and Probability. Cambridge University Press, 2002.

W. Fan, M. Miller, S. J. Stolfo, W. Lee, and P. K. Chan. Using artificial anomalies to detect unknown
and known network intrusions. InIEEE International Conference on Data Mining (ICDM’01),
pages 123–130. IEEE Computer Society, 2001.

F. Gonźalez and D. Dagupta. Anomaly detection using real-valued negative selection. Genetic
Programming and Evolvable Machines, 4:383–403, 2003.

J. A. Hartigan.Clustering Algorithms. Wiley, New York, 1975.

J. A. Hartigan. Estimation of a convex density contour in 2 dimensions.J. Amer. Statist. Assoc., 82:
267–270, 1987.

P. Hayton, B. Scḧolkopf, L. Tarassenko, and P. Anuzis. Support vector novelty detection applied to
jet engine vibration spectra. In T. K. Leen, T. G. Dietterich, and V. Tresp, editors,Advances in
Neural Information Processing Systems 13, pages 946–952. MIT Press, 2001.

S. P. King, D. M. King, P. Anuzis, K. Astley, L. Tarassenko, P. Hayton, and S. Utete. The use of nov-
elty detection techniques for monitoring high-integrity plant. InIEEE International Conference
on Control Applications, pages 221–226. IEEE Computer Society, 2002.

E. Mammen and A. Tsybakov. Smooth discrimination analysis.Ann. Statist., 27:1808–1829, 1999.

C. Manikopoulos and S. Papavassiliou. Network intrusion and fault detection: a statistical anomaly
approach.IEEE Communications Magazine, 40:76–82, 2002.

M. Markou and S. Singh. Novelty detection: a review—Part 1: statistical approaches. Signal
Processing, 83:2481–2497, 2003a.

M. Markou and S. Singh. Novelty detection: a review—Part 2: neural network based approaches.
Signal Processing, 83:2499–2521, 2003b.

D. W. Müller and G. Sawitzki. Excess mass estimates and tests for multimodality.J. Amer. Statist.
Assoc., 86:738–746, 1991.

A. Nairac, N. Townsend, R. Carr, S. King, P. Cowley, and L. Tarassenko. A system for the analysis
of jet engine vibration data.Integrated Computer-Aided Engineering, 6:53–56, 1999.

W. Polonik. Measuring mass concentrations and estimating density contour clusters—an excess
mass aproach.Ann. Statist., 23:855–881, 1995.

B. D. Ripley. Pattern recognition and neural networks. Cambridge University Press, 1996.

231

STEINWART, HUSH AND SCOVEL

G. Sawitzki. The excess mass approach and the analysis of multi-modality. In W.Gaul and
D. Pfeifer, editors,From data to knowledge: Theoretical and practical aspects of classification,
data analysis and knowledge organization, Proc. 18th Annual Conference of the GfKl, pages
203–211. Springer, 1996.

B. Scḧolkopf, J. C. Platt, J. Shawe-Taylor, and A. J. Smola. Estimating the support of a high-
dimensional distribution.Neural Computation, 13:1443–1471, 2001.

B. Scḧolkopf and A. J. Smola.Learning with Kernels. MIT Press, 2002.

I. Steinwart. On the influence of the kernel on the consistency of support vector machines.J. Mach.
Learn. Res., 2:67–93, 2001.

I. Steinwart. Consistency of support vector machines and other regularized kernel machines.IEEE
Trans. Inform. Theory, 51:128–142, 2005.

I. Steinwart and C. Scovel. Fast rates for support vector machines using Gaussian kernels.Ann.
Statist., submitted, 2004.http://www.c3.lanl.gov/˜ingo/publications/ann-04a.p df .

L. Tarassenko, P. Hayton, N. Cerneaz, and M. Brady. Novelty detection for the identification of
masses in mammograms. In4th International Conference on Artificial Neural Networks, pages
442–447, 1995.

J. Theiler and D. M. Cai. Resampling approach for anomaly detection in multispectral images. In
Proceedings of the SPIE 5093, pages 230–240, 2003.

A. B. Tsybakov. On nonparametric estimation of density level sets.Ann. Statist., 25:948–969, 1997.

A. B. Tsybakov. Optimal aggregation of classifiers in statistical learning.Ann. Statist., 32:135–166,
2004.

D. Y. Yeung and C. Chow. Parzen-window network intrusion detectors.In Proceedings of the
16th International Conference on Pattern Recognition (ICPR’02) Vol. 4, pages 385–388. IEEE
Computer Society, 2002.

H. Yu, J. Hen, and K. C. Chang. PEBL: Web page classification without negative examples.IEEE.
Trans. on Knowledge and Data Engineering, 16:70–81, 2004.

232

Journal of Machine Learning Research 6 (2005) 233–272 Submitted 3/04; Revised 12/04; Published 3/05

Denoising Source Separation

Jaakko Särelä JAAKKO .SARELA@HUT.FI

Neural Networks Research Centre
Helsinki University of Technology
P. O. Box 5400
FI-02015 HUT, Espoo, Finland

Harri Valpola HARRI.VALPOLA @HUT.FI

Laboratory of Computational Engineering
Helsinki University of Technology
P. O. Box 9203
FI-02015 HUT, Espoo, Finland

Editor: Michael Jordan

Abstract
A new algorithmic framework called denoising source separation (DSS) is introduced. The

main benefit of this framework is that it allows for the easy development of new source separation
algorithms which can be optimised for specific problems. In this framework, source separation
algorithms are constructed around denoising procedures. The resulting algorithms can range from
almost blind to highly specialised source separation algorithms. Both simple linear and more com-
plex nonlinear or adaptive denoising schemes are considered. Some existing independent compo-
nent analysis algorithms are reinterpreted within the DSS framework and new, robust blind source
separation algorithms are suggested. The framework is derived as a one-unit equivalent to an EM
algorithm for source separation. However, in the DSS framework it is easy to utilise various kinds
of denoising procedures which need not be based on generative models. In the experimental sec-
tion, various DSS schemes are applied extensively to artificial data, to real magnetoencephalograms
and to simulated CDMA mobile network signals. Finally, various extensions to the proposed DSS
algorithms are considered. These include nonlinear observation mappings, hierarchical models and
over-complete, nonorthogonal feature spaces. With these extensions, DSS appears to have rele-
vance to many existing models of neural information processing.
Keywords: blind source separation, BSS, prior information, denoising, denoising source separa-
tion, DSS, independent component analysis, ICA, magnetoencephalograms, MEG, CDMA

1. Introduction

In recent years, source separation of linearly mixed signals has attracted a wide range of researchers.
The focus of this research has been on developing algorithms that make minimal assumptions about
the underlying process, thus approaching blind source separation (BSS). Independent component
analysis (ICA) (Hyv̈arinen et al., 2001b) clearly follows this tradition. This blind approach gives
the algorithms a wide range of possible applications. ICA has been a valuabletool, in particular,
in testing certain hypotheses in magnetoencephalogram (MEG) and electroencephalogram (EEG)
analysis (see Viǵario et al., 2000).

c©2005 Jaakko S̈arel̈a and Harri Valpola.

SÄRELÄ AND VALPOLA

Nearly always, however, there is further information available in the experimental setup, other
design specifications or from accumulated knowledge due to scientific research. For example in
biomedical signal analysis (see Gazzaniga, 2000; Rangayyan, 2002), careful design of experimental
setups provides us with presumed signal characteristics. In man-made technology, such as a CDMA
mobile system (see Viterbi, 1995), the transmitted signals are even more restricted.

The Bayesian approach provides a sound framework for including prior information into in-
ferences about the signals. Recently, several Bayesian ICA algorithmshave been suggested (see
Knuth, 1998; Attias, 1999; Lappalainen, 1999; Miskin and MacKay, 2001; Choudrey and Roberts,
2001; d. F. R. Højen-Sørensen et al., 2002; Chan et al., 2003). Theyoffer accurate estimations
for the linear model parameters. For instance, universal density approximation using a mixture of
Gaussians (MoG) may be used for the source distributions. Furthermore,hierarchical models can be
used for incorporating complex prior information (see Valpola et al., 2001). However, the Bayesian
approach does not always result in simple or computationally efficient algorithms.

FastICA (Hyv̈arinen, 1999) provides a set of algorithms for performing ICA based onoptimis-
ing easily calculable contrast functions. The algorithms are fast but oftenmore accurate results can
be achieved by computationally more demanding algorithms (Giannakopoulos etal., 1999), for ex-
ample by the Bayesian ICA algorithms. Valpola and Pajunen (2000) analysedthe factors behind the
speed of FastICA. The analysis suggested that the nonlinearity used in FastICA can be interpreted
as denoising and taking Bayesian noise filtering as the nonlinearity resulted infast Bayesian ICA.

Denoising corresponds to procedural knowledge while in most approaches to source separation,
the algorithms are derived from explicit objective functions or generative models. This corresponds
to declarative knowledge. Algorithms are procedural, however. Thus declarative knowledge has to
be translated into procedural form, which may result in complex and computationally demanding
algorithms.

In this paper, we generalise the denoising interpretation of Valpola and Pajunen (2000) and
introduce a source separation framework called denoising source separation (DSS). We show that
it is actually possible to construct the source separation algorithms around the denoising methods
themselves. Fast and accurate denoising will result in a fast and accurate separation algorithm.
We suggest that various kinds of prior knowledge can be easily formulated in terms of denoising.
In some cases a denoising scheme has been used to post-process the results after separation (see
Vigneron et al., 2003), but in the DSS framework this denoising can be used for the source separation
itself.

The paper is organised as follows: After setting the general problem of linear source separation
in Sec. 2, we review an expectation-maximisation (EM) algorithm as a solution to agenerative linear
model and a one-unit version of it (Sec. 2.1). We interpret the nonlinearity as denoising and call this
one-unit algorithm DSS. Equivalence of the linear DSS and a power methodis shown in Sec. 2.2.
In Sec. 2.3, the convergence of the DSS algorithms is analysed. The linearDSS is analysed via the
power method. To shed light on the convergence of the nonlinear DSS, wedefine local eigenvalues,
giving analysis similar to the linear case. The applicability of two common extensions of the power
method—deflation and spectral shift—are discussed in the rest of the section. In Sec. 3, we suggest
an approximation for an objective function that is maximised by the DSS algorithms. We then
introduce some practical denoising functions in Sec. 4. These denoising functions are extensively
applied to artificial mixtures (Sec. 5.1) and to MEG recordings (Secs. 5.2 and 5.3). We also apply a
DSS algorithm to bit-stream recovery in a simulated CDMA network (Sec. 5.4).Finally, in Sec. 6,

234

DENOISING SOURCESEPARATION

we discuss extensions to the DSS framework and their connections to models of neural information
processing.

2. Source Separation by Denoising

Consider a linear instantaneous mixing of sources:

X = AS+ν , (1)

where

X =











x1

x2
...

xM











, S=











s1

s2
...

sN











.

The source matrixS consists ofN sources. Each individual sourcesi consists ofT samples, that
is, si = [si(1) . . . si(t) . . . si(T)]. Note that in order to simplify the notation throughout the paper,
we have defined each source to be a row vector instead of the more traditional column vector.
The symbolt often stands for time, but other possibilities include,e.g., space. For the rest of
the paper, we refer tot as time, for convenience. The observationsX consist ofM mixtures of
the sources, that is,xi = [xi(1) . . . xi(t) . . . xi(T)]. Usually it is assumed thatM ≥ N. The linear
mappingA = [a1a2 · · · aN] consists of the mixing vectorsai = [a1i a2i . . . aMi]

T , and is usually called
the mixing matrix. In the model, there is some Gaussian noiseν, too. The sources, the noise and
hence also the mixtures can be assumed to have zero mean without losing generality because the
mean can always be removed from the data.

If the sources are assumed i.i.d. Gaussian, this is a general, linear factor analysis model with
rotational invariance. There are several ways to fix the rotation,i.e., to separate the original sources
S. Some approaches assume structure for the mixing matrix. If no structure is assumed, the solution
to this problem is usually called blind source separation (BSS). Note that this approach is not really
blind, since one always needs some information to be able to fix the rotation. One such piece of
information is the non-Gaussianity of the sources, which leads to the recentlypopular ICA methods
(see Hyv̈arinen et al., 2001b). The temporal structure of the sources may be usedtoo, as in Tong
et al. (1991); Molgedey and Schuster (1994); Belouchrani et al. (1997); Ziehe and M̈uller (1998);
Pham and Cardoso (2001).

The rest of this section is organised as follows: first we review an EM algorithm for source
separation and a one-unit version derived from it in Sec. 2.1. The E- and M-steps have natural
interpretations as denoising of the sources and re-estimation of the mixing vector, respectively, and
the derived algorithm provides the starting point for the DSS framework. In Sec. 2.2, we show that
a Gaussian source model leads to linear denoising. Such a DSS is equivalent to PCA of suitably
filtered data, implemented by the classical power method. The convergence of the DSS algorithms
are discussed in Sec. 2.3. For the linear DSS algorithms, the well-known convergence results of the
power method are used. Furthermore, the same results may be exploited for the nonlinear case by
defining local eigenvalues. They play a similar role as the (global) eigenvalues in the linear case.
Deflation and symmetric method for extracting several sources are reviewed in Sec. 2.4. Sec. 2.5
discusses a speedup technique called spectral shift.

235

SÄRELÄ AND VALPOLA

2.1 One-Unit Algorithm for Source Separation

The EM algorithm (Dempster et al., 1977) is a method for performing maximum likelihood esti-
mation when part of the data is missing. One way to perform EM estimation in the case of linear
models is to assume that the missing data consists of the sources and that the mixingmatrix needs to
be estimated. In the following, we review one such EM algorithm by Bermond and Cardoso (1999)
and a derivation of a one-unit version of it by Hyvärinen et al. (2001b).

The algorithm proceeds by alternating two steps: 1) E-step and 2) M-step.In the E-step, the
posterior distribution for the sources is calculated based on the known dataand the current estimate
of the mixing matrix using Bayes’ theorem. In the M-step, the mixing matrix is fitted to thenew
source estimates. In other words:

E−step :computeq(S) = p(S|A,X) = p(X|A,S)p(S)/p(X|A) (2)

M −step :findAnew = argmax
A

Eq(S)[logp(S,X|A)] = CXSC−1
SS . (3)

The covariances are computed as expectations overq(S):

CXS =
1
T

T

∑
t=1

E[x(t)s(t)T |X,A] =
1
T

T

∑
t=1

x(t)E[s(t)T |X,A] (4)

CSS=
1
T

T

∑
t=1

E[s(t)s(t)T |X,A], (5)

wherex(t) = [x1(t) · · · xi(t) · · · xM(t)]T ands(t) = [s1(t) · · · sj(t) · · · sN(t)]T are used to denote the
values of all of the mixtures and the sources at the time instancet, respectively.

Many source separation algorithms preprocess the data by normalising the covariance to the unit
matrix, i.e., CXX = XXT/T = I . This is referred to as sphering or whitening and its result is that any
signal obtained by projecting the sphered data on any unit vector has zero mean and unit variance.
Furthermore, orthogonal projections yield uncorrelated signals. Sphering is often combined with
reducing the dimension of the data by selecting a principal subspace which contains most of the
energy of the original data.

Because of the indeterminacy of scale in linear models, it is necessary to fix either the variance
of the sources or the norm of the mixing matrix. It is usual to fix the variance of the sources to unity:
SST/T = I . Then, assuming that the linear independent-source model holds and there is an infinite
amount of data, with Gaussian noise, the covariance of the sphered data isASSTAT/T + Σν =
AAT + Σν = I , i.e., a unit matrix because of the sphering. If the noise variance is proportional
to the covariance of the data that is due to the sources,i.e., Σν ∝ AAT , it holds thatAAT ∝ I ,
which means that the mixing matrixA is orthogonal for sphered data. Furthermore, the likelihood
L(S) = p(X|A,S) of S can be factorised:

L(S) = C∏
i

Li(si) , (6)

where the constantC is independent ofS. The constantC reflects the fact that likelihoods do not
normalise the same way as probability densities. The above factorisation still becomes unique if
Li(si) are appropriately normalised. In the case of a linear model with Gaussian noise, a convenient

236

DENOISING SOURCESEPARATION

normalisation is to require the maximum ofLi(si) to equal one. The terms can then be shown to
equal

Li(si) = exp

(

−1
2
(si −a−1

i X)Σ−1
s,ν (si −a−1

i X)T
)

, (7)

wherea−1
i is theith row vector ofA−1 andΣs,ν ∝ I is a diagonal matrix with the diagonal elements

equallingσ2
ν/(aT

i ai).
Since the priorp(S) factorises, too, the sources are independent in the posteriorq(S) and the

covarianceCSS is diagonal. This means thatC−1
SS reduces to scaling of individual sources in the

M-step (3).
Noisy estimates of the sources can be recovered byS= A−1X which is the mode of the likeli-

hood. SinceA−1 ∝ AT because of the sphering and the posteriorq(S) depends on the data only
through the likelihoodL(S), the expectation E[S|X,A] is a function ofATX, or for individual
sources, E[si |X,A] = f(aT

i X). In the case of Gaussian source modelp(S), this function is linear
(further discussion in Sec. 2.2). The expectation can be computed exactlyin some other cases, too,
e.g., when the source distributions are mixtures of Gaussians (MoG).1 In other cases the expectation
can be approximated for instance by Eq(S)[S] = S+ ε ∂ logp(S)/∂S, where the constantε depends
on the noise variance.

In the EM algorithm, all the components are estimated simultaneously. However, pre-sphering
renders it possible to extract the sources one-by-one (see Hyvärinen et al., 2001b, for a similarly
derived algorithm):

s= wTX (8)

s+ = f(s) (9)

w+ = Xs+T (10)

wnew =
w+

||w+|| . (11)

In this algorithm, the first step (8) calculates the noisy estimate of one source and corresponds to the
mode of the likelihood. It is a convention to denote the mixing vectora, which in this case is also
the separating vector, byw. The second step (9) corresponds to the expectation ofs overq(S) and
can be seen as denoising based on the model of the sources. Note thatf(s) is a row-vector-valued
function of a row-vector argument. The re-estimation step (10) calculates the new ML estimate of
the mixing vector and the M-step (3) is completed by normalisation (11). This prevents the norm
of the mixing vector from diverging. Although this algorithm separates only one component, it has
been shown that the original sources correspond to stable fixed points of the algorithm under quite
general conditions (see Theorem 8.1, Hyvärinen et al., 2001b), provided that the independent-source
model holds.

In this paper, we interpret the step (9) as denoising. While this interpretationis not novel, it
allows for the development of new algorithms that are not derived starting from generative mod-
els. We call all of the algorithms where Eq. (9) can be interpreted as denoising and that have the
form (8)–(11) DSS algorithms.

1. MoG as the source distributions would lead to ICA.

237

SÄRELÄ AND VALPOLA

2.2 Linear DSS

In this section, we show that separation of Gaussian sources using the DSS algorithm results in
linear denoising. This is called linear DSS and it converges to the eigenvector of a data matrix that
has been suitably filtered. The algorithm is equivalent to the classical power method applied to the
covariance of the filtered data.

First, let us assume the Gaussian source to have an autocovariance matrixΣss. The prior proba-
bility density function for a Gaussian source is given by

p(s) =
1

√

|2πΣss|
exp

(

−1
2

sΣ−1
ss sT

)

,

whereΣss is the autocovariance matrix of the source and|Σss| is its determinant. Furthermore, as
noted in Eq. (7), the likelihoodL(s) is an unnormalised Gaussian with a diagonal covarianceΣs,ν:

L(s) = exp

(

−1
2
(s−wTX)Σ−1

s,ν(s−wTX)T
)

.

After some algebraic manipulation, the Gaussian posterior is reached:

q(s) =
1

√

|2πΣ|
exp

(

−1
2
(s−µ)Σ−1(s−µ)T

)

,

with meanµ = wTX
(

I +σ2
νΣ−1

ss

)−1
, and varianceΣ−1 = 1

σ2
ν
+ Σ−1

ss . Hence, the denoising step (9)
becomes

s+ = f(s) = s
(

I +σ2
νΣ−1

ss

)−1
= sD, (12)

which corresponds to linear denoising. The denoising step in the DSS algorithm s+ = f(s) is thus
equivalent to multiplying the current source estimateswith a constant matrixD.

To gain more intuition about the denoising, it is useful to consider the eigenvalue decomposition
of D. It turns out thatD andΣss have the same eigenvectors and the eigenvalue decompositions are

Σss= VΛΣVT (13)

D = VΛDVT , (14)

whereV is an orthonormal matrix with the eigenvectors as columns andΛ is a diagonal matrix with
the corresponding eigenvalues on the diagonal. The eigenvalues are related as

λD,i =
1

1+ σ2
ν

λΣ,i

.

Note thatλD,i is a monotonically increasing function ofλΣ,i . Those directions ofs are suppressed
the most which have the smallest variances according to the prior model ofs.

Now, let us pack the different phases of the algorithm (8), (12), (10)together:

w+ = Xs+T = XDsT = XDXTw .

The transpose was dropped fromD since it is symmetric. By writingΛD = Λ
1
2
DΛ

1
2T
D = Λ∗Λ∗T and

addingVTV = I in the middle, we may split the denoising matrix into two parts:

D = D∗D∗T ,

238

DENOISING SOURCESEPARATION

whereD∗ = VΛ∗VT . Further, let us denoteZ = XD∗. This brings the DSS algorithm for estimating
one separating vector into the form

w+ = ZZTw . (15)

This is the classicalpower method(see Wilkinson, 1965) implementation for principal component
analysis (PCA). Note thatZZT is the unnormalised covariance matrix. The algorithm converges to
thefixed pointw∗ satisfying

λw∗ = ZZT/T w∗ , (16)

whereλ corresponds to the principal eigenvalue of the covariance matrixZZT/T and w∗ is the
principal direction. The asterisk is used to stress the fact that the estimate is at the fixed point.

The operation of the linear DSS algorithm is depicted in Fig. 1. Figure 1a shows two sources
that have been mixed into Fig. 1b. The mixing vectors have been plotted by the dashed lines. The
curve shows the standard deviation of the data projected in different directions. It is evident that the
principal eigenvector (solid line) does not separate any of the sources. For that two things would
be needed: 1) The mixing vectors should be orthogonal. 2) The eigenvalues should differ. After
sphering in Fig. 1c, the basis and sphered mixing vectors are roughly orthogonal. However, any
unit-length projection yields unit variance, and PCA still cannot separate the sources. The first
source has a somewhat slower temporal evolution and low-pass filtering retains more of that signal,
giving it a larger eigenvalue. This is evident in Fig. 1d which shows the denoised data and the first
eigenvector, which is now aligned with the (sphered) mixing vector of the slowsource. The sources
can then be recovered bys= wTX.

There are other algorithms for separating Gaussian sources (Tong et al., 1991; Molgedey and
Schuster, 1994; Belouchrani et al., 1997; Ziehe and Müller, 1998) and, although functionally dif-
ferent, they yield similar results for the example given above. All these algorithms assume that the
autocovariance structure of the sources is time-invariant corresponding to Toeplitz autocovariance
and filtering matricesΣssandD. In our analysis,Σsscan be any covariance matrix, and only one out
of four examples in Sec. 4.1 has the Toeplitz form.

2.3 Convergence Analysis

In this section, we analyse the convergence properties of DSS algorithms.In the case of linear de-
noising, we will refer to well-known convergence properties of the power method (e.g., Wilkinson,
1965). The analysis extends to nonlinear denoising under the assumptionsthat the mixing model
holds and there is an infinite amount of data.

Linear DSS is equivalent to the power method whose convergence is governed by the eigenval-
uesλi corresponding to the fixed pointsw∗

i . If some of the eigenvalues are equal (λi = λ j , i 6= j),
the fixed points are degenerate and there are subspaces of fixed points. In any case, it is possible to
choose an orthonormal basis spanned byw∗

i . This means that anyw can be represented as

w = ∑
i

ciw∗
i , (17)

whereci = wTw∗
i . With a linear denoising functionf lin , the unnormalised estimatew+ is

w+ = XfT
lin

(

∑
i

cis∗i

)

= X ∑
i

ci fT
lin(s∗i) = ∑

i

ciXfT
lin(s∗i) = T ∑

i

ciλiw∗
i , (18)

239

SÄRELÄ AND VALPOLA

s 1
s 2

−4 −2 0 2 4
−4

−3

−2

−1

0

1

2

3

4

x
1

x 2

(a) (b)

−4 −2 0 2 4
−4

−3

−2

−1

0

1

2

3

4

y
1

y 2

−4 −2 0 2 4
−4

−3

−2

−1

0

1

2

3

4

z
1

z 2

(c) (d)

Figure 1: (a) Original sources, (b) scatter-plot of the mixtures, (c) sphered dataX and (d) denoised
dataZ = XD∗. The dashed lines depict the mixing vectors and the solid lines the largest
eigenvector. The curves denote the standard deviation of the projection of the data in
different directions.

240

DENOISING SOURCESEPARATION

whereλi is the ith eigenvalue corresponding tow∗
i ands∗i = w∗T

i X. The normalisation step (11)
changes the contributions of the fixed points by equal fractions. Aftern iterations, the relative
contributions of the fixed points thus change fromci

c j
into ciλn

i
c j λn

j
.

If there are two fixed pointsw∗
i andw∗

j that have identical eigenvaluesλi = λ j , the linear DSS
cannot separate between the two. This means, for instance, that it is not possible to separate Gaus-
sian sources that have identical autocovariance matrices,i.e., Σsisi = Σsj sj or in other words sources
whose time structures do not differ. Otherwise, as long asci 6= 0, the algorithm converges globally
to the source with the largest eigenvalue.

The speed of convergence in the power method (hence in linear DSS) depends linearly on the
log-ratio of the largest (absolute) eigenvalues log|λ1|/|λ2|, where|λ1| ≥ |λ2| ≥ |λi |, i = 3, . . . ,N.
Note that absolute values of the eigenvalues have been used. While the eigenvalues are usually
positive, there are cases where negative eigenvalues may exist, for instance in the case of complex
data or when using the so-calledspectral shift, which is discussed in Sec. 2.5.

The above analysis for linear denoising functions makes no assumptions about the data-generating
process. As such it does not extend to nonlinear denoising functions because there can be more or
less fixed points than the dimensionality of the data, and the fixed pointsw∗

i are not, in general,
orthogonal. We shall therefore assume that the data are generated by independent sources by the
model (1) and the assumptions discussed in Sec. 2.1 hold,i.e., the mixing vectors are orthogonal
after sphering. Under these assumptions, the orthonormal basis spanned by the mixing vectors
corresponds to fixed points of the DSS algorithm. This holds because fromthe independence of
different sourcessi it follows that

lim
T→∞

1
T

T

∑
t=1

sj(t) ft(si) = 0 (19)

for i 6= j.
In the linear power method, eigenvaluesλi govern the rate of relative changes of the contribu-

tions of individual basis vectors in the estimate. We shall definelocal eigenvaluesλi(s) which play
similar roles in nonlinear DSS. Unlike the constant eigenvaluesλi , the local eigenvalues have dif-
ferent values depending on the current source estimate. The formal definition is as follows. Assume
that the current weight vector and the subsequent unnormalised new weight vector are

w = ∑
i

ci(s)w∗
i (20)

w+ = ∑
i

γi(s)w∗
i . (21)

The local eigenvalue is defined to be the relative change in the contribution:

γi(s) = Tci(s)λi(s) ⇔ λi(s) =
γi(s)

Tci(s)
. (22)

The idea of the DSS framework is that the user can tailor the denoising function to the task at hand.
The denoising can but need not be based on the E-step (2) derived from a generative model. The
purpose of defining the local eigenvalues is to draw attention to the factors influencing separation
quality and convergence speed.

The first thing to consider is whether the algorithm converges at all. It is possible to view the
nonlinear denoising as linear denoising which is constantly adapted to the source estimate. This

241

SÄRELÄ AND VALPOLA

means that different sources can have locally the largest eigenvalue. If the adaptation is consistent,
i.e., λi(s) grows monotonically withci , all stable fixed points correspond to the original sources. In
general, the best separation quality and the fastest convergence is achieved whenλi(s) is very large
compared to allλ j(s) with j 6= i in the vicinity ofs∗i .

Sometimes it may be sufficient to separate a signal subspace. Then it is enough for the denoising
function to make the eigenvalues corresponding to this subspace large compared to the rest but the
eigenvalues do not need to differ within the subspace.

If the mixture model (1) holds and there is an infinite amount of data, the sources can usually
be separated even in the linear case because minute differences in the eigenvalues of the sources are
sufficient for separation. In practice, the separation is based on a finitenumber of samples and the
ICA model only holds approximately. Conceptually, we can think that there are true eigenvalues and
mixing vectors but the finite sample size introduces noise to the eigenvalues andleakage between
mixing vectors. In practice the separation quality is therefore much better if thelocal eigenval-
ues differ significantly around the fixed points and this is often easiest to achieve with nonlinear
denoising which utilises a lot of prior information.

2.4 Deflation

The classical power method has two common extensions: deflation and spectral shift. They are
readily available for the linear DSS since it is equivalent to the power method applied to filtered
data via Eq. (2.2). It is also relatively straightforward to apply them in the nonlinear case.

Linear DSS algorithms converge globally to the source whose eigenvalue has the largest magni-
tude. Nonlinear DSS algorithms may have several fixed points but even thenit is useful to guarantee
that the algorithm converges to a source estimate which has not been extracted yet. The deflation
method is a procedure which allows one to estimate several sources by iteratively applying the DSS
algorithm several times. The convergence to previously extracted sources is prevented by making
their eigenvalues zero:worth = w−AATw (Luenberger, 1969), whereA now contains the already
estimated mixing vectors.

Note that in this deflation scheme, it is possible to use different kinds of denoising procedures
when the sources differ in characteristics. Also, if more than one sourceis estimated simultaneously,
the symmetric orthogonalisation methods proposed for symmetric FastICA (Hyvärinen, 1999) can
be used. It should be noted, however, that such symmetric orthogonalisation cannot separate sources
with linear denoising where the eigenvalues of the sources are globally constant.

2.5 Spectral Shift

As discussed in Sec. 2.2, the matrix multiplication (15) in the power method does not promote the
largest eigenvalue effectively compared to the second largest eigenvalue if they have comparable
values. The convergence speed in such cases can be increased by so-called spectral shift2 (Wilkin-
son, 1965) which modifies the eigenvalues without changing the fixed points. At the fixed point of
the DSS algorithm,

λw∗ = XfT(s∗)/T . (23)

2. The set of the eigenvalues is often called the eigenvalue spectrum.

242

DENOISING SOURCESEPARATION

If the denoising function is multiplied by a scalar, the convergence of the algorithm does not change
in any way because the scaling will be overruled by the normalisation step (11). All eigenvalues
will be scaled but their ratios, which are what count in convergence, are not affected.

Adding a multiple ofs into f(s) does not affect the fixed points becauseXsT ∝ w. However the
ratios of the eigenvalues get affected and hence the convergence speed. In summary,f(s) can be
replaced by

α(s)[f(s)+β(s)s] , (24)

whereα(s) andβ(s) are scalars. The multiplierα(s) is overruled by the normalisation step (11) and
has no effect on the algorithm. The termβ(s)s is turned intoTβ(s)w in the re-estimation step (8)
and does affect the convergence speed but not the fixed points (however, it can turn a stable fixed
point unstable or vice versa). This is because all eigenvalues are shifted by β(s):

X[f(s∗)+β(s∗)s∗]T/T = λw∗ +β(s∗)w∗ = [λ+β(s∗)]w∗ .

The spectral shift usingβ(s) modifies the ratios of the eigenvalues and the ratio of the two largest
eigenvalues3 becomes|[λ1 + β(s)]/[λ2 + β(s)]| > |λ1/λ2|, provided thatβ(s) is negative but not
much smaller than−λ2. This procedure can greatly accelerate convergence.

For very negativeβ(s), some eigenvalues will become negative. In fact, ifβ(s) is small enough,
the absolute value of the originally smallest eigenvalue will exceed that of the originally largest
eigenvalue. Iterations of linear DSS will then minimise the eigenvalue rather thanmaximise it.

We suggest that it is often reasonable to shift the eigenvalue corresponding to the Gaussian
signalν to zero. Some eigenvalues may then become negative and the algorithms can converge
to fixed points corresponding to these eigenvalues rather than the positiveones. In many cases,
this is perfectly acceptable because, as will be further discussed in Sec.3.3, any deviation from
the Gaussian eigenvalue is indicative of signal. A side effect of a negative eigenvalue is that the
estimatew changes its sign at each iteration. This is not a problem but needs to be kept in mind
when determining the convergence.

Since the convergence of the nonlinear DSS is governed by local eigenvalues, the spectral shift
needs to be adapted to the changing local eigenvalues to achieve optimal convergence speed. In
practice, the eigenvalueλν of a Gaussian signal can be estimated by linearisingf(s) around the
current source estimates:

f(s+∆s) ≈ f(s)+∆sJ(s) (25)

λν(s) ≈
f(s+ εν)− f(s)

ε
νT/T ≈ ενJ(s)

ε
νT/T = νJ(s)νT/T (26)

β(s) = E[−λν(s)] ≈− trJ(s)/T (27)

The last step follows from the fact that the elements ofν are mutually uncorrelated and have zero
mean and unit variance. HereJ(s) denotes the Jacobian matrix off(s) computed ats. For lin-
ear denoisingJ(s) = D and henceβ does not depend ons. If denoising is instantaneous,i.e.,
f(s) = [f1(s(1)) f2(s(2)) . . .], the shift can be written asβ(s) = −∑t f ′t (s(t))/T. This is the spectral
shift used in FastICA (Hyv̈arinen, 1999), but it has been justified as an approximation to Newton’s
method and our analysis thus provides a novel interpretation.

3. Since the denoising operation presumably preserves some of the signal and noise, it is reasonable to assume that all
eigenvalues are originally positive.

243

SÄRELÄ AND VALPOLA

Sometimes the spectral shift turns out to be either too modest or too strong, leading to slow
convergence or lack of convergence, respectively. For this reason, we suggest a simple stabilisation
rule, henceforth called 179-rule: instead of updatingw into wnew defined by Eq. (11), it is updated
into

wadapted= orth(w+ γ∆w) (28)

∆w = wnew−w , (29)

whereγ is the step size and the orthogonalisation has been added in case several sources are to be
extracted. Originallyγ = 1, but if the consecutive steps are taken in nearly opposite directions,i.e.,
the angle between∆w and∆wold is greater than 179◦, thenγ = 0.5 for the rest of the iterations.
A stabilised version of FastICA has been proposed by Hyvärinen (1999) as well and a procedure
similar to the one above has been used. The different speedup techniques considered above, and
some additional ones, are studied further by Valpola and Särel̈a (2004).

Sometimes there are several signals with similar large eigenvalues. It may then be impossible to
use spectral shift to accelerate their separation significantly because ofsmall eigenvalues that would
assume very negative values exceeding the signal eigenvalues in magnitude. In that case, it may be
beneficial to first separate the subspace of the signals with large eigenvalues from the smaller ones.
Spectral shift will then be useful in the signal subspace.

3. Approximation for the Objective Function

The virtue of the DSS framework is that it allows one to develop proceduralsource separation
algorithms without referring to an exact objective function or a generative model. However, in many
cases an approximation of the underlying objective function is nevertheless useful. In this section,
we propose such an approximation (Sec. 3.1) and discuss its uses, including monitoring (Sec. 3.2)
and acceleration of convergence (Sec. 3.3) as well as analysis of separation results (Sec. 3.4).

3.1 The Objective Function of DSS

The power-method version of the linear DSS algorithm maximises the variance||wTZ||2. When
the denoising is performed for the source estimatesf(s) = sD, the equivalent objective function is
g(s) = sDsT = sfTlin(s) . We propose this formula as an approximation ˆg for the objective function
for nonlinear DSS as well:

ĝ(s) = sfT(s) . (30)

There is, however, an important caveat to be made. Note that Eq. (24) includes the scalar func-
tionsα(s) andβ(s). This means that functionally equivalent DSS algorithms can be implemented
with slightly different denoising functionsf(s) and while they would converge exactly to the same
results, the approximation (30) might yield completely different values. In fact, by tuningα(s),
β(s) or both, the approximation ˆg(s) could be made to yield any function which need not have any
correspondence to the trueg(s).

Due toα(s) andβ(s), it seems virtually impossible to write down a simple approximation of
g(s) that could not go wrong with a malevolent choice off(s). In the following, however, we argue
that Eq. (30) is in most cases a good approximation and it is usually easy to check whether it behaves
as desired—yields values which are monotonic in signal-to-noise ratio (SNR). If it does not,α(s)
andβ(s) can be easily tuned to correct this.

244

DENOISING SOURCESEPARATION

Let us first check what would be the DSS algorithm maximising ˆg(s). Obviously, the approxi-
mation is good if the algorithm turns out to use a denoising similar tof(s). The following Lagrange
equation holds at the optimum:

∇w[ĝ(s)−ξTh(w)] = 0, (31)

whereh denotes the constraints under which the optimisation is performed andξ are the corre-
sponding Lagrange multipliers. In this case, only unit-length projection vectors w are considered,
i.e., h(w) = wTw−1 = 0, and it thus follows that

X∇sĝ
T(s)−2ξw = 0. (32)

Substituting 2ξ with the appropriate normalising factor which guarantees||w|| = 1 results in the
following fixed point:

w =
X∇sĝT(s)

||X∇sĝT(s)|| . (33)

Usings= wTX and (30), and omitting normalisation yields

w+ = X[fT(s)+JT(s)sT] , (34)

whereJ is the Jacobian off. This should conform with the corresponding steps (9) and (10) in the
nonlinear DSS which usesf(s) for denoising. This is true if the two terms in the square brackets
have the same form,i.e., f(s) ∝ sJ(s).

As expected, in the linear case the two algorithms are exactly the same becausethe Jacobian is
a constant matrix andf(s) = sJ. The denoised sources are also proportional tosJ(s) in some special
nonlinear cases, for instance, whenf(s) = sn.

3.2 Negentropy Ordering

The approximation (30) can be readily used for monitoring the convergence of DSS algorithms. It is
also easy to use it for ordering the sources based on their SNR if several sources are estimated using
DSS with the samef(s). However, simple ordering based on Eq. (30) is not possible if different
denoising functions are used for different sources because the approximation does not provide a
universal scaling.

In these cases it is useful to order the source estimates by their negentropy which is a nor-
malised measure of structure in the signal. Differential entropyH of a random variable is a measure
of disorder and is dependent on the variance of the variable. Negentropy is a normalised quantity
measuring the difference between the differential entropy of the component and a Gaussian compo-
nent with the same variance. Negentropy is zero for the Gaussian distribution and non-negative for
all distributions since among the distributions with a given variance, the Gaussian distribution has
the highest entropy.

Calculation of the differential entropy assumes the distribution to be known. Usually this is
not the case and estimation of the distribution is often difficult and computationallydemanding.
Following Hyvärinen (1998), we approximate the negentropyN(s) by

N(s) = H(ν)−H(s) ≈ ηg[ĝ(s)− ĝ(ν)]2 , (35)

whereν is a normally distributed variable. The reasoning behind Eq. (35) is that ˆg(s) carries in-
formation about the distribution ofs. If ĝ(s) equals ˆg(ν), there is no evidence of the negentropy to

245

SÄRELÄ AND VALPOLA

be greater than zero, so this is whenN(s) should be minimised. A Taylor series expansion ofN(s)
w.r.t. ĝ(s) around ˆg(ν) yields the approximation (35) as the first non-zero term.

Comparison of signals extracted with different optimisation criteria presumes that the weighting
constantsηg are known. We propose thatηg can be calibrated by generating a signal with a known,
nonzero negentropy. Negentropy ordering is most useful for signalswhich have a relatively poor
SNR—the signals with a good SNR will most likely be selected in any case. Therefore we choose
our calibration signal to have SNR of 0 dB,i.e., it contains equal amounts of signal and noise in
terms of energy:ss = (ν + sopt)/

√
2, wheresopt is a pure signal having no noise. It obeys fully

the signal model implicitly defined by the corresponding denoising functionf. Sincesopt andν are
uncorrelated,ss has unit variance. The entropy ofν/

√
2 is

H(ν/
√

2) = H(ν)+ log1/
√

2 = H(ν)−1/2log2.

Since the entropy can only increase by adding a second, independent signal sopt, H(ss) ≥ H(ν)−
1/2log2. It thus holdsN(ss) = H(ν)−H(ss) ≤ 1/2log2. One can usually expect thatsopt has a lot
of structure,i.e., its entropy is low. Then its addition toν/

√
2 does not significantly increase the

entropy. It is therefore often reasonable to approximate

N(ss) ≈ 1/2log2= 1/2bit, (36)

where we chose base-2 logarithm yielding bits. Depending onsopt, it may also be possible to
compute the negentropyN(ss) exactly. This can then be used instead of the approximation (36).

The coefficientsηg in Eq. (35) can now be solved by requiring that the approximation (35)
yields Eq. (36) forss. This results in

ηg =
1

2(ĝ(ss)− ĝ(ν))2bit (37)

and finally, substitution of the approximation of the objective function (30) and Eq. (37) into Eq.
(35) yields the calibrated approximation of the negentropy:

N(s) ≈
[

sfT(s)−ν fT(ν)
]2

2[ssfT(ss)−ν fT(ν)]2
bit. (38)

3.3 Spectral Shift Revisited

In Sec. 2.5, we suggested that a reasonable spectral shift is to move the eigenvalue corresponding
to a Gaussian signalν to zero. This leads to minimisingg(s), when the largest absolute eigenvalue
is negative. It does not seem very useful to minimiseg(s), a function that measures the SNR of the
sources, but as we saw with negentropy and its approximation (35), values g(s) < g(ν) are, in fact,
indicative of signal. A reasonable selection forβ is thus−λν given by (27) which leads linear DSS
to extremiseg(s)−g(ν) or, equivalently, to maximise the negentropy approximation (35).

A well known example where the spectral shift by the eigenvalue of a Gaussian signal is use-
ful is the mixture of both super- and sub-Gaussian distributions. A DSS algorithm designed for
super-Gaussian distributions would lead toλ > λν for super-Gaussian andλ < λν for sub-Gaussian
distributions,λν being the eigenvalue of the Gaussian signal. By shifting the eigenvalue spectrum
by −λν, the most non-Gaussian distributions will result in the largest absolute eigenvalues regard-
less of whether the distribution is super- or sub-Gaussian. By using the spectral shift it is therefore

246

DENOISING SOURCESEPARATION

possible to extract both super- and sub-Gaussian distributions with a denoising scheme which is
designed for one type of distribution only.

Consider for instancef(s) = tanhs which can be used as a denoising function for sub-Gaussian
signals while, as will be further discussed in Sec. 4.2.3,s− tanhs = −(tanhs− s) is a suitable
denoising for super-Gaussian signals. This shows that depending on the choice ofβ, DSS can
find either sub-Gaussian (β = 0) or super-Gaussian (β = −1) sources. With the FastICA spectral
shift (27),β will always lie in the range−1 < β ≤ tanh21−1≈−0.42. In general,β will be closer
to −1 for super-Gaussian sources which shows that FastICA is able to adapt its spectral shift to the
source distribution.

3.4 Detection of Overfitting

In exploratory data analysis, DSS is very useful for giving better insight into the data using a linear
factor model. However, it is possible that DSS extracts structures that aredue to noise,i.e., the
results may be overfits.

Overfitting in ICA has been extensively studied by Särel̈a and Viǵario (2003). It was observed
that it typically results in signals that are mostly inactive, except for a single spike. In DSS the type
of the overfitted results depends on the denoising criterion.

To detect an overfitted result, one should know what it looks like. As a first approximation, DSS
can be performed with the same amount of i.i.d. Gaussian data. Then all the results present cases of
overfitting. An even better characterisation of the overfitting results can beobtained by mimicking
the actual data characteristics as closely as possible. In that case it is important to make sure that
the structure assumed by the signal model has been broken. Both the Gaussian overfitting test and
the more advanced test are used throughout the experiments in Secs. 5.2–5.3.

Note that in addition to visual test, the methods described above provide us witha quantitative
measure as well. Using the negentropy approximation (38), we can set a threshold under which the
sources are very likely overfits and do not carry much real structure.In the simple case of linear
DSS, the negentropy can be approximated easily using the correspondingeigenvalue.

4. Denoising Functions in Practice

DSS is a framework for designing source separation algorithms. The idea isthat the algorithms
differ in the denoising functionf(s) while the other parts of the algorithm remain mostly the same.
Denoising is useful as such and therefore there is a wide literature of sophisticated denoising meth-
ods to choose from (see Anderson and Moore, 1979). Moreover, one usually has some knowledge
about the signals of interest and thus possesses the information needed for denoising. In fact, quite
often the signals extracted by BSS techniques would be post-processed toreduce noise in any case
(see Vigneron et al., 2003). In the DSS framework, the available denoising methods can be directly
applied to source separation, producing better results than purely blind techniques. There are also
very general noise reduction techniques such as wavelet denoising (Donoho et al., 1995; Vetterli
and Kovacevic, 1995) or median filtering (Kuosmanen and Astola, 1997) which can be applied in
exploratory data analysis.

In this section, we discuss denoising functions ranging from simple but powerful linear ones to
sophisticated nonlinear ones with the goal of inspiring others to try out their own denoising methods.
The range of applicability of the examples spans from cases where knowledge about the signals is

247

SÄRELÄ AND VALPOLA

relatively specific to almost blind source separation. Many of the denoisingfunctions discussed in
this section are applied in experiments in Sec. 5.

The DSS framework has been implemented in an open-source and publicly available MATLAB
package (DSS, 2004). The package contains the denoising functions and speedups discussed in this
paper and in another paper (Valpola and Särel̈a, 2004). It is modular and allows for custom-made
functions (denoising, spectral shift, and other parts) to be nested in the core program.

Before proceeding to examples of denoising functions, we note that DSS would not be very
useful if very exact denoising would be needed. Fortunately, this is usually not the case and it
is enough for the denoising functionf(s) to remove more noise than signal (see Hyvärinen et al.,
2001b, Theorem 8.1), assuming that the independent source model holds. This is because the re-
estimation steps (10) and (11) constrain the sources to the subspace spanned by the data. Even if
the denoising discards parts of the signal or creates nonexistent signals, re-estimation steps restore
them.

If there is no detailed knowledge about the characteristics of the signals to start with, it is useful
to bootstrap the denoising functions. This can be achieved by starting with relatively general signal
characteristics and then tuning the denoising functions based on analysesof the structure in the noisy
signals extracted in the first phase. In fact, some of the nonlinear DSS algorithms can be regarded
as linear DSS algorithms where a linear denoising function is adapted to the sources, leading to
nonlinear denoising.

4.1 Detailed Linear Denoising Functions

In this section, we consider several detailed, simple but powerful, linear denoising schemes. We
introduce the denoisings using the denoising matrixD when feasible. We consider efficient imple-
mentation of the denoisings as well.

The eigenvalue decomposition (14) shows that any denoising in linear DSS can be implemented
as an orthonormal rotation followed by a point-wise scaling of the samples androtation back to the
original space. The eigenvalue decomposition of the denoising matrixD often offers good intuitive
insight into the denoising function as well as practical means for its implementation.

4.1.1 ON/OFF-DENOISING

Consider designed experiments,e.g., in the fields of psychophysics or biomedicine. It is usual to
control them by having periods of activity and non-activity. In such experiments, the denoising can
be simply implemented by

D = diag(m) , (39)

whereD refers to the linear denoising matrix in Eq. (9) and

m =

{

1, for the active parts

0, for the inactive parts
(40)

This amounts to multiplying the source estimates by a binary mask,4 where ones represent the
active parts and zeroes the non-active parts. Notice that this masking procedure actually satisfies
D = DDT . This means that DSS is equivalent to the PCA applied to denoisedZ = XD even with

4. By masking we refer to point-wise multiplication of a signal or a transformation of a signal.

248

DENOISING SOURCESEPARATION

exactly the same filtering. In practice this DSS algorithm could be implemented by PCA applied to
the active parts of the data with the sphering stage would still involving the wholedata set.

4.1.2 DENOISING BASED ON FREQUENCYCONTENT

If, on the other hand, signals are characterised by having certain frequency components, one can
transform the source estimate to a frequency space, mask the spectrum,e.g., with a binary mask,
and inverse transform to obtain the denoised signal:

D = VΛDVT ,

whereV is the transform,ΛD is the matrix with the mask on its diagonal, andVT is the inverse
transform. The transformV can be implemented for example with the Fourier transform5 or by
discrete cosine transform (DCT). After the transform, the signal is filtered using the diagonal matrix
Λ, i.e., by a point-wise scaling of the frequency bins. Finally the signal is inversetransformed
using VT . In the case of linear time-invariant (LTI) filtering, the filtering matrix has a Toeplitz
structure and the denoising characteristics are manifested only in the diagonal matrixΛD, while the
transforming matrixV represents a constant rotation. When this is the case, the algorithm can be
further simplified by imposing the transformation on the sphered dataX. Then the iteration can be
performed in the transformed basis. This trick has been exploited in the firstexperiment of Sec. 5.2.

4.1.3 SPECTROGRAMDENOISING

Often a signal is well characterised by what frequencies occur at what times. This is evident,e.g.,
in oscillatory activity in the brain where oscillations often occur in bursts. An example of source
separation in such data is studied in Sec. 5.2. The time-frequency behaviour can be described
by calculating DCT in short windows in time. This results in a combined time and frequency
representation, i.e., a spectrogram, where the masking can be applied.

There is a known dilemma in the calculation of the spectrogram: detailed description of the
frequency content does not allow detailed information of the activity in time andvice versa. In other
words, a large amount of different frequency binsTf will result in a small amount of time locations
Tt . Wavelet transforms (Donoho et al., 1995; Vetterli and Kovacevic, 1995) have been suggested
to overcome this problem. There an adaptive or predefined basis, different from the pure sinusoids
used in Fourier transform or DCT, is used to divide the resources of time and frequency behaviour
optimally in some sense. Another possibility is to use the so-called multitaper technique (Percival
and Walden, 1993, Ch. 7).

Here we apply an overcomplete-basis approach related to the above methods. Instead of having
just one spectrogram, we use several time-frequency analyses with differentTt ’s andTf ’s. Then the
new estimate of the projectionw+ is achieved by summing the new estimatesw+

i of each of the
time-frequency analyses:w+ = ∑i w

+
i .

4.1.4 DENOISING OFQUASIPERIODICSIGNALS

As a final example of denoising based on detailed source characteristics,consider Fig. 2a. Let us
assume to be known beforehand that the signals has a repetitive structure and that the average

5. Note that the eigenvalue decomposition contains real rotations instead ofcomplex, but Fourier transform is usu-
ally seen as a complex transformation. To keep the theory simple, we consider real Fourier transform where the
corresponding sine and cosine terms have been separated in different elements.

249

SÄRELÄ AND VALPOLA

repetition rate is known. The quasi-periodicity of the signal can be used to perform DSS to get a
better estimate. The denoising proceeds as follows:

−5

0

5
(a)

(b)

−5

0

5
(c)

−5

0

5
(d)

0 500 1000 1500
−10

0

10
(e)

Figure 2: a) Current source estimatesof a quasiperiodic signal b) Peak estimates c) Average signal
save (two periods are shown for clarity). d) Denoised source estimates+. e) Source
estimate corresponding to the re-estimatedwnew.

1. Estimate the locations of the peaks of the current source estimates (Fig. 2b).

2. Chop each period from peak to peak.

3. Dilate each period to a fixed length L (linearly or nonlinearly).

4. Average the dilated periods (Fig. 2c).

5. Let the denoised source estimates+ be a signal where each period has been replaced by the
averaged period dilated back to its original length (Fig. 2d).

The re-estimated signal in Fig. 2e, based on the denoised signals+, shows significantly better
SNR compared to the original source estimates, in Fig. 2a.

This averaging is a form of linear denoising since it can be implemented as matrixmultiplica-
tion. Furthermore, it presents another case in addition to the binary masking,where DSS is equiva-
lent to the power method even with exactly the same filtering. It would not be easy to see from the
denoising matrixD itself thatD = DDT . However, this becomes evident should one consider the
averaging of source estimates+ (Fig. 2d) that is already averaged.

Note that there are cases where chopping from peak to peak does not guarantee the best result.
This is especially true when the periods do not span the whole section from peak to peak, but there
are parts where the response is silent. Then there is a need to estimate the lengths of the periods
separately.

250

DENOISING SOURCESEPARATION

4.2 Denoising Based on Estimated Signal Variance

In the previous section, several denoising schemes were introduced. In all of them, the details of the
denoising were assumed to be known. It is as well possible to estimate the denoising specifications
from the data. This makes the denoising nonlinear or adaptive. In this section, we consider a
particular ICA algorithm in the DSS framework, suggesting modifications whichimprove separation
results and robustness.

4.2.1 KURTOSIS-BASED ICA

Consider one of the best known BSS approaches, ICA by optimisation of the sample kurtosis of the
sources. The objective function is theng(s) = ∑s4(t)/T−3

(

∑s2(t)/T
)2

. Since the source variance
has been fixed to unity, we can simply useg(s) = ∑s4(t)/T and derive the functionf(s) from
gradient ascend. This yields∇sg(s) = 4/T s3, wheres3 = [s3(1)s3(2) . . .]. Selectingα(s) = T/4
andβ(s) = 0 in Eq. (24) then result in

f(s) = s3 . (41)

This implements an ICA algorithm with nonlinear denoising. So far, we have notreferred to denois-
ing, but a closer examination of Eq. (41) reveals that one can, in fact, interprets3 as beingsmasked
by s2, the latter being a somewhat naı̈ve estimate of signal variance and thus relating to SNR.

Kurtosis as an objective function is notorious for being prone to overfittingand producing very
spiky source estimates (Särel̈a and Viǵario, 2003; Hyv̈arinen, 1998). For illustration of this consider
Fig. 3. There one iteration of DSS using kurtosis-based denoising is shown. Assume that via
some means, the source estimate shown in Fig. 3a has been reached. The source seems to contain
increased activity in three portions (around time instances 1000, 2300 and6000). As well, it contains
a peak roughly at time instance 4700. The signal variance estimate,i.e., the mask is shown in Fig. 3b.
While it has boosted somewhat the broad activity compared to the silent parts,the magnification of
the peak is far greater. Thus the denoised source estimates+ (Fig. 3c) has nearly nothing else except
the peak. The new source estimatesnew, based on the new projectionwnew, is a clear spike having
little left of the broad activity.

The denoising interpretation suggests that the failure to extract the broad activity is due to a poor
estimate of SNR.

4.2.2 BETTER ESTIMATE FOR THESIGNAL VARIANCE

Let us now consider a related but better founded estimate. Assume thats is composed of Gaussian
noise with a constant varianceσ2

n and of a Gaussian signal with non-stationary varianceσ2
s(t). From

Eq. (12) it follows that

s+(t) = s(t)
σ2

s(t)

σ2
tot(t)

, (42)

whereσ2
tot(t) = σ2

s(t) + σ2
n is the total variance of the observation. This is also the maximum-a-

posteriori (MAP) estimate.
The kurtosis-based DSS (41) can be obtained from this MAP estimate if the signal variance is

assumed to be far smaller than the total variance. In that case it is reasonable to assumeσ2
tot to

be constant andσ2
s(t) can be estimated bys2(t)−σ2

n. Subtraction ofσ2
n does not affect the fixed

points as it can be embedded in the termβ(s) = −σ2
n in Eq. (24). Likewise, the division byσ2

tot(t)
is absorbed byα(s).

251

SÄRELÄ AND VALPOLA

−10

0

10

(a)

0

20

40

(b)

−200

0

200

(c)

0 1000 2000 3000 4000 5000 6000 7000
−50

0

50

(d)

Figure 3: a) Source estimates b) Mask s2(t) c) Denoised source estimates+ = f(s) = s3 d) Source
estimate corresponding to the re-estimatedwnew.

Comparison of Eq. (42) and Eq. (41) immediately suggests improvements to the kurtosis-based
DSS. For instance, it is clear that ifs2(t) is large enough, it is not reasonable to assume thatσ2

s(t) is
small compared toσ2

n(t). Instead, the mask should saturate for larges2(t). This already improves
robustness against outliers and alleviates the tendency to produce spiky source estimates.

We suggest the following improvements over the kurtosis-based denoising function (41):

1. The estimates of signal variance and total variance are based on several observations. The
rationale of smoothing is the assumption of smoothness of the signal variance.In practice this
can be achieved by low-pass filtering the variance of the time, frequency or time-frequency
description ofs(t), yielding the approximation of total variance.

2. The noise variance is likewise estimated from the data. It should be some kind of soft min-
imum of the estimated total variances because the estimate can be expected to have random
fluctuations. We suggest the following formula:

σ2
n = C

(

exp
{

E
[

log
(

σ2
tot(t)+σ2

n

)]}

−σ2
n

)

. (43)

The noise varianceσ2
n appears on both sides of the equation, but at the right-hand side, it

appears only to prevent rare small values ofσ2
tot from spoiling the estimate. Hence, we suggest

to use the previously estimated value on the right-hand side. The constantC is tuned such that
the formula gives a consistent estimate of the noise variance if the source estimate is, in fact,
nothing but Gaussian noise.

3. The signal variance should be close to the estimate of the total variance minus the estimate of
the noise variance. Since a variance cannot be negative and the estimate of the total variance

252

DENOISING SOURCESEPARATION

has fluctuations, we use a formula which yields zero only when the total variance is zero but
which asymptotically approachesσ2

tot(t)−σ2
n for large values of the total variance:

σ2
s(t) =

√

σ4
tot(t)+σ4

n−σ2
n . (44)

As an illustration of these improvements consider Fig. 4 where one iteration of DSS using the
MAP estimate is shown. The first two subplots (Fig. 4a and b) are identical to the ones using
kurtosis-based denoising. In Fig. 4c, the variance estimate is smoothed using low-pass filtering.
Note that the broad activity has been magnified when compared to the spike around time instance
4700. The noise levelσ2

n, calculated using Eq. (43), is shown using a dashed line. Corresponding
masking (Fig. 4d) results in a denoised source estimate using Eq. (42), shown in Fig. 4e. Finally, the
new source estimatesnew is shown after five iterations of DSS in Fig. 4f. DSS using the MAP-based
denoising has clearly removed a considerable amount of background noise as well as the lonely
spike.

−10

0

10
(a)

0

20

40
(b)

0

2

4
(c)

0

1

2
(d)

−10

0

10
(e)

0 1000 2000 3000 4000 5000 6000 7000
−10

0

10
(f)

Figure 4: a) Source estimatesb) s2(t) c) Smoothed total variance with the noise level in dashed line
d) Denoising mask e) Denoised source estimates+ f) Source estimate after five iterations
of DSS.

The exact details of these improvements are not crucial, but we wanted to show that the denois-
ing interpretation of Eq. (41) can carry us quite far. The above estimates plugged into Eq. (42) yield
a DSS algorithm which is far more robust against overfitting, does not produce the spiky signal
estimates and in general yields signals with better SNRs than kurtosis.

Despite the merits of the DSS algorithm described above, there is still one problem with it.
While the extracted signals have excellent SNR, they do not necessarily correspond to independent
sources,i.e., the sources may remain mixed. This is because there is nothing in the denoisingwhich
could discard other sources. In terms of eigenvalues, whens is in the vicinity of one of the fixed

253

SÄRELÄ AND VALPOLA

pointss∗i , the local eigenvalueλi(s∗i) is much larger thanλν, as it should, butλ j(s∗i) may be large,
too, which means that the iterations do not remove the contribution of the weaker sources efficiently.

Assume, for instance, that two sources have clear-cut and non-overlapping times of strong ac-
tivity (σ2

s(t) � 0) and remain silent for most of the time (σ2
s(t) = 0). Suppose that one source is

present for some time at the beginning of the data and another at the end. Ifthe current source
estimate is a mixture of both, the mask will have values close to one at the beginningand at the
end of the signal. Denoising can thus clean the noise from the signal estimate,but it cannot decide
between the two sources.

In this respect, kurtosis actually works better than DSS based on the aboveimprovements. This
is because the mask never saturates and small differences in the strengthsof the relative contribu-
tions of two original sources in the current source estimate will be amplified. This problem only
occurs in the saturated regime of the mask and we therefore suggest a simplemodification of the
MAP estimate (42):

ft(s) = s(t)
σ2µ

s (t)

σ2
tot(t)

, (45)

whereµ is a constant slightly greater or equal to one. Note that this modification is usually needed
at the beginning of the iterations only. Once the source estimate is dominated by one of the original
sources and the contributions of the other sources fall closer to the noiselevel, the values of the
mask are smaller for the other original sources possibly still present in the estimated source.

Another approach is based on the observation that orthogonalising the mixing vectorsA cancels
only the linear correlations between different sources. Higher-ordercorrelations may still exist.
It can be assumed that competing sources contribute to the current variance estimate:σ2

tot(t) =
σ2

s(t) + σ2
n + σ2

others(t), whereσ2
others(t) stands for the estimate of total leakage of variance from

the other sources. Valpola and Särel̈a (2004) showed that decorrelating the variance-based masks
actively promotes the separation of the sources. This bares resemblanceto proposals of the role of
divisive normalisation on cortex (Schwartz and Simoncelli, 2001) and to the classical ICA method
called JADE (Cardoso, 1999).

The problems related to kurtosis are well known and several other improvednonlinear functions
f(s) have been proposed. However, some aspects of the above denoising,especially smoothing
of the total-variance estimates2(t), have not been suggested previously although they arise quite
naturally from the denoising interpretation.

4.2.3 TANH-NONLINEARITY INTERPRETED ASSATURATED VARIANCE ESTIMATE

A popular replacement of the kurtosis-based nonlinearity (41) is the hyperbolic tangent tanh(s)
operating point-wise on the sources. It is generally considered to be morerobust against overfitted
and spiky source estimates than kurtosis. By selectingα(s) = −1 andβ(s) = −1, we arrive at

ft(s) = s(t)− tanh[s(t)] = s(t)

(

1− tanh[s(t)]
s(t)

)

. (46)

Now the term multiplyings(t) can be interpreted as a mask related to SNR. Unlike the naı̈ve mask
s2(t) resulting from kurtosis, the tanh-based mask (46) saturates, though notvery fast.

The variance based mask (45) with the improvements considered above offers a new interpre-
tation for the robustness of the tanh-mask. Parameter valuesσ2

n = 1 andµ = 1.08 give an excellent
fit between the masks as shown in Fig. 5. The advantages of the denoising wepropose are thatσ2

n

254

DENOISING SOURCESEPARATION

−10 −8 −6 −4 −2 0 2 4 6 8 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

tanh−based mask
variance−based mask

Figure 5: The tanh-based denoising mask1− tanh(s)/s is shown together with the variance-based
denoising mask proposed here. The parameters in the proposed maskwereσ2

n = 1 and
µ= 1.08. We have scaled the proposed mask to match the scale of the tanh-based mask.

can be tuned to the source estimate,µ can be controlled during the iterations and the estimate of the
signal variance can be smoothed. These features contribute to the resistance against overfitting and
spiky source estimates.

4.3 Other Denoising Functions

There are cases where the system specification itself suggests some denoising schemes. One such
case, CDMA transmission, is described in Sec. 5.4. Another example is source separation with a
microphone array combined with speech recognition. Many speech recognition systems rely on
generative models which can be readily used to denoise the speech signals.

Often it would be useful to be able to separate the sources online,i.e., in real time. Since there
exists online sphering algorithms (see Douglas and Cichocki, 1997; Oja, 1992), real time DSS can
be considered as well. One simple case of online denoising is presented by moving-average filters.
Such online filters are typically not symmetric and the eigenvalues (14) of the matrix XDXT may
be complex numbers. These eigenvalues come in conjugate pairs and are analogous to sine-cosine
pairs. The resulting DSS algorithm converges to a 2-D subspace corresponding to the eigenvalues
with largest absolute magnitude, but fails to converge within the subspace. Consider, for example,
a case of two harmonic oscillatory sources. It has a rotational invariancein a space defined by the
corresponding sine-cosine pair. Batch DSS algorithms with temporally symmetricdenoising would
converge to some particular rotation, but non-symmetric on-line denoising byf(s(t)) = s(t − 1)
would keep oscillating between sine and cosine components.

255

SÄRELÄ AND VALPOLA

The above is a special case of subspace analysis and there are several other examples where
the sources can be grouped to form interesting subspaces. This can bethe case,e.g., when all the
sources are not independent of each others, but form subspacesthat are mutually independent. It
may be desirable to use the information in all sourcesS for denoising any particular sourcesi . This
leads to the following denoising function:s+

i = f i(S). Some form of subspace rules can be used to
guide the extraction of interesting subspaces in DSS. It is possible to further relax the independence
criterion at the borders of the subspaces. This can be achieved by incorporating a neighbourhood
denoising rule in DSS, resulting in a topographic ordering of the sources.This suggests a fast fixed-
point algorithm that can be used instead of the gradient-descent-based topographic ICA (Hyv̈arinen
et al., 2001a).

It is also possible to combine various denoising functions when the sourcesare characterised by
more than one type of structure. Note that the combination order might be crucial for the outcome.
This is simply because, in general,f i (f j(s)) 6= f j (f i(s)) wheref i andf j present two different linear
or nonlinear denoisings. As an example, consider the combination of the linear on/off-mask (39)
and (40), and the nonlinear variance-based mask (45): the noise estimation becomes significantly
more accurate when the on/off-masking is performed only after the nonlinear denoising.

Finally, a source might be almost completely known. Then it is possible to apply adetailed
matched filter to estimate the mixing coefficients or the noise level. Detailed matched filters have
been used in Sec. 5.1 to get an upper limit of the SNRs of the source estimates.

4.4 Spectral Shift and Approximation of the Objective Function with Mask-Based
Denoisings

In Sec. 3.1, it was mentioned that a DSS algorithm may work perfectly fine but(30) may still fail to
approximate the true objective function ifα(s) andβ(s) are not selected suitably. As an example,
consider the mask-based denoisings where denoising is implemented by multiplying the source
point-wise by a mask. Without loss of generality, it can be assumed that the data has been rotated
with V and the masking operates directly on the source. According to Eq. (30),g(s) = ∑t s2(t)m(t),
wherem(t) is the mask. If the mask is constant w.r.t.s, denoising is linear and Eq. (30) is an exact
formula, but let us assume that the mask is computed based on the current source estimates.

In some cases it may be useful to normalise the mask and this could be implemented inseveral
ways. Some possibilities that may come to mind are to normalise the maximum value or the sum
of squared values of the mask. While this type of normalisation has no effecton the behaviour of
DSS, it can render the approximation (30) useless. This is because a maximally flat mask usually
corresponds to a source with a low SNR. However, after normalisation, thesum of values in the
mask would be greatest for a maximally flat mask and this tends to produce high values of the
approximation ofg(s) conflicting with the low SNR.

As a simple example, consider the mask to bem(t) = s2(t). This corresponds to the kurtosis-
based denoising (41). Now the sum of squared values of the mask is∑s4(t), but so issfT(s). If
the mask were normalised by dividing by the sum of squares, the approximation (30) would always
yield a constant value of one, totally independent ofs.

A better way of normalising a mask is to normalise the sum of the values. Then Eq.(30) should
always yield approximately the same value if the mask and source estimate are unrelated, but the
value would be greater for cases where the magnitude of the source is correlated with the value of
the mask. This is usually a sign of a structured source and a high SNR.

256

DENOISING SOURCESEPARATION

The above normalisation also has the benefit that the eigenvalue of a Gaussian signal can be
expected to be roughly constant. Assuming that the maskm(t) does not depend very much on the
source estimate, the Jacobian matrixJ(s) of f(s) is roughly diagonal withm(t) as the elements on
the diagonal. The trace ofJ(s) needed for the estimate of the eigenvalue of a Gaussian signal in
(27) is then∑t m(t) and the appropriate spectral shift is

β = − 1
T ∑

t
m(t) . (47)

The spectral shift can thus be approximated to be constant due to the normalisation.

5. Experiments

In this section, we demonstrate the separation capabilities of the algorithms presented earlier. The
experiments can be carried out using the publicly available MATLAB package (DSS, 2004).

The experimental section contains the following experiments: First, in Sec. 5.1, we separate ar-
tificial signals with different DSS schemes, some of which can be implemented byFastICA (1998);
Hyvärinen (1999). Furthermore, we compare the results to one standard ICAalgorithm, JADE
(1999); Cardoso (1999). In Secs. 5.2–5.3, linear and nonlinear DSSalgorithms are applied exten-
sively in the study of magnetoencephalograms (MEG). Finally, in Sec. 5.4, recovery of CDMA
signals is demonstrated. In each experiment after the case of artificial sources, we first discuss
the nature of the expected underlying sources. Then we describe this knowledge in the form of
denoising.

5.1 Artificial Signals

Artificial signals were mixed to compare different DSS schemes and JADE (Cardoso, 1999). Ten
mixtures of the five sources were produced and independent white noisewas added with different
SNRs ranging from nearly noiseless mixtures of 50dB to -10dB, a very noisy case. The original
sources and the mixtures are shown in Figs. 6a and 6b respectively. Themixtures shown have SNR
of 50 dB.

5.1.1 LINEAR DENOISING

In this section, we show how the simple linear denoising schemes described in Sec. 4.1 can be
used to separate the artificial sources. These schemes require prior knowledge about the source
characteristics.

The base frequencies of the first two signals were assumed to be known.Thus two band-pass
filtering masks were constructed around these base frequencies. The third and fourth source esti-
mates were known to have periods of activity and non-activity. The third was known to be active
in the second quadrant and the fourth a definite period in the latter half. They were denoised using
binary masks in the time domain. Finally, the fifth source had a known quasi-periodic repetition
rate and was denoised using the averaging procedure described in Sec. 4.1.4 and Fig. 2. Since all
the five denoisings are linear, five separate filtered data sets were produced and PCA was used to
recover the principal components. The separation results are described in Sec. 5.1.3 together with
the results of other DSS schemes and JADE.

257

SÄRELÄ AND VALPOLA

(a) (b)

Figure 6: (a) Five artificial signals with simple frequency content (signals 1 and 2), simple on/off
non-stationarity in time domain (signals 3 and 4) or quasi-periodicity (signal5). (b) Ten
mixtures of the signals in (a).

5.1.2 NONLINEAR EXPLORATORY DENOISING

In this section, we describe an exploratory source separation of the artificial signals. One author of
this paper gave the mixtures to the other author whose task was to separate theoriginal signals. The
testing author did not receive any additional information, so he was forced to apply a blind approach.
He chose to use the masking procedure based on the instantaneous variance estimate, described in
Sec. 4.2. To enable the separation of both sub- and super-Gaussian sources in the MAP-based
signal-variance-estimate denoising, he used the spectral shift (47). Toensure convergence, he used
the 179-rule to control the step sizeγ (28). Finally, he did not smooths2(t) but used it directly as
the estimate of the total instantaneous varianceσ2

tot(t).

Based on the separation results of the variance-based DSS, he furtherdevised specific masks for
each of the sources. He chose to denoise the first source in frequency domain with a strict band-pass
filter around the main frequency. The testing author decided to denoise the second source by a sim-
ple denoising functionf(s) = sign(s). This makes quite an accurate signal model though it neglects
the behaviour of the source in time. The third and fourth signal seemed to have periods of activity
and non-activity. He found an estimate for the active periods by inspectingthe instantaneous vari-
ance estimatess2, and devised simple binary masks. The last signal seemed to consist of alternating
positive and negative peaks with a fixed inter-peak-interval as well as some additive Gaussian noise.
The signal model was tuned to model the peaks only.

5.1.3 SEPARATION RESULTS

In this section, we compare the separation results of the linear denoising (Sec. 5.1.1), variance-based
denoising and adapted denoising (Sec 5.1.2) to other DSS algorithms. In particular, we compare to
the popular denoising schemesf(s) = s3 andf(s) = tanh(s), suggested for use with FastICA (1998).

258

DENOISING SOURCESEPARATION

We compare to JADE (Cardoso, 1999) as well. During sphering in JADE, the number of dimensions
was either reduced (n = 5) or all the ten dimensions were kept (n = 10).

We restrained from using deflation in all the different DSS schemes to avoidsuffering from
cumulative errors in the separation of the first sources. Instead one source was extracted with each
of the masks several times using different initial vectorw until five sufficiently different source
estimates were reached (see Himberg and Hyvärinen, 2003; Meinecke et al., 2002, for further pos-
sibilities along these lines). Deflation was only used if no estimate could be foundfor all the 5
sources. This was often the case for poor SNR under 0dB.

To get some idea of statistical significance of the results, each algorithm wasused to separate
the sources ten times with the same mixtures, but with different measurement noises. The average
SNRs of the sources are depicted in Fig. 7. The straight line above all the DSS schemes represents
the optimal separation. It is achieved by calculating the unmixing matrix explicitly using the true
sources.

−10 0 10 20 30 40 50
−20

−10

0

10

20

30

40

50

60

data SNR / dB

av
er

ag
e

so
ur

ce
 S

N
R

 /
dB

optimal
linear DSS
pow3 DSS
tanh DSS
variance−based DSS
adapted DSS
JADE, n =5
JADE, n =10

Figure 7:Average SNRs for the estimated sources averaged over 10 runs.

With outstanding SNR (> 20 dB), linear DSS together with JADE and kurtosis-based DSS
perform the worst, while the other, nonlinear DSS approaches: tanh-based, sophisticated variance
estimate and the adapted one perform better. The gap between these groups is more than two
standard deviations of the 10 runs, making the difference statistically significant.

With moderate SNRs (between 0 and 20 dB), all algorithms perform quite alike.With poor SNR
(< 0 dB), the upper group consist of the linear and adapted DSS as well as the optimal one and the
lower group consists of the blind approaches. This seems reasonable, since it makes sense to rely
more on prior knowledge when the data are very noisy.

259

SÄRELÄ AND VALPOLA

5.2 Exploratory Source Separation in Rhythmic MEG Data

In biomedical research it is usual to design detailed experimental frameworks to examine inter-
esting phenomena. Hence it offers a nice field of application for both blind and specialised DSS
schemes. In the following, we test the developed algorithms in signal analysisof magnetoencephalo-
grams (MEG, Ḧamäläinen et al., 1993). MEG is a completely non-invasive brain imaging technique
measuring the magnetic fields on scalp caused by synchronous activity in thecortex.

Since the early EEG and MEG recordings, cortical electromagnetic rhythms have played an
important role in clinical research,e.g., in detection of various brain disorders, and in studies of
development and aging. It is believed that the spontaneous rhythms, in different parts of the brain,
form a kind of resting state that allows for quicker responses to stimuli by those specific areas.
For example deprivation of visual stimuli by closing one’s eyes induces so-calledα-rhythm on the
visual cortex, characterised by a strong 8–13 Hz frequency component. For a more comprehensive
discussion regarding EEG and MEG, and their spontaneous rhythms, seethe works by Niedermeyer
and Lopes da Silva (1993) and Hämäläinen et al. (1993).

In this paper, we examine an MEG experiment where the subject is asked to relax by closing
her eyes (producingα-rhythm). There is also a control state where the subject has her eyes open.
The data has been sampled withfs = 200 Hz, and there areT = 65536 time samples giving total
of more than 300 seconds of measurement. The magnetic fields are measuredusing a 122-channel
MEG device. Some source separation results of this data have been reported by S̈arel̈a et al. (2001).
Prior to any analysis, the data are high-pass filtered with cut-off frequency of 1 Hz, to get rid of the
dominating very low frequencies.

5.2.1 DENOISING IN RHYTHMIC MEG

Examination of the average spectrogram in Fig. 8a reveals clear structures indicating the existence
of several, presumably distinct, phenomena. The burst-like activity around 10 Hz and the steady
activity at 50 Hz dominate the data, but there seem to be some weaker phenomena as well,e.g.,
on frequencies higher than 50 Hz. To amplify these, we not only sphere the data spatially but
temporally as well. This temporal decorrelation actually makes the separation harder but finding the
weaker phenomena easier. The normalised and filtered spectrogram is shown in Fig. 8b.

The spectrogram data seems well suited for demonstrating the exploratory-data-analysis use
of DSS. As some of the sources seem to have quite steady frequency content in time, along with
others changing in time, we used two different time-frequency analyses asdescribed in Sec. 4.1.3
with lengths of the spectraTf = 1 andTf = 256. The first spectrogram is then actually the original
frequency-normalised and filtered data with time information only.

We apply the several noise-reduction principles based on the estimated variance of the signal
and the noise discussed in Sec. 4.2. Specifically, the power spectrogramof the source estimate is
smoothed over time and frequency using 2-D convolution with Gaussian windows. The standard
deviations of the Gaussian windows wereσt = 8/π andσ f = 8/π. After this, the instantaneous esti-
mate of the source variance is found using Eq. (44). Then we get the denoised source estimate using
Eq. (45) together with the spectral shift (47). Initially we have setµ = 1.3. This is then decreased
by 0.1 every time DSS has converged, untilµ < 1 is reached. Finally, the new projection vector is
calculated using the stabilised version (28), (29) with the 179-rule in orderto ensure convergence.

260

DENOISING SOURCESEPARATION

t / s

f /
 H

z

0 50 100 150 200 250 300
0

20

40

60

80

100

t / s

f /
 H

z

0 50 100 150 200 250 300
0

20

40

60

80

100

(a) (b)

Figure 8: (a) Averaged spectrogram of all 122 MEG channels. (b) Frequencynormalised spectro-
gram.

5.2.2 SEPARATION RESULTS

The separated signals, depicted in Fig. 9, include several interesting sources. Due to poor contrast
in Fig. 9, we show enhanced and smoothed spectrograms of selected interesting, but low contrast,
components (1a, 1b, 1c and 4c) in Fig. 10. There exist several sources withα-activity (1a, 1d and
2b for example). The second and fifth source are clearly related to the power-line. The third source
depicts an interesting signal caused probably by some anomaly in either the measuring device itself
or its physical surroundings. In source 4c, there is another, presumably artefactual source, composed
of at least two steady frequencies around 70 Hz.

The DSS approach described above seems to be reliable and fast: the temporal decorrelation of
the data enabled the finding of very weak sources and yet we found several clearα-sources as well.
Valpola and S̈arel̈a (2004) have further studied the convergence speed, reliability and stability of
DSS with various speedup methods, such as the spectral shift used in FastICA. Convergence speed
exceeding standard FastICA by 50 % was reported.

Though quite a clear separation of the sources was achieved, some cross-talk between the sig-
nals remains. Better SNR and less talk would probably be achieved by tuning the denoising to
the characteristics of each different signal group. In the next section, we show that with specific
knowledge it is possible to find even very weak phenomena in MEG data usingDSS.

5.3 Adaptive Extraction of the Cardiac Subspace in MEG

Cardiac activity causes magnetic fields as well. Sometimes these are strongly reflected in MEG and
can pose a serious problem for the signal analysis of the neural phenomena of interest. In this data,
however, the cardiac signals are not visible to the naked eye. Thus, we want to demonstrate the
capability of DSS to extract some very weak cardiac signals, using detailed prior information in an
adaptive manner.

261

SÄRELÄ AND VALPOLA

a b c d e

1

2

3

4

0 200
0

50

100

0 200
0

50

100

0 200
0

50

100

0 200
0

50

100

0 200
0

50

100

0 200
0

50

100

0 200
0

50

100

0 200
0

50

100

0 200
0

50

100

0 200
0

50

100

0 200
0

50

100

0 200
0

50

100

0 200
0

50

100

0 200
0

50

100

0 200
0

50

100

0 200
0

50

100

0 200
0

50

100

0 200
0

50

100

0 200
0

50

100

0 200
0

50

100

Figure 9: Spectrograms of the extracted components (comps. 1a–1e on the topmost row).
Time and frequency axes as in Fig. 8.

5.3.1 DENOISING OF THECARDIAC SUBSPACE

A clear QRS complex, which is the main electromagnetic pulse in the cardiac cycle,can be extracted
from the MEG data using standard BSS methods, such as kurtosis- or tanh-based denoising. Due
to its sparse nature, this QRS signal can be used to estimate the places of the heart beats. With the
places known, we can guide further search using the averaging DSS, as described in Sec. 4.1. Every
now and then, we re-estimate the QRS onsets needed for the averaging DSS.

When the estimation of the QRS locations has been stabilised, a subspace that iscomposed of
signals having activity phase-locked to the QRS complexes can be extracted.

5.3.2 SEPARATION RESULTS

Figure 11 depicts five signals averaged around the QRS complexes, found using the procedure
above.6 The first signal presents a very clear QRS complex, whereas the second one contains the

6. For clarity, two identical cycles of averaged heart beats are alwaysshown.

262

DENOISING SOURCESEPARATION

0 100 200 300
0

20

40

60

80

100

0 100 200 300
0

20

40

60

80

100

0 100 200 300
0

20

40

60

80

100

0 100 200 300
0

20

40

60

80

100

Figure 10: Enhanced and smoothed spectrograms of the selected components (correspond to
sources 1a, 1b, 1c and 4c in Fig. 9). Time and frequency axes as in Fig.8.

small P and the T waves. An interesting phenomenon is found in the third signal:there is a clear
peak at the QRS onset, which is followed by a slow attenuation phase. We presume that it originates
from some kind of relaxing state.

Two other heart-related signals were also extracted. They both show a clear deflection during
the QRS complex, but have as well significant activity elsewhere. These two signals might present
a case of overfitting, which was contemplated in Sec. 3.4. To test this hypothesis, we performed
DSS using the same procedure and the same denoising function, but for time-reversed data. As the
estimated QRS onsets will then be misaligned, the resulting signals should be pureoverfits. The
results are shown in Fig. 12. The eigenvalues corresponding to the QRS complex and the second
signal having the P and T waves are approximately 10 times higher than the principal eigenvalue
of the reversed data. Thus they clearly exhibit some real structure in the data, as already expected.
The eigenvalues corresponding to the last three signals are comparable tothe principal eigenvalue
of the reversed data, the two largest being somewhat greater. It is reasonable to expect that all three
carry some real structure as there is a nonzero correlation between the first two signals having the
main cardiac responses and the overfitted component corresponding to the largest eigenvalue from
the reversed data. In the three other signals, there probably occurs some overfitting as well, since
the signals have similar structures to the last two signals of the actual subspace experiment shown
in Fig. 11.

263

SÄRELÄ AND VALPOLA

0 200 400 600 800 1000 1200 1400 1600 1800 2000
−5

0

5
Q

0 200 400 600 800 1000 1200 1400 1600 1800 2000
−2

0

2

0 200 400 600 800 1000 1200 1400 1600 1800 2000
−1

0

1

0 200 400 600 800 1000 1200 1400 1600 1800 2000
−0.5

0

0.5

0 200 400 600 800 1000 1200 1400 1600 1800 2000
−0.5

0

0.5

R

S

P
T

Figure 11:Averages of three heart-related signals and presumably two overfitting results.

It is worth noticing that even the strongest component of the cardiac subspace is rather weakly
present in the original data. The other components of the subspace are hardly detectable without
advanced methods beyond blind source separation. This clearly demonstrates the power that DSS
can provide for an exploring researcher.

5.4 Signal Recovery in CDMA

Mobile systems constitute another important signal processing application area, in addition to biomed-
ical signal processing. There are several ways to allow multiple users to use the same communica-
tion channel, one being a modulation scheme called code-division-multiple-access (CDMA, Viterbi,
1995). In this section we consider bit-stream recovery in a simplified simulationof a CDMA net-
work.

In CDMA, each user has a unique signature quasi-orthogonal to the signatures of the other
users. The user codes each complex bit7 which he sends using this signature. This coded bit
stream is transmitted through the communication channel, where it is mixed with the signals of the
other transmitters. The mixture is corrupted by some noise as well, due to multi-pathpropagation,
Doppler shifts, interfering signals, etc.

To recover the sent bit stream, the receiver decodes the signal with the known signature. Ideally
then, the result would be ones and zeros repeated the number of times corresponding to the signa-

7. Here a scheme called QAM is used: two bits are packed into one complex bit by making a 90◦ phase shift in the other
bit.

264

DENOISING SOURCESEPARATION

0 200 400 600 800 1000 1200 1400 1600 1800 2000
−0.5

0

0.5

0 200 400 600 800 1000 1200 1400 1600 1800 2000
−0.5

0

0.5

0 200 400 600 800 1000 1200 1400 1600 1800 2000
−0.5

0

0.5

0 200 400 600 800 1000 1200 1400 1600 1800 2000
−0.5

0

0.5

0 200 400 600 800 1000 1200 1400 1600 1800 2000
−0.5

0

0.5

Figure 12:Averages of five signals from the cardiac control experiment, showing clear overfits.

ture length. In practice, noise and other interfering signals cause variationand the bits are usually
extracted by majority voting.

If there are multiple paths through which a particular bit stream is sent to the receiver or the
transmitter and receiver have multiple antennas, the so-called RAKE procedure can be used: The
path coefficients are estimated based on the so-called pilot bit streams that are fixed known bit
streams and sent frequently by the transmitter. Different bit streams are then summed together
before the majority voting. In RAKE-ICA (Raju and Ristaniemi, 2002), ICA is used to blindly
separate the desired signal from the interference of other users and noise. This yields better results
in the majority voting.

5.4.1 DENOISING OFCDMA SIGNALS

We know that the original bit stream should consist of repeated coding signatures convoluted by
the original complex bits. First the bit stream is decoded using a standard detection algorithm. The
denoised signal is then the recoding of the decoded bit stream.

This DSS approach is nonlinear. If the original bit-stream estimate is very inaccurate,e.g., due
to serious interference of other users or external noise, the nonlinearapproach might get stuck in a
deficient local minimum. To prevent this, we first initialise by running a simpler, linear DSS. There
we only exploit the fact that the signal should consist of repetitions of the signature multiplied by a
complex number. The nonlinearity of the denoising is gradually increased in the first iterations.

265

SÄRELÄ AND VALPOLA

5.4.2 SEPARATION RESULTS

We sent 100 blocks of 200 complex bits. The sent bits were mixed using the streams of 15 other
users. For simplicity we set all the path delays to zero. The signal-to-noise-ratio (SNR) varied from
-10 to 15 dB. The length of the spreading signature was 31. The mixtures were measured using
three antennas. We did not consider multi-path propagation.

Figure 13 sums up the results of the CDMA experiments. The comparison to the RAKE algo-
rithm shows that DSS performs better in all situations except in the highest SNR, where RAKE is
slightly better. Note that RAKE needs the pilot bits to estimate the mixing while our implementation
of DSS was able to do without them. The better performance of DSS for low SNR is explained by
the fact that DSS actively cancels disturbing signals while RAKE ignores them.

−10 −5 0 5 10 15
10

−2

10
−1

10
0

SNR / dB

er
ro

r
ra

te

DSS, ber
RAKE, ber
DSS, bler
RAKE, bler

Figure 13:Bit- and block-error rates for different SNRs for DSS and RAKE.

CDMA bit streams consist of known headers that are necessary for standard CDMA techniques
to estimate several properties of the transmission channel. The DSS framework is able to use the
redundancy of the payload signal, and therefore less pilot sequencesare needed. In addition, bits
defined by the actual data such as error-correcting or check bits allow an even better denoising of
the desired stream. Furthermore, it is possible to take multi-path propagation intoaccount using
several delayed versions of the received signal. This should then result in a kind of averaging
denoising when a proper delay is used analogous to the multi-resolution spectrogram DSS described
in Sec. 4.1.3. In the case of moving transmitters and receivers, DSS may exploit the Doppler effect.

266

DENOISING SOURCESEPARATION

6. Discussion

In this paper, we developed several DSS algorithms. Moreover, DSS offers a promising framework
for developing additional extensions. In this section, we first summarise theextensions that have
already been mentioned in previous sections and then discuss some auxiliaryextensions.

We discussed an online learning strategy in Sec. 4.3, where we noted that asymmetric online
denoising may fail to converge within a 2-D subspace. However, symmetric denoising procedures
performing similar functions may easily be generated.

We also noted that the masking based on the instantaneous variance in Sec. 4.2 may have prob-
lems in separating the actual sources, though it effectively separates thenoise subspace from the
signal subspace. We proposed a simple modification to magnify small differences between the vari-
ance estimates of different sources. Furthermore, we noted that a betterfounded alternative is to
consider explicitly the leakage of variance between the signals. Then the variances of the signals
can be decorrelated using similar techniques to those suggested by Schwartz and Simoncelli (2001).
This idea has been pursued further in the DSS framework (Valpola and Särel̈a, 2004), making the
variance-based masking a very powerful approach to source separation. Furthermore, the variance-
based mask saturates on large values. This reduces the tendency to suffer from outliers. However,
data values that differ utterly from other data points probably carry no interesting information at all.
Even more robustness could then be achieved if the mask would start to decrease on large enough
values.

In this paper, we usually considered the sources to have a one-dimensional structure, which
is used to implement the denoising. We already applied successfully two-dimensional denoising
techniques for the spectrograms. Furthermore, it was mentioned in Sec. 2 that the indext of different
sampless(t) might refer as well to space as to time. In space it becomes natural to apply filtering
in 2D or even in 3D. For example, the astrophysical ICA (Funaro et al., 2003) would clearly benefit
from multi-dimensional filtering.

Source separation is not the only application of ICA-like algorithms. Another, important field
of application is feature extraction. ICA has been used for example in the extraction of features
from natural images, similar to those that are found in the primary visual cortex (Olshausen and
Field, 1996). It is reasonable to consider DSS extensions that have been suggested in the field of
feature extraction as well. For instance, until now we have only considered the extraction of mul-
tiple components by forcing the projections to be orthogonal. However, nonorthogonal projections
resulting from over-complete representations provide some clear advantages, especially in sparse
codes (F̈oldiák, 1990), and may be found useful in the DSS framework as well.

Throughout this paper, we have considered linear mapping from the sources to the observations
but nonlinear mappings can be used, too. One such approach is slow feature analysis (SFA, Wiskott
and Sejnowski, 2002) where the observations are first expanded nonlinearly and sphered. The ex-
panded data are then high-pass filtered and projections minimising the variance are estimated. Due
to the nonlinear expansion, it is possible to stack several layers of SFA ontop of each others to
extract higher-level slowly changing features, resulting in hierarchical SFA.

Interestingly, SFA is directly related to DSS. Instead of minimising the variance after high-pass
filtering as in SFA, the same result may be obtained by maximising the variance after low-pass
filtering. SFA is thus equivalent to DSS with nonlinear data expansion and low-pass filtering as
denoising. This is similar to earlier proposals,e.g., by Földiák (1991).

267

SÄRELÄ AND VALPOLA

There are several possibilities for the nonlinear feature expansion in hierarchical DSS. For in-
stance kernel PCA (Schölkopf et al., 1998), sparse coding or liquid state machines (Maass et al.,
2002) can be used.

The hierarchical DSS can be used in a fully supervised setting by fixing the activations of the
topmost layer to target outputs. Supervised learning often suffers fromslow learning in deep hierar-
chies because the way information is represented gradually changes in thehierarchy. It is therefore
difficult to use the information about the target output for learning the layers close to the inputs. The
benefit of hierarchical DSS is that learning on lower levels is not dependent only on the information
propagated from the target output because the context includes lateralor delayed information from
the inputs. In this approach, the mode of learning shifts smoothly from mostly unsupervised learn-
ing to mostly supervised learning from the input layer towards the output layer. A similar mixture
of supervised and unsupervised learning has been suggested by Körding and K̈onig (2001).

7. Conclusion

The work in linear source separation has concentrated on blind approaches to fix the rotational am-
biguity left by the factor analysis model. Usually, however, there is additional information available
to find the rotation either more efficiently or more accurately. In this paper we developed an algo-
rithmic framework called denoising source separation (DSS). We showed that denoising can be used
for source separation and that the results are often better than with blind approaches. The better the
denoising is, the better the results are. Furthermore, many blind source separation techniques can
be interpreted as DSS algorithms using very general denoising principles.In particular, we showed
that FastICA is a special case of DSS which also implies that DSS can be computationally very
efficient.

The main benefit of the DSS framework is that it allows for easy developmentof new source sep-
aration algorithms which are optimised for the specific problem at hand. There is a wide literature
on signal denoising to choose from and in some cases denoising would be used for post-processing
in any case. All the tools needed for DSS are then readily available.

We have launched an open-source MATLAB package for implementing DSSalgorithms (DSS,
2004). It contains the denoising functions and speedup method presented here. But more impor-
tantly, the modular coding style makes it easy to tune the denoising functions to better suit the
separation problems at hand and even to build in completely new denoising functions to achieve
better performance.

In the experimental section, we demonstrated DSS in various source separation tasks. We
showed how denoising can be adapted to the observed characteristics ofsignals extracted with
denoising based on vague knowledge. From MEG signals, we were able toextract very accurately
subspaces such as theα-subspace or the very weak components of the cardiac subspace. DSSalso
proved to be able to recover CDMA signals better than the standard RAKE technique under poor
SNR.

Finally, we discussed potential extensions of DSS. It appears that DSS offers a sound basis for
developing hierarchical, nonlinear feature extraction methods and the connections to cortical models
of attention and perception suggest a promising starting point for future work.

268

DENOISING SOURCESEPARATION

Acknowledgments

This work is funded by the Academy of Finland, under the project New information processing
principles, and by European Commission, under the project ADAPT (IST-2001-37137).

We would like to show gratitude to Dr. Ricardo Vigário for the fruitful discussions concerning
the method in general as well as the MEG experiments in detail and Dr. Aapo Hyvärinen for the
method itself and its connections to ICA. We would like to thank as well Mr. Karthikesh Raju for his
suggestions and help concerning the CDMA experiments and Mr. Kosti Rytkönen who is the main
author of the DSS MATLAB package. Our sincere thanks are also to the editor and the anonymous
referees for their thorough inspection of the article. Finally, we would like tothank prof. Erkki Oja
for his comments on the draft version of this manuscript.

References

B. D. Anderson and J. B. Moore.Optimal filtering. Prentice-Hall, 1979.

H. Attias. Independent factor analysis.Neural Computation, 11(4):803–851, 1999.

A. Belouchrani, K. Abed Meraim, J.-F. Cardoso, and E. Moulines. A blindsource separation tech-
nique based on second order statistics.IEEE Transactions on Signal Processing, 45(2):434–44,
1997.

O. Bermond and J.-F. Cardoso. Approximate likelihood for noisy mixtures. In Proceedings of
the First International Workshop on Independent Component Analysis and Signal Separation
(ICA’99), pages 325–330, Aussois, France, Jan. 11-15, 1999.

J.-F. Cardoso. High-order contrasts for independent component analysis. Neural Computation, 11
(1):157 – 192, 1999.

K.-L. Chan, T.-W. Lee, and T. J. Sejnowski. Variational Bayesian learning of ICA with missing
data.Neural Computation, 15 (8):1991–2011, 2003.

R. A. Choudrey and S. J. Roberts. Flexible Bayesian independent component analysis for blind
source separation. InProceedings of the Third International Conference on Independent Compo-
nent Analysis and Signal Separation (ICA2001), pages 90–95, San Diego, USA, 2001.

P. A. d. F. R. Højen-Sørensen, O. Winther, and L. K. Hansen. Mean-field approaches to independent
component analysis.Neural Computation, 14(4):889–918, 2002.

A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood from incomplete data via the
EM algorithm. Journal of the Royal Statistical Society, Series B (Methodological), 39(1):1–38,
1977.

D. L. Donoho, I. M. Johnstone, G. Kerkyacharian, and D. Picard. Wavelet shrinkage: asymptopia?
Journal of the Royal Statistical Society, Series B (Methodological), 57:301–337, 1995.

S. C. Douglas and A. Cichocki. Neural networks for blind decorrelationof signals.IEEE Transac-
tions on Signal Processing, 45(11):2829 – 2842, 1997.

269

SÄRELÄ AND VALPOLA

DSS. The DSS MATLAB package. 2004. Available athttp://www.cis.hut.fi/projects/
dss/.

FastICA. The FastICA MATLAB package. 1998. Available athttp://www.cis.hut.fi/
projects/ica/fastica/.

P. F̈oldiák. Forming sparse representations by local anti-hebbian learning.Biological Cybernetics,
64:165 – 170, 1990.

P. F̈oldiák. Learning invariance from transformation sequences.Neural Computation, 3:194–200,
1991.

M. Funaro, E. Oja, and H. Valpola. Independent component analysis for artefact separation in
astrophysical images.Neural Networks, 16(3 – 4):469 – 478, 2003.

M. S. Gazzaniga, editor.The New Cognitive Neurosciences. A Bradford book/MIT Press, 2nd
edition, 2000.

X. Giannakopoulos, J. Karhunen, and E. Oja. Experimental comparisonof neural algorithms for
independent component analysis and blind separation.International Journal of Neural Systems,
9(2):651–656, 1999.

M. Hämäläinen, R. Hari, R. Ilmoniemi, J. Knuutila, and O. V. Lounasmaa.
Magnetoencephalography—theory, instrumentation, and applications to noninvasive stud-
ies of the working human brain.Reviews of Modern Physics, 65:413–497, 1993.

J. Himberg and A. Hyv̈arinen. Icasso: software for investigating the reliability of ica estimates
by clustering and visualization. InProceedings of the IEEE Workshop on Neural Networks for
Signal Processing (NNSP’2003), pages 259–268, Toulouse, France, 2003.

A. Hyvärinen. New approximations of differential entropy for independent component analysis and
projection pursuit. InAdvances in Neural Information Processing 10 (NIPS’98), pages 273–279.
MIT Press, 1998.

A. Hyvärinen. Fast and robust fixed-point algorithms for independent component analysis.IEEE
Transactions on Neural Networks, 10(3):626–634, 1999.

A. Hyvärinen, P. Hoyer, and M. Inki. Topographic independent componentanalysis.Neural Com-
putation, 13(7):1525–1558, 2001a.

A. Hyvärinen, J. Karhunen, and E. Oja.Independent component analysis. Wiley, 2001b.

JADE. The JADE MATLAB package. 1999. Available athttp://www.tsi.enst.fr/
icacentral/Algos/cardoso/.

K. H. Knuth. Bayesian source separation and localization. In A. Mohammad-Djafari, editor,
SPIE’98 Proceedings: Bayesian Inference for Inverse Problems, pages 147–158, San Diego,
USA, 1998.

P. Kuosmanen and J. T. Astola.Fundamentals of nonlinear digital filtering. CRC press, 1997.

270

DENOISING SOURCESEPARATION

K. P. Körding and P. K̈onig. Neurons with two sites of synaptic integration learn invariant represen-
tations.Neural Computation, 13:2823 – 2849, 2001.

H. Lappalainen. Ensemble learning for independent component analysis. In Proceedings of the First
International Workshop on Independent Component Analysis and Signal Separation, (ICA’99),
pages 7–12, Aussois, France, 1999.

D. G. Luenberger.Optimization by Vector Space Methods. John Wiley & Sons, 1969.

W. Maass, T. Natschläger, and H. Markram. Real-time computing without stable states: A new
framework for neural computation based on perturbations.Neural Computation, 14(11):2531 –
2560, 2002.

F. Meinecke, A. Ziehe, M. Kawanabe, and K.-R. Müller. A resampling approach to estimate the sta-
bility of one- and multidimensional independent components.IEEE Transactions on Biomedical
Engineering, 49(12):1514 – 1525, 2002.

J. Miskin and David J. C. MacKay. Ensemble learning for blind source separation. In S. Roberts and
R. Everson, editors,Independent Component Analysis: Principles and Practice, pages 209–233.
Cambridge University Press, 2001.

J. Molgedey and H. G. Schuster. Separation of a mixture of independentsignals using time delayed
correlations.Physical Review Letters, 72:541–557, 1994.

E. Niedermeyer and F. Lopes da Silva, editors.Electroencephalography. Basic principles, clinical
applications, and related fields. Baltimore: Williams & Wilkins, 1993.

E. Oja. Principal components, minor components, and linear neural networks. Neural Networks, 5:
927–935, 1992.

B. A. Olshausen and D. J. Field. Emergence of simple-cell receptive fieldproperties by learning a
sparse code for natural images.Nature, 381:607–609, 1996.

D. B. Percival and W. T. Walden.Spectral Analysis for Physical Applications: Multitaper and
Conventional Univariate Techniques. Cambridge University Press, Cambridge, UK, 1993.

D.-T. Pham and J.-F. Cardoso. Blind separation of instantaneous mixturesof non stationary sources.
IEEE Transactions on Signal Processing, 49:1837–1848, 2001.

K. Raju and T. Ristaniemi. ICA-RAKE switching for jammer cancellation in DS-CDMA array
systems. InProceedings of the IEEE International Symposium on Spread SpectrumTechniques
and Applications (ISSSTA), pages 638 – 642, Prague, September 2002.

R. M. Rangayyan. Biomedical signal analysis: A case-study approach. IEEE Press Series in
Biomedical Engineering, 2002.

J. S̈arel̈a, H. Valpola, R. Viǵario, and E. Oja. Dynamical factor analysis of rhythmic magnetoen-
cephalographic activity. InProceedings of the Third International Conference on Independent
Component Analysis and Signal Separation (ICA2001), pages 451–456, San Diego, USA, 2001.

271

SÄRELÄ AND VALPOLA

J. S̈arel̈a and R. Viǵario. Overlearning in marginal distribution-based ICA: analysis and solutions.
Journal of Machine Learning Research, 4 (Dec):1447–1469, 2003.

B. Scḧolkopf, S. Mika, A. Smola, Gunnar R̈atsch, and K.-R. M̈uller. Kernel PCA pattern recon-
struction via approximate pre-images. InProceedings of the 8th International Conference on
Artificial Neural Networks (ICANN’98), pages 147 – 152, Skövde, 1998.

O. Schwartz and E. P. Simoncelli. Natural signal statistics and sensory gaincontrol. Nature Neuro-
science, 4(8):819 – 825, 2001.

L. Tong, V. Soo, R. Liu, and Y. Huang. Indeterminacy and identifiability ofblind identification.
IEEE Transactions on Circuits and Systems, 38:499–509, 1991.

H. Valpola and P. Pajunen. Fast algorithms for Bayesian independent component analysis. InPro-
ceedings of the Second International Workshop on Independent Component Analysis and Signal
Separation (ICA2000), pages 233–237, Helsinki, Finland, 2000.

H. Valpola, T. Raiko, and J. Karhunen. Building blocks for hierarchical latent variable models.
In Proceedings of the Third International Conference on Independent Component Analysis and
Signal Separation (ICA2001), pages 710–715, San Diego, USA, 2001.

H. Valpola and J. S̈arel̈a. Accurate, fast and stable denoising source separation algorithms. InPro-
ceedings of the Fifth International Conference on Independent Component Analysis and Signal
Separation (ICA2004), pages 64 – 71, Granada, Spain, 2004.

M. Vetterli and J. Kovacevic.Wavelets and subband coding. Prentice-Hall, 1995.

R. Vigário, J. S̈arel̈a, V. Jousm̈aki, M. Hämäläinen, and E. Oja. Independent component approach
to the analysis of EEG and MEG recordings.IEEE Transactions on Biomedical Engineering, 47
(5):589–593, 2000.

V. Vigneron, A. Paraschiv-Ionescu, A. Azancot, O. Sibony, and C. Jutten. Fetal electrocardiogram
extraction based on non-stationary ICA and wavelet denoising. InProceedings of the Seventh
International Symposium on Signal Processing and its Applications (ISSPA2003), Paris, France,
July 2003.

A. J. Viterbi. CDMA : Principles of Spread Spectrum Communication. Wireless Info Networks
Series. Addison-Wesley, 1995.

J. H. Wilkinson.The algebraic eigenvalue problem. Monographs on numerical analysis. Clarendon
press, London, 1965.

L. Wiskott and T. Sejnowski. Slow feature analysis: Unsupervised learning of invariances.Neural
Computation, 14:715 – 770, 2002.

A. Ziehe and K.-R. M̈uller. TDSEP — an effective algorithm for blind separation using time
structure. InProceedings of the 8th International Conference on Artificial Neural Networks
(ICANN’98), pages 675–680, Skövde, Sweden, 1998.

272

Journal of Machine Learning Research 6 (2005) 273–306 Submitted 10/02; Revised 11/04; Published 3/05

Tutorial on Practical Prediction Theory for Classification

John Langford JL@HUNCH.NET

Toyota Technological Institute at Chicago
1427 East 60th Street
Chicago, IL 60637, USA

Editor: Robert Schapire

Abstract
We discuss basic prediction theory and its impact on classification success evaluation, implications
for learning algorithm design, and uses in learning algorithm execution. This tutorial is meant to
be a comprehensive compilation of results which are both theoretically rigorous and quantitatively
useful.

There are two important implications of the results presented here. The first is that common
practices for reporting results in classification should change to use the test set bound. The second
is that train set bounds can sometimes be used to directly motivate learning algorithms.

Keywords: sample complexity bounds, classification, quantitative bounds

1. Introduction

Classifiers are functions which partition a set into two classes (for example,the set of rainy days
and the set of sunny days). Classifiers appear to be the most simple nontrivial decision making
element so their study often has implications for other learning systems. Classifiers are sufficiently
complex that many phenomena observed in machine learning (theoretically or experimentally) can
be observed in the classification setting. Yet, classifiers are simple enough tomake their analysis
easy to understand. This combination of sufficient yet minimal complexity for capturing phenomena
makes the study of classifiers especially fruitful.

The goal of this paper is an introduction to the theory of prediction for classification. Here
“prediction theory” means statements about the future error rate of learned classifiers. A typical
statement has the form, “With probability 1− δ over an i.i.d. draw of some sample, the expected
future error rate of a classifier is bounded byf (δ,error rate on sample)”. These statements are con-
fidence intervals on the error rate of a learned classifier. Many of theseresults have been presented
elsewhere, although the style, tightness, and generality of the presentationare often new here (and
particularly oriented towards practical use). The focus of this tutorial is on those results which are
both theoretically sound and practically useful.

There are several important aspects of learning which the theory here casts light on. Perhaps the
most important of these is the problem of performance reporting for classifiers. Many people use
some form of empirical variance to estimate upper and lower bounds. This is an error-prone practice,
and the test set bound in Section 3 implies a better method by nearly any metric. Hopefully, this
will become common practice.

After discussing the test set bound we cover the Occam’s Razor bound,the simplest train set
bound, which explains (and quantifies) the common phenomenon of overfitting. We also prove that

c©2005 John Langford.

LANGFORD

the Occam’s Razor bound cannot be improved without incorporating extrainformation and apply
the bound to decision trees.

Next, we discuss two train set bounds, the PAC-Bayes bound and the sample compression
bound, which have proved to give practical results for more general classifiers, such as support
vector machines and neural networks. All of the results here should be easily approachable and
understandable. The proofs are simple, and examples are given. Pointers to related work are also
given.

There are some caveats about the scope of this document.

1. All of the results presented here fall in the realm of classical statistics. In particular, all ran-
domizations are over draws of the data, and our results have the form of confidence intervals.

2. This tutorial isnotcomprehensive for prediction theory in general (which would be extremely
difficult due to the scope of the subject). We only focus on those results yielding quantifiably
interesting performance.

3. In particular, other nonquantitative uses of bounds (such as providing indirect motivations for
learning algorithms via constant fitting) do exist. We do not focus on those uses here.

The layout of this document is as follows.

• Section 2 presents the formal model.

• Section 3 presents the test set bound.

• Section 4 presents the Occam’s Razor bound.

• Section 5 presents the PAC-Bayes bound.

• Section 6 presents the sample compression bound.

The formal model and test set bound must be understood in order to appreciate all later results.
There is no particular dependency between the various train set boundswe present.

2. Formal Model

There are many somewhat arbitrary choices of learning model. The one weuse can (at best) be
motivated by its simplicity. Other models such as the online learning model (Kivinenand War-
muth, 1997), PAC learning (Valiant, 1984), and the uniform convergence model (Vapnik and Cher-
vonenkis, 1971) differ in formulation, generality, and in the scope of addressable questions. The
strongest motivation for studying the prediction theory model here is simplicity and corresponding
generality of results. The appendix discusses the connections between various models.

2.1 Basic Quantities

We are concerned with a learning model in which examples of (input, output) pairs come inde-
pendently from some unknown distribution (similar to Shawe-Taylor et al., 1998, and many other
papers). The goal is to find a function capable of predicting the output given the input. There are
several mathematical objects we work with.

274

PRACTICAL PREDICTION THEORY FORCLASSIFICATION

Object Description

X The (arbitrary) space of the input to a classifier
Y = {−1,1} The output of a classification.

D An (unknown) distribution overX×Y
S A sequence of examples drawn independently fromD.
m = |S| the number of examples
c A function mappingX to Y

Table 1: Mathematical objects in the considered model.

There are several distinctions between this model and other (perhaps morefamiliar) models.
There is no mention of a classifier space, because the results do not depend upon a classifier space.
Also, the notion of a distribution onX×Y is strictly more general than the “target concept” model
which assumes that there exists some functionf : X →Y used to generate the label (Valiant, 1984).
In particular we can model noisy learning problems which do not have a particularY value for each
X value. This generalization is essentially “free” in the sense that it does notadd to the complexity
of presenting the results.

It is worth noting that theonly unverifiable assumption we make is that examples are drawn
independently fromD. The strength of all the results which follow rests upon the correctness ofthis
assumption.

Sometimes, we decorate these objects with labels likeStrain (a train set1) or Stest (a test set).
These decorations should always be clear.

Example 1 Weather prediction: Will it rain today or not? In this case X= barometric pressure,
observations of cloud cover or other sensory input and Y= 0 if the prediction is “no rain” and1
otherwise. The distribution D is over sensory inputs and outcomes. The sample set S, might consist
of m= 100(observation, outcome) pairs such as (pressure low, cloudy, rain),(pressure high, cloudy,
not rain), etc. A classifier, c, is any function which predicts “rain” or “not rain” based upon the
observation.

Note that the independence assumption here is not perfectly satisfied although it seems to be
a reasonable approximation for well-separated days. In any application of this theory, it must be
carefully judged whether the independence assumption holds or not.

2.2 Derived Quantities

There are several derived quantities which the results are stated in terms of.

Definition 2.1 (True Error) The true error cD of a classifier c is defined as the probability that the
classifier errs:

cD ≡ Pr
(x,y)∼D

(c(x) 6= y)

under draws from the distribution D.

1. Throughout this tutorial we use the word ’set’ when ’sequence’ is what is actually meant. This usage pattern is
historical.

275

LANGFORD

The true error is sometimes called the “generalization error”. Unfortunately, the true error is not an
observable quantity in our model because the distributionD is unknown. However, there is a related
quantity which is observable.

Definition 2.2 (Empirical Error) Given a sample set S, theempirical error, ĉS is the observed num-
ber of errors:

ĉS≡ m Pr
(x,y)∼S

(c(x) 6= y) =
m

∑
i=1

I(c(xi) 6= yi)

where I() is a function which maps “true” to1 and “false” to 0. Also,Pr(x,y)∼S(...) is a probability
taken with respect to the uniform distribution over the set of examples, S.

The empirical error is sometimes called the “training error”, “test error”, or “observed error” de-
pending on whether it is the error on a training set, test set, or a more general set.

Example 2 (continued) The classifier c which always predicts “not rain” might havean empirical
error of 38out of100examples and an unknown true error rate (which might in fact be0.5).

2.3 Addressable Questions

Given the true errorcD of a classifierc we can precisely describe the distribution of success and
failure on future examples drawn according toD. This quantity is derived from the unknown distri-
butionD, so our effort is directed toward upper and lower bounding the value ofcD for a classifier
c.

The variations in all of the bounds that we present are related to the method of choosing a
classifierc. We cover two types of bounds:

1. Test: Use examples in a test set which were not used in pickingc.

2. Train: Use examples for both choosingc and evaluatingc.

These methods are addressed in the next two sections.
It is worth noting that one question thatcannotbe addressed in this model is “Can learning

occur for my problem?” Extra assumptions (Valiant, 1984; Vapnik and Chervonenkis, 1971) are
inherently necessary.

3. The Test Set Method

The simplest bound arises for the classical technique of usingm fresh examples to evaluate a clas-
sifier. In a statistical setting, this can be viewed as computing a confidence interval for the binomial
distribution as in (Clopper and Pearson, 1934). This section is organizedinto two subsections:

• Subsection 3.1 presents the basic upper bound on the true error rate, handy approximations,
and a lower bound.

• Subsection 3.2 discusses the implications of the test set bound on error reporting practice. A
better method for error reporting is applied to several datasets and the results are shown.

276

PRACTICAL PREDICTION THEORY FORCLASSIFICATION

0

0.1

0.2

0 0.2 0.4 0.6 0.8 1

P
ro

ba
bi

lit
y

Empirical Error Rate

Empirical Error distribution

emp. error
true error

Figure 1: A depiction of the binomial distribution. The cumulative of the binomial isthe area under
the curve up to some point on the horizontal axis.

277

LANGFORD

3.1 The Bound

Before stating the bound, we note a few basic observations which make the results less surprising.
The principal observable quantity is the empirical error ˆcS of a classifier. What is the distribution of
the empirical error for a fixed classifier? For each example, our independence assumption implies
the probability that the classifier makes an error is given by the true error,cD. This can be modeled
by a biased coin flip: heads if you are right and tails if you are wrong.

What is the probability of observingk errors (heads) out ofm examples (coin flips)? This is a
very familiar distribution in statistics called the binomial and so it should not be surprising that the
bounds presented here are fundamentally dependent upon the cumulative distribution of a binomial.
For the following definitionB(p) is the distribution of a Bernoulli coin flip.

Definition 3.1 (Binomial Tail Distribution)

Bin(m,k,cD) ≡ Pr
Z1,...Zm∼B(cD)m

(

m

∑
i=1

Zi ≤ k

)

=
k

∑
j=0

(

m
j

)

c j
D(1−cD)m− j

equals the probability that m examples (coins) with error rate (bias) cD produce k or fewer errors
(heads).

A depiction of the binomial distribution is given in Figure 1.

For the learning problem, we always choose a bias ofcD andXi =error or not on theith example.
With these definitions, we can interpret the binomial tail as the probability of an empirical error less
than or equal tok.

Since we are interested in calculating a bound on the true error given a confidenceδ, and an
empirical error ˆcS, it is handy to define the inversion of a binomial tail.

Definition 3.2 (Binomial Tail Inversion)

Bin(m,k,δ) ≡ max
p

{p : Bin(m,k, p) ≥ δ}

equals the largest true error such that the probability of observing k or more “heads” is at leastδ.

For intuition’s sake, the quantityBin(m,k,δ) obeys the following inequalities (some of which we
prove later).

1. Bin(m,k,δ) ≤ k
m +

√

ln 1
δ

2m

2. Bin(m,k,δ) ≤ k
m +

√

2 k
m ln 1

δ
m +

2ln 1
δ

m

3. Bin(m,0,δ) ≤ ln 1
δ

m

With these definitions finished, the results are all very simple statements.

Theorem 3.3 (Test Set Bound) For all D, for all classifiers c, for allδ ∈ (0,1]

Pr
S∼Dm

(

cD ≤ Bin(m, ĉS,δ)
)

≥ 1−δ.

278

PRACTICAL PREDICTION THEORY FORCLASSIFICATION

0

0.1

0.2

0 0.2 0.4 0.6 0.8 1

P
ro

ba
bi

lit
y

Empirical Error Rate

Possible Error distributions

0

0.05

0.1

0.15

0.2

0 0.2 0.4 0.6 0.8 1

P
ro

ba
bi

lit
y

Empirical Error Rate

Observation and Possible Binomials

empirical error

0

0.05

0.1

0.15

0.2

0 0.2 0.4 0.6 0.8 1

P
ro

ba
bi

lit
y

Empirical Error Rate

Observation and Consistent Binomials

empirical error

0

0.05

0.1

0.15

0.2

0 0.2 0.4 0.6 0.8 1

P
ro

ba
bi

lit
y

Empirical Error Rate

True Error Bound

empirical error
true error bound

Figure 2: A graphical depiction of the test set bound. The first graph depicts several possible bino-
mials given their true error rates. The second depicts several binomials, each with a tail
cut. The third figure shows the binomials consistent with the tail cut and observed test
error. The worst case over all true error rates is the consistent binomial with the largest
bias.

Note thatm in this equation ismtest= |Stest|, the size of the test set.

Proof (pictorially in 2) The proof is just a simple identification with the binomial. For any distribu-
tion over(x,y) pairs and any classifierc, there exists some probabilitycD that the classifier predicts
incorrectly. We can regard this event as a coin flip with biascD. Since each example is picked
independently, the distribution of the empirical error is a binomial distribution.

Whatever our true errorcD is, with probability 1− δ the observation ˆcS will not fall into a tail
of sizeδ. Assuming (correctly with probability 1−δ) that the empirical error is not in the binomial
tail, we can constrain (and therefore bound) the value of the true errorcD.

The test set bound is, essentially, perfectly tight. For any classifier with a sufficiently large true
error, the bound is violated exactly aδ portion of the time.

279

LANGFORD

 1e-200
 1e-180
 1e-160
 1e-140
 1e-120
 1e-100
 1e-80
 1e-60
 1e-40
 1e-20

 1

 0 0.2 0.4 0.6 0.8 1

f(
x)

x

Two Functions

(1-x)^100
e^(-x*100)

Figure 3: A graph suggestinge−εm ≥ (1− ε)m.

3.1.1 APPROXIMATIONS

There are several immediate corollaries of the test set bound (3.3) which are more convenient when
a computer is not handy. The first corollary applies to the limited “realizable” setting where you
happen to observe 0 test errors.

Corollary 3.4 (Realizable Test Set Bound) For all D, For all classifiers c, for allδ ∈ (0,1]

Pr
S∼Dm

(

ĉS = 0⇒ cD ≤
ln 1

δ
m

)

≥ 1−δ.

Proof Specializing the test set bound (Theorem 3.3) to the zero empirical error case, we get

Bin(m,0,ε) = (1− ε)m ≤ e−εm.

Setting this equal toδ and solving forε gives us the result. The last inequality can be most simply
motivated by comparing graphs as in figure 3.

Approximations which hold for arbitrary (nonzero) error rates rely upon the Chernoff bound which
we state next, for completeness. For this bound (and it’s later applications) we overload the defini-
tion of KL-divergence so it applies to twop,q∈ [0,1] variables.

Definition 3.5 (KL-divergence overload) KL+ (q||p) = qlog q
p + (1−q) log 1−q

1−p for p > q and 0
otherwise.

280

PRACTICAL PREDICTION THEORY FORCLASSIFICATION

Lemma 3.6 (Relative Entropy Chernoff Bound)2 For k
m < p:

Bin(m,k, p) ≤ e−mKL+(k
m||p).

Proof (Originally from (Chernoff, 1952). The proof here is based on (Seung).) For allλ > 0, we
have

Bin(m,k, p) = Pr
Xm∼pm

(

m

∑
i=1

Xi ≤ k

)

= Pr
Xm∼pm

(

e−mλ 1
m ∑m

i=1 Xi ≥ e−mλ k
m

)

.

Using Markov’s inequality (X ≥ 0, EX = µ, ⇒ Pr(X ≥ δ) ≤ µ
δ), this must be less than or equal to

EXm∼pme−λ∑m
i=1 Xi

e−λk
.

Using independence, this expression is equal to

eλk
(

pe−λ +(1− p)
)m

,

and rewriting, we get
em f(λ),

where f (λ) = λ k
m + ln

(

pe−λ +1− p
)

.
λ is a free parameter which can be optimized to find the tightest possible bound. To find the

optimal value, findλ∗ so thatf ′(λ∗) = 0.

0 = f ′(λ∗) =
k
m
− pe−λ∗

pe−λ∗ +1− p

⇒
k
m

p

(

pe−λ∗
+1− p

)

= e−λ∗

⇒
k
m

p
(1− p) =

(

1− k
m

)

e−λ∗

⇒ eλ∗
=

p
(

1− k
m

)

k
m(1− p)

,

which is valid forp > k
m. Using this, we get

f (λ∗) =
k
m

ln
p
(

1− k
m

)

k
m(1− p)

+ ln

(

1− p

1− k
m

)

=
k
m

ln
p
k
m

+

(

1− k
m

)

ln

(

1− p

1− k
m

)

= −KL

(

k
m
||p
)

.

Using the Chernoff bound, we can loosen the test set bound to achieve amore analytic form.

2. The closely related Hoeffding bound (Hoeffding, 1963) makes the same statement for sums of[0,1] random variables.

281

LANGFORD

Corollary 3.7 (Agnostic Test Set Bound) For all D, for all classifiers c, for allδ ∈ (0,1]

Pr
S∼Dm

(

KL

(

ĉS

m
||cD

)

≤
ln 1

δ
m

)

≥ 1−δ.

Proof Loosening the test set bound (theorem 3.3) with the Chernoff approximation for k
m < cD we

get

Bin(m,k,cD) ≤ e−mKL(k
m||cD).

Setting this equal toδ, and solving forε gives the result.

The agnostic test set bound can be further loosened by bounding the value of KL(q||p).

Corollary 3.8 (Agnostic Test Set Bound II) For all classifiers c, for allδ ∈ (0,1]

Pr
S∼Dm



cD ≤ ĉS

m
+

√

ln 1
δ

2m



≥ 1−δ.

Proof Use the approximation

KL

(

k
m
||cD

)

≥ 2(cD − k
m

)2

with the Chernoff bound and test set bounds to get the result.

The differences between the agnostic and realizable case are fundamentally related to the decrease in
the variance of a binomial as the bias (i.e. true error) approaches 0. Notethat this implies using the
exact binomial tail calculation can result infunctional(rather than merely constant) improvements
on the above corollary.

3.1.2 A TEST SET LOWER BOUND

The true error can be lower bounded using a symmetric application of the sametechniques.

Theorem 3.9 (Test Set Lower Bound) For all classifiers, c, for allδ ∈ (0,1]

Pr
S∼Dm

(

cD ≥ min
p

{p : 1−Bin(m, ĉS, p) ≥ δ}
)

≥ 1−δ.

The proof is completely symmetric. Note that both bounds hold with probability 1− 2δ since
Pr(A or B) ≤ Pr(A) + Pr(B). This is particularly convenient when the square-root version of the
Chernoff approximation is used in both directions to get

∀c Pr
S∼Dm





∣

∣

∣

∣

cD − ĉS

m

∣

∣

∣

∣

≤

√

ln 2
δ

2m



≥ 1−δ.

Example 3 (continued) letδ = 0.1. Using the square root Chernoff bound withĉS = 38 out of
100examples, we get the confidence interval cD ∈ [0.26,0.50]. Using an exact calculation for the
binomial tail, we get cD ∈ [0.30,0.47]. In general, as the observed error moves toward0, the exact
calculation provides a tighter confidence interval than the agnostic approximation.

282

PRACTICAL PREDICTION THEORY FORCLASSIFICATION

3.1.3 THE STATE OF THE ART

Although the test set bound is very well understood, the same cannot be said of other testing meth-
ods. Only weak general results in this model are known for some variants of cross validation (see
Blum et al., 1999). For specific learning algorithms (such as nearest neighbor), stronger results are
known (see Devroye et al., 1996). There are a wide range of essentially unanalyzed methods and a
successful analysis seems particularly tricky although very worthwhile if completed.

3.2 Test Set Bound Implications

There are some common practices in machine learning which can be improved byapplication of the
test set bound. When attempting to calculate a confidence interval on the trueerror rate given the
test set, many people follow a standard statistical prescription:

1. Calculate the empirical mean ˆµ=
ĉStest

m = 1
m ∑m

i=1 I(h(xi) 6= yi).

2. Calculate the empirical varianceσ̂2 = 1
m−1 ∑m

i=1(I(c(xi) = yi)− µ̂)2.

3. Pretend that the distribution is Gaussian with the above variance and construct a confidence
interval by cutting the tails of the Gaussian cumulative distribution at the 2σ̂ (or some other)
point.

This approach is motivated by the fact that for anyfixed true error rate, the distribution of the
observed accuracy behaves like a Gaussianasymptotically. Here, asymptotically means “in the
limit as the number of test examples goes to infinity”.

The problem with this approach is that it leads to fundamentally misleading resultsas shown in
Figure 4. To construct this figure, a collection of discrete (aka “nominal”)feature datasets from the
UCI machine learning database were split into training and test sets. A decision tree classifier was
learned on each training set and then evaluated on the held-out test set.

This “misleading” is both pessimistic and (much worse) optimistic. The pessimism canbe seen
by intervals with boundaries less than 0 or greater than 1 and the optimism by observing what
happens when the test error is 0. When we observe perfect classification, our confidence interval
shouldnot have size 0 for any finitem.

The basic problem with this approach is that the binomial distribution is not similar toa Gaussian
when the error rate is near 0. Since our goal is finding a classifier with a small true error, it is
essential that the means we use to evaluate classifiers work in this regime. Thetest set bound can
satisfy this requirement (and, in fact, operates well for all true error regimes).

1. The test set bound approach isneveroptimistic.

2. The test set bound based confidence interval always returns an upper and lower bound in
[0,1].

The 2̂σ method is a relic of times when computational effort was expensive. It is nowsimple and
easy to calculate a bound based upon the cumulative distribution of the binomial(see Langford).

The test set bound can be thought of as a game where a “Learner” attempts to convince a
reasonable “Verifier” of the amount of learning which has occurred. Pictorially we can represent
this as in Figure 5.

283

LANGFORD

0

0.25

0.5

0.75

1

1.25

1.5

ad
ul

t
sh

ro
om

au
di

o
ba

la
nc

e
ca

r
vo

te
s

kr
kp

lu
ng

nu
rs

er
y

po
st

op
sh

ut
tle

so
yb

ea
n

ye
llo

w

T
ru

e
er

ro
r

(b
ou

nd
)

Learning Problem

Holdout vs. 2 Sigma Bound

bound
error

Figure 4: This is a graph of the confidence intervals implied by the test set bound (theorem 3.3) on
the left, and the approximate confidence intervals implied using the common two sigma
rule motivated by asymptotic normality on the right. The upper bounds of the testset
bound haveδ = 0.025 failure rate, so as to be comparable with the 2-sigma approach.
The test set bound is better behaved as the confidence interval is confined to the interval
[0,1] and is never over-optimistic.

284

PRACTICAL PREDICTION THEORY FORCLASSIFICATION

Verifier Learner

Test Set Bound

Evaluate Bound

Draw Examples

δ

Choose cclassifier c

Figure 5: For this diagram “increasing time” is pointing downwards. The onlyrequirement for
applying this bound is that the learner must commit to a classifier without knowledge
of the test examples. A similar diagram for train set bounds is presented later(and is
somewhat more complicated). We can think of the bound as a technique by which the
“Learner” can convince the “Verifier” that learning has occurred (and the degree to which
it has occurred). Each of the proofs can be thought of as a communication protocol for
an interactive proof of learning by the Learner.

285

LANGFORD

4. The Occam’s Razor Bound

Given that the simple test set bound works well, why do we need to engage in further work? There
is one serious drawback to the test set technique—it requiresmtestotherwise unused examples. An
extramtestexamples for the training set decreases the true error of the learned hypothesis to 0 from
0.5 for some natural learning algorithm/learning problem pairs. This loss of performance due to
holding out examples is very severe.

There is another reason why training set based bounds are important. Many learning algorithms
implicitly assume that the train set accuracy “behaves like” the true error in choosing the hypothesis.
With an inadequate number of training examples, there may be very little relationship between the
behavior of the train set accuracy and the true error. Training set based bounds can be usedin the
training algorithm and can provide insight into the learning problem itself.

This section is organized into three subsections.

1. Subsection 4.1 states and proves the Occam’s Razor bound.

2. Subsection 4.2 proves that the Occam’s Razor bound cannot be improved in general.

3. Subsection 4.3 discusses implications of the Occam’s Razor bound and shows results for its
application.

4.1 The Occam’s Razor Bound

This Occam’s Razor bound (Blumer et al., 1987; McAllester, 1999) in more approximate forms has
appeared elsewhere. We use “prior” (with quotes) here because it is an arbitrary probability distri-
bution over classifiers and not necessarily a Bayesian prior. The distinction is important, because
the theory holds regardless of whether or not a Bayesian prior is used.

Theorem 4.1 (Occam’s Razor Bound) For all D, for all “priors” P(c) over the classifiers c, for all
δ ∈ (0,1]:

Pr
S∼Dm

(

∀c : cD ≤ Bin(m, ĉS,δP(c))
)

≥ 1−δ

The application of the Occam’s Razor bound is somewhat more complicated thanthe application
of the test set bound. Pictorially, the protocol for bound application is given in Figure 6. It is very
important to notice that the “prior”P(c) must be selectedbeforeseeing the training examples.
Proof (pictorially in Figure 7) First, note that ifP(c) = 0, thenBin(m, ĉS,0) = 1 and the bound is
always valid. The remainder of this proof applies to the countable set ofc satisfyingP(c) > 0.

The proof starts with the test set bound:

∀c Pr
S∼Dm

(

cD ≤ Bin(m, ĉS,δP(c))
)

≥ 1−δP(c)

Negating this statement, we get

∀c Pr
S∼Dm

(

cD > Bin(m, ĉS,δP(c))
)

< δP(c)

then, we apply the union bound in a nonuniform manner. The union bound says that Pr(A or B) ≤
Pr(A)+ Pr(B). Applying the union bound to every classifier with a positive measure givesa total
probability of failure of

∑
c:P(c)>0

δP(c) = δ ∑
c:P(c)>0

P(c) = δ

286

PRACTICAL PREDICTION THEORY FORCLASSIFICATION

Verifier Learner

m examples

Draw Training
Examples

Evaluate Bound

Classifier, c Choose c

"Prior", P(c)

δ
Occam’s Razor Bound

Figure 6: In order to apply the Occam’s Razor bound it is necessary thatthe choice of “prior” be
made before seeing any training examples. Then, the bound is calculated based upon the
chosen classifier. Note that itis “legal” to chose the classifier based upon the priorP(c)
as well as the empirical error ˆcS.

287

LANGFORD

 0

 0.1

 0 0.2 0.4 0.6 0.8 1

P
ro

ba
bi

lit
y

Empirical Error Rate

Occam’s Razor Tail Cuts

cut

 0

 0.1

 0.2

 0 0.2 0.4 0.6 0.8 1

P
ro

ba
bi

lit
y

Empirical Error Rate

Occam Bound Calculation

empirical error

 0

 0.1

 0.2

 0 0.2 0.4 0.6 0.8 1

P
ro

ba
bi

lit
y

Empirical Error Rate

Consistent Error Rates

empirical error

 0

 0.1

 0.2

 0 0.2 0.4 0.6 0.8 1

P
ro

ba
bi

lit
y

Empirical Error Rate

True Error Rate Bound

empirical error
true error bound

Figure 7: The sequence of pictures is the pictorial representation of the proof of the Occam’s Razor
Bound. The first figure shows a set of classifiers, each with a tail cut of some varying
depth. The second picture shows an observed training error and the possible binomial
distributions for a chosen classifier. The third picture shows the true errors which are
consistent with the observation and the tail cuts. The fourth picture shows the true error
bound.

which implies
Pr

S∼Dm

(

∃c : cD > Bin(m, ĉS,δP(c))
)

< δ.

Negating this again completes the proof.

4.1.1 OCCAM’ S RAZOR COROLLARIES

Just as with the test set bound, we can relax the Occam’s Razor bound (Theorem 4.1) with the
Chernoff approximations to get a somewhat more tractable expression.

Corollary 4.2 (Chernoff Occam’s Razor Bound) For all D, for all “priors” P(c) over classifiers,
for all δ ∈ (0,1]:

Pr
S∼Dm



∀c : cD ≤ ĉS

m
+

√

ln 1
P(c) + ln 1

δ

2m



≥ 1−δ

Proof Approximate the binomial tail with the Chernoff Bound (lemma 3.6).

288

PRACTICAL PREDICTION THEORY FORCLASSIFICATION

Many people are more familiar with a degenerate form of this bound whereP(c) = 1
|H| andH is

some set of classifiers. In that case, simply replace ln1
P(c) with ln |H|. The form presented here is

both more general and necessary if the bound is to be used in practice.
Other corollaries as in Section 3.1.1 exist for the Occam’s Razor bound. Ingeneral, just substi-

tuteδ → δP(c).

4.1.2 OCCAM’ S RAZOR LOWER BOUND

Just as for the test set bound, a lower bound of the same form applies.

Theorem 4.3 (Occam’s Razor Lower Bound) For all D, for all “priors” P(c) over the classifiers,
c, for all δ ∈ (0,1]:

Pr
S∼Dm

(

∀c : cD ≥ min
p
{p : 1−Bin(m, ĉS, p) ≥ δP(c)}

)

≥ 1−δ.

Example 4 (continued) Suppose that instead of having100 test examples, we had100 train ex-
amples. Also suppose that before seeing the train examples, we committed toP(c) = 0.1 for c the
constant classifier which predicts “no rain”. Then, the Chernoff approximations of the upper and
lower bound give the interval, cD ∈ [0.22,0.54]. With an exact calculation, we get cD ∈ [0.26,0.51].

4.1.3 THE STATE OF THE ART

A very large amount of work has been done on train set bounds. In addition to those included here,
there are:

1. Reinterpretations of uniform convergence (Vapnik and Chervonenkis, 1971) results for con-
tinuously parameterized classifiers.

2. Reinterpretations of PAC convergence (Valiant, 1984) results.

3. Shell bounds (Langford and McAllester, 2000) which take advantage of the distribution of
true error rates on classifiers.

4. Train and test bounds (Langford, 2002) which combine train set andtest set bounds.

5. (Local) Rademacher complexity (Bartlett et al., 2004) results which take advantage of the
error geometry of nearby classifiers.

... and many other results.
Of this large amount of work only a small fraction has been shown to be useful on real-world

learning algorithm/learning problem pairs. The looseness of train set based bounds often precludes
analytical use.

4.2 The Occam’s Razor Bound is Sometimes Tight

The question of tightness for train set bounds is important to address, as many of them have been
extremely loose. The simplest method to address this tightness is constructive:exhibit a learning
problem/algorithm pair for which the bound is almost achieved. For the test set bound, this is trivial

289

LANGFORD

as any classifier with a large enough true error will achieve the bound. For the train set bound, this
is not so trivial.

How tight is the Occam’s Razor bound (4.1)? The answer issometimestight. In particular, we
can exhibit a set of learning problems where the Occam’s Razor bound can not be made significantly
tighter as a function of the observables,m, δ, P(c), andĉS. After fixing the value of these quantities
we construct a learning problem exhibiting this near equivalence to the Occam’s Razor bound.

Theorem 4.4 (Occam’s Razor tightness) For all P(c), m, k,δ there exists a learning problem D and
algorithm such that:

Pr
S∼Dm

(

∃c : ĉS≤ k and cD ≥ Bin(m, ĉS,δP(c))
)

≥ δ−δ2.

Furthermore, if c∗ is the classifier with minimal training error, then:

Pr
S∼Dm

(

c∗D ≥ Bin(m, ĉ∗S,δP(c))
)

≥ δ−δ2.

Intuitively, this theorem implies that we can not improve significantly on the Occam’s Razor bound
(Theorem 4.1) without using extra information about our learning problem.
Proof The proof is constructive: we create a learning problem on which large deviations are likely.
We start with a priorP(c), probability of errorδ, m, and a targeted empirical error number,k. For
succinctness we assume thatP(c) has support on a finite set of sizen.

To define the learning problem, let:X = {0,1}n andY = {0,1}.
The distributionD can be drawn by first selectingY with a single unbiased coin flip, and then

choosing theith component of the vectorX independently, Pr((X1, ...,Xn)|Y) = Πn
i=1Pr(Xi |Y) . The

individual components are chosen so Pr(Xi = Y|Y) = Bin(m,k,δP(c)).
The classifiers we consider just use one feature to make their classification: ci(x) = xi . The true

error of these classifiers is given by:cD = Bin(m,k,δP(c)).
This particular choice of true errors implies that if any classifier has a too-small train error, then

the classifier with minimal train error must have a too-small train error.
Using this learning problem, we know that:

∀c,∀δ ∈ (0,1] : Pr
S∼Dm

(

cD ≥ Bin(m, ĉS,δP(c))
)

= δP(c)

(negation)
⇒∀c,∀δ ∈ (0,1] : Pr

S∼Dm

(

cD < Bin(m, ĉS,δP(c))
)

= 1−δP(c)

(independence)

⇒∀δ ∈ (0,1] : Pr
S∼Dm

(

∀c cD < Bin(m, ĉS,δP(c))
)

< ∏
c

(1−δP(c))

(negation)

⇒∀δ ∈ (0,1] : Pr
S∼Dm

(

∃c cD ≥ Bin(m, ĉS,δP(c))
)

≥ 1−∏
c

(1−δP(c))

=
n

∑
i=1

δP(ci)∏
j<i

(1−δP(c j)) ≥
n

∑
i=1

δP(ci)(1−δ) = δ−δ2

290

PRACTICAL PREDICTION THEORY FORCLASSIFICATION

0

0.25

0.5

0.75

1

ad
ul

t
sh

ro
om

au
di

o
ba

la
nc

e
ca

r
vo

te
s

kr
kp

lu
ng

nu
rs

er
y

po
st

op
sh

ut
tle

so
yb

ea
n

ye
llo

w

T
ru

e
er

ro
r

(b
ou

nd
)

Learning Problem

holdout bound vs. micro bound

Figure 8: This is a plot comparing confidence intervals built based upon thetest set bound (Theorem
3.3) with an 80%/20% train/test split on the left and the Occam’s Razor bound (Theorem
4.1) with all data in the training set on the right. The Occam’s razor bound is sometimes
superior on the smaller data sets and always nonvacuous (in contrast to many other train
set bounds).

where the last inequality follows from(1−a)(1−b) ≥ 1−a−b for a,b∈ [0,1].

The lower bound theorem implies that we can not improve an Occam’s Razor like statement. How-
ever, it is important to note that large improvements are possible if we use othersources of infor-
mation. To see this, just note the case where every single classifier happens to be the same. In
this case the “right” bound would the be thetestset bound, rather than the Occam’s Razor bound.
The PAC-Bayes bound and the sample compression bound presented in thenext sections use other
sources of information. Another common source of information is specialization to classifiers of
some specific sort.

4.3 Occam’s Razor Bound Implications

The Occam’s Razor bound is strongly related to compression. In particular, for any self-terminating
description language,d(c), we can associate a “prior”P(c)= 2−|d(c)| with the property that∑cP(c)≤
1. Consequently, short description length classifiers tend to have a tighterconvergence and the
penalty term, ln 1

P(c) is the number of “nats” (bits base e). For any language fixed before seeing the
training sequence, classifiers with shorter description lengths have tighterbounds on the true error
rate.

291

LANGFORD

One particularly useful description language to consider is the execution trace of a learning
algorithm. If we carefully note the sequence of data-dependent choiceswhich a learning algorithm
makes, then the output classifier can be specified by a sequence such as“second choice, third choice,
first choice, etc....” This is the idea behind microchoice bounds (Langfordand Blum, 1999). Results
for this approach are reported in Figure 8 and are strong enough to actas an empirical existence
proof that Occam’s Razor bounds can be made tight enough for usefulapplication.

5. PAC-Bayes Bound

The PAC-Bayes bound (McAllester, 1999) is particularly exciting because it can provide quantita-
tively useful results for classifiers withreal valuedparameters. This includes such commonly used
classifiers as support vector machines and neural networks.3 This section is divided into three parts:

1. Subsection 5.1 states and proves the PAC-Bayes Bound.

2. Subsection 5.2 shows that the PAC-Bayes Bound is nearly as tight as possible given the ob-
servations.

3. Subsection 5.3 discusses results from the application of the PAC-Bayesbound to support
vector machines.

5.1 The PAC-Bayes Bound

The PAC-Bayes bound has been improved by tightening (Langford and Seeger, 2001) and then
with a much simpler proof (Seeger, 2002) since it was originally stated. The statement and proof
presented here incorporate these improvements and improve on them slightly.

The PAC-Bayes bound is dependent upon two derived quantities, an average true error:

QD ≡ Ec∼QcD

and an average train error rate:

Q̂S≡ Ec∼Q
ĉS

m
.

These quantities can be interpreted as the train error rate and true error of the meta-classifier which
chooses a classifier according toQ every time a classification is made. If we refer to this meta-
classifier asQ, the notation for error rates is consistent with our earlier notation.

The “interactive proof of learning” viewpoint of the PAC-Bayes boundis shown in Figure 9. It is
essentially the same as for the Occam’s Razor bound except for the commitmentto the metaclassifier
Q rather than the classifierc.

Theorem 5.1 (PAC-Bayes Bound) For all D, for all “priors” P(c) over the classifiers c, for all
δ ∈ (0,1]:

Pr
S∼Dm

(

∀Q(c) : KL+

(

Q̂S||QD
)

≤
KL(Q||P)+ ln m+1

δ
m

)

≥ 1−δ

where KL(Q||P) = Ec∼Q ln Q(c)
P(c) is the KL-divergence between Q and P.

3. There is a caveat here—the bound only applies to stochastic versions of the classifiers. However, the probability that
the stochastic classifier differs from the classifier can be made very small.

292

PRACTICAL PREDICTION THEORY FORCLASSIFICATION

Verifier Learner

m examples

Draw Training

Examples

Evaluate Bound

PAC−Bayes Bound

"Prior", P(c)

"Posterior", Q(c) Choose Q(c)

δ

Figure 9: The “interactive proof of learning” associated with the PAC-Bayes bound. The figure is
the same as for the Occam’s razor bound, except that instead of committing to asingle
classifier, the PAC-Bayes bound applies to any distribution over classifiers.

Note that the PAC-Bayes bound applies to anydistributionover classifiers. WhenQ is concentrated
on one classifier, we have KL(Q||P) = ln 1

P(c) , just as in the Occam’s razor bound,4 with the only

distinction being the additiveln(m+1)
m term. It is somewhat surprising that the bound holds forevery

distributionQ with only the slight worsening byln(m+1)
m .

Since the KL-divergence applies to distributions over continuous valued parameters, the PAC-
Bayes bound can be nontrivially tight in this setting as well. This fact is used inthe application
section.

We first state a couple simple lemmas that are handy in the proof. The intuition behind this
lemma is that the expected probability of an event is not too small.

Lemma 5.2 For all D, for all P(c), for all δ ∈ (0,1]:

Pr
S∼Dm

(

Ec∼P
1

PrS′∼Dm (ĉS = ĉS′)
≤ m+1

δ

)

≥ 1−δ.

Proof Note that:

∀c ES∼Dm
1

PrS′∼Dm (ĉS = ĉS′)
= ∑

k
m

Pr
S∼Dm

(ĉS = k)
1

PrS′∼Dm (ĉS′ = k)
= m+1.

Taking the expectation over classifiers according toP and switching the order of expectation, we
get

4. As weakened with the relative entropy Chernoff bound (Lemma 3.6)on the binomial.

293

LANGFORD

ES∼DmEc∼P
1

PrS′∼Dm (ĉS = ĉS′)
= m+1

and using the Markov inequality (X ≥ 0, EX = µ, ⇒ Pr(X > µ
δ) < δ), we get

∀P Pr
S∼Dm

(

Ec∼P
1

PrS′∼Dm (ĉS = ĉS′)
>

m+1
δ

)

< δ.

The next lemma shows that a certain expectation is bounded by the Kullback-Leibler distance be-
tween two coin flips, just as for the relative entropy Chernoff bound (Lemma 3.6).

Lemma 5.3 Fix all example sequences S. For all Q(c):

Ec∼Q ln 1
PrS′∼Dm(ĉS=ĉs′)

m
≥ KL(Q̂S||QD).

Proof
Ec∼Q ln 1

PrS′∼Dm(ĉS=ĉs′)

m
=

1
m

Ec∼Q ln
1

(

m
ĉS

)

cĉS
D (1−cD)m−ĉS

≥ 1
m

Ec∼Q ln
1

∑ĉS
k=0

(

m
k

)

ck
D(1−cD)m−k

≥ Ec∼QKL

(

ĉS

m
||cD

)

where the last inequality follows from the relative entropy Chernoff bound. Since ∂2

∂p∂qKL(q||p) =

− 1
p − 1

1−p < 0 the function is concave in both arguments. Jensen’s inequality (f (x,y) concave
⇒ E f(x,y) ≥ f (Ex,Ey)) gives us

≥ KL(Ec∼QĉS||Ec∼QcD),

which completes the proof.

With these two lemmas, the PAC-Bayes theorem is easy to prove.
Proof (Of the PAC-Bayes theorem) Fix a training setS. Let

PG(c) =
1

PrS′∼Dm (ĉS′ = ĉS)Ed∼P
1

PrS′∼Dm(d̂S=d̂S′)

P(c).

PG(c) is a normalized distribution because it has the formac
Eac

P(c) whereP(c) is a distribution.

⇒ 0≤ KL(Q||PG) = Ec∼Q ln

[

Q(c)
P(c)

Pr
S′∼Dm

(ĉS′ = ĉS)Ed∼P
1

PrS′∼Dm

(

d̂S = d̂S′
)

]

= KL(Q||P)−Ec∼Q ln
1

PrS′∼Dm (ĉS′ = ĉS)
+ lnEd∼P

1

PrS′∼Dm

(

d̂S = d̂S′
)

294

PRACTICAL PREDICTION THEORY FORCLASSIFICATION

⇒ Ec∼Q ln
1

PrS′∼Dm (ĉS′ = ĉS)
≤ KL(Q||P)+ lnEd∼P

1

PrS′∼Dm

(

d̂S = d̂S′
) .

Applying lemma 5.3 on the left hand term we get

mKL(Q̂S||QD) ≤ KL(Q||P)+ lnEd∼P
1

PrS′∼Dm

(

d̂S = d̂S′
) .

This holds for allS. Applying Lemma 5.2 which randomizes overS, we get the theorem.

5.2 The PAC-Bayes Bound is Sometimes Tight

Since the PAC-Bayes bound is (almost) a generalization of the Occam’s Razor bound, the tightness
result for Occam’s Razor also applies to PAC-Bayes bounds.

5.3 Application of the PAC-Bayes Bound

Applying the PAC-Bayes bound requires specialization (Langford and Shawe-Taylor, 2002). Here,
we specialize to classifiers of the form

c(x) = sign(~w·~x) .

Note that via the kernel trick, support vector machines also have this form.
The specialization is naturally expressed in terms of a few derived quantities:

1. The cumulative distribution of a Gaussian. LetF̄(x) =
R ∞

x
1√
2πe−x2/2. Here we usēF rather

thanF to denote the fact that we integrate fromx to ∞ rather than−∞ to x.

2. A “posterior” distributionQ(~w,µ) which isN(µ,1) for someµ > 0 in the direction of~w and
N(0,1) in all perpendicular directions.

3. The normalized margin of the examples

γ(~x,y) =
y~w ·~x

||~w||||~x|| .

4. A stochastic error rate,̂Q(~w,µ)S = E~x,y∼SF̄ (µγ(~x,y)) .

This last quantity in particular is very important to understand. Consider the case asµ approaches
infinity. When the margin is negative (indicating an incorrect classification),F̄ (µγ(~x,y)) approaches
1. When the margin is positivēF (µγ(~x,y)) approaches 0. Thus,̂Q(~w,µ)S is a softened form of the
empirical error ˆcS which takes into account the margin.

Corollary 5.4 (PAC-Bayes Margin Bound) For all distributions D, for allδ ∈ (0,1], we have

Pr
S∼Dm

(

∀~w,µ : KL
(

Q̂(~w,µ)S||Q(~w,µ)D
)

≤
µ2

2 + ln m+1
δ

m

)

≥ 1−δ.

295

LANGFORD

Proof The proof is very simple. We just chose the priorP= N(0,1)n and work out the implications.
Since the Gaussian distribution is the same in every direction, we can reorientthe coordinate

system of the prior to have one dimension parallel tow. Since the draws in the parallel and perpen-
dicular directions are independent, we have

KL(Q||P) = KL(Q⊥||P⊥)+KL(N(µ,1)||N(0,1))

=
µ2

2

as required.
All that remains is calculating the stochastic error rateQ̂(~w,µ)S. Fix a particular example(~x,y).

This example has a natural decomposition~x =~x|| +~x⊥ into a component~x|| parallel to the weight
vector~w and a component~x⊥ perpendicular to the weight vector.

To classify, we draw weight vector~w
′

from Q̂(~w,µ). This ~w
′

consists of three components,
~w

′
= ~w

′
|| + ~w

′
⊥ + ~w

′
⊥⊥. Here~w

′
|| ∼ N(µ,1) is parallel to the original weight vector,~w

′
⊥ ∼ N(0,1)

which is parallel to~x⊥ and~w
′
⊥⊥ is perpendicular to both~w and~x. We have

Q̂(~w,µ)S = E~x,y∼S,~w′∼Q(~w,µ)I
(

y 6= sign
(

~w
′ ·~x
))

= E~x,y∼S,~w′∼Q(~w,µ)I (y~w ·~x≤ 0) .

If we let w
′
|| = ||~w′

||||, w
′
⊥ = ||~w′

⊥||, x|| = ||~x||||, andx⊥ = ||~x⊥||, and assume (without loss of gener-
ality) thaty = 1 we get

= E~x,y∼S,w
′
||∼N(µ,1),w

′
⊥∼N(0,1)I

(

y(w
′
||x|| +w

′
⊥x⊥) ≤ 0

)

= E~x,y∼SEw
′
||∼N(µ,1)Ew

′
⊥∼N(0,1)I

(

y(w
′
||x|| +w

′
⊥x⊥) ≤ 0

)

= E~x,y∼SEz′∼N(0,1)Ew
′
⊥∼N(0,1)I

(

yµ≤−yz
′ −yw

′
⊥

x⊥
x||

)

.

Using the symmetry of the Gaussian, this is:

= E~x,y∼SEz′∼N(0,1)Ew
′
⊥∼N(0,1)I

(

yµ≤ yz
′
+yw

′
⊥

x⊥
x||

)

Using the fact that the sum of two Gaussians is a Gaussian:

= E~x,y∼SE
v∼N

(

0,1+
x2
⊥

x2
||

)I (yµ≤ yv)

= E~x,y∼SE
v∼N

(

0, 1
γ(~x,y)2

)I (yµ≤ yv)

= E~x,y∼SF̄ (µγ(~x,y))

finishing the proof.

296

PRACTICAL PREDICTION THEORY FORCLASSIFICATION

Using the corollary, the true error bound̄Q(~w,µ)D satisfies the equation:

KL
(

Q̂(~w,µ)S||Q̄(~w,µ)D
)

=
µ2

2 + ln m+1
δ

m
.

This is an implicit equation for̄Q which can be easily solved numerically.
The bound is stated in terms of dot products here, so naturally it is possible tokernelize the

result using methods from (Herbrich and Graepel, 2001). In kernelized form, the bound applies to
classifiers (as output by SVM learning algorithms) of the form:

c(x) = sign

(

m

∑
i=1

αik(xi ,x)

)

. (1)

Since, by assumption,k is a kernel, we know thatk(xi ,x) = ~Φ(xi) · ~Φ(x) where~Φ(x) is some
projection into another space. In kernelized form, we get~w ·~x = ∑m

i=1 αik(xi ,x), ~x ·~x = k(x,x),
~w·~w= ∑i, j αiα jk(xi ,x j), defining all of the necessary quantities to calculate the normalized margin,

γ(x,y) =
∑m

i=1 αik(xi ,x)
√

k(x,x)∑m,m
i, j=1,1 αiα jk(xi ,x j)

.

One element remains, which is the value ofµ. Unfortunately the bound can be nonmonotonic
in the value ofµ, but it turns out that for classifiers learned by support vector machines on reason-
able datasets, there is only one value ofµ which is (locally, and thus globally) minimal. A binary
search over some reasonable range ofµ (say from 1 to 100) can find the minima quickly, given the
precomputation of the margins. It is worth noting again here that we are not “cheating”—the bound
holds for all values ofµ simultaneously.

The computational time of the bound calculation is dominated by the calculation of themargins
which is O

(

m2
)

wherem is the number of support vectors with a nonzero associatedα. This
computational time is typically dominated by the time of the SVM learning algorithm.

5.3.1 RESULTS

Application of this bound to support vector machines is of significant importance because SVMs
are reasonably effective and adaptable classifiers in common and widespread use. An SVM learns
a kernelized classifier as per equation (1).5

We apply the support vector machine to 8 UCI database problems chosen to fit the criteria “two
classes” and “real valued input features”. The problems vary in size over an order of magnitude
from 145 to 1428 examples. In Figure 10 we use a 70/30 train/test split of thedata.

In all experiments, we use SVMlight (Joachims) with a Gaussian kernel andthe default band-
width. Results for other reasonable choices of the “C”, bandwidth,6 and kernel appear to be quali-
tatively similar (although of course they differ quantitatively).

It is important to note that the PAC-Bayes margin bound isnot precisely a bound (or confidence
interval) on the true error rate of the learned classifier. Instead, it is a trueerror rate bound on an

5. Some SVM learning algorithms actually learn a classifier of the form:c(x) = sign
(

b+∑m
i=1 αik(xi ,x)

)

. We do not
handle this form here.

6. Note that the bandwidth of a Gaussian kernel used by an SVM is not directly related to the optimized value ofµ we
find.

297

LANGFORD

 0

 0.2

 0.4

 0.6

 0.8

 1

liver bostonpima ion sonar dig1 dig2 adult

er
ro

r
ra

te

problem

test set errors
test set bound
margin bound

Figure 10: This figure shows the results of applying SVMlight to 8 datasets with a Gaussian kernel
and a 70/30 train/test split. The observed test error rate is graphed as anX. On the
test set, we calculate a binomial confidence interval (probability of bound failure equals
0.01) which upper bounds the true error rate. On the training set we calculate the PAC-
Bayes margin bound for an optimized choice ofµ.

298

PRACTICAL PREDICTION THEORY FORCLASSIFICATION

 0

 0.2

 0.4

 0.6

 0.8

 1

liver bostonpima ion sonar dig1 dig2 adult

er
ro

r
ra

te

problem

test set errors
test set bound
margin bound

7/10 margin

Figure 11: In addition to comparing with everything in Figure 10, we graph themargin bound
whenall of the data is used for the train set. Note that it improves somewhat on the
margin bound calculated using the 70% train set (7/10 margin bound), but not enough
to compete with the test set bound.

associated stochastic classifier chosen so as to have a similar test error rate. These bounds can be
regarded as bounds for the original classifier only under an additionalassumption: that picking a
classifier according to the majority vote of this stochastic distribution does not worsen the true error
rate. This is not true in general, but may be true in practice.

It is of course unfair to compare the train set bound with the test set boundon a 70/30 train/test
split because a very tight train set bound would imply that it is unnecessaryto even have a test set.
In Figure 11 we compare the true error bounds on all of the data to the true error bounds generated
from the 70/30 train/test split.

The results show that the PAC-Bayes margin bound is tight enough to give useful information,
but still not competitive with the test set bounds. This is in strong contrast with atradition of
quantitatively impractical margin bounds. There are several uses available for bounds which provide
some information but which are not fully tight.

1. They might be combined with a train/test bound (Langford, 2002).

2. The train set bound might easily become tighter for smaller sample sizes. Thiswas observed
in (Langford, 2002).

3. The train set bound might still have the right “shape” for choosing an optimal parameter
setting, such as “C” in a support vector machine.

299

LANGFORD

6. Sample Compression Bound

The sample compression bound (Littlestone and Warmuth), (Floyd and Warmuth, 1995) is like the
PAC-Bayes bound in that it applies to arbitrary precision continuous valued classifiers. Unlike
the PAC-Bayes bound, it applies meaningfully to nonstochastic classifiers.Mainstream learning
algorithms do not optimize the sample compression metric, so the bound application issomewhat
rarer. Nonetheless, there do exist some reasonably competitive learningalgorithms for which the
sample compression bound produces significant results.

The section is organized as follows:

1. Subsection 6.1 states and proves the sample compression bound.

2. Subsection 6.2 shows that the sample compression bound is nearly as tightas possible given
the observations.

3. Subsection 6.3 discusses results from the application of the sample compression bound to
support vector machines.

6.1 The Sample Compression Bound

The sample compression bound (Littlestone and Warmuth) (Floyd and Warmuth,1995) stated here
differs from older results by generalization and simplification but the boundbehavior is qualitatively
identical.

Suppose we have a learning algorithmA(S) whose training is “sparse”7 in the sense that the
output classifier is dependent upon only a subset of the data,A(S) = A(S′) for S′ ⊆ S. The sample
compression bound is dependent on the errors, ˆcS−S′ on the subsetS−S′. The motivation here is that
the examples which the learning algorithm doesnot depend upon are “almost” independent and so
we can “almost” get a test set bound. In general, the bound becomes tighter as the dependent subset
S′ becomes smaller and as the error number on the nondependent subsetS−S′ becomes smaller.

Viewed as an interactive proof of learning (in Figure 12), the sample compression bound is
unique amongst training set bounds because it does not requireanyinitial commitment to a measure
over the classifiers.8

Theorem 6.1 (Sample Compression Bound) For allδ ∈ (0,1], D, A:

Pr
S∼Dm

(

∀S′ ⊆ S with c= A(S′) : cD ≤ Bin

(

m, ĉS−S′ ,
δ

m
(m
|S−S′|

)

))

≥ 1−δ.

Proof Suppose we knew in advance that the learning algorithm will not depend upon some subset
of the examples. Then, the “undependent” subset acts like a test set andgives us a test set bound:

∀S′ ⊆ S, c = A(S′) : Pr
S∼Dm

(

cD ≤ Bin

(

m, ĉS−S′ ,
δ

m
(m
|S−S′|

)

))

≥ 1− δ
m
(m
|S−S′|

) .

7. This is satisfied, for example, by the support vector machine algorithmwhich only depends upon the set of support
vectors.

8. However, we can regard the commitment to a learning algorithm as an implicit commitment to a measure over
classifiers which is dependent on the learning algorithm and the distribution generating the data. Viewed from this
perspective, the sample compression bound is the Occam’s Razor bound, except for the minor detail that the set of
evaluating examples varies.

300

PRACTICAL PREDICTION THEORY FORCLASSIFICATION

Verifier Learner

m examples

Draw Training
Examples

Evaluate Bound

δ

Choose Subset
S’, c=A(S’)

Subset S’

For c=A(S’)

Sample Compression Bound

Learning Algorithm A

Figure 12: The interactive proof of learning for the sample compression bound. Note that the learn-
ing algorithm is arbitrary here, similar to the test set bound.

(Note that, technically, it is possible to refer toS′ unambiguously before randomizing overS by
specifying the indexes ofScontained inS′.) Negating this, we get

∀S′ ⊆ S, c = A(S′) : Pr
S∼Dm

(

cD > Bin

(

m, ĉS−S′ ,
δ

m
(m
|S−S′|

)

))

<
δ

m
(m
|S−S′|

)

and using the union bound (Pr(A or B) ≤ Pr(A)+Pr(B)) over each possible subset,S′, we get

Pr
S∼Dm

(

∃S′ ⊆ S with c = A(S′) : cD > Bin

(

m, ĉS−S′ ,
δ

m
(m
|S−S′|

)

))

< δ.

Negating this again gives us the proof.

6.2 The Sample Compression Bound is Sometimes Tight

We can construct a learning algorithm/learning problem pair such that the sample compression
bound is provably near optimal, as a function of its observables.

Theorem 6.2 (Sample Compression Tightness) For allδ ∈ (0,1], m, k, there exists a distribution D
and learning algorithm A s.t.

Pr
S∼Dm

(

∃S′ ⊆ S with c= A(S′) : cD > Bin

(

m, ĉS−S′ ,
δ

m
(m
|S−S′|

)

))

> δ−δ2.

301

LANGFORD

furthermore, if S∗ minimizesBin

(

ĉS−S′ ,
δ

m(m
|S−S′ |)

)

, then

Pr
S∼Dm

(

c∗ = A(S∗) : c∗D > Bin

(

m, ĉ∗S−S∗ ,
δ

m
(m
|S−S∗|

)

))

> δ−δ2.

Proof The proof is constructive and similar to the Occam’s Razor tightness result. In particular,
we show how to construct a learning algorithm which outputs classifiers thaterr independently
depending on the subsetS′ used.

Consider an input spaceX = {0,1}2m
. Each variable in the input spacexS′ can be thought of as

indexing a unique subsetS′ ⊆ Sof the examples. In the rest of the proof, we index variables by the
subset they correspond to.

Draws from the distributionD can be made by first flipping an unbiased coin to gety = 1
with probability 0.5 andy = −1 with probability 0.5. The distribution onX consists of a set of
independent values after conditioning ony. Choose

Pr(xS′ 6= y) = Bin

(

m,k,
δ

m
(m
|S−S′|

)

)

.

Now, the learning algorithmA(S′) is very simple—it just outputs the classifierc(x) = xS′ . On the
setS−S′, we have

∀S′ Pr
S∼Dm

(

ĉS−S′ ≥
k
m

)

= 1− δ
m
(m
|S−S′|

) .

Using independence, we get

Pr
S∼Dm

(

∀S′ ĉS−S′ ≥
k
m

)

= ∏
S′

(

1− δ
m
(m
|S−S′|

)

)

.

Negating, we get

Pr
S∼Dm

(

∀S′ ĉS−S′ <
k
m

)

= 1−∏
S′

(

1− δ
m
(m
|S−S′|

)

)

and doing some algebra, we get the result.

6.3 Application of the Sample Compression Bound

One obvious application of the sample compression bound is to support vector machines, since the
learned classifier is only dependent on the set of support vectors. IfS′ is the set of support vectors
thenS−S′ is the set of nonsupport vectors. Unfortunately, it turns out that this does not work so
well, as observed in Figure 13.

There are other less common learning algorithms for which the sample compression bound
works well. The set covering machine (Marchand and Shawe-Taylor, 2001) has an associated bound
which is a variant of the sample compression bound.

302

PRACTICAL PREDICTION THEORY FORCLASSIFICATION

 0

 0.2

 0.4

 0.6

 0.8

 1

liver bostonpima ion sonar dig1 dig2 adult

er
ro

r
ra

te

problem

test set errors
test set bound

compression bound

Figure 13: The sample compression bound applied to the output of a support vector machine with
a Gaussian kernel. Here we useδ = 0.01

7. Discussion

Here, we discuss several aspects and implications of the presented bounds.

7.1 Learning Algorithm Design

Everytrain set bound implies a learning algorithm: choose the classifier which minimizes the true
error bound. This sounds like a rich source of learning algorithms, but there are some severe caveats
to that statement.

1. It is important to note that the form of a train set bound doesnot imply that this minimization
is a good idea. Choosing between two classifiers based upon their true error bound implies a
better worst-case bound on the true error. It does not imply an improved true error. In many
situations, there is some other metric of comparison (such as train error) which in fact creates
better behavior.

2. Another strong caveat is that, historically, train set bounds have simply not been tight enough
on real datasets for a nonvacuous application. This is changing with new results, but more
progress is necessary.

3. Often the optimization problem is simply not very tractable. In addition to sample complexity,
learning algorithms must be concerned with run time and space usage.

303

LANGFORD

7.2 Philosophy

Train set bounds teach us about ways in which verifiable learning is possible, a subject which
borders on philosophy. The train set bound presented here essentiallyshows that a reasonable
person will be convinced of learning success when a short-descriptionclassifier does well on train
set data. The results here donot imply that this is the only way to convincingly learn. In fact, the
(sometimes large) looseness of the Occam’s Razor bound suggests that other methods for convincing
learning processes exist. This observation is partially shown by the other train set bounds which are
presented.

7.3 Conclusion

This introduction to prediction theory covered two styles of bound: the test set bound and the train
set bound. There are two important lessons here:

1. Test set bounds provide a better way to report error rates and confidence intervals on future
error rates than some current methods.

2. Train set bounds can provide useful information.

It is important to note that the train set bound and test set bound techniquesare not mutually ex-
clusive. It is possible to use both simultaneously (Langford, 2002), anddoing so is often desirable.
Test set bounds are improved by the “free” information about the trainingerror and train set bounds
become applicable, even when not always tight.

Acknowledgments

Many people were critical to this tutorial. This includes Sam Roweis who startedthis, anony-
mous reviewers who were patient and capable, several coauthors on previous papers, Imre Kon-
dor, Arindam Banerjee, Alina Beygelzimer, Varsha Dani, Tom Hayes, Timothy Ross, and Robert
Schapire. I would also like to thank IBM which supported me during much of thepreparation of
this tutorial.

Appendix A.

For those interested in comparing models, uniform convergence (Vapnik and Chervonenkis, 1971)
additionally requires the axiom of choice (to achieve empirical risk minimization) and a hypothesis
space of bounded complexity. Typical theorems are of the form “afterm examples, all training
errors are near to true errors”.

The PAC learning model (Valiant, 1984) requires a polynomial time complexity learning algo-
rithm and the assumption that the learning problem comes from some class. Theorems are of the
form “aftermexamples learning will be achieved”.

Both of these models can support stronger statements than the basic prediction theory model
presented here. Results from both of these models can apply here after appropriate massaging.

The online learning model (Kivinen and Warmuth, 1997) makesno assumptions. Typical the-
orems have the form “This learning algorithm’s performance will be nearly as good as anyone of

304

PRACTICAL PREDICTION THEORY FORCLASSIFICATION

a set of classifiers.” The online learning model has very general results and no9 ability to answer
questions about future performance as we address here.

The prediction theory model can most simply be understood as a slight refinement of the infor-
mation theory model.

References

P. L. Bartlett, O. Bousquet, and S. Mendelson. Local Rademacher complexities.Annals of Statistics,
2004.

A. Blum, A. Kalai, and J. Langford. Beating the holdout: Bounds for k-fold and progressive cross-
validation. InComputational Learning Theory (COLT), 1999.

A. Blumer, A. Ehrenfueucht, D. Haussler, and M. Warmuth. Occam’s razor. Information Processing
Letters, 24:377–380, 1987.

H. Chernoff. A measure of asymptotic efficiency of tests of a hypothesis based upon the sum of the
observations.Annals of Mathematical Statistics, 24:493–507, 1952.

C. J. Clopper and E. S. Pearson. The use of confidence intervals forfiducial limits illustrated in the
case of the binomial.Biometrika, 26:404–413, 1934.

L. Devroye, L. Gyorfi, and G. Lugosi.A Probabilistic Theory of Pattern Recognition. Springer-
Verlag, New York, 1996.

S. Floyd and M. Warmuth. Sample compression, learnability, and the vapnik-chervonenkis dimen-
sion. Machine Learning, 21:269–304, 1995.

R. Herbrich and T. Graepel. Large scale bayes point machines. InAdvances in Neural Information
System Processing 13 (NIPS), pages 528–534, 2001.

W. Hoeffding. Probability inequalities for sums of bounded random variables. Journal of the
American Statistical Association, 58:13–30, 1963.

T. Joachims. program SVMlight.

J. Kivinen and M. Warmuth. Additive versus exponentiated gradient updates for linear prediction.
Information and Computation, 132(1):1–64, 1997.

J. Langford. Programbound.

J. Langford. Combining train set and test set bounds. InInternational Conference on Machine
Learning, 2002.

J. Langford and A. Blum. Microchoice bounds and self bounding learning algorithms. Machine
Learning, 1999.

9. Note that there do exist online to batch conversions, but these conversions always occur under an assumption of i.i.d.
samples, essentially changing the setting to the one described here.

305

LANGFORD

J. Langford and D. McAllester. Computable shell decomposition bounds. In Computational Learn-
ing Theory (COLT), 2000.

J. Langford and M. Seeger. Bounds for averaging classifiers. Technical report, Carnegie Mellon,
Department of Computer Science, 2001.

J. Langford and J. Shawe-Taylor. PAC-Bayes & margins. InNeural Information Processing Systems
(NIPS), 2002.

N. Littlestone and M. Warmuth. Relating data compression and learnability.

M. Marchand and J. Shawe-Taylor. The set covering machine. InInternational Conference on
Machine Learning (ICML), 2001.

D. McAllester. PAC-Bayesian model averaging. InComputational Learning Theory (COLT), 1999.

M. Seeger. PAC-Bayesian generalization error bounds for gaussianprocess classification.Journal
of Machine Learning Research, 3:233–269, 2002.

S. Seung. Unpublished notes.

J. Shawe-Taylor, P. Bartlett, R. Williamson, and M. Anthony. Structural risk minimization over
data-dependent hierarchies.IEEE Transactions on Information Theory, 44(5):1926–1940, 1998.

L.G. Valiant. A theory of the learnable.Communications of the ACM, 27(11):1134–1142, 1984.

V. N. Vapnik and A. Y. Chervonenkis. On the uniform convergence ofrelative frequencies of events
to their probabilities.Theory of Probability and its Applications, 16(2):264–280, 1971.

306

Journal of Machine Learning Research 6 (2005) 307–340 Submitted 6/04; Revised 12/04; Published 3/05

Generalization Bounds and Complexities
Based on Sparsity and Clustering

for Convex Combinations of Functions from Random Classes

Savina Andonova Jaeger JAEGER@HCP.MED.HARVARD .EDU

Harvard Medical School
Harvard University
Boston, MA 02115, USA

Editor: John Shawe-Taylor

Abstract
A unified approach is taken for deriving new generalization data dependent bounds for several

classes of algorithms explored in the existing literature by different approaches. This unified ap-
proach is based on an extension of Vapnik’s inequality for VCclasses of sets to random classes of
sets - that is, classes depending on the random data, invariant under permutation of the data and
possessing the increasing property. Generalization bounds are derived for convex combinations of
functions from random classes with certain properties. Algorithms, such as SVMs (support vec-
tor machines), boosting with decision stumps, radial basisfunction networks, some hierarchies of
kernel machines or convex combinations of indicator functions over sets with finite VC dimension,
generate classifier functions that fall into the above category. We also explore the individual com-
plexities of the classifiers, such as sparsity of weights andweighted variance over clusters from the
convex combination introduced by Koltchinskii and Panchenko (2004), and show sparsity-type and
cluster-variance-type generalization bounds for random classes.

Keywords: complexities of classifiers, generalization bounds, SVM, voting classifiers, random
classes

1. Introduction

Statistical learning theory explores ways of estimating functional dependency from a given collec-
tion of data. It, also referred to as the theory of finite samples, does not rely on a priori knowledge
about a problem to be solved. Note that “to control the generalization in the framework of this
paradigm, one has to take into account two factors, namely, the quality of approximation of given
data by the chosen function and the capacity of the subset of functions from which the approxi-
mating function was chosen” (Vapnik, 1998). Typical measures of the capacity of sets of functions
are entropy measures, VC-dimensions and V-γ dimensions. Generalization inequalities such as Vap-
nik’s inequalities for VC-classes, which assert the generalization performance of learners fromfixed
class of functions and take into account the quality of approximation of given data by the chosen
function and the capacity of the class of functions, were proven to be useful in building successful
learning algorithms such as SVMs (Vapnik, 1998).

An extension of Vapnik’s inequality, for VC classes of sets (Vapnik, 1998; Anthony and Shawe-
Taylor, 1993) and VC-major classes of functions to classes of functionssatisfying Dudley’s uniform
entropy conditions, was shown by Panchenko (2002). A class of functionsF = { f : X → [−1,1]}

c©2005 Savina Andonova Jaeger.

ANDONOVA

satisfies Dudley’s uniform entropy condition if

Z ∞

0
log1/2D(F ,u)du< ∞,

whereD(F ,u) denotes Koltchinksii packing numbers defined for example by Dudley (1999) or
Panchenko (2002). Applications of the inequality were shown in severalpapers (Koltchinskii and
Panchenko, 2002; Koltchinskii et al., 2003a; Koltchinskii and Panchenko, 2004) which explored the
generalization ability of ensemble classification methods, that is, learning algorithms that combine
several classifiers into new voting classifiers with better performance. “The study of the convex hull,
conv(H), of a given base function classH has become an important object of study in machine
learning literature” (Koltchinskii and Panchenko, 2004). New measuresof individual complexities
of voting classifiers derived in related work (Koltchinskii et al., 2003a; Koltchinskii and Panchenko,
2004; Koltchinskii et al., 2003b) were shown theoretically and experimentally to play an important
role in the generalization performance of the classifiers from conv(H) of a given base function class
H . In order to do so, the base classH is assumed to have Koltchinskii packing numbers satisfying
the following condition

D(H ,u) ≤ K(V)u−V ,

for someV > 0, and whereK depends only onV. “New margin type bounds that are based to
a greater extent on complexity measures of individual classifier functionsfrom the convex hull,
are more adaptive and more flexible than previously shown bounds” (Koltchinskii and Panchenko,
2004).

Here, we are interested in studying the generalization performance of functions from a convex
hull of randomclass of functions (random convex hull), that is, the class of learners isno longer
fixed and depends on the data. This is done by deriving a new version ofVapnik’s inequality
applied to random classes, that is, a bound for relative deviations of frequencies from probabilities
for random classes of events. The proof of the inequality mirrors the proofs of Vapnik’s inequality
for non-random classes of sets (see Vapnik et al., 1974; Vapnik, 1998; Anthony and Shawe-Taylor,
1993) but with the observation that the symmetrization step of the proof can be carried out for
random classes of sets. The new version of Vapnik’s inequality is then applied to derive flexible
and adaptive bounds on the generalization errors of learners from random convex hulls. We exploit
techniques previously used in deriving generalization bounds for convex combinations of functions
from non-random classes in (Koltchinskii and Panchenko, 2004), and several measures of individual
classifier complexities, such as effective dimension, pointwise variance andweighted variance over
clusters, similar to the measures introduced by Koltchinskii and Panchenko (2004).

Surprisingly, the idea of studying random convex hulls allows one simultaneously to prove
generalization results, and incorporate measures of classifier complexitiesin the bounds, for several
existing algorithms such as SVMs, boosting with decision stumps, radial basis function networks
and combinations of indicator functions over sets with finite VC dimension. It is also noteworthy
that an extension on the VC theory of statistical learning to data dependent spaces of classifiers was
recently found by Cannon et al., 2002, who defined a measure of complexity for data dependent
hypothesis classes and provide data dependent versions of bounds on error deviance and estimation
error.

308

GENERALIZATION BOUNDS AND COMPLEXITIES

2. Definition of Random Classes

First, an inequality that concerns the uniform relative deviation over a random class of events of
relative frequencies from probabilities is exhibited. This inequality is an extension of the following
Vapnik’s inequality for a fixed VC-classC (with finite VC-dimensionV) of sets (see Vapnik et al.
(1974); Vapnik (1998); Anthony and Shawe-Taylor (1993)):

P
n
(

sup
C∈C

[
P(C)− 1

n ∑n
i=1 I(xi ∈C)√

(P(C))

]
≥ t
)
≤ 4
(2en

V

)V
e−

nt2
4 . (2.1)

Inequality (2.1) allows one to prove stronger generalization results for several problems dis-
cussed in (Vapnik, 1998). In order to extend the above inequality to random classes of sets, we intro-
duce the following definitions. Let(Z,S ,P) be a probability space. For a sample{z1, . . . ,zn}, zi ∈
Z, i = 1, . . . ,n, definezn = (z1, . . . ,zn) and letI(zn) = {zi : 1≤ i ≤ n}. Let C (zn) ∈ S be a class of
sets, possibly dependent on the samplezn = (z1, . . . ,zn) ∈ Zn.
The integer∆C (zn)(z

n) is defined to be the number of distinct sets of the formA
T

I(zn), whereA
runs throughC (zn), that is,∆C (zn)(z

n) = card{A
T{z1, . . . ,zn},A∈ C (zn)} . The random collection

of level setsC (zn) =
{

A = {z∈ Z : h(z) ≤ 0},h∈ H (z1, . . . ,zn)
}
, whereH (zn) is a random class

of functions possibly depending onzn serves as a useful example. We callA
T

I(zn) a representation
of the samplezn by the setA. ∆C (zn)(z

n) is the number of different representation of{z1, . . . ,zn} by
functions fromH (zn).

Now consider the random collectionC (zn) of S -measurable subsets ofZ,

C (zn) = {A : A∈ S},

having the following properties:

1.) C (zn) ⊆ C
(

zn
[

y
)

, zn ∈ Zn,y∈ Z (2.2)

(the incremental property)

2.) C (zπ(1), . . . ,zπ(n)) ≡ C (z1, . . . ,zn), (2.3)

for any permutationπ of {z1, . . . ,zn} (the permutation property).

The relative frequency ofA∈ C (zn) onzn = (z1, . . . ,zn) ∈ Zn is defined to be

Pzn(A) =
1
n
|{i : zi ∈ A}| = 1

n
|I(zn)∩A| ,

where|A| denotes the cardinality of a setA.
Let P

n be the product measure onn copies of(Z,S ,P), andEn the expectation with respect to
P

n. Define
G(n) = En∆C (zn)(z

n).

309

ANDONOVA

3. Main Results

Given the above definitions, the following theorem holds.

Theorem 1 For any t> 0,

P
n
{

zn ∈ Zn : sup
A∈C (zn)

P(A)−Pzn(A)√
P(A)

≥ t
}
≤ 4G(2n)e−

nt2
4 . (3.4)

The proof of this theorem is given in the following Section 4. Observe that ifthe random col-
lection C of sets is a VC-class (Vapnik, 1998), then the inequality (3.4) is the same as Vapnik’s
inequality (2.1) for VC-classes. Based on this theorem and the above definitions, several results on
the generalization performance and the complexity of classifiers from random classes are exhibited
below.

The following notation and definitions will be used from here on. Let(X ,A) be a measurable
space (space of instances) and takeY = {−1,1} to be the set of labels. LetP be the probabil-
ity measure on

(
X ×Y ,A ×2{−1,1}) and let(Xi ,Yi), i = 1, . . . ,n be i.i.d random pairs inX ×Y ,

randomly sampled with respect to the distributionP of a random variable(X,Y). The probability
measure on the main sample space on which all of the random variables are defined will be denoted
by P. LetZ = X ×Y , Zi = (Xi ,Yi), i = 1, . . . ,n andZn = (Z1, . . . ,Zn). We will also define several
random classes of functions and show how several learning algorithms generate functions from the
convex hulls of random classes.

Consider the following four problems for which bounds on the generalization errors will be
shown using inequality (3.4).

Problem 1. Support vector machine (SVM) classifiers with uniformly bounded kernels.
Consider any solution of an SVM algorithmf (x) = ∑n

i=1 λiYiK(Xi ,x), whereK(., .) : X ×X →
[0,1] is the kernel andλi ≥ 0. sign(f (x)) is used to classifyx ∈ X in class+1 or −1. Take the
random function class

H (Zn) = {YiK(Xi ,x) : i = 1, . . . ,n},

which depends on the random sampleZn ∈ Zn. The classifier function

f ′(x) =
n

∑
i=1

λ′
iYiK(Xi ,x), λ′

i =
λi

∑n
j=1 λ j

, i = 1, . . . ,n

belongs to conv(H (Zn)) and the probability of errorP(Y f(X) ≤ 0) = P(Y f′(X) ≤ 0).

Problem 2. Classifiers, built by some two-level component based hierarchies of SVMs (Heisele
et al. (2001);Andonova (2004)) or kernel-based classifiers (like the one produced by radial basis
function (RBF) networks).

We explore component based hierarchies, such that the first level of the hierarchy is formed
by SVM classifiers (with kernelK) built on each component (formed for example by projecting
of the input spaceX ⊆ R

m of instances onto subspace ofR
l , l < m) and the second level of the

hierarchy is a linear combination of the real-valued outputs on each component of the classifier
functions from the first level (for example, applying SVM with linear kernel or boosting methods
on the output from the first level). In our formulation, the components of thehierarchy can depend
on the training data (for example, found through dimensionality reduction algorithms, such as self-
organizing maps (SOM, Kohonen (1990))). The type of the hierarchical classifier functions are of

310

GENERALIZATION BOUNDS AND COMPLEXITIES

this form sign(f (x)), where

f (x,α,Q,w2) =
d

∑
j=1

w j
2

n

∑
i=1

α j
i YiK(Q jXi ,Q

jx),Yi = ±1,

whereQ j are the projections of the instances (determining the “components”),w j
2 ∈ R,α j

i ≥ 0. One
can considerQ j being nonlinear transformation of the instance space, for example applyingfilter
functions. Let|K(x, t)| ≤ 1,∀x, t ∈ X . Consider the random function class

H (X1, . . . ,Xn) = {±K(Q jXi ,Q
jx) : i ≤ n, j = 1, . . . ,d},

wheren is the number of training points(Xi ,Yi) andd is the number of the components.
In the case of RBF networks with one hidden layer and a linear threshold, the classifier function

is of the form

f (x) =
d

∑
j=1

n̂

∑
i=1

αi
jKσ j (ci ,x),

whereci , i = 1, . . . , n̂are centers of clusters, formed by clustering the training points{X1, . . . ,Xn} and
σ j (they can depend on the training data(Xi ,Yi), i = 1, . . . ,n) are different widths for the Gaussian

kernel,Kσ j (ci ,x) = e
− ||ci−x||2

σ2
j . Consider the following random function class

H (Zn) = {±Kσ j (ci ,x) : i ≤ n̂, j ≤ d},

wheren̂ is the number of clusters, which is bounded by the numbern of training points, and the
cluster centers{ci}n̂

i=1 depend on the training instances{Xi}n
i=1.

Without loss of generality, we can considerf ∈ conv(H (Zn)) in both of the above described
algorithms, after normalizing the classifier function with the sum of the absolute values of the coef-
ficients in front of the random functions.

Problem 3. Boosting over decision stumps.
Given a finite set ofd functions{hi : X ×X → [−1,1]} for i ≤ d, define the random class

of asH (X1, . . . ,Xn) = {hi(Xj ,x) : j ≤ n, i ≤ d}, wheren is the number of training points(Xi ,Yi).
This type of random class is used for example in aggregating combined classifier by boosting over
decision stumps. Indeed, decision stumps are simple classifiers,h, of the types 2I(xi ≤ a)− 1
or 2I(xi ≥ a)− 1, wherei ∈ {1, . . . ,m} is the direction of splitting (X ⊂ R

m) and a ∈ R is the
threshold. It is clear that the thresholda can be chosen amongXi

1, . . . ,X
i
n (the performance of the

stump will remain the same on the training data). In this case, takehi(Xj ,x) = 2I(xi ≤ Xi
j)−1 or

h̃i(Xj ,x) = 2I(xi ≥ Xi
j)−1 andH (X1, . . . ,Xn) = {hi(Xj ,x), h̃i(Xj ,x) : j ≤ n, i ≤ m} and taked = 2m.

Without loss of generality, we can considerf ∈ conv(H (X1, . . . ,Xn)), after normalizing with
the sum of the absolute values of the coefficients.

Problem 4. VC-classes of sets.
Let the random class of functionsH (Zn) has the property that for allh∈ H (Zn), h∈ {−1,1}

the VC dimensionV of the class of sets{{x∈ X : h(x) = 1},h∈ H (Zn)} is finite.
A classifier is formed by taking convex combinations of functions from the classH (Zn). Prob-

lem 4, in the case when the classH is not depending on the random sampleZn, was approached

311

ANDONOVA

before with the previously existing VC-inequalities for indicator functions (Vapnik, 1998; Vapnik
et al., 1968). The results shown here for Problem 4 in the case whenH is a random class, are
comparable to those derived before for indicators over class of sets withfinite VC dimension.

In general, all of the above four types of problems, consider the convex combinations of func-
tions from the random convex hull

F (Zn) = conv(H (Zn)) =
[

T∈N

FT(Zn),

FT(Zn) =
{

ΣT
i=1λihi ,λi ≥ 0,ΣT

i=1λi = 1,hi ∈ H (Zn)
}

, (3.5)

whereH (Zn) is for example one of the random classes defined above, such that either|H (Zn)| =
card(H (Zn)) is finite, orH (Zn) is a collection of indicators over random class of sets with finite
VC-dimension.

General problem:
We are interested is the following general problem:
Let H be a general-base class of uniformly bounded functions with values in[−1,1]. Let

Z1, . . . ,Zn,Zi = (Xi ,Yi) ∈ X ×Y be i.i.d. (training data) sampled with respect to the distribution
P. Assume that based on the dataZ1, . . . ,Zn one selects a class of functionsH (Zn) ⊆ H that is
either

i) with finite cardinalitydepending on the data, such that
ln(supZn |H (Zn)|) lnn

n → 0 for n→ ∞, or
ii) H (Zn) ⊆ H is a collection of indicator functions{2IC−1 :C∈ CZn} over a class of setsCZn

with finite VC-dimension V.
We will call H (Zn) a random-base classof functions. We are interested in studying the gen-

eralization errors for classifier functionsf ∈ conv(H (Zn)) that are produced by broad classes of
algorithms. Let us take

G∗(n,H) = sup
Zn∈(X×Y)n

|H (Zn)|,

whenH is the general-base class and the random-base classesH (Zn) are with finite cardinality
H(Zn), and take

G∗(n,H) =
(ne

V

)V
,

whenH is the general-base and the random-base classesH (Zn) are collections of indicators over
class of sets with finite VC-dimensionV (Problem 4).

From the definitions and Problems 1, 2 and 3, it is clear thatG∗(n,H) ≤ 2n for Problem 1 and
G∗(n,H) ≤ 2nd for Problems 2 and 3. For completeness of the results in case ofH (Zn) being a
collection of indicators over class of sets with finite VC-dimensionV, we will assume thatn≥ V

2e.

Following the notation by Koltchinskii and Panchenko (2004), letP (H (Zn)) be the collection
of all discrete distributions over the random-base classH (Zn). Let λ ∈ P (H (Zn)) and f (x) =
R

h(x)λ(dh), which is equivalent tof ∈ conv(H (Zn)). The generalization error of any classifier
function is defined as

P(sign(f (x)) 6= y) = P(y f(x) ≤ 0) = E(I(y f(x) ≤ 0)).

312

GENERALIZATION BOUNDS AND COMPLEXITIES

Given an i.i.d sample(Xi ,Yi), i = 1, . . .n from the distributionP, let Pn denote the empirical distri-
bution and for any measurable functiong on X ×Y , let

Pg =
Z

g(x,y)dP(x,y), Png =
1
n

n

∑
i=1

g(Xi ,Yi).

The first bound we show for the generalization errors of functions from random classes of functions
is the following:

Theorem 2 Let H be a general-base class of functions. For any t> 0, with probability at least
1− e−t , for any n i.i.d. random pairs(X1,Y1), . . . ,(Xn,Yn) randomly drawn with respect to the
distributionP, for all λ ∈ P (H (Zn)) and f(x) =

R

h(x)λ(dh),

P(y f(x) ≤ 0) ≤ inf
0<δ≤1

(
U

1
2 +(Pn(y f(x) ≤ 2δ)+

1
n

+U)
1
2

)2
+

1
n
, (3.6)

where

U =
1
n

(
t + ln

4
δ

+
8lnn

δ2 lnG∗(2n,H)+ ln(8n+4)

)
.

The proof of this theorem is given in Section 4. It is based on random approximation of a function
and Hoeffding-̌Cernoff inequality as in (Koltchinskii and Panchenko, 2004), exploringthe properties
of random class of the level sets of the margins of the approximating functions, defined in the proof
and Inequality (3.4).

The first result for the generalization error of classifiers from conv(H), whereH is a fixed
VC-class, was achieved by Schapire et al. (1998). They explained thegeneralization ability of
classifiers from conv(H) in terms of the empirical distributionPn(y f(x) ≤ δ), f ∈ conv(H) of the
quantityy f(x), known in the literature asmargin(“confidence” of prediction of the example x) and
proposed several boosting algorithms that are built on the idea of maximizing the margin. Important
properties, development, improvements and optimality of the generalization results of this type for
broader fixed classes of functionsH were shown by Koltchinskii and Panchenko (2004). The bound
on the generalization error shown here is valid for random classes of functions and is not optimized
for convergence with respect ton. Here, we have a different goal: to prove generalization results for
random classes of functions that relate to broader classes of algorithms.Exploring the optimality of
this result remains an open question.

In the rest of the paper, we will explore the individual complexity of classifier f ∈ conv(H),
following the line of investigation begun by Koltchinskii and Panchenko (2004). We will explore
the structure of therandom convex hulland show bounds similar to the ones by Koltchinskii and
Panchenko (2004) that reflect some measures of complexity of convex combinations.

First, we explore how the sparsity of the weights of a function from a random convex hull
influences the generalization performance of the convex combination. Here, recall from Koltchinskii
and Panchenko (2004), by sparsity of the weights in convex combination,we mean rapidity of
decrease. Forδ > 0 and f (x) = ∑T

i=1 λihi(x),∑i λi = 1,λi ≥ 0, let us define thedimensionfunction
by

en(f ,δ) =

(
T −

T

∑
k=1

(1−λk)
8lnn
δ2

)
. (3.7)

313

ANDONOVA

0 0.2 0.4 0.6 0.8 1
0

10

20

30

40

50

60

70

80

90

100

delta

e n(f,
de

lta
)

equal
weights

exponential
decrease of
 weights

polynomial
decrease of
 weights

Figure 1: Dimension Function; From top to bottom: equal,polynomial, exponentialdecay; the x-
axis isδ, the y-axis is dimension function value.

The name of this function is motivated by the fact that it can be interpreted as adimension of
a subset of the random convex hull conv(H) containing a function approximatingf “well enough”
(Koltchinskii and Panchenko, 2004). In a way, the dimension function measures the sparsity of the
weights in the convex combinationf . We plot the dimension function (see Fig. 1) in the cases
whenT = 100,n = 1000 and the weights{λi}T

i=1 are equal, polynomially decreasing (λi = i−2)
and exponentially decreasing (λi = e(−i+1)). One can see in Fig. 1 that when the weights decrease
faster, the dimension function values are uniformly smaller with respect toδ ∈ (0,1]. (For different
sparsity measures of voting classifiers from convex hulls of VC-major classes see (Koltchinskii et
al. (2003a); Koltchinskii and Panchenko (2004); Andonova (2004).)

Theorem 3 (Sparsity bound) For any t> 0, with probability at least1−e−t , for any n i.i.d. random
pairs (X1,Y1), . . . ,(Xn,Yn) randomly drawn with respect to the distributionP, for all λ ∈ P (H (Zn))
and f(x) = ∑T

i=1 λihi(x),

P(y f(x) ≤ 0) ≤ inf
0<δ≤1

(
U1/2 +(Pn(y f(x) ≤ 2δ)+U +

1
n
)1/2
)2

+
1
n
, (3.8)

where

U =
1
n

(
t + ln

4
δ

+en(f ,δ) lnG∗(2n,H)+en(f ,δ) ln(
8
δ2 lnn)+ ln(8n+4)

)
.

The proof of this theorem is also shown in Section 4. It is based on randomapproximation of func-
tions similarly to the proof of Theorem 2, Hoeffding-Černoff inequality, properties of conditional
expectation, exploring the capacity of random class of the level sets of themargins of the approx-
imating functions and Inequality (3.4). The constants are explicit. For many experimental results,

314

GENERALIZATION BOUNDS AND COMPLEXITIES

showing the behavior of the above bound in the case of convex combinations of decision stumps,
such as those produced by various boosting algorithms (see Andonova,2004). There, it is shown
experimentally that the sparsity bound is indicative of the generalization performance of a classifier
from the convex hull of stumps. For further results and new algorithms, utilizing various notions of
sparsity of the weight of convex combinations (see Koltchinskii et al., 2003a). In the case of hard
margin SVM classifiersf (x) = ∑T

i=1 λiK(Xi ,x) with uniformly bounded kernels, the bound with
marginδ becomes of order

P(y f(x) ≤ 0) � min(T,8δ−2 lnn)

n
ln

n
δ
,

because
en(f ,δ) ≤ min(T,8δ−2 lnn).

The inequality foren(f ,δ) follows from the inequality(1−λ)p ≥ 1− pλ for λ ∈ [0,1] andp≥ 1,
and the fact that∑T

k=1 λk ≤ 1.
This zero-error bound is comparable to the compression bound (Littlestoneand Warmuth, 1986)

of order T
n−T ln n

T , and the bounds of Bartlett and Shawe-Taylor (1999), whereU ∼ R2

nδ2 ln2n and
R≤ 1 in case ofK(x,y) ≤ 1. WhenT � n the bound in (3.8) is an improvement of the last bound.
For example,T � nwhen SVMs produce very “sparse” solutions (small number of supportvectors),
that is, the vector of weights(λ1, . . . ,λT) is sparse. The sparseness (in the sense of there being a
small number of support vectors) of the solutions of SVMs was recently explored by Steinwart
(2003), where lower bounds (of orderO(n)) on the numberT of support vectors for specific types
of kernels were shown; in those cases, the bound in (3.8), relaxed to theupper bound ofen(f ,δ) ≤
min(T,8δ−2 lnn), is probably not a significant improvement of the result of Bartlett and Shawe-
Taylor (1999). The sparsity of weights of the solutions of SVMs, understood as rapidity of decrease
of weights, is in need of further exploration, as it would provide better insight into the bound (3.8)
of the generalizations error.

We now notice also that, becauseen(f ,δ) ≤ min(T,8δ−2 lnn) andG∗(n,H) ≤ 2n for Problem
1 andG∗(n,H) ≤ 2nd for Problems 2, 3 andG∗(n,H) =

(
ne
V

)V
, the bound (3.8) is extension of the

results of Breiman (1999) for zero-error case, and is similar in nature to the result of Koltchinskii and
Panchenko (2004) and Koltchinskii et al. (2003b), but now holding for randomclasses of functions.

Motivations for considering different bounds on the generalization error of classifiers that take
into account measures of closeness of random functions in convex combinations and their clustering
properties were given by Koltchinskii and Panchenko (2004). We nowreview those complexities
and show bounds on the generalization error, that are similar to the ones proven by Koltchinskii
and Panchenko (2004), but applied for different classes of functions. The proofs of the results are
similar to those exhibited by Koltchinskii and Panchenko (2004).

Recall that a pointwise variance ofh with respect to the distributionλ ∈ P (H (Zn)) is defined
by

σ2
λ(x) =

Z (
h(x)−

Z

h(x)λ(dh)
)2

λ(dh), (3.9)

where,σ2
λ(x) = 0 if and only if h1(x) = h2(x) for all h1,h2 ∈ H (Zn) (Koltchinskii and Panchenko,

2004). The following theorem holds:

Theorem 4 For any t> 0with probability at least1−e−t , for any n i.i.d. random pairs(X1,Y1), . . . ,(Xn,Yn)
randomly drawn with respect to the distributionP, for all λ ∈ P (H (Zn)) and f(x) =

R

h(x)λ(dh),

315

ANDONOVA

P(y f(x) ≤ 0) ≤ inf
0<δ≤γ≤1

(
2Pn(y f(x) ≤ 2δ)+4Pn(σ2

λ(x) ≥
γ
3
)+

+
8
n

(
56γ
δ2 (lnn) lnG∗(2n,H)+ ln(8n+4)+ t + ln

2γ
δ

)
+

6
n

)
. (3.10)

The proof is given in Section 4. This time, the proof incorporates random approximations of the
classifier function and its variance, Bernstein’s inequality as in (Koltchinskii and Panchenko, 2004),
exploring the capacity of random class of the level sets of the margins of theapproximating functions
and Inequality (3.4).

This result is an improvement of the above margin-bound in the case that the total pointwise
variance is small, that is, the classifier functionshi in the convex combinationf are close to each
other. The constants in the bound are explicit. From the Remark of Theorem3 in (Koltchinskii and
Panchenko, 2004) and the above inequality (3.10), one can see that thequantityPnσ2

λ might provide
a complexity penalty in thegeneral classof problems defined above.

A result that improves inequality (3.10) by exploring the clustering properties of the convex
combination from arandomconvex hull will now be shown.

Givenλ ∈ P (H (Zn)) and f (x) =
R

h(x)λ(dh), representf as

f =
p

∑
j=1

α j

T

∑
k=1

λ(j)
k h(j)

k

with ∑ j≤p α j = 1,T ≤ ∞,h(j)
k ∈ H (Zn).

Consider an elementc ∈ C p(λ), that is, c = (α1, . . . ,αp,λ1, . . . ,λp), such thatαi ∈ ∆(m) ={
tkm−k,k ∈ N, tk ∈ {1,2,3, . . . ,mk}

}
, m∈ N, λ = ∑p

i=1 αiλi , andλi ∈ P (H (Zn)), i = 1, . . . , p. De-

note byα∗
c = mini∈{1,...,p} αi , where{αi}p

i=1 are called the cluster weights.c is interpreted as
a decomposition ofλ into p clusters as in (Koltchinskii and Panchenko, 2004). For an element
c∈ C p(λ), a weighted variance over clusters is defined by

σ2(c;x) =
p

∑
k=1

α2
kσ2

λk(x), (3.11)

whereσ2
λk(x) are defined in (3.9). One can see in Fig. 2 that when the number of the clusters

increases, the weighted variance over clusters uniformly decreases (shifts to the left). If there are
p small clusters among functionsh1, . . . ,hT , then one should be able to choose elementc∈ C p(λ)
so thatσ2(c;x) will be small on the majority of data pointsX1, . . . ,Xn (Koltchinskii and Panchenko,
2004). The following theorem holds:

Theorem 5 For any m∈ N, for any t> 0 with probability at least1−e−t , the following is true for
any n i.i.d. random pairs(X1,Y1), . . . ,(Xn,Yn) randomly drawn with respect to the distributionP,
for any p≥ 1, c∈ C p(λ), λ = ∑p

i=1 αiλi ∈ P (H (Zn)), such thatα1, . . . ,αp ∈ ∆(m) with ∑i αi ≤ 1
and f(x) =

R

h(x)λ(dh)

316

GENERALIZATION BOUNDS AND COMPLEXITIES

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Pn
(s

ig
m

a(
c;

x)
>d

el
ta

)

delta

one
cluster

two
clusters

four
clusters

six
clusters

Figure 2: Empirical distribution of weighted variance over clusters; From right to left: one, tow,
four, six clusters; the x-axis isδ.

P(y f(x) ≤ 0) ≤ inf
0<δ≤γ≤1

(
2Pn(y f(x) ≤ 2δ)+4Pn(σ2(c;x) ≥ γ/3)+

+
8
n

(
56p

γ
δ2(lnn) lnG∗(2n,H)+ ln(8n+4)+2

p

∑
j=1

ln

(
logm

α j

α∗
c
+1

)
+

+ 2ln

(
logm

1
α∗

c
+1

)
+2pln2+ t + ln

p2π4γ
18δ

)
+

6
n

)
. (3.12)

The proof is given in the following Section 4. Here, the proof incorporates more sophisticated
random approximations of the classifier function and its weighted variance over clusters, Bernstein’s
inequality as in (Koltchinskii and Panchenko, 2004), exploring the capacity of random class of the
level sets of the margins of the approximating functions and Inequality (3.4).The above bound can
be simplified in the following way:

P(y f(x) ≤ 0) ≤ inf
0<δ≤γ≤1

(
2Pn(y f(x) ≤ 2δ)+4Pn(σ2(c;x) ≥ γ/3)+

+
8
n

(
56p

γ
δ2(lnn) lnG∗(2n,H)+ ln(8n+4)+

+ 2(p+1) ln

(
logm

1
α∗

c
+1

)
+2pln2+ t + ln

p2π4γ
18δ

))
.

Define the number̂pλ(m,n,γ,δ) of (γ,δ)-clusters ofλ as the smallestp, for which there exists
c∈ C p

λ such that (Koltchinskii and Panchenko, 2004)

Pn(σ2(c;x) ≥ γ) ≤ 56p
γ

nδ2(lnn) lnG∗(2n,H).

317

ANDONOVA

Recall thatG∗(n,H) ≤ 2n for Problem 1 andG∗(n,H) ≤ 2nd for Problems 2, 3 andG∗(n,H) =(
ne
V

)V
. Then the above simplified bound implies that for allλ = ∑p

i=1 αiλi ∈ P(H (Zn)), such that
α1, . . . ,αp ∈ ∆(m) with ∑i αi ≤ 1,

P(y f(x) ≤ 0) ≤ K inf
0<δ≤γ≤1

(
Pn(y f(x) ≤ δ) + p̂λ(m,n,γ,δ)

γ
nδ2(lnn) lnG∗(2n,H)

+ p̂λ(m,n,γ,δ)
ln
(

logm
1

α∗
c
+1
)

n

)
.

Observe that ifγ = δ, then

P(y f(x) ≤ 0) ≤ K
(
Pn(y f(x) ≤ δ) + p̂λ(m,n,δ,δ)

(lnn) lnG∗(2n,H)

nδ

+ p̂λ(m,n,δ,δ)
ln
(

logm
1

α∗
c
+1
)

n

)
.

The above bound is an improvement of the previous bounds in the case when there is a small
numberp̂λ of clusters so that the resulting weighted variance over clusters is small, andprovided
that the minimum of the cluster weightsα∗

c is not too small. The bounds shown above are similar in
nature to the bounds by Koltchinskii and Panchenko (2004) for base-classesH satisfying a general
entropy condition. The advantages of the current results are that they are applicable for random
classes of functions. The bounds derived here are with explicit constants. For more information
regarding the empirical performance of the bounds and the complexities in thecase of boosting
with stumps and decision trees (see Koltchinskii et al., 2003b; Andonova, 2004). There, it is shown
experimentally that generalization bounds based on weighted variance over clusters and margin
capture the generalization performance of classifiers produced by several boosting algorithms over
decision stumps. Our goal here is to show theoretically the impact of the complexity terms on the
generalization performance of functions from random convex hulls, which happen to capture well
known algorithms such as SVMs. More experimental evidences are needed to explore the above
complexities in the setting of thegeneral problemdefined here.

4. Proofs

First we will prove the following lemma that will be used in the proof of Theorem1.

Lemma 6 For n large enough, if X is a random variable with values in{0,1}, P(X = 1) = p, p∈[
2
n,1
]

and X1, . . . ,Xn are independent random realizations of X (Bernoulli trials), then

P

(
1
n

n

∑
i=1

Xi ≥ p

)
≥ 1

4
.

Sketch of the Proof of Lemma 6.
We want to prove that

P

(
1
n

n

∑
i=1

Xi ≥ p

)
= ∑

k≥np

(
n
k

)
pk(1− p)n−k ≥ 1

4
.

318

GENERALIZATION BOUNDS AND COMPLEXITIES

Observe that ifn−1
n < p ≤ 1, thenn ≥ np> n−1 and the inequality becomespn >

(
n−1

n

)n ≥ 1
4,

which is true forn≥ 2.
Assume thatp ≤ n−1

n . The proof of the inequality in this case relies on Poisson and Gaussian

approximation to binomial distribution. LetSn = ∑n
i=1Xi andZn = ∑n

i=1(Xi−p)√
np(1−p)

. Notice that

P

(
1
n

n

∑
i=1

Xi ≥ p

)
= P(Sn ≥ np) = P(Zn ≥ 0).

We want to show that there isn0, such that for anyn≥ n0 the following is true for anyp∈
[

2
n,1− 1

n

]

P

(
1
n

n

∑
i=1

Xi ≥ p

)
≥ 1

4

From the Poisson-Verteilung approximation theorem, (see Borowkow, 1976, Theorem 7, chapter
5, page 85) it follows that

P(Sn ≥ µ) ≥ ∑
k≥np

µk

k!
e−µ− µ2

n
,

whereµ = np≥ 2. From the properties of the Poisson cumulative distribution functionF(x|µ) =

e−µ∑bxc
i=0

µi

i! , one can see that 1−F(x|µ) > 1−F(2|2) > 0.32 forx < µ andµ≥ 2. Therefore,

P(Sn ≥ µ) ≥ 1−F(x|µ)− µ2

n
> 0.32− µ2

n
= 0.32−np2.

Now, from the Berry-Esśeen Theorem (see Feller, 1966, chapter XVI, page 515) one can derive
that

|P(Zn ≥ 0)−0.5| < 33
4
· E(X−EX)3
√

n(E(X−EX)2)3
=

33
4
· p2 +(1− p)2
√

np(1− p)
.

Therefore,P(Zn ≥ 0) > 0.5− 33
4 · p2+(1−p)2√

np(1−p)
. The goal is to findn0 such that for anyn ≥ n0 and

p∈
[

2
n,1− 1

n

]
the following is true:

max
{

0.32−np2,0.5− 33
4
· p2 +(1− p)2
√

np(1− p)

}
≥ 1

4
.

Let x = np2. One can see that the first term 0.32−np2 = 0.32− x is decreasing with respect tox

and the second term 0.5− 33
4 · p2+(1−p)2√

np(1−p)
= 0.5− 33

4 · p2+(1−p)2

√
(1−p)(nx)

1
4

is increasing with respect tox. The

solutionx(n) of the equation

0.32−x = 0.5− 33
4
· x/n+(1−x/n)2
√(

1−
√

x/n
)

(nx)
1
4

is decreasing with respect ton and therefore one can findn0, such that forn > n0 the inequality
0.32−x(n) ≥ 0.25 is true.

319

ANDONOVA

Remark: A shorter proof could be achieved if one directly shows that forp∈
[

2
n,1
]
,

P

(
1
n

n

∑
i=1

Xi ≥ p

)
= ∑

k≥np

(
n
k

)
pk(1− p)n−k ≥ 1

4
.

A stronger version of the above inequality for anyp andn was used in (Vapnik (1998), page
133); however, a reference to a proof of this inequality appears currently to be unavailable.

Proof of Theorem 1.
The proof of Inequality (3.4) for random collection of sets of Theorem 1follows the three

main steps - Symmetrization, Randomization and Tail Inequality (see Vapnik (1998); Anthony and
Shawe-Taylor (1993)). The difference with other approaches is thatthe symmetrization step of the
proof is carried out for random classes invariant under permutation, after one combines the training
set with a ghost sample and uses the incremental property of the random class. Note that sym-
metrization for a random subset under similar incremental and permutation properties was proved
for the “standard” Vapnik’s inequality by Gat (1999) (bounding the absolute deviation).

Let t > 0 be fixed. Assume thatn≥ 2/t2, otherwise ifn < 2/t2, then 4exp−nt2/4 > 1; nothing
more need be proved.

Denote the set

A =

{
x = (x1, . . . ,xn) ∈ Zn : sup

C∈C (x)

P(C)− 1
n ∑ I(xi ∈C)√
P(C)

≥ t

}
.

Assume there exist a setCx, such that

P(Cx)− 1
n ∑ I(xi ∈Cx)√
P(Cx)

≥ t. (4.13)

ThenP(Cx) ≥ t2. We have assumed thatt2 ≥ 2
n, thereforeP(Cx) ≥ 2

n.
Let x′ = (x′1, . . . ,x

′
n) be independent copy ofx = (x1, . . . ,xn). It can be observed (see Lemma

6 and Anthony and Shawe-Taylor (1993), Theorem 2.1) that sinceP(Cx) = E(I(y∈Cx)) ≥ 2
n, then

with probability at least 1/4

P(Cx) ≤
1
n ∑ I(x′i ∈Cx). (4.14)

From the assumption (4.13) and (4.14), then sincex−a√
x+a

is a monotone and increasing function in
x > 0 (a > 0), we have that

0 < t ≤ P(Cx)− 1
n ∑ I(xi ∈Cx)√
P(Cx)

≤ P(Cx)− 1
n ∑ I(xi ∈Cx)√

1
2(P(Cx)+ 1

n ∑ I(xi ∈Cx))

≤
1
n ∑ I(x′i ∈Cx)− 1

n ∑ I(xi ∈Cx)√
1
2(1

n ∑ I(x′i ∈Cx)+ 1
n ∑ I(xi ∈Cx))

.

320

GENERALIZATION BOUNDS AND COMPLEXITIES

From (4.14) and the above inequality,

1
4

I(x∈ A) ≤ Px′

(
P(Cx) ≤

1
n ∑ I(x′i ∈Cx)

)
I(x∈ A)

≤ Px′




1
n ∑ I(x′i ∈Cx)− 1

n ∑ I(xi ∈Cx)√
1
2(1

n ∑ I(x′i ∈Cx)+ 1
n ∑ I(xi ∈Cx))

≥ t




≤ Px′


 sup

C∈C (x)

1
n ∑ I(x′i ∈C)− 1

n ∑ I(xi ∈C)√
1
2(1

n ∑ I(x′i ∈C)+ 1
n ∑ I(xi ∈C))

≥ t


 .

Taking the expectationEx of both sides,

Px

(
sup

C∈C (x)

P(C)− 1
n ∑i I(xi ∈C)√
P(C)

≥ t

)
≤

≤ 4Px,x′


 sup

C∈C (x)

1
n ∑i I(x

′
i ∈C)− 1

n ∑i I(xi ∈C)√
1
2(1

n ∑i I(x
′
i ∈C)+ 1

n ∑i I(xi ∈C))
≥ t




(using increasing property)

≤ 4Px,x′


 sup

C∈C (x,x′)

1
n ∑i I(x

′
i ∈C)− 1

n ∑i I(xi ∈C)√
1
2(1

n ∑i I(x
′
i ∈C)+ 1

n ∑i I(xi ∈C))
≥ t




(using permutation property)

= 4Px,x′,ε


 sup

C∈C (x,x′)

1
n ∑i εi(I(x′i ∈C)−∑i I(xi ∈C))√
1
2(1

n ∑i I(x
′
i ∈C)+ 1

n ∑i I(xi ∈C))
≥ t




(using Hoeffding-Azuma’s inequality)

≤ 4E


∆C (x,x′)(x1, . . . ,xn,x

′
1, . . . ,x

′
n) ˙exp


− nt2

4∑i(Ii−I ′i)
2

∑i(Ii+I ′i)






≤ 4Ex,x′

(
∆C (x,x′)(x1, . . . ,xn,x

′
1, . . . ,x

′
n) ˙exp

(
−nt2

4

))
=

= 4G(2n)exp

(
−nt2

4

)
.

Here the increasing (2.2) and permutation (2.3) properties of the random collection of sets have
been used .

The following lemma will be useful in the proofs of Theorems 2, 3, 4 and 5.

321

ANDONOVA

Lemma 7 Let Z1, . . . ,Zn be n i.i.d. random variables randomly drawn with respect to the distribu-
tion P, Zi = (Xi ,Yi) ∈ X ×Y . Let

CN,k(Z
n) = {C : C = {(x,y) ∈ X ×Y : yg(x) ≤ δ} , g∈ GN,k(Z

n),δ ∈ [0,1]} ,

where

GN,k(Z
n) =

{
g : g(z) =

1
N

N

∑
i=1

kihi(z),hi ∈ H (Zn),1≤ ki ≤ N−k+1,ki ∈ N

}
, N,k∈ N

andH (Zn) is a random-base class from the general problem. Then

G(n) = En∆CN,k(Zn) (Z
n) ≤ min

(
(n+1)(N−k+1)k(G∗(n,H))k,2n

)
.

If k = N, thenki = 1 andGN,N(Zn) =
{

g : g(z) = 1
N ∑N

i=1hi(z),hi ∈ H (Zn)
}

, whereN ∈ N. In this
case, it is clear thatG(n) = En∆CN,N(Zn) (Z

n) ≤ min
(
(n+1)(G∗(n,H))N,2n

)
.

Proof.
Following the notation we have to prove that ifH (Zn) is with finite cardinalityH(Zn), then

G(n) = En∆CN,k(Zn) (Z
n) ≤ min

(
(n+1)(N−k+1)k

En

(
H(Zn)k

)
,2n
)

and if H (Zn) is a collection of indicators from the general problem, then

G(n) = En∆CN,k(Zn) (Z
n) ≤ min

(
(n+1)(N−k+1)k

(ne
V

)Vk
,2n
)

.

First, letH (Zn) be with finite cardinalityH(Zn). Then

cardGN,k(Z
n) ≤ (N−k+1)kH(Zn)k,

because for eachg∈ GN,k(Zn) there arek different functionshi ∈ H (Zn) participating in the convex
combination and the integer coefficientski ∈ {1, . . . ,N− k+ 1}. Also, for fixed g ∈ GN,k(Zn), it
follows that

card
{
{yg(x) ≤ δ}

\

{z1, . . . ,zn},δ ∈ [−1,1]
}
≤ (n+1).

(This is clear after re-orderingY1g(X1), . . . ,Yng(Xn) → Yi1g(Xi1) ≤ . . . ≤ Ying(Xin) and taking for
values ofδ ∈ {Yi1g(Xi1), . . . ,Ying(Xin),1}.) Therefore,

G(n) = En∆CN,k(Zn) (Z
n) ≤ min

(
(n+1)(N−k+1)k

EnH(Zn)k,2n
)
≤

≤ min
(
(n+1)(N−k+1)k(G∗(n,H))k,2n

)
.

Next, let H (Zn) be a collection of indicators over class of sets with finite VC-dimensionV.
Then, for fixedδ∈ [0,1], the number of possible representations of(Z1, . . . ,Zn) by the classCN,k(Zn,δ)=

322

GENERALIZATION BOUNDS AND COMPLEXITIES

{C : C = {(x,y) ∈ X ×Y : yg(x) ≤ δ} , g∈ GN,k(Zn)} is bounded by(N−k+1)k
(

ne
V

)Vk
. Similarly

to the previous case, for fixedg∈ GN,k(Zn),

card
{
{yg(x) ≤ δ}

\

{z1, . . . ,zn},δ ∈ [0,1]
}
≤ (n+1),

and therefore

G(n) = En∆CN,k(Zn) (Z
n) ≤ min

(
(n+1)(N−k+1)k

(ne
V

)Vk
,2n
)

=

= min
(
(n+1)(N−k+1)k(G∗(n,H))k,2n

)
.

Next, the proofs of Theorem 2,3, 4 and 5 are shown. They follow closelythe proofs given by
Koltchinskii and Panchenko (2004) and Koltchinskii et al. (2003b) fornon random classes of func-
tions. We adjust the proofs to hold for random classes of functions by using Inequality 3.4 from
Theorem 1.

Define the function

φ(a,b) =
(a−b)2

a
I(a≥ b),

that is convex fora > 0 and increasing with respect toa, decreasing with respect tob.
Proof of Theorem 2.
Let Z1 = (X1,Y1), . . . ,Zn = (Xn,Yn) be i.i.d samples randomly drawn with respect to the distri-

butionP. Let us first fixδ ∈ (0,1] and let f = ∑T
k=1 λkhk ∈ conv(H (Zn)) be any function from the

convex hull ofH (Zn), whereH (Zn) is the random-base class defined in the general problem.
Given N ≥ 1, generate i.i.d sequence of functionsξ1, . . . ,ξN according to the distributionλ =
(λ1, . . . ,λT), Pξ(ξi = hk)= λk for k= 1, . . . ,T andξi are independent of{(Xk,Yk)}n

k=1. ThenEξξi(x)=

∑T
k=1 λkhk(x).

Consider a function

g(x) =
1
N

N

∑
k=1

ξk(x),

which plays the role of a random approximation off in the following sense:

P(y f(x) ≤ 0) = P

(
y f(x) ≤ 0,yg(x) ≤ δ

)
+P

(
y f(x) ≤ 0,yg(x) > δ

)

≤ P

(
yg(x) ≤ δ

)
+Ex,yPξ

(
Eξyg(x) ≤ 0,yg(x) ≥ δ

)

≤ P

(
yg(x) ≤ δ

)
+Ex,yPξ

(
yg(x)−Eξyg(x) ≥ δ

)

= P

(
yg(x) ≤ δ

)
+Ex,yPξ

(
N

∑
k=1

(yξi(x)−yEξξi(x)) ≥ Nδ

)

≤ P

(
yg(x) ≤ δ

)
+exp

(−Nδ2

2

)
, (4.15)

where in the last step is applied Hoeffding-Černoff inequality. Then,

P

(
y f(x) ≤ 0

)
≤ P

(
yg(x) ≤ δ

)
+exp(−Nδ2/2). (4.16)

323

ANDONOVA

Similarly to the above inequality, one can derive that,

EξPn

(
yg(x) ≤ δ

)
≤ Pn

(
y f(x) ≤ 2δ

)
+exp(−Nδ2/2). (4.17)

For any random realization of the sequenceξ1, . . . ,ξN, the random functiong belongs to the class

GN(Zn) =
{

1
N ∑N

i=1hi(x) : hi ∈ H (Zn)
}
.

Consider the random collection of level sets for fixedN ∈ N,

C (Zn) =
{

C = {(x,y) ∈ X ×Y : yg(x) ≤ δ},g∈ GN(Zn),δ ∈ (0,1]
}
.

Clearly C (Zn) satisfies conditions (2.2) and (2.3). In order to apply the inequality for the random
collection of sets (3.4), one has to estimateG(n) = E

n∆C (Zn)(Z
n). By Lemma 7 it follows that

G(n) ≤ (G∗(n,H))N(n+1).
From this and Theorem 1, we have

P
n

(
sup

C∈C (Zn)

P(C)− 1
n ∑n

i=1 I(Xi ∈C)√
P(C)

≥ t

)
≤ 4G(2n)e−

nt2
4 ≤

≤ 4(G∗(2n,H))
N

(2n+1)e−
nt2
4 = e−u,

where a change of variablest =
√

4
n(u+N ln(G∗(2n,H))+ ln(8n+4)) is made. So, for a fixed

δ ∈ (0,1], for anyu > 0 with probability at least 1−e−u, it follows that

P(yg(x) ≤ δ)− 1
n ∑n

i=1 I(Yig(Xi) ≤ δ)√
P(yg(x) ≤ δ)

≤
√

4
n
(u+N ln(G∗(2n,H))+ ln(8n+4)). (4.18)

The functionφ(a,b),a > 0 is convex. Therefore,

Eξφ
(
P(yg(x) ≤ δ),Pn(yg(x) ≤ δ)

)
≥ φ
(
EξP(yg(x) ≤ δ),EξPn(yg(x) ≤ δ)

)
.

Based on the monotonic properties ofφ(a,b) and inequalities (4.16) and (4.17), it is obtained that
for anyδ ∈ (0,1], for anyu > 0 with probability at least 1−e−u,

φ
(
P(y f(x) ≤ 0)−exp(−Nδ2/2),Pn(y f(x) ≤ 2δ+exp(−Nδ2/2))

)
≤

≤ 4
n
(u+N ln(G∗(2n,H))+ ln(8n+4)). (4.19)

ChooseN = 2lnn
δ2 , such that exp(−Nδ2/2) = 1

n. Take

U =
1
n

(
u+

2lnn
δ2 ln(G∗(2n,H))+ ln(8n+4)

)
.

Solving the above inequality with respect toP(y f(x) ≤ 0), it follows that

P(y f(x) ≤ 0) ≤
(
√

U +

√
Pn(y f(x) ≤ 2δ)+

1
n

+U

)2

+
1
n
.

324

GENERALIZATION BOUNDS AND COMPLEXITIES

In order to make the bound uniform with respect toδ ∈ (0,1], we apply standard union bound
techniques (Koltchinskii and Panchenko, 2004). First, we prove the uniformity for δ∈∆ = {2−k,k=
0,1,}. Apply the above inequality for fixedδ ∈ ∆ by replacingu by u+ ln 2

δ and hencee−u

replaced byδ
2e−u. Denote

U ′ =
1
n

(
u+ ln

2
δ

+
2lnn

δ2 ln(G∗(2n,H))+ ln(8n+4)

)
.

Then

P


\

δ∈∆

{
P(y f(x) ≤ 0) ≤

(
√

U ′ +

√
Pn(y f(x) ≤ 2δ)+

1
n

+U ′

)2

+
1
n

}

≥

≥ 1−e−u
∞

∑
k=1

2−k ≥ 1−e−u.

Now, in order to make the bound for anyδ ∈ (0,1], observe that ifδ0 ∈ (0,1] then there isk ∈
Z+, 2−k−1 ≤ δ0 < 2−k.

Therefore, if the above bound holds for fixedδ0 ∈ (0,1], then

Pn(y f(x) ≤ δ0) ≤ Pn

(
y f(x) ≤ 2−k

)

and

1/δ2
0 ≤ 22k+2, ln

2
δ0

≤ ln2k+2.

So, changing the constants in the bound, denote

U =
1
n

(
t + ln

4
δ

+
8lnn

δ2 ln(G∗(2n,H))+ ln(8n+4)

)
.

It follows that, for anyt > 0 with probability at least 1−e−t for anyδ ∈ (0,1], the following holds:

P(y f(x) ≤ 0) ≤
(
√

U +

√
Pn(y f(x) ≤ 2δ)+

1
n

+U

)2

+
1
n

Thus, the Theorem 2 and inequality (3.6) hold.

Now, theproof of Sparsity bound of Theorem 3will be shown.

Denote∆ = {2−k : k≥ 1} andz= (x,y), Zn =
(
(X1,Y1), . . . ,(Xn,Yn)

)
.

Let us fix f (x) = ∑T
k=1 λkhk(x) ∈ conv(H (Zn)). GivenN ≥ 1, generate an i.i.d. sequence of func-

tionsξ1, . . . ,ξN according to the distributionPξ(ξi(x) = hk(x)) = λk for k= 1, . . . ,T and independent
of {(Xi ,Yi)}n

i=1. Clearly,Eξξi(x) = ∑T
k=1 λkhk(x). Consider the function

g(x) =
1
N

N

∑
k=1

ξk(x),

325

ANDONOVA

which plays the role of a random approximation off andEξg(x) = f (x). One can write,

P(y f(x) ≤ 0) = EξP
(

y f(x) ≤ 0,yg(x) < δ
)

+EξP
(

y f(x) ≤ 0,yg(x) ≥ δ
)
≤

≤ EξP
(

yg(x) ≤ δ
)

+EPξ

(
yg(x) ≥ δ,Eξyg(x) ≤ 0

)
.

In the last term for a fixed(x,y) ∈ X ×Y ,

Pξ

(
yg(x) ≥ δ,Eξyg(x) ≤ 0

)
≤ Pξ

(
yg(x)−Eξyg(x) ≥ δ

)
=

= Pξ

(
N

∑
i=1

(yξi(x)−yEξξi(x)) ≥ Nδ

)
≤ exp

(
−Nδ2/2

)
.

where in the last step Hoeffding-Černoff inequality has been applied. Hence,

P(y f(x) ≤ 0)−e−Nδ2/2 ≤ EξP(yg(x) ≤ δ). (4.20)

Similarly,

EξPn(yg(x) ≤ δ) ≤ Pn(y f(x) ≤ 2δ)+e−Nδ2/2. (4.21)

Clearly, for any random realization of the sequenceξ1, . . . ,ξN, the functiong(x) belongs to the
class

FN,k(Z
n) =

{
1
N

k

∑
i=1

kihi(x) :
k

∑
i=1

ki = N,1≤ ki ≤ N,hi ∈ H (Zn)

}
,

for somek ∈ N, which is the number of different indicesi andki ∈ N is the number of repeating
function hi in the representation ofg. Recall,H (Zn) is the random-base class from the general
problem. Then, 1≤ k≤ min(T,N). Let pk,N = Pξ(g∈ FN,k(Zn)).

Then the expectationEξ can be represented as

Eξ(L(g)) = ∑
k≥1

pk,NEξ (L(g)|g∈ FN,k(Z
n)) ,

whereL is a real valued measurable function andg is the random function

g(x) =
1
N

N

∑
k=1

ξk(x).

Now consider the random collection of sets

CN,k(Z
n) =

{
C : C = {(x,y) : yg(x) ≤ δ},g∈ FN,k(Z

n),δ ∈ (0,1]
}
,

whereN,k∈N. ClearlyCN,k(Zn) satisfies conditions (2.2) and (2.3). In order to apply the inequality
for random collection of sets (3.4), one has to estimateG′(n) = En∆CN,k(Zn)(Z

n).
By Lemma 7, it follows that

G′(n) ≤ (G∗(n,H))k(N−k+1)k(n+1) ≤ (G∗(n,H))kNk(n+1).

326

GENERALIZATION BOUNDS AND COMPLEXITIES

Now apply Inequality (3.4) for the random collection of setsCN,k(Zn). Then, with probability
at least 1−e−t

(Px,y(yg(x) ≤ δ)−Pn(yg(x) ≤ δ))2

Px,y(yg(x) ≤ δ)
≤ 4

n
(t +k lnG∗(2n,H)+k lnN+ ln(8n+4)).

The functionφ(a,b),a > 0 is convex, soφ(Eξa,Eξb) ≤ Eξφ(a,b) for a > 0.
Therefore,

(EξPx,y(yg(x) ≤ δ)−EξPn(yg(x) ≤ δ))2

EξPx,y(yg(x) ≤ δ)
≤ Eξ

(Px,y(yg(x) ≤ δ)−Pn(yg(x) ≤ δ))2

Px,y(yg(x) ≤ δ)
=

= ∑
k≥1

pk,NEξ

((Px,y(yg(x) ≤ δ)−Pn(yg(x) ≤ δ))2

Px,y(yg(x) ≤ δ)
|g∈ FN,k(Z

n)
)
≤

≤ ∑
k≥1

pk,N
4
n
(t +k lnG∗(2n,H)+k lnN+ ln(8n+4)).

Observe that

∑
k≥1

kpk,N = Ecard{k : k ′th index is picked at least once} =

T

∑
k=1

EI(k is picked at least once) =
T

∑
k=1

(1− (1−λk)
N).

Denoteen(f ,δ) = ∑T
k=1

(
1− (1−λk)

N
)
. Let N = 2

δ2 lnn, so thate−Nδ2/2 = 1
n.

The functionφ(a,b) is increasing ina and decreasing inb. Combine the last result with (4.20) and
(4.21):

φ
(
P(y f(x) ≤ 0)−n−1,Pn(y f(x) ≤ 2δ)+n−1

)
≤

≤ 4
n
(t +en(f ,δ) lnG∗(2n,H)+en(f ,δ) ln(

2
δ2 lnn)+ ln(8n+4)).

Denote

W =
1
n
(t +en(f ,δ) lnG∗(2n,H)+en(f ,δ) ln(

2
δ2 lnn)+ ln(8n+4)).

After solving the above inequality forP(y f(x) ≤ 0), one can get that, for a fixedδ ∈ {2−k : k≥ 1},
for everyt > 0 with probability at least 1−e−t the following holds

P(y f(x) ≤ 0) ≤
(√

W+

√
Pn(y f(x) ≤ 2δ)+

1
n

+W
)2

+
1
n
. (4.22)

It remains to make the bound uniform overδ ∈ (0,1], which is done again by using standard union
bound techniques shown in the proof of Theorem 2 and the observation that if δ0 ∈ (0,1], then there
is k∈ Z+, 2−k−1 < δ0 ≤ 2−k anden(f ,δ0) ≤ ∑T

k=1(1− (1−λi)
8(lnn)22k

).

327

ANDONOVA

Redefineen(f ,δ) = ∑T
k=1(1− (1−λi)

8lnn
δ2).

So, by changing the constants in the bound, it follows that for anyt > 0, with probability at least
1−e−t for anyδ ∈ (0,1] the following holds:

P(y f(x) ≤ 0) ≤
(√

U +

√
Pn(y f(x) ≤ 2δ)+

1
n

+U
)2

+
1
n
,

where

U =
1
n

(
t + ln

4
δ

+en(f ,δ) lnG∗(2n,H)+en(f ,δ) ln

(
8
δ2 lnn

)
+ ln(8n+4)

)
.

Thus, the Theorem 3 and inequality (3.8) hold.

We now show theproof for the bound with the total variance inTheorem 4, using Theorem 1.
Given f (x) = ∑T

k=1 λkhk(x), and givenN ≥ 1, first generate an i.i.d. sequence of functions
ξ1, . . . ,ξN independently of{(Xi ,Yi)} and according to the distributionPξ(ξi = hk) = λk, for k =
1, . . . ,T, and consider a function

g(x) =
1
N

N

∑
i=1

ξi(x),

which plays the role of random approximation off .
The main difference from the proof of the above theorems is that in equation(4.15) the condition

on the varianceσ2
λ(x) is also introduced. Namely, one can write

P(y f(x) ≤ 0) ≤ EξP(yg(x) ≤ δ) + P
(
σ2

λ(x) ≥ γ
)
+

+ EPξ
(
yg(x) ≥ δ,y f(x) ≤ 0,σ2

λ(x) ≤ γ
)
.

The variance ofξi ’s, for a fixedx∈ X , is

Varξ(ξi(x)) = σ2
λ(x).

−1≤ ξi(x) ≤ 1, as well. Bernstein’s inequality,

Pξ
(
yg(x) ≥ δ,y f(x) ≤ 0,σ2

λ(x) ≤ γ
)
≤

≤ Pξ

(
N

∑
i=1

(yξi(x)−yEξξi(x)) ≥ Nδ|Varξ(ξ1(x)) ≤ γ

)
≤

≤ 2exp
(
−1

4
min
(Nδ2

γ
,Nδ

))
= 2exp

(
−1

4
Nδ2

γ

)
,

is used, since it is assumed thatγ ≥ δ. Making this term negligible by takingN = 4(γ
δ2) lnn,

P(y f(x) ≤ 0) ≤ EξP(yg(x) ≤ δ)+P
(
σ2

λ(x) ≥ γ
)
+n−1. (4.23)

328

GENERALIZATION BOUNDS AND COMPLEXITIES

Similarly,

EξPn(yg(x) ≤ δ) ≤ Pn(y f(x) ≤ 2δ) + Pn
(
σ2

λ(x) ≥ γ
)
+

+ PnPξ
(
yg(x) ≤ δ,y f(x) ≥ 2δ,σ2

λ(x) ≤ γ
)
.

Applying Bernstein’s inequality to the last term with the same choice ofN = 4(γ
δ2) lnn, one has

EξPn(yg(x) ≤ δ) ≤ Pn(y f(x) ≤ 2δ)+Pn
(
σ2

λ(x) ≥ γ
)
+

1
n
. (4.24)

Now, similarly to the proof of Theorem 2, we derive inequality (4.18). For any γ≥ δ∈ (0,1],N =
4(γ

δ2) lnn, for anyt > 0 with probability at least 1−e−t , the following holds:

φ
(
EξP(yg(x) ≤ δ),EξPn(yg(x) ≤ δ)

)
≤ Eξφ

(
P(yg(x) ≤ δ),Pn(yg(x) ≤ δ)

)
≤

≤ 4
n

(
4

γ
δ2(lnn) lnG∗(2n,H)+ ln(8n+4)+ t

)
, (4.25)

where the fact that the functionφ(a,b)= (a−b)2

a I(a≥b),a> 0 is convex has been used; so,φ(Eξa,Eξb)≤
Eξφ(a,b). The functionφ(a,b) is increasing ina and decreasing inb; combining the last result with
(4.23) and (4.24), one has

φ
(
P(y f(x) ≤ 0)−P(σ2

λ(x) ≥ γ)−n−1,Pn(y f(x) ≤ 2δ)+Pn(σ2
λ(x) ≥ γ)+n−1

)

≤ 4
n
(t +4

γ
δ2(lnn) lnG∗(2n,H)+ ln(8n+4)).

After solving this inequality forP(y f(x) ≤ 0), one has that, for anyδ ∈ (0,1], any 1≥ γ ≥ δ, for
anyt > 0 with probability at least 1−e−t , the following inequality holds

P(y f(x) ≤ 0) ≤ P(σ2(x) ≥ γ)+
1
n

+

+

((
Pn(y f(x) ≤ 2δ)+Pn(σ2(x) ≥ γ)+

1
n

+U

) 1
2

+U
1
2

)2

, (4.26)

where

U =
1
n

(
t +4

γ
δ2(lnn) lnG∗(2n,H)+ ln(8n+4)

)
.

Next, in (4.23),(4.24) and (4.26), the termP(σ2
λ(x) ≥ γ) is related to the term

Pn(σ2
λ(x) ≥ γ) that appears. In order to be able to do this, generate two independent sequencesξ1

k
andξ2

k as above and consider

σ2
N(x) =

1
2N

ΣN
k=1(ξ

2
k(x)−ξ1

k(x))
2 =

1
N

ΣN
k=1ξk(x),

where

ξk(x) =
1
2

(
ξ1

k(x)−ξ2
k(x)

)2
.

329

ANDONOVA

Notice thatξk(x) are i.i.d. random variables andEξξk(x) = σ2
λ(x). Sinceξ1

k,ξ
2
k ∈ H (Zn), then

|ξ1
k(x)−ξ2

k(x)| ≤ 2. The variance

Varξ(ξ1(x)) ≤ Eξξ2
1(x) ≤ 2Eξξ1(x) = 2σ2

λ(x).

Bernstein’s inequality implies that for anyc > 0,

Pξ


σ2

N(x)−σ2(x) ≤ 2

√
σ2

λ(x)γ
c

+8
γ
3c


≥ 1−e(−Nγ

c)

and

Pξ


σ2

λ(x)−σ2
N(x) ≤ 2

√
σ2

λ(x)γ
c

+8
γ
3c


≥ 1−e(−Nγ

c).

Let choosec = 18. If σ2
λ(x) ≤ γ, then with probability at least 1− e−Nγ/18, it follows from the

first inequality thatσ2
N(x) ≤ 2γ. On the other hand, ifσ2

N(x) ≤ 2γ, then with probability at least
1−e−Nγ/18, it follows from the second inequality thatσ2

λ(x) ≤ 3γ. Based on this,

Pξ
(
σ2

N(x) ≥ 2γ,σ2
λ(x) ≤ γ

)
≤ e(−Nγ

18),

and
Pξ
(
σ2

N(x) ≤ 2γ,σ2
λ(x) ≥ 3γ

)
≤ e(−Nγ

18).

One can write

P(σ2
λ(x) ≥ 3γ) = EξP

(
σ2

λ(x) ≥ 3γ,σ2
N(x) ≥ 2γ

)
+EξP

(
σ2

λ(x) ≥ 3γ,σ2
N(x) ≤ 2γ

)

≤ EξP
(
σ2

N(x) ≥ 2γ
)
+EPξ

(
σ2

N(x) ≤ 2γ,σ2
λ(x) ≥ 3γ

)

and

EξPn
(
σ2

N(x) ≥ 2γ
)
≤ Pn

(
σ2

λ(x) ≥ γ
)
+EξPn

(
σ2

N(x) ≥ 2γ,σ2
λ(x) ≤ γ

)
.

SettingN = cγ−1 lnn, then

P
(
σ2

λ(x) ≥ 3γ
)
≤ EξP

(
σ2

N(x) ≥ 2γ
)
+

1
n
, (4.27)

and

EξPn
(
σ2

N(x) ≥ 2γ
)
≤ Pn

(
σ2

λ(x) ≥ γ
)
+

1
n
. (4.28)

For any realization ofξ j,1
k ,ξ j,2

k , the functionsσ2
N belong to the class

FN(Zn) =

{
1

2N

N

∑
k=1

(h j,1
k −h j,2

k)2 : h j,1
k ,h j,2

k ∈ H (Zn)

}
,

whereH (Zn) is defined as the random-base function class in the general problem.

330

GENERALIZATION BOUNDS AND COMPLEXITIES

Now, consider the random collection of sets

C (Zn) =
{
C : C =

{
x∈ X : {σ2

N(x) ≥ γ}
}

,σ2
N ∈ FN(Zn),γ ∈ (0,1]

}
.

In order to boundG′(n) = E
n∆C (Zn)(Z

n) take into account that ifH (Zn) is a random-base class of
finite cardinality, then cardFN(Zn)≤G∗(n,H)2N. In the case of the base-random classH (Zn) being
a collection of indicators, similarly to the proof of Lemma 7, one can count the maximum number
of different representations of{X1, . . . ,Xn} by

C (Zn,γ) =
{
C : C =

{
x∈ X : {σ2

N(x) ≥ γ}
}

,σ2
N ∈ FN(Zn)

}

for a fixed γ ∈ (0,1]. It is bounded by
(

ne
V

)2N
. Then varyingγ over the ordered discrete set

{1,σ2
N(Xi1),σ2

N(Xi2), . . . ,σ2
N(Xin)} for a fixedσ2

N ∈FN(Zn), one can see thatG′(n)≤ (n+1)G∗(n,H)2N.
Now, we apply Theorem 1 for the random collection of setsC , for N = 18γ−1 lnn. Then for any
t > 0 with probability at least 1−e−t for any sampleZn, the following holds

φ
(
EξP(σ2

N(x) ≥ γ),EξPn(σ2
N(x) ≥ γ)

)
≤ Eξφ

(
P(σ2

N(x) ≥ γ),Pn(σ2
N(x) ≥ γ)

)
≤

≤ 4
n

(
2N lnG∗(2n,H)+ ln(8n+4)+ t

)
.

Here, the monotonic property ofφ(a,b) is used together with (4.27) and (4.28), in order to obtain
the following bound under the above conditions:

φ
(
P(σ2

λ(x) ≥ 3γ)− 1
n
,Pn(σ2

λ(x) ≥ γ)+
1
n

)
≤

≤ 4
n

(
36γ−1(lnn) lnG∗(2n,H)+ ln(8n+4)+ t

)
,

Solving the above inequality forP(σ2
λ(x) ≥ γ), we obtain

P(σ2
λ(x) ≥ γ) ≤ 1

n
+

(
W

1
2 +

(
W+Pn(σ2

λ(x) ≥ γ/3)+
1
n

) 1
2

)2

,

where

W =
1
n

(
t +

108
γ

(lnn) lnG∗(2n,H)+ ln(8n+4)

)
.

Combining the above inequality with the inequality (4.26) and using the inequalities(a+ b)2 ≤
2a2 + 2b2 and 1

γ ≤ γ
δ2 for γ ≥ δ, one has that, for anyδ ∈ (0,1] and anyγ ∈ (0,1],γ ≥ δ, for all

t > 0 with probability at least 1− e−t , for any random sampleZn, for any λ ∈ P (H (Zn)) and
f (x) =

R

h(x)λ(dh),

P(y f(x) ≤ 0) ≤ 2Pn(y f(x) ≤ 2δ)+2Pn(σ2
λ(x) ≥ γ)+2Pn(σ2

λ(x) ≥ γ/3)+

+
8t
n

+
8ln(8n+4)

n
+

6
n

+
448γ(lnn) lnG∗(2n,H)

nδ2 .

331

ANDONOVA

Observe thatPn(σ2
λ(x) ≥ γ) ≤ Pn(σ2

λ(x) ≥ γ/3). Rewrite

P(y f(x) ≤ 0) ≤ 2Pn(y f(x) ≤ 2δ)+4Pn

(
σ2

λ(x) ≥
γ
3

)
+

+
448γ(lnn) lnG∗(2n,H)

nδ2 +
8t
n

+
8ln(8n+4)

n
+

6
n
.

Next, the bound is made uniform with respect toγ ∈ (0,1] andδ ∈ (0,1]. First, one makes the bound
uniform whenγ ∈ ∆ = {2−k,k∈ Z+}, andδ ∈ ∆. Apply the above inequality for fixedδ ≤ γ ∈ ∆ by
replacing t byt ′+ ln 2γ

δ and, hence,e−t replaced bye−t ′ = e−t δ
2γ , whereδ andγ ∈ ∆ = {2−k : k≥ 0}.

P
[

\

δ,γ

{
P(y f(x) ≤ 0) ≤

(
2Pn(y f(x) ≤ 2δ)+4Pn

(
σ2

λ(x) ≥
γ
3

)
+

6
n

+

+
8
n

(
t + ln

2γ
δ

+ ln(8n+4)+
56γ
δ2 (lnn) lnG∗(2n,H)

))}]
≥

≥ 1− ∑
l∈Z+

2−l

2
.e−t ≥ 1−e−t ,

where is used∑l∈Z+
2−l < 2. Then the union bound should be applied in the whole range ofδ,γ ∈

(0,1].

For anyt > 0 with probability at least 1−e−t , for anyλ ∈ P (H) and f (x) =
R

h(x)λ(dh),

P(y f(x) ≤ 0) ≤ inf
0<δ≤γ≤1

(
2Pn(y f(x) ≤ 2δ)+4Pn(σ2

λ(x) ≥
γ
3
)+

+
8
n

(
t + ln

2γ
δ

+ ln(8n+4)+
56γ
δ2 (lnn) lnG∗(2n,H)

)
+

6
n

)
.

Now theproof of Theorem 5 regarding cluster-variance bound is given. Let us fix

α1, . . . ,αp,
p

∑
i=1

αi ≤ 1,αi > 0

used for the weights of the clusters in

c = (α1, . . . ,αp,λ1, . . . ,λp), λ =
p

∑
i=1

αiλi , λi ∈ P (H (Zn)).

Generate functions from each cluster independently from each other and independently of the
data and take their sum to approximatef (x) =

R

h(x)λ(dh) = ∑T
i=1 λihi(x). Given N ≥ 1, gener-

ate independentξ j
k(x),k ≤ N, j ≤ p, where for eachj, ξ j

k(x)’s are i.i.d. and have the distribution
Pξ(ξ

j
k(x) = hi(x)) = λ j

i , i ≤ T. Consider a function that plays role of a random approximation off

g(x) =
1
N

p

∑
j=1

α j

N

∑
k=1

ξ j
k(x) =

1
N

N

∑
k=1

gk(x),

332

GENERALIZATION BOUNDS AND COMPLEXITIES

wheregk(x) = ∑p
j=1 α jξ

j
k(x).

For a fixedx ∈ X and k ≤ N, the expectation ofgk with respect to the distributionPξ =
Pξ1×, . . . ,×Pξp is

Eξ(gk(x)) = Σp
j=1α jEξ(ξ

j
k(x)) = f (x);

its variance is

Varξ(gk(x)) =
p

∑
j=1

Varξ(ξ
j
k(x)) =

p

∑
j=1

α2
j σ

2
λ j (x) = σ2(c;x).

Then

P(y f(x) ≤ 0) ≤ EξP(yg(x) ≤ δ)+P
(
σ2(c;x) ≥ γ

)
+

+ EPξ
(
yg(x) ≥ δ,y f(x) ≤ 0,σ2(c;x) ≤ γ

)
.

Using Bernstein’s inequality,γ ≥ δ > 0, |gk(x)| ≤ 1 and takingN = d2+4/3e(γ
δ2) lnn= 4 γ

δ2 lnn will
make the last term negligible. Thus,

P(y f(x) ≤ 0) ≤ EξP(yg(x) ≤ δ)+P
(
σ2(c;x) ≥ γ

)
+

1
n
. (4.29)

Also,

EξPn(yg(x) ≤ δ) ≤ Pn(y f(x) ≤ 2δ)+Pn
(
σ2(c;x) ≥ γ

)
+

+ PnPξ
(
yg(x) ≥ δ,y f(x) ≤ 2δ,σ2(c;x) ≤ γ

)
.

Applying Bernstein’s inequality to the last term with the same choice ofN = 4 γ
δ2 lnn, it follows that

EξPn(yg(x) ≤ δ) ≤ Pn(y f(x) ≤ 2δ)+Pn
(
σ2(c;x) ≥ γ

)
+

1
n
. (4.30)

Now, consider the random collection of level sets

C (Zn) = {C : C = {(x,y) : yg(x) ≤ δ, (x,y) ∈ X ×Y },g∈ FN(Zn),δ ∈ [−1,1]} ,

where

FN(Zn) =

{
1
N

ΣN
i=1gi ,gi ∈ G(α1, . . . ,αp)[Zn]

}

and

G(α1, . . . ,αp)[Zn] =

{
gk(x) =

p

∑
j=1

α jξ
j
k(x),ξ

j
k ∈ H (Zn)

}
,

whereH (Zn) is the random-base class of functions, defined in the general problem.
Similarly to the proof of Theorem 2, for fixedg∈ FN(Zn), we have

card
{

C
\

Z1, . . . ,Zn

}
≤ (n+1)

and
cardFN(Zn) ≤ G∗(n,H)Np.

333

ANDONOVA

Therefore,G′(n) = E
n∆C (Zn) ≤ (n+ 1)G∗(n,H)Np. Apply Inequality (3.4) from Theorem 1 for

random the collection of setsC . Then, with probability at least 1−e−t

(Px,y(yg(x) ≤ δ)−Pn(yg(x) ≤ δ))2

Px,y(yg(x) ≤ δ)
≤ 4

n
(t +NplnG∗(2n,H)+ ln(8n+4)).

The functionφ(a,b) = (a−b)2

a I(a≥ b),a > 0 is convex, soφ(Eξa,Eξb) ≤ Eξφ(a,b)

(EξPx,y(yg(x) ≤ δ)−EξPn(yg(x) ≤ δ))2

EξPx,y(yg(x) ≤ δ)
≤ 4

n
(t +NplnG∗(2n,H)+ ln(8n+4)).

The functionφ(a,b) is increasing ina and decreasing inb and combined with the last result with
(4.29) and (4.30) (recall thatN = 4(γ

δ2) lnn)

φ
(
P(y f(x) ≤ 0)−P(σ2(c;x) ≥ γ)− 1

n
,Pn(y f(x) ≤ 2δ)+Pn(σ2(c;x) ≥ γ)+

1
n

)
≤

≤ 4
n

(
t +4p

γ
δ2(lnn) lnG∗(2n,H)+ ln(8n+4)

)
.

After solving this inequality forP(y f(x) ≤ 0), one can get that, for anyγ,δ ∈ (0,1], γ ≥ δ, and
α1, . . . ,αp,∑αi ≤ 1,αi > 0 for anyt > 0 with probability at least 1−e−t ,

P(y f(x) ≤ 0) ≤ P
(
σ2(c;x) ≥ γ

)
+

+

((
Pn(y f(x) ≤ 2δ)+Pn(σ2(c;x) ≥ γ)+

1
n

+U

) 1
2

+U
1
2 +

1
n

)2

, (4.31)

where

U =
1
n

(
t +4

pγ
δ2 (lnn) lnG∗(2n,H)+ ln(8n+4)

)
,

c∈ C p(λ), λ = ∑p
j=1 α jλ j , λ j ∈ P (H).

Now,P(σ2(c;x)≥ γ) has to be estimated. Generate two independent random sequences of func-
tionsξ j,1

k (x) andξ j,2
k (x), j = 1, . . . p, k = 1, . . . ,N as before (Pξ(ξ

j,1
k (x) = hi(x)) = λ j

i , Pξ(ξ
j,2
k (x) =

hi(x)) = λ j
i) and consider

σ2
N(c;x) =

1
2N

ΣN
k=1

(
Σp

j=1α j(ξ j,2
k (x)−ξ j,1

k (x))
)2

=
1
N

ΣN
k=1ξk(x),

where

ξk(x) =
1
2

(
Σp

j=1α j(ξ j,1
k (x)−ξ j,2

k (x))
)2

. (4.32)

Thenξk(x) are i.i.d. random variables andEξξk(x) = σ2(c;x). Sinceξ j,1
k ,ξ j,2

k ∈ H , then|ξ j,1
k (x)−

ξ j,2
k (x)| ≤ 2. The variance satisfies the following inequality

Varξ(ξ1(x)) ≤ Eξξ2
1(x) ≤ 2Eξξ1(x) = 2σ2(c;x).

334

GENERALIZATION BOUNDS AND COMPLEXITIES

Bernstein’s inequality implies that

Pξ

(
σ2

N(c;x)−σ2(c;x) ≤ 2

√
σ2(c;x)

K
+8

γ
3K

)
≥ 1−e(−Nγ

K)

and

Pξ

(
σ2(c;x)−σ2

N(c;x) ≤ 2

√
σ2(c;x)

K
+8

γ
3K

)
≥ 1−e(−Nγ

K).

Based on this, for large enoughK > 0 (K = 18 is sufficient),

Pξ
(
σ2

N(c;x) ≥ 2γ,σ2(c;x) ≤ γ
)
≤ e(−Nγ

K),

and
Pξ
(
σ2

N(c;x) ≤ 2γ,σ2(c;x) ≥ 3γ
)
≤ e(−Nγ

K).

One can write

P
(
σ2(c;x) ≥ 3γ

)
≤ EξP

(
σ2

N(c;x) ≥ 2γ
)
+EPξ

(
σ2

N(c;x) ≤ 2γ,σ2(c;x) ≥ 3γ
)
,

and

EξPn
(
σ2

N(c;x) ≥ 2γ
)
≤ Pn

(
σ2

N(c;x) ≥ γ
)
+PnPξ

(
σ2

N(c;x) ≥ 2γ,σ2(c;x) ≤ γ
)
.

ChooseN = Kγ−1 lnn; then

P
(
σ2(c;x) ≥ 3γ

)
≤ EξP

(
σ2

N(c;x) ≥ 2γ
)
+

1
n
, (4.33)

and

EξPn
(
σ2

N(c;x) ≥ 2γ
)
≤ Pn

(
σ2

N(c;x) ≥ γ
)
+

1
n
. (4.34)

Now, consider the random collection of sets

CZn =
{
C : C =

{
x : σ2

N(c;x) ≥ 2γ
}

,σ2
N(c;x) ∈ FN(Zn),γ ∈ (0,1]

}
,

where

FN(Zn) =

{
1

2N
ΣN

k=1

(
Σp

j=1α j(h j,1
k −h j,2

k)
)2

,h j,1
k ,h j,2

k ∈ H (Zn)

}
.

For any{x1, . . . ,xn} and a fixedσ2
N(c; .) ∈ FN(Zn), it follows that

card{CT{X1, . . . ,Xn}} ≤ (n+1) and cardFN(Zn) ≤ G∗(n,H)2Np

if the base-random classH (Zn) is of finite cardinality. Therefore,G′
C (n) = E

n∆CZn(Zn) ≤ (n+
1)G∗(n,H)2Np. The case ofH (Zn) being a collection of indicators as in the general problem is
similar and dealt with in the previous proofs of the theorems.

The rest of the arguments are similar to the proof of the Theorem 4. Apply theinequality (3.4)
from Theorem 1 for random collection of setsCZn, and based on convexity ofφ(a,b), one has that
for γ ∈ (0,1], α1, . . . ,αp,∑p

j=1 α j ≤ 1,α j > 0 and for anyt > 0 with probability at least 1−e−t

335

ANDONOVA

(EξP
(
σ2

N(c;x) ≥ γ
)
−EξPn

(
σ2

N(c;x) ≥ γ
)
)2

EξP
(
σ2

N(c;x) ≥ γ
) ≤ 2

n
(t +2NplnG∗(2n,H)+ ln(8n+4)),

for any λ j ∈ P (H (Zn)), j = 1, . . . , p. Combining the last result (φ(a,b) is increasing ina and
decreasing inb) with (4.33) and (4.34) (recall thatN = 18γ−1 lnn),

φ
(
P
(
σ2(c;x) ≥ 3γ

)
−n−1,Pn

(
σ2(c;x) ≥ γ

)
+n−1

)
≤

≤ 4
n

(
t +36p

γ
δ2(lnn) lnG∗(2n,H)+ ln(8n+4)

)
.

Solving the above inequality forP(σ2
λ(x) ≥ γ), then with probability at least 1−e−t

P
(
σ2

λ(x) ≥ γ
)
≤ 1

n
+

(
W

1
2 +

(
W+Pn

(
σ2

λ(x) ≥ γ/3
)
+

1
n

) 1
2

)2

,

where

W =
1
n

(
t +

108p
γ

(lnn) lnG∗(2n,H)+ ln(8n+4)

)
.

Finally, combining this with (4.31) and using the inequalities(a+b)2 ≤ 2a2 +2b2 and 1
γ ≤ γ

δ2 for
γ ≥ δ, one obtains: for anyδ ∈ (0,1] and anyγ ∈ (0,1],γ ≥ δ, for all t > 0 with probability at least
1−e−t , for any random sampleZn, for anyλ ∈ P (H (Zn)) and f (x) =

R

h(x)λ(dh),

P(y f(x) ≤ 0) ≤ 2Pn(y f(x) ≤ 2δ)+2Pn
(
σ2

λ(x) ≥ γ
)
+2Pn

(
σ2

λ(x) ≥ γ/3
)
+

+
8t
n

+
8ln(8n+4)

n
+

6
n

+
448pγ(lnn) lnG∗(2n,H)

nδ2 .

Observe thatPn
(
σ2

λ(x) ≥ γ
)
≤ Pn

(
σ2

λ(x) ≥ γ/3
)
. Then, rewrite

P(y f(x) ≤ 0) ≤ 2Pn(y f(x) ≤ 2δ)+4Pn

(
σ2

λ(x) ≥
γ
3

)
+

+
448pγ(lnn) lnG∗(2n,H)

nδ2 +
8t
n

+
8ln(8n+4)

n
+

6
n
.

The next step is to make this bound uniform with respect toα j > 0, j = 1, . . . , p,∑p
j=1 α j ≤ 1.

First, consider simplyαi ∈ ∆ = {2− j , j = 1,2, . . .}. The case ofαi = 1 is proven in the previous
Theorem 4 for total variance. Letα j = 2−l j . Redefine clusterc(l1, . . . , lp) := c(α1, . . . ,αp,λ1, . . . ,λp).
Then consider the event

Ac(l1,...,lp) =
{
∀ f ∈ Fd : P(y f(x) ≤ 0) ≤ 2Pn(y f(x) ≤ 2δ)+4Pn

(
σ2

λ(x) ≥
γ
3

)
+

+
448pγ(lnn) lnG∗(2n,H)

nδ2 +
8t
n

+
8ln(8n+4)

n
+

6
n

}
,

336

GENERALIZATION BOUNDS AND COMPLEXITIES

that holds with probability 1−e−t . Make change of variablest by t +2∑p
j=1 ln l j + pln4 in the last

bound. With this choice, the eventAc(l1,...,lp) can be rewritten as

Ac(l1,...,lp) =
{
∀ f ∈ Fd : P(y f(x) ≤ 0) ≤ 2Pn(y f(x) ≤ 2δ)+4Pn

(
σ2

λ(x) ≥
γ
3

)
+

+
448pγ(lnn) lnG∗(2n,H)

nδ2 +
8t
n

+
16∑p

j=1 ln l j

n
+

8pln4
n

+
8ln(8n+4)

n
+

6
n

}
,

which holds with probability at least

P(Ac(l1,...,lp)) ≥ 1−∏ 1

l2
j

e−t4−p.

This implies the probability of the intersection

P


 \

l1,...,lp

Ac(l1,...,lp)


≥ 1− ∑

l1,...,lp∈N

∏ 1

l2
j

e−t4−p =

= 1−4−pe−t(∑
l i∈N

1

l2
i

)p = 1−4−pe−t(1+π2/6)p ≥ 1−e−t ≥ 1−e−t

and∑ ln l j = ∑ ln(| log2 α j |). For fixedp≥ 1 and 1≥ γ ≥ δ > 0 and∀t > 0 with probability at least
1−e−t , the following is true for anyα1, . . . ,αp ∈ ∆, ∑p

i=1 αi ≤ 1, ∆ = {2− j , j = 0,1, . . .} :

P(y f(x) ≤ 0) ≤
(

2Pn(y f(x) ≤ 2δ)+4Pn
(
σ2(c;x) ≥ γ/3

)
+

+
448pγ(lnn) lnG∗(2n,H)

nδ2 +
8t
n

+
16∑p

j=1 ln(| log2 α j |)
n

+
8pln4

n
+

8ln(8n+4)

n
+

6
n

)
.

Next, for a fixedm∈ N, consider the following discretization ofα j = t jm−s, for a fixed a priori
s∈ Z+, andt j ∈ {1,2,3, . . . ,ms}. Therefores+ logmα j ≥ 0.

For anyα j = t jm−s there isl j ∈ Z+, such that

m−l j−1 < α j = t j .m
−s ≤ m−l j .

That iss− l j −1 < logmt j ≤ s− l j , l j ≤ s.
This time we make the change of variablest ′ = t +∑p

j=12ln(s+ logmα j +1)+2pln2 and apply
the bound for thatt ′.

Then e−t ′ = e−t ∑p
j=1

1
(logmt j+1)2 4−p ≤ e−t ∑p

j=1
1

(s−l j+1)2 4−p. Applying union bound trick as
before, shows that for anyt > 0, with probability at least

1−e−t4−p(
s

∑
j=1

1
(s− l j +1)2)p > 1−e−t ,

for anyα j = t jm−s, t j ∈ {1,2,3, . . . ,ms}, j = 1, . . . , p, the following bound holds:

P(y f(x) ≤ 0) ≤
(

2Pn(y f(x) ≤ 2δ)+4Pn
(
σ2(c;x) ≥ γ/3

)
+

+
448pγ(lnn) lnG∗(2n,H)

nδ2 +
8t
n

+
16∑p

j=1 ln(s+ logmα j +1)

n
+

+
16pln2

n
+

8ln(8n+4)

n
+

6
n

)
.

337

ANDONOVA

In order to make the bound uniform for alls, p≥ 1 and 1≥ γ ≥ δ > 0, apply the above inequality

for fixed p∈ N,δ ≤ γ ∈ ∆ = {2−k : k ≥ 1} by replacingt by t ′ = t + ln s2p2π4γ
δ18 and hence replacing

e−t by e−t ′ = e−t δ18
s2p2π4γ , whereδ andγ ∈ ∆ = {2−k : k≥ 1}.

P
[

\

δ,γ,p

{
P(y f(x) ≤ 0) ≤

(
2Pn(y f(x) ≤ 2δ)+4Pn

(
σ2(c;x) ≥ γ/3

)
+

+
448pγ(lnn) lnG∗(2n,H)

nδ2 +
8t
n

+
8ln s2p2π4γ

18δ
n

+
16∑p

j=1 ln(s+ logmα j +1)

n
+

+
16pln2

n
+

8ln(8n+4)

n
+

6
n

)}]

≥ 1− ∑
l∈Z+

2−l 36
2π4 .(∑

k

1
k2)2e−t ≥ 1−e−t ,

where we have applied∑k∈Z+

1
k2 ≤ π2

6 and∑l∈Z+
2−l ≤ 2.

Finally, ∀t > 0 with probability at least 1−e−t , the following is true for alls∈ N,α1, . . . ,αp ∈
∆ =

{
t jm−s,0 < t j ≤ ms, t j ∈ N

}
, p∈ N and 1≥ γ ≥ δ > 0

P(y f(x) ≤ 0) ≤
(

2Pn(y f(x) ≤ 2δ)+4Pn
(
σ2(c;x) ≥ γ/3

)
+

+
1
n

(448pγ(lnn) lnG∗(2n,H)

δ2 +8t +8ln
s2p2π4γ

18δ
+

+ 16
p

∑
j=1

ln(s+ logmα j +1)+16pln2+8ln(8n+4)+6
))

.

From here, by replacings with dlogm(1
α∗

c
)e in the above inequality, the result (3.12) follows.

5. Conclusions

Here, we showed unified data-dependent generalization bounds for classifiers fromrandomconvex
hulls in the setting of thegeneral problemdefined above. Such classifiers are generated, for example,
by broad classes of algorithms such as SVMs, RBF networks and boosting. The bounds involve
the individual complexities of the classifiers introduced by Koltchinskii and Panchenko (2004),
such as sparsity of weights and weighted variance over clusters. This was achieved by proving a
version of Vapnik’s inequality applied to random classes, that is, a boundfor relative deviations of
frequencies from probabilities for random classes of events (Theorem 1). The results show how
various algorithms fit in a single,general class. Also, it was indicated that algorithms controlling
the individual complexities of the classifiers can produce classifiers with good generalization ability
(see Koltchinskii et al. (2003a); Koltchinskii et al. (2003b); Andonova (2004) for some experimental
results in the setting of various boosting algorithms). Experimental investigations of the above
complexities in the setting of thegeneral problemare desirable.

338

GENERALIZATION BOUNDS AND COMPLEXITIES

Acknowledgments

The author expresses special thanks to Dmitry Panchenko for introducing me to the area of statis-
tical learning and for his valuable advice and input during the exploration of the above problems.
The author also expresses thanks to Vladimir Koltchinskii for valuable communication and input.
Valuable remarks and suggestions about the paper and references were given by Sayan Mukherjee,
the reviewers and the editor.

References

Andonova, S.Theoretical and experimental analysis of the generalization ability of somestatistical
learning algorithms.PhD thesis, Department of Mathematics and Statistics, Boston University,
Boston, MA, 2004.

Anthony, M., Shawe-Taylor, J. A result of Vapnik with applications.Discrete Applied Mathematics,
47(3): 207–217, 1993.

Bartlett, P., Shawe-Taylor, J. Generalization performance of support vector machines and other
pattern classifiers.Advances in Kernel Methods. Support Vector Learning. Schölkopf, Burges and
Smola (Eds.),1, The MIT Press, Cambridge, 1999.

Borowkow, A. A.Wahrscheinlichkeits–theorie.Birkhäuser Verlag, 1976.

Cannon, A., Ettinger, M., Hush, D., Scovel, C. Machine Learning with Data Dependent Hypothesis
Classes.Journal of Machine Learning Research,2: 335–358, 2002.

Breiman, L. Prediction games and arcing algorithms.Neural Computation,11(7): 1493–1517, 1999.

Dudley, R. M.Uniform Central Limit Theorems.Cambridge University Press, 1999.

Feller, W.An Introduction to probability theory and its applications, volume II.John Wiley, 1966.

Gat, Y. A bound concerning the generalization ability of a certain class of learning algorithms.
Technical Report 548, University of California, Berkeley, CA, 1999.

Heisele, B., Serre, T., Mukherjee, S., Poggio, T. Feature Reduction andHierarchy of Classifiers for
Fast Object Detection in Video Images. InProceedings of IEEE Computer Society Conference on
Computer Vision and Pattern Recognition,2: 18–24, 2001.

Kohonen, T. The self-organizing map. InProceedings of IEEE,78: 1464–1479, 1990.

Koltchinskii, V., Panchenko, D. Empirical margin distributions and bounding the generalization
error of combined classifiers.The Annals of Statistics,30(1), 2002.

Koltchinskii, V., Panchenko, D. Complexities of convex combinations and bounding the generaliza-
tion error in classification.submitted, 2004.

Koltchinskii, V., Panchenko, D., Lozano, F. Bounding the generalization error of convex combi-
nations of classifiers: balancing the dimensionality and the margins.The Annals of Applied
Probability,13(1), 2003a.

339

ANDONOVA

Koltchinskii, V., Panchenko, D., Andonova, S. Generalization bounds for voting classifiers based
on sparsity and clustering. InProceedings of the Annual Conference on Computational Learning
Theory, Lecture Notes in Artificial Intelligence, M. Warmuth and B. Schoelkopf (eds.). Springer,
New York, 2003b.

Littlestone, N., Warmuth, M. Relating data compression and learnability. Technical Report, Univer-
sity of California, Santa Cruz, CA, 1986.

Panchenko, D. Some extensions of an inequality of Vapnik andČervonenkis.Electronic Communi-
cations in Probability,7: 55–65, 2002.

Schapire, R., Freund, Y., Bartlett, P., Lee, W. S. Boosting the margin: A newexplanation of effec-
tiveness of voting methods.The Annals of Statistics,26: 1651–1687, 1998.

Schapire, R., Singer, Y. Improved Boosting Algorithms using Confidence-Rated Predictions.Ma-
chine Learning,37: 297–336, 1999.

Steinwart, I. Sparseness of Support Vector Machines.Journal of Machine Learning Research,2:
1071–1105, 2003.

Vapnik, V. N., Červonenkis, A. Ya. On the uniform convergence of relative frequencies of event to
their probabilities.Soviet Math. Dokl.,9: 915 – 918, 1968.

Vapnik, V. N., Červonenkis A. Ya.Theory of Pattern Recognition.Nauka, Moscow (in Russian),
1974.

Vapnik, V.Statistical Learning Theory.John Wiley & Sons, New York, 1998.

Vapnik, V.Estimation of Dependencies Based on Empirical Data.SpringerVerlag, New York, 1982.

340

Journal of Machine Learning Research 6 (2005) 341-361 Submitted 11/04; Published 03/05

A Modified Finite Newton Method for Fast Solution
of Large Scale Linear SVMs

S. Sathiya Keerthi SATHIYA .KEERTHI@OVERTURE.COM

Dennis DeCoste DENNIS.DECOSTE@OVERTURE.COM

Yahoo! Research Labs
210 South Delacey Avenue
Pasadena, CA 91105, USA

Editor: Thorsten Joachims

Abstract

This paper develops a fast method for solving linear SVMs with L2 loss function that is suited for
large scale data mining tasks such as text classification. This is done by modifying the finite Newton
method of Mangasarian in several ways. Experiments indicate that the method is much faster than
decomposition methods such as SVMlight, SMO and BSVM (e.g., 4-100 fold), especially when
the number of examples is large. The paper also suggests waysof extending the method to other
loss functions such as the modified Huber’s loss function andthe L1 loss function, and also for
solving ordinal regression.

Keywords: linear SVMs, classification, conjugate gradient

1. Introduction

Linear SVMs (SVMs whose feature space is the same as the input space ofthe problem) are power-
ful tools for solving large-scale data-mining tasks such as those arising in the textual domain. Quite
often, these large-scale problems have a large number of examples as wellas a large number of
features and the data matrix is very sparse (e.g.>99.9% sparse “bag of words” in text classifica-
tion). In spite of their excellent accuracy, SVMs are sometimes not preferred because of the huge
training times involved (Chakrabarti et al., 2003). Thus, it is important to have fast algorithms for
solving them. Traditionally, linear SVMs have been trained using decompositiontechniques such
as SVMlight (Joachims, 1999), SMO (Platt, 1999), and BSVM (Hsu and Lin, 2002), which solve
the dual problem by optimizing a small subset of the variables in each iteration.Each iteration costs
O(nnz) time, wherennz is the number of non-zeros in the data matrix (nnz = mn if the data matrix is
full wherem is the number of examples andn is the number of features). The number of iterations,
which is a function ofmand the number of support vectors, tends to grow super-linearly withmand
thus these algorithms can be inefficient whenm is large.

With SVMs two particular loss functions for imposing penalties on slacks (violations on the
wrong side of the margin, usually denoted byξ) have been popularly used.L1-SVMs penalize
slacks linearly (penalty=ξ) while L2-SVMs penalize slacks quadratically (penalty=ξ2/2). Though
both SVMs give good generalization performance,L1-SVMs are more popularly used because they
usually yield classifiers with a much less number of support vectors, thus leading to better classifi-
cation speed. For linear SVMs the number of support vectors is not a matterof much concern since

c©2005 Sathiya Keerthi and Dennis DeCoste.

KEERTHI AND DECOSTE

the final classifier is directly implemented using the weight vector in feature space. In this paper we
focus onL2-SVMs.

Since linear SVMs are directly formulated in the input space, it is possible andworthwhile
to think of direct methods of solving the primal problem without using the kernel trick. Primal
approaches are attractive because they assure a continuous decrease in the primal objective function.

Recently some promising primal algorithms have been given for training linear classifiers. Fung
and Mangasarian (Fung and Mangasarian, 2001) have given a primalversion of the least squares
formulation of SVMs given by Suykens and Vandewalle (1999). Komarek(2004) has effectively
applied conjugate gradient schemes to logistic regression. Zhang et al. (2003) have given an indirect
algorithm for linearL1-SVMs that works by approximating theL1 loss function by a sequence
of smooth modified logistic regression loss functions and then sequentially solving the resulting
smooth primal modified logistic regression problems by nonlinear conjugate gradient methods. A
particular drawback of that method is its inability to exploit the sparsity propertyof SVMs: that
only the support vectors determine the final solution.

A direct primal algorithm forL2-SVMs that exploits the sparsity property, called the finite New-
ton method, was given by Mangasarian (2002). It was mainly presented for problems in which
the number of features is small. The main aim of this paper is to introduce appropriate tools that
transform this method into a powerfully fast technique for solving large scale data mining problems
(with a large number of examples and/or a large number of features). Our main contributions are:
(1) we modify the finite Newton method by keeping the least squares nature ofthe problem intact in
each iteration and using exact line search; (2) we bring in special, numerically robust conjugate gra-
dient techniques to implement the Newton iterations; and (3) we introduce heuristics that speed-up
the baseline implementation considerably. The result is an algorithm that is numerically robust and
very fast. An attractive feature of the algorithm is that it is also very easy toimplement; Appendix
A gives a pseudocode that can be easily transcribed into a working code.

We show that the method that we develop forL2-SVMs can be extended in a straight-forward
way to the modified Huber’s loss function (Zhang, 2004) and, in a slightly more complicated way
to theL1 loss function. We also show how the algorithm can be modifed to solve ordinalregression.

The paper is organized as follows. Section 2 formulates the problem and gives basic results.
The modified finite Newton algorithm is developed in Section 3. Section 4 gives full details associ-
ated with a practical implementation of this algorithm. Section 5 gives computational experiments
demonstrating the efficiency of the method in comparison with standard methods such as SVMlight

(Joachims, 1999) and BSVM (Hsu and Lin, 2002). Section 6 suggests ways for extending the
method to other loss functions and Section 7 explains how ordinal regression can be solved. Section
8 contains some concluding remarks.

2. Problem Formulation and Some Basic Results

Consider a binary classification problem with training examples,{xi , ti}m
i=1 wherexi ∈ Rn andti ∈

{+1,−1}. To obtain a linear classifiery = w·x+b, L2-SVM solves the following primal problem:

min
(w,b)

1
2
(‖w‖2 +b2)+

C
2

m

∑
i

ξ2
i s.t. ti(w·xi +b) ≥ 1−ξi ∀ i (1)

whereC is the regularization parameter. We have included theb2/2 term so that standard regularized
least squares algorithms can be used directly. Our experience shows that generalization performance

342

FINITE NEWTON METHOD FOR LINEARSVMS

is not affected by this inclusion. In a particular problem if there is reason tobelieve that the added
term does affect performance, one can proceed as follows: takeγ2b2/2 as the term to be included;
then defineb̃ = γb as the new bias variable and take the classifier to bey = w · x+ (1/γ)b̃. The
parameterγ can either be chosen to be a small positive value or be tuned by cross validation.

For applying least squares ideas neatly, it is convenient to transform (1) to an equivalent formu-
lation by eliminating theξi ’s and dividing the objective function by the factorC. This gives1

min
β

f (β) =
λ
2
‖β‖2 +

1
2 ∑

i∈I(β)

d2
i (β) (2)

whereβ = (w,b), λ = 1/C, di(β) = yi(β)− ti , yi(β) = w·xi +b, andI(β) = {i : tiyi(β) < 1}.
Least Squares SVM (LS-SVM) (Suykens and Vandewalle, 1999) corresponds to (1) with the

inequality constraints replaced by the equality constraints,ti(w · xi + b) = 1− ξi for all i. When
transformed to the form (2), this is equivalent to settingI(β)={1, . . . ,m}; thus, LS-SVM is solved
via a single regularized least squares solution. In contrast, the dependance ofI(β) onβ complicates
theL2-SVM solution. In spite of this complexity, it can be advantageous to opt for usingL2-SVMs
because they do not allow well-classified examples to disturb the classifier design. This is especially
true in problems where the support vectors are a small subset of all examples.2

Let us now review several basic results concerningf , some of which are given in Mangasarian
(2002). First note thatf is a piecewise quadratic function. The presence of theλ‖β‖2/2 term makes
f strictly convex. Thus it has a unique minimizer.f is continuously differentiable in spite of the
jumps inI(β), the reason for this being that when an indexi causes a jump inI(β) at someβ, its di

is 0. The gradient off is given by

∇ f (β) = λβ+ ∑
i∈I(β)

di(β)

(

xi

1

)

. (3)

Given an index setI ⊂ {1, . . . ,m}, let us define the functionfI as

fI (β) =
λ
2
‖β‖2 +

1
2 ∑

i∈I

d2
i (β). (4)

Clearly fI is a strictly convex quadratic function and so it has a unique minimizer. It follows directly
from (3) that, for anȳβ, ∇ f (β)|β=β̄ = ∇ fĪ (β)|β=β̄ whereĪ = I(β̄). In fact, there exists an open set

aroundβ̄ in which f and fĪ are identical. It follows that̄β minimizes f iff it minimizes fĪ .

3. The Modified Finite Newton Algorithm

Mangasarian’s finite newton method (Mangasarian, 2002) does iterationsof the form

βk+1 = βk +δkpk,

1. To help see the equivalence of (1) and (2), note that at a given(w,b), the minimization ofξ2
i in (1) will automatically

chooseξi = 0 for all i 6∈ I(β).
2. We find thatL2-SVMs usually achieve better generalization performance over LS-SVMs. Interestingly, we also find

L2-SVMs often train faster than LS-SVMs, due to sparseness arising fromsupport vectors.

343

KEERTHI AND DECOSTE

where the search directionpk is based on a second order approximation of the objective function at
βk:

pk = −H(βk)
−1∇ f (βk).

Since f is not twice differentiable atβ where at least one of thedi is zero,H(β) is taken to be
the generalized Hessian defined byH(β) = λJ+CTDC whereJ is then×n identity matrix,C is a
matrix whose rows are(xT

i ,1) andD is a diagonal matrix whose diagonal elements are given by:

Dii =







1 if tiyi(β) < 1
some specific element of[0,1] if tiyi(β) = 1
0 if tiyi(β) > 1

(5)

Note that examples with indices satisfyingtiyi(β) > 1 do not affectH(β) and pk. (This property
contributes greatly to the overall efficiency of the method.) The step sizeδk is chosen to satisfy an
Armijo condition that ensures convergence, and it is found by applying a halving method of line
search in the[0,1] interval. (IfC in (1) is sufficiently small then it is shown in Mangasarian (2002)
that the fixed step size,δk = 1 suffices for convergence.)

We modify the algorithm slightly in two ways. First, we avoid doing anything special for cases
wheretiyi(β) = 1 occurs. (Essentially, we setDii = 0 in (5) for such cases.) This lets us keep the least
squares nature of the problem intact. More precisely, instead of computingthe Newton direction
pk, we compute the Newton point,βk + pk, which is the solution of a regularized least squares
problem. As we will see in the next section, this has useful implications on stablealgorithmic
implementation. Second, we do an exact line search to determineδk. This feature allows us to
directly apply convergence results from nonlinear optimization theory. (Inthe next section we give
a fast method for exact line search.) Thus, at one iteration, given a point β we setI = I(β) and
minimize fI to obtain the Newton point,̄β. Then an exact line search on the ray fromβ to β̄
yields the next point of the method. These iterations are repeated till the algorithm converges. The
overall algorithm is given below. Implementation details associated with each step are discussed in
Section 4.

344

FINITE NEWTON METHOD FOR LINEARSVMS

Algorithm L2-SVM-MFN.

1. Choose a suitable startingβ0. Setk = 0 and go to step 2.

2. Check ifβk is the optimal solution of (2). If so, stop withβk as the solution. Else go to step 3.

3. Let Ik = I(βk). Solve
min

β
fIk(β). (6)

Let β̄ denote the solution obtained.

4. Do a line search to decrease the “full” objective function,f :

min
β∈L

f (β), (7)

whereL = {β = βk + δ(β̄−βk) : δ ≥ 0}. Let δ? denote the solution of this line search. Set
βk+1 = βk +δ?(β̄−βk), k := k+1 and go back to step 2 for another iteration.

Theorem 1. Algorithm L2-SVM-MFN converges to the solution of (1) in a finite number of
iterations.

Proof. Let pk = (β̄ − βk). Note thatpk = −H−1
Ik

∇ f (βk) and λI ≤ HIk ≤ Hall whereHIk is
the Hessian offIk andHall is the Hessian off{1,...,m}. By Proposition 1.2.1 of Bertsekas (1999) it
follows3 that {βk} converges to the minimizer off . Proof of finite convergence is exactly as in
Mangasarian’s proof of finite convergence of his algorithm, and goes as follows. Letβ? denote the
minimizer of f andI? = I(β?). Let O = {β : I(β) = I?}. ClearlyO is an open set that containsβ?.
Since{βk} converges toβ?, there exists ak such thatβk ∈ O. When this happens in step 2 of the
algorithm, we get̄β = β? in step 3 and soβk+1 = β?.

4. Practical Implementation

In this section we discuss details associated with the implementation of the various steps of the
modified finite Newton algorithm and also introduce some useful heuristics forspeeding up the
algorithm. The discussion leads to a fast and robust implementation ofL2-SVM-MFN. The fi-
nal algorithm is also very easy to implement; Appendix A gives a pseudocodethat can be easily
transcribed into a working code. A number of data sets are used in this section to illustrate the
effectiveness of various implementation features. These data sets are described in Appendix B. All
our computations were done on a 2.4 GHz machine with Intel Xeon processorand having four Gb
RAM.

4.1 Step 1: Initialization

If no guess ofβ is available, then the simplest starting point isβ0 = 0. For this point we haveyi = 0
for all i and soI0 = {1, . . . ,m}. Therefore, with such a zero initialization, thēβ obtained in step 3 is
exactly the LS-SVM solution.

3. To apply Proposition 1.2.1 of Bertsekas (1999) note the following: (a) Becauseλ > 0 andHall is positive definite,
condition (1.12) of Bertsekas (1999) holds; (b) Bertsekas (1999) shows that (1.12) implies (1.13) given there; (c) in
Bertsekas (1999) exact line search is referred as the minimization rule.

345

KEERTHI AND DECOSTE

Adult-9 Web-8 News20 Financial Yahoo
No β-seeding 60.26 105.16 1321.87 1130.35 11650.56

β-seeding 36.80 24.43 944.27 692.47 4419.89

Table 1: Effectiveness ofβ-seeding on five data sets. The following 21C values were used:
√

2
k
,

k = −10,−9, . . . ,9,10. All computational times are in seconds.

Suppose we have a guess ˜w for the weight vectorw. It is possible that ˜w comes from an in-
expensive classification method, such as the Naive-Bayes classifier. In that case it is necessary to
rescale ˜w and also chooseb0 so as to form aβ0 that is good for starting the SVM solution. So we
setβ0 = (γw̃,b0) and choose suitable values forγ andb0. Suppose we also assume thatI , a guess of
the optimal set of active indices, is available. (If no guess is available, we can simply letI be the set
of all training indices.) Then chooseγ andb0 to minimize the cost

λ
2
[γ2‖w̃‖2 +b2

0]+
1
2 ∑

i∈I

[γw̃·xi +b0− ti]
2. (8)

It is easy to check that the resultingγ andb0 are given by

γ = (p22q1− p12q2)/d and b0 = (p11q2− p12q1)/d. (9)

where p11 = λ‖w̃‖2 + ∑i∈I (w̃ · xi)
2, p22 = λ + |I |, p12 = ∑i∈I w̃ · xi , q1 = ∑i∈I tiw̃ · xi , q2 = ∑i∈I ti

andd = p11p22− (p12)
2. Onceγ andb0 are thus obtained, we can setβ0 = (γw̃,b0) and start the

algorithm.4 Note that the set of initial indicesI0 chosen by the algorithm in step 3 is the set of active
indices atβ0 and so it could be different fromI .

There is another situation where the above initialization comes in handy. Suppose we solve (2)
for oneC and want to re-solve (2) for a slightly changedC. Then we can use the ˜w andI that are
obtained from the optimal solution of the first value ofC to do the above mentioned initialization
process for the second value ofC. For this situation we have also tried simply choosingγ = 1 and
b0 equal to theb that is optimal for the first value ofC. This simple initialization also works quite
well. We will refer to this initialization for the ‘slightly changedC’ situation asβ-seeding; seeding
is crucial to efficiency when (2) is to be solved for manyC values (such as when tuningC via cross-
validation). Theβ-seeding idea used here is very much similar to the idea ofα-seeding popularly
employed in the solution of SVM duals(DeCoste and Wagstaff, 2000).

Eventhough full details of the final version of our implementation ofL2-SVM-MFN is only
developed further below, here let us compare the final implementation5 with and withoutβ-seeding.
Table 1 gives computational times for several data sets. Clearly,β-seeding gives useful speed-ups.

4. To get a betterβ0 one can also resetI = I(β0) and repeat (9) and get revised values forγ andb0. This computation is
cheap since ˜w ·xi need not be recomputed.

5. For noβ-seeding, the implementation corresponds to the use of ‘both heuristics’ mentioned in Table 3. Forβ-seeding,
the two heuristics are not used since they do not contribute much whenβ-seeding is done.

346

FINITE NEWTON METHOD FOR LINEARSVMS

4.2 Step 2: Checking Convergence

Checking of the optimality ofβk is done by first calculatingyi(βk) anddi(βk) for all i, determining
the active index setIk and then checking if

‖∇ fIk(βk)‖ = 0. (10)

For practical reasons it is necessary to employ a tolerance parameter when checking (10). We deal
with this important issue below after the discussion of the implementation of step 3.

4.3 Step 3: Regularized Least Squares Solution

The solution of (6) can be approached in one of the following ways: usingfactorization methods
such as QR or SVD; or, using an iterative method such as the conjugate gradient (CG) method. We
prefer the latter method due to the following reasons: (a) it can make effective use of knowledge of
good starting vectors; and (b) it is much better suited for large-scale problems having sparse data
sets. To setup the details of the CG method, let:X be the matrix whose rows are(xT

i ,1), i ∈ Ik;
andt be a vector whose elements areti , i ∈ Ik. Then (6) is the same as the regularized least squares
problem

min
β

fIk(β) =
λ
2
‖β‖2 +

1
2
‖Xβ− t‖2. (11)

This corresponds to the solution of the normal system,

(λI +XTX)β = XTt. (12)

With CG methods there are several ways of approaching the solution of (11/12). A simple approach
is to solve (12) using the CG method meant for solving positive definite systems.However, such
an approach will not be numerically well-conditioned, especially whenλ is small. As pointed out
by Paige and Saunders (Paige and Saunders, 1982) this is mainly due to theexplicit use of vectors
of the form XTX p. An algorithm with better numerical properties can be easily derived by an
algorithmic rearrangement that is special to the regularized least squaressolution, which makes use
of the intermediate vectorX p. LSQR (Paige and Saunders, 1982) and CGLS (Björck, 1996) are two
such special CG algorithms. Another very important reason for using oneof these algorithms (as
opposed to using a general purpose CG solver) is that, for the special methods it is easy to derive a
good stopping criterion to approximately terminate the CG iterations using the intermediate residual
vector. We discuss this issue in more detail below.

For our work we have used the version of the CGLS algorithm given in Algorithm 3 of Frommer
and Maaß (Frommer and Maaß, 1999) which uses initial seed solutions neatly.6 Following is the
CGLS algorithm for solving (11).

Algorithm CGLS. Setβ0 = βk (whereβk is as in steps 2 and 3 of AlgorithmL2-SVM-MFN).
Computez0 = t −Xβ0, r0 = XTz0−λβ0,7 setp0 = r0 and do the following steps forj = 0,1, . . .

6. Frommer and Maaß have also given interesting variations of the CGLS method for efficiently solving (12) for several
values ofλ. But we have not tried those methods in this work.

7. It is useful to note that, at any point of the CGLS algorithm−zj is the vector containing the classifier residuals,di ,
i ∈ Ik andr j is the negative of the gradient offIk(β) atβ j . At the beginning (j = 0), z0 andr0 are already available in
view of the computations in step 2 of AlgorithmL2-SVM-MFN. This fact can be used to gain some efficiency.

347

KEERTHI AND DECOSTE

q j = X pj

γ j = ‖r j‖2/(‖q j‖2 +λ‖p j‖2)
β j+1 = β j + γ j p j

zj+1 = zj − γ jq j

r j+1 = XTzj+1−λβ j+1

If r j+1 = 0 stop withβ j+1 as the solution.
ω j = ‖r j+1‖2/‖r j‖2

p j+1 = r j+1 +ω j p j

There are exactly two matrix-vector operations in each iteration; sparsity ofthe data matrix can
be effectively used to do these operations inO(nz) time wherenz is the number of non-zero elements
in the data matrix.

Let us now discuss the convergence properties of CGLS. It is known that the algorithm will
take at mostl iterations wherel is the rank ofX. Note thatl ≤ min{m,n} wherem is the number
of examples andn is the number of features. The actual number of iterations required to achieve
good practical convergence is usually much smaller than min{m,n} and it depends on the number
of singular values ofX that are really significant.

Stopping the CG iterations with the right accuracy is very important because, an excessively
accurate solution would lead to too much work while an inaccurate solution will not give good
descent. Using a simple absolute tolerance on the size of the gradient offIk in order to stop is a bad
idea, even for a given data set since the typical size of the gradient varies a lot asλ is varied over a
range of values. For a method such as CGLS it is easy to find effective practical stopping criteria.
We can decide to stop when the negative gradient vectorr j+1 has come near zero up to some relative
precision. To do this we can use the bound,‖r j+1‖ ≤ ‖X‖‖zj+1‖+‖λβ j+1‖. Thus a good stopping
criterion is

‖r j+1‖ ≤ ε(ρ‖zj+1‖+λ‖β j+1‖),
whereρ = ‖X‖. SinceX varies at different major iterations of theL2-SVM-MFN algorithm, we can
simply takeρ = ‖X̂‖ whereX̂ is the entirem×n data matrix.

In most datamining tasks the data is normalized so that all values in the data matrix are in the
unity range. For such data sets we have‖X‖ ≤ √

n. One can take a conservative approach and
simply use the stopping criterion

‖r j+1‖ ≤ ε‖zj+1‖. (13)

We have found this criterion to be very effective and have used it for allthe computational experi-
ments reported in this paper. The parameterε is a relative tolerance parameter. A value ofε = 10−6,
which roughly yields solutions accurate up to six decimal digits, is a good choice.

Sincer = −∇ fIk we can apply exactly the same criteria as in (13) for approximately checking
(10) also. Almost always, termination ofL2-SVM-MFN occurs when, after the least squares solu-
tion at step 3, exact line search in step 4 givesβk+1 = β̄ (i.e., δ? = 1), and the active set remains
unchanged, i.e.,I(βk) = I(β̄) = I(βk+1).

Let us illustrate the effectiveness of the CGLS method using the LS-SVM solution as an ex-
ample. For LS-SVM we can setI = {1, . . . ,m} and solve (12) using the CGLS method mentioned
above; let us refer to such an implementation as LS-SVM-CG. In their proximal SVM implemen-
tation of LS-SVM, Fung and Mangasarian (2001) solve (12) using Matlabroutines that employ
factorization techniques onXTX. For large and sparse data sets it is much more efficient to use CG
methods and avoid the formation ofXTX and its factorization. Table 2 illustrates this fact using two

348

FINITE NEWTON METHOD FOR LINEARSVMS

Table 2: Ratio of the computational cost (averaged overC = 2−5,2−4, . . . ,25) of the proximal SVM
algorithm to that of LS-SVM-CG.s is the sparsity factor,s= nnz/(nm).

Australian Web-7
(n = 14,m= 690,s= 1.0) (n = 300,m= 24692,s= 0.04)

Ratio 0.72 15.72

data sets. The complexity of the original proximal SVM implementation isO(nnzn+n3) whereas the
complexity of the CGLS implementation isO(nnzl), wherel is the number of iterations needed by
the CGLS algorithm.8 When the data matrix is dense (e.g.,Australian) the factorization approach is
slightly faster than the CGLS approach. But, when the data matrix is sparse (e.g.,Web-7) the CGLS
approach is considerably faster, even withn being small.

Similar observations hold for Mangasarian’s finite Newton method as well as our L2-SVM-
MFN. When the data matrix is sparse, factorization techniques are much more expensive compared
to CG methods, even whenn is not too big. Of course, factorization methods get completely ruled
out when bothmandn are large.

4.4 Step 4: Exact Line Search

Let β(δ) = βk +δ(β̄−βk). The one dimensional function,φ(δ) = f (β(δ)) is a continuously differ-
entiable, strictly convex, piecewise quadratic function. To determine the minimizer of this function
analytically, we compute the points at which the second derivative jumps. Forany giveni, let us
define:δi = (ti −yk

i)/(ȳi −yk
i), where ¯yi = yi(β̄) andyk

i = yi(βk). The jump points mentioned above
are given by

∆ = ∆1∪∆2, (14)

where
∆1 = {δi : i ∈ Ik, ti(ȳi −yk

i) > 0} and ∆2 = {δi : i 6∈ Ik, ti(ȳi −yk
i) < 0}. (15)

For ∆1 we are not usingi with ti(ȳi − yk
i) ≤ 0 because they do not cause switching at a positiveδ;

similarly, for ∆2 we are not usingi with ti(ȳi −yk
i) ≥ 0.

Take oneδi ∈ ∆1. When we increaseδ acrossδi , the indexi leavesI(β(δ)). Thus, the termd2
i /2

has to be left out of the objective function for allδ > δi . Similarly, for δi ∈ ∆2, when we increase
δ acrossδi , the indexi entersI(β(δ)). Thus, the termd2

i /2 has to be included into the objective
function for allδ > δi .

The slope,φ′(δ) is a continuous piecewise linear function that changes its slope only at one of
theδi ’s. The optimal pointδ? is the point at whichφ′(δ) crosses 0.9 To determine this point we first
sort allδi ’s in ∆ in non-decreasing order. To simplify the notations, let us assume thatδi , i = 1,2, . . .
denotes that ordering. Betweenδi andδi+1 we know thatφ′(δ) is a linear function. Just for doing
calculations extend this line both sides (left and right) to meet theδ = 0 andδ = 1 vertical lines.

8. It is useful to note here that the proximal SVM implementation solves (12) exactly while LS-SVM-CG uses the
practical stopping condition (13) that contributes further to its efficiency.

9. Note that this point may not necessarily be at one of theδi ’s.

349

KEERTHI AND DECOSTE

Let us call the ordinate values at these two meeting points asl i andr i respectively. It is very easy to
keep track of the changes inl i andr i as indices get dropped and added to the active set of indices.

We move from left to right to find the zero crossing ofφ′(δ). At the beginning we are atδ0 = 0.
Betweenδ0 andδ1 we haveIk as the active set. It is easy to get, from the definition ofφ(δ) that

l0 = λβk · (β̄−βk)+ ∑
i∈Ik

(yk
i − ti)(ȳi −yk

i) (16)

and
r0 = λβ̄ · (β̄−βk)+ ∑

i∈Ik

(ȳi − ti)(ȳi −yk
i). (17)

(If, at step 3 of theL2-SVM-MFN algorithm, we solve (6) exactly, then it is easy to check that
r0 = 0. However, in view of the use of the approximate termination mentioned in (13) itis better to
computer0 using (17).) Find the point where the line joining(0, l0) and(1, r0) points on the(δ,φ′)
plane crosses zero. If the zero crossing point of this line is between 0 and δ1 then that point isδ?. If
not, we move over to searching betweenδ1 andδ2. Herel1 andr1 need to be computed. This can
be done by a simple updating overl0 andr0 since only the termd2

i /2 enters or leaves. Thus, for a
general situation where we already havel i , r i computed for the intervalδi to δi+1 and we need to get
l i+1, r i+1 for the intervalδi+1 to δi+2, we use the update formula

l i+1 = l i +s(yk
i − ti)(ȳi −yk

i) and r i+1 = r i +s(ȳk
i − ti)(ȳi −yk

i), (18)

wheres= −1 if δi ∈ ∆1 ands= 1 if δi ∈ ∆2. Thus we keep moving to the right until we get a zero
satisfying the condition that the root determined by interpolating(0, l i) and(1, r i) lies betweenδi

andδi+1. The process is bound to converge since we know the existence of the minimizer (we are
dealing with a strictly convex function). In a typical application of the above line search algorithm,
manyδi ’s are crossed beforeδ? is reached, especially in the early stages of the algorithm, causing
|I(βk+1)| to be much different from|I(βk)|. This is the crucial step where the support vectors of the
problem get identified.

The complexity of the above exact line search algorithm isO(mlogm). Since the least squares
solution (step 3) is much more expensive, the cost of exact line search is negligible.

4.5 Complexity Analysis

The bulk of the cost of the algorithm is associated with step 3, which only dealswith examples that
are active at the current point. (The full set of examples is involved onlyin step 4.) This crucial
factor greatly contributes to the overall efficiency of the algorithm. The number of iterations, i.e.,
loops of steps 2-4 is usually small, say 5-20. Thus, the empirical complexity ofthe algorithm is
O(nnzlav) wherelav, the average number of CG iterations in step 3, is bounded by the rank of the
data matrix and solav ≤ min{m,n}. As already mentioned,lav usually turns out to be much smaller
than both,m andn. For example, when applied to thefinancialdata set that has 198788 examples
and 252472 features, forC = 1 andβ = 0 initialization, L2-SVM-MFN took 11 iterations, with
lav = 102.

4.6 Speed-up Heuristics

Suppose we are solving a problem for which the number of support vectors, i.e.,|I(β?)| is a small
fraction ofm, and we use the initialization,β0 = 0. SinceI(β0) = {1, . . . ,m}, step 3 corresponds to

350

FINITE NEWTON METHOD FOR LINEARSVMS

Adult-9 Web-8 News20 Financial Yahoo
No heuristics 7.28 11.79 98.06 456.85 1443.23
Heuristic 1 5.12 9.24 67.85 70.86 904.99
Heuristic 2 3.57 4.17 90.54 202.62 848.99

Both heuristics 3.00 3.90 52.73 62.18 524.16
SV fraction 0.605 0.219 0.650 0.068 0.710

Table 3: Effectiveness of the two speed-up heuristics on five data sets.The valueC = 1 was used.
All computational times are in seconds. SV fraction is the ratio of the number of support
vectors to the number of training examples.

solving an unnecessarily large least squares problem; it is wasteful to solve it accurately. One (or
both) of the following two heuristics can be employed to avoid this.

Heuristic 1. Wheneverβ0 is a crude approximation (say,β0 = 0), terminate the least squares
solution of (6) after a fixed, small number (say, 10) of CGLS iterations at the first call to step 3.
Even with the crudēβ thus generated, the following step 4 usually leads to a pointβ1 with |I(β1)|
much smaller thanm, and a good bulk of the non-support vectors get identified correctly.

Heuristic 2.First run theL2-SVM-MFN algorithm using a crude tolerance, sayε = 10−2. Use
the β thus generated as the starting vector and make another run withε = 10−6, the final desired
accuracy.

Table 3 gives the effectiveness of the above heuristics on a few data sets. Clearly both heuristics
are useful. It is not easy to say which one is more effective and so usingboth of them is the
appropriate thing to do. This gives at least a 2-fold speed-up. As expected, the amount of speed-up
is big if the fraction of examples that are support vectors is small. The pseudocode of Appendix B
uses both heuristics.

A third heuristic may also be used when working with a very large number of examples. First
choose a small random subset of the examples and run the algorithm. Then use theβ thus generated
to seed a second run, this time using all the examples for training.

We end this section on implementation by explaining how a solution of the SVM dual can be
obtained afterL2-SVM-MFN solves the primal.

4.7 Obtaining a Dual Solution

Note that the SVM dual variables,αi , i = 1, . . . ,m are not involved anywhere in the algorithm. But
it is easy to recover them once we solve (2) usingL2-SVM-MFN. From the structure of (3) it is
easy to see thatαi = −tidi/λ, if i ∈ I(β) andαi = 0 otherwise. In a practical solution we do not get
the true solution due to the use of (13). In such a situation it is useful to ask as to how well theα
defined above satisfies the KKT optimality conditions of the dual. This can be easily done. After
computingα as mentioned above, setβ̂ = ∑i αiti(xT

i ,1)T , ξi = λαi ∀i, gi = tiyi(β̂)+ ξi −1 ∀i, and
obtain the maximum dual KKT violation as max{maxi:αi>0 |gi |,maxi:αi=0max{0,−gi}}. If, keeping
the maximum dual KKT violation within some specified tolerance (say,τ = 0.001) is important for
some reason, then one can proceed as follows. First solveL2-SVM-MFN usingε = 10−3 and then

351

KEERTHI AND DECOSTE

check the maximum dual KKT violation as described above. If it does not satisfy the required
tolerance then continue theL2-SVM-MFN solution with a suitably chosen smaller value ofε.

5. Comparison with SVMlight and BSVM

The experiments of this section compareL2-SVM-MFN against two dual-based methods: the pop-
ular SVMlight (Joachims, 1999)10 and the more modern BSVM (Hsu and Lin, 2002). In order to
make a proper comparisonL2-SVM-MFN was forced to satisfy the same dual KKT tolerance of
τ = 0.001 as the other methods. (The procedure given at the end of the last section was used to
do this.) We used default-q (subproblem size) for SVMlight & BSVM; other values tried were
not faster.11 We also tried SMO (Platt, 1999), but found it slower than the others for these linear
problems. An explanation for this is given by Kao et al (Kao et al., 2004) inSection 4 of their paper
via the fact that, for the linear SVM implementation, the cost of updating the gradient of the dual is
independent of the number of dual variables that are optimized in each basic iteration.

Tables 4-6 report training times and 10-fold cross-validation (CV) error rates forAdult-9, Web-8
andNews20data sets.

We show training times for variousC’s, with optimal (lowest) mean CV error rate for each
method shown in bold. Due to the different loss functions used, a direct comparison of these meth-
ods is challenging and necessarily approximate on non-separable data. Therefore, in the following
tables we show results for a range ofC values around values ofC yielding minimum cross-validation
errors for each of the three methods. A reasonable conservative speedup for our method can then be
determined by selecting the slowest training time for a near-optimalC value for our method versus
the fastest training time for a near-optimalC value for an alternative method.

For example, forAdult-9one could compare the time for SVMlight’s CV-optimal (112.6 secs)
versus the time forL2-SVM-MFN’s CV-optimal (1.6 secs), yielding a speedup ratio of 70.4. Al-
ternatively,nearly-CV-optimal cases forAdult-9(e.g. 15.23%>15.22% for SVMlight with C=2−3)
yield other speedups (e.g. 13.2 if both SVMlight andL2-SVM-MFN useC=2−3). Over all such
nearly-optimal cases for all three data sets, speedups are consistently significant (e.g. 4-100 over
SVMlight and 4-40 over BSVM). Even forNews20which has more than a million features12 L2-
SVM-MFN is more than four times faster than SVMlight and BSVM.

For theYahoodata set having a million examples, SVMlight and BSVM could not complete
the solution even after one full day, whileL2-SVM-MFN took only about 10 minutes to obtain a
solution.

We also did an experiment to study how the algorithms scale withm, the number of examples.
Figure 1 gives log-log plots showing the variation of training times as a functionof m, for four of the
conventionalAdult andWebsubsets. The times plotted for each data subset/method pair are for the
corresponding CV-optimalC’s. These plots show that not only wasL2-SVM-MFN always faster,
but it also scaled much better withm.

10. We report results using version 5.0 of SVMlight. We also tried the newer version 6.0, but found for our particular
experiments with linear kernels that it was no faster, and sometimes even slower.

11. Specifically, the values used forq were 10 for SVMlight and 30 for BSVM.

12. Dual algorithms such as SVMlight and BSVM are efficient when the number of features is large. Their cost scales
linearly with the number of features.

352

FINITE NEWTON METHOD FOR LINEARSVMS

SVMlight BSVM L2-SVM-MFN
log2C secs CV% secs CV% secs CV%

-4.5 16.8 15.29 7.3 15.29 1.2 15.30
-4.0 15.3 15.28 8.1 15.27 1.3 15.26
-3.5 18.6 15.25 8.9 15.27 1.4 15.22
-3.0 21.1 15.23 10.0 15.23 1.6 15.21
-2.5 25.8 15.24 11.7 15.23 1.8 15.21
-2.0 44.4 15.25 13.3 15.24 1.9 15.23
-1.5 47.0 15.23 15.9 15.24 2.2 15.23
-1.0 58.9 15.26 20.3 15.25 3.1 15.22
-0.5 80.9 15.23 25.8 15.24 2.9 15.22
0.0 112.6 15.22 32.4 15.22 2.9 15.23
0.5 189.2 15.23 41.7 15.23 3.1 15.23
1.0 235.9 15.24 54.4 15.22 3.5 15.23

Table 4: Results forAdult-9

SVMlight BSVM L2-SVM-MFN
log2C secs CV% secs CV% secs CV%

-0.5 14.3 1.36 11.4 1.35 3.2 1.34
0.0 14.9 1.35 15.8 1.35 4.2 1.34
0.5 19.6 1.34 20.7 1.34 5.0 1.33
1.0 29.1 1.34 28.4 1.34 5.0 1.33
1.5 46.8 1.33 - 1.33 4.7 1.33
2.0 60.3 1.33 61.4 1.33 5.7 1.33
2.5 110.5 1.33 82.4 1.33 7.6 1.33
3.0 131.6 1.33 139.0 1.33 8.9 1.34
3.5 232.6 1.33 191.4 1.33 10.8 1.34
4.0 279.8 1.34 282.9 1.34 10.8 1.34
4.5 347.5 1.35 441.1 1.35 11.6 1.34
5.0 615.1 1.35 647.1 1.34 11.2 1.34

Table 5: Results forWeb-8

353

KEERTHI AND DECOSTE

10
3

10
4

10
510

−2

10
0

10
2

se
co

nd
s

ADULT−{1,4,7,9}

10
3

10
4

10
510

−2

10
0

10
2

number of training examples

se
co

nd
s

WEB−{1,4,7,8}

SVMlight

BSVM
L

2
SVM

Figure 1: Training time versusm for the Adult and Web data sets, on a log-log plot. Note that the
vertical axes are only marked at 10−2, 100 and 102.

354

FINITE NEWTON METHOD FOR LINEARSVMS

SVMlight BSVM L2-SVM-MFN
log2C secs CV% secs CV% secs CV%

0.0 335.9 2.93 330.4 2.93 69.3 3.35
0.5 407.6 2.82 392.6 2.81 55.4 3.16
1.0 437.1 2.78 436.1 2.78 84.5 3.07
1.5 442.2 2.78 434.4 2.78 62.7 2.98
2.0 466.8 2.74 437.3 2.73 76.0 2.89
2.5 466.9 2.77 432.3 2.78 75.0 2.88
3.0 455.9 2.85 450.4 2.85 91.6 2.88
3.5 471.3 3.02 439.0 3.02 98.0 2.86
4.0 513.7 3.07 432.2 3.07 114.0 2.86
4.5 554.7 3.07 437.0 3.07 120.4 2.89
5.0 525.7 7.76 421.6 3.07 159.2 2.90
5.5 535.7 3.07 426.5 3.08 193.9 2.97

Table 6: Results forNews20

6. Extension to Other Loss Functions

The previous sections addressed the solution ofL2-SVM, i.e., the SVM primal problem that uses
theL2 loss function:

min
β

f (β) =
λ
2
‖β‖2 +∑

i

L(ξi) (19)

whereξi = 1− tiyi(β) andL = L2 where

L2(ξi) =

{

0 if ξi ≤ 0
ξ2

i /2 if ξi > 0
(20)

The modified Newton algorithm can be adapted for other loss functions too. We briefly explain how
to do this for the following loss functions: the modifed Huber’s loss function (Zhang, 2004) and the
L1 loss function.

Consider, first, the modified Huber’s loss function. The solution for this loss function forms the
basis of the solution for theL1 loss function. Recently, Zhang (Zhang, 2004) pointed out that the
modified Huber’s loss function has some attractive theoretical properties.The loss function is given
by

Lh(ξi) =







0 if ξi ≤ 0
ξ2

i /2 if 0 < ξi < 2
2(ξi −1) if ξi ≥ 2

(21)

With L = Lh, the primal objective functionf in (19) is strictly convex, continuously differentiable
and piecewise quadratic, very much as when (20) is used. So the extensionof the modified Newton
algorithm toLh is rather easy. A basic iteration proceeds as follows. Givenβk let I0 = {i : ξi(βk) ≤
0}, I1 = {i : 0 < ξi(βk) < 2} andI2 = {i : ξi(βk) ≥ 2}. The natural quadratic approximation off to
minimize is the one which keeps these index sets unchanged, i.e.,

min
β

f̃ (β) =
λ
2
‖β‖2 +

1
2 ∑

i∈I1

(yi(β)− ti)
2−2∑

i∈I2

tiyi(β). (22)

355

KEERTHI AND DECOSTE

Let

q =
2
λ ∑

i∈I2

ti

(

xi

1

)

andβ̃ = β−q so that (22) can be equivalently rewritten as the solution of

min
β

f̄ (β) =
λ
2
‖β−q‖2 +

1
2 ∑

i∈I1

(yi(β)− ti)
2. (23)

This is nothing but a regularized least squares solution that is shifted inβ space; the CG techniques
described in Section 4 can be used to solve forβ̃ = β−q and thenβ can be obtained. The exact
line search for minimizingf on a ray is only slightly more complicated than the one in Section 4:
with (21) we need to watch for jumps of examples from/to three sets of the typeI0, I1 andI2 defined
above. The proof of finite convergence of the overall algorithm is verymuch as for theL2 loss
function.

Let us now consider theL1 loss function given by

L1(ξi) =

{

0 if ξi ≤ 0
ξi if ξi > 0.

(24)

Chooseτ, a positive tolerance parameter and defineξ̃ = (ξi/τ) + 1. TheL1 loss function can be
approximated byLh(ξ̃). Thus, we can solve the primal problem corresponding to theL1 loss function
as follows. Take a sequence ofτ values, sayτ j = 2− j , j = 0,1, Start by solving the problem
for j = 0. Use theβ thus obtained to seed the solution of the problem forj = 1 and so on until a
solution that approximates the true solution of theL1 loss function satisfactorily is obtained. This is
only a rough outline of the main scheme. Several details need to be worked out in order to arrive at
an overall method that is actually very efficient. Currently we are working on these details; we will
report the results in a future paper.

Recently Zhang et al (Zhang et al., 2003) gave a primal algorithm for SVMs with L1 loss func-
tion in which a modified logistic regression function is used to approximate theL1 loss function and
a sequential approximation scheme similar to what we described above is employed. Our method
is expected to be more efficient since the approximating loss function (modifiedHuber) helps keep
the sparsity propery, i.e., examples with|ξi | ≥ τ are inactive during the solution of the linear least
squares problem at each iteration. However, this claim needs to be corraborated by proper imple-
mentation of both methods and detailed numerical experiments.

7. Extension to Ordinal Regression

In this section we explain how theL2-SVM-MFN algorithm can be adapted to solve ordinal re-
gression problems. In ordinal regression the target variable,ti takes a value from a finite set, say,
{1,2, . . . , p}. Thus, p is the total number of possible ordinal values. LetJs = {i : ti = s}. Let w
denote the weight vector andyi(w) = w · xi denote the ‘score’ of the SVM for thei-th example.
To set up the SVM formulation we follow the approach given in Chu and Keerthi (2005) and use
p−1 thresholds,bs, s= 1, . . . , p−1 to divide the scores intop bins so that the interval,(bs−1,bs) is
assigned for examples which haveti = s.13 Let β denote the vector which containsw together with

13. To make this statement properly, we takeb0 = −∞ andbp = ∞.

356

FINITE NEWTON METHOD FOR LINEARSVMS

bs, s= 1, . . . , p−1. For a givenβ and ans∈ {1, . . . , p−1} define the following ‘margin-violating’
index sets:

Ls(β) = {i : i ∈ Jl for some l ≤ s and yi(w)−bs > −1}

Us(β) = {i : i ∈ Jl for some l > s and yi(w)−bs < 1}.

Then the primal SVM problem can be written as

min
β

f (β) =
λ
2
‖β‖2 +

p−1

∑
s=1

(
1
2 ∑

i∈Ls(w)

(yi(w)−bs+1)2 +
1
2 ∑

i∈Us(w)

(yi(w)−bs−1)2). (25)

A nice property of the above formulation is that, as shown in Chu and Keerthi(2005), the solution
of (25) automatically satisfies the condition,b1 ≤ b2 ≤ ·· · ≤ bp−1.

Clearly, f is a differentiable, strictly convex, piecewise quadratic function ofβ, very much
like the f in (2). So, the extension ofL2-SVM-MFN to solve (25) is easy. A basic iteration goes
as follows. Givenβk, let L̄k = Ls(βk), Ūk = Us(βk) for s = 1, . . . , p−1 and solve the following
quadratic approximation off corresponding to keeping those index sets unchanged:

min
β

f̃ (β) =
λ
2
‖β‖2 +

p−1

∑
s=1

(
1
2 ∑

i∈L̄k

(yi(w)−bs+1)2 +
1
2 ∑

i∈Ūk

(yi(w)−bs−1)2). (26)

Let β̄ denote the solution of (26). Exact line search to minimizef on the ray fromβk to β̄ is more
complicated than the line search we described in Section 4, but it is quite easy toprogram in code;
also, if p is small, the algorithm is not expensive. As in Section 4, we need to identify the points
along the ray at which jumps in the second derivative off take place. Take one example, say the
i-th. Let β̄ = (w̄, b̄1, . . . , b̄p−1), ȳi = yi(w̄) and l = ti . For eachs= 1, . . . , l −1, calculateδsi such
that yi(βk) + δsi(ȳi − yi(βk)) = bs + 1. Similarly, for eachs = l , . . . , p− 1, calculateδsi such that
yi(βk)+ δsi(ȳi − yi(βk)) = bs−1. Each positiveδsi is a point where the second derivative jumps.
By calculating all such points (there are at mostpm of them, wherem is the number of training
examples), sorting them and using the ideas of Section 4 to locate the minimizer where the slope
crosses the zero value, exact line search can be performed. The proof of convergence of the overall
algorithm is very much similar to the proof of Theorem 1.

The ideas outlined above for theL2 loss function can be extended to other loss functions such
as the modified Huber’s loss function and theL1 loss function using the ideas of Section 6.

8. Conclusion

In this paper we have modified the finite Newton method of Mangasarian in several ways to ob-
tain a very fast method for solving linear SVMs that is easy to implement and trains much faster
than existing alternative SVM methods, making it attractive for solving large-scale classification
problems.

We have also tried another method for linearL2-SVMs. This corresponds to the direct appli-
cation of a nonlinear CG method (such as Polak-Ribierre) to (2); note thatf is a differentiable
function. This method also works well, but it is not as efficient and numerically robust asL2-SVM-
MFN. One of the main reasons for this is that the bulk of the computations ofL2-SVM-MFN takes
place in the CGLS iterations which operate only with potential support vectors. On the other hand,

357

KEERTHI AND DECOSTE

the nonlinear CG method has to necessarily deal with all examples in each iteration, unless clever
shrinking strategies are designed.

It is interesting to ask if the modified finite Newton algorithm can be extended to nonlinear
kernels. If (6) is solved via its dual (say, by using an algorithm for LS-SVMs) the new algorithm
can indeed be extended to nonlinear kernels. That would be an interestingprimal algorithm that is
implemented using dual variables. But it is not yet clear whether such an algorithm will be more
efficient than existing good dual methods (e.g. SMO or SVMlight).

Appendix A. A Pseudocode forL2-SVM-MFN

Below, β represents the current point;y and I denote the output vector and active index set atβ.
F = f (β) andIall = {1, . . . ,m}.

1. Initialization.

• If no initial guess ofβ is available, setini = 0, β = 0, yi = 0 ∀i ∈ Iall andI = Iall .

• If a guess ofw is obtained from another method (say, the Naive Bayes method), set
ini = 0, use (9) to formβ and then computeyi ∀i ∈ Iall and the active index setI at β.

• If continuing the solution from oneC value to another nearbyC value, setini = 1 and
simply start with theβ, yi , i ∈ Iall andI available from the previousC solution.

If ini = 0 setε = 10−2 andNeedSecondRound=1. If ini = 1 setε = 10−6 andNeedSecondRound=0.
ComputeF = f (β).14 SetFprevious= F .

2. Setiter = 0 anditermax= 50.

3. DefineX to be a restricted data matrix whose rows are(xT
i ,1), i ∈ Ik andt to be the corre-

sponding target vector whose elements areti , i ∈ Ik. (X andt are defined just for stating the
steps easily here. In the actual implementation there is no need to actually form them.15) Set:
iter = iter +1, β̄ = β, z= t −Xβ, r = XTz−λβ, φ1 = ‖r‖2, p = r, φ2 = φ1. If (ini = 0 and
iter = 1) setcgitermax= 10; else setcgitermax= 5000. Setcgiter= 0, optimality= 0 and
exit = 0.

4. Repeat the following steps untilexit = 1 occurs:

cgiter= cgiter+1
q = X p, φ3 = ‖q‖2

γ = φ1/(φ3 +λφ2), β̄ = β̄+ γp
z= z− γq, φ4 = ‖z‖2

r = −λβ̄+XTz, φold
1 = φ1, φ1 = ‖r‖2

If φ1 ≤ ε2φ4 setoptimality= 1
If (optimality= 1 orcgiter≥ cgitermax) setexit = 1
ω = φ1/φold

1 , p = r +ωp, φ2 = ‖p‖2

14. If β = 0 then note thatF = m/2.

15. It is ideal to store the input data,{xi , ti} in the SVMlight format where each example is specified by the target value
together with a bunch of (feature-index,value) pairs corresponding tothe non-zero components.

358

FINITE NEWTON METHOD FOR LINEARSVMS

5. Compute16 ȳi = yi(β̄), ∀i ∈ Iall . Check if the following conditions hold: (a)optimality = 1;
(b) ti ȳi ≤ 1+ tol ∀i ∈ I ; and (c)ti ȳi ≥ 1− tol ∀i 6∈ I .17 If all three conditions hold, go to step
8.

6. Compute18 ∆1, ∆2 and∆ using (14) and (15). Sort theδi in ∆ in non-decreasing order. Let
{i1, i2, . . . , iq} denote the list of ordered indices obtained. Computels andrs using (16) and
(17). Setexit = 0, j = 0. Repeat the following steps untilexit = 1 occurs:

j = j +1, δ = δi j

delslope= ls+δ(rs− ls)
If delslope≥ 0 setδ? = −δ ls/(delslope− ls) andexit = 1
Use (18) to updatels andrs usingi = i j .

7. Setβ := β+δ?(β̄−β), y := y+δ?(ȳ−y), and compute the new active index set:I = {i ∈ Iall :
tiyi < 1}. ComputeF = f (β). If (iter ≥ itermaxor F > Fprevious) stop with an error message.
Else, setFprevious= F and go back to step 3 for another iteration.

8. If NeedSecondRound=0 stop withβ = β̄, y = ȳ andIk as the optimal active index set. Else,
setε = 10−6, NeedSecondRound=0 and go back to step 3.

Appendix B. A Description of Data Sets Used

As in the main paper, letm, n andnnz denote, respectively, the number of examples, the number
of features and the number of non-zero elements in the data matrix. Lets= nnz/(mn) denote the
sparsity in the data matrix.

Australianis a small dense data set taken from the UCI repository(Blake and Merz, 1998) and
it hasm= 690,n = 14 ands= 1.

Adult andWebare data sets exactly as those used by Platt(Platt, 1999). ForAdult, n is 120 and
s is 0.21, while, forWeb, n is 300 ands= 0.04. With each of these two data sets, Platt created a
sequence of data sets with increasing number of examples in order to study the scaling properties of
his SMO algorithm with respect tom. Adult-1, Adult-4, Adult-7andAdult-9have themvalues 1605,
4781, 16100 and 32561.Web-1, Web-4, Web-7andWeb-8have themvalues 2477, 7366, 24692 and
49749.

We generatedNews20for easily reproducible results on a text classification task having bothn
andm large. It is a size-balanced two-class variant of the UCI “20 Newsgroups” data set (Blake and
Merz, 1998). The positive class consists of the 10 groups with names of form sci.*, comp.*, or
misc.forsale, and the negative class consists of the other 10 groups. We tokenized viaMcCal-
lum’s Rainbow(McCallum, 1996), using:rainbow -g 3 -h -s -O 2 -i (i.e. trigrams, skip mes-
sage headers, no stoplist, drop terms occurring less than two times), givingm= 19996,n= 1355191

16. The arrays,p, r, q andz are local to step 4 and are not used elsewhere. Hence it is alright to use the same arrays
elsewhere in the implementation. This can help save some memory. For example, p can be used to store the ¯yi
computed in step 5 andr can be used to store theδi computed in step 6.

17. In view of numerical errors it is a good idea to employ the parametertol in these checks. A value oftol = 10−8 is a
good choice.

18. This step refers to several equations from the main paper. To matchthe notations given there, take:yi in this algorithm
to beyk

i of the main paper;ls in this pseudocode to stand forl0, l i , l i+1 etc; andrs in this pseudocode to stand forr0,
r i , r i+1 etc.

359

KEERTHI AND DECOSTE

ands= 0.000336. We used binary term frequencies and normalized each example vector to unit
length.

Financial is a text classification data set that we created and corresponds to classifying news
stories as financial or non-financial. Unigrams occuring in the news texts were taken as the features
and a tf-idf representation was used to form the data. The data set hasm= 198788,n= 252472 and
s= 0.00094.

Yahoois a large data set obtained from Yahoo! and is a classification problem concerning the
prediction of behavior of customers. It hasm=1 million, n = 80 ands= 0.098.

References

D. P. Bertsekas.Nonlinear Programming. Athena Scientific, Belmont, Massachussetts, 1999.

A. Björck. Numerical Methods for Least Squares Problems. SIAM, Philadelphia, 1996.

C. L. Blake and C. J. Merz. UCI repository of machine learning databases. Technical report,
University of California, Irvine, 1998. www.ics.uci.edu/∼mlearn/MLRepository.html.

S. Chakrabarti, S. Roy, and M. V. Soundalgekar. Fast and accuratetext classification via multiple
linear discriminant projections.The VLDB Journal, 12:170–185, 2003.

W. Chu and S. S. Keerthi. New approaches to support vector ordinal regression. Technical report,
Yahoo! Research Labs, Pasadena, California, USA, 2005.

D. DeCoste and K. Wagstaff. Alpha seeding for support vector machines. In Proceedings of the
International Conference on Knowledge Discovery and Data Mining, pages 345–359, 2000.

A. Frommer and P. Maaß. Fast CG-based methods for Tikhonov-Phillips regularization. SIAM
Journal of Scientific Computing, 20(5):1831–1850, 1999.

G. Fung and O. L. Mangasarian. Proximal support vector machine classifiers. In Proceedings of
the Seventh ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,
pages 77–86, 2001.

C. W. Hsu and C. J. Lin. A simple decomposition method for support vector machines. Machine
Learning, 46:291–314, 2002.

T. Joachims. Making large-scale SVM learning practical. InAdvances in Kernel Methods - Support
Vector Learning. MIT Press, Cambridge, Massachussetts, 1999.

W. C. Kao, K.M. Chung, T. Sun, and C. J. Lin. Decomposition methods for linear support vector
machines.Neural Computation, 16:1689–1704, 2004.

P. Komarek. Logistic regression for data mining and high-dimensional classification. Ph.d. thesis,
Carnegie Mellon University, Pittsburgh, Pennsylvania, USA, 2004.

O. L. Mangasarian. A finite Newton method for classification.Optimization Methods and Software,
17:913–929, 2002.

360

FINITE NEWTON METHOD FOR LINEARSVMS

A. McCallum. Bow: A toolkit for statistical language modeling, text retrieval, classification and
clustering. Technical report, University of Massachssetts, Amherst, Massachussetts, USA, 1996.
www.cs.cmu.edu/∼mccallum/bow.

C. C. Paige and M. A. Saunders. LSQR: An algorithm for sparse linear equations and sparse least
squares,.ACM Transactions on Mathematical Software, 8:43–71, 1982.

J. Platt. Sequential minimal optimization: A fast algorithm for training support vector machines. In
Advances in Kernel Methods - Support Vector Learning. MIT Press, Cambridge, Massachussetts,
1999.

J. Suykens and J. Vandewalle. Least squares support vector machine classifiers.Neural Processing
Letters, 9(3):293–300, 1999.

J. Zhang, R. Jin, Y. Yang, and A. Hauptmann. Modified logistic regression: An approximation to
SVM and its applications in large-scale text categorization. InTwentieth International Conference
on Machine Learning, pages 472–479, 2003.

T. Zhang. Statistical behavior and consistency of classification methods based on convex risk mini-
mization.The Annals of Statistics, 32:56–85, 2004.

361

Journal of Machine Learning Research 6 (2005) 363–392 Submitted 12/04; Published 4/05

Core Vector Machines:
Fast SVM Training on Very Large Data Sets

Ivor W. Tsang IVOR@CS.UST.HK

James T. Kwok JAMESK@CS.UST.HK

Pak-Ming Cheung PAKMING@CS.UST.HK

Department of Computer Science
The Hong Kong University of Science and Technology
Clear Water Bay
Hong Kong

Editor: Nello Cristianini

Abstract
Standard SVM training hasO(m3) time andO(m2) space complexities, wherem is the training

set size. It is thus computationally infeasible on very large data sets. By observing that practical
SVM implementations onlyapproximatethe optimal solution by an iterative strategy, we scale
up kernel methods by exploiting such “approximateness” in this paper. We first show that many
kernel methods can be equivalently formulated as minimum enclosing ball (MEB) problems in
computational geometry. Then, by adopting an efficient approximate MEB algorithm, we obtain
provably approximately optimal solutions with the idea of core sets. Our proposed Core Vector
Machine (CVM) algorithm can be used with nonlinear kernels and has a time complexity that is
linear in m and a space complexity that isindependentof m. Experiments on large toy and real-
world data sets demonstrate that the CVM is as accurate as existing SVM implementations, but is
much faster and can handle much larger data sets than existing scale-up methods. For example,
CVM with the Gaussian kernel produces superior results on the KDDCUP-99 intrusion detection
data, which has about five million training patterns, in only1.4 seconds on a 3.2GHz Pentium–4
PC.

Keywords: kernel methods, approximation algorithm, minimum enclosing ball, core set, scalabil-
ity

1. Introduction

In recent years, there has been a lot of interest on using kernels in various machine learning prob-
lems, with the support vector machines (SVM) being the most prominent example. Many of these
kernel methods are formulated as quadratic programming (QP) problems. Denote the number of
training patterns bym. The training time complexity of QP isO(m3) and its space complexity is at
least quadratic. Hence, a major stumbling block is in scaling up these QP’s to large data sets, such
as those commonly encountered in data mining applications.

To reduce the time and space complexities, a popular technique is to obtain low-rank approxi-
mations on the kernel matrix, by using the Nyström method (Williams and Seeger, 2001), greedy
approximation (Smola and Schölkopf, 2000), sampling (Achlioptas et al., 2002) or matrix decom-
positions (Fine and Scheinberg, 2001). However, on very large data sets, the resulting rank of the
kernel matrix may still be too high to be handled efficiently.

c©2005 Ivor W. Tsang, James T. Kwok and Pak-Ming Cheung.

TSANG, KWOK AND CHEUNG

Another approach to scale up kernel methods is by chunking (Vapnik, 1998) or more sophisti-
cated decomposition methods (Chang and Lin, 2004; Osuna et al., 1997b; Platt, 1999; Vishwanathan
et al., 2003). However, chunking needs to optimize the entire set of non-zero Lagrange multipliers
that have been identified, and the resultant kernel matrix may still be too largeto fit into memory.
Osuna et al. (1997b) suggested optimizing only a fixed-size subset (working set) of the training data
each time, while the variables corresponding to the other patterns are frozen. Going to the extreme,
the sequential minimal optimization (SMO) algorithm (Platt, 1999) breaks the original QP into a
series of smallest possible QPs, each involving only two variables.

A more radical approach is to avoid the QP altogether. Mangasarian and hiscolleagues proposed
several variations of the Lagrangian SVM (LSVM) (Fung and Mangasarian, 2003; Mangasarian and
Musicant, 2001a,b) that obtain the solution with a fast iterative scheme. However, for nonlinear
kernels (which is the focus in this paper), it still requires the inversion of an m×mmatrix. Recently,
Kao et al. (2004) and Yang et al. (2005) also proposed scale-up methods that are specially designed
for the linear and Gaussian kernels, respectively.

Similar in spirit to decomposition algorithms are methods that scale down the training data be-
fore inputting to the SVM. For example, Pavlov et al. (2000b) used boostingto combine a large
number of SVMs, each is trained on only a small data subsample. Alternatively, Collobert et al.
(2002) used a neural-network-based gater to mix these small SVMs. Lee and Mangasarian (2001)
proposed the reduced SVM (RSVM), which uses a random rectangularsubset of the kernel ma-
trix. Instead of random sampling, one can also use active learning (Schohn and Cohn, 2000; Tong
and Koller, 2000), squashing (Pavlov et al., 2000a), editing (Bakir et al., 2005) or even clustering
(Boley and Cao, 2004; Yu et al., 2003) to intelligently sample a small number of training data for
SVM training. Other scale-up methods include the Kernel Adatron (Friess et al., 1998) and the Sim-
pleSVM (Vishwanathan et al., 2003). For a more complete survey, interested readers may consult
(Tresp, 2001) or Chapter 10 of (Schölkopf and Smola, 2002).

In practice, state-of-the-art SVM implementations typically have a training time complexity that
scales betweenO(m) andO(m2.3) (Platt, 1999). This can be further driven down toO(m) with the
use of a parallel mixture (Collobert et al., 2002). However, these are only empirical observations
and not theoretical guarantees. For reliable scaling behavior to very large data sets, our goal is to
develop an algorithm that can be proved (using tools in analysis of algorithms) to be asymptotically
efficient in both time and space.

A key observation is that practical SVM implementations, as in many numerical routines, only
approximatethe optimal solution by an iterative strategy. Typically, the stopping criterion uses ei-
ther the precision of the Lagrange multipliers or the duality gap (Smola and Schölkopf, 2004). For
example, in SMO, SVMlight (Joachims, 1999) and SimpleSVM, training stops when the Karush-
Kuhn-Tucker (KKT) conditions are fulfilled within a tolerance parameterε. Experience with these
softwares indicate that near-optimal solutions are often good enough in practical applications. How-
ever, such “approximateness” has never been exploited in the design ofSVM implementations.

On the other hand, in the field of theoretical computer science, approximationalgorithms with
provable performance guarantees have been extensively used in tackling computationally difficult
problems (Garey and Johnson, 1979; Vazirani, 2001). LetC be the cost of the solution returned
by an approximate algorithm, andC∗ be the cost of the optimal solution. An approximate algo-
rithm hasapproximation ratioρ(n) for an input sizen if max

(

C
C∗ ,

C∗
C

)

≤ ρ(n). Intuitively, this ratio
measures how bad the approximate solution is compared with the optimal solution. Alarge (small)
approximation ratio means the solution is much worse than (more or less the same as) the optimal

364

CORE VECTORMACHINES

solution. Observe thatρ(n) is always≥ 1. If the ratio does not depend onn, we may just writeρ and
call the algorithm anρ-approximation algorithm. Well-known NP-complete problems that can be
efficiently addressed using approximation algorithms include the vertex-cover problem and the set-
covering problem. This large body of experience suggests that one may also develop approximation
algorithms for SVMs, with the hope that training of kernel methods will become more tractable,
and thus more scalable, in practice.

In this paper, we will utilize an approximation algorithm for theminimum enclosing ball(MEB)
problem in computational geometry. The MEB problem computes the ball of minimumradius
enclosing a given set of points (or, more generally, balls). Traditional algorithms for finding exact
MEBs (e.g., (Megiddo, 1983; Welzl, 1991)) do not scale well with the dimensionalityd of the points.
Consequently, recent attention has shifted to the development of approximation algorithms (B̆adoiu
and Clarkson, 2002; Kumar et al., 2003; Nielsen and Nock, 2004). In particular, a breakthrough
was obtained by B̆adoiu and Clarkson (2002), who showed that an(1+ ε)-approximation of the
MEB can be efficiently obtained usingcore sets. Generally speaking, in an optimization problem,
a core set is a subset of input points such that we can get a good approximation to the original input
by solving the optimization problem directly on the core set. A surprising property of (Bădoiu and
Clarkson, 2002) is that the size of its core set can be shown to beindependentof bothd and the size
of the point set.

In the sequel, we will show that there is a close relationship between SVM training and the MEB
problem. Inspired from the core set-based approximate MEB algorithms, wewill then develop an
approximation algorithm for SVM training that has an approximation ratio of(1+ ε)2. Its time
complexity islinear in mwhile its space complexity isindependentof m. In actual implementation,
the time complexity can be further improved with the use of probabilistic speedup methods (Smola
and Scḧolkopf, 2000).

The rest of this paper is organized as follows. Section 2 gives a short introduction on the MEB
problem and its approximation algorithm. The connection between kernel methods and the MEB
problem is given in Section 3. Section 4 then describes our proposed Core Vector Machine (CVM)
algorithm. The core set in CVM plays a similar role as the working set in decomposition algorithms,
which will be reviewed briefly in Section 5. Finally, experimental results are presented in Section 6,
and the last section gives some concluding remarks. Preliminary results on the CVM have been
recently reported in (Tsang et al., 2005).

2. The (Approximate) Minimum Enclosing Ball Problem

Given a set of pointsS = {x1, . . . ,xm}, where eachxi ∈ R
d, the minimum enclosing ball ofS (de-

noted MEB(S)) is the smallest ball that contains all the points inS . The MEB problem can be
dated back as early as in 1857, when Sylvester (1857) first investigatedthe smallest radius disk
enclosingm points on the plane. It has found applications in diverse areas such as computer graph-
ics (e.g., for collision detection, visibility culling), machine learning (e.g., similarity search) and
facility locations problems (Preparata, 1985). The MEB problem also belongs to the larger family
of shape fitting problems, which attempt to find the shape (such as a slab, cylinder, cylindrical shell
or spherical shell) that best fits a given point set (Chan, 2000).

Traditional algorithms for finding exact MEBs (such as (Megiddo, 1983;Welzl, 1991)) are not
efficient for problems withd > 30. Hence, as mentioned in Section 1, it is of practical interest to
study faster approximation algorithms that return a solution within a multiplicative factor of 1+ε to

365

TSANG, KWOK AND CHEUNG

the optimal value, whereε is a small positive number. LetB(c,R) be the ball with centerc and radius
R. Given anε > 0, a ballB(c,(1+ ε)R) is an(1+ ε)-approximationof MEB(S) if R≤ rMEB(S) and
S ⊂ B(c,(1+ε)R). In many shape fitting problems, it is found that solving the problem on a subset,
called thecore set, Q of points fromS can often give an accurate and efficient approximation. More
formally, a subsetQ ⊆ S is a core set ofS if an expansion by a factor(1+ ε) of its MEB contains
S , i.e.,S ⊂ B(c,(1+ ε)r), whereB(c, r) = MEB(Q) (Figure 1).

ε

R

R

Figure 1: The inner circle is the MEB of the set of squares and its(1+ ε) expansion (the outer
circle) covers all the points. The set of squares is thus a core set.

A breakthrough on achieving such an (1+ ε)-approximation was recently obtained by Bădoiu
and Clarkson (2002). They used a simple iterative scheme: At thetth iteration, the current estimate
B(ct , rt) is expanded incrementally by including the furthest point outside the(1+ε)-ball B(ct ,(1+
ε)rt). This is repeated until all the points inS are covered byB(ct ,(1+ε)rt). Despite its simplicity, a
surprising property is that the number of iterations, and hence the size of the final core set, depends
only on ε but not on d or m. The independence ofd is important on applying this algorithm to
kernel methods (Section 3) as the kernel-induced feature space can beinfinite-dimensional. As for
the remarkable independence onm, it allows both the time and space complexities of our algorithm
to grow slowly (Section 4.3).

3. MEB Problems and Kernel Methods

The MEB can be easily seen to be equivalent to the hard-margin support vector data description
(SVDD) (Tax and Duin, 1999), which will be briefly reviewed in Section 3.1. The MEB problem
can also be used to find the radius component of the radius-margin bound (Chapelle et al., 2002;
Vapnik, 1998). Thus, Kumar et al. (2003) has pointed out that the MEB problem can be used in
support vector clustering and SVM parameter tuning. However, as will beshown in Section 3.2,
other kernel-related problems, such as the soft-margin one-class and two-class SVMs, can also be
viewed as MEB problems. Note that finding the soft-margin one-class SVM is essentially the same
as fitting the MEB with outliers, which is also considered in (Har-Peled and Wang, 2004). However,
a limitation of their technique is that the number of outliers has to be moderately small in order to
be effective. Another heuristic approach for scaling up the soft-marginSVDD using core sets has
also been proposed in (Chu et al., 2004).

366

CORE VECTORMACHINES

3.1 Hard-Margin SVDD

Given a kernelk with the associated feature mapϕ, let the MEB (or hard-margin ball) in the kernel-
induced feature space beB(c,R). The primal problem in the hard-margin SVDD is

min
R,c

R2 : ‖c−ϕ(xi)‖2 ≤ R2, i = 1, . . . ,m. (1)

The corresponding dual is

maxαi

m

∑
i=1

αik(xi ,xi)−
m

∑
i, j=1

αiα jk(xi ,x j)

s.t. αi ≥ 0, i = 1, . . . ,m
m

∑
i=1

αi = 1,

or, in matrix form,
max

α
α′diag(K)−α′Kα : α ≥ 0, α′1 = 1, (2)

whereα = [αi , . . . ,αm]′ are the Lagrange multipliers,0 = [0, . . . ,0]′, 1 = [1, . . . ,1]′ andKm×m =
[k(xi ,x j)] is the kernel matrix. As is well-known, this is a QP problem. The primal variablescan be
recovered from the optimalα as

c =
m

∑
i=1

αiϕ(xi), R=
√

α′diag(K)−α′Kα. (3)

3.2 Viewing Kernel Methods as MEB Problems

Consider the situation where
k(x,x) = κ, (4)

a constant. All the patterns are then mapped to a sphere in the feature space. (4) will be satisfied
when either

1. the isotropic kernelk(x,y) = K(‖x−y‖) (e.g., Gaussian kernel); or

2. the dot product kernelk(x,y) = K(x′y) (e.g., polynomial kernel) with normalized inputs; or

3. any normalized kernelk(x,y) = K(x,y)√
K(x,x)

√
K(y,y)

is used. These three cases cover most kernel functions used in real-world applications. Scḧolkopf
et al. (2001) showed that the hard (soft) margin SVDD then yields identicalsolution as the hard
(soft) margin one-class SVM, and the weightw in the one-class SVM solution is equal to the center
c in the SVDD solution.

Combining (4) with the conditionα′1= 1 in (2), we haveα′diag(K) = κ. Dropping this constant
term from the dual objective in (2), we obtain a simpler optimization problem:

max
α

−α′Kα : α ≥ 0, α′1 = 1. (5)

367

TSANG, KWOK AND CHEUNG

Conversely, whenever the kernelk satisfies (4), any QP of the form (5) can be regarded as a MEB
problem in (1). Note that (2) and (5) yield the same set of optimalα’s. Moreover, the optimal (dual)
objectives in (2) and (5) (denotedd∗

1 andd∗
2 respectively) are related by

d∗
1 = d∗

2 +κ. (6)

In the following, we will show that when (4) is satisfied, the duals in a number of kernel methods
can be rewritten in the form of (5). While the 1-norm error has been commonly used for the SVM,
our main focus will be on the 2-norm error. In theory, this could be less robust in the presence
of outliers. However, experimentally, its generalization performance is often comparable to that
of the L1-SVM (Lee and Mangasarian, 2001; Mangasarian and Musicant, 2001a,b). Besides, the
2-norm error is more advantageous here because a soft-margin L2-SVM can be transformed to a
hard-margin one. While the 2-norm error has been used in classification (Section 3.2.2), we will
also extend its use for novelty detection (Section 3.2.1).

3.2.1 ONE-CLASS L2-SVM

Given a set of unlabeled patterns{zi}m
i=1 wherezi only has the input partxi , the one-class L2-SVM

separates outliers from the normal data by solving the primal problem:

minw,ρ,ξi
‖w‖2−2ρ+C

m

∑
i=1

ξ2
i

s.t. w′ϕ(xi) ≥ ρ−ξi , i = 1, . . . ,m, (7)

wherew′ϕ(x) = ρ is the desired hyperplane andC is a user-defined parameter. Unlike the classifi-
cation LSVM, the bias is not penalized here. Moreover, note that constraints ξi ≥ 0 are not needed
for the L2-SVM (Keerthi et al., 2000). The corresponding dual is

max
α

−α′
(

K +
1
C

I
)

α : α ≥ 0, α′1 = 1, (8)

whereI is them×m identity matrix. From the Karush-Kuhn-Tucker (KKT) conditions, we can
recover

w =
m

∑
i=1

αiϕ(xi) (9)

andξi = αi
C , and thenρ = w′ϕ(xi)+ αi

C from any support vectorxi .
Rewrite (8) in the form of (5) as:

max
α

−α′K̃α : α ≥ 0, α′1 = 1, (10)

where

K̃ = [k̃(zi ,z j)] =

[

k(xi ,x j)+
δi j

C

]

. (11)

Sincek(x,x) = κ,

k̃(z,z) = κ+
1
C

≡ κ̃

368

CORE VECTORMACHINES

is also a constant. This one-class L2-SVM thus corresponds to the MEB problem (1), in whichϕ is
replaced by the nonlinear mapϕ̃ satisfyingϕ̃(zi)

′ϕ̃(z j) = k̃(zi ,z j). It can be easily verified that this
ϕ̃ maps the training pointzi = xi to a higher dimensional space, as

ϕ̃(zi) =

[

ϕ(xi)
1√
C

ei

]

,

whereei is them-dimensional vector with all zeroes except that theith position is equal to one.

3.2.2 TWO-CLASS L2-SVM

In the two-class classification problem, we are given a training set{zi = (xi ,yi)}m
i=1 with yi ∈

{−1,1}. The primal of the two-class L2-SVM is

minw,b,ρ,ξi
‖w‖2 +b2−2ρ+C

m

∑
i=1

ξ2
i

s.t. yi(w′ϕ(xi)+b) ≥ ρ−ξi , i = 1, . . . ,m. (12)

The corresponding dual is

max
α

−α′
(

K �yy′ +yy′ +
1
C

I
)

α : α ≥ 0, α′1 = 1, (13)

where� denotes the Hadamard product andy = [y1, . . . ,ym]′. Again, we can recover

w =
m

∑
i=1

αiyiϕ(xi), b =
m

∑
i=1

αiyi , ξi =
αi

C
, (14)

from the optimalα and thenρ = yi(w′ϕ(xi)+b)+ αi
C from any support vectorzi . Alternatively,ρ

can also be obtained from the fact that QP’s have zero duality gap. Equating the primal (12) and
dual (13), we have

‖w‖2 +b2−2ρ+C
m

∑
i=1

ξ2
i = −

m

∑
i, j=1

αiα j

(

yiy jk(xi ,x j)+yiy j +
δi j

C

)

.

Substituting in (14), we then have

ρ =
m

∑
i, j=1

αiα j

(

yiy jk(xi ,x j)+yiy j +
δi j

C

)

. (15)

Rewriting (13) in the form of (5), we have

max
α

−α′K̃α : α ≥ 0, α′1 = 1, (16)

whereK̃ = [k̃(zi ,z j)] with

k̃(zi ,z j) = yiy jk(xi ,x j)+yiy j +
δi j

C
, (17)

369

TSANG, KWOK AND CHEUNG

Again, thisk̃ satisfies (4), as

k̃(z,z) = κ+1+
1
C

≡ κ̃,

a constant. Thus, this two-class L2-SVM can also be viewed as a MEB problem (1) in whichϕ is
replaced bỹϕ, with

ϕ̃(zi) =





yiϕ(xi)
yi
1√
C

ei





for any training pointzi . Note that as a classification (supervised learning) problem is now re-
formulated as a MEB (unsupervised) problem, the label information gets encoded in the feature
mapϕ̃. Moreover, all the support vectors of this L2-SVM, including those defining the margin and
those that are misclassified, now reside on the surface of the ball in the feature space induced by
k̃. A similar relationship connecting one-class classification and binary classification for the case of
Gaussian kernels is also discussed by Schölkopf et al. (2001). In the special case of a hard-margin
SVM, k̃ reduces tõk(zi ,z j) = yiy jk(xi ,x j)+yiy j and analogous results apply.

4. Core Vector Machine (CVM)

After formulating the kernel method as a MEB problem, we obtain a transformedkernel k̃, to-
gether with the associated feature spaceF̃ , mappingϕ̃ and constant̃κ = k̃(z,z). To solve this
kernel-induced MEB problem, we adopt the approximation algorithm described in the proof of
Theorem 2.2 in (B̆adoiu and Clarkson, 2002). A similar algorithm is also described in (Kumar
et al., 2003). As mentioned in Section 2, the idea is to incrementally expand the ball by including
the point furthest away from the current center. In the following, we denote the core set, the ball’s
center and radius at thetth iteration bySt ,ct andRt respectively. Also, the center and radius of a
ball B are denoted bycB andrB. Given anε > 0, the CVM then works as follows:

1. InitializeS0, c0 andR0.

2. Terminate if there is no training pointz such that̃ϕ(z) falls outside the(1+ ε)-ball B(ct ,(1+
ε)Rt).

3. Findz such that̃ϕ(z) is furthest away fromct . SetSt+1 = St ∪{z}.

4. Find the new MEB(St+1) from (5) and setct+1 = cMEB(St+1) andRt+1 = rMEB(St+1) using (3).

5. Incrementt by 1 and go back to Step 2.

In the sequel, points that are added to the core set will be calledcore vectors. Details of each of
the above steps will be described in Section 4.1. Despite its simplicity, CVM has anapproximation
guarantee (Section 4.2) and small time and space complexities (Section 4.3).

4.1 Detailed Procedure

4.1.1 INITIALIZATION

Bădoiu and Clarkson (2002) simply used an arbitrary pointz∈ S to initializeS0 = {z}. However, a
good initialization may lead to fewer updates and so we follow the scheme in (Kumaret al., 2003).

370

CORE VECTORMACHINES

We start with an arbitrary pointz ∈ S and findza ∈ S that is furthest away fromz in the feature
spaceF̃ . Then, we find another pointzb ∈ S that is furthest away fromza in F̃ . The initial core set
is then set to beS0 = {za,zb}. Obviously, MEB(S0) (in F̃) has centerc0 = 1

2(ϕ̃(za)+ ϕ̃(zb)) On
using (3), we thus haveαa = αb = 1

2 and all the otherαi ’s are zero. The initial radius is

R0 =
1
2
‖ϕ̃(za)− ϕ̃(zb)‖

=
1
2

√

‖ϕ̃(za)‖2 +‖ϕ̃(zb)‖2−2ϕ̃(za)′ϕ̃(zb)

=
1
2

√

2κ̃−2k̃(za,zb).

In a classification problem, one may further requireza andzb to come from different classes.

On using (17),R0 then becomes12

√

2
(

κ+2+ 1
C

)

+2k(xa,xb). As κ andC are constants, choosing

the pair(xa,xb) that maximizesR0 is then equivalent to choosing the closest pair belonging to
opposing classes, which is also the heuristic used in initializing the DirectSVM (Roobaert, 2000)
and SimpleSVM (Vishwanathan et al., 2003).

4.1.2 DISTANCE COMPUTATIONS

Steps 2 and 3 involve computing‖ct − ϕ̃(z`)‖ for z` ∈ S . On usingc= ∑zi∈St
αiϕ̃(zi) in (3), we have

‖ct − ϕ̃(z`)‖2 = ∑
zi ,z j∈St

αiα j k̃(zi ,z j)−2 ∑
zi∈St

αi k̃(zi ,z`)+ k̃(z`,z`). (18)

Hence, computations are based on kernel evaluations instead of the explicit ϕ̃(zi)’s, which may
be infinite-dimensional. Note that, in contrast, existing MEB algorithms only consider finite-
dimensional spaces.

However, in the feature space,ct cannot be obtained as an explicit point but rather as a convex
combination of (at most)|St | ϕ̃(zi)’s. Computing (18) for allm training points takesO(|St |2 +
m|St |) = O(m|St |) time at thetth iteration. This becomes very expensive whenm is large. Here,
we use the probabilistic speedup method in (Smola and Schölkopf, 2000). The idea is to randomly
sample a sufficiently large subsetS ′ from S , and then take the point inS ′ that is furthest away from
ct as the approximate furthest point overS . As shown in (Smola and Schölkopf, 2000), by using a
small random sample of, say, size 59, the furthest point obtained fromS ′ is with probability 0.95
among the furthest 5% of points from the wholeS . Instead of takingO(m|St |) time, this randomized
method only takesO(|St |2 + |St |) = O(|St |2) time, which is much faster as|St | � m. This trick can
also be used in the initialization step.

4.1.3 ADDING THE FURTHESTPOINT

Points outside MEB(St) have zeroαi ’s (Section 4.1.1) and so violate the KKT conditions of the dual
problem. As in (Osuna et al., 1997b), one can simply add any such violating point toSt . Our step 3,
however, takes a greedy approach by including the point furthest away from the current center. In

371

TSANG, KWOK AND CHEUNG

the one-class classification case (Section 3.2.1),

arg max
z` /∈B(ct ,(1+ε)Rt)

‖ct − ϕ̃(z`)‖2 = arg min
z` /∈B(ct ,(1+ε)Rt)

∑
zi∈St

αi k̃(zi ,z`)

= arg min
z` /∈B(ct ,(1+ε)Rt)

∑
zi∈St

αik(xi ,x`)

= arg min
z` /∈B(ct ,(1+ε)Rt)

w′ϕ(x`), (19)

on using (9), (11) and (18). Similarly, in the binary classification case (Section 3.2.2), we have

arg max
z` /∈B(ct ,(1+ε)Rt)

‖ct − ϕ̃(z`)‖2 = arg min
z` /∈B(ct ,(1+ε)Rt)

∑
zi∈St

αiyiy`(k(xi ,x`)+1)

= arg min
z` /∈B(ct ,(1+ε)Rt)

y`(w′ϕ(x`)+b), (20)

on using (14) and (17). Hence, in both cases, step 3 chooses theworstviolating pattern correspond-
ing to the constraint ((7) and (12) respectively).

Also, as the dual objective in (10) has gradient−2K̃α, so for a patterǹ currently outside the
ball

(K̃α)` =
m

∑
i=1

αi

(

k(xi ,x`)+
δi`

C

)

= w′ϕ(x`),

on using (9), (11) andα` = 0. Thus, the pattern chosen in (19) also makes the most progress towards
maximizing the dual objective. This is also true for the two-class L2-SVM, as

(K̃α)` =
m

∑
i=1

αi

(

yiy`k(xi ,x`)+yiy` +
δi`

C

)

= y`(w′ϕ(x`)+b),

on using (14), (17) andα` = 0. This subset selection heuristic is also commonly used by decompo-
sition algorithms (Chang and Lin, 2004; Joachims, 1999; Platt, 1999).

4.1.4 FINDING THE MEB

At each iteration of Step 4, we find the MEB by using the QP formulation in Section3.2. As the
size|St | of the core set is much smaller thanm in practice (Section 6), the computational complexity
of each QP sub-problem is much lower than solving the whole QP. Besides, as only one core vector
is added at each iteration, efficient rank-one update procedures (Cauwenberghs and Poggio, 2001;
Vishwanathan et al., 2003) can also be used. The cost then becomes quadratic rather than cubic.
As will be demonstrated in Section 6, the size of the core set is usually small to medium even for
very large data sets. Hence, SMO is chosen in our implementation as it is often very efficient (in
terms of both time and space) on data sets of such sizes. Moreover, as onlyone point is added each
time, the new QP is just a slight perturbation of the original. Hence, by using theMEB solution
obtained from the previous iteration as starting point (warm start), SMO can often converge in a
small number of iterations.

4.2 Convergence to (Approximate) Optimality

First, considerε = 0. The convergence proof in Bădoiu and Clarkson (2002) does not apply as it
requiresε > 0. But as the number of core vectors increases in each iteration and the training set

372

CORE VECTORMACHINES

size is finite, so CVM must terminate in a finite number (say,τ) of iterations, Withε = 0, MEB(Sτ)
is an enclosing ball for all the (ϕ̃-transformed) points on termination. BecauseSτ is a subset of the
whole training set and the MEB of a subset cannot be larger than the MEB of the whole set. Hence,
MEB(Sτ) must also be the exact MEB of the whole (ϕ̃-transformed) training set. In other words,
whenε = 0, CVM outputs theexactsolution of the kernel problem.

Whenε > 0, we can still obtain an approximately optimal dual objective as follows. Assume
that the algorithm terminates at theτth iteration, then

Rτ ≤ rMEB(S) ≤ (1+ ε)Rτ (21)

by definition. Recall that the optimal primal objectivep∗ of the kernel problem in Section 3.2.1
(or 3.2.2) is equal to the optimal dual objectived∗

2 in (10) (or (16)), which in turn is related to the
optimal dual objectived∗

1 = r2
MEB(S) in (2) by (6). Together with (21), we can then boundp∗ as

R2
τ ≤ p∗ + κ̃ ≤ (1+ ε)2R2

τ . (22)

Hence, max
(

R2
τ

p∗+κ̃ , p∗+κ̃
R2

τ

)

≤ (1+ ε)2 and thus CVM is an(1+ ε)2-approximation algorithm. This

also holds with high probability1 when probabilistic speedup is used.
As mentioned in Section 1, practical SVM implementations also output approximatedsolutions

only. Typically, a parameter similar to ourε is required at termination. For example, in SMO,
SVMlight and SimpleSVM, training stops when the KKT conditions are fulfilled withinε. Expe-
rience with these softwares indicate that near-optimal solutions are often good enough in practical
applications. It can be shown that when CVM terminates, all the training patterns also satisfy simi-
lar loose KKT conditions. Here, we focus on the binary classification case. Now, at any iterationt,
each training point falls into one of the following three categories:

1. Core vectors: Obviously, they satisfy the loose KKT conditions as they are involved in the
QP.

2. Non-core vectors inside/on the ballB(ct ,Rt): Their αi ’s are zero2 and so the KKT conditions
are satisfied.

3. Points lying outsideB(ct ,Rt): Consider one such point`. Its α` is zero (by initialization) and

‖ct − ϕ̃(z`)‖2 = ∑
zi ,z j∈St

αiα j

(

yiy jk(xi ,x j)+yiy j +
δi j

C

)

−2 ∑
zi∈St

αi

(

yiy`k(xi ,x`)+yiy` +
δi`

C

)

+ k̃(z`,z`)

= ρt + κ̃−2y`(w′
tϕ(x`)+bt), (23)

on using (14), (15), (17) and (18). This leads to

R2
t = κ̃−ρt . (24)

1. Obviously, the probability increases with the number of points subsampled and is equal to one when all the points
are used. Obtaining a precise probability statement will be studied in future research.

2. Recall that all theαi ’s (except those of the two initial core vectors) are initialized to zero.

373

TSANG, KWOK AND CHEUNG

on using (3), (15) and (16). Asz` is inside/on the(1+ ε)-ball at theτth iteration,‖cτ −
ϕ̃(z`)‖2 ≤ (1+ ε)2R2

τ . Hence, from (23) and (24),

(1+ ε)2(κ̃−ρτ) ≥ ρτ + κ̃−2y`(w′
τϕ(x`)+bτ)

⇒ 2y`(w′
τϕ(x`)+bτ) ≥ ρτ + κ̃− (1+ ε)2(κ̃−ρτ)

≥ 2ρτ − (2ε+ ε2)(κ̃−ρτ)

⇒ y`(w′
τϕ(x`)+bτ)−ρτ ≥−

(

ε+
ε2

2

)

R2
τ . (25)

Obviously,R2
τ ≤ k̃(z,z) = κ̃. Hence, (25) reduces to

y`(w′
τϕ(x`)+bτ)−ρτ ≥−

(

ε+
ε2

2

)

κ̃ ≡−ε2,

which is a loose KKT condition on patterǹ(which hasα` = 0 and consequentlyξ` = 0 by
(14)).

4.3 Time and Space Complexities

Existing decomposition algorithms cannot guarantee the number of iterations and consequently
the overall time complexity (Chang and Lin, 2004). In this Section, we show how this can be
obtained for CVM. In the following, we assume that a plain QP implementation, which takesO(m3)
time andO(m2) space form patterns, is used for the QP sub-problem in step 4. The time and
space complexities obtained below can be further improved if more efficient QP solvers were used.
Moreover, each kernel evaluation is assumed to take constant time.

Consider first the case where probabilistic speedup is not used in Section4.1.2. As proved
in (Bădoiu and Clarkson, 2002), CVM converges in at most 2/ε iterations. In other words, the
total number of iterations, and consequently the size of the final core set, are of τ = O(1/ε). In
practice, it has often been observed that the size of the core set is much smaller than this worst-
case theoretical upper bound3 (Kumar et al., 2003). As only one core vector is added at each
iteration,|St | = t + 2. Initialization takesO(m) time while distance computations in steps 2 and 3
takeO((t +2)2+ tm) = O(t2+ tm) time. Finding the MEB in step 4 takesO((t +2)3) = O(t3) time,
and the other operations take constant time. Hence, thetth iteration takes a total ofO(tm+ t3) time.
The overall time forτ = O(1/ε) iterations is

T =
τ

∑
t=1

O(tm+ t3) = O(τ2m+ τ4) = O

(

m
ε2 +

1
ε4

)

,

which is linear in m for a fixedε.
Next, we consider its space complexity. As them training patterns may be stored outside the

core memory, theO(m) space required will be ignored in the following. Since only the core vectors
are involved in the QP, the space complexity for thetth iteration isO(|St |2). As τ = O(1/ε), the
space complexity for the whole procedure isO(1/ε2), which isindependentof m for a fixedε.

On the other hand, when probabilistic speedup is used, initialization only takesO(1) time while
distance computations in steps 2 and 3 takeO((t +2)2) = O(t2) time. Time for the other operations

3. This will also be corroborated by our experiments in Section 6.

374

CORE VECTORMACHINES

remains the same. Hence, thetth iteration takesO(t3) time. As probabilistic speeedup may not
find the furthest point in each iteration,τ may be larger than 2/ε though it can still be bounded by
O(1/ε2) (Bădoiu et al., 2002). Hence, the whole procedure takes

T =
τ

∑
t=1

O(t3) = O(τ4) = O

(

1
ε8

)

.

For a fixedε, it is thusindependentof m. The space complexity, which depends only on the number
of iterationsτ, becomesO(1/ε4).

Whenε decreases, the CVM solution becomes closer to the exact optimal solution, but at the
expense of higher time and space complexities. Such a tradeoff between efficiency and approxima-
tion quality is typical of all approximation schemes. Moreover, be cautioned that theO-notation
is used for studying the asymptotic efficiency of algorithms. As we are interested in handling very
large data sets, an algorithm that is asymptotically more efficient (in time and space) will be the
best choice. However, on smaller problems, this may be outperformed by algorithms that are not as
efficient asymptotically. These will be demonstrated experimentally in Section 6.

5. Related Work

The core set in CVM plays a similar role as the working set in other decomposition algorithms, and
so these algorithms will be reviewed briefly in this Section. Following the convention in (Chang
and Lin, 2004; Osuna et al., 1997b), the working set will be denotedB while the remaining subset
of training patterns denotedN.

Chunking (Vapnik, 1998) is the first decomposition method used in SVM training. It starts
with a random subset (chunk) of data asB and train an initial SVM. Support vectors in the chunk
are retained while non-support vectors are replaced by patterns inN violating the KKT conditions.
Then, the SVM is re-trained and the whole procedure repeated. Chunking suffers from the problem
that the entire set of support vectors that have been identified will still need to be trained together at
the end of the training process.

Osuna et al. (1997a) proposed another decomposition algorithm that fixes the size of the working
setB. At each iteration, variables corresponding to patterns inN are frozen, while those inB are
optimized in a QP sub-problem. After that, a new point inN violating the KKT conditions will
replace some point inB. The SVMlight software (Joachims, 1999) follows the same scheme, though
with a slightly different subset selection heuristic.

Going to the extreme, the sequential minimal optimization (SMO) algorithm (Platt, 1999) breaks
the original, large QP into a series of smallest possible QPs, each involving only two variables. The
first variable is chosen among points that violate the KKT conditions, while the second variable is
chosen so as to have a large increase in the dual objective. This two-variable joint optimization pro-
cess is repeated until the loose KKT conditions are fulfilled for all training patterns. By involving
only two variables, SMO is advantageous in that each QP sub-problem canbe solved analytically
in an efficient way, without the use of a numerical QP solver. Moreover,as no matrix operations are
involved, extra matrix storage is not required for keeping the kernel matrix. However, as each itera-
tion only involves two variables in the optimization, SMO has slow convergence (Kao et al., 2004).
Nevertheless, as each iteration is computationally simple, an overall speedupis often observed in
practice.

375

TSANG, KWOK AND CHEUNG

Recently, Vishwanathan et al. (2003) proposed a related scale-up method called the SimpleSVM.
At each iteration, a point violating the KKT conditions is added to the working set by using rank-
one update on the kernel matrix. However, as pointed out in (Vishwanathan et al., 2003), storage is
still a problem when the SimpleSVM is applied to large dense kernel matrices.

As discussed in Section 4.1, CVM is similar to these decomposition algorithms in many aspects,
including initialization, subset selection and termination. However, subset selection in CVM is
much simpler in comparison. Moreover, while decomposition algorithms allow training patterns
to join and leave the working set multiple times, patterns once recruited as core vectors by the
CVM will remain there for the whole training process. These allow the number of iterations, and
consequently the time and space complexities, to be easily obtained for the CVM but not for the
decomposition algorithms.

6. Experiments

In this Section, we implement the two-class L2-SVM in Section 3.2.2 and illustrate thescaling
behavior of CVM (in C++) on several toy and real-world data sets. Table1 summarizes the charac-
teristics of the data sets used. For comparison, we also run the following SVMimplementations:4

1. L2-SVM: LIBSVM implementation (in C++);

2. L2-SVM: LSVM implementation (in MATLAB), with low-rank approximation (Fine and
Scheinberg, 2001) of the kernel matrix added;

3. L2-SVM: RSVM (Lee and Mangasarian, 2001) implementation (in MATLAB). The RSVM
addresses the scale-up issue by solving a smaller optimization problem that involves a random
m̄×m rectangular subset of the kernel matrix. Here, ¯m is set to 10% ofm;

4. L1-SVM: LIBSVM implementation (in C++);

5. L1-SVM: SimpleSVM (Vishwanathan et al., 2003) implementation (in MATLAB).

Parameters are used in their default settings unless otherwise specified. Since our focus is on non-
linear kernels, we use the Gaussian kernelk(x,y) = exp(−‖x−y‖2/β) with β = 1

m2 ∑m
i, j=1‖xi −x j‖2

unless otherwise specified. Experiments are performed on Pentium–4 machines running Windows
XP. Detailed machine configurations will be reported in each section.

Our CVM implementation is adapted from the LIBSVM, and uses SMO for solvingeach QP
sub-problem in step 4. As discussed in Section 4.1.4, warm start is used to initialize each QP
sub-problem. Besides, as in LIBSVM, our CVM uses caching (with the samecache size as in the
other LIBSVM implementations above) and stores all the training patterns in main memory. For
simplicity, shrinking (Joachims, 1999) is not used in our current CVM implementation. Besides,
we employ the probabilistic speedup method5 as discussed in Section 4.1.2. On termination, we
perform the (probabilistic) test in step 2 a few times so as to ensure that almostall the points have
been covered by the(1+ ε)-ball. The value ofε is fixed at 10−6 in all the experiments. As in other

4. Our CVM implementation can be downloaded fromhttp://www.cs.ust.hk/∼jamesk/cvm.zip.
LIBSVM can be downloaded from http://www.csie.ntu.edu.tw/∼cjlin/libsvm/; LSVM from
http://www.cs.wisc.edu/dmi/lsvm; and SimpleSVM fromhttp://asi.insa-rouen.fr/∼gloosli/. Moreover, we followed
http://www.csie.ntu.edu.tw/∼cjlin/libsvm/faq.html in adapting the LIBSVM package for L2-SVM.

5. Following (Smola and Schölkopf, 2000), a random sample of size 59 is used.

376

CORE VECTORMACHINES

date set max training set size # attributes
checkerboard 1,000,000 2

forest cover type 522,911 54
extended USPS digits 266,079 676

extended MIT face 889,986 361
KDDCUP-99 intrusion detection 4,898,431 127

UCI adult 32,561 123

Table 1: Data sets used in the experiments.

decomposition methods, the use of a very stringent stopping criterion is not necessary in practice.
Preliminary studies show thatε = 10−6 is acceptable for most tasks. Using an even smallerε does
not show improved generalization performance, but may increase the training time unnecessarily.

6.1 Checkerboard Data

We first experiment on the 4× 4 checkerboard data (Figure 2) commonly used for evaluating
large-scale SVM implementations (Lee and Mangasarian, 2001; Mangasarian and Musicant, 2001b;
Schwaighofer and Tresp, 2001). We use training sets with a maximum of 1 millionpoints and 2,000
independent points for testing. Of course, this problem does not need so many points for training,
but it is convenient for illustrating the scaling properties. Preliminary study suggests a value of
C = 1000. A 3.2GHz Pentium–4 machine with 512MB RAM is used.

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Figure 2: The 4×4 checkerboard data set.

Experimentally, L2-SVM with low rank approximation does not yield satisfactory performance
on this data set, and so its result is not reported here. RSVM, on the other hand, has to keep a
rectangular kernel matrix of size ¯m×m (m̄ being the number of random samples used), and cannot
be run on our machine whenm exceeds 10K. Similarly, the SimpleSVM has to store the kernel
matrix of the active set, and runs into storage problem whenmexceeds 30K.

377

TSANG, KWOK AND CHEUNG

Results are shown in Figure 3. As can be seen, CVM is as accurate as the other implementations.
Besides, it is much faster6 and produces far fewer support vectors (which implies faster testing) on
large data sets. In particular, one million patterns can be processed in under 13 seconds. On the
other hand, for relatively small training sets, with less than 10K patterns, LIBSVM is faster. This,
however, is to be expected as LIBSVM uses more sophisticated heuristics and so will be more
efficient on small-to-medium sized data sets. Figure 3(b) also shows the core set size, which can be
seen to be small and its curve basically overlaps with that of the CVM. Thus, almost all the core
vectors are useful support vectors. Moreover, it also confirms ourtheoretical findings that both time
and space required are constant w.r.t. the training set size, when it becomes large enough.

6.2 Forest Cover Type Data

The forest cover type data set7 has been used for large scale SVM training (e.g., (Bakir et al., 2005;
Collobert et al., 2002)). Following (Collobert et al., 2002), we aim at separating class 2 from the
other classes. 1%−90% of the whole data set (with a maximum of 522,911 patterns) are used for
training while the remaining are used for testing. We use the Gaussian kernelwith β = 10000 and
C = 10000. Experiments are performed on a 3.2GHz Pentium–4 machine with 512MBRAM.

Preliminary studies show that the number of support vectors is over ten thousands. Conse-
quently, RSVM and SimpleSVM cannot be run on our machine. Similarly, for lowrank approxi-
mation, preliminary studies show that over thousands of basis vectors are required for a good ap-
proximation. Therefore, only the two LIBSVM implementations will be compared with the CVM
here.

As can be seen from Figure 4, CVM is, again, as accurate as the others.Note that when the
training set is small, more training patterns bring in additional information usefulfor classification
and so the number of core vectors increases with training set size. However, after processing around
100K patterns, both the time and space requirements of CVM begin to exhibit a constant scaling
with the training set size. With hindsight, one might simply sample 100K training patterns and
hope to obtain comparable results.8 However, for satisfactory classification performance, different
problems require samples of different sizes and CVM has the important advantage that the required
sample size does not have to be pre-specified. Without such prior knowledge, random sampling
gives poor testing results, as demonstrated in (Lee and Mangasarian, 2001).

6.3 Extended USPS Digits Data

In this experiment, our task is to classify digits zero from one in an extended version of the USPS
data set.9 The original training set has 1,005 zeros and 1,194 ones, while the test set has 359 zeros
and 264 ones. To better study the scaling behavior, we extend this data setby first converting the
resolution from 16×16 to 26×26, and then generate new images by shifting the original ones in all
directions for up to five pixels. Thus, the resultant training set has a total of (1005+1194)×112 =

6. The CPU time only measures the time for training the SVM. Time for readingthe training patterns into main memory
is not included. Moreover, as some implementations are in MATLAB, so not all the CPU time measurements can
be directly compared. However, it is still useful to note the constant scaling exhibited by the CVM and its speed
advantage over other C++ implementations, when the data set is large.

7. http://kdd.ics.uci.edu/databases/covertype/covertype.html
8. In fact, we tried both LIBSVM implementations on a random sample of 100K training patterns, but their testing

accuracies are inferior to that of CVM.
9. http://www.kernel-machines.org/data/usps.mat.gz

378

CORE VECTORMACHINES

1K 3K 10K 30K 100K 300K 1M
10

−1

10
0

10
1

10
2

10
3

10
4

10
5

10
6

size of training set

C
P

U
 ti

m
e

(in
 s

ec
on

ds
)

L2−SVM (CVM)
L2−SVM (LIBSVM)
L2−SVM (RSVM)
L1−SVM (LIBSVM)
L1−SVM (SimpleSVM)

(a) CPU time.

1K 3K 10K 30K 100K 300K 1M
10

2

10
3

10
4

10
5

size of training set
nu

m
be

r
of

 S
V

’s

L2−SVM (CVM)
core−set size
L2−SVM (LIBSVM)
L2−SVM (RSVM)
L1−SVM (LIBSVM)
L1−SVM (SimpleSVM)

(b) number of support vectors.

1K 3K 10K 30K 100K 300K 1M
0

5

10

15

20

25

30

35

40

size of training set

er
ro

r
ra

te
 (

in
 %

)

L2−SVM (CVM)
L2−SVM (LIBSVM)
L2−SVM (RSVM)
L1−SVM (LIBSVM)
L1−SVM (SimpleSVM)

(c) testing error.

Figure 3: Results on thecheckerboard data set (Except for the CVM, the other implementations
have to terminate early because of not enough memory and/or the training time is too
long). Note that the CPU time, number of support vectors, and size of the training set are
in log scale.

379

TSANG, KWOK AND CHEUNG

0 1 2 3 4 5 6 7 8

x 10
5

10
1

10
2

10
3

10
4

10
5

10
6

size of training set

C
P

U
 ti

m
e

(in
 s

ec
on

ds
)

L2−SVM (CVM)
L2−SVM (LIBSVM)
L1−SVM (LIBSVM)

(a) CPU time.

0 1 2 3 4 5 6

x 10
5

10
3

10
4

10
5

10
6

size of training set

nu
m

be
r

of
 S

V
’s

L2−SVM (CVM)
core−set size
L2−SVM (LIBSVM)
L1−SVM (LIBSVM)

(b) number of support vectors.

0 1 2 3 4 5 6

x 10
5

0

5

10

15

20

25

size of training set

er
ro

r
ra

te
 (

in
 %

)

L2−SVM (CVM)
L2−SVM (LIBSVM)
L1−SVM (LIBSVM)

(c) testing error.

Figure 4: Results on theforest cover type data set. Note that the CPU time and number of support
vectors are in log scale.

380

CORE VECTORMACHINES

266,079 patterns while the extended test set has(359+ 264)× 112 = 753,83 patterns. In this
experiment,C = 100 and a 3.2GHz Pentium–4 machine with 512MB RAM is used.

As can be seen from Figure 5, the behavior of CVM is again similar to those in the previous
sections. In particular, both the time and space requirements of CVM increase when the training
set is small. They then stabilize at around 30K patterns and CVM becomes faster than the other
decomposition algorithms.

6.4 Extended MIT Face Data

In this Section, we perform face detection using an extended version of the MIT face database10

(Heisele et al., 2000; Sung, 1996). The original data set has 6,977 training images (with 2,429 faces
and 4,548 nonfaces) and 24,045 test images (472 faces and 23,573 nonfaces). The original 19×19
grayscale images are first enlarged to 21×21. To better study the scaling behavior of various SVM
implementations, we again enlarge the training set by generating artificial samples. As in (Heisele
et al., 2000; Osuna et al., 1997b), additional nonfaces are extracting from images that do not contain
faces (e.g., images of landscapes, trees, buildings, etc.). As for the setof faces, we enlarge it by
applying various image transformations (including blurring, flipping and rotating) to the original
faces. The following three training sets are thus created (Table 6.4):

1. Set A: This is obtained by adding 477,366 nonfaces to the original training set, with the
nonface images extracted from 100 photos randomly collected from the web.

2. Set B: Each training face is blurred by the arithmetic mean filter (with window sizes 2×2,
3×3 and 4×4, respectively) and added to set A. They are then flipped laterally, leading to a
total of 2429×4×2 = 19,432 faces.

3. Set C: Each face in set B is rotated between−20o and 20o, in increments of 2o. This results
in a total of 19432×21= 408,072 faces.

In this experiment,C = 20 and a 2.5GHz Pentium–4 machine with 1GB RAM is used. Moreover,
a dense data format, which is more appropriate for this data set, is used in all the implementations.
Recall that the intent of this experiment is on studying the scaling behavior rather than on obtaining
state-of-the-art face detection performance. Nevertheless, the ability of CVM in handling very large
data sets could make it a better base classifier in powerful face detection systems such as the boosted
cascade (Viola and Jones, 2001).

training set # faces # nonfaces total
original 2,429 4,548 6,977
set A 2,429 481,914 484,343
set B 19,432 481,914 501,346
set C 408,072 481,914 889,986

Table 2: Number of faces and nonfaces in the face detection data sets.

Because of the imbalanced nature of this data set, the testing error is inappropriate for perfor-
mance evaluation here. Instead, we will use the AUC (area under the ROC curve), which has been

10. http://cbcl.mit.edu/cbcl/software-datasets/FaceData2.html

381

TSANG, KWOK AND CHEUNG

10
3

10
4

10
5

10
6

10
7

10
−1

10
0

10
1

10
2

10
3

10
4

size of training set

C
P

U
 ti

m
e

(in
 s

ec
on

ds
)

L2−SVM (CVM)
L2−SVM (LIBSVM)
L2−SVM (low rank)
L2−SVM (RSVM)
L1−SVM (LIBSVM)
L1−SVM (SimpleSVM)

(a) CPU time.

10
3

10
4

10
5

10
6

10
7

10
2

10
3

size of training set
nu

m
be

r
of

 S
V

’s

L2−SVM (CVM)
core−set size
L2−SVM (LIBSVM)
L2−SVM (low rank)
L2−SVM (RSVM)
L1−SVM (LIBSVM)
L1−SVM (SimpleSVM)

(b) number of support vectors.

10
3

10
4

10
5

10
6

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

size of training set

er
ro

r
ra

te
 (

in
 %

)

L2−SVM (CVM)
L2−SVM (LIBSVM)
L2−SVM (low rank)
L2−SVM (RSVM)
L1−SVM (LIBSVM)
L1−SVM (SimpleSVM)

(c) testing error.

Figure 5: Results on the extendedUSPS digits data set (Except for the CVM, the other implemen-
tations have to terminate early because of not enough memory and/or the training time is
too long). Note that the CPU time, number of support vectors, and size of thetraining set
are in log scale.

382

CORE VECTORMACHINES

commonly used for face detectors. The ROC (receiver operating characteristic) curve (Bradley,
1997) plots TP on theY-axis and the false positive rate

FP=
negatives incorrectly classified

total negatives

on theX-axis. Here, faces are treated as positives while non-faces as negatives. The AUC is always
between 0 and 1. A perfect face detector will have unit AUC, while random guessing will have an
AUC of 0.5. Another performance measure that will be reported is the balanced loss (Weston et al.,
2002)

`bal = 1− TP+TN
2

,

which is also suitable for imbalanced data sets. Here,

TP=
positives correctly classified

total positives
, TN =

negatives correctly classified
total negatives

,

are the true positive and true negative rates respectively.
The ROC on using CVM is shown in Figure 6, which demonstrates the usefulness of using extra

faces and nonfaces in training. This is also reflected in Figure 7, which shows that the time and space
requirements of CVM are increasing with larger training sets. Even in this non-asymptotic case, the
CVM still significantly outperforms both LIBSVM implementations in terms of training timeand
number of support vectors, while the values of AUC and`bal are again very competitive. Note also
that the LIBSVM implementations of both L1- and L2-SVMs do not perform well (in terms of`bal)
on the highly imbalanced set A. On the other hand, CVM shows a steady improvement and is less
affected by the skewed distribution. In general, the performance of SVMs could be improved by
assigning different penalty parameters (C’s) to the classes. A more detailed study on the use of
CVM in an imbalanced setting will be conducted in the future.

6.5 KDDCUP-99 Intrusion Detection Data

This intrusion detection data set11 has been used for the Third International Knowledge Discovery
and Data Mining Tools Competition, which was held in conjunction with KDD-99. The training
set contains 4,898,431 connection records, which are processed from about four gigabytes of com-
pressed binary TCP dump data from seven weeks of network traffic. Another two weeks of data
produced the test data with 311,029 patterns. The data set includes a wide variety of intrusions
simulated in a military network environment. There are a total of 24 training attack types, and an
additional 14 types that appear in the test data only.

We follow the same setup in (Yu et al., 2003). The task is to separate normal connections from
attacks. Each original pattern has 34 continuous features and 7 symbolic features. We normalize
each continuous feature to the range zero and one, and transform each symbolic feature to multiple
binary features. Yu et al. (2003) used the clustering-based SVM (CB-SVM), which incorporates
the hierarchical micro-clustering algorithm BIRCH (Zhang et al., 1996) to reduce the number of
patterns in SVM training. However, CB-SVM is restricted to the use of linear kernels. In our
experiments with the CVM, we will continue the use of the Gaussian kernel (withβ = 1000 and

11. http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html

383

TSANG, KWOK AND CHEUNG

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

FP

T
P

original training set
set A
set B
set C

Figure 6: ROC of the extendedMIT face data set on using CVM.

C = 106) as in the previous sections. Moreover, as the whole data set is stored in the core in our
current implementation, we use a 3.2GHz Pentium–4 machine with 2GB RAM.

Table 6.5 compares the results of CVM with those reported in (Yu et al., 2003), which include
SVMs using random sampling, active learning (Schohn and Cohn, 2000)and CB-SVM. Surpris-
ingly, our CVM on the whole training set (which has around five million patterns) takes only 1.4
seconds, and yields a lower testing error than all other methods. The performance of CVM on this
data set, as evaluated by some more measures and the ROC, are reported in Table 6.5 and Figure 8
respectively.

6.6 Relatively Small Data Sets: UCI Adult Data

Following (Platt, 1999), we use training sets12 with up to 32,562 patterns. Experiments are per-
formed withC = 0.1 and on a 3.2GHz Pentium–4 machine with 512MB RAM. As can be seen in
Figure 9, CVM is still among the most accurate methods. However, as this data set is relatively
small, more training patterns do carry more classification information. Hence, as discussed in Sec-
tion 6.2, the number of iterations, the core set size and consequently the CPUtime all increase with
the number of training patterns. From another perspective, recall that the worst case core set size is
2/ε, independent ofm (Section 4.3). For the value ofε = 10−6 used here, 2/ε = 2×106. Besides,
although we have seen that the actual size of the core set is often much smaller than this worst case
value, however, whenm� 2/ε, the number of core vectors can still be dependent onm. More-

12. ftp://ftp.ics.uci.edu/pub/machine-learning-databases/adult

384

CORE VECTORMACHINES

 original set A set B set C
10

0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

training set

C
P

U
 ti

m
e

(in
 s

ec
on

ds
)

L2−SVM (CVM)
L2−SVM (LIBSVM)
L1−SVM (LIBSVM)

(a) CPU time.

 original set A set B set C
10

2

10
3

10
4

10
5

training set

nu
m

be
r

of
 S

V
’s

L2−SVM (CVM)
core−set size
L2−SVM (LIBSVM)
L1−SVM (LIBSVM)

(b) number of support vectors.

 original set A set B set C
0.9

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

training set

A
U

C

L2−SVM (CVM)
L2−SVM (LIBSVM)
L1−SVM (LIBSVM)

(c) AUC.

 original set A set B set C
15

20

25

30

35

40

training set

ba
la

nc
ed

 lo
ss

 (
in

 %
)

L2−SVM (CVM)
L2−SVM (LIBSVM)
L1−SVM (LIBSVM)

(d) `bal.

Figure 7: Results on the extendedMIT face data set. Note that the CPU time and number of support
vectors are in log scale.

385

TSANG, KWOK AND CHEUNG

method # training patterns # test SVM training other processing
input to SVM errors time (in sec) time (in sec)

0.001% 47 25,713 0.000991 500.02
random 0.01% 515 25,030 0.120689 502.59

sampling 0.1% 4,917 25,531 6.944 504.54
1% 49,204 25,700 604.54 509.19
5% 245,364 25,587 15827.3 524.31

active learning 747 21,634 94192.213
CB-SVM 4,090 20,938 7.639 4745.483

CVM 4,898,431 19,513 1.4

Table 3: Results on theKDDCUP-99 intrusion detection data set by CVM and methods reported
in (Yu et al., 2003). Here, “other processing time” refers to the (1) sampling time for
SVM with random sampling; and (2) clustering time for CB-SVM. For SVM with active
learning and CVM, the total training time required is reported. Note that Yu et al. (2003)
used a 800MHz Pentium-3 machine with 906MB RAM while we use a 3.2GHz Pentium–4
machine with 2GB RAM. Hence, the time measurements are for reference only and cannot
be directly compared.

AUC `bal # core vectors # support vectors
0.977 0.042 55 20

Table 4: More performance measures of CVM on theKDDCUP-99 intrusion detection data.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

FP

T
P

Figure 8: ROC of the theKDDCUP-99 intrusion detection data using CVM.

386

CORE VECTORMACHINES

over, as has been observed in the previous sections, the CVM is slower than the more sophisticated
LIBSVM on processing these smaller data sets.

1000 3000 6000 10000 30000
10

−1

10
0

10
1

10
2

10
3

10
4

10
5

size of training set

C
P

U
 ti

m
e

(in
 s

ec
on

ds
)

L2−SVM (CVM)
L2−SVM (LIBSVM)
L2−SVM (low rank)
L2−SVM (RSVM)
L1−SVM (LIBSVM)
L1−SVM (SimpleSVM)

(a) CPU time.

1000 3000 6000 10000 30000
10

2

10
3

10
4

10
5

size of training set

nu
m

be
r

of
 S

V
’s

L2−SVM (CVM)
core−set size
L2−SVM (LIBSVM)
L2−SVM (low rank)
L2−SVM (RSVM)
L1−SVM (LIBSVM)
L1−SVM (SimpleSVM)

(b) number of support vectors.

1000 3000 6000 10000 30000
14

15

16

17

18

19

20

size of training set

er
ro

r
ra

te
 (

in
 %

)

L2−SVM (CVM)
L2−SVM (LIBSVM)
L2−SVM (low rank)
L2−SVM (RSVM)
L1−SVM (LIBSVM)
L1−SVM (SimpleSVM)

(c) testing error.

Figure 9: Results on theUCI adult data set (The other implementations have to terminate early
because of not enough memory and/or the training time is too long). Note that theCPU
time, number of SV’s and size of training set are in log scale.

387

TSANG, KWOK AND CHEUNG

7. Conclusion

In this paper, we exploit the “approximateness” in practical SVM implementations to scale-up SVM
training. We formulate kernel methods (including the soft-margin one-class and two-class SVMs) as
equivalent MEB problems, and then obtain approximately optimal solutions efficiently with the use
of core sets. The proposed CVM procedure is simple, and does not require sophisticated heuristics
as in other decomposition methods. Moreover, despite its simplicity, CVM has smallasymptotic
time and space complexities. In particular, for a fixedε, its asymptotic time complexity islinear
in the training set sizem while its space complexity isindependentof m. This can be further
improved when probabilistic speedup is used. Experimentally, it is as accurate as existing SVM
implementations, but is much faster and produces far fewer support vectors (and thus faster testing)
on large data sets. On the other hand, on relatively small data sets wherem� 2/ε, SMO can be
faster. Besides, although we have fixed the value ofε in the experiments, one could also vary the
value of ε to adjust the tradeoff between efficiency and approximation quality. In general, with
a smallerε, the CVM solution becomes closer to the exact optimal solution, but at the expense
of higher time and space complexities. Our experience suggests that a fixedvalue ofε = 10−6 is
acceptable for most tasks.

The introduction of CVM opens new doors for applying kernel methods to data-intensive appli-
cations involving very large data sets. The use of approximation algorithms also brings immense
opportunities to scaling up other kernel methods. For example, we have obtained preliminary suc-
cess in extending support vector regression using the CVM technique. In the future, we will also
apply CVM-like approximation algorithms to other kernel-related learning problems such as imbal-
anced learning, ranking and clustering. The iterative recruitment of core vectors is also similar to
incremental procedures (Cauwenberghs and Poggio, 2001; Fung and Mangasarian, 2002), and this
connection will be further explored. Besides, although the CVM can obtainmuch fewer support
vectors than standard SVM implementations on large data sets, the number of support vectors may
still be too large for real-time testing. As the core vectors in CVM are added incrementally and
never removed, it is thus possible that some of them might be redundant. We will consider post-
processing methods to further reduce the number of support vectors. Finally, all the training patterns
are currently stored in the main memory. We anticipate that even larger data setscan be handled,
possibly with reduced speed, when traditional scale-up techniques suchas out-of-core storage and
low-rank approximation are also incorporated.

Acknowledgements

This research has been partially supported by the Research Grants Council of the Hong Kong Special
Administrative Region. The author would also like to thank the anonymous reviewers for their
constructive comments on an earlier version of this paper.

References

D. Achlioptas, F. McSherry, and B. Schölkopf. Sampling techniques for kernel methods. In T. G.
Dietterich, S. Becker, and Z. Ghahramani, editors,Advances in Neural Information Processing
Systems 14, Cambridge, MA, 2002. MIT Press.

388

CORE VECTORMACHINES

G. H. Bakir, J. Weston, and L. Bottou. Breaking SVM complexity with cross-training. InAdvances
in Neural Information Processing Systems 17, Cambridge, MA, 2005. MIT Press.

D. Boley and D. Cao. Training support vector machine using adaptive clustering. InProceedings
of the SIAM International Conference on Data Mining, pages 126–137, Lake Buena Vista, FL,
USA, April 2004.

A. P. Bradley. The use of the area under the ROC curve in the evaluation of machine learning
algorithms.Pattern Recognition, 30(7):1145–1159, 1997.

M. Bădoiu and K. L. Clarkson. Optimal core sets for balls. InDIMACS Workshop on Computational
Geometry, 2002.

M. Bădoiu, S. Har-Peled, and P. Indyk. Approximate clustering via core sets. In Proceedings of 34th
Annual ACM Symposium on Theory of Computing, pages 250–257, Montr ´eal, Québec, Canada,
2002.

G. Cauwenberghs and T. Poggio. Incremental and decremental support vector machine learning.
In T. Leen, T. Dietterich, and V. Tresp, editors,Advances in Neural Information Processing Sys-
tems 13, Cambridge, MA, 2001. MIT Press.

T. M. Chan. Approximating the diameter, width, smallest enclosing cylinder, andminimum-width
annulus. InProceedings of the Sixteenth Annual Symposium on Computational Geometry, pages
300–309, Clear Water Bay, Hong Kong, 2000.

C.-C. Chang and C.-J. Lin.LIBSVM: a Library for Support Vector Machines, 2004. Software
available athttp://www.csie.ntu.edu.tw/˜cjlin/libsvm .

O. Chapelle, V. Vapnik, O. Bousquet, and S. Mukherjee. Choosing multipleparameters for support
vector machines.Machine Learning, 46(1-3):131–159, 2002.

C. S. Chu, I. W. Tsang, and J. T. Kwok. Scaling up support vector data description by using core-
sets. InProceedings of the International Joint Conference on Neural Networks, pages 425–430,
Budapest, Hungary, July 2004.

R. Collobert, S. Bengio, and Y. Bengio. A parallel mixture of SVMs for very large scale problems.
Neural Computation, 14(5):1105–1114, May 2002.

S. Fine and K. Scheinberg. Efficient SVM training using low-rank kernel representations.Journal
of Machine Learning Research, 2:243–264, December 2001.

T. Friess, N. Cristianini, and C. Campbell. The Kernel-Adatron algorithm: a fast and simple learning
procedure for support vector machines. InProceedings of the Fifteenth International Conference
on Machine Learning, pages 188–196, Madison, Wisconsin, USA, July 1998.

G. Fung and O. L. Mangasarian. Incremental support vector machine classification. In R. Grossman,
H. Mannila, and R. Motwani, editors,Proceedings of the Second SIAM International Conference
on Data Mining, pages 247–260, Arlington, Virginia, USA, 2002.

G. Fung and O. L. Mangasarian. Finite Newton method for Lagrangian support vector machine
classification.Neurocomputing, 55:39–55, 2003.

389

TSANG, KWOK AND CHEUNG

M. R. Garey and D. S. Johnson.Computers and Intractability: A Guide to the Theory of NP-
Completeness. W. H. Freeman, 1979.

S. Har-Peled and Y. Wang. Shape fitting with outliers.SIAM Journal on Computing, 33(2):269–285,
2004.

B. Heisele, T. Poggio, and M. Pontil. Face detection in still gray images. A.I. memo 1687, Center
for Biological and Computational Learning, MIT, Cambridge, MA, 2000.

T. Joachims. Making large-scale support vector machine learning practical. In B. Scḧolkopf,
C. Burges, and A. Smola, editors,Advances in Kernel Methods – Support Vector Learning, pages
169–184. MIT Press, Cambridge, MA, 1999.

W.-C. Kao, K.-M. Chung, C.-L. Sun, and C.-J. Lin. Decomposition methods for linear support
vector machines.Neural Computation, 16:1689–1704, 2004.

S. S. Keerthi, S. K. Shevade, C. Bhattacharyya, and K. R. K. Murthy.A fast iterative nearest point
algorithm for support vector machine classifier design.IEEE Transactions on Neural Networks,
11(1):124–136, January 2000.

P. Kumar, J. S. B. Mitchell, and A. Yildirim. Approximate minimum enclosing balls in high dimen-
sions using core-sets.ACM Journal of Experimental Algorithmics, 8, January 2003.

Y.-J. Lee and O. L. Mangasarian. RSVM: Reduced support vector machines. InProceeding of the
First SIAM International Conference on Data Mining, 2001.

O. L. Mangasarian and D. R. Musicant. Active set support vector machine classification. In T. Leen,
T. Dietterich, and V. Tresp, editors,Advances in Neural Information Processing Systems 13, pages
577–583, Cambridge, MA, 2001a. MIT Press.

O. L. Mangasarian and D. R. Musicant. Lagrangian support vector machines.Journal of Machine
Learning Research, 1:161–177, 2001b.

N. Megiddo. Linear-time algorithms for linear programming inR3 and related problems.SIAM
Journal on Computing, 12:759–776, 1983.

F. Nielsen and R. Nock. Approximating smallest enclosing balls. InProceedings of International
Conference on Computational Science and Its Applications, volume 3045, pages 147–157, 2004.

E. Osuna, R. Freund, and F. Girosi. An improved training algorithm for support vector machines. In
Proceedings of the IEEE Workshop on Neural Networks for Signal Processing, pages 276–285,
Amelia Island, FL, USA, 1997a.

E. Osuna, R. Freund, and F. Girosi. Training support vector machines: an application to face
detection. InProceedings of Computer Vision and Pattern Recognition, pages 130–136, San
Juan, Puerto Rico, June 1997b.

D. Pavlov, D. Chudova, and P. Smyth. Towards scalable support vector machines using squashing.
In Proceedings of the Sixth ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, pages 295–299, Boston, Massachusetts, USA, 2000a.

390

CORE VECTORMACHINES

D. Pavlov, J. Mao, and B. Dom. Scaling-up support vector machines using boosting algorithm.
In Proceedings of the International Conference on Pattern Recognition, volume 2, pages 2219–
2222, Barcelona, Spain, September 2000b.

J. C. Platt. Fast training of support vector machines using sequential minimaloptimization. In
B. Scḧolkopf, C. Burges, and A. Smola, editors,Advances in Kernel Methods – Support Vector
Learning, pages 185–208. MIT Press, Cambridge, MA, 1999.

F. P. Preparata.Computational Geometry: An Introduction. Springer-Verlag, 1985.

D. Roobaert. DirectSVM: a simple support vector machine perceptron. InProceedings of IEEE In-
ternational Workshop on Neural Networks for Signal Processing, pages 356–365, Sydney, Aus-
tralia, December 2000.

G. Schohn and D. Cohn. Less is more: Active learning with support vector machines. InPro-
ceedings of the Seventeenth International Conference on Machine Learning, pages 839–846, San
Francisco, CA, USA, 2000. Morgan Kaufmann.

B. Scḧolkopf, J. C. Platt, J. Shawe-Taylor, A. J. Smola, and R. C. Williamson. Estimating the
support of a high-dimensional distribution.Neural Computation, 13(7):1443–1471, July 2001.

B. Scḧolkopf and A. J. Smola.Learning with Kernels. MIT Press, Cambridge, MA, 2002.

A. Schwaighofer and V. Tresp. The Bayesian committee support vector machine. In G. Dorffner,
H. Bischof, and K. Hornik, editors,Proceedings of the International Conference on Artificial
Neural Networks, pages 411–417. Springer Verlag, 2001.

A. Smola and B. Scḧolkopf. Sparse greedy matrix approximation for machine learning. InProceed-
ings of the Seventeenth International Conference on Machine Learning, pages 911–918, Stanford,
CA, USA, June 2000.

A. Smola and B. Scḧolkopf. A tutorial on support vector regression.Statistics and Computing, 14
(3):199–222, August 2004.

K.-K. Sung. Learning and Example Selection for Object and Pattern Recognition. PhD thesis,
Artificial Intelligence Laboratory and Center for Biological and Computational Learning, MIT,
Cambridge, MA, 1996.

J. J. Sylvester. A question in the geometry of situation.Quarterly Journal on Mathematics, 1:79,
1857.

D. M. J. Tax and R. P. W. Duin. Support vector domain description.Pattern Recognition Letters, 20
(14):1191–1199, 1999.

S. Tong and D. Koller. Support vector machine active learning with applications to text classifica-
tion. InProceedings of the 17th International Conference on Machine Learning, pages 999–1006,
San Francisco, CA, USA, 2000. Morgan Kaufmann.

V. Tresp. Scaling kernel-based systems to large data sets.Data Mining and Knowledge Discovery,
5(3):197–211, 2001.

391

TSANG, KWOK AND CHEUNG

I. W. Tsang, J. T. Kwok, and P.-M. Cheung. Very large SVM training using core vector machines.
In Proceedings of the Tenth International Workshop on Artificial Intelligence and Statistics, Bar-
bados, January 2005.

V. Vapnik. Statistical Learning Theory. Wiley, New York, 1998.

V. V. Vazirani. Approximation Algorithms. Springer, 2001.

P. Viola and M. Jones. Rapid object detection using a boosted cascade ofsimple features. InPro-
ceedings of the International Conference on Computer Vision and PatternRecognition, volume 1,
pages 1063–6919, 2001.

S. V. N. Vishwanathan, A. J. Smola, and M. N. Murty. SimpleSVM. InProceedings of the Twentieth
International Conference on Machine Learning, pages 760–767, Washington, D.C., USA, August
2003.

E. Welzl. Smallest enclosing disks (balls and ellipsoids). In H. Maurer, editor, New Results and
New Trends in Computer Science, pages 359–370. Springer-Verlag, 1991.

J. Weston, B. Scḧolkopf, E. Eskin, C. Leslie, and S. W. Noble. Dealing with large diagonals in
kernel matrices.Principles of Data Mining and Knowledge Discovery, Springer Lecture Notes in
Computer Science 243, 2002.

C. K. I. Williams and M. Seeger. Using the Nyström method to speed up kernel machines. In
T. Leen, T. Dietterich, and V. Tresp, editors,Advances in Neural Information Processing Sys-
tems 13, Cambridge, MA, 2001. MIT Press.

C. Yang, R. Duraiswami, and L. Davis. Efficient kernel machines using the improved fast Gauss
transform. InAdvances in Neural Information Processing Systems 17, Cambridge, MA, 2005.
MIT Press.

H. Yu, J. Yang, and J. Han. Classifying large data sets using SVM with hierarchical clusters. In
Proceedings of the 9th ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, pages 306–315, Washington DC, USA, 2003.

T. Zhang, R. Ramakrishnan, and M. Livny. BIRCH: An efficient data clustering method for very
large databases. In H. V. Jagadish and I. S. Mumick, editors,Proceedings of the 1996 ACM
SIGMOD International Conference on Management of Data, pages 103–114, Montreal, Quebec,
Canada, June 1996. ACM Press.

392

Journal of Machine Learning Research 6 (2005) 393–425 Submitted 6/04; Published 4/05

Generalization Bounds for the Area Under the ROC Curve∗

Shivani Agarwal SAGARWAL@CS.UIUC.EDU

Department of Computer Science
University of Illinois at Urbana-Champaign
201 North Goodwin Avenue
Urbana, IL 61801, USA

Thore Graepel THOREG@MICROSOFT.COM

Ralf Herbrich RHERB@MICROSOFT.COM

Microsoft Research
7 JJ Thomson Avenue
Cambridge CB3 0FB, UK

Sariel Har-Peled SARIEL@CS.UIUC.EDU

Dan Roth DANR@CS.UIUC.EDU

Department of Computer Science
University of Illinois at Urbana-Champaign
201 North Goodwin Avenue
Urbana, IL 61801, USA

Editor: Michael I. Jordan

Abstract
We study generalization properties of the area under the ROCcurve (AUC), a quantity that has been
advocated as an evaluation criterion for the bipartite ranking problem. The AUC is a different term
than the error rate used for evaluation in classification problems; consequently, existing generaliza-
tion bounds for the classification error rate cannot be used to draw conclusions about the AUC. In
this paper, we define the expected accuracy of a ranking function (analogous to the expected error
rate of a classification function), and derive distribution-free probabilistic bounds on the deviation
of the empirical AUC of a ranking function (observed on a finite data sequence) from its expected
accuracy. We derive both a large deviation bound, which serves to bound the expected accuracy of
a ranking function in terms of its empirical AUC on a test sequence, and a uniform convergence
bound, which serves to bound the expected accuracy of a learned ranking function in terms of its
empirical AUC on a training sequence. Our uniform convergence bound is expressed in terms of a
new set of combinatorial parameters that we term the bipartite rank-shatter coefficients; these play
the same role in our result as do the standard VC-dimension related shatter coefficients (also known
as the growth function) in uniform convergence results for the classification error rate. A compar-
ison of our result with a recent uniform convergence result derived by Freund et al. (2003) for a
quantity closely related to the AUC shows that the bound provided by our result can be considerably
tighter.
Keywords: generalization bounds, area under the ROC curve, ranking, large deviations, uniform
convergence

∗. Parts of the results contained in this paper were presented at the18th Annual Conference on Neural Information
Processing Systemsin December, 2004 (Agarwal et al., 2005a) and at the10th International Workshop on Artificial
Intelligence and Statisticsin January, 2005 (Agarwal et al., 2005b).

©2005 Shivani Agarwal, Thore Graepel, Ralf Herbrich, SarielHar-Peled and Dan Roth.

AGARWAL , GRAEPEL, HERBRICH, HAR-PELED AND ROTH

1. Introduction

In many learning problems, the goal is not simply to classify objects into one of afixed number
of classes; instead, aranking of objects is desired. This is the case, for example, in information
retrieval problems, where one is interested in retrieving documents from some database that are
‘relevant’ to a given query or topic. In such problems, one wants to return to the user a list of
documents that contains relevant documents at the top and irrelevant documents at the bottom; in
other words, one wants a ranking of the documents such that relevant documents are ranked higher
than irrelevant documents.

The problem of ranking has been studied from a learning perspective under a variety of settings
(Cohen et al., 1999; Herbrich et al., 2000; Crammer and Singer, 2002; Freund et al., 2003). Here we
consider the setting in which objects come from two categories, positive and negative; the learner is
given examples of objects labeled as positive or negative, and the goal isto learn a ranking in which
positive objects are ranked higher than negative ones. This captures,for example, the information
retrieval problem described above; in this case, the training examples given to the learner consist
of documents labeled as relevant (positive) or irrelevant (negative).This form of ranking problem
corresponds to the ‘bipartite feedback’ case of Freund et al. (2003); for this reason, we refer to it as
thebipartite ranking problem.

Formally, the setting of the bipartite ranking problem is similar to that of the binary classification
problem. In both problems, there is an instance spaceX from which instances are drawn, and a set
of two class labelsY which we take without loss of generality to beY = {−1,+1}. One is given a
finite sequence of labeled training examplesS= ((x1,y1), . . . ,(xM,yM))∈ (X ×Y)M, and the goal is
to learn a function based on this training sequence. However, the form ofthe function to be learned
in the two problems is different. In classification, one seeks a binary-valued functionh : X→Y that
predicts the class of a new instance inX . On the other hand, in ranking, one seeks areal-valued
function f : X → R that induces a ranking overX ; an instance that is assigned a higher value byf
is ranked higher than one that is assigned a lower value byf .

What is a good classification or ranking function? Intuitively, a good classification function
should classify most instances correctly, while a good ranking function should rank most instances
labeled as positive higher than most instances labeled as negative. At first thought, these intuitions
might suggest that one problem could be reduced to the other; that a goodsolution to one could be
used to obtain a good solution to the other. Indeed, several approachesto learning ranking functions
have involved using a standard classification algorithm that produces a classification functionh of
the formh(x) = θ(fh(x)) for some real-valued functionfh : X→R, where

θ(u) =

{

1 if u > 0
−1 otherwise

, (1)

and then takingfh to be the desired ranking function.1 However, despite the apparently close relation
between classification and ranking, on formalizing the above intuitions aboutevaluation criteria for
classification and ranking functions, it turns out that a good classificationfunction may not always
translate into a good ranking function.

1. In Herbrich et al. (2000) the problem of learning a ranking function isalso reduced to a classification problem, but
onpairsof instances.

394

GENERALIZATION BOUNDS FOR THEAREA UNDER THE ROC CURVE

1.1 Evaluation of (Binary) Classification Functions

In classification, one generally assumes that examples (both training examples and future, unseen
examples) are drawn randomly and independently according to some (unknown) underlying distri-
butionD overX ×Y . The mathematical quantity typically used to evaluate a classification function
h : X→Y is then theexpected error rate(or simplyerror rate) of h, denoted byL(h) and defined as

L(h) = EXY∼D

{

I {h(X)6=Y}
}

, (2)

whereI {·} denotes the indicator variable whose value is one if its argument is true and zero other-
wise. The error rateL(h) is simply the probability that an example drawn randomly fromX ×Y
(according toD) will be misclassified byh; the quantity(1− L(h)) thus measures our intuitive
notion of ‘how often instances are classified correctly byh’. In practice, since the distributionD
is not known, the true error rate of a classification function cannot be computed exactly. Instead,
the error rate must be estimated using a finite data sample. A widely used estimate is the empirical
error rate: given a finite sequence of labeled examplesT = ((x1,y1), . . . ,(xN,yN)) ∈ (X ×Y)N, the
empirical error rate of a classification functionh with respect toT, which we denote bŷL(h;T), is
given by

L̂(h;T) =
1
N

N

∑
i=1

I {h(xi)6=yi} . (3)

When the examples inT are drawn randomly and independently fromX ×Y according toD, the
sequenceT constitutes a random sample. Much work in learning theory research has concentrated
on developing bounds on the probability that an error estimate obtained fromsuch a random sample
will have a large deviation from the true error rate. While the true error rateof a classification
function may not be exactly computable, such generalization bounds allow usto compute confidence
intervals within which the true value of the error rate is likely to be contained with high probability.

1.2 Evaluation of (Bipartite) Ranking Functions

Evaluating a ranking function has proved to be somewhat more difficult. Oneempirical quantity that
has been used for this purpose is the average precision, which relates torecall-precision curves. The
average precision is often used in applications that contain very few positive examples, such as infor-
mation retrieval. Another empirical quantity that has recently gained some attention as being well-
suited for evaluating ranking functions relates to receiver operating characteristic (ROC) curves.
ROC curves were originally developed in signal detection theory for analysis of radar images (Egan,
1975), and have been used extensively in various fields such as medical decision-making. Given a
ranking functionf : X→R and a finite data sequenceT = ((x1,y1), . . . ,(xN,yN)) ∈ (X ×Y)N, the
ROC curve off with respect toT is obtained as follows. First, a set ofN+1 classification functions
hi : X→Y , where 0≤ i ≤ N, is constructed fromf :

hi(x) = θ(f (x)−bi) ,

whereθ(·) is as defined by Eq. (1) and

bi =







f (xi) if 1 ≤ i ≤ N
(

min
1≤ j≤N

f (x j)

)

−1 if i = 0.

395

AGARWAL , GRAEPEL, HERBRICH, HAR-PELED AND ROTH

The classification functionh0 classifies all instances inT as positive, while for 1≤ i≤N, hi classifies
all instances ranked higher thanxi as positive, and all others (includingxi) as negative. Next, for
each classification functionhi , one computes the (empirical) true positive and false positive rates on
T, denoted bytpri andfpri respectively:

tpri =
number of positive examples inT classified correctly byhi

total number of positive examples inT
,

fpri =
number of negative examples inT misclassified as positive byhi

total number of negative examples inT
.

Finally, the points(fpri , tpri) are plotted on a graph with the false positive rate on thex-axis and the
true positive rate on they-axis; the ROC curve is then obtained by connecting these points such that
the resulting curve is monotonically increasing. It is thearea under the ROC curve(AUC) that has
been used as an indicator of the quality of the ranking functionf (Cortes and Mohri, 2004; Rosset,
2004). An AUC value of one corresponds to a perfect ranking on the given data sequence (i.e., all
positive instances inT are ranked higher than all negative instances); a value of zero corresponds to
the opposite scenario (i.e., all negative instances inT are ranked higher than all positive instances).

The AUC can in fact be expressed in a simpler form: if the sampleT containsm positive and
n negative examples, then it is not difficult to see that the AUC off with respect toT, which we
denote byÂ(f ;T), is given simply by the following Wilcoxon-Mann-Whitney statistic (Cortes and
Mohri, 2004):

Â(f ;T) =
1

mn ∑
{i:yi=+1}

∑
{ j:y j=−1}

I { f (xi)> f (x j)}+
1
2

I { f (xi)= f (x j)} . (4)

In this simplified form, it becomes clear that the AUC off with respect toT is simply the fraction of
positive-negative pairs inT that are ranked correctly byf , assuming that ties are broken uniformly
at random.2

There are two important observations to be made about the AUC defined above. The first is
that the error rate of a classification function is not necessarily a good indicator of the AUC of a
ranking function derived from it; different classification functions with the same error rate may pro-
duce ranking functions with very different AUC values. For example, consider two classification
functionsh1,h2 given byhi(x) = θ(fi(x)), i = 1,2, where the values assigned byf1, f2 to the in-
stances in a sampleT ∈ (X ×Y)8 are as shown in Table 1. Clearly,L̂(h1;T) = L̂(h2;T) = 2/8, but
Â(f1;T) = 12/16 whileÂ(f2;T) = 8/16. The exact relationship between the (empirical) error rate
of a classification functionh of the formh(x) = θ(fh(x)) and the AUC value of the corresponding
ranking functionfh with respect to a given data sequence was studied in detail by Cortes and Mohri
(2004). In particular, they showed that when the number of positive examplesm in the given data
sequence is equal to the number of negative examplesn, the average AUC value over all possible
rankings corresponding to classification functions with a fixed (empirical) error rate` is given by
(1−`), but the standard deviation among the AUC values can be large for large`. As the proportion
of positive instancesm/(m+n) departs from 1/2, the average AUC value corresponding to an error
rate` departs from(1−`), and the standard deviation increases further. The AUC is thus a different
term than the error rate, and therefore requires separate analysis.

2. In (Cortes and Mohri, 2004), a slightly simpler form of the Wilcoxon-Mann-Whitney statistic is used, which does not
account for ties.

396

GENERALIZATION BOUNDS FOR THEAREA UNDER THE ROC CURVE

xi x1 x2 x3 x4 x5 x6 x7 x8

yi -1 -1 -1 -1 +1 +1 +1 +1

f1(xi) -2 -1 3 4 1 2 5 6
f2(xi) -2 -1 5 6 1 2 3 4

Table 1: Values assigned by two functionsf1, f2 to eight instances in a hypothetical example. The
corresponding classification functions have the same (empirical) error rate, but the AUC
values of the ranking functions are different. See text for details.

The second important observation about the AUC is that, as defined above, it is an empirical
quantity that evaluates a ranking function with respect to a particular data sequence. What does the
empirical AUC tell us about the expected performance of a ranking function on future examples?
This is the question we address in this paper. The question has two parts, both of which are im-
portant for machine learning practice. First, what can be said about the expected performance of a
ranking function based on its empirical AUC on an independent test sequence? Second, what can
be said about the expected performance of a learned ranking function based on its empirical AUC
on the training sequence from which it is learned? The first part of the question concerns the large
deviation behaviour of the AUC; the second part concerns its uniform convergence behaviour. Both
are addressed in this paper.

We start by defining the expected ranking accuracy of a ranking function (analogous to the
expected error rate of a classification function) in Section 2. Section 3 contains our large deviation
result, which serves to bound the expected accuracy of a ranking function in terms of its empirical
AUC on an independent test sequence. Our conceptual approach in deriving the large deviation
result for the AUC is similar to that of (Hill et al., 2002), in which large deviationproperties of
the average precision were considered. Section 4 contains our uniformconvergence result, which
serves to bound the expected accuracy of a learned ranking function interms of its empirical AUC
on a training sequence. Our uniform convergence bound is expressed in terms of a new set of
combinatorial parameters that we term the bipartite rank-shatter coefficients; these play the same
role in our result as do the standard shatter coefficients (also known as the growth function) in
uniform convergence results for the classification error rate. A comparison of our result with a
recent uniform convergence result derived by Freund et al. (2003) for a quantity closely related to
the AUC shows that the bound provided by our result can be considerably tighter. We conclude with
a summary and some open questions in Section 5.

2. Expected Ranking Accuracy

We begin by introducing some additional notation. As in classification, we shallassume that all
examples are drawn randomly and independently according to some (unknown) underlying distri-
bution D over X ×Y . The notationD+1 and D−1 will be used to denote the class-conditional
distributionsDX|Y=+1 andDX|Y=−1, respectively. We use an underline to denote a sequence,e.g.,
y ∈ Y N to denote a sequence of elements inY . We shall find it convenient to decompose a data
sequenceT = ((x1,y1), . . . ,(xN,yN))∈ (X ×Y)N into two components,TX = (x1, . . . ,xN)∈X N and
TY = (y1, . . . ,yN) ∈ Y N. Several of our results will involve the conditional distributionDTX |TY=y for

397

AGARWAL , GRAEPEL, HERBRICH, HAR-PELED AND ROTH

some label sequencey= (y1, . . . ,yN)∈Y N; this distribution is simplyDy1× . . .×DyN .3 If the distri-
bution is clear from the context it will be dropped in the notation of expectations and probabilities,
e.g., EXY ≡ EXY∼D . As a final note of convention, we useT ∈ (X ×Y)N to denote a general data
sequence (e.g., an independent test sequence), andS∈ (X ×Y)M to denote a training sequence.

We define below a quantity that we term the expected ranking accuracy; thepurpose of this
quantity will be to serve as an evaluation criterion for ranking functions (analogous to the use of the
expected error rate as an evaluation criterion for classification functions).

Definition 1 (Expected ranking accuracy) Let f : X→R be a ranking function onX . Define the
expected ranking accuracy(or simplyranking accuracy) of f , denoted by A(f), as follows:

A(f) = EX∼D+1,X′∼D−1

{

I { f (X)> f (X′)}+
1
2

I { f (X)= f (X′)}

}

. (5)

The ranking accuracyA(f) defined above is simply the probability that an instance drawn ran-
domly according toD+1 will be ranked higher byf than an instance drawn randomly according to
D−1, assuming that ties are broken uniformly at random; the quantityA(f) thus measures our intu-
itive notion of ‘how often instances labeled as positive are ranked higherby f than instances labeled
as negative’. As in the case of classification, the true ranking accuracydepends on the underlying
distribution of the data and cannot be observed directly. Our goal shall be to derive generalization
bounds that allow the true accuracy of a ranking function to be estimated from its empirical AUC
with respect to a finite data sample. The following simple lemma shows that this makes sense, for
given a fixed label sequence, the empirical AUC of a ranking functionf is an unbiased estimator of
the expected ranking accuracy off :

Lemma 2 Let f : X→R be a ranking function onX , and let y= (y1, . . . ,yN) ∈ Y N be a finite label
sequence. Then

ETX |TY=y
{

Â(f ;T)
}

= A(f) .

Proof Let m be the number of positive labels iny, andn the number of negative labels iny. Then
from the definition of empirical AUC (Eq. (4)) and linearity of expectation, we have

ETX |TY=y
{

Â(f ;T)
}

=
1

mn ∑
{i:yi=+1}

∑
{ j:y j=−1}

EXi∼D+1,Xj∼D−1

{

I { f (Xi)> f (Xj)}+
1
2

I { f (Xi)= f (Xj)}

}

=
1

mn ∑
{i:yi=+1}

∑
{ j:y j=−1}

A(f)

= A(f) .

3. Note that, since the AUC of a ranking functionf with respect to a data sequenceT ∈ (X ×Y)N is independent of the
actual ordering of examples in the sequence, our results involving the conditional distributionDTX |TY=y for some label

sequencey = (y1, . . . ,yN) ∈ Y N depend only on the numberm of positive labels iny and the numbern of negative
labels iny. We choose to state our results in terms of the distributionDTX |TY=y ≡Dy1× . . .×DyN only because this
is more general than stating them in terms ofDm

+1×Dn
−1.

398

GENERALIZATION BOUNDS FOR THEAREA UNDER THE ROC CURVE

We are now ready to present the main results of this paper, namely, a large deviation bound in
Section 3 and a uniform convergence bound in Section 4. We note that ourresults are all distribution-
free, in the sense that they hold for any distributionD overX ×Y .

3. Large Deviation Bound for the AUC

In this section we are interested in bounding the probability that the empirical AUC of a ranking
function f with respect to a (random) test sequenceT will have a large deviation from its expected
ranking accuracy. In other words, we are interested in bounding probabilities of the form

P
{∣

∣Â(f ;T)−A(f)
∣

∣≥ ε
}

for given ε > 0. Our main tool in deriving such a large deviation bound will be the following
powerful concentration inequality of McDiarmid (1989), which bounds thedeviation of any function
of a sample for which a single change in the sample has limited effect:

Theorem 3 (McDiarmid, 1989) Let X1, . . . ,XN be independent random variables with Xk taking
values in a set Ak for each k. Letφ : (A1×·· ·×AN)→R be such that

sup
xi∈Ai ,x′k∈Ak

∣

∣φ(x1, . . . ,xN)−φ(x1, . . . ,xk−1,x
′
k,xk+1, . . . ,xN)

∣

∣ ≤ ck .

Then for anyε > 0,

P{|φ(X1, . . . ,XN)−E{φ(X1, . . . ,XN)}| ≥ ε} ≤ 2e−2ε2/∑N
k=1 c2

k .

Note that whenX1, . . . ,XN are independent bounded random variables withXk ∈ [ak,bk] with
probability one, andφ(X1, . . . ,XN) = ∑N

k=1Xk, McDiarmid’s inequality (withck = bk−ak) reduces
to Hoeffding’s inequality. Next we define the following quantity which appears in several of our
results:

Definition 4 (Positive skew) Let y= (y1, . . . ,yN) ∈ Y N be a finite label sequence of length N∈ N.
Define thepositive skewof y, denoted byρ(y), as follows:

ρ(y) =
1
N ∑
{i:yi=+1}

1. (6)

The following is the main result of this section:

Theorem 5 Let f : X→R be a fixed ranking function onX and let y= (y1, . . . ,yN) ∈ Y N be any
label sequence of length N∈ N. Let m be the number of positive labels in y, and n= N−m the
number of negative labels in y. Then for anyε > 0,

PTX |TY=y

{∣

∣Â(f ;T)−A(f)
∣

∣≥ ε
}

≤ 2e−2mnε2/(m+n)

= 2e−2ρ(y)(1−ρ(y))Nε2
.

399

AGARWAL , GRAEPEL, HERBRICH, HAR-PELED AND ROTH

Proof Given the label sequencey, the random variablesX1, . . . ,XN are independent, with eachXk

taking values inX . Now, defineφ : X N→R as follows:

φ(x1, . . . ,xN) = Â(f ;((x1,y1), . . . ,(xN,yN))) .

Then, for eachk such thatyk = +1, we have the following for allxi ,x′k ∈ X :

∣

∣φ(x1, . . . ,xN)−φ(x1, . . . ,xk−1,x′k,xk+1 . . . ,xN)
∣

∣

=
1

mn

∣

∣

∣

∣

∣

∑
{ j:y j=−1}

(

(

I { f (xk)> f (x j)}+
1
2

I { f (xk)= f (x j)}

)

−

(

I { f (x′k)> f (x j)}+
1
2

I { f (x′k)= f (x j)}

)

)∣

∣

∣

∣

∣

≤ 1
mn

n

=
1
m

.

Similarly, for eachk such thatyk =−1, one can show for allxi ,x′k ∈ X :

∣

∣φ(x1, . . . ,xN)−φ(x1, . . . ,xk−1,x′k,xk+1 . . . ,xN)
∣

∣ ≤ 1
n

.

Thus, takingck = 1/m for k such thatyk = +1 andck = 1/n for k such thatyk =−1, and applying
McDiarmid’s theorem, we get for anyε > 0,

PTX |TY=y

{∣

∣

∣
Â(f ;T)−ETX |TY=y

{

Â(f ;T)
}

∣

∣

∣
≥ ε
}

≤ 2e−2ε2/(m(1
m)2+n(1

n)2)

= 2e−2mnε2/(m+n) .

The result follows from Lemma 2.

We note that the result of Theorem 5 can be strengthened so that the conditioning is only on
the numbersm andn of positive and negative labels, and not on the specific label vectory. From
Theorem 5, we can derive a confidence interval interpretation of the bound that gives, for any
0 < δ ≤ 1, a confidence interval based on the empirical AUC of a ranking function(on a random
test sequence) which is likely to contain the true ranking accuracy with probability at least 1− δ.
More specifically, we have:

Corollary 6 Let f : X→R be a fixed ranking function onX and let y= (y1, . . . ,yN) ∈ Y N be any
label sequence of length N∈ N. Then for any0 < δ≤ 1,

PTX |TY=y

{

∣

∣Â(f ;T)−A(f)
∣

∣≥
√

ln
(

2
δ
)

2ρ(y)(1−ρ(y))N

}

≤ δ .

Proof This follows directly from Theorem 5 by setting 2e−2ρ(y)(1−ρ(y))Nε2
= δ and solving forε.

400

GENERALIZATION BOUNDS FOR THEAREA UNDER THE ROC CURVE

We note that a different approach for deriving confidence intervals for the AUC has recently
been taken by Cortes and Mohri (2005); in particular, their confidenceintervals for the AUC are
constructed from confidence intervals for the classification error rate.

Theorem 5 also allows us to obtain an expression for a test sample size that issufficient to
obtain, for given 0< ε,δ≤ 1, anε-accurate estimate of the ranking accuracy withδ-confidence:

Corollary 7 Let f : X→R be a fixed ranking function onX and let0< ε,δ≤1. Let y= (y1, . . . ,yN)∈
Y N be any label sequence of length N∈ N. If

N ≥
ln
(

2
δ
)

2ρ(y)(1−ρ(y))ε2 ,

then

PTX |TY=y

{∣

∣Â(f ;T)−A(f)
∣

∣≥ ε
}

≤ δ .

Proof This follows directly from Theorem 5 by setting 2e−2ρ(y)(1−ρ(y))Nε2 ≤ δ and solving forN.

The confidence interval of Corollary 6 can in fact be generalized to remove the conditioning on
the label vector completely:

Theorem 8 Let f : X→R be a fixed ranking function onX and let N∈ N. Then for any0 < δ≤ 1,

PT∼DN







∣

∣Â(f ;T)−A(f)
∣

∣≥

√

ln
(

2
δ
)

2ρ(TY)(1−ρ(TY))N







≤ δ .

Proof ForT ∈ (X ×Y)N and 0< δ≤ 1, define the proposition

Φ(T,δ) ≡







∣

∣Â(f ;T)−A(f)
∣

∣≥

√

ln
(

2
δ
)

2ρ(TY)(1−ρ(TY))N







.

Then for any 0< δ≤ 1, we have

PT {Φ(T,δ)} = ET
{

IΦ(T,δ)

}

= ETY

{

ETX |TY=y

{

IΦ(T,δ)

}

}

= ETY

{

PTX |TY=y{Φ(T,δ)}
}

≤ ETY {δ} (by Corollary 6)

= δ .

Note that the above ‘trick’ works only once we have gone to a confidenceinterval; an attempt
to generalize the bound of Theorem 5 in a similar way gives an expression inwhich the final ex-
pectation is not easy to evaluate. Interestingly, the above proof does noteven require a factorized
distributionDTY since it is built on a result for any fixed label sequencey. We note that the above
technique could also be applied to generalize the results of Hill et al. (2002)in a similar manner.

401

AGARWAL , GRAEPEL, HERBRICH, HAR-PELED AND ROTH

3.1 Comparison with Bounds from Statistical Literature

The AUC, in the form of the Wilcoxon-Mann-Whitney statistic, has been studied extensively in
the statistical literature. In particular, Lehmann (1975) derives an exactexpression for the variance
of the Wilcoxon-Mann-Whitney statistic which can be used to obtain large deviation bounds for
the AUC. Below we compare the large deviation bound we have derived above with these bounds
obtainable from the statistical literature. We note that the expression derived by Lehmann (1975) is
for a simpler form of the Wilcoxon-Mann-Whitney statistic that does not account for ties; therefore,
in this section we assume the AUC and the expected ranking accuracy are defined without the terms
that account for ties (the large deviation result we have derived aboveapplies also in this setting).

Let f : X→R be a fixed ranking function onX and lety = (y1, . . . ,yN) ∈ Y N be any label
sequence of lengthN ∈ N. Let m be the number of positive labels iny, andn = N−m the number
of negative labels iny. Then the variance of the AUC off is given by the following expression
(Lehmann, 1975):

σ2
A = VarTX |TY=y

{

Â(f ;T)
}

=
A(f)(1−A(f))+(m−1)(p1−A(f)2)+(n−1)(p2−A(f)2)

mn
, (7)

where

p1 = PX+
1 ,X+

2 ∼D+1,X
−
1 ∼D−1

{{

f (X+
1) > f (X−1)

}

∩
{

f (X+
2) > f (X−1)

}}

(8)

p2 = PX+
1 ∼D+1,X

−
1 ,X−2 ∼D−1

{{

f (X+
1) > f (X−1)

}

∩
{

f (X+
1) > f (X−2)

}}

. (9)

Next we recall the following classical inequality:

Theorem 9 (Chebyshev’s inequality)Let X be a random variable. Then for anyε > 0,

P{|X−E{X}| ≥ ε} ≤ Var{X}
ε2 .

The expression for the varianceσ2
A of the AUC can be used with Chebyshev’s inequality to give the

following bound: for anyε > 0,

PTX |TY=y
{∣

∣Â(f ;T)−A(f)
∣

∣≥ ε
}

≤ σ2
A

ε2 . (10)

This leads to the following confidence interval: for any 0< δ≤ 1,

PTX |TY=y

{

∣

∣Â(f ;T)−A(f)
∣

∣≥ σA√
δ

}

≤ δ . (11)

It has been established that the AUC follows an asymptotically normal distribution. Therefore,
for largeN, one can use a normal approximation to obtain a tighter bound:

PTX |TY=y

{∣

∣Â(f ;T)−A(f)
∣

∣≥ ε
}

≤ 2(1−Φ(ε/σA)) , (12)

whereΦ(·) denotes the standard normal cumulative distribution function given byΦ(u)=
R u

0 e−z2/2dz/
√

2π.
The resulting confidence interval is given by

PTX |TY=y

{∣

∣Â(f ;T)−A(f)
∣

∣≥ σAΦ−1(1−δ/2)
}

≤ δ . (13)

402

GENERALIZATION BOUNDS FOR THEAREA UNDER THE ROC CURVE

The quantitiesp1 andp2 that appear in the expression forσ2
A in Eq. (7) depend on the underlying

distributionsD+1 andD−1; for example, Hanley and McNeil (1982) derive expressions forp1 and
p2 in the case when the scoresf (X+) assigned to positive instancesX+ and the scoresf (X−)
assigned to negative instancesX− both follow negative exponential distributions. Distribution-
independent bounds can be obtained by using the fact that the varianceσ2

A is at most (Cortes and
Mohri, 2005; Dantzig, 1915; Birnbaum and Klose, 1957)

σ2
max =

A(f)(1−A(f))
min(m,n)

≤ 1
4min(m,n)

. (14)

A comparison of the resulting bounds with the large deviation bound we have derived above using
McDiarmid’s inequality is shown in Figure 1. The McDiarmid bound is tighter than the bound
obtained using Chebyshev’s inequality. It is looser than the bound obtained using the normal ap-
proximation; however, since the normal approximation is valid only for largeN, for smaller values
of N the McDiarmid bound is safer.

Of course, it should be noted that this comparison holds only in the distribution-free setting. In
practice, depending on the underlying distribution, the actual variance ofthe AUC may be much
smaller thanσ2

max; indeed, in the best case, the variance could be as small as

σ2
min =

A(f)(1−A(f))
mn

≤ 1
4mn

. (15)

Therefore, one may be able to obtain tighter confidence intervals with Eqs. (11) and (13) by esti-
mating the actual variance of the AUC. For example, one may attempt to estimate the quantitiesp1,
p2 andA(f) that appear in the expression in Eq. (7) directly from the data, or one may use resam-
pling methods such as the bootstrap (Efron and Tibshirani, 1993), in whichthe variance is estimated
from the sample variance observed over a number of bootstrap samples obtained from the data. The
confidence intervals obtained using such estimates are only approximate (i.e., the 1−δ confidence
is not guaranteed), but they can often be useful in practice.

3.2 Comparison with Large Deviation Bound for Classification Error Rate

Our use of McDiarmid’s inequality in deriving the large deviation bound for the AUC of a ranking
function is analogous to the use of Hoeffding’s inequality in deriving a similarlarge deviation bound
for the error rate of a classification function (see, for example, Devroye et al., 1996, Chapter 8).
The need for the more general inequality of McDiarmid in our derivation arises from the fact that
the empirical AUC, unlike the empirical error rate, cannot be expressed as a sum of independent
random variables. In the notation of Section 1, the large deviation bound for the classification error
rate obtained via Hoeffding’s inequality states that for a fixed classificationfunctionh : X→Y and
for anyN ∈ N and anyε > 0,

PT∼DN

{∣

∣L̂(h;T)−L(h)
∣

∣≥ ε
}

≤ 2e−2Nε2
. (16)

Comparing Eq. (16) to the bound of Theorem 5, we see that the AUC bounddiffers from the
error rate bound by a factor ofρ(y)(1− ρ(y)) in the exponent. This difference translates into a
1/(ρ(y)(1−ρ(y))) factor difference in the resulting sample size bounds; in other words, forgiven
0< ε,δ≤ 1, the test sample size sufficient to obtain anε-accurate estimate of the expected accuracy
of a ranking function withδ-confidence is 1/(ρ(y)(1−ρ(y))) times larger than the corresponding

403

AGARWAL , GRAEPEL, HERBRICH, HAR-PELED AND ROTH

0 2000 4000 6000 8000 10000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Comparison of large deviation bounds: m/(m+n) = 1/2

Sample size N

C
on

fid
en

ce
 in

te
rv

al
 w

id
th

 ε
McDiarmid
Chebyshev
Normal approximation

0 2000 4000 6000 8000 10000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Comparison of large deviation bounds: m/(m+n) = 1/10

Sample size N

C
on

fid
en

ce
 in

te
rv

al
 w

id
th

 ε

McDiarmid
Chebyshev
Normal approximation

0 2 4 6 8 10

x 10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Comparison of large deviation bounds: m/(m+n) = 1/100

Sample size N

C
on

fid
en

ce
 in

te
rv

al
 w

id
th

 ε

McDiarmid
Chebyshev
Normal approximation

0 2 4 6 8 10

x 10
5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Comparison of large deviation bounds: m/(m+n) = 1/1000

Sample size N

C
on

fid
en

ce
 in

te
rv

al
 w

id
th

 ε

McDiarmid
Chebyshev
Normal approximation

Figure 1: A comparison of our large deviation bound, derived using McDiarmid’s inequality, with
large deviation bounds obtainable from the statistical literature (see Section 3.1). The
plots are forδ = 0.01 and show how the confidence interval sizeε given by the different
bounds varies with the sample sizeN = m+n, for various values ofm/(m+n).

test sample size sufficient to obtain anε-accurate estimate of the expected error rate of a classifica-
tion function with the same confidence. Forρ(y) = 1/2, this means a sample size larger by a factor
of 4; as the positive skewρ(y) departs from 1/2, the factor grows larger (see Figure 2).

Again, it should be noted that the above conclusion holds only in the distribution-free setting.
Indeed, the varianceσ2

L of the error rate (which follows a binomial distribution) is given by

σ2
L = VarT∼DN

{

L̂(h;T)
}

=
L(h)(1−L(h))

N
≤ 1

4N
. (17)

Comparing to Eqs. (14) and (15), we see that although this is smaller than the worst-case variance of
the AUC, in the best case, the variance of the AUC can be considerably smaller, leading to a tighter
bound for the AUC and therefore a smaller sufficient test sample size.

404

GENERALIZATION BOUNDS FOR THEAREA UNDER THE ROC CURVE

0 0.2 0.4 0.6 0.8 1
10

0

10
1

10
2

10
3

 ρ

1/
(ρ

(1
−

ρ)
)

Figure 2: The test sample size bound for the AUC, for positive skewρ ≡ ρ(y) for some label se-
quencey, is larger than the corresponding test sample size bound for the error rate by a
factor of 1/(ρ(1−ρ)) (see text for discussion).

3.3 Bound for Learned Ranking Functions Chosen from Finite Function Classes

The large deviation result of Theorem 5 bounds the expected accuracyof a ranking function in
terms of its empirical AUC on an independent test sequence. A simple application of the union
bound allows the result to be extended to bound the expected accuracy ofa learned ranking function
in terms of its empirical AUC on the training sequence from which it is learned, inthe case when
the learned ranking function is chosen from a finite function class. More specifically, we have:

Theorem 10 LetF be a finite class of real-valued functions onX and let fS∈F denote the ranking
function chosen by a learning algorithm based on the training sequence S. Let y= (y1, . . . ,yM) ∈
Y M be any label sequence of length M∈ N. Then for anyε > 0,

PSX |SY=y
{∣

∣Â(fS;S)−A(fS)
∣

∣≥ ε
}

≤ 2|F |e−2ρ(y)(1−ρ(y))Mε2
.

Proof For anyε > 0, we have

PSX |SY=y
{∣

∣Â(fS;S)−A(fS)
∣

∣≥ ε
}

≤ PSX |SY=y

{

max
f∈F

∣

∣Â(f ;S)−A(f)
∣

∣≥ ε
}

≤ ∑
f∈F

PSX |SY=y
{∣

∣Â(f ;S)−A(f)
∣

∣≥ ε
}

(by the union bound)

≤ 2|F |e−2ρ(y)(1−ρ(y))Mε2
(by Theorem 5).

As before, we can derive from Theorem 10 expressions for confidence intervals and sufficient
training sample size; we give these below without proof:

405

AGARWAL , GRAEPEL, HERBRICH, HAR-PELED AND ROTH

Corollary 11 LetF be a finite class of real-valued functions onX and let fS∈F denote the ranking
function chosen by a learning algorithm based on the training sequence S. Let y= (y1, . . . ,yM) ∈
Y M be any label sequence of length M∈ N. Then for any0 < δ≤ 1,

PSX |SY=y

{

∣

∣Â(fS;S)−A(fS)
∣

∣≥
√

ln |F |+ ln
(

2
δ
)

2ρ(y)(1−ρ(y))M

}

≤ δ .

Corollary 12 LetF be a finite class of real-valued functions onX and let fS∈F denote the ranking
function chosen by a learning algorithm based on the training sequence S. Let y= (y1, . . . ,yM) ∈
Y M be any label sequence of length M∈ N. Then for any0 < ε,δ≤ 1, if

M ≥ 1
2ρ(y)(1−ρ(y))ε2

(

ln |F |+ ln

(

2
δ

))

,

then

PSX |SY=y

{∣

∣Â(fS;S)−A(fS)
∣

∣≥ ε
}

≤ δ .

Theorem 13 LetF be a finite class of real-valued functions onX and let fS∈F denote the ranking
function chosen by a learning algorithm based on the training sequence S. Let M∈N. Then for any
0 < δ≤ 1,

PS∼DM







∣

∣Â(fS;S)−A(fS)
∣

∣≥

√

ln |F |+ ln
(

2
δ
)

2ρ(SY)(1−ρ(SY))M







≤ δ .

The above results apply only to ranking functions learned from finite function classes. The
general case, when the learned ranking function may be chosen from apossibly infinite function
class, is the subject of the next section.

4. Uniform Convergence Bound for the AUC

In this section we are interested in bounding the probability that the empirical AUC of a learned
ranking functionfS with respect to the (random) training sequenceS from which it is learned will
have a large deviation from its expected ranking accuracy, when the function fS is chosen from a
possibly infinite function classF . The standard approach for obtaining such bounds is via uniform
convergence results. In particular, we have for anyε > 0,

P
{∣

∣Â(fS;S)−A(fS)
∣

∣≥ ε
}

≤ P

{

sup
f∈F

∣

∣Â(f ;S)−A(f)
∣

∣≥ ε

}

.

Therefore, to bound probabilities of the form on the left hand side above, it is sufficient to derive a
uniform convergence result that bounds probabilities of the form on theright hand side. Our uniform
convergence result for the AUC is expressed in terms of a new set of combinatorial parameters,
termed thebipartite rank-shatter coefficients, that we define below.

406

GENERALIZATION BOUNDS FOR THEAREA UNDER THE ROC CURVE

[

1
0

0
1

] [

½
0

0
1

] [

1
0

½
1

] [

1
0

0
½

] [

1
½

0
1

] [

½
0

½
1

] [

½
0

0
½

] [

½
½

0
1

] [

1
0

½
½

] [

1
½

½
1

] [

1
½

0
½

] [

1
½

½
½

] [

½
½

0
½

] [

½
½

½
1

] [

½
0

½
½

]

[

0
1

1
0

] [

½
1

1
0

] [

0
1

½
0

] [

0
1

1
½

] [

0
½

1
0

] [

½
1

½
0

] [

½
1

1
½

] [

½
½

1
0

] [

0
1

½
½

] [

0
½

½
0

] [

0
½

1
½

] [

0
½

½
½

] [

½
½

1
½

] [

½
½

½
0

] [

½
1

½
½

]

Table 2: Sub-matrices that cannot appear in a bipartite rank matrix.

4.1 Bipartite Rank-Shatter Coefficients

We define first the notion of a bipartite rank matrix; this is used in our definition of bipartite rank-
shatter coefficients.

Definition 14 (Bipartite rank matrix) Let f : X→R be a ranking function onX , let m,n∈N, and
let x = (x1, . . . ,xm) ∈ X m, x′ = (x′1, . . . ,x

′
n) ∈ X n. Define thebipartite rank matrixof f with respect

to x,x′, denoted byB f (x,x′), to be the matrix in{0, 1
2,1}m×n whose(i, j)-th element is given by

[

B f (x,x′)
]

i j = I { f (xi)> f (x′j)}+
1
2

I { f (xi)= f (x′j)} (18)

for all i ∈ {1, . . . ,m}, j ∈ {1, . . . ,n}.

Definition 15 (Bipartite rank-shatter coefficient) LetF be a class of real-valued functions onX ,
and let m,n∈ N. Define the(m,n)-th bipartite rank-shatter coefficientof F , denoted by r(F ,m,n),
as follows:

r(F ,m,n) = max
x∈X m,x′∈X n

∣

∣

{

B f (x,x′) | f ∈ F
}∣

∣ . (19)

Clearly, for finiteF , we haver(F ,m,n) ≤ |F | for all m,n. In general,r(F ,m,n) ≤ 3mn for
all m,n. In fact, not all 3mn matrices in{0, 1

2,1}m×n can be realized as bipartite rank matrices.
Therefore, we have

r(F ,m,n)≤ ψ(m,n) ,

whereψ(m,n) is the number of matrices in{0, 1
2,1}m×n that can be realized as a bipartite rank

matrix. The numberψ(m,n) can be characterized in the following ways:

Theorem 16 Letψ(m,n) be the number of matrices in{0, 1
2,1}m×n that can be realized as a bipar-

tite rank matrixB f (x,x′) for some f: X→R, x ∈ X m, x′ ∈ X n. Then

1. ψ(m,n) is equal to the number of complete mixed acyclic(m,n)-bipartite graphs (where a
mixed graph is one which may contain both directed and undirected edges,and where we
define a cycle in such a graph as a cycle that contains at least one directed edge and in which
all directed edges have the same directionality along the cycle).

2. ψ(m,n) is equal to the number of matrices in{0, 1
2,1}m×n that do not contain a sub-matrix of

any of the forms shown in Table 4.1.

Proof
Part 1. Let G(m,n) denote the set of all complete mixed(m,n)-bipartite graphs. Clearly,|G(m,n)|=
3mn, since there aremn edges and three possibilities for each edge. LetV = {v1, . . . ,vm}, V ′ =

407

AGARWAL , GRAEPEL, HERBRICH, HAR-PELED AND ROTH

{v′1, . . . ,v′n} be sets ofm andn vertices respectively, and for any matrixB = [bi j] ∈ {0, 1
2,1}m×n,

let E(B) denote the set of edges betweenV andV ′ given by E(B) = {(vi ← v′j) | bi j = 1} ∪
{(vi → v′j) | bi j = 0} ∪ {(vi — v′j) | bi j = 1

2}. Define the mappingG : {0, 1
2,1}m×n → G(m,n)

as follows:
G(B) = (V ∪V ′,E(B)) .

Then clearly,G is a bijection that puts the sets{0, 1
2,1}m×n andG(m,n) into one-to-one correspon-

dence. We show that a matrixB ∈ {0, 1
2,1}m×n can be realized as a bipartite rank matrix if and only

if the corresponding bipartite graphG(B) ∈ G(m,n) is acyclic.
First supposeB = B f (x,x′) for somef : X→R, x∈X m, x′ ∈X n, and let if possibleG(B) contain

a cycle, say
(vi1 ← v′j1 — vi2 — v′j2 — . . . — vik — v′jk — vi1) .

Then, from the definition of a bipartite rank matrix, we get

f (xi1) < f (x′j1) = f (xi2) = f (x′j2) = . . . = f (xik) = f (x′jk) = f (xi1) ,

which is a contradiction.
To prove the other direction, letB ∈ {0, 1

2,1}m×n be such thatG(B) is acyclic. LetG′(B) denote
the directed graph obtained by collapsing together vertices inG(B) that are connected by an undi-
rected edge. Then it is easily verified thatG′(B) does not contain any directed cycles, and therefore
there exists a complete order on the vertices ofG′(B) that is consistent with the partial order defined
by the edges ofG′(B) (topological sorting; see, for example, Cormen et al., 2001, Section 22.4).
This implies a unique order on the vertices ofG(B) (in which vertices connected by undirected
edges are assigned the same position in the ordering). For anyx ∈ X m, x′ ∈ X n, identifying x,x′

with the vertex setsV,V ′ of G(B) therefore gives a unique order onx1, . . . ,xm,x′1, . . . ,x
′
n. It can be

verified that definingf : X→R such that it respects this order then givesB = B f (x,x′).

Part 2. Consider again the bijectionG : {0, 1
2,1}m×n→ G(m,n) defined in Part 1 above. We show

that a matrixB ∈ {0, 1
2,1}m×n does not contain a sub-matrix of any of the forms shown in Table 4.1

if and only if the corresponding bipartite graphG(B) ∈ G(m,n) is acyclic; the desired result then
follows by Part 1 of the theorem.

We first note that the condition thatB∈ {0, 1
2,1}m×n not contain a sub-matrix of any of the forms

shown in Table 4.1 is equivalent to the condition that the corresponding mixed(m,n)-bipartite graph
G(B) ∈ G(m,n) not contain any 4-cycles.

Now, to prove the first direction, letB ∈ {0, 1
2,1}m×n not contain a sub-matrix of any of the

forms shown in Table 4.1. As noted above, this meansG(B) does not contain any 4-cycles. Let, if
possible,G(B) contain a cycle of length 2k, say

(vi1 ← v′j1 — vi2 — v′j2 — . . . — vik — v′jk — vi1) .

Now considervi1,v
′
j2. SinceG(B) is a complete bipartite graph, there must be an edge between

these vertices. IfG(B) contained the edge(vi1 → v′j2), it would contain the 4-cycle

(vi1 ← v′j1 — vi2 — v′j2 ← vi1) ,

which would be a contradiction. Similarly, ifG(B) contained the edge(vi1 — v′j2), it would contain
the 4-cycle

(vi1 ← v′j1 — vi2 — v′j2 — vi1) ,

408

GENERALIZATION BOUNDS FOR THEAREA UNDER THE ROC CURVE

which would again be a contradiction. Therefore,G(B) must contain the edge(vi1← v′j2). However,
this meansG(B) must contain a 2(k−1)-cycle, namely,

(vi1 ← v′j2 — vi3 — v′j3 — . . . — vik — v′jk — vi1) .

By a recursive argument, we eventually get thatG(B) must contain a 4-cycle, which is a contradic-
tion.

To prove the other direction, letB ∈ {0, 1
2,1}m×n be such thatG(B) is acyclic. Then it follows

trivially that G(B) does not contain a 4-cycle, and therefore, by the above observation,B does not
contain a sub-matrix of any of the forms shown in Table 4.1.

We discuss further properties of the bipartite rank-shatter coefficients inSection 4.3; we first
present below our uniform convergence result in terms of these coefficients.

4.2 Uniform Convergence Bound

The following is the main result of this section:

Theorem 17 Let F be a class of real-valued functions onX , and let y= (y1, . . . ,yM) ∈ Y M be any
label sequence of length M∈ N. Let m be the number of positive labels in y, and n= M−m the
number of negative labels in y. Then for anyε > 0,

PSX |SY=y

{

sup
f∈F

∣

∣Â(f ;S)−A(f)
∣

∣≥ ε

}

≤ 4· r(F ,2m,2n) ·e−mnε2/8(m+n)

= 4· r
(

F , 2ρ(y)M, 2(1−ρ(y))M
)

·e−ρ(y)(1−ρ(y))Mε2/8 ,

whereρ(y) denotes the positive skew of ydefined in Eq. (6).

The proof is adapted from proofs of uniform convergence for the classification error rate (see,
for example, Anthony and Bartlett, 1999; Devroye et al., 1996). The main difference is that since
the AUC cannot be expressed as a sum of independent random variables, more powerful inequalities
are required. In particular, a result of Devroye (1991) is required tobound the variance of the AUC
that appears after an application of Chebyshev’s inequality; the application of this result to the AUC
requires the same reasoning that was used to apply McDiarmid’s inequality in deriving the large
deviation result of Theorem 5. Similarly, McDiarmid’s inequality is required in the final step of the
proof where Hoeffding’s inequality sufficed in the case of classification. Complete details of the
proof are given in Appendix A.

As in the case of the large deviation bound of Section 3, we note that the result of Theorem 17
can be strengthened so that the conditioning is only on the numbersmandn of positive and negative
labels, and not on the specific label vectory. From Theorem 17, we can derive a confidence interval
interpretation of the bound as follows:

Corollary 18 LetF be a class of real-valued functions onX , and let y= (y1, . . . ,yM) ∈ Y M be any
label sequence of length M∈ N. Let m be the number of positive labels in y, and n= M−m the
number of negative labels in y. Then for any0 < δ≤ 1,

PSX |SY=y







sup
f∈F

∣

∣Â(f ;S)−A(f)
∣

∣≥

√

8(m+n)
(

ln r(F ,2m,2n)+ ln
(

4
δ
))

mn







≤ δ .

409

AGARWAL , GRAEPEL, HERBRICH, HAR-PELED AND ROTH

Proof This follows directly from Theorem 17 by setting 4· r(F ,2m,2n) · e−mnε2/8(m+n) = δ and
solving forε.

Again, as in the case of the large deviation bound, the confidence intervalabove can be general-
ized to remove the conditioning on the label vector completely:

Theorem 19 LetF be a class of real-valued functions onX , and let M∈N. Then for any0< δ≤ 1,

PS∼DM







sup
f∈F

∣

∣Â(f ;S)−A(f)
∣

∣≥

√

8
(

ln r (F , 2ρ(SY)M, 2(1−ρ(SY))M)+ ln
(

4
δ
))

ρ(SY)(1−ρ(SY))M







≤ δ .

4.3 Properties of Bipartite Rank-Shatter Coefficients

As discussed in Section 4.1, we haver(F ,m,n)≤ψ(m,n), whereψ(m,n) is the number of matrices
in {0, 1

2,1}m×n that can be realized as a bipartite rank matrix. The numberψ(m,n) is strictly smaller
than 3mn; indeed,ψ(m,n) = O(e(m+n)(ln(m+n)+1)). (To see this, note that the number of distinct
bipartite rank matrices of sizem× n is bounded above by the total number of permutations of
(m+ n) objects, allowing for objects to be placed at the same position. This number is equal to
(m+ n)!2(m+n−1) = O(e(m+n)(ln(m+n)+1)).) Nevertheless,ψ(m,n) is still very large; in particular,
ψ(m,n)≥ 3max(m,n). (To see this, note that choosing any column vector in{0, 1

2,1}m and replicating
it along then columns or choosing any row vector in{0, 1

2,1}n and replicating it along them rows
results in a matrix that does not contain a sub-matrix of any of the forms shownin Table 4.1. The
conclusion then follows from Theorem 16 (Part 2).)

For the bound of Theorem 17 to be meaningful, one needs an upper bound onr(F ,m,n) that is
at least slightly smaller thanemn/8(m+n). Below we provide one method for deriving upper bounds on
r(F ,m,n); takingY ∗ = {−1,0,+1}, we extend slightly the standard VC-dimension related shatter
coefficients studied in binary classification toY ∗-valued function classes, and then derive an upper
bound on the bipartite rank-shatter coefficientsr(F ,m,n) of a class of ranking functionsF in terms
of the shatter coefficients of a class ofY ∗-valued functions derived fromF .

Definition 20 (Shatter coefficient) LetY ∗ = {−1,0,+1}, and letH be a class ofY ∗-valued func-
tions onX . Let N∈ N. Define the N-th shatter coefficientof H , denoted by s(H ,N), as follows:

s(H ,N) = max
x∈X N
|{(h(x1), . . . ,h(xN)) | h∈H }| .

Clearly,s(H ,N)≤ 3N for all N. Next we define a series ofY ∗-valued function classes derived
from a given ranking function class. Only the second function class is used in this section; the other
two are needed in Section 4.4. Note that we take

sign(u) =







+1 if u > 0
0 if u = 0
−1 if u < 0.

410

GENERALIZATION BOUNDS FOR THEAREA UNDER THE ROC CURVE

Definition 21 (Function classes)Let F be a class of real-valued functions onX . Define the fol-
lowing classes ofY ∗-valued functions derived fromF :

1. F̄ = { f̄ : X→Y ∗ | f̄ (x) = sign(f (x)) for somef ∈ F } (20)

2. F̃ = { f̃ : X ×X→Y ∗ | f̃ (x,x′) = sign(f (x)− f (x′)) for somef ∈ F } (21)

3. F̌ = { f̌z : X→Y ∗ | f̌z(x) = sign(f (x)− f (z)) for somef ∈ F ,z∈ X } (22)

The following result gives an upper bound on the bipartite rank-shatter coefficients of a class of
ranking functionsF in terms of the standard shatter coefficients ofF̃ :

Theorem 22 Let F be a class of real-valued functions onX , and letF̃ be the class ofY ∗-valued
functions onX ×X defined by Eq. (21). Then for all m,n∈ N,

r(F ,m,n) ≤ s(F̃ ,mn) .

Proof For anym,n∈ N, we have4

r(F ,m,n) = max
x∈X m,x′∈X n

∣

∣

∣

∣

{[

I { f (xi)> f (x′j)}+
1
2

I { f (xi)= f (x′j)}

] ∣

∣

∣

∣

f ∈ F

}∣

∣

∣

∣

= max
x∈X m,x′∈X n

∣

∣

∣

∣

{[

I { f̃ (xi ,x′j)=+1}+
1
2

I { f̃ (xi ,x′j)=0}

]

∣

∣ f̃ ∈ F̃

}∣

∣

∣

∣

= max
x∈X m,x′∈X n

∣

∣

{[

f̃ (xi ,x′j)
] ∣

∣ f̃ ∈ F̃
}∣

∣

≤ max
X,X′∈X m×n

∣

∣

{[

f̃ (xi j ,x′i j)
] ∣

∣ f̃ ∈ F̃
}∣

∣

= max
x,x′∈X mn

∣

∣

{(

f̃ (x1,x′1), . . . , f̃ (xmn,x′mn)
) ∣

∣ f̃ ∈ F̃
}∣

∣

= s(F̃ ,mn) .

Below we make use of the above result to derive polynomial upper boundson the bipartite rank-
shatter coefficients for linear and higher-order polynomial ranking functions. We note that the same
method can be used to establish similar upper bounds for other algebraically well-behaved function
classes.

Lemma 23 For d ∈ N, let Flin(d) denote the class of linear ranking functions onR
d:

Flin(d) = { f : R
d→R | f (x) = w·x+b for somew ∈ R

d,b∈ R} .

Then for all N∈ N,

s(F̃lin(d),N) ≤
(

2eN
d

)d

.

4. We use the notation
[

ai j
]

to denote a matrix whose(i, j)th element isai j . The dimensions of such a matrix should be
clear from context.

411

AGARWAL , GRAEPEL, HERBRICH, HAR-PELED AND ROTH

Proof We have,

F̃lin(d) = { f̃ : R
d×R

d→Y ∗ | f̃ (x,x′) = sign(w·(x−x′)) for somew ∈ R
d} .

Let (x1,x′1), . . . ,(xN,x′N) be anyN points inR
d×R

d, and consider the ‘dual’ weight space corre-
sponding tow ∈ R

d. Each point(xi ,x′i) defines a hyperplane(xi − x′i) in this space; theN points
thus give rise to an arrangement ofN hyperplanes inRd. It is easily seen that the number of sign
patterns(f̃ (x1,x′1), . . . , f̃ (xN,x′N)) that can be realized by functions̃f ∈ F̃lin(d) is equal to the total
number of faces of this arrangement (Matoušek, 2002), which is at most (Buck, 1943)

d

∑
k=0

d

∑
i=d−k

(

i
d−k

)(

N
i

)

=
d

∑
i=0

2i
(

N
i

)

≤
(

2eN
d

)d

.

Since theN points were arbitrary, the result follows.

Theorem 24 For d ∈ N, let Flin(d) denote the class of linear ranking functions onR
d (defined in

Lemma 23 above). Then for all m,n∈ N,

r(Flin(d),m,n) ≤
(

2emn
d

)d

.

Proof This follows immediately from Lemma 23 and Theorem 22.

Lemma 25 For d,q∈ N, let Fpoly(d,q) denote the class of polynomial ranking functions onR
d with

degree less than or equal to q. Then for all N∈ N,

s(F̃poly(d,q),N) ≤
(

2eN
C(d,q)

)C(d,q)

,

where

C(d,q) =
q

∑
i=1

((

d
i

) q

∑
j=1

(

j−1
i−1

))

. (23)

Proof We have,

F̃poly(d,q) = { f̃ : R
d×R

d→Y ∗ | f̃ (x,x′) = sign(f (x)− f (x′)) for somef ∈ Fpoly(d,q)} .

Let (x1,x′1), . . . ,(xN,x′N) be anyN points inR
d×R

d. For any f ∈ Fpoly(d,q), (f (x)− f (x′)) is a
linear combination ofC(d,q) basis functions of the form(gk(x)− gk(x′)), 1≤ k≤C(d,q), each
gk(x) being a product of 1 toq components ofx. Denoteg(x) = (g1(x), . . . ,gC(d,q)(x)) ∈ R

C(d,q).
Then each point(xi ,x′i) defines a hyperplane(g(xi)−g(x′i)) in R

C(d,q); theN points thus give rise
to an arrangement ofN hyperplanes inRC(d,q). It is easily seen that the number of sign patterns

412

GENERALIZATION BOUNDS FOR THEAREA UNDER THE ROC CURVE

(f̃ (x1,x′1), . . . , f̃ (xN,x′N)) that can be realized by functions̃f ∈ F̃poly(d,q) is equal to the total number
of faces of this arrangement (Matoušek, 2002), which is at most (Buck, 1943)

(

2eN
C(d,q)

)C(d,q)

.

Since theN points were arbitrary, the result follows.

Theorem 26 For d,q∈N, letFpoly(d,q) denote the class of polynomial ranking functions onR
d with

degree less than or equal to q. Then for all m,n∈ N,

r(Fpoly(d,q),m,n) ≤
(

2emn
C(d,q)

)C(d,q)

,

where C(d,q) is as defined in Eq. (23).

Proof This follows immediately from Lemma 25 and Theorem 22.

4.4 Comparison with Uniform Convergence Bound of Freund et al.

Freund et al. (2003) recently derived a uniform convergence bound for a quantity closely related
to the AUC, namely the ranking loss for the bipartite ranking problem. As pointedout by Cortes
and Mohri (2004), the bipartite ranking loss is equal to one minus the AUC; the uniform conver-
gence bound of Freund et al. (2003) therefore implies a uniform convergence bound for the AUC.5

Although the result in (Freund et al., 2003) is given only for function classes considered by their
RankBoost algorithm, their technique is generally applicable. We state their result below, using our
notation, for the general case (i.e., function classes not restricted to those considered by RankBoost),
and then offer a comparison of our bound with theirs. As in (Freund et al.,2003), the result is given
in the form of a confidence interval.6

Theorem 27 (Generalization of Freund et al. (2003), Theorem 3)LetF be a class of real-valued
functions onX , and let y= (y1, . . . ,yM) ∈ Y M be any label sequence of length M∈ N. Let m be
the number of positive labels in y, and n= M−m the number of negative labels in y. Then for any
0 < δ≤ 1,

PSX |SY=y

{

sup
f∈F

∣

∣Â(f ;S)−A(f)
∣

∣≥ 2

√

lns(F̌ ,2m)+ ln
(

12
δ
)

m
+2

√

lns(F̌ ,2n)+ ln
(

12
δ
)

n

}

≤ δ ,

whereF̌ is the class ofY ∗-valued functions onX defined by Eq. (22).

5. As in the AUC definition of (Cortes and Mohri, 2004), the ranking loss defined in (Freund et al., 2003) does not
account for ties; this is easily remedied.

6. The result in (Freund et al., 2003) was stated in terms of the VC dimension, but the basic result can be stated in
terms of shatter coefficients. Due to our AUC definition which accounts forties, the standard shatter coefficients are
replaced here with the extended shatter coefficients defined above forY ∗-valued function classes.

413

AGARWAL , GRAEPEL, HERBRICH, HAR-PELED AND ROTH

The proof follows that of Freund et al. (2003); for completeness, we give details in Appendix B.
We now compare the uniform convergence bound derived in Section 4.2 with that of Freund et al.
for a simple function class for which the quantities involved in both bounds (namely, r(F ,2m,2n)
ands(F̌ ,2m),s(F̌ ,2n)) can be characterized exactly. Specifically, consider the function classFlin(1)

of linear ranking functions onR, given by

Flin(1) = { f : R→R | f (x) = wx+b for somew∈ R,b∈ R} .

AlthoughFlin(1) is an infinite function class, it is easy to verify thatr(Flin(1),m,n) = 3 for all m,n∈
N. (To see this, note that for any set ofm+ n distinct points inR, one can obtain exactly three
different ranking behaviours with functions inFlin(1): one by settingw > 0, another by setting
w < 0, and the third by settingw = 0.) On the other hand,s(F̌lin(1),N) = 4N + 1 for all N ≥ 2,
sinceF̌lin(1) = F̄lin(1) (see Eq. (20)) and, as is easily verified, the number of sign patterns onN ≥ 2
distinct points inR that can be realized by functions in̄Flin(1) is 4N+1. We thus get from our result
(Corollary 18) that

PSX |SY=y

{

sup
f∈Flin(1)

∣

∣Â(f ;S)−A(f)
∣

∣≥

√

8(m+n)
(

ln3+ ln
(

4
δ
))

mn

}

≤ δ ,

and from the result of Freund et al. (Theorem 27) that

PSX |SY=y

{

sup
f∈Flin(1)

∣

∣Â(f ;S)−A(f)
∣

∣≥

2

√

ln(8m+1)+ ln
(

12
δ
)

m
+2

√

ln(8n+1)+ ln
(

12
δ
)

n

}

≤ δ .

The above bounds are plotted in Figure 3 forδ = 0.01 and various values ofm/(m+n). As can be
seen, the bound provided by our result is considerably tighter.

4.5 Correctness of Functional Shape of Bound

Although our bound seems to be tighter than the previous bound of Freund etal. (2003), it is still,
in general, too loose to make quantitative predictions. Nevertheless, the bound can serve as a useful
analysis tool if it displays a correct functional dependence on the training sample size parametersm
andn. In this section we give an empirical assessment of the correctness of thefunctional shape of
our bound.

We generated data points ind = 16 dimensions (X = R
16) as follows. We tookD+1 andD−1 to

be mixtures of two 16-dimensional Gaussians each, where each of the elements of both the means
and the (diagonal) covariances of the Gaussians were chosen randomlyfrom a uniform distribution
on the interval(0,1). A test sequence was generated by drawing 2500 points fromD+1 and 2500
points fromD−1.7 Training sequences of varying sizes were then generated by drawingm points
from D+1 andn points fromD−1 for various values ofmandn. For each training sequence, a linear
ranking function inFlin(16) was learned using the RankBoost algorithm of Freund et al. (2003) (the

7. To sample points from Gaussian mixtures we made use of the NETLAB toolbox written by Ian Nabney and Christo-
pher Bishop, available fromhttp://www.ncrg.aston.ac.uk/netlab/.

414

GENERALIZATION BOUNDS FOR THEAREA UNDER THE ROC CURVE

0 2 4 6 8 10

x 10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Comparison of uniform convergence bounds: m/(m+n) = 1/2

Sample size M

C
on

fid
en

ce
 in

te
rv

al
 w

id
th

 ε
Our bound
Bound of Freund et al.

0 2 4 6 8 10

x 10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Comparison of uniform convergence bounds: m/(m+n) = 1/10

Sample size M

C
on

fid
en

ce
 in

te
rv

al
 w

id
th

 ε

Our bound
Bound of Freund et al.

0 2 4 6 8 10

x 10
5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Comparison of uniform convergence bounds: m/(m+n) = 1/100

Sample size M

C
on

fid
en

ce
 in

te
rv

al
 w

id
th

 ε

Our bound
Bound of Freund et al.

0 2 4 6 8 10

x 10
6

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Comparison of uniform convergence bounds: m/(m+n) = 1/1000

Sample size M

C
on

fid
en

ce
 in

te
rv

al
 w

id
th

 ε

Our bound
Bound of Freund et al.

Figure 3: A comparison of our uniform convergence bound with that of Freund et al. (2003) for
the class of linear ranking functions onR. The plots are forδ = 0.01 and show how the
confidence interval sizeε given by the two bounds varies with the sample sizeM = m+n,
for various values ofm/(m+n). In all cases where the bounds are meaningful (ε < 0.5),
our bound is tighter.

algorithm was run forT = 20 rounds). The training AUC of the learned ranking function, its AUC
on the independent test sequence, and the lower bound on its expected ranking accuracy obtained
from our uniform convergence result (using Corollary 18, at a confidence levelδ = 0.01) were
then calculated. Since we do not have a means to characterizer(Flin(16),m,n) exactly, we used the
(loose) bound provided by Theorem 24 in calculating the lower bound on the expected accuracy.
The results, averaged over 10 trials (draws of the training sequence) for each pair of values ofmand
n, are shown in Figure 4. As can be seen, the shape of the bound is in correspondence with that of
the test AUC, suggesting that the bound does indeed display a correct functional dependence.

415

AGARWAL , GRAEPEL, HERBRICH, HAR-PELED AND ROTH

0 200 400 600
0.85

0.9

0.95

1
m/(m+n) = 1/2

T
ra

in
in

g
A

U
C

0 200 400 600
0.85

0.9

0.95

1
m/(m+n) = 1/5

0 200 400 600
0.85

0.9

0.95

1
m/(m+n) = 1/10

0 200 400 600
0.75

0.8

0.85

0.9

T
es

t A
U

C

0 200 400 600
0.75

0.8

0.85

0.9

0 200 400 600
0.75

0.8

0.85

0.9

0 200 400 600
−12

−8

−4

0

Lo
w

er
 b

ou
nd

 o
n

ex
pe

ct
ed

 r
an

ki
ng

 a
cc

ur
ac

y

Sample size M
0 200 400 600

−12

−8

−4

0

Sample size M
0 200 400 600

−12

−8

−4

0

Sample size M

Figure 4: The training AUC (top row), test AUC (middle row), and lower bound on expected rank-
ing accuracy (bottom row) of linear ranking functions learned from training sequences of
different sizesM = m+ n (see Section 4.5). The plots show mean values over 10 trials
for each pair of values ofmandn; the error bars show standard deviations (note that there
are also error bars on the values of the lower bound; these have the samesize as the error
bars on the training AUC, but are invisible due to the difference in scale of the plots).
Although the bound is quantitatively loose, its shape is in correspondence with that of the
test AUC (and therefore correct).

416

GENERALIZATION BOUNDS FOR THEAREA UNDER THE ROC CURVE

5. Conclusion and Open Questions

We have derived geralization bounds for the area under the ROC curve(AUC), a quantity used as
an evaluation criterion for the bipartite ranking problem. We have derived both a large deviation
bound, which serves to bound the expected accuracy of a ranking function in terms of its empirical
AUC on a test sequence, and a uniform convergence bound, which serves to bound the expected
accuracy of a learned ranking function in terms of its empirical AUC on a training sequence. Both
our bounds are distribution-free.

Our large deviation result for the AUC parallels the classical large deviationresult for the clas-
sification error rate obtained via Hoeffding’s inequality. A comparison with the large deviation
result for the error rate suggests that, in the distribution-free setting, the test sample size required to
obtain anε-accurate estimate of the expected accuracy of a ranking function withδ-confidence is
larger than the test sample size required to obtain a similar estimate of the expectederror rate of a
classification function.

Our uniform convergence bound for the AUC is expressed in terms of a new set of combinatorial
parameters that we have termed the bipartite rank-shatter coefficients. These coefficients define a
new measure of complexity for real-valued function classes and play the same role in our result as
do the standard VC-dimension related shatter coefficients in uniform convergence results for the
classification error rate.

For the case of linear ranking functions onR, for which we could compute the bipartite rank-
shatter coefficients exactly, we have shown that our uniform convergence bound is considerably
tighter than a recent uniform convergence bound derived by Freundet al. (2003), which is expressed
directly in terms of standard shatter coefficients from results for classification. This suggests that the
bipartite rank-shatter coefficients we have introduced may be a more appropriate complexity mea-
sure for studying the bipartite ranking problem. However, in order to take advantage of our results,
one needs to be able to characterize these coefficients for the class of ranking functions of interest.
The biggest open question that arises from our study is, for what otherfunction classesF can the
bipartite rank-shatter coefficientsr(F ,m,n) be characterized? We have derived in Theorem 22 a
general upper bound on the bipartite rank-shatter coefficients of a function classF in terms of the
standard shatter coefficients of the function classF̃ (see Eq. (21)); this allows us to establish a poly-
nomial upper bound on the bipartite rank-shatter coefficients for linear and higher-order polynomial
ranking functions onRd and other algebraically well-behaved function classes. However, this upper
bound is inherently loose (see proof of Theorem 22). Is it possible to find tighter upper bounds on
r(F ,m,n) than that given by Theorem 22?

Our study also raises several other interesting questions. First, can we establish analogous
complexity measures and generalization bounds for other forms of rankingproblems (i.e., other
than bipartite)? Second, do there exist data-dependent bounds for ranking, analogous to existing
margin bounds for classification? Finally, it also remains an open question whether tighter (or
alternative) generalization bounds for the AUC can be derived using different proof techniques.
Possible routes for deriving alternative bounds for the AUC could include the theory of compression
bounds (Littlestone and Warmuth, 1986; Graepel et al., 2005).

417

AGARWAL , GRAEPEL, HERBRICH, HAR-PELED AND ROTH

Acknowledgments

We would like to thank the anonymous reviewers for many useful suggestions and for pointing us to
the statistical literature on ranks. We are also very grateful to an anonymous reviewer of an earlier
version of part of this work for helping us identify an important mistake in ourearlier results. This
research was supported in part by NSF ITR grants IIS 00-85980 andIIS 00-85836 and a grant from
the ONR-TRECC program.

Appendix A. Proof of Theorem 17

We shall need the following result of Devroye (1991), which bounds thevariance of any fuction of
a sample for which a single change in the sample has limited effect:

Theorem 28 (Devroye, 1991; Devroye et al., 1996, Theorem 9.3)Let X1, . . . ,XN be independent
random variables with Xk taking values in a set Ak for each k. Letφ : (A1×·· ·×AN)→R be such
that

sup
xi∈Ai ,x′k∈Ak

∣

∣φ(x1, . . . ,xN)−φ(x1, . . . ,xk−1,x
′
k,xk+1, . . . ,xN)

∣

∣ ≤ ck .

Then

Var {φ(X1, . . . ,XN)} ≤ 1
4

N

∑
k=1

c2
k .

Proof [of Theorem 17]
The proof is adapted from proofs of uniform convergence for the classification error rate given in
(Anthony and Bartlett, 1999; Devroye et al., 1996). It consists of foursteps.

Step 1. Symmetrization by a ghost sample.
For eachk ∈ {1, . . . ,M}, define the random variablẽXk such thatXk, X̃k are independent and

identically distributed. Let̃SX = (X̃1, . . . , X̃M), and denote bỹS the joint sequence(S̃X,y). Then for
anyε > 0 satisfyingmnε2/(m+n)≥ 2, we have

PSX |SY=y

{

sup
f∈F

∣

∣Â(f ;S)−A(f)
∣

∣≥ ε

}

≤ 2PSXS̃X |SY=y

{

sup
f∈F

∣

∣Â(f ;S)− Â(f ; S̃)
∣

∣≥ ε
2

}

.

To see this, letf ∗S ∈ F be a function for which|Â(f ∗S;S)−A(f ∗S)| ≥ ε if such a function exists, and
let f ∗S be a fixed function inF otherwise. Then

PSXS̃X |SY=y

{

sup
f∈F

∣

∣Â(f ;S)− Â(f ; S̃)
∣

∣≥ ε
2

}

≥ PSXS̃X |SY=y

{

∣

∣Â(f ∗S;S)− Â(f ∗S; S̃)
∣

∣≥ ε
2

}

≥ PSXS̃X |SY=y

{

{∣

∣Â(f ∗S;S)−A(f ∗S)
∣

∣≥ ε
}

∩
{

∣

∣Â(f ∗S; S̃)−A(f ∗S)
∣

∣≤ ε
2

}}

= ESX |SY=y

{

I {|Â(f ∗S;S)−A(f ∗S)|≥ε}PS̃X |SX ,SY=y

{

∣

∣Â(f ∗S; S̃)−A(f ∗S)
∣

∣≤ ε
2

}}

. (24)

418

GENERALIZATION BOUNDS FOR THEAREA UNDER THE ROC CURVE

The conditional probability inside can be bounded using Chebyshev’s inequality (and Lemma 2):

PS̃X |SX ,SY=y

{

∣

∣Â(f ∗S; S̃)−A(f ∗S)
∣

∣≤ ε
2

}

≥ 1−
Var S̃X |SX ,SY=y

{

Â(f ∗S; S̃)
}

ε2/4
.

Now, by the same reasoning as in the proof of Theorem 5, a change in the value of a single random
variableX̃k can cause a change of at most 1/m in Â(f ∗S; S̃) for k : yk = +1, and a change of at most
1/n for k : yk =−1. Thus, by Theorem 28, we have

Var S̃X |SX ,SY=y

{

Â(f ∗S; S̃)
}

≤ 1
4

(

∑
{i:yi=+1}

(

1
m

)2

+ ∑
{ j:y j=−1}

(

1
n

)2
)

=
m+n
4mn

.

This gives

PS̃X |SX ,SY=y

{

∣

∣Â(f ∗S; S̃)−A(f ∗S)
∣

∣≤ ε
2

}

≥ 1−m+n
mnε2 ≥

1
2

,

whenevermnε2/(m+n)≥ 2. Thus, from Eq. (24) and the definition off ∗S, we have

PSXS̃X |SY=y

{

sup
f∈F

∣

∣Â(f ;S)− Â(f ; S̃)
∣

∣≥ ε
2

}

≥ 1
2

ESX |SY=y

{

I {|Â(f ∗S;S)−A(f ∗S)|≥ε}

}

=
1
2

PSX |SY=y
{∣

∣Â(f ∗S;S)−A(f ∗S)
∣

∣≥ ε
}

≥ 1
2

PSX |SY=y

{

sup
f∈F

∣

∣Â(f ;S)−A(f)
∣

∣≥ ε

}

.

Step 2. Permutations.
Let ΓM be the set of all permutations of{X1, . . . ,XM, X̃1, . . . , X̃M} that swapXk andX̃k, for all k

in some subset of{1, . . . ,M}. In other words, for allσ ∈ ΓM andk∈ {1, . . . ,M}, eitherσ(Xk) = Xk,
in which caseσ(X̃k) = X̃k, or σ(Xk) = X̃k, in which caseσ(X̃k) = Xk. Now, define

β f (X1, . . . ,XM, X̃1, . . . , X̃M) ≡ 1
mn ∑
{i:yi=+1}

∑
{ j:y j=−1}

(

(

I { f (Xi)> f (Xj)}+
1
2

I { f (Xi)= f (Xj)}
)

−
(

I { f (X̃i)> f (X̃j)}+
1
2

I { f (X̃i)= f (X̃j)}
)

)

.

Then clearly, sinceXk, X̃k are i.i.d. for eachk, for anyσ ∈ ΓM we have that the distribution of

sup
f∈F

∣

∣β f (X1, . . . ,XM, X̃1, . . . , X̃M)
∣

∣

is the same as the distribution of

sup
f∈F

∣

∣β f (σ(X1), . . . ,σ(XM),σ(X̃1), . . . ,σ(X̃M))
∣

∣ .

419

AGARWAL , GRAEPEL, HERBRICH, HAR-PELED AND ROTH

Therefore, usingU(D) to denote the uniform distribution over a discrete setD, we have the follow-
ing:

PSXS̃X |SY=y

{

sup
f∈F

∣

∣Â(f ;S)− Â(f ; S̃)
∣

∣≥ ε
2

}

= PSXS̃X |SY=y

{

sup
f∈F

∣

∣β f (X1, . . . ,XM, X̃1, . . . , X̃M)
∣

∣≥ ε
2

}

=
1
|ΓM| ∑

σ∈ΓM

PSXS̃X |SY=y

{

sup
f∈F

∣

∣β f (σ(X1), . . . ,σ(XM),σ(X̃1), . . . ,σ(X̃M))
∣

∣≥ ε
2

}

=
1
|ΓM| ∑

σ∈ΓM

ESXS̃X |SY=y

{

I{supf∈F |β f (σ(X1),...,σ(XM),σ(X̃1),...,σ(X̃M))|≥ ε
2}
}

= ESXS̃X |SY=y

{

1
|ΓM| ∑

σ∈ΓM

I{supf∈F |β f (σ(X1),...,σ(XM),σ(X̃1),...,σ(X̃M))|≥ ε
2}

}

= ESXS̃X |SY=y

{

Pσ∼U(ΓM)

{

sup
f∈F

∣

∣β f (σ(X1), . . . ,σ(XM),σ(X̃1), . . . ,σ(X̃M))
∣

∣≥ ε
2

}}

≤ max
x,x̃∈X M

Pσ∼U(ΓM)

{

sup
f∈F

∣

∣

∣
β f (σ(x1), . . . ,σ(xM),σ(x̃1), . . . ,σ(x̃M))

∣

∣

∣
≥ ε

2

}

.

Step 3. Reduction to a finite class.
We wish to bound the quantity on the right hand side above. From the definitionof bipartite

rank matrices (Definition 14), it follows that for anyx, x̃ ∈ X M, as f ranges overF , the number of
different random variables

∣

∣

∣
β f (σ(x1), . . . ,σ(xM),σ(x̃1), . . . ,σ(x̃M))

∣

∣

∣

is at most the number of different bipartite rank matricesB f (z,z′) that can be realized by functions
in F , wherez ∈ X 2m containsxi , x̃i for i : yi = +1 andz′ ∈ X 2n containsx j , x̃ j for j : y j = −1.
This number, by definition, cannot exceedr(F ,2m,2n) (see the definition of bipartite rank-shatter
coefficients, Definition 15). Therefore, the supremum in the above probability is a maximum of at
mostr(F ,2m,2n) random variables. Thus, by the union bound, we get for anyx, x̃ ∈ X M,

Pσ∼U(ΓM)

{

sup
f∈F

∣

∣

∣
β f (σ(x1), . . . ,σ(xM),σ(x̃1), . . . ,σ(x̃M))

∣

∣

∣
≥ ε

2

}

≤ r(F ,2m,2n) · sup
f∈F

Pσ∼U(ΓM)

{∣

∣

∣
β f (σ(x1), . . . ,σ(xM),σ(x̃1), . . . ,σ(x̃M))

∣

∣

∣
≥ ε

2

}

.

Step 4. McDiarmid’s inequality.
Notice that for anyx, x̃ ∈ X M, we can write

Pσ∼U(ΓM)

{∣

∣

∣
β f (σ(x1), . . . ,σ(xM),σ(x̃1), . . . ,σ(x̃M))

∣

∣

∣
≥ ε

2

}

= PW∼U(∏M
k=1{xk,x̃k})

{

∣

∣β f (W1, . . . ,WM,W̃1, . . . ,W̃M)
∣

∣≥ ε
2

}

,

420

GENERALIZATION BOUNDS FOR THEAREA UNDER THE ROC CURVE

whereW = (W1, . . . ,WM) andW̃k =

{

x̃k, if Wk = xk

xk, if Wk = x̃k
.

Now, for f : X→R andx,x′ ∈ X , let

α(f ;x,x′) ≡ I { f (x)> f (x′)}+
1
2

I { f (x)= f (x′)} .

Then for anyf ∈ F ,

EW∼U(∏M
k=1{xk,x̃k})

{

β f (W1, . . . ,WM,W̃1, . . . ,W̃M)
}

=
1

mn ∑
{i:yi=+1}

∑
{ j:y j=−1}

EWi∼U({xi ,x̃i}),Wj∼U({x j ,x̃ j})
{

α(f ;Wi ,Wj)−α(f ;W̃i ,W̃j)
}

=
1

mn ∑
{i:yi=+1}

∑
{ j:y j=−1}

1
4

[

(

α(f ;xi ,x j)−α(f ; x̃i , x̃ j)
)

+
(

α(f ; x̃i ,x j)−α(f ;xi , x̃ j)
)

+

(

α(f ;xi , x̃ j)−α(f ; x̃i ,x j)
)

+
(

α(f ; x̃i , x̃ j)−α(f ;xi ,x j)
)

]

= 0.

Also, it can be verified that for anyf ∈ F , a change in the value of a single random variableWk can
bring a change of at most 2/m in the value of

β f (W1, . . . ,WM,W̃1, . . . ,W̃M)

for k : yk = +1, and a change of at most 2/n for k : yk =−1. Therefore, by McDiarmid’s inequality
(Theorem 3), it follows that for anyf ∈ F ,

PW∼U(∏M
k=1{xk,x̃k})

{

∣

∣β f (W1, . . . ,WM,W̃1, . . . ,W̃M)
∣

∣≥ ε
2

}

≤ 2e−2ε2/4(m(2
m)2+n(2

n)2)

= 2e−mnε2/8(m+n) .

Putting everything together, we get that

PSX |SY=y

{

sup
f∈F

∣

∣Â(f ;S)−A(f)
∣

∣≥ ε

}

≤ 4· r(F ,2m,2n) ·e−mnε2/8(m+n) ,

for mnε2/(m+n) ≥ 2. In the other case,i.e., for mnε2/(m+n) < 2, the bound is greater than one
and therefore holds trivially.

Appendix B. Proof of Theorem 27

We shall need to extend the notion of error rate toY ∗-valued functions (recall thatY ∗= {−1,0,+1}).
Given a functionh : X→Y ∗ and a data sequenceT = ((x1,y1), . . . ,(xN,yN)) ∈ (X ×Y)N, let the
empirical error rate ofh with respect toT be denoted bŷL∗(h;T) and defined as

L̂∗(h;T) =
1
N

N

∑
i=1

{

I {h(xi)6=0}I {h(xi)6=yi}+
1
2

I {h(xi)=0}

}

. (25)

421

AGARWAL , GRAEPEL, HERBRICH, HAR-PELED AND ROTH

Similarly, for an underlying distributionD overX ×Y , let the expected error rate ofh be denoted
by L∗(h) and defined as

L∗(h) = EXY∼D

{

I {h(X)6=0}I {h(X)6=Y}+
1
2

I {h(X)=0}

}

. (26)

Then, following the proof of a similar result given in (Vapnik, 1982) for binary-valued functions,
it can be shown that ifH is a class ofY ∗-valued functions onX andM ∈ N, then for anyε > 0,

PS∼DM

{

sup
h∈H

∣

∣L̂∗(h;S)−L∗(h)
∣

∣≥ ε

}

≤ 6s(H ,2M)e−Mε2/4 . (27)

Proof [of Theorem 27]
To keep notation concise, forf : X→R andx,x′ ∈ X , let

η(f ;x,x′) ≡ I { f (x)< f (x′)}+
1
2

I { f (x)= f (x′)} ,

and forh : X→Y ∗, x ∈ X , y∈ Y , let

ν(h;x,y) ≡ I {h(x)6=0}I {h(x)6=y}+
1
2

I {h(x)=0} .

Now, givenSY = y, we have for allf ∈ F

∣

∣Â(f ;S)−A(f)
∣

∣

=
∣

∣(1− Â(f ;S))− (1−A(f))
∣

∣

=

∣

∣

∣

∣

∣

1
mn ∑
{i:yi=+1}

∑
{ j:y j=−1}

η(f ;Xi ,Xj)−EX∼D+1,X′∼D−1

{

η(f ;X,X′)
}

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

1
mn ∑
{i:yi=+1}

∑
{ j:y j=−1}

η(f ;Xi ,Xj)−
1
m ∑
{i:yi=+1}

EX′∼D−1

{

η(f ;Xi ,X
′)
}

+
1
m ∑
{i:yi=+1}

EX′∼D−1

{

η(f ;Xi ,X
′)
}

−EX∼D+1,X′∼D−1

{

η(f ;X,X′)
}

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

1
m ∑
{i:yi=+1}

(

1
n ∑
{ j:y j=−1}

η(f ;Xi ,Xj)−EX′∼D−1

{

η(f ;Xi ,X
′)
}

)

+ EX′∼D−1

{

1
m ∑
{i:yi=+1}

η(f ;Xi ,X
′)−EX∼D+1

{

η(f ;X,X′)
}

}∣

∣

∣

∣

∣

≤ 1
m ∑
{i:yi=+1}

∣

∣

∣

∣

∣

1
n ∑
{ j:y j=−1}

η(f ;Xi ,Xj)−EX′∼D−1

{

η(f ;Xi ,X
′)
}

∣

∣

∣

∣

∣

+EX′∼D−1

{∣

∣

∣

∣

∣

1
m ∑
{i:yi=+1}

η(f ;Xi ,X
′)−EX∼D+1

{

η(f ;X,X′)
}

}∣

∣

∣

∣

∣

422

GENERALIZATION BOUNDS FOR THEAREA UNDER THE ROC CURVE

≤ sup
f ′∈F ,z∈X

∣

∣

∣

∣

∣

1
n ∑
{ j:y j=−1}

η(f ′;z,Xj)−EX′∼D−1

{

η(f ′;z,X′)
}

∣

∣

∣

∣

∣

+ sup
f ′∈F ,z∈X

∣

∣

∣

∣

∣

1
m ∑
{i:yi=+1}

η(f ′;Xi ,z)−EX∼D+1

{

η(f ′;X,z)
}

∣

∣

∣

∣

∣

= sup
f̌z∈F̌

∣

∣

∣

∣

∣

1
n ∑
{ j:y j=−1}

ν(f̌z;Xj ,−1)−EX′∼D−1

{

ν(f̌z;X
′,−1)

}

∣

∣

∣

∣

∣

+ sup
f̌z∈F̌

∣

∣

∣

∣

∣

1
m ∑
{i:yi=+1}

ν(f̌z;Xi ,+1)−EX∼D+1

{

ν(f̌z;X,+1)
}

∣

∣

∣

∣

∣

.

If we augment the notationL∗(h) used to denote the expected error rate with the distribution,e.g.,
L∗D(h), we thus get

sup
f∈F

∣

∣Â(f ;S)−A(f)
∣

∣ ≤ sup
f̌z∈F̌

∣

∣

∣
L̂∗(f̌z;S

(n)
−1)−L∗D−1

(f̌z)
∣

∣

∣
+ sup

f̌z∈F̌

∣

∣

∣
L̂∗(f̌z;S

(m)
+1)−L∗D+1

(f̌z)
∣

∣

∣
, (28)

whereS(m)
+1 andS(n)

−1 denote the subsequences ofScontaining thempositive andn negative examples,
respectively. Now, from the confidence interval interpretation of the result given in Eq. (27), we have

P
S(m)

+1∼Dm
+1







sup
f̌z∈F̌

∣

∣

∣
L̂∗(f̌z;S

(m)
+1)−L∗D+1

(f̌z)
∣

∣

∣
≥ 2

√

lns(F̌ ,2m)+ ln
(

12
δ
)

m







≤ δ
2

, (29)

P
S(n)
−1∼Dn

−1







sup
f̌z∈F̌

∣

∣

∣
L̂∗(f̌z;S

(n)
−1)−L∗D−1

(f̌z)
∣

∣

∣
≥ 2

√

lns(F̌ ,2n)+ ln
(

12
δ
)

n







≤ δ
2

. (30)

Combining Eqs. (28-30) gives the desired result.

References

Shivani Agarwal, Thore Graepel, Ralf Herbrich, and Dan Roth. A large deviation bound for the
area under the ROC curve. InAdvances in Neural Information Processing Systems 17. MIT
Press, 2005a.

Shivani Agarwal, Sariel Har-Peled, and Dan Roth. A uniform convergence bound for the area under
the ROC curve. InProceedings of the 10th International Workshop on Artificial Intelligenceand
Statistics, 2005b.

Martin Anthony and Peter Bartlett.Learning in Neural Networks: Theoretical Foundations. Cam-
bridge University Press, 1999.

Z. W. Birnbaum and O. M. Klose. Bounds for the variance of the Mann-Whitney statistic.Annals
of Mathematical Statistics, 38, 1957.

R. C. Buck. Partition of space.American Mathematical Monthly, 50:2541–544, 1943.

423

AGARWAL , GRAEPEL, HERBRICH, HAR-PELED AND ROTH

William W. Cohen, Robert E. Schapire, and Yoram Singer. Learning to order things. Journal of
Artificial Intelligence Research, 10:243–270, 1999.

Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Introduction to
Algorithms. MIT Press, second edition, 2001.

Corinna Cortes and Mehryar Mohri. AUC optimization vs. error rate minimization. In Sebastian
Thrun, Lawrence Saul, and Bernhard Schölkopf, editors,Advances in Neural Information Pro-
cessing Systems 16. MIT Press, 2004.

Corinna Cortes and Mehryar Mohri. Confidence intervals for the area under the ROC curve. In
Advances in Neural Information Processing Systems 17. MIT Press, 2005.

Koby Crammer and Yoram Singer. Pranking with ranking. In T. G. Dietterich, S. Becker, and
Z. Ghahramani, editors,Advances in Neural Information Processing Systems 14, pages 641–647.
MIT Press, 2002.

D. Van Dantzig. On the consistency and power of Wilcoxon’s two sample test.In Koninklijke
Nederlandse Akademie van Weterschappen, Series A, volume 54, 1915.

Luc Devroye. Exponential inequalities in nonparametric estimation. In G. Roussas, editor,Non-
parametric Functional Estimation and Related Topics, NATO ASI Series, pages 31–44. Kluwer
Academic Publishers, 1991.

Luc Devroye, Ĺaszĺo Györfi, and Ǵabor Lugosi. A Probabilistic Theory of Pattern Recognition.
Springer-Verlag, New York, 1996.

Bradley Efron and Robert Tibshirani.An Introduction to the Bootstrap. Chapman and Hall, 1993.

James P. Egan.Signal Detection Theory and ROC Analysis. Academic Press, 1975.

Yoav Freund, Raj Iyer, Robert E. Schapire, and Yoram Singer. Anefficient boosting algorithm for
combining preferences.Journal of Machine Learning Research, 4:933–969, 2003.

Thore Graepel, Ralf Herbrich, and John Shawe-Taylor. PAC-Bayesian compression bounds on the
prediction error of learning algorithms for classification.Machine Learning, 2005. To appear.

James A. Hanley and Barbara J. McNeil. The meaning and use of the area under a receiver operating
characteristic (ROC) curve.Radiology, 143:29–36, 1982.

Ralf Herbrich, Thore Graepel, and Klaus Obermayer. Large margin rank boundaries for ordinal
regression.Advances in Large Margin Classifiers, pages 115–132, 2000.

Simon I. Hill, Hugo Zaragoza, Ralf Herbrich, and Peter J. W. Rayner. Average precision and the
problem of generalisation. InProceedings of the ACM SIGIR Workshop on Mathematical and
Formal Methods in Information Retrieval, 2002.

Erich L. Lehmann.Nonparametrics: Statistical Methods Based on Ranks. Holden-Day, San Fran-
cisco, California, 1975.

424

GENERALIZATION BOUNDS FOR THEAREA UNDER THE ROC CURVE

Nick Littlestone and Manfred Warmuth. Relating data compression and learnability. Technical
report, University of California Santa Cruz, 1986.

Jǐrı́ Matoǔsek.Lectures on Discrete Geometry. Springer-Verlag, New York, 2002.

Colin McDiarmid. On the method of bounded differences. InSurveys in Combinatorics 1989, pages
148–188. Cambridge University Press, 1989.

Saharon Rosset. Model selection via the AUC. InProceedings of the 21st International Conference
on Machine Learning, 2004.

Vladimir N. Vapnik. Estimation of Dependences Based on Empirical Data. Springer-Verlag, New
York, 1982.

425

Journal of Machine Learning Research 6 (2005) 427–451 Submitted 9/04; Published 4/05

Learning with Decision Lists of Data-Dependent Features

Mario Marchand MARIO.MARCHAND@IFT.ULAVAL .CA

Département IFT-GLO
Universit́e Laval
Québec, Canada, G1K-7P4

Marina Sokolova SOKOLOVA@SITE.UOTTAWA .CA

School of Information Technology and Engineering
University of Ottawa
Ottawa, Ontario K1N-6N5, Canada

Editor: Manfred K. Warmuth

Abstract
We present a learning algorithm for decision lists which allows features that are constructed from
the data and allows a trade-off between accuracy and complexity. We provide bounds on the gen-
eralization error of this learning algorithm in terms of thenumber of errors and the size of the
classifier it finds on the training data. We also compare its performance on some natural data sets
with the set covering machine and the support vector machine. Furthermore, we show that the
proposed bounds on the generalization error provide effective guides for model selection.

Keywords: decision list machines, set covering machines, sparsity, data-dependent features, sam-
ple compression, model selection, learning theory

1. Introduction

The set covering machine (SCM) has recently been proposed by Marchand and Shawe-Taylor (2001,
2002) as an alternative to the support vector machine (SVM) when the objective is to obtain a sparse
classifier with good generalization. Given a feature space, the SCM attemptsto find the smallest
conjunction (or disjunction) of features that gives a small training error. In contrast, the SVM
attempts to find the maximum soft-margin separating hyperplane on all the features. Hence, the two
learning machines are fundamentally different in what they are aiming to achieve on the training
data.

To investigate if it is worthwhile to consider larger classes of functions than just the conjunctions
and disjunctions that are used in the SCM, we focus here on the class of decision lists (Rivest, 1987)
because this class strictly includes both conjunctions and disjunctions while being strictly included
in the class of linear threshold functions (Ehrenfeucht and Haussler, 1989; Blum and Singh, 1990;
Marchand and Golea, 1993).

From a theoretical point of view, the class of decision lists has been extensively studied (Rivest,
1987; Dhagat and Hellerstein, 1994; Eiter et al., 2002; Anthony, 2004)and a few learning algorithms
have been proposed. The first learning algorithm, due to Rivest (1987), PAC learns the class of
decision lists (also known as 1-decision lists) over the input attributes but mayreturn a classifier that
depends on all the input attributes even when the numberr of relevant attributes is much smaller
than the total numbern of attributes. Dhagat and Hellerstein (1994) and Kivinen et al. (1992) have

c©2005 Mario Marchand and Marina Sokolova.

MARCHAND AND SOKOLOVA

proposed an attribute efficient algorithm that outputs a decision list ofO(rk logk m) attributes for
a training set ofm examples wherek denotes the number ofalternationsof the target decision
list (see the definition in Section 2). However, both of these algorithms are unattractive for the
practitioner because they do not provide an accuracy-complexity tradeoff. Indeed, real-world data
are often noisy and, therefore, simpler functions that make some training errors might be better
than more complex functions that make no training errors. Since the amount ofnoise is problem-
specific, a learning algorithm should provide to the user a means to control the tradeoff between
accuracy and the complexity of a classifier. Ideally, the user should be able to choose from a wide
range of functions that includes very simple functions (like constants), that almost always underfit
the data, and very complex functions that often overfit the data. But this latter requirement for
decision lists can be generally achieved only if the set of features used for the decision list is data-
dependent. It is only with a data-dependent set of features that a restricted class of functions like
decision lists can almost always overfit any training data set (that does not contain too many pairs of
identical examples with opposite classification labels). Hence, in this paper, we present a learning
algorithm for decision lists which can be used with any set of features, including those that are
defined with respect to the training data, and that provides some “model selection parameters” (also
called learning parameters) for allowing the user to choose the proper tradeoff between accuracy
and complexity.

We denote bydecision list machine(DLM) any classifier which computes a decision list of
Boolean-valued features, including features that are possibly constructed from the data. In this
paper, we use the set of features known as data-dependent balls (Marchand and Shawe-Taylor,
2001; Sokolova et al., 2003) and the set of features known as data-dependent half-spaces (Marchand
et al., 2003). We show, on some natural data sets, that the DLM can provide better generalization
than the SCM with the same set of features.

We will see that the proposed learning algorithm for the DLM with data-dependent features
is effectively compressing the training data into a small subset of examples which is called the
compression set. Hence, we will show that the DLM with data-dependent features is an example
of a sample-compression algorithm and we will thus propose a general riskbound that depends on
the number of examples that are used in the final classifier and the size of theinformation message
needed to identify the final classifier from the compression set. The proposed bound will apply
to any compression set-dependent distribution of messages (see the definition in Section 4) and
allows for the message set to be of variable size (in contrast with the sample compression bound
of Littlestone and Warmuth (1986) that requires fixed size). We will apply thisgeneral risk bound
to DLMs by making appropriate choices for a compression set-dependentdistribution of messages
and we will show, on natural data sets, that these specialized risk boundsare generally slightly more
effective than K-fold cross validation for selecting a good DLM model.

This paper extends the previous preliminary results of Sokolova et al. (2003).

2. The Decision List Machine

Let x denote an arbitraryn-dimensional vector of the input spaceX which is an arbitrary subset of
Rn. We consider binary classification problems for which the training setS= P∪N consists of a
setP of positive training examples and a setN of negative training examples. We define afeature

as an arbitrary Boolean-valued function that mapsX onto {0,1}. Given any setH = {hi(x)}|H |
i=1

of featureshi(x) and any training setS, the learning algorithm returns a small subsetR ⊂ H of

428

DECISION L ISTS OFDATA -DEPENDENTFEATURES

features. Given that subsetR , and an arbitrary input vectorx, the outputf (x) of the decision list
machine (DLM) is given by the following rule

If (h1(x)) thenb1

Else If (h2(x)) thenb2

. . .

Else If (hr(x)) thenbr

Elsebr+1,

where eachbi ∈ {0,1} defines the output off (x) if and only if hi is the first feature to be satisfied on
x (i.e. the smallesti for whichhi(x) = 1). The constantbr+1 (wherer = |R |) is known as thedefault
value. Note thatf computes a disjunction of thehis wheneverbi = 1 for i = 1. . . r andbr+1 = 0. To
compute a conjunction ofhis, we simply place inf the negation of eachhi with bi = 0 for i = 1. . . r
andbr+1 = 1. Note, however, that a DLMf that contains one or manyalternations(i.e. a pair
(bi ,bi+1) for whichbi 6= bi+1 for i < r) cannot be represented as a (pure) conjunction or disjunction
of his (and their negations). Hence, the class of decision lists strictly includes conjunctions and
disjunctions.

We can also easily verify that decision lists are a proper subset of linear threshold functions in
the following way. Given a DLM withr features as above, we assign a weight valuewi to eachhi in
the DLM in order to satisfy

|wi | >
r

∑
j=i+1

|w j | ∀i ∈ {1, . . . , r}.

Let us satisfy these constraints with|wi |= 2r−i for i ∈ {1, . . . , r}. Then, for eachi, we setwi = +|wi |
if bi = 1, otherwise we setwi = −|wi | if bi = 0. For the thresholdθ we useθ = −1/2 if br+1 = 1
andθ = +1/2 if br+1 = 0. With this prescription, given any examplex, we always have that

sgn

(

r

∑
i=1

wihi(x)−θ

)

= 2bk−1,

wherek is the smallest integer for whichhk(x) = 1 in the DLM or k = r + 1 if hi(x) = 0 ∀i ∈
{1, . . . , r}. Hence, with this prescription, the output of the linear threshold function is the same as
the output of the DLM for all inputx. Finally, to show that the subset is proper we simply point out
that a majority vote of three features is a particular case of a linear thresholdfunction that cannot
be represented as a decision list since the output of the majority vote cannotbe determined from the
value of a single feature.

From our definition of the DLM, it seems natural to use the following greedy algorithm for
building a DLM from a training set. For a given setS′ = P′ ∪N′ of examples (whereP′ ⊆ P and
N′ ⊆N) and a given setH of features, consider only the featureshi ∈ H which either havehi(x) = 0
for all x ∈ P′ or hi(x) = 0 for all x ∈ N′. Let Qi be the subset of examples on whichhi = 1 (our
constraint on the choice ofhi implies thatQi contains only examples having the same class label).
We say thathi is covering Qi . The greedy algorithm starts withS′ = S and an empty DLM. Then
it finds ahi with the largest|Qi | and appends(hi ,b) to the DLM (whereb is the class label of the
examples inQi). It then removesQi from S′ and repeats to find thehk with the largest|Qk| until

429

MARCHAND AND SOKOLOVA

eitherP′ or N′ is empty. It finally assignsbr+1 to the class label of the remaining non-empty set of
examples.

Following Rivest (1987), this greedy algorithm is assured to build a DLM that makes no training
errors wheneverthere existsa DLM on a setE ⊆ H of features that makes zero training errors.
However, this constraint is not really required in practice since we do want to permit the user of a
learning algorithm to control the tradeoff between the accuracy achievedon the training data and
the complexity (here the size) of the classifier. Indeed, a small DLM which makes a few errors
on the training set might give better generalization than a larger DLM (with morefeatures) which
makes zero training errors. One way to include this flexibility is to early-stop thegreedy algorithm
when there remains a few more training examples to be covered. But a further reduction in the size
of the DLM can be accomplished by considering featureshi that cover examples of both classes.
Indeed, ifQi denotes the subset ofS′ on whichhi = 1 (as before), letPi denote the subset ofP′ that
belongs toQi and letNi be the subset ofN′ that belongs toQi (thusQi = Pi ∪Ni). In the previous
greedy algorithm, we were considering only featureshi for which eitherPi or Ni was empty. Now
we are willing to consider features for which neitherPi nor Ni is empty whenever max(|Pi |, |Ni |) is
substantially larger than before. In other words, we want now to consider features that may err on a
few examples whenever they can cover many more examples. We thereforedefine theusefulness Ui
of featurehi by

Ui
def
= max{|Pi |− pn|Ni |, |Ni |− pp|Pi |} ,

wherepn denotes thepenaltyof making an error on a negative example whereaspp denotes the
penalty of making an error on a positive example. Indeed, whenever we add to a DLM a featurehi

for which Pi andNi are both non empty, the outputbi associated withhi will be 1 if |Pi |− pn|Ni | ≥
|Ni |− pp|Pi | or 0 otherwise. Hence, the DLM will necessarily incorrectly classify the examples in
Ni if bi = 1 or the examples inPi if bi = 0.

Hence, to include this flexibility in choosing the proper tradeoff between complexity and accu-
racy, each greedy step will be modified as follows. For a given training set S′ = P′∪N′, we will select
a featurehi with the largest value ofUi and append(hi ,1) to the DLM if |Pi |− pn|Ni | ≥ |Ni |− pp|Pi |,
otherwise, we append(hi ,0) to the DLM. If (hi ,1) was appended, we will then remove fromS′

every example inPi (since they are correctly classified by the current DLM)and we will also re-
move fromS′ every example inNi (since a DLM with this feature is already misclassifyingNi , and,
consequently, the training error of the DLM will not increase if later features err on the examples
in Ni). Similarly if (hi ,0) was appended, we will then remove fromS′ the examples inQi = Ni ∪Pi .
Hence, we recover the simple greedy algorithm whenpp = pn = ∞.

The formal description of our learning algorithm is presented in Figure 1. Note that we always
setbr+1 = ¬br since, otherwise, we could remove therth feature without changing the classifier’s
output f for any inputx.

The penalty parameterspp andpn and the early stopping points of BuildDLM are the model-
selection parameters that give the user the ability to control the proper tradeoff between the training
accuracy and the size of the DLM. Their values could be determined either by using K-fold cross-
validation, or by computing the risk bounds proposed below. It thereforegeneralizes the learning
algorithm of Rivest (1987) by providing this complexity-accuracy tradeoff and by permitting the
use of any kind of Boolean-valued features, including those that are constructed from the training
data.

430

DECISION L ISTS OFDATA -DEPENDENTFEATURES

Algorithm BuildDLM(S, pp, pn,s,H)

Input: A set S of examples, the penalty valuespp and pn, a stopping points, and a set

H = {hi(x)}|H |
i=1 of Boolean-valued features.

Output: A decision listf consisting of an ordered setR = {(hi ,bi)}r
i=1 of featureshi with their

corresponding output valuesbi , and a default valuebr+1.

Initialization: R = /0, r = 0, S′ = S, b0 = ¬a (wherea is the label of the majority class).

1. For eachhi ∈ H , let Qi = Pi ∪Ni be the subset ofS′ for which hi = 1 (wherePi consists of
positive examples andNi consists of negative examples). For eachhi computeUi , where:

Ui
def
= max{|Pi |− pn|Ni |, |Ni |− pp|Pi |}

2. Let hk be a feature with the largest value ofUk. If Qk = /0 then go to step 6 (no progress
possible).

3. If (|Pk|− pn|Nk| ≥ |Nk|− pp|Pk|) then append(hk,1) to R . Else append(hk,0) to R .

4. LetS′ = S′−Qk and letr = r +1.

5. If (r < s andS′ contains examples of both classes) then go to step 1

6. Setbr+1 = ¬br . Return f .

Figure 1: The learning algorithm for the decision list machine

The time complexity ofBuildDLM is trivially bounded as follows. Assuming a time of at most
t for evaluating one feature on one example, it takes a time of at most|H |mt to find the first feature
of the DLM for a training set ofm examples. For the data-dependent set of features presented in
Section 3.1, it is (almost) always possible to find a feature that covers at least one example. In that
case, it takes a time ofO(|H |mst) to find s features. Note that the algorithm must stop if, at some
greedy step, there does not exists a feature that covers at least one training example.

Generally, we can further reduce the size of the DLM by observing that any featurehi with
bi = br+1 can be deleted from the DLM if there does not exist a training examplex with label
y = br+1 and another featureh j with j > i andb j 6= bi for which hi(x) = h j(x) = 1 (since, in that
case, featurehi can be moved to the end of the DLM without changing the output for any correctly
classified training example). The algorithmPruneDLM of Figure 2 deletes all such nodes from the
DLM.

We typically use both algorithms in the following way. Given a training set, we first run Build-
DLM without early stopping (i.e., with parameters set to infinity) to generate what we call atem-
plateDLM. Then we consider all the possible DLMs that can be obtained by truncating this tem-
plate. More precisely, if the template DLM containsr features, we buildr +1 possible DLMs: the
DLM that contains zero features (a constant function), the DLM that contains the first feature only,

431

MARCHAND AND SOKOLOVA

Algorithm PruneDLM(S, f)

Input: A setS of examples, a decision listf consisting of an ordered setR = {(hi ,bi)}r
i=1 of

featureshi with their corresponding output valuesbi , and a default valuebr+1.

Output: The same decision listf with, possibly, some features removed.

Initialization: l = r

1. Let(hk,bk) ∈ R be the pair with the largest value ofk such thatbk = br+1 andk < l .

2. If (@(h j ,b j) ∈ R : j > k, b j 6= bk, h j(x) = hk(x) for some(x,y) ∈ S with y = br+1) then
delete(hk,bk) from R .

3. l = k.

4. If (l > 1) then go to step 1; else stop.

Figure 2: The pruning algorithm for the decision list machine

the DLM that contains the first two features, and so on, up to the DLM that contains allr features.
Then we runPruneDLM on all these DLMs to try to reduce them further. Finally all these DLMs
are tested on a provided testing set.

It is quite easy to build artificial data sets for whichPruneDLM decreases substantially the size
of the DLM. However, for the natural data sets used in Section 7,PruneDLM almost never deleted
any node from the DLM returned byBuildDLM.

3. Data-Dependent Features

The set ofdata-dependent balls(Marchand and Shawe-Taylor, 2001) anddata-dependent half-
spaces(Marchand et al., 2003) were introduced for their usage with the SCM. Wenow need to
adapt their definitions for using them with the DLM.

3.1 Balls and Holes

Let d : X 2 → R be a metric for our input spaceX . Let hc,ρ be a feature identified by acenterc and a
radiusρ. Featurehc,ρ is said to be aball iff hc,ρ(x) = 1 ∀x : d(x,c) ≤ ρ and 0 otherwise. Similarly,
featurehc,ρ is said to be ahole iff hc,ρ(x) = 1 ∀x : d(x,c) > ρ and 0 otherwise. Hence, a ball is a
feature that covers the examples that are located inside the ball; whereas ahole covers the examples
that are located outside. In general, both types of features will be used inthe DLM.

Partly to avoid computational difficulties, we are going to restrict the centers of balls and holes
to belong to the training set,i.e., each centerc must be chosen among{xi : (xi ,yi) ∈ S} for a given
training setS. Moreover, given a centerc, the set of relevant radius values are given by the positions
of the other training examples,i.e., the relevant radius values belong to{d(c,xi) : (xi ,yi) ∈ S}.
Hence, each ball and hole is identified by only two training examples: a centerc and aborder b
that identifies the radius withd(c,b). Therefore, a DLM made of these two-example features is

432

DECISION L ISTS OFDATA -DEPENDENTFEATURES

effectively compressing the training data into the smaller set of examples usedfor its features. This
is the other reason why we have constrained the centers and radii to thesevalues. Hence, given
a training setS of m examples, the setH of features used by the DLM will containO(m2) balls
and holes. This is a data-dependent set of features since the featuresare defined with respect to the
training dataS.

Whenever a ball (or hole)hc,ρ is chosen to be appended to the DLM, we must also provide an
output valueb which will be the output of the DLM on examplex whenhc,ρ is the first feature of
the DLM that hashc,ρ(x) = 1. In this paper we always chooseb to be the class label ofc if hc,ρ is
a ball. If hc,ρ is a hole, then we always chooseb to be the negation of the class label ofc. We have
not explored the possibility of using balls and holes with an outputnotgiven by the class label of its
center because, as we will see later, this would have required an additional information bit in order
to reconstruct the ball (or hole) from its center and border and, consequently, would have given a
looser generalization error bound without providing additional discriminative power (i.e., power to
fit the data) that seemed “natural”.

To avoid having examples directly on the decision surface of the DLM, the radiusρ of a ball of
centerc will always be given byρ = d(c,b)− ε for some training exampleb chosen for the border
and some fixed and very small positive valueε. Similarly, the radius of a hole of centerc will
always be given byρ = d(c,b)+ ε. We have not chosen to assign the radius values “in between”
two training example since this would have required three examples per ball and hole and would
have decreased substantially the tightness of our generalization error bound without providing a
significant increase of discriminative power.

With these choices for centers and radii, it is straightforward to see that, for any penalty values
pp andpn, the set of balls having the largest usefulnessU always contains a ball with a center and
border of opposite class labels whereas the set of holes having the largest usefulness always contains
a hole having a center and border of the same class label. Hence, we will only consider such balls
and holes in the set of features for the DLM. For a training set ofmp positive examples andmn

negative examples we have exactly 2mpmn such balls andm2
p +m2

n such holes. We thus provide to
BuildDLM a setH of at most(mp +mn)

2 features.
Finally, note that this set of features has the property that there always exists a DLM of these

features that correctly classifies all the training setS provided thatS does not contain a pair of
contradictory examples,i.e., (x,y) and(x′,y′) such thatx = x′ andy 6= y′. Therefore, this feature
set gives to the user the ability to choose the proper tradeoff between training accuracy and function
size.

3.2 Half-Spaces

With the use of kernels, each input vectorx is implicitly mapped into a high-dimensional vector
φφφ(x) such thatφφφ(x) ·φφφ(x′) = k(x,x′) (the kernel trick). We consider the case where each feature is
a half-space constructed from a set of 3 points{φφφa,φφφb,φφφc} where eachφφφl is the image of an input
examplexl taken from the training setS. We consider the case wherexa andxb have opposite class
labels and the class label ofxc is the same as the class label ofxb. The weight vectorw of such a

half-spacehc
a,b is defined byw def

= φφφa−φφφb and its thresholdt by t
def
= w ·φφφc + ε whereε is a small

positive real number. We useε > 0 to avoid having examples directly on the decision surface of the
DLM. Hence

hc
a,b(x)

def
= sgn{w ·φφφ(x)− t} = sgn{k(xa,x)−k(xb,x)− t},

433

MARCHAND AND SOKOLOVA

where
t = k(xa,xc)−k(xb,xc)+ ε.

Whenever a half-spacehc
a,b is chosen to be appended to the DLM, we must also provide an

output valueb which will be the output of the DLM on examplex whenhc
a,b is the first feature of

the DLM havinghc
a,b(x) = 1. From our definition above, we chooseb to be the class label ofφφφa.

Hence, a DLM made of these three-example features is effectively compressing the training set into
the smaller set of examples used for its features.

Given a training setSof m= mp +mn examples, the setH of features considered by the DLM
will contain at mostm·mp ·mn half-spaces. However, in contrast with the set of balls and holes, we
are not guaranteed to always be able to cover all the training setSwith these half-spaces.

Finally, note that this set of features (in the linear kernel casek(x,x′) = x · x′) was already
proposed by Hinton and Revow (1996) for decision tree learning but noformal analysis of their
learning method has been given.

4. A Sample Compression Risk Bound

Since our learning algorithm tries to build a DLM with the smallest number of data-dependent fea-
tures, and since each feature is described in terms of small number of training examples (two for
balls and holes and three for half-spaces), we can thus think of our learning algorithm as compress-
ing the training set into a small subset of examples that we call thecompression set.

Hence, in this section, we provide a general risk bound that depends onthe number of examples
that are used in the final classifier and the size of the information message needed to identify the
final classifier from the compression set. Such a risk bound was first obtained by Littlestone and
Warmuth (1986). The bound provided here allows the message set to be ofvariable size (whereas
previous bounds require fixed size). In the next section, we will compare this bound with other well
known bounds. Later, we apply this general risk bound to DLMs by makingappropriate choices
for a compression set-dependent distribution of messages. Finally, we willshow, on natural data
sets, that these specialized risk bounds provide an effective guide forchoosing the model-selection
parameters ofBuildDLM.

Recall that we consider binary classification problems where the input space X consists of an

arbitrary subset ofRn and the output spaceY = {0,1}. An examplez def
= (x,y) is an input-output

pair wherex ∈ X andy∈ Y . We are interested in learning algorithms that have the following prop-
erty. Given a training setS= {z1, . . . ,zm} of m examples, the classifierA(S) returned by algorithm
A is described entirely by twocomplementary sources of information: a subsetzi of S, called the
compression set, and amessage stringσ which represents the additional information needed to ob-
tain a classifier from the compression setzi. This implies that there exists areconstruction function
R , associated toA, that outputs a classifierR (σ,zi) when given an arbitrary compression setzi and
message stringσ chosen from the setM (zi) of all distinct messages that can be supplied toR with
the compression setzi. It is only when such anR exists that the classifier returned byA(S) is always
identified by a compression setzi and a message stringσ.

Given a training setS, the compression setzi is defined by a vectori of indices such that

i def
= (i1, i2, . . . , i|i|) (1)

with : i j ∈ {1, . . . ,m} ∀ j

and : i1 < i2 < .. . < i|i|,

434

DECISION L ISTS OFDATA -DEPENDENTFEATURES

where|i| denotes the number of indices present ini.
The classical perceptron learning rule and support vector machines are examples of learning

algorithms where the final classifier can be reconstructed solely from a compression set (Graepel
et al., 2000, 2001). In contrast, we will see in the next section that the reconstruction function for
DLMs needs both a compression set and a message string.

We seek a tight risk bound for arbitrary reconstruction functions that holds uniformly for all
compression sets and message strings. For this, we adopt the PAC setting where each examplez is
drawn according to a fixed, but unknown, probability distributionD on X ×Y . The riskR(f) of
any classifierf is defined as the probability that it misclassifies an example drawn according toD:

R(f)
def
= Pr(x,y)∼D (f (x) 6= y) = E(x,y)∼DI(f (x) 6= y),

whereI(a) = 1 if predicatea is true and 0 otherwise. Given a training setS= {z1, . . . ,zm} of m
examples, theempirical risk RS(f) onS, of any classifierf , is defined according to

RS(f)
def
=

1
m

m

∑
i=1

I(f (xi) 6= yi)
def
= E(x,y)∼SI(f (x) 6= y).

Let Zm denote the collection ofm random variables whose instantiation gives a training sample
S= zm = {z1, . . . ,zm}. Let us denote PrZm∼Dm(·) by PZm(·). The basic method to find a bound on
the true risk of a learning algorithmA, is to boundP′ where

P′ def
= PZm (R(A(Zm)) > ε) . (2)

Our goal is to find the smallest value forε such thatP′ ≤ δ since, in that case, we have

PZm (R(A(Zm)) ≤ ε) ≥ 1−δ.

Recall that classifierA(zm) is described entirely in terms of a compression setzi ⊂ zm and a
message stringσ ∈ M (zi). Let I be the set of all 2m vectors of indicesi as defined by Equation 1.
Let M (zi) be the set of all messagesσ that can be attached to compression setzi. We assume that
the empty message is always present inM (zi) so that we always have|M (zi)| ≥ 1. Since any
i ∈ I andσ ∈ M (zi) coulda priori be reached by classifierA(zm), we boundP′ by the following
probability

P′ ≤ PZm (∃i ∈ I : ∃σ ∈ M (Zi) : R(R (σ,Zi)) > ε) def
= P′′,

whereZi are the random variables whose instantiation giveszi and whereε depends onZi,σ and
the amount of training errors. In the sequel, we denote byi the vector of indices made of all the
indices not present ini. SincePZm(·) = EZiPZi|Zi(·), we have (by the union bound)

P′′ ≤ ∑
i∈I

EZiPZi|Zi (∃σ ∈ M (Zi) : R(R (σ,Zi)) > ε)

≤ ∑
i∈I

EZi ∑
σ∈M (Zi)

PZi|Zi (R(R (σ,Zi)) > ε) . (3)

We will now stratifyPZi|Zi(R(R (σ,Zi)) > ε) in terms of the errors thatR (σ,Zi) can make on
the training examples that are not used for the compression set. Let Ii denote the set of vectors of

435

MARCHAND AND SOKOLOVA

indices where each index is not present ini. Given a training samplezm and a compression setzi,
we denote byRzi

(f) the vector of indices pointing to the examples inzi which are misclassified by
f . We have

PZi|Zi (R(R (σ,Zi)) > ε)) = ∑
j∈Ii

PZi|Zi

(

R(R (σ,Zi)) > ε,RZi
(R (σ,Zi)) = j

)

. (4)

But now, since the classifierR (σ,Zi) is fixed when(σ,Zi) is fixed, and since eachZi is independent
and identically distributed according to the same (but unknown) distributionD, we have

PZi|Zi

(

R(R (σ,Zi)) > ε,RZi
(R (σ,Zi)) = j

)

≤ (1− ε)m−|i|−|j|. (5)

Hence, by using Equations 3, 4, and 5, we have

P′′ ≤ ∑
i∈I

∑
j∈Ii

EZi ∑
σ∈M (Zi)

[1− ε(σ,Zi, j)]
m−|i|−|j| , (6)

where we have now shown explicitly the dependence ofε on Zi, σ, andj.
Given any compression setzi, let us now use any functionPM (zi)(σ) which has the property that

∑
σ∈M (zi)

PM (zi)(σ) ≤ 1 (7)

and can, therefore, be interpreted as compression set-dependent distribution of messages when it
sums to one. Let us then chooseε such that

(

m
|i|

)(

m−|i|
|j|

)

[1− ε(σ,Zi, |j|)]m−|i|−|j| = PM (Zi)(σ) ·ζ(|i|) ·ζ(|j|) ·δ, (8)

where, for any non-negative integera, we define

ζ(a)
def
=

6
π2(a+1)−2. (9)

In that case, we have indeed thatP′ ≤ δ since∑∞
i=1 i−2 = π2/6. Any choice forζ(a) is allowed as

long as it is a non negative function who’s sum is bounded by 1.
The solution to Equation 8 is given by

ε(σ,Zi, |j|,δ) = 1−exp

(

−1
m−|i|− |j|

[

ln

(

m
|i|

)

+ ln

(

m−|i|
|j|

)

+ ln

(

1
PM (Zi)(σ)

)

+

ln

(

1
ζ(|i|)ζ(|j|)δ

)])

. (10)

We have therefore shown the following theorem:

Theorem 1 For any δ ∈ (0,1] and for any sample compression learning algorithm with a recon-
struction functionR that maps arbitrary subsets of a training set and information messages to
classifiers, we have

PZm
{

∀i ∈ I ,σ ∈ M (Zi) : R(R (σ,Zi)) ≤ ε(σ,Zi, |j|,δ)
}

≥ 1−δ.

436

DECISION L ISTS OFDATA -DEPENDENTFEATURES

Although the risk bound given by Theorem 1 (and Equation 10) increases with the amount|j|
of training errors made on the examples that do not belong to the compressionsetzi, it is interesting
to note that it isindependentof the amount of errors made on the compression set. However,
a reconstruction function will generally need less additional information when it is constrained
to produce a classifier making no errors with the compression set. Hence, the above risk bound
will generally be smaller for sample-compression learning algorithms that always return a classifier
making no errors on the compression set. But this constraint might, in turn, force the learner to
produce classifiers with larger compression sets.

Finally note that the risk bound is small for classifiers making a small number|j| of training er-
rors, having a small compression set size|i|, and having a message stringσ with large prior “proba-
bility” PM (Zi)(σ). This “probability” is usually larger for short message strings since larger message
strings are usually much more numerous at sharing the same “piece” (or fraction) of probability.

5. Comparison with Other Risk Bounds

Although the risk bound of Theorem 1 is basically a sample compression boundit, nevertheless,
applies to a much broader class of learning algorithms than just sample compression learning al-
gorithms. Indeed the risk bound depends on two complementary sources ofinformation used to
identify the classifier: the sample compression setzi and the message stringσ. In fact, the bound
still holds when the sample compression set vanishes and when the classifierh= R (σ) is described
entirely in terms of a message stringσ. It is therefore worthwhile to compare the risk bound of
Theorem 1 to other well-known bounds.

5.1 Comparison with Data-Independent Bounds

The risk bound of Theorem 1 can be qualified as “data-dependent” when the learning algorithm is
searching among a class of functions (classifiers) described in terms of asubsetzi of the training
set. Nevertheless, the bound still holds when the class of functions is “data-independent” and when
individual functions of this class are identified only in terms of a (data-independent) messageσ. In
that limit, |i| = 0 and the risk boundε depends only onσ and the number|j| = k of training errors:

ε(σ,k,δ) = 1−exp

(−1
m−k

[

ln

(

m
k

)

+ ln

(

1
PM (σ)

)

+ ln

(

1
ζ(k)δ

)])

. (11)

Since here each classifierh is given byR (σ) for someσ ∈ M , we can considerM as defining a
data-independent set of classifiers. This set may contain infinitely many classifiers but it must be
countable. Indeed all that is required is

∑
σ∈M

P(σ) ≤ 1

for any fixed priorP overM . If we further restrict the learning algorithm to produce a classifier that
always make no training errors (k = 0) and if we chooseP(σ) = 1/|M | ∀σ ∈ M for some finite
setM , we obtain the famous Occam’s razor bound (Blumer et al., 1987)

ε(δ) = 1−exp

(−1
m

[

ln

(|M |
δ

)])

≤ 1
m

[

ln

(|M |
δ

)]

, (12)

437

MARCHAND AND SOKOLOVA

where we have used 1−exp(−x) ≤ x. Hence the bound of Equation 11 is a generalization of the
Occam’s razor bound to the case of an arbitrary (but fixed) priorP(σ) over a countably infinite
setM of classifiers which are possibly making some training errors. Consequently, the bound of
Theorem 1 is a generalization of the Occam’s razor bound to the case where the classifiers are
identified by two complementary sources of information: the message stringσ and the compression
setzi.

The proposed bound is obtained by using a union bound over the possiblecompression subsets
of the training set and over the possible messagesσ ∈ M (zi). This bound therefore fails when we
consider a continuous set of classifiers. In view of the fact that the setof DLMs of data-dependent
features is a subset of the same class of functions but with features that are not constrained to be
identified by pairs or triples of training examples, why not use the well-knownVapnik-Chervonenkis
(VC) bounds (Vapnik, 1998) or Rademacher bounds (Mendelson, 2002) to characterize the learn-
ing algorithms discussed in this paper? The reason is that the proposed algorithms are indeed
constrained to use a data-dependent set of features identified by pairsand triples of training exam-
ples. The risk bound of Theorem 1 therefore reflects more the set of possible classifiers that can
be produced by the proposed algorithms than the VC or Rademacher bounds which are suited for
algorithms that can produce any classifier of a continuous set.

5.2 Comparison with Other Sample Compression Risk Bounds

The risk bound of Theorem 1 can be reduced to the sample compression bounds of Littlestone and
Warmuth (1986) if we perform the following changes and specializations:

• We restrict the setM of possible messages to be a finite set which is the same for all possible
compression setszi.

• For the distribution of messages, we use1

PM (σ) =
1

|M | ∀σ ∈ M .

• Theorem 1 is valid for any functionζ that satisfies∑m
i=0 ζ(i) ≤ 1. Here we will useζ(a) =

1/(m+1) ∀a∈ {0, . . . ,m}. This choice increases the bound since 6π−2(a+1)−2 > 1/(m+
1) for a <

√

6(m+1)/π−1.

• We use the approximation 1−exp(−x) ≤ x to obtain a looser (but somewhat easier to under-
stand) bound.

With these restrictions and changes we obtain the following bounds for|j| = 0 and|j| ≥ 0:

ε(|i|,δ) ≤ 1
m−|i|

[

ln

(

m
|i|

)

+ ln

(|M |
δ

)

+ ln(m+1)

]

for |j| = 0, (13)

ε(|i|, |j|,δ) ≤ 1
m−|i|− |j|

[

ln

(

m
|i|

)

+ ln

(

m−|i|
|j|

)

+

ln

(|M |
δ

)

+2ln(m+1)

]

for |j| ≥ 0. (14)

1. The case of|M | = 1 (no message strings used) is also treated by Floyd and Warmuth (1995).

438

DECISION L ISTS OFDATA -DEPENDENTFEATURES

Apart from the ln(m+1) terms, these bounds are the same as the sample compression bounds of Lit-
tlestone and Warmuth (1986). The ln(m+ 1) terms are absent from the Littlestone and Warmuth
compression bounds because their bounds hold uniformly for all compression sets of afixed size
|i| and for all configurations of training error points of a fixed amount|j|. A ln(m+ 1) term oc-
curs in the bound of Equation 13 from the extra requirement to hold uniformlyfor all compression
set sizes. Still an extra ln(m+ 1) term occurs in Equation 14 from the extra requirement to hold
uniformly for all amounts|j| of training errors. The bound of Theorem 1 holds uniformly for all
compression sets of arbitrary sizes and for all configurations of trainingerror points of an arbitrary
amount. But instead of usingζ(a) = 1/(m+ 1) ∀a ∈ {0, . . . ,m} we have used the tighter form
given by Equation 9.

It is also interesting to compare the bounds of Equations 13 and 14 with the sample compression
bounds given by Theorems 5.17 and 5.18 of Herbrich (2002). The bound of Equation 13 is the same
as the bound of Theorem 5.17 of Herbrich (2002) when|M | = 1 (no messages used). When the
classifier is allowed to make training errors, the bound of Equation 14 is tighterthan the lossy
compression bound of Theorem 5.18 of Herbrich (2002) when|j| � msince the latter have used the
Hoeffding inequality which becomes tight only when|j| is close tom/2.

Consequently, the bound of Theorem 1 is tighter than the above-mentioned sample compression
bounds for three reasons. First, the approximation 1−exp(−x)≤ x was not performed. Second, the
functionζ(a) of Equation 9 was used instead of the looser factor of 1/(m+ 1). Third, in contrast
with the other sample compression bounds, the bound of Theorem 1 is valid for anya priori defined
sample compression-dependent distribution of messagesPM (zi)(σ).

This last characteristic may be the most important contribution of Theorem 1. Indeed, we feel
that it is important to allow the set of possible messages and the message set size to depend on
the sample compressionzi since the class labels of the compression set examples give information
about the set of possible data-dependent features that can be constructed fromzi. Indeed, it is
conceivable that for somezi, very little extra information may be needed to identify the classifier
whereas for some otherzi, more information may be needed. Consider, for example, the case
where the compression set consists of two examples that are used by the reconstruction function
R to obtain a single-ball classifier. For the reconstruction function of the setcovering machine
(described in the next section), a ball border must be a positive example whereas both positive and
negative examples are allowed for ball centers. In that case, if the two examples in the compression
set have a positive label, the reconstruction function needs a message string of at least one bit that
indicates which example is the ball center. If the two examples have opposite class labels, then the
negative example is necessarily the ball center and no message at all is needed to reconstruct the
classifier. More generally, the set of messages that we use for all typesof DLMs proposed in this
paper depends on some properties ofzi like its numbern(zi) of negative examples. Without such a
dependency onzi, the set of possible messagesM could be unnecessarily too large and would then
loosen the risk bound.

5.3 Comparison with the Set Covering Machine Risk Bound

The risk bound for the set covering machine (SCM) (Marchand and Shawe-Taylor, 2001, 2002) is
not a general-purposed sample compression risk bound as the one provided by Theorem 1. It does
exploit the fact that the final classifier is partly identified by a small subset of the training examples
(the compression set) but, instead of using messages to provide the additional information needed

439

MARCHAND AND SOKOLOVA

to obtain a classifier, it partitions the compression set into three disjoint sets. Hence, we cannot
compare directly the bound of Theorem 1 with the SCM risk bound since the latter is much more
specialized than the former. Instead we will show how we can apply the general risk bound of
Theorem 1 to the case of the SCM just by choosing an appropriate sample compression-dependent
distribution of messagesPM (zi)(σ).

Recall that the task of the SCM is to construct the smallest possible conjunctionof (Boolean-
valued) features. We discuss here only the conjunction case. The disjunction case is treated similarly
just by exchanging the role of the positive with the negative examples.

For the case of data-dependent balls and holes, each feature is identified by a training example
called acenter(xc,yc), and another training example called aborder (xb,yb). Given any metricd,
the outputh(x) on any input examplex of such a feature is given by

h(x) =

{

yc if d(x,xc) ≤ d(x,xb)
¬yc otherwise.

In this case, given a compression setzi, we need to specify the examples inzi that are used for a
border point without being used as a center. As explained by Marchandand Shawe-Taylor (2001),
no additional amount of information is required to pair each center with its border point whenever
the reconstruction functionR is constrained to produce a classifier that always correctly classifies
the compression set. Furthermore, as argued by Marchand and Shawe-Taylor (2001), we can limit
ourselves to the case where each border point is a positive example. In that case, each message
σ ∈ M (zi) just needs to specify the positive examples that are a border point withoutbeing a center.
Let n(zi) andp(zi) be, respectively, the number of negative and the number of positive examples in
compression setzi. Let b(σ) be the number of border point examples specified in messageσ and let
ζ(a) be defined by Equation 9. We can then use

PM (Zi)(σ) = ζ(b(σ)) ·
(

p(zi)

b(σ)

)−1

(15)

since, in that case, we have for any compression setzi:

∑
σ∈M (zi)

PM (zi)(σ) =
p(zi)

∑
b=0

ζ(b) ∑
σ:b(σ)=b

(

p(zi)

b(σ)

)−1

≤ 1.

With this distributionPM (zi), the risk bound of Theorem 1 specializes to

ε(σ,Zi, |j|,δ) = 1−exp

(−1
m−|i|− |j|

[

ln

(

m
|i|

)

+ ln

(

m−|i|
|j|

)

+ ln

(

p(zi)

b(σ)

)

+

ln

(

1
ζ(|i|)ζ(|j|)ζ(b(σ))δ

)])

. (16)

In contrast, the SCM risk bound of Marchand and Shawe-Taylor (2001) is equal to

ε′(σ,Zi, |j|,δ) = 1−exp

(−1
m−|i|− |j|

[

ln

(

m
|i|

)

+ ln

(

m−|i|
|j|

)

+

ln

(

cp(zi)+cn(zi)+b(zi)

cp(zi)

)

+ ln

(

m2|i|
δ

)])

, (17)

440

DECISION L ISTS OFDATA -DEPENDENTFEATURES

wherecp(zi) and cn(zi) denote, respectively, the number of positive centers and the number of
negative centers inzi and whereb(zi) denotes the the number of borders inzi.

Hence, we observe only two differences between these two bounds. First, the (larger) ln(m2|i|/δ)
term of Marchand and Shawe-Taylor (2001) has been replaced by the(smaller) ln(1/ζ(|i|)ζ(|j|)ζ(b(σ))δ)
term. Second, the coefficient

(

cp(zi)+cn(zi)+b(zi)

cp(zi)

)

has been replaced by the smaller coefficient
(

p(zi)

b(σ)

)

.

We can verify that this last coefficient is indeed smaller since
(

p(zi)

b(σ)

)

=

(

cp(zi)+b(zi)

b(zi)

)

=

(

cp(zi)+b(zi)

cp(zi)

)

≤
(

cp(zi)+cn(zi)+b(zi)

cp(zi)

)

.

Consequently, the risk bound of Theorem 1, applied to the SCM with the distribution given by
Equation 15, is smaller than the SCM risk bound of Marchand and Shawe-Taylor (2001).

6. Risks Bounds for Decision List Machines

To apply the risk bound of Theorem 1, we need to define a distribution of message strings2 PM (zi)(σ)
for each type of DLM that we will consider. Once that distribution is known,we only need to insert
it in Equation 10 to obtain the risk bound. Note that the risk bound does not depend on how we
actually codeσ (for some receiver, in a communication setting). It only depends on thea priori
probabilities assigned to each possible realization ofσ.

6.1 DLMs Containing Only Balls

Even in this simplest case, the compression setzi alone does not contain enough information to
identify a DLM classifier (the hypothesis). To identify unambiguously the hypothesis we need to
provide also a message stringσ.

Recall that, in this case,zi contains ball centers and border points. By construction, each center
is always correctly classified by the hypothesis. Moreover, each center can only be the center of one
ball since the center is removed from the data when a ball is added to the DLM.But a center can
be the border of a previous ball in the DLM and a border can be the border of more than one ball
(since the border of a ball is not removed from the data when that ball is added to the DLM). Hence,
σ needs to specify the border points inzi that are a border without being the center of another ball.
Let σ1 be the part of the message stringσ that will specify that information and letP1(σ1) be the
probabilities that we assign to each possible realization ofσ1. Since we expect that most of the
compression sets will contain roughly the same number of centers and borders, we assign, to each
example ofzi, an equala priori probability to be a center or a border. Hence we use

P1(σ1) =
1

2|i|
∀σ1.

2. We will refer toPM (zi)
as the “distribution” of messages even though its summation over the possible realizations of

σ might be less than one (as specified by Equation 7).

441

MARCHAND AND SOKOLOVA

Onceσ1 is specified, the centers and borders ofzi are identified. But to identify each ball we
need to pair each center with a border point (which could possibly be the center of another ball).
For this operation, recall that the border and the center of each ball musthave opposite class labels.
Let σ2 be the part of the message stringσ that specifies that pairing information and letP2(σ2|σ1)
be the probabilities that we assign to each possible realization ofσ2 onceσ1 is given. Letn(zi) and
p(zi) be, respectively, the number of negative and the number of positive examples in compression
setzi. Consider now a positive center examplex of zi. Since a border point can be used for more
that one ball and a center can also be used as a border, we assign an equal probability of 1/n(zi)
to each negative example ofzi to be paired withx. Similarly, we assign an equal probability of
1/p(zi) to each positive example to be paired with a negative center ofzi. Let cp(zi) andcn(zi)
be, respectively, the number of positive centers and negative centersin zi (this is known onceσ1 is
specified). For an arbitrary compression setzi, we thus assign the followinga priori probability to
each possible pairing information stringσ2:

P2(σ2|σ1) =

(

1
n(zi)

)cp(zi)(1
p(zi)

)cn(zi)

∀σ2 | n(zi) 6= 0 andp(zi) 6= 0.

This probability is, indeed, correctly defined only under the condition thatn(zi) 6= 0 and p(zi) 6= 0.
However, since the border and center of each ball must have opposite labels, this condition is the
same as|i| 6= 0. When|i| = 0, we can just assign 1 toP2(σ2|σ1). By using the indicator function
I(a) defined previously, we can thus writeP2(σ2|σ1) more generally as

P2(σ2|σ1) =

(

1
n(zi)

)cp(zi)(1
p(zi)

)cn(zi)

I(|i| 6= 0) + I(|i| = 0) ∀σ2.

Onceσ1 andσ2 are known, each ball of the DLM is known. However, to place these balls in

the DLM, we need to specify their order. Letr(zi)
def
= cp(zi)+ cn(zi) be the number of balls in the

DLM (this is known onceσ1 andσ2 are specified). Letσ3 be the part of the message stringσ that
specifies this ordering information and letP3(σ3|σ2,σ1) be the probabilities that we assign to each
possible realization ofσ3 onceσ1 andσ2 are given. For an arbitrary compression setzi, we assign
an equala priori probability to each possible ball ordering by using

P3(σ3|σ2,σ1) =
1

r(zi)!
∀σ3.

The distribution of messages is then given byP1(σ1)P2(σ2|σ1)P3(σ3|σ2,σ1). Hence

PM (zi)(σ) =
1

2|i|
·
[

(

1
n(zi)

)cp(zi)(1
p(zi)

)cn(zi)

I(|i| 6= 0) + I(|i| = 0)

]

· 1
r(zi)!

∀σ. (18)

6.2 DLMs Containing Balls and Holes

The use of holes in addition to balls introduces a few more difficulties that are taken into account by
sending a few more bits of information to the reconstruction function. The most important change
is that the center of a hole can be used more than once since the covered examples are outside the
hole. Hence, the number of features can now exceed the number of centers but it is always smaller
than |i|2. Indeed, in the worst case, each pair of (distinct) examples taken from the compression

442

DECISION L ISTS OFDATA -DEPENDENTFEATURES

setzi could be used for two holes: giving a total of|i|(|i| − 1) features. The first partσ1 of the
(complete) message stringσ will specify the numberr(zi) of features present in compression setzi.
Since we always haver(zi) < |i|2 for |i|> 0, we could give equala priori probability for each value
of r ∈ {0, . . . , |i|2}. However since we want to give a slight preference to smaller DLMs, we choose
to assign a probability equal toζ(r) (defined by Equation 9) for all possible values ofr. Hence

P1(σ1) = ζ(r(zi)) ∀σ1.

The second partσ2 of σ specifies, for each feature, if the feature is a ball or a hole. For this, we
give equal probability to each of ther(zi) features to be a ball or a hole. Hence

P2(σ2|σ1) = 2−r(zi) ∀σ2.

Finally, the third partσ3 of σ specifies, sequentially for each feature, the center and border point.
For this, we give an equal probability of 1/|i| to each example inzi of being chosen (whenever
|i| 6= 0). Consequently

P3(σ3|σ2,σ1) = |i|−2r(zi)I(|i| 6= 0)+ I(|i| = 0) ∀σ3.

The distribution of messages is then given byP1(σ1)P2(σ2|σ1)P3(σ3|σ2,σ1). Hence

PM (zi)(σ) = ζ(r(zi)) ·2−r(zi) ·
[

|i|−2r(zi)I(|i| 6= 0)+ I(|i| = 0)
]

∀σ. (19)

6.3 Constrained DLMs Containing Only Balls

A constrainedDLM is a DLM that has the property of correctly classifying each example ofits
compression setzi with the exception of the compression set examples who’s output is determined
by the default value. This implies thatBuildDLM must be modified to ensure that this constraint is
satisfied. This is achieved by considering, at each greedy step, only thefeatureshi with an output
bi and covering setQi that satisfy the following property. Every training example(x,y) ∈ Qi that is
either a border point of a previous feature (ball or hole) in the DLM or a center of a previous hole
in the DLM must havey = bi and thus be correctly classified byhi .

We will see that this constraint will enable us to provide less information to the reconstruction
function (to identify a classifier) and will thus yield tighter risk bounds. However, this constraint
might, in turn, forceBuildDLM to produce classifiers containing more features. Hence, we do not
knowa priori which version will produce classifiers having a smaller risk.

Let us first describe the simpler case where only balls are permitted.
As before, we use a stringσ1, with the same probabilityP1(σ1) = 2−|i| ∀σ1 to specify if each

example of the compression setzi is a center or a border point. This gives us the set of centers which
coincides with the set of balls since each center can only be used once forthis type of DLM.

Next we use a stringσ2 to specify the ordering of each center (or ball) in the DLM. As before
we assign equala priori probability to each possible ordering. HenceP2(σ2|σ1) = 1/r(zi)! ∀σ2

wherer(zi) denotes the number of balls forzi (an information given byσ1).
But now, since each feature was constrained to correctly classify the examples ofzi that it covers

(and which were not covered by the features above), we do not needany additional information to
specify the border for each center. Indeed, for this task we use the following algorithm. Given
a compression setzi, let P andN denote, respectively, the set of positive and the set of negative

443

MARCHAND AND SOKOLOVA

examples inzi. We start withP′ = P,N′ = N and do the following, sequentially, from the first center
(or ball) to the last. If centerc is positive, then its borderb is given by argminx∈N′d(c,x) and we
remove fromP′ (to find the border of the other balls) the centerc and all other positive examples
covered by that feature and used by the previous features. If centerc is negative, then its borderb
is given by argminx∈P′d(c,x) and we remove fromN′ the centerc and all other negative examples
covered by that feature and used by the previous features.

The distribution of messages is then given by

PM (zi)(σ) =
1

2|i|
· 1
r(zi)!

∀σ. (20)

6.4 Constrained DLMs Containing Balls and Holes

As for the case of Section 6.2, we use a stringσ1 to specify the numberr(zi) of features present in
compression setzi. We also use a stringσ2 to specify, for each feature, if the feature is a ball or
a hole. The probabilitiesP1(σ1) andP2(σ2|σ1) used are the same as those defined in Section 6.2.
Here, however, we only need to specify the center of each feature, since, as we will see below, no
additional information is needed to find the border of each feature when theDLM is constrained to
classify correctly each example inzi. Consequently

PM (zi)(σ) = ζ(r(zi)) ·2−r(zi) ·
[

|i|−r(zi)I(|i| 6= 0)+ I(|i| = 0)
]

∀σ. (21)

To specify the border of each feature, we use the following algorithm. Given a compression
setzi, let P andN denote, respectively, the set of positive and the set of negative examples in zi.
We start withP′ = P,N′ = N and do the following, sequentially, from the first feature to the last. If
the feature is a ball with a positive centerc, then its border is given by argminx∈N′d(c,x) and we
remove fromP′ the centerc and all other positive examples covered by that feature and used by
the previous features. If the feature is a hole with a positive centerc, then its border is given by
argmaxx∈P′−{c}d(c,x) and we remove fromN′ all the negative examples covered by that feature and
used by the previous features. If the feature is a ball with a negative centerc, then its border is given
by argminx∈P′d(c,x) and we remove fromN′ the centerc and all other negative examples covered
by that feature and used by the previous features. If the feature is a hole with a negative centerc,
then its border is given by argmaxx∈N′−{c}d(c,x) and we remove fromP′ all the positive examples
covered by that feature and used by the previous features.

6.5 Constrained DLMs with Half-Spaces

Recall that each half-space is specified by weight vectorw and a threshold valuet. The weight
vector is identified by a pair(xa,xb) of examples having opposite class labels and the threshold is
specified by a third examplexc of the same class label as examplexa.

The first part of the message will be a stringσ1 that specifies the numberr(zi) of half-spaces
used in the compression setzi. As before, letp(zi) and n(zi) denote, respectively, the number
of positive examples and the number of negative examples in the compressionset zi. Let P(zi)
and N(zi) denote, respectively, the set of positive examples and the set of negative examples in
the compression setzi. From these definitions, each pair(xa,xb) ∈ P(zi)×N(zi)∪N(zi)×P(zi)
can provide one weight vector. Moreover, since a half-space may notcover any point used for its
construction, each weight vector may be used for several half-spaces in the DLM. But half-spaces

444

DECISION L ISTS OFDATA -DEPENDENTFEATURES

having the same weight vectorw must have a different threshold since, otherwise, they would cover
the same set of examples. Hence the total number of half-spaces in the DLM isat most|i|p(zi)n(zi).
Therefore, for the stringσ1 that specifies the numberr(zi) of half-spaces used in the compression set
zi, we could assign the same probability to each number between zero and|i|p(zi)n(zi). However,
as before, we want to give preference to DLMs having a smaller number of half-spaces. Hence we
choose to assign a probability equal toζ(r) (defined by Equation 9) for all possible values ofr.
Therefore

P1(σ1) = ζ(r(zi)) ∀σ1.

Next, the second partσ2 of σ specifies, sequentially for each half-space, the pair(xa,xb) ∈
P(zi)×N(zi)∪N(zi)×P(zi) used for its weight vectorw. For this we assign an equal probability
of 1/2p(zi)n(zi) for each possiblew of each half-space. Hence

P2(σ2|σ1) =

(

1
2p(zi)n(zi)

)r(zi)

∀σ2 | n(zi) 6= 0 andp(zi) 6= 0.

The condition thatn(zi) 6= 0 andp(zi) 6= 0 is equivalent to|i| 6= 0 since, for any half-space,xa and
xb must have opposite labels. Hence, more generally, we have

P2(σ2|σ1) =

(

1
2p(zi)n(zi)

)r(zi)

I(|i| 6= 0) + I(|i| = 0) ∀σ2.

Finally, as for the other constrained DLMs, we do not need any additionalmessage string to identify
the threshold pointxc ∈ zi for eachw of the DLM. Indeed, for this task we can perform the following
algorithm. LetP andN denote, respectively, the set of positive and the set of negative examples inzi.
We start withP′ = P,N′ = N and do the following, sequentially, from the first half-space to the last.
Let w =φφφ(xa)−φφφ(xb) be the weight vector of the current half-space. Ifxa ∈P then, for the threshold
pointxc, we choosexc = argmax

x∈N′
w ·x and we remove fromP′ the positive examples covered by this

half-space and used by the previous half-spaces. Else ifxa ∈ N then, for the threshold pointxc, we
choosexc = argmax

x∈P′
w ·x and we remove fromN′ the negative examples covered by this half-space

and used by the previous half-spaces.
Consequently, the distribution of message strings is given by

PM (zi)(σ) = ζ(r(zi)) ·
[

(

1
2p(zi)n(zi)

)r(zi)

I(|i| 6= 0) + I(|i| = 0)

]

∀σ. (22)

6.6 Unconstrained DLMs with Half-Spaces

As for the case of Section 6.5, we use a stringσ1 to specify the numberr(zi) of half-spaces present
in compression setzi. We also use a stringσ2 to specify, sequentially for each half-space, the pair
(xa,xb)∈P(zi)×N(zi)∪N(zi)×P(zi) used for its weight vectorw. Hence, the probabilitiesP1(σ1)
andP2(σ2|σ1) used are the same as those defined in Section 6.5. But here, in addition, we need to
specify the threshold pointxc for eachw. For this, we give an equal probability of 1/|i| to each
example inzi of being chosen (when|i| 6= 0). Consequently, the distribution of messages is given
by

PM (zi)(σ) = ζ(r(zi)) ·
[

(

1
2p(zi)n(zi)

)r(zi)

|i|−r(zi)I(|i| 6= 0) + I(|i| = 0)

]

∀σ. (23)

445

MARCHAND AND SOKOLOVA

7. Empirical Results on Natural Data

We have tested the DLM on several “natural” data sets which were obtainedfrom the machine
learning repository at UCI. For each data set, we have removed all examples that contained attributes
with unknown values and we have removed examples with contradictory labels(this occurred only
for a few examples in the Haberman data set). The remaining number of examples for each data set
is reported in Table 3. No other preprocessing of the data (such as scaling) was performed. For all
these data sets, we have used the 10-fold cross-validation error as an estimate of the generalization
error. The values reported are expressed as the total number of errors (i.e. the sum of errors over all
testing sets). We have ensured that each training set and each testing set,used in the 10-fold cross
validation process, was the same for each learning machine (i.e. each machine was trained on the
same training sets and tested on the same testing sets).

Table 1 and Table 2 show the DLM sizess and penalty values that gave the smallest 10-fold
cross-validation error separately for the following types of DLMs that wehave studied in Section 6:

DLMb: unconstrained DLMs with balls (only).

DLM∗
b: constrained DLMs with balls (only).

DLMbh: unconstrained DLMs with balls and holes.

DLM∗
bh: constrained DLMs with balls and holes.

DLMhsp: unconstrained DLMs with half-spaces.

DLM∗
hsp: constrained DLMs with half-spaces.

For each of these DLMs, the learning algorithm used wasBuildDLM. We have observed that
PruneDLM had no effect on all these data sets, except for Credit where it was sometimes able to
remove one feature.

In Table 3, we have compared the performance of the DLM with the set covering machine
(SCM) using the same sets of data-dependent features, and the support vector machine (SVM)
equipped with a radial basis function kernel of variance 1/γ and a soft-margin parameterC.

We have used theL2 metric for the data-dependent features for both DLMs and SCMs to obtain
a fair comparison with SVMs. Indeed, the argument of the radial basis function kernel is given by
theL2 metric between two input vectors. For the SVM, the values ofs refer to the average number
of support vectors obtained from the 10 different training sets of 10-fold cross-validation. For the
SCM, the value ofT indicates the type of features it used and whether the SCM was a conjunction
(c) or a disjunction (d). The values ofp ands for the SCM refer to the penalty value and the number
of features that gave the smallest 10-fold cross-validation error. We emphasize that, for all learning
machines, the values of the learning parameters reported in Tables 1, 2, and3 are the ones that gave
the smallest 10-fold cross-validation error when chosen among a very large list of values. Although
this overestimates the performance of every learning algorithm, it was used here to compare equally
fairly (or equally unfairly) every learning machine. We will report below the results for DLMs when
the testing sets are not used to determine the best values of the learning parameters.

In addition to our estimate of the generalization error, we have also reportedin Table 3, a (rough)
estimate of the standard deviation of the error. This estimate was obtained in the following way. We
first compute the standard deviation of the generalization error (per example) over the 10 different

446

DECISION L ISTS OFDATA -DEPENDENTFEATURES

Data Set DLMb DLM∗
b DLMbh DLM∗

bh
{pp,pn,s} err {pp,pn,s} err {pp,pn,s} err {pp,pn,s} err

BreastW 0.7, 2.1, 6 18 0.7, 0, 1 18 2, 1, 2 13 1.6, 1, 2 13
Bupa 1.5, 3.7, 14 104 2.5, 1.5, 21 107 2, 2.1, 4 110 2.5, 1.5, 17 107
Credit 1.7, 2.1, 6 188 0.7, 0.3, 42 195 2.1, 1.4, 11 187 1.3,∞, 33 195
Glass 2.5,∞, 8 33 2.5, 3.5, 8 32 4, 4.5, 7 29 ∞, 3.7, 7 29
Haberman ∞, 4.5, 23 74 0.5, 4, 3 70 3.7, 3.4, 12 64 1.7, 3.7, 6 65
Heart 1.7, 2.7, 17 94 1.6, 2.3, 8 89 1.5, 2.6, 10 95 2, 2, 9 101
Pima 1.5, 2.2, 5 184 2.5, 2.6, 74 184 1, 1.5, 2 190 1, 1.5, 6 189
Votes 2.5, 1.5, 6 34 2, ∞, 14 36 4.5,∞, 14 35 1.8,∞, 23 37

Table 1: Optimal 10-fold cross-validation results for DLMs with balls (and holes).

Data Set DLMhsp DLM∗
hsp

{pp,pn,s} err {pp,pn,s} err
BreastW 1, ∞, 1 18 1.7,∞, 1 20
Bupa 2.7,1.5,15 107 0.9,2,6 102
Credit 3.5,2.5,26 141 1.9,1.5,7 151
Glass 2.1,0.7,4 35 2,1.3,4 37
Haberman 1.8,3,5 66 1.5,1.1,2 70
Heart 0.8,1,1 85 0.8,0.5,3 83
Pima 1.7,1, 4 169 1.9,2,8 183
Votes 4.4,∞, 13 24 3.3,∞, 13 33

Table 2: Optimal 10-fold cross-validation results for DLMs with half-spaces.

testing sets and then divide by
√

10 (since the variance of the average ofn iid random variables,
each with varianceσ2, is σ2/n). Finally we multiply this estimate by the number of examples in the
data set.

In terms of generalization error, there is no substantial difference amongall the types of DLMs
presented in Tables 1 and 2 for most of the data sets—except for Credit where DLMs with half-
spaces have a significantly lower error rate.

From the results in Tables 1 and 2, we notice that the effect of constrainingthe DLM to correctly
classify the compression set3 generally increases the size of the DLM. The increase is substantial
for the Credit and Pima data sets (except for half-spaces where the opposite behavior is observed).
It is surprising that a DLM∗b with 74 balls has the same error rate as a DLMb with 5 balls on the Pima
data set. In contrast, constraining an SCM to correctly classify the compression set had virtually no
effect on the size of the classifier (for these data sets).

The most striking feature in all the results is the level of sparsity achieved bythe SCM and the
DLM in comparison with the SVM. This difference is always huge. The otherimportant feature is
that DLMs often produce slightly better generalization than SCMs and SVMs.Hence, DLMs can
provide a good alternative to SCMs and SVMs.

Recall that the results reported in Tables 1, 2, and 3 are, in fact, the 10-fold cross validation
estimate of the generalization error that is achieved by the model selection strategy that correctly
guesses the best values forpp, pn ands. This model-selection strategy is, in that sense, optimal (but
not realizable). Hence, we refer to the scores obtained in theses Tablesas those obtained by the

3. Recall from Section 6 that this was done to obtain a tighter risk bound.

447

MARCHAND AND SOKOLOVA

Data Set SVM SCM DLM
Name exs { γ,C,s} err T { p,s} err±σ T { pp,pn,s} err±σ
BreastW 683 0.005, 2, 58 19 b∗,c 1.8, 2 15±3.9 bh∗ 1.6, 1, 2 13±3.4
Bupa 345 0.002, 0.2, 266 107 hsp∗,c 1.4,1 103± 6.2 hsp∗ 0.9,2,6 102 ±7.8
Credit 653 0.0006, 32, 423 190 hsp∗,d 1.2, 3 148±10.2 hsp 3.5,2.5,26 141±13.5
Glass 214 0.8, 1.2, 130 34 b∗,d ∞, 3 36±6.3 bh∗ ∞, 3.7, 7 29±6.7
Haberman 294 0.01, 0.6, 146 71 hsp∗,d 0.7,1 68± 5.9 bh 3.7, 3.4, 12 64±3.9
Heart 297 0.001, 2, 204 87 hsp∗,d 1.3,1 87±7.1 hsp∗ 0.8,0.5,3 83±6.9
Pima 768 0.002, 1, 526 203 hsp∗,c 1.5, 3 175±4.9 b 1.7,1,4 169±5
Votes 435 0.2, 1.7, 125 22 hsp∗, d ∞,13 34±5.8 hsp 4.4,∞,13 24±5.2

Table 3: Optimal 10-fold cross-validation results for SVMs, SCMs, and DLMs.

“optimal” model-selection strategy. To investigate the extent to which a bound can perform model
selection, we use the proposed risk bound to select a DLM among those obtained for a list of at least
1000 pairs of penalty values (which always included the optimal pair of penalty values) and for all
possible sizess. We have compared these results with the K-fold cross-validation model selection
method. This latter method, widely used in practice, consists of using K-fold cross-validation to
find the best stopping points and the best penalty valuespp andpn (among the same list of values
used for the previous model selection method) on a given training set and then use these best values
on the full training set to find the best DLM. Both model selection methods were tested with K-fold
cross-validation. The results are reported in Tables 4, 5 and 6 for all thetypes of DLMs that we
have considered in Section 6. In these tables, “MSfromCV” stands for “model selection from cross-
validation” and “MSfromBound” stands for “model selection from bound”. For all these results we
have usedK = 10, except for DLM∗hsp where we have usedK = 5. Except for a few cases, we see
that model selection by using the bounds of Section 6 is generally slightly more effective than using
K-fold cross validation (and takes substantially less computation time).

Data Set DLMb DLM∗
b

MSfromCV MSfromBound MSfromCV MSfromBound
s err±σ s err±σ s err±σ s err±σ

BreastW 1.8 18±5.01 2 18±4.4 1 20±4.9 10 20±6.4
Bupa 15.3 123±8.5 15.3 112±5.6 15.3 115±7.6 27 117±7.3
Credit 25.7 231± 12.3 20.2 194±5.6 3.5 203±13.2 6.8 215±20.2
Glass 7.2 44± 4.1 15.9 36±6.5 8.1 44±7.9 14.1 34±6.1
Haberman 6.3 80±9.8 37 89±15.1 3.8 89±13.9 13.4 104±7.8
Heart 8.7 104±8.5 20.6 97±6 10.8 103±8.5 30.6 95±8.7
Pima 25.5 213±10.5 13.7 198±10.2 28.2 230±10.4 50 192±9.3
Votes 13.4 48±6.3 7.2 38±8.6 13.4 48±6.3 16.5 40±7.3

Table 4: Model selection results for DLMs with balls (only).

8. Conclusion and Open Problems

We have introduced a new learning algorithm for decision lists and have shown that it can provide a
favorable alternative to the SCM on some “natural” data sets. Compared with SVMs, the proposed

448

DECISION L ISTS OFDATA -DEPENDENTFEATURES

Data Set DLMbh DLM∗
bh

MSfromCV MSfromBound MSfromCV MSfromBound
s err±σ s err±σ s err±σ s err±σ

BreastW 1.8 15±3.7 2.2 14±4.1 1.8 18±4.9 2.3 16±4.9
Bupa 8.6 124±7.9 12.9 119±7.7 15.2 123±8.4 23.7 118±8.2
Credit 6.3 209±14.7 17.6 206±11.5 25.7 231±12.1 40.9 208±9.5
Glass 7.4 37±8.4 13.4 35±6.4 7.2 44±4.6 21.7 30±6
Haberman 6 74±3 23.6 68±4.4 6.3 80±9.6 20.1 65±6.1
Heart 9.1 112±8.2 14.9 104±6.6 10.9 103±10.5 24.1 105±6.4
Pima 2.8 204±8.9 4 212±9.5 7.8 212±8.7 11.1 203±11.2
Votes 13.5 44±6.8 19.5 35±4.8 11.8 48±5.4 14.5 40±7.4

Table 5: Model selection results for DLMs with balls and holes.

Data Set DLMhsp DLM∗
hsp

MSfromCV MSfromBound MSfromCV MSfromBound
s err±σ s err±σ s err±σ s err±σ

BreastW 1.6 22±4.6 7 18±6 8.2 20±2.6 9 18± 6.9
Bupa 3.1 117±2.9 11.8 117±6.2 3.2 110±3.7 5.2 117± 9.3
Credit 17.7 152±13.9 28.3 152±17.8 6.4 165±9.2 7.6 163± 10
Glass 2.2 39±6 2.9 34±6.3 2.8 38±4.7 3.4 34± 5.9
Haberman 5.8 78±5.8 11.2 68±8.9 2.4 69±2.3 4 68± 3.4
Heart 1.6 87± 8 3.6 89±8.2 1.6 99±3.5 3 120± 2.2
Pima 2.7 178±11.2 4.3 182±12.5 10.5 187±6.7 15.8 175± 12.7
Votes 9.5 32±5.4 16.3 26±5.4 5.6 38±3.3 13.8 33± 4.3

Table 6: Model selection results for DLMs with half-spaces.

learning algorithm for DLMs produces substantially sparser classifiers with comparable, and often
better, generalization.

We have proposed a general risk bound that depends on the number ofexamples that are used in
the final classifier and the size of the information message needed to identify the final classifier from
the compression set. The proposed bound is significantly tighter than the oneprovided by Littlestone
and Warmuth (1986) and Floyd and Warmuth (1995) and applies to any compression set-dependent
distribution of messages. We have applied this general risk bound to DLMs by making appropriate
choices for the compression set-dependent distribution of messages andhave shown, on natural
data sets, that these specialized risk bounds are generally slightly more effective than K-fold cross
validation for selecting a good DLM model.

The next important step is to find risk bounds that hold for asymmetrical loss functions. Indeed,
this is the type of loss function which is most appropriate for many natural datasets and we cannot
use, in these circumstances, the risk bounds proposed here since they are valid only for the symmet-
ric loss case. Other important issues are the investigation of other metrics andother data-dependent
sets of features.

This paper shows that it is sometimes worthwhile to use a decision list of data-dependent fea-
tures instead of a conjunction or a disjunction of the same set of features. Hence, we may ask
if it is worthwhile to consider the larger class of linear threshold functions. With data-dependent
features, we want to use (or adapt) algorithms that are efficient when irrelevant features abound.
In these cases, the winnow (Littlestone, 1988) and the multi-layered winnow (Nevo and El-Yaniv,

449

MARCHAND AND SOKOLOVA

2002) algorithms are obvious candidates. However, these algorithms do not return a sparse solution
since many features will be assigned a non-negligible weight value. Moreover, our (preliminary)
numerical experiments with the winnow algorithm indicate that this algorithm is simply too slow to
be used withO(m2) features form≥ 700. More generally, we think that this research direction is
not attractive in view of the fact that it is (generally) very hard to find a linear threshold function
with few non-zero weight values.

Acknowledgments

Work supported by NSERC Discovery grant 122405 - 2002 and NSERCdoctoral scholarship
266896 - 2003. We thank John Shawe-Taylor for his comments concerning the proof of Theorem 1.
We thank two of the reviewers for many helpful comments.

References

Martin Anthony. Generalization error bounds for threshold decision lists.Journal of Machine
Learning Research, 5:189–217, 2004.

Avrim Blum and Mona Singh. Learning functions of k terms. InCOLT ’90: Proceedings of the
third annual workshop on Computational learning theory, pages 144–153. Morgan Kaufmann
Publishers Inc., 1990. ISBN 1-55860-146-5.

Anselm Blumer, Andrzej Ehrenfeucht, David Haussler, and Manfred K. Warmuth. Occam’s razor.
Information Processing Letters, 24:377–380, 1987.

Aditi Dhagat and Lisa Hellerstein. PAC learning with irrelevant attributes. InProc. of the 35rd
Annual Symposium on Foundations of Computer Science, pages 64–74. IEEE Computer Society
Press, Los Alamitos, CA, 1994.

Andrzej Ehrenfeucht and David Haussler. Learning decision trees from random examples.Infor-
mation and Computation, 82:231–246, 1989.

Thomas Eiter, Toshihide Ibaraki, and Kazuhiso Makino. Decision lists and related boolean func-
tions. Theoretical Computer Science, 270:493–524, 2002.

Sally Floyd and Manfred K. Warmuth. Sample compression, learnability, and the Vapnik-
Chervonenkis dimension.Machine Learning, 21(3):269–304, 1995.

Thore Graepel, Ralf Herbrich, and John Shawe-Taylor. Generalisation error bounds for sparse linear
classifiers. InProceedings of the Thirteenth Annual Conference on Computational Learning
Theory, pages 298–303, 2000.

Thore Graepel, Ralf Herbrich, and Robert C. Williamson. From margin to sparsity. InAdvances in
neural information processing systems, volume 13, pages 210–216, 2001.

Ralf Herbrich.Learning Kernel Classifiers. MIT Press, Cambridge, Massachusetts, 2002.

Geoffrey Hinton and Michael Revow. Using pairs of data-points to definesplits for decision trees.
Advances in Neural Information Processing Systems 8, pages 507–513, 1996.

450

DECISION L ISTS OFDATA -DEPENDENTFEATURES

Jyrki Kivinen, Heikki Mannila, and Esko Ukkonen. Learning hierarchical rule sets. InProceedings
of the fifth annual ACM workshop on Computational Learning Theory, pages 37–44. Morgan
Kaufmann, 1992.

Nick Littlestone. Learning quickly when irrelevant attributes abound: A newlinear-threshold algo-
rithm. Machine Learning, 2(4):285–318, 1988.

Nick Littlestone and Manfred K. Warmuth. Relating data compression and learnability. Technical
report, University of California Santa Cruz, 1986.

Mario Marchand and Mostefa Golea. On learning simple neural concepts:from halfspace intersec-
tions to neural decision lists.Network: Computation in Neural Systems, 4:67–85, 1993.

Mario Marchand, Mohak Shah, John Shawe-Taylor, and Marina Sokolova. The set covering ma-
chine with data-dependent half-spaces. InProceedings of the Twentieth International Conference
on Machine Learning(ICML’2003), pages 520–527. Morgan Kaufmann, 2003.

Mario Marchand and John Shawe-Taylor. Learning with the set covering machine. Proceedings
of the Eighteenth International Conference on Machine Learning (ICML 2001), pages 345–352,
2001.

Mario Marchand and John Shawe-Taylor. The set covering machine.Journal of Machine Learning
Reasearch, 3:723–746, 2002.

Shahar Mendelson. Rademacher averages and phase transitions in Glivenko-Cantelli class.IEEE
Transactions on Information Theory, 48:251–263, 2002.

Ziv Nevo and Ran El-Yaniv. On online learning of decision lists.Journal of Machine Learning
Reasearch, 3:271–301, 2002.

Ronald L. Rivest. Learning decision lists.Machine Learning, 2:229–246, 1987.

Marina Sokolova, Mario Marchand, Nathalie Japkowicz, and John Shawe-Taylor. The decision list
machine. InAdvances in Neural Information Processing Systems(NIPS’2002), volume 15, pages
921–928. The MIT Press, 2003.

Vladimir N. Vapnik. Statistical Learning Theory. Wiley, New-York, NY, 1998.

451

Journal of Machine Learning Research 6 (2005) 453–482 Submitted 6/04; Published 4/05

Estimating Functions for Blind Separation When Sources Have
Variance Dependencies

Motoaki Kawanabe NABE@FIRST.FHG.DE

Fraunhofer FIRST.IDA
Kekuĺestrasee 7
12489 Berlin, Germany

Klaus-Robert Müller KLAUS@FIRST.FHG.DE

Fraunhofer FIRST.IDA
Kekuĺestrasse 7
12489 Berlin, Germany and
Department of Computer Science
University of Potsdam
August-Bebel-Strasse 89
14482 Potsdam, Germany

Editor: Aapo Hyv̈arinen

Abstract

A blind separation problem where the sources are not independent, but have variance dependencies
is discussed. For this scenario Hyvärinen and Hurri (2004) proposed an algorithm which requires
no assumption on distributions of sources and no parametricmodel of dependencies between com-
ponents. In this paper, we extend the semiparametric approach of Amari and Cardoso (1997)
to variance dependencies and study estimating functions for blind separation of such dependent
sources. In particular, we show that many ICA algorithms areapplicable to the variance-dependent
model as well under mild conditions, although they should inprinciple not. Our results indicate
that separation can be done based only on normalized sourceswhich are adjusted to have station-
ary variances and is not affected by the dependent activity levels. We also study the asymptotic
distribution of the quasi maximum likelihood method and thestability of the natural gradient learn-
ing in detail. Simulation results of artificial and realistic examples match well with our theoretical
findings.

Keywords: blind source separation, variance dependencies, independent component analysis,
semiparametric statistical models, estimating functions

1. Introduction

Blind methods of source separation have been successfully applied to manyareas of science
(e.g. Hyv̈arinen et al., 2001b; Olshausen and Field, 1996; Makeig et al., 1997; Vigario, 1997;
Ziehe et al., 2000; Thi and Jutten, 1995; Cardoso, 1998a; Parra andSpence, 2000; Cardoso, 2003;
Meinecke et al., 2005). The basic model assumes that the observed signals are linear superpo-
sitions of underlying hidden source signals. Let us denote then source signals by the vector

c©2005 Motoaki Kawanabe and Klaus-Robert Müller.

KAWANABE AND M ÜLLER

s(t) = (s1(t), . . . ,sn(t))>, and the observed signals byx(t) = (x1(t), . . . ,xm(t))>. In this paper,1

we will focus on real-valued signals. The mixing can be expressed as the equation

x(t) = As(t),

whereA = (ai j) denotes the mixing matrix. For simplicity, we consider the case where the number
of source signals equals that of observed signals (n = m). Both the sourcess(t) and the mixing
matrixA are unknown, and the goal is to estimate them based on the observationx(t) alone.

In most blind source separation (BSS) methods, the source signals are assumed to be statisti-
cally independent. Blind source separation based on such a model is calledindependent component
analysis (ICA). By using non-Gaussianity of the sources, the mixing matrix can be estimated and
the source signals can be extracted under appropriate conditions. There are also further approaches
of BSS, that are, for example, based on second-order statistics and algorithms exploiting nonstation-
arity. The second-order methods are applicable to the case where the source signals have (lagged)
auto-correlation. Provided that components have nonstationary, smoothlychanging variances, the
model can be estimated as well by algorithms based on nonstationarity of signals.

Among many extensions of the basic ICA models, several researchers have studied the case
where the source signals are not independent (for example, Cardoso, 1998b; Hyv̈arinen et al., 2001a;
Bach and Jordan, 2002; Valpola et al., 2003, see also references in Hyvärinen and Hurri, 2004). The
dependencies either need to be exactly known beforehand, or they aresimultaneously estimated by
the algorithms. Recently, a novel idea called double-blind approach was introduced by Hyv̈arinen
and Hurri (2004). In contrast to previous work, their method requiresno assumption on the distri-
butions of the sources and no parametric model of the dependencies between the components. They
simply assume that the sources are dependent only through their variances and that the sources have
temporal correlation. In the Topographic ICA (Hyvärinen et al., 2001a), the dependencies of the
sources are also caused only by their variances, but in contrast to the double blind case, they are
determined by a prefixed neighborhood relation. It should be noted that for such dependent compo-
nent models identifiability results have not been theoretically established so far, while identifiability
of multidimensional ICA was proven by Theis (2004).

A statistical basis of ICA was established by Amari and Cardoso (1997). They pointed out that
the ICA model is an example of semiparametric statistical models (Bickel et al., 1993; Amari and
Kawanabe, 1997a,b) and studied estimating functions for it. In particular, they showed that the quasi
maximum likelihood (QML) estimation and the natural gradient learning give a correct solution re-
gardless of the true source densities which satisfy certain mild conditions. Inthis paper, we extend
their approach to the BSS problem considered in Hyvärinen and Hurri (2004). Investigating esti-
mating functions for the model, we show that many of ICA algorithms based on theindependence
assumption can achieve consistent solutions in a local sense, even if thereexist variance depen-
dencies, which is astonishing and seems somewhat counterintuitive. We remark that estimating
functions are concerned with local consistency (’consistency’ will denote its local version in the
following) and in general have spurious solutions. For a few algorithms, even global consistency
has been proven by different principles (for example, Hyvärinen and Hurri, 2004). Nevertheless,
our result goes beyond existing ones, because it covers most types ofBSS algorithms and can give
asymptotic distributions. The main message of this paper is that most ICA algorithmscan be proven
to be consistent in our frameworkalthoughthe data isnot independent. So they must effectively

1. This is an extended version of Kawanabe and Müller (2004) presented at ICA2004.

454

ESTIMATING FUNCTIONS FORVARIANCE-DEPENDENTBSS

use some concept beyond independence. Thus our consistency results indicate that separation can
be done based only on normalized sources which are adjusted to have stationary variances and is
not affected by the dependent activity levels.

This paper is organized as follows. At first, we define the variance-dependent model in Section
2 and explain estimating functions, a useful tool for discussing semiparametric estimators in Section
3. In Section 4, we discuss the relation between estimating functions for the ICA model and those
for the variance-dependent BSS model in general. It is shown that these algorithms work properly,
even ifthere exist spatiotemporal variance dependencies. Among several ICAalgorithms, the quasi
maximum likelihood method and its online version, the natural gradient learning are discussed in
detail. We study the asymptotic distributions of the quasi maximum likelihood method (Section
5.1) and the stability of the natural gradient learning (Section 5.2). We also give a brief summary
about several other ICA algorithms from our viewpoint in Section 5.3. Detailed discussion can
be found in Appendix A. The theoretical insights are underlined by several numerical simulations
in Section 6. In particular, we carried out two experiments, where we extract two speech signals
with high variance dependencies. It is sometimes believed that ICA algorithms work for mixture of
acoustic signals or natural images because the data are sparse and oftendisjoint. Our results show
that they can also separate even highly coherent signals, and our theoretical analysis can thus help
to understand the reason.

2. Variance-Dependent BSS Model

Hyvärinen and Hurri (2004) formalized the probabilistic framework of variance-dependent blind
separation. Let us assume that each source signalsi(t) is a product of non-negative activity level
vi(t) and underlying i.i.d. signalzi(t), that is,

si(t) = vi(t)zi(t). (1)

We remark that the sequences of the vectorss= (s1, . . . ,sn)
>, v= (v1, . . . ,vn)

> andz= (z1, . . . ,zn)
>

are considered as multivariate random processes in this paper. In practice, the activity levelsvi(t)
are often dependent among different signals and each observed signal is expressed as

xi(t) =
n

∑
j=1

ai j v j(t)zj(t), i = 1, . . . ,n,

wherevi(t) andzi(t) satisfy:

(i) vi(t) andzj(t ′) are independent for alli, j, t andt ′,

(ii) eachzi(t) is i.i.d. in time for alli, the random vectorz= (z1, . . . ,zn)
> is mutually independent,

(iii) zi(t) have zero mean and unit variance for alli.

No assumption on the distribution ofzi is made except (iii). Regarding the general activity levelsvi ’s,
vi(t) andv j(t) are allowed to be statistically dependent, and furthermore, no particular assumption
on these dependencies is made (double blind situation). We refer to this framework as the variance-
dependent BSS model in this paper. Figure 1 shows an example of the sourcess used in the model.
As stated in the assumption (ii) above, the normalized signalsz1 andz2 are mutually independent.

455

KAWANABE AND M ÜLLER

=

=

×

×

source(s1,s2) activity level(v1,v2) normalized signal(z1,z2)

Figure 1: Sources(s1,s2) with variance dependencies in the variance-dependent BSS model. In the
middle panels bothvi and−vi are plotted for clarity.

However, since the sequencesz1 andz2 are multiplied by extremely dependent activity levelsv1 and
v2, respectively, the short-term variance of the source signalss1 ands2 are highly correlated.

Hyvärinen and Hurri (2004) proposed an algorithm which maximizes the objective function

J(W) = ∑
i, j

[ĉov([w>
i u(t)]2, [w>

j u(t −∆t)]2)]2,

whereĉov denotes the sample covariance,W = (w1, . . . ,wn)
> is constrained to be orthogonal and

whereu(t) is obtained by preprocessing the signalx(t) by spatial whitening. It was proved that
the objective functionJ is maximized whenWAequals a signed permutation matrix, if the matrix
K = (Ki j) = (cov{s2

i (t),s
2
j (t −∆t)}) is of full rank. This method shows good performance as long

as there exist temporal variance dependencies and the data is not spoiledby outliers (see Meinecke
et al., 2004).

It is important to remark that the nonstationary algorithm by Pham and Cardoso (2000) was
also designed for the same source model (1), except thatvi(t)’s are assumed to be deterministic and
slowly varying. However, it is straightforward to show validity of this algorithm, whenvi(t)’s are
(slowly-varying) random sequences.

3. Semiparametric Statistical Models and Estimating Functions

Amari and Cardoso (1997) established a statistical basis of the ICA problem. They pointed out that
the standard ICA model2

p(X|B,ρs) = |detB|T
T

∏
t=1

n

∏
i=1

ρsi{b>i x(t)} (2)

is an example of semiparametric statistical models (Bickel et al., 1993; Amari andKawanabe,
1997a,b), whereB = (b1, . . . ,bn)

> = A−1 is the demixing matrix to be estimated andρs(s) =
n
Π
i=1

ρsi (si) is the density of the sourcess. Notations used in the following sections are also sum-

marized in Table 1. As the functionρs in this model, semiparametric statistical models contain
infinite dimensional or functional nuisance parameters which are difficult toestimate. Moreover,
they even disturb inference on parameters of interest.

2. Since the sources are assumed to be i.i.d. in time, people consider the distribution of one samplex instead of the
entire sequenceX.

456

ESTIMATING FUNCTIONS FORVARIANCE-DEPENDENTBSS

x(t) = (x1(t), . . . ,xn(t))> observed data att

X = (x(1), . . . ,x(T)) whole sequence of the observed data

s(t) = (s1(t), . . . ,xn(t))> source signals att

v(t) = (v1(t), . . . ,vn(t))> general activity levels of the sourcess(t)

V = (v(1), . . . ,v(T)) whole sequence of the activity levels

z(t) = (z1(t), . . . ,zn(t))> normalized source signals by the activity levelsv(t)

A n×n mixing matrix

B = (bi j) = (b1, . . . ,bn)
> demixing matrix which is equivalent toA−1

ρz(z) =
n
Π
i=1

ρzi (zi) density of the normalized source signalsz

ρV(V) density of the entire sequenceV = (v(1), . . . ,v(T))

of the activity levels

y(t) = Bx(t) extracted sources by the demixing matrixB

F(x,B) or F̄(X,B) estimating function which is ann×n matrix-valued

function of the data and the parameterB

vec(F) vectorization operator

= (F11, . . . ,Fn1, . . . ,F1n, . . . ,Fnn)
>

Table 1: List of notations used in the variance-dependent BSS model

In the variance-dependent BSS model which we consider, the sourcess(t) are decomposed of
two components, the normalized signalsz(t) = (z1(t), . . . ,zn(t))> and the general activity levels
v(t) = (v1(t), . . . ,vn(t))>. Since the former has mutual independence like the ICA model, the den-
sity of the dataX is factorized as

p(X|V;B,ρz) = |detB|T
T

∏
t=1

n

∏
i=1

1
vi(t)

ρzi

{
b>i x(t)
vi(t)

}
, (3)

whenV = (v(1), . . . ,v(T)) is fixed. Therefore, the marginal distribution can be expressed as

p(X|B,ρz,ρV) =
Z

p(X|V;B,ρz)ρV(V)dV, (4)

where the densityρV of V becomes an extra nuisance function.
In order to construct valid estimators for such semiparametric models, estimatingfunctions were

introduced by Godambe (1976). Let us consider a general semiparametric model p(x|θ,ρ), where
θ is anr-dimensional parameter of interest andρ is a nuisance parameter. Anr-dimensional vector
valued functionf (x,θ) is called an estimating function, when it satisfies the following conditions

457

KAWANABE AND M ÜLLER

for anyθ andρ (Godambe, 1991),

E[f (x,θ) |θ,ρ] = 0,

|detQ| 6= 0, whereQ = E

[
∂

∂θ
f (x,θ)

∣∣∣∣θ,ρ
]
,

E
[
‖ f (x,θ)‖2

∣∣θ,ρ
]
< ∞,

where E[·|θ,ρ] denotes the expectation overx with the densityp(x|θ,ρ) and‖ · ‖ is the Euclidean
norm. Suppose i.i.d. samplesx(1), . . . ,x(T) are obtained from the modelp(x|θ∗,ρ∗). If such a
function exists, by solving the estimating equation

T

∑
t=1

f (x(t), θ̂) = 0, (5)

we can get an estimator̂θ with good asymptotic property. Such an estimator that is a solution of an
estimating equation as (5) is called an M-estimator in statistics (Huber, 1981). Itcan be regarded
as an extension of the maximum likelihood method for parametric models. The M-estimator θ̂ is
consistent regardless of the true nuisance parameterρ∗, when the sample sizeT goes to infinity.
Moreover, it is asymptotically Gaussian distributed, that is,θ̂ ∼ N(θ∗,Av), where Av denotes the
asymptotic variance computed by the following equation

Av = Av(θ∗,ρ∗) =
1
T

Q−1 E
[

f (x,θ) f>(x,θ)
∣∣∣θ∗,ρ∗

]
(Q−1)>,

andQ = Q(θ∗,ρ∗) = E
[

∂
∂θ f (x,θ)

∣∣∣θ∗,ρ∗
]
. We remark that the asymptotic variance Av depends on

the true parameters(θ∗,ρ∗), but not on the datax(1), . . . ,x(T). As we will explain in Section 4.2,
notions of estimating functions and M-estimators were extended to non i.i.d cases.

Although estimating functions are useful for semiparametric models, it is non-trivial to find such
functions. Amari and Kawanabe (1997a,b) studied this problem from a geometrical point of view
and gave a guideline for discussing estimating functions.

The asymptotic result guarantees theoretically that the estimatorθ̂ derived from the estimating
function converges to the true parameterθ∗ under mild conditions. However, we should remark
that the asymptotic variance Av of the estimator depends on the true nuisance parameterρ∗. For
example, when the matrixQ is almost singular atρ∗, it can happen that the asymptotic variance
Av becomes very large. This may cause some practical problem, that is, the estimate from finite
samples can be no longer close to the true parameter. We will revisit this issue inSection 6.

Furthermore, online algorithms with similar consistency property can also be constructed from
estimating functions,

θt+1 = θt −ηt f (x(t),θt), (6)

θt+1 = θt −ηt R(θt) f (x(t),θt), (7)

whereR(θ) is ann×n nonsingular matrix and depends only onθ. We remark that the functions
f (x,θ) andR(θ) f (x,θ) give the same estimating equation, ifR(θ) has the inverse matrix and does
not depend on the datax. Such functions are called equivalent estimating functions. It is also easyto
see that the online algorithms (6) and (7) have the same equilibria points. However, their dynamics
are different. The stability of such online learning was investigated by Amariet al. (1997).

458

ESTIMATING FUNCTIONS FORVARIANCE-DEPENDENTBSS

4. General Properties of Estimating Functions for Blind Separation

In this section we will at first review estimating functions for the ICA model (2) (see also Amari and
Cardoso, 1997; Cardoso, 1997) and then discuss our contribution, that is, by defining estimating
functions for the variance-dependent BSS model (3) and (4).

4.1 Estimating Functions for Ordinary Blind Source Separation

In case of the ICA model, the parameter of interest is then×n matrix B = A−1 and hence it is con-
venient to write the estimating functions inn×n matrix formF(x,B). The conditions of estimating
functions are reshaped accordingly as

E[F(x,B) |B,ρs] = 0, (8)

|detQ| 6= 0, whereQ = E

[
∂vec{F(x,B)}

∂vec(B)

∣∣∣∣B,ρs

]
, (9)

E
[
‖F(x,B)‖2

F

∣∣B,ρs
]
< ∞, (10)

where vec(F) = (F11, . . . ,Fn1, . . . ,F1n, . . . ,Fnn)
> is the vectorization of matrices and‖ · ‖F denotes

Frobenius norm. It should be noted that both in usual ICA models and in the variance-dependent
BSS model, scales and orders of the sources cannot be determined, thatis, two matricesB andPDB
indicate the same distribution, whenP andD are a permutation and a diagonal matrix respectively
(Comon, 1994).3 Therefore, we can find any matrix in the equivalence class, so for notational
convenience we will fix scales as the constraints (25) later.4

One of the standard ICA algorithms originates from maximum likelihood estimation, which is
asymptotically the best method if the densityρs is known. Because in the semiparametric modelρs

is unknown and difficult to estimate, the idea is to use instead the maximum likelihood estimation
under a prefixed densitỹρs. The method is called the quasi maximum likelihood estimation, since
the fixedρ̃s does not coincide with the true one. The estimatorB̂ is derived from the equation

T

∑
t=1

[
I −ϕ{y(t)}y>(t)

]
= 0, (11)

wherey(t) = B̂x(t) is the estimator of the sources,ϕ(y) = (ϕ1(y1), . . . ,ϕn(yn))> and

ϕi(yi) = −
d

dyi
logρ̃si (yi).

For the nonlinear functionϕi(yi),

ϕi(yi) = tanh(cyi), c > 0, (12)

ϕi(yi) = y3
i , (13)

are often employed. The functionF(x,B) = I −ϕ{Bx}(Bx)> in (11) is an example of estimating
functions for the ICA model, provided that it satisfies (9) and (10). It is trivial to show that it fulfills
(8). Another example is the function

F(x,B) = Bx(Bx)>− I +(Bx) g>(Bx)−g(Bx) (Bx)>

3. It is clear that the variance-dependent BSS model has at least such indeterminacy. On the other hand, the identifiability
in this case has not been proved so far.

4. We ignore the permutation indeterminacyP, since it’s locally not problematic.

459

KAWANABE AND M ÜLLER

for FastICA (see (37) in Appendix A.1), whereg(·) is a vector valued non-linear function asϕ(·).
We remark that this procedure can also be derived from minimum mutual information (Yang and
Amari, 1997) and infomax principle (Bell and Sejnowski, 1995).

In general the quasi maximum likelihood estimator is no longer consistent because of misspec-
ified distribution. However, in the ICA model (2), Amari and Cardoso (1997) found that the quasi
maximum likelihood method and its online version (the natural gradient learning)give an asymp-
totically consistent estimator, provided thatF(x,B) = I −ϕ{Bx}(Bx)> satisfies (9) and (10). In
particular, we remark that the assumed distributionρ̃s is not equal to the true one. This research has
motivated us to investigate also such semiparametric procedures for the variance-dependent BSS
model (3) and (4). In particular, we will show in Section 5.1 that the quasi maximum likelihood
method (11) still gives a consistent estimator even under this extended situation.

4.2 Estimating Functions for Variance-Dependent Blind Source Separation

In the variance-dependent BSS model, in contrast to the ICA model studiedby Amari and Cardoso
(1997), the data sequenceX = (x(1), . . . ,x(T)) is not i.i.d. in time, but might have time depen-
dencies. Therefore, we have to consider more general functionsF̄(X,B) of the whole sequenceX.
General estimating functions̄F(X,B) must satisfy

E[F̄(X,B) |B,ρz,ρV] = 0, (14)

|detQ| 6= 0, whereQ = E

[
∂vec{F̄(X,B)}

∂vec(B)

∣∣∣∣B,ρz,ρV

]
, (15)

E
[
‖F̄(X,B)‖2

F

∣∣B,ρz,ρV
]
< ∞, (16)

for all (B,ρz,ρV). An M-estimatorB̂ can be derived from the estimating equation

F̄(X, B̂) = 0. (17)

Suppose that the dataX is subject top(X|B∗,ρ∗
z,ρ∗

V) defined by (3) and (4).

Theorem 1 If the functionF̄(X,B) satisfies the conditions (14) – (16) and appropriate regularity
conditions such as Condition 2.6 in Sørensen (1999), the M-estimatorB̂ derived from the equation
(17) is asymptotically Gaussian distributedvec(B̂) ∼ N(vec(B∗),Av), where

Av = Av(B∗,ρ∗
z,ρ

∗
V) = Q−1 Σ(Q−1)>, (18)

Σ = Σ(B∗,ρ∗
z,ρ

∗
V) = E

[
vec{F̄(X,B∗)}vec{F̄(X,B∗)}>

∣∣∣B∗,ρ∗
z,ρ

∗
V

]

Q = Q(B∗,ρ∗
z,ρ

∗
V) = E

[
∂vec{F̄(X,B∗)}

∂vec(B)

∣∣∣∣B∗,ρ∗
z,ρ

∗
V

]
.

Proof See Sørensen (1999).

Now, we investigate the relation between estimating functions for the ICA model and those for
the variance-dependent BSS model. LetF(x,B) be an estimating function for the ICA model. In
the ICA context it is often the case that such estimating functions satisfy

E[Fi j (x,DB) |B,ρs] = 0, i 6= j, (19)

460

ESTIMATING FUNCTIONS FORVARIANCE-DEPENDENTBSS

for any diagonal matrixD, that is, its off-diagonal parts (19) hold for all matrices equivalent toB.
The scale factorD is determined usually by the diagonal parts of condition (8)

E[Fii (x,B) |B,ρs] = 0,

in the ordinary ICA model. We will soon present the equation for fixing the scale factorD in the
variance-dependent BSS model.

Let us consider the function

F̄(X,B) =
T

∑
t=1

F(x(t),B), (20)

which is used in estimating equations for the ICA model.5 We can show that this function becomes
a candidate of estimating functions for the variance-dependent BSS model.

Proposition 2 The functionF̄(X,B) defined in (20) satisfies condition (14), provided that F(x,B) is
an estimating function for the ICA model and fulfills (19). Furthermore, if the additional assumption

E
[
‖F(x(t),B)‖2

F

∣∣B,ρz,ρV
]
< ∞, ∀t (21)

holds, condition (16) is also satisfied.

Proof Taking expectations of the off-diagonal terms of (14), we get

E
[

F̄i j (X,DB)
∣∣B,ρz,ρV

]
= E

[
T

∑
t=1

E
[

Fi j (x(t),DB)
∣∣V;B,ρz

]
∣∣∣∣∣ρV

]

= E

[
T

∑
t=1

E
[

Fi j (x(t),DB)
∣∣B,ρs|v(t)

]
∣∣∣∣∣ρV

]

whereρs|v(t) is the density function ofs(t) when its activity level is fixed atv(t), that is,

ρs|v(t)(s) =
n

∏
i=1

1
vi(t)

ρzi

{
si

vi(t)

}
.

We remark that the expectation E[·|V;B,ρz] (E[·|B,ρs|v(t)]) is taken overz(t) (resp.s(t)) under fixed
activity levelsV, while E[·|ρV] denotes the expectation over the activity levelV. Because (19) holds
for anyρs, we can prove

E
[

F̄i j (X,DB)
∣∣B,ρz,ρV

]
= 0,

for all diagonal matricesD. If we select the scale factorD such that the diagonal terms

E[F̄ii (X,B) |B,ρz,ρV] = 0

hold, F̄ satisfies the unbiasedness condition (14). We furthermore note that this scaling is different
from that in the ICA model presented before, and the expectation E

[
Fii (x(t),B) |B,ρs|v(t)

]
at each

time t can be non-zero in general.

5. We remark that some of ICA/BSS algorithms (for example, TDSEP/SOBI) are not based on estimating functions in
this class. Because it is not easy to discuss them in such a general form,we deal with other classes separately in
Appendix A.

461

KAWANABE AND M ÜLLER

The left hand side of Eq. (16) can be expressed as

E
[
‖F̄(X,B)‖2

F

∣∣B,ρz,ρV
]

= E

[
∑
t,t ′

E
[

tr{F(x(t),B)F>(x(t ′),B)}
∣∣∣V;B,ρz

] ∣∣∣∣∣ρV

]

= E

[
∑
t

E
[
‖F(x(t),B)‖2

F

∣∣B,ρs|v(t)

] ∣∣∣∣ρV

]

+ E

[
∑
t 6=t ′

n

∑
i=1

E
[

Fii (x(t),B) |B,ρs|v(t)

]
E

[
Fii (x(t

′),B)
∣∣B,ρs|v(t ′)

]
∣∣∣∣∣ρV

]
, (22)

where we used the fact thatx(t) andx(t ′) (t 6= t ′) are independent for fixedV. From assumption
(21), the first term of Eq. (22) is finite.

∑
t

E
[

E
[
‖F(x(t),B)‖2

F

∣∣B,ρs|v(t)

] ∣∣ρV
]

= ∑
t

E
[
‖F(x(t),B)‖2

F

∣∣B,ρz,ρV
]
< ∞ (23)

We remark that condition (10) does not necessarily imply assumption (21). Let us define
c(v(t)) := E

[
‖F(x(t),B)‖2

F

∣∣B,ρs|v(t)

]
. Since

∣∣E
[

Fii (x(t),B) |B,ρs|v(t)

]∣∣ ≤
√

E
[

F2
ii (x(t),B)

∣∣B,ρs|v(t)

]
≤

√
c(v(t)) ,

the second term of Eq. (22) (calledr in the following) can be bounded as

|r| < n∑
t 6=t ′

E
[√

c(v(t))
√

c(v(t ′))
∣∣∣ρV

]

≤ n

{
∑
t

√
E[c(v(t)) |ρV]

}2

≤ nT∑
t

E[c(v(t)) |ρV] .

Here we used Schwarz’s inequality twice. Because of Eq. (23), this bound is also finite.

The basic idea of this proof is that the situation becomes similar to the ordinary ICA model, if
the activity levelsV are fixed. Unfortunately, the other conditions are difficult to be proven inthis
general form. For example, the second condition can be transformed in thesimilar way as

E

[
∂vec{F̄(X,B)}

∂vec(B)

∣∣∣∣B,ρz,ρV

]

=
T

∑
t=1

E

[
E

[
∂vec{F(x(t),B)}

∂vec(B)

∣∣∣∣B,ρs|v(t)

] ∣∣∣∣ρV

]
. (24)

Even if each term E
[

∂vec{F(x(t),B)}
∂vec(B)

∣∣∣B,ρs|v(t)

]
is non-singular, it may still be possible that the sum

(24) becomes singular. However this is in practice an extremely rare case.

462

ESTIMATING FUNCTIONS FORVARIANCE-DEPENDENTBSS

5. Consistency Results for Variance Dependent Blind Source Separation Using the
Estimating Function Framework

We will use the estimating function framework to prove consistency results for(i) the quasi max-
imum likelihood type methods (for example, Pham and Garrat, 1997; Bell and Sejnowski, 1995),
(ii) the natural gradient learning for ICA (for example, Amari, 1998) and(iii) various other ICA al-
gorithms such as FastICA (Hyvärinen and Oja, 1997), TDSEP/SOBI (Ziehe and Müller, 1998; Be-
louchrani et al., 1997), ’Sepagaus’ (Pham and Cardoso, 2000) and JADE (Cardoso and Souloumiac,
1993).

5.1 Asymptotic Distribution of the Quasi Maximum Likelihood Estimator

In this section, it is shown that the quasi maximum likelihood method (11) as for example Pham and
Garrat (1997); Bell and Sejnowski (1995) still gives a consistent estimator even under the extended
model (3) and (4). For convenience, we fix the scales of the recovered signals as

E

[
T

∑
t=1

ϕi{b>i x(t)}b>i x(t)

∣∣∣∣∣B,ρz,ρV

]
= T, (25)

for i = 1, . . . ,n. Then (14) is automatically fulfilled for the diagonal terms. We remark that by this
constraints the length ofbi ’s may depend on the nuisance parameters(ρz,ρV), but this does not
change the following discussion, because the scales can be fixed arbitrarily.

Since the functionF(x,B) = I −ϕ{Bx}(Bx)> obviously satisfies (19), we already know from
Theorem 2 that the function

F̄QML(X,B) =
T

∑
t=1

[
I −ϕ{y(t)}y>(t)

]

satisfies the conditions (14) and (16) under the assumption

E
[

ϕ2
i {yi(t)}y2

j (t)
∣∣B,ρz,ρV

]
< ∞, ∀i, j, t, (26)

wherey(t) denotes the extracted sourcesBx(t). The additional assumption imposes mild restriction
on the distribution of the activity levelsV. For example, when the densityρV has extremely heavy
tails, the left hand side of Eq. (16) becomes infinite, even if condition (10) isfulfilled. Thus, we
need assumptions like (26) to exclude such unusual cases.

For better understanding, we directly analyze the off-diagonal terms of (14)

E

[
T

∑
t=1

ϕi{yi(t)}y j(t)

∣∣∣∣∣B,ρz,ρV

]

=
T

∑
t=1

E
[

E
[

ϕi {vi(t)zi(t)} v j(t)zj(t)
∣∣V;B,ρz

] ∣∣ρV
]

=
T

∑
t=1

E
[

E[ϕi {vi(t)zi(t)} |V;B,ρz]E
[

v j(t)zj(t)
∣∣V;B,ρz

] ∣∣ρV
]

= 0.

The second equality follows from the fact thatzi andzj are independent for fixedV.6

6. This unbiasedness in fact holds under a wider condition E[si(t)|sj(·), j 6= i] = 0.

463

KAWANABE AND M ÜLLER

To prove condition (15) and compute the asymptotic variance (18), we calculate then2 × n2

matrixQ. If we use the non-holonomic basis dχ = dBB−1 (Amari et al., 2000),Q is expressed as

Q = E

[
∂vec(F̄QML)

∂vec(χ)

∣∣∣∣B,ρz,ρV

]
B̄−1,

whereB̄ = (B̄i j ;kl) and B̄i j ;kl = δikbl j . Fortunately, the matrix E
[

∂vec(F̄QML)
∂vec(χ)

]
turns out to have a

simple structure such that only the following 2n2−n components are non-zero,

E

[
∂F̄QML

ii

∂χii

]
= −

T

∑
t=1

E[mi{vi(t)}]−T,




E

[
∂F̄QML

i j

∂χi j

]
E

[
∂F̄QML

i j

∂χ ji

]

E

[
∂F̄QML

ji

∂χi j

]
E

[
∂F̄QML

ji

∂χ ji

]




= −




T
Σ

t=1
E[ki{vi(t)}v2

j (t)] T

T
T
Σ

t=1
E[k j{v j(t)}v2

i (t)]


 ,

in which we employed the following quantities

ki{vi(t)} = E[ϕ̇i{vi(t)zi(t)} |V;B,ρz] ,

mi{vi(t)} = v2
i (t) E

[
ϕ̇i{vi(t)zi(t)}z2

i (t)
∣∣V;B,ρz

]
,

andϕ̇i is the derivative ofϕi . Hence, it is not difficult to check non-singularity of this matrix, and if
this is the case, the condition (15) holds. We can also explicitly calculate the inverse matrix

Q−1 = B̄
(

E
[

∂vec(F̄QML)
∂vec(χ)

])−1
that appears in the asymptotic variance (18), because we only have to

invert the 2×2 matrices.
Finally, the variance of the estimating function can be computed as

E
[
F̄QML

i j F̄QML
kl |B,ρz,ρV

]

=





∑
t,t ′

cov
[

ϕi{yi(t)}yi(t), ϕk{yk(t
′)}yk(t

′)
]
, i = j, k = l

∑
t

E
[

ϕi{yi(t)}ϕk{yk(t)}y2
j (t)

]
, j = l , i 6= j or k 6= l

∑
t

E[ϕi{yi(t)}yi(t)ϕ j{y j(t)}y j(t)] , i = l , j = k, i 6= j

which is slightly more complicated than the standard ICA model. Summing up the discussion above,
we get the following theorem.

Theorem 3 Suppose that the conditions

T

∑
t=1

E[mi{vi(t)}]+T 6= 0, ∀i, (27)

det




T
Σ

t=1
E[ki{vi(t)}v2

j (t)] T

T
T
Σ

t=1
E[k j{v j(t)}v2

i (t)]


 6= 0, ∀i 6= j, (28)

464

ESTIMATING FUNCTIONS FORVARIANCE-DEPENDENTBSS

and assumption (26) hold. Then the functionF̄QML(X,B) satisfies the conditions (14) – (16) and
becomes an estimating function. In that case, the quasi maximum likelihood estimatorB̂QML de-
rived from the equation̄FQML(X, B̂QML) = 0 is consistent regardless of the true nuisance functions
(ρ∗

z,ρ∗
V) under appropriate regularity conditions.

5.2 Stability of the Natural Gradient Learning

In neural networks and machine learning, online leaning is often preferred to batch learning because
of computational efficiency, less memory and adaptability (see, for example,Müller et al., 1998;
Murata et al., 2002). The natural gradient learning (Amari, 1998)

B(t +1) = B(t)+η(t)
[
I −ϕ{y(t)}y>(t)

]
B(t), (29)

is an online algorithm based on the quasi maximum likelihood method, wherey(t) = B(t)x(t) is the
current estimator of the sources andη(t) is an appropriate learning constant.

Following the discussion in Amari et al. (1997), we will study the stability of the natural gra-
dient learning for the variance-dependent BSS model. For the sake of simplicity, they analyzed a
continuous version of the algorithm (29)

Ḃ(t) = µ(t)
[
I −ϕ{y(t)}y>(t)

]
B(t), (30)

whereḂ(t) denotes time derivative of the matrixB(t), µ(t) = η(t)/τ and τ means the sampling
period. Suppose that the marginal distributions of the activity levelsv(t) are identical in time.
For example, when the sequenceV is generated from an AR process, this holds approximately
after it reaches the equilibrium distribution. Although the random variablesv(t)’s (activity levels)
have an identical marginal distribution in time, their realization can fluctuate fromtime to time and
weak nonstationary structures can be found in the observed signals. Unfortunately, it is difficult to
eliminate this rather strong assumption. If we apply the online algorithm (29) to data with highly
nonstationary variances like speech, the scale factor of the demixing matrixB changes substantially
from time to time and never converges. This makes the current stability analysisimpossible. It
might be possible to discuss these cases by considering only the equivalence class, but it is out of
the scope of the current paper.

In order to fix the scales of the sources, we impose constraints

E
[
ϕi{b>i x(t)} b>i x(t)

]
= 1, ∀i. (31)

Note that the marginal distribution ofx(t) is identical in timet and the equilibrium pointsB0 of the
equation (30) satisfy

E
[
I −ϕ{y0(t)}y>0 (t)

]
= 0, (32)

wherey0(t) = B0x(t). With a similar calculation as in Section 5.1, we can show that the function

FNG(x,B) = I −ϕ(y)y>

satisfies the unbiasedness condition (8) of estimating functions. This means that the true demixing
matrix B∗ satisfies the equilibrium equation (32), that is,B∗ becomes an equilibrium point of the
flow (30). However, it does not guaranteed thatB(t) converges toB∗ even locally.

465

KAWANABE AND M ÜLLER

Let us fix the stochastic processV = {v(t), t ≥ 0} of the activity levels at first and consider the
conditional expected version of the learning equation

Ḃ(t) = µ(t) E
[

I −ϕ{y(t)}y>(t)
∣∣∣V

]
B(t).

By linearizing it at the equilibrium pointB∗, we have the variational equation

vec{δḂ(t)} = µ(t)
∂vec{ E

[
FNG(x(t),B∗)

∣∣V
]

B∗}

∂vec(B)
vec{δB(t)},

whereδB(t) is a small perturbation. Therefore, we have to check the eigenvalues of the operators
∂vec{ E[FNG(x(t),B∗) |V]B∗}

∂vec(B) for eacht ≥ 0. If all eigenvalues have negative real parts, then the equilib-
rium B∗ is asymptotically stable for the fixed activity levelsV. Since the matrix can be expressed
as

∂vec{ E
[

FNG(x(t),B∗)
∣∣V

]
B∗}

∂vec(B)
= B̄∗ ∂vec

(
E

[
FNG

∣∣V
])

∂vec(χ)
(B̄∗)−1, (33)

whereB̄∗ = (B̄∗
i j ;kl) = (δikb∗l j), and derivative w.r.t.χ corresponds to the non-holonomic basis

dχ = dBB−1. Because the left hand side of (33) is a similar transformation of∂vec(E[FNG|V])
∂vec(χ) , their

eigenvalues are the same. Fortunately, as is the case of the quasi maximum likelihood, the matrix
∂vec(E[FNG|V])

∂vec(χ) has a simple structure such that only the following 2n2−n components are non-zero,

∂E[FNG
ii |V]

∂χii
= −mi{vi(t)}−1




∂E[FNG
i j |V]

∂χi j

∂E[FNG
i j |V]

∂χ ji

∂E[FNG
ji |V]

∂χi j

∂E[FNG
ji |V]

∂χ ji


 = −

(
ki{vi(t)}v2

j (t) 1
1 k j{v j(t)}v2

i (t)

)

Therefore, the matrix∂vec(E[FNG|V])
∂vec(χ) at timet has eigenvalues only with negative real parts, if and

only if

mi{vi(t)}+1 > 0 (34)

ki{vi(t)} > 0 (35)

v2
i (t)v2

j (t)ki{vi(t)}k j{v j(t)} > 1 (36)

for all i, j (i 6= j).

Theorem 4 If the stochastic process V= {v(t), t ≥ 0} of the activity levels satisfies the conditions
(34) – (36) with probability1 as for the true parameter(B∗,ρ∗

z,ρ∗
V), then the true demixing matrix

B∗ becomes an asymptotically stable equilibrium of the flow (30) with probability1.

Although asymptotic stability could be proved under weaker conditions, we summarize the
discussion as Theorem 4 for simplicity. In order to understand the result better, we revisit the

466

ESTIMATING FUNCTIONS FORVARIANCE-DEPENDENTBSS

examples presented in Amari et al. (1997). The conditions turn out to be much harder than those by
Amari et al. (1997) because of the fluctuating activity levels.

Example 1.Let us consider the following odd activation function

ϕi(yi) = |yi |
psign(yi)

for p = 1,2, The conditions (34) and (35) are automatically satisfied for any fixedvi(t) > 0.

mi{vi(t)} = pvp+1
i (t) E

[
|zi(t)|

p+1]
> 0

ki{vi(t)} = pvp−1
i (t) E

[
|zi(t)|

p−1]
> 0

The condition (36) becomes

p2vp+1
i (t)vp+1

j (t) E
[
|zi(t)|

p−1] E
[
|zj(t)|

p−1] > 1.

By introducing Gray’s norm

γpi =
E[|zi |

p+1]

E[|zi |2]E[|zi|p−1]

and taking notice of the normalization constraints (31), that is, E[|zi |
p+1] =

(
E[vp+1

i]
)−1

, finally we

obtain

γpiγp j < p2
min

t
vp+1

i (t)

E[vp+1
i]

min
t

vp+1
j (t)

E[vp+1
j]

.

For the cubic functionϕi(yi) = y3
i , not as in the ICA model, the condition that all signals are sub-

Gaussian

γ3i =
E[|zi|

4]
(
E[|zi |

2]
)2 < 3

is not enough, but the variation of activity levelsvi from (1) should be taken into account.

Example 2.Let us consider a symmetrical sigmoidal function

ϕi(yi) = tanh(βyi).

The conditions (34) and (35) can be checked easily. Unfortunately, in this case we can only do a
rather coarse analysis as follows. Let us assumeβ � 1 so that the approximation

ϕi(yi) ≈ βyi −
1
3
(βyi)

3 +
2
15

(βyi)
5

holds with high probability. Then, we can express the condition (36) as

β2v2
i (t)v2

j (t) E

[
1− (βyi)

2 +
2
3
(βyi)

4

∣∣∣∣V
]

E

[
1− (βy j)

2 +
2
3
(βy j)

4

∣∣∣∣V
]

> 1.

Because 1− t2 +2t4/3 > t4/3, we get a stronger condition

β10

9
v2

i (t)v2
j (t) E

[
y4

i

∣∣V
]

E
[
y4

j

∣∣V
]
> 1.

467

KAWANABE AND M ÜLLER

From a rough approximation of (31), the relationβ ≈
(
E[v2

i]
)−1

is derived. Therefore, if all approx-
imations are accurate enough, we finally get a sufficient condition of (36)like

γ3iγ3 j >
9
β4


 E[v2

i]

min
t

v2
i




3
 E[v2

j]

min
t

v2
j




3

.

In contrast to the ordinal ICA model without variance dependence, the condition that all signals are
super-Gaussian may not be enough, but each kurtosisγ3i should be much larger than 3.7

5.3 Properties of Other BSS Algorithms

Although we concentrated on estimating functions of the form (20), we can deal with more general
functions and investigate other ICA algorithms within the framework of estimating functions and
asymptotic estimating functions (see also Cardoso, 1997). Such analysis helps to check whether
these algorithms may give valid solutions regardless of the nuisance densities(ρz,ρV). We re-
mark that our extension enables us to analyze algorithms based on temporal structure such as TD-
SEP/SOBI (Ziehe and M̈uller, 1998; Belouchrani et al., 1997). Since it is quite technical, the de-
tailed discussion is put in Appendix A, where the unbiasedness condition (14) of estimating func-
tions is examined for these algorithms under the variance-dependent BSS model. We briefly sum-
marize the consequences in Table 2. Estimators by all algorithms listed below arederived from
estimating equations which satisfy the unbiasedness condition at least asymptotically. When the
other conditions are taken into account, TDSEP/SOBI never works for thevariance-dependent BSS
model, because sources have no lagged auto-correlations. ICA algorithms using non-Gaussianity
such as FastICA and JADE are not working, if sources are Gaussian.The double blind algorithm
(Hyvärinen and Hurri, 2004) cannot be applied to the case where the variance structures of sources
are the same or there is no temporal variance-dependency. The nonstationary algorithm by Pham
and Cardoso (2000) is not applicable to the case where time courses of theactivity levels are pro-
portional to each other. Of course, such a theoretical analysis tells us only about the possibility of
failure. In practice, algorithms do not always return valid answers, because of local minima and
numerical instability of their learning process. Nevertheless, this theoretical analysis can explain
the results of our numerical experiments in the next section.

6. Numerical Experiments

We carried out experiments with several artificial and more realistic data setsfor several BSS al-
gorithms. The eight batch algorithms and the online versions of the quasi maximum likelihood
methods listed in Table 3 were applied to those data sets. Note that our goal is not primarily an
algorithm comparison but the experiments serve to demonstrate the correctness of our theoretical
analysis.

For evaluating the results, we used the index defined by Amari et al. (1996)

AmariIndex(B,A∗) =
n

∑
i=1

{
∑n

j=1 |Ci j |

maxk |Cik|
−1

}
+

n

∑
j=1

{
∑n

i=1 |Ci j |

maxk |Ck j|
−1

}
,

7. This different result corrects a calculation in Amari et al. (1997).

468

ESTIMATING FUNCTIONS FORVARIANCE-DEPENDENTBSS

algorithm unbiasedness unavailable cases

FastICA yes Sources are Gaussian.
Hyvärinen (1999)

double blind asymptotically Variance structures are same or
Hyvärinen and Hurri (2004) there is no temporal variance-dependency.

JADE asymptotically Sources are Gaussian.
Cardoso and Souloumiac (1993)

TDSEP/SOBI yes always (since we consider here
Ziehe and M̈uller (1998) only the case without auto-correlations)
Belouchrani et al. (1997)

nonstationary yes Time course of the activity levels are
Pham and Cardoso (2000) proportional to each other.

Table 2: Availability of other ICA and BSS algorithms

QML(tanh) quasi maximal likelihood method with the hyperbolic tangent nonlinearity
QML(pow3) quasi maximal likelihood method with the cubic nonlinearity
Online(tanh) online version of QML(tanh) with learning rateη(t) = 0.1

(1+t/20)

Online(pow3) online version of QML(pow3) with learning rateη(t) = 0.25
(1+t/20)

’DoubleBlind’ the double blind algorithm by Hyv̈arinen and Hurri (2004)
JADE JADE algorithm
FastICA(tanh) FastICA with the hyperbolic tangent nonlinearity
FastICA(pow3) FastICA with the cubic nonlinearity
TDSEP/SOBI TDSEP/SOBI algorithm
’Sepagaus’ The ’sepagaus’ algorithm for nonstationary signals

by Pham and Cardoso (2000)

Table 3: ICA and BSS algorithms used in the experiments

469

KAWANABE AND M ÜLLER

whereA∗ is the true mixing matrix andC = BA∗. If B= PD(A∗)−1 with a permutation matrixP and
a diagonal matrixD, then AmariIndex(B,A∗) = 0.

6.1 Artificial Data Sets

In all artificial data sets, five source signals of various types with lengthT = 10000 were generated
and data after multiplying a random 5×5 mixing matrix were observed. We made 100 replications
for each setting and compute the demixing matrix for each replication. The first data set was made
according to the experiments in Hyvärinen and Hurri (2004). The activity levelsv(t) were generated
from a multivariate AR(1) model, where outliers larger than three times standard deviations from
the means were reduced to these bounds. The normalized signalszi ’s were i.i.d. sub-Gaussian ran-
dom variables which are signed fourth-order roots of zero-mean uniform variables. The medians of
the 100 replications are summarized in the row ’arsubG’ of Table 4 with the measure of deviation
(3rd-quantile− 1st-quantile)/2. As was pointed out by Hyvärinen and Hurri (2004), only ’Double-
Blind’ gave small AmariIndex. Because the marginal distribution of the source signalsi(t) looks
like a Gaussian, all algorithms based on indices favouring non-Gaussianityfailed. Even though
the determinant in the left hand side of (28) is close to 0, all the assumptions are satisfied and the
local consistency theorem is still valid. However, this does not directly meanthat the estimated
demixing matrix converges globally to the true one. In this case, many local optimacan make the
algorithms fail. This could also be understood from the fact that the contrastfunctions based on
non-Gaussianity become almost flat and thus are very difficult to optimize. Inthe experiments, we
observed that part of the true sources were often extracted correctly.

Although all the algorithms except for ’DoubleBlind’ did not work for the first difficult exam-
ple, the theoretical study in principle tells that many ICA and BSS algorithms are also applicable
to the variance-dependent BSS problem. So in fact the failure of the algorithms except ’Double-
Blind’ can be solely explained by the particular choice of the data set which isin contrast to prior
findings in Hyv̈arinen and Hurri (2004). In the second example, uniform random variables were
used aszi ’s instead of sub-Gaussian ones. The marginal distribution of the sourcesignalsi(t) looks
Laplacian. Therefore, as was shown in the row ’aruni’ of Table 4, the algorithms QML(tanh) and
FastICA(tanh), which are suitable for super-Gaussian sources, always give correct answers. The
algorithms ’DoubleBlind’, JADE and FastICA(pow3) based on 4-th ordermoments also worked ex-
cept several failures due to outliers. We got admissible results by the nonstationary BSS algorithm
’Sepagaus’, if an appropriate smoothing window was chosen.

In the third and the fourth data, the activity levelsvi(t) are sinusoidal functions with different
frequencies.

vi(t) = 1+0.9sin

(
(13+ i)πt

8000

)
, i = 1, . . . ,5

For the normalized signalszi , Laplacian and the sub-Gaussian i.i.d. random variables were used
in the third and the fourth examples, respectively. In the super-Gaussiancase (the row ’sinsupG’
of Table 4), the six algorithms except QML(pow3) and TDSEP/SOBI worked properly. ’Sepa-
gaus’ showed best performance, and QML(tanh) and FastICA(tanh)based on the hyperbolic tan-
gent nonlinearity gave better results than ’DoubleBlind’, JADE and FastICA(pow3) with 4-th order
moments. On the other hand, in the sub-Gaussian case (the row ’sinsubG’ of Table 4), the six algo-
rithms except QML(tanh) and TDSEP/SOBI returned admissible results. ’Sepagaus’ also showed

470

ESTIMATING FUNCTIONS FORVARIANCE-DEPENDENTBSS

QML(tanh) QML(pow3) Online(tanh) Online(pow3) ’DoubleBlind’

ar subG 8.25 (1.85) 11.32 (2.84) 14.59 (2.29) 14.75 (2.32) 0.52 (0.10)
ar uni 0.30 (0.04) 27.77 (0.32) 0.51 (0.08) 23.40 (1.88) 0.70 (0.16)

sin supG 0.17 (0.02) 29.97 (0.26) 0.39 (0.05) 28.74 (0.96) 0.79 (0.13)
sin subG 19.21 (0.24) 0.32 (0.05) 21.51 (2.08) 0.57 (0.30) 0.27 (0.03)
com supG 0.39 (0.06) 28.37 (0.27) 0.64 (0.09) 25.67 (1.74) 6.45 (1.56)
com subG 26.53 (0.55) 0.14 (0.02) 27.00 (2.41) 0.28 (0.05) 22.05 (1.96)
exp supG 0.35 (0.05) 28.43 (0.45) 0.59 (0.07) 22.84 (2.06) 7.63 (1.88)
uni subG 27.38 (0.17) 0.13 (0.02) 27.24 (1.27) 0.27 (0.04) 18.56 (1.66)

sss 0.03 3.82 0.06 (0.01) 2.79 (0.53) 0.02
v12 0.01 3.73 0.06 2.89 (0.04) 0.21

JADE FastICA(tanh) FastICA(pow3) TDSEP/SOBI ’Sepagaus’

ar subG 10.79 (1.88) 9.25 (1.98) 12.52 (2.05) 15.07 (1.96) 1.19 (0.48)
ar uni 0.66 (0.14) 0.38 (0.05) 0.73 (0.14) 14.92 (2.37) 0.85 (0.22)

sin supG 0.43 (0.07) 0.23 (0.03) 0.41 (0.07) 15.31 (2.04) 0.08 (0.01)
sin subG 0.31 (0.04) 0.68 (0.14) 0.33 (0.05) 15.70 (1.94) 0.08 (0.01)
com supG 0.84 (0.16) 0.48 (0.07) 0.87 (0.14) 16.02 (2.05) 1.28 (0.19)
com subG 26.49 (0.86) 27.04 (0.38) 26.65 (0.17) 16.23 (2.01) 27.08 (0.40)
exp supG 1.24 (0.23) 0.44 (0.06) 1.20 (0.22) 16.47 (1.81) 1.28 (0.20)
uni subG 0.17 (0.03) 0.18 (0.03) 0.18 (0.03) 16.20 (1.78) 27.08 (0.33)

sss 0.02 0.19 (0.04) 0.09 (0.01) 0.01 0.01
v12 0.19 0.17 (0.02) 0.08 (0.09) 0.14 0.01

Table 4: AmariIndex of the estimators. The values are the medians of 100 replications with the
measure of deviation,(3rd-quantile−1st-quantile)/2

best performance, and all four algorithms with 4-th order moments showed better performance than
the FastICA(tanh).

The double blind algorithm (’DoubleBlind’) by Hyv̈arinen and Hurri (2004) does not work
when (i) allvi ’s have same temporal structure, and (ii) there exist no temporal dependencies invi ’s.
’Sepagaus’ does not have a guarantee to separate sources either, because smoothed sequences of the
activity levels are nearly proportional to each other (see Table 2). The fifth and sixth data set are
examples of the case (i), wherevi(t) are the same sinusoidal functions.

vi(t) = 1+0.9sin
(πt

500

)
, i = 1, . . . ,5

As in the third and the fourth examples, Laplace and the sub-Gaussian i.i.d. random variables were
used for the normalized signalszi . As in the row ’comsupG’ of Table 4, the five algorithms ex-
cept QML(pow3), ’DoubleBlind’ and TDSEP/SOBI worked properly. Among them, QML(tanh)
and FastICA(tanh) had better performance. ’DoubleBlind’ gave poor results, because the matrix
K̃i j = ĉov{s2

i (·),s
2
j (· −1)} is almost singular. In the sub-Gaussian case, it looks quite difficult to

distinguish the sources visually. Unfortunately, we could not demix them correctly except with
QML(pow3) as shown in the row ’comsubG’ of Table 4. In order to check why other algorithms

471

KAWANABE AND M ÜLLER

with the local consistency did not work, we carried out extra experiments with larger sample size
T. WhenT = 200000, the AmariIndices of the estimated demixing matrices by JADE are below
0.11, 92 times out of 100 repetition. On the other hand, both FastICA methods returned valid re-
sults almost always (AmariIndices are below 0.22, 89 times for FastICA(tanh) and 100 times for
FastICA(pow3)), ifT = 50000 and the algorithms start from the true demixing matrix. Therefore,
we think that the global convergence is not achieved in these cases, because of finite sample size
effects and local optima.

The seventh and the eighth data sets are examples of the case (ii), wherev(t) is i.i.d. in timet. In
the former example, we transform 5 independent exponential random variables linearly such thatvi

andv j have correlation 0.9, andzi ’s were i.i.d Laplace random variables. On the other hand, in the
latter example,v(t) was generated from 5 uniform random variables by the same linear transforma-
tion andzi ’s were the i.i.d sub-Gaussian random variables. As one can see in the row’exp supG’ of
Table 4, the results are similar to the data set ’comsupG’. On the other hand, in the sub-Gaussian
case summarized in the row ’unisubG’ of Table 4, QML(pow3), JADE, FastICA(tanh) and Fas-
tICA(pow3) gave correct results, but ’Sepagaus’ showed very poor performance. We remark that in
both cases, ’DoubleBlind’ did not work as was expected.

We would now like to digest the results from Table 4 and relate them to our theoretical find-
ings. We have shown that all algorithms except for TDSEP/SOBI have the local consistency for
most of the given data. However, this does not directly mean that they converge globally to the true
solution. Although we hope that algorithms with a local consistency work properly, we sometimes
see significant deviations from this expectation in practice as in Table 4. Thealgorithmic failures
are caused by local optima as pointed out above for the data set ’arsubG’, or more importantly to
numerical stability and convergence issues. For example, since learning algorithms like gradient
descent are used for QML(tanh) and QML(pow3), desired solutions (equilibria) turn out to be in-
stable for sub-Gaussian (QML(tanh)) and super-Gaussian signals (QML(pow3)). In our data sets,
’ar uni’, all data sets with ’supG’ and acoustic signals are super-Gaussian,while all data sets with
’subG’ except ’arsubG’ are sub-Gaussian. One can see the clear pattern in the columns QML(tanh)
and QML(pow3). The online version Online(tanh) and Online(pow3) hadslightly degraded per-
formance with appropriate learning rate, if the batch version QML(tanh) and QML(pow3) worked,
respectively. On the other hand, although FastICA uses similar criteria fornon-Gaussianity, it em-
ploys a kind of Newton’s method and so the desired solutions are automatically better stabilized. In
the columns FastICA(tanh) and FastICA(pow3), except for the difficultcase ’comsubG’ and nearly
Gaussian case ’arsubG’, both algorithms succeeded.

6.2 Variance-Dependent Speech Signals

Next we will deal with more realistic data sets. Speech and audio signals haveoften been used
as sourcess(t) even for experiments of the instantaneous ICA model. In order to check whether
variance-dependency matters to many ICA and BSS algorithms, we applied BSS algorithms to
speech signals which have strong variance-dependency.

In the first experiments ’sss’,8 we took two speech signals with lengthT = 120976, where
one speaker says digits from 1 to 10 in English, and the other speaker counts at the same time in
Spanish. We used the separated signals of their second demo as the sources, because their separation
quality is good enough. Figure 2 shows the sources and the estimators of their activity levels with

8. The signals were downloaded fromhttp://inc2.ucsd.edu/ ˜ tewon/ .

472

ESTIMATING FUNCTIONS FORVARIANCE-DEPENDENTBSS

an appropriate smoother. We inserted one short pause at different positions of both sequences to
make correlation of the activity levels of the modified signals much larger (0.65). In the second
experiments ’v12’,9 we took two speech signals from Japanese text (T = 48000). Figure 3 shows
the sources and the estimators of the activity levels. We extended and shorten each syllable of the
second sequence and tuned its amplitude such that the two sources have high variance-dependency.
Correlation of the activity levels of the arranged signals becomes 0.74.

40000 80000 120000

2

1

40000 80000 120000
2

1

Figure 2: The sources of the data set ’sss’ and the estimators of their activity levels. The upper
panel contains the signals showing counting from 1 to 10 in English and Spanish. The
lower panel shows their activity levels with an appropriate smoother.

10000 20000 30000 40000

2

1

10000 20000 30000 40000
2

1

Figure 3: The sources of the data set ’v12’ and the estimators of their activity levels. The upper
panel are signals from Japanese sentences. The lower panel showstheir activity levels
with an appropriate smoother.

A 2×2 mixing matrixA was randomly generated 100 times and 100 different mixtures of the
source signals were made. The results are summarized in the rows ’sss’ and ’v12’ of Table 4. In

9. The signals can be downloaded byhttp://www.islab.brain.riken.go.jp/ ˜ mura/ica/v1.wav andv2.wav .

473

KAWANABE AND M ÜLLER

both experiments, QML(tanh), JADE, TDSEP/SOBI and ’Sepagaus’ always worked, while Fas-
tICA(tanh) and FastICA(pow3) gave admissible results except for several cases. Although TD-
SEP/SOBI is not applicable to the variance-dependent BSS model, it also returned correct results.
This means that the speech signals are not perfectly matching the model Eq. (4), but the sources
have furthermore a lagged autocorrelation. QML(tanh) always returned wrong answers, because
speech is usually super-Gaussian.

7. Conclusions

In this paper, we discussed semiparametric estimation for blind source separation, when sources
have variance dependencies. Hyvärinen and Hurri (2004) introduced the double blind setting where,
in addition to source distributions, dependencies between components are not restricted by any
parametric model. In the presence of these two nuisance parameters (densities of activity level and
underlying signal), they proposed an algorithm based on lagged 4-th order cumulants. Although
their algorithm works well in many cases, it fails if (i) allvi ’s have similar temporal structure, or (ii)
there exist no temporal dependencies invi ’s. Furthermore it also suffers from outliers.

Extending the semiparametric approach (Amari and Cardoso, 1997) under variance dependen-
cies, we investigated estimating functions for the variance-dependent BSSmodel. In particular, we
proved that the quasi maximum likelihood estimator is derived from an estimating function, and is
hence consistent regardless of the true nuisance densities (which satisfy certain mild conditions).
We also analyzed other ICA algorithms within the framework of (asymptotic) estimating functions
and showed that many of them can separate sources with coherent variances. This is in contrast
to previous understanding of the mechanisms underlying ICA algorithms. Theoretically we have
shown that at least asymptotically all BSS algorithms except for TDSEP/SOBIhave the local con-
sistency, thus they should succeed on a given mixed data. However, local consistency does not
necessarily guarantee global convergence to the true solution and we sometimes see significant de-
viations from this expectation in practice. The algorithmic failures are due to many local optima
and more importantly due to numerical stability and convergence issues.

Although almost all ICA and BSS algorithms could not give correct answers in the numerical
experiment of Hyv̈arinen and Hurri (2004), we showed here that this was mainly a matter of the
specific choice of the data set. In fact, most ICA and BSS algorithms also work well in many other
benchmark examples that use dependent data. In particular, we carriedout two experiments with
highly variance-dependent speech signals. Despite the dependence typically found in speech, most
ICA and BSS algorithms yield excellent separation results and our theoretical analysis can help
to understand the reason for this fact. We conjecture that it is not the coarse amplitude structure
(e.g. from dependence) that matters for BSS but the statistical fine structure of the signals.

In this paper, we only tested existing ICA and BSS algorithms and pointed out that some of
them are applicable to the variance-dependent BSS model. Future research will go one step further
and construct more efficient or robust semiparametric algorithms. Note alsothat in practice, it is
important to analyze how to select the best BSS method for a specific, say, variance-dependent data

474

ESTIMATING FUNCTIONS FORVARIANCE-DEPENDENTBSS

set. We think that suitable methods might be developed along the lines of Meinecke et al. (2002) or
Harmeling et al. (2004).

Acknowledgments

The authors acknowledge A. Ziehe, S. Harmeling, F. Meinecke and N. Murata for valuable discus-
sions, and A. Hyv̈arinen and three anonymous reviewers for useful comments to improve this paper.
We furthermore thank the PASCAL Network of Excellence (EU #506778) and DFG (SFB 618) for
partial funding.

Appendix A. Comments on Other Selected BSS Algorithms

We will discuss in the following the local consistency of ICA/BSS algorithms except the quasi
maximum likelihood method.

A.1 FastICA

FastICA is one of the standard algorithms for blind source separation. Letu(t) = C−1/2x(t) be the
whitened data, whereC = 1

T ∑T
t=1x(t)x>(t) is the sample covariance. FastICA gives the demixing

matrixW = (w1, . . . ,wn)
> which maximizes the total non-Gaussianity

n

∑
i=1

1
T

T

∑
t=1

G{w>
i u(t)}

under the orthogonality conditionWW> = I . We use, in the following the notationW for the demix-
ing matrix after whitening in order to distinguish it from the total demixing matrixB = WC−1/2

including whitening process. HereG is a nonlinear function which is introduced to approximate the
negentropy (Hyv̈arinen et al., 2001b). By solving the constrained optimization problem, we seethat
the estimator ofW must satisfy the estimating equation

T

∑
t=1

[
y(t)y>(t)− I +y(t)g>{y(t)}−g{y(t)}y>(t)

]
= 0 (37)

wherey(t) = Wu(t). If we write the total demixing matrix asB = WC−1/2, y(t) can be expressed as
Bx(t). The vector functiong(y) consists of the derivativesg(yi)= G′(yi), that is,g(y)= (g(y1), . . . ,g(yn))>.
The functions (12) and (13) are also used as the functiong. We remark that the equation (37) is
equivalent to

T

∑
t=1

[
y(t)g>{y(t)}−g{y(t)}y>(t)

]
= 0, (38)

T

∑
t=1

[
y(t)y>(t)− I

]
= 0, (39)

475

KAWANABE AND M ÜLLER

because the left hand side of (38) is antisymmetric, while that of (39) is symmetric. If we determine
the scales of the sources such that

E

[
T

∑
t=1

{b>i x(t)}2

∣∣∣∣∣B,ρz,ρV

]
= T, i = 1, . . . ,n, (40)

then it is easy to show that the expectations of the left hand side of (38) and(39) vanish regardless
of the nuisance functionsρz andρV , in the same way as for the quasi maximum likelihood method.
This means that the left hand side of (37) satisfies the unbiasedness condition (14) of estimating
functions. If the other regularity conditions hold, it becomes an estimating function and the esti-
matorB̂ derived from it converges to the correct demixing matrixB∗ = (A∗)−1 with a permutation
matrix P and a diagonal matrixD. Although the estimating function is similar to that of the quasi
maximum likelihood, FastICA algorithm is based on the Newton’s algorithm, and therefore, it has
globally more stable dynamics than the natural gradient learning.

A.2 The Double Blind Algorithm by Hyv ärinen and Hurri (2004)

Hyvärinen and Hurri (2004) proposed an algorithm for separating sources under the double blind
situation. The estimator is obtained by maximizing

J(W) = ∑
i, j

[
ĉov{y2

i (·),y
2
j (·−∆t)}

]2
,

under the orthogonality conditionWW> = I , where

ĉov{y2
i (·),y

2
j (·−∆t)} =

1
T −∆t

T

∑
t=∆t+1

y2
i (t)y

2
j (t −∆t)−1.

Let us assume that

ĉum{si(·),sj(·),sk(·−∆t),sl (·−∆t)}

:=
1

T −∆t

T

∑
t=∆t+1

si(t)sj(t)sk(t −∆t)sl (t −∆t)−
1

T2

T

∑
t=1

si(t)sj(t)
T

∑
t=1

sk(t)sl (t)

−
1

(T −∆t)2

T

∑
t=∆t+1

si(t)sk(t −∆t)
T

∑
t=∆t+1

sj(t)sl (t −∆t)

−
1

(T −∆t)2

T

∑
t=∆t+1

si(t)sl (t −∆t)
T

∑
t=∆t+1

sj(t)sk(t −∆t)

=

{
Kik +op(1), i = j, k = l
op(1), otherwise

that is, the empirical cumulants of the source signals(t) = (A∗)−1x(t) converge to their expectation,
where

Ki j =
1

T −∆t

T

∑
t=∆t+1

E
[
s2
i (t)s

2
j (t −∆t)

]
−

1
T2

T

∑
t=1

E
[
s2
i (t)

] T

∑
t=1

E
[
s2

j (t)
]
.

476

ESTIMATING FUNCTIONS FORVARIANCE-DEPENDENTBSS

By ignoring higher-order terms, we get

J = ∑
i, j,k,l

(q2
ikKklq

2
jl)

2

whereQ = (qi j) = BA∗ andB = WC−1/2 indicates the demixing matrix without whitening. Pro-
vided that the matrixK = (Ki j) is non-singular, the quantityJ is maximized whenQ is a signed
permutation matrix, that is, by maximizing the criterionJ we can estimate the true demixing ma-
trix B∗ = (A∗)−1 up to signed permutation matrices. This also means that the algorithm does not
work if there is no temporal covariance dependencies (for example, the data sets ’expsupG’ and
’uni subG’ in our experiment), or all sources have exactly same temporal covariance dependencies
(for example, the data sets ’comsupG’ and ’comsubG’ in our experiment).

Although the authors have already given its validity as mentioned above, we will check its
estimating equation. By solving the constrained optimization problem, we see that the estimator is
obtained from the estimating equation

F̂(X, B̂) = 0, (41)

where

F̂i j (X,B) =
T

∑
t=1

{yi(t)y j(t)−δi j}+
T

∑
t=∆t+1

[
∑
l

(K̂il − K̂ jl)y
2
l (t −∆t)yi(t)y j(t)

+∑
l

(K̂li − K̂l j)y
2
l (t)yi(t −∆t)y j(t −∆t)

]
. (42)

andK̂i j = ĉov{y2
i (·),y j(·−∆t)}. By replacingK̂i j with Ki j , let us define the function

Fi j (X,B) =
T

∑
t=1

{yi(t)y j(t)−δi j}+
T

∑
t=∆t+1

[
∑
l

(Kil −K jl)y
2
l (t −∆t)yi(t)y j(t)

+∑
l

(Kli −Kl j)y
2
l (t)yi(t −∆t)y j(t −∆t)

]
. (43)

Suppose thatF(X,B) is an estimating function which fulfillsF(X,B) = Op(T1/2), whenB is the
true parameter. If the function̂F(X,B) satisfies

F̂(X, B̃) = F(X, B̃)+op(T
1/2) (44)

for any B̃ such that‖B̃−B‖ = O(T−1/2), it can be shown that the residual does not matter to
the asymptotic property of the estimator and the solutionB̂ of (41) is asymptotically equivalent
to that of the equationF(X,B) = 0 (see Cardoso, 1997). In fact, we can prove (44) under mild
conditions, that is, the difference between the functions (42) and (43) can be neglected. Therefore,
we will check whetherF(X,B) actually satisfies the conditions of estimating functions. If we take
the constraints (40) to determine the scales of the sources, the unbiasedness condition (14) follows
from uncorrelatedness of the sources and

T

∑
t=∆t+1

∑
l

(Kil −K jl)E
[
y2

l (t −∆t)yi(t)y j(t)
]

=
T

∑
t=∆t+1

∑
l

(Kil −K jl)E
[
v2

l (t −∆t)vi(t)v j(t)
]

E
[
z2
l (t −∆t)

]
E[zi(t)zj(t)] = 0,

477

KAWANABE AND M ÜLLER

T

∑
t=∆t+1

∑
l

(Kli −Kl j)E
[
y2

l (t)yi(t −∆t)y j(t −∆t)
]

=
T

∑
t=∆t+1

∑
l

(Kli −Kl j)E
[
v2

l (t)vi(t −∆t)v j(t −∆t)
]

E
[
z2
l (t)

]
E[zi(t −∆t)zj(t −∆t)]

= 0.

We remark that the expectations are taken with respect top(X|B,ρz,ρV), and therefore
y(t) = Bx(t) = s(t) holds. If the other regularity condition holds,F̂(X,B) turns out to be an asymp-
totic estimating function which is asymptotically equivalent to an estimating function and the esti-
matorB̂ converges to the correct demixing matrixB∗ = (A∗)−1.

A.3 JADE

Although in a rigorous sense, the asymptotic properties of JADE should be analyzed as in the
previous section (see also Cardoso, 1997), its consistency can be shown more easily (as suggested
by one of the anonymous reviewers). Suppose that the contrast function of JADE

JJADE(W) = ∑
i jkl 6=iikl

|ĉum(yi ,y j ,yk,yl)|
2

uniformly converges to the ideal contrast function

J∗JADE(W) = ∑
i jkl 6=iikl

|cum(yi ,y j ,yk,yl)|
2

on the set of orthogonal matricesW such thatWW> = I , whereĉum and cum denote the empirical
and the expected cumulant tensor, respectively. Then, the minimum of theJJADE(W) converges
to that ofJ∗JADE(W). If W is the true demixing matrix andyi ’s are extracted signals withW, the
componentsKi jkl := cum(yi ,y j ,yk,yl) of the expected cumulant are zero except fori = j = k = l or
i = j 6= k= l or i = l 6= j = k. Thus, one needs only to show that the estimating equation is associated
to the minimization of 2∑

i 6= j

|cum(yi ,y j ,yi ,y j)|
2 under the orthogonality constraints which is satisfied

whenyi equals the true sources (up to a scaling and a permutation). The estimating equation is

T

∑
t=1



E[yi(t)y j(t)]−δi j

+ ∑
k6=i

KikikE[y2
k(t)yi(t)y j(t)]− ∑

k6= j

K jk jkE[y2
k(t)yi(t)y j(t)]

}
= 0, (45)

which can be seen to be satisfied, whenyi ’s equal to the true sources. We remark that the same
formula as (45) can be obtained after the rigorous analysis. The functionwhich is associated with
the asymptotic estimating function (see (43)) becomes

Fi j (X,W) =
T

∑
t=1

{
yi(t)y j(t)−δi j + ∑

k6=i

Kikiky2
k(t)yi(t)y j(t)− ∑

k6= j

K jk jky2
k(t)yi(t)y j(t)

}
.

478

ESTIMATING FUNCTIONS FORVARIANCE-DEPENDENTBSS

A.4 TDSEP/SOBI

Let us define lagged covariance matrices ofx(t)

R(∆t) =
1
T

T

∑
t=∆t+1

E
[
x(t)x>(t −∆t)

]

= A∗

{
1
T

T

∑
t=∆t+1

E
[
s(t)s>(t −∆t)

]}
(A∗)>.

When the sourcessi ’s are mutually independent and have temporal covariance structure, thedemix-
ing matrixPD(A∗)−1 can diagonalize all lagged covariance matricesR(∆t), where P is a permutation
matrix and D is a diagonal matrix. This property has been used in blind separation methods with
second order statistics (Tong et al., 1991; Belouchrani et al., 1997; Ziehe and M̈uller, 1998).

In the variance-dependent BSS model, for anyi, j, t and∆t ≥ 1,

E[si(t)sj(t −∆t)] = E[vi(t)v j(t −∆t)] E[zi(t)zj(t −∆t)] = 0.

Therefore,R(∆t) = 0 for ∆t ≥ 1, that is, we cannot get any information about the mixing matrixA
from lagged covariance matricesR(∆t). This is why TDSEP does not work for this model.

References

S. Amari.Differential Geometrical Methods in Statistics. Springer Verlag, Berlin, 1985.

S. Amari. Natural gradient works efficiently in learning.Neural Computation, 10(2):251–276,
1998.

S. Amari and J.-F. Cardoso. Blind source separation—semiparametric statistical approach.IEEE
Trans. on Signal Processing, 45(11):2692–2700, 1997.

S. Amari, T.-P. Chen, and A. Cichocki. Stability analysis of adaptive blind source separation.Neural
Networks, 10(8):1345–1351, 1997.

S. Amari, T.-P. Chen, and A. Cichocki. Nonholonomic orthogonal learningalgorithms for blind
source separation.Neural Computation, 12:1463–1484, 2000.

S. Amari, A. Cichocki, and H. H. Yang. A new learning algorithm for blind source separation. In
Advances in Neural Information Processing Systems 8, pages 757–763. MIT Press, 1996.

S. Amari and M. Kawanabe. Estimating functions in semiparametric statistical models. In I. V. Ba-
sawa et al., editor,Selected Proceedings of the Symposium on Estimating Functions, volume 32
of IMS Lecture Notes–Monograph Series, pages 65–81, 1997a.

S. Amari and M. Kawanabe. Information geometry of estimating functions in semiparametric sta-
tistical models.Bernoulli, 3:29–54, 1997b.

F. R. Bach and M. I. Jordan. Tree-dependent component analysis.In Uncertainty in Artificial
Intelligence: Proceedings of the Eighteenth Conference (UAI-2002), 2002.

479

KAWANABE AND M ÜLLER

A. J. Bell and T. J. Sejnowski. An information-maximization approach to blind separation and blind
deconvolution.Neural Computation, 7:1129–1159, 1995.

A. Belouchrani, K. Abed Meraim, J.-F. Cardoso, and E. Moulines. A blindsource separation te-
chinique based on second order statistics.IEEE Trans. on Signal Processing, 45(2):434–444,
1997.

P. J. Bickel, C. A. J. Klaassen, Y. Ritov, and J. A. Wellner.Efficient and Adaptive Estimation for
Semiparamtric Models. John Hopkins Univ. Press, Baltimore, MD, 1993.

J.-F. Cardoso. Estimating equations for source separation. InProc. IEEE Int. Conf. on Acoustics,
Speech and Signal Processing (ICASSP’97), volume 5, pages 3449–3452, Munich, Germany,
1997.

J.-F. Cardoso. Blind signal separation: statistical principles.Proc. of the IEEE, 86(10):2009–2025,
1998a.

J.-F. Cardoso. Multidimensional independent component analysis. InProc. IEEE Int. Conf. on
Acoustics, Speech and Signal Processing (ICASSP’98), Seattle, WA, 1998b.

J.-F. Cardoso. Independent component analysis of the cosmic microwave background. InProc.Int.
Symposium on Independent Component Analysis and Blind Signal Separation (ICA2003), pages
1111–1116, Nara, Japan, 2003.

J.-F. Cardoso and A. Souloumiac. Blind beamforming for non Gaussian signals.IEE Proceedings-F,
140:362 – 370, 1993.

P. Comon. Independent component analysis—a new concept?Signal Processing, 36:287–314,
1994.

V. P. Godambe. Conditional likelihood and unconditional optimum estimating equations.
Biometrika, 63:277–284, 1976.

V. P. Godambe, editor.Estimating Functions. Oxford Univ. Press, New York, 1991.

S. Harmeling, F. Meinecke, and K.-R. M̈uller. Injecting noise for analysing the stability of ica
components.Signal Processing, 84:255–266, 2004.

P. J. Huber.Robust Statistics. Wiley, New York, 1981.

A. Hyvärinen. Fast and robust fixed-point algorithms for independent component analysis.IEEE
Trans. on Neural Networks, 10(3):626–634, 1999.

A. Hyvärinen, P. O. Hoyer, and M. Inki. Topographic independent component analysis. Neural
Computation, 13(7):1527–1558, 2001a.

A. Hyvärinen and J. Hurri. Blind separation of sources that have spatiotemporal variance depen-
dencies.Signal Processing, 84, 2004. 247–254.

A. Hyvärinen, J. Karhunen, and E. Oja.Independent Component Analysis. Wiley, 2001b.

480

ESTIMATING FUNCTIONS FORVARIANCE-DEPENDENTBSS

A. Hyvärinen and E. Oja. A fast fixed-point algorithm for independent component analysis.Neural
Computation, 9(7):1483–1492, 1997.

Ch. Jutten and J. Herault. Blind separation of sources, part I: An adaptive algorithm based on
neuromimetic architecture.Signal Processing, 24:1–10, 1991.

M. Kawanabe and K.-R. M̈uller. Estimating functions for blind separation when source have
variance-dependencies. In C. G. Puntonet and A. Prieto, editors,Proc. Int. Workshop on Inde-
pendent Component Analysis and Blind Signal Separation (ICA2004), pages 136 – 143, Granada,
Spain, 2004.

M. Kawanabe and N. Murata. Independent component analysis in the presence of Gaussian noise
based on estimating functions. InProc. Int. Workshop on Independent Component Analysis and
Blind Signal Separation (ICA2000), pages 279–284, Helsinki, Finland, 2000.

S. Makeig, T-P. Jung, D. Ghahremani, A. J. Bell, and T. J. Sejnowski. Blind separation of event-
related brain responses into independent components.Proc. Natl. Acad. Sci. USA, 94:10979–
10984, 1997.

F. Meinecke, S. Harmeling, and K.-R. M̈uller. Robust ICA for super-Gaussian sources. In C. G.
Puntonet and A. Prieto, editors,Proc. Int. Workshop on Independent Component Analysis and
Blind Signal Separation (ICA2004), pages 217 – 224, Granada, Spain, 2004.

F. Meinecke, A. Ziehe, M. Kawanabe, and K.-R. Müller. A resampling approach to estimate the
stability of one- or multidimensional independent components.IEEE Transactions on Biomedical
Engineering, 49(12):1514–1525, 2002.

F. Meinecke, A. Ziehe, J. Kurths, and K.-R. Müller. Measuring phase synchronization of superim-
posed signals.Physical Review Letters, 2005.

K.-R. Müller, N. Murata, A. Ziehe, and S.-I. Amari.On-line learning in Switching and Drifting
environments with application to blind source separation, pages 93–110. On-line learning in
neural networks. Cambridge University Press, 1998.

K.-R. Müller, R. Vigário, F. Meinecke, and A. Ziehe. Blind source separation techniques for de-
composing evoked brain signals.International Journal of Bifurcation and Chaos, 14(2):773–791,
2004.

N. Murata, M. Kawanabe, A. Ziehe, K.-R. M̈uller, and S.-I. Amari. On-line learning in changing
environments with applications in supervised and unsupervised learning.Neural Networks, 15
(4-6):743–760, 2002.

B. A. Olshausen and D. J. Field. Emergence of simple-cell receptive fieldby learning a sparse code
for natural images.Nature, 381:607–609, 1996.

L. Parra and C. Spence. Convolutive blind source separation of non-stationary sources.IEEE Trans.
on Speech and Audio Processing, 8:320–327, 2000.

D.-T. Pham. Blind separation of instantaneous mixture sources via an independent component
analysis.IEEE Trans. on Signal Processing, 44(11):2768–2779, 1996.

481

KAWANABE AND M ÜLLER

D.-T. Pham and J.-F. Cardoso. Blind separation of instantaneous mixturesof non-stationary
sources. InProc. Int. Workshop on Independent Component Analysis and Blind Signal Sepa-
ration (ICA2000), pages 187–193, Helsinki, Finland, 2000.

D.-T. Pham and P. Garrat. Blind separation of mixture of independent sources through a quasi-
maximum likelihood approach.IEEE Trans. on Signal Processing, 45(7):1712–1725, 1997.

D.-T. Pham, P. Garrat, and C. Jutten. Separation of a mixture of independent sources through a
maximum likelihood approach. InProc. EUSIPCO, pages 771–774, 1992.

M. Sørensen. On asymptotics of estimating functions.Brazilian Journal of Probability and Statis-
tics, 13:111–136, 1999.

F. J. Theis. Uniqueness of complex and multidimensional independent component analysis.Signal
Processing, 84(5):951–956, 2004.

H.-Lan Nguyen Thi and Ch. Jutten. Blind source separation for convolutive mixtures. Signal
Processing, 45:209–229, 1995.

L. Tong, R. W. Liu, V. Soon, and Y. F. Huang. Indeterminacy and identifiability of blind identifica-
tion. IEEE Transactions on Circuits and Systems, 38:499–509, 1991.

H. Valpola, M. Harva, and J. Karhunen. Hierachical models of variance sources. InProc.Int.
Symposium on Independent Component Analysis and Blind Signal Separation (ICA2003), Nara,
Japan, 2003.

R. N. Vigario. Extraction of ocular artefacts from EEG using independent component analysis.
Electroencephalography and clinical Neurophysiology, 103:395–404, 1997.

H. H. Yang and S.-I. Amari. Adaptive on-line learning algorithms for blind separation: Maximum
entropy and minimum mutual information.Neural Computation, 9(7):1457–1482, 1997.

A. Ziehe and K.-R. M̈uller. TDSEP – an efficient algorithm for blind separation using time struc-
ture. In L. Niklasson, M. Bod́en, and T. Ziemke, editors,Proceedings of the 8th International
Conference on Artificial Neural Networks (ICANN’98), pages 675 – 680, 1998.

A. Ziehe, K.-R. M̈uller, G. Nolte, B.-M. Mackert, and G. Curio. Artifact reduction in magnetoneu-
rography based on time-delayed second order correlations.IEEE Transactions on biomedical
Engineering, 47:75–87, 2000.

482

Journal of Machine Learning Research 6 (2005) 483–502 Submitted 9/04; Revised 1/05; Published 4/05

Characterization of a Family of Algorithms for Generalized
Discriminant Analysis on Undersampled Problems

Jieping Ye JIEPING@CS.UMN .EDU

Department of Computer Science
University of Minnesota
Minneapolis, MN 55455, USA

Editor: Bin Yu

Abstract

A generalized discriminant analysis based on a new optimization criterion is presented. The
criterion extends the optimization criteria of the classical Linear Discriminant Analysis (LDA)
when the scatter matrices are singular. An efficient algorithm for the new optimization problem is
presented.

The solutions to the proposed criterion form a family of algorithms for generalized LDA, which
can be characterized in a closed form. We study two specific algorithms, namely Uncorrelated LDA
(ULDA) and Orthogonal LDA (OLDA). ULDA was previously proposed for feature extraction and
dimension reduction, whereas OLDA is a novel algorithm proposed in this paper. The features in
the reduced space of ULDA are uncorrelated, while the discriminant vectors of OLDA are orthog-
onal to each other. We have conducted a comparative study on avariety of real-world data sets to
evaluate ULDA and OLDA in terms of classification accuracy.
Keywords: dimension reduction, linear discriminant analysis, uncorrelated LDA, orthogonal
LDA, singular value decomposition

1. Introduction

Many machine learning and data mining problems involve data in very high-dimensional spaces. We
consider dimension reduction of high-dimensional, undersampled data, where the data dimension is
much larger than the sample size. The high-dimensional, undersampled problems frequently occur
in many applications including information retrieval (Berry et al., 1995; Deerwester et al., 1990),
face recognition (Belhumeur et al., 1997; Swets and Weng, 1996; Turk and Pentland, 1991) and
microarray data analysis (Dudoit et al., 2002).

Linear Discriminant Analysis (LDA) is a classical statistical approach for feature extraction
and dimension reduction (Duda et al., 2000; Fukunaga, 1990; Hastie et al., 2001). LDA computes
the optimal transformation (projection), which minimizes the within-class distance (of the data set)
and maximizes the between-class distance simultaneously, thus achieving maximumdiscrimination.
The optimal transformation can be readily computed by applying an eigen-decomposition on the
scatter matrices of the given training data set. However classical LDA requires the total scatter
matrix to be nonsingular. In many applications such as information retrieval, face recognition, and
microarray data analysis, all scatter matrices in question can be singular since the data points are
from a very high-dimensional space and in general the sample size does not exceed this dimension.
This is known as thesingularityor undersampledproblems (Krzanowski et al., 1995).

c©2005 Jieping Ye.

YE

In recent years, many approaches have been brought to bear on such high-dimensional, under-
sampled problems, including PCA+LDA (Belhumeur et al., 1997; Swets and Weng, 1996; Zhao
et al., 1999), Regularized LDA (Friedman, 1989), Penalized LDA (Hastieet al., 1995), Pseudo-
inverse LDA (Fukunaga, 1990; Raudys and Duin, 1998; Skurichina and Duin, 1996, 1999), and
LDA/GSVD (Howland et al., 2003; Ye et al., 2004b). More details will be given in Section 2.

1.1 Contribution

In this paper, we present a new optimization criterion for discriminant analysis, which is applica-
ble to undersampled problems. A detailed mathematical derivation for the proposed optimization
problem is presented in Section 3.

The solutions to the proposed criterion characterize a family of algorithms forgeneralized LDA.
Among the family of algorithms, we study two specific ones in detail, namely Uncorrelated LDA
(ULDA) and Orthogonal LDA (OLDA). ULDA was developed in the past for feature extraction and
dimension reduction, whereas OLDA is a novel LDA based algorithm proposed in this paper.

ULDA was recently proposed for extracting feature vectors with uncorrelated attributes (Jin
et al., 2001a,b). A more recent work (Ye et al., 2004a) showed that classical LDA is equivalent to
ULDA, in the sense that both classical LDA and ULDA produce the same transformation matrix
when the total scatter matrix is nonsingular. Based on this equivalence, an efficient algorithm was
presented in (Ye et al., 2004a) for computing the optimal discriminant vectorsof ULDA. Interest-
ingly, the solution in (Ye et al., 2004a) is a special case of the solutions to the proposed criterion in
this paper (See Section 4).

OLDA is a novel dimension reduction algorithm proposed in this paper. The key property of
OLDA is that the discriminant vectors of OLDA are orthogonal to each other, i.e., the transforma-
tion matrix of OLDA is orthogonal. There has been some early development onLDA based algo-
rithms with orthogonal transformations. The algorithm is known as Foley-Sammon LDA (FSLDA).
FSLDA was first proposed by Foley and Sammon for two-class problems (Foley and Sammon,
1975). It was then extended to the multi-class problems by Duchene and Leclercq (Duchene and
Leclerq, 1988). The OLDA algorithm proposed in this paper provides analternative, but simple and
efficient way for computing orthogonal transformations in the framework of LDA.

We have conducted a comparative study on a variety of real-world data sets, including text
documents, face images, and gene expression data to evaluate ULDA and OLDA, and compare with
Regularized LDA (RLDA). Results have shown that OLDA is competitive with ULDA and RLDA
in terms of classification accuracy.

The main contributions of this paper include:

• A generalization of the classical discriminant analysis to small sample size data using a new
criterion, where the nonsingularity of the scatter matrices is not required;

• Mathematical derivation of the solutions to the new optimization criterion, based on the si-
multaneous diagonalization of the scatter matrices;

• Characterization of a family of algorithms for generalized LDA based on the proposed crite-
rion and derivation of two specific algorithms, namely ULDA and OLDA.

484

GENERALIZED DISCRIMINANT ANALYSIS

1.2 Organization

The rest of the paper is organized as follows: We review classical LDA and several extensions in
Section 2. A generalization of classical LDA using the new criterion is presented in Section 3.
Two specific solutions to the proposed criterion, namely ULDA and OLDA, are discussed in Sec-
tion 4. Experimental results are presented in Section 5. Finally, concluding discussions and future
directions are presented in Section 6.

1.3 Notation

For convenience, we present in Table 1 the important notations used in the rest of the paper.

Notation Description Notation Description
n sample size m number of variables (dimensions)
k number of classes A data matrix
Ai data matrix of thei-th class ni size of thei-th class
c(i) centroid of thei-th class c global centroid of the training set
Sb between-class scatter matrixSw within-class scatter matrix
St total scatter matrix G transformation matrix
q rank of the matrixSb t rank of the matrixSt

Table 1: Important notations used in the paper

2. Classical Discriminant Analysis

Given a data matrixA ∈ IRm×n, classical linear discriminant analysis computes a linear transfor-
mationG∈ IRm×` that maps each columnai of A in them-dimensional space to a vectoryi in the
`-dimensional space:

G : ai ∈ IRm→ yi = GTai ∈ IR` (` < m).

Assume the original data is already clustered and ordering is imposed on the samples based on
cluster membership. The goal of classical LDA is to find a transformationG such that the cluster
structure of the original high-dimensional space is preserved in the reduced-dimensional space. Let
the data matrixA be partitioned intok classes asA= [A1, · · · ,Ak], whereAi ∈ IRm×ni , and∑k

i=1ni = n.
In discriminant analysis (Fukunaga, 1990), three scatter matrices, calledwithin-class, between-

classandtotal scatter matrices are defined as follows:

Sw =
1
n

k

∑
i=1

∑
x∈Ai

(x−c(i))(x−c(i))T ,

Sb =
1
n

k

∑
i=1

∑
x∈Ai

(c(i)−c)(c(i)−c)T =
1
n

k

∑
i=1

ni(c
(i)−c)(c(i)−c)T ,

St =
1
n

n

∑
j=1

(a j −c)(a j −c)T , (1)

485

YE

where thecentroid c(i) of the i-th class is defined asc(i) = 1
ni

Aie(i) with

e(i) = (1,1, · · · ,1)T ∈ IRni ,

and theglobal centroid cis defined asc = 1
nAewith

e= (1,1, · · · ,1)T ∈ IRn.

It is easy to verify thatSt = Sb +Sw.
Define the matrices

Hw =
1√
n
[A1−c(1)(e(1))T , · · · ,Ak−c(k)(e(k))T],

Hb =
1√
n
[
√

n1(c
(1)−c), · · · ,√nk(c

(k)−c)],

Ht =
1√
n
(A−ceT). (2)

ThenSw, Sb, andSt can be expressed as

Sw = HwHT
w , Sb = HbHT

b , St = HtH
T
t .

Thetracesof the two scatter matricesSw andSb can be computed as follows:

trace(Sw) =
1
n

k

∑
i=1

∑
x∈Ai

(x−c(i))T(x−c(i)) =
1
n

k

∑
i=1

∑
x∈Ai

||x−c(i)||2

trace(Sb) =
1
n

k

∑
i=1

ni(c
(i)−c)T(c(i)−c) =

1
n

k

∑
i=1

ni ||c(i)−c||2. (3)

Hence, trace(Sw) measures the within-class cohesion, while trace(Sb) measures the between-class
separation.

In the lower-dimensional space resulting from the linear transformationG, the scatter matrices
become

SL
w = GTSwG, SL

b = GTSbG, SL
t = GTStG. (4)

An optimal transformationG would maximize trace(SL
b) and minimize trace(SL

w) simultane-
ously, which is equivalent to maximizing trace(SL

b) and minimizing trace(SL
t) simultaneously, since

SL
t = SL

w +SL
b. A common optimization in classical discriminant analysis (Fukunaga, 1990) is

G = argmax
G

{

trace((SL
t)−1SL

b)
}

. (5)

The optimization problem in Eq. (5) is equivalent to finding all the eigenvectors that satisfy
Sbx = λStx, for λ 6= 0 (Fukunaga, 1990). The solution can be obtained by applying an eigen-
decomposition on the matrixS−1

t Sb, if St is nonsingular. There are at mostk− 1 eigenvectors
corresponding to nonzero eigenvalues, since the rank of the matrixSb is bounded from above by
k−1. Therefore, the reduced dimension by classical LDA is at mostk−1. A stable way to solve
this eigen-decomposition problem is to apply Singular Value Decomposition (SVD) (Golub and
Loan, 1996) on the scatter matrices. Details can be found in (Swets and Weng, 1996).

486

GENERALIZED DISCRIMINANT ANALYSIS

Assuming normal distribution for each class with the common covariance matrix, classification
based on maximum likelihood estimation results in a nearest class centroid rule, where the distance
is measured in terms of the within-class Mahalanobis distance (Hastie et al., 2001). Assuming equal
prior for all classes for simplicity, a test pointh is classified as classj if

(h−c(j))TS−1
w (h−c(j)) (6)

is minimized overj = 1, · · · ,k. It was shown in (Hastie et al., 1995) that

argmin
j
{(h−c(j))TS−1

w (h−c(j))}= argmin
j
{||GT(h−c(j))||2}, (7)

whereG is the optimal transformation solving the optimization problem in Eq. (5). Thus, clas-
sical LDA is equivalent to maximum likelihood classification assuming normal distribution for
each class with the common covariance matrix. When the dimensionm is much larger than the
number of classesk, classification using the reduced representation, i.e., classification basedon
argminj{GT(h−c(j))} may give considerable savings (Hastie et al., 1995).

Although relying on heavy assumptions which are not true in many applications,LDA has been
proven to be effective. This is mainly due to the fact that a simple, linear model ismore robust
against noise, and most likely will not overfit. Generalization of LDA by fittingGaussian mixtures
to each class has been studied in (Hastie and Tibshirani, 1996).

Note that classical discriminant analysis requires the total scatter matrixSt to be nonsingular,
which may not hold for undersampled data. Several extensions, includingtwo-stage PCA+LDA,
Regularized LDA, Penalized LDA, Pseudo-inverse LDA, and LDA/GSVDwere proposed in the
past to deal with the singularity problems as follows.

A common way to deal with the singularity problems is to apply an intermediate dimension
reduction stage such as PCA to reduce the dimension of the original data before classical LDA is
applied. The algorithm is known as PCA+LDA (Belhumeur et al., 1997; Swetsand Weng, 1996;
Zhao et al., 1999). In this two-stage PCA+LDA algorithm, the discriminant stage is preceded by
a dimension reduction stage using PCA. The dimension of the subspace transformed by PCA is
chosen such as the “reduced” total scatter matrix in the subspace is nonsingular, so that classical
LDA can be applied. A limitation of this approach is that the optimal value of the reduced dimension
for PCA is difficult to determine. Moreover, the PCA stage may lose some useful information for
discrimination.

A simple way to deal with the singularity ofSt is to apply the idea of regularization, by adding
some constant values to the diagonal elements ofSt , as St + µIm, for someµ > 0, whereIm is
an identity matrix. It is easy to verify thatSt + µIm is positive definite, hence nonsingular. This
approach is called Regularized LDA, or RLDA in short (Friedman, 1989). Regularization is a key
in the theory of splines (Wahba, 1998) and is used widely in machine learning, such as Support
Vector Machines (SVM) (Vapnik, 1998). It is evident that whenµ→ ∞, we lose the information
on St , while very small values ofµ may not be sufficiently effective. Cross-validation is commonly
applied for estimating the optimalµ. More recent studies on RLDA can be found in (Dai and Yuen,
2003; Krzanowski et al., 1995).

The Penalized LDA (PLDA) is more general than Regularized LDA. PLDA penalizes the within-
class scatter matrix asSw+Ω, for some penalty matrixΩ. Ω is symmetric and positive semidefinite.
The penalties are designed to produce smoothness in the discriminant functions. Details on PLDA
and the choices of penalties for different applications refer to (Hastie etal., 1995).

487

YE

Pseudo-inverse is commonly applied to deal with the singularity problems, whichis equivalent
to approximating the solution using a least-squares solution method. The use ofpseudo-inverse in
discriminant analysis has been studied in the past. ThePseudo Fisher Linear Discriminant(PFLDA)
(Fukunaga, 1990; Raudys and Duin, 1998; Skurichina and Duin, 1996, 1999) is based on the pseudo-
inverse of the scatter matrices. The generalization error of PFLDA was studied in (Skurichina and
Duin, 1996), when the size and dimension of the training data vary. Pseudo-inverses of the scatter
matrices were also studied in (Krzanowski et al., 1995). Experiments in (Krzanowski et al., 1995)
showed that the pseudo-inverse based methods are competitive with RLDA and PCA+LDA.

The LDA/GSVD algorithm (Howland et al., 2003; Ye et al., 2004b) is a more recent approach.
The main technique applied is the Generalized Singular Value Decomposition (GSVD) (Golub and
Loan, 1996). The criterionF0 used in (Ye et al., 2004b) is:

F0(G) = trace
(

(SL
b)

+SL
w

)

, (8)

where (SL
b)

+ denotes the pseudo-inverse of the between-class scatter matrix. The definition of
pseudo-inverse, as well as its computation via SVD, can be found in Appendix A.

LDA/GSVD aims to find the optimal transformationG that minimizesF0(G), subject to the con-
straint that rank(GTHb) = q, whereq is the rank ofSb. The above constraint is enforced to preserve
the dimension of the spaces spanned by the centroids in the original and transformed spaces. The
optimal solution can be obtained by applying the GSVD. One limitation of this method is the high
computational cost of GSVD, especially for large and high-dimensional data sets.

An overview of LDA on undersampled problems can be found in (Krzanowski et al., 1995).
The current paper focuses on linear discriminant analysis, which applies linear decision bound-

ary. Discriminant analysis can also be studied in the non-linear fashion, so-called kernel discrim-
inant analysis, by using the kernel trick (Schökopf and Smola, 2002). It is desirable if the data
has weak linear separability. The interested readers can find more details on kernel discriminant
analysis in (Baudat and Anouar, 2000; Hand, 1982; Lu et al., 2003; Schökopf and Smola, 2002).

3. Generalization of Discriminant Analysis

Classical discriminant analysis solves an eigen-decomposition problem when St is nonsingular. For
undersampled problems,St is singular, since the sample sizen may be smaller than its dimension
m. In this section, we define a new criterionF1, where the nonsingularity ofSt is not required.

The new criterionF1 is a natural extension of the classical one in Eq. (5), where the inverse of a
matrix is replaced by the pseudo-inverse (Golub and Loan, 1996). While the inverse of a matrix may
not exist, the pseudo-inverse of any matrix is well defined. Moreover, when the matrix is invertible,
its pseudo-inverse coincides with its inverse.

The new criterionF1 is defined as

F1(G) = trace
(

(SL
t)+SL

b

)

. (9)

The optimal transformation matrixG is computed so thatF1(G) is maximized. Note that in the
following, the matrixG in F1(G) may be omitted if it is clear from the content.

In the rest of this section, we show how to solve the above maximization problem.It is based
on the simultaneous diagonalization of the three scatter matrices. Details are given below.

488

GENERALIZED DISCRIMINANT ANALYSIS

3.1 Simultaneous Diagonalization of Scatter Matrices

In this section, we take a closer look at the relationship among three scatter matricesSb, Sw, andSt ,
and show how to diagonalize them simultaneously.

Let Ht = UΣVT be the SVD ofHt , whereHt is defined in Eq. (2),U andV are orthogonal,

Σ =

(

Σt 0
0 0

)

, Σt ∈ IRt×t is diagonal, andt = rank(St). Then

St = HtH
T
t = UΣVTVΣTUT = UΣΣTUT = U

(

Σ2
t 0

0 0

)

UT . (10)

Let U = (U1,U2) be a partition ofU , such thatU1 ∈ IRm×t andU2 ∈ IRm×(m−t). SinceSt =
Sb +Sw, we have

(

Σ2
t 0

0 0

)

= UT(Sb +Sw)U

=

(

UT
1

UT
2

)

Sb(U1,U2)+

(

UT
1

UT
2

)

Sw(U1,U2)

=

(

UT
1 SbU1 UT

1 SbU2

UT
2 SbU1 UT

2 SbU2

)

+

(

UT
1 SwU1 UT

1 SwU2

UT
2 SwU1 UT

2 SwU2

)

. (11)

It follows thatUT
2 SbU2+UT

2 SwU2 = 0. Therefore,UT
2 SbU2 = 0 andUT

2 SwU2 = 0, since both are
positive semidefinite. We thus haveUT

1 SbU2 = 0 andUT
1 SwU2 = 0, since both matrices on the right

hand size of Eq. (11) are positive semidefinite. That is,

UTSbU =

(

UT
1 SbU1 0

0 0

)

, UTSwU =

(

UT
1 SwU1 0

0 0

)

. (12)

From Eq. (11) and Eq. (12), we haveΣ2
t = UT

1 SbU1 +UT
1 SwU1. It follows that

It = Σ−1
t UT

1 SbU1Σ−1
t +Σ−1

t UT
1 SwU1Σ−1

t . (13)

DenoteB = Σ−1
t UT

1 Hb and letB = PΣ̃QT be the SVD ofB, whereP andQ are orthogonal and
Σ̃ is diagonal. Then

Σ−1
t UT

1 SbU1Σ−1
t = PΣ̃2PT = PΣbPT ,

where
Σb≡ Σ̃2 = diag(λ1, · · · ,λt),

λ1≥ ·· · ≥ λq > 0 = λq+1 = · · ·= λt ,

andq = rank(Sb).
It follows from Eq. (13) that

It = Σb +PTΣ−1
t UT

1 SwU1Σ−1
t P.

Hence
PTΣ−1

t UT
1 SwU1Σ−1

t P = It −Σb≡ Σw

is also diagonal.

489

YE

Combining all these together, we have

XTSbX =

(

Σb 0
0 0

)

≡ Db, XTSwX =

(

Σw 0
0 0

)

≡ Dw, XTStX =

(

It 0
0 0

)

≡ Dt , (14)

where

X = U

(

Σ−1
t P 0
0 I

)

. (15)

In summary, the matrixX in Eq. (15) simultaneously diagonalizesSb, Sw, andSt .

3.2 Maximization of the F1 Criterion

In this section, we derive the generalized discriminant analysis by maximizing the F1 criterion de-
fined in Eq. (9). The main technique applied is the simultaneous diagonalization of scatter matrices
from last section. We show in this section that the solutions to the proposed criterion F1 can be
characterized asG = XqM, whereXq is the matrix consisting of the firstq columns ofX, defined in
Eq. (15),q = rank(Sb), andM ∈ IRq×q is an arbitrary nonsingular matrix.

We first present two lemmas. The proof of Lemma 3.1 is straightforward fromstandard linear
algebra and a generalization of Lemma 3.2 can be found in (Edelman et al., 1998).

Lemma 3.1 For any matrix A∈ IRm×n, the following equality holds:(ATA)+ = A+(A+)T .

Lemma 3.2 Let A∈ IRm×m be symmetric and positive semidefinite and let xi be the eigenvector of A
corresponding to the i-th largest eigenvalueλi . Then, for any M∈ IRm×s(s≤m) with orthonormal
columns, the following inequality holds,

trace
(

MTAM
)

≤ λ1 + · · ·+λs,

where the equality holds if M= [x1, · · · ,xs]Q, for any orthogonal matrix Q∈ IRs×s.

The main result of this section is summarized in the following theorem.

Theorem 3.1 Let X be the matrix defined in Eq. (15) and Xq be the matrix consisting of the first q
columns of X, where q= rank(Sb). Then G= XqM, for any nonsingular M, maximizes F1 defined
in Eq. (9).

Proof By the simultaneous diagonalization of the three scatter matrices in Eq. (14), wehave

SL
b = GTSbG = GT(X−1)T(XTSbX)X−1G = G̃TDbG̃,

SL
t = GTStG = GT(X−1)T(XTStX)X−1G = G̃TDtG̃, (16)

whereG̃ = X−1G.

Let G̃ =

(

G1

G2

)

be a partition ofG̃ so thatG1 ∈ IRt×` andG2 ∈ IR(m−t)×`. It follows that

SL
b = G̃TDbG̃ = GT

1 ΣbG1, SL
t = G̃TDtG̃ = GT

1 G1.

Hence

F1 = trace
(

(GT
1 G1)

+(GT
1 ΣbG1)

)

= trace
(

(G1G+
1)TΣb(G1G+

1)
)

,

490

GENERALIZED DISCRIMINANT ANALYSIS

where the second equality follows from Lemma 3.1.
Recall thatΣb = diag(λ1, · · · ,λt), whereλ1 ≥ ·· · ≥ λq > 0 = λq+1 = · · · = λt . Let G1 =

R

(

Σδ 0
0 0

)

ST be the SVD ofG1, whereRandSare orthogonal,Σδ is diagonal, andδ = rank(G1).

ThenG+
1 = S

(

Σ−1
δ 0
0 0

)

RT , andG1G+
1 = R

(

Iδ 0
0 0

)

RT . It follows that

F1 = trace
(

(G1G+
1)TΣb(G1G+

1)
)

= trace

(

R

(

Iδ 0
0 0

)

RTΣbR

(

Iδ 0
0 0

)

RT
)

= trace

((

Iδ 0
0 0

)

RTΣbR

(

Iδ 0
0 0

))

= trace
(

RT
δ ΣbRδ

)

≤ λ1 + · · ·+λq.

whereRδ is the matrix consisting of the firstδ columns ofR, and the last inequality follows from

Lemma 3.2. By Lemma 3.2 again, the above inequality becomes equality, ifRδ =

(

W
0

)

, for any

orthogonalW ∈ IRq×q, δ = q, and` = q. Under this choice ofRδ,

G1 = RqΣqST =

(

WΣqST

0

)

.

We observe that the maximization ofF1 is independent ofG2, and simply set it to zero. Therefore,
the maximum ofF1 is attained when

G̃ =

(

G1

G2

)

=

(

WΣqST

0

)

.

Note that the orthogonal matricesW andS, and the diagonal matrixΣq are arbitrary. Hence,
M = WΣqST is an arbitrary nonsingular matrix. It follows thatG= XG̃= XqM, for any nonsingular
M, maximizesF1. This completes the proof of the theorem.

Remark 1 Note that it is in general not true that F1(H) = F1(HM), for any nonsingular M. How-
ever, Theorem 3.1 implies that for H= Xq, we have F1(H) = F1(HM), for any nonsingular M.

4. Uncorrelated LDA Versus Orthogonal LDA

From last section,G = XqM, for any nonsingularM maximizes theF1 criterion. A natural question
is: How to choose the bestM? In this section, we consider two specific choices ofM, which lead to
two distinct algorithms: Uncorrelated LDA and Orthogonal LDA.

4.1 Uncorrelated LDA

The simplest choice ofM is the identity matrix, i.e.,M = Iq. That is,G = Xq. It follows that
XT

q StXq = Iq, i.e., the columns of the transformationG areSt-orthogonal. Recall that two vectorsx
andy areSt-orthogonal, ifxTSty= 0. The solution corresponds to the Uncorrelated LDA, originally
proposed by Jin et al. (Jin et al., 2001a,b). The pseudo-code for ULDA is given inAlgorithm 1 .

491

YE

Algorithm 1: Uncorrelated LDA
Input: data matrixA
Output: transformation matrixG
1. Form three matricesHb, Hw, andHt as in Eq. (2);
2. Compute reduced SVD ofHt asHt = U1ΣtVT

1 ;
3. B← Σ−1

t UT
1 Hb;

4. Compute SVD ofB asB = PΣQT ; q← rank(B);
5. X←U1Σ−1

t P;
6. G← Xq;

ULDA was originally proposed to compute the optimal discriminant vectors that areSt-orthogonal.
Specifically, supposer vectorsφ1,φ2, · · · ,φr are obtained, then the(r +1)-th vectorφr+1 of ULDA
is the one that maximizes the Fisher criterion function

f (φ) =
φTSbφ
φTSwφ

, (17)

subject to the constraints:
φT

r+1Stφi = 0, i = 1, · · · , r.
The algorithm in (Jin et al., 2001a) findsφi successively as follows: Thej-th discriminant

vectorφ j of ULDA is the eigenvector corresponding to the maximum eigenvalue of the following
generalized eigenvalue problem:

U jSbφ j = λ jSwφ j ,

where

U1 = Im,

U j = Im−StD
T
j (D jStS

−1
w StD

T
j)
−1D jStS

−1
w (j > 1),

D j = [φ1, · · · ,φ j−1]
T(j > 1),

andIm is the identity matrix.
A key property of ULDA is that the features in the reduced space are uncorrelated to each other,

as stated in the following proposition.

Proposition 4.1 Let the transformation matrix for ULDA be G= [g1, · · · ,gd], for some d> 0. The
original feature vector A is transformed into Z= GTA, where the i-th feature component of Z is
Zi = gT

i A. Assume that gi and gj are St-orthogonal to each other, i.e., gT
i Stg j = 0, for i 6= j. Then

the correlation between Zi and Zj is 0, for i 6= j. That is, Zi and Zj are uncorrelated to each other.

Proof The covariance betweenZi andZ j can be computed as

Cov(Zi ,Z j) = E(Zi−EZi)(Z j −EZj) = gT
i {E(A−EA)(A−EA)T}g j = gT

i Stg j . (18)

Hence, their correlation coefficient is

Cor(Zi ,Z j) =
gT

i Stg j
√

gT
i Stgi

√

gT
j Stg j

. (19)

492

GENERALIZED DISCRIMINANT ANALYSIS

SincegT
i Stg j = 0, for i 6= j, we have Cor(Zi ,Z j) = 0, for i 6= j. This completes the proof of the

proposition.

In (Ye et al., 2004a), an efficient algorithm for ULDA was proposed, based on the following
optimization problem:

G = argmax
G
{trac((SL

t +µÌ)−1SL
b)}. (20)

Note thatSL
t + µÌ is always nonsingular forµ > 0, sinceSL

t is positive semidefinite. One key
result in (Ye et al., 2004a) shows that the optimal transformationG solving the optimization problem
in Eq. (20) is independent ofµ.

Interestingly, it can be shown thatG = Xq solves the optimization problem in Eq. (20) as stated
in the following proposition. Detailed proof follows the one in (Ye et al., 2004a) and is thus omitted.

Proposition 4.2 Let G= Xq, where Xq is the matrix consisting of the first q columns of X, and X is
defined in Eq. (15). Then G solves the optimization problem in Eq. (20).

4.1.1 RELATIONSHIP BETWEEN ULDA AND THE EIGEN-DECOMPOSITION OFS+
t Sb

In this section, we study the relationship between ULDA and the eigen-decomposition of S+
t Sb.

More specifically, we show that the discriminant vectors of ULDA are eigenvectors ofS+
t Sb cor-

responding to nonzero eigenvalues. Recall that classical LDA computesthe optimal discriminant
vectors by solving an eigenvalue problem onS−1

t Sb, assumingSt is nonsingular (See Section 2).
This equivalence result shows that ULDA is a natural extension of classical LDA by replacing in-
verse with pseudo-inverse, when dealing with singularSt .

From Eq. (14), we haveXTStX = Dt , where

X = U

(

Σ−1
t P 0
0 0

)

, andDt =

(

It 0
0 0

)

.

Note thatP is orthogonal. It follows that

St = X−TDtX
−1 = U

(

ΣtP 0
0 0

)(

It 0
0 0

)(

PTΣt 0
0 0

)

UT = U

(

Σ2
t 0

0 0

)

UT ,

Hence,

S+
t = U

(

Σ−2
t 0
0 0

)

UT .

It is easy to verify that

XDtX
T = U

(

Σ−2
t 0
0 0

)

UT .

It follows that
S+

t = XDtX
T , (21)

and
S+

t Sb =
(

XDtX
T)(

X−1DbX−1) = XDtDbX−1.

Therefore, the columns ofXq form the eigenvectors ofS+
t Sb corresponding to nonzero eigenvalues,

sinceDtDb is diagonal withq nonzero diagonal entries.

493

YE

Algorithm 2: Orthogonal LDA
Input: data matrixA
Output: transformation matrixG
1. Compute the matrixXq as in ULDA (Steps 1–5 ofAlgorithm 1);
2. Compute QR decomposition ofXq asXq = Q̃R̃;
3. G← Q̃;

4.2 Orthogonal LDA

LDA with orthogonal discriminant vectors is a natural alternative to ULDA. LetXq = Q̃R̃be the QR
decomposition ofXq, then we can simply chooseM = R̃−1 so that the columns ofG= XqM = Q̃ are
orthogonal to each other. The pseudo-code for OLDA is given inAlgorithm 2 .

Note that in the literature of LDA, Foley-Sammon LDA (FSLDA) is also known for its orthogo-
nal discriminant vectors. FSLDA was first proposed by Foley and Sammonfor two-class problems
(Foley and Sammon, 1975). It was then extended to the multi-class problems byDuchene and
Leclercq (Duchene and Leclerq, 1988). Specifically, supposer vectorsφ1,φ2, · · · ,φr are obtained,
then the(r + 1)-th vectorφr+1 of FSLDA is the one that maximizes the Fisher criterion function
f (φ) defined in Eq. (17), subject to the constraints:φT

r+1φi = 0, i = 1, · · · , r.
The algorithm in (Duchene and Leclerq, 1988) findsφi successively as follows: Thej-th dis-

criminant vectorφ j of FSLDA is the eigenvector corresponding to the maximum eigenvalue of the
following matrix:

(

Im−S−1
w DT

j S−1
j D j

)

S−1
w Sb,

where

D j = [φ1, · · · ,φ j−1]
T(j > 1), andSj = D jS

−1
w DT

j .

The above FSLDA algorithm may be expensive for large and high-dimensional data sets. More
details on the computation of FSLDA can be found in (Duchene and Leclerq,1988).

It is worthwhile to point out that both ULDA and FSLDA use the same Fisher criterion func-
tion, and the main difference is that the optimal discriminant vectors generatedby ULDA are St-
orthogonal to each other, while the optimal discriminant vectors of FSLDA are orthogonal to each
other.

The common point of the proposed OLDA algorithm and the FSLDA algorithm described above
is that the transformation matrix has orthogonal columns. However, these twoalgorithms were
derived from distinct perspectives.

4.3 Discussions

As discussed in Section 2, classical LDA is equivalent to maximum likelihood classification as-
suming normal distribution for each class with the common covariance matrix. Classification in
classical LDA based on the maximum likelihood estimation is based on the Mahalanobis distance
as follows: a test pointh is classified as classj if

j = argmin
j

(h−c(j))TS−1
w (h−c(j)), (22)

494

GENERALIZED DISCRIMINANT ANALYSIS

which is equivalent to
j = argmin

j
(h−c(j))TS−1

t (h−c(j)). (23)

We show in the following that the classification in ULDA uses the following distance:

(h−c(j))TS+
t (h−c(j)). (24)

The main result is summarized in the following theorem.

Theorem 4.1 Let G be the optimal transformation matrix for ULDA, and let h be any test point.
Then

argmin
j

{

(h−c(j))TS+
t (h−c(j))

}

= argmin
j

{

||GT(h−c(j))||2
}

.

Proof Let Xi be thei-th column ofX. From Eq. (21), we have

S+
t = XDtX

T =
t

∑
i=1

XiX
T
i = GGT +

t

∑
i=q+1

XiX
T
i ,

whereG consists of the firstq columns ofX, andq = rank(Sb).
Recall from Section 3.1 thatX diagonalizesSb andXT

i SbXi = 0, for i = q+ 1, · · · , t. Hence
HbXi = 0, or(c(j))TXi = cXi , for all j = 1, · · · ,k. It follows that

(h−c(j))TS+
t (h−c(j)) = (h−c(j))TGGT(h−c(j))+

t

∑
i=q+1

(h−c(j))TXiX
T
i (h−c(j))

= ||GT(h−c(j))||2 +
t

∑
i=q+1

(h−c)TXiX
T
i (h−c). (25)

The second term on the right hand side of Eq. (25) is independent of class j, hence

argmin
j

{

(h−c(j))TS+
t (h−c(j))

}

= argmin
j

{

||GT(h−c(j))||2
}

.

This completes the proof of the theorem.

Theorem 4.1 shows that the classification rule in ULDA is a variant of the oneused in classical
LDA. ULDA can be considered as an extension of classical LDA for singular scatter matrices. The
result does not extend to OLDA. However, with whitened total scatter matrix,that is if St is an
identity matrix, OLDA is equivalent to ULDA.

Geometrically, both ULDA and OLDA project the data onto the subspace spanned by the cen-
troids. ULDA removes the correlation among the features in the transformed space, which is theo-
retically sound but may be sensitive to the noise in the data. On the other hand,OLDA applies or-
thogonal transformatioñQ, by factoring out thẽRmatrix through the QR decomposition ofXq = Q̃R̃.
The removal ofR̃ in OLDA may contribute to the noise removal. Our experiments in next section
show that OLDA often leads to better performance than ULDA in classification.

495

YE

Data Set Size (n) Dimension (m) # of classes (k)

tr41 210 7454 7
re0 320 2887 4
PIX 300 10000 30
AR 1638 8888 126
GCM 198 16063 14
ALL 248 12558 6

Table 2: Statistics for our test data sets

5. Experiments

We divide the experiments into three parts. Section 5.1 describes our test data sets. Section 5.2
evaluates ULDA and OLDA in terms of classification accuracy. We study the effect of the matrix
M in Section 5.3. Recall thatG = XqM, for any nonsingularM maximizes theF1 criterion.

Both ULDA and OLDA were implemented in MATLAB and the source codes may beaccessed
athttp://www.cs.umn.edu/∼jieping/UOLDA.

5.1 Data Sets

We have three types of data for the evaluation: text documents, includingtr41 andre0; face im-
ages, includingPIX andAR; and gene expression data, includingGCM andALL . The important
statistics of these data sets are summarized as follows (see also Table 2):

• tr41 is a text document data set, derived from the TREC-5, TREC-6, and TREC-7 collections
(TREC, 1999). It includes 210 documents belonging to 7 different classes. The dimension of
this data set is 7454.

• re0 is another text document data set, derived fromReuters-21578text categorization test
collection Distribution 1.0 (Lewis, 1999). It includes 320 documents belonging to 4 different
classes. The dimension of this data set is 2887.

• PIX1 is a face image data set, which contains 300 face images of 30 persons. Thesize of PIX
images is 512×512. We subsample the images down to a size of 100×100= 10000.

• AR2 (Martinez and Benavente, 1998), is a large face image data set. The instance of each face
may contain pretty large areas of occlusion, due to the presence of sun glasses and scarves.
We use a subset of AR. This subset contains 1638 face images of 126 individuals. Its image
size is 768×576. We first crop the image from row 100 to 500, and column 200 to 550, and
then subsample the cropped images down to a size of 101×88= 8888.

• GCM is a gene expression data set consisting of 198 human tumor samples spanning fourteen
different cancer types. The data set was first studied in (Ramaswamy and et al., 2001; Yeang
and et al., 2001). The breakdown of the sample classes is as follows: 12breastsamples, 14

1. http://peipa.essex.ac.uk/ipa/pix/faces/manchester/test-hard/
2. http://rvl1.ecn.purdue.edu/∼aleix/aleix faceDB.html

496

GENERALIZED DISCRIMINANT ANALYSIS

prostatesamples, 12lungsamples, 12colorectalsamples, 22lymphomasamples, 11bladder
samples, 10melanomasamples, 10uterussamples, 30leukemiasamples, 11renal samples,
11pancreassamples, 12ovarysamples, 11mesotheliomasamples, and 20CNSsamples.

• ALL 3 is another gene expression data set consisting of six diagnostic groups (Yeoh and et al.,
2002). The breakdown of the samples is: 15 samples forBCR, 27 samples forE2A, 64
samples forHyperdip, 20 samples forMLL, 43 samples forT, and 79 samples forTEL.

5.2 Comparison on Classification Accuracy

In this experiment, we evaluate ULDA and OLDA in terms of classification accuracy. For theGCM
andALL gene expression data sets, the test sets were provided. In the absenceof original test sets,
such as the two document data sets and the two face image data sets, we perform our comparative
study by repeated random splitting into training and test sets exactly as in (Dudoit et al., 2002). The
data were randomly partitioned into a training set consisting of two-thirds of thewhole set and a test
set consisting of one-third of the whole set. To reduce the variability, the splitting was repeated 50
times and the resulting accuracies were averaged. Note that during each run, dimension reduction
is applied to the training set only. For RLDA, the results depend on the choiceof the parameterµ.
We choose the bestµ through cross-validation. The range forµ is between 0.001 and 10.

The results of the three algorithms on the six data sets are presented in Table 3. The main
observation from Table 3 is that OLDA is competitive with ULDA and RLDA in all six data sets.
We also observe that in most cases, RLDA outperforms ULDA and is competitive with OLDA.

It is interesting to note that OLDA achieves higher accuracies than ULDA for the two face
image data sets and two gene expression data sets, while it achieves accuracies close to those of
ULDA for the two text document data sets. For theGCM gene expression data set, OLDA achieved
classification accuracy 3% higher than that of OLDA. This may be related to the effect of the noise
removal inherent in OLDA as discussed in Section 4.3.

5.3 Effect of the Matrix M

In this experiment, we study the effect of the matrixM on classification using theGCM andALL
data sets. Recall that the solution to the proposed criterion isG= XqM, for any nonsingularM. Two
specific choices ofM were studied, which correspond to ULDA and OLDA. In this experiment,
we randomly generated 100 matrices forM and computed the accuracies using the corresponding
transformation matrices. Figure 1 shows the histogram of the resulting accuracies onGCM , where
thex-axis represents the range of resulting accuracies (divided into small intervals), and they-axis
represents the number (count) for each interval. The main observations are:

• None of the accuracies is higher than those of ULDA (73.91%) and OLDA (76.09%). ULDA
and OLDA are probably two of the best ones among the family of solutions to theproposed
criterion.

• In Figure 1, most of the accuracies are around 55%, which is much lower than those of ULDA
and OLDA. Thus, the choice ofM does make a big difference. Among the family of solutions
to the proposed criterion, most of them perform quite poorly in comparison toULDA and
OLDA.

3. http://www.stjuderesearch.org/data/ALL1/

497

YE

Data Set Accuracy
ULDA OLDA RLDA

tr41 96.69± 1.90 96.34± 2.10 96.23± 2.17
re0 86.26± 2.46 86.13± 2.58 87.34± 2.37
PIX 96.16± 2.48 98.00± 1.66 96.31± 2.20
AR 90.94± 0.96 92.77± 1.04 91.11± 1.02
GCM 73.91 76.09 78.26
ALL 98.82 100.0 98.82

Table 3: Comparison of classification accuracy and standard deviation ofthree algorithms: ULDA
(Uncorrelated LDA), OLDA (Orthogonal LDA), and RLDA (Regularized LDA), on the
six data sets. The mean and standard deviation of accuracies from fifty runs are reported
for tr41, re0, PIX , andAR. Note that for the two gene expression data sets:GCM and
ALL , we use the original test sets. Thus the standard deviation for these two data sets are
not reported.

0.5 0.55 0.6 0.65 0.7 0.75
0

5

10

15

20

25

Accuracy

C
ou

nt

Figure 1: Effect of the matrixM using theGCM data set. The corresponding accuracies of ULDA
and OLDA are 73.91% and 76.09%, respectively.

The result onALL is shown in Figure 2. We can observe the same trend as inGCM , that is,
most of the accuracies are much lower than those of ULDA and OLDA.

6. Conclusions and Future Directions

In this paper, a new optimization criterion for discriminant analysis is presented. The new criterion
extends the optimization criteria of the classical LDA when the scatter matrices are singular. It

498

GENERALIZED DISCRIMINANT ANALYSIS

0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9
0

5

10

15

20

25

30

Accuracy

C
ou

nt

Figure 2: Effect of the matrixM using theALL data set. The corresponding accuracies of ULDA
and OLDA are 98.82% and 100.0%, respectively.

is applicable regardless of the relative sizes of the data dimension and samplesize, overcoming a
limitation of the classical LDA. A detailed mathematical derivation for the proposed optimization
problem is presented. It is based on the simultaneous diagonalization of the three scatter matrices.

The solutions to the proposed criterion form a family of algorithms for generalized LDA, which
can be characterized in a closed form. Among the family of solutions, we studytwo specific ones,
namely ULDA and OLDA, where ULDA was previously proposed for feature extraction and di-
mension reduction and OLDA is a novel algorithm. ULDA has the property thatthe features in the
reduced space are uncorrelated, while OLDA has the property that the discriminant vectors obtained
are orthogonal to each other. Experiment on a variety of real-world datasets show that OLDA is
competitive with ULDA and RLDA in terms of classification accuracy.

In this paper, we focus on two specific algorithms, ULDA and OLDA, for generalized LDA.
A promising direction is to find algorithms with sparse transformation matrices. Sparsity has re-
cently received much attention for extending Principal Component Analysis(d’Aspremont et al.,
2004; Jolliffe and Uddin, 2003). One of our future work is to incorporate the sparsity criterion in
discriminant analysis.

Acknowledgments

Research is sponsored, in part, by the Army High Performance Computing Research Center under
the auspices of the Department of the Army, Army Research Laboratory cooperative agreement
number DAAD19-01-2-0014, the content of which does not necessarily reflect the position or the
policy of the government, and no official endorsement should be inferred. Support Fellowships
from Guidant Corporation and from the Department of Computer Science &Engineering, at the
University of Minnesota, Twin Cities is gratefully acknowledged.

499

YE

Appendix A.

The pseudo-inverse of a matrix is defined as follows.

Definition 2 The pseudo-inverse of a matrix A, denoted as A+, refers to the unique matrix satisfying
the following four conditions:

(1)A+AA+ = A+, (2)AA+A = A, (3) (AA+)T = AA+, (4)(A+A)T = A+A.

The pseudo-inverse is commonly computed by the SVD as follows (Golub and Loan, 1996).

Let A = U

(

Σ 0
0 0

)

VT be the SVD ofA, whereU andV are orthogonal andΣ is diagonal with

positive diagonal entries. Then,A+ = V

(

Σ−1 0
0 0

)

UT .

References

G. Baudat and F. Anouar. Generalized discriminant analysis using a kernel approach. Neural
Computation, 12(10):2385–2404, 2000.

P. N. Belhumeur, J. P. Hespanha, and D. J. Kriegman. Eigenfaces vs.Fisherfaces: Recognition using
class specific linear projection.IEEE Transactions on Pattern Analysis and Machine Intelligence,
19(7):711–720, 1997.

M. W. Berry, S. T. Dumais, and G. W. O’Brie. Using linear algebra for intelligent information
retrieval.SIAM Review, 37:573–595, 1995.

D. Q. Dai and P. C. Yuen. Regularized discriminant analysis and its application to face recognition.
Pattern Recognition, 36:845–847, 2003.

A. d’Aspremont, L. Ghaoui, M. I. Jordan, and G. R. G. Lanckriet. A direct formulation for sparse
PCA using semidefinite programming. InProceedings of the Eighteenth Annual Conference on
Advances in Neural Information Processing Systems, 2004.

S. Deerwester, S. T. Dumais, G. W. Furnas, T. K. Landauer, and R. Harshman. Indexing by latent
semantic analysis.Journal of the Society for Information Scienc, 41:391–407, 1990.

L. Duchene and S. Leclerq. An optimal transformation for discriminant andprincipal component
analysis.IEEE Transactions on Pattern Analysis and Machine Intelligence, 10(6):978–983, 1988.

R. O. Duda, P. E. Hart, and D. Stork.Pattern Classification. Wiley, 2000.

S. Dudoit, J. Fridlyand, and T. P. Speed. Comparison of discrimination methods for the classification
of tumors using gene expression data.Journal of the American Statistical Association, 97(457):
77–87, 2002.

A. Edelman, T. A. Arias, and S. T. Smith. The geometry of algorithms with orthogonality con-
straints.SIAM Journal on Matrix Analysis and Applications, 20(2):303–353, 1998.

D. H. Foley and J. W. Sammon. An optimal set of discriminant vectors.IEEE Transactions on
Computers, 24(3):281–289, 1975.

500

GENERALIZED DISCRIMINANT ANALYSIS

J. H. Friedman. Regularized discriminant analysis.Journal of the American Statistical Association,
84(405):165–175, 1989.

K. Fukunaga.Introduction to Statistical Pattern Classification. Academic Press, USA, 1990.

G. H. Golub and C. F. Van Loan.Matrix Computations. The Johns Hopkins University Press,
Baltimore, MD, USA, third edition, 1996.

D. J. Hand.Kernel discriminant analysis. Research Studies Press/Wiley, 1982.

T. Hastie, A. Buja, and R. Tibshirani. Penalized discriminant analysis.Annals of Statistics, 23:
73–102, 1995.

T. Hastie and R. Tibshirani. Discriminant analysis by Gaussian mixtures.Journal of the Royal
Statistical Society series B, 58:158–176, 1996.

T. Hastie, R. Tibshirani, and J. H. Friedman.The elements of statistical learning : data mining,
inference, and prediction. Springer, 2001.

P. Howland, M. Jeon, and H. Park. Structure preserving dimension reduction for clustered text data
based on the generalized singular value decomposition.SIAM Journal on Matrix Analysis and
Applications, 25(1):165–179, 2003.

Z. Jin, J. Y. Yang, Z. S. Hu, and Z. Lou. Face recognition based on theuncorrelated discriminant
transformation.Pattern Recognition, 34:1405–1416, 2001a.

Z. Jin, J. Y. Yang, Z. M. Tang, and Z. S. Hu. A theorem on the uncorrelated optimal discriminant
vectors.Pattern Recognition, 34(10):2041–2047, 2001b.

I. T. Jolliffe and M. Uddin. A modified principal component technique based on the lasso.Journal
of Computational and Graphical Statistics, 12:531–547, 2003.

W. J. Krzanowski, P. Jonathan, W. V. McCarthy, and M. R. Thomas. Discriminant analysis with
singular covariance matrices: methods and applications to spectroscopic data. Applied Statistics,
44:101–115, 1995.

D. D. Lewis. Reuters-21578 text categorization test collection distribution 1.0. http://
www.research.att.com/∼lewis, 1999.

J. Lu, K. N. Plataniotis, and A. N. Venetsanopoulos. Face recognition using kernel direct discrimi-
nant analysis algorithms.IEEE Transactions on Neural Networks, 14(1):117–126, 2003.

A. M. Martinez and R. Benavente. The AR face database. Technical Report No. 24, 1998.

S. Ramaswamy and et al. Multiclass cancer diagnosis using tumor gene expression signatures.
Proceedings of the National Academy of Science, 98(26):15149–15154, 2001.

S. Raudys and R. P. W. Duin. On expected classification error of the fisher linear classifier with
pseudo-inverse covariance matrix.Pattern Recognition Letters, 19(5-6):385–392, 1998.

B. Scḧokopf and A. Smola. Learning with Kernels: Support Vector Machines, Regularization,
Optimization and Beyond. MIT Press, 2002.

501

YE

M. Skurichina and R. P. W. Duin. Stabilizing classifiers for very small samplesize. In Proc.
International Conference on Pattern Recognition, pages 891–896, 1996.

M. Skurichina and R. P. W. Duin. Regularization of linear classifiers by adding redundant features.
Pattern Analysis and Applications, 2(1):44–52, 1999.

D. L. Swets and J. Weng. Using discriminant eigenfeatures for image retrieval. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 18(8):831–836, 1996.

TREC. Text Retrieval conference. http://trec.nist.gov, 1999.

M. A. Turk and A. P. Pentland. Face recognition using Eigenfaces. InIEEE Computer Society
Conference on Computer Vision and Pattern Recognition, pages 586–591, 1991.

V. N. Vapnik. Statistical Learning Theory. Wiley, New York, 1998.

G. Wahba.Spline Models for Observational Data. Society for Industrial & Applied Mathematics,
1998.

J. Ye, R. Janardan, Q. Li, and H. Park. Feature extraction via generalized uncorrelated linear dis-
criminant analysis. InThe Twenty-First International Conference on Machine Learning, pages
895–902, 2004a.

J. Ye, R. Janardan, C. H. Park, and H. Park. An optimization criterion for generalized discrimi-
nant analysis on undersampled problems.IEEE Transactions on Pattern Analysis and Machine
Intelligence, 26(8):982–994, 2004b.

C. H. Yeang and et al. Molecular classification of multiple tumor types.Bioinformatics, 17(1):1–7,
2001.

E. J. Yeoh and et al. Classification, subtype diswcovery, and predictionof outcome in pediatric
lymphoblastic leukemia by gene expression profiling.Cancer Cell, 1(2):133–143, 2002.

W. Zhao, R. Chellappa, and P. Phillips. Subspace linear discriminant analysis for face recognition.
Technical Report CAR-TR-914. Center for Automation Research, University of Maryland, 1999.

502

Journal of Machine Learning Research 6 (2005) 503–556 Submitted 11/03; Revised 4/04; Published 4/05

Tree-Based Batch Mode Reinforcement Learning

Damien Ernst ERNST@MONTEFIORE.ULG.AC.BE

Pierre Geurts GEURTS@MONTEFIORE.ULG.AC.BE

Louis Wehenkel LWH@MONTEFIORE.ULG.AC.BE

Department of Electrical Engineering and Computer Science
Institut Montefiore, University of Liège
Sart-Tilman B28
B4000 Lìege, Belgium

Editor: Michael L. Littman

Abstract
Reinforcement learning aims to determine an optimal control policy from interaction with a system
or from observations gathered from a system. In batch mode, it can be achieved by approximating
the so-calledQ-function based on a set of four-tuples(xt ,ut , rt ,xt+1) wherext denotes the sys-
tem state at timet, ut the control action taken,rt the instantaneous reward obtained andxt+1 the
successor state of the system, and by determining the control policy from this Q-function. The
Q-function approximation may be obtained from the limit of a sequence of (batch mode) super-
vised learning problems. Within this framework we describethe use of several classical tree-based
supervised learning methods (CART, Kd-tree, tree bagging)and two newly proposed ensemble al-
gorithms, namelyextremelyandtotally randomized trees. We study their performances on several
examples and find that the ensemble methods based on regression trees perform well in extracting
relevant information about the optimal control policy fromsets of four-tuples. In particular, the to-
tally randomized trees give good results while ensuring theconvergence of the sequence, whereas
by relaxing the convergence constraint even better accuracy results are provided by the extremely
randomized trees.

Keywords: batch mode reinforcement learning, regression trees, ensemble methods, supervised
learning, fitted value iteration, optimal control

1. Introduction

Research in reinforcement learning (RL) aims at designing algorithms by which autonomous agents
can learn to behave in some appropriate fashion in some environment, from their interaction with
this environment or from observations gathered from the environment (see e.g. Kaelbling et al.
(1996) or Sutton and Barto (1998) for a broad overview). The standard RL protocol considers a
performance agent operating in discrete time, observing at timet the environment statext , taking an
actionut , and receiving back information from the environment (the next statext+1 and the instan-
taneous rewardrt). After some finite time, the experience the agent has gathered from interaction
with the environment may thus be represented by a set of four-tuples(xt ,ut , rt ,xt+1).

In on-line learning the performance agent is also the learning agent whichat each time step can
revise its control policy with the objective of converging as quickly as possible to an optimal control
policy. In this paper we consider batch mode learning, where the learning agent is in principle not
directly interacting with the system but receives only a set of four-tuples and is asked to determine

c©2005 Damien Ernst, Pierre Geurts and Louis Wehenkel.

ERNST, GEURTS AND WEHENKEL

from this set a control policy which is as close as possible to an optimal policy.Inspired by the
on-lineQ-learning paradigm (Watkins, 1989), we will approach this batch mode learning problem
by computing from the set of four-tuples an approximation of the so-calledQ-function defined on
the state-action space and by deriving from this latter function the control policy.

When the state and action spaces are finite and small enough, theQ-function can be represented
in tabular form, and its approximation (in batch and in on-line mode) as well as thecontrol policy
derivation are straightforward. However, when dealing with continuousor very large discrete state
and/or action spaces, theQ-function cannot be represented anymore by a table with one entry for
each state-action pair. Moreover, in the context of reinforcement learning an approximation of the
Q-function all over the state-action space must be determined from finite and generally very sparse
sets of four-tuples.

To overcome this generalization problem, a particularly attractive frameworkis the one used by
Ormoneit and Sen (2002) which applies the idea of fitted value iteration (Gordon, 1999) to kernel-
based reinforcement learning, and reformulates theQ-function determination problem as a sequence
of kernel-based regression problems. Actually, this framework makes it possible to take full advan-
tage in the context of reinforcement learning of the generalization capabilities of any regression
algorithm, and this contrary to stochastic approximation algorithms (Sutton, 1988; Tsitsiklis, 1994)
which can only use parametric function approximators (for example, linear combinations of feature
vectors or neural networks). In the rest of this paper we will call this framework thefitted Q iteration
algorithmso as to stress the fact that it allows to fit (using a set of four-tuples) any(parametric or
non-parametric) approximation architecture to theQ-function.

The fittedQ iteration algorithm is a batch mode reinforcement learning algorithm which yields
an approximation of theQ-function corresponding to an infinite horizon optimal control problem
with discounted rewards, by iteratively extending the optimization horizon (Ernst et al., 2003):

• At the first iteration it produces an approximation of aQ1-function corresponding to a 1-step
optimization. Since the trueQ1-function is the conditional expectation of the instantaneous
reward given the state-action pair (i.e.,Q1(x,u) = E[rt |xt = x,ut = u]), an approximation of
it can be constructed by applying a (batch mode) regression algorithm to a training set whose
inputs are the pairs(xt ,ut) and whose target output values are the instantaneous rewardsrt

(i.e.,q1,t = rt).

• The Nth iteration derives (using a batch mode regression algorithm) an approximation of a
QN-function corresponding to anN-step optimization horizon. The training set at this step
is obtained by merely refreshing the output values of the training set of the previous step by
using the “value iteration” based on the approximateQN-function returned at the previous
step (i.e.,qN,t = rt + γmaxuQ̂N−1(xt+1,u), whereγ ∈ [0,1) is the discount factor).

Ormoneit and Sen (2002) have studied the theoretical convergence andconsistency properties of
this algorithm when combined with kernel-based regressors. In this paper, we study within this
framework the empirical properties and performances of several tree-based regression algorithms
on several applications. Just like kernel-based methods, tree-based methods are non-parametric
and offer a great modeling flexibility, which is a paramount characteristic for the framework to be
successful since the regression algorithm must be able to model anyQN-function of the sequence,
functions which are a priori totally unpredictable in shape. But, from a practical point of view these
tree-based methods have a priori some additional advantages, such as their high computational

504

TREE-BASED BATCH MODE REINFORCEMENTLEARNING

efficiency and scalability to high-dimensional spaces, their fully autonomouscharacter, and their
recognized robustness to irrelevant variables, outliers, and noise.

In addition to good accuracy when trained with finite sets of four-tuples, one desirable feature of
the regression method used in the context of the fittedQ iteration algorithm is to ensure convergence
of the sequence. We will analyze under which conditions the tree-based methods share this property
and also what is the relation between convergence and quality of approximation. In particular, we
will see that ensembles of totally randomized trees (i.e., trees built by selecting their splits randomly)
can be adapted to ensure the convergence of the sequence while leadingto good approximation
performances. On the other hand, another tree-based algorithm named extremely randomized trees
(Geurts et al., 2004), will be found to perform consistently better than totallyrandomized trees even
though it does not strictly ensure the convergence of the sequence ofQ-function approximations.

The remainder of this paper is organized as follows. In Section 2, we formalize the reinforce-
ment learning problem considered here and recall some classical resultsfrom optimal control theory
upon which the approach is based. In Section 3 we present thefitted Q iteration algorithmand in
Section 4 we describe the different tree-based regression methods considered in our empirical tests.
Section 5 is dedicated to the experiments where we apply the fittedQ iteration algorithm used with
tree-based methods to several control problems with continuous state spaces and evaluate its perfor-
mances in a wide range of conditions. Section 6 concludes and also provides our main directions for
further research. Three appendices collect relevant details about algorithms, mathematical proofs
and benchmark control problems.

2. Problem Formulation and Dynamic Programming

We consider a time-invariant stochastic system in discrete time for which a closed loop stationary
control policy1 must be chosen in order to maximize an expected discounted return over an infinite
time horizon. We formulate hereafter the batch mode reinforcement learning problem in this context
and we restate some classical results stemming from Bellman’s dynamic programming approach to
optimal control theory (introduced in Bellman, 1957) and from which the fittedQ iteration algorithm
takes its roots.

2.1 Batch Mode Reinforcement Learning Problem Formulation

Let us consider a system having adiscrete-time dynamicsdescribed by

xt+1 = f (xt ,ut ,wt) t = 0,1, · · · , (1)

where for allt, the statext is an element of the state spaceX, the actionut is an element of the action
spaceU and the random disturbancewt an element of the disturbance spaceW. The disturbancewt

is generated by the time-invariant conditional probability distributionPw(w|x,u).2

To the transition fromt to t + 1 is associated an instantaneousreward signal rt = r(xt ,ut ,wt)
wherer(x,u,w) is the reward function supposed to be bounded by some constantBr .

Let µ(·) : X → U denote a stationary control policy andJµ
∞ denote the expected return ob-

tained over an infinite time horizon when the system is controlled using this policy (i.e., when

1. Indeed, in terms of optimality this restricted family of control policies is as good as the broader set of all non-
anticipating (and possibly time-variant) control policies.

2. In other words, the probabilityP(wt = w|xt = x,ut = u) of occurrence ofwt = w given that the current statext and
the current controlut arex andu respectively, is equal toPw(w|x,u),∀t = 0,1, · · · .

505

ERNST, GEURTS AND WEHENKEL

ut = µ(xt),∀t). For a given initial conditionx0 = x, Jµ
∞ is defined by

Jµ
∞(x) = lim

N→∞
E
wt

t=0,1,··· ,N−1

[
N−1

∑
t=0

γtr(xt ,µ(xt),wt)|x0 = x], (2)

whereγ is a discount factor (0≤ γ < 1) that weights short-term rewards more than long-term ones,
and where the conditional expectation is taken over all trajectories starting with the initial condi-
tion x0 = x. Our objective is to find an optimal stationary policyµ∗, i.e. a stationary policy that
maximizesJµ

∞ for all x.
The existence of an optimal stationary closed loop policy is a classical resultfrom dynamic

programming theory. It could be determined in principle by solving the Bellman equation (see
below, Eqn (6)) given the knowledge of the system dynamics and rewardfunction. However, the sole
information that we assume available to solve the problem is the one obtained from the observation
of a certain number of one-step system transitions (fromt to t +1). Each system transition provides
the knowledge of a new four-tuple(xt ,ut , rt ,xt+1) of information. Since, except for very special
conditions, it is not possible to determine exactly an optimal control policy froma finite sample of
such transitions, we aim at computing an approximation of such aµ∗ from a set

F = {(xl
t ,u

l
t , r

l
t ,x

l
t+1), l = 1, · · · ,#F }

of such four-tuples.
We do not make any particular assumptions on the way the set of four-tuplesis generated. It

could be generated by gathering the four-tuples corresponding to one single trajectory (or episode)
as well as by considering several independently generated one or multi-step episodes.

We call this problem thebatch modereinforcement learning problem because the algorithm is
allowed to use a set of transitions of arbitrary size to produce its control policy in a single step. In
contrast, anon-linealgorithm would produce a sequence of policies corresponding to a sequence of
four-tuples.

2.2 Results from Dynamic Programming Theory

For a temporal horizon ofN steps, let us denote by

πN(t,x) ∈U, t ∈ {0, · · · ,N−1};x∈ X

a (possibly time-varying)N-step control policy (i.e.,ut = πN(t,xt)), and by

JπN
N (x) = E

wt
t=0,1,··· ,N−1

[
N−1

∑
t=0

γtr(xt ,πN(t,xt),wt)|x0 = x] (3)

its expected return overN steps. AnN-step optimal policyπ∗N is a policy which among all possible
such policies maximizesJπN

N for anyx. Notice that under mild conditions (see e.g. Hernández-Lerma
and Lasserre, 1996, for the detailed conditions) such a policy always does indeed exist although it
is not necessarily unique.

Our algorithm exploits the following classical results from dynamic programmingtheory (Bell-
man, 1957):

506

TREE-BASED BATCH MODE REINFORCEMENTLEARNING

1. The sequence ofQN-functions defined onX×U by

Q0(x,u) ≡ 0 (4)

QN(x,u) = (HQN−1)(x,u), ∀N > 0, (5)

converges (in infinity norm) to theQ-function, defined as the (unique) solution of the Bellman
equation:

Q(x,u) = (HQ)(x,u) (6)

whereH is an operator mapping any functionK : X×U → R and defined as follows:3

(HK)(x,u) = E
w
[r(x,u,w)+ γmax

u′∈U
K(f (x,u,w),u′)]. (7)

Uniqueness of solution of Eqn (6) as well as convergence of the sequence ofQN-functions
to this solution are direct consequences of the fixed point theorem and ofthe fact thatH is a
contraction mapping.

2. The sequence of policies defined by the two conditions4

π∗N(0,x) = argmax
u′∈U

QN(x,u′),∀N > 0 (8)

π∗N(t +1,x) = π∗N−1(t,x),∀N > 1, t ∈ {0, . . . ,N−2} (9)

areN-step optimal policies, and their expected returns overN steps are given by

J
π∗N
N (x) = max

u∈U
QN(x,u).

3. A policy µ∗ that satisfies
µ∗(x) = argmax

u∈U
Q(x,u) (10)

is an optimal stationary policy for the infinite horizon case and the expected return ofµ∗N(x)
.
=

π∗N(0,x) converges to the expected return ofµ∗:

lim
N→∞

J
µ∗N∞ (x) = Jµ∗

∞ (x) ∀x∈ X. (11)

We have also limN→∞ J
π∗N
N (x) = Jµ∗

∞ (x) ∀x∈ X.

Equation (5) defines the so-calledvalue iteration algorithm5 providing a way to determine iter-
atively a sequence of functions converging to theQ-function and hence of policies whose return
converges to that of an optimal stationary policy, assuming that the system dynamics, the reward
function and the noise distribution are known. As we will see in the next section, it suggests also a
way to determine approximations of theseQN-functions and policies from a sampleF .

3. The expectation is computed by usingP(w) = Pw(w|x,u).
4. Actually this definition does not necessarily yield a unique policy, but anypolicy which satisfies these conditions is

appropriate.

5. Strictly, the term “value iteration” refers to the computation of thevaluefunctionJµ∗
∞ and corresponds to the iteration

J
π∗N
N = max

u∈U
E
w
[r(x,u,w)+ γJ

π∗N−1
N−1(f (x,u,w))],∀N > 0 rather than Eqn (5).

507

ERNST, GEURTS AND WEHENKEL

3. Fitted Q Iteration Algorithm

In this section, we introduce the fittedQ iteration algorithm which computes from a set of four-
tuples an approximation of the optimal stationary policy.

3.1 The Algorithm

A tabular version of the fittedQ iteration algorithm is given in Figure 1. At each step this algorithm
may use the full set of four-tuples gathered from observation of the system together with the function
computed at the previous step to determine a new training set which is used by asupervised learning
(regression) method to compute the next function of the sequence. It produces a sequence of̂QN-
functions, approximations of theQN-functions defined by Eqn (5).

Inputs: a set of four-tuplesF and a regression algorithm.
Initialization:
SetN to 0 .
Let Q̂N be a function equal to zero everywhere onX×U .
Iterations:
Repeat until stopping conditions are reached

- N← N+1 .

- Build the training setT S = {(i l ,ol), l = 1, · · · ,#F } based on the the function̂QN−1 and on
the full set of four-tuplesF :

i l = (xl
t ,u

l
t) , (12)

ol = r l
t + γmax

u∈U
Q̂N−1(x

l
t+1,u) . (13)

- Use the regression algorithm to induce fromT S the functionQ̂N(x,u).

Figure 1: FittedQ iteration algorithm

Notice that at the first iteration the fittedQ iteration algorithm is used in order to produce an
approximation of the expected rewardQ1(x,u) = Ew[r(x,u,w)]. Therefore, the considered training
set uses input/output pairs (denoted(i l ,ol)) where the inputs are the state-action pairs and the outputs
the observed rewards. In the subsequent iterations, only the output values of these input/output pairs
are updated using the value iteration based on theQ̂N-function produced at the preceding step and
information about the reward and the successor state reached in each tuple.

It is important to realize that the successive calls to the supervised learningalgorithm are totally
independent. Hence, at each step it is possible to adapt the resolution (orcomplexity) of the learned
model so as to reach the best bias/variance tradeoff at this step, given the available sample.

3.2 Algorithm Motivation

To motivate the algorithm, let us first consider the deterministic case. In this case the system dy-
namics and the reward signal depend only on the state and action at timet. In other words we have

508

TREE-BASED BATCH MODE REINFORCEMENTLEARNING

xt+1 = f (xt ,ut) andrt = r(xt ,ut) and Eqn (5) may be rewritten

QN(x,u) = r(x,u)+ γmax
u′∈U

QN−1(f (x,u),u′). (14)

If we suppose that the functionQN−1 is known, we can use this latter equation and the set of four-
tuplesF in order to determine the value ofQN for the state-action pairs(xl

t ,u
l
t), l = 1,2, · · · ,#F .

We have indeedQN(xl
t ,u

l
t) = r l

t + γmax
u′∈U

QN−1(xl
t+1,u

′), sincexl
t+1 = f (xl

t ,u
l
t) andr l

t = r(xl
t ,u

l
t).

We can thus build a training setT S = {((xl
t ,u

l
t),QN(xl

t ,u
l
t)), l = 1, · · · ,#F } and use a regression

algorithm in order to generalize this information to any unseen state-action pairor, stated in another
way, tofit a function approximator to this training set in order to get an approximationQ̂N of QN over
the whole state-action space. If we substituteQ̂N for QN we can, by applying the same reasoning,
determine iterativelyQ̂N+1, Q̂N+2, etc.

In the stochastic case, the evaluation of the right hand side of Eqn (14) for some four-tuples
(xt ,ut , rt ,xt+1) is no longer equal toQN(xt ,ut) but rather is the realization of a random variable
whose expectation isQN(xt ,ut). Nevertheless, since a regression algorithm usually6 seeks an ap-
proximation of the conditional expectation of the output variable given the inputs, its application
to the training setT S will still provide an approximation ofQN(x,u) over the whole state-action
space.

3.3 Stopping Conditions

The stopping conditions are required to decide at which iteration (i.e., for which value ofN) the
process can be stopped. A simple way to stop the process is to define a priori a maximum number
of iterations. This can be done for example by noting that for a sequence of optimal policiesµ∗N, an
error bound on the sub-optimality in terms of number of iterations is given by thefollowing equation

‖Jµ∗N∞ −Jµ∗
∞ ‖∞ ≤ 2

γNBr

(1− γ)2 . (15)

Given the value ofBr and a desired level of accuracy, one can then fix the maximum number of
iterations by computing the minimum value ofN such that the right hand side of this equation is
smaller than the tolerance fixed.7

Another possibility would be to stop the iterative process when the distance betweenQ̂N and
Q̂N−1 drops below a certain value. Unfortunately, for some supervised learning algorithms there is
no guarantee that the sequence ofQ̂N-functions actually converges and hence this kind of conver-
gence criterion does not necessarily make sense in practice.

3.4 Control Policy Derivation

When the stopping conditions - whatever they are - are reached, the finalcontrol policy, seen as an
approximation of the optimal stationary closed loop control policy is derived by

µ̂∗N(x) = argmax
u∈U

Q̂N(x,u). (16)

6. This is true in the case of least squares regression, i.e. in the vast majority of regression methods.
7. Equation (15) gives an upper bound on the suboptimality ofµ∗N and not ofµ̂∗N. By exploiting this upper bound

to determine a maximum number of iterations, we assume implicitly that ˆµ∗N is a good approximation ofµ∗N (that

‖Jµ̂∗N∞ −J
µ∗N∞ ‖∞ is small).

509

ERNST, GEURTS AND WEHENKEL

When the action space is discrete, it is possible to compute the valueQ̂N(x,u) for each value
of u and then find the maximum. Nevertheless, in our experiments we have sometimes adopted
a different approach to handle discrete action spaces. It consists of splitting the training samples
according to the value ofu and of building the approximation̂QN(x,u) by separately calling for
each value ofu∈U the regression method on the corresponding subsample. In other words,each
such model is induced from the subset of four-tuples whose value of theaction isu, i.e.

Fu = {(xt ,ut , rt ,xt+1) ∈ F |ut = u}.

At the end, the action at some pointx of the state space is computed by applying to this state each
modelQ̂N(x,u),u∈U and looking for the value ofu yielding the highest value.

When the action space is continuous, it may be difficult to compute the maximum especially
because we can not make any a priori assumption about the shape of theQ-function (e.g. convex-
ity). However, taking into account particularities of the models learned by a particular supervised
learning method, it may be more or less easy to compute this value (see Section 4.5for the case of
tree-based models).

3.5 Convergence of the FittedQ Iteration Algorithm

The fittedQ iteration algorithm is said to converge if there exists a functionQ̂ : X×U → R such
that∀ε > 0 there exists an∈ N such that:

‖Q̂N− Q̂‖∞ < ε ∀N > n.

Convergence may be ensured if we use a supervised learning method which given a sampleT S =
{(i1,o1), . . . ,(i#T S ,o#T S)} produces at each call the model (proof in Appendix B):

f (i) =
#T S

∑
l=1

kT S (i l , i)∗ol
, (17)

with the kernelkT S (i l , i) being the same from one call to the other within the fittedQ iteration
algorithm8 and satisfying the normalizing condition:

#T S

∑
l=1

|kT S (i l , i)|= 1, ∀i. (18)

Supervised learning methods satisfying these conditions are for example thek-nearest-neighbors
method, partition and multi-partition methods, locally weighted averaging, linear, and multi-linear
interpolation. They are collectively referred to as kernel-based methods(see Gordon, 1999; Or-
moneit and Sen, 2002).

3.6 Related Work

As stated in the Introduction, the idea of trying to approximate theQ-function from a set of four-
tuples by solving a sequence of supervised learning problems may alreadybe found in Ormoneit and

8. This is true when the kernel does not depend on the output values of the training sample and when the supervised
learning method is deterministic.

510

TREE-BASED BATCH MODE REINFORCEMENTLEARNING

Sen (2002). This work however focuses on kernel-based methods for which it provides convergence
and consistency proofs, as well as a bias-variance characterization.While in our formulation state
and action spaces are handled in a symmetric way and may both be continuous or discrete, in their
work Ormoneit and Sen consider only discrete action spaces and use a separate kernel for each value
of the action.

The work of Ormoneit and Sen is related to earlier work aimed to solve large-scale dynamic pro-
gramming problems (see for example Bellman et al., 1973; Gordon, 1995b; Tsitsiklis and Van Roy,
1996; Rust, 1997). The main difference is that in these works the variouselements that compose
the optimal control problem are supposed to be known. We gave the namefitted Q iterationto our
algorithm given in Figure 1 to emphasize that it is a reinforcement learning version of thefitted
value iterationalgorithm whose description may be found in Gordon (1999). Both algorithms are
quite similar except that Gordon supposes that a complete generative model isavailable,9 which is
a rather strong restriction with respect to the assumptions of the present paper.

In his work, Gordon characterizes a class of supervised learning methods referred to as averagers
that lead to convergence of his algorithm. These averagers are in fact aparticular family of kernels
as considered by Ormoneit and Sen. In Boyan and Moore (1995), serious convergence problems
that may plague the fitted value iteration algorithm when used with polynomial regression, back-
propagation, or locally weighted regression are shown and these also apply to the reinforcement
learning context. In their paper, Boyan and Moore propose also a way toovercome this problem
by relying on some kind of Monte-Carlo simulations. In Gordon (1995a) andSingh et al. (1995)
on-line versions of the fitted value iteration algorithm used with averagers are presented.

In Moore and Atkeson (1993) and Ernst (2003), several reinforcement learning algorithms
closely related to the fittedQ iteration algorithm are given. These algorithms, known as model-
based algorithms, build explicitly from the set of observations a finite MarkovDecision Process
(MDP) whose solution is then used to adjust the parameters of the approximation architecture used
to represent theQ-function. When the states of the MDP correspond to a finite partition of the
original state space, it can be shown that these methods are strictly equivalent to using the fittedQ
iteration algorithm with a regression method which consists of simply averaging the output values
of the training samples belonging to a given cell of the partition.

In Boyan (2002), the Least-Squares Temporal-Difference (LSTD) algorithm is proposed. This
algorithm uses linear approximation architectures and learns the expected return of a policy. It is
similar to the fittedQ iteration algorithm combined with linear regression techniques on problems
for which the action space is composed of a single element. Lagoudakis and Parr (2003a) intro-
duce the Least-Squares Policy Iteration (LSPI) which is an extension of LSTD to control problems.
The model-based algorithms in Ernst (2003) that consider representative states as approximation
architecture may equally be seen as an extension of LSTD to control problems.

Finally, we would like to mention some recent works based on the idea of reductions of rein-
forcement learning to supervised learning (classification or regression) with various assumptions
concerning the available a priori knowledge (see e.g. Kakade and Langford, 2002; Langford and
Zadrozny, 2004, and the references therein). For example, assumingthat a generative model is
available,10 an approach to solve the optimal control problem by reformulating it as a sequence of

9. Gordon supposes that the functionsf (·, ·, ·), r(·, ·, ·), andPw(·|·, ·) are known and considers training sets composed of

elements of the type(x,max
u∈U

E
w
[r(x,u,w)+ γĴ

π∗N−1
N−1(f (x,u,w))]).

10. A generative model allows simulating the effect of any action on the system at any starting point; this is less restrictive
than thecompletegenerative model assumption of Gordon (footnote 9, page 511).

511

ERNST, GEURTS AND WEHENKEL

standard supervised classification problems has been developed (see Lagoudakis and Parr, 2003b;
Bagnell et al., 2003), taking its roots from the policy iteration algorithm, another classical dynamic
programming algorithm. Within this “reductionist” framework, the fittedQ iteration algorithm can
be considered as areductionof reinforcement learning to a sequence of regression tasks, inspiredby
the value iteration algorithm and usable in the rather broad context where theavailable information
is given in the form of a set of four-tuples. Thisbatch modecontext incorporates indeed both the
on-line context (since one can always store data gathered on-line, at least for a finite time interval) as
well as the generative context (since one can always use the generative model to generate a sample
of four-tuples) as particular cases.

4. Tree-Based Methods

We will consider in our experiments five different tree-based methods all based on the same top-
down approach as in the classical tree induction algorithm. Some of these methods will produce
from the training set a model composed of onesingleregression tree while the others build anen-
sembleof regression trees. We characterize first the models that will be produced by these tree-based
methods and then explain how the different tree-based methods generate these models. Finally, we
will consider some specific aspects related to the use of tree-based methods with the fittedQ itera-
tion algorithm.

4.1 Characterization of the Models Produced

A regression tree partitions the input space into several regions and determines a constant prediction
in each region of the partition by averaging the output values of the elements of the training setT S

which belong to this region. LetS(i) be the function that assigns to an inputi (i.e., a state-action pair)
the region of the partition it belongs to. A regression tree produces a modelthat can be described
by Eqn (17) with the kernel defined by the expression:

kT S (i l , i) =
IS(i)(i

l)

∑(a,b)∈T S IS(i)(a)
(19)

whereIB(·) denotes the characteristic function of the regionB (IB(i) = 1 if i ∈ B and 0 otherwise).
When a tree-based method builds an ensemble of regression trees, the model it produces av-

erages the predictions of the different regression trees to make a final prediction. Suppose that a
tree-based ensemble method producesp regression trees and gets as input a training setT S . Let
T Sm

11 be the training set used to build themth regression tree (and therefore themth partition) and
Sm(i) be the function that assigns to eachi the region of themth partition it belongs to. The model
produced by the tree-based method may also be described by Eqn (17) withthe kernel defined now
by the expression:

kT S (i l , i) =
1
p

p

∑
m=1

ISm(i)(i
l)

∑(a,b)∈T Sm
ISm(i)(a)

. (20)

It should also be noticed that kernels (19) and (20) satisfy the normalizingcondition (18).

11. These subsets may be obtained in different ways from the original training set, e.g. by sampling with or without
replacement, but we can assume that each element ofT Sm is also an element ofT S .

512

TREE-BASED BATCH MODE REINFORCEMENTLEARNING

4.2 The Different Tree-Based Algorithms

All the tree induction algorithms that we consider are top-down in the sense that they create their
partition by starting with a single subset and progressively refining it by splitting its subsets into
pieces. The tree-based algorithms that we consider differ by the number of regression trees they
build (one or an ensemble), the way they grow a tree from a training set (i.e.,the way the different
tests inside the tree are chosen) and, in the case of methods that produce an ensemble of regression
trees, also the way they derive from the original training setT S the training setT Sm they use to
build a particular tree. They all consider binary splits of the type[i j < t], i.e. “if i j smaller thant go
left else go right” wherei j represents thejth input (or jth attribute) of the input vectori. In what
follows the split variablest andi j are referred to as the cut-point and the cut-direction (or attribute)
of the split (or test)[i j < t].

We now describe the tree-based regression algorithms used in this paper.

4.2.1 KD-TREE

In this method the regression tree is built from the training set by choosing thecut-point at the local
median of the cut-direction so that the tree partitions the local training set into twosubsets of the
same cardinality. The cut-directions alternate from one node to the other: if the direction of cut is
i j for the parent node, it is equal toi j+1 for the two children nodes ifj +1 < n with n the number
of possible cut-directions andi1 otherwise. A node is a leaf (i.e., is not partitioned) if the training
sample corresponding to this node contains less thannmin tuples. In this method the tree structure is
independent of the output values of the training sample, i.e. it does not change from one iteration to
another of the fittedQ iteration algorithm.

4.2.2 PRUNED CART TREE

The classical CART algorithm is used to grow completely the tree from the training set (Breiman
et al., 1984). This algorithm selects at a node the test (i.e., the cut-direction and cut-point) that
maximizes the average variance reduction of the output variable (see Eqn (25) in Appendix A). The
tree is pruned according to the cost-complexity pruning algorithm with error estimate by ten-fold
cross validation. Because of the score maximization and the post-pruning, the tree structure depends
on the output values of the training sample; hence, it may change from one iteration to another.

4.2.3 TREE BAGGING

We refer here to the standard algorithm published by Breiman (1996). An ensemble ofM trees is
built. Each tree of the ensemble is grown from a training set by first creatinga bootstrap replica
(random sampling with replacement of the same number of elements) of the training set and then
building an unpruned CART tree using that replica. Compared to the PrunedCART Tree algorithm,
Tree Bagging often improves dramatically the accuracy of the model produced by reducing its
variance but increases the computing times significantly. Note that during the tree building we also
stop splitting a node if the number of training samples in this node is less thannmin. This algorithm
has therefore two parameters, the numberM of trees to build and the value ofnmin.

513

ERNST, GEURTS AND WEHENKEL

One single

regression tree is built

An ensemble of

regression trees is built

Testsdo dependon the output

values (o) of the(i,o) ∈ T S
CART

Tree Bagging

Extra-Trees

Testsdo not dependon the output

values (o) of the(i,o) ∈ T S
Kd-Tree Totally Randomized Trees

Table 1: Main characteristics of the different tree-based algorithms usedin the experiments.

4.2.4 EXTRA-TREES

Besides Tree Bagging, several other methods to build tree ensembles havebeen proposed that often
improve the accuracy with respect to Tree Bagging (e.g. Random Forests, Breiman, 2001). In
this paper, we evaluate our recently developed algorithm that we call “Extra-Trees”, for extremely
randomized trees (Geurts et al., 2004). Like Tree Bagging, this algorithm works by building several
(M) trees. However, contrary to Tree Bagging which uses the standard CART algorithm to derive
the trees from a bootstrap sample, in the case of Extra-Trees, each tree isbuilt from the complete
original training set. To determine a test at a node, this algorithm selectsK cut-directions at random
and for each cut-direction, a cut-point at random. It then computes a score for each of theK tests and
chooses among theseK tests the one that maximizes the score. Again, the algorithm stops splitting
a node when the number of elements in this node is less than a parameternmin. Three parameters are
associated to this algorithm: the numberM of trees to build, the numberK of candidate tests at each
node and the minimal leaf sizenmin. The detailed tree building procedure is given in Appendix A.

4.2.5 TOTALLY RANDOMIZED TREES

Totally Randomized Trees corresponds to the case of Extra-Trees whenthe parameterK is chosen
equal to one. Indeed, in this case the tests at the different nodes are chosen totally randomly and
independently from the output values of the elements of the training set. Actually, this algorithm is
equivalent to an algorithm that would build the tree structure totally at randomwithout even looking
at the training set and then use the training set only to remove the tests that leadto empty branches
and decide when to stop the development of a branch (Geurts et al., 2004). This algorithm can
therefore be degenerated in the context of the usage that we make of it in this paper by freezing the
tree structure after the first iteration, just as the Kd-Trees.

4.2.6 DISCUSSION

Table 1 classifies the different tree-based algorithms considered according to two criteria: whether
they build one single or an ensemble of regression trees and whether the tests computed in the trees
depend on the output values of the elements of the training set. We will see in theexperiments that
these two criteria often characterize the results obtained.

Concerning the value of parameterM (the number of trees to be built) we will use the same
value for Tree Bagging, Extra-Trees and Totally Randomized Trees andset it equal to 50 (except in
Section 5.3.6 where we will assess its influence on the solution computed).

514

TREE-BASED BATCH MODE REINFORCEMENTLEARNING

For the Extra-Trees, experiments in Geurts et al. (2004) have shown that a good default value for
the parameterK in regression is actually the dimension of the input space. In all our experiments,
K will be set to this default value.

While pruning generally improves significantly the accuracy of single regression trees, in the
context of ensemble methods it is commonly admitted that unpruned trees are better. This is sug-
gested from the bias/variance tradeoff, more specifically because pruning reduces variance but in-
creases bias and since ensemble methods reduce very much the variance without increasing too
much bias, there is often no need for pruning trees in the context of ensemble methods. However, in
high-noise conditions, pruning may be useful even with ensemble methods. Therefore, we will use
a cross-validation approach to automatically determine the value ofnmin in the context of ensemble
methods. In this case, pruning is carried out by selecting at random two thirds of the elements of
T S , using the particular ensemble method with this smaller training set and determining for which
value ofnmin the ensemble minimizes the square error over the last third of the elements. Then,
the ensemble method is run again on the whole training set using this value ofnmin to produce the
final model. In our experiments, the resulting algorithm will have the same name as the original
ensemble method preceded by the termPruned(e.g. Pruned Tree Bagging). The same approach
will also be used to prune Kd-Trees.

4.3 Convergence of the FittedQ Iteration Algorithm

Since the models produced by the tree-based methods may be described by an expression of the type
(17) with the kernelkT S (i l , i) satisfying the normalizing condition (18), convergence of the fittedQ
iteration algorithm can be ensured if the kernelkT S (i l , i) remains the same from one iteration to the
other. This latter condition is satisfied when the tree structures remain unchanged throughout the
different iterations.

For the Kd-Tree algorithm which selects tests independently of the output values of the elements
of the training set, it can be readily seen that it will produce at each iterationthe same tree structure
if the minimum number of elements to split a leaf (nmin) is kept constant. This also implies that the
tree structure has just to be built at the first iteration and that in the subsequent iterations, only the
values of the terminal leaves have to be refreshed. Refreshment may be done by propagating all the
elements of the new training set in the tree structure and associating to a terminalleaf the average
output value of the elements having reached this leaf.

For the totally randomized trees, the tests do not depend either on the output values of the
elements of the training set but the algorithm being non-deterministic, it will not produce the same
tree structures at each call even if the training set and the minimum number of elements (nmin) to
split a leaf are kept constant. However, since the tree structures are independent from the output, it
is not necessary to refresh them from one iteration to the other. Hence, inour experiments, we will
build the set of totally randomized trees only at the first iteration and then only refresh predictions
at terminal nodes at subsequent iterations. The tree structures are therefore kept constant from one
iteration to the other and this will ensure convergence.

4.4 No Divergence to Infinity

We say that the sequence of functionsQ̂N diverges to infinity if lim
N→∞
‖Q̂N‖∞→ ∞.

With the tree-based methods considered in this paper, such divergence toinfinity is impossible
since we can guarantee that, even for the tree-based methods for which the tests chosen in the tree

515

ERNST, GEURTS AND WEHENKEL

depend on the output values (o) of the input-output pairs ((i,o)), the sequence of̂QN-functions
remains bounded. Indeed, the prediction value of a leaf being the average value of the outputs of the
elements of the training set that correspond to this leaf, we have‖Q̂N(x,u)‖∞≤Br +γ‖Q̂N−1(x,u)‖∞
whereBr is the bound of the rewards. And, sincêQ0(x,u) = 0 everywhere, we therefore have
‖Q̂N(x,u)‖∞ ≤ Br

1−γ ∀N ∈ N.
However, we have observed in our experiments that for some other supervised learning meth-

ods, divergence to infinity problems were plaguing the fittedQ iteration algorithm (Section 5.3.3);
such problems have already been highlighted in the context of approximate dynamic programming
(Boyan and Moore, 1995).

4.5 Computation ofmaxu∈UQ̂N(x,u) when u Continuous

In the case of a single regression tree,Q̂N(x,u) is a piecewise-constant function of its argumentu,
when fixing the state valuex. Thus, to determine max

u∈U
Q̂N(x,u), it is sufficient to compute the value

of Q̂N(x,u) for a finite number of values ofU , one in each hyperrectangle delimited by the values
of discretization thresholds found in the tree.

The same argument can be extended to ensembles of regression trees. However, in this case, the
number of discretization thresholds might be much higher and this resolution scheme might become
computationally inefficient.

5. Experiments

Before discussing our simulation results, we first give an overview of our test problems, of the
type of experiments carried out and of the different metrics used to assess the performances of the
algorithms.

5.1 Overview

We consider five different problems, and for each of them we use the fitted Q iteration algorithm
with the tree-based methods described in Section 4 and assess their ability to extract from different
sets of four-tuples information about the optimal control policy.

5.1.1 TEST PROBLEMS

The first problem, referred to as the “Left or Right” control problem, has a one-dimensional state
space and a stochastic dynamics. Performances of tree-based methods are illustrated and compared
with grid-based methods.

Next we consider the “Car on the Hill” test problem. Here we compare our algorithms in
depth with other methods (k-nearest-neighbors, grid-based methods, a gradient version of the on-
line Q-learning algorithm) in terms of accuracy and convergence properties. We also discuss CPU
considerations, analyze the influence of the number of trees built on the solution, and the effect of
irrelevant state variables and continuous action spaces.

The third problem is the “Acrobot Swing Up” control problem. It is a four-dimensional and de-
terministic control problem. While in the first two problems the four-tuples are generated randomly
prior to learning, here we consider the case where the estimate ofµ∗ deduced from the available
four-tuples is used to generate new four-tuples.

516

TREE-BASED BATCH MODE REINFORCEMENTLEARNING

The two last problems (“Bicycle Balancing” and “Bicycle Balancing and Riding”) are treated
together since they differ only in their reward function. They have a stochastic dynamics, a seven-
dimensional state space and a two-dimensional control space. Here we look at the capability of our
method to handle rather challenging problems.

5.1.2 METRICS TOASSESSPERFORMANCES OF THEALGORITHMS

In our experiments, we will use the fittedQ iteration algorithm with several types of supervised
learning methods as well as other algorithms likeQ-learning or Watkin’sQ(λ) with various ap-
proximation architectures. To rank performances of the various algorithms, we need to define some
metrics to measure the quality of the solution they produce. Hereafter we review the different met-
rics considered in this paper.
Expected return of a policy. To measure the quality of a solution given by a RL algorithm, we can
use the stationary policy it produces, compute the expected return of this stationary policy and say
that the higher this expected return is, the better the RL algorithm performs. Rather than computing
the expected return for one single initial state, we define in our examples a set of initial states named
Xi , chosen independently from the set of four-tuplesF , and compute the average expected return of
the stationary policy over this set of initial states. This metric is referred to as the scoreof a policy
and is the most frequently used one in the examples. Ifµ is the policy, its score is defined by:

score ofµ=
∑x∈Xi Jµ

∞(x)
#Xi (21)

To evaluate this expression, we estimate, for every initial statex∈ Xi , Jµ
∞(x) by Monte-Carlo sim-

ulations. If the control problem is deterministic, one simulation is enough to estimateJµ
∞(x). If the

control problem is stochastic, several simulations are carried out. For the“Left or Right” control
problem, 100,000 simulations are considered. For the “Bicycle Balancing” and “Bicycle Balancing
and Riding” problems, whose dynamics is less stochastic and Monte-Carlo simulations computa-
tionally more demanding, 10 simulations are done. For the sake of compactness, thescore of µis
represented in the figures byJµ

∞.
Fulfillment of a specific task. The score of a policy assesses the quality of a policy through its
expected return. In the “Bicycle Balancing” control problem, we also assess the quality of a policy
through its ability to avoid crashing the bicycle during a certain period of time. Similarly, for the
“Bicycle Balancing and Riding” control problem, we consider a criterion ofthe type “How often
does the policy manage to drive the bicycle, within a certain period of time, to a goal ?”.
Bellman residual. While the two previous metrics were relying on the policy produced by the
RL algorithm, the metric described here relies on the approximateQ-function computed by the
RL algorithm. For a given function̂Q and a given state-action pair(x,u), the Bellman residual is
defined to be the difference between the two sides of the Bellman equation (Baird, 1995), theQ-
function being the only function leading to a zero Bellman residual for everystate-action pair. In
our simulation, to estimate the quality of a functionQ̂, we exploit the Bellman residual concept by
associating toQ̂ the mean square of the Bellman residual over the setXi ×U , value that will be
referred to as theBellman residual ofQ̂. We have

Bellman residual ofQ̂ =
∑(x,u)∈Xi×U(Q̂(x,u)− (HQ̂)(x,u))2

#(Xi×U)
. (22)

517

ERNST, GEURTS AND WEHENKEL

xt

ut +wt
RewardReward

xt+1
= 100= 50

0 10

Figure 2: The “Left or Right” control problem.

This metric is only used in the “Left or Right” control problem to compare the quality of the solu-
tions obtained. A metric relying on the score is not discriminant enough for thiscontrol problem,
since all the algorithms considered can easily learn a good approximation of the optimal stationary
policy. Furthermore, for this control problem, the term(HQ̂)(x,u) in the right side of Eqn (22) is
estimated by drawing independently and for each(x,u) ∈ Xi×U , 100,000 values ofw according to
Pw(.|x,u) (see Eqn (7)).
In the figures, the Bellman residual ofQ̂ is represented byd(Q̂,HQ̂).

5.2 The “Left or Right” Control Problem

We consider here the “Left or Right” optimal control problem whose precise definition is given in
Appendix C.1.

The main characteristics of the control problem are represented on Figure 2. A point travels in
the interval[0,10]. Two control actions are possible. One tends to drive the point to the right(u= 2)
while the other to the left (u =−2). As long as the point stays inside the interval, only zero rewards
are observed. When the point leaves the interval, a terminal state12 is reached. If the point goes out
on the right side then a reward of 100 is obtained while it is twice less if it goes out on the left.

Even if going out on the right may finally lead to a better reward,µ∗ is not necessarily equal to 2
everywhere since the importance of the reward signal obtained aftert steps is weighted by a factor
γ(t−1) = 0.75(t−1).

5.2.1 FOUR-TUPLESGENERATION

To collect the four-tuples we observe 300 episodes of the system. Each episode starts from an initial
state chosen at random in[0,10] and finishes when a terminal state is reached. During the episodes,
the actionut selected at timet is chosen at random with equal probability among its two possible
valuesu =−2 andu = 2. The resulting setF is composed of 2010 four-tuples.

5.2.2 SOME BASIC RESULTS

To illustrate the fittedQ iteration algorithm behavior we first use “Pruned CART Tree” as supervised
learning method. Elements of the sequence of functionsQ̂N obtained are represented on Figure 3.
While the first functions of the sequence differ a lot, they gain in similarities when N increases
which is confirmed by computing the distance onF between functionŝQN andQ̂N−1 (Figure 4a).
We observe that the distance rapidly decreases but, due to the fact that the tree structure is refreshed
at each iteration, never vanishes.

12. A terminal state can be seen as a regular state in which the system is stuckand for which all the future rewards
obtained in the aftermath are zero. Note that the value ofQN(terminal state,u) is equal to 0∀N ∈ N and∀u∈U .

518

TREE-BASED BATCH MODE REINFORCEMENTLEARNING

100.

75.

50.

25.

0.0

0.0 2.5 7.55. 10. x

Q̂1(x,−2)

Q̂1(x,2)

Q̂1
100.

75.

50.

25.

0.0

0.0 2.5 7.55. 10. x

Q̂2

Q̂2(x,−2)

Q̂2(x,2)

0.0 2.5 7.55. 10. x

Q̂3

Q̂3(x,−2)

Q̂3(x,2)

100.

75.

50.

25.

0.0

0.0 2.5 7.55. 10. x

100.

75.

50.

25.

0.0

Q̂4(x,−2)

Q̂4(x,2)

Q̂4

0.0 2.5 7.55. 10. x

100.

75.

50.

25.

0.0

Q̂5

Q̂5(x,2)

Q̂5(x,−2)

0.0 2.5 7.55. 10. x

100.

75.

50.

25.

0.0

Q̂10

Q̂10(x,−2)

Q̂10(x,2)

Figure 3: Representation of̂QN for different values ofN. The setF is composed of 2010 elements and the
supervised learning method used is Pruned CART Tree.

2 3 4 6 7 8 9 105

35.

30.

25.

20.

15.

10.

5.

0.0

N

d(Q̂N,

Q̂N−1)

1 2 3 4 5 6 7 8 9 10N

58.

60.

62.

64.

J
µ̂∗N∞

1 2 3 4 5 6 7 8 9 10
0.0

2.5

5.

7.5

10.

12.5

N

d(Q̂N,

HQ̂N)

(a) d(Q̂N,Q̂N−1) =
∑#F

l=1(Q̂N(xl
t ,u

l
t)−Q̂N−1(x

l
t ,u

l
t))

2

#F

(b) J
µ̂∗N∞ =

∑Xi J
µ̂∗N∞ (x)

#Xi

(c) d(Q̂N,HQ̂N) =
∑Xi×U (Q̂N(x,u)−(HQ̂N)(x,u))2

#(Xi×U)

Figure 4: Figure (a) represents the distance betweenQ̂N andQ̂N−1. Figure (b) provides the average return
obtained by the policy ˆµ∗N while starting from an element ofXi . Figure (c) represents the Bellman
residual ofQ̂N.

519

ERNST, GEURTS AND WEHENKEL

From the functionQ̂N we can determine the policy ˆµN. Statesx for whichQ̂N(x,2)≥ Q̂N(x,−2)
correspond to a value of ˆµN(x) = 2 while µ̂N(x) = −2 if Q̂N(x,2) < Q̂N(x,−2). For example, ˆµ∗10
consists of choosingu = −2 on the interval[0,2.7[andu = 2 on [2.7,10]. To associate a score to
each policyµ̂∗N, we define a set of statesXi = {0,1,2, · · · ,10}, evaluateJµ̂N

∞ (x) for each element of
this set and average the values obtained. The evolution of the score of ˆµ∗N with N is drawn on Figure
4b. We observe that the score first increases rapidly to become finally almost constant for values of
N greater than 5.

In order to assess the quality of the functionsQ̂N computed, we have computed the Bellman
residual of thesêQN-functions. We observe in Figure 4c that even if the Bellman residual tendsto
decrease whenN increases, it does not vanish even for large values ofN. By observing Table 2, one
can however see that by using 6251 four-tuples (1000 episodes) rather than 2010 (300 episodes),
the Bellman residual further decreases.

5.2.3 INFLUENCE OF THETREE-BASED METHOD

When dealing with such a system for which the dynamics is highly stochastic, pruning is necessary,
even for tree-based methods producing an ensemble of regression trees. Figure 5 thus represents the
Q̂N-functions for different values ofN with the pruned version of the Extra-Trees. By comparing
this figure with Figure 3, we observe that the averaging of several treesproduces smoother functions
than single regression trees.

By way of illustration, we have also used the Extra-Trees algorithm with fully developed trees
(i.e.,nmin = 2) and computed thêQ10-function with the fittedQ iteration using the same set of four-
tuples as in the previous section. This function is represented in Figure 6. As fully grown trees are
able to match perfectly the output in the training set, they also catch the noise andthis explains the
chaotic nature of the resulting approximation.

Table 2 gathers the Bellman residuals ofQ̂10 obtained when using different tree-based methods
and this for different sets of four-tuples. Tree-based ensemble methods produce smaller Bellman
residuals and among these methods, Extra-Trees behaves the best. We can also observe that for any
of the tree-based methods used, the Bellman residual decreases with the size of F .

Note that here, the policies produced by the different tree-based algorithms offer quite similar
scores. For example, the score is 64.30 when Pruned CART Tree is applied to the 2010 four-tuple
set and it does not differ from more than one percent with any of the other methods. We will see
that the main reason behind this, is the simplicity of the optimal control problem considered and the
small dimensionality of the state space.

5.2.4 FITTED Q ITERATION AND BASIS FUNCTION METHODS

We now assess performances of the fittedQ iteration algorithm when combined with basis function
methods. Basis function methods suppose a relation of the type

o =
nbBasis

∑
j=1

c jφ j(i) (23)

between the input and the output wherec j ∈ R and where the basis functionsφ j(i) are defined on
the input space and take their values onR. These basis functions form the approximation architec-

520

TREE-BASED BATCH MODE REINFORCEMENTLEARNING

100.

75.

50.

25.

0.0

0.0 2.5 7.55. 10. x

Q̂1

Q̂1(x,−2)

Q̂1(x,2)

100.

75.

50.

25.

0.0

0.0 2.5 7.55. 10. x

Q̂2

Q̂2(x,2)

Q̂2(x,−2)

0.0 2.5 7.55. 10. x

Q̂3
100.

75.

50.

25.

0.0

Q̂3(x,−2)

Q̂3(x,2)

0.0 2.5 7.55. 10. x

100.

75.

50.

25.

0.0

Q̂4

Q̂4(x,2)

Q̂4(x,−2)

0.0 2.5 7.55. 10. x

100.

75.

50.

25.

0.0

Q̂5

Q̂5(x,−2)

Q̂5(x,2)

0.0 2.5 7.55. 10. x

100.

75.

50.

25.

0.0

Q̂10

Q̂10(x,−2)

Q̂10(x,2)

Figure 5: Representation of̂QN for different values ofN. The setF is composed of 2010 elements and the
supervised learning method used is the Pruned Extra-Trees.

0.0 2.5 7.55. 10. x

100.

75.

50.

25.

0.0

Q̂10

Q̂10(x,−2)

Q̂10(x,2)

Figure 6: Representation ofQ̂10 when Extra-
Trees is used with no pruning

Tree-based
method

#F

720 2010 6251
Pruned CART Tree 2.62 1.96 1.29

Pruned Kd-Tree 1.94 1.31 0.76
Pruned Tree Bagging 1.61 0.79 0.67
Pruned Extra-Trees 1.29 0.60 0.49

Pruned Tot. Rand. Trees1.55 0.72 0.59

Table 2: Bellman residual ofQ̂10. Three different
sets of four-tuples are used. These sets
have been generated by considering 100,
300 and 1000 episodes and are composed
respectively of 720, 2010 and 6251 four-
tuples.

ture. The training set is used to determine the values of the differentc j by solving the following
minimization problem:13

13. This minimization problem can be solved by building the(#T S× nbBasis) Y matrix with Yl j = φ j (i l). If YTY
is invertible, then the minimization problem has a unique solutionc = (c1,c2, · · · ,cnbBasis) given by the following
expression:c = (YTY)−1YTb with b∈ R

#T S such thatbl = ol . In order to overcome the possible problem of non-
invertibility of YTY that occurs when solution of (24) is not unique, we have added toYTY the strictly definite positive
matrixδI , whereδ is a small positive constant, before inverting it. The value ofc used in our experiments as solution
of (24) is therefore equal to(YTY +δI)−1YTb whereδ has been chosen equal to 0.001.

521

ERNST, GEURTS AND WEHENKEL

Extra-Trees
0.0

0.5

1.

1.5

2.

2.5

Grid
size

d(Q̂10,

HQ̂10)

10 20 30 40

piecewise-linear grid

piecewise-constant grid

0.0 2.5 5. 7.5 10.

0.0

25.

50.

75.

100.

Q̂10

x

Q̂10(x,2)

Q̂10(x,−2)

0.0 2.5 5. 7.5 10.

0.0

25.

50.

75.

100.

Q̂10

x

Q̂10(x,2)

Q̂10(x,−2)

(a) Bellman residual of̂Q10

(b) Q̂10 computed
when using a 28

piecewise-constant
grid as approx. arch.

(c) Q̂10 computed when
using a 7 piecewise-linear

grid as approx. arch.

Figure 7: FittedQ iteration with basis function methods. Two different typesof approximation architectures
are considered: piecewise-constant and piecewise-lineargrids. 300 episodes are used to generate
F .

argmin
(c1,c2,··· ,cnbBasis)∈RnbBasis

#T S

∑
l=1

(
nbBasis

∑
j=1

c jφ j(i
l)−ol)2

. (24)

We consider two different sets of basis functionsφ j . The first set is defined by partitioning the
state space into a grid and by considering one basis function for each gridcell, equal to the indicator
function of this cell. This leads to piecewise constantQ̂-functions. The other type is defined by
partitioning the state space into a grid, triangulating every element of the grid and considering that
Q̂(x,u) = ∑v∈Vertices(x)W(x,v)Q̂(v,u) whereVertices(x) is the set of vertices of the hypertrianglex
belongs to andW(x,v) is the barycentric coordinate ofx that corresponds tov. This leads to a set of
overlapping piecewise linear basis functions, and yields a piecewise linearand continuous model.
In this paper, these approximation architectures are respectively referred to aspiecewise-constant
grid andpiecewise-linear grid. The reader can refer to Ernst (2003) for more information.

To assess performances of fittedQ iteration combined with piecewise-constant and piecewise-
linear grids as approximation architectures, we have used several grid resolutions to partition the
interval [0,10] (a 5 grid, a 6 grid,· · · , a 50 grid). For each grid, we have used fittedQ iteration
with each of the two types of approximation architectures and computedQ̂10. The Bellman resid-
uals obtained by the different̂Q10-functions are represented on Figure 7a. We can see that basis
function methods with piecewise-constant grids perform systematically worse than Extra-Trees, the
tree-based method that produces the lowest Bellman residual. This type of approximation archi-
tecture leads to the lowest Bellman residual for a 28 grid and the corresponding Q̂10-function is
sketched in Figure 7b. Basis function methods with piecewise-linear grids reach their lowest Bell-
man residual for a 7 grid, Bellman residual that is smaller than the one obtainedby Extra-Trees.
The corresponding smootherQ̂10-function is drawn on Figure 7b.

Even if piecewise-linear grids were able to produce on this example better results than the tree-
based methods, it should however be noted that it has been achieved by tuning the grid resolution
and that this resolution strongly influences the quality of the solution. We will see below that, as the

522

TREE-BASED BATCH MODE REINFORCEMENTLEARNING

state space dimensionality increases, piecewise-constant or piecewise-linear grids do not compete
anymore with tree-based methods. Furthermore, we will also observe that piecewise-linear grids
may lead to divergence to infinity of the fittedQ iteration algorithm (see Section 5.3.3).

5.3 The “Car on the Hill” Control Problem

We consider here the “Car on the Hill” optimal control problem whose precise definition is given in
Appendix C.2.

A car modeled by a point mass is traveling on a hill (the shape of which is givenby the func-
tion Hill (p) of Figure 8b). The actionu acts directly on the acceleration of the car (Eqn (31),
Appendix C) and can only assume two extreme values (full acceleration (u = 4) or full deceleration
(u =−4)). The control problem objective is roughly to bring the car in a minimum time to the top
of the hill (p = 1 in Figure 8b) while preventing the positionp of the car to become smaller than
−1 and its speeds to go outside the interval[−3,3]. This problem has a (continuous) state space of
dimension two (the positionp and the speeds of the car) represented on Figure 8a.

Note that by exploiting the particular structure of the system dynamics and the reward function
of this optimal control problem, it is possible to determine with a reasonable amount of computation
the exact value ofJµ∗

∞ (Q) for any statex (state-action pair(x,u)).14

3.

2.

1.

0.0

−1.

−2.

−3.

−1. −.5 0.0 0.5 1.

s

p

p

u

−0.2

0.2

0.4

−1. −.5 0.0 0.5 1.

Resistance

mg

Hill (p)

(a)X \{terminal state} (b)
Representation ofHill (p) (shape of the hill) and

of the different forces applied to the car.

Figure 8: The “Car on the Hill” control problem.

5.3.1 SOME BASIC RESULTS

To generate the four-tuples we consider episodes starting from the same initial state corresponding
to the car stopped at the bottom of the hill (i.e.,(p,s) = (−0.5,0)) and stopping when the car leaves
the region represented on Figure 8a (i.e., when a terminal state is reached). In each episode, the
actionut at each time step is chosen with equal probability among its two possible valuesu = −4
andu= 4. We consider 1000 episodes. The corresponding setF is composed of 58090 four-tuples.
Note that during these 1000 episodes the rewardr(xt ,ut ,wt) = 1 (corresponding to an arrival of the
car at the top of the hill with a speed comprised in[−3,3]) has been observed only 18 times.

14. To computeJµ∗
∞ (x), we determine by successive trials the smallest value ofk for which one of the two following

conditions is satisfied (i) at least one sequence of actions of lengthk leads to a reward equal to 1 whenx0 = x (ii) all

523

ERNST, GEURTS AND WEHENKEL

3.

2.

1.

0.0

−1.

−2.

−3.

−1. −.5 0.0 0.5 1.

s

p

3.

2.

1.

0.0

−1.

−2.

−3.

−1. −.5 0.0 0.5 1.

s

p

3.

2.

1.

0.0

−1.

−2.

−3.

−1. −.5 0.0 0.5 1.

s

p

(a) argmax
u∈U

Q̂1(x,u) (b) argmax
u∈U

Q̂5(x,u) (c) argmax
u∈U

Q̂10(x,u)

3.

2.

1.

0.0

−1.

−2.

−3.

−1. −.5 0.0 0.5 1.

s

p

3.

2.

1.

0.0

−1.

−2.

−3.

−1. −.5 0.0 0.5 1.

s

p

3.

2.

1.

0.0

−1.

−2.

−3.

−1. −.5 0.0 0.5 1.

s

p

(d) argmax
u∈U

Q̂20(x,u) (e) argmax
u∈U

Q̂50(x,u) (f) Trajectory

Figure 9: (a)-(e): Representation of ˆµ∗N for different values ofN. (f): Trajectory whenx0 = (−0.5,0) and
when the policy ˆµ∗50 is used to control the system.

524

TREE-BASED BATCH MODE REINFORCEMENTLEARNING

N

Q̂N−1)
d(Q̂N,

10 20 30 40 50
0.0

0.001

0.002

0.003

0.004

0.005

0.006

N

J
µ̂∗N∞

0.0

0.1

0.2

0.3

−0.1

−0.2

−0.3

−0.4

10 20 30 40 50

0.25

0.2

0.15

0.1

0.05

0.0
10 20 30 40 50N

d(Q̂N,Q)

d(Q̂N,HQ̂N)

d(Q̂N, .)

(a) d(Q̂N,Q̂N−1) =
∑#F

l=1(Q̂N(xl
t ,u

l
t)−Q̂N−1(x

l
t ,u

l
t))

2

#F

(b) J
µ̂∗N∞ =

∑Xi J
µ̂∗N∞ (x)

#Xi

(c) d(Q̂N,F) =
∑Xi×U (Q̂N(x,u)−F(x,u))2

#(Xi×U)

F = QorHQ̂N

Figure 10: Figure (a) represents the distance betweenQ̂N andQ̂N−1. Figure (b) provides the average return
obtained by the policy ˆµ∗N while starting from an element ofXi . Figure (c) represents the distance
betweenQ̂N andQ as well as the Bellman residual ofQ̂N as a function ofN (distance between
Q̂N andHQ̂N).

We first use Tree Bagging as the supervised learning method. As the actionspace is binary, we
again model the functionŝQN(x,−4) andQ̂N(x,4) by two ensembles of 50 trees each, andnmin = 2.
The policy µ̂∗1 so obtained is represented on Figure 9a. Black bullets represent states for which
Q̂1(x,−4) > Q̂1(x,4), white bullets states for whicĥQ1(x,−4) < Q̂1(x,4) and grey bullets states for
which Q̂1(x,−4) = Q̂1(x,4). Successive policies ˆµ∗N for increasingN are given on Figures 9b-9e.

On Figure 9f, we have represented the trajectory obtained when starting from (s, p) = (−0.5,0)
and using the policy ˆµ∗50 to control the system. Since, for this particular state the computation ofJµ∗

∞

gives the same value asJ
µ̂∗50∞ , the trajectory drawn is actually an optimal one.

Figure 10a shows the evolution of distance betweenQ̂N andQ̂N−1 with N. Notice that while a
monotonic decrease of the distance was observed with the “Left or Right” control problem (Figure
4a), it is not the case anymore here. The distance first decreases andthen fromN = 5 suddenly
increases to reach a maximum forN = 19 and to finally redecrease to an almost zero value. Actually,
this apparently strange behavior is due to the way the distance is evaluated and to the nature of
the control problem. Indeed, we have chosen to use in the distance computation the state-action
pairs (xl

t ,u
l
t) l = 1, · · · ,#F from the set of four-tuples. Since most of the statesxl

t are located
around the initial state(p,s) = (−0.5,0) (see Figure 11), the distance is mostly determined by
variations between̂QN and Q̂N−1 in this latter region. This remark combined with the fact that
the algorithm needs a certain number of iterations before obtaining values ofQ̂N around(p,s) =
(−0.5,0) different from zero explains this sudden increase of the distance.15

To compute policy scores, we consider the setXi : Xi = {(p,s) ∈ X \ {xt}|∃i, j ∈ Z|(p,s) =

(0.125∗ i,0.375∗ j)} and evaluate the average value ofJ
µ̂∗N∞ (x) over this set. The evolution of the

the sequences of actions of lengthk lead to a reward equal to−1 whenx0 = x. Let kmin be this smallest value ofk.
ThenJµ∗

∞ (x) is equal toγkmin−1 if condition (i) is satisfied whenk = kmin and−γkmin−1 otherwise.
15. The reason for̂QN being equal to zero around(p,s) = (−0.5,0) for small values ofN is that when the system starts

from (−0.5,0) several steps are needed to observe non zero rewards whatever thepolicy used.

525

ERNST, GEURTS AND WEHENKEL

−1
−0.5

0
0.5

1

−3

−2

−1

0

1

2

3
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

p
s

F
re

qu
en

cy
 o

f v
is

it
of

 a
 ti

le

Figure 11: Estimation of thext distribution while using episodes starting from(−0.5,0) and choosing ac-
tions at random.

−1

−0.5

0

0.5

1

−3

−2

−1

0

1

2

3

−1

−0.5

0

0.5

1

−1

−0.5

0

0.5

1

−3

−2

−1

0

1

2

3

−1

−0.5

0

0.5

1

(a)Q(.,−4) (b) Q(.,4)

−1

−0.5

0

0.5

1

−3

−2

−1

0

1

2

3

−1

−0.5

0

0.5

1

−1

−0.5

0

0.5

1

−3

−2

−1

0

1

2

3

−1

−0.5

0

0.5

1

(c) Q̂50(.,−4) (d) Q̂50(.,4)

Figure 12: Representation of theQ-function and ofQ̂50. Q̂50 is computed by using fittedQ iteration together
with Tree Bagging.

score for increasing values ofN is represented in Figure 10b. We see that the score rapidly increases
to finally oscillate slightly around a value close to 0.295. The score ofµ∗ being equal to 0.360, we
see that the policies ˆµ∗N are suboptimal. To get an idea of how different is theQ̂50-function computed
by fittedQ iteration from the trueQ-function, we have represented both functions on Figure 12. As
we may observe, some significant differences exist between them, especially in areas were very few
information has been generated, like the state space area aroundx = (−1,3).

526

TREE-BASED BATCH MODE REINFORCEMENTLEARNING

N

0.3

0.2

0.1

0.0
10 20 30 40 50

J
µ̂∗N∞

Tree Bagging

Pruned CART Tree

Extra-Trees

−0.1

−0.2

−0.3

−0.4

N

0.3

0.2

0.1

0.0
10 20 30 40 50

J
µ̂∗N∞

Kd-Tree with bestnmin (4)

Kd-Tree withnmin = 2

Totally Randomized Trees

−0.1

−0.2

−0.3

−0.4

N

0.3

0.2

0.1

0.0
10 20 30 40 50

J
µ̂∗N∞

k = 2

k = 5

k = 1

−0.1

−0.2

−0.3

−0.4

(a) Output values(o) used
to choose tree tests

(b) Output values(o) not
used to choose tree tests

(c) kNN

Figure 13: Influence of the supervised learning method on the solution.For each supervised learning
methodQ̂N(x,−4) and Q̂N(x,4) are modeled separately. For Tree Bagging, Extra-Trees, and
Totally Randomized Trees, the trees are developed completely (nmin = 2). The distance used in
the nearest neighbors computation is the Euclidean distance.

5.3.2 INFLUENCE OF THETREE-BASED METHOD AND COMPARISON WITH kNN.

Figure 13a sketches the scores obtained by the policies ˆµ∗N when using different tree-based methods
which use the output values (o) of the input-output pair ((i,o)) of the training set to compute the
tests. It is clear that Tree Bagging and Extra-Trees are significantly superior to Pruned CART
Tree. Figure 13b compares the performances of tree-based methods for which the tests are chosen
independently of the output values. We observe that even when using thevalue ofnmin leading to
the best score, Kd-Tree does not perform better than Totally Randomized Trees. On Figure 13c, we
have drawn the scores obtained with ak-nearest-neighbors (kNN) technique.

Notice that the score curves corresponding to thek-nearest-neighbors, Totally Randomized
Trees, and Kd-Tree methods stabilize indeed after a certain number of iterations.

To compare more systematically the performances of all these supervised learning algorithms,
we have computed for each one of them and for several sets of four-tuples the score of ˆµ∗50. Results
are gathered in Table 3. A first remark suggested by this table and which holds for all the supervised
learning methods is that the more episodes are used to generate the four-tuples, the larger the score
of the induced policy. Compared to the other methods, performances of Tree Bagging and Extra-
Trees are excellent on the two largest sets. Extra-Trees still gives good results on the smallest set but
this is not true for Tree Bagging. The strong deterioration of Tree Bagging performances is mainly
due to the fact that when dealing with this set of four-tuples, information about the optimal solution
is really scarce (only two four-tuples correspond to a reward of 1) and, since a training instance
has 67% chance of being present in a bootstrap sample, Tree Bagging often discards some critical
information. On the other hand, Extra-Trees and Totally Randomized Treeswhich use the whole
training set to build each tree do not suffer from this problem. Hence, these two methods behave
particularly well compared to Tree Bagging on the smallest set.

One should also observe from Table 3 that even when used with the value of k that produces the
largest score,kNN is far from being able to reach for example the performances of the Extra-Trees.

527

ERNST, GEURTS AND WEHENKEL

Supervised learning
method

Nb of episodes used
to generateF

1000 300 100
Kd-Tree (Bestnmin) 0.17 0.16 -0.06
Pruned CART Tree 0.23 0.13 -0.26

Tree Bagging 0.30 0.24 -0.09
Extra-Trees 0.29 0.25 0.12

Totally Randomized Trees 0.18 0.14 0.11
kNN (Bestk) 0.23 0.18 0.02

Table 3:Score ofµ̂∗50 for different set of four-tuples and supervised learning methods.

5.3.3 FITTED Q ITERATION AND BASIS FUNCTION METHODS

In Section 5.2.4, when dealing with the “Left or Right” control problem, basisfunction methods
with two types of approximation architectures, piecewise-constant or piecewise-linear grids, have
been used in combination with the fittedQ iteration algorithm.

In this section, the same types of approximation architectures are also considered and, for each
type of approximation architecture, the policy ˆµ∗50 has been computed for different grid resolutions
(a 10×10 grid, a 11×11 grid, · · · , a 50×50 grid). The score obtained by each policy is repre-
sented on Figure 14a. The horizontal line shows the score previously obtained on the same sample
of four-tuples by Tree Bagging. As we may see, whatever the grid considered, both approximation
architectures lead to worse results than Tree Bagging, the best performing tree-based method. The
highest score is obtained by a 18×18 grid for the piecewise-constant approximation architecture
and by a 14×14 grid for the piecewise-linear approximation architecture. These two highest scores
are respectively 0.21 and 0.25, while Tree Bagging was producing a score of 0.30. The two cor-
responding policies are sketched in Figures 14b and 14c. Black polygons represent areas where
Q̂(x,−4) > Q̂(x,4), white polygons areas wherêQ(x,−4) < Q̂(x,4) and grey polygons areas where
Q̂(x,−4) = Q̂(x,4).

When looking at the score curve corresponding to piecewise-linear grids as approximation ar-
chitectures, one may be surprised to note its harsh aspect. For some grids,this type of approximation
architecture leads to some good results while by varying slightly the grid size, the score may strongly
deteriorate. This strong deterioration of the score is due to fact that for some grid sizes, the fittedQ
iteration actually diverges to infinity while it is not the case for other grid sizes. Divergence to in-
finity of the algorithm is illustrated on Figures 15a and 15c where we have drawn for a 12×12 grid
the distance between̂QN andQ̂N−1, Q̂N andQ, andQ̂N andHQ̂N. Remark that a logarithmic scale
has been used for the y-axis. When using Tree Bagging in the inner loop of the fittedQ iteration,
similar graphics have been drawn (Figure 10) and the reader may refer tothem for comparison.

5.3.4 COMPARISON WITH Q-LEARNING

In this section we use a gradient descent version of the standardQ-learning algorithm to compute
thec j parameters of the approximation architectures of Section 5.3.3. The degreeof correctionα
used inside this algorithm is chosen equal to 0.1 and the estimate of theQ-function is initialized
to 0 everywhere. This latter being refreshed by this algorithm on a four-tuple by four-tuple basis,
we have chosen to use each element ofF only once to refresh the estimate of theQ-function. The

528

TREE-BASED BATCH MODE REINFORCEMENTLEARNING

Grid
size

10×10 20×20 30×30 40×40

−0.3

−0.2

−0.1

0.0

0.1

0.2

0.3

Tree Bagging

J
µ̂∗50∞

grid
piecewise-linear

piecewise-constant grid

3.

2.

1.

0.0

−1.

−2.

−3.

−1. −.5 0.0 0.5 1.

s

p

3.

2.

1.

0.0

−1.

−2.

−3.

−1. −.5 0.0 0.5 1.

s

p

(a) Score ofQ̂50

(b) argmax
u∈U

Q̂50 computed

when using a 18×18
piecewise-constant

grid as approx. arch.

(c) argmax
u∈U

Q̂50 computed

when using a 14×14
piecewise-linear

grid as approx. arch.

Figure 14: FittedQ iteration with basis function methods. Two different typesof approximation architecture
are considered: piecewise-constant and piecewise-lineargrids.F is composed of the four-tuples
gathered during 1000 episodes.

10 20 30 40 50
0.0

2.5

5.

7.5

10.

12.5

15.

17.5

N

log10(
d(Q̂N,

Q̂N−1))

N

J
µ̂∗N∞

0.0

0.1

0.2

0.3

−0.1

−0.2

−0.3

−0.4

10 20 30 40 50

10 20 30 40 50
0.0

5.

10.

15.

20.

25.

30.

log10(d
(Q̂N, .))

N

d(Q̂N,Q)

d(Q̂N,HQ̂N)

(a) d(Q̂N,Q̂N−1) =
∑#F

l=1(Q̂N(xl
t ,u

l
t)−Q̂N−1(x

l
t ,u

l
t))

2

#F

(b) J
µ̂∗N∞ =

∑Xi J
µ̂∗N∞ (x)

#Xi

(c) d(Q̂N,F) =
∑Xi×U (Q̂N(x,u)−F(x,u))2

#(Xi×U)

F = QorHQ̂N

Figure 15: FittedQ iteration algorithm with basis function methods. A 12×12 piecewise-linear grid is the
approximation architecture considered. The sequence ofQ̂N-functionsdiverges to infinity.

529

ERNST, GEURTS AND WEHENKEL

Grid
size

10×10 20×20 30×30 40×40

−0.3

−0.2

−0.1

0.0

0.1

0.2

0.3

Tree Bagging

Jµ̂∗
∞

piecewise-constant grid

piecewise-linear grid

3.

2.

1.

0.0

−1.

−2.

−3.

−1. −.5 0.0 0.5 1.

s

p

3.

2.

1.

0.0

−1.

−2.

−3.

−1. −.5 0.0 0.5 1.

s

p

(a) Score of the policy
computed by
Q-learning

(b) Policy computed by
Q-learning when

used with a 13×13
piecewise-constant

grid as approx. arch.

(c) Policy computed by
Q-learning when

used with a 19×19
piecewise-linear

grid as approx. arch.

Figure 16: Q-learning with piecewise-constant and piecewise-linear grids as approximation architectures.
Each element ofF is used once to refresh the estimate of theQ-function. The setF is composed
of the four-tuples gathered during 1000 episodes.

main motivation for this is to compare the performances of the fittedQ iteration algorithm with an
algorithm that does not require to store the four-tuples.16

The scores obtained byQ-learning for the two types of approximation architectures and for
different grid sizes are reported on Figure 16a. Figure 16b (16c) represents the policies that have
led, by screening different grid sizes, to the highest score when piecewise-constant grids (piecewise-
linear grids) are the approximation architectures considered. By comparing Figure 16a with Figure
14a, it is obvious that fittedQ iteration exploits more effectively the set of four-tuples thanQ-
learning. In particular, the highest score is 0.21 for fittedQ iteration while it is only of 0.04 for Q-
learning. If we compare the score curves corresponding to piecewise-linear grids as approximation
architectures, we observe also that the highest score produced by fitted Q iteration (over the different
grids), is higher than the highest score produced byQ-learning. However, when fittedQ iteration is
plagued with some divergence to infinity problems, as illustrated on Figure 15,it may lead to worse
results thanQ-learning.

Observe that even when considering 10,000 episodes withQ-learning, we still obtain worse
scores than the one produced by Tree Bagging with 1000 episodes. Indeed, the highest score pro-

16. Performances of the gradient descent version of theQ-learningalgorithm could be improved by processing several
times each four-tuple to refresh the estimate of theQ-function, for example by using the experience replay technique
of Lin (1993). This however requires to store the four-tuples.

It should also be noted that if a piecewise-constant grid is the approximation architecture considered, if each
element ofF is used an infinite number of times to refresh the estimate of theQ-function and if the sequence of
αs satisfies the stochastic approximation condition (i.e.,∑∞

k=1 αk→ ∞ and∑∞
k=1 α2

k < ∞, αk being the value ofα
thekth times the estimate of theQ-function is refreshed), then theQ-function estimated by theQ-learning algorithm
would be the same as the one estimated by fittedQ iteration using the same piecewise-constant grid as approximation
architecture. This can be seen by noting that in such conditions, theQ-function estimated byQ-learning would be
the same as the one estimated by a model-based algorithm using the same grid(see Ernst (2003), page 131 for the
proof) which in turn can be shown to be equivalent to fittedQ iteration (see Ernst et al., 2005).

530

TREE-BASED BATCH MODE REINFORCEMENTLEARNING

0.2

0.1

0.0
0.0 2.5 5. 7.5

J
µ̂∗50∞

kNN (k = 2)

Kd-Tree (Bestnmin)

Pruned CART Tree

Tree Bagging

Extra-Trees

Totally Rand. Trees Nb of
irrelevant
variables

−0.1

−0.2

−0.3

Figure 17: Score ofµ̂∗50 when four-tuples are gathered during 1000 episodes and somevariables that do not
contain any information about the position and the speed of the car are added to the state vector.

duced byQ-learning with 10,000 episodes and over the different grid sizes, is 0.23 if piecewise-
constant grids are considered as approximation architectures and 0.27 for piecewise-linear grids,
compared to a score of 0.30 for Tree Bagging with 1000 episodes.

At this point, one may wonder whether the poor performances ofQ-learning are due to the fact
that it is used without eligibility traces. To answer this question, we have assessed the performances
of Watkin’sQ(λ) algorithm (Watkins, 1989) that combinesQ-learning with eligibility traces.17 The
degree of correctionα is chosen, as previously, equal to 0.1 and the value ofλ is set equal to
0.95. This algorithm has been combined with piecewise-constant grids and 1000 episodes have
been considered. The best score obtained over the different grids isequal to−0.05 while it was
slightly higher (0.04) forQ-learning.

5.3.5 ROBUSTNESS WITHRESPECT TOIRRELEVANT VARIABLES

In this section we compare the robustness of the tree-based regression methods andkNN with re-
spect to the addition of irrelevant variables. Indeed, in many practical applications the elementary
variables which compose the state vector are not necessarily all of the sameimportance in deter-
mining the optimal control action. Thus, some variables may be of paramount importance, while
some others may influence only weakly or even sometimes not at all the optimal control.

On Figure 17, we have drawn the evolution of the score when using four-tuples gathered during
1000 episodes and adding progressively irrelevant variables to the state-vector.18 It is clear that
not all the methods are equally robust to the introduction of irrelevant variables. In particular, we
observe that the three methods for which the approximation architecture is independent of the output
variable are not robust: thekNN presents the fastest deterioration, followed by Kd-Tree and Totally
Randomized Trees. The latter is more robust because it averages out several trees, which gives the
relevant variables a better chance to be taken into account in the model.

17. In Watkin’sQ(λ), accumulating traces are considered and eligibility traces are cut when a non-greedy action is
chosen. Remark that by not cutting the eligibility traces when a non-greedyaction is selected, we have obtained
worse results.

18. See Section C.2 for the description of the irrelevant variables dynamics.

531

ERNST, GEURTS AND WEHENKEL

On the other hand, the methods which take into account the output variables intheir approxima-
tion architecture are all significantly more robust than the former ones. Among them, Tree Bagging
and Extra-Trees which are based on the averaging of several trees are almost totally immune, since
even with 10 irrelevant variables (leading to the a 12-dimensional input space) their score decrease
is almost insignificant.

This experiment shows that the regression tree based ensemble methods which adapt their kernel
to the output variable may have a strong advantage in terms of robustness over methods with a kernel
which is independent of the output, even if these latter have nicer convergence properties.

5.3.6 INFLUENCE OF THENUMBER OF REGRESSIONTREES IN AN ENSEMBLE

In this paper, we have chosen to build ensembles of regression trees composed of 50 trees (M = 50,
Section 4.2), a number of elements which, according to our simulations, is largeenough to ensure
that accuracy of the models produced could not be improved significantly by increasing it. In order
to highlight the influence ofM on the quality of the solution obtained, we have drawn on Figure
18, for the different regression tree based ensemble methods, the qualityof the solution obtained
as a function ofM. We observe that the score grows rapidly withM, especially with Extra-Trees
and Tree Bagging in which cases a value ofM = 10 would have been sufficient to obtain a good
solution.

Note that since the CPU times required to compute the solution grow linearly with the number
of trees built, computational requirements of the regression tree based ensemble methods could be
adjusted by choosing a value ofM.

302010 40

0.25

0.2

0.15

0.1

0.05

0.0

−0.1

−0.05

J
µ̂∗50∞ Tree Bagging

built (M)
Nb of trees

Totally Randomized Trees

Extra-Trees

Figure 18: Evolution of the score of ˆµ∗50 with the number of trees built.F is composed of the four-tuples
gathered during 300 episodes.

5.3.7 CAR ON THE HILL WITH CONTINUOUS ACTION SPACE

To illustrate the use of the fittedQ iteration algorithm with continuous action spaces we consider
hereU = [−4,4] rather than{−4,4}. We use one-step episodes with(x0,u0) drawn at random with
uniform probability inX×U to generate a setF of 50,000 four-tuples and use Tree Bagging with 50
trees as supervised learning method. We have approximated the maximization over the continuous
action space needed during the training sample refreshment step (see Eqn(13), Figure 1) by an
exhaustive search overu∈ {−4,−3, · · · ,3,4}. The policyµ̂∗50 thus obtained by our algorithm after

532

TREE-BASED BATCH MODE REINFORCEMENTLEARNING

3.

2.

1.

0.0

−1.

−2.

−3.

−1. −.5 0.0 0.5 1.

s

p

0.35

0.3

0.25

0.2

0.1

1 model built

Continuous action space

Discrete action space

2 models built (1 for each value of u)

0.15

Nb of
four-tuples

10000 20000 30000 40000

J
µ̂∗50∞

(a) Representation of ˆµ∗50 (b) Influence of #F on the score of the policy ˆµ∗50

Figure 19: Car on the Hill with continuous action space. Tree Bagging isused on one-step episodes with
(x0,u0) drawn at random inX×U are used to generate the four-tuples.

50 iterations is represented on Figure 19a, where black bullets are used torepresent statesx for
which µ̂∗50(x) is negative, white ones when ˆµ∗50(x) is positive. The size of a bullet is proportional to
the absolute value of the control signal|µ̂∗50(x)|. We see that the control policy obtained is not far
from a “bang-bang” policy.

To compare these results with those obtained in similar conditions with a discrete action space,
we have made two additional experiments, where the action space is restrictedagain to the extreme
values, i.e.u∈ {−4,4}. The two variants differ in the way theQN-functions are modeled. Namely,
in the first case one single model is learned whereu is included in the input variables whereas in the
second case one model is learned per possible value ofu, i.e. one model forQN(x,−4) and one for
QN(x,4). All experiments are carried out for an increasing number of samples anda fixed number
of iterations (N = 50) and bagged trees (M = 50). The three curves of Figure 19b show the resulting
scores. The two upper curves correspond to the score of the policy ˆµ∗50 obtained when considering a
discrete action spaceU = {−4,4}. We observe that both curves are close to each other and dominate
the “Continuous action space” scores. Obviously the discrete approachis favored because of the
“bang-bang” nature of the problem; nevertheless, the continuous actionspace approach is able to
provide results of comparable quality.19

5.3.8 COMPUTATIONAL COMPLEXITY AND CPU TIME CONSIDERATIONS

Table 4 gathers the CPU times required by the fittedQ iteration algorithm to carry out 50 iterations
(i.e., to computeQ̂50(x,u)) for different types of supervised learning methods and different sets F .
We have also given in the same table the repartition of the CPU times between the twotasks the
algorithm has to perform, namely the task which consists of building the training sets (evaluation
of Eqns (12) and (13) for alll ∈ {1,2, · · · ,#F }) and the task which consists of building the models
from the training sets. These two tasks are referred to hereafter respectively as the “Training Set

19. The bang-bang nature was also observed in Smart and Kaelbling (2000), where continuous and a discrete action
spaces are treated on the “Car on the Hill” problem, with qualitatively the sameresults.

533

ERNST, GEURTS AND WEHENKEL

Building” (TSB) task and the “Model Building” (MB) task. When Kd-Tree or Totally Randomized
Trees are used, each tree structure is frozen after the first iteration and only the value of its terminal
nodes are refreshed. The supervised learning technique referredto in the table as “kNN smart” is a
smart implementation the fittedQ iteration algorithm when used withkNN in the sense that thek
nearest neighbors ofxl

t+1 are determined only once and not recomputed at each subsequent iteration
of the algorithm.

Supervised
learning

algorithm

CPU times consumed by the Models Building (MB)
and Training Sets Building (TSB) tasks

#F = 5000 #F = 10000 #F = 20000
MB TSB Total MB TSB Total MB TSB Total

Kd-Tree (nmin=4) 0.01 0.39 0.40 0.04 0.91 0.95 0.06 2.05 2.11
Pruned CART Tree16.6 0.3 16.9 42.4 0.8 43.2 95.7 1.6 97.3

Tree Bagging 97.8 54.0 151.8 219.7 142.3 362.0 474.4 333.7 808.1
Extra-Trees 24.6 55.5 80.1 51.0 145.8 196.8 105.72 337.48 443.2

Totally Rand. Trees 0.4 67.8 68.2 0.8 165.3 166.2 1.7 407.5 409.2
kNN 0.0 1032.2 1032.2 0.0 4096.2 4096.2 0.0 16537.7 16537.7

kNN smart 0.0 21.0 21.0 0.0 83.0 83.0 0.0 332.4 332.4

Table 4: CPU times (in seconds on a Pentium-IV, 2.4GHz, 1GB, Linux) required to computêQ50. For each
of the supervised learning method̂QN(x,−4) andQ̂N(x,4) have been modeled separately. 50 trees
are used with Tree Bagging, Extra-Trees and Totally Randomized Trees and the value ofk for kNN
is 2.

By analyzing the table, the following remarks apply:

• CPU times required to build the training sets are non negligible with respect to CPUtimes for
building the models (except for Pruned CART Tree which produces only one single regression
tree). In the case of Extra-Trees, Totally Randomized Trees andkNN, training set update is even
the dominant task in terms of CPU times.

• Kd-Tree is (by far) the fastest method, even faster than Pruned CART Tree which produces also
one single tree. This is due to the fact that the MB task is really inexpensive.Indeed, it just
requires building one single tree structure at the first iteration and refresh its terminal nodes in
the aftermath.

• Concerning Pruned CART Tree, it may be noticed that tree pruning by ten-fold cross validation
requires to build in total eleven trees which explains why the CPU times for building 50 trees
with Tree Bagging is about five times greater than the CPU times required for Pruned CART
Tree.

• The MB task is about four times faster with Extra-Trees than with Tree Bagging, because Extra-
Trees only computes a small number (K) of test scores, while CART searches for an optimal
threshold for each input variable. Note that the trees produced by the Extra-Trees algorithm
are slightly more complex, which explains why the TSB task is slightly more time consuming.
On the two largest training sets, Extra-Trees leads to almost 50 % less CPU timesthan Tree
Bagging.

534

TREE-BASED BATCH MODE REINFORCEMENTLEARNING

• The MB task for Totally Randomized Trees is much faster than the MB task for Extra-Trees,
mainly because the totally randomized tree structures are built only at the firstiteration. Note
that, when totally randomized trees are built at the first iteration, branch development is not
stopped when the elements of the local training set have the same value, because it can not
be assumed that these elements would still have the same value in subsequent iterations. This
also implies that totally randomized trees are more complex than trees built by Extra-Trees and
explains why the TSB task with Totally Randomized Trees is more time consuming.

• Full kNN is the slowest method. However, its smart implementation is almost 50 times (the
number of iterations realized by the algorithm) faster than the naive one. In the present case, it is
even faster than the methods based on regression trees ensembles. However, as its computational
complexity (in both implementations) is quadratic with respect to the size of the training set
while it is only slightly super-linear for tree-based methods, its advantage quickly vanishes when
the training set size increases.

5.4 The “Acrobot Swing Up” Control Problem

M1g

u

M2g

L1

θ2

L2

θ1

Figure 20: Representation of the Acrobot.

We consider here the “Acrobot Swing Up” control problem whose precise definition is given in
Appendix C.3.

The Acrobot is a two-link underactuated robot, depicted in Figure 20. Thesecond joint applies
a torque (represented byu), while the first joint does not. The system has four continuous state
variables: two joint positions (θ1 andθ2) and two joint velocities (̇θ1 andθ̇2). This system has been
extensively studied by control engineers (e.g. Spong, 1994) as well as machine learning researchers
(e.g. Yoshimoto et al., 1999).

We have stated this control problem so that the optimal stationary policy bringsthe Acrobot
quickly into a specified neighborhood of its unstable inverted position, and ideally as close as pos-
sible to this latter position. Thus, the reward signal is equal to zero except when this neighborhood
is reached, in which case it is positive (see Eqn (44) in Appendix C.3). The torqueu can only take
two values:−5 and 5.

535

ERNST, GEURTS AND WEHENKEL

5.4.1 FOUR-TUPLESGENERATION

To generate the four-tuples we have considered 2000 episodes startingfrom an initial state chosen at
random in{(θ1,θ2, θ̇1, θ̇2)∈R

4| θ1∈ [−π+1,π−1],θ2 = θ̇1 = θ̇2 = 0} and finishing whent = 100
or earlier if the terminal state is reached before.20

Two types of strategies are used here to control the system, leading to two different sets of four-
tuples. The first one is the same as in the previous examples: at each instantthe system is controlled
by using a policy that selects actions fully at random. The second strategy however interleaves the
sequence of four-tuples generation with the computation of an approximateQ-function from the
four-tuples already generated and uses a policy that exploits thisQ̂-function to control the system
while generating additional four-tuples. More precisely, it generates thefour-tuples according to the
following procedure:21

• Initialize Q̂ to zero everywhere andF to the empty set;

• Repeat 20 times:

– use anε-greedy policy fromQ̂ to generate 100 episodes and add the resulting four-tuples
to F ;

– use the fittedQ iteration algorithm to build a new approximation̂QN from F and setQ̂
to Q̂N.

whereε = 0.1 and where the fittedQ iteration algorithm is combined with the Extra-Trees (nmin = 2,
K = 5, M = 50) algorithm and iterates 100 times.

The random policy strategy produces a set of four-tuples composed of193,237 elements while
154,345 four-tuples compose the set corresponding to theε-greedy policy.

Note that since the states(θ1,θ2, θ̇1, θ̇2) and(θ1 +2k1π,θ2 +2k2π, θ̇1, θ̇2) k1,k2 ∈ Z are equiv-
alent from a physical point of view, we have, before using the four-tuples as input of the fittedQ
iteration algorithm, added or subtracted to the values ofθ1 andθ2 a multiple of 2π to guarantee that
these values belong to the interval[−π,π]. A similar transformation is also carried out on each state
(θ1,θ2, θ̇1, θ̇2) before it is used as input of a policy ˆµ∗N(x).

5.4.2 SIMULATION RESULTS

First, we consider the set of four-tuples gathered when using theε-greedy policy to control the
system. We have represented on Figure 21 the evolution of the Acrobot starting with zero speed in
a downward position and being controlled by the policy ˆµ100 when the fittedQ iteration algorithm is
used with Extra-Trees. As we observe, the control policy computed manages to bring the Acrobot
close to its unstable equilibrium position.

In order to attribute a score to a policy ˆµN, we define a set

Xi = {(θ1,θ2, θ̇1, θ̇2) ∈ R
4|θ1 ∈ {−2,−1.9, · · · ,2},θ2θ̇1 = θ̇2 = 0},

evaluateJµ̂N
∞ (x) for each elementx of this set and average the values obtained. The evolution of

the score of ˆµ∗N with N for different tree-based methods is drawn on Figure 22. Extra-Treesgives

20. We say that a terminal state is reached when the Acrobot has reached the target neighborhood of the unstable equi-
librium set.

21. The ε-greedy policy chooses with probability 1− ε the control actionut at random in the set{u ∈ U |u =
argmaxu∈U Q̂(xt ,u)}) and with probabilityε at random inU .

536

TREE-BASED BATCH MODE REINFORCEMENTLEARNING

u = 5
u =−5

Figure 21: A typical control sequence with a learned policy. The Acrobot starts with zero speed in a down-
ward position. Its position and the applied control action are represented at successive time steps.
The last step corresponds to a terminal state.

10 30 50 70 90

0.02

0.02

0.03

0.04

0.05

0.0

J
µ̂∗N∞

N

Tree Bagging

Extra-Trees

Totally Randomized Trees

Figure 22: Score ofµ̂∗N when using the set gen-
erated by theε-greedy policy.

Tree-based
method

Policy which generatesF
ε-greedy Random

Pruned CART Tree 0.0006 0.
Kd-Tree (Bestnmin) 0.0004 0.

Tree Bagging 0.0417 0.0047
Extra-Trees 0.0447 0.0107

Totally Rand. Trees 0.0371 0.0071

Table 5: Score ofµ̂∗100 for the two sets of four-
tuples and different tree-based meth-
ods.

the best score while the score of Tree Bagging seems to oscillate around thevalue of the score
corresponding to Totally Randomized Trees.

The score obtained by ˆµ∗100 for the different tree-based methods and the different sets of four-
tuples is represented in Table 5. One may observe, once again, that methods which build an en-
semble of regression trees perform much better. Surprisingly, Totally Randomized Trees behaves
well compared to Tree Bagging and to a lesser extent to Extra-Trees. On the other hand, the single
tree methods offer rather poor performances. Note that for Kd-Tree,we have computed ˆµ∗100 and its
associated score for each value ofnmin∈ {2,3,4,5,10,20, · · · ,100} and reported in the Table 5 the
highest score thus obtained.

We can also observe from this table that the scores obtained while using the set of four-tuples
corresponding to the totally random policy are much worse than those obtained when using an
ε-greedy policy. This is certainly because the use of a totally random policy leads to very little

537

ERNST, GEURTS AND WEHENKEL

information along the optimal trajectories starting from elements ofXi . In particular, out of the
2000 episodes used to generate the set of four-tuples, only 21 manage toreach the goal region. Note
also that while Extra-Trees remains superior, Tree Bagging offers this timepoorer performances
than Totally Randomized Trees.

5.5 The Bicycle

We consider two control problems related to a bicycle which moves at constant speed on a horizontal
plane (Figure 23). For the first problem, the agent has to learn how to balance the bicycle. For the
second problem, he has not only to learn how to balance the bicycle but alsohow to drive it to a
specific goal. The exact definitions of the two optimal control problems related to these two tasks
are given in Appendix C.4.22

These two optimal control problems have the same system dynamics and differonly by their
reward function. The system dynamics is composed of seven variables. Four are related to the
bicycle itself and three to the position of the bicycle on the plane. The state variables related to the
bicycle areω (the angle from vertical to the bicycle),ω̇, θ (the angle the handlebars are displaced
from normal) anḋθ. If |ω| becomes larger than 12 degrees, then the bicycle is supposed to have
fallen down and a terminal state is reached. The three state variables relatedto the position of
the bicycle on the plane are the coordinates(xb,yb) of the contact point of the back tire with the
horizontal plane and the angleψ formed by the bicycle frame and the x-axis. The actions are
the torqueT applied to the handlebars (discretized to{−2,0,2}) and the displacementd of the
rider (discretized to{−0.02,0,0.02}). The noise in the system is a uniformly distributed term in
[−0.02,0.02] added to the displacement component actiond.

As is usually the case when dealing with these bicycle control problems, we suppose that the
state variablesxb andyb cannot be observed. Since these two state variables do not intervene in the
dynamics of the other state variables nor in the reward functions considered, they may be taken as
irrelevant variables for the optimal control problems and, therefore, their lack of observability does
not make the control problem partially observable.

The reward function for the “Bicycle Balancing” control problem (Eqn (56), page 553) is such
that zero rewards are always observed, except when the bicycle has fallen down, in which case
the reward is equal to -1. For the “Bicycle Balancing and Riding” control problem, a reward of
−1 is also observed when the bicycle has fallen down. However, this time, non-zero rewards are
also observed when the bicycle is riding (Eqn (57), page 553). Indeed, the rewardrt when the
bicycle is supposed not to have fallen down, is now equal tocreward(dangle(ψt)−dangle(ψt+1)) with

22. Several other papers treat the problems of balancing and/or balancing and riding a bicycle (e.g. Randløv and Alstrøm,
1998; Ng and Jordan, 1999; Lagoudakis and Parr, 2003b,a). Thereader can refer to them in order to put the perfor-
mances of fittedQ iteration in comparison with some other RL algorithms. In particular, he couldrefer to Randløv
and Alstrøm (1998) to get an idea of the performances of SARSA(λ), an on-line algorithm, on these bicycle control
problems and to Lagoudakis and Parr (2003b) to see how the Least-Square Policy Iteration (LSPI), a batch mode
RL algorithm, performs. If his reading of these papers and of the simulation results reported in Sections 5.5.1 and
5.5.2 is similar to ours, he will conclude that fittedQ iteration combined with Extra-Trees performs much better
than SARSA(λ) in terms of ability to extract from the information acquired from interaction with the system, a good
control policy. He will also conclude that LSPI and fittedQ iteration combined with Extra-Trees are both able to
produce good policies with approximately the same number of episodes. Moreover, the reader will certainly notice
the obvious strong dependence of performances of LSPI and SARSA(λ) on the choice of the parametric approxi-
mation architecture these algorithms use to approximate theQ-function, which makes extremely difficult any strict
comparison with them.

538

TREE-BASED BATCH MODE REINFORCEMENTLEARNING

ϕ
h

d+w Fcen
CM

ω

Mg

x-axis

ψ

ψgoal

contact

θ

T

front wheel

back wheel - ground

goal

(xb,yb)

frame of the bike

center of goal (coord. =(xgoal,ygoal))

(a) (b)

Figure 23: Figure (a) represents the bicycle seen from behind. The thick line represents the bicycle. CM
is the center of mass of the bicycle and the cyclist.h represents the height of the CM over the
ground. ω represents the angle from vertical to bicycle. The angleϕ represents the total angle
of tilt of the center of mass. Actiond represents how much the agent decides to displace the
center of mass from the bicycle’s plan andw is the noise laid on the choice of displacement, to
simulate imperfect balance. Figure (b) represents the bicycle seen from above.θ is the angle
the handlebars are displaced from normal,ψ the angle formed by the bicycle frame and the x-
axis andψgoal the angle between the bicycle frame and the line joining the back - wheel ground
contact and the center of the goal.T is the torque applied by the cyclist to the handlebars.(xb,yb)

is the contact point of the backwheel with the ground.

creward = 0.1 anddangle(ψ) = min
k∈Z

|ψ + 2kπ| (dangle(ψ) represents the “distance” between an angle

ψ and the angle 0). Positive rewards are therefore observed when the bicycle frame gets closer to
the positionψ = 0 and negative rewards otherwise. With such a choice for the reward function, the
optimal policyµ∗ tends to control the bicycle so that it moves to the right with its frame parallel
to the x-axis. Such an optimal policy or a good approximate ˆµ∗ of it can then be used to drive the
bicycle to a specific goal. Ifψgoalt represents the angle between the bicycle frame and a line joining
the point(xb,yb) to the center of the goal(xgoal,ygoal) (Figure 23b), this is achieved by selecting at
time t the actionµ̂∗(ωt , ω̇t ,θt , θ̇t ,ψgoalt), rather than ˆµ∗(ωt , ω̇t ,θt , θ̇t ,ψt). In this way, we proceed
as if the line joining(xb,yb) to (xgoal,ygoal) were the x-axis when selecting control actions, which
makes the bicycle moving towards the goal.23 Note that in our simulations,(xgoal,ygoal) = (1000,0)
and the goal is a ten meter radius circle centered on this point. Concerning thevalue of the decay

23. The reader may wonder why, contrary to the approach taken by other authors (Lagoudakis, Parr, Randløv, Alstrøm,
Ng, Jordan),

• we did not consider in the state signal available during the four-tuples generation phaseψgoal rather thanψ (which
would have amounted here to consider(ω, ω̇,θ, θ̇,ψgoal) as state signal when generating the four-tuples)

539

ERNST, GEURTS AND WEHENKEL

factorγ, it has been chosen for both problems equal to 0.98. The influence ofγ andcreward on the
trajectories for the “Bicycle Balancing and Riding” control problem will be discussed later.

All episodes used to generate the four-tuples start from a state selected at random in

{(ω, ω̇,θ, θ̇,xb,yb,ψ) ∈ R
7|ψ ∈ [−π,π]andω = ω̇ = θ = θ̇ = xb = yb = 0},

and end when a terminal state is reached, i.e. when the bicycle is supposed tohave fallen down. The
policy considered during the four-tuples generation phase is a policy thatselects at each instant an
action at random inU .

For both optimal control problems, the setXi considered for the score computation (Section
5.1.2) is:

Xi = {(ω, ω̇,θ, θ̇,xb,yb,ψ) ∈ R
7|ψ ∈ {−π,−3π

4
, · · · ,π}andω = ω̇ = θ = θ̇ = xb = yb = 0}.

Sinceψ andψ+2kπ (k∈Z) are equivalent from a physical point of view, in our simulations we
have modified each value ofψ observed by a factor 2kπ in order to guarantee that it always belongs
to [−π,π].

5.5.1 THE “B ICYCLE BALANCING ” CONTROL PROBLEM

To generate the four-tuples, we have considered 1000 episodes. Thecorresponding setF is com-
posed of 97,969 four-tuples. First, we discuss the results obtained by Extra-Trees (nmin = 4, K = 7,
M = 50)24 and then we assess the performances of the other tree-based methods.

Figure 24a represents the evolution of the score of the policies ˆµ∗N with N when using Extra-
Trees. To assess the quality of a policyµ, we use also another criterion than the score. For this
criterion, we simulate for eachx0 ∈ Xi ten times the system with the policyµ, leading to a total of
90 trajectories. If no terminal state has been reached beforet = 50,000, that is if the policy was able
to avoid crashing the bicycle during 500 seconds (the discretization time step is0.01 second), we say
that the trajectory has been successful. On Figure 24c we have represented for the different policies
µ̂∗N the number of successful trajectories among the 90 simulated. Remark that if from N = 60
the score remains really close to zero, polices ˆµ∗60 and µ̂∗70 do not produce as yet any successful
trajectories, meaning that the bicycle crashes for large values oft even if these are smaller than

• the reward function for the bicycle balancing and riding control problem does not give directly information about
the direction to the goal (which would have led here to observe att + 1 the rewardcreward(dangle(ψgoalt)−
dangle(ψgoalt+1))).

We did not choose to proceed like this becauseψgoalt+1 depends not only onψgoalt andθt but also onxbt andybt .
Therefore, since we suppose that the coordinates of the back tire cannot be observed, the optimal control problems
would have been partially observable if we had replacedψ by ψgoal in the state signal and the reward function.
Although in our simulations this does not make much difference sinceψ ' ψgoal during the four-tuples generation
phases, we prefer to stick with fully observable systems in this paper.

24. When considering ensemble methods (Extra-Trees, Totally Randomized Trees, Tree Bagging) we always keep con-
stant the value of these parameters. Since we are not dealing with a highly stochastic system, as for the case of the
“Left or Right” control problem, we decided not to rely on the pruned version of these algorithms. However, we
found out that by developing the trees fully (nmin = 2), variance was still high. Therefore, we decided to use a larger
value fornmin. This value is equal to 4 and was leading to a good bias-variance tradeoff. Concerning the value of
K = 7, it is equal to the dimension of the input space, that is the dimension of the state signal(ω, ω̇,θ, θ̇,ψ) plus the
dimension of the action space.

540

TREE-BASED BATCH MODE REINFORCEMENTLEARNING

Tree-based method
Control problem

Bicycle
Balancing

Bicycle
Balancing and Riding

Pruned CART Tree -0.02736 -0.03022
Kd-Tree (Bestnmin∈ {2,3,4,5,10,20, · · · ,100}) -0.02729 -0.10865

Tree Bagging (nmin = 4, M = 50) 0 0.00062
Extra-Trees (nmin = 4, K = 7, M = 50) 0 0.00157

Totally Randomized Trees (nmin = 4, M = 50) -0.00537 -0.01628

Table 6: Score ofµ̂∗300 for the “Balancing” and “Balancing and Riding” problems. Different tree-based
methods are considered, with a 1000 episode based set of four-tuples.

50,000. Figure 24b gives an idea of the trajectories of the bicycle on the horizontal plane when
starting from the different elements ofXi and being controlled by ˆµ∗300.

To assess the influence of the number of four-tuples on the quality of the policy computed, we
have drawn on Figure 24d the number of successful trajectories when different number of episodes
are used to generateF . As one may see, by using Extra-Trees, from 300 episodes (' 10,000
four-tuples) only successful trajectories are observed. Tree Bagging and Totally Randomized Trees
perform less well. It should be noted that Kd-Tree and Pruned CART Tree were not able to pro-
duce any successful trajectories, even for the largest set of four-tuples. Furthermore, the fact that
we obtained some successful trajectories with Totally Randomized Trees is only because we have
modified the algorithm to avoid selection of tests according toψ, a state variable that plays for this
“Bicycle Balancing” control problem the role of an irrelevant variable (ψ does not intervene in the
reward function and does not influence the dynamics ofω, ω̇, θ, θ̇) (see also Section 5.3.5). Note
that the scores obtained by ˆµ∗300 for the different tree-based methods when considering the 97,969
four-tuples are reported in the second column of Table 6.

5.5.2 THE “B ICYCLE BALANCING AND RIDING” CONTROL PROBLEM

To generate the four-tuples, we considered 1000 episodes that led to a set F composed of 97,241
elements. First, we study the performances of Extra-Trees (nmin = 4, K = 7, M = 50). Figure 25a
represents the evolution of the score of ˆµ∗N with N. The final value of the score (score of ˆµ∗300) is
equal to 0.00157.

As mentioned earlier, with the reward function chosen, the policy computed byour algorithm
should be able to drive the bicycle to the right, parallel to the x-axis, provided that the policy is a
good approximation of the optimal policy. To assess this ability, we have simulated, for eachx0∈Xi ,
the system with the policy ˆµ∗300 and have represented on Figure 25b the different trajectories of the
back tire. As one may see, the policy tends indeed to drive the bicycle to the right, parallel to the
x-axis. The slight shift that exists between the trajectories and the x-axis (the shift is less than 10
degrees) could be reduced if more four-tuples were used as input of the fittedQ iteration algorithm.

Now, if rather than using the policy ˆµ∗300 with the state signal(ω, ω̇,θ, θ̇,ψ) we consider the state
signal (ω, ω̇,θ, θ̇,ψgoal), whereψgoal is the angle between the bicycle frame and the line joining
(xb,yb) with (xgoal,ygoal), we indeed observe that the trajectories converge to the goal (see Figure
25c). Under such conditions, by simulating from eachx0 ∈ Xi ten times the system over 50,000
time steps, leading to a total of 90 trajectories, we observed that every trajectory managed to reach

541

ERNST, GEURTS AND WEHENKEL

−0.06

−0.05

−0.04

−0.03

0.0

−0.01

−0.02

N

Jµ̂∗N

10050 150 200 250

−1000 −500 500 1000

−500

0

500

1000

−1000

xb
ψ0 = π

ψ0 =−π

yb

ψ0 =− π
4

ψ0 =− π
2

ψ0 = π
4

ψ0 = 0

ψ0 =− 3π
4

ψ0 = π
2

ψ0 = 3π
4

0

(a) (b)

10050 150 200 250

0

10

20

30

40

50

60

70

80

90

N

succ.
Nb of

traj.

Totally Randomized Trees
(attributeψ never selected)

100 300 500 700 900

0

10

20

30

40

50

60

70

80

90

Nb of

Nb of
episodes

Extra-Trees Tree Baggingsucc.
traj.

(c) (d)

Figure 24: The “Bicycle Balancing” control problem. Figure (a) represents the score of ˆµ∗N with Extra-
Trees and 1000 episodes used to generateF . Figure (b) sketches trajectories of the bicycle on
the xb− yb plane when controlled by ˆµ∗300. Trajectories are drawn fromt = 0 till t = 50,000.
Figure (c) represents the number of times (out of 90 trials) the policy µ̂∗N (Extra-Trees, 1000
episodes) manages to balance the bicycle during 50,000 timesteps, i.e. 500 s. Figure (d) gives
for different numbers of episodes and for different tree-based methods the number of times ˆµ∗300

leads to successful trajectories.

542

TREE-BASED BATCH MODE REINFORCEMENTLEARNING

a 2 meter neighborhood of(xgoal,ygoal). Furthermore, every trajectory was able to reach the goal in
less that 47,000 time steps. Note that, since the bicycle rides at constant speedv = 10

3.6 ' 2.77ms−1

and since the time discretization step is 0.01s, the bicycle does not have to cover a distance of more
that 1278mbefore reaching the goal while starting from any element ofXi .

It is clear that these good performances in terms of the policy ability to drive the bicycle to the
goal depend on the choice of the reward function. For example, if the sameexperience is repeated
with creward chosen equal to 1 rather than 0.1 in the reward function, the trajectories lead rapidly
to a terminal state. This can be explained by the fact that, in this case, the largepositive rewards
obtained for moving the frame of the bicycle parallel to the x-axis lead to a control policy that
modifies too rapidly the bicycle riding direction which tends to destabilize it. If now, the coefficient
creward is taken smaller than 0.1, the bicycle tends to turn more slowly and to take more time to
reach the goal. This is illustrated on Figure 25d where a trajectory corresponding tocreward = 0.01
is drawn together with a trajectory corresponding tocreward = 0.1. On this figure, we may also
clearly observe that after leaving the goal, the control policies tend to drive again the bicycle to it.
It should be noticed that the policy corresponding tocreward = 0.1 manages at each loop to bring
the bicycle back to the goal while it is not the case with the policy corresponding to creward = 0.01.
Note that the coefficientγ influences also the trajectories obtained. For example, by takingγ = 0.95
instead ofγ = 0.98, the bicycle crashes rapidly. This is due to the fact that a smaller value ofγ tends
to increase the importance of short-term rewards over long-term ones, which favors actions that turn
rapidly the bicycle frame, even if they may eventually lead to a fall of the bicycle.

Rather than relying only on the score to assess the performances of a policy, let us now associate
to a policy a value that depends on its ability to drive the bicycle to the goal within acertain time
interval, when(ω, ω̇,θ, θ̇,ψgoal) is the state signal considered. To do so, we simulate from each
x0∈Xi ten times the system over 50,000 time steps and count the number of times the goal has been
reached. Figure 25e represents the “number of successful trajectories” obtained by ˆµ∗N for different
values ofN. Observe that 150 iterations of fittedQ iteration are needed before starting to observe
some successful trajectories. Observe also that the “number of successful trajectories” sometimes
drops whenN increases, contrary to intuition. These drops are however not observed on the score
values (e.g. forN = 230, all 90 trajectories are successful and the score is equal to 0.00156, while
for N = 240, the number of successful trajectories drops to 62 but the score increases to 0.00179).
Additional simulations have shown that these sudden drops tend to disappear when using more
four-tuples.

Figure 25f illustrates the influence of the size ofF on the number of successful trajectories when
fitted Q iteration is combined with Extra-Trees. As expected, the number of successful trajectories
tends to increase with the number of episodes considered in the four-tuplesgeneration process.
It should be noted that the other tree-based methods considered in this paper did not manage to
produce successful trajectories when only 1000 episodes are used togenerate the four-tuples. The
different scores obtained by ˆµ∗300 when 1000 episodes are considered and for the different tree-based
methods are gathered in Table 6, page 541. Using this score metric, Extra-Trees is the method
performing the best, which is in agreement with the “number of successful trajectories” metric,
followed successively by Tree Bagging, Totally Randomized Trees, Pruned CART Tree and Kd-
Tree.

543

ERNST, GEURTS AND WEHENKEL

100 150 200 250

−0.25

−0.20

−0.15

−0.1

−0.05

0.0

N

Jµ̂∗N

50 −100

−50

0

50

100

150

200

250

0 250 500 750 1000 1250xb

yb
ψ0 = π

ψ0 = 3π
4

ψ0 = π
2

ψ0 = π
4

ψ0 = 0
ψ0 =− π

4

ψ0 =− π
2

ψ0 =− 3π
4ψ0 =−π

(a) (b)

goal

yb

0 250 500 750 1000

−100

−50

0

50

100

xb

−150
ψ0 =− 3π

4

ψ0 = π

ψ0 =− π
4

ψ0 =− π
2

ψ0 = 0

ψ0 = π
4

ψ0 = π
2

ψ0 = 3π
4

ψ0 =−π

0 250 500 750 1000

−150

−100

50

100

150

yb

xb

creward = 0.01
Trajectory reaches
goal att = 48182 (ψ0 = π)

creward = 0.1
Trajectory reaches

(ψ0 = π)
goal att = 45276

0

−50

(c) (d)

10050 150 200 250

0

10

20

30

40

50

60

70

80

90

N

Nb of
succ.
traj.

100 300 500 700 900

0

10

20

30

40

50

60

70

80

90

Nb of

Nb of
episodes

Extra-Trees

succ.
traj.

(e) (f)

Figure 25: The “Bicycle Balancing and Riding” control problem. Figure(a) represents the score of
µ̂∗N (Extra-Trees, 1000 episodes). Figure (b) sketches trajectories when ˆµ∗300 (Extra-Trees,
1000 episodes) controls the bicycle (trajectories drawn from t = 0 till t = 50,000). Figure
(c) represents trajectories when ˆµ∗300 (Extra-Trees, 1000 episodes) controls the bicycle with
(ωt , ω̇t ,θt , θ̇t ,ψgoalt) used as input signal for the policy (trajectories drawn fromt = 0 till
t = 50,000). Figure (d) represents the influence oncreward on the trajectories (ˆµ∗300, Extra-Trees,
1000 episodes and trajectories drawn fromt = 0 till t = 100,000). Figure (e) lists the number of
times the policy ˆµ∗N manages to bring the bicycle to the goal in less than 50,000 time steps (high-
est possible value for “Number of successful trajectories”is 90). Figure (f) gives for different
number of episodes the number of times ˆµ∗300 leads to successful trajectories.

544

TREE-BASED BATCH MODE REINFORCEMENTLEARNING

5.6 Conclusion of the Experiments

We discuss in this section the main conclusions that may be drawn from the simulation results
previously reported.

5.6.1 INFLUENCE OF THETREE-BASED METHODS

Let us analyze the results of our experiments in the light of the classification given in Table 1.

Single trees vs ensembles of trees.Whatever the set of four-tuples used, the top score has always
been reached by a method building an ensemble of regression trees, and furthermore, the larger the
state space, the better these regression tree ensemble methods behave compared to methods building
only one single tree. These results are in agreement with previous work in reinforcement learning
which suggests that multi-partitioning of the state space is leading to better function approxima-
tors than single partitioning.25 They are also in agreement with the evaluation of these ensemble
algorithms on many standard supervised learning problems (classification and regression), where
tree-based ensemble methods typically significantly outperform single trees (Geurts et al., 2004).

However, from the viewpoint of computational requirements, we found that ensemble methods
are clearly more demanding, both in terms of computing times and memory requirements for the
storage of models.

Kernel-based vs non kernel-based methods.Among the single tree methods, Pruned CART
Tree, which adapts the tree structure to the output variable, offers typically the same performances
as Kd-Tree, except in the case of irrelevant variables where it is significantly more robust. Among
the tree-based ensemble methods, Extra-Trees outperforms Totally Randomized Trees in all cases.
On the other hand, Tree Bagging is generally better than the Totally Randomized Trees, except
when dealing with very small numbers of samples, where the bootstrap resampling appears to be
penalizing. These experiments thus show that tree-based methods that adapt their structure to the
new output at each iteration usually provide better results than methods that do not (that we name
kernel-based). Furthermore, the non kernel-based tree-based algorithms are much more robust to
the presence of irrelevant variables thanks to their ability to filter out tests involving these variables.

A drawback of non kernel-based methods is that they do not guarantee convergence. However,
with the Extra-Trees algorithm, even if the sequence was not converging,the policy quality was
oscillating only moderately around a stable value and even when at its lowest, itwas still superior
to the one obtained by the kernel-based methods ensuring the convergence of the algorithm. Fur-
thermore, if really required, convergence to a stable approximation may always be provided in an
ad hoc fashion, for example by freezing the tree structures after a certain number of iterations and
then only refreshing predictions at terminal nodes.

5.6.2 PARAMETRIC VERSUSNON-PARAMETRIC SUPERVISEDLEARNING METHOD

FittedQ iteration has been used in our experiments with non-parametric supervised learning meth-
ods (kNN, tree-based methods) and parametric supervised learning methods (basis function methods
with piecewise-constant or piecewise-linear grids as approximation architectures).

25. See e.g. Sutton (1996); Sutton and Barto (1998), where the authors show that by overlaying several shifted tilings
of the state space (type of approximation architecture known as CMACs),good function approximators could be
obtained.

545

ERNST, GEURTS AND WEHENKEL

It has been shown that the parametric supervised learning methods, compared to the non-
parametric ones, were not performing well. The main reason is the difficulty toselect a priori the
shape of the parametric approximation architecture that may lead to some good results. It should
also be stressed that divergence to infinity of the fittedQ iteration has sometimes been observed
when piecewise-linear grids were the approximation architectures considered.

5.6.3 FITTED Q ITERATION VERSUSON-L INE ALGORITHMS

An advantage of fittedQ iteration over on-line algorithms is that it can be combined with some non-
parametric function approximators, shown to be really efficient to generalize the information. We
have also compared the performances of fittedQ iteration andQ-learning for some a priori given
parametric approximation architectures. In this context, we found out that when the approximation
architecture used was chosen so as to avoid serious convergence problems of the fittedQ iteration
algorithm, then this latter was also performing much better thanQ-learning on the same architecture.

6. Conclusions and Future Work

In this paper, we have considered a batch mode approach to reinforcement learning, which consists
of reformulating the reinforcement learaning problem as a sequence of standard supervised learning
problems. After introducing thefitted Q iteration algorithmwhich formalizes this framework, we
have studied the properties and performances of the algorithm when combined with three classical
tree-based methods (Kd-Trees, CART Trees, Tree Bagging) and two newly proposed tree-based
ensemble methods namely Extra-Trees and Totally Randomized Trees.

Compared with grid-based methods on low-dimensional problems, as well as with kNN and
single tree-based methods in higher dimensions, we found out that the fittedQ iteration algorithm
was giving excellent results when combined with any one of the consideredtree-based ensemble
methods (Extra-Trees, Tree Bagging and Totally Randomized Trees). Onthe different cases studied,
Extra-Treeswas the supervised learning method able to extract at best information froma set of four-
tuples. It is also faster than Tree Bagging and was performing significantlybetter than this latter
algorithm, especially on the higher dimensional problems and on low-dimensional problems with
small sample sizes. We also found out that fittedQ iteration combined with tree-based methods
was performing much better thanQ-learning combined with piecewise-constant or piecewise-linear
grids.

Since Extra-Trees and Tree Bagging, the two best performing supervised learning algorithms,
readjust their approximation architecture to the output variable at each iteration, they do not en-
sure the convergence of the fittedQ iteration algorithm. However, and contrary to many parametric
approximation schemes, they do not lead to divergence to infinity problems. The convergence prop-
erty is satisfied by theTotally Randomized Treesbecause their set of trees is frozen at the beginning
of the iteration. They perform however less well than Extra-Trees and Tree Bagging, especially in
the presence of irrelevant variables. They are nevertheless better than some other methods that also
ensure the convergence of the sequence, likekNN kernel methods and piecewise-constant grids, in
terms of performances as well as scalability to large numbers of variables and four-tuples. Within
this context, it would be worth to study versions of Extra-Trees and Tree Bagging which would
freeze their trees at some stage of the iteration process, and thus recover the convergence property.

From a theoretical point of view, it would certainly be very interesting to further study the con-
sistency of the fittedQ iteration algorithm, in order to determine general conditions under which the

546

TREE-BASED BATCH MODE REINFORCEMENTLEARNING

algorithm converges to an optimal policy when the number of four-tuples collected grows to infinity.
With this in mind, one could possibly seek inspiration in the work of Ormoneit and Sen (2002) and
Ormoneit and Glynn (2002), who provide consistency conditions for kernel-based supervised learn-
ing methods within the context of fittedQ iteration, and also in some of the material published in the
supervised learning literature (e.g. Lin and Jeon, 2002; Breiman, 2000). More specifically, further
investigation in order to characterize ensembles of regression trees with respect to consistency is
particularly wishful, because of their good practical performances.

In this paper, the score associated to a test node of a tree was the relativevariance reduction.
Several authors who adapted regression trees in other ways to reinforcement learning have sug-
gested the use of other score criteria for example based on the violation of the Markov assumption
(McCallum, 1996; Uther and Veloso, 1998) or on the combination of several error terms like the
supervised, the Bellman, and the advantage error terms (Wang and Diettrich, 1999). Investigating
the effect of such score measures within the fittedQ iteration framework is another interesting topic
of research.

While the fittedQ iteration algorithm used with tree-based ensemble methods reveals itself to
be very effective to extract relevant information from a set of four-tuples, it has nevertheless one
drawback: with increasing number of four-tuples, it involves a superlinear increase in computing
time and a linear increase in memory requirements. Although our algorithms offera very good
accuracy/efficiency tradeoff, we believe that further research should explore different ways to try to
improve the computational efficiency and the memory usage, by introducing algorithm modifica-
tions specific to the reinforcement learning context.

Acknowledgments

Damien Ernst and Pierre Geurts gratefully acknowledge the financial support of the Belgian Na-
tional Fund of Scientific Research (FNRS). The authors thank the action editor Michael Littman
and the three anonymous reviewers for their many suggestions for improvingthe quality of the
manuscript. They are also very grateful to Bruno Scherrer for reviewing an earlier version of this
work, to Mania Pavella for her helpful comments and to Michail Lagoudakis for pointing out rele-
vant information about the bicycle control problems.

Appendix A. Extra-Trees Induction Algorithm

The procedure used by the Extra-Trees algorithm to build a tree from a training set is described in
Figure 26. This algorithm has two parameters:nmin, the minimum number of elements required to
split a node andK, the maximum number of cut-directions evaluated at each node. IfK = 1 then
at each test node the cut-direction and the cut-point are chosen totally at random. If in addition
the condition (iii) is dropped, then the tree structure is completely independentof the output values
found in theT S , and the algorithm generatesTotally Randomized Trees.
The score measure used is the relative variance reduction. In other words, if T S l (resp. T S r)
denotes the subset of cases fromT S such that[i j < t] (resp. [i j ≥ t]), then the Score is defined as
follows:

Score([i j < t],T S) =
var(o|T S)− #T S l

#T S
var(o|T S l)− #T S r

#T S
var(o|T S r)

var(o|T S)
, (25)

547

ERNST, GEURTS AND WEHENKEL

Build a tree(T S)
Input: a training setT S

Output: a treeT;

• If

(i) #T S < nmin, or

(ii) all input variables are constant inT S , or

(iii) the output variable is constant over theT S ,

return a leaf labeled by the average value1#T S ∑l o
l .

• Otherwise:

1. Let [i j < t j] = Find a test(T S).

2. SplitT S into T S l andT S r according to the test[i j < t].

3. Build Tl = Build a tree(T S l) andTr = Build a tree(T S r) from these subsets;

4. Create a node with the test[i j < t j], attachTl andTr as left and right subtrees of this
node and return the resulting tree.

Find a test(T S)
Input: a training setT S

Output: a test[i j < t j]:

1. SelectK inputs,{i1, ..., iK}, at random, without replacement, among all (non constant) input
variables.

2. Fork going from 1 toK:

(a) Compute the maximal and minimal value ofik in T S , denoted respectivelyiT S
k,min and

iT S
k,max.

(b) Draw a discretization thresholdtk uniformly in]iT S
k,min, i

T S
k,max]

(c) Compute the scoreSk = Score([ik < tk],T S)

3. Return a test[i j < t j] such thatSj = maxk=1,...,K Sk.

Figure 26: Procedure used by the Extra-Trees algorithm to build a tree. The Totally Randomized
Treesalgorithm is obtained from this algorithm by settingK = 1 and by dropping the
stopping condition (iii).

548

TREE-BASED BATCH MODE REINFORCEMENTLEARNING

wherevar(o|X) is the variance of the outputo in the training setX .

Appendix B. Convergence of the Sequence of̂QN-Functions

Theorem 1 If the fitted Q iteration algorithm is combined with a supervised learning method which
produces a model of the type (17) with the kernel kT S being the same from one iteration to the other
and satisfying the normalizing condition (18), then the sequence ofQ̂N-functions converges.

Proof The proof is adapted in a straightforward way from Ormoneit and Sen (2002) to the fact that
the kernelkT S((x

l
t ,u

l
t),(x,u)) may not be decomposed here into the productk′(xl

t ,x)δ(ul
t ,u).

Let us first observe that in such conditions, the sequence of functionscomputed by the fittedQ
iteration algorithm is determined by the recursive equation:

Q̂N(x,u) =
#F

∑
l=1

kT S ((xl
t ,u

l
t),(x,u))[r l

t + γmax
u′∈U

Q̂N−1(x
l
t+1,u

′)], ∀N > 0 (26)

with Q̂0(x,u) = 0 ∀(x,u) ∈ X×U . Equation (26) may be rewritten:

Q̂N = ĤQ̂N−1 (27)

whereĤ is an operator mapping any functionK : X×U → R and defined as follows:

(ĤK)(x,u) =
#F

∑
l=1

kT S ((xl
t ,u

l
t),(x,u))[r l

t + γmax
u′∈U

K(xl
t+1,u

′)]. (28)

This operator is a contraction on the Banach space of functions defined over X×U and the supre-
mum norm. Indeed, we have:

‖ĤK− ĤK‖∞ = γ max
(x,u)∈X×U

|
#F

∑
l=1

kT S ((xl
t ,u

l
t),(x,u))[max

u′∈U
K(xl

t+1,u
′)−max

u′∈U
K(xl

t+1,u
′)]|

≤ γ max
(x,u)∈X×U

|[
#F

∑
l=1

kT S((x
l
t ,u

l
t),(x,u))max

u′∈U
[K(xl

t+1,u
′)−K(xl

t+1,u
′)]|

≤ γ max
(x,u)∈X×U

|K(x,u)−K(x,u)|

= γ‖K−K‖∞

< ‖K−K‖∞.

By virtue of the fixed-point theorem (Luenberger, 1969) the sequence converges, independently
of the initial conditions, to the function̂Q : X×U → R which is unique solution of the equation
Q̂ = ĤQ̂.

Appendix C. Definition of the Benchmark Optimal Control Probl ems

We define in this section the different optimal control problems used in our experiments. Simulators,
additional documentation and sets of four-tuples are available upon request.

549

ERNST, GEURTS AND WEHENKEL

C.1 The “Left or Right” Control Problem

System dynamics:

xt+1 = xt +ut +wt

wherew is drawn according the standard (zero mean, unit variance) Gaussian distribution.
If xt+1 is such that|xt+1|> 10 or|xt+1|< 0 then a terminal state is reached.
State space:The state spaceX is composed of{x∈ R|x∈ [0,10]} and of a terminal state.
Action space:The action spaceU = {−2,2}.
Reward function: The reward functionr(x,u,w) is defined through the following expression:

r(xt ,ut ,wt) =











0 if xt+1 ∈ [0,10]

50 if xt+1 < 0

100 if xt+1 > 10.

(29)

Decay factor: The decay factorγ is equal to 0.75.

C.2 The “Car on the Hill” Control Problem

System dynamics:The system has a continuous-time dynamics described by these two differential
equations:

ṗ = s (30)

ṡ =
u

m(1+Hill ′(p)2)
− gHill ′(p)

1+Hill ′(p)2 −
s2Hill ′(p)Hill ′′(p)

1+Hill ′(p)2 (31)

wheremandg are parameters equal respectively to 1 and 9.81 and whereHill (p) is a function ofp
defined by the following expression:

Hill (p) =







p2 + p if p < 0
p√

1+5p2
if p≥ 0.

(32)

The discrete-time dynamics is obtained by discretizing the time with the time betweent andt + 1
chosen equal to 0.100s.
If pt+1 andst+1 are such that|pt+1|> 1 or |st+1|> 3 then a terminal state is reached.
State space:The state spaceX is composed of{(p,s) ∈ R

2| |p| ≤ 1and|s| ≤ 3} and of a terminal
state.X \{terminal state} is represented on Figure 8a.
Action space:The action spaceU = {−4,4}.
Reward function: The reward functionr(x,u) is defined through the following expression:

r(xt ,ut) =











−1 if pt+1 <−1 or |st+1|> 3

1 if pt+1 > 1 and |st+1| ≤ 3

0 otherwise.

(33)

Decay factor: The decay factorγ has been chosen equal to 0.95.
Integration: The dynamical system is integrated by using an Euler method with a 0.001s integra-
tion time step.

550

TREE-BASED BATCH MODE REINFORCEMENTLEARNING

Remark: This “Car on the Hill” problem is similar to the one found in Moore and Atkeson (1995)

except that the term− s2Hill ′(p)Hill ′′(p)
1+Hill ′(p)2 is not neglected here in the system dynamics.

Variants of the control problem: In our experiments, we have also considered two other variants
of this problem:

• The “Car on the Hill” with irrelevant variables:some irrelevant variables are added to the
state vector. The value of an irrelevant variable at timet is determined by drawing at random
a number in[−2,2] with a uniform probability (used in Section 5.3.5).

• The “Car on the Hill” with continuous action space:the action space is not yet discrete
anymore. It is continuous and equal to[−4,4] (used in Section 5.3.7).

C.3 The “Acrobot Swing Up” Control Problem

System dynamics:The system has a continuous-time dynamics described by these two second-
order differential equations (taken from Yoshimoto et al., 1999):

d11θ̈1 +d12θ̈2 +c1 +φ1 = −µ1θ̇1 (34)

d12θ̈1 +d22θ̈2 +c2 +φ2 = u−µ2θ̇2 (35)

(36)

where

d11 = M1L2
1 +M2(L

2
1 +L2

2 +2L1L2cos(θ2)) (37)

d22 = M2L2
2 (38)

d12 = M2(L
2
2 +L1L2cos(θ2)) (39)

c1 = −M2L1L2θ̇2(2θ̇1 + θ̇2sin(θ2)) (40)

c2 = M2L1L2θ̇1
2
sin(θ2) (41)

φ1 = (M1L1 +M2L1)gsin(θ1)+M2L2gsin(θ1 +θ2) (42)

φ2 = M2L2gsin(θ1 +θ2). (43)

M1 (M2), L1 (L2) andµ1 (µ2) are the mass, length, and friction, respectively, of the first (second)
link. θ1 is the angle of the first link from a downward position andθ2 is the angle of the second
link from the direction of the first link (Figure 20).̇θ1 andθ̇2 are the angular velocities of the first
and second links, respectively. The system has four continuous state variablesx = (θ1,θ2, θ̇1, θ̇2).
The physical parameters have been chosen equal toM1 = M2 = 1.0, L1 = L2 = 1.0, µ1 = µ2 = 0.01,
g = 9.81.
The discrete-time dynamics is obtained by discretizing the time with the time betweent andt + 1
chosen equal to 0.100s.
Let us denote byO the set composed of the statesx = ((2∗k+1)∗π,0,0,0) k∈ Z and byd(x,O)
the value min

o∈O
‖x−o‖.

If xt+1 is such thatd(xt+1,O) < 1 then a terminal state is reached.
State space:The state space is composed of{x∈ R

4|d(x,O)≥ 1} and of a terminal state.
Action space:The action spaceU = {−5,5}.

551

ERNST, GEURTS AND WEHENKEL

Reward function: The reward functionr(x,u) is defined through the following expression:

r(xt ,ut) =

{

0 if d(xt+1,O)≥ 1

1−d(xt+1,O) if d(xt+1,O) < 1.
(44)

Decay factor: The decay factorγ has been chosen equal to 0.95.
Integration: The dynamical system is integrated by using an Euler method with a 0.001s integra-
tion time step.

C.4 The “Bicycle Balancing” and “Bicycle Balancing and Riding” Control Problems

We define hereafter the “Bicycle Balancing” and the “Bicycle Balancing and Riding” control prob-
lems. These optimal control problems differ only by their reward functions.
System dynamics: The system studied has the following dynamics:

ωt+1 = ωt +∆tω̇t (45)

ω̇t+1 = ω̇t +∆t(
1

Ibicycle and cyclist
(Mhgsin(ϕt)−cos(ϕt) (46)

(Idcσ̇θ̇t +sign(θt)v
2(Mdr(invr ft + invrbt)+MhinvrCMt))))

θt+1 =

{

θt +∆tθ̇t if |θt +∆tθ̇t | ≤ 80
180π

sign(θt +∆tθ̇t)
80
180π if |θt +∆tθ̇t |> 80

180π
(47)

θ̇t+1 =

{

θ̇t +∆t T−Idvσ̇ω̇t
Idl

if |θt +∆tθ̇t | ≤ 80
180π

0 if |θt +∆tθ̇t |> 80
180π

(48)

xbt+1 = xbt +∆t vcos(ψt) (49)

ybt+1 = ybt +∆t vsin(ψt) (50)

ψt+1 = ψt +∆t sign(θt)v invrbt (51)

with

ϕt = ωt +
arctan(dt +wt)

h
(52)

invr ft =
|sin(θt)|

l
(53)

invrbt =
| tan(θt)|

l
(54)

invrCMt =







1√
((l−c)2+(1

invrbt
)2)

if θt 6= 0

0 otherwise
(55)

wherewt is drawn according to a uniform distribution in the interval[−0.02,0.02]. The different
parameters are equal to the following values:∆t = 0.01, v = 10

3.6, g = 9.82, dCM = 0.3, c = 0.66,
h = 0.94, Mc = 15, Md = 1.7, Mp = 60.0, M = (Mc + Mp), r = 0.34, σ̇ = v

r , Ibicycle and cyclist=
(13

3 Mch2 +Mp(h+dCM)2), Idc = (Mdr2), Idv = (3
2Mdr2), Idl = (1

2Mdr2) andl = 1.11. This dynam-
ics holds valid if|ωt+1| ≤ 12

180π. When|ωt+1| > 12
180π, the bicycle is supposed to have fallen down

and aterminal stateis reached.
State space:The state space for this control problem is{(ω, ω̇,θ, θ̇,xb,yb,ψ)∈R

7|θ∈ [− 80
180π,

80
180π] andω∈

552

TREE-BASED BATCH MODE REINFORCEMENTLEARNING

[− 12
180π,

12
180π]} plus aterminal state.

Action space:The action spaceU = {(d,T) ∈ {−0.02,0,0.02}×{−2,0,2}}. U is composed of 9
elements.
Reward functions: The reward function for the “Bicycle Balancing” control problem is defined
hereafter:

r(xt ,ut ,wt) =

{

−1 if |ωt+1|> 12
180π

0 otherwise.
(56)

The reward function for “Bicycle Balancing and Riding” control problemis:

r(xt ,ut ,wt) =

{

−1 if |ωt+1|> 12
180π

creward(dangle(ψt)−dangle(ψt+1)) otherwise
(57)

wherecreward = 0.1 anddangle : R→ R such thatdangle(ψ) = min
k∈Z

|ψ+2kπ|.
Decay factor: The decay factorγ is equal to 0.98.
Remark: The bicycle dynamics is based on the one found in Randløv and Alstrøm (1998) and in
their corresponding simulator available athttp://www.nbi.dk/∼randlov/bike.html.

References

D. Bagnell, S. Kakade, A. Y. Ng, and J. Schneider. Policy search by dynamic programming. In
Proceedings of Neural Information Processing Systems, 2003.

L. C. Baird. Residual algorithms: reinforcement learning with function approximation. In Armand
Prieditis and Stuart Russell, editors,Machine Learning: Proceedings of the Twelfth International
Conference, pages 9–12, San Francisco, CA, July 1995. Morgan Kaufman.

R. Bellman.Dynamic Programming. Princeton University Press, 1957.

R. Bellman, R. Kalaba, and B. Kotkin. Polynomial approximation - a new computational technique
in dynamic programming: allocation processes.Mathematical Computation, 17:155–161, 1973.

J. A. Boyan. Technical update: least-squares temporal difference learning. Machine Learning, 49
(2-3):233–246, 2002.

J. A. Boyan and A. W. Moore. Generalization in reinforcement learning:safely approximating the
value function.Advances in Neural Information Processing Systems, 7:369–376, 1995.

L. Breiman. Bagging predictors.Machine Learning, 24(2):123–140, 1996.

L. Breiman. Some infinity theory for predictor ensembles. Technical Report 577, University of
California, Department of Statistics, 2000.

L. Breiman. Random forests.Machine Learning, 45(1):5–32, 2001.

L. Breiman, J. H. Friedman, R. A. Olsen, and C. J. Stone.Classification and Regression Trees.
Wadsworth International (California), 1984.

553

ERNST, GEURTS AND WEHENKEL

D. Ernst. Near Optimal Closed-Loop Control. Application to Electric Power Systems. PhD thesis,
University of Liège, Belgium, March 2003.

D. Ernst, P. Geurts, and L. Wehenkel. Iteratively extending time horizon reinforcement learning. In
N. Lavra, L. Gamberger, and L. Todorovski, editors,Proceedings of the 14th European Confer-
ence on Machine Learning, pages 96–107, Dubrovnik, Croatia, September 2003. Springer-Verlag
Heidelberg.

D. Ernst, M. Glavic, P. Geurts, and L. Wehenkel. Approximate value iteration in the reinforce-
ment learning context. Application to electrical power system control.To appear in Intelligent
Automation and Soft Computing, 2005.

P. Geurts, D. Ernst, and L. Wehenkel. Extremely randomized trees. Submitted, 2004.

G. J. Gordon. Online fitted reinforcement learning. InVFA workshop at ML-95, 1995a.

G. J. Gordon. Stable function approximation in dynamic programming. InProceedings of the
Twelfth International Conference on Machine Learning, pages 261–268, San Francisco, CA,
1995b. Morgan Kaufmann.

G. J. Gordon.Approximate Solutions to Markov Decision Processes. PhD thesis, Carnegie Mellon
University, June 1999.

O. Herńandez-Lerma and B. Lasserre.Discrete-Time Markov Control Processes. Springer, New-
York, 1996.

L. P. Kaelbling, M. L. Littman, and A. W. Moore. Reinforcement learning: asurvey. Journal of
Artificial Intelligence Research, 4:237–285, 1996.

S. Kakade and J. Langford. Approximately optimal approximate reinforcement learning. InPro-
ceedings of the Nineteenth International Conference on Machine Learning, pages 267–274, 2002.

M. G. Lagoudakis and R. Parr. Least-squares policy iteration.Journal of Machine Learning Re-
search, 4:1107–1149, 2003a.

M. G. Lagoudakis and R. Parr. Reinforcement learning as classification: leveraging modern classi-
fiers. InProceedings of ICML 2003, pages 424–431, 2003b.

J. Langford and B. Zadrozny. Reducing T-step reinforcement learning to classification. Submitted,
2004.

L. J. Lin. Reinforcement Learning for Robots Using Neural Networks. PhD thesis, Carnegie Mellon
University, Pittsburgh, USA, 1993.

Y. Lin and Y. Jeon. Random forests and adaptive nearest neighbors. Technical Report 1005, De-
partment of Statistics, University of Wisconsin, 2002.

D. G. Luenberger.Optimization by Vector Space Methods. Wiley, N.Y., 1969.

A. K. McCallum. Reinforcement Learning with Selective Perception and Hidden State. PhD thesis,
University of Rochester, Rochester, New-York, 1996.

554

TREE-BASED BATCH MODE REINFORCEMENTLEARNING

A. W. Moore and C. G. Atkeson. Prioritized sweeping: reinforcement learning with less data and
less real time.Machine Learning, 13:103–130, 1993.

A. W. Moore and C. G. Atkeson. The parti-game algorithm for variable resolution reinforcement
learning in multidimensional state-spaces.Machine Learning, 21(3):199–233, 1995.

A. Y. Ng and M. Jordan. PEGASUS: a policy search method for large MDPs and POMDPs. In
Proceedings of the Sixteenth Conference on Uncertainty in Artificial Intelligence, pages 406–
415, 1999.

D. Ormoneit and P. Glynn. Kernel-based reinforcement learning in average-cost problems.IEEE
Transactions on Automatic Control, 47(10):1624–1636, 2002.

D. Ormoneit and S. Sen. Kernel-based reinforcement learning.Machine Learning, 49(2-3):161–
178, 2002.

J. Randløv and P. Alstrøm. Learning to drive a bicycle using reinforcement learning and shaping.
In Proceedings of the Fifteenth International Conference on Machine Learning, pages 463–471,
San Francisco, CA, USA, 1998. Morgan Kaufmann Publishers Inc.

J. Rust. Using randomization to break the curse of dimensionality.Econometrica, 65(3):487–516,
1997.

S. P. Singh, T. Jaakkola, and M. I. Jordan. Reinforcement learning with soft state aggregation. In
G. Tesauro, D. S. Touretzky, and T. Leen, editors,Advances in Neural Information Processing
Systems : Proceedings of the 1994 Conference, pages 359–368, Cambridge, MA, 1995. MIT
press.

W. D. Smart and L. P. Kaelbling. Practical reinforcement learning in continuous spaces. InPro-
ceedings of the Sixteenth International Conference on Machine Learning, pages 903–910, 2000.

M. W. Spong. Swing up control of the Acrobot. In1994 IEEE International Conference on Robotics
and Automation, pages 2356–2361, San Diego, CA, May 1994.

R. S. Sutton. Learning to predict by the method of temporal differences.Machine Learning, 3(1):
9–44, 1988.

R. S. Sutton. Generalization in reinforcement learning: successful examples using sparse coarse
coding.Advances in Neural Information Processing Systems, 8:1038–1044, 1996.

R. S. Sutton and A. G. Barto.Reinforcement Learning, an Introduction. MIT Press, 1998.

J. N. Tsitsiklis. Asynchronous stochastic approximation andQ-learning.Machine Learning, 16(3):
185–202, 1994.

J. N. Tsitsiklis and B. Van Roy. Feature-based methods for large-scale dynamic programming.
Machine Learning, 22:59–94, 1996.

W. T. B. Uther and M. M. Veloso. Tree based discretization for continuous state space reinforcement
learning. InProceedings of AAAI-98, pages 769–774, 1998.

555

ERNST, GEURTS AND WEHENKEL

X. Wang and T. G. Diettrich. Efficient value function approximation using regression trees. InPro-
ceedings of IJCAI-99 Workshop on Statistical Machine Learning for Large-Scale Optimization,
Stockholm, Sweden, 1999.

C. J. C. H. Watkins.Learning from Delayed Rewards. PhD thesis, Cambridge University, Cam-
bridge, England, 1989.

J. Yoshimoto, S. Ishii, and M. Sato. Application of reinforcement learning tobalancing Acrobot.
In Proceedings of the 1999 IEEE International Conference on Systems, Man and Cybernetics,
pages 516–521, 1999.

556

Journal of Machine Learning Research 6 (2005) 557–588 Submitted 3/04; Revised 1/05; Published 4/05

Learning Module Networks

Eran Segal ERAN@CS.STANFORD.EDU

Computer Science Department
Stanford University
Stanford, CA 94305-9010, USA

Dana Pe’er DPEER@GENETICS.MED.HARVARD .EDU

Genetics Department
Harvard Medical School
Boston, MA 02115, USA

Aviv Regev AREGEV@CGR.HARVARD .EDU

Bauer Center for Genomic Research
Harvard University
Cambridge, MA 02138, USA

Daphne Koller KOLLER@CS.STANFORD.EDU

Computer Science Department
Stanford University
Stanford, CA 94305-9010, USA

Nir Friedman NIR@CS.HUJI.AC.IL
Computer Science & Engineering
Hebrew University
Jerusalem, 91904, Israel

Editor: Tommi Jaakkola

Abstract
Methods for learning Bayesian networks can discover dependency structure between observed

variables. Although these methods are useful in many applications, they run into computational
and statistical problems in domains that involve a large number of variables. In this paper,1 we
consider a solution that is applicable when many variables have similar behavior. We introduce
a new class of models,module networks, that explicitly partition the variables into modules, so
that the variables in each module share the same parents in the network and the same conditional
probability distribution. We define the semantics of modulenetworks, and describe an algorithm
that learns the modules’ composition and their dependency structure from data. Evaluation on real
data in the domains of gene expression and the stock market shows that module networks generalize
better than Bayesian networks, and that the learned module network structure reveals regularities
that are obscured in learned Bayesian networks.

1. A preliminary version of this paper appeared in the Proceedings of theNineteenth Conference on Uncertainty in
Artificial Intelligence, 2003 (UAI ’03).

c©2005 Eran Segal, Dana Pe’er, Aviv Regev, Daphne Koller and Nir Friedman.

SEGAL, PE’ ER, REGEV, KOLLER AND FRIEDMAN

1. Introduction

Over the last decade, there has been much research on the problem of learning Bayesian networks
from data (Heckerman, 1998), and successfully applying it both to density estimation, and to dis-
covering dependency structures among variables. Many real-world domains, however, are very
complex, involving thousands of relevant variables. Examples include modeling the dependencies
among expression levels (a rough indicator of activity) of all the genes in acell (Friedmanet al.,
2000a; Lander, 1999) or among changes in stock prices. Unfortunately, in complex domains, the
amount of data is rarely enough to robustly learn a model of the underlying distribution. In the gene
expression domain, a typical data set describes thousands of variables, but at most a few hundred
instances. In such situations, statistical noise is likely to lead to spurious dependencies, resulting in
models that significantly overfit the data.

Moreover, if our goal is structure discovery, such domains pose additional challenges. First,
due to the small number of instances, we are unlikely to have much confidencein the learned
structure (Pe’eret al., 2001). Second, a Bayesian network structure over thousands of variables is
typically highly unstructured, and therefore very hard to interpret.

In this paper, we propose an approach to address these issues. We start by observing that, in
many large domains, the variables can be partitioned into sets so that, to a first approximation, the
variables within each set have a similar set of dependencies and therefore exhibit a similar behavior.
For example, many genes in a cell are organized intomodules, in which sets of genes required for
the same biological function or response are co-regulated by the same inputs in order to coordinate
their joint activity. As another example, when reasoning about thousandsof NASDAQ stocks, entire
sectors of stocks often respond together to sector-influencing factors(e.g., oil stocks tend to respond
similarly to a war in Iraq).

We define a new representation called amodule network, which explicitly partitions the variables
into modules. Each module represents a set of variables that have the same statistical behavior, i.e.,
they share the same set of parents and local probabilistic model. By enforcing this constraint on the
learned network, we significantly reduce the complexity of our model spaceas well as the number
of parameters. These reductions lead to more robust estimation and better generalization on unseen
data. Moreover, even if a modular structure exists in the domain, it can be obscured by a general
Bayesian network learning algorithm which does not have an explicit representation for modules.
By making the modular structure explicit, the module network representation provides insight about
the domain that are often be obscured by the intricate details of a large Bayesian network structure.

A module network can be viewed simply as a Bayesian network in which variables in the same
module share parents and parameters. Indeed, probabilistic models with shared parameters are
common in a variety of applications, and are also used in other general representation languages,
such asdynamic Bayesian networks(Dean and Kanazawa, 1989),object-oriented Bayesian Net-
works (Koller and Pfeffer, 1997), andprobabilistic relational models(Koller and Pfeffer, 1998;
Friedmanet al., 1999a). (See Section 8 for further discussion of the relationship between module
networks and these formalisms.) In most cases, the shared structure is imposed by the designer of
the model, using prior knowledge about the domain. A key contribution of this paper is the design
of a learning algorithm that directly searches for and finds sets of variables with similar behavior,
which are then defined to be a module.

We describe the basic semantics of the module network framework, presenta Bayesian scoring
function for module networks, and provide an algorithm that learns both theassignment of variables

558

LEARNING MODULE NETWORKS

INTL

MSFT

MOT

AMAT

DELL HPQ

CPD 4

P(INTL)

MSFT

CPD 6CPD 6

CPD 3

CPD 5

CPD 1

CPD 2

INTL

MSFT

MOT

DELL
Module 3

Module 2

Module 1

CPD 3

CPD 2

CPD 1

AMAT

HPQ

(a) Bayesian network (b) Module network

Figure 1: (a) A simple Bayesian network over stock price variables; the stock price of Intel (INTL)
is annotated with a visualization of its CPD, described as a different multinomial dis-
tribution for each value of its influencing stock price Microsoft (MSFT). (b) A simple
module network; the boxes illustrate modules, where stock price variables share CPDs
and parameters. Note that in a module network, variables in the same module have the
same CPDs but may have different descendants.

to modules and the probabilistic model for each module. We evaluate the performance of our al-
gorithm on two real data sets, in the domains of gene expression and the stock market. Our results
show that our learned module network generalizes to unseen test data muchbetter than a Bayesian
network. They also illustrate the ability of the learned module network to revealhigh-level structure
that provides important insights.

2. The Module Network Framework

We start with an example that introduces the main idea of module networks and then provide a
formal definition. For concreteness, consider a simple toy example of modeling changes in stock
prices. The Bayesian network of Figure 1(a) describes dependencies between different stocks. In
this network, each random variable corresponds to the change in price of a single stock. For illus-
tration purposes, we assume that these random variables take one of three values: ‘down’, ‘same’
or ‘up’, denoting the change during a particular trading day. In our example, the stock price of
Intel (INTL) depends on that of Microsoft (MSFT). Theconditional probability distribution (CPD)
shown in the figure indicates that the behavior of Intel’s stock is similar to that of Microsoft. That
is, if Microsoft’s stock goes up, there is a high probability that Intel’s stockwill also go up and vice
versa. Overall, the Bayesian network specifies a CPD for each stock price as a stochastic function
of its parents. Thus, in our example, the network specifies a separate behavior for each stock.

The stock domain, however, has higher order structural features thatare not explicitly modeled
by the Bayesian network. For instance, we can see that the stock price ofMicrosoft (MSFT) in-

559

SEGAL, PE’ ER, REGEV, KOLLER AND FRIEDMAN

fluences the stock price of all of the major chip manufacturers — Intel (INTL), Applied Materials
(AMAT), and Motorola (MOT). In turn, the stock price of computer manufacturers Dell (DELL)
and Hewlett Packard (HPQ), are influenced by the stock prices of their chip suppliers — Intel and
Applied Materials. An examination of the CPDs might also reveal that, to a first approximation, the
stock price of all chip making companies depends on that of Microsoft andin much the same way.
Similarly, the stock price of computer manufacturers that buy their chips fromIntel and Applied
Materials depends on these chip manufacturers’ stock and in much the same way.

To model this type of situation, we might divide stock price variables into groups, which we
call modules, and require that variables in the same module have the same probabilistic model;
that is, all variables in the module have the same set of parents and the same CPD. Our example
contains three modules: one containing only Microsoft, a second containingchip manufacturers
Intel, Applied Materials, and Motorola, and a third containing computer manufacturers Dell and HP
(see Figure 1(b)). In this model, we need only specify three CPDs, one for each module, since all the
variables in each module share the same CPD. By comparison, six differentCPDs are required for
a Bayesian network representation. This notion of a module is the key idea underlying the module
network formalism.

We now provide a formal definition of a module network. Throughout this paper, we assume
that we are given a domain of random variablesX = {X1, . . . ,Xn}. We useVal(Xi) to denote the
domain of values of the variableXi .

As described above, a module represents a set of variables that sharethe same set of parents
and the same CPD. As a notation, we represent each module by aformal variablethat we use as
a placeholder for the variables in the module. Amodule setC is a set of such formal variables
M1, . . . ,MK . As all the variables in a module share the same CPD, they must have the same domain
of values. We represent byVal(M j) the set of possible values of the formal variable of thej ’th
module.

A module network relative toC consists of two components. The first defines a template prob-
abilistic model for each module inC ; all of the variables assigned to the module will share this
probabilistic model.

Definition 1 A module network templateT = (S ,θ) for C defines, for each moduleM j ∈ C :

• a set of parentsPaM j ⊂ X ;

• a conditional probability distribution templateP(M j | PaM j) which specifies a distribution
over Val(M j) for each assignment in Val(PaM j).

We useS to denote the dependency structure encoded by{PaM j : M j ∈ C} and θ to denote the
parameters required for the CPD templates{P(M j | PaM j) : M j ∈ C}.

In our example, we have three modulesM1, M2, andM3, with PaM1 = /0, PaM2 = {MSFT}, and
PaM3 = {AMAT, INTL}.

The second component is a module assignment function that assigns each variableXi ∈ X to
one of theK modules,M1, . . . ,MK . Clearly, we can only assign a variable to a module that has the
same domain.

Definition 2 A module assignment functionfor C is a functionA : X → {1, . . . ,K} such that
A(Xi) = j only if Val(Xi) = Val(M j).

560

LEARNING MODULE NETWORKS

In our example, we have thatA(MSFT) = 1, A(MOT) = 2, A(INTL) = 2, and so on.
A module network defines a probabilistic model by using the formal random variablesM j and

their associated CPDs as templates that encode the behavior of all of the variables assigned to that
module. Specifically, we define the semantics of a module network by “unrolling” a Bayesian net-
work where all of the variables assigned to moduleM j share the parents and conditional probability
template assigned toM j in T . For this unrolling process to produce a well-defined distribution, the
resulting network must be acyclic. Acyclicity can be guaranteed by the following simple condition
on the module network:

Definition 3 LetM be a triple(C ,T ,A), whereC is a module set,T is a module network template
for C , andA is a module assignment function forC . M defines a directedmodule graphGM as
follows:

• the nodes inGM correspond to the modules inC ;

• GM contains an edgeM j → M k if and only if there is a variable X∈ X so thatA(X) = j and
X ∈ PaMk.

We say thatM is amodule networkif the module graphGM is acyclic.

For example, for the module network of Figure 1(b), the module graph has the structureM1 →
M2 → M3.

We can now define the semantics of a module network:

Definition 4 A module networkM = (C ,T ,A) defines aground Bayesian networkBM overX as
follows: For each variable Xi ∈ X , whereA(Xi) = j, we define the parents of Xi in BM to bePaM j ,
and its conditional probability distribution to be P(M j | PaM j), as specified inT . The distribution
associated withM is the one represented by the Bayesian networkBM .

Returning to our example, the Bayesian network of Figure 1(a) is the ground Bayesian network of
the module network of Figure 1(b).

Using the acyclicity of the module graph, we can now show that the semantics for a module
network is well-defined.

Proposition 5 The graphGM is acyclic if and only if the dependency graph ofBM is acyclic.

Proof: The proof follows from the direct correspondence between edges in the module graph and
edges in the ground Bayesian network. Consider some edgeXi → Xj in BM . By definition of the
module graph, we must have an edgeMA(Xi) → MA(Xj) in the module graph. Thus, any cyclic
path inBM corresponds directly to a cyclic path in the module graph, proving one direction of the
theorem. The proof in the other direction is slightly more subtle. Assume that there exists a cyclic
path p = (M1 → M2 . . .M l → M1) in the module graph. By definition of the module graph, if
M i → M i+1 there is a variableXi with A(Xi) = M i that is a parent ofXi+1, for eachi = 1, . . . , l −1.
By construction, it follows that there is an arcXi → Xi+1 in BM . Similarly, there is a variable
Xl with A(Xl) = M l that is a parent ofM1. And so, we conclude thatBModNet contains a cycle
X1 → X2 → . . .Xl → X1, proving the other direction of the theorem

Corollary 6 For any module networkM , BM defines a coherent probability distribution overX .

561

SEGAL, PE’ ER, REGEV, KOLLER AND FRIEDMAN

As we can see, a module network provides a succinct representation of the ground Bayesian
network. In a realistic version of our stock example, we might have several thousand stocks. A
Bayesian network in this domain needs to represent thousands of CPDs. On the other hand, a
module network can often represent a good approximation of the domain using a model with only
few dozen CPDs.

3. Data Likelihood and Bayesian Scoring

We now turn to the task of learning module networks from data. Recall that a module network is
specified by a set of modulesC , an assignment functionA of nodes to modules, the parent structure
S specified inT , and the parametersθ for the local probability distributionsP(M j | PaM j). We
assume in this paper that the set of modulesC is given, and omit reference to it from now on.
We note that, in the models we consider in this paper, we do not associate properties with specific
modules and thus only the number of modules is of relevance to us. However,in other settings (e.g.,
in cases with different types of random variables) we may wish to distinguishbetween different
module types. Such distinctions can be made within the module network frameworkthrough more
elaborate prior probability functions that take the module type into account.

One can consider several learning tasks for module networks, depending on which of the re-
maining aspects of the module network specification are known. In this paper, we focus on the most
general task of learning the network structure and the assignment function, as well as a Bayesian
posterior over the network parameters. The other tasks are special cases that can be derived as a
by-product of our algorithm.

Thus, we are given a training setD = {x[1], . . . ,x[M]}, consisting ofM instances drawn indepen-
dently from an unknown distributionP(X). Our primary goal is to learn a module network structure
and assignment function for this distribution. We take ascore-based approachto this learning task.
In this section, we define a scoring function that measures how well each candidate model fits the
observed data. We adopt the Bayesian paradigm and derive a Bayesian scoring function similar to
the Bayesian score for Bayesian networks (Cooper and Herskovits, 1992; Heckermanet al., 1995).
In the next section, we consider the algorithmic problem of finding a high scoring model.

3.1 Likelihood Function

We begin by examining thedata likelihoodfunction

L(M : D) = P(D | M) =
M

∏
m=1

P(x[m] | T ,A).

This function plays a key role both in the parameter estimation task and in the definition of the
structure score.

As the semantics of a module network is defined via the ground Bayesian network, we have that,
in the case of complete data, the likelihood decomposes into a product oflocal likelihood functions,
one for each variable. In our setting, however, we have the additional property that the variables in a
module share the same local probabilistic model. Hence, we can aggregate these local likelihoods,
obtaining a decomposition according to modules.

More precisely, letX j = {X ∈ X | A(X) = j}, and letθM j |PaM j
be the parameters associated

with the CPD templateP(M j | PaM j). We can decompose the likelihood function as a product of

562

LEARNING MODULE NETWORKS

Instance 3

Module 3

Module 2

Module 1

AMAT

θθθθ��

θθθθ�������

θθθθ�������
	

���

DELL HPQ

INTL
MOT

MSFT

Instance 1
Instance 2

+MSFT)(AMAT,S

+MSFT)(MOT,S
�

MSFT)(INTL,S

=MSFT),(MS �

(MSFT)S)(MS

�

=

+INTL)AMAT,(DELL,S

+INTL)AMAT,(HPQ,S

=INTL)AMAT,,(MS �

Figure 2: Shown is a plate model for three instances of the module network example of Figure 1(b).
The CPD template of each module is connected to all variables assigned to that module
(e.g. θM2|MSFT is connected toAMAT, MOT, and INTL). The sufficient statistics of
each CPD template are the sum of the sufficient statistics of each variable assigned to the
module and the module parents.

module likelihoods, each of which can be calculated independently and depends only on the values
of X j andPaM j , and on the parametersθM j |PaM j

:

L(M : D)

=
K

∏
j=1

[

M

∏
m=1

∏
Xi∈X j

P(xi [m] | paM j
[m],θM j |PaM j

)

]

=
K

∏
j=1

L j(PaM j ,X
j ,θM j |PaM j

: D). (1)

If we are learning conditional probability distributions from the exponentialfamily (e.g., discrete
distribution, Gaussian distributions, and many others), then the local likelihood functions can be
reformulated in terms ofsufficient statisticsof the data. The sufficient statistics summarize the
relevant aspects of the data. Their use here is similar to that in Bayesian networks (Heckerman,
1998), with one key difference. In a module network, all of the variablesin the same module
share the same parameters. Thus, we pool all of the data from the variables in X j , and calculate
our statistics based on this pooled data. More precisely, letSj(M j ,PaM j) be a sufficient statistic
function for the CPDP(M j | PaM j). Then the value of the statistic on the data setD is

Ŝj =
M

∑
m=1

∑
Xi∈X j

Sj(xi [m],paM j
[m]). (2)

563

SEGAL, PE’ ER, REGEV, KOLLER AND FRIEDMAN

For example, in the case of networks that use only multinomial table CPDs, we have one suffi-
cient statistic function for each joint assignmentx∈ Val(M j),u ∈ Val(PaM j), which is

η{Xi [m] = x,paM j
[m] = u},

the indicator function that takes the value 1 if the event(Xi [m] = x,PaM j [m] = u) holds, and 0
otherwise. The statistic on the data is

Ŝj [x,u] =
M

∑
m=1

∑
Xi∈X j

η{Xi [m] = x,PaM j [m] = u}.

Given these sufficient statistics, the formula for the module likelihood function is:

L j(PaM j ,X
j ,θM j |PaM j

: D) = ∏
x,u∈Val(M j ,PaM j)

θŜj [x,u]

x|u .

This term is precisely the one we would use in the likelihood of Bayesian networks with multinomial
table CPDs. The only difference is that the vector of sufficient statistics for a local likelihood term
is pooled over all the variables in the corresponding module.

For example, consider the likelihood function for the module network of Figure 1(b). In this
network we have three modules. The first consists of a single variable and has no parents, and so
the vector of statisticŝS[M1] is the same as the statistics of the single variableŜ[MSFT]. The second
module contains three variables; thus, the sufficient statistics for the module CPD is the sum of the
statistics we would collect in the ground Bayesian network of Figure 1(a):

Ŝ[M2,MSFT] = Ŝ[AMAT,MSFT]+ Ŝ[MOT,MSFT]+ Ŝ[INTL,MSFT].

Finally,
Ŝ[M3,AMAT, INTL] = Ŝ[DELL,AMAT, INTL]+ Ŝ[HPQ,AMAT, INTL].

An illustration of the decomposition of the likelihood and the associated sufficient statistics using
the plate model is shown in Figure 2.

As usual, the decomposition of the likelihood function allows us to perform maximum likeli-
hood or MAP parameter estimation efficiently, optimizing the parameters for eachmodule sepa-
rately. The details are standard (Heckerman, 1998), and are thus omitted.

3.2 Priors and the Bayesian Score

As we discussed, our approach for learning module networks is based on the use of a Bayesian
score. Specifically, we define a model score for a pair(S ,A) as the posterior probability of the
pair, integrating out the possible choices for the parametersθ. We define an assignment priorP(A),
a structure priorP(S | A) and a parameter priorP(θ | S ,A). These describe our preferences over
different networksbeforeseeing the data. By Bayes’ rule, we then have

P(S ,A | D) ∝ P(A)P(S | A)P(D | S ,A),

where the last term is themarginal likelihood

P(D | S ,A) =
Z

P(D | S ,A ,θ)P(θ | S)dθ.

564

LEARNING MODULE NETWORKS

We define the Bayesian score as the log ofP(S ,A | D), ignoring the normalization constant

score(S ,A : D) = logP(A)+ logP(S | A)+ logP(D | S ,A). (3)

As with Bayesian networks, when the priors satisfy certain conditions, the Bayesian score de-
composes. This decomposition allows to efficiently evaluate a large number of alternatives. The
same general ideas carry over to module networks, but we also have to include assumptions that
take the assignment function into account. Following is a list of conditions on theprior required for
the decomposability of the Bayesian score in the case of module networks:

Definition 7 Let P(θ,S ,A) be a prior over assignments, structures, and parameters.

• P(θ,S ,A) is globally modularif

P(θ | S ,A) = P(θ | S),

and

P(S ,A) ∝ ρ(S)κ(A)C(A ,S),

whereρ(S) andκ(A) are non-negative measures over structures and assignments, and C(A ,S)
is a constraint indicator function that is equal to 1 if the combination of structure and assign-
ment is a legal one (i.e., the module graph induced by the assignmentA and structureS is
acyclic), and 0 otherwise.

• P(θ | S) satisfiesparameter independenceif

P(θ | S) =
K

∏
j=1

P(θM j |PaM j
| S).

• P(θ | S) satisfiesparameter modularityif

P(θM j |PaM j
| S1) = P(θM j |PaM j

| S2).

for all structuresS1 andS2 such thatPaS1
M j

= PaS2
M j

.

• ρ(S) satisfiesstructure modularityif

ρ(S) = ∏
j

ρ j(S j),

whereS j denotes the choice of parents for moduleM j andρ j is a non-negative measure over
these choices.

• κ(A) satisfiesassignment modularityif

κ(A) = ∏
j

κ j(A j),

whereA j denote is the choice of variables assigned to moduleM j andκ j is a non-negative
measure over these choices.

565

SEGAL, PE’ ER, REGEV, KOLLER AND FRIEDMAN

Global modularity implies that the prior can be thought of as a combination of three components
— a parameter prior that depends on the network structure, a structure prior, and an assignment prior.
Clearly the last two components cannot be independent, as the the assignment and the structure
together must define a legal network. However, global modularity implies thatthese two priors are
“as independent as possible”. The legality requirement, which is encodedby the indicator function
C(A ,S) ensures that only legal assignment/structure pairs have a non-zero probability. Other than
this constraint, the preferences over structures and over assignments are specified separately.

Parameter independence and parameter modularity are the natural analogues of standard as-
sumptions in Bayesian network learning (Heckermanet al., 1995). Parameter independence implies
thatP(θ | S) is a product of terms that parallels the decomposition of the likelihood in Equation(1),
with one prior term per local likelihood termL j . Parameter modularity states that the prior for the
parameters of a moduleM j depends only on the choice of parents forM j and not on other aspects
of the structure.

Finally, structure modularity and assignment modularity imply that the structure anassignments
priors are products of local terms that encode preferences over parents and variable assignments
separately for each module.

As for the standard conditions on Bayesian network priors, the conditionswe define are not
universally justified, and one can easily construct examples where we would want to relax them.
However, they simplify many of the computations significantly, and are therefore useful even if
they are only a rough approximation. Moreover, the assumptions, although restrictive, still allow
broad flexibility in our choice of priors. For example, we can encode preference (or restrictions)
on the assignments of particular variables to specific modules. In addition, wecan also encode
preference for particular module sizes.

For priors satisfying the assumptions of Definition 7, we can prove the decomposability property
of the Bayesian score for module networks:

Theorem 8 Let P(θ,S ,A) be a prior satisfying the assumptions of Definition 7. Then, the Bayesian
score decomposes into localmodule scores:

score(S ,A : D) =
K

∑
j=1

scoreM j (PaM j ,A(X j) : D),

where

scoreM j (U,X : D) = log
Z

L j(U,X,θM j |U : D)P(θM j | U)dθM j |U

+ logρ j(U)+ logκ j(X). (4)

Proof Recall that we defined the Bayesian score of a module network as:

score(S ,A : D) = logP(D | S ,A)+ logP(S ,A).

Using global modularity, structure modularityandassignment modularityassumptions of Defini-
tion 7, logP(S ,A) decomposes by modules, resulting in the second and third terms Equation (4)
that capture the preferences for the parents of moduleM j and the variables assigned to it. Note that
we can ignore the normalization constant of the priorP(S ,A). For the first term of Equation (4), we

566

LEARNING MODULE NETWORKS

can write:

logP(D | S ,A) = log
Z

P(D | S ,A ,θ)P(θ | S ,A)dθ

= log
K

∏
i=1

Z

L j(U,X,θM j |U : D)P(θM j | U)dθM j |U

=
K

∑
i=1

log
Z

L j(U,X,θM j |U : D)P(θM j | U)dθM j |U,

where in the second step we used the likelihood decomposition of Equation (1)and the global mod-
ularity, parameter independence, and parameter modularity assumptions of Definition 7.

As we shall see below, the decomposition of the Bayesian score plays a crucial rule in our ability
to devise an efficient learning algorithm that searches the space of modulenetworks for one with
high score. The only question is how to evaluate the integral overθM j in scoreM j (U,X : D). This
depends on the parametric forms of the CPD and the form of the priorP(θM j | S). Usually we choose
priors that areconjugateto the parameter distributions. Such a choice leads to closed form analytic
formula of the value of the integral as a function of the sufficient statistics ofL j(PaM j ,X

j ,θM j |PaM j
:

D). For example, using Dirichlet priors with multinomial table CPDs leads to the following formula
for the integral overθM j :

log
Z

L j(U,X,θM j |U : D)P(θM j | U)dθM j |U =

∑
u∈U

log
Γ(∑v∈Val(M j) α j [v,u])

Γ(∑v∈Val(M j) Ŝj [v,u]+α j [v,u])
∏

v∈Val(M j)

Γ(Ŝj [v,u]+α j [v,u])

Γ(α j [v,u])
,

whereŜj [v,u] is the sufficient statistics function as defined in Equation (2), andα j [v,u] is the
hyperparameter of the Dirichlet distribution given the assignmentu to the parentsU of M j . We note
that in the above formula we have also made use of thelocal parameter independenceassumption
on the form of the prior (Heckerman, 1998), which states that the prior distribution for the different
values of the parents are independent:

P(θM j |PaM j
| S) = ∏

u∈Val(PaM j)

P(θM j |u | S).

4. Learning Algorithm

Given a scoring function over networks, we now consider how to find a high scoring module net-
work. This problem is a challenging one, as it involves searching over twocombinatorial spaces
simultaneously — the space of structures and the space of module assignments. We therefore sim-
plify our task by using an iterative approach that repeats two steps: In one step, we optimize a
dependency structure relative to our current assignment function, and in the other, we optimize an
assignment function relative to our current dependency structure.

567

SEGAL, PE’ ER, REGEV, KOLLER AND FRIEDMAN

4.1 Structure Search Step

The first type of step in our iterative algorithm learns the structureS , assuming thatA is fixed. This
step involves a search over the space of dependency structures, attempting to maximize the score
defined in Equation (3). This problem is analogous to the problem of structure learning in Bayesian
networks. We use a standard heuristic search over the combinatorial space of dependency structures
(Heckermanet al., 1995). We define a search space, where each state in the space is a legal parent
structure, and a set of operators that take us from one state to another.We traverse this space looking
for high scoring structures using a search algorithm such as greedy hillclimbing.

In many cases, an obvious choice of local search operators involves steps of adding or removing
a variableXi from a parent setPaM j . (Note that edge reversal is not a well-defined operator for
module networks, as an edge from a variable to a module represents a one-to-many relation between
the variable and all of the variables in the module.) When an operator causesa parentXi to be added
to the parent set of moduleM j , we need to verify that the resulting module graph remains acyclic,
relative to the current assignmentA . Note that this step is quite efficient, as acyclicity is tested on
the module graph, which contains onlyK nodes, rather than on the dependency graph of the ground
Bayesian network, which containsn nodes (usuallyn� K).

Also note that, as in Bayesian networks, the decomposition of the score provides considerable
computational savings. When updating the dependency structure for a module M j , the module score
for another moduleM k does not change, nor do the changes in score induced by various operators
applied to the dependency structure ofM k. Hence, after applying an operator toPaM j , we need only
update the change in score for those operators that involveM j . Moreover, only the delta score of
operators that add or remove a parent from moduleM j need to be recomputed after a change to the
dependency structure of moduleM j , resulting in additional savings. This is analogous to the case
of Bayesian network learning, where after applying a step that changesthe parents of a variableX,
we only recompute the delta score of operators that affect the parents ofX.

Overall, if the maximum number of parents per module isd, the cost of evaluating each oper-
ator applied to the module is, as usual, at mostO(Md), for accumulating the necessary sufficient
statistics. The total number of structure update operators isO(Kn), so the cost of computing the
delta-scores for all structure search operators requiresO(KnMd). This computation is done at the
beginning of each structure learning phase. During the structure learningphase, each step to the
parent set of moduleM j requires that we re-evaluate at mostn operators (one for each existing or
potential parent ofM j), at a total cost ofO(nMd).

4.2 Module Assignment Search Step

The second type of step in our iteration learns an assignment functionA from data. This type of
step occurs in two places in our algorithm: once at the very beginning of the algorithm, in order to
initialize the modules, and once at each iteration, given a module network structureS learned in the
previous structure learning step.

4.2.1 MODULE ASSIGNMENT ASCLUSTERING

In this step, our task is as follows: Given a fixed structureS we want to find

A = argmaxA ′scoreM (S ,A ′ : D).

568

LEARNING MODULE NETWORKS

Interestingly, we can view this task as a clustering problem. A module consists ofa set of variables
that have the same probabilistic model. Thus, for a given instance, two different variables in the
same module define the same probabilistic model, and therefore should have similar behavior. We
can therefore view the module assignment task as the task of clustering variables into sets, so that
variables in the same set have a similar behavior across all instances.

For example, in our stock market example, we would cluster stocks based onthe similarity of
their behavior over different trading days. Note that in a typical application of a clustering algorithm
(e.g., k-means or the AutoClass algorithm of Cheesemanet al. (1988)) to our data set, we would
cluster data instances (trading days) based on the similarity of the variables characterizing them.
Here, we view instances as features of variables, and try to cluster variables. (See Figure 5.)

However, there are several key differences between this task and thetypical formulation of
clustering. First, in general, the probabilistic model associated with each cluster has structure, as
defined by the CPD template associated with the cluster (module). Moreover, our setting places
certain constraints on the clustering, so that the resulting assignment function will induce a legal
(acyclic) module network.

4.2.2 MODULE ASSIGNMENT INITIALIZATION

In the initialization phase, we exploit the clustering perspective directly, using a form of hierarchical
agglomerative clustering that is tailored to our application. Our clustering algorithm uses an objec-
tive function that evaluates a partition of variables into modules by measuring the extent to which
the module model is a good fit to the features (instances) of the module variables. This algorithm
can also be thought of as performingmodel merging(as in (Elidan and Friedman, 2001; Cheeseman
et al., 1988)) in a simple probabilistic model.

In the initialization phase, we do not yet have a learned structure for the different modules. Thus,
from a clustering perspective, we consider a simple naive Bayes model for each cluster, where the
distributions over the different features within each cluster are independent and have a separate
parameterization. We begin by forming a cluster for each variable, and thenmerge two clusters
whose probabilistic models over the features (instances) are similar.

¿From a module network perspective, the naive Bayes model can be obtained by introducing a
dummy variableU that encodes training instance identity —u[m] = m for all m. Throughout our
clustering process, each module will havePaM i = {U}, providing exactly the effect that, for each
variableXi , the different valuesxi [m] have separate probabilistic models. We then begin by creating
n modules, withA(Xi) = i. In this module network, each instance and each variable has its own
local probabilistic model.

We then consider all possible legal module mergers (those corresponding tomodules with the
same domain), where we change the assignment function to replace two modules j1 and j2 by a
new modulej1,2. This step corresponds to creating a cluster containing the variablesXj1 andXj2.
Note that, following the merger, the two variablesXj1 andXj2 now must share parameters, but each
instance still has a different probabilistic model (enforced by the dependence on the instance IDU).
We evaluate each such merger by computing the score of the resulting module network. Thus, the
procedure will merge two modules that are similar to each other across the different instances. We
continue to do these merge steps until we construct a module network with the desired number of
modules, as specified in the original choice ofC .

569

SEGAL, PE’ ER, REGEV, KOLLER AND FRIEDMAN

Input:
D // Data set
A0 // Initial assignment function
S // Given dependency structure

Output:
A // improved assignment function

Sequential-Update
A = A0

Loop
For i = 1 ton

For j = 1 toK
A ′ = A except thatA ′(Xi) = j
If 〈GM ,A ′〉 is cyclic,continue
If score(S ,A ′ : D) > score(S ,A : D)

A = A ′

Until no reassignments to any ofX1, . . .Xn

Return A

Figure 3: Outline of sequential algorithm for finding the module assignment function

4.2.3 MODULE REASSIGNMENT

In the module reassignment step, the task is more complex. We now have a given structureS , and
wish to findA = argmaxA ′scoreM (S ,A ′ : D). We thus wish to take each variableXi , and select the
assignmentA(Xi) that provides the highest score.

At first glance, we might think that we can decompose the score across variables, allowing
us to determine independently the optimal assignmentA(Xi) for each variableXi . Unfortunately,
this is not the case. Most obviously, the assignments to different variablesmust be constrained
so that the module graph remains acyclic. For example, ifX1 ∈ PaM i andX2 ∈ PaM j , we cannot
simultaneously assignA(X1) = j andA(X2) = i. More subtly, the Bayesian score for each module
depends non-additively on the sufficient statistics of all the variables assigned to the module. (The
log-likelihood function is additive in the sufficient statistics of the different variables, but the log
marginal likelihood is not.) Thus, we can only compute the delta score for movinga variable from
one module to another given afixedassignment of the other variables to these two modules.

We therefore use a sequential update algorithm that reassigns the variables to modules one by
one. The idea is simple. We start with an initial assignment functionA0, and in a “round-robin”
fashion iterate over all of the variables one at a time, and consider changing their module assignment.
When considering a reassignment for a variableXi , we keep the assignments of all other variables
fixed and find the optimal legal (acyclic) assignment forXi relative to the fixed assignment. We
continue reassigning variables until no single reassignment can improve thescore. An outline of
this algorithm appears in Figure 3

The key to the correctness of this algorithm is its sequential nature: Each time avariable as-
signment changes, the assignment function as well as the associated sufficient statistics are updated
before evaluating another variable. Thus, each change made to the assignment function leads to a
legal assignment which improves the score. Our algorithm terminates when it can no longer im-

570

LEARNING MODULE NETWORKS

Input:
D // Data set
K // Number of modules

Output:
M // A module network

Learn-Module-Network
A0 = clusterX into K modules
S0 = empty structure
Loop t = 1,2, . . . until convergence

St = Greedy-Structure-Search(At−1,St−1)
At = Sequential-Update(At−1,St);

Return M = (At ,St)

Figure 4: Outline of themodule networklearning algorithm. Greedy-Structure-Search successively
applies operators that change the structure as long as each such operator results in a legal
structure and improves the module network score

prove the score. Hence, it converges to a local maximum, in the sense that no single assignment
change can improve the score.

The computation of the score is the most expensive step in the sequential algorithm. Once again,
the decomposition of the score plays a key role in reducing the complexity of thiscomputation:
When reassigning a variableXi from one moduleMold to anotherMnew, only the local scores of
these modules change. The module score of all other modules remains unchanged. The rescoring of
these two modules can be accomplished efficiently by subtractingXi ’s statistics from the sufficient
statistics ofMold and adding them to those ofMnew. Thus, assuming that we have precomputed
the sufficient statistics associated with every pair of variableXi and moduleM j , the cost of recom-
puting the delta-score for an operator isO(s), wheres is the size of the table of sufficient statistics
for a module. The only operators whose delta-scores change are thoseinvolving reassignment of
variables to/from these two modules. Assuming that each module has approximately O(n/K) vari-
ables, and we have at mostK possible destinations for reassigning each variable, the total number
of such operators is generally linear inn. Thus, the cost of each reassignment step is approximately
O(ns). In addition, at the beginning of the module reassignment step, we must initializeall of the
sufficient statistics at a cost ofO(Mnd), and compute all of the delta-scores at a cost ofO(nK).

4.3 Algorithm Summary

To summarize, our algorithm starts with an initial assignment of variables to modules. In general,
this initial assignment can come from anywhere, and may even be a random guess. We choose to
construct it using the clustering-based idea described in the previous section. The algorithm then
iteratively applies the two steps described above: learning the module dependency structures, and re-
assigning variables to modules. These two steps are repeated until convergence, where convergence
is defined by a score improvement of less than some fixed threshold∆ between two consecutive
learned models. An outline of the module network learning algorithm is shown in Figure 4.

Each of these two steps — structure update and assignment update — is guaranteed to either
improve the score or leave it unchanged. The following result thereforefollows immediately:

571

SEGAL, PE’ ER, REGEV, KOLLER AND FRIEDMAN

1.61.3-10.21.5-1.4

-3.5-2.94-0.2-3.24.1

1.21.3-0.80.11.1-1.1
-4-3.13.9-0.2-2.93.2

1.61.3-10.21.5-1.4

-3.5-2.94-0.2-3.24.1

1.21.3-0.80.11.1-1.1
-4-3.13.9-0.2-2.93.2x[1]

DE
LL

MS
FT

AM
AT

MO
T

HP
Q

IN
TL

x[2]
x[3]
x[4] 1.61.3-10.21.5-1.4

1.21.3-0.80.11.1-1.1

-3.5-2.94-0.2-3.24.1
-4-3.13.9-0.2-2.93.2

1.61.3-10.21.5-1.4

1.21.3-0.80.11.1-1.1

-3.5-2.94-0.2-3.24.1
-4-3.13.9-0.2-2.93.2x[1]

DE
LL

MS
FT

AM
AT

MO
T

HP
Q

IN
TL

x[3]
x[2]
x[4]

1

2 -1-1.41.61.31.50.2

44.1-3.5-2.9-3.2-0.2

-0.8-1.11.21.31.10.1
3.93.2-4-3.1-2.9-0.2

-1-1.41.61.31.50.2

44.1-3.5-2.9-3.2-0.2

-0.8-1.11.21.31.10.1
3.93.2-4-3.1-2.9-0.2x[1]

MS
FT

MO
T

HP
Q

DE
LL

AM
AT

IN
TL

x[2]
x[3]
x[4]

1 2 3
(a) Data (b) Standard clustering (c) Initialization

Figure 5: Relationship between the module network procedure and clustering. Finding an assign-
ment function can be viewed as a clustering of the variables whereas clustering typically
clusters instances. Shown is sample data for the example domain of Figure 1, where
the rows correspond to instances and the columns correspond to variables. (a) Data. (b)
Standard clustering of the data in (a). Note thatx[2] andx[3] were swapped to form the
clusters. (c) Initialization of the assignment function for the module network procedure
for the data in (a). Note that variables were swapped in their location to reflect the initial
assignment into three modules.

Theorem 4.1: The iterative module network learning algorithm converges to a local maximum of
score(S ,A : D).

We note that both the structure search step and the module reassignment stepare done using
simple greedy hill-climbing operations. As in other settings, this approach is liableto get stuck in
local maxima. We attempt to somewhat compensate for this limitation by initializing the search at
a reasonable starting point, but local maxima are clearly still an issue. An additional strategy that
would help circumvent some maxima is the introduction of some randomness into the search (e.g.,
by random restarts or simulated annealing), as is often done when searching complex spaces with
multi-modal target functions.

5. Learning with Regression Trees

We now briefly review the family of conditional distributions we use in the experiments below.
Many of the domains suited for module network models contain continuous valued variables, such
as gene expression or price changes in the stock market. For these domains, we often use a condi-
tional probability model represented as aregression tree(Breimanet al., 1984). For our purposes,
a regression treeT for P(X | U) is defined via a rooted binary tree, where eachnodein the tree is
either aleaf or aninterior node. Each interior node is labeled with a testU < u on some variable
U ∈ U andu∈ IR. Such an interior node has two outgoingarcsto its children, corresponding to the
outcomes of the test (true or false). The tree structureT captures thelocal dependency structure of
the conditional distribution. The parameters ofT are the distributions associated with each leaf. In
our implementation, each leaf` is associated with a univariate Gaussian distribution over values of
X, parameterized by a meanµ` and varianceσ2

` . An example of a regression tree CPD is shown in

572

LEARNING MODULE NETWORKS

AMAT<5%

INTL<4%

00000

false

truefalse

true

INTL

MSFT

MOT

DELL
Module 3

Module 2

Module 1

AMAT

HPQ

P(M3 | AMAT, INTL)

N(1.4,0.8) N(0.1,1.6) N(-2,0.7)

Figure 6: Example of a regression tree with univariate Gaussian distributions at the leaves for rep-
resenting the CPDP(M3 | AMAT, INTL), associated withM3. The tree has internal nodes
labeled with a test on the variable (e.g.AMAT< 5%). Each univariate Gaussian distri-
bution at a leaf is parameterized by a mean and a variance. The tree structure captures
the local dependency structure of the conditional distributions. In the example shown,
whenAMAT≥ 5%, then the distribution over values of variables assigned toM3 will be
Gaussian with mean 1.4 and standard deviation 0.8 regardless of the value ofINTL.

Figure 6. We note that, in some domains, Gaussian distributions may not be the appropriate choice
of models to assign at the leaves of the regression tree. In such cases, we can apply transforma-
tions to the data to make it more appropriate for modeling by Gaussian distributions, or use other
continuous or discrete distributions at the leaves.

To learn module networks with regression-tree CPDs, we must extend our previous discus-
sion by adding another component toS that represents the treesT1, . . . ,TK associated with the dif-
ferent modules. Once we specify these components, the above discussion applies with several
small differences. These issues are similar to those encountered when introducing decision trees to
Bayesian networks (Chickeringet al., 1997; Friedman and Goldszmidt, 1998), so we discuss them
only briefly.

Given a regression treeTj for P(M j | PaM j), the corresponding sufficient statistics are the statis-
tics of the distributions at the leaves of the tree. For each leaf` in the tree, and for each data instance
x[m], we let` j [m] denote the leaf reached in the tree given the assignment toPaM j in x[m]. The mod-
ule likelihood decomposes as a product of terms, one for each leaf`. Each term is the likelihood for
the Gaussian distributionN

(

µ`;σ2
`

)

, with the usual sufficient statistics for a Gaussian distribution.

Given a regression treeTj for P(M j | PaM j), the corresponding sufficient statistics are the statis-
tics of the distributions at the leaves of the tree. For each leaf` in the tree, and for each data instance
x[m], we let` j [m] denote the leaf reached in the tree given the assignment toPaM j in x[m]. The mod-
ule likelihood decomposes as a product of terms, one for each leaf`. Each term is the likelihood for

573

SEGAL, PE’ ER, REGEV, KOLLER AND FRIEDMAN

the Gaussian distributionN
(

µ`;σ2
`

)

, with the sufficient statistics for a Gaussian distribution.

Ŝ0
j,` = ∑

m
∑

Xi∈X j

η{` j [m] = `},

Ŝ1
j,` = ∑

m
∑

Xi∈X j

η{` j [m] = `}xi , (5)

Ŝ2
j,` = ∑

m
∑

Xi∈X j

η{` j [m] = `}x2
i .

The local module score further decomposes into independent components, one for each leaf
`. Here, we use a Normal-Gamma prior (DeGroot, 1970) for the distribution ateach leaf: Letting
τ` = 1/σ2

` stand for the precision at leaf`, we define:P(µ`,τ`) = P(µ` | τ`)P(τ`), whereP(τ`) ∼
Γ(α0,β0) andP(µ` | τ`) ∼ N

(

µ0;(λ0τ`)
−1
)

, where we assume that all leaves are associated with
the same prior. LettinĝSi

j,` be defined as in Equation (5), we have that the component of the log
marginal likelihood associated with a leaf` of module j is given by:

−
1
2

Ŝ0
j,` log(2π)+

1
2

log

(

λ0

λ0 + Ŝ0
j,`

)

+ log

(

Γ(α0 +
1
2

Ŝ0
j,`)

)

− log(Γ(α0))+α0 log(β0)−

(

α0 +
1
2

Ŝ0
j,`

)

log(β) ,

where

β = β0 +
1
2

(

Ŝ2
j,`−

(Ŝ1
j,`)

2

Ŝ0
j,`

)

+

Ŝ0
j,`λ0

(

Ŝ1
j,`

Ŝ0
j,`
−µ0

)2

2(λ0 + Ŝ0
j,`)

.

When performing structure search for module networks with regression-tree CPDs, in addition
to choosing the parents of each module, we must also choose the associatedtree structure. We use
the search strategy proposed by Chickeringet al. (1997), where the search operators are leaf splits.
Such asplit operator replaces a leaf in a treeTj with an internal node with some test on a variable
U . The two branches below the newly created internal node point to two new leaves, each with its
associated Gaussian. This operator must check for acyclicity, as it implicitly addsU as a parent of
M j .

When performing the search, we consider splitting each possible leaf on each possible parentU
and each valueu. As always in regression-tree learning, we do not have to consider allreal values
u as possible split points; it suffices to consider values that arise in the data set. Moreover, under
an appropriate choice of prior (i.e., an independent prior for each leaf), regression-tree learning
provides another level of score decomposition: The score of a particular tree is a sum of scores
for the leaves in the tree. Thus, a split operation on one leaf in the tree doesnot affect the score
component of another leaf, so that operators applied to other leaves do not need to re-evaluated.

6. Experimental Results

We evaluated our module network learning procedure on synthetic data andon two real data sets —
gene expression data, and stock market data. In all cases, our data consisted solely of continuous
values. As all of the variables have the same domain, the definition of the moduleset reduces simply

574

LEARNING MODULE NETWORKS

-800

-750

-700

-650

-600

-550

-500

-450

0 20 40 60 80 100 120 140 160 180 200

Number of Modules

T
es

t
D

at
a

L
o

g
 L

ik
el

ih
o

o
d

 (
p

er
 in

st
an

ce
)

25 50
100 200
500

-600

-575

-550

-525

-500

-475

-450

0 20 40 60 80 100

Number of modules

T
ra

in
n

in
g

 D
at

a
S

co
re

 (
p

er
 in

st
an

ce
)

25 50
100 200
500

(a) (b)

Figure 7: Performance of learning from synthetic data as a function of thenumber of modules and
training set size. Thex-axis corresponds to the number of modules, each curve corre-
sponds to a different number of training instances, and each point shows the mean and
standard deviations from the 10 sampled data sets. (a) Log-likelihood per instance as-
signed to held-out data. (b) Average score per instance on the training data.

to a specification of the total number of modules. We used regression trees as the local probability
model for all modules, and uniform priors forρ(S) andκ(A). For structure search, we used beam
search, using a lookahead of three splits to evaluate each operator. When learning Bayesian net-
works, as a comparison, we used precisely the same structure learning algorithm, simply treating
each variable as its own module.

6.1 Synthetic Data

As a basic test of our procedure in a controlled setting, we used synthetic data generated by a known
module network. This gives a known ground truth to which we can compare the learned models.
To make the data realistic, we generated synthetic data from a model that was learned from the
gene expression data set described below. The generating model had 10 modules and a total of
35 variables that were a parent of some module. From the learned module network, we selected
500 variables, including the 35 parents. We tested our algorithm’s ability to reconstruct the network
using different numbers of modules; this procedure was run for trainingsets of various sizes ranging
from 25 instances to 500 instances, each repeated 10 times for differenttraining sets.

We first evaluated the generalization to unseen test data, measuring the likelihood ascribed by
the learned model to 4500 unseen instances. The results, summarized in Figure 7(a), show that, for
all training set sizes, except the smallest one with 25 instances, the model with10 modules performs
the best. As expected, models learned with larger training sets do better; but,when run using the
correct number of 10 modules, the gain of increasing the number of data instances beyond 100
samples is small and beyond 200 samples is negligible.

575

SEGAL, PE’ ER, REGEV, KOLLER AND FRIEDMAN

10

20

30

40

50

60

70

80

90

100

0 20 40 60 80 100 120 140 160 180 200

Number of Modules

F
ra

ct
io

n
 o

f
V

ar
ia

b
le

s
in

 1
0

L
ar

g
es

t
M

o
d

u
le

s

25

50

100

200

500
0

10

20

30

40

50

60

70

80

90

0 20 40 60 80 100 120 140 160 180 200

Number of Modules

R
ec

o
ve

re
d

 S
tr

u
ct

u
re

 (%
 C

o
rr

ec
t)

25 50
100 200
500

(a) (b)

Figure 8: (a) Fraction of variables assigned to the 10 largest modules. (b) Average percentage of
correct parent-child relationships recovered (fraction of parent-child relationships in the
true model recovered in the learned model) when learning from synthetic data for models
with various number of modules and different training set sizes. Thex-axis corresponds
to the number of modules, each curve corresponds to a different numberof training in-
stances, and each point shows the mean and standard deviations from the10 sampled data
sets.

To test whether we can use the score of the model to select the number of modules, we also
plotted the score of the learned model on the training data (Figure 7(b)). Ascan be seen, when the
number of instances is small (25 or 50), the model with 10 modules achieves thehighest score and
for a larger number of instances, the score does not improve when increasing the number of modules
beyond 10. Thus, these results suggest that we can select the number of modules by choosing the
model with the smallest number of modules from among the highest scoring models.

A closer examination of the learned models reveals that, in many cases, they are almost a 10-
module network. As shown in Figure 8(a), models learned using 100, 200,or 500 instances and up
to 50 modules assigned≥ 80% of the variables to 10 modules. Indeed, these models achieved high
performance in Figure 7(a). However, models learned with a larger number of modules had a wider
spread for the assignments of variables to modules and consequently achieved poor performance.

Finally, we evaluated the model’s ability to recover the correct dependencies. The total num-
ber of parent-child relationships in the generating model was 2250. For each model learned, we
report the fraction of correct parent-child relationships it contains. Asshown in Figure 8(b), our
procedure recovers 74% of the true relationships when learning from adata set with 500 instances.
Once again, we see that, as the variables begin fragmenting over a large number of modules, the
learned structure contains many spurious relationships. Thus, our results suggest that, in domains
with a modular structure, statistical noise is likely to prevent overly detailed learned models such
as Bayesian networks from extracting the commonality between different variables with a shared
behavior.

576

LEARNING MODULE NETWORKS

-115.5

-115

-114.5

-114

-113.5

-113

0 5 10 15 20

Algorithm Iterations

S
co

re
 (

av
g

. p
er

 g
en

e)

0

10

20

30

40

50

0 5 10 15 20

Algorithm Iterations

G
en

es
 c

h
an

g
ed

 (
%

 f
ro

m
 to

ta
l)

Changes from initialization
Changes from previous iteration

(a) (b)

Figure 9: (a) Score of the model (normalized by the number of variables/genes) across the iterations
of the algorithm for a module network learned with 50 modules on the gene expression
data. Iterations in which the structure was changed are indicated by dashed vertical lines.
(b) Changes in the assignment of genes to modules for the module network learned in
(a) across the iterations of the algorithm. Shown are both the total changes compared
to the initial assignment (triangles) and the changes compared to the previousiteration
(squares).

6.2 Gene Expression Data

We next evaluated the performance of our method on a real world data setof gene expression
measurements. Amicroarray measures the activity level (mRNA expression level) of thousands
of genes in the cell in a particular condition. We view each experiment as an instance, and the
expression level of each measured gene as a variable (Friedmanet al., 2000a). In many cases, the
coordinated activity of a group of genes is controlled by a small set ofregulators, that are themselves
encoded by genes. Thus, the activity level of a regulator gene can often predict the activity of the
genes in the group. Our goal is to discover these modules of co-regulatedgenes, and their regulators.

We used the expression data of Gaschet al. (et al., 2000), which measured the response of
yeast to different stress conditions. The data consists of 6157 genes and 173 experiments. In this
domain, we have prior knowledge of which genes are likely to play a regulatory role (e.g., based on
properties of their protein sequence). Consequently, we restricted the possible parents to 466 yeast
genes that may play such a role. We then selected 2355 genes that varied significantly in the data
and learned a module network over these genes. We also learned a Bayesian network over this data
set.

577

SEGAL, PE’ ER, REGEV, KOLLER AND FRIEDMAN

-114.2

-114

-113.8

-113.6

-113.4

-113.2

0 20 40 60 80 100

Runs (initialized from random clusterings)

S
co

re
 (

av
g

. p
er

 g
en

e)

Score of model
initialization

Figure 10: Score of 100 module networks (normalized by the number of variables/genes) each
learned with 50 modules from a random clustering initialization, where the runsare
sorted according to their score. The score of a module network learned using the de-
terministic clustering initialization described in Section 4.2 is indicated by a pointed
arrow.

6.2.1 STATISTICAL EVALUATION

We first examined the behavior of the learning algorithm on the training data when learning a module
network with 50 modules. This network converged after 24 iterations (of which nine were iterations
in which the structure of the network changed). To characterize the trajectory of the algorithm, we
plot in Figure 9 its improvement across the iterations, measured as the score on the training data,
normalized by the number of genes (variables). To obtain a finer-grainedpicture, we explicitly
show structure learning steps, as well as each pass over the variables inthe module reassignment
step. As can be seen in Figure 9(a), the model score improves nicely across these steps, with the
largest gains in score occurring in iterations in which the structure was changed (dotted lines in
Figure 9(a)). Figure 9(b) demonstrates how the algorithm changes the assignments of genes to
modules, with 1221 of the 2355 (51.8%) genes changing their assignment upon convergence, and
the largest assignment changes occurring immediately after structure modification steps.

As for most local search algorithms, initialization is an key component: A bad initialization
can cause the algorithm to get trapped in a poor local maximum. As we discussed in Section 4.2,
we initialize the assignment function using a clustering program. The advantage of a simple de-
terministic initialization procedure is that it is computationally efficient, and results inreproducible
behavior. We evaluated this proposed initialization by comparing the results to module networks
initialized randomly. We generated 100 random assignments of variables to modules, and learned
a module network starting from each initialization. We compared the model scoreof the network
learned using our deterministic initialization, and the 100 networks initialized randomly. A plot of

578

LEARNING MODULE NETWORKS

these sorted scores is shown in Figure 10. Encouragingly, the score for the network initialized using
our procedure was better than 97/100 of the runs initialized from random clusters, and the 3/100
runs that did better are only incrementally better.

We evaluated the generalization ability of different models, in terms of log-likelihood of test
data, using 10-fold cross validation. In Figure 11(a), we show the difference between module net-
works of different size and the baseline Bayesian network, demonstrating that module networks
generalize much better to unseen data for almost all choices of number of modules.

6.2.2 BIOLOGICAL EVALUATION

As we discussed in the introduction, a common goal in learning a network structure is to reveal
structural properties of the underlying distribution. This goal is definitely an important one in the
biological domain, where we want to discover both sets of co-regulated genes, and the regulatory
mechanism governing their behavior. We therefore evaluated the ability of our module network
learning procedure to reveal known biological properties of this domain.

We evaluated a learned module network with 50 modules, where we selected 50modules due
to the biological plausibility of having, on average, 40–50 genes per module. First, we examined
whether genes in the same module have shared functional characteristics.To this end, we used
annotations of the genes’ biological functions from the Saccharomyces Genome Database (Cherryet
al., 1998). We systematically evaluated each module’s gene set by testing for significantly enriched
annotations. Suppose we findl genes with a certain annotation in a module of sizeN. To check for
enrichment, we calculate thehypergeometric p-valueof these numbers — the probability of finding
that many genes of that annotation in a random subset ofN genes. For example, the “protein folding”
module contains 10 genes, 7 of which are annotated as protein folding genes. In the whole data set,
there are only 26 genes with this annotation. Thep-value of this annotation, that is, the probability
of choosing 7 or more genes in this category by choosing 10 random genes, is less than 10−12. As
there are a large number of possible annotations, there is a nontrivial probability that some will be
enriched simply by chance. We therefore corrected thesep-values using the standard Bonferroni
correction for independent multiple hypotheses (Savin, 1980). Our evaluation showed that, of the
50 modules, 42 (resp. 20) modules had at least one significantly enrichedannotation with ap-
value less than 0.005 (resp. less than 10−6). Furthermore, the enriched annotations reflect the key
biological processes expected in our data set. We used these annotationsto label the modules with
meaningful biological names. A comparison of the overall enrichments of themodules learned by
module networks to the enrichments obtained for clusters using AutoClass is shown in Figure 11(b),
indicating that there are many annotations that are much more significantly enriched in module
networks.

We can use these annotations to reason about the dependencies betweendifferent biological
processes at the module level. For example, we find that thecell cyclemodule, regulates thehistone
module. The cell cycle is the process in which the cell replicates its DNA and divides, and it is
indeed known to regulate histones — key proteins in charge of maintaining andcontrolling the DNA
structure. Another module regulated by the cell cycle module is thenitrogen catabolite repression
(NCR)module, a cellular response activated when nitrogen sources are scarce. We find that theNCR
module regulates theamino acid metabolism, purine metabolismandprotein synthesismodules, all
representing nitrogen-requiring processes, and hence likely to be regulated by theNCR module.

579

SEGAL, PE’ ER, REGEV, KOLLER AND FRIEDMAN

-150

-100

-50

0

50

100

150

0 50 100 150 200 250 300 350 400 450 500

Number of Modules

T
es

t
D

at
a

L
o

g
-L

ik
el

ih
o

o
d

 (
g

ai
n

 p
er

 in
st

an
ce

)

0

5

10

15

20

25

30

35

40

45

0 5 10 15 20 25 30 35 40 45

Negative Log p-value (AutoClass)

N
eg

at
iv

e
L

o
g

 p
-v

al
u

e
(M

N
)

(a) Test-data generalization (Expression) (b) Annotation enrichment (Expression)

Figure 11: (a) Comparison of generalization ability of module networks learning with different
numbers of modules on the gene expression data set. Thex-axis denotes the number of
modules. They-axis denotes the difference in log-likelihood on held out data between
the learned module network and the learned Bayesian network, averagedover 10 folds;
the error bars show the standard deviation. (b) Comparison of the enrichment for anno-
tations of functional annotations between the modules learned using the modulenetwork
procedure and the clusters learned by the AutoClass clustering algorithm (Cheeseman
et al., 1988) applied to the variables. Each point corresponds to an annotation, and thex
andy axes are the negative logp-values of its enrichment for the two models.

These examples demonstrate the insights that can be gleaned from a higher order model, and which
would have been obscured in the unrolled Bayesian network over 2355 genes.

6.3 Stock Market Data

In a very different application, we examined a data set of NASDAQ stock prices. We collected
stock prices for 2143 companies, in the period 1/1/2002–2/3/2003, covering 273 trading days (data
was obtained fromhttp://finance.yahoo.com). We took each stock to be a variable, and each
instance to correspond to a trading day, where the value of the variable is the log of the ratio between
that day’s and the previous day’s closing stock price. This choice of data representation focuses
on the relative changes to the stock price, and eliminates the magnitude of the price itself (which
depends on such irrelevant factors as the number of outstanding shares). As potential controllers,
we selected 250 of the 2143 stocks, whose average trading volume was thelargest across the data
set.

As with gene expression data, we used cross validation to evaluate the generalization ability of
different models. As we can see in Figure 12(a), module networks perform significantly better than
Bayesian networks in this domain.

580

LEARNING MODULE NETWORKS

400

450

500

550

600

0 50 100 150 200 250 300

Number of Modules

T
es

t
D

at
a

L
o

g
-L

ik
el

ih
o

o
d

 (
g

ai
n

 p
er

 in
st

an
ce

)

0

5

10

15

20

25

30

35

0 5 10 15 20 25 30 35

Negative Log p-value (AutoClass)

N
eg

at
iv

e
L

o
g

 p
-v

al
u

e
(M

N
)

(a) Test-data generalization (Stock) (b) Annotation enrichment (Stock)

Figure 12: (a) Comparison of generalization ability of module networks learning with different
numbers of modules on the stock data set. Thex-axis denotes the number of modules.
They-axis denotes the difference in log-likelihood on held out data between the learned
module network and the learned Bayesian network, averaged over 10 folds; the error
bars show the standard deviation. (b) Comparison of the enrichment for annotations
of sectors between the modules learned using the module network procedure and the
clusters learned by the AutoClass clustering algorithm (Cheesemanet al., 1988) applied
to the variables. Each point corresponds to an annotation, and thex andy axes are the
negative logp-values of its enrichment for the two models.

To test the quality of our modules, we measured the enrichment of the modules inthe network
with 50 modules for annotations representing various sectors to which eachstock belongs (based on
sector classifications fromhttp://finance.yahoo.com). We found significant enrichment for 21
such annotations, covering a wide variety of sectors. We also compared these results to the clusters
of stocks obtained from applying the popular probabilistic clustering algorithm AutoClass (Cheese-
manet al., 1988) to the data. Here, as we described above, each instance corresponds to a stock and
is described by 273 random variables, each representing a trading day. In 20 of the 21 cases, the
enrichment was far more significant in the modules learned using module networks compared to the
one learned by AutoClass, as can be seen in Figure 12(b).

Finally, we also looked at the structure of the module network, and found several cases where
the structure fit our (limited) understanding of the stock domain. Several modules corresponded
primarily to high tech stocks. One of these, consisting mostly of software, semi-conductor, com-
munication, and broadcasting services, had as its two main predictors Molex,a large manufacturer
of electronic, electrical and fiber optic interconnection products and systems, and Atmel, special-
izing in design, manufacturing and marketing of advanced semiconductors.Molex was also the
parent for another module, consisting primarily of software, semi-conductor, and medical equip-

581

SEGAL, PE’ ER, REGEV, KOLLER AND FRIEDMAN

ment companies; this module had as additional parents Maxim, which develop integrated circuits,
and Affymetrix, which designs and develops gene microarray chips. In this, as in many other cases,
the parents of a module are from similar sectors as the stocks in the module.

7. Related Work

Module networks are related to several other approaches, including plates Buntine (1994), hierar-
chical Bayesian models DeGroot (1970),object-oriented Bayesian networks(OOBNs) (Koller and
Pfeffer, 1997) and to the framework ofprobabilistic relational models(PRMs) (Koller and Pfeffer,
1998; Friedmanet al., 1999a).

Both plates and hierarchical Bayesian approaches allow us to represent models where objects
in the same class share parameters. Plate models also allow objects to share the same parent set. In
many ways, they allow a more expressive dependency structure than modulenetworks, as they allow
a richly structured hierarchical set of variables, determined by the nested plate structure. However,
variables in one plate can only depend on variables in an enclosing plate. Thus, plate models are not
sufficiently expressive to encode the inter-module dependencies in a module-network. Hierarchical
Bayesian models are more expressive than module networks in that they allowparameters of dif-
ferent variables to be statistically related but not necessarily equal. However, hierarchical Bayesian
approaches are not a language that includes structure as well as parameters, so that an additional
representation layer would have to be added to provide a framework similar tomodule networks.
One can easily extend module networks with ideas from the hierarchical Bayesian framework, al-
lowing the parameters of different variables in the same module to be correlated but not necessarily
equal. Most importantly, neither plates nor the hierarchical Bayesian framework have provided a
method that allows us to learn automatically which subsets of variables share parameters.

OOBNs and PRMs extend Bayesian Networks to a setting involving multiple relatedobjects,
and allow the attributes of objects of the same class to share parameters and dependency structure.
One can view the module network framework as a restriction of these frameworks, where we have
one object for every variableXi , with a single attribute corresponding to the value ofXi . Each module
can be viewed as a class, so that the variables in a single module share the same probabilistic model.
As the module assignments are not known in advance, module networks correspond most closely
to the variant of these frameworks where there istype uncertainty— uncertainty about the class
assignment of objects. However, despite this high-level similarity, the module network framework
differs in certain key points from both OOBNs and PRMs, with significant impact on the learning
task.

In OOBNs, objects in the same class must have the same internal structure andparameteriza-
tion, but can depend on different sets of variables (as specified in the mapping of variables in an
object’s interface to its actual inputs). By contrast, in a module network, all of the variables in a
module (class) must have the same specific parents. This assumption greatly reduces the size and
complexity of the hypothesis space, leading to a more robust learning algorithm. On the other hand,
this assumption requires that we be careful in making certain steps in the structure search, as they
have more global effects than on just one or two variables. Due to these differences, we cannot
simply apply an OOBN structure-learning algorithm, such as the one proposed by Langseth and
Nielsen (2003), to such complex, high-dimensional domains.

In PRMs, the probabilistic dependency structure of the objects in a class is determined by the
relational structure of the domain (e.g., theCostattribute of a particular car object might depend on

582

LEARNING MODULE NETWORKS

the Incomeattribute of the object representing this particular car’s owner). In the case of module
networks, there is no known relational structure to which probabilistic dependencies can be attached.
Without such a relational structure, PRMs only allow dependency models specified at the class level.
Thus, we can assert that the objects in one class depend on some aggregate quantity of the objects
in another. We cannot, however, state a dependence on a particular object in the other class (without
some relationship specified in the model). Getooret al. (2000) attempt to address this issue using
a class hierarchy. Their approach is very different from ours, requiring some fairly complex search
steps, and is not easily applied to the types of domains considered in this paper.

To better relate the PRM approach to module networks, recall the relationshipbetween module
networks and clustering, as described in Section 4.2. As we discussed, we can view the module
network learning procedure as grouping variables into clusters that share the same probabilistic
dependency model. As shown in Figure 5, we are taking the data points in the (variablesx instances)
matrix, and grouping rows. As we discussed, in other settings, we often group columns (instances).
In fact, in many cases, the notion of “variables” and “instances” is somewhat arbitrary. PRMs allow
us to define a probabilistic model where the value of a data point depends both on properties of
the rows and properties of the column. In particular, we can define a hidden attribute for either
rows, columns, or both; the values of this hidden attribute would correspond to a clustering of rows,
or columns, or a two-sided clustering of both rows and columns simultaneously(see Segalet al.
(2001)).

From this perspective, the module network framework can be viewed as being closely related
to a PRM where the module assignment is a hidden attribute of a row. For example, in the gene
expression domain, the expression value of genegi in microarraya j depends on attributes both ofgi

and ofa j . The genegi only has one attribute, representing its module assignment. The arraya j has
attributes representing the expression levels of the different regulatorsin the array. The expression
level of genegi in experimenta j then depends on all of these attributes, i.e., on the gene’s module
assignment and on the values of the regulators. A key difference between the PRM-based approach
and our module network framework is that, in the PRM, the regulators cannotthemselves participate
in the probabilistic model without leading to cycles. This restriction forces us toselect a relatively
small set of candidate regulators in advance. Moreover, as no probabilistic dependency model is
learned for regulators, this approach cannot discover compound regulatory pathways, which are
often of great interest.

Overall, the module network framework places strong restrictions on the richness of the set of
objects and on the dependency structures that can be represented. However, these restrictions allow
us to formulate a reasonably effective algorithm for learning which variables share parameters.
Although it is possible to define such algorithms for the rich representation frameworks such as
plates, OOBNs, or PRMs, it remains to be seen whether such algorithms can perform effectively,
given that the much larger search space can introduce both computationalproblems and problems
related to overfitting.

8. Discussion and Conclusions

We have introduced the framework ofmodule networks, an extension of Bayesian networks that
includes an explicit representation ofmodules— subsets of variables that share a statistical model.
We have presented a Bayesian learning framework for module networks, which learns both the
partitioning of variables into modules and the dependency structure of eachmodule. We showed

583

SEGAL, PE’ ER, REGEV, KOLLER AND FRIEDMAN

experimental results on two complex real-world data sets, each including measurements of thou-
sands of variables, in the domains of gene expression and stock market. Our results show that our
learned module networks have much higher generalization performance than a Bayesian network
learned from the same data.

There are several reasons why a learned module network is a better model than a learned
Bayesian network. Most obviously, parameter sharing between variables in the same module al-
lows each parameter to be estimated based on a much larger sample. Moreover, this allows us
to learn dependencies that are considered too weak based on statistics ofsingle variables. These
are well-known advantages of parameter sharing; the interesting aspectof our method is that we
determine automatically which variables share parameters.

More interestingly, the assumption of shared structure significantly restrictsthe space of possible
dependency structures, allowing us to learn more robust models than thoselearned in a classical
Bayesian network setting. While the variables in the same module might behave according to the
same model in underlying distribution, this will often not be the case in the empirical distribution
based on a finite number of samples. A Bayesian network learning algorithm will treat each variable
separately, optimizing the parent set and CPD for each variable in an independent manner. In the
high-dimensional domains in which we are interested, there are bound to be spurious correlations
that arise from sampling noise, inducing the algorithm to choose parent setsthat do not reflect real
dependencies, and will not generalize to unseen data. Conversely, in amodule network setting,
a spurious correlation would have to arise between a possible parent anda large number of other
variables before the algorithm would find it worthwhile to introduce the dependency.

The module network framework, as presented here, has several important limitations, both from
a modeling perspective and from the perspective of the learning algorithm.

¿From a modeling perspective, it is important to recognize that a module network is not a uni-
versally appropriate model for all domains. In particular, many domains do not have a natural
organization of variables into higher level modules with common characteristics. In such domains,
a module network would force variables into sharing dependency structures and CPDs and may
result in poor representations of the underlying domain properties.

Even in domains where the modularity assumption is warranted, the module network models
we presented here may not be ideal. In particular, the module network modelswe presented here
allow each variable to be assigned to only one module. For instance, in the gene expression domain,
this means that each gene is allowed to participate in only a single module. This assumption is
not realistic biologically, as biological processes often involve partially overlapping sets of genes,
so that many genes participate in more than one process. The framework presented in this paper,
by restricting each gene to only one module, cannot represent such overlapping processes with
different regulatory mechanisms. Recently (Segalet al., 2003a; Battleet al., 2004), we presented
one possible extension to the module network framework presented in this paper, which allows
genes to be assigned to several modules. The expression of a gene in a particular array is then
modeled as a sum of its expression in each of the modules in which it participates, and each module
can potentially have a different set of regulators. Clearly, this approach for “allocating” a variable
and its observed signal among different modules is only one possible model, and one which is not
appropriate to all settings. Other domains will likely require the development ofother approaches.

Turning to the learning algorithm, one important limitation is our assumption that the number of
modules is determined in advance. For instance, in the biological domain, the number of regulatory
modules of an organism in an expression data set is obviously not known and thus determining

584

LEARNING MODULE NETWORKS

the number of modules should be part of the regulatory module discovery task. In Section 6.1 we
showed that, at least in synthetic data, where the number of modules is known, we can use the
score of the model to select the correct number of modules by choosing themodel with the smallest
number of modules from among the highest scoring models. This observationis encouraging, as it
suggests that we can extend our approach to select the number of modulesautomatically by adding
search steps that modify the number of modules and use the model score to compare models that
differ in their number of modules. However, much remains to be done on the problem of proposing
new modules and initializing them.

Another important limitation of the learning algorithm is the use of heuristic searchto select
a single module network model. As other models may have comparable (or even better) scores to
that of the final model selected, a critical issue is to provide confidence estimates for the structural
relationships reported by the model. This problem is common to many learning algorithms, includ-
ing standard methods for Bayesian network learning, but is particularly acute when we are trying to
use the learned structure for knowledge discovery, as we do in the biology domain. In this paper,
we addressed this issue only indirectly, through statistical generalization tests on held out data and
through the evaluation of our results relative to the to existing annotations (e.g., of stock categories
in the stock market domain).

As a more direct approach, in some cases we can make use of well known methods for confi-
dence estimation such asbootstrap(Efron and Tibshirani, 1993), which repeatedly learns models
from resamples of the original input data and then estimates the confidence of different features of
the model based on the number of times they appear in all models learned. Suchan approach was
adopted for estimating the confidence in features of a Bayesian network byFriedmanet al. (1999b)
and consequently applied by Friedmanet al. (2000b) for learning fragments of regulatory networks
from expression data. An alternative approach is to use Markov Chain Monte Carlo methods to sam-
ple models from the posterior given the data. It is fairly straightforward to use the Bayesian score
we devised here within a Metropolis-Hastings sampling procedure Doucetet al. (2001) to perform
model averaging Hoetinget al. (1999). The challenge is to design sampling strategies that lead to
rapid mixing of the Markov Chain sampler. In the context of Bayesian networks, recent results (e.g.,
(Friedman and Koller, 2003)) use the decomposable structure of the posterior for efficient sampling.
In the context of module networks, we also need to construct efficient sampling strategies over as-
signment functions. Recall that the space of possible assignment functions is huge, and soa priori
it is not clear that a simple sampling procedure (e.g., mirroring our search strategy and moving one
variable at each step) will mix in reasonable time. Clearly, adapting such confidence estimation
approaches for our models can greatly enhance the reliability of our results but require additional
development and validation.

In this paper, we focused on the statistical properties of our method. In a companion biologi-
cal paper (Segalet al., 2003b), we use the module network learned from the gene expression data
described above to predict gene regulation relationships. There, we performed a comprehensive
evaluation of the validity of the biological structures reconstructed by our method. By analyzing
biological databases and previous experimental results in the literature, weconfirmed that many
of the regulatory relations that our method automatically inferred are indeed correct. Furthermore,
our model provided focused predictions for genes of previously uncharacterized function. We per-
formed wet lab biological experiments that confirmed the three novel predictions we tested. Thus,
we have demonstrated that the module network model is robust enough to learn a good approxima-
tion of the dependency structure between 2355 genes using only 173 instances. These results show

585

SEGAL, PE’ ER, REGEV, KOLLER AND FRIEDMAN

that, by learning a structured probabilistic representation, we identify regulation networks from gene
expression data and successfully address one of the central problemsin analysis of gene expression
data.

Acknowledgments

E. Segal, D. Koller, and N. Friedman were supported in part by NSF grant ACI-0082554 under the
ITR Program. E. Segal was also supported by a Stanford Graduate Fellowship (SGF). A. Regev was
supported by the Colton Foundation. D. Pe’er was supported by an Eshkol Fellowship. N. Friedman
was also supported by an Alon Fellowship, by the Harry & Abe Sherman Senior Lectureship in
Computer Science, and by the Israeli Ministry of Science.

References

A. Battle, E. Segal, and D. Koller. Probabilistic discovery of overlapping cellular processes and their
regulation using gene expression data. InProceedings Eighth Annual International Conference
on Research in Computational Molecular Biology (RECOMB), 2004.

L. Breiman, J. Friedman, R. Olshen, and C. Stone.Classification and Regression Trees. Wadsworth
& Brooks, Monterey, CA, 1984.

W. Buntine. Operations for learning with graphical models.Journal of Artificial Intelligence Re-
search, 2:159–225, 1994.

P. Cheeseman, J. Kelly, M. Self, J. Stutz, W. Taylor, and D. Freeman. Autoclass: a Bayesian
classification system. InProceedings Fifth International Conference on Machine Learning (ML),
pages 54–64, 1988.

J. M. Cherry, C. Ball, K. Dolinski, S. Dwight, M. Harris, J. C. Matese, G.Sherlock, G. Binkley,
H. Jin, S. Weng, and D. Botstein. Saccharomyces genome database.Nucleic Acid Research,
26:73–79, 1998. http://genome-www.stanford.edu/Saccharomyces/.

D. M. Chickering, D. Heckerman, and C. Meek. A Bayesian approach tolearning Bayesian net-
works with local structure. InProceedings Thirteenth Conference on Uncertainty in Artificial
Intelligence (UAI), pages 80–89, 1997.

G. F. Cooper and E. Herskovits. A Bayesian method for the induction of probabilistic networks
from data.Machine Learning, 9:309–347, 1992.

T. Dean and K. Kanazawa. A model for reasoning about persistence and causation.Computational
Intelligence, 5:142–150, 1989.

M. H. DeGroot.Optimal Statistical Decisions. McGraw-Hill, New York, 1970.

A. Doucet, N. de Freitas, and N. Gordon (eds).Sequential Monte Carlo Methods in Practice.
Springer-Verlag, 2001.

B. Efron and R. J. Tibshirani.An Introduction to the Bootstrap. Chapman & Hall, London, 1993.

586

LEARNING MODULE NETWORKS

G. Elidan and N. Friedman. Learning the dimensionality of hidden variables. In Proceedings
Seventeenth Conference on Uncertainty in Artificial Intelligence (UAI), pages 144–151, 2001.

A. P. Gasch et al. Genomic expression program in the response of yeast cells to environmental
changes.Mol. Bio. Cell, 11:4241–4257, 2000.

N. Friedman and M. Goldszmidt. Learning Bayesian networks with local structure. In M. I. Jordan,
editor,Learning in Graphical Models, pages 421–460. Kluwer, Dordrecht, Netherlands, 1998.

N. Friedman and D. Koller. Being Bayesian about Bayesian network structure: A Bayesian approach
to structure discovery in Bayesian networks.Machine Learning, 50:95–126, 2003.

N. Friedman, L. Getoor, D. Koller, and A. Pfeffer. Learning probabilistic relational models. In
Proceedings Sixteenth International Conference on Artificial Intelligence(IJCAI), pages 1300–
1309, 1999.

N. Friedman, M. Goldszmidt, and A. Wyner. Data analysis with Bayesian networks: A bootstrap
approach. InProc. UAI, pages 206–215, 1999.

N. Friedman, M. Linial, I. Nachman, and D. Pe’er. Using Bayesian networks to analyze expression
data.Journal of Computational Biology, 7:601–620, 2000.

N. Friedman, M. Linial, I. Nachman, and D. Pe’er. Using Bayesian networks to analyze expression
data.Computational Biology, 7:601–620, 2000.

L. Getoor, D. Koller, and N. Friedman. From instances to classes in probabilistic relational models.
In Proceedings of the ICML Workshop on Attribute-Value and Relational Learning, 2000.

D. Heckerman, D. Geiger, and D. M. Chickering. Learning Bayesian networks: The combination
of knowledge and statistical data.Machine Learning, 20:197–243, 1995.

D. Heckerman. A tutorial on learning with Bayesian networks. In M. I. Jordan, editor,Learning in
Graphical Models. Kluwer, Dordrecht, Netherlands, 1998.

J. A. Hoeting, D. Madigan, A. Raftery, and C. T. Volinsky. Bayesian model averaging: A tutorial.
Statistical Science, 14(4), 1999.

D. Koller and A. Pfeffer. Object-oriented Bayesian networks. InProceedings Thirteenth Conference
on Uncertainty in Artificial Intelligence (UAI), pages 302–313, 1997.

D. Koller and A. Pfeffer. Probabilistic frame-based systems. InProceedings National Conference
on Artificial Intelligence (AAAI), pages 580–587, 1998.

E. Lander. Array of hope.Nature Genetics, 21:3–4, 1999.

H. Langseth and T. D. Nielsen. Fusion of domain knowledge with data for structural learning in
object oriented domains.Machine Learning Research, 4:339–368, 2003.

D. Pe’er, A. Regev, G. Elidan, and N. Friedman. Inferring subnetworks from perturbed expression
profiles.Bioinformatics, 17(Suppl 1):S215–24, 2001.

587

SEGAL, PE’ ER, REGEV, KOLLER AND FRIEDMAN

N. E. Savin. The Bonferroni and the Scheffe multiple comparison procedures.Review of Economic
Studies, 47(1):255–73, 1980.

E. Segal, B. Taskar, A. Gasch, N. Friedman, and D. Koller. Rich probabilistic models for gene
expression.Bioinformatics, 17(Suppl 1):S243–52, 2001.

E. Segal, A. Battle, and D. Koller. Decomposing gene expression into cellular processes. InPro-
ceedings Eighth Pacific Symposium on Biocomputing (PSB), 2003.

E. Segal, M. Shapira, A. Regev, D. Pe’er, D. Botstein, D. Koller, and N. Friedman. Module net-
works: Discovering regulatory modules and their condition specific regulators from gene expres-
sion data.Nature Genetics, 34(2):166–176, 2003.

588

Journal of Machine Learning Research 6 (2005) 589–613 Submitted 11/04; Revised 3/05; Published 4/05

Active Learning to Recognize Multiple Types of Plankton

Tong Luo TLUO2@CSEE.USF.EDU

Kurt Kramer KKRAMER@CSEE.USF.EDU

Dmitry B. Goldgof GOLDGOF@CSEE.USF.EDU

Lawrence O. Hall HALL @CSEE.USF.EDU

Department of Computer Science and Engineering
University of South Florida
Tampa, FL 33620, USA

Scott Samson SAMSON@MARINE .USF.EDU

Andrew Remsen AREMSEN@MARINE .USF.EDU

Thomas Hopkins THOPKINS@MARINE .USF.EDU

College of Marine Science
University of South Florida
St. Petersburg, FL 33701, USA

Editor: David Cohn

Abstract

This paper presents an active learning method which reducesthe labeling effort of domain experts
in multi-class classification problems. Active learning isapplied in conjunction with support vector
machines to recognize underwater zooplankton from higher-resolution, new generation SIPPER II
images. Most previous work on active learning with support vector machines only deals with two
class problems. In this paper, we propose an active learningapproach “breaking ties” for multi-
class support vector machines using the one-vs-one approach with a probability approximation.
Experimental results indicate that our approach often requires significantly less labeled images to
reach a given accuracy than the approach of labeling the least certain test example and random
sampling. It can also be applied in batch mode resulting in anaccuracy comparable to labeling one
image at a time and retraining.

Keywords: active learning, support vector machine, plankton recognition, probabilistic output,
multi-class support vector machine

1. Introduction

Recently, an advanced shadow image particle profiling evaluation recorder (SIPPER II) was devel-
oped to produce 3-bit grayscale images at 25µm resolution. SIPPER II uses high-speed digital
line-scan cameras to continuously sample plankton and suspended particlesin the ocean. The high
sampling rate of SIPPER II requires the development of an automated plankton recognition system.
For example, in a previous study using approximately 150,000 SIPPER imagesfrom a two hour
sampling deployment it took over one month to manually classify the images (Remsenet al., 2004).
Also, this automated system is expected to continuously evolve from an existingmodel to a more
accurate model created by training after adding some new labeled images into the training set. Since
it is impossible to manually label all images during the time they are acquired on the ship, active
learning to label themost important imagesseems attractive.

c©2005 Tong Luo, Kurt Kramer, Dmitry B. Goldgof, Lawrence O. Hall, Scott Samson, Andrew Remsen and Thomas Hopkins.

LUO, KRAMER, GOLDGOF, HALL , SAMSON, REMSEN AND HOPKINS

For plankton recognition, Luo et al. (2004b) developed an automated system to recognize 1-bit
binary SIPPER (SIPPER I) (Samson et al., 2001) images at 50µm resolution. Due to the instability
of contour features, Luo et al. (2004b) designed several image features which did not depend heavily
on contours, and applied a support vector machine (SVM) (Vapnik, 2000) to classify the feature
vectors. The wrapper approach was used to do feature selection effectively reducing the feature
vector from 29 to 15 features. Also, a new way of computing probabilistic output in a multi-class
support vector machine was developed. Tang et al. (forthcoming) proposed several new features for
the SIPPER I images and applied multilevel dominant eigenvector methods to select the best subset
of features. A Gaussian classifier was employed to recognize the image features and validate the
feature selection methods on selected identifiable plankton.

Recently, active learning with SVMs has been developed and applied in a variety of applications
(Tong and Koller, 2000; Schohn and Cohn, 2000; Campbell et al., 2000; Sassano, 2002; Warmuth
et al., 2003; Brinker, 2003; Wang et al., 2003; Onoda et al., 2003; Baram et al., 2004; Luo et al.,
2004a; Nguyen and Smeulders, 2004; Park, 2004; Mitra et al., 2004a,b). The most representative
and relevant work is reviewed in the following.

A similar active learning method for support vector machines (SVMs) in two class problems
was independently developed by several researchers Tong and Koller (2000), Schohn and Cohn
(2000), and Campbell et al. (2000). These approaches, which we term “simple”, caused the new
examples closest to the decision boundary to be labeled. Tong and Koller (2000) used version
spaces to analyze the hypotheses space of SVMs. It was shown that “simple” approximately found
the examples which most dramatically reduced the version space. Compared torandom sampling,
“simple” reduced the required number of labeled images in experiments on textclassification. Mi-
tra et al. (2004a) argued that the greedy search method employed in “simple” is not robust and a
confidence factor was proposed to measure the closeness of the current SVM to the optimal SVM.
A random sampling factor was introduced when the confidence factor waslow. Their proposed
method performed better than “simple” in a set of experiments.

Roy and McCallum (2001) used a probability model to label examples which could maximize
the posterior entropy on the unlabeled data set. We call this method “conf” in this paper. The “conf”
method amounts to improving the current classifier’s classification confidence on the unlabeled data
set. Although it initially was applied with naive bayes classifiers, it could be easily extended to any
classifier with probability outputs. For example, the probability outputs of SVMscan be roughly
approximated by a sigmoid function (Platt, 2000).

Baram et al. (2004) observed that there was no single winner from different active learning
strategies on several data sets. They proposed dynamically selecting from four learning algorithms:
“simple”, “conf”, random sampling and sampling examples furthest from thecurrent labeled data
set. The automatic selection was done by solving a multi-armed bandit problem through online
learning.

Similar selection methods to label several examples at a time for two-class problems were de-
veloped by Brinker (2003) and Park (2004) and named “combined” by Brinker (2003). Based on
the “simple” method, they chose to label examples which are close to the decisionboundary and
have the largest angles to previously selected candidates. A parameterλ was introduced to control
the trade-off between the two criteria. Although Brinker (2003) did not provide a method to set the
optimal value ofλ, “combined” performed better than “simple” in batch mode on several data sets
(when labeling several images at a time).

590

ACTIVE LEARNING TO RECOGNIZEMULTIPLE TYPES OFPLANKTON

There are two elements of our work which differentiate it from previous approaches. The im-
ages sampled from first generation SIPPER (SIPPER I) did not have clear contours. The low image
quality resulted in many unidentifiable particles, which made it important to create robust image
features and handle unidentifiable particles (Luo et al., 2004b). Higher resolution SIPPER (SIPPER
II) images provide relatively better quality images with clear contours. Also, 3-bit graylevel im-
ages have more texture information than binary images. As a result, handling many unidentifiable
particles is no longer an issue. The higher resolution required new contour and texture features to
improve recognition. Moreover, little previous work in active learning has been done with multiple
class SVMs, which is required in plankton recognition. SVMs solve multiple class problems by
building several two-class SVMs and a new example usually has differentdistances to the decision
boundaries in those two-class SVMs. It is hard to use the “simple” approach because we do not
know which distance to choose. In a very recent paper Mitra et al. (2004b) applied “simple” to each
binary SVM in a multi-class SVM. For a multi-class problem withN binary SVMs,N examples
were labeled at a time. However, this method is far from elegant. They did notsuggest how to
choose which example was best for all binary SVMs. It is not unusual that an “informative” exam-
ple for one binary SVM is useless for other binary SVMs. The “combined”method suffers from the
same problem. It is not clear which distance to minimize and which angle to maximize. The “conf”
approach seems to be a natural solution for multi-class problems as long as there is a probability
estimation for the output from a multi-class SVM. However, applying the “conf” approach involves
estimating the decision boundary after adding each unlabeled example into the training data in each
round. Supposem is the number of unlabeled examples andc is the number of classes, “conf”
needs to train a SVMcm times to decide which example to label next. Although there are several
heuristics to speedup such a procedure, it remains quite computationally expensive.

A new image feature set was developed Luo et al. (2004a) which added some contour features
and texture features into a previous feature set (Luo et al., 2004b). A least certainty active learning
approach was proposed and evaluated for multiple class SVMs. In this paper we expand the work
reported by Luo et al. (2004a) and propose a new active learning strategy for one-versus-one multi-
class SVMs. After developing a probability model for multiple class SVMs, we label the example
which has the smallest difference in probability between its most likely class andsecond most
likely class. We compare our approach with other methods like random samplingand least certainty
for the plankton recognition problem. To obtain the same classification accuracy, we show our
approach required many fewer labeled examples than random sampling. Italso outperformed the
least certainty approach in terms of needed examples to reach a given accuracy level. Our proposed
method can run in batch mode, labeling up to 20 images at a time, with an accuracy comparable
to labeling one image at a time and retraining. In a simulation where plankton images come as a
stream, active learning resulted in higher classification accuracy than random sampling.

This paper is organized as follows. Section 2 introduces our active learning approach for support
vector machines and our approach to assigning a classification probability for a multi-class support
vector machine. Experimental results are presented in Section 3. Finally we summarize our work
and propose some ideas for future work in Section 4.

591

LUO, KRAMER, GOLDGOF, HALL , SAMSON, REMSEN AND HOPKINS

2. Active Learning Approach with Multi-Class Support Vector Machines

A soft margin support vector machine was used in this work. A probability model has been added to
the support vector machine to help evaluate multi-class decision problems. Theprobability model
was used in the development of an active learning model.

2.1 Support Vector Machines

Support vector machines (SVMs) (Vapnik, 2000) have received increasing attention recently and
have been shown to have very good accuracy for pattern recognition,text classification, etc. (Cris-
tianini and Shawe-Taylor, 2000).

SVMs first map the data into a higher dimension feature space withφ(x), then use a hyperplane
in that feature space to separate the data into two classes. In the feature mapping stage, the kernel
k(x,y) = 〈φ(x) · φ(y)〉 is used to avoid explicit inner product calculation in the high-dimensional
feature space. C-SVM (Vapnik, 2000), a typical example of soft marginSVMs, is described in the
following.

Given m examples:x1,x2, ...,xm with class labelyi ∈{-1,1}.
C-SVM:

minimize(
1
2
〈w,w〉+C

m

∑
i=1

ξi) (1)

subject to:yi(〈w,φ(xi)〉+b) ≥ 1−ξi , (2)

wherew is normal to the class separating hyperplane,C is a scalar value that controls the trade off
between the empirical risk and the margin (2

|w|) , ξi is the slack variable to handle non-separable
examples,b is a scalar value, andC,ξi > 0.

With Lagrange multipliers, the constraint optimization problem in Eq. (1) and (2)can be solved.
The decision function is

f (x) = ∑
i

αiyik(xi ,x)+b,

whereαi is a Lagrange multiplier. Bothαi andb are scalar values.
The Karush-Kuhn-Tucker condition of the optimal solution to Eq. (1) and (2) is

αi(yi(〈w,φ(xi)〉+b)−1+ξi) = 0.

αi is nonzero only when

yi(〈w,φ(xi)〉+b) = 1−ξi . (3)

In this case thexi contributes to the decision function and is called a support vector (SV).
We applied the one-vs-one approach to extend SVMs to multiple class problems. All possible

groups of 2 classes were used in building binary SVMs. In theN class case, we will buildN(N−1)
2

binary SVMs. We chose the one-vs-one method because it showed superior accuracy in several
experiments (see Hsu and Lin, 2002) over other multi-class methods–one-vs-all (Vapnik, 2000) and
the decision directed acyclic graph (Platt et al., 2000).

592

ACTIVE LEARNING TO RECOGNIZEMULTIPLE TYPES OFPLANKTON

2.2 Assigning Probability Values in Support Vector Machines

A probability associated with a classifier is often very useful and it provides an indication of how
much to believe the classification result. The classification probability can be used to develop an
active learning strategy for a multi-class SVM.

In Platt (2000) the sigmoid function was introduced as a probability model to fitP(y = 1| f)
directly, wheref is the decision function of the binary SVM. The parametric model is shown in
Eq. (4).

P(y = 1| f) =
1

1+exp(A f +B)
, (4)

whereA andB are scalar values, which are fit by maximum likelihood estimation.
A method to estimate classification probability for a series of pairwise classifierswas proposed

by Hastie and Tibshirani (1998). Given the estimated probability for each binary classifier(Ppq), the
probability of being class p in a binary classifier (class p vs. class q), theyminimized the average
Kullback-Leibler distance betweenPpq and P(p)

P(p)+P(q) , whereP(p) andP(q) were the probabilities
of a given example belonging to classes p and q, respectively. An iteratedalgorithm was given to
search forP(p). Following this line of the work, Wu et al. (2004) developed two new criteria for
the goodness of the estimated probabilities and applied their method to multi-class SVMs. Their
approach has three steps to get the probability estimation. First, a grid-search is used to determine
the best SVM parameters (C, g) based on a k-fold cross validation accuracy, whereC is the regular-
ization constant in Eq. (1) andg is the kernel parameter in the kernel functionk. Second, with the
optimal (C, g) found in the first step,A andB were fit individually for each binary SVM. Third, a
constrained quadratic programming method was used to optimize the criteria they proposed.

However, this approach is time consuming. The second step involves estimatingN(N − 1)
parameters for SVMs using a one-vs-one approach. The third step requires quadratic programming
to solveN variables for each example. On a data set withm examples, this step needs to runm
times. Another issue was that the SVM parameters (C, g) were estimated based on accuracy and
thus might not be good for probability estimation in the following two steps.

In real-time plankton recognition, the probability computation needs to be fast since retraining
the probability model will be frequently needed as more plankton images are acquired on a cruise.

We (Luo et al., 2004b) developed a practical approximation method to computethe probabil-
ity value, while avoiding expensive parameter fitting. By normalizing the real valued outputf (x)
from each binary SVM, the probability model assumes the sameA for all binary SVMs. Also, our
approach can optimize SVM parameters (C, g) together with the probability parameterA simulta-
neously using a log-likelihood criterion.

1. We assumeP(y = 1| f = 0) = P(y = −1| f = 0) = 0.5. This means that a point lying on the
decision boundary will have a 0.5 probability of belonging to each class. This allows the
elimination of B.

2. Since each binary SVM has a different margin, a crucial criterion in assigning the probability,
it is not fair to assign a probability without considering the margin. Therefore, the decision
function f (x) is normalized by its margin in each binary SVM. The probability model of
SVMs is shown in (5) and (6).Ppq represents the probability output for the binary SVM on
classp vs. classq, classp is +1 and classq is -1. We added the negative sign beforeA to
ensureA is positive:

593

LUO, KRAMER, GOLDGOF, HALL , SAMSON, REMSEN AND HOPKINS

Ppq(y = 1| f) =
1

1+exp(−A f
‖w‖)

, (5)

Ppq(y = −1| f) = 1−Ppq(y = 1| f) = Pqp(y = 1| f). (6)

3. AssumingPpq,q = 1,2, ... are independent, the final probability for classp is computed as
follows:

P(p) =
q6=p

∏
q

Ppq(y = 1| f). (7)

NormalizeP(p) to make∑pP(p) = 1.

4. Output ˆy = arg maxpP(p) as the prediction.

(A, C, g) are determined through numeric search based on the cost functionL from (8), whereti
is the true class label ofxi :

L = −∑
i

logP(ti). (8)

Although it is arguable whetherPpq andPpk are really independent sincePpq andPpk are both
estimated using data from classp, the one-vs-one approach does not suffer much from any depen-
dence. Consider differentiating examples from three classes (p, q and k). If a classifier is built for
classes p and q with another built for p and k, there is clearly a relationship but one class is different.
So, following this type of argument the classifiers will have a weak dependence. Knowing there is
only a weak dependence betweenPpq andPpk, Eq. (7) provides a reasonable approximation.

Grid-search can be used to find the optimal (C, g, A) on the initial small labeled data set. It has
the potential to be run in parallel to significantly reduce the computation time. If wewant to update
the probability model after adding more labeled images, we can fixC andg, and only search forA.
As a result, it is very fast to update the probability model. Moreover, we directly optimize (C, g, A)
together by minimizing the negative log-likelihood function in Eq. (8). Normalizingf by its margin
and assuming the sameA for each binary SVM trades off some flexibility to gain a regularization
effect and speedup since it restricts the otherwise big (N(N+1)) parameter space. Experiments for
this probability model were done on SIPPER images by Luo et al. (2004b).

2.3 Active Learning for Multi-Class SVMs

The least certainty active learning approach for SVMs (Luo et al., 2004a), which makes use of
the estimated probability described in Section 2.2, provides good performance in multi-class SVM
classification. The idea for it can be traced back to Lewis and Gale (1994), who used “uncertainty
sampling” to label the examples with the least classification certainty. We call the least certainty
approach for SVMs by Luo et al. (2004a) “LC”. In this paper, we propose another active learning
approach–“breaking ties” (BT). The idea of “BT” is to improve the confidence of the multi-class
classification. Recall in a multi-class SVM with probability outputs, we assign the class label of x to
argmaxpP(p). SupposeP(a) is the largest andP(b) is the second largest probability for example x,

594

ACTIVE LEARNING TO RECOGNIZEMULTIPLE TYPES OFPLANKTON

where a, b are class labels. “BT” tries to improve theP(a)−P(b). Intuitively, improving the value
of P(a)−P(b) amounts to breaking the tie betweenP(a) andP(b), thus improving the classification
confidence. The difference between “LC” and “BT” is that “LC” tries toimprove the value ofP(a)
rather thanP(a)−P(b).

The two algorithms work as follows:

1. Start with an initial training set and an unclassified set of images.

2. A multi-class support vector machine is built using the current training set.

3. Compute the probabilistic outputs of the classification results for each image on the unclas-
sified set. Suppose the class with highest probability isa and the class with second highest
probability isb. Record the value ofP(a) andP(b) for each unclassified image.

4. If LC: Remove the image(s) from the unclassified set that have the smallest classification
confidence, obtain the correct label(s) from human experts and add thelabeled image(s) to
the current training set.

5. If BT: Remove the image(s) from the unclassified set that have the smallest difference in
probabilities between them (P(a)−P(b)) for the two highest probability classes, obtain the
correct label from human experts and add the labeled image(s) to the current training set.

6. Go to 2.

3. Experiments

The experimental data set consisted of 8440 SIPPER II images selected from the five most abundant
types of plankton: 1688 images from each type of plankton. There were 1000 images (200 each
type of plankton) randomly selected as the validation set used in the active learning experiments.
The remaining 7440 image were used as the training set and to simulate the unlabeled image pool.
Figures 1(a) to 1(e) are typical examples of the images produced by SIPPER II for the five most
abundant plankton classes.

Given this new higher resolution data, 49 image features were developed (Luo et al., 2004b;
Luo, forthcoming) consisting of: moment invariants, weighted moment invariants, granulometric
features, Fourier descriptor, texture features and several domain specific features.

The Libsvm (Chang and Lin, 2001) support vector machine software was modified to produce
probabilistic outputs. Rifkin and Klautau (2004) argued the one-vs-all approach was essentially as
good as other voting algorithms, however, without postprocessing binarySVMs, we observed the
one-vs-one approach provided better accuracy and required less training time than the one-vs-all
approach in our previous experiments (Luo et al., 2004b). Also, when updating models with several
more labeled examples in N class problems, the one-vs-one approach only requires the update of N
binary SVMs built with a portion of the data, while the one-vs-all approach requires the update of
N binary SVMs built with all the labeled data. Therefore, the one-vs-one approach was used in our
experiments. In all experiments the Gaussian radial basis function (RBF) was used as the kernel:
k(x,y) = exp(−g‖x−y‖2) whereg is a scalar value.

The optimal feature subset was determined beforehand by our wrapperbased feature selection
method (Luo et al., 2004b) after the best (g, C) parameters were found by 5-fold cross validation.

595

LUO, KRAMER, GOLDGOF, HALL , SAMSON, REMSEN AND HOPKINS

(a) Calanoid copepod

(b) Larvacean

(c) Marine snow

(d) Oithona copepod

(e) Trichodesmium

Figure 1: Five most abundant types of plankton from SIPPER II

596

ACTIVE LEARNING TO RECOGNIZEMULTIPLE TYPES OFPLANKTON

We started off with all 49 image features and systematically eliminated features using best first
search and later beam search. Five-fold cross validation on 80% of thetraining data was used to
select the best feature subset for each feature set size. Then the best feature subsets were tested on
the remaining 20% of the training set. This feature selection method is describedin detail by Luo
et al. (2004b). As a result, 17 out of 49 features were selected. In allthe active learning experiments,
we used the best 17 feature subset instead of the 49 feature set.

In the kind of problem embodied by plankton recognition, there is only a small amount of
initial training data available. Therefore, the best parameter set for the probability model would be
estimated from a small data set. The parameters (g, C, A) were optimized by performing a grid-
search across a randomly selected 1000 images consisting of 200 images per class. We believe the
parameters were obtained from a relatively small set of data and were reasonably stable. A five-fold
cross validation was used to evaluate each combination of parameters basedon the loss functionL
from (8). The parameters (g, C, A) were varied with a certain interval in the grid space. Since the
parameters are independent, the grid-search ran very fast in a parallel implementation. The values
of g = 0.04096,C = 16, andA =100 were found to produce the best results.

We began with N randomly selected images per class as the initial training set. A series of
retrainings were done for the two active learning methods and with random sampling. Each exper-
iment was performed 30 times and the average statistics were recorded. Instead of exhausting all
of the unlabeled data set, we only labeled 750 more images in each experiment because exhausting
all unlabeled data was not a fair criterion for comparing between different sample selection algo-
rithms. For example, active learning labeled the most “informative” new examples, which were
available in the beginning of the experiment. As more “informative” examples were labeled, only
“garbage” examples were left unlabeled in the late stages of the experiment.The term “garbage”
examples means the examples correctly classified by the current classifier and far from the decision
boundary. Therefore, “garbage” examples have no contribution to improving the current classifier.
In contrast to active learning, random sampling labeled average “informative” examples throughout
the whole experiment. It surely would catch up with active learning in the later stages when active
learning only had “garbage” examples to label. Moreover, when the plankton recognition system is
employed on a cruise, the unlabeled images come like a stream. The nature of such an application
prevents one from exhausting all the unlabeled images because the time required to label them is
prohibitive. Therefore, it made more sense to compare different algorithms in the early stage of the
experiment when the unlabeled data set is not exhausted. To get an idea of the upper limit on the
classification accuracy, we built a SVM using all 7400 training images. Its prediction accuracy was
88.3% on the 1000 held-out data set.

Several variations of the procedure described above were performed. We varied both the number
of initial labeled images per class (IIPC) and the number of images selected for labeling at each
retraining step (IPR).

3.1 Experiments with IPR=1, IIPC Varied

Figures 2–5 show the experimental results of active learning methods usingdifferent IIPC values. A
paired-t test was used to test if there exists a statistically significantly difference. We used standard
error for the error bars in the figures because the denominator of t testis in the form of standard
error.

597

LUO, KRAMER, GOLDGOF, HALL , SAMSON, REMSEN AND HOPKINS

As shown in Figure 2, with only 10 images per class in the initial training sets we started off with
rather poor accuracy (64.6%). At p=0.05, “BT” is statistically significantlymore accurate than “LC”
and both active learning methods are statistically significantly more accurate than random sampling.
At 81% accuracy, random selection required approximately 1.7 times the number of newly labeled
images compared to “BT”.

Active learning is designed to label the most “informative” new images, thus improving a newly
trained classifier. In SVMs, the decision boundary is represented by support vectors (SVs). In
general, an effective active learning approach finds more SVs than random sampling. Figure 2 also
shows the average number of SVs versus the number of images added into the initial training set
from the 30 runs. Active learning resulted in many more SVs than random sampling. Also, the
slope of both active learning curves is about 0.9, which means that 90% of the labeled images turn
out to be SVs. Our active learning approach efficiently captured support vectors. We note that
a high slope of the support vector curve is not a sufficient condition foreffective active learning
because there are many SVs to be added into the current model and different SVs lead to different
improvements. Ideally, a very effective active learning method discoversthe SVs which provide the
most improvement to the current model. In contrast, an active learning method, which always finds
the SVs misclassified by the current classifier and far from its decision boundary, may result in poor
performance because such SVs are very likely to be noise. Therefore, we cannot compare active
learning methods based only on slight differences in the support vector curves.

With 50 IIPC in the initial training set as shown in Figure 3, the initial accuracy was 77%.
Compared to 10 IIPC, the accuracy for both active learning approaches improved faster than random
sampling. At the 81% accuracy level, random sampling required about 2.5 times and 1.7 times the
number of images compared with using “BT” and “LC”, respectively. The slopes of support vector
curves for active learning are higher than those of random sampling. Also, “BT” again outperformed
“LC”, however, it is not as obvious as with IIPC=10.

In Figures 4 and 5, the initial accuracy was greater than 80% when using 100 and 200 initial
images from each class, and active learning was very effective. Random sampling required more
than 3 times the number of images to reach the same level of accuracy as both active learning
approaches. The two active learning methods effectively capture many more SVs than random
sampling. Also, our newly proposed active learning approach, “BT”, requires less images to reach
a given accuracy than “LC” after adding 450 labeled images. Before adding 450 labeled images,
however, “BT” performs similarly to “LC”.

It seems reasonable that the accuracy of the initial classifier affects the performance of active
learning and random sampling. Active learning greedily chooses the most “informative” examples
based on the previous model. So an un-informed model tends to be provide less important examples
for labeling. Hence, their addition may not help to improve the classifier accuracy much. While
random sampling provides the classifier with average “informative” examples whatever the initial
classifier accuracy. Therefore, if the initial classifier helps active learning to choose examples more
informative than average (random sampling), active learning will result ina more accurate classifier
with fewer labeled examples. The better the initial classifier, the more labeling effort is saved.

When comparing the two active learning methods, “BT” outperformed “LC” under all four
starting conditions. However, the difference in accuracy between them was insignificant as the
initial classifier became more accurate. The justification is that an accurate initial classifier allows
for less error reduction using active learning. “BT” improved the accuracy by more than 20% when
IIPC=10 while it boosted the accuracy by less than 4% when IIPC=200. Therefore, as the amount

598

ACTIVE LEARNING TO RECOGNIZEMULTIPLE TYPES OFPLANKTON

IIPC=10, IPR=1

63.7%

60%

65%

70%

75%

80%

85%

0
 100
 200
 300
 400
 500
 600
 700

Number of new images

A
c
c
u

ra
c
y

LC

BT

Random

IIPC=10, IPR=1

44

0

100

200

300

400

500

600

700

800

0
 100
 200
 300
 400
 500
 600
 700

Number of new images

N
u

m
b

e
r

o
f

s
u

p
p

o
rt

 v
e
c
to

rs

LC

BT

Random

Figure 2: Comparison of active learning and random sampling in terms of accuracy and number of
support vectors: initial training images per class are 10, one new labeled image added at
a time. The error bars represent the standard errors.

599

LUO, KRAMER, GOLDGOF, HALL , SAMSON, REMSEN AND HOPKINS

IIPC=50, IPR=1

77%

78%

79%

80%

81%

82%

83%

84%

85%

86%

87%

0
 100
 200
 300
 400
 500
 600
 700

Number of new images

A
c
c
u

ra
c
y

LC

BT

Random

IIPC=50, IPR=1

168

100

200

300

400

500

600

700

800

900

0
 100
 200
 300
 400
 500
 600
 700

Number of new images

N
u

m
b

e
r

o
f

s
u

p
p

o
rt

 v
e

c
to

rs

LC

BT

Random

Figure 3: Comparison of active learning and random sampling in terms of accuracy and number of
support vectors: initial training images per class are 50, one new labeled image added at
a time. The error bars represent the standard error.

600

ACTIVE LEARNING TO RECOGNIZEMULTIPLE TYPES OFPLANKTON

IIPC=100, IPR=1

80.5%

80%

81%

82%

83%

84%

85%

86%

87%

0
 100
 200
 300
 400
 500
 600
 700

Number of new images

A
c
c
u

ra
c
y

LC

BT

Random

IIPC=100, IPR=1

293

200

300

400

500

600

700

800

900

1000

0
 100
 200
 300
 400
 500
 600
 700

Number of new images

N
u

m
b

e
r

o
f

s
u

p
p

o
rt

 v
e
c
to

rs

LC

BT

Random

Figure 4: Comparison of active learning and random sampling in terms of accuracy and number of
support vectors: initial training images per class are 100, one new labeledimage added at
a time. The error bars represent the standard error.

601

LUO, KRAMER, GOLDGOF, HALL , SAMSON, REMSEN AND HOPKINS

IIPC=200, IPR=1

83.4%

83.0%

83.5%

84.0%

84.5%

85.0%

85.5%

86.0%

86.5%

87.0%

87.5%

0
 100
 200
 300
 400
 500
 600
 700

Number of new images

A
c
c
u

ra
c
y

LC

BT

Random

IIPC=200, IPR=1

500

600

700

800

900

1000

1100

1200

0
 100
 200
 300
 400
 500
 600
 700

Number of new images

N
u

m
b

e
r

o
f

s
u

p
p

o
rt

 v
e
c
to

rs

LC

BT

Random

Figure 5: Comparison of active learning and random sampling in terms of accuracy and number of
support vectors: initial training images per class are 200, one new labeledimage added at
a time. The error bars represent the standard error.

602

ACTIVE LEARNING TO RECOGNIZEMULTIPLE TYPES OFPLANKTON

of available accuracy improvement was small, the difference in accuracy between the two active
learning methods became insignificant.

3.2 Varying the IPR

One might expect that, in actual practice, more than one image would typically belabeled and added
to the training set for retraining. It is convenient for an expert to label several images instead of one
at a time. Also, given the total number of newly labeled images isU , it is approximatelyk times
faster if we labelk images at a time because it only requires a new model be learnedU

k times. Al-
though an incremental SVM training algorithm was proposed by Cauwenberghs and Poggio (2000)
to reduce the retraining time, model updating by labeling one image at a time was still quite time
consuming, especially when many images are to be labeled. Therefore, we expected active learning
to be effective even when adding several labeled images at a time.

The active learning method “BT” was good for adding only one “informative” example at a
time, however there was no guarantee that adding several examples at a timewould still favor “BT”.
The reason is that adding one “informative” example will update the model, which in turn changes
the criterion for the next “informative” example. Therefore, the most “informative” example set is
different from simply grouping several most “informative” examples together. However, such an
optimal example set is very hard to compute. Therefore, we expect grouping several most “infor-
mative” examples together is a reasonable approximation of the optimal example set, or at least is
superior to randomly selecting several examples.

Figures 6 to 9 show the experimental results using “BT” by varying IPR foreach IIPC. In all the
experiments, the IPR was varied from 1 to 50. We only show the error barsfor random sampling
because adding error bars to “BT” will make the graph too busy. We againused a paired-t test to
compare “BT” with random sampling. Somewhat surprisingly, classification accuracy with large
IPRs is almost as good as with small IPRs although a very large IPR (IPR=50) resulted in slightly
less accurate classifiers than a small IPR in many cases. In all situations, even a large IPR (up
to 50) enabled “BT” to result in a statistically significantly more accurate classifier than random
sampling at p=0.05. These results indicate that our active learning approach “BT” can run in batch
mode, labeling tens of examples at a time, to achieve speedup with at most a little compromise in
accuracy.

3.3 Other Experiments

We experimented with “BT” in a streaming data simulation. In this experiment, unlabeled data was
treated as a stream with only a block of unlabeled data available at a given time.The algorithm
selectively labeled data within this block. Then all unlabeled data in the block was discarded and
a new data block was pulled from the stream. In our experiment, we started off with 10 labeled
images randomly selected from each class (IIPC=10). The size of data block was 100. From each
data block, 10 images were selected to label at a time (IPR=10). Figure 10 shows a comparison
of “BT” with random sampling in the stream setup. We also show “BT” without streaming for
comparison. All the curves were averaged over 30 runs in which the order of the data blocks was
randomized.

“BT” in a streaming simulation performed very well. At p=0.05, it was more accurate than
random sampling and was as accurate as “BT” in a non-streaming setup. This experiment indicates
that “BT” works well in “data streaming” situations.

603

LUO, KRAMER, GOLDGOF, HALL , SAMSON, REMSEN AND HOPKINS

10-IIPC

85.0%

82.9%

64%

69%

74%

79%

84%

0
 100
 200
 300
 400
 500
 600
 700

Number of new images

A
c

c
u

ra
c

y

1-IPR

5-IPR

10-IPR

20-IPR

50-IPR

Random

Figure 6: Comparison of active learning and random sampling in terms of accuracy with differ-
ent IPR: initial training images per class are 10. Standard error bars areon the random
sampling curve.

604

ACTIVE LEARNING TO RECOGNIZEMULTIPLE TYPES OFPLANKTON

50-IIPC

85.7%

83.2%

77%

78%

79%

80%

81%

82%

83%

84%

85%

86%

0
 100
 200
 300
 400
 500
 600
 700

Number of new images

A
c

c
u

ra
c

y

1-IPR

5-IPR

10-IPR

20-IPR

50-IPR

Random

Figure 7: Comparison of active learning and random sampling in terms of accuracy with differ-
ent IPR: initial training images per class are 50. Standard error bars areon the random
sampling curve.

605

LUO, KRAMER, GOLDGOF, HALL , SAMSON, REMSEN AND HOPKINS

100-IIPC

86.6%

84.3%

80.5%

80%

81%

82%

83%

84%

85%

86%

87%

0
 100
 200
 300
 400
 500
 600
 700

Number of new images

A
c

c
u

ra
c

y

1-IPR

5-IPR

10-IPR

20-IPR

50-IPR

Random

Figure 8: Comparison of active learning and random sampling in terms of accuracy with different
IPR: initial training images per class are 100. Standard error bars are onthe random
sampling curve.

606

ACTIVE LEARNING TO RECOGNIZEMULTIPLE TYPES OFPLANKTON

200-IIPC

87.2%

83.4%

84.9%

83%

84%

84%

85%

85%

86%

86%

87%

87%

88%

0
 100
 200
 300
 400
 500
 600
 700

Number of new images

A
c

c
u

ra
c

y

1-IPR

5-IPR

10-IPR

20-IPR

50-IPR

Random

Figure 9: Comparison of active learning and random sampling in terms of accuracy with different
IPR: initial training images per class are 200. Standard error bars are onthe random
sampling curve.

607

LUO, KRAMER, GOLDGOF, HALL , SAMSON, REMSEN AND HOPKINS

IIPC=10, IPR=10

85.3%

82.2%

63.7%

60%

65%

70%

75%

80%

85%

90%

0
 100
 200
 300
 400
 500
 600
 700

Number of new images

A
c
c
u

ra
c
y

BT (non-streaming)

BT (streaming)

Random

Figure 10: Comparison of active learning and random sampling in a data streaming simulation:
initial training images per class are 10, 10 newly labeled images added at a time. The
error bars represent the standard error.

608

ACTIVE LEARNING TO RECOGNIZEMULTIPLE TYPES OFPLANKTON

In the previous experiments, all the classes have equal priors. We investigated how “BT” per-
formed when the priors for each type of plankton were different. It should be noted that under
the unequal prior condition, our probabilistic interpretation is different from traditional probability
model in two aspects. First, the sigmoid function directly estimatesP(y| f) rather than computing
the probability density functionP(f |y). Therefore, we can not simply apply Bayes rule to include
the priors. Second, our probability model is built on top of a trained SVM. When the class dis-
tribution becomes skewed, the decision function of a SVM will vary accordingly. As a result, our
probability model (built on the SVM) implicitly incorporates the unequal prior information. In our
experiment, we selected three types of plankton with unequal priors. The ratio among the three
types of plankton was 1:2:4. Both the unlabeled pool and the held-out data set had 200 larvacean,
400 oithona and 800 copepod images. We started off with a total of 30 initial labeled images ran-
domly taken from the above distribution and labeled one image at a time per retraining (IPR=1).
The initial 30 labeled image set consisted of 4 larvacean, 9 oithona, and 17 copepod images. The
initial labeled images used unequal priors because they would typically be randomly sampled from
the unlabeled pool and therefore would likely have the same class distribution.

Figure 11 shows the experimental results for the unequal prior experiment. When the distri-
bution of different plankton was skewed, “BT” still outperformed random sampling. “BT” was
statistically significantly more accurate than random sampling at p=0.05.

4. Discussion and Conclusions

This paper presents an active learning approach to reduce domain experts’ labeling efforts in rec-
ognizing plankton from higher-resolution, new generation SIPPER II images. It can be applied
to any data set where the examples will be labeled over time and one wants to usethe learned
model as early as possible. The “breaking ties” active learning method wasproposed and applied
to a multi-class SVM using the one-vs-one approach on newly developed, image features extracted
from gray-scale SIPPER images. The experimental results showed that our proposed active learn-
ing approach successfully reduced the number of labeled images required to reach a given accuracy
level when compared to random sampling. It also outperforms the least certainty approach previ-
ously proposed by us. The new approach was also effective in batch mode, allowing for labeling up
to 20 images at a time with classification accuracy which was similar to that achievedwhen labeling
one image at a time and retraining. This results in a significant speedup in the training phase. In
the following, we address and discuss several active learning in SVM issues which deserve further
exploration.

One critique of active learning is the overhead related to searching for thenext candidate to
label. Random sampling just selects an example to label at random, but activelearning needs to
evaluate every unlabeled example. This overhead becomes significant when the unlabeled data set
is very large. A simple solution would be random subset evaluation. Each time one searches for
the next candidate example to label, instead of evaluating the entire unlabeled data set, can only
evaluate a randomly drawn subset. We indicate without proof here that forIPR=1, we needed to
sample 59 examples, which provided 95% probability confidence that the best candidate from the
59 example subset is superior to 95% data from the total unlabeled set (seeScḧolkopf and Smola,
2002, chap. 6.5). Also, the experiment with a “data streaming” simulation indicated “BT” worked
well when the evaluation and active learning was performed on a small subset of the data.

609

LUO, KRAMER, GOLDGOF, HALL , SAMSON, REMSEN AND HOPKINS

74%

76%

78%

80%

82%

84%

86%

88%

90%

92%

0
 100
 200
 300
 400
 500
 600
 700

Number of new images

A
c
c
u

ra
c
y

BT

Random

Figure 11: Unequal prior experiment. The ratio among the three classes are 1:2:4. The error bars
represent the standard errors.

610

ACTIVE LEARNING TO RECOGNIZEMULTIPLE TYPES OFPLANKTON

Another important issue is the change of optimal kernel parameters. We canfind the optimal
kernel parameters from the initial labeled data set. As more labeled data are added, however, such
kernel parameters may no longer be optimal. Unless we can afford a held-out, labeled data set, it is
difficult to tune the kernel parameters online. The key reason is we do nothave a good method to
evaluate different kernel parameters as active learning proceeds. The standard methods like cross-
validation and leave-one-out tend to fail because active learning chooses biased data samples. Such
failures were observed and discussed by Baram et al. (2004). An important future direction is to
find a good online performance evaluation method for active learning. Otherwise, one could take
it as one of the biggest bottlenecks for using a SVM as the classifier in active learning because
a SVM depends heavily on good kernel parameters. An effort towardssolving this problem was
proposed by Baram et al. (2004) who used the classification entropy maximization (CEM) criterion
to evaluate the performance of different active learners. Their work shows CEM can help select the
best active learner on several data sets.

An important thing omitted in most active learning+SVMs literature is to try active learning
in batch mode. Unless labeling an example is extremely expensive, it is alwaysconvenient and
practical to use active learning in batch mode, namely labeling several examples at a time and then
retraining. As indicated in this paper, the best candidate set to label might befound in a different way
from a single best candidate point. The “combined” approach only worksfor two-class problems. A
criterion for the best set of data to label in multi-class SVMs needs to be addressed in future active
learning work. At the very least, existing active learning methods need to beshown to work well in
batch mode. Fortunately, our proposed active learning method did work well in batch mode without
requiring a new criterion for selecting a set of data to label.

In this paper, we do not deal with a significant amount of label noise, which means one assigns
incorrect class labels to the examples. In general, active learning tries to minimize the redundancy
of labeled examples to reach a given accuracy. Therefore, noisy labels will hurt its performance.
In our case, we only selectively label a few images and we expect small labeling noise due to the
relatively small labeling effort. Please see Kearns (1998) for more detailabout handling noisy labels
in statistical queries.

Acknowledgments

This research was partially supported by the United States Navy, Office ofNaval Research, under
grant number N00014-02-1-0266 and the NSF under grant EIA-0130768.

References

Y. Baram, R. Yaniv, and K. Luz. Online choice of active learning algorithms. Journal of Machine
Learning Research, 5:255–291, 2004.

K. Brinker. Incorporating diversity in active learning with support vector machines. InProceedings
of the Twentieth International Conference on Machine Learning, pages 59–66, 2003.

C. Campbell, N. Cristianini, and A. Smola. Query learning with large margin classifiers. In Pro-
ceedings of 17th International Conference on Machine Learning, pages 111–118, 2000.

611

LUO, KRAMER, GOLDGOF, HALL , SAMSON, REMSEN AND HOPKINS

G. Cauwenberghs and T. Poggio. Incremental and decremental support vector machine learning. In
Advances in Neural Information Processing Systems, volume 13, pages 409–415, 2000.

C. Chang and C. Lin. LIBSVM: a library for support vector machines (version 2.3). 2001. URL
http://www.csie.ntu.edu.tw/ cjlin/papers/libsvm.pdf.

N. Cristianini and J. Shawe-Taylor.Introduction to support vector machines and other kernel-based
learning methods. Cambridge University Press, 2000.

T. Hastie and R. Tibshirani. Classification by pairwise coupling. InAdvances in Neural Information
Processing Systems, volume 10, pages 507–513, 1998.

C. W. Hsu and C. J. Lin. A comparison of methods for multi-class support vector machines.IEEE
Transactions on Neural Networks, 13(2):415–425, 2002.

M. Kearns. Efficient noise-tolerant learning from statistical queries.Journal of the ACM, 45(6):
983–1006, 1998.

D. D. Lewis and W. A. Gale. A sequential algorithm for training text classifiers. In Proceedings
of SIGIR-94, 17th ACM International Conference on Research and Development in Information
Retrieval, pages 3–12, 1994.

T. Luo. Scaling up support vector machines with applications to plankton recognition. PhD thesis,
University of South Florida, forthcoming.

T. Luo, K. Kramer, D. Goldgof, L.O. Hall, S. Samson, A. Remsen, and T. Hopkins. Active learning
to recognize multiple types of plankton. In17th conference of the International Association for
Pattern Recognition, volume 3, pages 478–481, 2004a.

T. Luo, K. Kramer, D. Goldgof, L.O. Hall, S. Samson, A. Remson, and T. Hopkins. Recognizing
plankton images from the shadow image particle profiling evaluation recorder. IEEE Transactions
on System, Man, and Cybernetics–Part B: Cybernetics, 34(4):1753–1762, August 2004b.

P. Mitra, C. A. Murthy, and S. K. Pal. A probabilistic active support vector learning algorithm.IEEE
Transactions on Pattern Analysis and Machine Intelligence, 26(3):413–418, 2004a.

P. Mitra, B. U. Shankar, and S. K. Pal. Segmentation of multispectral remote sensing images using
active support vector machines.Pattern Recognition Letters, 25(9):1067–1074, 2004b.

H. T. Nguyen and A. Smeulders. Active learning using pre-clustering. In Twenty-first International
Conference on Machine learning, 2004.

T. Onoda, H. Murata, and S. Yamada. Relevance feedback with active learning for document re-
trieval. InProceedings of the International Joint Conference on Neural Networks 2003, volume 3,
pages 1757–1762, 2003.

J. M. Park. Convergence and application of online active sampling using orthogonal pillar vectors.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 26(9):1197–1207, 2004.

J. Platt. Probabilistic outputs for support vector machines and comparison toregularized likelihood
methods. InAdvances in Large Margin Classiers, pages 61–74, 2000.

612

ACTIVE LEARNING TO RECOGNIZEMULTIPLE TYPES OFPLANKTON

J. Platt, N. Cristianini, and J. Shawe-Taylor. Large margin DAGs for multiclass classification. In
Advances in Neural Information Processing Systems 12, pages 547–553, 2000.

A. Remsen, T. L. Hopkins, and S. Samson. What you see is not what youcatch: a comparison of
concurrently collected net, optical plankton counter, and shadowed image particle profiling evalu-
ation recorder data from the northeast gulf of mexico.Deep Sea Research Part I: Oceanographic
Research Papers, 51:129–151, 2004.

R. Rifkin and A. Klautau. In defense of one-vs-all classification.Journal of Machine Learning
Research, 5:101–141, 2004.

N. Roy and A. McCallum. Toward optimal active learning through sampling estimation of error
reduction. InProceedings of 18th International Conference on Machine Learning, pages 441–
448, 2001.

S. Samson, T. Hopkins, A. Remsen, L. Langebrake, T. Sutton, and J. Patten. A system for high
resolution zooplankton imaging.IEEE journal of ocean engineering, pages 671–676, 2001.

M. Sassano. An empirical study of active learning with support vector machines for japanese word
segmentation. InProceedings of the 40th Annual Meeting of the Association for Computational
Linguistics, pages 505–512, 2002.

G. Schohn and D. Cohn. Less is more: Active learning with support vector machines. InProceed-
ings of 17th International Conference on Machine Learning, pages 839–846, 2000.

B. Scḧolkopf and A. J. Smola.Learning with kernels. The MIT Press, 2002.

X. Tang, F. Lin, S. Samson, and A. Remsen. Feature extraction for binary plankton image classifi-
cation.accepted by IEEE Journal of oceanic engineering, forthcoming.

S. Tong and D. Koller. Support vector machine active learning with applications to text classifica-
tion. In Proceedings of 17th International Conference on Machine Learning, pages 999–1006,
2000.

V. N. Vapnik. The nature of statistical learning theory. Springer, 2000.

L. Wang, K. L. Chan, and Z. h. Zhang. Bootstrapping SVM active learning by incorporating un-
labelled images for image retrieval. InProceedings of IEEE Computer Society Conference on
Computer Vision and Pattern Recognition, volume 1, pages 629–634, 2003.

M. K. Warmuth, G. R̈atsch, M. Mathieson, J. Liao, and C. Lemmen. Support vector machines for
active learning in the drug discovery process.Journal of Chemical Information Sciences, 43(2):
667–673, 2003.

T. F. Wu, C. J. Lin, and R. C. Weng. Probability estimates for multi-class classification by pairwise
coupling.Journal of Machine Learning Research, 5:975–1005, 2004.

613

Journal of Machine Learning Research 6 (2005) 615–637 Submitted 2/05; Published 4/05

Learning Multiple Tasks with Kernel Methods

Theodoros Evgeniou THEODOROS.EVGENIOU@INSEAD.EDU

Technology Management
INSEAD
77300 Fontainebleau, France

Charles A. Micchelli CAM@MATH .ALBANY .EDU

Department of Mathematics and Statistics
State University of New York
The University at Albany
1400 Washington Avenue
Albany, NY 12222, USA

Massimiliano Pontil M .PONTIL@CS.UCL.AC.UK

Department of Computer Science
University College London
Gower Street, London WC1E, UK

Editor: John Shawe-Taylor

Abstract
We study the problem of learning many related tasks simultaneously using kernel methods and

regularization. The standard single-task kernel methods,such as support vector machines and
regularization networks, are extended to the case of multi-task learning. Our analysis shows that
the problem of estimating many task functions with regularization can be cast as a single task
learning problem if a family of multi-task kernel functionswe define is used. These kernels model
relations among the tasks and are derived from a novel form ofregularizers. Specific kernels that
can be used for multi-task learning are provided and experimentally tested on two real data sets.
In agreement with past empirical work on multi-task learning, the experiments show that learning
multiple related tasks simultaneously using the proposed approach can significantly outperform
standard single-task learning particularly when there aremany related tasks but few data per task.

Keywords: multi-task learning, kernels, vector-valued functions, regularization, learning algo-
rithms

1. Introduction

Past empirical work has shown that, when there are multiple related learning tasks it is beneficial
to learn them simultaneously instead of independently as typically done in practice (Bakker and
Heskes, 2003; Caruana, 1997; Heskes, 2000; Thrun and Pratt, 1997). However, there has been
insufficient research on the theory of multi-task learning and on developing multi-task learning
methods. A keygoal of this paper is to extend the single-task kernel learning methods which
have been successfully used in recent years to multi-task learning. Our analysis establishes that the
problem of estimating many task functions with regularization can be linked to a single task learning
problem provided a family of multi-task kernel functions we define is used. For this purpose, we
use kernels for vector-valued functions recently developed by Micchelli and Pontil (2005). We

c©2005 Theodoros Evgeniou, Charles Micchelli and Massimiliano Pontil.

EVGENIOU, M ICCHELLI AND PONTIL

elaborate on these ideas within a practical context and present experiments of the proposed kernel-
based multi-task learning methods on two real data sets.

Multi-task learning is important in a variety of practical situations. For example,in finance
and economics forecasting predicting the value of many possibly related indicators simultaneously
is often required (Greene, 2002); in marketing modeling the preferencesof many individuals, for
example with similar demographics, simultaneously is common practice (Allenby and Rossi, 1999;
Arora, Allenby, and Ginter, 1998); in bioinformatics, we may want to study tumor prediction from
multiple micro–array data sets or analyze data from mutliple related diseases.

It is therefore important to extend the existing kernel-based learning methods, such as SVM
and RN, that have been widely used in recent years, to the case of multi-tasklearning. In this
paper we shall demonstrate experimentally that the proposed multi-task kernel-based methods lead
to significant performance gains.

The paper is organized as follows. In Section 2 we briefly review the standard framework for
single-task learning using kernel methods. We then extend this framework tomulti-task learning
for the case of learning linear functions in Section 3. Within this framework wedevelop a general
multi-task learning formulation, in the spirit of SVM and RN type methods, and propose some
specific multi-task learning methods as special cases. We describe experiments comparing two of
the proposed multi-task learning methods to their standard single-task counterparts in Section 4.
Finally, in Section 5 we discuss extensions of the results of Section 3 to non-linear models for
multi-task learning, summarize our findings, and suggest future researchdirections.

1.1 Past Related Work

The empirical evidence that multi-task learning can lead to significant performance improvement
(Bakker and Heskes, 2003; Caruana, 1997; Heskes, 2000; Thrun and Pratt, 1997) suggests that
this area of machine learning should receive more development. The simultaneous estimation of
multiple statistical models was considered within the econometrics and statistics literature (Greene,
2002; Zellner, 1962; Srivastava and Dwivedi, 1971) prior to the interests in multi-task learning in
the machine learning community.

Task relationships have been typically modeled through the assumption that theerror terms
(noise) for the regressions estimated simultaneously—often called “SeeminglyUnrelated Regressions”—
are correlated (Greene, 2002). Alternatively, extensions of regularization type methods, such as
ridge regression, to the case of multi-task learning have also been proposed. For example, Brown
and Zidek (1980) consider the case of regression and propose an extension of the standard ridge
regression to multivariate ridge regression. Breiman and Friedman (1998)propose the curds&whey
method, where the relations between the various tasks are modeled in a post–processing fashion.

The problem of multi-task learning has been considered within the statistical learning and ma-
chine learning communities under the name “learning to learn” (see Baxter, 1997; Caruana, 1997;
Thrun and Pratt, 1997). An extension of the VC-dimension notion and of thebasic generalization
bounds of SLT for single-task learning (Vapnik, 1998) to the case of multi-task learning has been
developed in (Baxter, 1997, 2000) and (Ben-David and Schuller, 2003). In (Baxter, 2000) the prob-
lem of bias learning is considered, where the goal is to choose an optimal hypothesis space from a
family of hypothesis spaces. In (Baxter, 2000) the notion of the “extended VC dimension” (for a
family of hypothesis spaces) is defined and it is used to derive generalization bounds on the average
error ofT tasks learned which is shown to decrease at best as1

T . In (Baxter, 1997) the same setup

616

LEARNING MULTIPLE TASKS WITH KERNEL METHODS

was used to answer the question “how much information is needed per task in order to learnT tasks”
instead of “how many examples are needed for each task in order to learnT tasks”, and the theory
is developed using Bayesian and information theory arguments instead of VCdimension ones. In
(Ben-David and Schuller, 2003) the extended VC dimension was used to derive tighter bounds that
hold for each task (not just the average error among tasks as considered in (Baxter, 2000)) in the
case that the learning tasks are related in a particular way defined. More recent work considers
learning multiple tasks in a semi-supervised setting (Ando and Zhang, 2004) and the problem of
feature selection with SVM across the tasks (Jebara, 2004).

Finally, a number of approaches for learning multiple tasks are Bayesian, where a probability
model capturing the relations between the different tasks is estimated simultaneously with the mod-
els’ parameters for each of the individual tasks. In (Allenby and Rossi,1999; Arora, Allenby, and
Ginter, 1998) a hierarchical Bayes model is estimated. First, it is assumed a priori that the parame-
ters of theT functions to be learned are all sampled from an unknown Gaussian distribution. Then,
an iterative Gibbs sampling based approach is used to simultaneously estimate both the individual
functions and the parameters of the Gaussian distribution. In this model relatedness between the
tasks is captured by this Gaussian distribution: the smaller the variance of the Gaussian the more
related the tasks are. Finally, (Bakker and Heskes, 2003; Heskes, 2000) suggest a similar hierarchi-
cal model. In (Bakker and Heskes, 2003) a mixture of Gaussians for the“upper level” distribution
instead of a single Gaussian is used. This leads to clustering the tasks, one cluster for each Gaussian
in the mixture.

In this paper we will not follow a Bayesian or a statistical approach. Instead, our goal is to
develop multi-task learning methods and theory as an extension of widely usedkernel learning
methods developed within SLT or Regularization Theory, such as SVM and RN. We show that using
a particular type of kernels, the regularized multi-task learning method we propose is equivalent to
a single-task learning one when such a multi-task kernel is used. The workhere improves upon the
ideas discussed in (Evgeniou and Pontil, 2004; Micchelli and Pontil, 2005b).

One of our aims is to show experimentally that the multi-task learning methods we develop here
significantly improve upon their single-task counterpart, for example SVM. Therefore, to emphasize
and clarify this point we only compare the standard (single-task) SVM with a proposed multi-task
version of SVM. Our experiments show the benefits of multi-task learning and indicate that multi-
task kernel learning methods are superior to their single-task counterpart. An exhaustive comparison
of anysingle-task kernel methods with their multi-task version is beyond the scope ofthis work.

2. Background and Notation

In this section, we briefly review the basic setup for single-task learning using regularization in
a reproducing kernel Hilbert space (RHKS)HK with kernelK. For more detailed accounts (see
Evgeniou, Pontil, and Poggio, 2000; Shawe-Taylor and Cristianini, 2004; Scḧolkopf and Smola,
2002; Vapnik, 1998; Wahba, 1990) and references therein.

2.1 Single-Task Learning: A Brief Review

In the standard single-task learning setup we are givenmexamples{(xi ,yi) : i ∈ Nm} ⊂ X ×Y (we
use the notationNm for the set{1, . . . ,m}) sampledi.i.d. from an unknown probability distribution
P on X ×Y . The input spaceX is typically a subset ofRd, thed dimensional Euclidean space, and
the output spaceY is a subset ofR. For example, in binary classificationY is chosen to be{−1,1}.

617

EVGENIOU, M ICCHELLI AND PONTIL

The goal is to learn a functionf with small expected errorE[L(y, f (x))], where the expectation is
taken with respect toP andL is a prescribed loss function such as the square error(y− f (x))2. To
this end, a common approach within SLT and regularization theory is to learnf as the minimizer in
HK of the functional

1
m ∑

j∈Nm

L(y j , f (x j))+ γ‖ f‖2
K (1)

where‖ f‖2
K is the norm off in HK . WhenHK consists of linear functionsf (x)= w′x, with w,x∈R

d,
we minimize

1
m ∑

j∈Nm

L(y j ,w
′x j)+ γw′w (2)

where all vectors are column vectors and we use the notationA′ for the transpose of matrixA, and
w is ad×1 matrix.

The positive constantγ is called the regularization parameter and controls the trade off between
the error we make on them examples (the training error) and the complexity (smoothness) of the
solution as measured by the norm in the RKHS. Machines of this form have been motivated in the
framework of statistical learning theory (Vapnik, 1998). Learning methodssuch as RN and SVM
are particular cases of these machines for certain choices of the loss function L (Evgeniou, Pontil,
and Poggio, 2000).

Under rather general conditions (Evgeniou, Pontil, and Poggio, 2000;Micchelli and Pontil,
2005b; Wahba, 1990) the solution of Equation (1) is of the form

f (x) = ∑
j∈Nm

c jK(x j ,x) (3)

where{c j : j ∈Nm} is a set of real parameters andK is a kernel such as an homogeneous polynomial
kernel of degreer, K(x, t) = (x′t)r , x, t ∈R

d. The kernelK has the property that, forx∈ X , K(x, ·)∈
HK and, for f ∈ HK 〈 f ,K(x, ·)〉K = f (x), where〈·, ·〉K is the inner product inHK (Aronszajn, 1950).
In particular, forx, t ∈ X , K(x, t) = 〈K(x, ·),K(t, ·)〉K implying that them×m matrix (K(xi ,x j) :
i, j ∈ Nm) is symmetric and positive semi-definite foranyset of inputs{x j : j ∈ Nm} ⊆ X .

The result in Equation (3) is known as therepresenter theorem. Although it is simple to prove, it
is remarkable as it makes the variational problem (1) amenable for computations. In particular, ifL
is convex, the unique minimizer of functional (1) can be found by replacingf by the right hand side
of Equation (3) in Equation (1) and then optimizing with respect to the parameters{c j : j ∈ Nm}.

A popular way to define the spaceHK is based on the notion of afeature mapΦ : X → W ,
whereW is a Hilbert space with inner product denoted by〈·, ·〉W . Such a feature map gives rise
to the linear space of all functionsf : X → R defined forx∈ X andw∈ W as f (x) = 〈w,Φ(x)〉W

with norm 〈w,w〉W . It can be shown that this space is (modulo an isometry) the RKHSHK with
kernelK defined, forx, t ∈ X , asK(x, t) = 〈Φ(x),Φ(t)〉W . Therefore, the regularization functional
(1) becomes

1
m ∑

j∈Nm

L(y j ,〈w,Φ(x j)〉W)+ γ〈w,w〉W . (4)

Again, any minimizer of this functional has the form

w = ∑
j∈Nm

c jΦ(x j) (5)

618

LEARNING MULTIPLE TASKS WITH KERNEL METHODS

which is consistent with Equation (3).

2.2 Multi-Task Learning: Notation

For multi-task learning we haven tasks and corresponding to the`−th task there are availablem
examples{(xi`,yi`) : i ∈Nm} sampled from a distributionP̀ onX`×Y`. Thus, the total data available
is {(xi`,yi`) : i ∈ Nm, ` ∈ Nn}. The goal it to learn alln functions f` : X` → Y` from the available
examples. In this paper we mainly discuss the case that the tasks have a commoninput space, that
is X` = X for all ` and briefly comment on the more general case in Section 5.1.

There are various special cases of this setup which occur in practice. Typically, the input space
X` is independent of̀. Even more so, the input dataxi` may be independent of` for every sample
i. This happens in marketing applications of preference modeling (Allenby and Rossi, 1999; Arora,
Allenby, and Ginter, 1998) where the same choice panel questions are given to many individual
consumers, each individual provides his/her own preferences, andwe assume that there is some
commonality among the preferences of the individuals. On the other hand, there are practical cir-
cumstances where the output datayi` is independent of̀. For example, this occurs in the problem
of integrating information from heterogeneous databases (Ben-David, Gehrke, and Schuller, 2002).

In other cases one does not have either possibilities, that is, the spacesX`×Y` are different. This
is for example the machine vision case of learning to recognize a face by first learning to recognize
parts of the face, such as eyes, mouth, and nose (Heisele et al., 2002).Each of these tasks can be
learned using images of different size (or different representations).

We now turn to the extension of the theory and methods for single-task learning using the
regularization based kernel methods briefly reviewed above to the case of multi-task learning. In the
following section we will consider the case that functionsf` are all linear functions and postpone
the discussion of non-linear multi-task learning to Section 5.

3. A Framework for Multi-Task Learning: The Linear Case

Throughout this section we assume thatX` = R
d, Y` = R and that the functionsf` are linear, that is,

f`(x) = u′`x with u` ∈ R
d. We propose to estimate the vector of parametersu = (u` : ` ∈ Nn) ∈ R

nd

as the minimizer of a regularization function

R(u) :=
1

nm ∑
`∈Nn

∑
j∈Nm

L(y j`,u
′
`x j`)+ γJ(u) (6)

whereγ is a positive parameter,J is a homogeneous quadratic function ofu, that is,

J(u) = u′Eu (7)

andE a dn×dn matrix which captures the relations between the tasks. From now on we assume
that matrixE is symmetric andpositive definite, unless otherwise stated. We briefly comment on
the case thatE is positive semidefinite below.

For a certain choice ofJ (or, equivalently, matrixE), the regularization function (6) learns the
tasks independently using the regularization method (1). In particular, forJ(u) = ∑`∈Nn

‖u`‖2 the
function (6) decouples, that is,R(u) = 1

n ∑`∈Nn
r`(u`) wherer`(u`) = 1

m ∑ j∈Nm
L(y j`,u′`x j`)+γ‖u`‖2,

meaning that the task parameters are learnedindependently. On the other hand, if we chooseJ(u) =

619

EVGENIOU, M ICCHELLI AND PONTIL

∑`,q∈Nn
‖u`−uq‖2, we can “force” the task parameters to be close to each other: task parametersu`

are learnedjointly by minimizing (6).
Note that function (6) depends ondn parameters whose number can be very large if the num-

ber of tasksn is large. Our analysis below establishes that the multi-task learning method (6) is
equivalent to a single-task learning method as in (2) for an appropriate choice of a multi-task ker-
nel in Equation (10) below. As we shall see, the input space of this kernel depends is the original
d−dimensional space of the data plus an additional dimension which records thetask the data be-
longs to. For this purpose, we take the feature space point of view and write all functionsf` in terms
of thesamefeature vectorw∈ R

p for somep∈ N, p≥ dn. That is, for eachf` we write

f`(x) = w′B`x, x∈ R
d, ` ∈ Nn (8)

or, equivalently,
u` = B′

`w, ` ∈ Nn (9)

for somep×d matrixB` yet to be specified. We also define thep×dn feature matrix B:= [B` : ` ∈
Nn] formed by concatenating then matricesB`, ` ∈ Nn.

Note that, since the vectoru` in Equation (9) is arbitrary, to ensure that there exists a solution
w to this equation it is necessary that the matrixB` is of full rank d for each` ∈ Nn. Moreover, we
assume that the feature matrixB is of full rankdnas well. If this is not the case, the functionsf` are
linearly related. For example, if we chooseB` = B0 for every` ∈ Nn, whereB0 is a prescribedp×d
matrix, Equation (8) tells us that all tasks are the same task, that is,f1 = f2 = · · · = fn. In particular
if p = d andB0 = Id the function (11) (see below) implements a single-task learning problem, as in
Equation (2) with all themndata from then tasks as if they all come from the same task.

Said in other words, we view the vector-valued functionf = (f` : ` ∈ Nn) as the real-valued
function

(x, `) 7→ w′B`x

on the input spaceRd ×Nn whose squared norm isw′w. The Hilbert space of all such real-valued
functions has the reproducing kernel given by the formula

K((x, `),(t,q)) = x′B′
`Bqt, x, t ∈ R

d, `,q∈ Nn. (10)

We call this kernel alinear multi-task kernelsince it is bilinear inx andt for fixed ` andq.
Using this linear feature map representation, we wish to convert the regularization function (6)

to a function of the form (2), namely,

S(w) :=
1

nm ∑
`∈Nn

∑
j∈Nm

L(y j`,w
′B`x j`)+ γw′w, w∈ R

p. (11)

This transformation relates matrixE defining the homogeneous quadratic function ofu we used in
(6), J(u), and the feature matrixB. We describe this relationship in the proposition below.

Proposition 1 If the feature matrix B is full rank and we define the matrix E in Equation (7) as to
be E= (B′B)−1 then we have that

S(w) = R(B′w), w∈ R
d. (12)

Conversely, if we choose a symmetric and positive definite matrix E in Equation (7) and T is a
squared root of E then for the choice of B= T ′E−1 Equation (12) holds true.

620

LEARNING MULTIPLE TASKS WITH KERNEL METHODS

PROOF. We first prove the first part of the proposition. Since Equation (9) requires that the feature
vectorw is commonto all vectorsu` and those are arbitrary, the feature matrixB must be of full
rankdn and, so, the matrixE above is well defined. This matrix has the property thatBEB′ = Ip,
this being thep× p identity matrix. Consequently, we have that

w′w = J(B′w), w∈ R
p (13)

and Equation (12) follows.
On the other direction, we have to find a matrixB such thatBEB′ = Ip. To this end, we express

E in the form
E = TT′

whereT is adn× p matrix, p≥ dn. This maybe done in various ways sinceE is positive definite.
For example, withp= dnwe can find adn×dnmatrixT by using the eigenvalues and eigenvectors
of E. With this representation ofE we can choose our features to be

B = VT′E−1

whereV is anarbitrary p× p orthogonal matrix. This fact follows becauseBEB′ = Ip. In particular,
if we chooseV = Ip the result follows.

�

Note that this proposition requires thatB is of full rank becauseE is positive definite. As an
example, consider the case thatB` is adn×d matrix all of whosed×d blocks are zero except for
the`−th block which is equal toId. This choice means that we are learning all tasks independently,
that is,J(u) = ∑`∈Nn

‖u`‖2 and proposition (1) confirms thatE = Idn.
We conjecture that if the matrixB is not full rank, the equivalence between function (11) and

(6) stated in proposition 1 still holds true provided matrixE is given by the pseudoinverse of matrix
(B′B) and we minimize the latter function on the linear subspaceS spanned by the eigenvectors
of E which have a positive eigenvalue. For example, in the above case whereB` = B0 for all
` ∈ Nn we have thatS = {(u` : ` ∈ Nn) : u1 = u2 = · · · = un}. This observation would also extend
to the circumstance where there are arbitrary linear relations amongst the task functions. Indeed,
we can impose such linear relations on the features directly to achieve this relation amongst the
task functions. We discuss a specific example of this set up in Section 3.1.3. However, we leave a
complete analysis of the positive semidefinite case to a future occasion.

The main implication of proposition 1 is the equivalence between function (6) and (11) when
E is positive definite. In particular, this proposition implies that when matrixB andE are linked as
stated in the proposition, the unique minimizersw∗ of (11) andu∗ of (6) are related by the equations
u∗ = B′w∗.

Since functional (11) is like a single task regularization functional (2), bythe representer theorem—
see Equation (5)—its minimizer has the form

w∗ = ∑
j∈Nm

∑
`∈Nn

c j`B`x j`.

This implies that the optimal task functions are

f ∗q (x) = ∑
j∈Nm

∑
`∈Nn

c j`K((x j`, `),(x,q)), x∈ R
d,q∈ Nn (14)

621

EVGENIOU, M ICCHELLI AND PONTIL

where the kernel is defined in Equation (10). Note that these equations hold for anychoice of the
matricesB`, ` ∈ Nn.

Having defined the kernel for (10), we can now use standard single-task learning methods to
learn multiple tasks simultaneously (we only need to define the appropriate kernel for the input data
(x, `)). Specific choices of the loss functionL in Equation (11) lead to different learning methods.

Example 1 In regularization networks (RN) we choose the square lossL(y,z) = (y− z)2, y,z∈ R

(see, for example, Evgeniou, Pontil, and Poggio, 2000). In this case theparametersc j` in Equa-
tion (14) are obtained by solving the system of linear equations

∑
q∈Nn

∑
j∈Nm

K((x jq,q),(xi`, `))c jq = yi`, i ∈ Nm, ` ∈ Nn. (15)

When the kernelK is defined by Equation (10) this is a form of multi-task ridge regression.

�

Example 2 In support vector machines (SVM) for binary classification (Vapnik, 1998) we choose
the hinge loss, namelyL(y,z) = (1−yz)+ where(x)+ = max(0,x) andy∈ {−1,1}. In this case, the
minimization of function (11) can be rewritten in the usual form

Problem 3.1

min

{

∑
`∈Nn

∑
i∈Nm

ξi` + γ‖w‖2

}

(16)

subject, for all i∈ Nm and` ∈ Nn, to the constraints that

yi`w
′B`xi` ≥ 1−ξi` (17)

ξi` ≥ 0.

Following the derivation in Vapnik (1998) the dual of this problem is given by

Problem 3.2

max
ci∈`

{

∑
`∈Nn

∑
i∈Nm

ci`−
1
2 ∑

`,q∈Nn

∑
i, j∈Nm

ci`yi`c jqy jqK((xi`, `),(x jq,q))

}

(18)

subject, for all i∈ Nn and` ∈ Nn, to the constrains that

0≤ ci` ≤
1
2γ

.

�

We now study particular examples some of which we also test experimentally in Section 5.

622

LEARNING MULTIPLE TASKS WITH KERNEL METHODS

3.1 Examples of Linear Multi-Task Kernels

We discuss some examples of the above framework which are valuable for applications. These
cases arise from different choices of matricesB` that we used above to model task relatedness or,
equivalently, by directly choosing the functionJ in Equation (6).

Notice that a particular case of the regularizerJ in Equation (7) is given by

J(u) = ∑
`,q∈Nn

u′`uqG`q (19)

whereG = (G`,q : `,q∈ Nn) is a positive definite matrix. Proposition (1) implies that the kernel has
the form

K((x, `),(t,q)) = x′t G−1
`q . (20)

Indeed,J can be written as(u,Eu) whereE is then×n block matrix whosè ,q block is thed×d
matrixG`qId and the result follows. The examples we discuss are with kernels of the form (20).

3.1.1 A USEFUL EXAMPLE

In our first example we chooseB` to be the(n+ 1)d× d matrix whosed× d blocks are all zero
except for the 1−st and(` + 1)−th block which are equal to

√
1−λId and

√
λnId respectively,

whereλ ∈ (0,1) andId is thed−dimensional identity matrix. That is,

B′
` = [

√

1−λId,0, . . . ,0
︸ ︷︷ ︸

`−1

,
√

λnId,0, . . . ,0
︸ ︷︷ ︸

n−`

] (21)

where here 0 stands for thed× d matrix all of whose entries are zero. Using Equation (10) the
kernel is given by

K((x, `),(t,q)) = (1−λ+λnδ`q)x
′t, `,q∈ Nn, x, t ∈ R

n. (22)

A direct computation shows that

E`q = ((B′B)−1)`q =
1
n

(
δ`q

λ
− 1−λ

nλ

)

Id

whereE`q is the(`,q)−th d×d block of matrixE. By proposition 1 we have that

J(u) =
1
n

(

∑
`∈Nn

‖u`‖2 +
1−λ

λ ∑
`∈Nn

‖u`−
1
n ∑

q∈Nn

uq‖2

)

. (23)

This regularizer enforces a trade–off between a desirable small size for per–task parameters and
closeness of each of these parameters to their average. This trade-offis controlled by the coupling
parameterλ. If λ is small the tasks parameters arerelated(closed to their average) whereas ifλ = 1
the task are learned independently.

The model of minimizing (11) with the regularizer (24) was proposed by Evgeniou and Pontil
(2004) in the context of support vector machines (SVM’s). In this casethe above regularizer trades
off large margin of each per–task SVM with closeness of each SVM to the average SVM. In Section
4 we will present numerical experiments showing the good performance ofthis multi–task SVM

623

EVGENIOU, M ICCHELLI AND PONTIL

compared to both independent per–task SVM’s (that is,λ = 1 in Equation (22)) and previous multi–
task learning methods.

We note in passing that an alternate form for the functionJ is

J(u) = min

{

1
λn ∑

`∈Nn

‖u`−u0‖2 +
1

1−λ
‖u0‖2 : u0 ∈ R

d

}

. (24)

It was this formula which originated our interest in multi-task learning in the context of regulariza-
tion, see (Evgeniou and Pontil, 2004) for a discussion. Moreover, if wereplace the identity matrix
Id in Equation (21) by a (any)d×d matrixA we obtain the kernel

K((x, `),(t,q)) = (1−λ+λnδ`q)x
′Qt, `,q∈ Nn, x, t ∈ R

n (25)

whereQ = A′A. In this case the norm in Equation (23) and (24) is replaced by‖ · ‖Q−1.

3.1.2 TASK CLUSTERING REGULARIZATION

The regularizer in Equation (24) implements the idea that the task parametersu` are all related to
each other in the sense that eachu` is close to an “average parameter”u0. Our second example
extends this idea to different groups of tasks, that is, we assume that the task parameters can be
put together in different groups so that the parameters in thek−th group are all close to an average
parameteru0k. More precisely, we consider the regularizer

J(u) = min

{

∑
k∈Nc

(

∑
`∈Nn

ρ(`)
k ‖u`−u0k‖2 +ρ‖u0k‖2

)

: u0k ∈ R
d,k∈ Nc

}

(26)

whereρ(`)
k ≥ 0, ρ > 0, andc is the number of clusters. Our previous example corresponds toc = 1,

ρ = 1
1−λ andρ(`)

1 = 1
λn. A direct computation shows that

J(u) = ∑
`,q∈Nn

u′`uqG`q

where the elements of the matrixG = (G`q : `,q∈ Nn) are given by

G`q = ∑
k∈Nc

(

ρ(`)
k δ`q−

ρ(`)
k ρ(q)

k

ρ+∑r∈Nn
ρ(r)

k

)

.

If ρ(`)
k has the property that given any` there is a clusterk such thatρ(`)

k > 0 thenG is positive
definite. ThenJ is positive definite and by Equation (20) the kernel is given byK((x, `),(t,q)) =

G−1
`q x′t. In particular, ifρ(`)

h = δhk(`) with k(`) the cluster task̀ belongs to, matrixG is invertible
and takes the simple form

G−1
`q = δ`q +

1
ρ

θ`q (27)

whereθ`q = 1 if tasks` andq belong to the same cluster and zero otherwise. In particular, ifc = 1
and we setρ = 1−λ

λn the kernelK((x, `),(t,q)) = (δ`q + 1
ρ)x′t is the same (modulo a constant) as the

kernel in Equation (22).

624

LEARNING MULTIPLE TASKS WITH KERNEL METHODS

3.1.3 GRAPH REGULARIZATION

In our third example we choose ann×n symmetric matrixA all of whose entries are in the unit
interval, and consider the regularizer

J(u) :=
1
2 ∑

`,q∈Nn

‖u`−uq‖2A`q = ∑
`,q∈Nn

u′`uqL`q (28)

whereL = D−A with D`q = δ`q ∑h∈Nn
A`h. The matrixA could be the weight matrix of a graph with

n vertices andL the graph Laplacian (Chung, 1997). The equationA`q = 0 means that tasks̀andq
are not related, whereasA`q = 1 means strong relation.

The quadratic function (28) is only positive semidefinite sinceJ(u) = 0 whenever all the com-
ponents ofu` are independent of̀. To identify those vectorsu for which J(u) = 0 we express the
LaplacianL in terms of its eigenvalues and eigenvectors. Thus, we have that

L`q = ∑
k∈Nn

σkvk`vkq (29)

where the matrixV = (vk`) is orthogonal,σ1 = · · · = σr < σr+1 ≤ ·· · ≤ σn are the eigenvalues ofL
andr ≥ 1 is the multiplicity of the zero eigenvalue. The numberr can be expressed in terms of the
number of connected components of the graph, see, for example, (Chung, 1997). Substituting the
expression (29) forL in the right hand side of (28) we obtain that

J(u) = ∑
k∈Nn

σk

∥
∥
∥
∥
∥

∑
`∈Nn

u`vk`

∥
∥
∥
∥
∥

2

.

Therefore, we conclude thatJ is positive definite on the space

S =

{

u : u∈ R
dn, ∑

`∈Nn

u`vk` = 0,k∈ Nr

}

.

Clearly, the dimension ofS is d(n− r). S gives us a Hilbert space of vector-valued linear functions

H =
{

fu(x) = (u′`x : ` ∈ Nn) : u∈ S
}

and the reproducing kernel ofH is given by

K((x, `),(t,q)) = L+
`q x′t. (30)

whereL+ is the pseudoinverse ofL, that is,

L+
`q =

n

∑
k=r+1

σ−1
k vk`vkq.

The verification of these facts is straightforward and we do not elaborateon the details. We can
use this observation to assert that on the spaceS the regularization function (6) corresponding to
the Laplacian has auniqueminimum and it is given in the form of a representer theorem for kernel
(30).

625

EVGENIOU, M ICCHELLI AND PONTIL

4. Experiments

As discussed in the introduction, we conducted experiments to compare the (standard) single-task
version of a kernel machine, in this case SVM, to a multi-task version developed above. We tested
two multi-task versions of SVM: a) we considered the simple case that the matrixQ in Equation (25)
is the identity matrix, that is, we use the multi-task kernel (22), and b) we estimate the matrixQ in
(25) by running PCA on the previously learned task parameters. Specifically, we first initializeQ to
be the identity matrix. We then iterate as follows:

1. We estimate parametersu` using (25) and the current estimate of matrixQ (which, for the
first iteration is the identity matrix).

2. We run PCA on these estimates, and select only the top principal components(corresponding
to the largest eigenvalues of the empirical correlation matrix of the estimatedu`). In partic-
ular, we only select the eigenvectors so that the sum of the corresponding eigenvalues (total
“energy” kept) is at least 90% of the sum of all the eigenvalues (not using the remaining
eigenvalues once we reach this 90% threshold). We then use the covariance of these principal
components as our estimate of matrixQ in (25) for the next iteration.

We can repeat steps (1) and (2) until all eigenvalues are needed to reach the 90% energy threshold
– typically in 4-5 iterations for the experiments below. We can then pick the estimated u` after the
iteration that lead to the best validation error. We emphasize, that this is simply a heuristic. We do
not have a theoretical justification for this heuristic. Developing a theory aswell as other methods
for estimating matrixQ is an open question. Notice that instead of using PCA we could directly
use for matrixQ simply the covariance of the estimatedu` of the previous iteration. However doing
so is sensitive to estimation errors ofu` and leads (as we also observed experimentally – we don’t
show the results here for simplicity) to poorer performance.

One of the key questions we considered is:how does multi-task learning perform relative to
single-task as the number of data per task and as the number of tasks change?This question is also
motivated by a typical situation in practice, where it may be easy to have data from many related
tasks, but it may be difficult to have many data per task. This could often be for example the case
in analyzing customer data for marketing, where we may have data about manycustomers (tens
of thousands) but only a few samples per customer (only tens) (Allenby and Rossi, 1999; Arora,
Allenby, and Ginter, 1998). It can also be the case for biological data, where we may have data
about many related diseases (for example, types of cancer), but only afew samples per disease
(Rifkin et al., 2003). As noted by other researchers in (Baxter, 1997,2000; Ben-David, Gehrke, and
Schuller, 2002; Ben-David and Schuller, 2003), one should expect that multi-task learning helps
more, relative to single task, when we have many tasks but only few data pertask – while when we
have many data per task then single-task learning may be as good.

We performed experiments with two real data sets. One was on customer choice data, and the
other was on school exams used by (Bakker and Heskes, 2003; Heskes, 2000) which we use here
also for comparison with (Bakker and Heskes, 2003; Heskes, 2000).We discuss these experiments
next.

626

LEARNING MULTIPLE TASKS WITH KERNEL METHODS

4.1 Customer Data Experiments

We tested the proposed methods using a real data set capturing choices among products made by
many individuals.1 The goal is to estimate a function for each individual modeling the preferences
of the individual based on the choices he/she has made. This function is used in practice to predict
what product each individual will choose among future choices. We modeled this problem as a
classification one along the lines of (Evgeniou, Boussios, and Zacharia,2002). Therefore, the goal
is to estimate a classification function for each individual.

We have data from 200 individuals, and for each individual we have 120 data points. The data
are three dimensional (the products were described using three attributes, such as color, price, size,
etc.) each feature taking only discrete values (for example, the color can be only blue, or black, or
red, etc.). To handle the discrete valued attributes, we transformed them intobinary ones, having
eventually 20-dimensional binary data. We consider each individual as adifferent “task”. Therefore
we have 200 classification tasks and 120 20-dimensional data points for each task – for a total of
24000 data points.

We consider a linear SVM classification for each task – trials with non-linear (polynomial of
degree 2 and 3) SVM did not improve performance for this data set. To testhow multi-task compares
to single task as the number of data per task and/or the number of tasks changes, we ran experiments
with varying numbers of data per task and number of tasks. In particular, we considered 50, 100,
and 200 tasks, splitting the 200 tasks into 4 groups of 50 or 2 groups of 100(or one group of 200),
and then taking the average performance among the 4 groups, the 2 groups (and the 1 group). For
each task we split the 120 points into 20, 30, 60, 90 training points, and 100,90, 60, 30 test points
respectively.

Given the limited number of data per task, we chose the regularization parameter γ for the
single-task SVM among only a few values (0.1, 1, 10) using the actual test error.2 On the other
hand, the multi-task learning regularization parameterγ and parameterλ in (22) were chosen using
a validation set consisting of one (training) data point per task which we thenincluded back to the
training data for the final training after the parameter selection. The parameters λ andγ used when
we estimated matrix Q through PCA were the same as when we used the identity matrix as Q. We
note that one of the advantages of multi-task learning is that, since the data aretypically from many
tasks, parameters such as regularization parameterγ can be practically chosen using only a few,
proportionally to all the data available, validation data without practically “losing” many data for
parameter selection – which may be a further important practical reason formulti-task learning.
Parameterλ was chosen among values (0, 0.2, 0.4, 0.6, 0.8) – value 1 correspondingto training one
SVM per task. Below we also record the results indicating how the test performance is affected by
parameterλ.

We display all the results in Table 4.1. Notice that the performance of the single-task SVM does
not change as the number of tasks increases – as expected. We also notethat when we use one
SVM for all the tasks—treating the data as if they come from the same task—we get a very poor
performance: between 38 and 42 percent test error for the (data× tasks) cases considered.

From these results we draw the following conclusions:

1. The data are proprietary were provided to the authors by Research International Inc. and are available upon request.
2. This lead to some overfitting of the single task SVM, however it only gave our competitor an advantage over our

approach.

627

EVGENIOU, M ICCHELLI AND PONTIL

Tasks Data One SVM Indiv SVM Identity PCA
50 20 41.97 29.86 28.72 29.16
100 20 41.41 29.86 28.30 29.26
200 20 40.08 29.86 27.79 28.53

50 30 40.73 26.84 25.53 25.65
100 30 40.66 26.84 25.25 24.79
200 30 39.43 26.84 25.16 24.13

50 60 40.33 22.84 22.06 21.08
100 60 40.02 22.84 22.27 20.79
200 60 39.74 22.84 21.86 20.00

50 90 38.51 19.84 19.68 18.45
100 90 38.97 19.84 19.34 18.08
200 90 38.77 19.84 19.27 17.53

Table 1: Comparison of Methods as the number of data per task and the number of tasks changes.
“One SVM” stands for training one SVM with all the data from all the task, “Indiv SVM”
stands for training for each task independently, “Identity” stands for themulti-task SVM
with the identity matrix, and “PCA” is the multi-task SVM using the PCA approach. Mis-
classification errors are reported. Best performance(s) at the 5% significance level is in
bold.

• When there are few data per task (20, 30, or 60), both multi-task SVMs significantly outper-
form the single-task SVM.

• As the number of tasks increases the advantage of multi-task learning increases – for example
for 20 data per task, the improvement in performance relative to single-taskSVM is 1.14,
1.56, and 2.07 percent for the 50, 100, and 200 tasks respectively.

• When we have many data per task (90), the simple multi-task SVM does not provide any
advantage relative to the single-task SVM. However, the PCA based multi-task SVM signifi-
cantly outperforms the other two methods.

• When there are few data per task, the simple multi-task SVM performs better thanthe PCA
multi-task SVM. It may be that in this case the PCA multi-task SVM overfits the data.

The last two observations indicate that it is important to have a good estimate of matrix Q in
(25) for the multi-task learning method that uses matrixQ. Achieving this is currently an open ques-
tions that can be approached, for example, using convex optimization techniques, see, for example,
(Lanckriet et al., 2004; Micchelli and Pontil, 2005b)

To explore the second point further, we show in Figure 1 the change in performance for the
identity matrix based multi-task SVM relative to the single-task SVM in the case of 20data per
task. We useλ = 0.6 as before. We notice the following:

• When there are only a few tasks (for example, less than 20 in this case), multi-task can hurt
the performance relative to single-task. Notice that this depends on the parameterλ used.

628

LEARNING MULTIPLE TASKS WITH KERNEL METHODS

For example, settingλ close to 1 leads to using a single-task SVM. Hence our experimental
findings indicate thatfor few tasks one should use either a single-task SVM or a multi-task
one with parameterλ selected near 1.

• As the number of tasks increases, performance improves – surpassing the performance of the
single-task SVM after 20 tasks in this case.

As discussed in (Baxter, 1997, 2000; Ben-David, Gehrke, and Schuller, 2002; Ben-David and
Schuller, 2003), an important theoretical question is to study the effects ofadding additional tasks on
the generalization performance (Ben-David, Gehrke, and Schuller, 2002; Ben-David and Schuller,
2003). What our experiments show is that, for few tasks it may be inappropriate to follow a multi-
task approach if a smallλ is used, but as the number of tasks increases performance relative to
single-task learning improves. Therefore one should choose parameterλ depending on the number
of tasks, much like one should choose regularization parameterγ depending on the number of data.

We tested the effects of parameterλ in Equation (22) on the performance of the proposed ap-
proach. In Figure 2 we plot the test error for the simple multi-task learning method using the identity
matrix (kernel (22)) for the case of 20 data per task when there are 200tasks (third row in Table
4.1), or 10 tasks (for which single-task SVM outperforms multi-task SVM forλ = 0.6 as shown in
Figure 1). Parameterλ varies from 0 (one SVM for all tasks) to 1 (one SVM per task). Notice that
for the 200 tasks the error drops and then increases, having a flat minimumbetweenλ = 0.4 and
0.6. Moreover, for anyλ between 0.2 and 1 we get a better performance than the single-task SVM.
The same behavior holds for the 10 tasks, except that now the space ofλ’s for which the multi-task
approach outperforms the single-task one is smaller – only forλ between 0.7 and 1. Hence,for a
few tasks multi-task learning can still help if a large enoughλ is used. However, as we noted above,
it is an open question as to how to choose parameterλ in practice – other than using a validation set.

0 20 40 60 80 100 120 140 160 180 200
27.5

28

28.5

29

29.5

30

30.5

31

Figure 1: The horizontal axis is the number of tasks used. The vertical axisis the total test misclas-
sification error among the tasks. There are 20 training points per task. We also show the
performance of a single-task SVM (dashed line) which, of course, is not changing as the
number of tasks increases.

629

EVGENIOU, M ICCHELLI AND PONTIL

0 0.2 0.4 0.6 0.8 1
28

29

30

31

32

33

34

0 0.2 0.4 0.6 0.8 1
28

28.5

29

29.5

30

30.5

31

31.5

32

32.5

33

Figure 2: The horizontal axis is the parameterλ for the simple multi-task method with the identity
matrix kernel (22). The vertical axis is the total test misclassification error among the
tasks. There are 200 tasks with 20 training points and 100 test points per task. Left is for
10 tasks, and right is for 200 tasks.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
10

15

20

25

30

35

40

Figure 3: Performance on the school data. The horizontal axis is the parameterλ for the simple
multi-task method with the identity matrix while the vertical is the explained variance
(percentage) on the test data. The solid line is the performance of the proposed approach
while the dashed line is the best performance reported in (Bakker and Heskes, 2003).

4.2 School Data Experiment

We also tested the proposed approach using the “school data” from the Inner London Education
Authority available atmultilevel.ioe.ac.uk/intro/datasets.html. This experiment is also discussed
in (Evgeniou and Pontil, 2004) where some of the ideas of this paper were first presented. We

630

LEARNING MULTIPLE TASKS WITH KERNEL METHODS

selected this data set so that we can also compare our method directly with the work of Bakker and
Heskes (2003) where a number of multi-task learning methods are applied to this data set. This
data consists of examination records of 15362 students from 139 secondary schools. The goal is to
predict the exam scores of the students based on the following inputs: year of the exam, gender, VR
band, ethnic group, percentage of students eligible for free school meals in the school, percentage of
students in VR band one in the school, gender of the school (i.e. male, female, mixed), and school
denomination. We represented the categorical variables using binary (dummy) variables, so the total
number of inputs for each student in each of the schools was 27. Since thegoal is to predict the
exam scores of the students we ran regression using the SVMε–loss function (Vapnik, 1998) for the
multi–task learning method proposed. We considered each school to be “one task”. Therefore, we
had 139 tasks in total. We made 10 random splits of the data into training (75% of the data, hence
around 70 students per school on average) and test (the remaining 25%of the data, hence around
40 students per school on average) data and we measured the generalization performance using the
explained variance of the test data as a measure in order to have a direct comparison with (Bakker
and Heskes, 2003) where this error measure is used. The explained variance is defined in (Bakker
and Heskes, 2003) to be the total variance of the data minus the sum–squared error on the test set
as a percentage of the total data variance, which is a percentage versionof the standardR2 error
measure for regression for the test data. Finally, we used a simple linear kernel for each of the tasks.

The results for this experiment are shown in Figure 3. We set regularization parameterγ to be
1 and used a linear kernel for simplicity. We used the simple multi-task learning method proposed
with the identity matrix. We let the parameterλ vary to see the effects. For comparison we also
report on the performance of the task clustering method described in (Bakker and Heskes, 2003) –
the dashed line in the figure.

The results show again the advantage of learning all tasks (for all schools) simultaneously in-
stead of learning them one by one. Indeed, learning each task separately in this case hurts perfor-
mance a lot. Moreover, even the simple identity matrix based approach significantly outperforms
the Bayesian method of (Bakker and Heskes, 2003), which in turn in betterthan other methods as
compared in (Bakker and Heskes, 2003). Note, however, that for thisdata set one SVM for all tasks
performs the best, which is also similar to using a small enoughλ (any λ between 0 and 0.7 in
this case). Hence, it appears that the particular data set may come from a single task (despite this
observation, we use this data set for direct comparison with (Bakker andHeskes, 2003)). This result
also indicates that when the tasks are the same task, using the proposed multi-task learning method
does not hurt as long as a small enoughλ is used. Notice that for this data set the performance does
not change significantly forλ between 0 and 0.7, which shows that, as for the customer data above,
the proposed method is not very sensitive toλ. A theoretical study of the sensitivity of our approach
to the choice of the parameterλ is an open research direction which may also lead to a better un-
derstanding of the effects of increasing the number of tasks on the generalization performance as
discussed in (Baxter, 1997, 2000; Ben-David and Schuller, 2003).

5. Discussion and Conclusions

In this final section we outline the extensions of the ideas presented above tonon-linear functions,
discuss some open problems on multi-tasks learning and draw our conclusions.

631

EVGENIOU, M ICCHELLI AND PONTIL

5.1 Nonlinear Multi-Task Kernels

We discuss a non-linear extension of the multi-task learning methods presented above. This gives
us an opportunity to provide a wide variety of multi-task kernels which may be useful for applica-
tions. Our presentation builds upon earlier work on learning vector–valued functions (Micchelli and
Pontil, 2005) which developed the theory of RKHS of functions whose range is a Hilbert space.

As in the linear case we view the vector-valued functionf = (f` : ` ∈ Nn) as a real-valued
function on the input spaceX ×Nn. We expressf in terms of the feature mapsΦ` : X → W , ` ∈ Nn

whereW is a Hilbert space with inner product〈·, ·〉. That is, we have that

f`(x) = 〈w,Φ`(x)〉, x∈ X , ` ∈ Nn.

The vectorw is computed by minimizing the single-task functional

S(w) :=
1

nm ∑
`∈Nn

∑
j∈Nm

L(y j`,〈w,Φ`(x j`)〉)+ γ 〈w,w〉, w∈ W . (31)

By the representer theorem, the minimizer of functionalShas the form in Equation (14) where the
multi-task kernel is given by the formula

K((x, `),(t,q)) = 〈Φ`(x),Φq(t)〉 x, t ∈ X , `,q∈ Nn. (32)

In Section 3 we have discussed this approach in the case thatW is a finite dimensional Euclidean
space andΦ` the linear mapΦ`(x) = B`x, thereby obtaining the linear multi-task kernel (10). In
order to generalize this case it is useful to recall a result of Schur whichstates that the elementwise
product of two positive semidefinite matrices is also positive semidefinite, (Aronszajn, 1950, p. 358).
This implies that the elementwise product of two kernels is a kernel. Consequently, we conclude
that, for anyr ∈ N,

K((x, `),(t,q)) = (x′B′
`Bqt)

r (33)

is a polynomial multi-task kernel.
More generally we have the following lemma.

Lemma 2 If G is a kernel onT ×T and, for everỳ ∈ Nn, there are prescribed mappings z` : X →
T such that

K((x, `),(t,q)) = G(z̀ (x),zq(t)), x, t ∈ X , `,q∈ Nn (34)

then K is a multi-task kernel.

PROOF. We note that for every{ci` : i ∈ Nm, ` ∈ Nn} ⊂ R and{xi` : i ∈ Nm, ` ∈ Nn} ⊂ X we have

∑
i, j∈Nm

∑
`,q∈Nn

ci`c jqG(z̀ (xi`),zq(x jq)) = ∑
i,`

∑
jq

ci`c jqG(z̃i`, z̃jq) ≥ 0

where we have defined ˜zi` = z̀ (xi`) and the last inequality follows by the hypothesis thatG is a
kernel. �

For the special case thatT = R
p, z̀ (x) = B`x with B` a p×d matrix,` ∈ Nn, andG : R

p×R
p → R

is the homogeneous polynomial kernel,G(t,s) = (t ′s)r , the lemma confirms that the function (33)
is a multi-task kernel. Similarly, whenG is chosen to be a Gaussian kernel, we conclude that

K((x, `),(t,q)) = exp(−β‖B`x−Bqt‖2)

632

LEARNING MULTIPLE TASKS WITH KERNEL METHODS

is a multi-task kernel for everyβ > 0.
Lemma 2 also allows us to generalize multi-task learning to the case that each task function f`

has adifferent input domainX`, a situation which is important in applications, see, for example,
(Ben-David, Gehrke, and Schuller, 2002) for a discussion. To this end, we specify setsX`, ` ∈ Nn,
functionsg` : X` → R, and note that multi–task learning can be placed in the above framework by
defining the input space

X := X1×X2×·· ·×Xn.

We are interested in the functionsf`(x) = g`(P̀ x), wherex= (x1, . . . ,xn) andP̀ : X → X` is defined,
for everyx ∈ X by P̀ (x) = x`. Let G be a kernel onT × T and choosez̀ (·) = φ`(P̀ (·)) where
φ` : X` → T are some prescribed functions. Then by lemma 2 the kernel defined by Equation (34)
can be used to represent the functionsg`. In particular, in the case of linear functions, we choose
X` = R

d` , whered` ∈ N, T = R
p, p∈ N, G(s, t) = s′t andz̀ = D`P̀ whereD` is a p×d` matrix. In

this case, the multi-task kernel is given by

K((x, `),(t,q)) = x′P′
`D

′
`DqPqt

which is of the form in Equation (10) forB` = D`P̀ , ` ∈ Nn.
We note that ideas related to those presented in this section appear in (Girosi,2003).

5.2 Conclusion and Future Work

We developed a framework for multi-task learning in the context of regularization in reproducing
kernel Hilbert spaces. This naturally extends standard single-task kernel learning methods, such as
SVM and RN. The framework allows to model relationships between the tasks and to learn the task
parameters simultaneously. For this purpose, we showed that multi-task learning can be seen as
single-task learning if a particular family of kernels, that we called multi-task kernels, is used. We
also characterized the non-linear multi-task kernels.

Within the proposed framework, we defined particular linear multi-task kernels that correspond
to particular choices of regularizers which model relationships between thefunction parameters. For
example, in the case of SVM, appropriate choices of this kernel/regularizer implemented a trade–
off between large margin of each per–task individual SVM and closeness of each SVM to linear
combinations of the individual SVMs such as their average.

We tested some of the proposed methods using real data. The experimental results show that the
proposed multi-task learning methods can lead to significant performance improvements relative to
the single-task learning methods, especially when many tasks with few data each are learned.

A number of research questions can be studied starting from the framework and methods we
developed here. We close with commenting on some issues which stem out of themain theme of
this paper.

• Learning a multi-task kernel.The kernel in Equation (22) is perhaps the simplest nontrivial
example of a multi-task kernel. This kernel is a convex combination of two kernels, the first
of which corresponds to learning independent tasks and the second one is a rank one kernel
which corresponds to learning all tasks as the same task. Thus this kernellinearly combines
two opposite models to form a more flexible one. Our experimental results above indicate
the value of this approach provided the parameterλ is chosen for the application at hand.
Recent work by Micchelli and Pontil (2004) shows that, under rather general conditions,

633

EVGENIOU, M ICCHELLI AND PONTIL

the optimal convex combination of kernels can be learned by minimizing the functional in
Equation (1) with respect toK and f ∈ HK , whereK is a kernel in the convex set of kernels,
see also (Lanckriet et al., 2004). Indeed, in our specific case we canshow—along the lines in
(Micchelli and Pontil, 2004)—that the regularizer (24) is convex inλ andu. This approach is
rather general and can be adapted also for learning the matrixQ in the kernel in Equation (25)
which in our experiment we estimated by our “ad hoc” PCA approach.

• Bounds on the generalization error.Yet another important question is how to bound the
generalization error for multi-task learning. Recently developed bounds relying on the notion
of algorithmic stability or Rademacher complexity should be easily applicable to ourcontext.
This should highlight the role played by the matricesB` in Equation (10). Intuitively, if
B` = B0 we should have a simple (low-complexity) model whereas if theB` are orthogonal
a more complex model. More specifically, this analysis should say how the generalization
error, when using the kernel (22), depends onλ.

• Computational considerations.A drawback of our proposed multi-task kernel method is that
its computational complexity time isO(p(mn)) which is worst than the complexity of solving
n independent kernel methods, this beingnO(p(m)). The functionp depends on the loss
function used and, typically,p(m) = ma with a a positive constant. For example for the
square lossa= 3. Future work will focus on the study of efficient decomposition methods for
solving the multi-task SVM or RN. This decomposition should exploit the structureprovided
by the matricesB` in the kernel (10). For example, if we use the kernel (22) and the tasks
share the same input examples it is possible to show that the linear system ofmnEquations
(15) can be reduced to solvingn+1 systems ofmequations, which is essentially the same as
solvingn independent ridge regression problems.

• Multi-task feature selection.Continuing on the discussion above, we observe that if we re-
strict the matrixQ to be diagonal then learningQ corresponds to a form of feature selection
across tasks. Other feature selection formulations where the tasks may share only some of
their features should also be possible. See also the recent work by Jebara (2004) for related
work on this direction.

• Online multi-task learning.An interesting problem deserving of investigation is the question
of how to learn a set of tasks online where at each instance of time a set of examples for anew
task is sampled. This problem is valuable in applications where an environment is explored
and new data/tasks are provided during this exploration. For example, the environment could
be a market of customers in our application above, or a set of scenes in computer vision which
contains different objects we want to recognize.

• Multi-task learning extensions.Finally it would be interesting to extent the framework pre-
sented here to other learning problems beyond classification and regression. Two example
which come to mind are kernel density estimation, see, for example, (Vapnik, 1998), or one-
class SVM (Tax and Duin, 1999).

634

LEARNING MULTIPLE TASKS WITH KERNEL METHODS

Acknowledgments

The authors would like to thank Phillip Cartwright and Simon Trusler from Research International
for their help with this data set.

References

G. M. Allenby and P. E. Rossi. Marketing models of consumer heterogeneity. Journal of Econo-
metrics, 89, p. 57–78, 1999.

R. K. Ando and T. Zhang. A Framework for Learning Predictive Structures from Multiple Tasks
and Unlabeled Data. Technical Report RC23462, IBM T.J. Watson Research Center, 2004.

N. Arora G.M Allenby, and J. Ginter. A hierarchical Bayes model of primary and secondary de-
mand.Marketing Science, 17,1, p. 29–44, 1998.

N. Aronszajn. Theory of reproducing kernels.Trans. Amer. Math. Soc., 686, pp. 337–404, 1950.

B. Bakker and T. Heskes. Task clustering and gating for Bayesian multi–task learning. Journal of
Machine Learning Research, 4: 83–99, 2003.

J. Baxter. A Bayesian/information theoretic model of learning to learn via multipletask sampling.
Machine Learning, 28, pp. 7–39, 1997.

J. Baxter. A model for inductive bias learning.Journal of Artificial Intelligence Research, 12, p.
149–198, 2000.

S. Ben-David, J. Gehrke, and R. Schuller. A theoretical framework for learning from a pool of
disparate data sources. Proceedings of Knowledge Discovery and Datamining (KDD), 2002.

S. Ben-David and R. Schuller. Exploiting task relatedness for multiple task learning. Proceedings
of Computational Learning Theory (COLT), 2003.

L. Breiman and J.H Friedman. Predicting multivariate responses in multiple linear regression.Royal
Statistical Society Series B, 1998.

P. J. Brown and J. V. Zidek. Adaptive multivariate ridge regression.The Annals of Statistics, Vol. 8,
No. 1, p. 64–74, 1980.

R. Caruana. Multi–task learning.Machine Learning, 28, p. 41–75, 1997.

F. R. K. Chung.Spectral Graph TheoryCBMS Series, AMS, Providence, 1997.

T. Evgeniou, M. Pontil, and T. Poggio. Regularization networks and support vector machines.
Advances in Computational Mathematics, 13:1–50, 2000.

T. Evgeniou, C. Boussios, and G. Zacharia. Generalized robust conjoint estimation. Marketing
Science, 2005 (forthcoming).

T. Evgeniou and M. Pontil. Regularized multi-task learning. Proceedings ofthe 10th Conference on
‘Knowledge Discovery and Data Mining, Seattle, WA, August 2004.

635

EVGENIOU, M ICCHELLI AND PONTIL

F. Girosi.Demographic Forecasting. PhD Thesis, Harvard University, 2003.

W. Greene.Econometric Analysis. Prentice Hall, fifth edition, 2002.

B. Heisele, T. Serre, M. Pontil, T. Vetter, and T. Poggio. Categorization by learning and combining
object parts. InAdvances in Neural Information Processing Systems 14, Vancouver, Canada, Vol.
2, 1239–1245, 2002.

T. Heskes. Empirical Bayes for learning to learn. Proceedings of ICML–2000, ed. Langley, P., pp.
367–374, 2000.

T. Jebara. Multi-Task Feature and Kernel Selection for SVMs. International Conference on Machine
Learning, ICML, July 2004.

M. I. Jordan and R. A. Jacobs. Hierarchical mixtures of experts and the EM algorithm. Neural
Computation, 1993.

G. R. G. Lanckriet, N. Cristianini, P. Bartlett, L. El Ghaoui, and M. I. Jordan. Learning the kernel
matrix with semi-definite programming.Journal of Machine Learning Research, 5, pp. 27–72,
2004.

G. R. G. Lanckriet, T. De Bie, N. Cristianini, M. I. Jordan, and W. S. Noble. A framework for
genomic data fusion and its application to membrane protein prediction. Technical Report CSD–
03–1273, Division of Computer Science, University of California, Berkeley, 2003.

O. L. Mangasarian.Nonlinear Programming. Classics in Applied Mathematics. SIAM, 1994.

C. A. Micchelli and M. Pontil. Learning the kernel via regularization. Research Note RN/04/11,
Dept of Computer Science, UCL, September, 2004.

C. A. Micchelli and M. Pontil. On learning vector–valued functions.Neural Computation, 17, pp.
177–204, 2005.

C. A. Micchelli and M. Pontil. Kernels for multi-task learning. Proc. of the 18–th Conf. on Neural
Information Processing Systems, 2005.

R. Rifkin, S. Mukherjee, P. Tamayo, S. Ramaswamy, C. Yeang, M. Angelo, M. Reich, T. Poggio,
T. Poggio, E. Lander, T. Golub, and J. Mesirov. An analytical method for multi-class molecular
cancer classificationSIAM Review, Vol. 45, No. 4, p. 706-723, 2003.

J. Shawe-Taylor and N. Cristianini.Kernel Methods for Pattern Analysis.Cambridge University
Press, 2004.

B. Scḧolkopf and A. J. Smola.Learning with Kernels. The MIT Press, Cambridge, MA, USA, 2002.

D. L. Silver and R.E Mercer. The parallel transfer of task knowledge using dynamic learning rates
based on a measure of relatedness.Connection Science, 8, p. 277–294, 1996.

V. Srivastava and T. Dwivedi. Estimation of seemingly unrelated regression equations: A brief
surveyJournal of Econometrics, 10, p. 15–32, 1971.

636

LEARNING MULTIPLE TASKS WITH KERNEL METHODS

D. M. J. Tax and R. P. W. Duin. Support vector domain description.Pattern Recognition Letters, 20
(11-13), pp. 1191–1199, 1999.

S. Thrun and L. Pratt.Learning to Learn. Kluwer Academic Publishers, November 1997.

S. Thrun and J. O’Sullivan. Clustering learning tasks and the selective cross–task transfer of knowl-
edge.In Learning to Learn, S. Thrun and L. Y. Pratt Eds., Kluwer Academic Publishers, 1998.

V. N. Vapnik. Statistical Learning Theory. Wiley, New York, 1998.

G. Wahba.Splines Models for Observational Data. Series in Applied Mathematics, Vol. 59, SIAM,
Philadelphia, 1990.

A. Zellner. An efficient method for estimating seemingly unrelated regressionequations and tests
for aggregation bias.Journal of the American Statistical Association, 57, p. 348–368, 1962.

637

Journal of Machine Learning Research 6 (2005) 639–660 Submitted 10/04; Revised 3/05; Published 4/05

Adaptive Online Prediction by
Following the Perturbed Leader

Marcus Hutter MARCHUS@IDSIA .CH

Jan Poland JAN@IDSIA .CH

IDSIA, Galleria 2
6928 Manno-Lugano, Switzerland

Editor: Manfred Warmuth

Abstract
When applying aggregating strategies to Prediction with Expert Advice (PEA), the learning rate
must be adaptively tuned. The natural choice of

√
complexity/current loss renders the analysis of

Weighted Majority (WM) derivatives quite complicated. In particular, for arbitrary weights there
have been no results proven so far. The analysis of the alternative Follow the Perturbed Leader
(FPL) algorithm from Kalai and Vempala (2003) based on Hannan’s algorithm is easier. We derive
loss bounds for adaptive learning rate and both finite expertclasses with uniform weights and
countable expert classes with arbitrary weights. For the former setup, our loss bounds match the
best known results so far, while for the latter our results are new.

Keywords: prediction with expert advice, follow the perturbed leader, general weights, adap-
tive learning rate, adaptive adversary, hierarchy of experts, expected and high probability bounds,
general alphabet and loss, online sequential prediction

1. Introduction

In Prediction with Expert Advice (PEA) one considers an ensemble of sequential predictors (ex-
perts). A master algorithm is constructed based on the historical performance of the predictors.
The goal of the master algorithm is to perform nearly as well as the best expert in the class, on
any sequence of outcomes. This is achieved by making (randomized) predictions close to the better
experts.

PEA theory has rapidly developed in the recent past. Starting with the Weighted Majority (WM)
algorithm of Littlestone and Warmuth (1989, 1994) and the aggregating strategy of Vovk (1990), a
vast variety of different algorithms and variants have been published. Akey parameter in all these
algorithms is thelearning rate. While this parameter had to be fixed in the early algorithms such
as WM, Cesa-Bianchi et al. (1997) established the so-called doubling trick to make the learning
rate coarsely adaptive. A little later, incrementally adaptive algorithms were developed by Auer
and Gentile (2000); Auer et al. (2002); Yaroshinsky et al. (2004); Gentile (2003), and others. In
Section 10, we will compare our results with these works more in detail. Unfortunately, the loss
bound proofs for the incrementally adaptive WM variants are quite complex and technical, despite
the typically simple and elegant proofs for a static learning rate.

The complex growing proof techniques also had another consequence.While for the original
WM algorithm, assertions are proven for countable classes of experts witharbitrary weights, the
modern variants usually restrict to finite classes with uniform weights (an exception being Gentile

c©2005 Marcus Hutter and Jan Poland.

HUTTER AND POLAND

(2003); see the discussion section therein.) This might be sufficient for many practical purposes
but it prevents the application to more general classes of predictors. Examples are extrapolating
(=predicting) data points with the help of a polynomial (=expert) of degreed = 1,2,3, ... –or– the
(from a computational point of view largest) class of all computable predictors. Furthermore, most
authors have concentrated on predictingbinary sequences, often with the 0/1 loss for{0,1}-valued
and the absolute loss for[0,1]-valued predictions. Arbitrary losses are less common. Nevertheless,
it is easy to abstract completely from the predictions and consider the resulting losses only. Instead
of predicting according to a “weighted majority” in each time step, one choosesonesingleexpert
with a probability depending on his past cumulated loss. This is done e.g. by Freund and Schapire
(1997), where an elegant WM variant, the Hedge algorithm, is analyzed.

A different, general approach to achieve similar results is Follow the Perturbed Leader (FPL).
The principle dates back to as early as 1957, now called Hannan’s algorithm (Hannan, 1957). In
2003, Kalai and Vempala published a simpler proof of the main result of Hannan and also succeeded
to improve the bound by modifying the distribution of the perturbation. The resulting algorithm
(which they call FPL*) has the same performance guarantees as the WM-type algorithms for fixed
learning rate, save for a factor of

√
2. A major advantage we will discover in this work is that its

analysis remains easy for an adaptive learning rate, in contrast to the WM derivatives. Moreover, it
generalizes to online decision problems other than PEA.

In this work,1 we study the FPL algorithm for PEA. The problems of WM algorithms men-
tioned above are addressed. Bounds on the cumulative regret of the standard form

√
kL (wherek

is the complexity andL is the cumulative loss of the best expert in hindsight) are shown for count-
able expert classes with arbitrary weights, adaptive learning rate, and arbitrary losses. Regarding
the adaptive learning rate, we obtain proofs that are simpler and more elegant than for the corre-
sponding WM algorithms. (In particular, the proof for a self-confident choice of the learning rate,
Theorem 7, is less than half a page.) Further, we prove the first loss bounds forarbitrary weights
and adaptive learning rate. In order to obtain the optimal

√
kL bound in this case, we will need

to introduce a hierarchical version of FPL, while without hierarchy we show a worse boundk
√

L.
(For self-confident learning rate together with uniform weights and arbitrary losses, one can prove
corresponding results for a variant of WM by adapting an argument by Auer et al. 2002.)

PEA usually refers to anonline worst casesetting:n experts that deliver sequential predictions
over a time ranget = 1, . . . ,T are given. At each timet, we know the actual predictions and the
past losses. The goal is to give a prediction such that the overall loss afterT steps is “not much
worse” than the best expert’s losson any sequence of outcomes. If the prediction is deterministic,
then an adversary could choose a sequence which provokes maximal loss. So we have torandomize
our predictions. Consequently, we ask for a prediction strategy such that theexpectedloss on any
sequence is small.

This paper is structured as follows. In Section 2 we give the basic definitions. While Kalai
and Vempala consider general online decision problems in finite-dimensionalspaces, we focus on
online prediction tasks based on a countable number of experts. Like Kalaiand Vempala (2003) we
exploit the infeasible FPL predictor (IFPL) in our analysis. Sections 3 and4 derive the main analysis
tools. In Section 3 we generalize (and marginally improve) the upper bound (Kalai and Vempala,
2003, Lem.3) on IFPL to arbitrary weights. The main difficulty we faced was toappropriately
distribute the weights to the various terms. For the corresponding lower bound (Section 7) this

1. A shorter version appeared in the proceedings of the ALT 2004 conference (Hutter and Poland, 2004).

640

ADAPTIVE ONLINE PREDICTION BY FOLLOWING THE PERTURBEDLEADER

is an open problem. In Section 4 we exploit our restricted setup to significantlyimprove (Kalai
and Vempala, 2003, Eq.(3)) allowing for bounds logarithmic rather than linear in the number of
experts. The upper and lower bounds on IFPL are combined to derive various regret bounds on
FPL in Section 5. Bounds for static and dynamic learning rate in terms of the sequence length
follow straight-forwardly. The proof of our main bound in terms of the loss ismuch more elegant
than the analysis of previous comparable results. Section 6 proposes a novel hierarchical procedure
to improve the bounds for non-uniform weights. In Section 7, a lower bound is established. In
Section 8, we consider the case of independent randomization more seriously. In particular, we
show that the derived bounds also hold for an adaptive adversary. Section 9 treats some additional
issues, including bounds with high probability, computational aspects, deterministic predictors, and
the absolute loss. Finally, in Section 10 we discuss our results, compare themto references, and
state some open problems.

2. Setup and Notation

Setup. Prediction with expert advice proceeds as follows. We are asked to perform sequential
predictionsyt ∈ Y at timest = 1,2, At each time stept, we have access to the predictions
(yi

t)1≤i≤n of n experts{e1, ...,en}, where the size of the expert pool isn∈ IN ∪{∞}. It is convenient
to use the same notation for finite (n∈ IN) and countably infinite (n = ∞) expert pool. After having
made a prediction, we make some observationxt ∈ X , and a Loss is revealed for our and each
expert’s prediction. (E.g. the loss might be 1 if the expert made an erroneous prediction and 0
otherwise. This is the 0/1 loss.) Our goal is to achieve a total loss “not much worse” than the best
expert, aftert time steps.

We admitn∈ IN∪{∞} experts, each of which is assigned a known complexityki ≥ 0. Usually we
require∑i e

−ki ≤ 1, which implies that theki are valid lengths of prefix code words, for instanceki =
lnn if n < ∞ or ki = 1

2 +2lni if n = ∞. Each complexity defines a weight by means of e−ki
and vice

versa. In the following we will talk of complexities rather than of weights. Ifn is finite, then usually
one setski = lnn for all i; this is the case ofuniform complexities/weights. If the set of experts is
countably infinite (n = ∞), uniform complexities are not possible. The vector of all complexities
is denoted byk = (ki)1≤i≤n. At each timet, each experti suffers a loss2 si

t =Loss(xt ,yi
t) ∈ [0,1],

andst = (si
t)1≤i≤n is the vector of all losses at timet. Let s<t = s1 + . . .+ st−1 (respectivelys1:t =

s1 + . . .+st) be the total past loss vector (including current lossst) andsmin
1:t = mini{si

1:t} be the loss
of thebest expert in hindsight (BEH). Usually we do not know in advance the timet ≥ 0 at which
the performance of our predictions are evaluated.

General decision spaces.The setup can be generalized as follows. LetS ⊂ IRn be thestate space
andD ⊂ IRn thedecision space. At time t the state isst ∈ S , and a decisiondt ∈ D (which is made
before the state is revealed) incurs a lossdt◦st , where “◦” denotes the inner product. This implies
that the loss function islinear in the states. Conversely, each linear loss function can be represented
in this way. The decision which minimizes the loss in states∈ S is

M(s) := arg min
d∈D

{d ◦s} (1)

if the minimum exists. The application of this general framework to PEA is straightforward: D is
identified with the space of all unit vectorsE ={ei :1≤ i≤n}, since a decision consists of selecting

2. The setup, analysis and results easily scale tosi
t ∈ [0,S] for S> 0 other than 1.

641

HUTTER AND POLAND

a single expert, andst ∈ [0,1]n, so states are identified with losses. Only Theorems 2 and 10 will be
stated in terms of general decision space. Our main focus isD = E . (Even for this special case,
the scalar product notation is not too heavy, but will turn out to be convenient.) All our results
generalize to the simplexD =∆={v∈ [0,1]n :∑iv

i =1}, since the minimum of a linear function on
∆ is always attained onE .

Follow the Perturbed Leader. Givens<t at timet, an immediate idea to solve the expert problem
is to “Follow the Leader” (FL), i.e. selecting the expertei which performed best in the past (min-
imizessi

<t), that is predict according to expertM(s<t). This approach fails for two reasons. First,
for n = ∞ the minimum in (1) may not exist. Second, forn = 2 ands=

(0 1 0 1 0 1...
1
20 1 0 1 0...

)
, FL always

chooses the wrong prediction (Kalai and Vempala, 2003). We solve the first problem by penalizing
each expert by its complexity, i.e. predicting according to expertM(s<t +k). TheFPL (Follow the
Perturbed Leader)approach solves the second problem by adding to each expert’s losssi

<t a random
perturbation. We choose this perturbation to be negativeexponentially distributed, either indepen-
dent in each time step or once and for all at the very beginning at timet = 0. The former choice
is preferable in order to protect against an adaptive adversary who generates thest , and in order
to get bounds with high probability (Section 9). For the main analysis however, the latter choice
is more convenient. Due to linearity of expectations, these two possibilities are equivalent when
dealing withexpected losses(this is straightforward for oblivious adversary, for adaptive adversary
see Section 8), so we can henceforth assume without loss of generality one initial perturbationq.

The FPL algorithm is defined as follows:
Choose random vectorq

d.∼exp, i.e.P[q1...qn]=e−q1 ·...·e−qn
for q≥0.

For t =1,...,T
- Choose learning rateηt .
- Output prediction of experti which minimizessi

<t +(ki−qi)/ηt .
- Receive losssi

t for all expertsi.

Other thans<t , k and q, FPL depends on thelearning rateηt . We will give choices forηt in
Section 5, after having established the main tools for the analysis. The expected loss at timet of
FPL is `t := E[M(s<t +

k−q
ηt

) ◦st]. The key idea in the FPL analysis is the use of an intermediate
predictor IFPL (for Implicit or Infeasible FPL). IFPL predicts according toM(s1:t +

k−q
ηt

), thus
under the knowledge ofst (which is of course not available in reality). Byrt :=E[M(s1:t +

k−q
ηt

) ◦st]
we denote the expected loss of IFPL at timet. The losses of IFPL will be upper-bounded by BEH
in Section 3 and lower-bounded by FPL in Section 4. Note that our definition of the FPL algorithm
deviates from that of Kalai and Vempala. It uses an exponentially distributed perturbation similar to
their FPL∗ but one-sided and a non-stationary learning rate like Hannan’s algorithm.

Notes.Observe that we have stated the FPL algorithm regardless of the actualpredictionsof the ex-
perts and possibleobservations, only thelossesare relevant. Note also that an expert can implement
a highly complicated strategy depending on past outcomes, despite its trivializing identification with
a constant unit vector. The complex expert’s (and environment’s) behavior is summarized and hid-
den in the state vectorst =Loss(xt ,yi

t)1≤i≤n. Our results therefore apply toarbitrary prediction and
observation spacesY andX and arbitrary bounded loss functions. This is in contrast to the major
part of PEA work developed for binary alphabet and 0/1 or absolute loss only. Finally note that
the setup allows for losses generated by an adversary who tries to maximize the regret of FPL and
knows the FPL algorithm and all experts’ past predictions/losses. If the adversary also has access

642

ADAPTIVE ONLINE PREDICTION BY FOLLOWING THE PERTURBEDLEADER

Symbol Definition / Explanation
n ∈ IN∪{∞} (n=∞ means countably infiniteE). Number of experts.
xi = ith component of vectorx∈ IRn.
E :={ei :1≤ i≤n}= set of unit vectors (ej

i =δi j).
∆ :={v∈ [0,1]n :∑iv

i =1}= simplex.
st ∈ [0,1]n = environmental state/loss vector at timet.
s1:t :=s1+...+st= state/loss (similar for̀t andrt).
smin
1:T =mini{si

1:T}= loss of Best Expert in Hindsight (BEH).
s<t :=s1+...+st−1= state/loss summary (s<0=0).
M(s) :=argmind∈D{d ◦s}= best decision ons.
T∈ IN0 = total time=step,t∈ IN= current time=step.
ki ≥0 = penalization = complexity of experti.
q∈ IRn = random vector with independent exponentially distributed components.

It :=argmini∈E{si
<t +

ki−qi

ηt
}= randomized prediction of FPL.

`t :=E[M(s<t +
k−q
ηt

) ◦st]= expected loss at timet of FPL (=E[sIt
t] for D =E).

rt :=E[M(s1:t +
k−q
ηt

) ◦st]= expected loss at timet of IFPL.

ut :=M(s<t +
k−q
ηt

) ◦st= actual loss at timet of FPL (=sIt
t for D =E).

Table 1: List of notation.

to FPL’s past decisions, then FPL must use independent randomization ateach time step in order to
achieve good regret bounds. Table 1 summarizes notation.

Motivation of FPL. Let d(s<t) be any predictor with decision based ons<t . The following identity
is easy to show:

T

∑
t=1

d(s<t) ◦st

︸ ︷︷ ︸
“FPL”

≡ d(s1:T) ◦s1:T

︸ ︷︷ ︸
“BEH”

+

≤ 0 if d ≈ M︷ ︸︸ ︷
T

∑
t=1

[d(s<t)−d(s1:t)] ◦s<t

︸ ︷︷ ︸
“IFPL−BEH”

+

small if d(·) is continuous︷ ︸︸ ︷
T

∑
t=1

[d(s<t)−d(s1:t)] ◦st

︸ ︷︷ ︸
“FPL−IFPL”

. (2)

For a good bound of FPL in terms of BEH we need the first term on the r.h.s. tobe close to BEH and
the last two terms to be small. The first term is close to BEH ifd≈M. The second to last term is
even negative ifd=M, hence small ifd≈M. The last term is small ifd(s<t)≈d(s1:t), which is the
case ifd(·) is a sufficiently smooth function. Randomization smoothes the discontinuous function
M: The functiond(s) := E[M(s−q)], whereq∈ IRn is some random perturbation, is a continuous
function ins. If the mean and variance ofq are small, thend≈M, if the variance ofq is large, then
d(s<t) ≈ d(s1:t). An intermediate variance makes the last two terms of (2) simultaneously small
enough, leading to excellent bounds for FPL.

3. IFPL bounded by Best Expert in Hindsight

In this section we provide tools for comparing the loss of IFPL to the loss of thebest expert in
hindsight. The first result bounds the expected error induced by the exponentially distributed per-
turbation.

643

HUTTER AND POLAND

Lemma 1 (Maximum of Shifted Exponential Distributions) Let q1,...,qn be (not necessarily in-
dependent) exponentially distributed random variables, i.e. P[qi]=e−qi

for qi ≥0 and1≤ i≤n≤∞,
and ki ∈ IR be real numbers with u:=∑n

i=1e−ki
. Then

P[max
i
{qi − ki} ≥ a] = 1−

n

∏
i=1

max{0, 1−e−a−ki} if q1, ..., qn are independent,

P[max
i
{qi − ki} ≥ a] ≤ min{1, ue−a},

E[max
i
{qi − ki}] ≤ 1 + ln u.

Proof. Using

P[qi < a] = max{0, 1−e−a} ≥ 1− e−a and P[qi ≥ a] = min{1, e−a} ≤ e−a,

valid for anya∈ IR, the exact expression forP[max] in Lemma 1 follows from

P[max
i
{qi − ki} < a] = P[qi − ki < a ∀i] =

n

∏
i=1

P[qi < a + ki] =
n

∏
i=1

max{0, e−a−ki},

where the second equality follows from the independence of theqi . The bound onP[max] for any
a∈ IR (including negativea) follows from

P[max
i
{qi − ki} ≥ a] = P[∃i : qi − ki ≥ a] ≤

n

∑
i=1

P[qi − ki ≥ a] ≤
n

∑
i=1

e−a−ki
= u·e−a

where the first inequality is the union bound. UsingE[z]≤E[max{0,z}]= R ∞
0 P[max{0,z}≥y]dy=

R ∞
0 P[z≥y]dy (valid for any real-valued random variablez) for z=maxi{qi−ki}−lnu, this implies

E[max
i
{qi − ki} − ln u] ≤

Z ∞

0
P[max

i
{qi − ki} ≥ y + ln u]dy≤

Z ∞

0
e−ydy = 1,

which proves the bound onE[max]. 2

If n is finite, a lower boundE[maxiqi]≥ 0.57721+ lnn can be derived, showing that the upper
bound onE[max] is quite tight (at least) forki = 0 ∀i. The following bound generalizes (Kalai
and Vempala, 2003, Lem.3) to arbitrary weights, establishing a relation between IFPL and the best
expert in hindsight.

Theorem 2 (IFPL bounded by BEH) Let D ⊆ IRn, st ∈ IRn for 1≤ t ≤T (bothD and s may even
have negative components, but we assume that all required extrema are attained), and q,k∈ IRn.
If ηt > 0 is decreasing in t, then the loss of the infeasible FPL knowing st at time t in advance
(l.h.s.) can be bounded in terms of the best predictor in hindsight (first term on r.h.s.) plus additive
corrections:

T

∑
t=1

M(s1:t +
k−q
ηt

) ◦st ≤ min
d∈D

{d ◦(s1:T +
k

ηT
)} +

1
ηT

max
d∈D

{d ◦(q− k)} − 1
ηT

M(s1:T +
k

ηT
) ◦q.

644

ADAPTIVE ONLINE PREDICTION BY FOLLOWING THE PERTURBEDLEADER

Note that ifD = E (or D = ∆) andst ≥ 0, then all extrema in the theorem are attained almost
surely. The same holds for all subsequent extrema in the proof and throughout the paper.

Proof. For notational convenience, letη0=∞ ands̃1:t =s1:t +
k−q
ηt

. Consider the losses ˜st =st +(k−
q)(1

ηt
− 1

ηt−1
) for the moment. We first show by induction onT that the infeasible predictorM(s̃1:t)

has zero regret for any loss ˜s, i.e.

T

∑
t=1

M(s̃1:t) ◦s̃t ≤ M(s̃1:T) ◦s̃1:T . (3)

ForT =1 this is obvious. For the induction step fromT−1 toT we need to show

M(s̃1:T) ◦s̃T ≤ M(s̃1:T) ◦s̃1:T − M(s̃<T) ◦s̃<T . (4)

This follows froms̃1:T = s̃<T+s̃T andM(s̃1:T) ◦s̃<T ≥M(s̃<T) ◦s̃<T by minimality ofM. Rearranging
terms in (3), we obtain

T

∑
t=1

M(s̃1:t) ◦st ≤ M(s̃1:T) ◦s̃1:T −
T

∑
t=1

M(s̃1:t) ◦(k− q)
(1

ηt
− 1

ηt−1

)
(5)

Moreover, by minimality ofM,

M(s̃1:T) ◦s̃1:T ≤ M
(

s1:T +
k

ηT

)
◦
(

s1:T +
k− q

ηT

)
(6)

= min
d∈D

{
d ◦(s1:T +

k
ηT

)

}
− M

(
s1:T +

k
ηT

)
◦

q
ηT

holds. Using1
ηt
− 1

ηt−1
≥0 and again minimality ofM, we have

T

∑
t=1

(
1
ηt

− 1
ηt−1

)M(s̃1:t) ◦(q− k) ≤
T

∑
t=1

(
1
ηt

− 1
ηt−1

)M(k− q) ◦(q− k) (7)

=
1

ηT
M(k− q) ◦(q− k) =

1
ηT

max
d∈D

{d ◦(q− k)}.

Inserting (6) and (7) back into (5) we obtain the assertion. 2

Assumingq random withE[qi] = 1 and taking the expectation in Theorem 2, the last term
reduces to− 1

ηT
∑n

i=1M(s1:T + k
ηT

)i . If D ≥ 0, the term is negative and may be dropped. In case of
D = E or ∆, the last term is identical to− 1

ηT
(since∑id

i = 1) and keeping it improves the bound.
Furthermore, we need to evaluate the expectation of the second to last term inTheorem 2, namely
E[maxd∈D{d ◦(q−k)}]. For D = E and q being exponentially distributed, using Lemma 1, the
expectation is bounded by 1+lnu. We hence get the following bound:

Corollary 3 (IFPL bounded by BEH) For D = E and ∑ie
−ki ≤ 1 and P[qi] = e−qi

for q≥ 0 and
decreasingηt > 0, the expected loss of the infeasible FPL exceeds the loss of expert i by atmost
ki/ηT :

r1:T ≤ si
1:T +

1
ηT

ki ∀i.

645

HUTTER AND POLAND

Theorem 2 can be generalized to expert dependent factorizableηt ;ηi
t =ηt ·ηi by scalingki

;

ki/ηi andqi
;qi/ηi . UsingE[maxi{qi−ki

ηi }]≤E[maxi{qi−ki}]/mini{ηi}, Corollary 3, generalizes
to

E[
T

∑
t=1

M(s1:t +
k− q

ηi
t

) ◦st] ≤ si
1:T +

1

ηi
T

ki +
1

ηmin
T

∀i,

whereηmin
T :=mini{ηi

T}. For example, forηi
t =

√
ki/t we get the desired boundsi

1:T +
√

T ·(ki +4).
Unfortunately we were not able to generalize Theorem 4 to expert-dependentη, necessary for the
final bound on FPL. In Section 6 we solve this problem by a hierarchy of experts.

4. Feasible FPL bounded by Infeasible FPL

This section establishes the relation between the FPL and IFPL losses. Recall that `t =E[M(s<t +
k−q
ηt

) ◦st] is the expected loss of FPL at timet and rt = E[M(s1:t +
k−q
ηt

) ◦st] is the expected loss of
IFPL at timet.

Theorem 4 (FPL bounded by IFPL) For D = E and 0≤ si
t ≤ 1 ∀i and arbitrary s<t and P[q] =

e−∑iq
i
for q≥0, the expected loss of the feasible FPL is at most a factoreηt >1 larger than for the

infeasible FPL:

`t ≤ eηt rt , which implies `1:T − r1:T ≤
T

∑
t=1

ηt`t .

Furthermore, ifηt ≤1, then alsò t ≤(1+ηt +η2
t)rt ≤(1+2ηt)rt .

Proof. Let s=s<t +
1
ηk be the past cumulative penalized state vector,q be a vector of independent

exponential distributions, i.e.P[qi]=e−qi
, andη=ηt . Then

P[q j ≥ η(sj − m+ 1)]

P[q j ≥ η(sj − m)]
=





e−η if sj ≥ m
e−η(sj−m+1) if m− 1 ≤ sj ≤ m

1 if sj ≤ m− 1



 ≥ e−η

We now define the random variablesI := argmini{si− 1
ηqi} andJ := argmini{si +si

t− 1
ηqi}, where

0≤ si
t ≤ 1 ∀i. Furthermore, for fixed vectorx∈ IRn and fixed j we definem:= mini 6= j{si− 1

ηxi}≤
mini 6= j{si +si

t− 1
ηxi}=:m′. With this notation and using the independence ofq j from qi for all i 6= j,

we get

P[I = j|qi = xi ∀i 6= j] = P[sj − 1
ηq j ≤ m|qi = xi ∀i 6= j] = P[q j ≥ η(sj − m)]

≤ eηP[q j ≥ η(sj − m+ 1)] ≤ eηP[q j ≥ η(sj + sj
t − m′)]

= eηP[sj + sj
t − 1

ηq j ≤ m′|qi = xi ∀i 6= j] = eηP[J = j|qi = xi ∀i 6= j].

Since this bound holds under any conditionx, it also holds unconditionally, i.e.P[I = j]≤eηP[J= j].
For D =E we havesI

t =M(s<t +
k−q

η) ◦st andsJ
t =M(s1:t +

k−q
η) ◦st , which implies

`t = E[sI
t] =

n

∑
j=1

sj
t ·P[I = j] ≤ eη

n

∑
j=1

sj
t ·P[J = j] = eηE[sJ

t] = eηrt .

646

ADAPTIVE ONLINE PREDICTION BY FOLLOWING THE PERTURBEDLEADER

Finally, `t−rt ≤ηt`t follows from rt ≥e−ηt `t ≥(1−ηt)`t , and`t ≤eηt rt ≤(1+ηt+η2
t)rt ≤(1+2ηt)rt

for ηt ≤1 is elementary. 2

Remark. As done by Kalai and Vempala (2003), one can prove a similar statement forgeneral
decision spaceD as long as∑i |si

t |≤A is guaranteed for someA>0: In this case, we havèt ≤eηtArt .
If n is finite, then the bound holds forA= n. For n= ∞, the assertion holds under the somewhat
unnatural assumption thatS is l1-bounded.

5. Combination of Bounds and Choices forηt

Throughout this section, we assume

D = E , st ∈ [0, 1]n ∀t, P[q] = e−∑i qi
for q ≥ 0, and ∑

i

e−ki ≤ 1. (8)

We distinguishstaticanddynamicbounds. Static bounds refer to a constantηt ≡η. Since this value
has to be chosen in advance, a static choice ofηt requires certain prior information and therefore is
not practical in many cases. However, the static bounds are very easy toderive, and they provide
a good means to compare different PEA algorithms. If on the other hand the algorithm shall be
applied without appropriate prior knowledge, a dynamic choice ofηt depending only ont and/or
past observations, is necessary.

Theorem 5 (FPL bound for staticηt =η∝1/
√

L) Assume (8) holds, then the expected loss`t of
feasible FPL, which employs the prediction of the expert i minimizing si

<t +
ki−qi

ηt
, is bounded by the

loss of the best expert in hindsight in the following way:

i) For ηt = η = 1/
√

L with L ≥ `1:T we have

`1:T ≤ si
1:T +

√
L(ki + 1) ∀i.

ii) For ηt =
√

K/L with L ≥ `1:T and ki ≤ K ∀i we have

`1:T ≤ si
1:T + 2

√
LK ∀i.

iii) For ηt =
√

ki/L with L ≥ max{si
1:T , ki} we have

`1:T ≤ si
1:T + 2

√
Lki + 3ki .

Note that according to assertion(iii), knowledge of only theratio of the complexity and the
loss of the best expert is sufficient in order to obtain good static bounds, even for non-uniform
complexities.

Proof. (i,ii) For ηt =
√

K/L andL≥`1:T , from Theorem 4 and Corollary 3, we get

`1:T − r1:T ≤
T

∑
t=1

ηt`t = `1:T

√
K/L ≤

√
LK and r1:T − si

1:T ≤ ki/ηT = ki
√

L/K.

Combining both, we get̀1:T−si
1:T ≤

√
L(
√

K+ki/
√

K). (i) follows fromK=1 and(ii) from ki≤K.
(iii) For η=

√
ki/L≤1 we get

`1:T ≤ eηr1:T ≤ (1 + η + η2)r1:T ≤ (1 +

√
ki

L
+

ki

L
)(si

1:T +

√
L
ki k

i)

≤ si
1:T +

√
Lki + (

√
ki

L
+

ki

L
)(L +

√
Lki) = si

1:T + 2
√

Lki + (2 +

√
ki

L
)ki .

647

HUTTER AND POLAND

2

The static bounds require knowledge of an upper boundL on the loss (or the ratio of the com-
plexity of the best expert and its loss). Since the instantaneous loss is bounded by 1, one may set
L = T if T is known in advance. For finiten andki = K = lnn, bound(ii) gives the classic regret
∝
√

T lnn. If neitherT norL is known, a dynamic choice ofηt is necessary. We first present bounds

with regret∝
√

T, thereafter with regret∝
√

si
1:T .

Theorem 6 (FPL bound for dynamicηt ∝1/
√

t) Assume (8) holds.

i) For ηt = 1/
√

t we have `1:T ≤ si
1:T +

√
T(ki + 2) ∀i.

ii) For ηt =
√

K/2t and ki ≤ K ∀i we have `1:T ≤ si
1:T + 2

√
2TK ∀i.

Proof. For ηt =
√

K/2t, using∑T
t=1

1√
t
≤R T

0
dt√

t
=2

√
T and`t ≤1 we get

`1:T − r1:T ≤
T

∑
t=1

ηt ≤
√

2TK and r1:T − si
1:T ≤ ki/ηT = ki

√
2T
K

.

Combining both, we get̀1:T −si
1:T ≤

√
2T(

√
K+ki/

√
K). (i) follows from K = 2 and(ii) from

ki ≤K. 2

In Theorem 5 we assumed knowledge of an upper boundL on `1:T . In an adaptive form,Lt :=
`<t+1, known at the beginning of timet, could be used as an upper bound on`1:t with corresponding
adaptiveηt ∝1/

√
Lt . Such choice ofηt is also calledself-confident(Auer et al., 2002).

Theorem 7 (FPL bound for self-confidentηt ∝1/
√

`<t) Assume (8) holds.

i) For ηt = 1/
√

2(`<t + 1) we have

`1:T ≤ si
1:T + (ki +1)

√
2(si

1:T +1) + 2(ki +1)2 ∀i.

ii) For ηt =
√

K/2(`<t + 1) and ki ≤ K ∀i we have

`1:T ≤ si
1:T + 2

√
2(si

1:T +1)K + 8K ∀i.

Proof. Using ηt =
√

K/2(`<t +1)≤
√

K/2`1:t and b−a√
b

= (
√

b−√
a)(

√
b+

√
a) 1√

b
≤ 2(

√
b−√

a)

for a≤b andt0 :=min{t :`1:t >0} we get

`1:T−r1:T ≤
T

∑
t=t0

ηt`t ≤
√

K
2

T

∑
t=t0

`1:t−`<t√
`1:t

≤
√

2K
T

∑
t=t0

[
√

`1:t −
√

`<t] =
√

2K
√

`1:T .

Adding r1:T−si
1:T ≤ ki

ηT
≤ki

√
2(`1:T +1)/K we get

`1:T − si
1:T ≤

√
2κ̄i(`1:T +1), where

√
κ̄i :=

√
K + ki/

√
K.

Taking the square and solving the resulting quadratic inequality w.r.t.`1:T we get

`1:T ≤ si
1:T + κ̄i +

√
2(si

1:T +1)κ̄i + (κ̄i)2 ≤ si
1:T +

√
2(si

1:T +1)κ̄i + 2κ̄i .

648

ADAPTIVE ONLINE PREDICTION BY FOLLOWING THE PERTURBEDLEADER

ForK =1 we get
√

κ̄i =ki +1 which yields(i). Forki ≤K we getκ̄i ≤4K which yields(ii). 2

The proofs of results similar to(ii) for WM for 0/1 loss all fill several pages (Auer et al., 2002;
Yaroshinsky et al., 2004). The next result establishes a similar bound, but instead of using the
expectedvalue`<t , thebest loss so far smin

<t is used. This may have computational advantages, since
smin
<t is immediately available, whilè<t needs to be evaluated (see discussion in Section 9).

Theorem 8 (FPL bound for adaptiveηt ∝1/
√

smin
<t) Assume (8) holds.

i) For ηt = 1/ min
i
{ki +

√
(ki)2 + 2si

<t + 2} we have

`1:T ≤ si
1:T + (ki + 2)

√
2si

1:T + 2(ki + 2)2 ∀i.

ii) For ηt =
√

1
2 ·min{1,

√
K/smin

<t } and ki ≤ K ∀i we have

`1:T ≤ si
1:T + 2

√
2Ksi

1:T + 5K ln(si
1:T) + 3K + 6 ∀i.

We briefly motivate the strange looking choice forηt in (i). The first naive candidate,ηt ∝1/
√

smin
<t ,

turns out too large. The next natural trial is requestingηt = 1/
√

2min{si
<t +

ki

ηt
}. Solving this

equation results inηt =1/(ki +
√

(ki)2+2si
<t), wherei be the index for whichsi

<t +
ki

ηt
is minimal.

Proof. Define the minimum of a vector as its minimum component, e.g. min(k)= kmin. For nota-
tional convenience, letη0 = ∞ and s̃1:t = s1:t +

k−q
ηt

. Like in the proof of Theorem 2, we consider
one exponentially distributed perturbationq. SinceM(s̃1:t) ◦s̃t ≤M(s̃1:t) ◦s̃1:t−M(s̃<t) ◦s̃<t by (4), we
have

M(s̃1:t) ◦st ≤ M(s̃1:t) ◦s̃1:t − M(s̃<t) ◦s̃<t − M(s̃1:t) ◦

(
k− q

ηt
− k− q

ηt−1

)

Sinceηt ≤
√

1/2, Theorem 4 asserts̀t ≤E[(1+ηt +η2
t)M(s̃1:t) ◦st], thus`1:T ≤A+B, where

A =
T

∑
t=1

E
[
(1 + ηt + η2

t)(M(s̃1:t) ◦s̃1:t − M(s̃<t) ◦s̃<t)
]

= E[(1 + ηT + η2
T)M(s̃1:T) ◦s̃1:T] − E[(1 + η1 + η2

1) min(
k− q

η1
)]

+
T−1

∑
t=1

E
[
(ηt − ηt+1 + η2

t − η2
t+1)M(s̃1:t) ◦s̃1:t

]
and

B =
T

∑
t=1

E

[
(1 + ηt + η2

t)M(s̃1:t) ◦

(
q− k

ηt
− q− k

ηt−1

)]

≤
T

∑
t=1

(1 + ηt + η2
t)

(
1
ηt

− 1
ηt−1

)
=

1 + ηT + η2
T

ηT
+

T−1

∑
t=1

ηt − ηt+1 + η2
t − η2

t+1

ηt
.

Here, the estimate forB follows from 1
ηt
− 1

ηt−1
≥0 andE[M(ηts1:t +k−q) ◦(q−k)]≤E[maxi{qi−

ki}]≤1, which in turn holds by minimality ofM, ∑ie
−ki ≤1 and Lemma 1. In order to estimateA, we

sets̄1:t =s1:t+
k
ηt

and observeM(s̃1:t) ◦s̃1:t ≤M(s̄1:t) ◦(s̄1:t− q
ηt

) by minimality ofM. The expectations

649

HUTTER AND POLAND

of q can then be evaluated toE[M(s̄1:t) ◦q]=1, and as before we haveE[−min(k−q)]≤1. Hence

`1:T ≤ A + B ≤ (1 + ηT + η2
T)

(
M(s̄1:T) ◦s̄1:T − 1

ηT

)
+

1 + η1 + η2
1

η1

+
T−1

∑
t=1

(ηt − ηt+1 + η2
t − η2

t+1)

(
M(s̄1:t) ◦s̄1:t −

1
ηt

)
+ B (9)

≤ (1 + ηT + η2
T) min(s̄1:T) +

T−1

∑
t=1

(ηt − ηt+1 + η2
t − η2

t+1) min(s̄1:t) +
1

η1
+ 2.

We now proceed by considering the two parts of the theorem separately.
(i) Here, ηt = 1/min(k+

√
k2+2s<t +2). Fix t ≤ T and choosem such that km +√

(km)2+2sm
<t +2 is minimal. Then

min(s1:t +
k
ηt

) ≤ sm
<t + 1 +

km

ηt
= 1

2(km +
√

(km)2 + 2sm
<t + 2)2 =

1

2η2
t
≤ 1

2ηtηt+1
.

We may overestimate the quadratic termsη2
t in (9) by ηt – the easiest justification is that we could

have started with the cruder estimate`t ≤(1+2ηt)rt from Theorem 4. Then

`1:T ≤ (1 + 2ηT) min(s1:T +
k

ηT
) + 2

T−1

∑
t=1

(ηt − ηt+1) min(s1:t +
k
ηt

) +
1

η1
+ 2

≤ (1 + 2ηT)
1

2η2
T

+ 2
T−1

∑
t=1

(ηt − ηt+1)
1

2η2
t

+
1

η1
+ 2

≤ 1

2η2
T

+
1

ηT
+

T−1

∑
t=1

(
1

ηt+1
− 1

ηt

)
+

1
η1

+ 2

≤ 1
2 min(k +

√
k2 + 2s<T + 2)2 + 2 min(k +

√
k2 + 2s<T + 2) + 2

≤ si
1:T + (ki + 2)

√
2si

1:T + 2(ki)2 + 6ki + 6 for all i.

This proves the first part of the theorem.
(ii) Here we haveK≥ki for all i. Abbreviateat =max{K,smin

1:t } for 1≤ t≤T, thenηt =
√

K
2at−1

,

at ≥ K, andat −at−1 ≤ 1 for all t. ObserveM(s̄1:t) = M(s1:t), ηt −ηt+1 =
√

K(at−at−1)√
2
√

at
√

at−1(
√

at+
√

at−1)
,

η2
t −η2

t+1= K(at−at−1)
2atat−1

, andat−at−1
2at−1

≤ ln(1+ at−at−1
at−1

)= ln(at)−ln(at−1) which is true forat−at−1
at−1

≤ 1
K ≤

1
ln2. This implies

(ηt − ηt+1)K
ηt

≤ K(at − at−1)

2at−1
≤ K ln

(
1 +

at − at−1

at−1

)
= K(ln(at) − ln(at−1)),

(ηt − ηt+1)s
min
1:t ≤

√
K(at − at−1)(

√
at−1 +

√
at −

√
at−1)√

2
√

at−1(
√

at +
√

at−1)

=

√
K
2

(
√

at −
√

at−1) +

√
K(at − at−1)

2
√

2at−1(
√

at +
√

at−1)2

useat−at−1≤1
andat−1≥K

≤
√

K
2

(
√

at −
√

at−1) +
1

2
√

2
(ln(at) − ln(at−1)),

650

ADAPTIVE ONLINE PREDICTION BY FOLLOWING THE PERTURBEDLEADER

(η2
t − η2

t+1)K

ηt
=

K
√

K(at − at−1)√
2at

√
at−1

at−1≥K

≤
√

2K(ln(at) − ln(at−1)), and

(η2
t − η2

t+1)s
min
1:t ≤ K(at − at−1)

2at−1
≤ K(ln(at) − ln(at−1)).

The logarithmic estimate in the second and third bound is unnecessarily rough and for convenience
only. Therefore, the coefficient of the log-term in the final bound of thetheorem can be reduced to
2K without much effort. Plugging the above estimates back into (9) yields

`1:T ≤ smin
1:T +

√
K
2

smin
1:T +

√
2Ksmin

1:T + 3K + 2 +

√
K
2

smin
1:T + (7

2K + 1
2
√

2
) ln(smin

1:T)

+
1

η1
+ 2 ≤ smin

1:T + 2
√

2Ksmin
1:T + 5K ln(smin

1:T) + 3K + 6.

This completes the proof. 2

Theorem 7 and Theorem 8(i) immediately imply the following bounds on the
√

Loss-regrets:√
`1:T ≤

√
si
1:T +1+

√
8K,

√
`1:T ≤

√
si
1:T +1+

√
2(ki +1), and

√
`1:T ≤

√
si
1:T +

√
2(ki +2), respec-

tively.

Remark. The same analysis as for Theorems [5–8](ii) applies to generalD, using`t≤eηtnrt instead
of `t ≤eηt rt , and leading to an additional factor

√
n in the regret. Compare the remark at the end of

Section 4.

6. Hierarchy of Experts

We derived bounds which do not need prior knowledge ofL with regret∝
√

TK and∝
√

si
1:TK

for a finite number of experts with equal penaltyK = ki = lnn. For an infinite number of experts,
unbounded expert-dependent complexity penaltieski are necessary (due to constraint∑ie

−ki ≤ 1).

Bounds for this case (without prior knowledge ofT) with regret∝ ki
√

T and∝ ki
√

si
1:T have been

derived. In this case, the complexityki is no longer under the square root. Although this already
implies Hannan consistency, i.e. the average per round regret tends to zero ast→∞, improved regret

bounds∝
√

Tki and∝
√

si
1:Tki are desirable and likely to hold. We were not able to derive such

improved bounds for FPL, but for a (slight) modification. We consider a two-level hierarchy of
experts. First consider an FPL for the subclass of experts of complexityK, for eachK∈ IN. Regard
these FPLK as (meta) experts and use them to form a (meta) FPL. The class of meta experts now
contains for each complexity only one (meta) expert, which allows us to derive good bounds. In the
following, quantities referring to complexity classK are superscripted byK, and meta quantities are
superscripted bỹ.

Consider the class of expertsEK :={i :K−1<ki ≤K} of complexityK, for eachK∈ IN. FPLK

makes randomized predictionIK
t := argmini∈EK{si

<t +
ki−qi

ηK
t
} with ηK

t :=
√

K/2t and suffers loss

uK
t :=sIK

t
t at timet. Sinceki ≤K ∀i∈Ek we can apply Theorem 6(ii) to FPLK :

E[uK
1:T] = `K

1:T ≤ si
1:T + 2

√
2TK ∀i ∈ EK ∀K ∈ IN. (10)

We now define a meta state ˜sK
t =uK

t and regard FPLK for K ∈ IN as meta experts, so meta expertK
suffers loss ˜sK

t . (Assigning expected loss ˜sK
t = E[uK

t] = `K
t to FPLK would also work.) Hence the

651

HUTTER AND POLAND

setting is again an expert setting and we define the metaF̃PL to predict̃It :=argminK∈IN{s̃K
<t+

k̃K−q̃K

η̃t
}

with η̃t =1/
√

t andk̃K = 1
2+2lnK (implying ∑∞

K=1e−k̃K ≤1). Note that ˜sK
1:t =s̃K

1 +...+s̃K
t =s

IK
1

1 +...+sIK
t

t

sums over the same meta state componentsK, but over different componentsIK
t in normal state

representation.
By Theorem 6(i) the q̃-expected loss of̃FPL is bounded by ˜sK

1:T +
√

T(k̃K +2). As this bound
holds for allq it also holds inq-expectation. So if we definè̃1:T to be theq andq̃ expected loss of
F̃PL, and chain this bound with (10) fori∈EK we get:

˜̀1:T ≤ E[s̃K
1:T +

√
T(k̃K + 2)] = `K

1:T +
√

T(k̃K + 2)

≤ si
1:T +

√
T[2

√
2(ki + 1) + 1

2 + 2 ln(ki + 1) + 2],

where we have usedK ≤ ki +1. This bound is valid for alli and has the desired regret∝
√

Tki .

Similarly we can derive regret bounds∝
√

si
1:Tki by exploiting that the bounds in Theorems 7 and 8

are concave insi
1:T and using Jensen’s inequality.

Theorem 9 (Hierarchical FPL bound for dynamic ηt) The hierarchicalF̃PL employs at time t
the prediction of expert it := I Ĩt

t , where

IK
t := arg min

i:dkie=K

{
si
<t + ki−qi

ηK
t

}
and Ĩt := arg min

K∈IN

{
s
IK
1

1 + ... + s
IK
t−1

t−1 +
1
2+2 lnK−q̃K

η̃t

}

Under assumptions (8) and independent P[q̃K]=e−q̃K ∀K∈IN, the expected loss̀̃1:T =E[si1
1 +...+siT

T]

of F̃PL is bounded as follows:

a) For ηK
t =

√
K/2t and η̃t = 1/

√
t we have

˜̀1:T ≤ si
1:T + 2

√
2Tki ·(1 + O(ln ki√

ki
)) ∀i.

b) For η̃t as in(i) andηK
t as in(ii) of Theorem{7

8} we have

˜̀1:T ≤ si
1:T + 2

√
2si

1:Tki ·(1 + O(ln ki√
ki

)) + { O(ki)

O(ki ln si
1:T)

} ∀i.

The hierarchical̃FPL differs from a direct FPL over all expertsE . One potential way to prove a
bound on direct FPL may be to show (if it holds) that FPL performs better than F̃PL, i.e.`1:T ≤ ˜̀1:T .
Another way may be to suitably generalize Theorem 4 to expert dependentη.

7. Lower Bound on FPL

A lower bound on FPL similar to the upper bound in Theorem 2 can also be proven.

Theorem 10 (FPL lower-bounded by BEH) Let n be finite. AssumeD⊆IRn and st∈IRn are chosen
such that the required extrema exist (possibly negative), q∈ IRn, andηt >0 is a decreasing sequence.
Then the loss of FPL for uniform complexities (l.h.s.) can be lower-bounded interms of the best
predictor in hindsight (first term on r.h.s.) plus/minus additive corrections:

T

∑
t=1

M(s<t −
q
ηt

) ◦st ≥ min
d∈D

{d ◦s1:T} −
1

ηT
max
d∈D

{d ◦q} +
T

∑
t=1

(
1
ηt

− 1
ηt−1

)M(s<t) ◦q

652

ADAPTIVE ONLINE PREDICTION BY FOLLOWING THE PERTURBEDLEADER

Proof. For notational convenience, letη0=∞ ands̃1:t =s1:t− q
ηt

. Consider the losses ˜st =st−q(1
ηt
−

1
ηt−1

) for the moment. We first show by induction onT that the predictorM(s̃<t) has nonnegative
regret, i.e.

T

∑
t=1

M(s̃<t) ◦s̃t ≥ M(s̃1:T) ◦s̃1:T . (11)

For T = 1 this follows immediately from minimality ofM (s̃<1 := 0). For the induction step from
T−1 toT we need to show

M(s̃<T) ◦s̃T ≥ M(s̃1:T) ◦s̃1:T − M(s̃<T) ◦s̃<T .

Due tos̃1:T = s̃<T +s̃T , this is equivalent toM(s̃<T) ◦s̃1:T ≥M(s̃1:T) ◦s̃1:T , which holds by minimality
of M. Rearranging terms in (11) we obtain

T

∑
t=1

M(s̃<t) ◦st ≥ M(s̃1:T) ◦s̃1:T +
T

∑
t=1

M(s̃<t) ◦q
(1

ηt
− 1

ηt−1

)
, with (12)

M(s̃1:T) ◦s̃1:T = M(s1:T − q
ηT

) ◦s1:T − M(s1:T − q
ηT

) ◦
q

ηT
≥ min

d∈D
{d ◦s1:T} −

1
ηT

max
d∈D

{d ◦q}

and
T

∑
t=1

M(s̃<t) ◦q
(1

ηt
− 1

ηt−1

)
≥

T

∑
t=1

(1
ηt

− 1
ηt−1

)
M(s<t) ◦q.

Again, the last bound follows from the minimality ofM, which asserts that[M(s−q)−M(s)] ◦s≥
0≥ [M(s−q)−M(s)] ◦(s−q) and thus implies thatM(s−q) ◦q≥M(s) ◦q. So Theorem 10 follows
from (12). 2

Assumingq random withE[qi] = 1 and taking the expectation in Theorem 10, the last term
reduces to∑t(

1
ηt
− 1

ηt−1
)∑iM(s<t)

i . If D ≥ 0, the term is positive and may be dropped. In case of
D = E or ∆, the last term is identical to1

ηT
(since∑id

i = 1) and keeping it improves the bound.
Furthermore, we need to evaluate the expectation of the second to last term inTheorem 10, namely
E[maxd∈D{d ◦q}]. ForD =E andq being exponentially distributed, using Lemma 1 withki =0 ∀i,
the expectation is bounded by 1+lnn. We hence get the following lower bound:

Corollary 11 (FPL lower-bounded by BEH) For D = E and anyS and all ki equal and P[qi] =
e−qi

for q≥0 and decreasingηt >0, the expected loss of FPL is at mostlnn/ηT lower than the loss
of the best expert in hindsight:

`1:T ≥ smin
1:T − ln n

ηT

The upper and lower bounds on`1:T (Theorem 4 and Corollaries 3 and 11) together show that

`1:t

smin
1:t

→ 1 if ηt → 0 and ηt ·smin
1:t → ∞ and ki = K ∀i. (13)

For instance,ηt =
√

K/2smin
<t . For ηt =

√
K/2(`<t +1) we proved the bound in Theorem 7(ii).

Knowing that
√

K/2(`<t +1) converges to
√

K/2smin
<t due to (13), we can derive a bound similar

to Theorem 7(ii) for ηt =
√

K/2smin
<t . This choice forηt has the advantage that we do not have to

computè <t (cf. Section 9), as also achieved by Theorem 8(ii).
We do not know whether Theorem 10 can be generalized to expert dependent complexitieski .

653

HUTTER AND POLAND

8. Adaptive Adversary

In this section we show that bounds that hold against an oblivious adversary automatically also hold
against an adaptive one.

Initial versus independent randomization.So far we assumed that the perturbationsq are sampled
only once at timet =0. As already indicated, under the expectation this is equivalent to generating
a new perturbationqt at each time stept, i.e. Theorems 4–9 remain valid for this case. While the
former choice was favorable for the analysis, the latter has two advantages. First, repeated sampling
of the perturbations guarantees better bounds with high probability (see next section). Second, if
the losses are generated by an adaptive adversary (not to be confused with an adaptive learning rate)
which has access to FPL’s past decisions, then he may after some time figure out the initial random
perturbation and use it to force FPL to have a large loss. We now show thatthe bounds for FPL
remain valid, even in case of an adaptive adversary, if independent randomizationq;qt is used.

Oblivious versus adaptive adversary. Recall the protocol for FPL: After each experti made
its predictionyi

t , and FPL combined them to form its own predictionyFPL
t , we observext , and

Loss(xt ,y···t) is revealed for FPL’s and each expert’s prediction. For independent randomization, we
haveyFPL

t = yFPL
t (x<t ,y1:t ,qt). For an oblivious (non-adaptive) adversary,xt = xt(x<t ,y<t). Recur-

sively inserting and eliminating the expertsyi
t =yi

t(x<t ,y<t) andyFPL
t , we get the dependencies

ut := Loss(xt , yFPL
t) = ut(x1:t , qt) and si

t := Loss(xt , yi
t) = si

t(x1:t), (14)

wherex1:t is a “fixed” sequence. With this notation, Theorems 5–8 read`1:T ≡E[∑T
t=1ut(x1:t ,qt)]≤

f (x1:T) for all x1:T ∈ X T , where f (x1:T) is one of the r.h.s. in Theorems 5–8. Noting thatf is
independent ofq1:T , we can write this as

A1 ≤ 0, where At(x<t , q<t) := max
xt:T

Eqt:T

[T

∑
τ=1

uτ(x1:τ, qτ) − f (x1:T)
]
, (15)

whereEqt:T is the expectation w.r.t.qt ...qT (keepingq<t fixed).
For an adaptive adversary,xt = xt(x<t ,y<t ,yFPL

<t) can additionally depend onyFPL
<t . Eliminat-

ing yi
t andyFPL

t we get, again, (14), butxt = xt(x<t ,q<t) is no longer fixed, but an (arbitrary) ran-
dom function. So we have to replacext by xt(x<t ,q<t) in (15) for t = 1..T. The maximization is
now a functional maximization over all functionsxt(·,·)...xT(·,·). Using “maxx(·)Eq[g(x(q),q)] =
Eqmaxx[g(x,q)],” we can write this as

B1
?
≤ 0, where Bt(x<t , q<t) := max

xt
Eqt ... max

xT
EqT

[T

∑
τ=1

uτ(x1:τ, qτ) − f (x1:T)
]
. (16)

So, establishingB1≤0 would show that all bounds also hold in the adaptive case.

Lemma 12 (Adaptive=Oblivious) Let q1...qT ∈ IRT be independent random variables, Eqt be the
expectation w.r.t. qt , f any function of x1:T ∈ X T , and ut arbitrary functions of x1:t and qt . Then,
At(x<t ,q<t)=Bt(x<t ,q<t) for all 1≤t≤T, where At and Bt are defined in (15) and (16). In particular,
A1≤0 implies B1≤0.

654

ADAPTIVE ONLINE PREDICTION BY FOLLOWING THE PERTURBEDLEADER

Proof. We proveBt = At by induction ont, which establishes the theorem.BT = AT is obvious.
AssumeBt =At . Then

Bt−1 = max
xt−1

Eqt−1Bt = max
xt−1

Eqt−1At

= max
xt−1

Eqt−1

[
max
xt:T

Eqt:T

[T

∑
τ=1

uτ(x1:τ, qτ) − f (x1:T)
]]

= max
xt−1

Eqt−1

[t−1

∑
τ=1

uτ(x1:τ, qτ)

︸ ︷︷ ︸
independentxt:T andqt:T

+ max
xt:T

Eqt:T

[T

∑
τ=t

uτ(x1:τ, qτ) − f (x1:T)
]

︸ ︷︷ ︸
independentqt−1, since theqt are i.d.

]

= max
xt−1

[︷ ︸︸ ︷

Eqt−1

[t−1

∑
τ=1

uτ(x1:τ, qτ)
]
+

︷ ︸︸ ︷

max
xt:T

Eqt:T

[T

∑
τ=t

uτ(x1:τ, qτ) − f (x1:T)
]]

= max
xt−1

max
xt:T

Eqt:T

[
Eqt−1

t−1

∑
τ=1

uτ(x1:τ, qτ) +
T

∑
τ=t

uτ(x1:τ, qτ) − f (x1:T)

]
= At−1.

2

Corollary 13 (FPL Bounds for adaptive adversary) Theorems 5–8 also hold for an adaptive ad-
versary in case of independent randomization q;qt .

Lemma 12 shows that every bound of the formA1≤0 proven for an oblivious adversary, implies
an analogous boundB1 ≤ 0 for an adaptive adversary. Note that this strong statement holds only
for the full observation game, i.e. if after each time step we learn all losses. In partial observation
games such as the Bandit case (Auer et al., 1995), our actual action may depend on our past action
by means of our past observation, and the assertion no longer holds. Inthis case, FPL with an
adaptive adversary can be analyzed as shown by McMahan and Blum (2004); Poland and Hutter
(2005). Finally,yIFPL

t can additionally depend onxt , but the “reduced” dependencies (14) are the
same as for FPL, hence, IFPL bounds also hold for adaptive adversary.

9. Miscellaneous

Bounds with high probability. We have derived several bounds for the expected loss`1:T of FPL.
Theactual loss at timet is ut = M(s<t +

k−q
ηt

) ◦st . A simple Markov inequality shows that the total
actual lossu1:T exceeds the total expected loss`1:T =E[u1:T] by a factor ofc>1 with probability at
most 1/c:

P[u1:T ≥ c·`1:T] ≤ 1/c.

Randomizing independently for eacht as described in the previous Section, the actual loss isut =
M(s<t+

k−qt
ηt

) ◦st with the same expected loss`1:T =E[u1:T] as before. The advantage of independent
randomization is that we can get a much better high-probability bound. We canexploit a Chernoff-
Hoeffding bound (McDiarmid, 1989, Cor.5.2b), valid for arbitrary independent random variables
0≤ut ≤1 for t =1,...,T:

P
[
|u1:T − E[u1:T]| ≥ δE[u1:T]

]
≤ 2 exp(−1

3δ2E[u1:T]), 0 ≤ δ ≤ 1.

655

HUTTER AND POLAND

For δ=
√

3c/`1:T we get

P[|u1:T − `1:T | ≥
√

3c`1:T] ≤ 2e−c as soon as `1:T ≥ 3c. (17)

Using (17), the bounds for̀1:T of Theorems 5–8 can be rewritten to yield similar bounds with high

probability (1−2e−c) for u1:T with small extra regret∝
√

c·L or ∝
√

c·si
1:T . Furthermore, (17)

shows that with probability 1,u1:T/`1:T converges rapidly to 1 for̀1:T →∞. Hence we may use the
easier to computeηt =

√
K/2u<t instead ofηt =

√
K/2(`<t +1), likely with similar bounds on the

regret.

Computational Aspects. It is easy to generate the randomized decision of FPL. Indeed, only a
single initial exponentially distributed vectorq∈ IRn is needed. Only for self-confidentηt ∝1/

√
`<t

(see Theorem 7) we need to compute expectations explicitly. Givenηt , from t ; t+1 we need to
computè t in order to updateηt . Note that̀ t =wt◦st , wherewi

t =P[It = i] andIt :=argmini∈E{si
<t +

ki−qi

ηt
} is the actual (randomized) prediction of FPL. Withs:=s<t +k/ηt , P[It = i] has the following

representation:

P[It = i] = P[s− qi

ηt
≤ s− q j

ηt
∀ j 6= i]

=
Z

P[s− qi

ηt
= m ∧ s− q j

ηt
≥ m ∀ j 6= i]dm

=
Z

P[qi = ηt(s
i − m)] · ∏

j 6=i

P[q j ≤ ηt(s
j − m)]dm

=
Z smin

−∞
ηte

−ηt(si−m) ∏
j 6=i

(1− e−ηt(sj−m))dm

= ∑
M :{i}⊆M ⊆N

(−)|M |−1

|M | e−ηt ∑ j∈M (sj−smin).

In the last equality we expanded the product and performed the resulting exponential integrals.
For finiten, the second to last one-dimensional integral should be numerically feasible. Once the
product∏n

j=1(1−e−ηt(sj−m)) has been computed in timeO(n), the argument of the integral can be
computed for eachi in time O(1), hence the overall time to compute`t is O(c·n), wherec is the
time to numerically compute one integral. For infiniten, the last sum may be approximated by the
dominant contributions. Alternatively, one can modify the algorithm by considering only a finite
pool of experts in each time step; see next paragraph. The expectation may also be approximated
by (Monte Carlo) samplingIt several times.

Recall that approximating̀<t can be avoided by usingsmin
<t (Theorem 8) oru<t (bounds with

high probability) instead.

Finitized expert pool. In the case of an infinite expert class, FPL has to compute a minimum over
an infinite set in each time step, which is not directly feasible. One possibility to address this is to
choose the experts from afinite poolin each time step. This is the case in the algorithm of Gentile
(2003), and also discussed by Littlestone and Warmuth (1994). For FPL,we can obtain this behavior
by introducing anentering timeτi ≥ 1 for each expert. Then experti is not considered fori < τi .
In the bounds, this leads to an additional1

ηT
in Theorem 2 and Corollary 3 and a further additional

τi in the final bounds (Theorems 5–8), since we must add the regret of the best expert in hindsight

656

ADAPTIVE ONLINE PREDICTION BY FOLLOWING THE PERTURBEDLEADER

which has already entered the game and the best expert in hindsight at all.Selectingτi =ki implies
bounds for FPL with entering times similar to the ones we derived here. The details and proofs for
this construction can be found in (Poland and Hutter, 2005).

Deterministic prediction and absolute loss.Another use ofwt from the second last paragraph is
the following: If the decision space isD =∆, then FPL may make a deterministic decisiond=wt∈∆
at timet with bounds now holding for sure, instead of selectingei with probabilitywi

t . For example
for the absolute losssi

t = |xt −yi
t | with observationxt ∈ [0,1] and predictionsyi

t ∈ [0,1], a master
algorithm predicting deterministicallywt◦yt∈[0,1] suffers absolute loss|xt−wt◦yt |≤∑iw

i
t |xt−yi

t |=`t ,
and hence has the same (or better) performance guarantees as FPL. Ingeneral, masters can be chosen
deterministic if prediction spaceY and loss-function Loss(x,y) are convex. Forxt ,yi

t ∈ {0,1}, the
absolute loss|xt−pt | of a master deterministically predictingpt ∈ [0,1] actually coincides with the
pt-expected 0/1 loss of a master predicting 1 with probabilitypt . Hence a regret bound for the
absolute loss also implies the same regret for the 0/1 loss.

10. Discussion and Open Problems

How does FPL compare with other expert advice algorithms? We briefly discuss four issues, sum-
marized in Table 2.

Static bounds. Here the coefficient of the regret term
√

KL, referred to as theleading constantin
the sequel, is 2 for FPL (Theorem 5). It is thus a factor of

√
2 worse than the Hedge bound for

arbitrary loss by Freund and Schapire (1997), which is sharp in some sense (Vovk, 1995). This
is the price one pays for the elegance of FPL. There is evidence that this (worst-case) difference
really exists and is not only a proof artifact. For special loss functions, the bounds can sometimes
be improved, e.g. to a leading constant of 1 in the static (randomized) WM casewith 0/1 loss (Cesa-
Bianchi et al., 1997)3. Because of the structure of the FPL algorithm however, it is questionableif
corresponding bounds hold there.

Dynamic bounds. Not knowing the right learning rate in advance usually costs a factor of
√

2.
This is true for Hannan’s algorithm (Kalai and Vempala, 2003) as well as inall our cases. Also for
binary prediction with uniform complexities and 0/1 loss, this result has been established recently –
Yaroshinsky et al. (2004) show a dynamic regret bound with leading constant

√
2(1+ε). Remark-

ably, the best dynamic bound for a WM variant proven by Auer et al. (2002) has a leading constant
2
√

2, which matches ours. Considering the difference in the static case, we therefore conjecture that
a bound with leading constant of 2 holds for a dynamic Hedge algorithm.

General weights.While there are several dynamic bounds for uniform weights, the only previous
result for non-uniform weights we know of is (Gentile, 2003, Cor.16), which gives the dynamic

bound`Gentile
1:T ≤si

1:T+i+O
[√

(si
1:T +i)ln(si

1:T +i)
]

for a p-norm algorithm for the absolute loss. This

is comparable to our bound for rapidly decaying weightswi =exp(−i), i.e.ki = i. Our hierarchical
FPL bound in Theorem 9(b) generalizes this to arbitrary weights and losses and strengthens it,
since both, asymptotic order and leading constant, are smaller.

It seems that the analysis of all experts algorithms, including Weighted Majorityvariants and
FPL, gets more complicated for general weights together with adaptive learning rate, because the

3. While FPL and Hedge and WMR (Littlestone and Warmuth, 1994) can sample an expert without knowing its pre-
diction, Cesa-Bianchi et al. (1997) need to know the experts’ predictions. Note also that for many (smooth) loss-
functions like the quadratic loss, finite regret can be achieved (Vovk, 1990).

657

HUTTER AND POLAND

η Loss conjecture Lower Bound Upper Bound
static 0/1 1 1? 1 (Cesa-Bianchi et al., 1997)
static any

√
2 !

√
2 (Vovk, 1995)

√
2 (Hedge), 2 (FPL)

dynamic 0/1
√

2 1? (Hutter, 2003b)
√

2 (Yaroshinsky) , 2
√

2 (Auer 2002)
dynamic any 2

√
2 (Vovk, 1995) 2

√
2 (FPL), 2 (Hutter, 2003b, Bayes)

Table 2: Comparison of the constantsc in regretsc
√

Loss×lnn for various settings and algorithms.

choice of the learning rate must account for both the weight of the best expert (in hindsight) and
its loss. Both quantities are not known in advance, but may have a different impact on the learning
rate: While increasing the current loss estimate always decreasesηt , the optimal learning rate for an
expert with higher complexity would be larger. On the other hand, all analyses known so far require

decreasingηt . Nevertheless we conjecture that the bounds∝
√

Tki and∝
√

si
1:Tki also hold without

the hierarchy trick, probably by using expert dependent learning rateηi
t .

Comparison to Bayesian sequence prediction.We can also compare theworst-casebounds for
FPL obtained in this work to similar bounds forBayesian sequence prediction. Let{νi} be a class of
probability distributions over sequences and assume that the true sequence is sampled fromµ∈{νi}
with complexitykµ (∑ie

−kνi ≤ 1). Then it is known that the Bayes optimal predictor based on the
e−kνi -weighted mixture ofνi ’s has an expected total loss of at mostLµ+2

√
Lµkµ+2kµ, whereLµ is

the expected total loss of the Bayes optimal predictor based onµ (Hutter, 2003a, Thm.2), (Hutter,
2004b, Thm.3.48). Using FPL, we obtained the same bound except for the leading order constant,
but for any sequence independently of the assumption that it is generatedby µ. This is another
indication that a PEA bound with leading constant 2 could hold. See Hutter (2004a), Hutter (2003b,
Sec.6.3) and Hutter (2004b, Sec.3.7.4) for a more detailed comparison of Bayes bounds with PEA
bounds.

Acknowledgments

This work was supported by SNF grant 2100-67712.02.

References

P. Auer, N. Cesa-Bianchi, Y. Freund, and R. E. Schapire. Gambling in arigged casino: The adver-
sarial multi-armed bandit problem. InProc. 36th Annual Symposium on Foundations of Computer
Science (FOCS 1995), pages 322–331, Los Alamitos, CA, 1995. IEEE Computer Society Press.

P. Auer, N. Cesa-Bianchi, and C. Gentile. Adaptive and self-confident on-line learning algorithms.
Journal of Computer and System Sciences, 64:48–75, 2002.

P. Auer and C. Gentile. Adaptive and self-confident on-line learning algorithms. InProc. 13th Con-
ference on Computational Learning Theory, pages 107–117. Morgan Kaufmann, San Francisco,
2000.

N. Cesa-Bianchi, Y. Freund, D. Haussler, D. Helmbold, R. Schapire, and M. K. Warmuth. How to
use expert advice.Journal of the ACM, 44(3):427–485, 1997.

658

ADAPTIVE ONLINE PREDICTION BY FOLLOWING THE PERTURBEDLEADER

Y. Freund and R. E. Schapire. A decision-theoretic generalization of on-line learning and an appli-
cation to boosting.Journal of Computer and System Sciences, 55(1):119–139, 1997.

C. Gentile. The robustness of the p-norm algorithm.Machine Learning, 53(3):265–299, 2003.

J. Hannan. Approximation to Bayes risk in repeated plays. In M. Dresher, A. W. Tucker, and
P. Wolfe, editors,Contributions to the Theory of Games 3, pages 97–139. Princeton University
Press, 1957.

M. Hutter. Convergence and loss bounds for Bayesian sequence prediction. IEEE Trans. on Infor-
mation Theory, 49(8):2061–2067, 2003a. URLhttp://arxiv.org/abs/cs.LG/0301014.

M. Hutter. Optimality of universal Bayesian prediction for general loss and alphabet.Journal of Ma-
chine Learning Research, 4:971–1000, 2003b. URLhttp://arxiv.org/abs/cs.LG/0311014.

M. Hutter. Online prediction – Bayes versus experts. Technical report,July 2004a. URL
http://www.idsia.ch/∼marcus/ai/bayespea.htm. Presented at the EU PASCAL Workshop
on Learning Theoretic and Bayesian Inductive Principles (LTBIP-2004).

M. Hutter.Universal Artificial Intelligence: Sequential Decisions based on Algorithmic Probability.
Springer, Berlin. 300 pages, 2004b. URLhttp://www.idsia.ch/∼marcus/ai/uaibook.htm.

M. Hutter and J. Poland. Prediction with expert advice by following the perturbed leader
for general weights. InProc. 15th International Conf. on Algorithmic Learning Theory
(ALT-2004), volume 3244 ofLNAI, pages 279–293, Padova, 2004. Springer, Berlin. URL
http://arxiv.org/abs/cs.LG/0405043.

A. Kalai and S. Vempala. Efficient algorithms for online decision. InProc. 16th Annual Confer-
ence on Learning Theory (COLT-2003), Lecture Notes in Artificial Intelligence, pages 506–521,
Berlin, 2003. Springer.

N. Littlestone and M. K. Warmuth. The weighted majority algorithm. In30th Annual Symposium
on Foundations of Computer Science, pages 256–261, Research Triangle Park, North Carolina,
1989. IEEE.

N. Littlestone and M. K. Warmuth. The weighted majority algorithm.Information and Computa-
tion, 108(2):212–261, 1994.

C. McDiarmid. On the method of bounded differences.Surveys in Combinatorics, 141, London
Mathematical Society Lecture Notes Series:148–188, 1989.

H. B. McMahan and A. Blum. Online geometric optimization in the bandit setting against an
adaptive adversary. In17th Annual Conference on Learning Theory (COLT), volume 3120 of
LNCS, pages 109–123. Springer, 2004.

J. Poland and M. Hutter. Master algorithms for active experts problems based on increasing loss
values. InAnnual Machine Learning Conference of Belgium and the Netherlands (Benelearn-
2005), Enschede, 2005. URLhttp://arxiv.org/abs/cs.LG/0502067.

V. G. Vovk. Aggregating strategies. InProc. Third Annual Workshop on Computational Learning
Theory, pages 371–383, Rochester, New York, 1990. ACM Press.

659

HUTTER AND POLAND

V. G. Vovk. A game of prediction with expert advice. InProc. 8th Annual Conference on Compu-
tational Learning Theory, pages 51–60. ACM Press, New York, NY, 1995.

R. Yaroshinsky, R. El-Yaniv, and S. Seiden. How to better use expertadvice.Machine Learning, 55
(3):271–309, 2004.

660

Journal of Machine Learning Research 6 (2005) 661–694 Submitted 2/04; Revised 11/04; Published 4/05

Variational Message Passing

John Winn JWINN@MICROSOFT.COM

Christopher M. Bishop CMBISHOP@MICROSOFT.COM

Microsoft Research Cambridge
Roger Needham Building
7 J. J. Thomson Avenue
Cambridge CB3 0FB, U.K.

Editor: Tommi Jaakkola

Abstract

Bayesian inference is now widely established as one of the principal foundations for machine learn-
ing. In practice, exact inference is rarely possible, and soa variety of approximation techniques
have been developed, one of the most widely used being a deterministic framework called varia-
tional inference. In this paper we introduce Variational Message Passing (VMP), a general purpose
algorithm for applying variational inference to Bayesian Networks. Like belief propagation, VMP
proceeds by sending messages between nodes in the network and updating posterior beliefs us-
ing local operations at each node. Each such update increases a lower bound on the log evidence
(unless already at a local maximum). In contrast to belief propagation, VMP can be applied to a
very general class of conjugate-exponential models because it uses a factorised variational approx-
imation. Furthermore, by introducing additional variational parameters, VMP can be applied to
models containing non-conjugate distributions. The VMP framework also allows the lower bound
to be evaluated, and this can be used both for model comparison and for detection of convergence.
Variational message passing has been implemented in the form of a general purpose inference en-
gine called VIBES (‘Variational Inference for BayEsian networkS’) which allows models to be
specified graphically and then solved variationally without recourse to coding.

Keywords: Bayesian networks, variational inference, message passing

1. Introduction

Variational inference methods (Neal and Hinton, 1998; Jordan et al., 1998) have been used suc-
cessfully for a wide range of models, and new applications are constantly being explored. In each
previous application, the equations for optimising the variational approximationhave been worked
out by hand, a process which is both time consuming and error prone. Forseveral other inference
methods, general purpose algorithms have been developed which can beapplied to large classes of
probabilistic models. For example,belief propagationcan be applied to any acyclic discrete net-
work (Pearl, 1986) or mixed-Gaussian network (Lauritzen, 1992), and the Monte Carlo algorithm
described in Thomas et al. (1992) can perform Gibbs sampling in almost anyBayesian network.
Similarly, expectation propagation(Minka, 2001) has been successfully applied to a wide range of
models. Each of these algorithms relies on being able to decompose the required computation into
calculations that are local to each node in the graph and which require onlymessages passed along
the edges connected to that node.

c©2005 John Winn and Christopher Bishop.

WINN AND BISHOP

However, Monte Carlo methods are computationally very intensive, and alsosuffer from dif-
ficulties in diagnosing convergence, while belief propagation is only guaranteed to converge for
tree-structured graphs. Expectation propagation is limited to certain classesof model for which the
required expectations can be evaluated, is also not guaranteed to converge in general, and is prone
to finding poor solutions in the case of multi-modal distributions. For these reasons the framework
of variational inference has received much attention.

In this paper, the variational message passing algorithm is developed, which optimises a varia-
tional bound using a set of local computations for each node, together witha mechanism for pass-
ing messages between the nodes. VMP allows variational inference to be applied automatically
to a large class of Bayesian networks, without the need to derive application-specific update equa-
tions. In VMP, the messages are exponential family distributions, summarised either by their natural
parameter vector (for child-to-parent messages) or by a vector of moments (for parent-to-child mes-
sages). These messages are defined so that the optimal variational distribution for a node can be
found by summing the messages from its children together with a function of the messages from its
parents, where this function depends on the conditional distribution for thenode.

The VMP framework applies to models described by directed acyclic graphsin which the con-
ditional distributions at each node are members of the exponential family, which therefore includes
discrete, Gaussian, Poisson, gamma, and many other common distributions as special cases. For
example, VMP can handle a general DAG of discrete nodes, or of linear-Gaussian nodes, or an ar-
bitrary combination of the two provided there are no links going from continuous to discrete nodes.
This last restriction can be lifted by introducing further variational bounds, as we shall discuss. Fur-
thermore, the marginal distribution of observed data represented by the graph is not restricted to be
from the exponential family, but can come from a very broad class of distributions built up from
exponential family building blocks. The framework therefore includes manywell known machine
learning algorithms such as hidden Markov models, probabilistic PCA, factoranalysis and Kalman
filters, as well as mixtures and hierarchical mixtures of these.

Note that, since we work in a fully Bayesian framework, latent variables andparameters appear
on an equal footing (they are all unobserved stochastic variables whichare marginalised out to make
predictions). If desired, however, point estimates for parameters can be made simply by maximising
the same bound as used for variational inference.

As an illustration of the power of the message passing viewpoint, we use VMP within a software
tool called VIBES (Variational Inference in BayEsian networkS) which allows a model to be speci-
fied by drawing its graph using a graphical interface, and which then performs variational inference
automatically on this graph.

The paper is organised as follows. Section 2 gives a brief review of variational inference meth-
ods. Section 3 contains the derivation of the variational message passing algorithm, along with an
example of its use. In Section 4 the class of models which can be handled by thealgorithm is de-
fined, while Section 5 describes the VIBES software. Some extensions to thealgorithm are given
in Section 6, and Section 7 concludes with an overall discussion and suggestions for future research
directions.

2. Variational Inference

In this section, variational inference will be reviewed briefly with particularfocus on the case where
the variational distribution has a factorised form. The random variables in the model will be denoted

662

VARIATIONAL MESSAGEPASSING

by X = (V,H) whereV are the visible (observed) variables andH are the hidden (latent) variables.
We assume that the model has the form of a Bayesian network and so the jointdistributionP(X)
can be expressed in terms of the conditional distributions at each nodei,

P(X) = ∏
i

P(Xi |pai) (1)

where pai denotes the set of variables corresponding to the parents of nodei andXi denotes the
variable or group of variables associated with nodei.

Ideally, we would like to perform exact inference within this model to find posterior marginal
distributions over individual latent variables. Unfortunately, exact inference algorithms, such as the
junction tree algorithm (Cowell et al., 1999), are typically only applied to discrete or linear-Gaussian
models and are computationally intractable for all but the simplest models. Instead, we must turn
to approximate inference methods. Here, we consider the deterministic approximation method of
variational inference.

The goal in variational inference is to find a tractable variational distributionQ(H) that closely
approximates the true posterior distributionP(H |V). To do this we note the following decomposi-
tion of the log marginal probability of the observed data, which holds for anychoice of distribution:
Q(H)

lnP(V) = L(Q)+KL(Q||P). (2)

Here

L(Q) = ∑
H

Q(H) ln
P(H,V)

Q(H)
(3)

KL(Q||P) = −∑
H

Q(H) ln
P(H |V)

Q(H)

and the sums are replaced by integrals in the case of continuous variables.Here KL(Q||P) is the
Kullback-Leibler divergence between the true posteriorP(H |V) and the variational approximation
Q(H). Since this satisfies KL(Q||P) > 0 it follows from (2) that the quantityL(Q) forms a lower
bound on lnP(V).

We now choose some family of distributions to representQ(H) and then seek a member of that
family that maximises the lower boundL(Q) and hence minimises the Kullback-Leibler divergence
KL(Q||P). If we allow Q(H) to have complete flexibility then we see that the maximum of the
lower bound occurs when the Kullback-Leibler divergence is zero. Inthis case, the variational
posterior distribution equals the true posterior andL(Q) = lnP(V). However, working with the
true posterior distribution is computationally intractable (otherwise we wouldn’tbe resorting to
variational methods). We must therefore consider a more restricted family ofQ distributions which
has the property that the lower bound (3) can be evaluated and optimised efficiently and yet which
is still sufficiently flexible as to give a good approximation to the true posterior distribution.

This method leads to minimisation of ‘exclusive’ divergence KL(Q||P) rather than the ‘inclu-
sive’ divergence KL(P||Q). Minimising the exclusive divergence can lead to aQ which ignores
modes ofP. However, minimising the inclusive divergence can lead toQ assigning posterior mass
to regions whereP has vanishing density. If the latter behaviour is preferred, then there are al-
ternative approximation techniques for minimising the inclusive divergence,including expectation
propagation (Minka, 2001).

663

WINN AND BISHOP

2.1 Factorised Variational Distributions

We wish to choose a variational distributionQ(H) with a simpler structure than that of the model,
so as to make calculation of the lower boundL(Q) tractable. One way to simplify the dependency
structure is by choosing a variational distribution where disjoint groups ofvariables are independent.
This is equivalent to choosingQ to have a factorised form

Q(H) = ∏
i

Qi(H i), (4)

where{H i} are the disjoint groups of variables. This approximation has been successfully used
in many applications of variational methods (Attias, 2000; Ghahramani and Beal, 2001; Bishop,
1999). Substituting (4) into (3) gives

L(Q) = ∑
H

∏
i

Qi(H i) lnP(H,V)−∑
i

∑
H i

Qi(H i) lnQi(H i).

We now separate out all terms in one factorQ j ,

L(Q) = ∑
H j

Q j(H j)〈lnP(H,V)〉∼Q j (H j) +H(Q j)+ ∑
i6= j

H(Qi)

= −KL(Q j ||Q
?
j)+ terms not inQ j (5)

whereH denotes entropy and we have introduced a new distributionQ?
j , defined by

lnQ?
j (H j) = 〈lnP(H,V)〉∼Q(H j) +const. (6)

and〈·〉∼Q(H j) denotes an expectation with respect to all factors exceptQ j(H j). The bound is max-
imised with respect toQ j when the KL divergence in (5) is zero, which occurs whenQ j = Q?

j .
Therefore, we can maximise the bound by settingQ j equal toQ?

j . Taking exponentials of both sides
we obtain

Q?
j (H j) =

1
Z

exp〈lnP(H,V)〉∼Q(H j), (7)

whereZ is the normalisation factor needed to makeQ?
j a valid probability distribution. Note that the

equations for all of the factors are coupled since the solution for eachQ j(H j) depends on expec-
tations with respect to the other factorsQi6= j . The variational optimisation proceeds by initialising
each of theQ j(H j) and then cycling through each factor in turn replacing the current distribution
with a revised estimate given by (7).

3. Variational Message Passing

In this section, the variational message passing algorithm will be derived and shown to optimise
a factorised variational distribution using a message passing procedure on a graphical model. For
the initial derivation, it will be assumed that the variational distribution is factorised with respect to
each hidden variableHi and so can be written

Q(H) = ∏
i

Qi(Hi).

From (6), the optimised form of thejth factor is given by

lnQ?
j (H j) = 〈lnP(H,V)〉∼Q(H j) +const.

664

VARIATIONAL MESSAGEPASSING

. . .

. . .

.

chj

cp(j)
k ≡ pak\H j

paj

H j

Xk

Figure 1: A key observation is that the variational update equation for a nodeH j depends only on
expectations over variables in the Markov blanket of that node (shown shaded), defined
as the set of parents, children and co-parents of that node.

We now substitute in the form of the joint probability distribution of a Bayesian network, as given
in (1),

lnQ?
j (H j) =

〈
∑i

lnP(Xi |pai)
〉
∼Q(H j)

+const.

Any terms in the sum overi that do not depend onH j will be constant under the expectation and
can be subsumed into the constant term. This leaves only the conditionalP(H j |paj) together with
the conditionals for all the children ofH j , as these haveH j in their parent set,

lnQ?
j (H j) = 〈lnP(H j |paj)〉∼Q(H j) +∑k∈chj

〈lnP(Xk |pak)〉∼Q(H j) +const. (8)

where chj are the children of nodej in the graph. Thus, the expectations required to evaluateQ?
j

involve only those variables lying in the Markov blanket ofH j , consisting of its parents, children

and co-parents1 cp(j)
k . This is illustrated in the form of a directed graphical model in Figure 1. Note

that we use the notationXk to denote both a random variable and the corresponding node in the
graph. The optimisation ofQ j can therefore be expressed as a local computation at the nodeH j .
This computation involves the sum of a term involving the parent nodes, alongwith one term from
each of the child nodes. These terms can be thought of as ‘messages’ from the corresponding nodes.
Hence, we can decompose the overall optimisation into a set of local computations that depend only
on messages from neighbouring (i.e. parent and child) nodes in the graph.

3.1 Conjugate-Exponential Models

The exact form of the messages in (8) will depend on the functional formof the conditional distri-
butions in the model. It has been noted (Attias, 2000; Ghahramani and Beal,2001) that important
simplifications to the variational update equations occur when the distributions of variables, condi-

1. The co-parents of a nodeX are all the nodes with at least one child which is also a child ofX (excludingX itself).

665

WINN AND BISHOP

tioned on their parents, are drawn from the exponential family and are conjugate2 with respect to
the distributions over these parent variables. A model where both of theseconstraints hold is known
as aconjugate-exponentialmodel.

A conditional distribution is in the exponential family if it can be written in the form

P(X |Y) = exp[φ(Y)Tu(X)+ f (X)+g(Y)] (9)

whereφ(Y) is called thenatural parametervector andu(X) is called thenatural statisticvector. The
termg(Y) acts as a normalisation function that ensures the distribution integrates to unity for any
given setting of the parametersY. The exponential family contains many common distributions,
including the Gaussian, gamma, Dirichlet, Poisson and discrete distributions. The advantages of
exponential family distributions are that expectations of their logarithms are tractable to compute
and their state can be summarised completely by the natural parameter vector. The use of conjugate
distributions means that the posterior for each factor has the same form as the prior and so learning
changes only the values of the parameters, rather than the functional form of the distribution.

If we know the natural parameter vectorφ(Y) for an exponential family distribution, then we
can find the expectation of the natural statistic vector with respect to the distribution. Rewriting (9)
and defining̃g as a reparameterisation ofg in terms ofφ gives,

P(X |φ) = exp[φTu(X)+ f (X)+ g̃(φ)].

We integrate with respect toX,
Z

X
exp[φTu(X)+ f (X)+ g̃(φ)]dX =

Z

X
P(X |φ)dX = 1

and then differentiate with respect toφ
Z

X

d
dφ

exp[φTu(X)+ f (X)+ g̃(φ)]dX =
d
dφ

(1) = 0

Z

X
P(X |φ)

[
u(X)+

dg̃(φ)

dφ

]
dX = 0.

And so the expectation of the natural statistic vector is given by

〈u(X)〉P(X |φ) = −
dg̃(φ)

dφ
. (10)

We will see later that the factors of ourQ distribution will also be in the exponential family and will
have the same natural statistic vector as the corresponding factor ofP. Hence, the expectation ofu
under theQ distribution can also be found using (10).

3.2 Optimisation of Q in Conjugate-Exponential Models

We will now demonstrate how the optimisation of the variational distribution can be carried out,
given that the model is conjugate-exponential. We consider the general case of optimising a factor

2. A parent distributionP(X |Y) is said to beconjugateto a child distributionP(W |X) if P(X |Y) has the same functional
form, with respect toX, asP(W |X).

666

VARIATIONAL MESSAGEPASSING

. . .

. . .

. . .

paY

cpY

chY

X

Y

Figure 2: Part of a graphical model showing a nodeY, the parents and children ofY, and the co-
parents ofY with respect to a child nodeX.

Q(Y) corresponding to a nodeY, whose children includeX, as illustrated in Figure 2. From (9), the
log conditional probability of the variableY given its parents can be written

lnP(Y |paY) = φY(paY)TuY(Y)+ fY(Y)+gY(paY). (11)

The subscriptY on each of the functionsφY,uY, fY,gY is required as these functions differ for
different members of the exponential family and so need to be defined separately for each node.

Consider a nodeX ∈ chY which is a child ofY. The conditional probability ofX given its parents
will also be in the exponential family and so can be written in the form

lnP(X |Y,cpY) = φX(Y,cpY)TuX(X)+ fX(X)+gX(Y,cpY) (12)

where cpY are the co-parents ofY with respect toX, in other words, the set of parents ofX excluding
Y itself. The quantityP(Y |paY) in(11) can be thought of as a prior overY, andP(X |Y,cpY) as a
(contribution to) the likelihood ofY.

E
xa

m
pl

e

If X is Gaussian distributed with meanY and precisionβ, it follows that the co-parent set cpY
contains onlyβ, and the log conditional forX is

lnP(X |Y,β) =

[
βY

−β/2

]T [
X
X2

]
+ 1

2(lnβ−βY2− ln2π). (13)

Conjugacy requires that the conditionals of (11) and (12) have the same functional form with
respect toY, and so the latter can be rewritten in terms ofuY(Y) by defining functionsφXY andλ as
follows

lnP(X |Y,cpY) = φXY(X,cpY)TuY(Y)+λ(X,cpY). (14)

It may appear from this expression that the functionφXY depends on the form of the parent con-
ditional P(Y |paY) and so cannot be determined locally atX. This is not the case, because the
conjugacy constraint dictatesuY(Y) for any parentY of X, implying thatφXY can be found directly
from the form of the conditionalP(X |paX).

667

WINN AND BISHOP

E
xa

m
pl

e
Continuing the above example, we can findφXY by rewriting the log conditional in terms ofY to
give

lnP(X |Y,β) =

[
βX

−β/2

]T [
Y
Y2

]
+ 1

2(lnβ−βX2− ln2π),

which lets us defineφXY and dictate whatuY(Y) must be to enforce conjugacy,

φXY(X,β)
def
=

[
βX

−β/2

]
, uY(Y) =

[
Y
Y2

]
. (15)

From (12) and (14), it can be seen that lnP(X |Y,cpY) is linear inuX(X) anduY(Y) respectively.
Conjugacy also dictates that this log conditional will be linear inuZ(Z) for each co-parentZ ∈ cpY.
Hence, lnP(X |Y,cpY) must be a multi-linear3 function of the natural statistic functionsu of X and
its parents. This result is general, for any variableA in a conjugate-exponential model, the log
conditional lnP(A|paA) must be a multi-linear function of the natural statistic functions ofA and its
parents.

E
xa

m
pl

e

The log conditional lnP(X |Y,β) in (13) is multi-linear in each of the vectors,

uX(X) =

[
X
X2

]
, uY(Y) =

[
Y
Y2

]
, uβ(β) =

[
β

lnβ

]
.

Returning to the variational update equation (8) for a nodeY, it follows that all the expectations
on the right hand side can be calculated in terms of the〈u〉 for each node in the Markov blanket of
Y. Substituting for these expectations, we get

lnQ∗
Y(Y) =

〈
φY(paY)TuY(Y)+ fY(Y)+gY(paY)

〉
∼Q(Y)

+ ∑
k∈chY

〈
φXY(Xk,cpk)

TuY(Y)+λ(Xk,cpk)
〉
∼Q(Y)

+const.

which can be rearranged to give

lnQ∗
Y(Y) =

[
〈φY(paY)〉∼Q(Y) + ∑

k∈chY

〈φXY(Xk,cpk)〉∼Q(Y)

]T

uY(Y)

+ fY(Y)+const. (16)

It follows that Q∗
Y is an exponential family distribution of the same form asP(Y |paY) but with a

natural parameter vectorφ∗
Y such that

φ∗
Y = 〈φY(paY)〉+ ∑

k∈chY

〈φXY(Xk,cpk)〉 (17)

where all expectations are with respect toQ. As explained above, the expectations ofφY and each
φXY are multi-linear functions of the expectations of the natural statistic vectors corresponding to
their dependent variables. It is therefore possible to reparameterise these functions in terms of these

3. A function f is a multi-linear function of variablesa,b. . . if it varies linearly with respect to each variable, for
example,f (a,b) = ab+ 3b is multi-linear ina andb. Although, strictly, this function isaffine in a because of the
constant term, we follow common usage and refer to it as linear.

668

VARIATIONAL MESSAGEPASSING

expectations

φ̃Y

(
{〈ui〉}i∈paY

)
= 〈φY(paY)〉

φ̃XY

(
〈uk〉,{〈u j〉} j∈cpk

)
= 〈φXY(Xk,cpk)〉 .

The final step is to show that we can compute the expectations of the natural statistic vectorsu under
Q. From (16) any variableA has a factorQA with the same exponential family form asP(A|paA).
Hence, the expectations ofuA can be found from the natural parameter vector of that distribution
using (10). In the case whereA is observed, the expectation is irrelevant and we can simply calculate
uA(A) directly.

E
xa

m
pl

e

In (15), we definedφXY(X,β) =

[
βX

−β/2

]
. We now reparameterise it as

φ̃XY

(
〈uX〉,〈uβ〉

) def
=

[
〈uβ〉0〈uX〉0

− 1
2〈uβ〉0

]

where〈uX〉0 and〈uβ〉0 are the first elements of the vectors〈uX〉 and〈uβ〉 respectively (and so are

equal to〈X〉 and〈β〉). As required, we have reparameterisedφXY into a functionφ̃XY which is a
multi-linear function of natural statistic vectors.

3.3 Definition of the Variational Message Passing Algorithm

We have now reached the point where we can specify exactly what formthe messages between
nodes must take and so define the variational message passing algorithm. The message from a
parent nodeY to a child nodeX is just the expectation underQ of the natural statistic vector

mY→X = 〈uY〉. (18)

The message from a child nodeX to a parent nodeY is

mX→Y = φ̃XY

(
〈uX〉,{mi→X}i∈cpY

)
(19)

which relies onX having received messages previously from all the co-parents. If anynodeA is
observed then the messages are as defined above but with〈uA〉 replaced byuA.

E
xa

m
pl

e

If X is Gaussian distributed with conditionalP(X |Y,β), the messages to its parentsY andβ are

mX→Y =

[
〈β〉〈X〉
−〈β〉/2

]
, mX→β =

[
− 1

2

(〈
X2

〉
−2〈X〉〈Y〉+

〈
Y2

〉)
1
2

]

and the message fromX to any child node is

[
〈X〉〈
X2

〉
]
.

When a nodeY has received messages from all parents and children, we can finds its updated
posterior distributionQ∗

Y by finding its updated natural parameter vectorφ∗
Y. This vectorφ∗

Y is
computed from all the messages received at a node using

φ∗
Y = φ̃Y

(
{mi→Y}i∈paY

)
+ ∑

j∈chY

m j→Y, (20)

669

WINN AND BISHOP

which follows from (17). The new expectation of the natural statistic vector〈uY〉Q∗
Y

can then be
found, as it is a deterministic function ofφ∗

Y.
The variational message passing algorithm uses these messages to optimise thevariational dis-

tribution iteratively, as described in Algorithm 1 below. This algorithm requires that the lower
boundL(Q) be evaluated, which will be discussed in Section 3.6.

Algorithm 1 The variational message passing algorithm

1. Initialise each factor distributionQ j by initialising the corresponding moment vector
〈u j(Xj)〉.

2. For each nodeXj in turn,

• Retrieve messages from all parent and child nodes, as defined in (18) and (19). This will
require child nodes to retrieve messages from the co-parents ofXj .

• Compute updated natural parameter vectorφ∗
j using (20).

• Compute updated moment vector〈u j(Xj)〉 given the new setting of the parameter vector.

3. Calculate the new value of the lower boundL(Q) (if required).

4. If the increase in the bound is negligible or a specified number of iterationshas been reached,
stop. Otherwise repeat from step 2.

3.4 Example: the Univariate Gaussian Model

To illustrate how variational message passing works, let us apply it to a modelwhich represents a
set of observed one-dimensional data{xn}

N
n=1 with a univariate Gaussian distribution of meanµ and

precisionγ,

P(x |H) =
N

∏
n=1

N (xn |µ,γ−1).

We wish to infer the posterior distribution over the parametersµ andγ. In this simple model the
exact solution is tractable, which will allow us to compare the approximate posterior with the true
posterior. Of course, for any practical application of VMP, the exact posterior would not be tractable
otherwise we would not be using approximate inference methods.

In this model, the conditional distribution of each data pointxn is a univariate Gaussian, which
is in the exponential family and so its logarithm can be expressed in standard form as

lnP(xn |µ,γ−1) =

[
γµ

−γ/2

]T [
xn

x2
n

]
+

1
2
(lnγ− γµ2− ln2π)

and soux(xn) = [xn,x2
n]

T. This conditional can also be written so as to separate out the dependencies
onµ andγ

lnP(xn |µ,γ−1) =

[
γxn

−γ/2

]T [
µ
µ2

]
+

1
2
(lnγ− γx2

n− ln2π) (21)

670

VARIATIONAL MESSAGEPASSING

N N(b) (c) (d)(a) NN

µ γµ γµ

{mxn→µ} {mxn→γ}
mµ→xnmγ→xn

γ µ γ

xn xn xn xn

Figure 3: (a)-(d) Message passing procedure for variational inference in a univariate Gaussian
model. The box around thexi node denotes aplate, which indicates that the contained
node and its connected edges are duplicatedN times. The braces around the messages
leaving the plate indicate that a set ofN distinct messages are being sent.

=

[
−1

2(xn−µ)2

1
2

]T [
γ

lnγ

]
− ln2π (22)

which shows that, for conjugacy,uµ(µ) must be[µ,µ2]T anduγ(γ) must be[γ, lnγ]T or linear trans-
forms of these.4 If we use a separate conjugate prior for each parameter thenµmust have a Gaussian
prior andγ a gamma prior since these are the exponential family distributions with these natural
statistic vectors. Alternatively, we could have chosen a normal-gamma prior over both parameters
which leads to a slightly more complicated message passing procedure. We define the parameter
priors to have hyper-parametersm, β, a andb, so that

lnP(µ|m,β) =

[
βm

−β/2

]T [
µ
µ2

]
+

1
2
(lnβ−βm2− ln2π)

lnP(γ |a,b) =

[
−b

a−1

]T [
γ

lnγ

]
+alnb− lnΓ(a).

3.4.1 VARIATIONAL MESSAGEPASSING IN THE UNIVARIATE GAUSSIAN MODEL

We can now apply variational message passing to infer the distributions overµ andγ variationally.
The variational distribution is fully factorised and takes the form

Q(µ,γ) = Qµ(µ)Qγ(γ).

We start by initialisingQµ(µ) andQγ(γ) and find initial values of〈uµ(µ)〉 and〈uγ(γ)〉. Let us
choose to updateQµ(µ) first, in which case variational message passing will proceed as follows
(illustrated in Figure 3a-d).

(a) As we wish to updateQµ(µ), we must first ensure that messages have been sent to the children
of µ by any co-parents. Thus, messagesmγ→xn are sent fromγ to each of the observed nodes
xn. These messages are the same, and are just equal to〈uγ(γ)〉 = [〈γ〉,〈lnγ〉]T, where the
expectation are with respect to the initial setting ofQγ.

4. To prevent the need for linear transformation of messages, a normalised form of natural statistic vectors will always
be used, for example[µ,µ2]T or [γ, lnγ]T.

671

WINN AND BISHOP

(b) Eachxn node has now received messages from all co-parents ofµ and so can send a message
to µ which is the expectation of the natural parameter vector in (21),

mxn→µ =

[
〈γ〉xn

−〈γ〉/2

]
.

(c) Nodeµhas now received its full complement of incoming messages and can update itsnatural
parameter vector,

φ∗
µ =

[
βm

−β/2

]
+

N

∑
n=1

mxn→µ.

The new expectation〈uµ(µ)〉 can then be computed under the updated distributionQ∗
µ and

sent to eachxn as the messagemµ→xn = [〈µ〉,〈µ2〉]T.

(d) Finally, eachxn node sends a message back toγ which is

mxn→γ =

[
−1

2(x2
n−2xn〈µ〉+ 〈µ2〉)

1
2

]

andγ can update its variational posterior

φ∗
γ =

[
−b

a−1

]
+

N

∑
n=1

mxn→γ.

As the expectation ofuγ(γ) has changed, we can now go back to step (a) and send an updated
message to eachxn node and so on. Hence, in variational message passing, the message passing
procedure is repeated again and again until convergence (unlike in belief propagation on a junction
tree where the exact posterior is available after a message passing is performed once). Each round
of message passing is equivalent to one iteration of the update equations in standard variational
inference.

Figure 4 gives an indication of the accuracy of the variational approximation in this model,
showing plots of both the true and variational posterior distributions for a toyexample. The differ-
ence in shape between the two distributions is due to the requirement thatQ be factorised. Because
KL(Q||P) has been minimised, the optimalQ is the factorised distribution which lies slightlyinside
P.

3.5 Initialisation and Message Passing Schedule

The variational message passing algorithm is guaranteed to converge to a local minimum of the KL
divergence. As with many approximate inference algorithms, including Expectation-Maximisation
and Expectation Propagation, it is important to have a good initialisation to ensure that the local
minimum that is found is sufficiently close to the global minimum. What makes a good initialisation
will depend on the model. In some cases, initialising each factor to a broad distribution will suffice,
whilst in others it may be necessary to use a heuristic, such as using K-means to initialise a mixture
model.

The variational distribution in the example of Section 3.4 contained only two factors and so mes-
sages were passed back-and-forth so as to update these alternately. In fact, unlike belief propagation,

672

VARIATIONAL MESSAGEPASSING

2 4 6 8
0

0.5

1

1.5

µ

γ
Variational posterior

2 4 6 8
0

0.5

1

1.5

True posterior

µ

γ

Figure 4: Contour plots of the variational and true posterior over the meanµ and precisionγ of
a Gaussian distribution, given four samples fromN (x|5,1). The parameter priors are
P(µ) = N (0,1000) andP(γ) = Gamma(0.001,0.001).

messages in VMP can be passed according to a very flexible schedule. Atany point, any factor can
be selected and it can be updated locally using only messages from its neighbours and co-parents.
There is no requirement that factors be updated in any particular order.However, changing the up-
date order can change which stationary point the algorithm converges to,even if the initialisation is
unchanged.

Another constraint on belief propagation is that it is only exact for graphs which are trees and
suffers from double-counting if loops are included. VMP does not have this restriction and can be
applied to graphs of general form.

3.6 Calculation of the Lower BoundL(Q)

The variational message passing algorithm makes use of the lower boundL(Q) as a diagnostic of
convergence. Evaluating the lower bound is also useful for performingmodel selection, or model
averaging, because it provides an estimate of the log evidence for the model.

The lower bound can also play a useful role in helping to check the correctness both of the ana-
lytical derivation of the update equations and of their software implementation,simply by evaluating
the bound after updating each factor in the variational posterior distributionand checking that the
value of the bound does not decrease. This can be taken a stage further (Bishop and Svensén, 2003)
by using numerical differentiation applied to the lower bound. After each update, the gradient of the
bound is evaluated in the subspace corresponding to the parameters of theupdated factor, to check
that it is zero (within numerical tolerances). This requires that the differentiation take account of
any constraints on the parameters (for instance that they be positive or that they sum to one). These
checks, of course, provide necessary but not sufficient conditions for correctness. Also, they add
computational cost so would typically only be employed whilst debugging the implementation.

In previous applications of variational inference, however, the evaluation of the lower bound
has typically been done using separate code from that used to implement the update equations.

673

WINN AND BISHOP

Although the correctness tests discussed above also provide a check onthe mutual consistency of
the two bodies of code, it would clearly be more elegant if their evaluation could be unified.

This is achieved naturally in the variational message passing framework by providing a way to
calculate the bound automatically, as will now be described. To recap, the lower bound on the log
evidence is defined to be

L(Q) = 〈lnP(H,V)〉−〈lnQ(H)〉 ,

where the expectations are with respect toQ. In a Bayesian network, with a factorisedQdistribution,
the bound becomes

L(Q) = ∑
i

〈lnP(Xi |pai)〉− ∑
i∈H

〈lnQi(Hi)〉

def
= ∑

i

Li

where it has been decomposed into contributions from the individual nodes {Li}. For a particular
latent variable nodeH j , the contribution is

L j =
〈
lnP(H j |paj)

〉
−

〈
lnQ j(H j)

〉
.

Given that the model is conjugate-exponential, we can substitute in the standard form for the expo-
nential family

L j = 〈φ j(paj)
T〉〈u j(H j)〉+ 〈 f j(H j)〉+ 〈g j(paj)〉

−
[
φ∗

j
T〈u j(H j)〉+ 〈 f j(H j)〉+ g̃ j(φ∗

j)
]
,

where the functioñg j is a reparameterisation ofg j so as to make it a function of the natural parameter
vector rather than the parent variables. This expression simplifies to

L j = (〈φ j(paj)〉−φ∗
j)

T〈u j(H j)〉+ 〈g j(paj)〉− g̃ j(φ∗
j). (23)

Three of these terms are already calculated during the variational messagepassing algorithm:〈φ j(paj)〉
andφ∗

j when finding the posterior distribution overH j in (20), and〈u j(H j)〉 when calculating out-
going messages fromH j . Thus, considerable saving in computation are made compared to when
the bound is calculated separately.

Each observed variableVk also makes a contribution to the bound

Lk = 〈lnP(Vk |pak)〉

= 〈φk(pak)〉
Tuk(Vk)+ fk(Vk)+ g̃k (〈φk(pak)〉) .

Again, computation can be saved by computinguk(Vk) during the initialisation of the message
passing algorithm.

Example 1 Calculation of the Bound for the Univariate Gaussian Model
In the univariate Gaussian model, the bound contribution from each observed node xn is

Lxn =

[
〈γ〉〈µ〉
−〈γ〉/2

]T [
xn

x2
n

]
+

1
2

(
〈lnγ〉−〈γ〉〈µ2〉− ln2π

)

674

VARIATIONAL MESSAGEPASSING

and the contributions from the parameter nodes µ andγ are

Lµ =

[
βm−β′m′

−β/2+β′/2

]T [
〈µ〉
〈µ2〉

]
+

1
2

(
lnβ−βm2− lnβ′ +β′m′2)

Lγ =

[
−b+b′

a−a′

]T [
〈γ〉
〈lnγ〉

]
+alnb− lnΓ(a)−a′ lnb′ + lnΓ(a′).

The bound for this univariate Gaussian model is given by the sum of the contributions from the µ
andγ nodes and all xn nodes.

4. Allowable Models

The variational message passing algorithm can be applied to a wide class of models, which will be
characterised in this section.

4.1 Conjugacy Constraints

The main constraint on the model is that each parent–child edge must satisfy the constraint of
conjugacy. Conjugacy allows a Gaussian variable to have a Gaussian parent for its mean and we
can extend this hierarchy to any number of levels. Each Gaussian node has a gamma parent as the
distribution over its precision. Furthermore, each gamma distributed variable can have a gamma
distributed scale parameterb, and again this hierarchy can be extended to multiple levels.

A discrete variable can have multiple discrete parents with a Dirichlet prior over the entries
in the conditional probability table. This allows for an arbitrary graph of discrete variables. A
variable with an Exponential or Poisson distribution can have a gamma prior over its scale or mean
respectively, although, as these distributions do not lead to hierarchies,they may be of limited
interest.

These constraints are listed in Table 1. This table can be encoded in implementations of the
variational message passing algorithm and used during initialisation to check the conjugacy of the
supplied model.

4.1.1 TRUNCATED DISTRIBUTIONS

The conjugacy constraint does not put any restrictions on thefX(X) term in the exponential family
distribution. If we choosefX to be a step function

fX(X) =

{
0 : X ≥ 0

−∞ : X < 0

then we end up with a rectified distribution, so thatP(X |θ) = 0 for X < 0. The choice of such a
truncated distribution will change the form of messages to parent nodes (as thegX normalisation
function will also be different) but will not change the form of messages that are passed to child
nodes. However, truncation will affect how the moments of the distribution are calculated from
the updated parameters, which will lead to different values of child messages. For example, the
moments of a rectified Gaussian distribution are expressed in terms of the standard ‘erf’ function.
Similarly, we can consider doubly truncated distributions which are non-zero only over some finite
interval, as long as the calculation of the moments and parent messages remainstractable. One

675

WINN AND BISHOP

Distribution 1st parent Conjugate dist. 2nd parent Conjugate dist.

Gaussian meanµ Gaussian precisionγ gamma
gamma shapea None scaleb gamma
discrete probabilitiesp Dirichlet parents{xi} discrete
Dirichlet pseudo-countsa None

Exponential scalea gamma
Poisson meanλ gamma

Table 1: Distributions for each parameter of a number of exponential family distributions if the
model is to satisfy conjugacy constraints. Conjugacy also holds if the distributions are
replaced by their multivariate counterparts e.g. the distribution conjugate to theprecision
matrix of a multivariate Gaussian is a Wishart distribution. Where “None” is specified, no
standard distribution satisfies conjugacy.

potential problem with the use of a truncated distribution is that no standard distributions may exist
which are conjugate for each distribution parameter.

4.2 Deterministic Functions

We can considerably enlarge the class of tractable models if variables are allowed to be defined as
deterministic functions of the states of their parent variables. This is achieved by adding determin-
istic nodes into the graph, as have been used to similar effect in the BUGS software (see Section 5).

Consider a deterministic nodeX which has stochastic parentsY = {Y1, . . . ,YM} and which has
a stochastic child nodeZ. The state ofX is given by a deterministic functionf of the state of its
parents, so thatX = f (Y). If X were stochastic, the conjugacy constraint withZ would require that
P(X |Y) must have the same functional form, with respect toX, asP(Z |X). This in turn would
dictate the form of the natural statistic vectoruX of X, whose expectation〈uX(X)〉Q would be the
message fromX to Z.

Returning to the case whereX is deterministic, it is still necessary to provide a message toZ
of the form〈uX(X)〉Q where the functionuX is dictated by the conjugacy constraint. This message
can be evaluated only if it can be expressed as a function of the messagesfrom the parent variables,
which are the expectations of their natural statistics functions{〈uYi (Yi)〉Q}. In other words, there
must exist a vector functionψX such that

〈uX(f (Y))〉Q = ψX(〈uY1(Y1)〉Q, . . . ,〈uYM(YM)〉Q).

As was discussed in Section 3.2, this constrainsuX(f (Y)) to be a multi-linear function of the set of
functions{uYi (Yi)}.

A deterministic node can be viewed as a having a conditional distribution which isa delta func-
tion, so thatP(X |Y) = δ(X− f (Y)). If X is discrete, this is the distribution that assigns probability
one to the stateX = f (Y) and zero to all other states. IfX is continuous, this is the distribution with
the property that

R

g(X) δ(X − f (Y))dX = g(f (Y)). The contribution to the lower bound from a
deterministic node is zero.

676

VARIATIONAL MESSAGEPASSING

Example 2 Using a Deterministic Function as the Mean of a Gaussian
Consider a model where a deterministic node X is to be used as the mean of achild Gaussian distri-
butionN (Z |X,β−1) and where X equals a function f of Gaussian-distributed variables Y1, . . . ,YM.
The natural statistic vectors of X (as dictated by conjugacy with Z) and thoseof Y1, . . . ,YM are

uX(X) =

[
X
X2

]
, uYi (Yi) =

[
Yi

Y2
i

]
for i = 1. . .M

The constraint on f is thatuX(f) must be multi-linear in{uYi (Yi)} and so both f and f2 must be
multi-linear in {Yi} and {Y2

i }. Hence, f can be any multi-linear function of Y1, . . . ,YM. In other
words, the mean of a Gaussian can be the sum of products of other Gaussian-distributed variables.

Example 3 Using a Deterministic Function as the Precision of a Gaussian
As another example, consider a model where X is to be used as the precision of a child Gaussian
distributionN (Z |µ,X−1) and where X is a function f of gamma-distributed variables Y1, . . . ,YM.
The natural statistic vectors of X and Y1, . . . ,YM are

uX(X) =

[
X

lnX

]
, uYi (Yi) =

[
Yi

lnYi

]
for i = 1. . .M.

and so both f andln f must be multi-linear in{Yi} and{lnYi}. This restricts f to be proportional
to a product of the variables Y1, . . . ,YM as the logarithm of a product can be found in terms of the
logarithms of terms in that product. Hence f= c∏i Yi where c is a constant. A function containing
a summation, such as f= ∑i Yi , would not be valid as the logarithm of the sum cannot be expressed
as a multi-linear function of Yi and lnYi .

4.2.1 VALIDATING CHAINS OF DETERMINISTIC FUNCTIONS

The validity of a deterministic function for a nodeX is dependent on the form of the stochastic nodes
it is connected to, as these dictate the functionsuX and{uYi (Yi)}. For example, if the function was a
summationf = ∑i Yi , it would be valid for the first of the above examples but not for the second. In
addition, it is possible for deterministic functions to be chained together to formmore complicated
expressions. For example, the expressionX = Y1 +Y2Y3 can be achieved by having a deterministic
product nodeA with parentsY2 andY3 and a deterministic sum nodeX with parentsY1 andA. In
this case, the form of the functionuA is not determined directly by its immediate neighbours, but
instead is constrained by the requirement of consistency for the connected deterministic subgraph.

In a software implementation of variational message passing, the validity of a particular deter-
ministic structure can most easily be checked by requiring that the functionuXi be specified explic-
itly for each deterministic nodeXi , thereby allowing the existing mechanism for checking conjugacy
to be applied uniformly across both stochastic and deterministic nodes.

4.2.2 DETERMINISTIC NODE MESSAGES

To examine message passing for deterministic nodes, we must consider the general case where the
deterministic nodeX has multiple children{Z j}. The message from the nodeX to any childZ j is
simply

mX→Z j = 〈uX(f (Y))〉Q

= ψX(mY1→X, . . . ,mYM→X).

677

WINN AND BISHOP

For a particular parentYk, the functionuX(f (Y)) is linear with respect touYk(Yk) and so it can be
written as

uX(f (Y)) = ΨX,Yk({uYi (Yi)}i6=k) .uYk(Yk)+λ({uYi (Yi)}i 6=k)

whereΨX,Yk is a matrix function of the natural statistics vectors of the co-parents ofYk. The message
from a deterministic node to a parentYk is then

mX→Yk =

[

∑
j

mZ j→X

]
ΨX,Yk({mYi→X}i6=k)

which relies on having received messages from all the child nodes and from all the co-parents. The
sum of child messages can be computed and stored locally at the node and used to evaluate all child-
to-parent messages. In this sense, it can be viewed as the natural parameter vector of a distribution
which acts as a kind of pseudo-posterior over the value ofX.

4.3 Mixture Distributions

So far, only distributions from the exponential family have been considered. Often it is desirable
to use richer distributions that better capture the structure of the system thatgenerated the data.
Mixture distributions, such as mixtures of Gaussians, provide one common way of creating richer
probability densities. A mixture distribution over a variableX is a weighted sum of a number of
component distributions

P(X |{πk},{θk}) =
K

∑
k=1

πkPk(X |θk)

where eachPk is a component distribution with parametersθk and a corresponding mixing coeffi-
cient πk indicating the weight of the distribution in the weighted sum. TheK mixing coefficients
must be non-negative and sum to one.

A mixture distribution is not in the exponential family and therefore cannot be used directly
as a conditional distribution within a conjugate-exponential model. Instead, we can introduce an
additional discrete latent variableλ which indicates from which component distribution each data
point was drawn, and write the distribution as

P(X |λ,{θk}) =
K

∏
k=1

Pk(X |θk)
δλk.

Conditioned on this new variable, the distribution is now in the exponential family provided that all
of the component distributions are also in the exponential family. In this case,the log conditional
probability ofX given all the parents (includingλ) can be written as

lnP(X |λ,{θk}) = ∑
k

δ(λ,k)
[
φk(θk)

Tuk(X)+ fk(X)+gk(θk)
]
.

If X has a childZ, then conjugacy will require that all the component distributions have the same

natural statistic vector, which we can then calluX so: u1(X) = u2(X) = . . . = uK(X)
def
= uX(X). In

addition, we may choose to specify, as part of the model, that all these distributions have exactly

678

VARIATIONAL MESSAGEPASSING

the same form (that is,f1 = f2 = . . . = fK
def
= fX), although this is not required by conjugacy. In this

case, where all the distributions are the same, the log conditional becomes

lnP(X |λ,{θk}) =

[

∑
k

δ(λ,k)φk(θk)

]T

uX(X)+ fX(X)

+∑
k

δ(λ,k)gk(θk)

= φX(λ,{θk})
TuX(X)+ fX(X)+ g̃X(φX(λ,{θk}))

where we have definedφX = ∑k δ(λ,k)φk(θk) to be the natural parameter vector of this mixture
distribution and the functioñgX is a reparameterisation ofgX to make it a function ofφX (as in
Section 3.6). The conditional is therefore in the same exponential family formas each of the com-
ponents.

We can now apply variational message passing. The message from the node X to any child is
〈uX(X)〉 as calculated from the mixture parameter vectorφX(λ,{θk}). Similarly, the message from
X to a parentθk is the message that would be sent by the corresponding component if it were not
in a mixture, scaled by the variational posterior over the indicator variableQ(λ = k). Finally, the
message fromX to λ is the vector of sizeK whosekth element is〈lnPk(X |θk)〉.

4.4 Multivariate Distributions

Until now, only scalar variables have been considered. It is also possible to handle vector variables
in this framework (or to handle scalar variables which have been groupedinto a vector to capture
posterior dependencies between the variables). In each case, a multivariate conditional distribution
is defined in the overall joint distributionP and the corresponding factor in the variational posterior
Q will also be multivariate, rather than factorised with respect to the elements of the vector. To
understand how multivariate distributions are handled, consider thed-dimensional Gaussian distri-
bution with meanµ and precision matrix5 Λ:

P(x |µ,Λ−1) =

√
|Λ|

(2π)d exp
(
− 1

2(x−µ)TΛ (x−µ)
)
.

This distribution can be written in exponential family form

lnN (x |µ,Λ−1) =

[
Λµ

− 1
2vec(Λ)

]T [
x

vec(xxT)

]
+ 1

2(ln |Λ|−µTΛµ−d ln2π)

where vec(·) is a function that re-arranges the elements of a matrix into a column vector in some
consistent fashion, such as by concatenating the columns of the matrix. Thenatural statistic function
for a multivariate distribution therefore depends on both the type of the distribution and its dimen-
sionalityd. As a result, the conjugacy constraint between a parent node and a childnode will also
constrain the dimensionality of the corresponding vector-valued variablesto be the same. Multi-
variate conditional distributions can therefore be handled by VMP like any other exponential family
distribution, which extends the class of allowed distributions to include multivariate Gaussian and
Wishart distributions.

5. The precision matrix of a multivariate Gaussian is the inverse of its covariance matrix.

679

WINN AND BISHOP

A group of scalar variables can act as a single parent of a vector-valued node. This is achieved
using a deterministicconcatenationfunction which simply concatenates a number of scalar values
into a vector. In order for this to be a valid function, the scalar distributions must still be conjugate
to the multivariate distribution. For example, a set ofd univariate Gaussian distributed variables can
be concatenated to act as the mean of ad-dimensional multivariate Gaussian distribution.

4.4.1 NORMAL-GAMMA DISTRIBUTION

The meanµ and precisionγ parameters of a Gaussian distribution can be grouped together into a
single bivariate variablec= {µ,γ}. The conjugate distribution for this variable is the normal-gamma
distribution, which is written

lnP(c|m,λ,a,b) =




mλ
− 1

2λ
−b− 1

2λm2

a− 1
2







µγ
µ2γ
γ

lnγ


+ 1

2(lnλ− ln2π)+alnb− lnΓ(a).

This distribution therefore lies in the exponential family and can be used within VMP instead of
separate Gaussian and gamma distributions. In general, grouping these variables together will im-
prove the approximation and so increase the lower bound. The multivariate form of this distribution,
the normal-Wishart distribution, is handled as described above.

4.5 Summary of Allowable Models

In summary, the variational message passing algorithm can handle probabilistic models with the
following very general architecture: arbitrary directed acyclic subgraphs of multinomial discrete
variables (each having Dirichlet priors) together with arbitrary subgraphs of univariate and mul-
tivariate linear Gaussian nodes (having gamma and Wishart priors), with arbitrary mixture nodes
providing connections from the discrete to the continuous subgraphs. Inaddition, deterministic
nodes can be included to allow parameters of child distributions to be deterministicfunctions of
parent variables. Finally, any of the continuous distributions can be singlyor doubly truncated to
restrict the range of allowable values, provided that the appropriate moments under the truncated
distribution can be calculated along with any necessary parent messages.

This architecture includes as special cases models such as hidden Markov models, Kalman
filters, factor analysers, principal component analysers and independent component analysers, as
well as mixtures and hierarchical mixtures of these.

5. VIBES: An Implementation of Variational Message Passing

The variational message passing algorithm has been implemented in a softwarepackage called
VIBES (Variational Inference in BayEsian networkS), first described by Bishop et al. (2002). In-
spired by WinBUGS (a graphical user interface for BUGS by Lunn et al.,2000), VIBES allows
for models to be specified graphically, simply by constructing the Bayesian network for the model.
This involves drawing the graph for the network (using operations similar to those in a drawing
package) and then assigning properties to each node such as its name, thefunctional form of the
conditional distribution, its dimensionality and its parents. As an example, Figure5 shows the
Bayesian network for the univariate Gaussian model along with a screenshot of the same model in

680

VARIATIONAL MESSAGEPASSING

(a) N

µ γ

xi

(b)

Figure 5: (a) Bayesian network for the univariate Gaussian model. (b) Screenshot of VIBES show-
ing how the same model appears as it is being edited. The nodex is selected and the
panel to the left shows that it has a Gaussian conditional distribution with meanµ and
precisionγ. The plate surroundingx shows that it is duplicatedN times and the heavy
border indicates that it is observed (according to the currently attached data file).

VIBES. Models can also be specified in a text file, which contains XML according to a pre-defined
model definition schema. VIBES is written in Java and so can be used on Windows, Linux or any
operating system with a Java 1.3 virtual machine.

As in WinBUGS, the convention of making deterministic nodes explicit in the graphical rep-
resentation has been adopted, as this greatly simplifies the specification and interpretation of the
model. VIBES also uses the plate notation of a box surrounding one or more nodes to denote that
those nodes are replicated some number of times, specified by the parameter inthe bottom right
hand corner of the box.

Once the model is specified, data can be attached from a separate data file which contains
observed values for some of the nodes, along with sizes for some or all ofthe plates. The model can
then beinitialised which involves: (i) checking that the model is valid by ensuring that conjugacy
and dimensionality constraints are satisfied and that all parameters are specified; (ii) checking that
the observed data is of the correct dimensionality; (iii) allocating memory for allmoments and
messages; (iv) initialisation of the individual distributionsQi .

Following a successful initialisation, inference can begin immediately. As inference proceeds,
the current state of the distributionQi for any node can be inspected using a range of diagnostics
including tables of values and Hinton diagrams. If desired, the lower boundL(Q) can be monitored
(at the expense of slightly increased computation), in which case the optimisation can be set to

681

WINN AND BISHOP

terminate automatically when the change in the bound during one iteration drops below a small
value. Alternatively, the optimisation can be stopped after a fixed number of iterations.

The VIBES software can be downloaded fromhttp://vibes.sourceforge.net. This soft-
ware was written by one of the authors (John Winn) whilst a Ph.D. student at the University of
Cambridge and is free and open source. Appendix A contains a tutorial for applying VIBES to an
example problem involving a Gaussian Mixture model. The VIBES web site also contains an online
version of this tutorial.

6. Extensions to Variational Message Passing

In this section, three extensions to the variational message passing algorithmwill be described.
These extensions are intended to illustrate how the algorithm can be modified to perform alternative
inference calculations and to show how the conjugate-exponential constraint can be overcome in
certain circumstances.

6.1 Further Variational Approximations: The Logistic Sigmoid Function

As it stands, the VMP algorithm requires that the model be conjugate-exponential. However, it
is possible to sidestep the conjugacy requirement by introducing additional variational parameters
and approximating non-conjugate conditional distributions by valid conjugateones. We will now
illustrate how this can be achieved using the example of a conditional distributionover a binary
variablex∈ 0,1 of the form

P(x|a) = σ(a)x[1−σ(a)]1−x

= eaxσ(−a)

where

σ(a) =
1

1+exp(−a)

is the logistic sigmoid function.
We take the approach of Jaakkola and Jordan (1996) and use a variational bound for the logistic

sigmoid function defined as

σ(a) > F(a,ξ)
def
= σ(ξ)exp[(a−ξ)/2+λ(ξ)(a2−ξ2)]

whereλ(ξ) = [1/2−g(ξ)]/2ξ andξ is a variational parameter. For any given value ofa we can
make this bound exact by settingξ2 = a2. The bound is illustrated in Figure 6 in which the solid
curve shows the logistic sigmoid functionσ(a) and the dashed curve shows the lower boundF(a,ξ)
for ξ = 2.

We use this result to define a new lower boundL̃ 6 L by replacing each expectation of the
form 〈ln[eaxσ(−a)]〉 with its lower bound〈ln[eaxF(−a,ξ)]〉. The effect of this transformation is
to replace the logistic sigmoid function with an exponential, therefore restoringconjugacy to the
model. Optimisation of eachξ parameter is achieved by maximising this new boundL̃ , leading to
the re-estimation equation

ξ2 =
〈
a2〉

Q .

It is important to note that, as the quantitỹL involves expectations of lnF(−a,ξ), it is no longer
guaranteed to be exact for any value ofξ.

682

VARIATIONAL MESSAGEPASSING

−6 0 6
0

0.5

1

ξ = 2.0

Figure 6: The logistic sigmoid functionσ(a) and variational boundF(a,ξ).

It follows from (8) that the factor inQ corresponding toP(x|a) is updated using

lnQ?
x(x) = 〈ln(eaxF(−a,ξ))〉∼Qx(x) + ∑

k∈chx

〈lnP(Xk|pak)〉∼Qx(x) +const.

= 〈ax〉∼Qx(x) + ∑
k∈chx

〈bkx〉∼Qx(x) +const.

= a?x+const.

wherea? = 〈a〉+∑k 〈bk〉 and the{bk} arise from the child terms which must be in the form(bkx+
const.) due to conjugacy. Therefore, the variational posteriorQx(x) takes the form

Qx(x) = σ(a?)x[1−σ(a?)]1−x.

6.1.1 USING THE LOGISTIC APPROXIMATION WITHIN VMP

We will now explain how this additional variational approximation can be used within the VMP
framework. The lower bound̃L contains terms like〈ln(eaxF(−a,ξ))〉 which need to be evaluated
and so we must be able to evaluate[〈a〉

〈
a2

〉
]T. The conjugacy constraint ona is therefore that

its distribution must have a natural statistic vectorua(a) = [a a2]. Hence it could, for example, be
Gaussian.

For consistency with general discrete distributions, we write the bound on the log conditional
lnP(x|a) as

lnP(x|a) >

[
0
a

]T [
δ(x−0)
δ(x−1)

]
+(−a−ξ)/2+λ(ξ)(a2−ξ2)+ lnσ(ξ)

=

[
δ(x−1)− 1

2

λ(ξ)

]T [
a
a2

]
−ξ/2−λ(ξ)ξ2 + lnσ(ξ).

The message from nodex to nodea is therefore

mx→a =

[
〈δ(x−1)〉− 1

2

λ(ξ)

]

and all other messages are as in standard VMP. The update of variationalfactors can then be carried
out as normal except that eachξ parameter must also be re-estimated during optimisation. This

683

WINN AND BISHOP

can be carried out, for example, just before sending a message fromx to a. The only remaining
modification is to the calculation of the lower bound in (23), where the term

〈
g j(paj)

〉
is replaced

by the expectation of its bound,
〈
g j(paj)

〉
> (−〈a〉−ξ)/2+λ(ξ)(

〈
a2〉−ξ2)+ lnσ(ξ).

This extension to VMP enables discrete nodes to have continuous parents,further enlarging the
class of allowable models. In general, the introduction of additional variational parameters enor-
mously extends the class of models to which VMP can be applied, as the constraint that the model
distributions must be conjugate no longer applies.

6.2 Finding a Maximum A Posteriori Solution

The advantage of using a variational distribution is that it provides a posterior distribution over
latent variables. It is, however, also possible to use VMP to find a Maximum APosteriori (MAP)
solution, in which values of each latent variable are found that maximise the posterior probability.
Consider choosing a variational distribution which is a delta function

QMAP(H) = δ(H−H?)

whereH? is the MAP solution. From (3), the lower bound is

L(Q) = 〈lnP(H,V)〉−〈lnQ(H)〉

= lnP(H?,V)+hδ

wherehδ is the differential entropy of the delta function. By considering the differential entropy of
a Gaussian in the limit as the variance goes to 0, we can see thathδ = loga,a→ 0. Thushδ does
not depend onH? and so maximisingL(Q) is equivalent to finding the MAP solution. However,
since the entropyhδ tends to−∞, so doesL(Q) and so, whilst it is still trivially a lower bound on
the log evidence, it is not an informative one. In other words, knowing theprobability density of the
posterior at a point is uninformative about the posterior mass.

The variational distribution can be written in factorised form as

QMAP(H) = ∏
j

Q j(H j).

with Q j(H j) = δ(H j −H?
j). The KL divergence between the approximating distribution and the true

posterior is minimised if KL(Q j ||Q?
j) is minimised, whereQ?

j is the standard variational solution
given by (6). Normally,Q j is unconstrained so we can simply set it toQ?

j . However, in this case,
Q j is a delta function and so we have to find the value ofH?

j that minimises KL(δ(H j −H?
j) ||Q

?
j).

Unsurprisingly, this is simply the value ofH?
j that maximisesQ?

j (H
?
j).

In the message passing framework, a MAP solution can be obtained for a particular latent vari-
ableH j directly from the updated natural statistic vectorφ?

j using

(φ?
j)

T du j(H j)

dHj
= 0.

For example, ifQ?
j is Gaussian with meanµ thenH?

j = µ or if Q?
j is gamma with parametersa,b,

thenH?
j = (a−1)/b.

684

VARIATIONAL MESSAGEPASSING

Given that the variational posterior is now a delta function, the expectation of any function
〈 f (H j)〉 under the variational posterior is justf (H?

j). Therefore, in any outgoing messages,〈u j(H j)〉
is replaced byu j(H?

j). Since all surrounding nodes can process these messages as normal, aMAP
solution may be obtained for any chosen subset of variables (such as particular hyper-parameters),
whilst a full posterior distribution is retained for all other variables.

6.3 Learning Non-conjugate Priors by Sampling

For some exponential family distribution parameters, there is no standard probability distribution
which can act as a conjugate prior. For example, there is no standard distribution which can act as
a conjugate prior for the shape parametera of the gamma distribution. This implies that we cannot
learn a posterior distribution over a gamma shape parameter within the basic VMPframework.
As discussed above, we can sometimes introduce conjugate approximations by adding variational
parameters, but this may not always be possible.

The purpose of the conjugacy constraint is two-fold. First, it means that the posterior distri-
bution of each variable, conditioned on its neighbours, has the same form as the prior distribution.
Hence, the updated variational distribution factor for that variable has thesame form and inference
involves just updating the parameters of that distribution. Second, conjugacy results in variational
distributions being in standard exponential family form allowing their moments to becalculated
analytically.

If we ignore the conjugacy constraint, we get non-standard posterior distributions and we must
resort to using sampling or other methods to determine the moments of these distributions. The
disadvantages of using sampling include computational expense, inability to calculate an analytical
lower bound and the fact that inference is no longer deterministic for a given initialisation and
ordering. The use of sampling methods will now be illustrated by an example showing how to
sample from the posterior over the shape parameter of a gamma distribution.

Example 4 Learning a Gamma Shape Parameter
Let us assume that there is a latent variable a which is to be used as the shape parameter of K

gamma distributed variables{x1 . . .xK}. We choose a to have anon-conjugateprior of an inverse-
gamma distribution:

P(a|α,β) ∝ a−α−1exp

(
−β
a

)
.

The form of the gamma distribution means that messages sent to the node a are with respect to a
natural statistic vector

ua =

[
a

lnΓ(a)

]

which means that the updated factor distribution Q?
a has the form

lnQ?
a(a) =

[
K

∑
i=1

mxi→a

]T [
a

lnΓ(a)

]
+(−α−1) lna−

β
a

+const.

This density is not of standard form, but it can be shown that Q?(lna) is log-concave, so we can
generate independent samples from the distribution forlna using Adaptive Rejection Sampling from
Gilks and Wild (1992). These samples are then transformed to get samplesof a from Q?

a(a), which

685

WINN AND BISHOP

is used to estimate the expectation〈ua(a)〉. This expectation is then sent as the outgoing message to
each of the child nodes.

Each factor distribution is normally updated during every iteration and so, in this case, a number
of independent samples fromQ?

a would have to be drawn during every iteration. If this proved too
computationally expensive, then the distribution need only be updated intermittently.

It is worth noting that, as in this example, BUGS also uses Adaptive Rejection Sampling for
sampling when the posterior distribution is log-concave but non-conjugate,whilst also providing
techniques for sampling when the posterior is not log-concave. This suggests that non-conjugate
parts of a general graphical model could be handled within a BUGS-style framework whilst varia-
tional message passing is used for the rest of the model. The resulting hybrid variational/sampling
framework would, to a certain extent, capture the advantages of both techniques.

7. Discussion

The variational message passing algorithm allows approximate inference using a factorised vari-
ational distribution in any conjugate-exponential model, and in a range of non-conjugate models.
As a demonstration of its utility, this algorithm has already been used to solve problems in the do-
main of machine vision and bioinformatics (see Winn, 2003; Bishop and Winn, 2000). In general,
variational message passing dramatically simplifies the construction and testing of new variational
models and readily allows a range of alternative models to be tested on a givenproblem.

The general form of VMP also allows the inclusion of arbitrary nodes in thegraphical model
provided that each node is able to receive and generate appropriate messages in the required form,
whether or not the model remains conjugate-exponential. The extensions to VMP concerning the
logistic function and sampling illustrate this flexibility.

One limitation of the current algorithm is that it uses a variational distribution which is factorised
across nodes, giving an approximate posterior which is separable with respect to individual (scalar
or vector) variables. In general, an improved approximation will be achieved if a posterior distri-
bution is used which retains some dependency structure. Whilst Wiegerinck (2000) has presented a
general framework for such structured variational inference, he does not provide a general-purpose
algorithm for applying this framework. Winn (2003) and Bishop and Winn (2003) have therefore
proposed an extended version of variational message passing which allows for structured variational
distributions. VIBES has been extended to implement a limited version of this algorithm that can
only be applied to a constrained set of models. However, a complete implementation and evaluation
of this extended algorithm has yet to be undertaken.

The VIBES software is free and open source and can be downloaded from the VIBES web
site athttp://vibes.sourceforge.net. The web site also contains a tutorial that provides an
introduction to using VIBES.

Acknowledgments

The authors would like to thank David Spiegelhalter for his help with the VIBES project. We would
also like to thank Zoubin Ghahramani, David MacKay, Matthew Beal and Michael Jordan for many
helpful discussions about variational inference.

686

VARIATIONAL MESSAGEPASSING

This work was carried out whilst John Winn was a Ph.D. student at the University of Cambridge,
funded by a Microsoft Research studentship.

Appendix A. VIBES Tutorial

In this appendix, we demonstrate the application of VIBES to an example problem involving a
Gaussian Mixture model. We then demonstrate the flexibility of VIBES by changing the model to
fit the data better, using the lower bound as an estimate of the log evidence foreach model. An
online version of this tutorial is available athttp://vibes.sourceforge.net/tutorial.

The data used in this tutorial is two-dimensional and consists of nine clusters ina three-by-three
grid, as illustrated in Figure 7.

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

x
1

x 2

Figure 7: The two-dimensional data set used in the tutorial, which consists ofnine clusters in a
three-by-three grid.

A.1 Loading Matlab Data into VIBES

The first step is to load the data set into VIBES. This is achieved by creating anode with the name
x which corresponds to a matrixx in a Matlab.mat file. As the data matrix is two dimensional, the
node is placed inside two platesN andd and the data filename (in this caseMixGaussianData2D.mat)
is entered. SelectingFile→Load data loads the data into the node and also sets the size of theN
andd plates to 500 and 2 respectively. The node is marked as observed (shown with a bold edge)
and the observed data can be inspected by double-clicking the node with themouse. At this point,
the display is as shown in Figure 8.

A.2 Creating and Learning a Gaussian Model

The nodex has been marked as Gaussian by default and so the model is invalid as neither the mean
nor the precision of the Gaussian have been set (attempting to initialise the modelby pressing the
Init. button will give an error message to this effect). We can specify latent variables for these

687

WINN AND BISHOP

Figure 8: A VIBES model with a single observed nodex which has attached data.

parameters by creating a nodeµ for the mean parameter and a nodeγ for the precision parame-
ter. These nodes are created within thed plate to give a model which is separable over each data
dimension. These are then set as theMean andPrecision properties ofx, as shown in Figure 9.

Figure 9: A two-dimensional Gaussian model, showing that the variablesµ andγ are being used as
the mean and precision parameters of the conditional distribution overx.

The model is still invalid as the parameters ofµ andγ are unspecified. In this case, rather than
create further latent variables, these parameters will be set to fixed values to give appropriate priors

688

VARIATIONAL MESSAGEPASSING

(for example settingµ to have mean= 0 and precision= 0.3 andγ to havea = 10 andb = 1). The
network now corresponds to a two-dimensional Gaussian model and variational inference can be
performed automatically by pressing theStart button (which also performs initialisation). For this
data set, inference converges after four iterations and gives a boundof −1984 nats. At this point,
the expected values of each latent variable under the fully-factorisedQ distribution can be displayed
or graphed by double-clicking on the corresponding node.

A.3 Extending the Gaussian model to a Gaussian Mixture Model

Our aim is to create a Gaussian mixture model and so we must extend our simple Gaussian model
to be a mixture withK Gaussian components. As there will now beK sets of the latent variablesµ
andγ, these are placed in a new plate, calledK, whose size is set to 20. We modify the conditional
distribution for thex node to be a mixture of dimensionK, with each component being Gaussian.
The display is then as shown in Figure 10.

Figure 10: An incomplete model which shows thatx is now a mixture ofK Gaussians. There are
now K sets of parameters and soµ andγ have been placed in a plateK. The model is
incomplete as theIndex parent ofx has not been specified.

The model is currently incomplete as makingx a mixture requires a new discreteIndex parent
to indicate which component distribution each data point was drawn from. We must therefore create
a new nodeλ, sitting in theN plate, to represent this new discrete latent variable. We also create a
nodeπ with a Dirichlet distribution which provides a prior overλ. The completed mixture model is
shown in Figure 11.

689

WINN AND BISHOP

Figure 11: The completed Gaussian mixture model showing the discrete indicator nodeλ.

A.4 Inference Using the Gaussian Mixture Model

With the model complete, inference can once again proceed automatically by pressing theStart
button. A Hinton diagram of the expected value ofπ can be displayed by double-clicking on theπ
node, giving the result shown in Figure 12. As can be seen, nine of the twenty components have
been retained.

Figure 12: A Hinton diagram showing the expected value ofπ for each mixture component. The
learned mixture consists of only nine components.

The means of the retained components can be inspected by double-clicking on theµnode, giving
the Hinton diagram of Figure 13. These learned means correspond to the centres of each of the data
clusters.

Figure 13: A Hinton diagram whose columns give the expected two-dimensional value of the mean
µ for each mixture component. The mean of each of the eleven unused components
is just the expected value under the prior which is(0,0). Column 4 corresponds to a
retained component whose mean is roughly(0,0).

690

VARIATIONAL MESSAGEPASSING

A graph of the evolution of the bound can be displayed by clicking on the bound value and
is shown in Figure 14. The converged lower bound of this new model is−1019 nats, which is
significantly higher than that of the single Gaussian model, showing that thereis much greater
evidence for this model. This is unsurprising since a mixture of 20 Gaussianshas significantly more
parameters than a single Gaussian and hence can give a much closer fit to the data. Note, however,
that the model automatically chooses only to exploit 9 of these components, with the remainder
being suppressed (by virtue of their mixing coefficients going to zero). This provides an elegant
example of automatic model complexity selection within a Bayesian setting.

Figure 14: A graph of the evolution of the lower bound during inference.

A.5 Modifying the Mixture Model

The rapidity with which models can be constructed using VIBES allows new models to be quickly
developed and compared. For example, we can take our existing mixture of Gaussians model and
modify it to try and find a more probable model.

First, we may hypothesise that each of the clusters has similar size and so theymay be modelled
by a mixture of Gaussian components having a common variance in each dimension. Graphically,
this corresponds to shrinking theK plate so that it no longer contains theγ node, as shown in
Figure 15a. The converged lower bound for this new model is−937 nats showing that this modified
model is better at explaining this data set than the standard mixture of Gaussians model. Note that
the increase in model probability does not arise from an improved fit to the data, since this model
and the previous one both contain 20 Gaussian components and in both cases 9 of these components
contribute to the data fit. Rather, the constrained model having a single variance parameter can
achieve almost as good a data fit as the unconstrained model yet with far fewer parameters. Since
a Bayesian approach automatically penalises complexity, the simpler (constrained) model has the
higher probability as indicated by the higher value for the variational lower bound.

We may further hypothesise that the data set is separable with respect to its two dimensions
(i.e. the two dimensions are independent). Graphically this consists of moving all nodes inside
the d plate (so we effectively have two copies of a one-dimensional mixture of Gaussians model
with common variance). A VIBES screenshot of this further modification is shown in Figure 15b.

691

WINN AND BISHOP

(a) (b)

Figure 15: (a) Mixture of Gaussians model with shared precision parameter γ (the γ node is no
longer inside theK plate). (b) Model with independent data dimensions, each a univari-
ate Gaussian mixture with common variance.

Performing variational inference on this separable model leads to each one-dimensional mixture
having three retained mixture components and gives an improved bound of -876 nats.

We will consider one final model. In this model both theπ and theγ nodes are common to
both data dimensions, as shown in Figure 16. This change corresponds tothe assumption that the
mixture coefficients are the same for each of the two mixtures and that the component variances
are the same for all components in both mixtures. Inference leads to a final improved bound of
−856 nats. Whilst this tutorial has been on a toy data set, the principles of modelconstruction,
modification and comparison can be applied just as readily to real data sets.

Figure 16: Further modified mixture model where theπ andγ nodes are now common to all data
dimensions.

692

VARIATIONAL MESSAGEPASSING

References

H. Attias. A variational Bayesian framework for graphical models. In S. Solla, T. K. Leen, and K-L
Muller, editors,Advances in Neural Information Processing Systems, volume 12, pages 209–215,
Cambridge MA, 2000. MIT Press.

C. M. Bishop. Variational principal components. InProceedings Ninth International Conference
on Artificial Neural Networks, ICANN’99, volume 1, pages 509–514. IEE, 1999.

C. M. Bishop and M. Svensén. Bayesian Hierarchical Mixtures of Experts. In U. Kjaerulff and
C. Meek, editors,Proceedings Nineteenth Conference on Uncertainty in Artificial Intelligence,
pages 57–64. Morgan Kaufmann, 2003.

C. M. Bishop and J. M. Winn. Non-linear Bayesian image modelling. InProceedings Sixth Euro-
pean Conference on Computer Vision, volume 1, pages 3–17. Springer-Verlag, 2000.

C. M. Bishop and J. M. Winn. Structured variational distributions in VIBES.In Proceedings
Artificial Intelligence and Statistics, Key West, Florida, 2003. Society for Artificial Intelligence
and Statistics.

C. M. Bishop, J. M. Winn, and D. Spiegelhalter. VIBES: A variational inference engine for Bayesian
networks. InAdvances in Neural Information Processing Systems, volume 15, 2002.

R. G. Cowell, A. P. Dawid, S. L. Lauritzen, and D. J. Spiegelhalter.Probabilistic Networks and
Expert Systems. Statistics for Engineering and Information Science. Springer-Verlag, 1999.

Z. Ghahramani and M. J. Beal. Propagation algorithms for variational Bayesian learning. In T. K.
Leen, T. Dietterich, and V. Tresp, editors,Advances in Neural Information Processing Systems,
volume 13, Cambridge MA, 2001. MIT Press.

W. R. Gilks and P. Wild. Adaptive rejection sampling for Gibbs sampling.Applied Statistics, 41(2):
337–348, 1992.

T. Jaakkola and M. Jordan. A variational approach to Bayesian logistic regression problems and
their extensions. InIn Proceedings of the 6th international workshop on artificial intelligence
and statistics., 1996.

M. I. Jordan, Z. Ghahramani, T. S. Jaakkola, and L. K. Saul. An introduction to variational methods
for graphical models. In M. I. Jordan, editor,Learning in Graphical Models, pages 105–162.
Kluwer, 1998.

S. L. Lauritzen. Propagation of probabilities, means, and variances in mixed graphical association
models.Journal of the American Statistical Association, 87(420):1098–1108, 1992.

D. J. Lunn, A. Thomas, N. G. Best, and D. J. Spiegelhalter. WinBUGS – a Bayesian modelling
framework: concepts, structure and extensibility.Statistics and Computing, 10:321–333, 2000.
http://www.mrc-bsu.cam.ac.uk/bugs/.

T. P. Minka. Expectation propagation for approximate Bayesian inference. In Proceedings of the
17th Annual Conference on Uncertainty in Artificial Intelligence, pages 362–369. Morgan Kauff-
mann, 2001.

693

WINN AND BISHOP

R. M. Neal and G. E. Hinton. A new view of the EM algorithm that justifies incremental and other
variants. In M. I. Jordan, editor,Learning in Graphical Models, pages 355–368. Kluwer, 1998.

J. Pearl. Fusion, propagation and structuring in belief networks.Artificial Intelligence, 29:241–288,
1986.

A. Thomas, D. J. Spiegelhalter, and W. R. Gilks. BUGS: A program to perform Bayesian inference
using Gibbs sampling. In J. M. Bernardo, J. O. Berger, A. P. Dawid, and A. F. M. Smith, editors,
Bayesian Statistics, Oxford: Clarendon Press, 1992.

W. Wiegerinck. Variational approximations between mean field theory and thejunction tree algo-
rithm. In Uncertainty in Artificial Intelligence. Morgan Kauffmann, 2000.

J. M. Winn. Variational Message Passing and its Applications. PhD thesis, University of Cam-
bridge, October 2003.

694

Journal of Machine Learning Research 6 (2005) 695–709 Submitted 11/04; Revised 3/05; Published 4/05

Estimation of Non-Normalized Statistical Models

by Score Matching

Aapo Hyvärinen aapo.hyvarinen@helsinki.fi

Helsinki Institute for Information Technology (BRU)

Department of Computer Science

FIN-00014 University of Helsinki, Finland

Editor: Peter Dayan

Abstract

One often wants to estimate statistical models where the probability density function is
known only up to a multiplicative normalization constant. Typically, one then has to resort
to Markov Chain Monte Carlo methods, or approximations of the normalization constant.
Here, we propose that such models can be estimated by minimizing the expected squared
distance between the gradient of the log-density given by the model and the gradient of
the log-density of the observed data. While the estimation of the gradient of log-density
function is, in principle, a very difficult non-parametric problem, we prove a surprising
result that gives a simple formula for this objective function. The density function of the
observed data does not appear in this formula, which simplifies to a sample average of a
sum of some derivatives of the log-density given by the model. The validity of the method
is demonstrated on multivariate Gaussian and independent component analysis models,
and by estimating an overcomplete filter set for natural image data.

Keywords: statistical estimation, non-normalized densities, pseudo-likelihood, Markov
chain Monte Carlo, contrastive divergence

1. Introduction

In many cases, probabilistic models in machine learning, statistics, or signal processing are
given in the form of non-normalized probability densities. That is, the model contains an
unknown normalization constant whose computation is too difficult for practical purposes.

Assume we observe a random vector x ∈ R
n which has a probability density function

(pdf) denoted by px(.). We have a parametrized density model p(.;θ), where θ is an m-
dimensional vector of parameters. We want to estimate the parameter θ from x, i.e. we
want to approximate px(.) by p(.; θ̂) for the estimated parameter value θ̂. (We shall here
consider the case of continuous-valued variables only.)

The problem we consider here is that we only are able to compute the pdf given by the
model up to a multiplicative constant Z(θ):

p(ξ;θ) =
1

Z(θ)
q(ξ;θ).

That is, we do know the functional form of q as an analytical expression (or any form that
can be easily computed), but we do not know how to easily compute Z which is given by

c©2005 Aapo Hyvärinen.

Hyvärinen

an integral that is often analytically intractable:

Z(θ) =

∫

ξ∈Rn

q(ξ;θ) dξ.

In higher dimensions (in fact, for almost any n > 2), the numerical computation of this
integral is practically impossible as well.

Usually, estimation of non-normalized models is approached by Markov Chain Monte
Carlo (MCMC) methods, which are very slow, or by making some approximations, which
may be quite poor (Mackay, 2003).

Non-normalized models are often encountered in continous-valued Markov random fields,
which are widely used in image modelling, see e.g. (Bouman and Sauer, 1993; Li, 2001).
In general, undirected graphical models cannot be normalized except in the Gaussian case.
Other recent work in image modelling also includes non-normalized models (Hyvärinen and
Hoyer, 2001; Teh et al., 2003). Presumably, the number of useful applications for non-
normalized models is much larger than the present literature suggests. Non-normalized
models have been avoided because their estimation has been considered too difficult; the
advent of efficient estimation methods may significantly increase their utility.

In this paper, we propose a simple method for estimating such non-normalized models.
This is based on minimizing the expected squared distance of the score function of x and
the score function given by the model. (By score function, we mean here the gradient
of log-density.) We show that this distance can be estimated by a very simple formula
involving only sample averages of some derivatives of the logarithm of the pdf given by the
model. Thus, the computations involved are essentially not more complicated than in the
case where we know an analytical expression for the normalization constant. The proposed
formula is exact and does not involve any approximations, which is why we are able to
prove the local consistency of the resulting method. Minimization of the proposed objective
function thus provides an estimation method that is computationally simple yet statistically
locally consistent.

2. Estimation by Score Matching

In the following, we use extensively the gradient of the log-density with respect to the data
vector. For simplicity, we call this the score function, although according the conventional
definition, it is actually the score function with respect to a hypothetical location parameter
(Schervish, 1995). For the model density, we denote the score function by ψ(ξ;θ):

ψ(ξ;θ) =









∂ log p(ξ;θ)
∂ξ1
...

∂ log p(ξ;θ)
∂ξn









=







ψ1(ξ;θ)
...

ψn(ξ;θ)






= ∇ξ log p(ξ;θ).

The point in using the score function is that it does not depend on Z(θ). In fact we
obviously have

ψ(ξ;θ) = ∇ξ log q(ξ;θ). (1)

Likewise, we denote by ψx(.) = ∇ξ log px(.) the score function of the distribution of observed
data x. This could in principle be estimated by computing the gradient of the logarithm of

696

Estimation by Score Matching

a non-parametric estimate of the pdf—but we will see below that no such computation is
necessary. Note that score functions are mappings from R

n to R
n.

We now propose that the model is estimated by minimizing the expected squared dis-
tance between the model score function ψ(.;θ) and the data score function ψx(.). We define
this squared distance as

J(θ) =
1

2

∫

ξ∈Rn

px(ξ)‖ψ(ξ;θ) −ψx(ξ)‖2dξ. (2)

Thus, our score matching estimator of θ is given by

θ̂ = arg min
θ
J(θ).

The motivation for this estimator is that the score function can be directly computed
from q as in (1), and we do not need to compute Z. However, this may still seem to be a
very difficult way of estimating θ, since we might have to compute an estimator of the data
score function ψx from the observed sample, which is basically a non-parametric estimation
problem. However, no such non-parametric estimation is needed. This is because we can
use a simple trick of partial integration to compute the objective function very easily, as
shown by the following theorem:

Theorem 1 Assume that the model score function ψ(ξ;θ) is differentiable, as well as some
weak regularity conditions.1

Then, the objective function J in (2) can be expressed as

J(θ) =

∫

ξ∈Rn

px(ξ)
n

∑

i=1

[

∂iψi(ξ;θ) +
1

2
ψi(ξ;θ)

2

]

dξ + const. (3)

where the constant does not depend on θ,

ψi(ξ;θ) =
∂ log q(ξ;θ)

∂ξi

is the i-th element of the model score function, and

∂iψi(ξ;θ) =
∂ψi(ξ;θ)

∂ξi
=
∂2 log q(ξ;θ)

∂ξ2i

is the partial derivative of the i-th element of the model score function with respect to the
i-th variable.

The proof, given in the Appendix, is based a simple trick of partial integration that has
previously been used in the theory of independent component analysis for modelling the
densities of the independent components (Pham and Garrat, 1997).

We have thus proven the remarkable fact that the squared distance of the model score
function from the data score function can be computed as a simple expectation of certain

1. Namely: the data pdf px(ξ) is differentiable, the expectations Ex{‖ψ(x;θ)‖2} and Ex{‖ψx
(x)‖2} are

finite for any θ, and px(ξ)ψ(ξ;θ) goes to zero for any θ when ‖ξ‖ → ∞.

697

Hyvärinen

functions of the non-normalized model pdf. If we have an analytical expression for the
non-normalized density function q, these functions are readily obtained by derivation using
(1) and taking further derivatives.

In practice, we have T observations of the random vector x, denoted by x(1), . . . ,x(T).
The sample version of J is obviously obtained from (3) as

J̃(θ) =
1

T

T
∑

t=1

n
∑

i=1

[

∂iψi(x(t);θ) +
1

2
ψi(x(t);θ)2

]

+ const. (4)

which is asymptotically equivalent to J due to the law of large numbers. We propose to
estimate the model by minimization of J̃ in the case of a real, finite sample.

One may wonder whether it is enough to minimize J to estimate the model, or whether
the distance of the score functions can be zero for different parameter values. Obviously, if
the model is degenerate in the sense that two different values of θ give the same pdf, we
cannot estimate θ. If we assume that the model is not degenerate, and that q > 0 always,
we have local consistency as shown by the following theorem and the corollary:

Theorem 2 Assume the pdf of x follows the model: px(.) = p(.;θ∗) for some θ∗. Assume
further that no other parameter value gives a pdf that is equal2 to p(.;θ∗), and that q(ξ;θ) >
0 for all ξ,θ. Then

J(θ) = 0 ⇔ θ = θ∗.

For a proof, see the Appendix.

Corollary 3 Under the assumptions of the preceding Theorems, the score matching esti-
mator obtained by minimization of J̃ is consistent, i.e. it converges in probability towards
the true value of θ when sample size approaches infinity, assuming that the optimization
algorithm is able to find the global minimum.

The corollary is proven by applying the law of large numbers. As sample size approaches
infinity, J̃ converges to J (in probability). Thus, the estimator converges to a point where
J is globally minimized. By Theorem 2, the global minimum is unique and found at the
true parameter value (obviously, J cannot be negative).

This result of consistency assumes that the global minimum of J̃ is found by the opti-
mization algorithm used in the estimation. In practice, this may not be true, in particular
because there may be several local minima. Then, the consistency is of local nature, i.e.,
the estimator is consistent if the optimization iteration is started sufficiently close to the
true value. Note that consistency implies asymptotic unbiasedness.

3. Examples

Here, we provide three simulations to illustrate how score matching works, as well as to
confirm its consistency and applicability to real data.

2. In this theorem and its proof, equalities of pdf’s are to be taken in the sense of equal almost everywhere
with respect to the Lebesgue measure.

698

Estimation by Score Matching

3.1 Multivariate Gaussian Density

As a very simple illustrative example, we consider estimation of the parameters of the
multivariate Gaussian density.

3.1.1 Estimation

The probability density function is given by

p(x;M,µ) =
1

Z(M,µ)
exp(−1

2
(x − µ)TM(x − µ)),

where M is a symmetric positive-definite matrix (the inverse of the covariance matrix). Of
course, the expression for Z is well-known in this case, but this serves as an illustration
of the method. As long as there is no chance of confusion, we use x here as the general
n-dimensional vector. Thus, here we have

q(x) = exp(−1

2
(x − µ)TM(x − µ)), (5)

and we obtain
ψ(x;M,µ) = −M(x − µ),

and
∂iψ(x;M,µ) = −mii.

Thus, we obtain

J̃(M,µ) =
1

T

T
∑

t=1

[
∑

i

−mii +
1

2
(x(t) − µ)TMM(x(t) − µ)]. (6)

To minimize this with respect to µ, it is enough to compute the gradient

∇µJ̃ = MMµ− MM
1

T

T
∑

t=1

x(t),

which is obviously zero if and only if µ is the sample average 1
T

∑T
t=1 x(t). This is truly a

minimum because the matrix MM that defines the quadratic form is positive-definite.
Next, we compute the gradient with respect to M, which gives

∇MJ̃ = −I + M
1

2T

T
∑

t=1

(x(t) − µ)(x(t) − µ)T +
1

2T
[

T
∑

t=1

(x(t) − µ)(x(t) − µ)T]M,

which is zero if and only if M is the inverse of the sample covariance matrix 1
T

∑T
t=1(x(t)−

µ)(x(t) − µ)T , which thus gives the score matching estimate.
Interestingly, we see that score matching gives exactly the same estimator as maximum

likelihood estimation. In fact, the estimators are identical for any sample (and not just
asymptotically). The maximum likelihood estimator is known to be consistent, so the score
matching estimator is consistent as well.

699

Hyvärinen

3.1.2 Intuitive Interpretation

This example also gives some intuitive insight into the principle of score matching. Let us
consider what happened if we just maximized the non-normalized log-likelihood, i.e., log of
q in (5). It is maximized when the scale parameters in M are zero, i.e., the model variances
are infinite and the pdf is completely flat. This is because then the model assigns the same
probability to all possible values of x(t), which is equal to 1. In fact, the same applies to
the second term in (6), which thus seems to be closely connected to maximization of the
non-normalized log-likelihood.

Therefore, the first term in (3) and (6), involving second derivatives of the logarithm
of q, seems to act as a kind of a normalization term. Here it is equal to −∑

imii. To
minimize this, the mii should be made as large (and positive) as possible. Thus, this term
has the opposite effect to the second term. Since the first term is linear and the second
term polynomial in M, the minimum of the sum is different from zero.

A similar interpretation applies to the general non-Gaussian case. The second term in
(3), expectation of the norm of score function, is closely related to maximization of non-
normalized likelihood: if the norm of this gradient is zero, then in fact the data point is in
a local extremum of the non-normalized log-likelihood. The first term then measures what
kind of an extremum this is. If it is a minimum, the first term is positive and the value of J
is increased. To minimize J , the first term should be negative, in which case the extremum
is a maximum. In fact, the extremum should be as steep a maximum (as opposed to a
flat maximum) as possible to minimize J . This counteracts, again, the tendency to assign
the same probability to all data points that is often inherent in the maximization of the
non-normalized likelihood.

3.2 Estimation of Basic Independent Component Analysis Model

Next, we show the validity of score matching in estimating the following model

log p(x) =
n

∑

k=1

G(wT
k x) + Z(w1, . . . ,wn), (7)

which is the basic form of the independent component analysis (ICA) model. Again, the
normalization constant is well-known and equal to − log | detW| where the matrix W has
the vectors wi as rows, but this serves as an illustration of our method.

The nice thing about this model is that we can easily generate data that follows this
model. In fact, if latent variables si, i = 1 . . . , n are independently distributed and have the
pdf given by exp(G(si)), the linear transformation

x = As (8)

with A = W−1 follows the pdf’s given in (7), see e.g. (Hyvärinen et al., 2001). Thus, we
will be estimating the generative model in (8) using the non-normalized likelihood in (7).

Here, we choose the distribution of the components si to be so-called logistic with

G(s) = −2 log cosh(
π

2
√

3
s) − log 4.

700

Estimation by Score Matching

This distribution is normalized to unit variance as typical in the theory of ICA. The score
function of the model in (7 is given by

ψ(x;W) =
n

∑

k=1

wkg(w
T
k x), (9)

where the scalar nonlinear function g is given by

g(s) = −π
3

tanh(
π

2
√

3
s).

The relevant derivatives of the score function are given by:

∂iψi(x) =
n

∑

k=1

w2
kig

′(wT
k x),

and the sample version of the objective function J̃ is given by

J̃ =
1

T

T
∑

t=1

n
∑

i=1





n
∑

k=1

w2
kig

′(wT
k x(t)) +

1

2

n
∑

j=1

wjig(w
T
j x(t))

n
∑

k=1

wkig(w
T
k x(t))





=
n

∑

k=1

‖wk‖2 1

T

T
∑

t=1

g′(wT
k x(t)) +

1

2

n
∑

j,k=1

wT
j wk

1

T

T
∑

t=1

g(wT
k x(t))g(wT

j x(t)). (10)

We performed simulations to validate the consistency of score matching estimation, and
to compare its efficiency with respect to maximum likelihood estimation. We generated
data following the model as described above, where the dimension was chosen to be n = 4.
Score matching estimation consisted of minimizing J̃ in (10) by a simple gradient descent;
likelihood was maximized using a natural gradient method (Amari et al., 1996; Hyvärinen
et al., 2001), using the true value of Z. We repeated the estimation for several different
sample sizes: 500, 1000, 2000, 4000, 8000, and 16000. For each sample size, the estimation
was repeated 11 times using different random initial points in the optimization, and different
random data sets. For each estimate, a measure of asymptotic variance was computed as
follows. The matrix ŴA, where Ŵ is the estimate was normalized row-by-row so that the
largest value on each row had an absolute value of 1. Then, the sum of squares of all the
elements was computed, and 4 (i.e. the sum of the squares of the four elements equal to
one) was subtracted. This gives a measure of the squared error of the estimate (we cannot
simply compare ŴA with identity because the order of the components is not well-defined).
For each sample size and estimator type (score matching vs. maximum likelihood) we then
computed the median error.

Figure 1 shows the results. The error of score matching seems to go to zero, which
validates the theoretical consistency result of Theorem 2. Score matching gives slightly
larger errors than maximum likelihood, which is to be expected because of the efficiency
results of maximum likelihood estimation (Pham and Garrat, 1997).

In the preceding simulation, we knew exactly the proper function g to be used in the
score function. To investigate the robustness of the method to misspecification of the score

701

Hyvärinen

-2.4

-2.2

-2

-1.8

-1.6

-1.4

-1.2

-1

-0.8

-0.6

-0.4

 2.6 2.8 3 3.2 3.4 3.6 3.8 4 4.2 4.4

Figure 1: The estimation errors of score matching (solid line) compared with errors of max-
imum likelihood estimation (dashed line) for the basic ICA model. Horizontal
axis: log10 of sample size. Vertical axis: log10 of estimation error.

function (a well-known problem in ICA estimation), we ran the same estimation methods,
score matching and maximum likelihood, for data that was generated by a slightly different
distribution. Specifically, we generated the data so that the independent components si

had Laplacian distributions of unit variance (Hyvärinen et al., 2001). We then estimated
the model using exactly the same g as before, which was not theoretically correct. The
estimation errors are shown in Figure 2. We see that score matching still seems consistent.
Interestingly, it now performs slightly better than maximum likelihood estimation (which
would more properly be called quasi-maximum likelihood estimation due to the misspecifi-
cation (Pham and Garrat, 1997)).

3.3 Estimation of an Overcomplete Model for Image Data

Finally, we show image analysis results using an overcomplete version of the ICA model.
The likelihood is defined almost as in (7), but the number of componentsm is larger than the
dimension of the data n, see e.g. (Teh et al., 2003), and we introduce some extra parameters.
The likelihood is given by

log p(x) =
m

∑

k=1

αkG(wT
k x) + Z(w1, . . . ,wn, α1, . . . , αn), (11)

where the vectors wk = (wk1, . . . , wkn) are constrained to unit norm (unlike in the preceding
example), and the αk are scaling parameters. We introduce here the extra parameters αk to
account for different distributions for different projections. Constraining αk = 1 and m = n

702

Estimation by Score Matching

-3.4

-3.2

-3

-2.8

-2.6

-2.4

-2.2

-2

-1.8

-1.6

-1.4

 2.6 2.8 3 3.2 3.4 3.6 3.8 4 4.2 4.4

Figure 2: The estimation errors of score matching compared with errors of maximum likeli-
hood estimation for the basic ICA model. This time, the pdf of the independent
components was slightly misspecified. Legend as in Fig. 1.

and allowing the wk to have any norm, this becomes the basic ICA model of the preceding
subsection.

The model is related to ICA with overcomplete bases (Hyvärinen et al., 2001; Hyvärinen
and Inki, 2002; Olshausen and Field, 1997), i.e. the case where there are more independent
components and basis vectors than observed variables. In contrast to most ICA models,
the overcompleteness is expressed as overcompleteness of filters wk which seems to make
the problem a bit simpler because no latent variables need to be inferred. However, the
normalization constant Z is not known when G is non-quadratic, i.e. when the model is
non-Gaussian, which is why previous research had to resort to MCMC methods (Teh et al.,
2003) or some approximations (Hyvärinen and Inki, 2002).

We have the score function

ψ(x;W, α1, . . . , αm) =
m

∑

k=1

αkwkg(w
T
k x),

where g is the first derivative of G. Going through similar developments as in the case of
the basic ICA model, the sample version of the objective function J̃ can be shown to equal

J̃ =
m

∑

k=1

αk
1

T

T
∑

t=1

g′(wT
k x(t)) +

1

2

m
∑

j,k=1

αjαkw
T
j wk

1

T

T
∑

t=1

g(wT
k x(t))g(wT

j x(t)). (12)

703

Hyvärinen

Figure 3: The overcomplete set of filters wi estimated from natural image data. Note
that no dimension reduction was performed, and we show filters instead of basis
vectors, which is why the results are much less smooth and “beautiful” than some
published ICA results (Hyvärinen et al., 2001).

We estimated the model for image patches of 8 × 8 pixels taken from natural images,
see P.O. Hoyer’s imageica package.3 As preprocessing, the DC component (i.e. the mean
gray-scale value) was removed from each image patch, reducing the effective dimensionality
of the data to n = 63. The data was also whitened, i.e. the model was used in a linearly
transformed space (the exact method of whitening has no significance). We set m = 200.
We also took the tanh function as g, which corresponds to G(u) = log cosh(u) (we did not
bother to find the right scaling as in the basic ICA case). The objective function J̃ in (12)
was optimized by gradient descent. The wi were set to random initial values, and the αi

were all set to the initial value 1.5 that was found to be close to the optimal value in pilot
experiments.

The obtained vectors wi are shown in Figure 3. For the purposes of visualization, the
vectors were converted back to the original space from the whitened space. The optimal αi

were in the range 0.5 . . . 2.

To show that the method correctly found different vectors and not duplicates of a smaller
set of vectors, we computed the dot-products between the vectors, and for each wi, we
selected the largest absolute value of dot-product |wT

i wj |, j 6= i. The dot-products were
computed in the whitened space. The histogram of these maximal dot-products is shown
in Figure 4. They are all much smaller than 1 (in absolute value), in fact all are smaller
than 0.5. Since the vectors wi were normalized to unit norm, this shows that no two wi

were close to equal, and we did find m different vectors.

4. Discussion

Here we discuss the connections of our method to two well-known methods before concluding
the paper.

3. The package can be downloaded at http://www.cs.helsinki.fi/patrik.hoyer/.

704

Estimation by Score Matching

0

5

10

15

20

25

0.25 0.3 0.35 0.4 0.45 0.5

Figure 4: The distribution of maximal dot-products of a filter wi with all other filters,
computed in the whitened space.

4.1 Comparison with Pseudo-Likelihood Estimation

A related method for estimating non-normalized models is maximization of pseudo-likelihood
(Besag, 1974). The idea is to maximize the product of marginal conditional likelihoods. The
pdf is approximated by

log ppseudo(x) =
n

∑

i=1

p(xi|x1, . . . , xi−1, xi+1, . . . , xn), (13)

and the likelihood is computed using this approximation. The idea was originally developed
in connection with Markov random fields, in which context it is quite natural because
the conditional probabilities are often given as part of the model specification. The idea
can still be used in the general case considered in this article. However, the conditional
probabilities in (13) are not necessarily readily available and need to be computed. In
particular, these conditional densities need to be normalized. The computational burden
needed in the normalization is reduced from the original problem since we only need to
numerically compute n one-dimensional integrals which is far more feasible than a single
n-dimensional integral. However, compared to score matching, this is a computationally
expensive method since score matching avoids the need for numerical integration altogether.

The question of consistency of pseudo-likelihood estimation seems to be unclear. Some
consistency proofs were provided by Besag (1974, 1977), but these only apply to special
cases such as Gaussian or binary random fields. Sufficiently general consistency results on
pseudo-likelihood estimation seem to be lacking. This is another disadvantage with respect
to score matching, which was shown above to be (locally) consistent.

705

Hyvärinen

4.2 Comparison with Contrastive Divergence

An interesting approximative MCMC method called contrastive divergence was recently
proposed by Hinton (2002). The basic principle is to use an MCMC method for computing
the derivative of the logarithm of the normalization factor Z, but the MCMC is allowed to
run for only a single iteration (or a few iterations) before doing the gradient step.

The method is generally biased, even asymptotically (Carreira-Perpiñán and Hinton,
2005b), except in some special cases such as the multivariate Gaussian distribution (Carreira-
Perpiñán and Hinton, 2005a). Score matching is thus preferable if a consistent estimator is
wanted.

The computational efficiency of contrastive divergence is difficult to evaluate since it
is not really a single method but a family of methods, depending on the MCMC method
used. For the case of continuous-valued variables that we consider here, a Metropolis-type
algorithm would probably be the method of choice, but there is a large number of different
variants whose performances are likely to be quite different.

Nevertheless, contrastive divergence is a much more general method than score matching
since it is applicable to intractable latent variable models. It can also handle binary/discrete
variables—in fact, it is probably much easier to implement, using Gibbs sampling, for binary
variables than for continous-valued variables. Extension of score matching to these two cases
is an important problem for future research.

4.3 Conclusion

We have proposed a new method, score matching, to estimate statistical models in the case
where the normalization constant is unknown. Although the estimation of the score function
is computationally difficult, we showed that the distance of data and model score functions
is very easy to compute. The main assumptions in the method are: 1) all the variables
are continuous-valued and defined over R

n, 2) the model pdf is smooth enough. Score
matching provides a computationally simple yet locally consistent alternative to existing
methods, such as MCMC and various approximative methods.

Acknowledgments

I am grateful to Patrik Hoyer, Jarmo Hurri, and Shohei Shimizu for comments on the
manuscript, to Sam Roweis for interesting discussions, and to Miguel Carreira-Perpiñán
and Geoffrey Hinton for providing access to unpublished results. The work was supported
by the Academy of Finland, Academy Research Fellow position and project #48593.

Appendix A. Proof of Theorem 1

Definition (2) gives

J(θ) =

∫

px(ξ)

[

1

2
‖ψx(ξ)‖2 +

1

2
‖ψ(ξ;θ)‖2 −ψx(ξ)Tψ(ξ;θ)

]

dξ. (14)

(For simplicity, we omit the integration domain in here.) The first term in brackets does
not depend on θ, and can be ignored. The integral of the second term is simply the integral

706

Estimation by Score Matching

of the sum of the second terms in brackets in (3). Thus, the difficult thing to prove is that
integral of the third term in brackets in (14) equals the integral of the sum of the first terms
in brackets in (3). This term equals

−
∑

i

∫

px(ξ)ψx,i(ξ)ψi(ξ; θ)dξ,

where ψx,i(ξ) denotes the i-th element of the vector ψx(ξ). We can consider the integral
for a single i separately, which equals

−
∫

px(ξ)
∂ log px(ξ)

∂ξi
ψi(ξ;θ)dξ = −

∫

px(ξ)

px(ξ)

∂px(ξ)

∂ξi
ψi(ξ;θ)dξ = −

∫

∂px(ξ)

∂ξi
ψi(ξ;θ)dξ.

The basic trick of partial integration needed the proof is simple: for any one-dimensional
pdf p and any function f , we have

∫

p(x)(log p)′(x)f(x)dx =

∫

p(x)
p′(x)

p(x)
f(x)dx =

∫

p′(x)f(x)dx = −
∫

p(x)f ′(x)dx

under some regularity assumptions that will be dealt with below.
To proceed with the proof, we need to use a multivariate version of such partial inte-

gration:

Lemma 4

lim
a→∞,b→−∞

f(a, ξ2, . . . , ξn)g(a, ξ2, . . . , ξn) − f(b, ξ2, . . . , ξn)g(b, ξ2, . . . , ξn)

=

∫ ∞

−∞

f(ξ)
∂g(ξ)

∂ξ1
dξ1 +

∫ ∞

−∞

g(ξ)
∂f(ξ)

∂ξ1
dξ1,

assuming that f and g are differentiable. The same applies for all indices of ξi, but for
notational simplicity we only write the case i = 1 here.

Proof of lemma:
∂f(ξ)g(ξ)

∂ξ1
= f(ξ)

∂g(ξ)

∂ξ1
+ g(ξ)

∂f(ξ)

∂ξ1
.

We can now consider this as a function of ξ1 alone, all other variables being fixed. Then,
integrating over ξ1 ∈ R, we have proven the lemma.

Now, we can apply this lemma on px and ψ1(ξ;θ) which were both assumed to be
differentiable in the theorem, and we obtain:

−
∫

∂px(ξ)

∂ξ1
ψ1(ξ;θ)dξ = −

∫ [∫

∂px(ξ)

∂ξ1
ψ1(ξ;θ)dξ1

]

d(ξ2, . . . , ξn)

= −
∫ [

lim
a→∞,b→−∞

[px(a, ξ2, . . . , ξn)ψ1(a, ξ2, . . . , ξn;θ)

− px(b, ξ2, . . . , ξn)ψ1(b, ξ2, . . . , ξn;θ)]

−
∫

∂ψ1(ξ;θ)

∂ξ1
px(ξ)dξ1

]

d(ξ2, . . . , ξn).

707

Hyvärinen

For notational simplicity, we consider the case of i = 1 only, but this is true for any i.
The limit in the above expression is zero for any ξ2, . . . , ξn,θ because we assumed that

px(ξ)ψ(ξ;θ) goes to zero at infinity. Thus, we have proven that

−
∫

∂px(ξ)

∂ξi
ψi(ξ;θ)dξ =

∫

∂ψi(ξ;θ)

∂ξi
px(ξ)dξ,

that is, integral of the the third term in brackets in (14) equals the integral of the sum of
the first terms in brackets in (3), and the proof of the theorem is complete.

Appendix B. Proof of Theorem 2

Assume J(θ) = 0. Then, the assumption q > 0 implies px(ξ) > 0 for all ξ, which implies
that ψx(.) and ψ(.;θ) are equal. This implies log px(.) = log p(.;θ) + c for some constant
c. But c is necessarily 0 because both px and p(.;θ) are pdf’s. Thus, px = p(.;θ). By
assumption, only θ = θ∗ fulfills this equality, so necessarily θ = θ∗, and we have proven the
implication from left to right. The converse is trivial.

References

S.-I. Amari, A. Cichocki, and H. H. Yang. A new learning algorithm for blind source
separation. In Advances in Neural Information Processing Systems 8, pages 757–763.
MIT Press, 1996.

J. Besag. Spatial interaction and the statistical analysis of lattice systems. Journal of the
Royal Statistical Society, Series B, 36(2):192–236, 1974.

J. Besag. Efficiency of pseudolikelihood estimation for simple gaussian fields. Biometrika,
64(3):616–618, 1977.

C. Bouman and K. Sauer. A generalized gaussian image model for edge-preserving MAP
estimation. IEEE Transactions on Image Processing, 2(3):296–310, 1993.

M. Á. Carreira-Perpiñán and G. E. Hinton. On contrastive divergence (CD) learning.
Technical report, Dept of Computer Science, University of Toronto, 2005a. In preparation.

M. Á. Carreira-Perpiñán and G. E. Hinton. On contrastive divergence learning. In Proceed-
ings of the Workshop on Artificial Intelligence and Statistics (AISTATS2005), Barbados,
2005b.

G. E. Hinton. Training products of experts by minimizing contrastive divergence. Neural
Computation, 14(8):1771–1800, 2002.

A. Hyvärinen and P. O. Hoyer. A two-layer sparse coding model learns simple and complex
cell receptive fields and topography from natural images. Vision Research, 41(18):2413–
2423, 2001.

A. Hyvärinen and M. Inki. Estimating overcomplete independent component bases from
image windows. Journal of Mathematical Imaging and Vision, 17:139–152, 2002.

708

Estimation by Score Matching

A. Hyvärinen, J. Karhunen, and E. Oja. Independent Component Analysis. Wiley Inter-
science, 2001.

S. Z. Li. Markov Random Field Modeling in Image Analysis. Springer, 2nd edition, 2001.

D. J. C. Mackay. Information Theory, Inference and Learning Algorithms. Cambridge
University Press, 2003.

B. A. Olshausen and D. J. Field. Sparse coding with an overcomplete basis set: A strategy
employed by V1? Vision Research, 37:3311–3325, 1997.

D.-T. Pham and P. Garrat. Blind separation of mixture of independent sources through
a quasi-maximum likelihood approach. IEEE Transactions on Signal Processing, 45(7):
1712–1725, 1997.

M. Schervish. Theory of Statistics. Springer, 1995.

Y. W. Teh, M. Welling, S. Osindero, and G. E. Hinton. Energy-based models for sparse
overcomplete representations. Journal of Machine Learning Research, 4:1235–1260, 2003.

709

Journal of Machine Learning Research 6 (2005) 711–741 Submitted 1/04; Revised 2/05; Published 5/05

Smooth ε-Insensitive Regression by Loss Symmetrization

Ofer Dekel oferd@cs.huji.ac.il

Shai Shalev-Shwartz shais@cs.huji.ac.il

Yoram Singer singer@cs.huji.ac.il

School of Computer Science and Engineering

The Hebrew University

Jerusalem, 91904, Israel

Editors: Kristin P. Bennett and Nicolò Cesa-Bianchi

Abstract

We describe new loss functions for regression problems along with an accompanying al-
gorithmic framework which utilizes these functions. These loss functions are derived by
symmetrization of margin-based losses commonly used in boosting algorithms, namely, the
logistic loss and the exponential loss. The resulting symmetric logistic loss can be viewed
as a smooth approximation to the ε-insensitive hinge loss used in support vector regres-
sion. We describe and analyze two parametric families of batch learning algorithms for
minimizing these symmetric losses. The first family employs an iterative log-additive up-
date which can be viewed as a regression counterpart to recent boosting algorithms. The
second family utilizes an iterative additive update step. We also describe and analyze
online gradient descent (GD) and exponentiated gradient (EG) algorithms for the sym-
metric logistic loss. A byproduct of our work is a new simple form of regularization for
boosting-based classification and regression algorithms. Our regression framework also has
implications on classification algorithms, namely, a new additive update boosting algorithm
for classification. We demonstrate the merits of our algorithms in a series of experiments.

1. Introduction

The focus of this paper is supervised learning of real-valued functions. We observe a se-
quence S = {(x1, y1), . . . , (xm, ym)} of instance-target pairs, where the instances are vec-
tors in Rn and the targets are real-valued scalars, yi ∈ R. Our goal is to learn a function
f : Rn → R which provides a good approximation of the target values from their corre-
sponding instance vectors. Such a function is often referred to as a regression function
or a regressor for short. Regression problems have long been the focus of research pa-
pers in statistics and learning theory (see for instance the book by Hastie, Tibshirani, and
Friedman (2001) and the references therein). In this paper we discuss learning of linear
regressors, that is, f is of the form f(x) = λ · x. This setting is also suitable for learning
a linear combination of base regressors of the form f(x) =

∑l
j=1 λjhj(x) where each base

regressor hj is a mapping from an instance domain X into R. The latter form enables us
to employ kernels by setting hj(x) = K(xj ,x).

The class of linear regressors is rather restricted. Furthermore, in real applications both
the instances and the target values are often corrupted by noise and a perfect mapping
such that for all (xi, yi) ∈ S, f(xi) = yi is usually unobtainable. Hence, we employ a loss

c©2005 Ofer Dekel, Shai Shalev-Shwartz and Yoram Singer.

Dekel, Shalev-Shwartz and Singer

−5 0 5

0

1

2

3

4

5

6

7

8

9 abs−loss
log−loss
exp−loss

−5 0 5

0

1

2

3

4

5

6

7

8

9 hinge−loss
log−loss
exp−loss

Figure 1: Constructing regression losses (left) by symmetrization of margin losses (right).

function L : R × R → R+ which determines the penalty for a discrepancy between the
predicted target, f(x), and the true (observed) target y. As we discuss shortly, the loss
functions we consider in this paper depend only on the discrepancy between the predicted
target and the true target δ = f(x) − y, hence L can be viewed as a function from R into
R+. We therefore allow ourselves to overload our notation and denote L(δ) = L(f(x), y).

Given a loss function L, the goal of a regression algorithm is to find a regressor f which
attains a small total loss on the training set S,

Loss(λ, S) =
m
∑

i=1

L(f(xi)− yi) =
m
∑

i=1

L(λ · xi − yi).

Denoting the discrepancy λ ·xi− yi by δi, we note that two common approaches to solving
regression problems are to minimize either the sum of the absolute discrepancies over the
sample (

∑

i |δi|) or the sum of squared discrepancies (
∑

i δ
2
i). It has been argued that the

squared loss is sensitive to outliers, hence robust regression algorithms often employ the
absolute loss (Huber, 1981). Furthermore, it is often the case that the exact discrepancy
between λ · x and y is unimportant so long as it falls below an insensitivity parameter
ε. Formally, the ε-insensitive hinge loss, denoted |δ|ε, is zero if |δ| ≤ ε and is |δ| − ε for
|δ| > ε (see also the left hand side of Figure 2). The ε-insensitive hinge loss is not smooth
as its derivative is discontinuous at δ = ±ε. Several batch learning algorithms have been
proposed for minimizing the ε-insensitive hinge loss (see for example Vapnik, 1998; Smola
and Schölkopf, 1998). However, these algorithms are based on rather complex constrained
optimization techniques since the ε-insensitive hinge loss is a non-smooth function.

The first loss function presented in this paper is a smooth approximation to the ε-
insensitive hinge loss. Define the symmetric ε-insensitive logistic loss, or log-loss for short,
to be,

Llog(δ; ε) = log
(

1 + eδ−ε
)

+ log
(

1 + e−δ−ε
)

− κ. (1)

Whenever it is clear from context we omit the insensitivity parameter ε and denote this loss
by Llog(δ). The constant κ in Eq. (1) equals 2 log(1 + e−ε) and is set such that Llog(0) = 0.
Since additive constants do not affect the value of the minimizer of Llog(δ), we omit κ

712

Smooth ε-Insensitive Regression by Loss Symmetrization

−15 −10 −5 0 5 10 15

0

1

2

3

4

5

6

7

8

9
|δ|ε
log−loss

−150 −100 −50 0 50 100 150

0

10

20

30

40

50

60

70

80

90
comb−loss

Figure 2: The smooth ε-insensitive log-loss (left) and the comb-loss (right).

henceforth. In Figure 2 we depict the ε-insensitive log-loss along with the ε-insensitive
hinge loss for ε = 5. Note that the ε-insensitive log-loss provides a smooth upper bound
on the ε-insensitive hinge loss. Moreover, note that for this particular choice of ε and for
|δ| < 2 and |δ| > 8 the log-loss and hinge-loss are graphically indistinguishable.

To motivate our construction, let us take a short detour and discuss a recent view
of margin-based classification algorithms. In the binary classification setting discussed
in Friedman et al. (2000), Collins et al. (2002) and Lebanon and Lafferty (2001), we are
provided with instance-label pairs, (x, y), where, in contrast to regression, each label takes
one of two values, namely y ∈ {−1, +1}. A real-valued classifier is a function f into the reals
such that sign(f(x)) is the predicted label and |f(x)| is the confidence of f in its predic-
tion. The product yf(x) is called the (signed) margin of the instance-label pair (x, y). The
goal of a margin-based classifier is to attain large margin values on as many instances as
possible. Learning algorithms for margin-based classifiers typically employ a margin-based
loss function Lc(yf(x)) and attempt to minimize the total loss over all instances in a given
sample. One of the margin losses discussed is the logistic loss, which takes the form

Lc(yf(x)) = log
(

1 + e−yf(x)
)

. (2)

We discuss a general technique for reducing a regression problem to a margin-based clas-
sification problem called loss symmetrization. The symmetric log-loss given in Eq. (1) is
obtained by applying this technique to the classification logistic loss in Eq. (2). The tech-
nique of loss symmetrization was previously discussed in Bi and Bennett (2003) in the
context of support vector regression.

Formally, let [u ; v] denote the concatenation of an additional element v to the end of a
vector u. We replace every instance-target pair (x, y) from the regression problem with two
classification instance-label pairs,

(x, y) 7→
{

([x ; −y + ε] , +1)
([x ; −y − ε] , −1)

.

In words, we duplicate each regression instance and create two instances of a classification
problem. We then increase the dimension of the instance vectors by one and concatenate

713

Dekel, Shalev-Shwartz and Singer

−y + ε to the first newly created instance and set its label to +1. Symmetrically, we
concatenate −y − ε to the second copy of the instance and set its label to −1. We define
the linear classifier to be the vector [λ ; 1] ∈ Rn+1. It is simple to verify that,

Llog(λ · x− y ; ε) = Lc([λ ; 1] · [x ; −y + ε]) + Lc(−[λ ; 1] · [x ; −y − ε]).

In Figure 1 we give an illustration of the above construction. We have thus reduced a
regression problem of m instances in Rn with targets in R to a classification problem with
2m instances in Rn+1 and binary labels in {±1}.

The work in Collins et al. (2002) gave a unified view of two margin losses: the logistic
loss defined by Eq. (2) and an exponential loss. An immediate benefit of our construction
is a similar unified account of the two respective regression losses. Formally, we define the
symmetric exponential loss, or exp-loss for short, as

Lexp(δ) = eδ + e−δ. (3)

The exp-loss was first presented and analyzed by Duffy and Helmbold (2000) in their pio-
neering work on leveraging regressors. However, their view is somewhat different than ours
as it builds upon the notion of weak-learnability, yielding a different (sequential) algorithm
for regression. The exp-loss is by far less forgiving than the log-loss, i.e. small discrepancies
are amplified exponentially. While this property might be undesirable in regression prob-
lems with numerous outliers, it can also serve as a barrier that prevents the existence of any
large discrepancy in the training set. To see this, note that the minimizer of

∑

i Lexp(δi) is
also the minimizer of log(

∑

i Lexp(δi)) which is a smooth approximation to maxi |δi|.
We can also combine the log-loss and the exp-loss with two different insensitivity param-

eters and benefit both from a discrepancy insensitivity region and from enforcing a smooth
barrier on the maximal discrepancy. Formally, let ε1 > 0 and ε2 > ε1 be two insensitivity
parameters. We define the combined loss, abbreviated as comb-loss, by

Lcomb(δ; ε1, ε2) = Llog(δ; ε1) + Lexp(δ; ε2),

where Lexp(δ; ε2) = e−ε2Lexp(δ). An illustration of the combined loss with ε1 = 50 and
ε2 = 100 is given on the right hand side of Figure 2.

The paper is organized as follows. In Section 2 we describe and analyze a family of log-
additive update algorithms for batch learning settings. The algorithms in this family are in
essence boosting algorithms for regression problems. The symmetrization technique outlined
above is used to derive these algorithms and to adapt proof techniques from Collins et al.
(2002). In Section 3 we describe another family of additive update regression algorithms
based on modified gradient descent. For both the log-additive and the additive updates,
we provide a boosting-style analysis of the decrease in loss. Then, in Section 4, we describe
a simple use of the symmetric losses defined above as a means of regularizing our batch
learning algorithms and other boosting algorithms as well. In Section 5 we discuss the
convergence properties of both log-additive and additive update algorithms, when applied
with regularization. We then show the implications of our work on classification problems
in Section 6. Specifically, we show how both the additive update algorithm of Section 3 and
the regularization scheme of Section 4 extend to the setting of classification. In Section 7 we
shift our attention to online learning algorithms for the ε-insensitive log-loss. In Section 8

714

Smooth ε-Insensitive Regression by Loss Symmetrization

we complement our formal discussion with a set of experimental results obtained on real
and synthetic data sets. Specifically, we demonstrate the different properties of the log-loss
and exp-loss functions, we compare the different algorithms presented in this paper under
different settings and discuss the effect of regularization on the generalization abilities of our
algorithms. In this section, we also present a detailed example of boosting a weak-learning
regression algorithm using our techniques. We conclude the paper in Section 9.

2. Log-additive Update for Batch Regression

In the previous section we discussed a general reduction from regression problems to margin-
based classification problems. As a first application of this reduction, we devise a family
of batch regression learning algorithms based on boosting techniques. We term these algo-
rithms log-additive update algorithms as they iteratively update λ by a logarithmic function
of the gradient of the loss.

Our implicit goal is to obtain the (global) minimizer of the empirical loss function
∑m

i=1 L(λ · xi − yi) where L is either the log-loss, the exp-loss or the comb-loss. We first
prove that progress is made on every iteration of the learning algorithm. For the sake of
clarity, the main theorem of this section is stated and proven only for the log-loss. We then
complete our presentation with a brief discussion on how the theorem is easily adapted to
the exp-loss and comb-loss cases. In Section 5 we show how progress on every iteration
leads to convergence to the global minimum of the respective loss function.

Following the general paradigm of boosting, we make the assumption that we have
access to a set of predefined base regressors. These base regressors are analogous to the
weak hypotheses commonly discussed in boosting. The goal of the learning algorithm is
to select a subset of base regressors and combine them linearly to obtain a highly accurate
strong regressor. We assume that the set of base regressors is of finite cardinality though our
algorithms can be generalized to deal with a countably infinite number of base regressors.
In the finite case we can simply map each input instance to the vector of images generated
by each of the base-regressors, x 7→ (h1(x), . . . , hn(x)), where n is the number of base-
regressors. Using this transformation, each input instance is a vector xi ∈ Rn and the
strong regressor’s prediction is λ ·x. The j’th element of λ, namely λj , should be regarded
as the weight associated with the base regressor hj .

Boosting was initially described and analyzed as a sequential algorithm that iteratively
selects a single base-hypothesis or feature hj and updates its weight λj . All of the elements
of λ are initialized to zero, so after performing T sequential update iterations, at most T
elements of λ are non-zero. Thus, this form of sequential update can be used for feature
selection as well as loss minimization. An alternative approach is to simultaneously update
all of the elements of λ on every iteration. This approach is the more common among
regression algorithms. Collins et al. (2002) described a unified framework of boosting al-
gorithms for classification. In that framework, the sequential and parallel update schemes
become two extremes of a general approach for applying iterative updates to λ. Following
Collins et al. we describe and analyze an algorithm that employs update templates to de-
termine specifically which subsets of the coordinates of λ may be updated in parallel. This
algorithm includes both sequential update and parallel update paradigms as special cases

715

Dekel, Shalev-Shwartz and Singer

Input: Training set S = {(xi, yi) |xi ∈ Rn, yi ∈ R}mi=1 ; Insensitivity ε ∈ R+

Update templates A ⊆ Rn
+ s.t. ∀a ∈ A maxi

(

∑n
j=1 aj |xi,j |

)

≤ 1

Initialize: λ1 = (0, 0, . . . , 0)

Iterate: For t = 1, 2, . . .

δt,i = λt·xi−yi

[if log-loss] q−t,i =
eδt,i−ε

1 + eδt,i−ε
q+
t,i =

e−δt,i−ε

1 + e−δt,i−ε
(1 ≤ i ≤ m)

[if exp-loss] q−t,i = eδt,i q+
t,i = e−δt,i (1 ≤ i ≤ m)

W−
t,j =

∑

i:xi,j≥0

q−t,i xi,j −
∑

i:xi,j<0

q+
t,i xi,j (1 ≤ j ≤ n)

W+
t,j =

∑

i:xi,j≥0

q+
t,i xi,j −

∑

i:xi,j<0

q−t,i xi,j (1 ≤ j ≤ n)

at = argmax
a∈A

n
∑

j=1

aj

(
√

W−
t,j −

√

W+
t,j

)2

Λt,j =
at,j

2
log

(

W+
t,j

W−
t,j

)

(1 ≤ j ≤ n)

λt+1 = λt + Λt

Figure 3: A log-additive update algorithm for minimizing either the log-loss or the exp-loss.

by setting the templates accordingly, and allows us to discuss and prove the correctness of
both paradigms in a unified manner.

In this unified approach, we are required to pre-specify to the algorithm which subsets of
the coordinates of λ may be updated simultaneously. Formally, the algorithm is given a set
of update templates A, where every template a ∈ A is a vector in Rn

+. On every iteration,
the algorithm selects a template a ∈ A and updates only those elements λj for which aj is
non-zero. We require that every a ∈ A conform with the constraint

∑

j aj |xi,j | ≤ 1 for all of
the instances xi in the training set. The purpose of this requirement will become apparent
in the proof of Theorem 1. The parallel update is obtained by setting A to contain the
single vector (ρ, . . . , ρ) where ρ = (maxi ‖xi‖1)−1. The sequential update is obtained by
setting A to be the set of vectors a1, . . . ,an defined by

ak,j =

{

(maxi |xi,j |)−1 if j = k
0 if j 6= k .

716

Smooth ε-Insensitive Regression by Loss Symmetrization

The algorithm that we discuss is outlined in Figure 3 and operates as follows: during
the process of building λ, we may encounter two different types of discrepancies: underes-
timation and overestimation. If the predicted target λ · xi is less than the correct target
yi, we say that λ underestimates yi and if it is greater we say that λ overestimates yi.
For every instance-target pair in the training set, we use a pair of weights q−t,i and q+

t,i to

represent its discrepancies: q−t,i represents the degree to which yi is overestimated by λt and

analogously q+
t,i represents the degree to which yi is underestimated by λt. We then proceed

to calculate two weighted sums over each coordinate of the instances: W−
t,j can be thought

of as the degree to which λt,j should be decreased in order to compensate for overestimation
discrepancies. Symmetrically, W+

t,j represents the degree to which λt,j should be increased.
At this point, the algorithm selects the update template at ∈ A with respect to which it
will apply the update to λ. at is selected so as to maximize the decrease in loss, according
to a criterion that follows directly from Theorem 1 below. In the sequential version of the
algorithm, selecting an update template is equivalent to selecting a single base regressor and
updating its weight. In this case, the template selection criterion should be viewed as the
weak learning criterion of the boosting procedure. The algorithm’s iteration concludes with
an update of λ. Each element λj is updated by half the log ratio between the respective
elements of W+

t and W−
t , times the scaling factor at,j .

The following theorem states a non-negative lower bound on the decrease in loss on
every iteration of the algorithm for the case of the log-loss.

Theorem 1 Let {(xi, yi)}mi=1 be a training set of instance-target pairs where for all i in
1, . . . , m, xi ∈ Rn and yi ∈ R. Then using the notation defined in the algorithm outlined in
Figure 3, on every iteration t the decrease in the log-loss satisfies,

Loss(λt, S) − Loss(λt+1, S) ≥
n
∑

j=1

at,j

(
√

W−
t,j −

√

W+
t,j

)2

.

Proof Define ∆t(i) to be the difference between the loss attained by λt and that attained
by λt+1 on an instance-target pair (xi, yi) in the training set, namely

∆t(i) = Llog(δt,i)− Llog(δt+1,i). (4)

Since λt+1 = λt + Λt then δt+1,i = δt,i + Λt · xi. Using this equality, and the identity
1/(1 + eα) = 1− 1/(1 + e−α), ∆t(i) can be rewritten as

∆t(i) = − log

(

1 + eδt+1,i −ε

1 + eδt,i−ε

)

− log

(

1 + e−δt+1,i −ε

1 + e−δt,i−ε

)

= − log

(

1− 1

1 + e−(δt,i−ε)
+

eΛt·xi

1 + e−(δt,i−ε)

)

− log

(

1− 1

1 + e−(−δt,i−ε)
+

e−Λt·xi

1 + e−(−δt,i−ε)

)

.

We can now plug the definitions of q+
t,i and q−t,i into this expression to get

∆t(i) = − log
(

1− q−t,i
(

1− eΛt·xi
)

)

− log
(

1− q+
t,i

(

1− e−Λt·xi
)

)

.

717

Dekel, Shalev-Shwartz and Singer

Next we apply the inequality − log(1−α) ≥ α (which holds wherever log(1−α) is defined):

∆t(i) ≥ q−t,i
(

1− eΛt·xi
)

+ q+
t,i

(

1− e−Λt·xi
)

. (5)

We rewrite the scalar product Λt · xi in a more convenient form,

Λt · xi =
n
∑

j=1

at,j

2
log
(

W+
t,j/W−

t,j

)

xi,j

=
n
∑

j=1

(at,j |xi,j |) sign(xi,j) log
(
√

W+
t,j/W−

t,j

)

. (6)

Recall the assumptions made on the vectors in A, namely that at and xi comply with
∑n

j=1 at,j |xi,j | ≤ 1 and that at,j |xi,j | is non-negative. This assumption is used in conjunction
with the fact that (1 − eα) is a concave function and is equal to zero at α = 0. We can
replace Λt · xi in Eq. (5) with the form given in Eq. (6) and use Jensen’s inequality to get,

∆t(i) ≥ q−t,i
(

1− eΛt·xi
)

+ q+
t,i

(

1− e−Λt·xi
)

≥
n
∑

j=1

at,jq
−
t,i|xi,j |

(

1− e
sign(xi,j) log

“q

W+
t,j/W−

t,j

”)

+
n
∑

j=1

at,jq
+
t,i|xi,j |

(

1− e
−sign(xi,j) log

“q

W+
t,j/W−

t,j

”)

.

We now rewrite,

∆t(i) ≥
∑

j:xi,j>0

at,jq
−
t,i|xi,j |



1−

√

√

√

√

W+
t,j

W−
t,j



+
∑

j:xi,j<0

at,jq
−
t,i|xi,j |



1−

√

√

√

√

W−
t,j

W+
t,j





+
∑

j:xi,j>0

at,jq
+
t,i|xi,j |



1−

√

√

√

√

W−
t,j

W+
t,j



+
∑

j:xi,j<0

at,jq
+
t,i|xi,j |



1−

√

√

√

√

W+
t,j

W−
t,j



 .

Summing ∆t(i) over i and using the definition of the q’s and W ’s we finally get that,

m
∑

i=1

∆t(i) ≥
n
∑

j=1

at,j

(

W−
t,j

(

1−
√

W+
t,j/W−

t,j

)

+ W+
t,j

(

1−
√

W−
t,j/W+

t,j

))

=

n
∑

j=1

at,j

(
√

W−
t,j −

√

W+
t,j

)2

.

This concludes the proof.

Theorem 1 focuses on the log-loss function, but is easily adapted to case of the exp-loss.
Note that the only difference between the log-loss and exp-loss cases in the algorithm pseudo-
code (Figure 3) is in the definitions of the overestimation and underestimation weights q−

and q+. When our goal is to minimize the exp-loss, we define

q−t,i = eδt,i q+
t,i = e−δt,i . (7)

718

Smooth ε-Insensitive Regression by Loss Symmetrization

To show that Theorem 1 still holds for the exp-loss we modify the definition of ∆t(i) from
Eq. (4) in accordance to the change in the loss. Specifically, let

∆t(i) = Lexp(δt,i)− Lexp(δt+1,i)

= eδt,i − eδt+1,i + e−δt,i − e−δt+1,i .

As before, we plug the definitions of q+
t,i and q−t,i from Eq. (7) into the above and rewrite ∆t

as,
∆t(i) = q−t,i

(

1− eΛt·xi
)

+ q+
t,i

(

1− e−Λt·xi
)

.

Eq. (5) in the proof of Theorem 1 now holds with equality and the rest of the proof proceeds
as before. Consequently, we get the same lower bound for the exp-loss as was stated in
Theorem 1 for the log-loss.

Similarly, we can redefine q− and q+ to minimize the comb-loss. Recall that the comb-
loss function is defined by a pair of insensitivity parameters, ε1 and ε2. To minimize the
comb-loss, we define

q−t,i =
eδt,i−ε1

1 + eδt,i−ε1
+ eδt,i−ε2 q+

t,i =
e−δt,i−ε1

1 + e−δt,i−ε1
+ e−δt,i−ε2 .

Again, the formal discussion given in this section carries over to the comb-loss case with
only minor technical adaptations necessary.

To conclude this section, we note that the log-additive algorithm can be used verbatim in
the case of a weighted loss. In Section 4 we use this extension to devise a simple regularization
scheme. Formally, let ν ∈ Rm

+ be a vector of non-negative weights such that νi is the weight
of the i’th example. The weighted loss is defined as,

Loss(λ, ν, S) =

m
∑

i=1

νiL(λ · xi − yi),

where L(·) is any of the loss functions discussed above. The sole change to the algorithm
resides in the calculation of the weights q+

t,i and q−t,i which must now be scaled by νi, namely,

q+
t,i ← νiq

+
t,i and q−t,i ← νiq

−
t,i. It is easy to verify that Theorem 1 still holds for this extended

definition of weighted-loss.

3. Additive Update for Batch Regression

In this section we describe a family of additive batch learning algorithms that advance on
each iteration in a direction which is a linear transformation of the gradient of the loss. We
term these algorithms additive update algorithms. These algorithms bear a resemblance to
the log-additive algorithms described in the previous section, as do their proofs of progress.
As in the previous section, we first restrict the discussion to the log-loss and then outline
the adaptation to the exp-loss at the end of the section.

We again devise a template-based family of updates. This family includes a parallel
update which modifies all the elements of λ simultaneously and a sequential update which
updates a single element of λ on each iteration. The parallel update amounts to a gradient
descent approach to minimizing the loss. The sequential update applied to an element

719

Dekel, Shalev-Shwartz and Singer

Input: Training set S = {(xi, yi) |xi ∈ Rn, yi ∈ R}mi=1 ; Insensitivity ε ∈ R+

Update templates A ⊆ Rn
+ s.t. ∀a ∈ A ∑m

i=1

∑n
j=1 ajx

2
i,j ≤ 2

Initialize: λ1 = (0, 0, . . . , 0)

Iterate: For t = 1, 2, . . .

δt,i = λt·xi−yi

[if log-loss] q−t,i =
eδt,i−ε

1 + eδt,i−ε
q+
t,i =

e−δt,i−ε

1 + e−δt,i−ε
(1 ≤ i ≤ m)

[if exp-loss] q−t,i =
eδt,i

Zt
q+
t,i =

e−δt,i

Zt

(1 ≤ i ≤ m)

where Zt =
m
∑

i=1

(

eδt,i + e−δt,i + 2
)

Wt,j =
m
∑

i=1

(q+
t,i − q−t,i) xi,j (1 ≤ j ≤ n)

at = argmax
a∈A

n
∑

j=1

ajW
2
t,j

Λt,j = at,jWt,j
(1 ≤ j ≤ n)

λt+1 = λt + Λt

Figure 4: An additive update algorithm for minimizing either the log-loss or the exp-loss.

λj is an axis-parallel gradient descent step. We denote the set of update templates by
A and assume that every a ∈ A is a vector in Rn

+. For each a ∈ A we require that
∑m

i=1

∑n
j=1 ajx

2
i,j ≤ 2.

The pseudo-code of the additive update algorithm is given in Figure 4. Intuitively, on
each iteration t, the algorithm computes the negative of the gradient with respect to λt,
denoted (Wt,1, . . . , Wt,n). It then selects the update template at ∈ A which, as we shortly
show in Theorem 2, guarantees a maximal drop in the loss. Finally, λt,j is updated by
at,jWt,j .

Theorem 2 Let {(xi, yi)}mi=1 be a training set of instance-target pairs where for all i in
1, . . . , m, xi ∈ Rn and yi ∈ R. Then using the notation defined in the algorithm outlined in
Figure 4, on every iteration t the decrease in the log-loss, denoted ∆t, satisfies

∆t = Loss(λt, S) − Loss(λt+1, S) ≥ 1

2

n
∑

j=1

at,jW
2
t,j .

720

Smooth ε-Insensitive Regression by Loss Symmetrization

Proof We begin by defining a quadratic function Q : R→ R which is parameterized by
two parameters, λ and Λ. Qλ,Λ will be shown to be an upper bound on the log-loss along
the direction Λ from λ. Concretely, Qλ,Λ is defined as,

Qλ,Λ(α) = Loss(λ, S) + (∇Loss(λ, S) ·Λ)
(

α− α2/2
)

.

Formally, we show that for all α, Qλt,Λt
(α) ≥ Loss(λt + αΛt, S) where Λt is defined as in

Figure 4. For convenience, we define Γ(α) = Qλt,Λt
(α) − Loss(λt + αΛt, S) and instead

prove that Γ is a non-negative function.
By construction, we get that Γ(0) = 0. Since the derivative of Qλt,Λt

at zero is equal
to ∇Loss(λt, S) · Λt, we get that the derivative of Γ at zero is also zero. To prove that Γ
is a non-negative function it remains to show that Γ is convex and thus α = 0 attains its
global minimum. To prove convexity it is sufficient to show that the second derivative of Γ
(denoted Γ′′) is non-negative. Routine calculations yield that,

Γ′′(α) = −Λ · ∇Loss(λ, S)−ΛTHΛ, (8)

where H =
∑m

i=1 L
′′

log(λ+αΛ)xix
T
i and L

′′

log is the second derivative of the log-loss function.
It is simple to show that this derivative is bounded in [0, 1/2]. Plugging the value of H into
Eq. (8) we get that,

Γ′′(α) ≥ −Λ · ∇Loss(λ, S)− 1

2

m
∑

i=1

(Λ · xi)
2. (9)

Note that on the t’th iteration, the j’th element of Λt equals at,jWt,j where Wt,j =
−∇jLoss(λt, S). Therefore, we rewrite Eq. (9) as,

Γ′′(α) ≥
n
∑

j=1

at,jW
2
t,j −

1

2

m
∑

i=1





n
∑

j=1

at,jWt,jxi,j





2

=
n
∑

j=1

at,jW
2
t,j −

1

2

m
∑

i=1





n
∑

j=1

√
at,j Wt,j

√
at,j xi,j





2

. (10)

Using the Cauchy-Schwartz inequality (u · v ≤ ‖u‖‖v‖) we further bound Γ′′ by,

Γ′′(α) ≥
n
∑

j=1

at,jW
2
t,j −

1

2

m
∑

i=1





n
∑

j=1

at,jW
2
t,j





(

n
∑

k=1

at,kx
2
i,k

)

=
n
∑

j=1

at,jW
2
t,j

(

1− 1

2

m
∑

i=1

n
∑

k=1

at,kx
2
i,k

)

. (11)

Finally, we use the constraint
∑

i

∑n
k=1 at,kx

2
i,k ≤ 2 which immediately implies that Γ′′(α) ≥

0. Summing up, we have shown that Loss(λt + αΛt, S) is upper bounded by Qλt,Λt
(α).

Therefore, Loss(λt+1, S) = Loss(λt + Λt, S) ≤ Qλt,Λt
(1), hence,

∆t ≥ Loss(λt, S) − Qλt,Λt
(1) =

1

2

n
∑

j=1

at,jW
2
t,j .

721

Dekel, Shalev-Shwartz and Singer

This concludes the proof.

To conclude this section, we briefly outline the adaptation of the additive update algo-
rithm to the exp-loss. Recall that in the exp-loss setting, our goal is to minimize,

m
∑

i=1

(

eδi + e−δi

)

where δi = λ · xi − yi.

Since the gradient of the exp-loss is itself exponential, we cannot hope to minimize the
exp-loss by straightforward gradient descent. However, instead of minimizing the exp-loss
function over the sample, we can minimize the loss,

log

(

m
∑

i=1

(

eδi + e−δi + 2
)

)

. (12)

Clearly, both functions attain the same (global) minimum. We can now repeat verbatim the
proof technique of Theorem 2 using q− and q+ as defined for the exp-loss case in Figure 4.

The additive update family of algorithms can accommodate a weighted loss just as log-
additive update algorithms do. The algorithm is adapted to cope with weights in the same
way that the log-additive algorithm was adapted in the end of Section 2, namely by an
appropriate rescaling of the weights q− and q+.

4. Regularization

Regularization is a means of controlling the complexity of the regressor being learned. In
particular for linear regressors, regularization serves as a soft limit on the magnitude of the
elements of λ (cf. (Poggio and Girosi, 1990)). The loss functions discussed in the previous
sections can also be used as a new form of regularization. Using the log-loss, we can apply
the following regularization to the j’th coordinate of λ,

log
(

1 + eλj

)

+ log
(

1 + e−λj

)

.

The minimum of the above equation is obtained at λj = 0. It is straightforward to show
that the regularization term above is bounded from below by |λj | and from above by |λj |+2.
Therefore, summing over all possible indices j, the regularization term on λ lies between
‖λ‖1 and ‖λ‖1 + 2n. Thus, this form of regularization can be viewed as a smooth approx-
imation to the `1 norm of λ. A similar form of regularization can be imposed using the
exp-loss, namely,

eλj + e−λj .

For both losses, the j’th regularization term equals L(λj ; 0). When the set of base hy-
potheses is finite, an equivalent way to impose this form of regularization is to introduce
a set of pseudo examples Sreg = {xk, 0}nk=1 where xk = 1k (the vector with 1 in its k’th
position and zeros elsewhere). Let ν > 0 be a regularization parameter that governs the
relative importance of the regularization term with respect to the empirical loss. Slightly
overloading our notation, let Loss(λ, ν, S) denote the regularized empirical loss, defined by,

Loss(λ, S) + ν Loss(λ, Sreg).

722

Smooth ε-Insensitive Regression by Loss Symmetrization

As noted in Section 2 and Section 3, both the log-additive and additive update batch
algorithms easily accommodate a weighted loss. Therefore, by introducing a set of n pseudo-
examples, each of which weighted by ν, we can incorporate regularization into our batch
algorithms without any modification to the algorithm core. Concretely, we set the weight
of each example in S to 1 and of each pseudo-example in Sreg to ν. We can now use either
the log-additive or the additive algorithm to minimize the weighted loss.

In practice, we do not need to explicitly add pseudo-examples to our sample in order to
incorporate a regularization term into the loss function. A more efficient way of achieving
the same effect is to modify our algorithms to behave as if such a pseudo sample was
presented to them. For instance, for the log-additive log-loss update (Figure 3) the term
ν/(1+ e−λt,j) should be added to the definition of W−

t,j for every coordinate being updated.

Analogously, the term ν/(1 + eλt,j) should be added to W+
t,j . Applying this modification is

equivalent to adding pseudo-examples which correspond to the coordinates being updated.

Another useful property of this regularized loss is that it is strictly convex. To see
that Loss(λ, ν, S) is strictly convex it suffices to show that its Hessian is positive definite.
The Hessian of Loss(λ, ν, S) can be written as a sum of two matrices H + Hreg where the
first is the matrix of second order derivatives of Loss(λ, S) and the second contains the
second order derivatives of ν Loss(λ, Sreg). Since Loss(λ, S) is the sum of convex losses, H
is positive semi-definite. It is simple to verify that the matrix Hreg is a diagonal matrix
with Hi,i = 2ν/

(

1 + e−λi
) (

1 + eλi
)

for the log-loss or Hi,i = ν
(

e−λi + eλi
)

for the exp-loss.
Clearly, the diagonal elements are strictly positive for both losses for any finite λ. Therefore,
Hreg is positive definite and thus H + Hreg is positive definite as well. Furthermore, since
the regularization term tends to infinity at least as fast as ‖λ‖1, the regularized loss has an
attainable global minimum. In other words, this form of regularization enforces uniqueness
of the solution in our loss minimization problem. We denote the unique global minimum of
Loss(λ, ν, S) by λ?. We use the uniqueness of λ? in the next section where the convergence
of our batch algorithms is discussed.

5. Convergence

In the previous section we have argued that the regularized loss attains a unique minimum
at the point denoted λ?. In this section we show that the batch algorithms described so far
converge to this unique minimizer. For simplicity, we assume that the set of templates A
spans Rn. The following theorem can be tediously generalized to the case where the space
spanned by A is any linear-subspace of Rn in which case convergence is to the optimal value
within this subspace.

Theorem 3 Assume that the vectors in A span the entire space Rn. Let λ1, λ2, . . . ,λt, . . .
be the sequence of vectors generated by the log-additive (Figure 3) or the additive (Figure 4)
updates, using either of the regularized loss functions discussed in this paper. Then this
sequence converges to λ?, the global minimizer of the regularized loss L(λ, ν, S).

Proof Due to the introduction of the regularization term, the loss function is strictly convex
and attains its unique minimum at the point denoted λ?, as argued in the previous section.
In addition, the regularization term guarantees that the entire sequence λ1, . . . ,λt, . . . lies

723

Dekel, Shalev-Shwartz and Singer

within a compact set C. To see this, note that λ is initialized to be the zero vector and
therefore the initial regularized loss is

Loss(0, ν, S) = Loss(0, S) + ν Loss(0, Sreg).

Denote the initial loss above by L0. Since the loss attained by the algorithm on every
iteration is non-increasing, the contribution of the regularization term to the total loss
certainly does not exceed L0/ν. Also, the regularization term for both the exp-loss and the
log-loss bounds the `∞ norm of λt by

‖λt‖∞ ≤ Loss(λt, Sreg) ≤ Loss(λt, ν, S)/ν ≤ L0/ν.

Therefore, we can define C = {λ : ‖λ‖∞ ≤ L0/ν} and assert that the sequence λ1, λ2, . . . is
contained in C. Next, note that the lower bound on the decrease in loss given in Theorem 1
and Theorem 2 can be thought of as a function of the current regressor λt and the chosen
template at. If the bound on the decrease equals zero for all possible a ∈ A then λt must be
equal to λ?. Otherwise, there exists a ∈ A for which the decrease bound is strictly positive.
To see this, note that if the decrease bound for the log-additive update is 0 then,

∀j :
(
√

W−
t,j −

√

W+
t,j

)2

= 0,

which implies that W−
t,j −W+

t,j = 0. Note that W−
t,j −W+

t,j is the j’th partial derivative of
the loss function being minimized (log-loss, exp-loss, or comb-loss). Since the regularized
loss function is strictly convex, a zero gradient vector is attained only at the optimal point
λ?. A similar argument holds for the additive update.

Assume now by contradiction that the sequence of regressors λ1, λ2, . . . does not con-
verge to λ?. An immediate consequence of this assumption is that there exists γ > 0 such
that an infinite subsequence of regressors λs1 , λs2 , . . . remains outside of B(λ?, γ), the open
ball of radius γ centered at λ?. The set C \ B(λ?, γ) is a compact set and therefore the
lower bound from Theorem 1 (or equivalently Theorem 2) attains a minimum value over
C \B(λ?, γ) at some point λ̃. Denote this minimum by µ. Since λ̃ 6∈ B(λ?, γ) it necessarily
follows that λ̃ 6= λ? and therefore µ must be strictly positive. Thus, on each of the iterations
s1, s2, . . . the decrease in loss is at least µ > 0. The subsequence s1, s2, . . . is infinite and
as a consequence the loss must eventually become negative. We get a contradiction since
the loss is a non-negative function. We conclude that the sequence λt must converge to λ?.

6. Back to Classification

To conclude the part of the paper which discusses batch algorithms we would like to briefly
draw connections to boosting algorithms for classification. The reader mainly interested in
regression problems may skip this section.

The algorithms of previous sections can also be used in classification settings. The log-
additive updates simply reduce to the algorithms described in (Collins et al., 2002). The
additive update results in a new boosting procedure for classification accompanied with a
matching criterion for selecting a base hypothesis. Concretely, in the binary classification

724

Smooth ε-Insensitive Regression by Loss Symmetrization

setting we receive a training set S = {(x1, y1), . . . , (xm, ym)} where each target yi is either
−1 or +1. As in the case of regression, x is the mapping of an instance into its image under
the set of base-classifiers, x 7→ (h1(x), . . . , hn(x)) and the goal is to find a function f(x)
that attains a small loss. The function f(x) is a weighted combination of base-hypotheses,
f(x) =

∑n
j=1 λjhj(x) = λ · x. The skeleton of the additive algorithm for classification

is almost the same as the one for regression. In the classification case we define a single
(unnormalized) distribution over the examples, setting the weight of the i’th example to,

qt,i = e−δt,i/Zt [exp-loss] ; qt,i =
1

1 + e−δt,i
[log-loss],

where δi = yiλt · xi and Zt = 1 +
∑m

i=1 e−δt,i . On round t we set each variable Wt,j to be
Wt,j =

∑n
i=1 qt,i xi,j . The rest of the algorithm, including the constraint

∑

i,j ajx
2
i,j ≤ 2, is

kept intact. The result is a new boosting-type procedure where base-hypotheses are selected
so as to maximize

∑

j ajW
2
i,j .

The regularization technique discussed in Section 4 can be used in classification tasks as
well. It is worth noting that Schapire et al. (2002) suggested a procedure for incorporating
prior knowledge into log-loss boosting which can also be used for regularization. We compare
the two regularization techniques in the log-loss case. Using the notation of Section 4, the
regularization technique of Schapire et al. can also be described via the introduction of a
pseudo-sample. Given a training set S = {xi, yi}mi=1 with yi ∈ {−1, +1} define the pseudo-
sample S̄ = {xi,−yi} and use log-loss boosting to train a classifier whose task is to minimize
the loss,

(1− ν)Loss(λ, S) + νLoss(λ, S̄),

where, as before, ν is a regularization parameter. In this case ν is restricted to the interval
[0, 1/2]. This construction of a regularization sample implies that even when there exists a
strong-hypothesis which attains zero classification error on S the extended sample S ∪ S̄ is
inseparable. If the space spanned by the examples is of a full rank, then this regularization
scheme guarantees a unique and attainable global minimizer λ?. However, the two optima
due to the two different regularization schemes will be achieved at different points. The
regularization scheme presented in this paper penalizes large values of |λj | whereas Schapire
et al. penalize overconfident predictions.

7. Online Regression Algorithms

In this section we describe online regression algorithms for the log-loss defined in Eq. (1).
In the previous sections we allowed ourselves to ignore the constant κ which appears in
the definition of the log-loss since this did not alter the global minimum of our problem.
However, in the online learning setting this constant should not be ignored. Inclusion of κ
does not affect the online algorithms themselves as they depend only on the gradient of the
loss function, but it will play a role in their analysis.

We follow the notation and techniques presented in (Kivinen and Warmuth, 1997; Cesa-
Bianchi, 1999). In online learning settings, we observe a sequence of instance-target pairs,
in rounds, one by one. On round t we first receive an instance xt. Based on the current
regressor, λt, we extend a prediction λt · xt. We then receive the true target yt and suffer
an instantaneous loss equal to Llog(λt ·xt−yt). Our goal is to suffer a small cumulative loss.

725

Dekel, Shalev-Shwartz and Singer

Input: Insensitivity parameter ε ; Upper bound R

Initialize:

[if gd] λ1 = (0, . . . , 0)

[if eg] λ1 = (1/n, . . . , 1/n)

Iterate: For t = 1, 2, . . .

Receive an example xt

Predict λt · xt

Receive true target yt

Update:

δt = λt · xt

L
′

log(δt) = 1
1+e−δt+ε − 1

1+eδt+ε

βt = L
′

log(δt)/R

[if gd] λt+1,j = λt,j − βt xt,j (1 ≤ j ≤ n)

[if eg] λt+1,j =
λt,je−βt xt,j

Pn
k=1 λt,ke

−βt xt,k
(1 ≤ j ≤ n)

Figure 5: The GD and EG algorithms for online regression with the log-loss.

The learning algorithm employs an update rule which modifies its current regressor after
each round. We describe and analyze two online regression algorithms for the log-loss that
differ in the update rules that they employ. The first is additive in the gradient of the loss
and is thus called Gradient Descent (GD) while the second is exponential in the gradient
of the loss and is analogously called Exponentiated Gradient (EG).

The GD algorithm: The pseudo-code of the algorithm is given in Figure 5. Note that
the GD algorithm updates its current regressor, λt, by subtracting the gradient of the loss
function from it. The GD algorithm assumes an upper bound R on twice the squared norm
of all the instances, that is, 2‖xt‖22 ≤ R. In the following analysis we give a bound on the
cumulative loss attained on any number of rounds. However, rather than bounding the
loss per se we bound the cumulative loss relative to the cumulative loss suffered by a fixed
regressor µ. The bound holds for any linear regressor µ and any number of rounds, hence
we get that the GD algorithm is competitive with the optimal (fixed) linear regressor for any
number of rounds. Formally, the following theorem states that the cumulative loss attained
by the GD algorithm is at most twice the cumulative loss of any fixed linear regressor plus
an additive constant.

Theorem 4 Let S = {(x1, y1), ..., (xT , yT)} be a sequence of instance-target pairs such that
∀t : 2‖xt‖22 ≤ R and let λ1, ...,λT be the regressors generated by the GD online algorithm

726

Smooth ε-Insensitive Regression by Loss Symmetrization

(Figure 5) on the sequence. Then for any fixed linear regressor µ ∈ Rn we have

T
∑

t=1

Llog(λt · xt − yt) ≤ 2
T
∑

t=1

Llog(µ · xt − yt) + R ‖µ‖22 . (13)

Note that the statement of the theorem changes if the constant κ is excluded from the
definition of the log-loss in Eq. (1), resulting in a looser bound. The proof of the theorem
is based on the following lemma that underscores an invariant property of the update rule.

Lemma 5 Consider the setting of Theorem 4, then for each round t we have

Llog(λt · xt − yt)− 2Llog(µ · xt − yt) ≤ R
(

‖λt − µ‖22 − ‖λt+1 − µ‖22
)

. (14)

The proof of the lemma is given in Appendix A. Intuitively, the lemma states that if the loss
attained by λt on round t is greater than the loss of a fixed regressor µ, then the algorithm
will update λt such that it gets closer to µ. In contrast, if the loss of µ is greater than the
loss of GD, the algorithm may move its regressor away from µ. With Lemma 5 handy, the
proof of Theorem 4 is almost immediate.

Proof of Theorem 4: Summing Eq. (14) for t = 1, ..., T we get

T
∑

t=1

Llog(λt · xt−yt)− 2
T
∑

t=1

Llog(µ · xt−yt) ≤ R
(

‖λ1 − µ‖22 − ‖λT+1 − µ‖22
)

≤ R ‖λ1 − µ‖22
= R ‖µ‖22,

where in the last equality we use the fact that the initial regressor, λ1, is the zero vector.

The EG algorithm: The algorithm is described in Figure 5 and works under the as-
sumption that the regressor λ is contained in the probability simplex, namely λ ∈ Pn where
Pn = {µ : µ ∈ Rn

+,
∑n

j=1 µj = 1}. We note in passing that following a construction
described in (Kivinen and Warmuth, 1997), it is possible to derive a generalized version
of EG in which the elements of λ can be either negative or positive, so long as the sum
of their absolute values is less than 1. The EG algorithm assumes an upper bound on
the squared difference between the maximal and minimal coordinates of the instances it
receives, R ≥ (maxj xt,j −minj xt,j)

2. Since EG maintains a regressor from the probability
simplex, we measure the cumulative loss of the EG algorithm relative to the cumulative loss
achieved by any fixed regressor from the probability simplex.

Theorem 6 Let S = {(x1, y1), ..., (xT , yT)} be a sequence of instance-target pairs such that
∀t : (maxj xt,j −minj xt,j)

2 ≤ R and let λ1, ...,λT be the regressors generated by the EG
online algorithm (Figure 5) on the sequence. Then, for any fixed regressor µ ∈ Pn we have

T
∑

t=1

Llog(λt · xt − yt) ≤
4

3

T
∑

t=1

Llog(µ · xt − yt) +
4R

3
DRE(µ, λ1) , (15)

where DRE(p, q) =
∑

j pj log(pj/qj) is the relative entropy function.

727

Dekel, Shalev-Shwartz and Singer

The proof of the theorem is analogous to the proof of Theorem 4 and employs the following
relative entropy based progress lemma.

Lemma 7 Consider the setting of Theorem 6, then for each round t we have

Llog(λt · xt − yt)−
4

3
Llog(µ · xt − yt) ≤

4R

3
(DRE(µ, λt)−DRE(µ, λt+1)) . (16)

The proof of the lemma is given in Appendix A.

8. Experiments

In this section we present experimental results that demonstrate different aspects of our
algorithms in the light of their formal analysis. In Section 8.1, we start with a synthetic
example that underscores the different properties of the log-loss and the exp-loss functions.
We then turn to a comparison of the different algorithmic approaches to minimizing these
losses. In Section 8.2 we compare the log-additive and additive batch updates by examining
how certain properties of the training data influence the rates of convergence of the two
updates. Next we demonstrate the different benefits of the sequential and parallel update
paradigms. In Section 8.3 we use the sequential form of our update as a boosting procedure
which uses regression stumps as base regressors. We compare this boosting technique to
the LAD algorithm (Friedman, 2001) on a natural data set. In Section 8.4 we turn our
attention to the parallel update paradigm. When using the parallel update, some form of
regularization is essential to avoid over-fitting. We therefore demonstrate the effectiveness
of the regularization scheme presented in Section 4 and show the effect of the regulariza-
tion parameter on the generalization ability of our algorithms. More specifically, we learn a
kernel-based regressor and compare our log-loss regularization to Support Vector Regression
with l1 regularization. The last two experiments illustrate some properties of our online
algorithms and are presented in Section 8.5. In these experiments, we compare the cumu-
lative loss of the online GD algorithm with its theoretical bound given in Theorem 4. We
also compare the sensitivity of the online GD and EG regression algorithms to the number
of relevant coordinates in the data, demonstrating that EG vastly outperforms GD when
the number of relevant coordinates is small.

8.1 Comparison of the Exp-Loss and the Log-Loss

In this section we describe an experiment that underscores the different merits of the log-
loss and the exp-loss functions. The end result is that the solution obtained by minimizing
the log-loss shares the same asymptotic behavior as the `1 regression loss (

∑

i |δi|). On
the other hand, the solution found by minimizing the exp-loss approximately minimizes
the l∞ regression loss on the sample. To exemplify the above properties we created two
synthetic data sets and for each one we found the two regressors that minimize the log-loss
and the exp-loss respectively. The two data sets and the resulting regressors are depicted
in Figure 6. Each of the two data sets was generated by sampling points on the curve of
a univariate third degree polynomial, resulting in a sample S = {(xi, yi)} where xi, yi ∈ R.
Then, the target yi of each point xi was contaminated with a small additive noise distributed

728

Smooth ε-Insensitive Regression by Loss Symmetrization

log−loss
exp−loss

log−loss
exp−loss

Figure 6: A comparison of log-loss and exp-loss on synthetic data.

normally with a zero mean and a variance of 0.1. In the first experiment, the targets were
further contaminated by adding one-sided noise which was generated by subtracting the
absolute value of a normal variable with a zero mean and a unit variance (Figure 6, left).
Each instance xi was expanded by taking powers of xi, i.e. we performed the mapping
xi 7→ (1, xi, x

2
i , x

3
i). This expansion enables us to use our linear algorithms to learn degree

three polynomials. It is clear from the figure that the regressor obtained by minimizing the
log-loss is very close to the polynomial generating the data, demonstrating the robustness
of the log-loss to biased noise. The regressor attained by minimizing the exp-loss, however,
approximately minimizes the maximal discrepancy over the entire data set and therefore
lies significantly below. The other facet of this behavior is illustrated on the right hand side
of Figure 6. In this data set, the additional one sided noise was set to one with a probability
of 1/3 and otherwise it was set to zero. Thus, about a third of the targets were shifted up
by 1. Here, the regressor obtained by minimizing the exp-loss lies between the two groups
of points and as such approximately minimizes the `∞ regression loss on the sample. The
regressor found by minimizing the log-loss practically ignores the samples that were shifted
by 1 and as such approximately minimizes the `1 regression loss on the sample.

8.2 A Comparison of the Log-Additive and Additive Updates

In this section we compare the performance of the log-additive update from Figure 3 to that
of the additive update from Figure 4. An important difference between the two updates
is the type of constraint imposed on the norm of the update templates. In the following,
we demonstrate the effect of this difference on the convergence rates of the two update
strategies. To make the comparison as simple as possible, we chose the instance space to
be R1. Therefore, the instances are scalars and there is a single update template a ∈ R. For
the log-additive update the constraint on a becomes amaxi |xi| ≤ 1 while for the additive
update the constraint is a

∑

i x
2
i ≤ 2. To demonstrate the implications of the different norm

constraints, we generated two synthetic data sets. The target of each instance was set for
both data sets to be equal to the input instance, that is, yi = xi. Each data set consists
of 26 instance-target pairs. For both data sets, we set the value of the first 25 instances to
equal 0.01. In the first data set we set the last instance to 0.5 whereas in the second data set

729

Dekel, Shalev-Shwartz and Singer

2 4 6 8 10 12 14

0

0.02

0.04

0.06

0.08

0.1

0.12
lo

g−
lo

ss

additive
log−additive

0 5 10 15 20 25 30

0

5

10

15

20

25

30

35

40

45

50

lo
g−

lo
ss

additive
log−additive

0 10 20 30 40 50

0

0.02

0.04

0.06

0.08

0.1

0.12

ex
p−

lo
ss

additive
log−additive

0 5 10 15 20 25 30

0

5

10

15

20

25

30

35

40

45

50

ex
p−

lo
ss

additive
log−additive

Figure 7: Comparison of the convergence rates of the log-additive and additive updates on
two different data sets (see text). The left column corresponds to the first data
set and the right column to the second. The top row presents results for the
log-loss while the bottom row presents results for the exp-loss.

we set it to 10. Therefore, for the first data set, the constraint on a reduces to a ≤ 2 when
using the log-additive update and to a ≤ 4 when the additive update is used. In the case
of the second data set, the constraint on a becomes a ≤ 0.02 for the log-additive update,
and a ≤ 0.0008 for the additive one. We would like to note in passing that for the additive
update, a typically decreases as the number of examples increases. Hence, the steps that
additive update takes are likely to be smaller in large data sets. The end result is slower
convergence rates as both the log-additive and the additive updates scale linearly with the
value of the template used. Put another way, a small value of a yields an update which
changes λ rather conservatively. Therefore, in the settings discussed in this section, the
additive update should converge faster on the first data set while the log-additive update
should converge faster on the second data set. The top row of Figure 7 shows the log-loss
obtained on the training set as a function of the number of iterations for the two data sets.
It is clear from the graphs that our expectations are met and that the additive update
converges faster than the log-additive update on the first data set and slower on the second
data set.

730

Smooth ε-Insensitive Regression by Loss Symmetrization

Another important difference between the two updates is the construction of q+
i and q−i

when minimizing the exp-loss. Recall that in the case of the log-additive update, the weights
of the examples are q+

i = eδi and q−i = e−δi while for the additive update we further divide
these weights by Z. Therefore, when the data set contains examples for which the exp-loss
cannot be made small, the value of Z is likely to be rather large. Unlike the log-additive
update, the additive form is sensitive to scaling of the weights q+

i and q−i . Thus, whenever Z
is large, the resulting normalized weights will be small and therefore the corresponding step
sizes taken by the additive update will also be small. The bottom row of Figure 7 reflects
this sensitivity of the additive update to scaling. For both data sets described above the
log-additive update exhibits much faster convergence than the additive-one.

8.3 Boosting Regression Stumps

The next experiment demonstrates the effectiveness of the log-additive and additive updates
in their sequential form, when they are applied as boosting procedures. As in the classic
boosting setting, our algorithm has access to an external learning procedure called a base or
weak learner. The goal of the boosting algorithm is to construct a highly accurate regressor
by combining base regressors obtained from consecutive calls to the base learner. On every
boosting iteration the base learner receives the training set along with the weights q+

t,i and

q−t,i generated by the boosting algorithm. The goal of the base learner is to construct a
regressor which maximizes the decrease in loss. We denote by ht : Rn → R, the regressor
returned by the base learner on round t. We use either the bound in Theorem 1 or the
bound in Theorem 2 as the criterion for selecting a base regressor using the log-additive
and additive updates respectively. That is, the base learner attempts to maximize the lower
bound on the decrease in loss given in Theorem 1 or Theorem 2.

In our experiments, we use regression stumps as base regressors. Like decision stumps
which are depth-one decision trees, regression stumps are the simplest form of regression
trees (cf. Friedman (2001)). Each stump is characterized by two parameters: a feature index
parameter, ` ∈ {1, . . . , n} and a threshold parameter θ ∈ R. The prediction of each stump
is either −1 or +1 and is defined as h(x) = sign(θ− x`). We now describe the specific base
learner we use. Given a training set S = {(xi, yi)} of m instance-target pairs, we construct
for each feature index ` ∈ {1, . . . , n} a set of candidate thresholds. Each set consists of
all possible mid-points between two consecutive values of that feature on the training set.
Formally, let Θ` denote the candidate thresholds set for feature ` and let xi,` denote the `th
feature of the ith instance in S. Then, the set Θ` is defined as,

Θ` = {(xi1,` + xi2,`)/2 |xi1,` < xi2,` and @ r s.t. xi1,` < xr,` < xi2,`} . (17)

Note that each set Θ` may contain at most m − 1 different thresholds and can be pre-
computed efficiently in time m log(m) by sorting the training set independently for each
feature.

Given the current set of weights, q+
t,i and q−t,i, the base learner constructs a regression

stump by choosing a feature index ` and a threshold value θ ∈ Θ`. This pair is chosen so
as to maximize the bound on the decrease in the log-loss as defined in Theorem 1 or in
Theorem 2. It is easy to verify that the value of an update template for each base regressor
is either 2/m in the case of the additive update or 1 in the case of the log-additive update

731

Dekel, Shalev-Shwartz and Singer

Input: Training set S = {(xi, yi) |xi ∈ Rd, yi ∈ R}mi=1 ; Insensitivity ε ∈ R+ ;

Number of iterations T

Initialization: compute the set of admissible thresholds Θ` (` = 1, . . . , d)
Iterate:

For t = 1, 2, . . . , T

δt,i =
t−1
∑

j=1

λjhj(xi)−yi

q−t,i =
eδt,i−ε

1 + eδt,i−ε
, q+

t,i =
e−δt,i−ε

1 + e−δt,i−ε
(1 ≤ i ≤ m)

Define:

[if log-additive]

∆(θ, `) =





√

∑

i : xi,l>θ

q−t,i +
∑

i : xi,l<θ

q+
t,i −

√

∑

i : xi,l>θ

q+
t,i +

∑

i : xi,l<θ

q−t,i





2

[if additive]

∆(θ, `) =
1

m





∑

i : xi,l>θ

(q+
t,i − q−t,i) +

∑

i : xi,l<θ

(q−t,i − q+
t,i)





2

Set (θ?, `?) = argmax
(θ,`)

∆(θ, `)

Set ht(x) = sign(θ? − x`?)

Update:

[if log-additive] λt = 1
2 log

(

P

i:ht(xi)≥0 q+
t,i+

P

i:ht(xi)<0 q−t,i
P

i:ht(xi)≥0 q−t,i+
P

i:ht(xi)<0 q+
t,i

)

[if additive] λt = 2
m

∑m
i=1(q

+
t,i − q−t,i)ht(xi)

Output: f(x) =
∑T

t=1 λtht(x)

Figure 8: The stumps-based regression algorithm.

732

Smooth ε-Insensitive Regression by Loss Symmetrization

since the output of the base regressors is either +1 or −1. Hence, given a candidate feature
index ` and a threshold θ ∈ Θ` the bound on the decrease in loss for the additive update is,

1

m





∑

i : xi,l>θ

(q+
t,i − q−t,i) +

∑

i : xi,l<θ

(q−t,i − q+
t,i)





2

, (18)

and for the log-additive update the bound is,





√

∑

i : xi,l>θ

q−t,i +
∑

i : xi,l<θ

q+
t,i −

√

∑

i : xi,l>θ

q+
t,i +

∑

i : xi,l<θ

q−t,i





2

. (19)

As mentioned above, the base learner evaluates one of the above terms (depending on the
update) for each possible ` and θ ∈ Θ`. It then chooses the pair which maximizes either
Eq. (18) or Eq. (19). The pseudocode of the regression learning algorithm using stumps for
both the additive and the log-additive updates is given in Figure 8.

We compared the regression algorithm with stumps to an algorithm named Least Ab-
solute Deviation (LAD) due to Friedman (2001). LAD is a boosting-style algorithm which
attempts to minimize the hinge-loss by fitting a base hypothesis to the residual error, the
approximation error left after applying the combination of base hypotheses found so far.
It is not obvious how to conduct a fair comparison between our approach and LAD since
the direct objective of our regression learning algorithm is to minimize the log-loss while
the goal of LAD is to minimize the hinge-loss. To remove any doubt on the validity of the
results, we evaluate both algorithms using the hinge-loss, thus giving a slight advantage to
LAD in our empirical evaluation. In addition, we compared the mean squared errors (MSE)
of the algorithms.

We ran experiments on two standard data sets for regression: the Boston housing data
set from the UCI repository and the body fat data set (Penrose et al., 1985). To evaluate our
results, we used a 10-fold cross validation technique. The plots on the top row of Figure 9
depict the average hinge-loss on the two data sets as a function of the number of sequential
iterations while the plots on the bottom row correspond to the mean squared error obtained
by the algorithms on the same data sets. The plots underscore a few interesting phenomena.
The LAD algorithm appears to be able to decrease the hinge loss and the MSE much faster
than our algorithm on both the training data (not shown) and the test data. In no more than
3 iterations, LDA is able to achieve rather low loss. It takes about an order of magnitude
more iterations for our algorithm to obtain the same performance LAD achieves after 2 or
3 iterations. This behavior can be partially attributed to the fact that LAD is designed
to directly maximize the decrease in loss while our algorithm maximizes a lower bound on
the decrease in loss. However, despite its initial performance, LDA seems to “get stuck”
rather quickly and the final regressor it obtains has substantially higher loss on both data
sets compared to our algorithm, whether it is trained with the log-additive update or the
additive one. The improved generalization performance may be attributed to the following
behavior that is common to boosting algorithms: as more base regressors are added, the
regression error obtained on most of the examples is rather small. Thus, the weights q+

i

and q−i for most of the examples are also small and do not contribute too much to further

733

Dekel, Shalev-Shwartz and Singer

10
0

10
1

10
2

10
3

2

2.5

3

3.5

4

4.5

5

5.5

6

6.5

7

Number of boosting iterations

l 1 lo
ss

additive
log−additive
LAD

10
0

10
1

10
2

10
3

3.5

4

4.5

5

5.5

6

6.5

7

Number of Boosting iterations

l 1 lo
ss

additive
log−additive
LAD

10
0

10
1

10
2

10
3

10

20

30

40

50

60

70

80

90

Number of boosting iterations

l 2 lo
ss

additive
log−additive
LAD

10
0

10
1

10
2

10
3

20

25

30

35

40

45

50

55

60

65

70

Number of Boosting iterations

l 2 lo
ss

additive
log−additive
LAD

Figure 9: A comparison of the `1 and MSE losses obtained by the regression algorithm with
stumps and the LAD algorithm (see text) on Boston housing data set (left) and
body-fat (right) data sets.

decreases in the loss. Thus, even simple regressors such as decision stumps can further
reduce the loss on the remaining examples for which the loss is still high. Indeed, we see
that some over-fitting takes place when our regression algorithm is run for more than 200
iterations.

Comparing the performance of the additive and the log-additive updates in this exper-
iment, it is apparent that the former seems more effective in reducing the loss but is also
more susceptible to over-fitting. The accuracy of each update strategy seems to be prob-
lem dependent. We leave further theoretical and empirical research on the generalization
properties of the two updates to future research.

8.4 Examining the Effect of Regularization

So far we have focused on experiments which illustrate the different facets of empirical
loss minimization using different update schemes. In this section we shift our focus to the
effects of the regularization technique discussed in Section 4. The role of regularization is to
control the complexity of the final regressor. Indeed, as we demonstrate empirically, proper

734

Smooth ε-Insensitive Regression by Loss Symmetrization

10
−10

10
−5

10
0

10
5

0

2

4

6

8

10

12

l 1−
lo

ss

ν

train
test

10
−10

10
−5

10
0

10
5

0

1

2

3

4

5

6

7

l 1−
lo

ss

ν

train
test

Figure 10: The training and test losses as a function of the regularization parameter (ν) for
the log-loss (left) and Support Vector Regression (right).

regularization can ensure that the generalization loss (i.e. the regression loss suffered on
test examples) would not greatly exceed the loss obtained on the training set. The feature
space we use in this experiment is based on kernel operators. Concretely, the regressors we
construct take the form

fλ(x) =
m
∑

j=1

λjk(xj ,x),

where {x1, . . . ,xm} are the instances in the training set and k is a kernel function. We used
the log-additive and additive update algorithms to minimize the following regularized loss,

Loss(λ, ν, S) =
m
∑

i=1

Llog(fλ(xi)− yi ; ε) + ν
m
∑

j=1

Llog(λj). (20)

As illustrated in Figure 1, the log-loss can be interpreted as a smooth approximation to the
ε-insensitive hinge loss used by Support Vector Regression (SVR). SVR is a technique for
non-linear regression which uses kernel functions. For a thorough review of SVR, see for
instance (Smola and Schölkopf, 1998). In our setting, the regularized loss from Eq. (20) can
be viewed as a smooth approximation to the hinge-loss with l1 regularization that is used
in Linear Programming Support Vector Regression (LP-SVR), namely,

m
∑

i=1

|fλ(xi)− yi|ε + ν
m
∑

j=1

|λj |. (21)

We ran experiments using the Boston Housing data set from the UCI Machine Learning
Repository. Following Bi and Bennett (2003), we chose to use a Gaussian kernel with
2σ2 = 3.9. We ran experiments with ε set to 0, 1, 2, 3. The preprocessing we performed
consisted of shifting and scaling the input variables to the unit hypercube. Specifically, let
rj = mini xi,j and sj = maxi xi,j , then xi,j was transformed to (xi,j−rj)/(sj−rj). As in the

735

Dekel, Shalev-Shwartz and Singer

−12 −10 −8 −6 −4 −2 0 2 4
0

1

2

3

4

5

6

7

8

9

T
es

t l
1−

lo
ss

log(ν)

SVR
log−loss

−12 −10 −8 −6 −4 −2 0 2 4
0

10

20

30

40

50

60

70

80

90

100

110

T
es

t M
S

E

log(ν)

SVR
log−loss

Figure 11: Comparisons of the test losses obtained by the regularized log-loss minimization
procedure and by SVR as a function of ν. The losses used for evaluation are
the `1 loss (left) and the mean squared error (right). The standard deviation of
over the cross validation fold is depicted as error bars.

previous experiment, we used 10-fold cross validation to evaluate the results and measured
the hinge-loss and the mean-squared error (MSE).

The train and test hinge losses for different values of the regularization parameter ν are
depicted in Figure 10. As anticipated, the training loss for both algorithms is monotoni-
cally increasing in the regularization parameter ν while the difference between the test and
training loss is monotonically decreasing in ν. This behavior is typical of regularization
techniques. On the left hand side of Figure 11 we directly compare the test error obtained
by the two algorithms. The standard deviation over the ten folds is shown using error bars.
The MSE of the algorithms is given on the right hand side of Figure 11. As can be seen
form the figure, the lowest test loss attained by SVR is very close to the value attained by
the log-loss (with a slight advantage to the latter). However, the regressors obtained by the
log-loss seem to be less sensitive to the particular choice of ν than the regressors obtained by
SVR. Indeed, for ν in [10−5, 1], the discrepancy between the losses of the regressors found
by the log-loss is less than 1 while in the same range the losses of SVR can be as much as 3
units apart. This behavior suggests that regression methods which use the smooth log-loss
function may give a viable alternative to SVR as they are less sensitive to the particular
choice of the regression parameter.

8.5 Online Experiments

We conclude the experiments section with two experiments which use our online algorithms.
Theorem 4 states that the GD online algorithm attains a cumulative log-loss which is at
most twice the loss of any fixed regressor µ, up to a constant additive factor. For any finite
number of online rounds T , the theorem in particular holds for µ = λ?

T , the regressor which
attains the minimal log-loss on the first T examples in the sequence. In practice, however,
we have found that GD performs much better than the theoretical guarantee in Theorem 4.

736

Smooth ε-Insensitive Regression by Loss Symmetrization

500 1000 1500 2000 2500 3000 3500 4000 4500

500

1000

1500

2000

rounds

cu
m

ul
at

iv
e

lo
ss

GD
optimal
bound

2000 4000 6000 8000 10000 12000

10
0

10
1

10
2

k = 5

k = 5

k = 50

k = 50

k = 100

k = 100

rounds

cu
m

ul
at

iv
e

lo
ss

GD
EG

Figure 12: (Left) Cumulative loss of the GD online algorithm compared with the cumulative
loss of the optimal fixed regressor and the worst case bound in Theorem 4.
(Right) The cumulative loss of EG and GD for different numbers of relevant
features.

To demonstrate this, we randomly generated instances and selected the target value for each
instance according to a predefined linear function. We added random Gaussian noise to the
target values and presented the sequence to the GD algorithm. The cumulative loss of the
GD algorithm is depicted on the left hand side of Figure 12, along with the cumulative loss
of λ?

T and the worst-case guarantee attained from Theorem 4 with µ = λ?
T . Clearly, the

cumulative loss of the GD algorithm lies significantly below the worst case bound. Moreover,
despite the simplicity of the algorithm, its de facto performance is competitive with the best
regressor on each round.

Our last experiment compares the performance of the EG and GD online algorithms.
We randomly generated instances in {−1, 1}1000, and generated noise-free targets according
to a linear function with only k non-zero components (for k = 5, 50, 100). For each value of
k, the first k elements of the target function were set to be 1/k while the rest of the elements
were set to zero. The results are depicted in Figure 12 (right). The cumulative loss curves
indicate that the EG algorithm is faster to converge than GD. In fact, for k = 5 it takes less
than 10 iterations for EG to cease making any significant regression errors. Indeed, simple
calculations yield that the excess loss as given in the analyses of the online algorithms is
O(log(n/k)) for EG while for GD it is O(n/k). This type of behavior is clearly observed on
the right hand side of Figure 12: the higher k becomes the smaller the difference between
GD and EG.

9. Discussion

We described a framework for solving regression problems by a symmetrization of margin-
based loss functions commonly used in boosting techniques. Our approach naturally lent
itself to a shifted and symmetric loss function which is approximately zero in a pre-specified
interval and can thus be used as a smooth alternative to the ε-insensitive hinge loss. We

737

Dekel, Shalev-Shwartz and Singer

presented both batch and online algorithms for solving the resulting regression problems.
The updates of the batch algorithms we presented take either a log-additive or an additive
form. Our framework also results in a new and very simple to implement regularization
scheme for regression and classification boosting algorithms. As a byproduct, we obtained
a new additive algorithm for boosting-style classification, which can be used in conjunction
with the newly introduced regularization scheme. There are numerous extensions of this
work. One of them is the application of Thms. 1 and 2 as splitting criteria for regression-tree
learning algorithms. Another interesting direction is the marriage of the loss symmetrization
technique with other boosting related techniques such as drifting games (Schapire, 1999;
Freund and Opper, 2002).

Acknowledgments

We are in debt to Rob Schapire for making the connection to regularization and for numerous
comments. We also would like to thank the anonymous reviewers for their constructive
comments. This research was funded by NSF ITR Award 0205594 and by EU PASCAL
Network of Excellence.

Appendix A. Technical Proofs

Proof of Lemma 5: Recall that we denote the discrepancy between the target predicted
by the online algorithm and the true target by δt = λt · xt − yt. For brevity, let δ̄t denote
µ ·xt−yt. Given the form of the update rule of GD, we can expand λt+1 to get the following
lower bound on the progress given in Lemma 5,

R
(

‖λt − µ‖22 − ‖λt+1 − µ‖22
)

= R

(

2(λt − µ) · 1

R
L

′

log(δt) xt −
∥

∥

∥

∥

1

R
L

′

log(δt) xt

∥

∥

∥

∥

2
)

= 2L
′

log(δt)(λt − µ) · xt −
1

R

(

L
′

log(δt)
)2
‖xt‖22

≥ 2L
′

log(δt)(λt − µ) · xt −
1

2

(

L
′

log(δt)
)2

, (22)

where L
′

log denotes the derivative of Llog and we used the fact that 2‖xt‖22 ≤ R in the last
inequality. Since (λt−µ) ·xt = (λt ·xt−yt)+(yt−µ ·xt) = δt− δ̄t, we can rewrite Eq. (22)
as

2L
′

log(δt)(δt − δ̄t)−
1

2
(L

′

log(δt))
2
.

Therefore, it is sufficient to prove that the following function is non-negative

F (δ, δ̄) = 2L
′

log(δ)(δ − δ̄)− 1

2
(L

′

log(δ))
2 − Llog(δ) + 2Llog(δ̄).

The partial derivative of F with respect to δ̄ is

∂F (δ, δ̄)

∂δ̄
= − 2L

′

log(δ) + 2L
′

log(δ̄).

738

Smooth ε-Insensitive Regression by Loss Symmetrization

The only assignment of δ̄ for which this derivative equals 0 is δ̄ = δ. It is straightforward to
verify that the second derivative of F with respect to δ̄ is positive since Llog(·) is a convex
function. Therefore, fixing δ, F attains its minimum at δ̄ = δ. Put another way, we have
shown that for any δ, δ̄ ∈ R, F (δ, δ) ≤ F (δ, δ̄). Denoting K(δ) = F (δ, δ) and simplifying K
we get,

K(δ) = −1

2
(L

′

log(δ))
2
+ Llog(δ).

It is left to show that K(δ) is non-negative. We prove this by showing that for all δ

K(δ) ≥ K(0) = 0. The derivative of K with respect to δ is dK(δ)
dδ = L

′

log(δ)(1 − L
′′

log(δ)) ,

where L
′′

log(δ) is the second derivative of Llog(δ), namely,

L
′′

log(δ) =
e−δ+ε

(1 + e−δ+ε)2
+

eδ+ε

(1 + eδ+ε)2

=

(

1− 1

1 + e−δ+ε

)

1

1 + e−δ+ε
+

(

1− 1

1 + eδ+ε

)

1

1 + eδ+ε
.

The above equation implies that L
′′

log(δ) is the sum of two numbers, each of which is in

[0, 1/4] and therefore 0 ≤ L
′′

log(δ) ≤ 1
2 for all δ ∈ R. Therefore, 1−L

′′

log(δ) ≥ 0. We complete

the proof by noticing that L
′

log(δ) is a monotonically increasing function and L
′

log(0) = 0.
Therefore, δ = 0 is the single extreme point of K(δ) and since K(1) > K(0) = 0 we get
that for all δ K(δ) ≥ K(0) = 0.

Proof of Lemma 7: Recall that the EG update rule is

λt+1,j =
λt,je

−βtxt,j

∑

k λt,ke
−βtxt,k

, (23)

where βt = L′(λt · xt − yt)/R and R ≥ (maxj xt,j −minj xt,j)
2. First note that, without

loss of generality, we can assume that minj xt,j = 0. This is true since we can replace
each instance-target pair (xt, yt) with the pair (xt − (minj xt,j) , yt − (minj xt,j)). Since
we consider only regressors in the probability simplex this transformation does not change
discrepancy values. In addition, it is simple to verify that the update given in Eq. (23) is
invariant to this shifting.

We now prove the bound in the Lemma, starting with the left-hand side of Eq. (16).
Using the definition of the relative entropy we get

DRE(µ, λt)−DRE(µ, λt+1) = −βµ · xt − log





n
∑

j=1

λt,je
−βxt,j



 .

We employ the inequality αz ≤ 1 − z(1 − α) which holds for every α ≥ 0 and z ∈ [0, 1].

Applying this inequality with α = e−β
√

R and z = xt,j/
√

R yields that

e−βxt,j ≤ 1− xt,j√
R

(

1− e−β
√

R
)

,

739

Dekel, Shalev-Shwartz and Singer

and summing over j results in the bound,

n
∑

j=1

λt,je
−βxt,j ≤ 1− λt · xt√

R

(

1− e−β
√

R
)

.

Hence,

DRE(µ, λt)−DRE(µ, λt+1) ≥ −βµ · xt − log

(

1− λt · xt√
R

(1− e−β
√

R)

)

.

Therefore, to prove Eq. (16) it suffices to show that F (y, λ · x, µ · x) ≥ 0 where

F (y, p, r) =
4

3
R

(

−βr − log

(

1− p√
R

(1− e−β
√

R)

))

+
4

3
Llog(r − y)− Llog(p− y).

We now show that for any p, r ∈ R we have F (y, p, r) ≤ F (y, p, p). The partial derivative
of F with respect to the variable r is

∂F (y, p, r)

∂r
=

4

3

(

−Rβ + L
′

log(r − y)
)

=
4

3

(

−L
′

log(p− y) + L
′

log(r − y)
)

.

The only assignment of r for which this derivative is equal to 0 is r = p. The second
derivative of F with respect to r is 4/3L

′′

log(r− y) which is non-negative (see the end of the
proof of Lemma 5). Hence, given p, F attains a global minimum at r = p. We thus have
shown that for any p, r ∈ R, F (y, p, r) ≤ F (y, p, p). F (y, p, p) reduces to

F (y, p, p) =
4

3

(

−L
′

log(p− y)p−R log

(

1− p√
R

(1− e−L
′

log(p−y)/
√

R)

))

+
1

3
Llog(p− y).

It is left to show that F (y, p, p) is non-negative. Let z = p/
√

R and δ = p−y. The definition
of
√

R implies that z ∈ [0, 1]. Therefore, it is sufficient to prove that the function G(z, δ) is
non-negative for all z ∈ [0, 1] and δ ∈ R where,

G(z, δ) = Llog(δ)− 4
√

R

(

zL
′

log(δ) +
√

R log

(

1− z

(

1− e−L
′

log(δ)/
√

R

)))

.

We now apply the inequality log (1− z(1− ep)) ≤ zp + p2/8, which holds for z ∈ [0, 1] and
p ∈ R . We get

G(z, δ) ≥ Llog(δ)−
1

2

(

L
′

log(δ)
)2

.

The term lower-bounding G(z, δ) is equal to K(δ) where K(δ) was defined in Lemma 5. In
that lemma we proved that K(δ) ≥ 0. Therefore, G(z, δ) ≥ 0 as required.

740

Smooth ε-Insensitive Regression by Loss Symmetrization

References

J. Bi and K.P. Bennett. A geometric approach to support vector regression. In Neurocom-
puting, special issue on support vector machines, volume 55, pages 79–108, September
2003.

N. Cesa-Bianchi. Analysis of two gradient-based algorithms for on-line regression. Journal
of Computer and System Sciences, 59(3):392–411, 1999.

M. Collins, R.E. Schapire, and Y. Singer. Logistic regression, AdaBoost and Bregman
distances. Machine Learning, 47(2/3):253–285, 2002.

N. Duffy and D. Helmbold. Leveraging for regression. In Proceedings of the Thirteenth
Annual Conference on Computational Learning Theory. ACM, 2000.

Y. Freund and M. Opper. Drifting games and Brownian motion. Journal of Computer and
System Sciences, 64:113–132, 2002.

J. Friedman, T. Hastie, and R. Tibshirani. Additive logistic regression: a statistical view
of boosting. Annals of Statistics, 28(2):337–374, April 2000.

J.H. Friedman. Greedy function approximation: A gradient boosting machine. Annals of
Statistics, 29(5):1189–1232, 2001.

T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical Learning. Springer,
2001.

P.J. Huber. Robust Statistics. John Wiley and Sons, New York, 1981.

J. Kivinen and M.K. Warmuth. Exponentiated gradient versus gradient descent for linear
predictors. Information and Computation, 132(1):1–64, January 1997.

G. Lebanon and J. Lafferty. Boosting and maximum likelihood for exponential models. In
Advances in Neural Information Processing Systems 14, 2001.

K.W. Penrose, A.G. Nelson, and A.G. Fisher. Generalized body composition prediction
equation for men using simple measurement techniques. Medicine and Science in Sports
and Exercise, 17(2):189, 1985.

T. Poggio and F. Girosi. Networks for approximation and learning. Proceedings of the
IEEE, 78(9), 1990.

R.E. Schapire, M. Rochery, M. Rahim, and N. Gupta. Incorporating prior knowledge into
boosting. In Machine Learning: Proceedings of the Nineteenth International Conference,
2002.

R.E. Schapire. Drifting games. In Proceedings of the Twelfth Annual Conference on Com-
putational Learning Theory, 1999.

A. Smola and B. Schölkopf. A tutorial on support vector regression. Technical Report
NC2-TR-1998-030, NeuroCOLT2, 1998.

V.N. Vapnik. Statistical Learning Theory. Wiley, 1998.

741

Journal of Machine Learning Research 6 (2005) 743–781 Submitted 5/04; Revised 10/04; Published 5/05

Quasi-Geodesic Neural Learning Algorithms Over
the Orthogonal Group: A Tutorial

Simone Fiori FIORI@UNIPG.IT
Facoltà di Ingegneria, Universit̀a di Perugia
Polo Didattico e Scientifico del Ternano
Località Pentima bassa, 21, I-05100 Terni, Italy

Editor: Yoshua Bengio

Abstract

The aim of this contribution is to present a tutorial on learning algorithms for a single neural layer
whose connection matrix belongs to the orthogonal group. The algorithms exploit geodesics appro-
priately connected as piece-wise approximate integrals ofthe exact differential learning equation.
The considered learning equations essentially arise from the Riemannian-gradient-based optimiza-
tion theory with deterministic and diffusion-type gradient. The paper aims specifically at reviewing
the relevant mathematics (and at presenting it in as much transparent way as possible in order to
make it accessible to readers that do not possess a background in differential geometry), at bring-
ing together modern optimization methods on manifolds and at comparing the different algorithms
on a common machine learning problem. As a numerical case-study, we consider an application
to non-negative independent component analysis, althoughit should be recognized that Rieman-
nian gradient methods give rise to general-purpose algorithms, by no means limited to ICA-related
applications.

Keywords: differential geometry, diffusion-type gradient, Lie groups, non-negative independent
component analysis, Riemannian gradient

1. Introduction

From the scientific literature, it is known that a class of learning algorithms forartificial neural
networks may be formulated in terms of matrix-type differential equations of network’s learnable
parameters, which give rise to learning flows on parameters’ set. Often, such differential equations
are defined over parameter spaces that may be endowed with a specific geometry, such as the general
linear group, the compact Stiefel manifold, the orthogonal group, the Grassman manifold and the
manifold of FIR filters1 (Amari, 1998; Fiori, 2001, 2002; Liu et al., 2004; Zhang et al., 2002),
that describes the constraints that the network parameters should fulfill and that is worth taking
into account properly. From a practical viewpoint, the mentioned differential equations should be
integrated (solved) properly through an appropriate numerical integration method that allows us
to preserve the underlying structure (up to reasonable precision). Thismay be viewed as defining
a suitable discretization method in the time domain that allows converting a differential learning
equation into a discrete-time algorithm.

1. Roughly speaking, the manifold of FIR filters may be regarded as the set of rectangular matrices whose entries are
polynomials in a complex-valued variable.

c©2005 Simone Fiori.

FIORI

With the present contribution, we aim at studying and illustrating learning algorithms for a single
neural layer whose connection matrix belongs to the orthogonal group, that is the group of square
orthogonal matrices. As an appropriate approximation of the exact learning flows, the algorithms
exploit approximate geodesics suitably glued together, as formerly proposed by Fiori (2002) and
Nishimori (1999).

As a case-study, we consider an application to geodesic-learning-based non-negative indepen-
dent component analysis, as proposed by Plumbley (2003). We present three different learning
algorithms that are based on gradient-type optimization of a non-negative independent component
analysis criterion over the group of orthogonal matrices. The first two algorithms arise from the
direct application of Riemannian gradient optimization without and with geodesicline search, as
proposed by Plumbley (2003). The third algorithm relies on a randomized gradient optimization
based on diffusion-type Riemannian gradient, as proposed by Liu et al. (2004).

The contribution of the present tutorial may be summarized via the following keypoints:

• It provides a clear and well-motivated introduction to the mathematics needed to present the
geometry-based learning algorithms.

• It clearly states and illustrates the idea that, when we wish to implement a gradient-based
algorithm on a computer, it is necessary to discretize the differential learning equations in
some suitable way (the ‘gradient flow’ simply cannot be computed exactly in practice).

• In order to effect such discretization, we may not employ standard discretization methods
(such as the ones based on Euler forward-backward discretization),that do not work as they
stand on curved manifolds. We should therefore resort to more sophisticated integration tech-
niques such as the one based on geodesics.

• In order to improve the numerical performances of the learning algorithm, wemight ten-
tatively try adding some stochasticity to the standard gradient (through annealed-MCMC
method) and try a geodesic search. It is not guaranteed that the above-mentioned improve-
ment works on a concrete application, therefore it is worth testing them on ICA+ problem.
The results on this sides are so far disappointing, because numerical simulations shown that
standard Riemannian gradient with no geodesic search nor stochasticity added outperforms
the other methods on the considered ICA+ problem.

Although in the machine learning community the presented differential geometry-based learn-
ing algorithms have so far been primarily invoked in narrow contexts such asprincipal/independent
component analysis (interested readers might want to consult, for example, Fiori (2001), Celledoni
and Fiori (2004) and Plumbley (2003) for a wide review), it should be recognized that differential-
geometrical methods provide a general-purpose way of designing learning algorithms, which is
profitable in those cases where a learning problem may be formulated mathematically as an opti-
mization problem over a smooth manifold. Some recent advances and applications of these methods
are going to be described in the journal special issue whose content is summarized in the editorial
by Fiori and Amari (2005).

The paper is organized as follows. The purpose of Section 2 is to briefly recall some concepts
from algebra and differential geometry, which are instrumental in the development of the presented
learning algorithms. In particular, the concepts of algebraic groups, differential manifolds and Lie
groups are recalled, along with the concepts of right-translation, Riemannian gradient and geodesic

744

QUASI-GEODESICNEURAL LEARNING ALGORITHMS OVER THE ORTHOGONAL GROUP

curves. Then, these results are customized to the case of the orthogonalgroup of concern in the
present paper. Geodesic-based approximations of gradient-type learning differential equations over
the orthogonal group are also explained. The Section 2 also presents some notes on the stability
of such learning equations as well as on the relationship between the presented learning theory
and the well-known natural-gradient theory and information geometry theory. Section 3 presents
two deterministic-gradient learning algorithms, one of which is based on the optimization of the
learning stepsize via ‘geodesic search’. Next, the concept of diffusion-type gradient on manifolds is
recalled in details and a third learning algorithm based on it is presented. Such learning algorithm
also takes advantage of simulated annealing optimization technique combined with Markov-Chain
Monte-Carlo sampling method, which are also recalled in the Section 3, along withsome of their
salient features. Section 4 deals with non-negative independent component analysis. Its definition
and main properties are recalled and the orthogonal-group Riemannian-gradient of the associated
cost function is computed. Such computation allows customizing the three generic Riemannian-
gradient-based geodesic algorithms to the non-negative independent component analysis case. Also,
a fourth projection-based algorithm is presented for numerical comparison purpose. The details
of algorithms implementation and the results of computer-based experiments performed on non-
negative independent component analysis of gray-level image mixtures are also illustrated in the
Section 4. Section 5 concludes the paper.

2. Learning Over the Orthogonal Group: Gradient-Based Differential Systems and
Their Integration

The aims of the present section are to recall some basic concepts from differential geometry and to
derive the general form of gradient-based learning differential equations over the orthogonal group.
We also discuss the fundamental issue of solving numerically such learning differential equations
in order to obtain a suitable learning algorithm.

2.1 Basic Differential Geometry Preliminaries

In order to better explain the subsequent issues, it would be beneficial torecall some basic concepts
from differential geometry related to the orthogonal groupO(p).

An algebraic group(G,m, i,e) is a setG that is endowed with an internal operationm : G×G→
G, usually referred to as group multiplication, an inverse operationi : G → G, and an identity
elemente with respect to the group multiplication. These objects are related in the followingway.
For every elementsx,y,z∈ G, it holds that

m(x, i(x)) = m(i(x),x) = e, m(x,e) = m(e,x) = x

andm(x,m(y,z)) = m(m(x,y),z).

Note that, in general, the group multiplication is not commutative, that is, given twoelements
x,y∈ G, it holdsm(x,y) 6= m(y,x).

Two examples of algebraic groups are(ZZ,+,−,0) and(Gl(p), ·,−1 ,Ip). The first group is the
set of all integer numbers endowed with the standard addition as group multiplication. In this case,
the inverse is the subtraction operation and the identity is the null element. In the second example,
we considered the set of non-singular matrices:

Gl(p)
def
={X ∈ IRp×p|det(X) 6= 0}, (1)

745

FIORI

endowed with standard matrix multiplication ‘·’ as group multiplication operation. In this case, the
inverse is the standard matrix inverse and the identity is the identity matrixIp. It is easy to show
that both groups operations/identity satisfy the above general conditions.As a counterexample,
the set of the non-negative integer numbersZZ+

0 (≡ IN) does not form a group under standard ad-
dition/subtraction. A remarkable difference between the two groups aboveis that the first one is a
discrete group while the second one is a continuous group.

A useful concept for the economy of the paper is the one of differentialmanifold. The formal
definition of a differential manifold is quite involved, because it requires precise definitions from
mathematical topology theory and advanced calculus (Olver, 2003). Morepractically, a manifold
may be essentially regarded as a generalization of curves and surfacesin high-dimensional space,
that is endowed with the noticeable property of being locally similar to a flat (Euclidean) space.
Let us consider a differential manifoldM and a pointξ on it. From an abstract point of view,ξ is
an element of a setM and does not necessarily possess any particular numerical feature. In order
to be able to make computations on manifolds, it is convenient to ‘coordinatize’ it.To this aim, a
neighborhood (open set)U ⊂M is considered, whichξ belongs to, and a coordinate mapψ :U →E

is defined, whereE denotes a Euclidean space (as for example, IRp – the set ofp-dimensional real-
valued vectors – or IRp×p – the set of thep× p real-valued matrices –). The functionψ needs to
be a one-to-one map (homeomorphism). In this way, we attach a coordinatex = ψ(ξ) to the point
ξ. As ψ is a homeomorphism, there is a one-to-one correspondence between a point on a manifold
and its corresponding coordinate-point, therefore normally the two concepts may be confused and
we may safely speak of a pointx∈ M . About these concepts, two short notes are in order:

• Borrowing terms from maritime terminology, a triple(ψ,U, p) is termedcoordinate chart
associated to the manifoldM . Such notation evidences that the elementsψ andU ⊂ M are
necessary to coordinatize a point on the manifold and that the coordinate space has dimension
p. If the dimension is clear from the context, the indication ofp may of course be dispensed
of.

• A main concept of differential geometry is thatevery geometrical property is independent of
the choice of the coordinate system. As a safety note, it is important to remark that, when
we choose to express geometrical relationships in coordinates (as it is implicitlyassumed
by the above-mentioned ‘confusion’ between a pointξ ∈ M and its coordinatex ∈ E) we
are by no means abandoning this fundamental principle, but we are obeying to the practical
need of algorithm implementation on a computer that requires – of necessity – some explicit
representation of the quantities of interest.

In general, it is impossible to cover a whole manifold with a unique coordinate map. Therefore,
the procedure for coordinatizing a manifold generally consists in coveringit with a convenient
number of neighborhoodsUk, each of which is endowed with a coordinate mapψk : Uk → Ek,
with Ek being an Euclidean space of dimensionp, which, by definition, denotes the dimension
of the manifold itself. Technically, the set{Uk} is termed abasis for the manifold and it does
not need to be finite (but it is inherently countable). It is important to note that,in general, the
neighborhoodsUk may be overlapping. In this case, the mapsψk need to satisfy some constraints
termed ‘compatibility conditions’ which formalize the natural requirement that there should be a
one-to-one smooth correspondence between any two different coordinate systems. Technically, if
Uk ∩Uh 6= /0 then the mapsψ−1

k ◦ψh and ψ−1
h ◦ψk, which are termed ‘transition functions’ and

746

QUASI-GEODESICNEURAL LEARNING ALGORITHMS OVER THE ORTHOGONAL GROUP

represent coordinate changes, should be diffeomorphisms, that is,C∞ functions endowed withC∞

inverse.
A smooth manifold is by nature a continuous object. A simple example is the unit hyper-sphere

Spdef
={x ∈ IRp+1|xTx = 1}. This is a smooth manifold of dimensionp embedded in the Euclidean

space IRp+1, in fact with only p coordinates we can identify any point on the sphere. Olver (2003)
shows how to coordinatize such manifold through for example, the stereographic projection, which
requires two coordinate maps applied to two convenient neighborhoods onthe sphere.

An interesting object we may think to on a differential manifoldM is a smooth curveγ : [a,b]→
M . In coordinates,2 x = γ(t) describes a curve on the manifoldM delimited by the endpointsγ(a)
andγ(b). Here, the manifold is supposed to be immersed in a suitable ambient Euclidean spaceA

of suitable dimension (for instance, the sphereSp may be though of as immersed in the ambient
spaceA = IRp+1).

Let us now suppose 0∈ [a,b] and let us consider a curveγ passing by a given pointx ∈ M ,
namelyx= γ(0). The smooth curve admits a tangent vectorvx at the pointx on the manifold, which
is defined by

vx
def
= lim

t→0

γ(t)− γ(0)

t
∈ A .

Clearly, the vectorvx does not belong to the curved manifoldM but is tangent to it in the point
x. Let us imagine to consider every possible smooth curve on a manifold of dimension p passing
through the pointx and to compute the tangent vectors to these curves in the pointx. The collection
of these vectors span a linear space of dimensionp, which is referred to astangent spaceto the
manifoldM at the pointx, and is denoted withTxM ⊆ A .

As a further safety note, it might deserve to recall that, in differential geometry, the main way
to regard for example, tangent spaces and vector fields is based on differential operators (Olver,
2003). This means, for instance, that a tangent vectorv ∈ TxM of some smooth manifoldM is
defined in such a way that ifF denotes a smooth functional space then for instancev : F → IR,
namelyv(f) is a scalar forf ∈ F . In this paper we chose not to invoke such notation. The reason
is that we are interested in a special matrix-type Lie group (the orthogonal group), whose geometry
may be conveniently expressed in terms of matrix-type quantities/operations. The theoretical bridge
between the differential-operator-based representation and the matrix-based representation is given
by the observation that every differential operator inTxM may be written as a linear combination of
elementary differential operators, that form a basis for the tangent space, through some coefficients.
The structure of the tangent space is entirely revealed by the relationshipsamong these coefficients.
Therefore, we may choose to represent tangent vectors as algebraicvectors/matrices of coefficients,
that is exactly what is implicitly done here.

It is now possible to give the definition of Riemannian manifold, which is a pair(M ,g) formed
by a differential manifoldM and an inner productgx(vx,ux), locally defined in every pointx of
the manifold as a bilinear function fromTxM ×TxM to IR. It is important to remark that the inner
productgx(·, ·) acts on elements from the tangent space to the manifold at some given point, it
therefore depends (smoothly) on the pointx.

On a Riemannian manifold(M ,g), we can measure the length of a vectorv ∈ TxM as

‖v‖def
=

√

gx(v,v).

2. It is worth remarking that a curve may interest different coordinatecharts(ψk,Uk, p), therefore, it is generally neces-
sary to split a curve in as many branches (or segments) as coordinate charts it bypasses.

747

FIORI

Also, a remarkable property of Riemannian manifolds is that we can measure the length of a curve
γ : [a,b] → M on the manifold through the local metric on its tangent spaces. In fact, the length of

the curveγ(·) is, by definition,Lγ
def
=

R b
a ds, whereds is the infinitesimal arc length. From geometry

we know thatds= ‖γ̇(t)‖dt, therefore we have

Lγ =
Z b

a

√

gγ(t)(γ̇(t), γ̇(t))dt. (2)

The net result of this argument is that, through a definition of an inner product on the tangent spaces
to a Riemannian manifold, we are able to measure the length of paths in the manifold itself, and this
turns the manifold into a metric space.

A vector fieldvx on manifoldM specifies a vector belonging to the tangent spaceTxM to the
manifold at every pointx.

With the notions of vector field and curve on a manifold, we may define the important concept
of geodesics. A geodesic on a smooth manifold may be intuitively looked upon in at least three
different ways:

• On a general manifold, the concept of geodesic extends the concept ofstraight line on a flat
space to a curved space. An informal interpretation of this property is thata geodesic is a
curve on a manifold that would resemble a straight line in an infinitesimal neighborhood of
any of its points. The formal counterpart of this interpretation is rather involved because it
requires the notion of covariant derivative of a vector field with respect to another vector field
and leads to a second-order differential equation involving the Christoffel structural functions
of the manifold (Amari, 1989).

• On a Riemannian manifold, a geodesic among two points is locally defined as theshortest
curveon the manifold connecting these endpoints. Therefore, once a metricg(·, ·) is specified,
the equation of the geodesic arises from the minimization of the functional (2) withrespect to
γ. In general, the obtained equation is difficult to solve in closed form.

• Another intuitive interpretation is based on the observation that a geodesic emanating from a
point x on the manifold coincides to the path followed by a particle sliding on the manifold
itself with constant scalar speed specified by the norm of the vectorvx. For a manifold em-
bedded in a Euclidean space, this is equivalent to require that the acceleration of the particle
is either zero or perpendicular to the tangent space to the manifold in every point.

The concept of geodesic and geodesic equation are recalled here onlyinformally. Appendix A
provides a detailed account of these and related concepts just touched here, such as the Christoffel
functions (or affine-connection coefficients).

An important vector field often considered in the literature of function optimization over man-
ifolds is thegradient vector field. If we consider a smooth functionf : M → IR and define its
gradient gradMx f , then a oft-considered differential equation is:

dx
dt

= ±gradM
x f , (3)

where the signs+ or − denote maximization or minimization of the functionf over the manifold.
The solution of the above differential equation is referred to asgradient flowof f on M .

748

QUASI-GEODESICNEURAL LEARNING ALGORITHMS OVER THE ORTHOGONAL GROUP

Formally, the concept ofgradienton a Riemannian manifold may be defined as follows. Let us
consider a Riemannian manifold(M ,g) and, for every pointx, the tangent spaceTxM . Let us also
consider a smooth functionf : M → IR, the standard Euclidean inner productgE in TxM and the
Jacobian gradEx f = ∂ f

∂x of the functionf with respect tox. The Riemannian gradient gradM
x f of the

function f over the manifoldM in the pointx is uniquely defined by the following two conditions:

• Tangency condition. For everyx∈ M , gradM
x f ∈ TxM .

• Compatibility condition. For everyx∈M and everyv∈TxM , gx(gradM
x f ,v)= gE(gradE

x f ,v).

The tangency condition expresses the fact that a gradient vector is always tangent to the base-
manifold, while the compatibility condition states that the inner product, under a metric on a mani-
fold, of a gradient vector with any other tangent vector is invariant with thechosen metric. However,
note that the gradientdoesdepend on the metric. The ‘reference’ inner product is assumed as the
Euclidean inner product that a flat space may be endowed with. For instance, if the base manifold
M has dimensionp, then it may be assumedE = TxE = IRp in every pointx andgE (u,v) = vTu.
It is worth noting that such special metric isuniform, in that it does not actually depend on the point
x.

In order to facilitate the use of the compatibility condition for gradient computation, it is some-
times useful to introduce the concept ofnormal spaceof a Riemannian manifold in a given point
under a chosen metricgA :

NxM
def
={n ∈ A |gA

x (n,v) = 0 , ∀v ∈ TxM }.

It represents the orthogonal complement of the tangent space with respect to an Euclidean ambient
spaceA that the manifoldM is embedded within.

With the notion of algebraic group and smooth manifold, we may now define a well-known
object of differential geometry, that is theLie group. A Lie group conjugates the properties of an
algebraic group and of a smooth manifold, as it is a set endowed with both group properties and
manifold structure. An example of a Lie group that we are interested in within thepaper is the
orthogonal group:

O(p)
def
={X ∈ IRp×p|XTX = Ip}. (4)

It is easy to verify that it is a group (under standard matrix multiplication and inversion) and it is
also endowed with the structure of a smooth manifold.

Consequently, we may for instance consider the tangent spaceTxG of a Lie groupG at the point
x. A particular tangent space isTeG, namely the tangent at identity, which, properly endowed with
a binary operator termedLie bracket, has the structure of aLie algebraand is denoted withg.

An essential peculiarity of the Lie groups(G,m, i,e) is that the whole group may be always
brought back to a convenient neighborhood of the identitye and the same holds for every tangent
spaceTxG, ∀x∈ G, that may be brought back to the algebrag. Let us consider, for instance, a curve
γ(t) ∈ G passing through the pointx, with t ∈ [a,b] such that 0∈ [a,b] andx = γ(0). We may define

the new curvẽγ(t)def
=m(γ(t), i(x)) that enjoys the propertỹγ(0) = e; conversely,γ(t) = m(γ̃(t),x).

This operation closely resembles a translation of a curve into a convenient neighborhood of the
group identity, so that we can define a special operator referred to asright translationas

Rx : G→ G ,Rx(γ)
def
=m(γ, i(x)).

749

FIORI

It is clear that every tangent vectorvx to the curveγ at x is also translated to a tangent vectorṽ of
the curvẽγ(t) by a conveniently defined operator:

dRx : TxG→ TeG , ṽ = dRx(v),

which is commonly referred to astangent mapassociated to the (right) translationRx. Such map
is invertible and allows us to translate a vector belonging to a tangent space ofa group to a vector
belonging to its algebra (and vice-versa).3

From the above discussion, it is straightforward to see that, if the structureof g is known for
a groupG, it might be convenient to coordinatize a neighborhood of the identity ofG through
elements of the associated algebra with the help of a conveniently-selected homeomorphism. Such
homeomorphism is known in the literature asexponential mapand is denoted with exp :g → G.
It is important to recall that ‘exp’ is only a symbol and, even for matrix-typeLie groups,does not
necessarily denote matrix exponentiation.

2.2 Gradient Flows on the Orthogonal Group

As mentioned, the orthogonal groupO(p) is a Lie group, therefore it is endowed with a manifold
structure. Consequently, we may use the above-recalled instruments in order to define gradient-
based learning equations of the kind (3) overO(p) and to approximately solve them.

Some useful facts about the geometrical structure of the orthogonal groupO(p) are:

• The standard group multiplication onO(p) is non-commutative (forp≥ 3).

• The groupO(p) manifold structure has dimensionp(p−1)
2 . In fact, every matrix inO(p)

possessesp2 entries which are constrained byp(p+1)
2 orthogonality/normality restrictions.

• The inverse operationi(X) = X−1 coincides with the transposition, namelyi(X) = XT .

• The tangent space of the Lie groupO(p) has the structureTXO(p) = {V ∈ IRp×p|VTX +
XTV = 0p}. This may be proven by differentiating a generic curveγ(t) ∈ O(p) passing
by X for t = 0. Every such curve satisfies the orthogonal-group characteristic equation (4),
namelyγT(t)γ(t) = Ip, therefore, after differentiation, we getγ̇T(0)γ(0)+γT(0)γ̇(0) = 0p. By
recalling that the tangent space is formed by the velocity vectorsγ̇(0), the above-mentioned
result is readily achieved.

• The Lie algebra associated to the orthogonal group is the set of skew-symmetric matrices

so(p)
def
={Ṽ∈ IRp×p|Ṽ+ṼT = 0p}. In fact, at the identity(X = Ip), we haveTIpO(p) = so(p).

• The Lie algebraso(p) is a vector space of dimensionp(p−1)
2 .

First, it is necessary to compute the gradient of a functionf : O(p)→ IR over the groupO(p) in
view of computing the geodesic that emanates from a pointX ∈ O(p) with velocity proportional to

gradO(p)
X f . In this derivation, we essentially follow the definition of Riemannian gradientgiven in

Section 2.1.

3. This is the reason for which the Lie algebra of a Lie group is sometimes termed the ‘generator’ of the group.

750

QUASI-GEODESICNEURAL LEARNING ALGORITHMS OVER THE ORTHOGONAL GROUP

Let the manifoldO(p) be equipped with the canonical induced metricgO(p), that isgO(p)
X (U,V)

def
=

tr[UTV], for everyX ∈ O(p) and everyU,V ∈ TXO(p). This metric coincides with the standard Eu-
clidean metricgIRp×p

in IRp×p. Having endowed the manifoldO(p) with a metric, it is possible to
describe completely its normal space, provided the ambient spaceA is endowed with the canonical
Euclidean metric. In fact, we have

NXO(p) = {N = XS ∈ IRp×p|tr[NTV] = 0 , ∀V ∈ TXO(p)}.

The matrixS should have a particular structure. In fact, the normality condition, in this case, writes
0 = tr[VT(XS)] = tr[SVTX] = tr[(XTV)ST]. The latter expression, thanks to the structure of tan-
gent vectors, is equivalent to−tr[(VTX)ST], therefore the normality condition may be equivalently
rewritten as tr[(VTX)(S−ST)] = 0. In order for this to be true, in the general case, it is necessary
and sufficient thatS = ST . Thus:

NXO(p) = {XS|ST = S ∈ IRp×p}.

Let gradO(p)
X f be the gradient vector off at X ∈ O(p) derived from the metricgO(p). According to

the compatibility condition for the Riemannian gradient:

gIRp×p

X (V,gradIRp×p

X f) = gO(p)
X (V,gradO(p)

X f),

for every tangent vectorV ∈ TXO(p), therefore:

gIRp×p

X (V,gradIRp×p

X f −gradO(p)
X f) = 0,

for all V ∈ TXO(p). This implies that the quantity gradIRp×p

X f − gradO(p)
X f belongs toNXO(p).

Explicitly:
gradIRp×p

X f = gradO(p)
X f +XS. (5)

In order to determine the symmetric matrixS, we may exploit the tangency condition on the Rie-
mannian gradient, namely(gradO(p)

X f)TX+XT(gradO(p)
X f) = 0p. Let us first pre-multiply both sides

of the equation (5) byXT , which gives

XTgradIRp×p

X f = XTgradO(p)
X f +S.

The above equation, transposed hand-by-hand, becomes

(gradIRp×p

X f)TX = (gradO(p)
X f)TX+S.

Hand-by-hand summation of the last two equations gives

(gradIRp×p

X f)TX+XT(gradIRp×p

X f) = 2S,

that is:

S =
(gradIRp×p

X f)TX+XT(gradIRp×p

X f)
2

. (6)

By plugging the expression (6) into expression (5), we get the form of the Riemannian gradient in
the orthogonal group, which is:

gradO(p)
X f =

gradIRp×p

X f −X(gradIRp×p

X f)TX
2

.

751

FIORI

About the expression of the geodesic, as mentioned, in general it is not easy to obtain in closed
form. In the present case, with the assumptions considered, the geodesicon O(p) departing from
the identity with velocityṼ ∈ so(p) has expressioñγ(t) = exp(tṼ). (It is immediate to verify that

γ̃(0) = Ip and dγ̃(t)
dt

∣

∣

∣

t=0
= Ṽ.) It might be useful to verify such essential result by the help of the

following arguments.
As already recalled in Section 2.1, when a manifold is embedded in a Euclidean space, the

second derivative of the geodesic with resepct to the parameter is either zero or perpendicular to
the tangent space to the manifold in every point (see Appendix A). Therefore, a geodesic̃γ(t) on
the Riemannian manifold(O(p),gO(p)) embedded in the Euclidean ambient space(IRp×p,gIRp×p

),
departing from the identityIp, should be such that¨̃γ(t) ∈ NIpO(p), therefore it should hold:

¨̃γ(t) = γ̃(t)S(t) , with ST(t) = S(t). (7)

Also, we known that any geodesic branch belongs entirely to the base manifold, thereforẽγT(t)γ̃(t)=
Ip. By differentiating two times such expression with respect to the parametert it is easily gotten:

¨̃γT
(t)γ̃(t)+2˙̃γT

(t)˙̃γ(t)+ γ̃T(t)¨̃γ(t) = 0p. (8)

By plugging equation (7) into equation (8), we findS(t) = −˙̃γT
(t)˙̃γ(t), which leads to the second-

order differential equation on the orthogonal group:

¨̃γ(t) = −γ̃(t)(˙̃γT
(t)˙̃γ(t)),

to be solved with initial conditions̃γ(0) = Ip and˙̃γ(0) = Ṽ. It is a straightforward task to verify that
the solution to this second-order differential equation is given by the one-parameter curvẽγ(t) =
exp(tṼ), where exp(·) denotes matrix exponentiation.

The expression of the geodesic in the position of interest may be made explicitby taking advan-
tage of the Lie-group structure of the orthogonal group endowed with thecanonical metric. In fact,
let us consider the pairX ∈O(p) and gradO(p)

X f ∈ TXO(p) as well as the geodesicγ(t) that emanates

from X with velocity V proportional to gradO(p)
X f , and let us suppose for simplicity thatγ(0) = X.

Let us now consider the right-translated curveγ̃(t) = γ(t)XT . The new curve enjoys the following
properties:

1. It is such that̃γ(0) = Ip, therefore it passes through the identity of the groupO(p).

2. The tangent vectorV to the curve atX is ‘transported’ into the tangent vector:

Ṽ = VXT , (9)

at the identity, sõV ∈ so(p).

3. As the right-translation is an isometry, the curveγ̃(t) is still a geodesic departing from the

identity matrix with velocity proportional tõV = (gradO(p)
X f)XT .

From these observations, we readily obtain the geodesic in the position of interestX∈O(p), namely
γ(t) = exp(tṼ)X.

As this is an issue of prime importance, we deem it appropriate to verify that thecurveγ(t) just
defined belongs to the orthogonal group at any time. This may be proven bycomputing the quantity
γT(t)γ(t) and taking into account the identity expT(tṼ) = exp(−tṼ). Then we have

γT(t)γ(t) = XT expT(tṼ)exp(tṼ)X = XT exp(−tṼ)exp(tṼ)X = XTX = Ip.

752

QUASI-GEODESICNEURAL LEARNING ALGORITHMS OVER THE ORTHOGONAL GROUP

2.3 Comments on Stability and the Relationship with Natural Gradient Theory

Some comments on the questions of the stability of gradient-based learning algorithms on the or-
thogonal group and on the relationship of Riemannian gradient-based learning algorithms on the
orthogonal group with the well-known ‘natural’ gradient-based optimizationtheory are in order.

When applied to the manifoldM = O(p), the general gradient-based learning equation (3) has
the inherent property of keeping the connection matrixX within the groupO(p) at any time. It is
very important to note that the discrete-time version of this learning equation, described in Section 3,
also enjoys this noticeable property. When for example, learning algorithms based on the manifold
Gl(p), defined in equation (1), are dealt with, one of the theoretical efforts required to prove their
stability consists in showing that there exists a compact sub-manifold that is an attractor for the
learning system. The above observations reveal that the problem of the existence of an orthogonal-
group-attractor for discrete-time learning systems based on the orthogonal Lie group does not arise
when a proper integration algorithm is exploited. Moreover, as opposed tothe Euclidean space IRp

and the general-linear groupGl(p), the orthogonal groupO(p) is a compact space. This means
that no diverging trajectories exist for the learning system (3) or its discrete-time counterpart. Such
effect may be easily recognized in the two-dimensional (p = 2) case, through the parameterization
ψ−1 : [−π,π[→ SO(2):

X =

[

cosβ −sinβ
sinβ cosβ

]

. (10)

It is worth noting that det(X) = 1, while, in general, the determinant of an orthonormal matrix
may be either−1 or +1, in fact 1= det(XTX) = det2(X) for X ∈ O(p). This means that the
above parameterization spans one of the two components of the orthogonalgroup termedspecial
orthogonalgroup and denoted bySO(p). (In the above notation, we easily recognize a coordinate
chart(ψ,SO(2),1) associated toO(2).) Now, by singling out the columns of the matrixX = [x1 x2],
we easily see that‖x1‖ = ‖x2‖ = 1, which proves the spaceSO(2) is compact. The same reasoning
may be repeated for the remaining component ofO(2).

In its general formulation, the widely-known ‘natural gradient’ theory for learning may be sum-
marized as follows. The base-manifold for learning is the group of non-singular matricesGl(p) that
is endowed with a metrics based on the Fisher metric tensor which, in turn, derives from a trun-
cated expansion of the Kullback-Leibler informational divergence (KLD) (Amari, 1998). The latter
choice derives from the possibility – offered by the KLD – to induce a metricsin the abstract space
of neural networks having same topology but different connection parameters, which is referred to
asneural manifold.

In the independent component analysis case, a special structure was envisaged by Yang and
Amari (1997) for the natural gradient by imposing a Riemannian structure on the Lie group of
non-singular matricesGl(p). We believe it could be useful to briefly recall this intuition here by
using the language of Lie groups recalled in Section 2.1. First, the tangent space at identityIp

to Gl(p) is denoted bygl(p), as usual. Such Lie algebra may be endowed with a scalar product

gGl(p)
Ip

(·, ·) : gl(p)×gl(p) → IR. As there is no reason to weight in a different way the components

of the matrices ingl(p), it is assumedgGl(p)
Ip

(Ũ, Ṽ)
def
=tr[ŨTṼ]. The question is now how to define the

scalar product in a generic tangent spaceTXGl(p), with X ∈ Gl(p). Let us consider, to this purpose,
a curveγ(t) ∈ Gl(p) passing by the pointX at t = 0, namelyγ(0) = X. This curve may always

be translated into a neighborhood of the identity of the group by the left-translation γ̃(t)def
=X−1γ(t),

753

FIORI

in fact, the inverseX−1 surely exists becauseGl(p) is the set of all invertiblep× p matrices by
definition and now̃γ(0) = Ip. Therefore, ifV ∈ TXGl(p) denotes the tangent vector to the curveγ(t)
at t = 0 andṼ ∈ gl(p) denotes the tangent vector to the curveγ̃(t) at t = 0, they are related by the
corresponding tangent mapV → Ṽ = X−1V. This observation may be exploited to define an inner
product on the tangent spaces ofGl(p) by imposingthe Riemannian-structure invariance property:

gGl(p)
X (U,V)

def
=gGl(p)

Ip
(X−1U,X−1V) = tr[UT(XT)−1X−1V].

Having defined a general (non-uniform) metric in the tangent spaces toGl(p), we may now compute
the Riemannian (natural) gradient on it, by invoking the tangency and compatibility conditions
as stated in Section 2.1. Actually, the tangency condition does not provide any constraint in the
present case, because everyTXGl(p) is ultimately isomorphic to IRp×p. The compatibility condition,
instead, writes, for a smooth functionf : Gl(p) → IR:

gGl(p)
X (gradGl(p)

X f ,V) = tr

[

(

∂ f
∂X

)T

V

]

, ∀V ∈ TXGl(p).

This condition implies:

tr

[{

(gradGl(p)
X f)T(XT)−1X−1−

(

∂ f
∂X

)T
}

V

]

= 0 , ∀V ∈ TXGl(p)

⇒ (gradGl(p)
X f)T(XT)−1X−1 =

(

∂ f
∂X

)T

⇒ gradGl(p)
X f = (XXT)

∂ f
∂X

.

Of course, a different form for the natural gradient may be obtained by choosing the right-translation

γ̃(t)def
=γ(t)X−1 as a basis for invariance, as done for example, by Yang and Amari (1997). The

‘natural gradient’ theory forGl(p) and the Riemannian-gradient-theory for the groupO(p) are thus
somewhat unrelated, even if ultimately the ‘natural gradient’ is a Riemannian gradient on the group
Gl(p) arising from a specific metric. Some further details on the optimization problem over the
general linear group (about for example, using the exponential map onGl(p)) have been presented
by Akuzawa (2001).

Another interesting comparison is with the information-geometry theory for learning.4 In the
spirit of information geometry, the natural gradient works on a manifold of parameterized likeli-
hood. Now, in two dimensions, the Riemannian geometry of the orthogonal group, defined by the
parameterization (10) above, may be clearly related to the information geometryof the binomial dis-
tribution defined by the variablesr,q such thatr +q= 1, via the transformr = cos2(β), q= sin2(β).
Whether such link exists in any dimension (p≥ 3) is not known to the author and would be worth
investigating in future works. The same holds for the relationship with secondorder (Newton)
method, which is known for the natural gradient (see, for example, Parket al. (2000) and references
therein) but whose relationship with general Riemannian gradient theory isto be elucidated.

4. This interesting connection was suggested by a reviewer.

754

QUASI-GEODESICNEURAL LEARNING ALGORITHMS OVER THE ORTHOGONAL GROUP

3. Learning Over the Orthogonal Group: Three Algorithms

In order to numerically integrate a continuous learning differential equationon a manifold, a proper
discretization method should be exploited. On a flat space, a possible discretization method is line
approximation based on Euler’s or trapezoidal technique (or some more sophisticated techniques
such as the Runge-Kutta method). However, if applied to differential equations based on curved
manifolds, such ordinary discretization methods produce updating rules that do not satisfy the man-
ifold constraints. Following the general differential-geometric knowledge,two possible ways to
tackle the problem are:

• The projection method. It consists in projecting the updated value to the manifold after each
iteration step. More formally, this method consists in embedding the manifoldM of interest
into a Euclidean space of proper dimensionA and to discretize the differential equation whose
variable is regarded as belonging toA through any suitable ordinary method. Then, in each
iteration, the newly found approximated solution is projected back to the manifoldthrough a
suitableprojectorΠ : A → M . The next iteration starts from the projected putative solution.

• The geodesic method. The principle behind the geodesic method is to replace the line approx-
imation to the original differential equation by the geodesic approximation in the manifold.
From a geometrical point of view, this seems a natural approximation because a geodesic
on a manifold is a counterpart of a line in the Euclidean space. Furthermore, ageodesic on
a Riemannian manifold is a length-minimizing curve between two points, which looks quite
appealing if we regard an optimization process as connecting an initial solutionto a stationary
point of a criterion function through the shortest path.

The viewpoint adopted in the present contribution is that the geodesic-based approach is the
most natural one from a geometric perspective and the most capable of future extensions to different
base-manifolds. The projection method will also be considered, for comparison purposes only, in
the section devoted to simulation results.

In particular, we suppose to approximate the flow of the differential learning equation (3)
through geodesic arcs properly connected, so as to obtain a piece-wisegeodesic-type approxima-
tion of the exact gradient flow. If we denote byW ∈ O(p) the pattern to be learnt (for instance the
connection matrix of a one-layer neural network), the considered geodesic-based learning algorithm
corresponding to the exact Riemannian gradient flow is implemented by considering learning steps
of the form:

Wn+1 = exp(ηn((gradIRp×p

Wn
f)WT

n −Wn(gradIRp×p

Wn
f)))Wn, (11)

where the indexn ∈ IN denotes a learning step counter andηn denotes an integration or learning
stepsize (the factor12 may be safely absorbed inηn) usually termed(learning) scheduleor step-size.
It deserves underlining that the integration step-size may change acrossiterations because it may be
beneficial to vary the step-size according to the progress of learning. The initial solutionW0 should
be selected inO(p). It should be noted that the matrixW plays now the role of the general matrix
X used in the previous section.

The aim of the present section is to consider three Riemannian gradient algorithms over the
Lie group of orthogonal matrices. All three algorithms ensure that the current network-state matrix
remain within the orthogonal group:

• Algorithm 1 uses a fixed step-size in the general geodesic-based learning equation (11).

755

FIORI

• Algorithm 2 uses a geodesic line search for optimizing the step-size in the general geodesic-
based learning equation (11).

• Algorithm 3 introduces stochasticity in the Algorithm 1, using a Markov-Chain Monte-Carlo
method, jointly with an annealing procedure.

3.1 Deterministic Algorithms

A learning algorithm based on the findings of Section 2 may be stated as follows, where it is sup-
posed that a constant learning step-size is employed.

� Learning algorithm 1:

1. Setn = 0, generate an initial solutionW0 and setf0 = f (W0) and define a constant step-size
η.

2. Compute a candidate solutionWn+1 through the equation (11), incrementn and return to 2,
unlessn exceeds the maximum number of iteration permitted: In this case, exit.

Formally, as mentioned in Section 2.1, the concept of geodesic is essentially local, therefore
the discrete steps (11) on the orthogonal group should be extended forsmall values ofηn. Instead
of keepingηn constant or letting it progressively decreases through some ‘cooling scheme’, as it
is customary in classical learning algorithms, it could allegedly be convenient tooptimize it during
learning. It is worth underlining at this point that the numerical evaluation ofthe geodesic curve
through the exponential map, as well as the effective movement along a geodesic, are computation-
ally expensive operations.

Step-size adaptation may be accomplished through a proper ‘line search’,as explained in what
follows. Let us first define the following quantities for the sake of notation conciseness:

Ṽn
def
=(gradIRp×p

Wn
f)WT

n −Wn(gradIRp×p

Wn
f)T , En(t)

def
= exp(tṼn). (12)

Starting from a pointWn at iteration stepn, according to equation (11), the next point would be

En(t)Wn, therefore the learning criterion function would descend fromf (Wn) to fn(t)
def
= f (En(t)Wn).

From the definition off , which is continuous and defined on a compact manifold, it follows that
the functionfn(t) admits a point of minimum fort ∈ T ⊂ IR−, that may be denoted ast?. If we are
able to findt? in a computationally convenient way, we may then selectηn = t?. The operation of
searching for a convenient value as close as possible tot? is termedgeodesic searchas it closely
resembles the familiar concept of ‘line search’.

Basically, we may perform a geodesic search in two different ways:

• By sampling the intervalT through a sequence of discrete indicestk, computing the value of
fn(tk) and selecting the value that grants the smallest cost.

• By computing the derivatived fn(t)
dt and looking for the value of the indext for which it is equal

(or sufficiently close) to zero. This approach would look advantageousif the expression of
such equation could be handled analytically in an straightforward way. We found it is not the
case and that this approach looks excessively cumbersome from a computational viewpoint,
therefore it will not be adopted in this paper.

756

QUASI-GEODESICNEURAL LEARNING ALGORITHMS OVER THE ORTHOGONAL GROUP

A second learning algorithm based on the above considerations may be stated as follows.

� Learning algorithm 2:

1. Setn = 0, generate an initial solutionW0 and setf0 = f (W0).

2. Compute the quantitỹVn in the equations (12).

3. Perform a geodesic-search for the optimal step-sizeηn.

4. Compute a candidate solutionWn+1 through the equation (11) and evaluatefn+1 = f (Wn+1).

5. If fn+1 < fn then accept the candidate solution, incrementn and return to 2, unlessn exceeds
the maximum number of iteration permitted: In this case, exit. Iffn+1 ≥ fn, then proceed to
6.

6. Generate a small random step-sizeηn.

7. Compute the candidate solutionWn+1 through the equation (11), evaluatefn+1 = f (Wn+1),
incrementn and return to 2.

The steps 6 and 7 in the above algorithm have been introduced in order to tackle the case in which
the geodesic search gives rise to a candidate solution that causes the network’s connection pattern to
ascend the cost functionf instead of making it descend. In this case, moving along the geodesic of a
small random quantity does not ensure monotonic decreasing of the cost function, but it might help
moving to another zone of the parameter space in which the geodesic learningmight be effective.

3.2 Diffusion-Type Gradient Algorithm

In order to mitigate the known numerical convergence difficulties associatedto the plain gradient-
based optimization algorithms, it might be beneficial to perturb the standard Riemannian gradient to
obtain a randomized gradient. In particular, following Liu et al. (2004), wemay replace the gradient-
based optimization steps with jointsimulated annealingandMarkov-Chain Monte-Carlo(MCMC)
optimization technique, which gives rise to a so-termeddiffusion-type optimization process. The
Markov-Chain Monte-Carlo method was proposed and developed in the classical papers by Hastings
(1970) and Metropolis et al. (1953).

It is worth recalling that, in classical algorithms, perturbations are easily introduced by sam-
pling each network input one by one and by exploiting only such instantaneous information at a
time. When used in conjunction with gradient-based learning algorithms, this inherently produces
a stochastic gradient optimization based on a random walk on the parameters space. The two main
reasons for which such choice is not adopted here are:

• When statistical expectations are replaced by one-sample mean, as it is customarily done,
for example, in on-line signal processing, part of the information contentpertaining to past
samples is discarded from the learning system, and this might be a serious sideeffect on
learning capability.

• The annealed MCMC method offers the possibility of actuallycontrolling the amount of
stochasticity introduced in the learning system by properly setting the method’sfree param-
eters such as the annealing temperature. Classical random-walk learning algorithms – as the
one based on sampling each network input one by one – do not seem to offer such possibility.

757

FIORI

A general discussion on the possible benefits owing to the introduction of stochasticity in gradient-
based learning systems has been presented by Wilson and Martinez (2003).

It is understood that in a learning process having a Euclidean space as base-manifold, each step
is simply proportional to the gradient computed in the departing point, therefore the learning steps
may be directly perturbed in order to exploit randomized parameter-space search. In the present
context, however, the base manifoldO(p) is curved, therefore it is sensible to perturb the gradient
in the Lie algebra and then apply the formulas explained in the Section 2.2 to compute the associated
step in the base-group.

In short, simulated annealing consists in adding to the deterministic gradient a random compo-
nent whose amplitude is proportional to a parameter referred to astemperature. This mechanism
may help the optimization algorithm to escape local solutions, but it has the drawback of occasion-
ally leading to changes of the variable of interest toward the wrong direction(that is, it may lead to
intermediate solutions with higher values of the criterion function when its minimum is sought for
or vice-versa). Such drawback may be gotten rid of by adopting a MCMC-type simulated annealing
optimization strategy where the diffusion-type gradient is exploited to generate a possible candi-
date for the next intermediate solution which is accepted/rejected on the basis of an appropriate
probability distribution.

According to Liu et al. (2004), the diffusion-type gradient on the algebraso(p) may be assumed
as

Ṽdiff (t) = Ṽ(t)+
√

2Θ
p(p−1)/2

∑
k=1

Lk
dWk

dt
, (13)

whereṼ(t) is the gradient (9),{Lk} is a basis of the Lie algebraso(p), orthogonal with respect to the

metricgO(p)
Ip

, theWk(t) are real-valued, independent standard Wiener processes and the parameter
Θ > 0 denotes the aforementioned temperature, which proves useful for simulating annealing during
learning. It is worth recalling that a Wiener process is a continuous-time stochastic processW (t)
for t ≥ 0, that satisfies the following conditions (Higham, 2001):

• W (0) = 0 with probability 1.

• For 0≤ τ < t the random variable given by the incrementW (t)−W (τ) is normally dis-
tributed with mean zero and variancet − τ. Equivalently,W (t)−W (τ) ∼

√
t − τN (0,1),

whereN (0,1) denotes a normally distributed random variable with zero mean and unit vari-
ance.

• For 0≤ τ < t < u < v, the incrementsW (t)− W (τ) and W (v)− W (u) are statistically
independent.

The learning differential equation on the orthogonal group associated tothe gradient (13) reads

dW
dt

= −Ṽdiff (t)W(t), (14)

is aLangevin-type stochastic differential equation(LDE).
By analogy with physical phenomena described by this equation, such as the Brownian motion

of particles, the solution to the LDE is termed adiffusion process. Under certain conditions on

758

QUASI-GEODESICNEURAL LEARNING ALGORITHMS OVER THE ORTHOGONAL GROUP

the criterion functionf , the solution of equation (14) is a Markov process endowed with aunique
stationaryprobability density function (Srivastava et al., 2002), described by

πLDE(W)
def
=

1
Z(Θ)

exp(− f (W)/Θ), (15)

whereZ(Θ) denotes the density-function normalizer (partition function).5 In other terms, the LDE
‘samples’ from the distributionπLDE(W): This is a main concept in the method of using the LDE
to generate random samples according to a given energy/cost function.

The choice of assuming the probabilityπLDE inversely proportional to the value off (W) serves
at discouraging network states corresponding to high values of the learning cost function. Also, it
deserves to note that care should be taken of the problem related to the consistency of the above
definition: The problem of the existence ofπLDE, that is connected to the existence of the partition
functionZ(Θ), must be dealt with. To this aim, it is worth noting thatf (W) is a continuous function
of the argument which belongs to a compact space, we may therefore argue that f (W) is bounded
from above and from below. Thus, the function exp(− f (W)) is bounded and its integral over
the whole orthogonal group through a coordinate-invariant measure ofvolume, such as the Haar
measure (Srivastava et al., 2002), is surely existent.

In order to practically perform statistical sampling via the LDE, we can distinguish between
rejectionandMCMC methods:

1. The rejection algorithm is designed to give an exact sample from the distribution. Let us
denote byπ(x) a density to sample from a setX : We can sample from another distribution
µ(x) (instrumental distribution) such that sampling from it is practically easier than actually
sampling fromπ(x). Then, it is possible to generatex∗ from µ(x) and accept it with probability

αdef
=

π(x∗)
µ(x∗)M

,

whereM is a constant such thatπ(x)/µ(x) ≤ M for all x ∈ X . If the generated sample is
not accepted, rejection is performed until acceptance. When accepted,it is considered to be
an exact sample fromπ(x). A consequence of adopting this method is that the number of
necessary samplings fromµ(x) is unpredictable.

2. In MCMC, a Markov chain is formed by sampling from a conditional distribution µ(x|y): The
algorithm starts fromx0 and proceeds iteratively as follows: At stepn, samplex∗ from µ(x|xn)
and compute the acceptation (Metropolis-Hastings) probability as

αn
def
= min

{

1,
π(x∗)µ(xn|x∗)
π(xn)µ(x∗|xn)

}

, (16)

then acceptx∗ with probabilityαn. This means lettingxn+1 = x∗ with probabilityαn, other-
wisexn+1 = xn. This is the main difference with rejection method: If the candidate sample is
not accepted, then the previous value is retained.

5. The theory presented by Srivastava et al. (2002) deals with the special case in which the base-manifold isO(3). This
result is not related to the dimension of the orthogonal group of interest, indeed, therefore it may be extended without
difficulty to the general caseO(p) of concern in the present paper.

759

FIORI

In the MCMC method, the quantityµ(x|y) denotes atransition probabilityas it describes the prob-
ability of ‘jumping’ from statey to statex. The total probability of transition from statexn to state
xn+1 is given by the combination of the instrumental distributionµ(x|y) and the Metropolis-Hastings
acceptation probability: The transition kernelK(xn+1|xn) is, in fact:

K(xn+1|xn)
def
=αnµ(xn+1|xn)+(1−αn)δ(xn+1−xn).

In order to gain a physical interpretation of the instrumental probabilityµ(x|y), it pays to take
for example a symmetric instrumentalµ(x|y). Under this hypothesis, the ratio in the definition (16)
would becomeπ(x∗)/π(xn): The chain jumps to the statex∗ if it is more plausible (αn = 1) than
the previous statexn, otherwise (caseαn < 1), the chain jumps to the generated state according to
the probabilityαn. As an example of symmetric instrumental conditional probability,µ(x|y) may be
assumed as Gaussian inx with meany.

If the Markov chain{xn}n=1,...,N converges to the true probabilityπ(x), thenxn is asymptotically
drawn fromπ(x), so xn is not an exact sample as in the rejection method. However, there is a
powerful mathematical result that warrants that the empirical average (ergodic sum)∑n`(xn)/N, for
a regular functioǹ : X → IR, converges to IE[`(x)] if the chain converges asymptotically to the true
distribution. For example, ifx is a zero-mean scalar random variable andX = IR, then`(x) = x2

for the variance and̀(x) = x4 for the kurtosis of the variable. For this reason, MCMC methods are
considered to be preferable over rejection method because in this latter onlyone exact sample is
obtained, while with the former we obtain a chain and are thus able to approximateexpectations. In
order to perform MCMC, there is a great flexibility in choosing the instrumental probability density
µ(x|y).

For a recent review of the MCMC method, interested readers may consult for instance the sur-
veys by Kass et al. (1998) and Warnes (2001).

In order to numerically integrate the learning LDE, it is necessary to discretize the Wiener
random process. Let us denote again byη the chosen (constant) step-size: A time-discretization of
the stochastic gradient (13) may be written as

Ṽdiff ,n = Ṽn +

√

2Θ
η

p(p−1)/2

∑
k=1

Lkνk, (17)

where eachνk is a independent, identically distributed normal random variable (Higham, 2001) and
the gradient̃Vn is given in equation (12).

Having defined the new diffusion-type gradient (and its time-discretized version), the associated
stochastic flow may be locally approximated through the geodesic learning algorithm explained in
Section 2.2. Also, at every learning stepn, the temperatureΘn may be decreased in order to make
the diffusive disturbance term peter out after the early stages of learning. This gives rise to the
following simulated-annealing/MCMC learning scheme.

� Learning algorithm 3:

1. Setn = 0, generate an initial solutionW0 and setf0 = f (W0), select a constant learning
step-sizeη, select a temperature valueΘ0 and select agO(p)-orthonormal baseLk of the Lie
algebraso(p).

2. Generate a set of identically-distributed, independent standard Gaussian random variablesνk.

760

QUASI-GEODESICNEURAL LEARNING ALGORITHMS OVER THE ORTHOGONAL GROUP

3. Compute the diffusive gradient (17), compute a candidate solutionWn+1 through the equa-
tion (11), where the deterministic gradient is replaced by the diffusive gradient, and evaluate
fn+1 = f (Wn+1).

4. Compute the MCMC probabilityπMCMC
def
= min{1,exp(−(fn+1− fn)/Θn)}.

5. Accept the candidate solution with probabilityπMCMC (or reject the candidate solution with
probability 1−πMCMC). Rejection corresponds to assumingWn+1 = Wn.

6. Decrease the temperatureΘn to Θn+1 following a pre-defined cooling scheme.

7. Incrementn and return to 2, unlessn exceeds the maximum number of iteration permitted: In
this case, exit.

4. Application to Non-Negative Independent Component Analysis: Algorithms
Implementation and Numerical Experiments

The aims of the present section are to recall the concept of non-negative independent component
analysis (ICA+) and the basic related results, to customize the general learning algorithms onthe
orthogonal group to the case of ICA+, and to present and discuss some numerical cases related to
non-negative ICA applied to the separation of gray-level images.

4.1 Non-Negative Independent Component Analysis

Independent component analysis (ICA) is a signal/data processing technique that allows to re-
cover independent random processes from their unknown combinations (Cichocki and Amari, 2002;
Hyvärinen et al., 2001). In particular, standard ICA allows the decomposition of a random process
x(t) ∈ IRp into the affine instantaneous model:

x(t) = As(t)+n(t), (18)

whereA ∈ IRp×p is themixingoperator,s(t) ∈ IRp is thesource streamandn(t) ∈ IRp denotes the
disturbance affecting the measurement ofx(t) or some nuisance parameters that are not taken into
account by the linear part of the model.

The classical hypotheses on the involved quantities are that the mixing operator is full-rank,
that at most one among the source signals exhibit Gaussian statistics, and that the source signals
are statistically independent at any time. The latter condition may be formally statedthrough the
complete factorization principle, which ensures that the joint probability density function of statisti-
cally independent random variables factorizes into the product of their marginal probability density
functions. We also add the technical hypothesis that the sources do not have degenerate (that is,
point-mass-like) joint probability density function. This implies that for example,the probability
that the sources are simultaneously exactly zero is null. Under these hypotheses, it is possible to re-
cover the sources up to (usually unessential) re-ordering and scaling,as well as the mixing operator.

Neural ICA consists in training an artificial neural network described byy(t) = W(t)x(t), with
y(t) ∈ IRp andW(t) ∈ IRp×p, so that the network output signals become as statistically independent
as possible.

761

FIORI

Due to the difficulty of measuring the statistical independence of the network’s output signals,
several different techniques have been developed in order to perform ICA. The most common ap-
proaches to ICA are those based on working out the fourth-order statistics of the network outputs
and to the minimization of the (approximate) mutual information among the network’s outputs. The
existing approaches invoke some approximations or assumptions in some stageof ICA-algorithm
development, most of which concern the (unavailable) structure of the source’s probability distribu-
tion.

As it is well-known, a linear, full-rank,noiselessand instantaneous model may be always re-
placed by an orthogonal model, in which the mixing matrixA is supposed to belong toO(p). This
result may be obtained by pre-whitening the observed signalx, which essentially consists in remov-
ing second-order statistical information from the observed signals. Whenthe mixture is orthogonal,
the separating network’s connection matrix must also be orthogonal, so we may restrict the learning
process to searching the proper connection matrix withinO(p).

An interesting variant of standard ICA may be invoked when the additional knowledge on the
non-negativity of the source signals is considered. In some signal processing situations, in fact,
it is a priori known that the sources to be recovered have non-negative values (Plumbley, 2002,
2003). This is the case, for instance, in image processing, where the values of the luminance or the
intensity of the color in the proper channel are normally expressed through non-negative integer val-
ues. Another interesting potential application is spectral unmixing in remote sensing (Keshava and
Mustard, 2002). The evolution of passive remote sensing has witnessedthe collection of measure-
ments with great spectral resolution, with the aim of extracting increasingly detailed information
from pixels in a scene for both civilian and military applications. Pixels of interest are frequently a
combination of diverse components: In hyper-spectral imagery, pixels are a mixture of more than
one distinct substance. In fact, this may happen if the spatial resolution of asensor is so low that
diverse materials can occupy a single pixel, as well as when distinct materialsare combined into a
homogeneous mixture. Spectral demixing is the procedure with which the measured spectrum is de-
composed into a set of component spectra and a set of corresponding abundances, that indicate the
proportion of each component present in the pixels. The theoretical foundations of thenon-negative
independent component analysis(ICA+) have been given by Plumbley (2002), and then Plumbley
(2003) proposed an optimization algorithm for non-negative ICA based on geodesic learning and
applied it to the blind separation of three gray-level images. Further recent news on this topic have
been published by Plumbley (2004). In our opinion, non-negative ICA as proposed by Plumbley
(2003) is an interesting task and, noticeably, it also gives rise to statistical-approximation-free and
parameter-free learning algorithms.

Under the hypotheses motivated by Plumbley (2002), a way to perform non-negative indepen-
dent component analysis is to construct a cost functionf (W) of the network connection matrix
that is identically zero if and only if the entries of network’s output signaly are non-negative with
probability 1. The criterion function chosen by Plumbley (2003) isf : O(p) → IR+

0 defined by

f (W)
def
=

1
2

IEx[‖x−WTρ(Wx)‖2], (19)

where IEx[·] denotes statistical expectation with respect to the statistics ofx, ‖ · ‖2 denotes the stan-
dardL2 vector norm and the functionρ(·) denotes the ‘rectifier’:

ρ(u)
def
=

{

u , if u≥ 0 ,
0 , otherwise.

762

QUASI-GEODESICNEURAL LEARNING ALGORITHMS OVER THE ORTHOGONAL GROUP

In the definition (19), the rectifier acts component-wise on vectors. From the definition (19), it is
clear that when all the network output signals have positive values, it results f = 0, otherwisef 6= 0.
The described cost function closely resembles a non-linear principal component analysis criterion
designed on the basis of the minimum reconstruction error principle (Hyvärinen et al., 2001). This
observation would be beneficial for future extensions to complex-weighted neural networks, as
suggested by Fiori (2004).

In this case, learning a ICA+ network may thus be accomplished by minimizing the criterion
function f .

In order to design a gradient-based learning algorithm over the orthogonal group according to
the general theory developed in the Section 2.2, it is necessary to compute theEuclidean gradient
of the function (19) with respect to the connection matrixW. After rewriting the learning criterion
function as

2 f (W) = IEx[‖x‖2 +‖ρ(y)‖2−2yTρ(y)],

some lengthy but straightforward computations lead to the expression:

gradIRp×p

W f = IEx[((ρ(y)−y)�ρ′(y))xT −ρ(y)xT],

where the symbol� denotes component-wise (Hadamard) product of two vectors andρ′(·) denotes
the derivative of the rectifier, that is, the unit-step function. This is undefined in the origin. From a
practical point of view, this is a minor difficulty: In fact, thanks to the hypothesis of non-degeneracy
of the joint probability density function of the source, the probability that the components of the
networks output vector vanish to zero simultaneously is equal to zero. It isnow easy to recognize
that the vector(ρ(y)−y)�ρ′(y) is identically zero (where it is defined), therefore the above gradient
reduces to the simple expression:

gradIRp×p

W f = −IEx[ρ(y)xT].

Following the notation introduced by Plumbley (2003), we find it convenient todefine the rec-
tified network output:

y+
n

def
=ρ(yn) , whereyn

def
=Wnx. (20)

With this convention, the Riemannian gradient and the associate learning algorithm (valid for ex-
ample, for the versions of Algorithms 1 and 2) write, respectively:

2gradO(p)
Wn

f = IEx[yn(y+
n)TWn]− IEx[(y+

n)xT],

Wn+1 = exp(ηn(IEx[yn(y+
n)T]− IEx[y+

n yT
n]))Wn ,

n = 1, 2, 3, ...

The initial connection matrixW0 may be randomly picked inO(p). Another practical choice is
W0 = Ip.

4.2 Details on the Used Data and on Algorithms Implementation

The gray-level images used in the experiments are illustrated in the Figure 1. It is important to
note that, in general, real-world images are not completely statistically independent. For instance,

763

FIORI

IMG 1 IMG 2 IMG 3

IMG 4 IMG 5 IMG 6

IMG 7 IMG 8 IMG 9

Figure 1: The nine gray-level images used in the experiments.

the images used in the present experiments are slightly statistically correlated, as can be seen by
computing their 9×9 covariance matrix (approximated to two decimal digits)Cs =

103×





























2.81 0.07 0.1 −0.05 −0.33 −0.55 0.29 −0.04 −0.12
0.07 4.52 0 −0.04 0.61 0.49 −0.16 0.01 −0.02
0.1 0 15.05 0.33 0.14 0.06 −0.37 −0.09 0.01

−0.05 −0.04 0.33 2.32 0.17 0.38 −0.43 0 −0.09
−0.33 0.61 0.14 0.17 5.49 0.67 0.8 0.01 0.02
−0.55 0.49 0.06 0.38 0.67 5.69 −0.63 −0.04 −0.04
0.29 −0.16 −0.37 −0.43 0.8 −0.63 15.3 −0.01 0.12
−0.04 0.01 −0.09 0 0.01 −0.04 −0.01 0.89 −0.01
−0.12 −0.02 0.01 −0.09 0.02 −0.04 0.12 −0.01 15.33





























,

which is not diagonal, but diagonal-dominated.
It is now necessary to explain in details the pre-whitening algorithm. We distinguish between

the noiseless and noisy case.

• In the noiseless case (namely,n(t) ≡ 0), the pre-whitening stage is based on the observation
that in the model (18) the square matrixA may be written through the singular value decom-
position (SVD) asF1DFT

2 , whereF1,F2 ∈ O(p) andD ∈ IRp×p is diagonal invertible. Then,

it is readily verified thatCx
def
=IEx[x̄x̄T] = AIEs[s̄s̄T]AT , where the overline denotes centered

signals (for example,̄xdef
=x− IEx[x].) In the (non-restrictive) hypothesis that IEs[s̄s̄T] = Ip, we

thus haveCx = AAT = F1D2FT
1 . The factorsF1 andD may thus be computed through the

764

QUASI-GEODESICNEURAL LEARNING ALGORITHMS OVER THE ORTHOGONAL GROUP

standard eigenvalue decomposition of the covarianceCx. The whitened observation signal is
then

x̂def
=D−1FT

1 x = FT
2 s.

It is now clear that the last rotationFT
2 of the source signals cannot be removed by second-

order statistics, while orthogonal non-negative ICA may be effective to separate out the
independent/non-negative components.

• In the noisy case, when the model of the observed signal is given by (18), the noise com-
ponent cannot be filtered out by using pre-whitening nor independentcomponent analysis
itself. However, pre-whitening still makes it possible to use orthogonal ICA+, providedthe
additive noise affecting the observations is not too strong. In fact, by hypothesizing the noise
componentn(t) is a zero-mean multivariate random sequence with covariance matrixσ2Ip,
termed ‘spherical’ noise, the covariance of the observations writesCx = AAT +σ2Ip. In case
of strong disturbance, it is therefore clear that, in general, pre-whitening cannot rely on eigen-
value decomposition ofCx. In any case, the difficulty due to the presence of strong additive
noise is theoretically unavoidable, even if pre-whitening is dispensed of and ICA algorithms
that search inGl(p) are employed.

In order to compute a separation performance index, we consider that, atconvergence, the sepa-

ration productPn
def
=WnD−1FT

1 A ∈ IRp×p should ideally exhibit only one entry per row (or column)
different from zero, while the magnitude of non-zero values does not care. In a real-word situation,
of course some residual interference should be tolerated. Therefore, a valid separation index is

Qn
def
=

1
p
‖PnPT

n −diag(PnPT
n)‖F, (21)

where‖ · ‖F denotes the Frobenius norm. The index above is based on the fact that ideally the
matrix PnPT

n should be diagonal, thereforeQn measures the total off-diagonality averaged over the
total number of network’s outputs. (As normally the indexQn assumes very low values, it is worth
normalizing it to its initial value, namely byQn/Q0.)

Another valid network-performance index is the criterion function (19) itself. For easy com-

putation of the index, we note that by definingy−n
def
=Wnx−ρ(Wnx), the value of the cost function

at then-th learning step computes asfn = 1
2IEx[‖y−n ‖2]. (The learning algorithm seeks for a neural

transformation that minimizes the negativity of its outputs, in fact.)
With regard to the computational complexity analysis of the described algorithms,we consider

the number of floating-point operations (flops) per iteration and the average run-time per iteration.
The codes were implemented in MATLAB on a 600 MHz, 128 MB platform.

With regard to the selection of the scheduleηn, in the experiments we found it convenient to
write first the learning step-sizeηn asη̃n/‖Ṽn‖F, whereṼn denotes again the gradient on the Lie
algebra ofO(p) defined in the equations (12) and then to optimize the normalized step-sizeη̃n. This
convention keeps valid throughout the remaining part of the paper, so wecan continue to use the
notationηn even for the normalized step-size without confusion.

In order to establish a numerically efficient geodesic search for the Algorithm 2, we seek for
the optimalηn in a suitable interval by sampling this interval at sub-intervals of proper size. The
details on these quantities are given in the section dedicated to the numerical experiments for each
category of experiment.

765

FIORI

About the cooling scheme for the simulated-annealing/MCMC algorithm, according to Liu et
al. (2004), we adopted the scheduleΘn+1 = Θn/1.025.

As a general note, the ensemble average denoted by the statistical expectation operator IE[·] is
replaced everywhere by sample (empirical) mean.

4.3 Results of Numerical Experiments

The present part of the paper aims at presenting some numerical results obtained with the above-
described learning algorithms applied to non-negative independent component analysis. The nu-
merical analysis begins with the illustration of some toy experiments that aim at showing the con-
sistency of the adopted ‘non-negativity’ optimization principle. Then, the analysis continues with
an investigation and a comparison of the behavior of the three algorithms described in the previous
sections.

4.3.1 PRELIMINARY EXPERIMENTS

As a case study, we consider the mixing of two images with a randomly generatedmixing matrix
A ∈ IR2×2. As the orthogonal separation matrixW is of size 2×2, it may be easily parameterized,
as in equation (10), by

W(β) =

[

cosβ −sinβ
sinβ cosβ

]

,

with β ∈ [−π,π[being the separation angle. As already underlined in Section 2.3, this parameter-
ization does not cover the whole groupO(2), but this problem is unessential for ICA purpose. By
properly sampling the interval[−π,π[, it is possible to give a graphical representation of the behav-
ior of the non-negative independent component analysis criterionf (W(β)) defined in equation (19)
and of the separation indexQ(β) defined by equation (21) (which depends on variableβ through
the separation productP).

The results of this analysis for a randomly generated mixing matrix, with sourceimages number
1 and 2 of Figure 1, are shown in the Figure 2. The Figure 2 shows the two-image mixtures, the
behavior of the cost functionf and of the separation indexQ as well as the separated images
obtained with the optimal separation angle, which is defined as the angle corresponding to the
minimal criterion function value. As it clearly emerges from the above figure, the cost function has
a only minimum, which coincides with one of the minima of the separation index. The minimum of
the cost function corresponds to a pair of well-separated network outputs.

The result of the analysis with source images number 3 and 4 of Figure 1 areshown in the
Figure 3. The Figure 3 shows the mixtures, the behavior of the cost function and of the separation
index as well as the separated images. Again, the cost function exhibits a onlyminimum that
coincides with one of the minima of the separation index, which, in turn, corresponds to a pair
of well-separated non-negative independent components. This second result, compared with the
previous one, illustrates the dependency of the shape of the cost function on the mixing matrix as
well as on the mixed components.

To end the series of preliminary experiments, we consider here again the mixing of images
1 and 2 with a randomly generated mixing matrixA in the noisy mixture case. In particular, as
anticipated in the Section 4.1, ‘spherical’ additive white Gaussian noise is supposed to contaminate
the observations as in the original ICA model (18). The quantity that describes the relative weight
of the noise in the mixture is the signal-to-noise ratio (SNR), which, in this particular case, may be

766

QUASI-GEODESICNEURAL LEARNING ALGORITHMS OVER THE ORTHOGONAL GROUP

MIX
1

20 40 60 80 100 120

20

40

60

80

100

120

MIX
2

20 40 60 80 100 120

20

40

60

80

100

120

−5 0 5
−60

−40

−20

0

20

β

f(W
(β

))

Cost function

−5 0 5
−120

−110

−100

−90

−80

β

Q
(β

)
Separation index

NNIC
1

20 40 60 80 100 120

20

40

60

80

100

120

NNIC
2

20 40 60 80 100 120

20

40

60

80

100

120

Figure 2: Images 1 and 2 mixtures (MIX1 and MIX2), behavior of cost functionf and separation
indexQ (shown in dB scales) and separated images (NNIC1 and NNIC2) obtained with
the optimal separation angle. The open circle denotes the value of the the parameterβ
corresponding to the minimum criterionf (W(β)) value.

compactly defined as

SNR
def
=10log10

√

exp(trace{log[(diag(Cm)diag(Cn)−1)]}),

where diag(Cm) denotes the diagonal part of the 2×2 covariance matrix of the noiseless observation
(term As(t)) while diag(Cn) denotes the diagonal part of the covariance matrix of the noise term
n(t), referred to the ICA model (18).

The results of this analysis are shown in the Figures 4 and 5, which illustrate the behavior of the
cost functionf and of the separation indexQ as well as the separated images obtained with the opti-
mal separation angle, for two different noisy mixtures. In the experiment illustrated in the Figure 4,
the value of the signal-to-noise ratio wasSNR= 11.64 dB. The Figure shows that the cost function
exhibits a only minimum that is quite close to one of the minima of the separation index, which, in
turn, corresponds to a pair of well-separated non-negative independent components. Of course, the
mixturesas well as the recovered componentslook a little noisy. In the experiment illustrated in the
Figure 5, the value of the signal-to-noise ratio wasSNR= 4.18 dB. In this experiment, the power of
the disturbance is close to the power of the source-images, therefore the mixture may be considered
as rather noisy. The Figure 5 shows that the cost function exhibits a only minimum that is quite far
from the minima of the separation index. The neural network outputs look very noisy and do not
resemble the original independent components. This result confirms the observations of Section 4.1

767

FIORI

MIX
1

20 40 60 80 100 120

20

40

60

80

100

120

MIX
2

20 40 60 80 100 120

20

40

60

80

100

120

−5 0 5
−60

−40

−20

0

20

β

f(W
(β

))

Cost function

−5 0 5
−140

−120

−100

−80

−60

β

Q
(β

)
Separation index

NNIC
1

20 40 60 80 100 120

20

40

60

80

100

120

NNIC
2

20 40 60 80 100 120

20

40

60

80

100

120

Figure 3: Images 3 and 4 mixtures (MIX1 and MIX2), behavior of cost functionf and separation
indexQ (shown in dB scales) and separated images (NNIC1 and NNIC2) obtained with
the optimal separation angle. The open circle denotes the value of the the parameterβ
corresponding to the minimum criterionf (W(β)) value.

about the unavoidability of the problems related to the presence of strong noise in the mixture by
plain ICA.

In the next sections, we shall therefore take into account noiseless mixtures, which also illustrate
the behavior of the algorithm in presence ofweakdisturbances. It is in fact to be recognized that
the pre-whitening/sphering issue is a different problem from optimization onO(p): Noisy mixtures
cannot be pre-whitened, but if the noise is weak, its presence has negligible effects on the separation
performances.

4.3.2 A FURTHER ‘CONVENTIONAL’ A LGORITHM FOR NUMERICAL COMPARISONPURPOSES

In order to gain incremental knowledge on the advantages offered by Lie-group methods via numer-
ical comparisons, it would be beneficial to consider a ‘conventional’ learning algorithm in which
the ordinary gradient and explicit orthogonalization are employed.6 To this aim, we defined the
following non-Lie-group algorithm:

W̃n+1 = Wn−ηIE[y+
n xT], (22)

Wn+1 = (W̃n+1W̃T
n+1)

− 1
2 W̃n+1, (23)

6. This comparison was suggested by a reviewer.

768

QUASI-GEODESICNEURAL LEARNING ALGORITHMS OVER THE ORTHOGONAL GROUP

MIX
1

20 40 60 80 100 120

20

40

60

80

100

120

MIX
2

20 40 60 80 100 120

20

40

60

80

100

120

−5 0 5
−40

−30

−20

−10

0

10

β

f(W
(β

))

Cost function

−5 0 5
−120

−110

−100

−90

−80

β

Q
(β

)
Separation index

NNIC
1

20 40 60 80 100 120

20

40

60

80

100

120

NNIC
2

20 40 60 80 100 120

20

40

60

80

100

120

Figure 4: Images 1 and 2 weakly-noisy mixtures (MIX1 and MIX2), behavior of cost functionf
and separation indexQ (shown in dB scales) and separated images (NNIC1 and NNIC2)
obtained with the optimal separation angle. The open circle denotes the value of the the
parameterβ corresponding to the minimum criterionf (W(β)) value.

where the rectified network output is defined as in equation (20) and with theinitial connection
patternW0 ∈ O(p) and the learning step-sizeη < 0 being chosen according to the same rules used
with the Algorithms 1, 2 and 3. It is worth remarking that we again consider the normalizationη =
η̃/‖IE[y+

n xT]‖, so the actual step-size to be selected isη̃, as previously assumed for the Algorithms
1, 2 and 3.

The first line of the above algorithm moves the connection pattern at stepn from the matrixWn

over the orthogonal group toward the direction of the Euclidean gradientof the ICA+ cost function
to the new pointW̃n+1. However, the matrixW̃n+1 does not belong to the orthogonal group so it
is necessary to project it back to the group with the help of a suitable projector (according to what
granted in Section 2.1). In this case, it is assumedΠ : IRp×p → O(p) as

Π(X)
def
=(XXT)−

1
2 X. (24)

(It is straightforward to verify thatΠT(X)Π(X)= Ip for all X∈Gl(p).) In the case of the orthogonal-
group projector, the ambient space was assumed asA = IRp×p. It is worth underlining that, from
a theoretical point of view, there is no guarantee that the partially updated matrix W̃n+1 belongs to
Gl(p) ⊂ IRp×p and, therefore, there is no guarantee that the projectorΠ may be computed at every
iteration.

769

FIORI

MIX
1

20 40 60 80 100 120

20

40

60

80

100

120

MIX
2

20 40 60 80 100 120

20

40

60

80

100

120

−5 0 5
−10

−8

−6

−4

−2

0

β

f(W
(β

))

Cost function

−5 0 5
−120

−110

−100

−90

−80

β

Q
(β

)
Separation index

NNIC
1

20 40 60 80 100 120

20

40

60

80

100

120

NNIC
2

20 40 60 80 100 120

20

40

60

80

100

120

Figure 5: Images 1 and 2 strongly-noisy mixtures (MIX1 and MIX2), behavior of cost functionf
and separation indexQ (shown in dB scales) and separated images (NNIC1 and NNIC2)
obtained with the optimal separation angle. The open circle denotes the value of the the
parameterβ corresponding to the minimum criterionf (W(β)) value.

4.3.3 NUMERICAL ANALYSIS AND COMPARISON OF THEICA+ ALGORITHMS

The first experiment of this section aims at investigating a 4×4 ICA+ case tackled with the help of
the deterministic-gradient-based algorithm endowed with geodesic search (Algorithm 2). In partic-
ular, in this case the optimal step-size is searched for within the interval[−1,−0.1] partitioned into
10 bins and the random step-size generated in case of non-acceptanceis a small random number
uniformly picked in[−0.1,0[. The maximum number of iterations has been fixed to 100 and the
used images are number 1, 2, 3 and 4 of Figure 1.

The results of this experiment are shown in the Figures 6, 7 and 8.
In particular, the Figure 6 shows the behavior of the (normalized) separation indexQn/Q0 and

of the cost functionfn versus the iteration indexn. As these panels show, the separation index as
well as the cost function values decrease from initial values to lower values, confirming that the
separation behavior is good, in this experiment. The same Figure also showsthe Frobenius norm of
the Riemannian gradientṼn defined in equation (12), which decreases to low values during iteration,
as well as the value of the ‘optimal’ learning step-sizeηn selected at each iteration.

The Figure 7 shows a picture of the cost function as seen by the ‘geodesic search’ procedure:
It shows, at each iteration, the shape of the cost functionfn(η) as a function of the step-sizeη and
shows the numerical minimal value to be selected as ‘optimal’ learning step-size.As explained in
the description of the Algorithm 2, such value is actually selected only if the corresponding value

770

QUASI-GEODESICNEURAL LEARNING ALGORITHMS OVER THE ORTHOGONAL GROUP

0 20 40 60 80 100
−25

−20

−15

−10

−5

0

Se
pa

ra
tio

n
in

de
x

Q
n/Q

0 [d
B]

Iteration n
0 20 40 60 80 100

−60

−50

−40

−30

−20

−10

0

10

C
rit

er
io

n
fu

nc
tio

n
f n [d

B]

Iteration n

0 20 40 60 80 100
−40

−30

−20

−10

0

10

20

G
ra

di
en

t n
or

m
 [d

B]

Iteration n
0 20 40 60 80 100

−1

−0.8

−0.6

−0.4

−0.2

0

Le
ar

ni
ng

 s
te

ps
iz

e
η n

Iteration n

Figure 6: Four-source problem. Top-left: Normalized separation index versus the iteration index
n. Top-right: Cost functionfn versus the iteration indexn. Bottom-left: Norm of the
Riemannian gradient of the ICA+ cost function versus the iteration indexn. Bottom-
right: ‘Optimal’ learning step-sizeηn selected at each iteration.

of the cost function is smaller than the value of the cost function achieved in the previous iteration,
otherwise the result of the geodesic search is ignored and a small randomstep-size is selected.
From the picture, it clearly emerges that the functionfn(η) exhibits a only minimum in the interval
of interest forη. Also, as the learning procedure progresses, the minimal value is almost always
located at relatively low values ofη because of the sharpness of the cost function around the optimal
separating solution evidenced by the Figures 2 and 3.

The Figure 8 shows the result of this analysis for a randomly generated 4×4 mixing matrix with
four source images. The de-mixing matrix is the optimal one as obtained by the learning procedure.
The visual appearance of the obtained components confirms the quality of the blind recovering
procedure.

The second experiment of this section aims at investigating a 9×9 ICA+ case tackled with the
help of the deterministic-gradient-based algorithm endowed with geodesic search (Algorithm 2). In
particular, in this case the optimal step-size is searched for within the interval[−2,−0.1] partitioned
into 10 bins and the random step-size generated in case of non-acceptance is a small random number
uniformly picked in[−0.1,0[. The maximum number of iterations has been fixed to 200. The results
of this experiment are shown in the Figures 9 and 10. In this experiment, the separated images have
been recovered sufficiently faithfully.

The same separation problem was also tackled through the deterministic-gradient-based algo-
rithm without geodesic search (Algorithm 1). From the previous experiment, it emerges that the
‘optimal’ value of the step-size is almost always selected within the interval[−0.1,0[. Therefore,
in this experiment, the learning step-size was fixed to−0.05 and the number of iterations was set

771

FIORI

−1
−0.8

−0.6
−0.4

−0.2
0

0
20

40
60

80
100

−60

−50

−40

−30

−20

−10

0

10

Step size η
Iteration n

C
o

st
 f

u
n

ct
io

n
 f

n(η
)

[d
B

]

Figure 7: Four-source problem. Shape of the ICA+ cost function as seen by the ‘geodesic search’
procedure.

to 400. It is worth noting that, in this case, not only the learning step-size wasset to a constant
value, but every move in the parameter manifold is accepted without checkingif it actually leads to
a decrease of the value of the learning criterion. The objective results ofthis experiment are shown
in the Figure 11, while the resulting recovered components are not shown because they are similar
to those illustrated in the Figure 10.

The nine-source separation problem was also tackled through the diffusion-type gradient-based
algorithm (Algorithm 3). In this case, the learning step-size was set to−0.1, the initial temperature
was set toΘ0 = 0.5 and the number of iterations was set to 400. The objective results of this
experiment are shown in the Figure 12, while the resulting components are not shown because they
are similar to those illustrated in the Figure 10.

As mentioned in Section 4.3.2, the behavior of Algorithms 1, 2 and 3 may be compared to the
behavior of a non-Lie-group algorithm based on explicit orthogonalization via projection. There-
fore, the nine-source separation problem was also tackled through the projection-based learning
algorithm. In this case, the number of iterations was set to 400. The obtained results are not com-
forting about the suitability of this algorithm to non-negative independent component analysis. In
spite that several values of the learning step-size were tried (ranging from−0.5 to−0.005), no good
results were obtained, in this case. Two possible explanations of the observed behavior are that:

• The projection operation wastes the most part of the time in canceling out the component of
the Euclidean gradient that is normal to the manifold instead of advancing the solution toward
the most appropriate direction.

772

QUASI-GEODESICNEURAL LEARNING ALGORITHMS OVER THE ORTHOGONAL GROUP

MIX 1

20 40 60 80100120

20
40
60
80

100
120

NNIC 1

20 40 60 80100120

20
40
60
80

100
120

MIX 2

20 40 60 80100120

20
40
60
80

100
120

NNIC 2

20 40 60 80100120

20
40
60
80

100
120

MIX 3

20 40 60 80100120

20
40
60
80

100
120

NNIC 3

20 40 60 80100120

20
40
60
80

100
120

MIX 4

20 40 60 80100120

20
40
60
80

100
120

NNIC 4

20 40 60 80100120

20
40
60
80

100
120

Figure 8: Four-source problem. Mixtures and separated images.

ALGORITHM AVERAGE RUN-TIME (SEC.S) FLOPS PER ITERATION

Algorithm 1 0.27 5.46×106

Algorithm 2 1.83 3.69×107

Algorithm 3 0.27 4.76×106

Projection 0.29 5.48×106

Table 1: Nine-source problem. Computational complexity comparison of Algorithms 1, 2, 3 and
the projection-based learning algorithm (in terms of flops and run-time per iteration).

• The algorithm described by equations (22) and (23) looks essentially as fixed-point algorithm:
Such kind of algorithms may easily get trapped in non-converging or very-slowly-converging
cycles if the operator that describes the fixed-point iteration is not contractive. However,
proving (or forcing) the convergence of such algorithms is far from being an easy task. A
short discussion on this topic has been recently presented by Fiori (2002).

With regard to the computational complexity comparison of the algorithms on the nine-source
separation problem, the number of flops per iteration and the average run-times per iteration are
reported in the Table 1. It is worth underlining that both run-times and flop-counts depend on the
platform and on the specific implementation of the algorithms, therefore only differences than span
one or more magnitude orders should be retained as meaningful.

The conclusion of the above numerical analysis pertaining to the nine-source problem is quite
straightforward: In the present problem, the adoption of the diffusion-type gradient is not beneficial
as the initial ‘burn-in’ stage due to MCMC is quite long and the final achieved result is completely
comparable to those exhibited by the other two algorithms. Among Algorithms 1 and 2, they achieve

773

FIORI

0 50 100 150 200
−20

−15

−10

−5

0

Se
pa

ra
tio

n
in

de
x

Q
n/Q

0 [d
B]

Iteration n
0 50 100 150 200

−40

−30

−20

−10

0

10

C
rit

er
io

n
fu

nc
tio

n
f n [d

B]

Iteration n

0 50 100 150 200
−30

−20

−10

0

10

G
ra

di
en

t n
or

m
 [d

B]

Iteration n
0 50 100 150 200

−1.4

−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

Le
ar

ni
ng

 s
te

ps
iz

e
η n

Iteration n

Figure 9: Nine-source problem, Algorithm 2. Top-left: Normalized separation index versus the
iteration indexn. Top-right: Cost functionfn versus the iteration indexn. Bottom-left:
Norm of the Riemannian gradient of the ICA+ cost function versus the iteration indexn.
Bottom-right: ‘Optimal’ learning step-sizeηn selected at each iteration.

comparable separation results, but the Algorithm 1 is definitely lighter, in terms of computational
complexity, than the Algorithm 2. The computational complexity pertaining to the projection-based
algorithm is comparable to the complexity exhibited by Algorithms 1 and 3.

5. Conclusion

The aim of the present tutorial was to illustrate learning algorithms based on Riemannian-gradient-
based criterion optimization on the Lie group of orthogonal matrices. Althoughthe presented
differential-geometry-based learning algorithms have so far been mainly exploited in narrow con-
texts they may aid the design of general-purpose learning algorithms in those cases where a learning
task may be formulated as an optimization one over a smooth manifold. The considered algorithms
have been applied to non-negative independent component analysis both in the standard version
equipped with geodesic-line search and in the diffusion-type gradient version.

The analytical developments evidenced the following advantages and similarities of theO(p)-
type learning algorithm with respect to the existingGl(p)-type algorithms:

• In the general case, the search for a connection pattern should be performed in the Lie group
Gl(p), while in the second case the search is performed in the orthogonal Lie group O(p).
The groupO(p) is compact (that is, closed and limited) therefore the stability of aO(p)-type
learning algorithm is inherently ensured (up to machine precision), while this isnot true for
theGl(p)-type learning algorithms.

774

QUASI-GEODESICNEURAL LEARNING ALGORITHMS OVER THE ORTHOGONAL GROUP

NNIC 1

20 40 60 80100120

20

40

60

80

100

120

NNIC 2

20 40 60 80100120

20

40

60

80

100

120

NNIC 3

20 40 60 80100120

20

40

60

80

100

120

NNIC 4

20 40 60 80100120

20

40

60

80

100

120

NNIC 5

20 40 60 80100120

20

40

60

80

100

120

NNIC 6

20 40 60 80100120

20

40

60

80

100

120

NNIC 7

20 40 60 80100120

20

40

60

80

100

120

NNIC 8

20 40 60 80100120

20

40

60

80

100

120

NNIC 9

20 40 60 80100120

20

40

60

80

100

120

Figure 10: Nine-source problem, Algorithm 2. Separated images.

• In general, theGl(p)-type learning algorithms cannot avoid quasi-degeneracy of the neural
network, that is the case in which more than one neuron nearly happen to encode the same
feature. In the context ofO(p)-type learning algorithms, this case is inherently impossible.

• The possible amplification of the additive noise in the noisy ICA case is not avoided by
the O(p)-type learning algorithms, even if care should be taken in this context of properly
computing the pre-whitening operator. Even theGl(p)-type learning algorithms, that do not
require pre-whitening, cannot avoid the amplification of the disturbance onthe observations.

The conclusions of the comparative analysis pertaining to the nine-sourceICA problem are
quite straightforward: The simple gradient adaptation, with a properly chosen learning step-size,
is sufficient to achieve good separation performance at low computationalburden. It deserves to
remark, however, that the ‘geodesic search’ procedure automatically provides a suitable value of
the learning step-size, which should be manually selected in absence of anytuning procedure.

It is worth underlining that the Algorithm 1, which appears to be the solution ofchoice in the
context of ICA problem, as well as Algorithms 2 and 3, has been derived ina framework that is
more general than ICA, but has only been applied it to ICA in the present manuscript. In the ICA+

context, and with the chosen metric for the orthogonal group, the Algorithms 1and 2 essentially
coincide to the algorithms presented by Plumbley (2003). With respect to the work of Plumbley
(2003), the conclusion we draw from the presented numerical analysis on ICA+ problems is that,
for general high-dimensional ICA+ problems, the introduction of geodesic-search is not beneficial.

775

FIORI

0 200 400
−18

−16

−14

−12

−10

−8

−6

−4

−2

0

2

Se
pa

rat
ion

 in
de

x Q
n/Q

0 [d
B]

Iteration n
0 200 400

−40

−35

−30

−25

−20

−15

−10

−5

0

5

10

Cr
ite

rio
n f

un
cti

on
 f n [d

B]
Iteration n

0 200 400
−30

−25

−20

−15

−10

−5

0

5

10

15

Gr
ad

ien
t n

orm
 [d

B]

Iteration n

Figure 11: Nine-source problem, Algorithm 1. Left panel: Normalized separation index versus the
iteration indexn. Middle panel: Cost functionfn versus the iteration indexn. Right:
Norm of the Riemannian gradient of the ICA+ cost function versus the iteration index
n.

The same holds for the introduction of stochasticity under the form of annealed MCMC, that does
not helped speeding up network learning convergence in the considered analysis.

About further and future efforts, we believe the following notes are worth mentioning:

• As a general remark on the computational complexity of the discussed algorithms, it is worth
noting that the most burdensome operation is the computation of the exponentialmap in the
updating rule (11). In the present paper we employed MATLAB ’s ‘expm’ primitive but, of
course, several ways are known in the scientific literature to compute exponential maps. Two
examples are the Cayley transform and the canonical coordinates of the first kind (interested
readers might consult, for example, Celledoni and Fiori (2004) and references therein). A
promising alternative solution would be to exploit the latest advancements in the field of nu-
merical calculus on manifold for exponential maps computation, which should allegedly lead
to a considerable saving of computational effort without detriment of separation effectiveness.

• As mentioned in the Section 2.1, learning algorithms based on the ordinary gradient and ex-
plicit orthogonalization (projection) are known in the scientific literature. Theissue whether
Lie-group methods are more advantageous, compared to methods based onthe projection to
the feasible set by orthogonalization, is currently being investigated.

• As it also emerges from Section 2.1, all the learning equations/algorithms developed in this
manuscript are based on a particular choice of the metric that turns the Lie-algebra associated
to the Lie group of orthogonal matrices into a metric space. Although, in principle, the choice
of the metric may be shown not to affect the final result of learning, nor should it affect
the learning path over the base-manifold, preliminary experiments suggest that the choice
of metric indeed affects the behavior of discrete-time algorithms when implementedon a
computer due to accumulation of numerical errors (Fiori, 2005).

776

QUASI-GEODESICNEURAL LEARNING ALGORITHMS OVER THE ORTHOGONAL GROUP

0 100 200 300 400
−20

−15

−10

−5

0

5

Se
pa

ra
tio

n
in

de
x

Q
n/Q

0 [d
B]

Iteration n
0 100 200 300 400

−40

−30

−20

−10

0

10

C
os

t f
un

ct
io

n
[d

B]

Iteration n

0 100 200 300 400
0

0.2

0.4

0.6

0.8

1

M
et

ro
po

lis
−H

as
tin

gs
 p

ro
ba

bi
lit

y
α n

Iteration n
0 100 200 300 400

0

0.1

0.2

0.3

0.4

0.5

Te
m

pe
ra

tu
re

 Θ
n

Iteration n

Figure 12: Nine-source problem, Algorithm 3. Top-left: Normalized separation index versus the
iteration indexn. Top-right: Cost functionfn versus the iteration indexn. Bottom-
left: Metropolis-Hastings probabilityαn versus the iteration indexn. Bottom-right:
Simulated-annealing temperatureΘn versus the iteration indexn.

Acknowledgments

The author wishes to gratefully thank Elena Celledoni and Yasunori Nishimori for many insightful
discussions on the differential geometry of the orthogonal group, Andrzej Cichocki for an insightful
discussion on the noisy-mixture ICA case, Toshihisa Tanaka for kindly making it available the
images used in the presented experiments, Mark Plumbley for kindly sharing viewpoints and codes
on ICA+ and Hichem Snoussi for the insightful discussions and useful suggestions about the theory
and implementation of the MCMC sampling method.

The author also wishes to gratefully thank the JMLR Action Editor who handledthe submission
of this paper, Yoshua Bengio, and the anonymous reviewers, for providing careful and detailed
comments that helped improving the clarity and thoroughness of the presentedscientific material.

The penultimate version of this manuscript was prepared while the author wasa visiting re-
searcher at the Faculty of Information Technology, Mathematics and Electrical Engineering of Nor-
wegian University of Science and Technology (Trondheim, Norway) during January-February 2005.
The author wishes to gratefully thank Elena Celledoni for making this fruitfulvisit be possible.

The last version of this manuscript was prepared while the author was a visiting professor at the
Laboratory for Signal and Image Processing of the Tokyo University of Agriculture and Technology
(Tokyo, Japan) during March-April 2005. The author wishes to gratefully thank Toshihisa Tanaka
for making this fruitful visit be possible.

777

FIORI

Appendix A. Geodesic Equation and Relevant Properties

In the present appendix, we consider the problem of constructing a geodesic curve on a Riemannian
manifold (M ,g) and illustrate some relevant properties of geodesics on Riemannian manifolds
embedded in a Euclidean ambient space IRp. The result of the following calculation will be a
second-order differential equation in the componentsxk of x (k = 1, 2, · · · , p).7

Before considering the problem of geodesic calculation, it is instrumental to consider the general
variational problem of minimizing the functional:

A
def
=

Z t1

t0
H(x, ẋ)dt, (25)

whereH : IRp × IRp → IR is a potential function,x = x(t) is a curve onM with parametert ∈
[t0 , t1] andA is an integral functional ofx(t) (sometimes termedaction). In the above equation and
thereafter, overdots denote derivation with respect to the parametert.

It is know that, under proper conditions, the solution of the above variational problem is given
by the solution of the Euler-Lagrange equation:

∂H
∂xk

− d
dt

∂H
∂ẋk

= 0 , k = 1, 2, . . . , p.

By comparing the equation (25) and the curve-length equation (2), it is readily seen that, in
order to set a curve-length minimization problem into an action minimization problem, itsuffices to
setH(x, ẋ) =

√

gx(ẋ, ẋ) in the above setting. To this purpose, it is worth noting that, thanks to the
bi-linearity of the scalar product and according to the decomposition ˙x= ∑i ẋiei , where{ei} denotes

whatever basis of IRp, it holds gx(ẋ, ẋ) = ∑i ∑ j gi j ẋi ẋ j , where the functionsgi j
def
=gx(ei ,ej) denote

the components of the so-termedmetric tensorand specify completely the metric properties of the
manifoldM . The components of the metric tensor are functions of the coordinatesx1, · · · , xp. The
metric tensor is symmetric, that is,gi j = g ji for everyi, j ∈ {1, 2, . . . , p} and non-singular, that is
its inverse exists everywhere.

By replacing the above expression of the potential into the Euler-Lagrange equation and calcu-
lating the required derivatives, we get

∑
i

∑
j

∂gi j

∂xk
ẋi ẋ j −2∑

i

dgik

dt
ẋi −2∑

i

gikẍi = 0.

Now, the following identities are of use:

∑
i

dgik

dt
ẋi = ∑

i
∑̀ ∂gik

∂x`
ẋi ẋ` = ∑

i
∑̀ ∂g`k

∂xi
ẋi ẋ`,

because the indicesi and` may be swapped in the second-last expression. Then the equation of
minimizing curve becomes:

∑
i

gikẍi +
1
2 ∑

i
∑

j

∂gik

∂x j
ẋi ẋ j +

1
2 ∑

i
∑

j

∂g jk

∂xi
ẋi ẋ j −

1
2 ∑

i
∑

j

∂gi j

∂xk
ẋi ẋ j = 0.

7. In the present paper, we do not make use of the standard covariant/contra-variant notation for tensor indices nor of
the Einstein convention for summations.

778

QUASI-GEODESICNEURAL LEARNING ALGORITHMS OVER THE ORTHOGONAL GROUP

It is now worth introducing the inverse of the metric tensor, whose elements are denoted bygab,
defined by the equations∑bgabgbc = δa

c, whereδa
c denotes the fundamental tensor (and may be

regarded as a Kronecker ‘delta’). By multiplying both sides of the above equation byg`k and
summing with respect tok, the result is

∑
k

∑
i

gikgk`ẍi +
1
2 ∑

k
∑

i
∑

j

gk`
(

∂gik

∂x j
+

∂g jk

∂xi
− ∂gi j

∂xk

)

ẋi ẋ j = 0.

Let us further define the Christoffel (or affine connection) coefficients as

Γk
i j

def
=

1
2 ∑̀gk`

(

∂gi`

∂x j
+

∂g j`

∂xi
− ∂gi j

∂x`

)

,

through which the geodesic equation assumes the classical expression:

ẍk +∑
i

∑
j

Γk
i j ẋi ẋ j = 0 , k = 1 ,2 , · · · , p. (26)

As anticipated, it appears under the form of a set of second-order differential equations in the coor-
dinatesxk and needs therefore two boundary conditions. These may specify the geodesic endpoints:
x(t0) = x0 ∈ M andx(t1) = x1 ∈ M , or the initial position and initial velocity:x(t0) = x0 ∈ M and
ẋ(t0) = v0 ∈ Tx0M .

A result we make use of in the paper is that, when a Riemannian manifold is embedded into
an Euclidean space, the second derivative of the geodesic (¨x) belongs to the normal space to the
embedded manifold atx. Let us begin the proof of this important property by proving that, along
a geodesic, the quantitygx(ẋ, ẋ) is constant with respect to the parametert or, equivalently, that
d
dtgx(ẋ, ẋ) = 0. We have

d
dt

gx(ẋ, ẋ) =
d
dt ∑a ∑

b

gabẋaẋb

= ∑
a

∑
b

(

gabẍaẋb +gabẋaẍb +
dgab

dt
ẋaẋb

)

= 2∑
a

∑
b

gabẍaẋb +∑
a

∑
b

dgab

dt
ẋaẋb.

By replacing the expression of ¨xa from the geodesic equation (26) into the last expression, we get

d
dt

gx(ẋ, ẋ) = −2∑
a

∑
b

∑
i

∑
j

gabΓa
i j ẋbẋi ẋ j +∑

a
∑
b

dgab

dt
ẋaẋb.

Now, the following identity holds:

∑
b

gabΓb
i j =

1
2

(

∂gia

∂x j
+

∂g ja

∂xi
− ∂gi j

∂xa

)

,

thus it may be further written:

d
dt

gx(ẋ, ẋ) = −∑
a

∑
i

∑
j

∂gia

∂x j
ẋ j ẋi ẋa−∑

a
∑

i
∑

j

∂g ja

∂xi
ẋi ẋ j ẋa

+ ∑
a

∑
i

∑
j

∂gi j

∂xa
ẋaẋi ẋ j +∑

a
∑
b

dgab

dt
ẋaẋb.

779

FIORI

It is readily recognized that, e.g.,∑ j
∂gia
∂x j

ẋ j =
dgia
dt , therefore, all the sums in the above expression are

equal up to proper index re-ordering/renaming. As a consequence, the four terms sum up to zero.
The last step consists in recalling that the manifold has been supposed to be embedded in a

Euclidean ambient space and we assumegx(ẋ, ẋ)
def
= ẋT ẋ. Its derivative is thusd

dtgx(ẋ, ẋ) = 2ẍT ẋ = 0,
which proves that, under the specified conditions, the second derivative ẍ is orthogonal to the first
derivativeẋ in any point of the embedded geodesic.

References

S.-i. Amari.Differential-Geometrical Methods in Statistics. Lecture Notes in Statistics 28, Springer-
Verlag, 1989.

S.-i. Amari. Natural gradient works efficiently in learning.Neural Computation, 10:251–276, 1998.

T. Akuzawa. New fast factorization method for multivariate optimization and its realization as ICA
algorithm. InProceedings of the 3rd International Conference on Independent Component Anal-
ysis and Blind Signal Separationpages 114–119, San Diego, California, USA, 2001

E. Celledoni and S. Fiori. Neural learning by geometric integration of reduced ‘rigid-body’ equa-
tions.Journal of Computational and Applied Mathematics, 172(2):247–269, 2004.

A. Cichocki and S.-i. Amari.Adaptive Blind Signal and Image Processing, J. Wiley & Sons, 2002

S. Fiori. A theory for learning by weight flow on Stiefel-Grassman manifold.Neural Computation,
13(7):1625–1647, 2001.

S. Fiori. A theory for learning based on rigid bodies dynamics.IEEE Trans. on Neural Networks,
13(3):521–531, 2002.

S. Fiori. A fast fixed-point neural blind deconvolution algorithm.IEEE Trans. on Neural Networks,
15(2):455–459, 2004.

S. Fiori. Non-linear complex-valued extensions of Hebbian learning: An essay.Neural Computa-
tion, 17(4):779–838, 2005.

S. Fiori. Formulation and integration of learning differential equations on theStiefel manifold.IEEE
Trans. on Neural Networks, forthcoming.

S. Fiori and S.-i. Amari. Editorial: Special issue on “Geometrical Methods in Neural Networks and
Learning”,Neurocomputing, forthcoming.

W. K. Hastings. Monte Carlo sampling methods using Markov chains and their applications.
Biometrika, 57:97–109, 1970.

A. Hyvärinen, J. Karhunen and E. Oja.Independent Component Analysis, John Wiley & Sons, 2001.

D. J. Higham. An algorithmic introduction to numerical simulation of stochastic differential equa-
tions.SIAM Review, 43(3):525–546, 2001.

780

QUASI-GEODESICNEURAL LEARNING ALGORITHMS OVER THE ORTHOGONAL GROUP

R. E. Kass, B. P. Carlin, A. Gelman and R. M. Neal. Markov Chain Monte Carlo in practice: A
roundtable discussion.The American Statistician, 52(2):93–100, 1998.

N. Keshava and J. F. Mustard. Spectral unmixing.IEEE Signal Processing Magazine, 19(1):44–57,
2002.

X. Liu, A. Srivastava and K. Gallivan. Optimal linear representation of images for object recogni-
tion. IEEE Trans. on Pattern Analysis and Machine Intelligence, 26(5):662–666, 2004.

N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller and E. Teller. Equations of state
calculations by fast computing machines.Journal of Chemical Physics, 21:1087–1091, 1953.

Y. Nishimori. Learning algorithm for ICA by geodesic flows on orthogonalgroup. InProc. of the
International Joint Conference on Neural Networkspages 1625–1647, 1999.

P. J. Olver. Applications of Lie groups to differential equations.Graduate Texts in Mathematics 107,
Second Edition, Springer, 2003.

H. Park, S.-i. Amari and K. Fukumizu. Adaptive Natural Gradient Learning Algorithms for Various
Stochastic Models.Neural Networks, 13:755–764, 2000.

M. D. Plumbley. Conditions for non-negative independent component analysis.IEEE Signal pro-
cessing Letters, 9(6):177–180, 2002.

M. D. Plumbley. Algorithms for nonnegative independent component analysis.IEEE Trans. on Neu-
ral Networks, 14(3):534–543, 2003.

M. D. Plumbley. Lie group methods for optimization with orthogonality constraints. In Proceedings
of the International Conference on Independent Component Analysisand Blind Signal Separa-
tion, pages 1245–1252, Granada, Spain, 2004.

A. Srivastava, U. Grenander, G. R. Jensen and M. I. Miller. Jump-diffusion Markov processes
on orthogonal groups for object recognition.Journal of Statistical Planning and Inference,
103(1/2):15–37, 2002.

H. H. Yang and S.-i. Amari. Adaptive online learning algorithms for blind separation: Maximum
entropy and minimum mutual information.Neural Computation, 9:1457–1482, 1997.

G. R. Warnes. The normal kernel coupler: An adaptive MCMC method for efficiently sampling from
multi-modal distributions. Technical Report 39, Dept. of Statistics, University of Washington,
2001.

D. R. Wilson and T. R. Martinez. The general inefficiency of batch training for gradient descent
learning.Neural Networks, 16(10):1429–1451, 2003.

L.-Q. Zhang, A. Cichocki and S.-i. Amari. Geometrical structures of FIR manifold and multichannel
blind deconvolution.Journal of VLSI for Signal Processing Systems, 31:31–44, 2002.

781

Journal of Machine Learning Research 6 (2005) 783–816 Submitted 11/03; Revised 12/04; Published 5/05

Machine Learning Methods for Predicting Failures
in Hard Drives: A Multiple-Instance Application

Joseph F. Murray JFMURRAY@JFMURRAY.ORG

Electrical and Computer Engineering, Jacobs Schools of Engineering
University of California, San Diego
La Jolla, CA 92093-0407 USA

Gordon F. Hughes GFHUGHES@UCSD.EDU

Center for Magnetic Recording Research
University of California, San Diego
La Jolla, CA 92093 USA

Kenneth Kreutz-Delgado KREUTZ@ECE.UCSD.EDU

Electrical and Computer Engineering, Jacobs Schools of Engineering
University of California, San Diego
La Jolla, CA 92093-0407 USA

Editor: Dale Schuurmans

Abstract
We compare machine learning methods applied to a difficult real-world problem: predicting com-
puter hard-drive failure using attributes monitored internally by individual drives. The problem is
one of detecting rare events in a time series of noisy and nonparametrically-distributed data. We
develop a new algorithm based on the multiple-instance learning framework and the naive Bayesian
classifier (mi-NB) which is specifically designed for the lowfalse-alarm case, and is shown to have
promising performance. Other methods compared are supportvector machines (SVMs), unsuper-
vised clustering, and non-parametric statistical tests (rank-sum and reverse arrangements). The
failure-prediction performance of the SVM, rank-sum and mi-NB algorithm is considerably bet-
ter than the threshold method currently implemented in drives, while maintaining low false alarm
rates. Our results suggest that nonparametric statisticaltests should be considered for learning
problems involving detecting rare events in time series data. An appendix details the calculation
of rank-sum significance probabilities in the case of discrete, tied observations, and we give new
recommendations about when the exact calculation should beused instead of the commonly-used
normal approximation. These normal approximations may be particularly inaccurate for rare event
problems like hard drive failures.

Keywords: hard drive failure prediction, rank-sum test, support vector machines (SVM), exact
nonparametric statistics, multiple instance naive-Bayes

1. Introduction

We present a comparison of learning methods applied to a difficult real-world pattern recognition
problem: predicting impending failure in hard disk drives. Modern hard drives are reliable devices,
yet failures can be costly to users and many would benefit from a warningof potential problems
that would give them enough time to backup their data. The problem can be characterized as one of
detecting rare events from a time series of noisy and nonparametrically-distributed attributes.

c©2005 Joseph F. Murray, Gordon F. Hughes and Kenneth Kreutz-Delgado.

MURRAY, HUGHES AND KREUTZ-DELGADO

Hard drive manufacturers have been developing self-monitoring technology in their products
since 1994, in an effort to predict failures early enough to allow users tobackup their data (Hughes
et al., 2002). This Self-Monitoring and Reporting Technology (SMART) system uses attributes
collected during normal operation (and during off-line tests) to set a failure prediction flag. The
SMART flag is a one-bit signal that can be read by operating systems and third-party software to
warn users of impending drive failure. Some of the attributes used to make thefailure prediction
include counts of track-seek retries, read errors, write faults, reallocated sectors, head fly height
too low or high, and high temperature. Most internally-monitored attributes areerror count data,
implying positive integer data values, and a pattern of increasing attribute values (or their rates of
change) over time is indicative of impending failure. Each manufacturer develops and uses its own
set of attributes and algorithm for failure prediction. Every time a failure warning is triggered the
drive can be returned to the factory for warranty replacement, so manufacturers are very concerned
with reducing the false alarm rates of their algorithms. Currently, all manufacturers use a threshold
algorithm which triggers a SMART flag when any single attribute exceeds a predefined value. These
thresholds are set conservatively to avoid false alarms at the expense of predictive accuracy, with
an acceptable false alarm rate on the order of 0.1% per year (that is, onedrive in 1000). For the
SMART algorithm currently implemented in drives, manufacturers estimate the failure detection
rate to be 3-10%. Our previous work has shown that by using nonparametric statistical tests, the
accuracy of correctly detected failures can be improved to as much as 40-60% while maintaining
acceptably low false alarm rates (Hughes et al., 2002; Hamerly and Elkan,2001).

In addition to providing a systematic comparison of prediction algorithms, there are two main
novel algorithmic contributions of the present work. First, we cast the hard drive failure predic-
tion problem as a multiple-instance (MI) learning problem (Dietterich et al., 1997) and develop a
new algorithm termed multiple-instance naive Bayes (mi-NB). The mi-NB algorithmadheres to
the strict MI assumption (Xu, 2003) and is specifically designed with the low false-alarm case in
mind. Our second contribution is to highlight the effectiveness and computational efficiency of
nonparametric statistical tests in failure prediction problems, even when compared with powerful
modern learning methods. We show that the rank-sum test provides good performance in terms of
achieving a high failure detection rate with low false alarms at a low computational cost. While
the rank-sum test is not a fully general learning method, it may prove useful in other problems that
involve finding outliers from a known class. Other methods compared are support vector machines
(SVMs), unsupervised clustering using the Autoclass software of Cheeseman and Stutz (1995) and
the reverse-arrangements test (another nonparametric statistical test) (Mann, 1945). The best per-
formance overall was achieved with SVMs, although computational times weremuch longer and
there were many more parameters to set.

The methods described here can be used in other applications where it is necessary to detect
rare events in time series including medical diagnosis of rare diseases (Bridge and Sawilowsky,
1999; Rothman and Greenland, 2000), financial forecasting such as predicting business failures and
personal bankruptcies (Theodossiou, 1993), and predicting mechanical and electronic device failure
(Preusser and Hadley, 1991; Weiss and Hirsh, 1998).

1.1 Previous Work in Hard Drive Failure Prediction

In our previous work (Hughes et al., 2002) we studied the SMART failureprediction problem, com-
paring the manufacturer-selected decision thresholds to the rank-sum statistical test. The data set

784

METHODS FORPREDICTING FAILURES IN HARD DRIVES

used was from the Quantum Corporation, and contained data from two drive models. The data set
used in the present paper is from a different manufacturer, and includes many more attributes (61
vs. 14), which is indicative of the improvements in SMART monitoring that have occurred since
the original paper. An important observations made by Hughes et al. (2002) was that many of the
SMART attributes arenonparametrically distributed, that is, their distributions cannot be easily
characterized by standard parametric statistical model (such as normal, Weibull, chi-squared, etc.).
This observation led us to investigate nonparametric statistical tests for comparing the distribution
of a test drive attribute to the known distribution of good drives. Hughes et al. (2002) compared
single-variate and multivariate rank-sum tests with simple thresholds. The single-variate test was
combined for multiple attributes using a logical OR operation, that is, if any of thesingle attribute
tests indicated that the drive was not from the good population, then the drive was labeled failed.
The OR-ed test performed slightly better than the multivariate for most of the region of interest (low
false alarms). In the present paper we use only the single-variate rank-sum test (OR-ed decisions)
and compare additional machine learning methods, Autoclass and support vector machines. An-
other method for SMART failure prediction, callednaive Bayes EM(expectation-maximization),
using the original Quantum data was developed by Hamerly and Elkan (2001). The naive Bayes
EM is closely related to the Autoclass unsupervised clustering method used in the present work.
Using a small subset of the features provided better performance than using all the attributes. Some
preliminary results with the current SMART data were presented in Murray et al. (2003).

1.2 Organization

This paper is organized as follows: In Section 2, we describe the SMART data set used here, how it
differs from previous SMART data and the notation used for drives, patterns, samples, etc. In Sec-
tion 3, we discuss feature selection using statistical tests such as reverse arrangements and z-scores.
In Section 4, we describe the multiple instance framework, our new algorithm multiple-instance
naive-Bayes (mi-NB), the failure prediction algorithms, including supportvector machines, unsu-
pervised clustering and the rank-sum test. Section 5 presents the experimental results comparing
the classifiers used for failure prediction and the methods of preprocessing. A discussion of our
results is given in Section 6 and conclusions are presented in Section 7. AnAppendix describes the
calculation of rank-sum significance levels for the discrete case in the presence of tied values, and
new recommendations are given as to when the exact test should be used instead of the standard
approximate calculation.

2. Data Description

The data set consists of time series of SMART attributes from a single drive model, and is a different
data set than that used in Hughes et al. (2002); Hamerly and Elkan (2001).1 Data from 369 drives
were collected, and each drive was labeledgoodor failed, with 178 drives in the good class and
191 drives in the failed class. Drives labeled as good were from a reliability test, run in a controlled
environment by the manufacturer. Drives labeled as failed were returned to the manufacturer from
users after a failure. It should be noted that since the good drive data were collected in a controlled
uniform environment and the failed data come from drives that were operated by users, it is rea-
sonable to expect that there will be differences between the two populations due to the different

1. The SMART data set used in this paper is available athttp://cmrr.ucsd.edu/smart.

785

MURRAY, HUGHES AND KREUTZ-DELGADO

���������	
���
��	������	�

������ �����

������ ������

������ ������

������ �����

������ �����

������ �����

������ �����

������ �����

������ �����

������ ������

������ �����

������ �����

� � � �

� � � �
������ �����

������ �����

������ ������

Pattern

of n = 5

samples

N total

samples

Figure 1: Selected attributes from a single good drive. Each row of the table represents a sample (all
attributes recorded for a single time interval). The box shows then selected consecutive
samples in each patternx j used to make a failure prediction at the time pointed at by the
arrow. The first sample available in the data set for this drive is from Hours = 1927, as
only the most recent 300 samples are stored in drives of this model.

manner of operation. Algorithms that attempt to learn the difference between the good and failed
populations may in fact be learning this difference and not the desired difference between good and
nearly-failing drive samples. We highlight this point to emphasize the importanceof understanding
the populations in the data and considering alternative reasons for differences between classes.

A sampleis all the attributes for a single drive for a single time interval. Each SMART sam-
ple was taken at two hour intervals in the operating drives, and the most recent 300 samples are
saved on the disk. The number of available valid samples for each drivei is denotedNi , andNi

may be less than 300 for those drives that did not survive 600 hours ofoperation. Each sample
contains the drive’s serial number, the total power-on-hours, and 60other performance-monitoring
attributes. Not all attributes are monitored in every drive, and the unmonitored attributes are set to
a constant, non-informative value. Note that there is no fundamental reason why only 300 samples
were collected; this was a design choice made by the drive manufacturer. Methods exist by which
all samples over the course of the drive’s life can be recorded for future analysis. Figure 1 shows
some selected attributes from a single good drive, and examples of samples (each row) and patterns
(the boxed area). When making a failure prediction apatternx j ∈ R

n·a (wherea is the number of
attributes) is composed of then consecutive samples and used as input to a classifier. In our exper-
imentsn was a design parameter which varied between 1 and 100. The pair(Xi ,Yi) represents the
data in each drive, where the set of patterns isXi = [x1, . . . ,xNi] and the classification isYi ∈ {0,1}.
For drives labeled good,Yi = 0 and for failed drivesYi = 1.

Hughes et al. (2002) used a data set from a different manufacturer which contained many more
drives (3744 vs. 369) but with fewer failed drives (36 vs. 191). The earlier data set contained
fewer attributes (14 vs. 61), some of which are found in the new data set but with different names

786

METHODS FORPREDICTING FAILURES IN HARD DRIVES

and possibly different methods of measurement. Also, all good and failed drive data were collected
during a single reliability test (whereas in the current set, the failed driveswere returns from the
field).

A preliminary examination of the current set of SMART data was done by plotting the his-
tograms of attributes from good and failed drives. Figure 2 shows histograms of some representa-
tive attributes. As was found with earlier SMART data, for many of the attributes the distributions
are difficult to describe parametrically as they may be multimodal (such as the Temp4 attribute) or
very heavy tailed. Also noteworthy, many attributes have large numbers of zero values, and these
zero-count bins are truncated in the plots. These highly non-Gaussian distributions initially lead
us to investigate nonparametric statistical tests as a method of failure prediction.For other pattern
recognition methods, special attention should be paid to scaling and other preprocessing.

3. Feature Selection

The process of feature selection includes not only deciding which attributes to use in the classifier,
but also the number of time samples,n, used to make each decision, and whether to perform a
preprocessing transformation on these input time series. Of course, these choices depend strongly
on which type of classifier is being used, and issues of feature selection will also be discussed in the
following sections.

As will be demonstrated below, some attributes are not strongly correlated withfuture drive
failure and including these attributes can have a negative impact on classifier performance. Because
it is computationally expensive to try all combinations of attribute values, we usethe fast nonpara-
metric reverse-arrangements test and attribute z-scores to identify potentially useful attributes. If an
attribute appeared promising with either method it was considered for use in thefailure detection
algorithms (see Section 4).

3.1 Reverse Arrangements Test

Thereverse arrangements testis a nonparametric test for trend which is applied to each attribute in
the data set (Mann, 1945; Bendat and Piersol, 2000). It is used herebased on the idea that a pattern
of increasing drive errors is indicative of failure. Suppose we have atime sequence of observations
of a random variable,xi , i = 1...N. In our casexi could be, for example, the seek error count of
the most recent sample. The test statistic,A = ∑N−1

i=1 Ai , is the sum of allreverse arrangements,
where a reverse arrangement is defined as an occurrence ofxi > x j wheni < j. To findA we use the
intermediate sumsAi and the indicator functionhi j ,

Ai =
N

∑
j=i+1

hi j where hi j = I(xi > x j) .

We now give an example of calculatingA for the case ofN = 10. With datax (which is assumed to
be a permutation of the ranks of the measurements),

x = [x1, . . . ,x10] = [1,4,3,7,2,8,6,10,9,5] ,

the values ofAi for i = 1. . .9 are found,

A1 =
10

∑
j=2

h1 j = 0, A2 =
10

∑
j=3

h2 j = 2, . . . A9 =
10

∑
j=9

h9 j = 1 ,

787

MURRAY, HUGHES AND KREUTZ-DELGADO

20 40 60
0

5000

10000

15000
Temp4 −− Good

0 20 40 60 80
0

5000

10000

15000
Failed

0 10 20 30 40 50
0

5

10

15

20

25
ReadError3 −− Good

0 50 100 150 200
0

5

10

15

20

25
Failed

0 200 400 600 800
0

200

400

ReadError18 −− Good

0 1 2 3 4 5

x 10
4

0

200

400

Failed

0 50 100
0

2

4

ReadError19 −− Good

0 0.5 1 1.5 2

x 10
4

0

2

4

Failed

0 1 2 3 4 5

x 10
4

0

500

1000
Servo10 −− Good

0 1 2 3 4

x 10
6

0

500

1000
Failed

Figure 2: Histograms of representative attributes from good and failed drives, illustrating the non-
parametric nature of many of the attributes. Axis scales are different for each plot to
emphasize features of their distributions. Zero-count bins are much larger than plotted
and the count-axis is shortened accordingly.

788

METHODS FORPREDICTING FAILURES IN HARD DRIVES

with the values[Ai] = [0,2,1,3,0,2,1,2,1]. The test statisticA is the sum of these values,A = 12.
For large values ofN, the test statisticA is normally distributed under the null hypothesis of

no trend (all measurements are random with the same distribution) with mean and variance (Mann,
1945),

µA =
N(N−1)

4
, σ2

A =
2N3 +3N2−5N

72
.

For small values ofN, the distribution can be calculated exactly by a recursion (Mann, 1945, eq. 1).
First, we find the countCN(A) of permutations of{1,2, . . . ,N} with A reverse arrangements,

CN(A) =
A

∑
i=A−N+1

CN−1(i) ,

whereCN(A) = 0 forA< 0 andC0(A) = 0. Since every permutation is equally likely with probability
1
n! under the null hypothesis, the probability ofA is CN(A)

n! .
Tables of the exact significance levels ofA have been made. For significance levelα, Appendix

Table A.6 of Bendat and Piersol (2000) gives the acceptance regions,

AN;1−α/2 < A≤ AN;α/2 ,

for the null hypothesis of no trend in the sequencexi (that is, thatxi are independent observations of
the same underlying random variable).

The test is formulated assuming that the measurements are drawn from a continuous distribution,
so that the ranksx are distinct (no ties). SMART error count data values are discrete and allow the
possibility of ties. It is conventional in rank-based methods to add random noise to break the ties,
or to use themidrankmethod described in Section 4.6.

3.2 Z-scores

Thez-scorecompares the mean values of each attribute in either class (good or failed). It is calcu-
lated over all samples,

z=
mf −mg√

σ2
f

nf
+

σ2
g

ng

,

wheremf andσ2
f are the mean and variance of the attribute in failed drives,mg andσ2

g are the mean
and variance in good drives,nf andng are the total number of samples of failed and good drives.
Large positive z-scores indicate the attribute is higher in the population of failed drive samples, and
that there is likely a significant difference in the means between good and failed samples. However,
it should be noted that the z-score was developed in the context of Gaussian statistics, and may be
less applicable to nonparametric data (such as the error count attributes collected by hard drives).

3.3 Feature Selection for SMART Data

To apply the reverse arrangements test to the SMART data for the purposeof feature extraction, the
test is performed on a set of 100 samples taken at the end of the time series available. To break
ties, uniform random noise within the range[−0.1,0.1] is added to each value (which are initially

789

MURRAY, HUGHES AND KREUTZ-DELGADO

non-negative integers). The percentage of drives for which the nullhypothesis of no trend is rejected
is calculated for good and failed drives. Table 3.3 lists attributes and the percent of drives that have
significant trends for the good and failed populations. The null hypothesis (no trend) was accepted
for 1968≤ A ≤ 2981, for a significance level higher than 99%. We are interested in attributes
that have both a high percentage of failed drives with significant trends and a low percentage of
good drives with trends, in the belief that an attribute that increases over timein failed drives while
remaining constant in good drives is likely to be informative in predicting impending failure.

From Table 3.3 we can see that attributes such as Servo2, ReadError18and Servo10 could be
useful predictors. Note that these results are reported for a test of one group of 100 samples from
each drive using a predefined significance level, and no learning was used. This is in contrast to the
way a failure prediction algorithm must work, which must test each of many (usuallyN) consecutive
series of samples, and if any fail, then the drive is predicted to fail (see Section 4.1 for details).

Some attributes (for example CSS) arecumulative, meaning that they report the number of
occurrences since the beginning of the drive’s life. All cumulative attributes either will have no
trend (nothing happens) or have a positive trend. Spin-ups is the numberof times the drive motors
start the platters spinning, which happens every time the drive is turned on,or when it reawakens
from a low-power state. It is expected that most drives will be turned on and off repeatedly, so it is
unsurprising that both good and failed drives show increasing trends inTable 1. Most attributes (for
example ReadError18) report the number of occurrences during the two-hour sample period.

Table 3.3 lists selected attributes sorted by descending z-score. Attributes near the top are
initially more interesting because of more significant differences in the means,that is, the mean
value of an attribute (over all samples) for failed drives was higher than for good drives. Only a few
of the attributes had negative z-scores, and of these even fewer weresignificant. Some attributes
with negative z-scores also appeared to be measured improperly for somedrives.

From the results of the reverse arrangements and z-score tests, a set of 25 attributes2 was selected
by hand from those attributes which appear to be promising due to increasingattribute trends in
failed drives and large z-score values. The tests also help eliminate attributes that are not measured
correctly, such as those with zero or very high variance.3 This set of attributes was used in the SVM,
mi-NB and clustering algorithms (see the next section). Individual attributesin this set were tried
one at a time with the rank-sum test. Attributes that provided good failure detection with low false
alarms in the classifiers were then used together (see Section 5).

We note that the feature selection process is not a black-box automatic method, and required
trial-and-error testing of attributes and combinations of attributes in the classifiers. Many of the
attributes that appeared promising from the z-score and reverse-arrangements tests did not actually
work well for failure prediction, while other attributes (such as ReadError19) were known to be im-
portant from our previous work and from engineering and physics knowledge of the problem gained
from discussions with the manufacturers. While an automatic feature selectionmethod would be
ideal, it would likely involve a combinatorial optimization problem which would be computationally
expensive.

2. Attributes in the set of 25 are: GList1, PList, Servo1, Servo2, Servo3, Servo5, ReadError1, ReadError2, ReadError3,
FlyHeight5, FlyHeight6, FlyHeight7, FlyHeight8, FlyHeight9, FlyHeight10, FlyHeight11, FlyHeight12, ReadEr-
ror18, ReadError19, Servo7, Servo8, ReadError20, GList2, GList3, Servo10.

3. Attributes that were not used because all measurements were zero are: Temp2, Servo4, ReadErr13-16. Also excluded
are other attributes that appear to be measured improperly for certain drives are FlyHeight13-16, Temp5, and Temp6.

790

METHODS FORPREDICTING FAILURES IN HARD DRIVES

Attribute % Good % Failed
Temp1 11.8% 48.2%
Temp3 34.8% 42.9%
Temp4 8.4% 58.9%
GList1 0.6% 10.7%
PList 0.6% 3.6%
Servo1 0.0% 0.0%
Servo2 0.6% 30.4%
Servo3 0.6% 0.0%
CSS 97.2% 92.9%
ReadError1 0.0% 0.0%
ReadError1 0.6% 5.4%
ReadError3 0.0% 0.0%
WriteError 1.1% 0.0%
ReadError18 0.0% 41.1%
ReadError19 0.0% 0.0%
Servo7 0.6% 0.0%
ReadError20 0.0% 0.0%
GList3 0.0% 8.9%
Servo10 1.7% 39.3%

Table 1: Percent of drives with significant trends by the reverse arrangements test for selected at-
tributes, which indicates potentially useful attributes. Note that this test is performed only
on the lastn = 100 samples of each drive, while a true failure prediction algorithm must
test each pattern ofn samples taken throughout the drives’ history. Therefore, these results
typically represent an upper bound on the performance of a reverse-arrangements classi-
fier. CSS are cumulative and are reported over the life of the drive, so itis unsurprising
that most good and failed drives show increasing trends (which simply indicate that the
drive has been turned on and off).

The z-scores for each attribute were calculated using the entire data set, which may lead to ques-
tions about training on the test set. (The reverse-arrangements test wascalculated using only about
1/3 of the data). In practical terms, z-scores obtained using random subsets are similar and lead
to the same conclusions about attribute selection. Conceptually, however, the issue remains: is it
correct to use data that has been used in the feature selection process inthe test sets used for estimat-
ing performance? Ideally, the reuse of data should be avoided, and thedouble-resamplingmethod
should be used to estimate performance (Cherkassky and Mulier, 1998).In double-resampling, the
data is divided into atraining set and apredictionset, with the prediction set used only once to
measure error, and the training set further divided intolearningandvalidationsets that are used for
feature selection and parameter tuning (by way of cross-validation). Double-resampling produces
an unbiased estimate of error, but for finite data sets the estimate can be highlydependent on the
initial choice of training and prediction sets, leading to high variance estimates.For the hard-drive
failure problem, the number of drives is limited, and the variance of the classification error (see Sec-
tion 5) is already quite high. Further reducing the data available by creating aseparate prediction

791

MURRAY, HUGHES AND KREUTZ-DELGADO

set would likely lead to high-variance error estimates (the variance of whichcannot be estimated).
We note that for all the classification error results in Section 5, the test set was not seen during the
training process. The issue just discussed relates to the question of whether we have biased the re-
sults by having performed statistical tests on the complete data set and used those results to inform
our (mostly manual) feature and attribute selection process. The best solution is to collect more
data from drives to validate the false alarm and detection rates, which a drive manufacturer would
do in any case to test the method and set the operating curve level before actual implementation of
improved SMART algorithms in drives.

Attribute z-score
Servo5 45.4
Servo10 29.5
Writes 28.1
FlyHeight6 24.8
FlyHeight8 23.7
FlyHeight9 22.7
FlyHeight7 22.5
Reads 22.3
FlyHeight10 21.3
FlyHeight11 19.8
FlyHeight13 19.8
FlyHeight12 19.6
Servo2 16.2
ReadError18 15.1
FlyHeight1 12.4
ReadError1 11.2
ReadError3 10.2
ReadError1 9.5
PList 8.3

Table 2: Attributes with large positive z-score values.

4. Failure Detection Algorithms

We describe how the pattern recognition algorithms and statistical tests are applied to the SMART
data set for failure prediction. First, we discuss the preprocessing thatis done before the data
is presented to some of the pattern recognition algorithms (SVM and Autoclass); the rank-sum
and reverse-arrangements test require no preprocessing. Next, wedevelop a new algorithm called
multiple-instance naive-Bayes (mi-NB) based on the multiple-instance framework and especially
suited to low-false alarm detection. We then describe how the SVM and unsupervised clustering
(Autoclass) algorithms are applied. Finally we discuss the nonparametric statistical tests, rank-sum
and reverse-arrangements.

Some notation and methods are common among all the pattern recognition algorithms.A vector
x of n consecutive samples (out of theN total samples from each drive) of each selected attribute
is used to make the classification, and every vector ofn consecutive samples in the history of the

792

METHODS FORPREDICTING FAILURES IN HARD DRIVES

drive is used (see Figure 1). The length ofx is (n×a) wherea is the number of attributes. There
areN vectorsx created, with zeros prepended to thosex in the early history of the drive. Results
are not significantly different if the early samples are omitted (that is,N−n vectors are created) and
this method allows us to make SMART predictions in the very early history of the drive. If anyx is
classified as failed, then the drive is predicted to fail. Since the classifier is applied repeatedly to all
N vectors from the same drive, each test must be very resistant to false alarms.

4.1 Preprocessing: Scaling and Binning

Because of the nonparametric nature of the SMART data, two types of preprocessing were consid-
ered: binning and scaling. Performance comparison of the preprocessing is given in Section 5.

The first type of preprocessing isbinning (or discretization), which takes one of two forms:
equal-frequencyor equal-width(Dougherty et al., 1995). In equal-frequency binning, an attributes’
values are converted into discrete levels such that the number of counts ateach level is the same
(the discrete levels are percentile groups). In equal-width binning, eachattribute’s range is divided
into a fixed number of equal magnitude bins and values are converted into binnumbers. In both
cases, the levels are set based on the training set. In both the equal-width and equal-frequency
cases, the rank-order with respect to bin is preserved (as opposed toconverting the attribute into
multiple binary nominal attributes, one for each bin). Because there are a large number of zeros for
some attributes in the SMART data (see Figure 2), a special zero-count binis used with both equal-
width and equal-frequency binning. The two types of binning were compared using the Autoclass
and SVM classifiers. For the SVM, the default attribute scaling in the algorithmimplementation
(MySVM) was also compared to binning (see 4.4).

Binning (as a form of discretization) is a common type of preprocessing in machine learning
and can provide certain advantages in performance, generalization andcomputational efficiency
(Frank and Witten, 1999; Dougherty et al., 1995; Catlett, 1991). As shown by Dougherty et al.
(1995), discretization can provide performance improvements for certainclassifiers (such as naive
Bayes), and that while more complex discretization methods (such as those involving entropy) did
provide improvement over binning, the difference in performance between binning and the other
methods was much smaller than that between discretization and no discretization.Also, binning can
reduce overfitting resulting in a simpler classifier which may generalize better (Frank and Witten,
1999). Preserving the rank-order of the bins so that the classifier may take into account the ordering
information (which we do) has been shown to be an improvement over binninginto independent
nominal bins (Frank and Witten, 1999). Finally, for many algorithms, it is more computationally
efficient to train using binned or discretized attributes rather than numericalvalues. Equal-width
binning into five bins (including the zero-count bin) was used successfully by Hamerly and Elkan
(2001) on the earlier SMART data set, and no significant difference wasfound using up to 20 bins.

4.2 The Multiple-Instance Framework

The hard drive failure prediction problem can be cast as amultiple-instance learningproblem, which
is a two-class semi-supervised problem. In multiple-instance (MI) learning, wehave a set of objects
which generate manyinstancesof data. All the data from one object is known as abag. Each bag
has a single label{0,1}, which is assumed to be known (and given during training), while each
instance also has a true label{0,1} which is hidden. The label of a bag is related to the correct
labeling of the instances as follows: if the label of each instance is 0, then thebag label is 0; ifany

793

MURRAY, HUGHES AND KREUTZ-DELGADO

of the instances is labeled 1, then the bag label is 1. This method of classifyinga bag as 1 if any of
its instances is labeled 1 is known as theMI assumption. Because the instance labels are unknown,
the goal is to learn the labels, knowing that at least one of the instances in each 1 bag has label 1,
and all the instance labels in each 0 bag should be 0.

The hard drive problem can be fit naturally into the MI framework. Each patternx (composed
of n samples) is an instance, and the set of all patterns for a drivei is the bagXi . The termsbag
label anddrive labelare interchangeable, with failed drives labeledYi = 1 and good drives labeled
Yi = 0. The hidden instance (pattern) labels arey j , j = 1. . .Ni for the Ni instances in each bag
(drive). Figure 3 show a schematic of the MI problem.

The multiple-instance framework was originally proposed by Dietterich et al. (1997) and applied
to a drug activity prediction problem; that of discovering which molecules (each of which may exist
in a number of different shapes, the group of all shapes for a specificmolecule comprising a bag)
bind to certain receptors, specifically that of smell receptors for the scent of musk. The instances
consist of 166 attributes that represent the shape of one possible configuration of a molecule from X-
ray crystallography, and the class of each molecule (bag) is 1 if the molecule(any instance) smells
like musk as determined by experts. The so-called “musk” data sets have become the standard
benchmark for multiple-instance learning.

The algorithm developed by Dietterich et al. (1997) is called axis-parallel-rectangles, and other
algorithms were subsequently developed based on many of the paradigms in machine learning such
as support vector machines (Andrews et al., 2003), neural networks, expectation-maximization,
nearest-neighbor (Wang and Zucker, 2000), as well as special purpose algorithms like the diverse-
density algorithm. An extended discussion of many of these is given by Xu (2003), who makes
the important distinction between two classes of MI algorithms: those which adhere to the MI
assumption (as described above) and those which make other assumptions,most commonly that
the label for each positive bag is determined by some other method than simply if one instance has
a positive label. Algorithms that violate the MI assumption usually assume that the data from all
instances in a bag is available to make a decision about the class. Such algorithms are difficult to
apply to the hard drive problem, as we are interested in construction on-lineclassifiers that make a
decision based on each instance (pattern) as it arrives. Algorithms that violate the MI-assumption
include Citation-k-Nearest-Neighbors (Wang and Zucker, 2000), SVMs with polynomial minimax
kernel, and the statistical and wrapper methods of Xu (2003), and these will not be considered
further for hard drive failure prediction.

4.3 Multiple Instance Naive Bayes (mi-NB)

We now develop a new multiple instance learning algorithm using naive Bayes (also known as the
simple Bayesian classifier) and specifically designed to allow control of the false alarm rate. We
call this algorithm mi-NB (multiple instance-naive Bayes) because of its relationto the mi-SVM
algorithm of Andrews et al. (2003). The mi-SVM algorithm does adhere to the MI assumption
and so could be used for the hard drive task, but since it requires repeated relearning of an SVM,
it is presently too computationally intensive. By using the fast naive Bayes algorithm as the base
classifier, we can create an efficient multiple-instance learning algorithm.

The mi-NB algorithm begins by assigning a labely j to each pattern: for good drives, all patterns
are assignedy j = 0; for failed drives, all patterns except for the last one in the time series are
assignedy j = 0, with the last one assigned to the failed class,yNi = 1. Using these class labels, a

794

METHODS FORPREDICTING FAILURES IN HARD DRIVES

Figure 3: Multiple-instance learning. The numbers are bag (drive) numbers, and each circle or
square represents an instance (pattern). Instances from class +1 (failed drives) are squares,
while instances from class 0 are circles. The + or - in each instance represents the hidden
underlying class of each instance, 1 or 0 respectively. The decision surface represents the
classification boundary induced by a classifier. Grayed instances are those misclassified
by the decision surface. Bag 1: All - instances are classified correctly,and the bag is
correctly classified as 0 (good drive). Bag 2: One instance is classifiedas +, so the bag is
correctly classified as 1 (failed drive). Bag 3: One instance of the faileddrive is classified
as -, but another is classified as +, so the bag is correctly classified (failed). Bag 4: An
instance with true class - is labeled +, so the bag is misclassified as 1 (false alarm). Bag
5: All instances of the + bag (failed drive) are classified as -, so the bagis misclassified
as 0 (missed detection).

naive Bayes model is trained (see below). Using the NB model, each patternin the training set is
assigned to a clasŝy j ∈ {0,1}. Because nearly all patterns are assigned to the good classy j = 0, this
initial condition insures that the algorithm will start with a low false alarm rate. Ineach iteration of
the mi-NB algorithm, for every failed driveYi = 1 that was misclassified (that is, all patterns were
classified as good,̂y j = 0), the patternj∗ (with current labely j = 0) that is most likely to be from
the failed class,j∗ = argmax

j∈{1...Ni |y j=0}
f1(x j), is relabeled to the failed classy j∗ = 1, wheref1(x) is the

log-posterior of class 1 (see Equation 1 below). The NB model is updated using the new class labels
(which can be done very efficiently). Iterations continue until the false alarm rate on the training

795

MURRAY, HUGHES AND KREUTZ-DELGADO

set increases to over the target level,FA > FAtarget. The mi-NB algorithm is detailed in Algorithm
1. The procedure given in Algorithm 1 may be applied with different base classifiers other than
naive Bayes, although the resulting algorithm may be computationally expensive unless there is an
efficient way to update the model without retraining from scratch. Other stopping conditions could
also be used, such as detection rate greater than a certain value or numberof iterations.

Algorithm 1 mi-NB Train (for SMART failure prediction)
Input: x,Y , FAdesired(desired false alarm rate)
Initialize:

Good drives: For drives withYi = 0 initializey j = 0 for j = 1. . .Ni

Failed drives: For drives withYi = 1 initializey j = 0 for j = 1. . .Ni−1, andyNi = 1
Learn NB model
ŷ j = arg max

c∈{0,1}
fc(x j) Classify each pattern using the NB model

FindFA andDET rate
while FA < FAtarget do

for all Misclassified failed drives,̂y j = 0∀ j = 1. . .Ni do
j∗= argmax

j∈{1...Ni |y j=0}
f1(x j) Find pattern closest to decision surface with labely j = 0

y j∗← 1 Reclassify the pattern as failed
Update NB model

end for
ŷ j = arg max

c∈{0,1}
fc(x j) Reclassify each pattern using the NB model

FindFA andDET rate
end while
Return: NB model

In Bayesian pattern recognition, themaximum a posterior(MAP) method is used to estimate
the clasŝy of a patternx,

ŷ = arg max
c∈{0,1}

p(y = c|x)

= arg max
c∈{0,1}

p(x|y = c)p(y = c) .

The “naive” assumption in naive Bayes is that the class-conditional distribution p(x|y = c) is fac-
torial (independent components),p(x|y = c) = ∏n·a

m=1 p(xm|y = c) wheren ·a is the size ofx (see
Section 2). The class estimate becomes,

fc(x) =
n·a

∑
m=1

log p̂(xm|y = c)+ log p̂(y = c)

ŷ = arg max
c∈{0,1}

fc(x) , (1)

where we have used estimatesp̂ of the probabilities. Naive Bayes has been found to work well
in practice even in cases where the componentsxm are not independent, and a discussion of this
is given by Domingos and Pazzani (1997). Assuming discrete distributionsfor xm, counts of the

796

METHODS FORPREDICTING FAILURES IN HARD DRIVES

number elements #{·} can be found. Training a naive Bayes classifier is then a matter of finding the
smoothed empirical estimates,

p̂(xm = k|y = c) =
#{xm = k,y = c}+ `

#{y = c}+2`

p̂(y = c) =
#{y = c}+ `

#{patterns}+2`
, (2)

where` is a smoothing parameter, which we set to` = 1 corresponding to Laplace smoothing
(Orlitsky et al. (2003), who also discuss more recent methods for estimatingprobabilities, including
those based on the Good-Turing estimator). Ng and Jordan (2002) showthat naive Bayes has a
higher asymptotic error rate (as the amount of training data increases) butthat it approaches this
rate more quickly than other classifiers and so may be preferred in small-sample problems. Since
each time we have to switch a pattern in the mi-NB iteration, we only have to change afew of the
counts in (2), updating the model after relabeling certain patterns is very fast.

Next, we show that the mi-NB algorithm has non-decreasing detection and false alarm rates
over the iterations.

Lemma 1 At each iteration t, the mi-NB algorithm does not decrease the detection andfalse alarm
rates (as measured on the training set) over the previous iteration t−1,

f (t−1)
1 (x j)≤ f (t)

1 (x j)

f (t−1)
0 (x j)≥ f (t)

0 (x j) ∀ j = 1. . .N . (3)

Proof At iterationt−1 the probability estimates for a certaink are,

p̂t−1(xm = k|y = 1) =
b+ `

d+2`
,

whereb = #{xm = k,y = c},d = #{y = c}, and of courseb≤ d. Since class estimates are always
switched fromy j = 0 to 1, for somek

p̂t(xm = k|y = 1) =
b+ `+1
d+2`+1

(and for otherk it will remain constant). It is now shown that the conditional probability estimates
are non-decreasing,

p̂t−1(xm = k|y = 1) ≤ p̂t(xm = k|y = 1)

(b+ `)(d+2`+1) ≤ (d+2`)(b+ `+1)

b ≤ d+ ` ,

with equality only in the case ofb = d, ` = 0. Similarly, the prior estimate is also non-decreasing,
p̂t−1(y = 1)≤ p̂t(y = 1). From (1) this implies thatf (t−1)

1 (x)≤ f (t)
1 (x).

For classy = 0, it can similarly be shown that̂pt−1(xm = k|y = 0) ≥ p̂t(xm = k|y = 0) and

p̂t−1(y = 0)≥ p̂t(y = 0), implying f (t−1)
0 (x j)≥ f (t)

0 (x j) and completing the proof.

797

MURRAY, HUGHES AND KREUTZ-DELGADO

Note that Algorithm 1 never relabels a failed pattern as a good pattern, as thismight reduce
the detection rate (and invalidate the proof of Lemma 1 in Section 4.3). The initial conditions of
the algorithm ensure a low false alarm rate, and the algorithm proceeds (in agreedy fashion) to
pick patterns that are mostly likely representatives of the failed class withoutre-evaluating previous
choices. A more sophisticated algorithm could be designed that moves patterns back to the good
class as they become less likely failed candidates, but this requires a computationally expensive
combinatorial search.

4.4 Support Vector Machines (SVMs)

The support vector machine (SVM) is a popular modern pattern recognitionand regression algo-
rithm. First developed by Vapnik (1995), the principle of the SVM classifieris to project the data
into a higher dimensional space where the classes are separated by a linearhyperplane which is
defined by a small set of support vectors. For an introduction to SVMs for pattern recognition, see
Burges (1998). The hyperplane is found by a quadratic optimization problem, which can be for-
mulated for either the case where the patterns are linearly separable, or thenon-linearly separable
case which requires the use of slack variablesξi for each pattern and a parameterC that penalizes
the slack. We use the non-linearly separable case and in addition use different penaltiesL+,L− for
incorrectly labeling each class. The hyperplane is found by solving,

min
w,b,ξ

1
2
‖w‖2 +C

(

∑
∀i|yi=+1

L+ξi + ∑
∀i|yi=−1

L−ξi

)

subject to: yi(wTφ(xi)+b)≥ 1−ξi

ξi ≥ 0

wherew andb are the parameters of the hyperplaneŷ = wTφ(x) + b andφ(·) is the mapping to
the high-dimensional space implicit in the kernelk(x j ,xk) = φ(x j)

Tφ(xk) (Burges, 1998). In the
hard-drive failure problem,L+ penalizes false alarms, andL− penalizes missed detections. SinceC
is multiplied by bothL+ andL−, there are only two independent parameters and we setL− = 1 and
adjustC,L+ when doing a grid search for parameters.

To apply the SVM to the SMART data set, drives are randomly assigned into training and test
sets for a single trial. For validation, means and standard deviations of detection and false alarm
rates are found over 10 trials, each with different training and test sets.Each pattern is assigned
to the same label as the drive (all patterns in a failed driveY = 1 are assigned to the failed class,
yi = +1, and all patterns in good drivesY = 0 are set toyi = −1). Multiple instance learning
algorithms like mi-SVM (Andrews et al., 2003) could be used to find a better wayof assigning
pattern classes, but these add substantial extra computation to the already expensive SVM training.

We use the MySVM4 package developed by Ruping (2000). Parameters for the MySVM soft-
ware are set as follows:epsilon= 10−2, max iterations= 10000,convergenceepsilon= 10−3.
When equal-width or equal-frequency binning is used (see Section 4.1),no scaleis set; otherwise,
the default attribute scaling in MySVM is used. The parametersC andL+ (with L− = 1) are var-
ied to adjust the tradeoff between detection and false alarms. Kernels testedinclude dot product,
polynomials of degree 2 and 3, and radial kernels with width parameterγ.

4. MySVM is available at:http://www-ai.cs.uni-dortmund.de/SOFTWARE/MYSVM.

798

METHODS FORPREDICTING FAILURES IN HARD DRIVES

4.5 Clustering (Autoclass)

Unsupervised clustering algorithms can be used for anomaly detection. Here, we use the Autoclass
package (Cheeseman and Stutz, 1995) to learn a probabilistic model of the training data from only
good drives. If any pattern is an anomaly (outlier) from the learned statistical model of good drives,
then that drive is predicted to fail. Theexpectation maximization (EM)algorithm is used to find
the highest-likelihood mixture model that fits the data. A number of forms of the probability den-
sity function (pdf) are available, including Gaussian, Poisson (for integer count data) and nominal
(unordered discrete, either independent or covariant). For the harddrive problem, they are all set
to independent nominal to avoid assuming a parametric form for any attribute’s distribution. This
choice results in an algorithm very closely related to thenaive Bayes EMalgorithm (Hamerly and
Elkan, 2001), which was found to perform well on earlier SMART data.

Before being presented to Autoclass the attribute values are discretized intoeither equal-freq-
uency bins or equal-width bins (Section 4.1), where the bin range is determined by the maximum
range of the attribute in the training set (of only good drives). An additional bin was used for zero-
valued attributes. The training procedure attempts to find the most likely mixture model to account
for the good drive data. The number of clusters can also be determined byAutoclass, but here we
have restricted it to a small fixed number from 2 to 10. Hamerly and Elkan (2001) found that for
the naive Bayes EM algorithm, 2 clusters with 5 bins (as above) worked best. During testing, the
estimated probability of each pattern under the mixture model is calculated. A failure prediction
warning is triggered for a drive if the probability of any of its samples is belowa threshold (which is
a parameter of the algorithm). To increase robustness, the input pattern contained between 1 and 15
consecutive samplesn of each attribute (as described above for the SVM). The Autoclass threshold
parameter was varied to adjust tradeoff between detection and false alarmrates.

4.6 Rank-sum Test

The Wilcoxon-Mann-Whitney rank-sum test is used to determine if the two random data sets arise
from the same probability distribution (Lehmann and D’Abrera, 1998, pg. 5). One setT comes
from the drive under test and the otherR is areference setcomposed of samples from good drives.
The use of this test requires some assumptions to be made about the distributions underlying the
attribute values and the process of failure. Each attribute has agood distribution Gand anabout-to-
fail distribution F. For most of the life of the drive, each attribute value is chosen from theG, and
then at some time before failure, the values begin to be chosen fromF . This model posits an abrupt
change fromG to F , however, the test should still be expected to work if the distribution changes
gradually over time, and only give a warning when it has changed significantly from the reference
set.

The test statisticWS is calculated by ranking the elements ofR (of sizem) andT (of sizen) such
that each element ofRandT has a rankS∈ [1,n+m] with the smallest element assignedS= 1. The
rank-sumWS is the sum of the ranksSof the test set.

The rank-sum test is often presented assuming continuous data. The attributes in the SMART
data are discrete which creates the possibility of ties. Tied values are ranked by assigning identical
values to theirmidrank (Lehmann and D’Abrera, 1998, pg. 18), which is the average rank that
the values would have if they were not tied. For example, if there were threeelements tied at the
smallest value, they would each be assigned the midrank1+2+3

3 = 2.

799

MURRAY, HUGHES AND KREUTZ-DELGADO

If the set sizes are large enough (usually, if the smaller setn > 10 orm+n > 20), the rank-sum
statisticWS is normally distributed under the null hypothesis (T andRare from the same population)
due to the central limit theorem, with mean and variance:

E(WS) =
1
2

n(m+n+1)

Var(WS) =
mn(m+n+1)

12
−CT ,

whereCT is the ties correction, defined as

CT =

mn
e
∑

i=1
(d3

i
−di)

12(m+n)(m+n−1)
,

wheree is the number of distinct values inR andT, anddi is the number of tied elements at each
value (see Appendix A for more details). The probability of a particularWS can be found using the
standard normal distribution, and a critical valueα can be set at which to reject the null hypothesis.
In cases of smaller sets where the central limit theorem does not apply (or where there are many tied
values), an exact method of calculating the probability of the test statistic is used (see Appendix A,
which also gives examples of calculating the test statistic).

For application to the SMART data, the reference setR for each attribute (sizem= 50 for most
experiments) is chosen at random from the samples of good drives. Thetest setT (sizen = 15 for
most experiments) is chosen from consecutive samples of the drive under test. If the test set for any
attribute over the history of the drive is found to be significantly different from the reference set
R then the drive is predicted to fail. The significance levelα is adjusted in the range[10−7,10−1]
to vary the tradeoff between false alarms and correct detections. We usethe one-sided test ofT
coming from a larger distribution thanR, against the hypothesis of identical distributions.

Multivariate nonparametric rank-based tests that exploit correlations between attribute values
have been developed (Hettmansperger, 1984; Dietz and Killeen, 1981; Brunner et al., 2002). A
different multivariate rank-sum test was successfully applied to early SMART data (Hughes et al.,
2002). It exploits the fact that error counts are always positive. Here, we use a simple OR test
to use two or more attributes: if the univariate rank-sum test for any attributeindicates a different
distribution from the reference set, then that pattern is labeled failed. The use of the OR test is
motivated by the fact that very different significance level ranges (per-pattern) for each attribute
were needed to achieve low false alarm rates (per-drive).

4.7 Reverse Arrangements Tests

The reverse arrangements test described above for feature selectioncan also be used for failure
prediction. No training set is required, as the test is used to determine if thereis a significant trend
in the time series of an attribute. For use with the SMART data, 100 samples are used in each test,
and every consecutive sequence of samples is used. For each drive, if any test of any attribute shows
a significant trend, then the drive is predicted to fail. As with the rank-sum test, the significance
level α controls the tradeoff between detection and false alarm rates.

800

METHODS FORPREDICTING FAILURES IN HARD DRIVES

5. Results

In this section we present results from a representative set of experiments conducted with the
SMART data. Due to the large number of possible combinations of attributes andclassifier pa-
rameters, we could not exhaustively search this space, but we hope to have provided some insight
into the hard drive failure prediction problem and a general picture of which algorithms and prepro-
cessing methods are most promising. We also can clearly see that some methodsare significantly
better than the current industry-used SMART thresholds implemented in harddrives (which provide
only an estimated 3-10% detection rate with 0.1% false alarms).

5.1 Failure Prediction Using 25 Attributes

Figure 4 shows the failure prediction results in the form of a Receiver Operating Characteristic
(ROC) curve using the SVM, mi-NB, and Autoclass classifiers with the 25 attributes selected be-
cause of promising reverse arrangements test or z-score values (seeSection 3.3). One sample per
pattern was used, and all patterns in the history of each test drive were tested. (Using more than
one sample per pattern with 25 attributes proved too computationally expensivefor the SVM and
Autoclass implementations, and did not significantly improve the mi-NB results.) Thedetection
and false alarm rates were measured per drive: if any pattern in the drive’s history was classified
as failed, the drive was classified as failed. The curves were created by performing a grid search
over the parameters of the algorithms to adjust the trade-off between false alarms and detection.
For the SVM, the radial kernel was used with the parameters adjusted as follows: kernel widthγ ∈
[0.01,0.1,1], capacityC ∈ [0.001,0.01,0.1,1], the cost penaltyL+ ∈ [1,10,100]. Table 5.3 shows
the parameters used in all SVM experiments. For Autoclass, the threshold parameter was adjusted
in [99.99,99.90, 99.5,99.0,98.5] and the number of clusters was adjusted in[2,3,5,10].

Although all three classifiers appear to have learned some aspects of the problem, the SVM is
superior in the low false-alarm region, with 50.6% detection and no measuredfalse alarms. For all
the classifiers, it was difficult to find parameters that yielded low enough false alarm rates compared
with the low 0.3-1.0% annual failure rate of hard drives. For mi-NB, even at the initial condition
(which includes only the last sample from each failed drive in the failed class) there is a relatively
high false alarm rate of 1.0% at 34.5% detection.

For the 25 attributes selected, the SVM with the radial kernel and default scaling provided the
best results. Results using the linear kernel with the binning and scaling areshown in Figure 5. The
best results with the linear kernel were achieved with the default scaling, although it was not possible
to adjust to false alarm rate to 0%. Equal-width binning results in better performance than equal-
frequency binning for SVM and Autoclass. The superiority of equal-width binning is consistent with
other experiments (not shown) and so only equal-width binning will be considered in the remaining
sections. Using more bins (10 vs. 5) for the discretization did not improve performance, confirming
the results of Hamerly and Elkan (2001).

The good performance of the SVM comes at a high computational price as shown in Figure 6.
The bars represent the average time needed to train each algorithm for a given set of parameters.
The total training time includes the time needed for the grid search to find the bestparameters.
For SVMs with the radial kernel (Figure 4), training took 497 minutes for each set of parameters,
and 17893 minutes to search all 36 points on the parameter grid. The mi-NB algorithm was much
quicker, and only had one parameter to explore, taking 17 minutes per pointand 366 minutes for
the grid search.

801

MURRAY, HUGHES AND KREUTZ-DELGADO

0 5 10 15
0

10

20

30

40

50

60

70

80

False alarms (%)

D
et

ec
tio

n
(%

)

SVM, radial
mi−NB
Autoclass, EW bins
Autoclass, EF bins

Figure 4: Failure prediction performance of SVM, mi-NB and Autoclass using 25 attributes (one
sample per pattern) measured per drive. For mi-NB, the results shown arefor equal-
width binning. Autoclass is tested using both equal-width (EW) and equal-frequency
(EF) binning (results with 5 bins shown). Error bars are±1 standard error in this and all
subsequent figures.

0 5 10 15
0

10

20

30

40

50

60

70

80

False alarms (%)

D
et

ec
tio

n
(%

)

SVM, default scaling
SVM, EW bins
SVM, EF bins

Figure 5: Comparison of preprocessing with the SVM using 25 attributes (one sample per pattern).
A linear kernel is used, and the default attribute scaling is compared with equal-width and
equal-frequency binning.

802

METHODS FORPREDICTING FAILURES IN HARD DRIVES

Also of interest is how far in advance we are able to predict an imminent failure. Figure 7
shows a histogram of the time before actual failure that the drives are correctly predicted as failing,
plotted for SVM at the point 50.6% detection, 0.0% false alarms. The majority of detected failures
are predicted within 100 hours (about 4 days) before failure, which is along enough period to be
reasonable for most users to backup their data. A substantial number of failures were detected over
100 hours before failure, which is one of the motivations for initially labeling all patterns from failed
drives as being examples of the failed class (remembering that our data onlyincludes the last 600
hours of SMART samples from each drive).

5.2 Single-attribute Experiments

In an effort to understand which attributes are most useful in predicting imminent hard-drive failure,
we tested the attributes individually using the non-parametric statistical methods (rank-sum and re-
verse arrangements). The results of the reverse arrangements test onindividual attributes (Section
3 and Table 3.3) indicate that attributes such as ReadError18 and Servo2could have high sensitiv-
ity. The ReadError18 attribute appears promising with 41.1% of failed drives and 0 good drives
showing significant increasing trends. Figure 8 shows the failure prediction results using only the
ReadError18 attribute with the rank-sum, reverse arrangements, and SVM classifiers. Reducing the
number of attributes from 25 to 1 increases the speed of all classifiers, and this increase is enough
so that more samples can be used per pattern, with 5 samples per pattern usedin Figure 8. The
rank-sum test provided the best performance, with 24.3% detection with false alarms too low to
measure, and 33.2% detection with 0.5% false alarms. The mi-NB and Autoclass algorithms using
the ReadError18 (not shown in Figure 8 for clarity) perform better thanthe reverse-arrangements
test and slightly worse than the SVM.

Single attribute tests using rank-sum were run on all 25 attributes selected in Section 3.3 with
15 samples per pattern. Of these 25, only 8 attributes (Figure 9) were able todetect failures at suf-
ficiently low false alarm rates: ReadError1, ReadError2, ReadError3, ReadError18, ReadError19,
Servo7, GList3 and Servo10. Confirming the observations of the featureselection process, ReadEr-
ror18 was the best attribute, with 27.6% detection at 0.06% false alarms.

For the rank-sum test, the number of samples to use in the reference set (samples from good
drives) is an adjustable parameter. Figure 10 shows the effects of usingreference set sizes 25, 50
and 100 samples, with no significant improvement for 100 samples over 50. For all other rank-sum
test results 50 samples were used in the reference set.

5.3 Combinations of Attributes

Using combinations of attributes in the rank-sum test can lead to improved results over single-
attribute classifiers (Figure 11). The best single attributes from Figure 9 were ReadError1, Read-
Error3, ReadError18 and ReadError19. Using these four attributesand 15 samples per pattern,
the rank-sum test detected 28.1% of the failures, with no measured false alarms. Higher detection
rates (52.8%) can be had if more false alarms are allowed (0.7%). These four attributes were also
tested with the SVM classifier (using default scaling). Interestingly, the linear kernel provided better
performance than the radial, illustrating the need to evaluate different kernels for each data set.

All the ROC curves plotted in this section include error bars at±1 standard error. We also
note that the number of good drives is relatively small (178) and with up to 40% of these used in the
training set, measuring low false alarm rates is imprecise. When results are reported with false alarm

803

MURRAY, HUGHES AND KREUTZ-DELGADO

0 100 200 300 400 500 600

 Figure 4 (25 attributes)

SVM

mi−NB

Autoclass

 Figure 11 (4 attributes)

SVM

Ranksum

Time (min)

A
lg

or
ith

m

Figure 6: Training times (in minutes) for each of the algorithms used in Figures 4and 11. The train-
ing times shown are averaged over a set of parameters. The total training timeincludes a
search over multiple parameters. For example, the SVM used in Figure 4 required a grid
search over 36 points which took a total of 17893 minutes for training with parameter se-
lection. For the rank-sum test, only one parameter needs to be adjusted, and the training
time for each parameter value was 2.2 minutes, and 21 minutes for the search through all
parameters.

0 100 200 300 400 500 600
0

50

100

150

200

Hours before failure

of

 d
riv

es

Figure 7: Histogram of time (hours) before failure that a correct failureprediction was made.
Counts are summed over ten trials of the SVM algorithm (radial kernel with 25 attributes)
from the point in Figure 4 at 50.6% detection, no false alarms.

804

METHODS FORPREDICTING FAILURES IN HARD DRIVES

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

10

20

30

40

50

False alarms (%)

D
et

ec
tio

n
(%

)

Rank−sum
SVM − radial
Rev. Arr.

Figure 8: Failure prediction performance of classifiers using a single attribute, ReadError18, with 5
input samples per pattern. For rank-sum and reverse arrangements, error bars are smaller
than line markers. For this attribute, the SVM performed best using the radialkernel and
default attribute scaling (no binning).

rates of< 1%, this means that some of the trials had no false alarm drives while other trialshad
very few (1 or 2). Because some drives are inherently more likely to be predicted as false alarms,
whether these drives are included in the test or training sets can lead to a variance from trial to trial,
causing large error bars at some of the points.

6. Discussion

We discuss the results of our findings and their implications for hard-drivefailure prediction and
machine learning in general.

While the SVM provided the best overall performance (50.6% detection with no measured false-
alarms, see Figure 4), a few caveats should be noted. Using the radial kernel, three parameters
must be searched to find the optimum performance (kernel widthγ, capacityC and cost penalty
L+) which was very computationally expensive and provides no guarantee as to optimality. After
examining the SVM classifiers, it was found that a large number of the trainingexamples were
chosen as support vectors. For example, in a typical experiment using the radial kernel with 25
attributes, over 26% of the training examples were support vectors (6708of 25658). This indicates
that the classifier is likely overfitting the data and using outliers as support vectors, possibly causing
errors on unseen data. Other researchers have noticed this propertyof SVMs and have developed
algorithms that create smaller sets of support vectors, such as the relevance vector machine (Tipping,
2001), kernel matching pursuit (Vincent and Bengio, 2002) and Bayesian neural networks (Liang,
2003). The SMART failure prediction algorithms (as currently implemented in hard-drives) run on
the internal CPU’s of the drive and have rather limited memory and processing to devote to SMART.
To implement the SVM classifiers learned here, they would have to evaluate thekernel with each
support vector for every new sample, which may be prohibitive.

805

MURRAY, HUGHES AND KREUTZ-DELGADO

0 1 2 3
0

10

20

30

40

50
ReadError1

D
et

ec
tio

n
(%

) Ranksum

0 1 2 3
0

10

20

30

40

50
ReadError2

0 1 2 3
0

10

20

30

40

50
ReadError3

D
et

ec
tio

n
(%

)

0 1 2 3
0

10

20

30

40

50
ReadError18

0 1 2 3
0

10

20

30

40

50
ReadError19

D
et

ec
tio

n
(%

)

0 1 2 3
0

10

20

30

40

50
Servo7

0 1 2 3
0

10

20

30

40

50
GList3

False alarms (%)

D
et

ec
tio

n
(%

)

0 1 2 3
0

10

20

30

40

50
Servo10

False alarms (%)

Figure 9: Failure prediction performance of rank-sum using the best single attributes. The number
of samples per pattern is 15, with 50 samples used in the reference set.

The rank-sum test provided the second-best detection rate (on a set of 4 attributes, Figure 11),
28.1% with no measured false-alarms, and while lower than the best SVM result, it is still much
higher than the currently implemented SMART threshold algorithms. At higher false alarm rates,
the rank-sum detection rate is 52.8% with 0.7% false alarms, which means (due tothe small number
of good drives) that only 1 drive at most triggered a false alarm in the test set. A larger sample
of good drives would be desirable for a more accurate measure of the false alarm rate. The rank-
sum test has a number of advantages over the SVM: faster training time (about 100 times), faster
testing of new samples, fewer parameters, and lower memory requirements. These advantages may

806

METHODS FORPREDICTING FAILURES IN HARD DRIVES

0 0.5 1 1.5 2 2.5 3
0

10

20

30

40

50

False alarms (%)

D
et

ec
tio

n
(%

)
Ranksum ref 25
Ranksum ref 50
Ranksum ref 100

Figure 10: Rank-sum test with reference set sizes 25, 50 and 100 using ReadError18 attribute and
15 test samples. There is no improvement in performance using 100 samples inthe
reference set instead of 50 (as in all other rank-sum experiments).

0 0.5 1 1.5 2 2.5 3
0

10

20

30

40

50

60

False alarms (%)

D
et

ec
tio

n
(%

)

Rank−sum
SVM linear
SVM radial

Figure 11: Failure prediction performance of rank-sum and SVM classifiers using four attributes:
ReadError1, ReadError3, ReadError18 and ReadError19.

make it more suitable for implementation in hard drive firmware. For offline situations where more
processing power is available (such as when the failure prediction algorithm is run on the host
CPU), the SVM may be practical. For some machine learning problems, the rank-sum test may be
superior to SVMs as shown in Figure 11. In this case the four attributes were selected because of
good performance in the rank-sum test, and so of course it is not an entirely fair comparison but
in some situations the only attributes available may be those that favor rank-sum.From a drive
reliability perspective, the rank-sum test indicates that attributes that measure read errors (in this
case, ReadError1, ReadError3, ReadError18 and ReadError19) were the most useful in predicting

807

MURRAY, HUGHES AND KREUTZ-DELGADO

Figure 4
Point Detection False Alarm Kernel gamma C L+ L-
1 50.60 0.00 radial 0.100 0.010 100.0 1.0
2 64.18 4.21 radial 0.010 0.100 100.0 1.0
3 70.38 6.20 radial 0.010 1.000 100.0 1.0

Figure 5
Point Detection False Alarm Kernel C L+ L-
1 default scaling 54.73 0.78 linear 0.001 1000.0 1.0
2 60.97 3.09 linear 0.100 5.0 1.0
3 63.17 7.75 linear 0.010 5.0 1.0
1 EW bins 11.18 0.00 linear 0.001 100.0 1.0
2 41.40 0.46 linear 0.001 5.0 1.0
3 48.05 1.72 linear 0.001 1.0 1.0
4 51.83 8.68 linear 0.001 0.5 1.0
1 EF bins 17.54 2.34 linear 0.001 5.0 1.0
2 42.90 11.09 linear 0.100 5.0 1.0
3 (off graph) 70.22 35.40 linear 0.100 10.0 1.0

Figure 8
Point Detection False Alarm Kernel gamma C L+ L-
1 8.28 0.00 radial 0.010 0.010 100.0 1.0
2 17.01 0.96 radial 0.100 0.010 1.0 1.0
3 30.29 3.45 radial 1.000 0.010 1.0 1.0

Figure 11
Point Detection False Alarm Kernel gamma C L+ L-
1 linear 5.43 0.17 linear 0.001 1000.0 1.0
2 15.82 0.35 linear 0.010 1000.0 1.0
3 32.92 0.51 linear 0.010 1.0 1.0
4 52.23 0.96 linear 0.100 1.0 1.0
1 radial 1.68 0.09 radial 0.100 0.001 100.0 1.0
2 9.29 0.53 radial 0.001 0.010 100.0 1.0
3 17.79 0.69 radial 1.000 1.000 1000.0 1.0
4 27.13 1.73 radial 0.100 0.100 100.0 1.0

Table 3: Parameters for SVM experiments in Figures 4, 5, 8 and 11.

imminent failure. Also of interest, although with less selectivity, are attributes that measure seek
errors.

Our new mi-NB algorithm demonstrated promising initial performance, which although less
successful than the SVM was considerably better than the unsupervisedAutoclass algorithm which
was also based on naive Bayesian models (Figure 4). The multiple instance framework addresses
the problem of which patterns in the time series should be labeled as failed during learning. In
order to reduce false alarms, our algorithm begins with the assumption that only the last pattern in
each failed drive’s history should be labeled failed, and during subsequent iterations, it switches the

808

METHODS FORPREDICTING FAILURES IN HARD DRIVES

labels of those good samples mostly likely to be from the failed distribution. This semi-supervised
approach can be contrasted with the unsupervised Autoclass and the fullysupervised SVM, where
all patterns from failed drives were labeled failed.

The reverse-arrangements test performed more poorly than expected, as we believed that the
assumption of increasing trend made by this test was well suited for hard drive attributes (like
read-error counts) that would presumably increase before a failure.The rank-sum test makes no as-
sumptions about trends in the sets, and in fact all time-order information is removed in the ranking
process. The success of the rank-sum method led us to speculate that thisremoval of time-order over
the sample interval was important for failure prediction. There are physical reasons in drive tech-
nology why impending failure need not be associated with an increasing trend in error counts. The
simplest example is sudden stress from a failing drive component which causes a sudden increase
in errors, followed by drive failure.

It was also found that a small number of samples (from 1 to 15) in the input patterns was suf-
ficient to predict failure accurately, this indicates that the drive’s performance can degrade quickly,
and only a small window of samples is needed to make an accurate prediction. Conversely, using
too many samples may dilute the weight of an important event that occurs within a short time frame.

One of the difficulties in conducting this research was the need to try many combinations of
attributes and classifier parameters in order to construct ROC curves. ROC curves are necessary
to compare algorithm performance because the cost of misclassifying one class (in this case, false
alarms) is much higher than for the other classes. In many other real world applications such as
the examples cited in Section 1, there will also be varying costs for misclassifying different classes.
Therefore, we believe it is important that the machine learning community develop standardized
methods and software for the systematic comparison of learning algorithms thatinclude cycling
through ranges of parameters, combinations of attributes and number of samples to use (for time
series problems). An exhaustive search may be prohibitive even with a few parameters, so we envi-
sion an intelligent method that attempts to find the broad outline of the ROC curve byexploring the
limits of the parameter space, and gradually refines the curve estimate as computational time allows.
Another important reason to create ROC curves is that some algorithms (or parameterizations) may
perform better in certain regions of the curve than others, with the best algorithm dependent on the
actual costs involved (which part of the curve we wish to operate in).

7. Conclusions

We have shown that both nonparametric statistical tests and machine learning methods can signifi-
cantly improve over the performance of the hard drive failure-predictionalgorithms which are cur-
rently implemented. The SVM achieved the best performance of 50.6% detection/0% false alarms,
compared with the 3-10% detection/0.1-0.3% false alarms of the algorithms currently implemented
in hard drives. However, the SVM is computationally expensive for this problem and has many free
parameters, requiring a time-consuming and non-optimal grid search.

We developed a new algorithm (mi-NB) in the multiple-instance framework that uses naive
Bayesian learning as its base classifier. The new algorithm can be seen assemi-supervised in that it
adapts the class label for each pattern based on whether it is likely to come from a failed drive. The
mi-NB algorithm performed considerably better than an unsupervised clustering algorithm (Au-
toclass) that also makes the naive Bayes assumption. Further increases inperformance might be

809

MURRAY, HUGHES AND KREUTZ-DELGADO

achieved with base classifiers other than naive Bayes, for example, the mi-SVM algorithm (An-
drews et al., 2003) could be suitably adapted but probably remains computationally prohibitive.

We also showed that the nonparametric rank-sum test can be useful forpattern recognition
and that it can have higher performance than SVMs for certain combinations of attributes. The
best performance was achieved using a small set of attributes: the rank-sum test with four attributes
predicted 28.1% of failures with no false alarms (and 52.8% detection/0.7% false alarms). Attributes
useful for failure prediction were selected by using z-scores and the reverse arrangements test for
increasing trend.

Improving the performance of hard drive failure prediction will have manypractical benefits. In-
creased accuracy of detection will benefit users by giving them an opportunity to backup their data.
Very low false alarms (in the range of 0.1%) will reduce the number of returned good drives, thus
lowering costs to manufacturers of implementing improved SMART algorithms. Whilewe believe
the algorithms presented here are of high enough quality (relative to the current commercially-used
algorithms) to be implemented in drives, it is still important to test them on larger number of drives
(on the order of thousands) to measure accuracy to the desired precision of 0.1%. We also note that
each classifier has many free parameters and it is computationally prohibitiveto exhaustively search
the entire parameter space. We choose many parameters by non-exhaustive grid searches; finding
more principled methods of exploring the parameter space is an important topic offuture research.

We hope that the insights we have gained in employing the rank-sum test, multiple-instance
framework and other learning methods to hard drive failure prediction will be of use in other prob-
lems where rare events must be forecast from noisy, nonparametric time series, such as in the pre-
diction of rare diseases, electronic and mechanical device failures, andbankruptcies and business
failures (see references in Section 1).

Acknowledgments

This work is part of the UCSD Intelligent Disk Drive Project funded by theInformation Storage
Industry Center (a Sloan Foundation Center), and by the UCSD Center for Magnetic Recording Re-
search (CMRR). J. F. Murray gratefully acknowledges support by the ARCS Foundation. We wish
to thank the anonymous reviewers work for their detailed and insightful comments and suggestions,
particularly regarding the use of the multiple instance framework. We also thank the corporate
sponsors of the CMRR for providing the data sets used in our work.

Appendix A: Exact and Approximate Calculation of the Wilcoxon-Mann-Whitney
Significance Probabilities

The Wilcoxon-Mann-Whitney test is a widely used statistical procedure forcomparing two sets of
single-variate data (Wilcoxon, 1945; Mann and Whitney, 1947). The testmakes no assumptions
about the parametric form of the distributions each set is drawn from and so belongs to the class
of nonparametric or distribution-free tests. It tests the null hypothesis thatthe two distributions are
equal against the alternative that one is stochastically larger than the other(Bickel and Doksum,
1977, pg. 345). For example, two populations identical except for a shift in mean is sufficient but
not necessary for one to be stochastically larger than the other.

Following Klotz (1966), suppose we have two setsX = [x1,x2, . . . ,xn] , Y = [y1,y2, . . . ,ym],
n≤m, drawn from distributionsF andG. The sets are concatenated and sorted, and eachxi andyi

810

METHODS FORPREDICTING FAILURES IN HARD DRIVES

X 74 59 63 64 n = 4
Y 65 55 58 67 53 71 m = 6

[X,Y] sorted 53 55 58 59 63 64 65 67 71 74
Ranks 1 2 3 4 5 6 7 8 9 10

X ranks 10 4 5 6 WX = 25
Y ranks 7 2 3 8 1 9 WY = 30

Table 4: Calculating the Wilcoxon statisticWX andWY without ties

is assigned a rank according to its place in the sorted list. The Wilcoxon statisticWX is calculated
by summing the ranks of eachxi , hence the term rank-sum test. Table 7 gives a simple example of
how to calculateWX andWY. If the two distributions are discrete, some elements may be tied at the
same value. In most practical situations the distributions are either inherently discrete or effectively
so due to the finite precision of a measuring instrument. The tied observations are given the rank of
the average of the ranks that they would have taken, called themidrank. Table 7 gives an example
of calculating the Wilcoxon statistic in the discrete case with ties. There are five elements with the
value ‘0’ which are all assigned the average of their ranks:(1+2+3+4+5)/5 = 3.

To test the null hypothesisH0 that the distributionsF andG are equal against the alternative
Ha that F(x) ≤ G(x)∀x, F 6= G we must find the probabilityp0 = P(WX > wx) that underH0 the
true value of the statistic is greater than the observed value, now calledwx (Lehmann and D’Abrera,
1998, pg. 11). If we were interested in the alternative thatF ≤G or F ≥G, a two-sided test would be
needed. The generalization to the two-sided case is straightforward and will not be considered here,
see Lehmann and D’Abrera (1998, pg. 23). Before computers were widely available, values ofp0

(the significance probability) were found in tables if the set sizes were small(usuallymandn< 10)
or calculated from a normal approximation if the set sizes were large. Because of the number of
possible combinations of tied elements, the tables and normal approximation werecreated for the
simplest case, namely continuous distributions (no tied elements).

X 0 0 0 1 3 n = 5
Y 0 0 1 2 2 3 4 m = 7

X ranks 3 3 3 6.5 10.5 WX = 26
Y ranks 3 3 6.5 8.5 8.5 10.5 12 WY = 52

z1 z2 z3 z4 z5

Discrete values: 0 1 2 3 4

t1 t2 t3 t4 t5
Ties configuration: 5 2 2 2 1

Table 5: Calculating the Wilcoxon statisticWX andWY with ties

811

MURRAY, HUGHES AND KREUTZ-DELGADO

Lehman (1961) and Klotz (1966) report on the discrepancies between the exact value ofp0

and its normal approximation, which can be over 50%, clearly large enoughto lead to an incorrect
decision. Unfortunately, many introductory texts do not discuss these errors nor give algorithms for
computing the exact probabilities. Here we outline how to calculate the exact value of p0 but keep
in mind there are other more efficient (but more complicated) algorithms (Mehta et al., 1988a,b;
Pagano and Tritchler, 1983). Each element inX andY can take one ofc values,z1 < z2 < · · ·< zc.
The probability thatxi will take on a valuezk is pk:

P(xi = zk) = pk i = 1..n, k = 1..c .

Similarly for yi ,
P(y j = zk) = rk j = 1..m, k = 1..c .

UnderH0, pk = rk∀k. The count of elements inX that take on a valuezk is given byuk and the count
of elements inY that are equal tozk is given byvk so that

uk = #{X = zk} vk = #{Y = zk}
c
∑

k=1
uk = n

c
∑

k=1
vk = m .

The vectorsU = [u1,u2, . . . ,uc] andV = [v1,v2, . . . ,vc] give the ties configuration of X and Y. The
vectorT = [t1, t2, . . . , tc] = U +V gives the ties configuration of the concatenated set. See Table 7
for an example of how to calculateT. Under the null hypothesisH0, the probability of observing
ties configurationU is given by (Klotz, 1966),

P(U |T) =



 t1
u1







 t2
u2



...



 tc
uc







 n+m
n




.

To find p0, we must find all theU such thatWU > Wx, whereWU is the rank sum of a set with ties
configurationU ,

p0 = ∑
Ui∈Ug

P(Ui |T) Exact significance probability

Ug = {U |WU > WX} . (4)

Equation (4) gives us the exact probability of observing a set with a ranksumW greater than
WX. Because of the number ofU to be enumerated, each requiring many factorial calculations, the
algorithm is computationally expensive but still possible for sets as large asm= 50 andn = 20. We
can compare the exactp0 to the widely-used normal approximation and find the conditions when
the approximation is valid and when the exact algorithm is needed.

The normal approximation to the distribution of the Wilcoxon statisticW can also be used to
find p0. BecauseW is the sum of identical, independent random variables, the central limit theorem
states that its distribution will be normal asymptotically. The mean and variance ofW are given by
Lehmann and D’Abrera (1998),

E(W) =
1
2

n(m+n+1)

Var(W) =
mn(m+n+1)

12
−

mn
c
∑

i=1
(t3

i − ti)

12(m+n)(m+n−1)
. (5)

812

METHODS FORPREDICTING FAILURES IN HARD DRIVES

m (Large)
10 15 20 25 30 35 40 45 50

5 12.298 5.332 6.615 8.480 2.212 0.947 1.188 0.527 0.630
n (Small) 10 4.057 3.482 2.693 0.595 0.224 0.14 0.064 0.091 0.042

15 1.648 0.306 0.069 0.081 0.026 0.019 0.010 0.009
20 0.082 0.048 0.016 0.014 0.006 0.005 0.006

Table 6: Mean-square error between exact and normal approximate to the distribution ofW. All zk

are equally likely. Averages are over 20 trials at each set size

m (Large)
10 15 20 25 30 35 40 45 50

5 31.883 25.386 28.300 26.548 14.516 16.654 19.593 9.277 11.380
n (Small) 10 3.959 4.695 3.594 1.884 1.058 1.657 0.427 0.735 0.369

15 1.984 0.733 0.311 0.336 0.230 0.245 0.317 0.205
20 0.303 0.146 0.123 0.059 0.045 0.071 0.034

Table 7: Mean-square error between exact and normal approximate to the distribution ofW. One
discrete value,z1 is much more likely than the otherzk. Averages are over 20 trials at each
set size

Using the results of (5) we can findp0 by using a table of normal curve area or common statistical
software. Note that Var(W) takes into account the configuration of tiesT = [t1, t2, . . . , tc] defined
above. The second term on the right in the expression for Var(W) is known as the ties correction
factor.

The exact and approximate distributions ofW were compared for set sizes ranging from 10≤
m≤ 50 and 5≤ n ≤ 20 with tied observations. For each choice ofm and n the average error
between the exact and normal distributions is computed for 0≤ p0 ≤ 0.20 which is the range that
most critical values will fall into. The mean-square error (mse) is computed over 20 trials for each
set size. Table 7 gives the results of this comparison for the case where each discrete valuezk is
equally likely,pk = rk = constant∀k. As expected, the accuracy improves as the set size increases,
but it should be noted that these are only averages; that accuracy ofp0 for any particular experiment
may be worse than suggested by Table 7. To illustrate this, Table 7 compares the distributions in
the case when the first valuez1 is much more likely (p1 = 60%) than the otherzk which are equally
likely. Whenn < 10, the normal approximation is too inaccurate to be useful even whenm= 50.
This is the situation when using the Wilcoxon test with the hard drive failure-prediction data, and
motivated our investigation into the exact calculation ofp0. Again, Tables 7 and 7 should be used
only to observe the relative accuracies of the normal approximation undervarious set sizes and
distributions; the accuracy in any particular problem will depend on the configuration of tiesT, the
actual value ofp0, and the set size. The inaccuracies of normal approximations in small sampledata
size situations is a known aspect of the central limit theorem. It is particularly weak for statistics
dependent on extreme values (Kendall, 1969).

813

MURRAY, HUGHES AND KREUTZ-DELGADO

Recommendations Based on the results of the comparisons between the exact calculation ofp0

and the normal approximation (Tables 7 and 7), we offer recommendations on how to perform the
Wilcoxon-Mann-Whitney test in the presence of tied observations:

1. If n≤ 10 andm≤ 50, the exact calculation should always be used.
2. The normal approximation loses accuracy if one of the values is much morelikely than the

others. If this is the case, values ofn≤ 15 will require the exact calculation.
3. The exact calculation is no longer prohibitively slow forn≤ 20 andm≤ 50, and should be

considered if the significance probabilityp0 is close to the desired critical value.

These recommendations are stronger than those given in Emerson and Moses (1985). A number
of software packages can perform the exact test, including StatXact (http://www.cytel.com), the
SAS System (http://www.sas.com) and SPSS Exact Tests (http://www.spss.com). We hope that an
increased awareness of exact procedures will lead to higher quality statistical results.

References

Stuart Andrews, Ioannis Tsochantaridis, and Thomas Hofmann. Support vector machines
for multiple-instance learning. InAdvances in Neural Information Processing Systems 15
(NIPS*2002), pages 1–8, Cambridge, MA, 2003. MIT Press.

Julius S. Bendat and Allan G. Piersol.Random Data. Wiley, New York, 3rd edition, 2000.

P. J. Bickel and K. A. Doksum.Mathematical Statistics. Holden-Day, San Francisco, 1977.

P. D. Bridge and S. S. Sawilowsky. Increasing physicians’ awareness of the impact of statistics on
research outcomes: Comparative power of the t-test and Wilcoxon rank-sum test in small samples
applied research.Journal Of Clinical Epidemiology, 52(3):229–235, March 1999.

Edgar Brunner, Ullrich Munzel, and Madan L. Puri. The multivariate nonparametric Behrens-Fisher
problem.Journal of Statistical Planning and Inference, 108:37–53, 2002.

Christopher J. C. Burges. A tutorial on support vector machines for pattern recognition. Data
Mining and Knowledge Discovery, 2:121–167, 1998.

J. Catlett. On changing continuous attributes into ordered discrete attributes.In Y. Kodratoff,
editor,Proceedings of the European Working Session on Learning, pages 164–178, Berlin, 1991.
Springer-Verlag.

P. Cheeseman and J. Stutz.Advances in Knowledge Discovery and Data Mining, chapter Bayesian
Classification (AutoClass), pages 158–180. AAAI Press, Menlo Park,CA, 1995.

Vladimir Cherkassky and Filip Mulier.Learning from Data: Concepts, Theory, and Methods.
Wiley, New York, 1998.

Thomas G. Dietterich, Richard H. Lathrop, and Tomas Lozano-Perez. Solving the multiple instance
problem with axis-parallel rectangles.Artificial Intelligence, 89:31–71, 1997.

E. Jacquelin Dietz and Timothy J. Killeen. A nonparametric multivariate test for monotone trend
with pharmaceutical applications.Journal of the American Statistical Association, 76(373):169–
174, March 1981.

814

METHODS FORPREDICTING FAILURES IN HARD DRIVES

Pedro Domingos and Michael Pazzani. On the optimality of the simple Bayesian classifier under
zero-one loss.Machine Learning, 29:103–130, 1997.

J. Dougherty, R. Kohavi, and M. Sahami. Supervised and unsupervised discretization of continuous
features. InProceedings of the 12th International Conference on Machine Learning, pages 194–
202. Morgan Kaufmann, 1995.

J. D. Emerson and L. E. Moses. A note on the Wilcoxon-Mann-Whitney testfor 2 x k ordered
tables.Biometrics, 41:303–309, March 1985.

Eibe Frank and Ian H. Witten. Making better use of global discretization. InI. Bratko and S. Dze-
roski, editors,Proceedings of the Sixteenth International Conference on Machine Learning, Bled,
Slovenia, pages 115–123, San Francisco, CA, 1999. Morgan Kaufmann Publishers.

Greg Hamerly and Charles Elkan. Bayesian approaches to failure prediction for disk drives. In
Eighteenth International Conference on Machine Learning, pages 1–9, 2001.

T. P. Hettmansperger.Statistical Inference Based on Ranks. Wiley, New York, 1984.

Gordon F. Hughes, Joseph F. Murray, Kenneth Kreutz-Delgado, and Charles Elkan. Improved disk-
drive failure warnings.IEEE Transactions on Reliability, 51(3):350–357, September 2002.

Maurice G. Kendall.The Advanced Theory of Statistics, volume 1. Hafner, New York, 1969.

J. H. Klotz. The Wilcoxon, ties, and the computer.Journal of the American Statistical Association,
61(315):772–787, September 1966.

S. Y. Lehman. Exact and approximate distributions for the Wilcoxon statistic withties. Journal of
the American Statistical Association, 56(294):293–298, 1961.

E. L. Lehmann and H. J. M. D’Abrera.Nonparametrics: Statistical Methods Based on Ranks.
Prentice Hall, Upper Saddle River, NJ, 1998.

Faming Liang. An effective Bayesian neural network classifier with a comparison study to support
vector machine.Neural Computation, 15:1959–1989, 2003.

Henry B. Mann. Nonparametric tests against trend.Econometrica, 13(3):245–259, 1945.

Henry B. Mann and D. R. Whitney. On a test of whether one of two randomvariables is stochasti-
cally larger than the other.Annals of Mathematical Statistics, 19:50–60, 1947.

C. R. Mehta, N. R. Patel, and P. Senchaudhuri. Importance sampling for estimating exact prob-
abilities in permutational inference.Journal of the American Statistical Association, 83(404):
999–1005, December 1988a.

C. R. Mehta, N. R. Patel, and L. J. Wei. Constructing exact significance tests with restricted ran-
domization rules.Biometrika, 75:295–302, 1988b.

Joseph F. Murray, Gordon F. Hughes, and Kenneth Kreutz-Delgado. Hard drive failure prediction
using non-parametric statistical methods. InProceedings of the International Conference on
Artificial Neural Networks ICANN 2003, Istanbul, Turkey, June 2003.

815

MURRAY, HUGHES AND KREUTZ-DELGADO

A. Y. Ng and M. I. Jordan. On discriminative vs. generative classifiers: A comparison of logistic
regression and naive Bayes. InAdvances in Neural Information Processing Systems (NIPS),
volume 14, 2002.

Alon Orlitsky, Narayana P. Santhanam, and Junan Zhang. Always GoodTuring: Asymptotically
optimal probability estimation.Science, 302:427–431, October 2003.

M. Pagano and D. Tritchler. On obtaining permutation distributions in polynomialtime. Journal of
the American Statistical Association, 78:435–441, 1983.

B. E. Preusser and G. L. Hadley. Motor current signature analysis asa predictive maintenance
tool. In Proceedings of the American Power Conference, Illinois Institute of Technology, pages
286–291, April 1991.

K. Rothman and S. Greenland.Modern Epidemiology. Lippencott-Raven, Philadelphia, 2nd ed.
edition, 2000.

Stefan Ruping. mySVM manual. Technical report, University of Dortmund,CS Department, AI
Unit, October 2000.

P. T. Theodossiou. Predicting shifts in the mean of a multivariate time series process: an application
in predicting business failures.Journal of the American Statistical Association, 88(422):441–449,
1993.

Michael E. Tipping. Sparse Bayesian learning and the relevance vectormachine.Journal of Machine
Learning Research, 1:211–244, 2001.

V. Vapnik. The Nature of Statistical Learning Theory. Springer Verlag, New York, 1995.

Pascal Vincent and Yoshua Bengio. Kernal matching pursuit.Machine Learning, 48:165–187,
2002.

Jun Wang and Jean-Daniel Zucker. Solving multiple-instance problem: A lazy learning approach.
In Pat Langley, editor,Proceedings of the Seventeenth International Conference on Machine
Learning, pages 1119–1125, Stanford, CA, 2000. Morgan Kaufmann.

G. M. Weiss and H. Hirsh. Learning to predict rare events in event sequences. InProceedings of
the Fourth International Conference on Knowledge Discovery and Data Mining. AAAI Press,
August 1998.

F. Wilcoxon. Individual comparisons by ranking methods.Biometrics Bulletin, 1(6):80–83, De-
cember 1945.

Xin Xu. Statistical learning in multiple instance problems. Master’s thesis, University of Waikato,
Hamilton, New Zealand, June 2003.

816

Journal of Machine Learning Research 6 (2005) 817–850 Submitted 2/05; Revised 5/05; Published 5/05

Multiclass Classification with
Multi-Prototype Support Vector Machines

Fabio Aiolli AIOLLI @MATH .UNIPD.IT
Alessandro Sperduti SPERDUTI@MATH .UNIPD.IT
Dip. di Matematica Pura e Applicata
Universit̀a di Padova
Via G. Belzoni 7
35131 Padova, Italy

Editor: Yoram Singer

Abstract
Winner-take-all multiclass classifiers are built on the topof a set of prototypes each representing

one of the available classes. A pattern is then classified with the label associated to the most
‘similar’ prototype. Recent proposal of SVM extensions to multiclass can be considered instances
of the same strategy with one prototype per class.

The multi-prototype SVM proposed in this paper extends multiclass SVM to multiple proto-
types per class. It allows to combine several vectors in a principled way to obtain large margin
decision functions. For this problem, we give a compact constrained quadratic formulation and we
propose a greedy optimization algorithm able to find locallyoptimal solutions for the non convex
objective function.

This algorithm proceeds by reducing the overall problem into a series of simpler convex prob-
lems. For the solution of these reduced problems an efficientoptimization algorithm is proposed.
A number of pattern selection strategies are then discussedto speed-up the optimization process.
In addition, given the combinatorial nature of the overall problem, stochastic search strategies are
suggested to escape from local minima which are not globallyoptimal.

Finally, we report experiments on a number of datasets. The performance obtained using few
simple linear prototypes is comparable to that obtained by state-of-the-art kernel-based methods
but with a significant reduction (of one or two orders) in response time.

Keywords: multiclass classification, multi-prototype support vector machines, kernel ma-
chines, stochastic search optimization, large margin classifiers

1. Introduction

In multiclass classification, given a set of labelled examples with labels selectedfrom a finite set,
an inductive procedure builds a function that (hopefully) is able to map unseen instances to their
appropriate classes. In this work, we exclusively focus on thesingle-labelversion of the multiclass
classification problem in which instances are associated withexactly oneelement of the label set.
However, throughout this paper, we will refer to this problem simply as multiclass problem. Binary
classification can be considered a particular instance of the multiclass setting where the cardinality
of the label set is two.

c©2005 Fabio Aiolli and Alessandro Sperduti.

A IOLLI AND SPERDUTI

Multiclass classifiers are often based on thewinner-take-all(WTA) rule. WTA based classifiers
define a set of prototypes, each associated with one of the available classes from a setY . A scoring
function f : X ×M →R is then defined, measuring the similarity of an element inX with prototypes
defined in a spaceM . For simplicity, in the following, we assumeM ≡ X . When new instances are
presented in input, the label that is returned is the one associated with the most’similar’ prototype:

H(x) = C

(

argmax
r∈Ω

f (x,Mr)

)

(1)

whereΩ is the set of prototype indexes, theMr ’s are the prototypes andC : Ω→ Y the function
returning the class associated to a given prototype. An equivalent definition can also be given in
terms of the minimization of a distance or loss (these cases are often referredto asdistance-based
andloss-baseddecoding respectively).

1.1 Motivations and Related Work

Several well-known methods for binary classification, including neural networks (Rumelhart et al.,
1986), decision trees (Quinlan, 1993), k-NN (see for example (Mitchell,1997)), can be naturally
extended to the multiclass domain and can be viewed as instances of the WTA strategy. Another
class of methods for multiclass classification are the so calledprototype based methods, one of the
most relevant of which is thelearning vector quantization(LVQ) algorithm (Kohonen et al., 1996).
Although different versions of the LVQ algorithm exist, in the more generalcase these algorithms
quantize input patterns into codeword vectorsci and use these vectors for 1-NN classification. Sev-
eral codewords may correspond to a single class. In the simplest case, also known as LVQ1, at each
step of the codewords learning, for each input patternxi , the algorithm finds the elementck closest
to xi . If that codeword is associated to a class which is the same as the class of thepattern, thenck

is updated byck← ck +η(t)(xi−ck) thus making the prototype get closer to the pattern, otherwise
it is updated byck← ck−η(t)(xi − ck) thus making the prototype farther away. Other more com-
plicated versions exist. For example, in the LVQ2.1, lety be the class of the pattern, at each step
the closest codeword of classc 6= y and the closest codeword of classy are updated simultaneously.
Moreover, the update is done only if the pattern under consideration falls ina ”window” which is
defined around the midplane between the selected codewords.

When the direct extension of a binary method into a multiclass one is not possible, a general
strategy to build multiclass classifiers based on a set of binary classifiers is always possible, the
so callederror correcting output coding(ECOC) strategy, originally proposed by Dietterich and
Bakiri in (Dietterich and Bakiri, 1995). Basically, this method codifies each class of the multiclass
problem as a fixed size binary string and then solves one different binary problem for each bit of
the string. Given a new instance, the class whose associated string is most ’similar’ to the output
of the binary classifiers on that instance is returned as output. Extensionsto codes with values in
{−1,0,+1} (Allwein et al., 2000) and continuous codes (Crammer and Singer, 2000)have been
recently proposed.

Recently, large margin kernel-based methods have shown state-of-the-art performance in a wide
range of applications. They search for a large margin linear discriminant model in a typically very
high dimensional space, thefeature space, where examples are implicitly mapped via a function
x 7→ φ(x). Since kernel-based algorithms use only dot products in this space, it is possible to resort

818

MULTICLASS CLASSIFICATION WITH MULTI -PROTOTYPESUPPORTVECTORMACHINES

to the ’kernel trick’ when dot products can be computed efficiently by means of a kernel function
k(x,y) = 〈φ(x),φ(y)〉 defined in terms of the original patterns. Examples of kernel functions arethe
polynomial kernel

k(x,y) = (〈x,y〉+u)d,u≥ 0,d ∈ N

of which the linear case is just an instance (d = 1) and the radial basis function (RBF) kernel

k(x,y) = exp(−λ||x−y||2),λ≥ 0.

Kernel machines, and the SVM in particular, has been initially devised for thebinary setting.
However, extensions to the multiclass case have been promptly proposed (e.g. Vapnik, 1998; Weston
and Watkins, 1999; Guermeur et al., 2000; Crammer and Singer, 2000).

The discriminant functions generated by general kernel-based methods are implicitly defined
in terms of a subset of the training patterns, the so calledsupport vectors, on the basis of a linear
combination of kernel productsf (x) = ∑i∈SVαik(xi ,x). In the particular case of the kernel function
being linear, this sum can be simplified in a single dot product. When this is not the case, the
implicit form allows to elegantly deal with non linear decision functions obtained by using non
linear kernels. In this last case, the efficiency with respect to the time spentfor classifying new
vectors tends to be low when the number of support vectors is large. This has motivated some
recent works, briefly discussed in the following, whose aim was at building kernel-based machines
with a minimal number of support vectors.

The relevance vector machine(RVM) in (Tipping, 2001) is a model used for regression and
classification exploiting a probabilistic Bayesian learning framework. It introduces a prior over the
weights of the model and a set of hyperparameters associated to them. The form of the RVM pre-
diction is the same as the one used for SVM. Sparsity is obtained because the posterior distributions
of many of the weights become sharply peaked around the zero. Other interesting advantages of the
RVM are that it produces probabilistic predictions and that it can be appliedto general functions
and not only to kernel functions satisfying the Mercer’s condition. Theminimal kernel classifier
(MKC) in (Fung et al., 2002) is another model theoretically justified by linear programming pertur-
bation and a bound on the leave-one-out error. This model uses a particular loss function measuring
both the presence and the magnitude of an error. Finally, quite different approaches are those in
(Scḧolkopf et al., 1999; Downs et al., 2001) that try to reduce the number of support vectors after
the classifiers have been constructed.

The approach we propose here gives an alternative method to combine simple predictors to-
gether to obtain large margin multiclass classifiers. This can be extremely beneficial for two main
reasons. First, adding prototypes can produce higher margin decision functions without dramati-
cally increasing the complexity of the generated model. This can be trivially shown by considering
that the single-prototype margin is a lower bound on the margin for multi-prototypesince it can
be obtained when all the prototypes of the same class coincide. Second, combining several simple
models can be advisable when no a priori knowledge is available about the task at hand. In the
following, we will study only the linear version of the algorithm without exploring more complex
kernel functions, the rationale being that adding linear prototypes in the original space allows to
increase the expressiveness of the decision functions without requiring the (computationally expen-
sive) use of kernels. Moreover, linearity makes easier the interpretationof the produced models,
which can be useful in some particular tasks, and allows for an easier extension to the on-line set-

819

A IOLLI AND SPERDUTI

ting since the explicit representation for the models can be used.

In Section 2 we give some preliminaries and the notation we adopt along the paper. Then, in
Section 3 we derive a convex quadratic formulation for the easier problemof learning one prototype
per class. The obtained formulation can be shown to be equivalent, up to a change of variables and
constant factors, to the one proposed by Crammer and Singer (2000). When multiple prototypes are
introduced in Section 4, the problem becomes not convex in general. However, in Section 5 we will
see that once fixed an appropriate set of variables, the reduced problem is convex. Moreover, three
alternative methods are given for this optimization problem and heuristics forthe ”smart” selection
of patterns in the optimization process are proposed and compared. Then,in Section 6 we give a
greedy procedure to find a locally optimal solution for the overall problem and we propose an ef-
ficient stochastic-search based method to improve the quality of the solution. In Section 7 we give
theoretical results about the generalization ability of our model. Specifically,we present an upper
bound on the leave-one-out error and upper bounds on the generalization error. Finally, the experi-
mental work in Section 8 compares our linear method with state-of-the-art methods, with respect to
the complexity of the generated solution and with respect to the generalization error.

This paper substantially extends the material contained in other two conference papers. Namely,
(Aiolli and Sperduti, 2003) which contains the basic idea and the theory of the multi-prototype SVM
together with preliminary experimental work and (Aiolli and Sperduti, 2002a)which proposes and
analyzes selection heuristics for the optimization of multiclass SVM.

2. Preliminaries

Let us start by introducing some definitions and the notation that will be used inthis paper. We
assume to have a labelled training setS = {(x1,c1), . . . ,(xn,cn)} of cardinalityn, wherexi ∈ X are
the examples in a inner-product spaceX ⊆ R

d andci ∈ Y = {1, . . . ,m} the corresponding class or
label. To keep the notation clearer, we focus on the linear case where kernels are not used. However,
we can easily consider the existence of a feature mappingφ : I → X . In this case, it is trivial to
extend the derivations we will obtain to non-linear mappingsx 7→ φ(x) of possibly non vectorial
patterns by substituting dot products〈x,y〉 with a suited kernel functionk(x,y) = 〈φ(x),φ(y)〉 and
the squared 2-norm||x||2 with k(x,x) consequently. The kernel matrixK ∈ R

n×n is the matrix
containing the kernel products of all pairs of examples in the training set, i.e.Ki j = k(xi ,x j).

We consider dot-product based WTA multiclass classifiers having the form

HM(x) = C

(

argmax
r∈Ω
〈Mr ,x〉

)

(2)

whereΩ is the set of prototype indices and the prototypes are arranged in a matrixM ∈ R
|Ω|×d and

C : Ω→ Y the function that, given an indexr, returns the class associated to ther-th prototype. We
also denote byyr

i , 1≤ i ≤ n, r ∈ Ω, the constant that is equal to 1 ifC (r) = ci and−1 otherwise.
Moreover, for a given examplexi , Pi = {r ∈ Ω : yr

i = 1} is the set of ’positive’ prototypes for the
examplexi , i.e. the set of prototype indices associated to the class ofxi , while Ni = Ω\Pi = {r ∈
Ω : yr

i =−1} is the set of ’negative’ prototypes, i.e. the set of prototype indices associated to classes
different from the class ofxi . The dot productfr(x) = 〈Mr ,x〉 is referred to as thesimilarity score

820

MULTICLASS CLASSIFICATION WITH MULTI -PROTOTYPESUPPORTVECTORMACHINES

(or simplyscore) of ther-th prototype vector for the instancex. Finally, symbols in bold represent
vectors and, as particular case, the symbol0 represents the vector with all components set to 0.

3. Single-Prototype Multi-Class SVM

One of the most effective multi-class extension of SVM has been proposedby Crammer and Singer
(2000). The resulting classifier is of the same form of Eq. (2) where each class has associated exactly
one prototype, i.e.Ω≡ Y and∀r ∈Ω, C (r) = r. The solution is obtained through the minimization
of a convex quadratic constrained function. Here, we derive a formulation that, up to a change of
variables, can be demonstrated to be equivalent to the one proposed by Crammer and Singer (see
Aiolli and Sperduti (2002a)). This will serve to introduce a uniform notation useful for presenting
the multi-prototype extension in the following sections.

In multiclass classifiers based on Eq. (2), in order to have a correct classification, the prototype
of the correct class is required to have a score greater than the maximum among the scores of the
prototypes associated to incorrect classes. The multiclass margin for the examplexi is then defined
by

ρ(xi ,ci |M) = 〈Myi ,xi〉−max
r 6=yi

〈Mr ,xi〉,

whereyi such thatC (yi) = ci , is the index of the prototype associated to the correct label for the
examplexi . In the single prototype case, with no loss of generality, we consider a prototype and the
associated class indices to be coincident, that isyi = ci . Thus, a correct classification of the example
xi with a margin greater or equal to 1 requires the condition

〈Myi ,xi〉 ≥ θi +1 whereθi = max
r 6=yi

〈Mr ,xi〉. (3)

to be satisfied. Note that, the condition above is implied by the existence of a matrixM̂ such that
∀r 6= yi , 〈M̂yi ,xi〉 > 〈M̂r ,xi〉. In fact, the matrixM can always be obtained by an opportune re-
scaling of the matrixM̂. With these premises, a set of examples is said to belinearly separableby
a multiclass classifier if there exists a matrixM able to fulfill the above constraints for every pattern
in the set.

Unfortunately, the examples in the training set can not always be separated and some exam-
ples may violate the margin constraints. We consider these cases by introducing soft margin slack
variablesξi ≥ 0, one for each example, such that

ξi = [θi +1−〈Myi ,xi〉]+,

where the symbol[z]+ corresponds to the soft-margin loss that is equal toz if z> 0 and 0 otherwise.
Note that the valueξi can also be seen as an upper bound on the binary loss for the examplexi , and
consequently its average value over the training set is an upper bound onthe empirical error.

Motivated by thestructural risk minimization(SRM) principle in (Vapnik, 1998; Scḧolkopf and
C. Burges and V. Vapnik, 1995), we search for a matrixM with small norm such to minimize the
empirical error over the training set. We use the 2-norm of the matrixM. We thus formulate the
problem in a SVM style by requiring a set of small norm prototypes to fulfill thesoft constraints
given by the classification requirements. Specifically, the single-prototype version of multiclass

821

A IOLLI AND SPERDUTI

SVM (SProtSVM in the following) will result in:

minM,ξ,θ
1
2||M||2 +C∑i ξi

subject to:







∀i, r 6= yi , 〈Mr ,xi〉 ≤ θi ,
∀i, 〈Myi ,xi〉 ≥ θi +1−ξi ,
∀i, ξi ≥ 0

(4)

where the parameterC controls the amount of regularization applied to the model.
It can be observed that, at the optimum,θi will be set to the maximum value among the negative

scores for the instancexi (in such a way to minimize the corresponding slack variables) consistently
with Eq. (3).

The problem in Eq. (4) is convex and it can be solved in the standard way by resorting to the
optimization of the Wolfe dual problem. In this case, the Lagrangian is:

L(M,ξ,θ,α,λ) = 1
2||M||2 +C∑i ξi+

∑i,r 6=yi
αr

i (〈Mr ,xi〉−θi)+

∑i α
yi
i (θi +1−ξi−〈Myi ,xi〉)−

∑i λiξi

= 1
2||M||2−∑i,r yr

i αr
i (〈Mr ,xi〉−θi)+

∑i α
yi
i +∑i(C−αyi

i −λi)ξi ,

(5)

subject to the constraintsαr
i ,λi ≥ 0.

By differentiating the Lagrangian with respect to the primal variables and imposing the optimal-
ity conditions we obtain a set of constraints that the variables have to fulfill in order to be an optimal
solution:

∂L(M,ξ,θ,α,λ)
∂Mr

= 0 ⇔ Mr = ∑i y
r
i αr

i xi
∂L(M,ξ,θ,α,λ)

∂ξi
= 0 ⇔ C−αyi

i −λi = 0⇔ αyi
i ≤C

∂L(w,ξ,θ,α,λ)
∂θi

= 0 ⇔ αyi
i = ∑r 6=yi

αr
i

(6)

By using the factsαyi
i = 1

2 ∑r αr
i and ||M(α)||2 = ∑i, j,r yr

i y
r
jαr

i αr
j〈xi ,x j〉, substituting equalities

from Eq. (6) into Eq. (5) and omitting constants that do not change the solution, the problem can be
restated as:

maxα ∑i,r αr
i −||M(α)||2

subject to:

{
∀i, r, αr

i ≥ 0
∀i,αyi

i = ∑r 6=yi
αr

i ≤C

Notice that, when kernels are used, by the linearity of dot-products, the scoring function for the
r-th prototype and a patternx can be conveniently reformulated as

fr(x) = 〈Mr ,φ(x)〉=
n

∑
i=1

yr
i α

r
i k(x,xi).

The next section includes an efficient optimization procedure for the more general multi-prototype
setting that includes the single-prototype case as an instance.

822

MULTICLASS CLASSIFICATION WITH MULTI -PROTOTYPESUPPORTVECTORMACHINES

4. Multi-Prototype Multi-Class SVM

The SProtSVM model presented in the previous section is here extended to learn more than one
prototypes per class. This is done by generalizing Eq. (3) to multiple prototypes. In this setting, one
instance is correctly classified if and only ifat leastone of the prototypes associated to the correct
class has a score greater than the maximum of the scores of the prototypes associated to incorrect
classes.

A natural extension of the definition for the margin in the multi-prototype case is then

ρ(xi ,ci |M) = max
r∈Pi

〈Mr ,xi〉−max
r∈Ni

〈Mr ,xi〉.

and its value will result greater than zero if and only if the examplexi is correctly classified.
We can now give conditions for a correct classification of an examplexi with a margin greater

or equal to 1 by requiring that:

∃r ∈ Pi : 〈Mr ,xi〉 ≥ θi +1 andθi = max
r∈Ni

〈Mr ,xi〉. (7)

To allow for margin violations, for each examplexi , we introduce soft margin slack variables
ξr

i ≥ 0, one for each positive prototype, such that

∀r ∈ Pi , ξr
i = [θi +1−〈Mr ,xi〉]+.

Given a patternxi , we arrange the soft margin slack variablesξr
i in a vectorξi ∈ R

|Pi |. Let us now
introduce, for each examplexi , a new vector having a number of components equal to the number of
positive prototypes forxi , πi ∈ {0,1}|Pi |, whose components are all zero except one component that
is 1. In the following, we refer toπi as theassignmentof the patternxi to the (positive) prototypes.
Notice that the dot product〈πi ,ξi〉 is always an upper bound on the binary loss for the example
xi independently from its assignment and, similarly to the single-prototype case, the average value
over the training set represents an upper bound on the empirical error.

Now, we are ready to formulate the general multi-prototype problem by requiring a set of pro-
totypes of small norm and the best assignment for the examples able to fulfill the soft constraints
given by the classification requirements. Thus, the MProtSVM formulation can be given as:

minM,ξ,θ,π
1
2||M||2 +C∑i〈πi ,ξi〉

subject to:







∀i, r ∈Ni , 〈Mr ,xi〉 ≤ θi ,
∀i, r ∈ Pi , 〈Mr ,xi〉 ≥ θi +1−ξr

i ,
∀i, r ∈ Pi ,ξr

i ≥ 0
∀i,πi ∈ {0,1}|Pi |.

(8)

Unfortunately, this is a mixed integer problem that is not convex and it is a difficult problem to
solve in general. However, as we will see in the following, it is prone to an efficient optimization
procedure that approximates a global optimum. At this point, it is worth noticing that, since this
formulation is itself an (heuristic) approximation to the structural risk minimization principle where
the parameterC rules the trade-off between keeping the VC-dimension low and minimizing the
training error, a good solution of the problem in Eq. (8), even if not optimal,can nevertheless give
good results in practice. As we will see, this claim seems confirmed by the results obtained in the
experimental work.

In the following section we demonstrate that when the assignment is fixed for each pattern,
the problem results tractable and we are able to give an efficient procedure to solve the associated
problem.

823

A IOLLI AND SPERDUTI

5. Optimization with Static Assignments

Let suppose that the assignments are kept fixed. In this case, the reduced problem becomes convex
and it can be solved as described above by resorting to the optimization of theWolfe dual problem.
In this case, the Lagrangian is:

Lπ(M,ξ,θ,α,λ) = 1
2||M||2 +C∑i〈πi ,ξi〉+
∑i,r∈Pi

αr
i (θi +1−ξr

i −〈Mr ,xi〉)−
∑i,r∈Pi

λr
i ξr

i +

∑i,r∈Ni
αr

i (〈Mr ,xi〉−θi),

(9)

subject to the constraintsαr
i ,λr

i ≥ 0.
As above, by differentiating the Lagrangian of the reduced problem and imposing the optimality

conditions, we obtain:

∂Lπ(M,ξ,θ,α,λ)
∂Mr

= 0 ⇔ Mr = ∑i y
r
i αr

i xi
∂Lπ(M,ξ,θ,α,λ)

∂ξr
i

= 0 ⇔ Cπr
i −αr

i −λr
i = 0⇔ αr

i ≤Cπr
i

∂Lπ(M,ξ,θ,α,λ)
∂θi

= 0 ⇔ ∑r∈Pi
αr

i = ∑r∈Ni
αr

i

(10)

Notice that the second condition requires the dual variables associated to (positive) prototypes
not assigned to a pattern to be 0. By denoting now asyi the unique indexr ∈Pi such thatπr

i = 1, once
using the conditions of Eq. (10) in Eq. (9) and omitting constants that do not change the obtained
solution, the reduced problem can be restated as:

maxα ∑i,r αr
i −||M(α)||2

subject to:







∀i, r, αr
i ≥ 0

∀i, αyi
i = ∑r∈Ni

αr
i ≤C

∀i, r ∈ Pi \{yi}, αr
i = 0.

(11)

It can be trivially shown that this formulation is consistent with the formulation ofthe SProtSVM
dual given above. Moreover, when kernels are used, the score function for ther-th prototype and a
patternx can be formulated as in the single-prototype case as

fr(x) = 〈Mr ,φ(x)〉=
n

∑
i=1

yr
i α

r
i k(x,xi).

Thus, when patterns are statically assigned to the prototypes via constant vectorsπi , the convex-
ity of the associated MProtSVM problem implies that the optimal solution for the primal problem
in Eq. (8) can be found through the maximization of the Lagrangian as in problem in Eq. (11).
Assuming an equal numberq of prototypes per class, the dual involvesn×m×q variables which
leads to a very large scale problem. Anyway, the independence of constraints among the different
patterns allows for the separation of the variables inn disjoint sets ofm×q variables.

The algorithms we propose for the optimization of the problem in Eq. (11) are inspired by
the ones already presented in (Crammer and Singer, 2000, 2001) consisting in iteratively selecting
patterns from the training set and greedily optimizing with respect to the variables associated to
that pattern. In particular, the authors propose a fixed-point procedure for the optimization of the
reduced problem.

824

MULTICLASS CLASSIFICATION WITH MULTI -PROTOTYPESUPPORTVECTORMACHINES

In the following, we first show that the pattern related problem can be further decomposed until
the solution for a minimal subset of two variables is required. This is quite similar tothe SMO
procedure for binary SVM. Then, a training algorithm for this problem can be defined by iterating
this basic step.

5.1 The Basic Optimization Step

In this section the basic step corresponding to the simultaneous optimization of a subset of variables
associated to the same pattern is presented. Let patternxp be fixed. Since we want to enforce the
linear constraint∑r∈Np

αr
p + λp = C, λp ≥ 0, from the second condition in Eq. (10), two elements

from the set of variables{αr
p, r ∈ Np}∪{λp} will be optimized in pair while keeping the solution

inside the feasible region. In particular, letζ1 andζ2 be the two selected variables, we restrict the
updates to the formζ1← ζ1 +ν andζ2← ζ2−ν with optimal choices forν.

In order to compute the optimal value forν we first observe that an additive update∆Mr to the
prototyper will affect the squared norm of the prototype vectorMr of an amount

∆||Mr ||2 = ||∆Mr ||2 +2〈Mr ,∆Mr〉.

Then, we examine separately the two ways a pair of variables can be selected for optimization.

(Case 1)We first show how to analytically solve the problem associated to an update involving
a single variableαr

p, r ∈ Np and the variableαyp
p . Note that, sinceλp does not influence the value

of the objective function, it is possible to solve the associated problem with respect to the variable
αr

p andαyp
p in such a way to keep the constraintαyp

p = ∑r∈Np
αr

p satisfied and afterwards to enforce
the constraintsλp = C−∑s∈Np

αs
p≥ 0. Thus, in this case we have:

αr
p← αr

p +ν andαyp
p ← αyp

p +ν.

Since∆Mr =−νxp, ∆Myp = νxp and∆Ms = 0 for s /∈ {r,yp}, we obtain

∆||M||2 = ∆||Mr ||2 +∆||Myp||2 = 2ν2||xp||2 +2ν(fyp(xp)− fr(xp))

and the difference obtained in the Lagrangian value will be

∆L(ν) = 2ν(1− fyp(xp)+ fr(xp)−ν||xp||2).

Since this last formula is concave inν, it is possible to find the optimal value when the first derivative
is null, i.e.

ν̂ = argmax
ν

∆L(ν) =
1− fyp(xp)+ fr(xp)

2||xp||2
(12)

If the values ofαr
p andαyp

p , after being updated, turn out to be not feasible for the constraints
αr

p ≥ 0 andαyp
p ≤C, we select the unique value forν such to fulfill the violated constraint bounds

at the limit (αr
p +ν = 0 or αyp

p +ν = C respectively).

(Case 2)Now, we show the analytic solution of the associated problem with respect to an update
involving a pair of variablesαr1

p ,αr2
p such thatr1, r2 ∈Np andr1 6= r2. Since, in this case, the update

must have zero sum, we have:

αr1
p ← αr1

p +ν andαr2
p ← αr2

p −ν

825

A IOLLI AND SPERDUTI

In this case,∆Mr1 =−νxp, ∆Mr2 = νxp and∆Ms = 0 for s /∈ {r1, r2}, thus

∆||M||2 = ∆||Mr1||2 +∆||Mr2||2 = 2ν2||xp||2 +2ν(fr2(xp)− fr1(xp))

leading to an Lagrangian improvement equals to

∆L(ν) = 2ν(fr1(xp)− fr2(xp)−ν||xp||2).

Since also this last formula is concave inν, it is possible to find the optimal value

ν̂ = argmax
ν

∆L(ν) =
fr1(xp)− fr2(xp)

2||xp||2
(13)

Similarly to the previous case, if the values of theαr1
p andαr2

p , after being updated, turn out to be
not feasible for the constraintsαr1

p ≥ 0 andαr2
p ≥ 0, we select the unique value forν such to fulfill

the violated constraint bounds at the limit (in this case, consideringfr1(xp)≤ fr2(xp) and thuŝν≤ 0
with no loss in generality, we obtainαr1

p +ν = 0 or αr2
p −ν = C respectively).

Note that, when a kernel is used, the norm in the feature space can be substituted with the diago-
nal component of the kernel matrix, i.e.||xp||2 = k(xp,xp) = Kpp while the scores can be maintained
in implicit form and computed explicitly when necessary.

To render the following exposition clearer, we try to compact the two cases inone. This can be
done by defining the update in a slightly different way, that is, for each pair (ra, rb)∈ (Pp∪Np)×Np

we define:
αra

p ← αra
p +yra

p ν andαrb
p ← αrb

p −yrb
p ν

and hence the improvement obtained for the value of the Lagrangian is

V p
ra,rb

(ν) = 2ν
(

1
2
(yra

p −yrb
p)− fra(xp)+ frb(xp)−νk(xp,xp)

)

(14)

where the optimal value for theν is

ν̂ =
1
2(yra

p −yrb
p)− fra(xp)+ frb(xp)

2k(xp,xp)

subject to the constraints

αra
p +yra

p ν > 0, αrb
p −yrb

p ν > 0, αyp +
1
2
(yra

p −yrb
p)ν≤C.

The basic step algorithm and the updates induced in the scoring functions are described in
Figure 1 and Figure 2, respectively.

5.2 New Algorithms for the Optimization of the Dual

In the previous section we have shown how it is possible to give an explicit optimal solution of the
reduced problem obtained by fixing all the variables apart for the two variables under consideration.

In this section, we analyze different algorithms that are based on the step given above. The basic
idea is the same as SMO for SVM (Platt, 1998), that is to repeat a process in which

826

MULTICLASS CLASSIFICATION WITH MULTI -PROTOTYPESUPPORTVECTORMACHINES

BasicStep(p, ra, rb)

ν =
1
2(yra

p −y
rb
p)− fra(xp)+ frb(xp)

2Kpp

if (αra
p +yra

p ν < 0) then ν =−yra
p αra

p

if (αrb
p −yrb

p ν < 0) then ν = yrb
p αrb

p

if (αyp
p + 1

2(yra
p −yrb

p)ν > C) then ν = 2 C−αyp
p

yra
p −y

rb
p

return ν

Figure 1: The basic optimization step: explicit optimization of the reduced problem with two vari-
ables, namelyαra

p andαrb
p .

BasicUpdate(p, ra, rb, ν)

αra = αra +yra
p ν; αrb = αrb +yrb

p ν;

fra(xp) = fra(xp)+yra
p νKpp; frb(xp) = frb(xp)−yrb

p νKpp;

Figure 2: Updates done after the basic optimization step has been performedand the optimal solu-
tion found.Kpp denotes thep-th element of the kernel matrix diagonal.

• a minimal subset of independent multipliers are selected

• the analytic solution of the reduced problem obtained by fixing all the variables but the ones
we selected in the previous step is found.

In our case, a minimal set of two variables associated to the same example are selected at each
iteration. As we showed in the last section, each iteration leads to an increaseof the Lagrangian.
This, together with the compactness of the feasible set guarantees the convergence of the procedure.
Moreover, this optimization procedure can be considered incremental in thesense that the solution
we have found at one step forms the initial condition when a new subset of variables are selected
for optimization. Finally, it should be noted that for each iteration the scores of the patterns in the
training set must be updated before to be used in the selection phase. The general optimization
algorithm just described is depicted in Figure 3.

In the following, we present three alternative algorithms for the optimization ofthe problem in
Eq. (11) which differ in the way they choose the pairs to optimize through the iterations, i.e. the
OptimizeOnPattern procedure.

The first practical and very simple algorithm for solving the problem in Eq. (11) can be derived
from the steps given above where at each iteration a pair of multipliers is selected and then optimized
according to the analytic solution given in the previous section until some convergence criterion

827

A IOLLI AND SPERDUTI

OptimizeStaticProblem(ϕV)

repeat

PatternSelection(p) // Heuristically choose an examplep based on Eq. (14)

OptimizeOnPattern(p, ϕV)

until converge.

Figure 3: High-level procedure for the optimization of a statically assigned multi-prototype SVM.
The parameterϕV is the tolerance when checking optimality in theOptimizeOnPattern
procedure.

BasicOptimizeOnPattern(p, ϕV)

Heuristically choose two indexesra 6= rb based on Eq. (14)

ν = BasicStep(p, ra, rb)

BasicUpdate(p, ra, rb,ν)

Figure 4: SMO-like algorithm for the optimization of statically assigned multi-prototype SVM.

is fulfilled. Eq. (14) gives a natural method for the selection of the two variables involved, i.e.
take the two indexes that maximize the value of that formula. Finally, once chosen two variables
to optimize, the basic step in the algorithm in Figure 1 provides the optimal solution. This very
general optimization algorithm will be referred to asBasicOptimizeOnPattern and it is illustrated
in Figure 4.

A second method to solve the optimization problem in Eq. (11) is given in the following and
can be also considered as an alternative method to the Crammer and Singer fixed-point algorithm
for the optimization over a single example (Crammer and Singer, 2001). This method consists in
fixing an example and iterating multiple times the basic step described above on pairsof variables
chosen among that associated to the pattern into consideration until some convergence conditions
local to the pattern under consideration are matched. Notice that this algorithmrequires just a sin-
gle step in the binary single-prototype case. In Figure 5 the pseudo-code of the proposed pattern
optimization algorithm referred to asAllPairsOptimizeOnPattern is presented. At each step,
the algorithm applies the basic step to them(m−1)/2 pairs of variables associated with the pattern
chosen for optimization until a certain condition on the value of the increment ofthe Lagrangian is
verified. Iterating multiple times the basic step described above on pairs of variables chosen among
that associated to a given pattern it is guaranteed to find the optimality condition for the pattern. The
optimization step of this reduced problem can require the optimization over all theq2m(m−1)/2
pairs of variables not constrained to 0 associated with the selected pattern. Thus the complexity of

828

MULTICLASS CLASSIFICATION WITH MULTI -PROTOTYPESUPPORTVECTORMACHINES

AllPairsOptimizeOnPattern(p, ϕV)

t = 0,V(0) = 0.

do

t← t +1,V(t) = 0

For eachr1 6= r2

ν = BasicStep(p, r1, r2)

V(t) = V(t)+2ν
(

1
2(yr1

p −yr2
p)− fr1(xp)+ fr2(xp)−νKpp

)

BasicUpdate(p, r1, r2,ν)

until (V(t)≤ ϕV)

Figure 5: Algorithm for the incremental optimization of the variables associatedwith a given pat-
tern of a staticallly assigned multi-prototype SVM

the optimization of the reduced problem isO((mq)2I) whereI is the number of iterations.

Now, we perform a further step by giving a third algorithm that is clearly faster than the previous
versions having at each iteration a complexityO(mq). For this we give an intuitive derivation of
three optimality conditions. Thus, we will show that if a solution is such that all these conditions
are not fulfilled, then this solution is just the optimal one since it verifies the KKTconditions.

First of all, we observe that for the variables{αr
p,λp} associated to the patternxp to be optimal,

the valueν returned by the basic step must be 0 for each pair. Thus, we can consider the two cases
above separately. For the first case, in order to be able to apply the step,it is necessary for one of
the following two conditions to be verified:

(Ψ1) (αyp
p < C)∧ (fyp(xp) < maxr∈Np

fr(xp)+1)

(Ψ2) (αyp
p > 0)∧ (fyp(xp) > maxr∈Np,αr

p>0 fr(xp)+1)

In fact, in Eq. (12), when there existsr ∈ Np such thatfyp(xp) < fr(xp)+ 1, the conditionν̂ > 0
holds. In this case the pair(αyp

p ,αr
p) can be chosen for optimization. Thus, it must beαyp

p < C in
order to be possible to increase the values of the pair of multipliers. Alternatively, if αyp

p > 0 and
there exists an indexr such thatαr

p > 0 and fyp(xp) > fr(xp)+1 thenν̂ < 0 and (at least) the pair
(αyp

p ,αk
p) wherek = argmaxr∈Np,αr

p>0 fr(xp) can be chosen for optimization. Finally, from Eq. (13),
we can observe that in order to haveν̂ 6= 0, we need the last condition to be verified:

(Ψ3) (αyp
p > 0)∧ (maxr∈Np

fr(xp) > minr∈Np,αr
p>0 fr(xp))

In fact, in Eq. (13), if there exists a pair(αra
p ,αrb

p) such thatfra(xp) > frb(xp) and αrb
p > 0, the

conditionν̂ > 0 holds for this pair and it can be chosen for optimization.

829

A IOLLI AND SPERDUTI

Note that inΨ2 andΨ3 the conditionαyp
p > 0 is redundant and serves to assure that the second

condition makes sense. In fact, when the first condition is not verified, wewould haveα = 0 and
the second condition is undetermined.

Summarizing, we can give three conditions of non-optimality. This means that whenever at least
one among these conditions is verified the solution is not optimal. They are

(a) (αyp
p < C)∧ (fyp(xp) < maxr∈Np

fr(xp)+1)

(b) (αyp
p > 0)∧ (fyp(xp) > maxr∈Np,αr

p>0 fr(xp)+1)

(c) (αyp
p > 0)∧ (maxr∈Np

fr(xp) > minr∈Np,αr
p>0 fr(xp))

(15)

Now we are able to demonstrate the following theorem showing that when no one of these
conditions are satisfied the conditions of optimality (KKT conditions) are verified:

Theorem 1 Let α be an admissible solution for the dual problem in Eq. (11) not satisfying any of
the conditions in Eq. (15), thenα is an optimal solution.

Proof. We consider theKuhn-Tuckertheorem characterizing the optimal solutions of convex
problems. We know from theoretical results about convex optimization that for a solutionα to be
optimal a set of conditions are both necessary and sufficient. These conditions are the one reported
in Eq. (10) plus the so-calledKarush-Kuhn-Tucker(KKT) complementarity conditions that in our
case correspond to:

(a) ∀p, r ∈ Pp, αr
p(θp +1−ξr

p− fr(xp)) = 0
(b) ∀p, r ∈ Pp, λr

pξr
p = 0

(c) ∀p,v∈Np, αv
p(fv(xp)−θp) = 0.

(16)

Then, we want to show that these KKT complementary conditions are satisfiedby the solution
αp for everyp∈ {1, . . . ,n}. To this end let us fix an indexp and consider a solution where all the
conditions in Eq. (15) are not satisfied. We want to show that the KKT conditions in Eq. (16) are
verified in this case.

First of all, we observe that for all the variables associated to a positive prototyper ∈ Pp not
assigned to the patternxp, that is such thatπr

p = 0, from Eq. (10) we trivially haveαr
p = 0 andλr

p = 0
thus verifying all conditions in Eq. (16).

Let now consider the case 0< αyp
p < C. In this case the non applicability of condition in

Eq. (15)c says thatθp = maxv∈Np
fv(xp) and∀v∈Np, αv

p > 0⇒ fv(xp) = θp that is the condition
in Eq. (16)c holds. Moreover, the condition in Eq. (15)a, if not satisfied, implies fyp(xp) ≥ θp +1,
thusαyp

p = 0 andξyp
p = 0 thus satisfying the conditions in Eq. (16)a and Eq. (16)b.

Let now consider the caseαyp
p = 0. The conditions in Eq. (16)a and Eq. (16)c follow immedi-

ately. In this case, Eq. (15)b and Eq. (15)c are not satisfied. For what concerns the Eq. (15)a it must
be the casefyp(xp)≥maxv∈Np

fv(xp)+1 and soξyp
p = 0 thus verifying the condition in Eq. (16)b.

Finally, in the caseαyp
p = C, from Eq. (10) we haveλp = 0 and hence the condition in Eq. (16)b

is verified. Moreover, from the fact that Eq. (15)c is not satisfied∀v ∈ Np : αv
p > 0⇒ θp =

maxr∈Np
fr(xp) ≤ fv(xp)⇒ θp = fv(xp) and the condition in Eq. (16)c holds. Moreover, from

condition in Eq. (15)b we obtainfyp(xp)≤ θp+1 andξyp
p = θp+1− fyp(xp) thus implying the truth

of the condition in Eq. (16)a.�

830

MULTICLASS CLASSIFICATION WITH MULTI -PROTOTYPESUPPORTVECTORMACHINES

OptKKTOptimizeOnPattern(xp,ϕV)

∀r, fr := fr(xp) = ∑n
i=1yr

i αr
i k(xi ,xp), Kpp = k(xp,xp);

do

if (αyp
p = 0) then {

r1 := argmaxr∈Np
fr ;

ν1 := BasicStep(p, yp, r1); V1 := 2ν1(1− fyp + fr1−ν1Kpp);

k := 1}

else{

r1 := argmaxr∈Np
fr ; r2 := argmaxr∈Np,αr

p>0 fr ; r3 := argminr∈Np,αr
p>0 fr ;

ν1 := BasicStep(p, yp, r1); V1 := 2ν1(1− fyp + fr1−ν1Kpp);

ν2 := BasicStep(p, yp, r2); V2 := 2ν2(1− fyp + fr2−ν2Kpp);

ν3 := BasicStep(p, r1, r3); V3 := 2ν3(fr1− fr3−ν3Kpp);

k := argmaxj Vj ; }

casek of {

1: BasicUpdate(p,yp,r1,ν1);

2: BasicUpdate(p,yp,r2,ν2);

3: BasicUpdate(p,r1,r3,ν3); }

until (Vk ≤ ϕV);

Figure 6: Algorithm for the optimization of the variables associated with a givenpatternxp and a
toleranceϕV .

All the conditions in Eq. (15) can be checked in time linear with the number of classes. If none
of these conditions are satisfied, this means that the condition of optimality has been found. This
consideration suggests an efficient procedure that is presented in Figure 6 that searches to greedily
fulfill these conditions of optimality and it is referred to asOptKKTOptimizeOnPattern. Briefly,
the procedure first checks if the conditionαp = 0 holds. In this case, two out of the three conditions
do not make any sense and the choice of the pair to optimize is mandatory. Otherwise, three indexes
(r1, r2, r3) are found defining the conditions in Eq. (15). Then for every pair associated to the
condition a basic step is performed and the pair obtaining the larger improvement in the Lagrangian
is chosen for the effective update.

831

A IOLLI AND SPERDUTI

5.3 Selection Criteria and Cooling Schemes

The efficiency of the general scheme in Figure 3 is tightly linked to the strategybased on which the
examples are selected for optimization.

The algorithm proposed in (Crammer and Singer, 2001) is just an instance of the same scheme.
In that work, by using the KKT conditions of the optimization problem, the authors derive a quan-
tity ψi ≥ 0 for each example and show that this value needs to be equal to zero at theoptimum.
Thus, they use this value to drive the optimization process. In the baseline implementation, the
example that maximizesψi is selected. Summarizing, their algorithm consists of a main loop which
is composed of: (i) an example selection, via theψi quantity, (ii) an invocation of a fixed-point
algorithm that is able to approximate the solution of the reduced pattern-relatedproblem and (iii)
the computation of the new value ofψi for each example. At each iteration, most of the computa-
tion time is spent on the last step since it requires the computation of one row of the kernel matrix,
that one relative to the pattern with respect to which they have just optimized. This is why it is so
important a strategy that tries to minimize the total number of patterns selected for optimization.
Their approach is to maintain an active set containing the subset of patternshavingψi ≥ ε whereε
is a suitable accuracy threshold. Cooling schemes, i.e. heuristics based onthe gradual decrement of
this accuracy parameter, are used for improving the efficiency with large datasets.

In our opinion, this approach has however some drawbacks:

i) while ψi ≈ 0 gives us the indication that the variables associated to the patternxi are almost opti-
mal and it would be better not to change them, the actual valueψi does not give us information
about the improvement we can obtain choosing those variables in the optimization;

ii) cooling schemes reduce the incidence of the above problem but, as we will see, they do not
always perform well;

iii) at each iteration, the fixed point optimization algorithm is executed from scratch, and previously
computed solutions obtained for an example can’t help when the same example ischosen
again in future iterations; in addition, it is able to find just anapproximatedsolution for the
associated pattern-related problem.

According to the above-mentioned considerations, it is not difficult to define a number of criteria
to drive a ’good’ pattern selection strategy, which seem to be promising. Weconsider the following
three procedures which return a valueVp that we use for deciding if a pattern has to be selected for
optimization. Namely:

i) Original KKT as defined in Crammer and Singer’s work (here denoted KKT): in this case, the
value ofVp corresponds to theψp;

ii) Approximate Maximum Gain (here denoted AMG): in this case the value ofVp is computed
as: maxr1 6=r2 V p

r1,r2(ν̂) as defined in Eq. (14). Notice that this is a lower bound of the total
increment in the Lagrangian obtained when the patternp is selected for optimization and the
optimization on the variables associated to it is completed;

iii) True Maximum Gain (here denoted BMG): in this case the value is computed using iteratively
Eq. (14) and it represents the actual increment in the Lagrangian obtained when the patternp
is selected for optimization.

832

MULTICLASS CLASSIFICATION WITH MULTI -PROTOTYPESUPPORTVECTORMACHINES

At the begin of each iteration, a threshold for pattern selectionθV is computed. For each example
of the training set one of the above strategies is applied to it and the example is selected for opti-
mization if the value returned is greater than the threshold. The definition of thethresholdθV can be
performed either by a cooling scheme that decreases its value as the iterationproceeds or in a data
dependent way. In our case, we have used a logarithmic cooling scheme since this is the one that
has shown the best results for the original Crammer and Singer approach. In addition, we propose
two new schemes for the computation of the valueθV : MAX where the threshold is computed as
θV = µ·maxpVp, 0≤ µ≤ 1, and MEAN where the threshold is computed asθV = 1

n ∑n
p=1Vp.

5.4 Experiments with Pattern Selection

Experiments comparing the proposed pattern selection approaches versus the Crammer and Singer
one has been conducted using a dataset consisting of 10705 digits randomly taken from the NIST-3
dataset. The training set consisted of 5000 randomly chosen digits.

The optimization algorithm has been chosen among:i) The base-line Crammer and Singer orig-
inal fixed-point procedure (here denoted CS);ii) AllPairsOptimizeOnPatterns (here denoted
ALL); iii) BasicOptimizeOnPatterns (here denoted BAS). In the first experiments we used a
cache for the kernel matrix of size 3000 that was able to contain all the matrix rows associated
to the support vectors. For all the following experiments a AMD K6-II, 300MHz, with 64MB of
memory has been used.

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

0 200 400 600 800 1000

l
a
g
r
a
n
g
i
a
n

secs.

KKT/ALL
KKT/CS
AMG/ALL
AMG/CS
BMG/ALL

Figure 7: The effect of the logarithmic cooling scheme on different selection/optimization strate-
gies.

In Figure 7 the effect of the application of the logarithmic scheme of cooling to the different
selection/optimization strategies is shown. It is possible to note that even if the proposed selection
strategies largely improve the convergence rate, the optimal solution can notbe reached. This clearly
shows how cooling schemes of the same family of that proposed in (Crammer and Singer, 2001)
are not suitable for these new proposed selection strategies. This is mostly due to the fact that the

833

A IOLLI AND SPERDUTI

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

0 200 400 600 800 1000

l
a
g
r
a
n
g
i
a
n

secs.

0.1 Max
0.5 Max

Mean

Figure 8: Comparison of different heuristics for the computation of the value θV for the SMO-like
algorithm.

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

0 500 1000 1500 2000

l
a
g
r
a
n
g
i
a
n

secs.

KKT/ALL
AMG/ALL
BMG/ALL
BMG/BAS

Figure 9: Comparison of different selection strategies using the heuristic MEAN.

logarithmic function is very slow to converge to zero, and because of that, the value returned by
the strategies will be soon below the threshold. In particular the logarithmic function remains on
a value of about 0.1 for many iterations. While this value is pretty good for the accuracy of the
KKT solution, it is not sufficient for our selection schemes. In Figure 8 different heuristics for
the computation of the valueθV of the selection strategy of the SMO-like algorithm are compared.
In this case the very simple heuristics MAX and MEAN reach similar performance, which is much
better than the baseline scheme. In Figure 9, given the heuristic MEAN, different selection strategies

834

MULTICLASS CLASSIFICATION WITH MULTI -PROTOTYPESUPPORTVECTORMACHINES

0

1000

2000

3000

4000

5000

6000

7000

8000

0 500 1000 1500 2000

l
a
g
r
a
n
g
i
a
n

secs.

AMG/ALL Cache 100
BMG/ALL Cache 100
KKT/ALL Cache 100
BMG/BAS Cache 100

(a)

0

5

10

15

20

25

30

35

40

45

50

0 1000 2000 3000 4000 5000 6000

t
e
s
t

e
r
r
o
r

secs.

KKT/ALL Cache 100
AMG/ALL Cache 100

(b)

Figure 10: The effect of the cache limitation:(a) Lagrangian value versus time;(b) test perfor-
mance versus time.

are compared. In this case, the new strategies slightly outperform the one based on Crammer and
Singer’s KKT conditions. Actually, as we will see in the following, this slight improvement is due
to the big size of the cache of kernel matrix rows that prevents the algorithm suffering of the large
amount of time spent in the computation of kernels that are not present in the cache.

In order to reproduce conditions similar to the ones occurring when dealingwith large datasets,
the size of the cache of kernel matrix rows has been reduced to 100 rows. As it is possible to see
in figure 10-a a decrease in the performance is evident for each method, however, this decrease
becomes more evident when KKT conditions are used as the pattern selectionstrategy. From the

835

A IOLLI AND SPERDUTI

same figure we can see also a quite poor performance when the basic version of the SMO-like is used
as a global optimization method. This demonstrates how important is to solve the overall problem
one pattern at time. In fact, this leads to a decrease of the total number of patterns selected for
optimization and consequently to a decrease of the number of kernel computations. This puts also
in evidence the amount of time spent in kernel computation versus the amount of time spent in the
optimization. Figure 10-b clearly shows that the same argument can be appliedto the recognition
accuracy.

5.5 Brief Discussion

The type of strategies we have analyzed in earlier sections are very similar tothe ones used by SMO
(Platt, 1998), modified SMO (Keerthi et al., 1999) and svmlight (Joachims, 1999) algorithms for
binary SVM. In these cases, linear constraints involving dual variables which are related to different
patterns (derived by KKT conditions over the bias term) are present. However, in our case, as in the
Crammer and Singer’s algorithm (Crammer and Singer, 2001), constraints involve dual variables
which are related to the same pattern (but over different prototypes). This makes a difference in the
analysis since it turns out that it is convenient to optimize as much as possible the reduced problem
obtained for a single pattern as this optimization does not require the computationof new kernels.
This claim is supported by our experimental results comparing BMG-ALL vs.BMG-BAS in Figure
10.

Also, we have shown experimentally that the use of heuristics based on the increase of the
Lagrangian tend to be faster than KKT based ones, when used for pattern selection (compare BMG-
ALL vs. KKT-ALL in Figure 10). This can be due to the fact that the numberof different patterns
selected along the overall optimization process tends to be smaller and this largely compensates the
inefficiency derived by the computation of the increase of the Lagrangianand the thresholds. On
the other hand, according to the same experimental analysis, KKT conditionshelp when used for
the choice of pairs to optimize in the reduced problems obtained for a given pattern. According to
these considerations, this mixed approach has been adopted in the experiments that follow.

6. Optimization of General MProtSVM

By now, we have analyzed the (static) problem obtained when the assignment is given. In this sec-
tion, we describe methods for the optimization with respect to the assignmentsπ as well. Naturally,
the full problem is no longer convex. So, we first present an efficientprocedure that guarantees to
reach a stationary point of the objective function of the problem in Eq. (8)associated to MProtSVM.
Then, we insert it in a stochastic search framework with the aim to improve the quality of the solu-
tions we find.

6.1 Greedy Optimization of MProtSVM

In the following, an algorithm for the optimization of the problem in Eq. (8) is described. The
algorithm consists of two steps: a step in which, fixed the values for the set of variablesα, we select
the assignmentsπ’s in such a way to minimize the primal value, followed by a step in which the
optimization of the variablesα is performed once fixed the assignments. Each of these steps will
lead to an improvement of the objective function thus guaranteeing the convergence to a stationary
point.

836

MULTICLASS CLASSIFICATION WITH MULTI -PROTOTYPESUPPORTVECTORMACHINES

Let suppose to start by fixing an initial assignmentπ(1) for the patterns. As we have already
seen, the associated problem is then convex and can be efficiently solvedfor example by using
the general scheme in Figure 3. Once that the optimal value for the primal, let say P∗π(1), has
been reached, we can easily observe that the solution can be further improved by updating the
assignments in such a way to associate each patternxi to a positive prototype having associated the
minimal slack value, i.e. by setting the vectorπi(2) so to have the unique 1 corresponding to the
best performing positive prototype. However, with this new assignmentπ(2), the variablesα may
no longer fulfill the second admissibility condition in Eq. (10). If this is the case, it simply means
that the current solutionM(α) is not optimal for the primal (although still admissible). Furthermore,
α cannot be optimal for the dual given the new assignment since it not evenadmissible. Thus, a
Lagrangian optimization, done by keeping the constraints dictated by the admissibility conditions
in Eq. (10) satisfied for the new assignment, is guaranteed to obtain a newα with a better optimal
primal valueP∗π(2), i.e. P∗π(2) ≤ P∗π(1). For the optimization algorithm to succeed, however, KKT
conditions onα have to be restored in order to return back to a feasible solution and then finally
resuming the Lagrangian optimization with the new assignmentπ(2). Admissibility conditions
can be simply restored by settingαi = 0 whenever there exists anyr ∈ Pi such that the condition
αr

i > 0∧πr
i = 0 holds. Note that, when the values assigned to the slack variables allow to define

a new assignment forπ corresponding to a new problem with a better optimal primal value, then,
because of convexity, the Lagrangian of the corresponding dual problem will have an optimal value
that is strictly smaller than the optimal dual value of the previous problem.

Performing the same procedure over different assignments, each one obtained from the previous
one by the procedure described above, implies the convergence of the algorithm to a fixed-point
consisting of a stationary point for the primal problem when no improvements are possible and the
KKT complementarity conditions are all fulfilled by the current solution.

One problem with this procedure is that it can result onerous when dealingwith large datasets or
when using many prototypes since, in this case, many complete Lagrangian optimizations have to
be performed. For this, we can observe that for the procedure to work, at each step, it is sufficient to
stop the optimization of the Lagrangian when we find a value for the primal whichis better than the
last found value and this is going to happen for sure since the last solution was found not optimal.
This requires only a periodic check of the primal value when optimizing the Lagrangian.

6.2 Stochastic Modifications for MProtSVM Optimization

Another problem with the procedure given in the previous section is that it leads to a stationary
point (either a local minima or a saddle point) that can be very far from the best possible solution.
Moreover, it is quite easy to observe that the problem we are solving is combinatorial. In fact, since
the induced problem is convex for each possible assignment, then there willexist a unique optimal
primal valueP∗(π,α∗(π)) associated with optimal solutionsα∗(π) for the assignmentsπ. Thus, the
overall problem can be reduced to find the best among all possible assignments. However, when
assuming an equal numberq of prototype vectors for each class, there areqn possible solutions with
many trivial symmetries.

Given the complexity of the problem we are trying to optimize, we propose to resort to stochastic
search techniques. Specifically, the approach we suggest can be considered an instance of Iterated
Local Search (ILS). ILS is a family of general purpose metaheuristics for finding good solutions
of combinatorial optimization problems (Lourenco et al., 2002). These algorithms are based on

837

A IOLLI AND SPERDUTI

building a sequence of solutions by first perturbing the current solution and then applying local
search to that modified solution.

In the previous section, a way to perform approximated local search hasbeen given. Let us now
consider how to perturb a given solution. We propose to perform a perturbation that is variable with
time and is gradually cooled by a simulated annealing like procedure.

For this, let us view the value of the primal as an energy function

E(π) =
1
2
||M||2 +C∑

i

〈πi ,ξi〉.

Let suppose to have a patternxi having slack variablesξr
i , r ∈ Pi , and suppose that the probability

for the assignment to be in the state of natures (i.e. with thes-th component set to 1) follows the
law

pi(s) ∝ e−∆Es/T

whereT is the temperature of the system and∆Es = C(ξs
i −ξyi

i) the variation of the system energy
when the patternxi is assigned to thes-th prototype. By multiplying every termpi(s) by the nor-
malization termeC(ξyi

i −ξ0
i)/T whereξ0

i = minr∈Pi ξr
i and considering that probabilities over alternative

states must sum to one, i.e.∑r∈Pi
pi(r) = 1, we obtain

pi(s) =
1
Zi

e−
C(ξs

i −ξ0
i)

T (17)

with Zi = ∑r∈Pi
e−C(ξr

i−ξ0
i)/T the partition function.

Thus, when perturbing the assignment for a patternxi , each positive prototypeswill be selected
with probability pi(s). From Eq. (17) it clearly appears that, when the temperature of the systemis
low, the probability for a pattern to be assigned to a prototype different from the one having minimal
slack value tends to 0 and we obtain a behavior similar to the deterministic version of the algorithm.
The simulated annealing is typically implemented by decreasing the temperature, asthe number of
iterations increases, by a monotonic decreasing functionT = T(t,T0).

Summarizing, an efficient realization of the ILS-based algorithm is obtained by substituting the
true local optimization with one step of the algorithm in Section 6.1 and is given in Figure 11.

7. Generalization Ability of MProtSVM

In this section, we give a theoretical analysis of the generalization ability of the MProtSVM model.
For simplicity, we consider MProtSVM with a fixed numberq of prototypes per class. We first
assume training data being separated by a MProtSVM model and we give a margin based upper
bound on the error that holds with high probability on a independently generated set of examples.
Then, we give a growth-function based bound on the error which do not assume linear separability
of training data.

Margin based generalization bound Let us suppose that ani.i.d. sampleS of n examples and a
modelM are given such that the condition in Eq. (7) holds for every example inS , i.e.

∀(xi ,ci) ∈ S ,∃r ∈ Pi : 〈Mr ,xi〉 ≥ θi +1 andθi = max
r∈Ni

〈Mr ,xi〉.

838

MULTICLASS CLASSIFICATION WITH MULTI -PROTOTYPESUPPORTVECTORMACHINES

AnnealedMProtSVM()

T := T0; randomly initializeπ(1);

compute the primalE(1) := Pπ(1)(0);

for t = 1, .., tmax

do for all the examplesxp ∈ S

αp = OptimizeOnPattern(xp , ε);

until Pπ(t)(α) < E(t);

compute a new assignmentπ(t +1) usingT(t,T0) in Eq. (17);

compute the new primalE(t +1) := Pπ(t+1)(α);

restore KKT conditions onα /*see Section 6*/

end;

Figure 11: Fast annealed algorithm for the optimization of MProtSVM.

With this assumption, fixing a patternxp, there will be at least one slack variableξr
p, associated

with it, equal to zero. In fact, the conditionξr
p = 0 is true at least in the caser = yp, whereyp is the

positive prototype associated to the patternxp, i.e. such thatπyp
p > 0.

To give the margin-based bound on the generalization error, we use the same technique as in
an(Platt et al., 2000) for general Perceptron DDAG1 (and thus SVM-DAG also), i.e. we show how
the original multiclass problem can be reduced into one made of multiple binary decisions. The
structure of our proof resembles the one given in (Crammer and Singer, 2000) for single-prototype
multiclass SVM.

A Perceptron DDAG is a rooted binary DAG withN leaves labelled by the classes where each
of theK = m(m−1) internal nodes is associated with a perceptron able to discriminate between two
classes. The nodes are arranged in a triangle with the single root node atthe top, two nodes in the
second layer and so on until the final layer ofm leaves. Thei-th node in layerj < m is connected
to thei-th and(i +1)-st node in the(j +1)-st layer. A Perceptron DDAG based classification can
also be though of as operating on a list of classes with associated a set of perceptrons, one for each
different pair of classes in the list. The evaluation of new patterns is made byevaluating the pattern
with the perceptron discriminating the classes in the first and in the last position of the list. The
losing class between the two is eliminated from the list. This process is repeated until only one
class remains in the list and this class is returned.

Similarly, MProtSVM classification can be thought of as operating on a list. Suppose the index
of prototypesr ∈ R = {1, . . . ,mq} are ordered according to their classC (r) ∈ {1, . . . ,m}. Then,

1. Note that the term ”perceptron” here simply denotes a linear decision function which is not necessarily produced by
the ”perceptron algorithm”.

839

A IOLLI AND SPERDUTI

given a new pattern, we compare the scores obtained by the two prototypesin the head and in the
tail of the list and the loser is removed from the list. This is done until only prototypes of the same
class remain on the list and this is the class returned for the pattern under consideration. It is easy
to show that this procedure is equivalent to the rule in Eq. (2).

In the following, we will refer to the following theorem giving a bound on the generalization
error of a Perceptron DDAG:

Theorem 2 (Platt et al., 2000) Suppose we are able to classify a random sample of labelled exam-
ples using a Perceptron DDAG on m classes containing K decision nodes withmarginγi at node i,
then we can bound the generalization error with probability greater than1−δ to be less than

1
n
(130R2D′ log(4en) log(4n)+ log(

2(2n)K

δ
))

where D′ = ∑K
i=1 γ−2

i , and R is the radius of a ball containing the support of the distribution.

Note that, in this theorem, the marginγi for a perceptron(wi ,bi) associated to the pair of classes
(r,s) is computed asγi = mincp∈{r,s} |〈wi ,xp〉 − bi |. Moreover, we can observe that the theorem
depends only on the number of nodes (number of binary decisions) and does not depend on the
particular architecture of the DAG.

Going back to MProtSVM, for the following analysis we define the hyperplane wrs = Mr −Ms

for each pair of prototypes indexesr,ssuch thatC (r) < C (s). and thesupportof the hyperplanewrs

as the subset of patterns

Γrs = {i ∈ {1, . . . ,n} : (r ∈ Pi ∧πr
i > 0)∨ (s∈ Pi ∧πs

i > 0)} .

Now, we can define the margin of the classifierhrs(x) = 〈wrs,x〉 as the minimum of the (geo-
metrical) margins of the patterns associated to it, i.e.

γrs = min
i∈Γrs

|hrs(xi)|
||wrs||

(18)

Note that, from the hypothesis of separation of the examples and from the way we defined the
margin, we have|hrs(xi)| ≥ 1 and hence the lower bound on the marginγrs≥ ||wrs||−1.

Now, we can show that the maximization of these margins leads to a small generalization error
by demonstrating the following result.

Lemma 3 Suppose we are able to classify a random sample of labelled examples using aMProtSVM
with q prototypes for each of the m classes with marginγrs whenC (r) < C (s), then we can bound
the generalization error with probability greater than1−δ to be less than

1
n
(130R2D log(4en) log(4n)+ log(

2(2n)K

δ
))

where D= ∑r,s: C (r)<C (s) γ−2
rs , K = 1

2q2m(m−1), and R is the radius of a ball containing the support
of the distribution.

840

MULTICLASS CLASSIFICATION WITH MULTI -PROTOTYPESUPPORTVECTORMACHINES

Proof. First of all, we show that an MProtSVM can be reduced to a Perceptron DDAG. Let
be given prototype indicesr ∈ R= {1, . . . ,mq} ordered according to their classC (r) ∈ {1, . . . ,m}.
Consider two cursorsr ands initially set to the first and the last prototype inR, respectively. Now,
we build a DAG node for(r,s) based on the classifierhrs. Then, recursively, left and right edges are
built associated to nodes(r,s−1) and(r +1,s) respectively. This is made until the conditionC (r) =
C (s) = t holds. When this is the case, a leaf node is built instead with labelt. This construction is
based on the fact that there is not need to compare the scores obtained byprototypes associated to
the same class.

We show now that the number of nodes in the skeleton of a DAGD which is built in this way is
exactlyK = 1

2q2m(m−1). In fact, consider the DAGD′ obtained by keeping on constructing DAG
nodes(r,s) until the conditionr = s holds, instead of justC (r) = C (s). This graph would be the
same that would have been obtained by consideringmqclasses with one prototype each. Note that
D′ is balanced and it consists of1

2mq(mq−1) nodes. It follows that, to obtain the DAGD, for each
classy, we subtract the subDAG constructed by considering all possibleky = q(q−1)/2 pairs of
prototypes associated to that class.

Summarizing, the number of nodes of the DAGD is the number of nodes of the balanced DAG
D′ minus the total number ofmky subDAG nodes. That is we get:

K =
1
2

mq(mq−1)−m(
1
2

q(q−1)) =
1
2

q2m(m−1).

Now, we can apply Theorem 2, by considering a Perceptron DDAG withK nodes associated to pairs
r,s : C (r) < C (s) and the margin for the node(r,s) defined as in Eq. (18).�

By now, we have demonstrated that the minimization of the termD = ∑r,s: C (r)<C (s) γ−2
rs propor-

tional to the margin of the nodes of the Perceptron DDAG we have constructed, leads to a small
generalization error. This result can then be improved by showing how these margins are linked to
the norm of the MProtSVM matrixM and finally proving the following theorem.

Theorem 4 Suppose we are able to classify a random sample of n labelled examples using a
MProtSVM with q prototypes for each of the m classes and matrix M, then we can bound the gener-
alization error with probability greater than1−δ to be less than

1
n

(

130R2q(m−1+q)||M||2 log(4en) log(4n)+ log(
2(2n)K

δ
)

)

where K= 1
2q2m(m−1) and R is the radius of a ball containing the support of the distribution.

Proof. First of all, note that we haveγ−2
rs ≤ ||wrs||2 = ||Mr −Ms||2 and∑r Mr = 0. The second

condition can be easily verified. In fact, from conditions in Eq. (10), it follows

∑
r

Mr = ∑
r

∑
i

yr
i α

r
i xi = ∑

i

(∑
r

yr
i α

r
i

︸ ︷︷ ︸

0

)xi = 0.

Now, we have

∑r,s: C (r)<C (s) ||Mr −Ms||2 = q(m−1)∑r ||Mr ||2−2∑r,s:C (r)<C (s)〈Mr ,Ms〉. (19)

841

A IOLLI AND SPERDUTI

The second term of the equation above is

∑r,s: C (r)<C (s)〈Mr ,Ms〉 = 1
2(∑r,s〈Mr ,Ms〉−∑r,s, C (r)=C (s)〈Mr ,Ms〉)

= −1
2 ∑r,s: C (r)=C (s)〈Mr ,Ms〉

= −1
2(∑r ||Mr ||2 +∑r 6=s: C (r)=C (s)〈Mr ,Ms〉).

(20)

where the following inequality holds

∑r 6=s, C (r)=C (s)〈Mr ,Ms〉 ≤ ∑m
j=1 ∑r 6=s: C (r)=C (s)= j〈Mr ,Ms〉

≤ q2 ∑m
y=1 ||M̃y||2

≤ q2 ∑r ||Mr ||2
(21)

once we setM̃y = argmaxr: C (r)=y ||Mr ||. Finally, substituting back Eq. (21) in Eq. (20) and Eq. (20)
in Eq. (19) we obtain:

D≤ q(m−1+q)∑
r
||Mr ||2

and the theorem easily follows. Note that this bound nicely generalizes the case of single prototype
per class already shown in (Crammer and Singer, 2000).�

Growth function based generalization bound In the following, we give another kind of analysis
of the generalization capability of our model based on the growth function. In order to do that, it
is convenient to show that our multi-prototype model is equivalent to a three-layer network of per-
ceptrons where the weights of the second and third layer are decided before learning. Thus, the free
parameters of the network are only the weights of perceptrons in the first layer. As before, with no
loss of generality, we assume to haveq prototypes for each classc∈ Y .

Given a MProtSVMHM(·), the corresponding networkNHM is constructed as follows (we as-
sume threshold perceptrons(w,θ) with outputo(x) = sign(〈w,x〉−θ)):

First layer:∀r,s∈ Ω, C (r) < C (s), define the perceptronh(1)
rs with weight vectorw(1)

rs = Mr −Ms

andθ(1)
rs = 0;

Second layer (AND):∀u∈ Y = {1, . . . ,m}, ∀v∈ Ω : C (v) = u define the perceptronh(2)
uv , taking

input from allh(1)
rs such thatr = v or s= v and connection equal to 1 ifr = v, −1 otherwise;

set threshold to the valueθ(2)
uv = q(m−1)−0.5 (”on” if all the inputs are 1).

Third layer (OR):∀w suchthat w∈ Y = {1, . . . ,m} define the perceptronh(3)
w , taking input from

all h(2)
uv suchthat w= u and connections all equal to 1; set the threshold to the valueθ(3)

w = 1/2
(”on” if any input is 1).

See Figure 12 for an example of network construction whenq = 2 andm= 3. Notice that, by
construction, for any input there will be no two activated perceptronsh(2)

uv andh(2)
ûv̂ such thatu 6= û.

So, only one out of the perceptrons at the third layer will be activated, and its index will correspond
to the predicted class.

The constructed network hasσ = q2m(m−1)
2 perceptrons at the first layer. Since only these per-

ceptrons have trainable weights, the VC-dimension of the network only depends on these free pa-
rameters (apart for the hard-threshold functions).

We are now ready to state the following result.

842

MULTICLASS CLASSIFICATION WITH MULTI -PROTOTYPESUPPORTVECTORMACHINES

1

class

2

class

1

class

3

class

1

class

2

class

1

class

3

class

2

class

3

class

2

class

3

class

class

21

class

1

class class

2

class

3

class

3

x

x

x x x

x x

x x

x x x

?
>

?
>

?
>

?
>

?
>

?
>

1

−1

and

and

and

and

and

and

or or or

M − M
2 3

M − M
2 41 6

M − M

M − M
2 5

M − M
3 5

M − M
4 5

M − M
1 3

 23
h

 (1)

 24
h

 (1)

 25
h

 (1)

 26
h

 (1)

 35
h

 (1)

 45
h

 (1)

 36
h

 (2)

 24

 (2)

 23
h

 (2)

 11
h

 (2)

 12
h

 (2)

 13
h

 (1)

 14
h

 (1)

 15
h

 (1)

 16
h

 (1)

 36
h

 (1)

 46
h

 (1)

 35
h

 (2)
h

 1
h

 (3)

 2
h

 (3)

 3
h

 (3)

M − M
4 6

M − M
3 6

M − M
2 6

1 5
M − M

M − M
1 4

Figure 12: Example of network construction whenq = 2 andm= 3. With this setting, prototypes
M1 andM2 are associated with class 1, prototypesM3 andM4 are associated with class
2, and prototypesM5 andM6 are associated with class 3.

Theorem 5 For any0 < δ < 1, any MProtSVM HM(·) with q prototypes for each of the m classes,
givenS a sample of size n drawn i.i.d. fromDRd×{1,...,m}, with probability at least1−δ

errD(HM)≤ errS (HM)+

√

4
1+(qm+ 1

2)ln(qm)+ dq2m(m−1)
2 ln(2en/d)− ln(δ/4)

n
+

1
n
.

Proof. By the above construction, the class of functions computable by a MProtSVMwith q pro-
totypes for each of them classes is contained in the class of functions computable by three-layer
perceptrons defined as above. This class of functions is completely characterized by the set of col-
lective states that theσ perceptrons at the first layer can assume. It is well known (Kearns and
Vazirani, 1994) that, by Sauer Lemma, the growth function of a single perceptron (with 0 threshold)
is bounded from above by the quantity(en/d)d, and so the growth function of our class of networks
is bounded from above by the quantity(en/d)dσ.

This bound, however, does not consider that not all the possible configurations ofσ bits can
be generated by the first layer. In fact, by construction of the network,we have that ifh(1)

rs (x) = 1

843

A IOLLI AND SPERDUTI

andh(1)
sŝ (x) = 1, then for sureh(1)

rŝ (x) = 1, as well as, ifh(1)
rs (x) = 0 andh(1)

sŝ (x) = 0, then for sure

h(1)
rŝ (x) = 0. This is the result of the fact that, given an input vectorx, the outputs of the first

layer perceptrons are fully determined by the total order over the MProtSVM prototypes induced
by the score functionsfr(·). Thus we can compute an upper bound on the proportion of ’legal’
configurations by considering all possible permutations of theqmprototypes divided by all possible
configurations, i.e., 2σ. Notice that this is an upper bound since when considering prototypes of the
same class, we do not care about their relative order.

So we can bound the growth function of our class of networks by

(qm)!
2σ (en/d)dσ <

√

2πqm(qm/e)qme
1

12qm2−σ(en/d)dσ,

where the last inequality has been obtained by using Stirling’s formula.
Making explicit the value ofσ, the right term of the above inequality can be written as

√
2π(qm)qm+ 1

2 (n/d)
dq2m(m−1)

2 e
6q3m2(m−1)(d−ln(2))−12q2m2+1

12qm .

Now, we can apply Theorem 4.1 in (Vapnik, 1998) (involving the logarithm of the growth function
for a sample of dimension 2n) obtaining

errD(HM(·)) ≤ errS (HM(·))+

+

√

4
ln(
√

2π(qm)qm+ 1
2 (2n

d)
dq2m(m−1)

2 e
6q3m2(m−1)(d−ln(2))−12q2m2+1

12qm)− ln(δ
4)

n
+

1
n

≤ errS (HM(·))+

√

4
1+(qm+ 1

2)ln(qm)+ dq2m(m−1)
2 ln2en

d − ln δ
4

n
+

1
n

�

8. Experimental Results

In the following, we report experiments we have done for testing the complexity and the general-
ization performance of the MProtSVM model with respect to other state-of-the-art algorithms. We
choose to compare our model against results already published in literatureon different datasets
instead of doing experiments with those methods directly. This is because we have not available the
code for all those methods and hence a re-implementation would be necessary. This can potentially
introduce errors or uncorrect use of the methods and it is far more onerous for us. For this, we
experimented on our model trying to replicate the initial conditions of published results as much as
possible in such a way to obtain fair comparisons.

For all the following experiments, the linear kernelK(x,y) = (〈x,y〉+1) has been used. More-
over, the annealing process required by MProtSVM has been implemented by decreasing the tem-
perature of the system with the exponential law:

T(t,T0) = T0(1− τ)t

wheret is the current iteration, 0< τ < 1 andT0 > 0 are external parameters. We usedT0 = 10 for all
the following experiments. In addition, the only free parameterC of MProtSVM has been selected

844

MULTICLASS CLASSIFICATION WITH MULTI -PROTOTYPESUPPORTVECTORMACHINES

by performing validation of the model on a subset of the training set with values C = {10k,k =
−2, ..,2}.

Initially, we tested our model against three multiclass datasets that we briefly describe in the
following:

NIST: it consists of a 10-class task of 10705 digits randomly taken from the NIST-3 dataset. The
training set consists of 5000 randomly chosen digits, while the remaining 5705digits are used
in the test set.

USPS:it consists of a 10-class OCR task (digits from 0 to 9) whose input are the pixels of a scaled
digit image. There are 7291 training examples and 2007 test examples.

LETTER: it consists of a task with 26 classes consisting of alphabetic letters A-Z. Inputs are
measures of the printed font glyph. The first 15000 examples are used for training and the
last 5000 for testing.

q LVQ2.1 Error % MProtSVM Error %

1 7.43 6.45
5 4.68 3.63
10 4.35 3.28
15 3.52 2.80

Table 1: Comparison of generalization performances between MProtSVM and LVQ with increas-
ing number of prototypes/codewords (NIST dataset,τ = .05,β = 0.002×q).

q USPS Error (%)

1 8.12
3 6.13
5 5.83
10 5.48
15 5.23
20 5.00

q LETTER Error (%)

1 21.36
3 9.64
5 6.42
10 4.84
15 3.16
20 2.94

Table 2: (a) Test error of MProtSVM on the USPS dataset (τ = .05, β = 0.00137× q), with an
increasing number of prototypes; (b) Test error of MProtSVM on the LETTER dataset
(τ = .05,β = 0.00043×q), with an increasing number of prototypes.

A first set of experiments have been performed to compare the generalization performance of
our (linear) model versus LVQ (Kohonen et al., 1996), which seemed to us the most comparable
model, into an OCR task. For this, we have reported the results obtained by theLVQ2.1 version of
the algorithm in (Sona et al., 2000) on the NIST problem. Configurations with ahigher number of
codewords started to overfit the data. As it can be seen in Table 1, MProtSVM performs significantly

845

A IOLLI AND SPERDUTI

better with the same number of parameters. This can be due to the more effective control of the
margin for our model w.r.t. LVQ models. On the same dataset, the tangent-distance based TVQ
algorithm (Aiolli and Sperduti, 2002b) has obtained the best result, a remarkable 2.1% test error,
and polynomial SVM’s have obtained a 2.82% test error. These last results should not surprise since
their models are well suited for OCR tasks. Here and in the following experiments we report the
value of the factorβ = (m×q)/n defined as the number of prototypes produced as a fraction of the
cardinality of the training set. This represent a sort of factor of compression in the model.

A second set of experiments have been performed to test the MProtSVM model against state-of-
the-art methods on two well known datasets: UCI Irvine USPS and LETTER. The obtained results
are reported in Table 2. As it is possible to see, by combining a reasonably high number of linear
prototypes, we have been able to obtain performances almost comparable with the ones obtained
using non-linear models. In fact, on the USPS dataset, we obtained a 4.63% error using an our own
SProtSVM implementation with polynomial kernel of degree 3 and without furtherpreprocessing
of the data. Finally, a 5.63% test error performance has been obtained using 1-NN. Concerning the
LETTER dataset, the results should be compared to versus the 1.95% obtained in (Crammer and
Singer, 2001) by SProtSVM with exponential kernel and to the 4.34% obtained by 1-NN. Although
obtained with a slightly different split of the LETTER dataset (16000 examples for training and
4000 for test), we would like to mention the results reported in (Michie et al., 1994) where LVQ
yielded a 7.9%.

From these experiments it is clear that MProtSVM returns far more compact models with respect
to state of the art non-linear kernel methods allowing a (one or two order) reduced response time in
classification while preserving a good generalization performance. In fact, the above experiments
have shown very low values for the compression factorβ (e.g. 26×20 prototypes in the LETTER
dataset givesβ = 0.013 and 10×20 prototypes for USPS givesβ = 0.0274). Notice thatβ can be
directly compared with the fraction of support vectors in kernel machines.Thus, MProtSVMs also
give us a way to decide (before training) the compression factor we wantto obtain.

— Vectors — ——————– Errors ———————–
Dataset SVM RVM SVM RVM MProtSVM

q=1 q=3 q=5 q=10
Banana 135.2 11.4 10.9 10.8 46.0 12.8 [11.0] 11.0
Breast Cancer 116.7 6.3 26.9 29.9 28.2 26.9 27.5 [27.0]
German 411.2 12.5 22.6 22.2 [23.6] 23.8 23.5 23.7
Image 166.6 34.6 3.0 3.9 15.0 3.2 2.7 [2.5]
Titanic 93.7 65.3 22.1 23.0 [22.5] 22.2 22.2 22.2
Waveform 146.4 14.6 10.3 10.9 13.3 10.8 10.0 [10.2]

Table 3: Comparison of solution complexity and generalization error of MProtSVM with respect
to SVM and Tipping’s RVM on a set of UCI binary datasets. The results quoted for SVM
and RVM are taken from (Tipping, 2001). Values in brackets are the ones obtained using
the model suggested by model selection performed over the number of prototypes.

To further validate our claim, we made a comparison of our technique againstothers that ex-
plicitly try to obtain compact models. In Table 3 we reported the results obtained with six binary

846

MULTICLASS CLASSIFICATION WITH MULTI -PROTOTYPESUPPORTVECTORMACHINES

Dataset # Features Train Size Test Size

Banana 2 400 4900
Breast Cancer 9 200 77
German 20 700 300
Image 18 1300 1010
Titanic 3 150 2051
Waveform 21 400 4600

Table 4: General information about the UCI binary datasets used in the experiments.

problems (see Table 4 for general information about these datasets) from the benchmark of R̈atsch
available over the web2, exactly the ones used by (Tipping, 2001) of which we are reporting the
obtained results for RVM and SVM. They correspond to averages overthe first 10 splits of the col-
lection. For each dataset, it is reported the average number of support vectors generated by SVM
and RVM, the generalization error obtained with these two methods and the results obtained using
four very simple MProtSVM configurations, namely made of 1, 3, 5 and 10 prototypes per class
(2, 6, 10 and 20 vectors in total, respectively3). It is possible to see how very compact and simple
models performs as good as (sometimes better than) state-of-the-art methods. Values in brackets
represent the error value obtained using the model suggested by the validation procedure we have
performed over the number of models per class.

Finally, in Table 5 we report an example of the values obtained for the objective function of
the primal problem in Eq. (8) along with their corresponding test errors obtained using different
configurations and lowering the simulated annealing parameterτ on the USPS dataset. As expected,
once fixed a raw in the table, better values for the primal can generally be obtained with lower
values ofτ. Moreover, as the number of prototypes per class increases, the choice of smallτ tends
to be more crucial. Anyway, higher values forτ, and thus not optimal values for the primal, can
nevertheless lead to good generalization performances. Notice that fromthe fact that the primal
value is just a way to approximate the theoretical SRM principle and from the non-optimality of the
parameterC in these experiments, better values for the primal does not necessarily correspond to
better values for the test error.

9. Conclusions

We have proposed an extension of multiclass SVM able to deal with several prototypes per class.
This extension defines a non-convex problem. We suggested to solve this problem by using a novel
efficient optimization procedure within an annealing framework where the energy function corre-
sponds to the primal of the problem. Experimental results on some popular benchmarks demon-
strated that it is possible to reach very competitive performances by using few linear models per
class instead of a single model per class with kernel. This allows the user to get very compact
models which are very fast in classifying new patterns. Thus, accordingto the computational con-
straints, the user may decide how to balance the trade-off between better accuracy and speed of

2. http://ida.first.gmd.de/∼raetsch
3. When one prototype per class is used in a binary problem, as in this case, MProtSVM actually generates two vectors

that are the same with sign inverted. Thus, they can be compacted into one vector only with no loss of information.

847

A IOLLI AND SPERDUTI

q τ = 0.2 τ = 0.1 τ = 0.05 τ = 0.03

3 7.44626 (6.33%) 7.28049 (6.03%) 7.08138 (6.13%) 7.04274 (6.48%)
5 7.49136 (6.08%) 7.27318 (5.63%) 7.10498 (5.83%) 7.00946 (5.58%)
10 7.82233 (5.58%) 7.51780 (5.88%) 7.27596 (5.48%) 7.12517 (5.23%)
15 7.82222 (5.33%) 7.57009 (5.73%) 7.38722 (5.33%) 7.22250 (5.53%)
20 7.78410 (5.48%) 7.79388 (5.72%) 7.49125 (5.38%) 7.21303 (5.53%)

Table 5: Primal values and generalization error obtained with different configurations varying the
parameterτ for the USPS dataset.

classification. Finally, it should be noted that the proposed approach compares favorably versus
LVQ, a learning procedure that, similarly to the proposed approach, returns a set of linear models.

Preliminary experiments with kernels have shown negligible improvements that makes us to
consider this extension not worthwhile of further investigations. An alternative more interesting
extension would be to try to combine different types of kernels together in thesame model.

Acknowledgments

This work has been developed when Fabio Aiolli was a PhD student and postdoc at the Department
of Computer Science, Univ. of Pisa. The research was partially supported by Italian MIUR project
2003091149005. We would like to thank Y. Singer, K. Crammer, and the anonymous reviewers for
their valuable suggestions on how to improve the paper.

References

F. Aiolli and A. Sperduti. An efficient SMO-like algortihm for multiclass SVM. In Proceedings of
IEEE workshop on Neural Networks for Signal Processing, pages 297–306, 2002a.

F. Aiolli and A. Sperduti. A re-weighting strategy for improving margins.Artificial Intelligence
Journal, 137/1-2:197–216, 2002b.

F. Aiolli and A. Sperduti. Multi-prototype support vector machine. InProceedings of International
Joint Conference of Artificial Intelligence (IJCAI), 2003.

E. Allwein, R. Schapire, and Y. Singer. Reducing multiclass to binary: A unifying approach for
margin classifiers.Journal of Machine Learning Research, 2000.

K. Crammer and Y. Singer. On the learnability and design of output codes for multiclass problems.
In Proceedings of the Thirteenth Annual Conference on Computational Learning Theory, pages
35–46, 2000.

K. Crammer and Y. Singer. On the algorithmic implementation of multiclass kernel-based machines.
Journal of Machine Learning Research, 2(Dec):265–292, 2001.

T. G. Dietterich and G. Bakiri. Solving multiclass learning problems via error correcting output
codes.Journal of Artificial Intelligence Research, 2:263–286, 1995.

848

MULTICLASS CLASSIFICATION WITH MULTI -PROTOTYPESUPPORTVECTORMACHINES

T. Downs, K. E. Gates, and A. Masters. Exact simplification of support vector solutions.Journal of
Machine Learning Research, 2:293–297, 2001.

G. M. Fung, O. L. Mangasarian, and A. J. Smola. Minimal kernel classifiers. Journal of Machine
Learning Research, 3:303–321, 2002.

Y. Guermeur, A. Elisseeff, and H. Paugam-Moisy. A new multi-class SVM based on a uniform
convergence result. InProceedings of the IJCNN, 2000.

T. Joachims. Making large-scale SVM learning practical. InAdvances in Kernel Methods - Support
Vector Learning. B. Schlkopf and C. Burges and A. Smola (ed.), MIT Press, 1999.

M. J. Kearns and U. V. Vazirani.An Introduction to Computational Learning Theory. MIT Press,
1994.

S. S. Keerthi, S. K. Shevade, C. Bhattacharyya, and K. R. K. Murthy.Improvements to platt’s smo
algorithm for SVM classifier design. Technical Report CD-99-14, Control Division, Dept. of
Mechanical and Production Engineering, National University of Singapore, 1999.

T. Kohonen, J. Hynninen, J. Kangas, J. Laaksonen, and K. Torkkola. Lvq pak: The learning vec-
tor quantization program package. Technical Report A30, Helsinki University of Technology,
Laboratory of Computer and Information Science, January 1996. http://www.cis.hut.fi/nnrc/nnrc-
programs.html.

H. R. Lourenco, O. C. Martin, and T. Stutzle. Iterated local search.Handbook of Metaheuristics,
Ed. F. Glover and G. Kochenberger, International Series in Operations Research & Management
Science(57):321–353, 2002.

D. Michie, D. Speigelhalter, and C. Taylor.Machine Learning, Neural and Statistical Classification.
Ellis Horwood, 1994.

T. Mitchell. Machine Learning. McGraw Hill, 1997.

J. Platt, N. Cristianini, and J. Shawe Taylor. Large margin DAGs for multiclassclassification. In
S. A. Solla, T. K. Leen, and K. R. Muller, editors,Advances in Neural Information Processing
Systems. MIT Press, 2000.

J. C. Platt. Fast training of support vector machines using sequential minimaloptimization. Ad-
vances in Kernel Methods - Support Vector Learning, 1998.

J. R. Quinlan.C4.5: Programs for Empirical Learning. Morgan Kaufmann, San Francisco, CA,
1993.

D. E. Rumelhart, G. E. Hinton, and R.J Williams. Learning internal representation by error prop-
agation. InParallel Distributed Processing - Explorations in the Microstructure of cognition,
chapter 8, pages 318–362. MIT Press, 1986.

B. Scḧolkopf, S. Mika, C. J. C. Burges, P. Knirsch, K. R. Muller, G. Rätsch, and A. J. Smola. Input
space versus feature space in kernel-based methods.IEEE Transactions on Neural Networks, 5
(10):1000–1017, 1999.

849

A IOLLI AND SPERDUTI

B. Scḧolkopf and C. Burges and V. Vapnik. Extracting support data for a given task. InFirst
International Conference on Knowledge Discovery & Data Mining, pages 252–257, 1995.

D. Sona, A. Sperduti, and A. Starita. Discriminant pattern recognition usingtransformation invariant
neurons.Neural Computation, 12(6), 2000.

M. E. Tipping. Sparse Bayesian learning and the relevance vector machine. Journal of Machine
Learning Research, 1:211–244, 2001.

V. Vapnik. Statistical Learning Theory. Wiley, New York, NY, 1998.

J. Weston and C. Watkins. Multiclass support vector machines. In M. Verleysen, editor,Proceedings
of ESANN99. D. Facto Press, 1999.

850

Journal of Machine Learning Research 6 (2005) 851-881 Submitted 11/03; Revised 9/04; Published 5/05

Prioritization Methods for Accelerating MDP Solvers

David Wingate WINGATED@CS.BYU .EDU

Kevin D. Seppi KSEPPI@CS.BYU .EDU

Computer Science Department
Brigham Young University
Provo, UT 84602, USA

Editor: Sridhar Mahadevan

Abstract
The performance of value and policy iteration can be dramatically improved by eliminating redun-
dant or useless backups, and by backing up states in the rightorder. We study several methods
designed to accelerate these iterative solvers, includingprioritization, partitioning, and variable
reordering. We generate a family of algorithms by combiningseveral of the methods discussed,
and present extensive empirical evidence demonstrating that performance can improve by several
orders of magnitude for many problems, while preserving accuracy and convergence guarantees.

Keywords: Markov Decision Processes, value iteration, policy iteration, prioritized sweeping,
dynamic programming

1. Introduction

This paper systematically explores the idea of minimizing the computational effortneeded to com-
pute the optimal policy (with its value function) of a discrete, stationary MarkovDecision Process
using an iterative solver such as value or policy iteration. The theme of our exploration can be stated
generally as “backing up states in the right order,” and to accomplish that, we present and discuss
several methods of differing complexity which structure value dependencyand prioritize compu-
tation to follow those dependencies. We have named the resulting family of algorithms General
Prioritized Solvers, or GPS.

Many problems in reinforcement learning are well modeled as MDPs. Optimal policies for such
MDPs are often computed by iteratively improving an existing policy, which canbe accomplished
by computing (or approximating) the value function of the existing policy. Computing each value
function is generally a non-trivial task, meaning that the ability to compute them quickly enables
larger and more complicated problems to be solved. As Andre et al. (1998) point out, there is also
a classic tradeoff in reinforcement learning between spending time acting in the environment and
spending time planning what to do in the environment. GPS is designed to help navigate that tradeoff
– and help other algorithms navigate that tradeoff – by allocating computationaleffort intelligently.

GPS can also improve the performance of algorithms which rely on accurate value function esti-
mates to makeotherdecisions, by reducing their computational overhead. For example, Munos and
Moore (2002) use the value function to guide discretization decisions, andKearns and Singh (2002)
use it to decide between exploration and exploitation. Value iteration is also used as part of larger
algorithms: RTDP (Barto et al., 1995) performs some value iteration off-line between executing
controls, and Modified Policy Iteration (Puterman and Shin, 1978) performssome value iteration

c©2005 David Wingate and Kevin D. Seppi.

WINGATE AND SEPPI

between policy improvement steps. In addition, GPS can enhance algorithms that propagate dif-
ferent forms of information (not justvalue information). For example, Munos and Moore (2002)
propagate both “influence” and “variance” throughout a problem using a form of value iteration. In
this more abstract sense, the principle of propagating knowledge throughout a space as quickly and
efficiently as possible is applicable to almost all systems.

Two principal observations motivated this work. First, many backups performed by value it-
eration can be useless. Value iteration is almost a pessimal algorithm, in the sense that it never
leverages any advantage a sparse transition matrix (and/or sparse reward function) may offer: it
always iterates over and updates every state, even if such a backup does not (or cannot) change the
value function. An intuitive improvement is this: if, on the previous sweep, only a handful of states
changed value, why back up the value ofeverystate on the next sweep? The only useful backups
will be to those states which depend upon states that changed on the previous sweep. Similar obser-
vations about the efficient ordering of work can be made about policy iteration: it is best to wait to
compute the policy of a statesuntil a good policy for the dependents ofs has been determined.

Second, almost all backups are naively ordered. For example, ordering the states in an acyclic
problem such that the rows in the transition matrix are triangular (corresponding to a topological
sort) yields aO(n) solution; but solving the same system in an arbitrary order yields an expected
O(n2) solution time. Additionally, as information backpropagates through a value function estimate,
the optimal ordering may change. Dynamically generating a good backup ordering in an efficient
way is one of the central issues we examine.

The idea of efficient computation applied to value iteration and policy iteration is not new, but it
has not received a dedicated treatment. This paper makes a fourfold contribution: first, it studies pri-
oritization metrics systematically, comparing and contrasting them to each other. Most other papers
have only presented a metric in isolation, as a heuristic performance enhancer. Prioritized Sweeping
(Moore and Atkeson, 1993), for instance, uses Bellman error as a priority metric, but we demon-
strate that another equally simple metric can perform better. Second, this paper points out how the
complexity introduced with the priority metrics can be managed through the use ofpartitioning,
which is an issue other researchers have not addressed. Partitioning also enables prioritized policy
iteration, which has not been studied previously. Third, this paper introduces a new priority metric,
H2, and an effective variable reordering algorithm designed to improve performance. Both are stud-
ied empirically, and some general guidelines for their use are established. Fourth, and somewhat
in contrast to most asynchronous value iteration proofs of convergence (such as Bertsekas, 1982,
1983; Gullapalli and Barto, 1994), we point out that not every state needs to be backed up during
each sweep in order to guarantee convergence. In fact, some states maynever need to be backed up
at all, which is valuable for optimizing performance.

The paper is organized as follows. Section 2 describes GPS, and discusses prioritization, par-
titioning, variable reordering, and convergence and stopping criteria. Section 3 presents our exper-
imental setup and Section 4 presents the experimental results. Section 5 briefly points out related
work, and Section 6 presents conclusions and ideas for future research. Additionally, an on-line
appendix is available, which is described at the end of the paper.

852

PRIORITIZATION METHODS FORACCELERATING MDP SOLVERS

2. The GPS Family of Algorithms

There are three principal enhancements we use to accelerate value and policy iteration: prioritiza-
tion, partitioning and variable reordering. Sections 2.1, 2.3 and 2.5 discusseach in detail, along with
issues that each raises. A general discussion of convergence, stopping, and complexity is deferred
until Section 2.6. We shall study many combinations of these enhancements, but consider all vari-
ants to be members of a single family. We begin with a prototype MDP solver, whichhas elements
common to all members:

Algorithm 1 Abstract GPS

Initialization

1: // Partition the problem
2: // Order variables within each partition
3: // Compute initial partition priorities

Main Loop

1: repeat
2: // Select a partitionp
3: // Compute the optimal policy and value function of states inp,

// keeping all other partitions constant
4: // Recompute priorities of partitions depending onp
5: until convergence

To simplify the following discussions, all of the MDPs we consider are discounted, infinite
horizon, stationary and positive bounded (all rewards are positive and finite).

2.1 Prioritization

The first method we use to improve efficiency is the prioritization of backups.Instead of naively
sweeping over the entire problem, we wish to work our way backwards through the problem: we
correct the value function estimate (and policy) for a states by backing it up, and then correct
the value function estimate (and policy) for all states which depend upons. This has the effect of
focusing computation in regions of the problem which are expected to be maximally productive,
and simultaneously avoids useless backups.

To accomplish this, we begin with a standard value function definition:

V(s) = max
a∈A

{

R(s,a)+ γ ∑
s′∈S

Pr(s′|s,a)V(s′)

}

. (1)

Here,s∈S is a state,a∈A is an action,γ∈[0,1) is the discount factor,R(s,a) is the reward function,
andPr(s′|s,a) is the probability of transitioning to states′ if action a is taken in states. Algorithm
2 shows the traditional value iteration algorithm, without prioritization.

We useBellman errorto characterize how useful any given backup is, and then construct differ-
ent metrics based on the Bellman error as the priority in a priority queue:

Bt(s) = max
a∈A

{

R(s,a)+ γ ∑
s′∈S

Pr(s′|s,a)Vt(s
′)

}

−Vt(s).

853

WINGATE AND SEPPI

Algorithm 2 Standard Value Iteration

1: V0← 0
2: repeat
3: for all s∈ Sdo
4: Vt(s)←maxa∈A{R(s,a)+ γ∑s′∈SPr(s′|s,a)Vt−1(s′)}
5: end for
6: t← t +1
7: until convergence

Note that this should not be considered a one-step temporal difference:Bellman error represents the
amount ofpotentialchange to the value function, assuming that a certain state was backed up, as
opposed to theactualdifference between two value function estimates separated by one timestep.
Peng and Williams (1993) called this value theprediction difference. We will let

Mt = ‖Bt‖∞

be the largest potential update in the system, where‖ · ‖∞ represents max-norm. This quantity is
commonly called theBellman error magnitude(Williams and Baird, 1993).

We build different prioritization metrics upon the Bellman error function. The first metric we
will analyze,H1, is equal to the Bellman error itself:

H1t(s) = Bt(s).

The second metric is:

H2t(s) =

{

Bt(s)+Vt(s) if Bt(s) > ε
0 otherwise.

When it is not important which prioritization metric is used, we will useHt(s) to refer to a generic
one. The next section discusses the semantics of each metric.

Once a states is backed up, the priority of any state depending ons must be recomputed. The
state dependents of a stateis the set of all states who have some probability of transitioning tos,
and therefore whose value depend on the value ofs. We define it as

SDS(s) =
{

s′ : ∃aPr(s′|s,a) 6= 0
}

.

Algorithm 3 shows a prioritized version of value iteration.
As noted, we only consider positive bounded MDPs. Creating a positive bounded MDP can

be accomplished by adding a constantC to the reward function; since we will initialize the value
function estimate to 0, this ensures thatVt ≤V∗ (whereV∗ is the value of the optimal policyπ∗). This
does not change the resulting policy, and, as Zhang et al. (1999) pointout, “the value function of
the original [MDP] equals that of the transformed [MDP] minusC/(1− γ), whereC is the constant
added.” This stipulation is required by theH2 metric, and simplifies some of the bounds provided
in Section 2.6.

854

PRIORITIZATION METHODS FORACCELERATING MDP SOLVERS

Algorithm 3 Prioritized Value Iteration

1: repeat
2: s← argmaxξ∈SH(ξ)
3: V(s)←maxa∈A{R(s,a)+ γ∑s′∈SPr(s′|s,a)V(s′)}
4: for all s′ ∈ SDS(s) do
5: // recomputeH(s′)
6: end for
7: until convergence

2.2 Selecting Metrics

TheH1 prioritization metric is the most obvious metric, and has been studied before (although not
in contrast to other metrics, and in somewhat different contexts than ours). Using it, GPS can be
thought of as a greedy reduction in the error of the value function estimate.This has the tendency
to propagate information quickly throughout the state space, but it also tends to leave large regions
only partially converged, and therefore does not necessarily propagatecorrect information quickly.

TheH2 metric has a very different effect on computation order. The intuition is this:if there is a
value that is more thanε away from its optimal value, the value will eventually need to be corrected.
Since large values (generated from large rewards, or small loops) have greater influence on the value
function than small values,H2 converges large values before propagating their influence throughout
the state space. This tends to ensure that regions are fully converged before anything depending on
the region is processed. Experimental results illustrating these effects areshown in Figure 1.

The results in Section 4 demonstrate that neitherH1, H2, nor standard value iteration induce
an optimal backup ordering for all MDPs. However, each performs better than the others for some
problems. The question of which metric should be used on a new problem naturally arises, but it is
difficult to find topological features which accurately predict the performance of each metric. Often,
the best metric seems to be a hybrid of all three.

Normal value iteration yields a very good backup order when a problem is close to being fully
connected (and thus, whenever states are highly interdependent). Theobvious corollary is that
value iteration is also very good for any subgraph that is close to fully connected. Value iteration
performs poorly when the problem exhibits highly sequential (and thus, asymmetric) dependencies,
which can be due to a large number of strongly connected components, or alarge graph diameter
relative to the number of nodes.

TheH1 metric performs best in graphs which have highly sequential dependencies, which occur
in acyclic graphs and in graphs with long loops. TheH1 metric excels at avoiding useless backups,
but tends not to iron out feedback loops completely, meaning that states withinsuch loops must
often be processed multiple times.

The advantage of theH2 metric is more difficult to quantify.H2 tries to ensure that states have
converged before moving on to those states’ dependents. Conceptually,this is an appealing idea, but
practically it is very difficult to make it work well without the addition of partitions(discussed in the
next section).H2 needs some cycles to generate a different order thanH1, but does poorly with too
many cycles. Figure 2 illustrates a problem for whichH2 is highly suboptimal, and Figure 3 shows
performance visually:H2 selects one state and “spirals” its value upwards, then selects another state
and spirals, then a third, and back to the first, in a loop. However, value iteration works on all four

855

WINGATE AND SEPPI

Figure 1: Images of partially converged value functions for the SAP problem (described in Section
3). The left function was generated withH1, and the right function was generated with
H2. For both images, thex axis represents position, they axis represents velocity, and
thez axis represents the value of the state. Notice the “stair step” in the left image near
the primary reward (the peak in the middle of the space). This will eventually need to be
corrected, and the change will propagate throughout the entire problem,resulting in extra
computation. In addition, notice the many imperfections; each of them will eventually
need to be corrected. The right function is much cleaner, becauseH2 tends to drive
regions of the problem to convergence before moving on. Green (light gray) and red
(medium gray) are different controls; a dark blue color (dark gray) indicates that a state
has never been processed. Both images are frames from a video which isavailable in the
on-line appendix.

A B C D

Figure 2: An example problem for which theH2 priority metric yields a highly suboptimal backup
order, but for which normal round-robin updating yields an almost optimalbackup order.
TheH1 metric, used with partitions, also generates a suboptimal backup order. StateD is
an absorbing reward state. Only one action is available at each state. Transitions to other
states all have equal probability.

856

PRIORITIZATION METHODS FORACCELERATING MDP SOLVERS

 0

 0.5

 1

 1.5

 2

 2.5

 0 20 40 60 80 100

S
um

m
ed

 v
al

ue
 fu

nc
tio

n
es

tim
at

e

Number of backups

Value iteration
Partitioned VI with H1 metric
Partitioned VI with H2 metric

Figure 3: Performance of two GPS variants on the problem in Figure 2, using one state per par-
tition and a value iteration subsolver (see Figure 6 for an explanation of the different
algorithms). Shown is∑s∈SV(s) versus the number of backups. Reaching a higher sum
in fewer backups is better.

states in a round-robin fashion, which is nearly optimal (it is not fully optimal because it repeatedly
backs up state D, even though it does not need to do so).

H2 performs best in ahybrid setting, which we illustrate using Figure 4. Each cloud represents
a cluster of highly interdependent states (perhaps even strongly connected components); clusters are
weakly connected to each other. The values of states within each cluster should be converged before
moving on to process the next cluster, but within each cluster, standard value iteration should be
employed. By themselves, each metric performs poorly: value iteration performs useless backups
by working on clusters two and three before information has propagated back to them;H1 has
the tendency to prematurely move on to the second and third clusters before the first cluster has
converged, andH2 correctly prioritizes clusters, but functions poorly within each cluster.

A good algorithm should select a cluster and work on it until convergence, then move on to the
next cluster. This is exactly the way that GPS functions, except that it alsoemploys partitions (as
discussed in the next section). EitherH1 or H2 serves as a guide between partitions, but within each
partition, round-robin updating occurs.

2.3 Partitioning

Although prioritization reduces the total number of backups performed, theoverhead of managing
the priority queue can be prohibitively high. Each states (and eachs′ ∈ SDS(s)) must be extracted,
reprioritized, and reinserted into the queue, resulting in severalO(logn) operations per backup
(wheren is the number of states). Figure 5 illustrates this overhead empirically: on one problem,
although one variant of GPS with one state per partition performs far fewerbackups than normal
value iteration, it takes far longer to solve the problem.

857

WINGATE AND SEPPI

3 2 1

Figure 4: An example illustrating when hybrid metrics are close to optimal. Clouds represent clus-
ters of highly interdependent states; arrows represent some of the arcs in the transition
matrix. Variants of GPS perform very well on problems of this sort if partitions corre-
spond to clusters.

Two observations direct our solution: first, we can accept some backupsthat do not occur in
strict priority order. Second, any single state (typically) depends on multipleother states; it would
be ideal to postpone the reprioritization of a state until multiple dependencies have been backed up.
A good principle is to group states together into sets, and to work on the sets, instead of individual
states. This accomplishes both goals: it efficiently approximates the backup order induced by the
priority metric, and it tends to ensure that multiple dependencies are resolvedbefore moving on. The
specific partitioning used therefore navigates the trade-off between useless backups (there might be
states in the partition that did not need to be processed) and priority queue overhead (it is faster to
update them anyway, because it takes too long to determine which ones are useless). Additionally,
with partitioning in place, a prioritized version of policy iteration may be created,as described in
the next section.

Our partitioned, prioritized algorithm selects a high-priority partitionp, solves the states in the
partition, and then reprioritizes any partition which depends upon anything inp. Thus, running
GPS with a single partition containing all states is equivalent to normal value/policy iteration, while
running it with a single state per partition generates backups in strict priority order (this is actually
not always the case, as explained in the next section).

We use the following definitions to describe a partitioned, prioritized algorithm. Let eachp∈ P
be a partition, which is a set of states. We define thestate dependents of a partitionto be the set of
all states whose value depends on some state in the partitionp:

SDP(p) =
[

s∈p

SDS(s).

Let Ps be a function mapping states to their partitions. We define thepartition dependents of a state
to be the set of partitions which contain a state whose value depends ons:

PDS(s) =
[

s′∈SDS(s)

Ps(s
′).

We define thepartition dependents of a partitionto be the set of all partitions that contain at least
one state that depends on the value of at least one state inp:

PDP(p) =
[

s∈p

PDS(s).

We define the priority between two partitions as

HPPt(p, p′) = max
s∈p∩SDP(p′)

Ht(s).

858

PRIORITIZATION METHODS FORACCELERATING MDP SOLVERS

Note that in general,HPPt(p, p′) 6= HPPt(p′, p). We define the priority of a partition as

HPt(p) = max
p′

HPPt(p, p′).

Algorithm 4 shows a general partitioned, prioritized solver.
As shown in Figure 5, adding more states to the partitions dramatically improves performance.

Both variants of GPS perform fewer backups to the value function than normal value iteration, but
because the variant with 200 states per partition eliminates priority queue overhead, the time needed
for it to reach a solution drops by two orders of magnitude. Counter-intuitively, it even performed
fewer backups than the variant which used only one state per partition. Thisindicates that the
intra-partition backup order is better than the order imposed by the priority metric.

Figure 3 demonstrates one situation in which using priority metrics with partitioning can be
suboptimal, and that it is not always desirable to solve partitions exactly. In this example, the
best solver is normal value iteration, which can be thought of as an algorithm which solves each
partition inexactly. That is, it performs exactly one backup within each partition, and then moves
on to the next partition, in a round-robin fashion. Both of the other algorithmsattempt to solve each
partition to withinε of optimal; because they back up the states in the partition multiple times, the
value function of the states slowly spirals upwards. Once they are withinε of their optimal value,
the solvers select another partition. This example suggests that that partitioned solvers will be
suboptimal whenever partitions are highly intra-dependentand highly inter-dependent. Of course,
the example also illustrates the fact that the prioritization metrics (either at the statelevel, or the
partition level) are only an approximation of the optimal backup ordering.

There are many possible ways to generate good partitions. If states have geometrical information
associated with them, it can be used to generate partitions containing states thatare near to each
other. If not, more generalk-way graph partitioning algorithms, such as multilevel coarsening or
recursive spectral bisection, may be used (see Alpert, 1996, for an excellent dissertation on the
subject).k-way graph partitioners generate partitions that minimize the cumulative weight of cross-
partition edges, which is desirable because it tends to ensure that highly interdependent states are in
the same partition. Automatic, variable resolution partitioners could be used, such as those described
by Moore and Atkeson (1995) or Munos and Moore (2002). It may alsobe possible that techniques
from state aggregation literature may help. Dean and Givan (1997) describe a “stable cluster”
creation technique, for instance, with properties that are desirable for apartition.

Combining partitioning with prioritization is useful for other reasons, which are not explored
in this work. Partitioning is a good domain decomposition, which enables an efficient, naturally
parallelizable algorithm (Wingate and Seppi, 2004b). In addition, theH2 metric (combined with
partitioning) exhibits excellent disk-based-cache behavior, which is desirable when attempting to
solve problems so large they cannot fit into available RAM (Wingate and Seppi, 2004a).

Our experiments tested both geometrically generated partitions as well as partitions generated
by the METIS package (see, for example, Karypis and Kumar, 1998). Section 4 presents results
exploring different edge cut criteria.

2.4 Solving a Partition

Once a partitionp has been selected, we must compute the optimal policy and the corresponding
value function of the states inp, while treating the values of the rest of the states in the problem as
constants. Any MDP solver, such as value iteration, policy iteration, or linear programming, could

859

WINGATE AND SEPPI

 0

 1e+07

 2e+07

 3e+07

 4e+07

 5e+07

 6e+07

 7e+07

 8e+07

 0 20000 40000 60000 80000 100000 120000 140000 160000

N
um

be
r

of
 b

ac
ku

ps

Number of states

Value iteration
GPS/1 state per partition

GPS/200 states per partition

 0

 20

 40

 60

 80

 100

 120

 140

 0 20000 40000 60000 80000 100000 120000 140000 160000

T
im

e
to

 s
ol

ve
 (

se
co

nd
s)

Number of states

Value iteration
GPS/1 state per partition

GPS/200 states per partition

Figure 5: Performance on the MCAR problem (see Section 3) as a functionof the number of states
used to discretize the problem. Lower times are better. Using one state per partition,
one variant of GPS performs half as many backups as normal value iteration, but it takes
far longer to complete. Priority queue overhead accounts for most of this discrepancy.
Using partitions greatly improves performance: in the bottom graph, anotherGPS variant
(which has 200 states per partition) requires only 1.2 seconds to solve the problem, and
is barely visible above the horizontal axis.

860

PRIORITIZATION METHODS FORACCELERATING MDP SOLVERS

Algorithm 4 Prioritized, Partitioned Value and Policy Iteration

Initialization

1: for all s∈ Sdo
2: V0(s)← 0
3: H0(s)←maxa∈AR(s,a)
4: end for
5: for all p∈ P do
6: HP0(p)←maxs∈p,a∈AR(s,a)
7: for all p′ ∈ P do
8: HPP0(p, p′)← 0
9: end for

10: end for
11: p← argmaxξ∈PHP0(ξ)
12: t← 1

Main loop

1: repeat
2: // compute the optimal policy and value function of states inp
3: solve(p)
4:

5: // update partition priority for all dependent partitions
6: for all p′ ∈ PDP(p) do
7: HPPt(p′, p)← 0
8: hmax← 0
9: for all s′ ∈ p′∩SDP(p) do

10: // recomputeHt(s′)
11: hmax←max(hmax,Ht(s′))
12: end for
13: HPPt(p′, p)← hmax

14: HPt(p′)←maxξ HPPt(p′,ξ)
15: end for
16: p← argmaxξ∈PHPt(ξ)
17: t← t +1
18: until convergence

861

WINGATE AND SEPPI

be used. It is even possible to use a partitioned, prioritized solver (indeed, such an idea could be
extended to more than two levels), although hierarchical partitioning is not explored in this work.
We require that the value of the states in the partition be computed accurately (that is, to withinε
of exact) because the value function may be needed in the context of a larger algorithm, but more
importantly because both priority metrics depend upon accurate value function estimates. In other
words, if we use policy iteration as a solver, and use an iterative policy evaluation method, we cannot
stop when just thepolicyhas converged; rather, we must wait until the value function has converged
as well.

It is clear how to use value iteration to solvep, but it is less clear how to use policy iteration.
Policy improvement is easy, but how do we evaluate the value of the states inp? Recall that policy
evaluation is the process of computing the value function for a single policyπ. This eliminates the
max operator in Eq. 1, simplifying it toV(s) = R(s,π(s))+ γ∑s′∈SPr(s′|s,a)V(s′). This is a linear
system of|S| equations in|S| unknowns; in matrix-vector notation, it is equivalently expressed as
v = rπ + γPπv, whereP is the transition probability matrix of policyπ andrπ is the reward under
policy π. Note that this has the same form as the more general problemx = Ax+ b, which is
equivalent to(I −A)x = b.

The key observation is the fact that if the value and policy of states outside the partition are
held constant, their values may be temporarily “folded” into the right-hand sidevector, and a new
sub-problem created. As an example, consider the general problemAx= b, whereA is a 2x2 matrix.
Suppose that we wish to solve only for variable 0 while holding variable 1 constant. We may expand
this system (indexing with array notation) as

A[0,0]x[0]+A[0,1]x[1] = b[0]

A[1,0]x[0]+A[1,1]x[1] = b[1]

and, sincex[1] is constant, rewrite it as

A[0,0]x[0] = b[0]−A[0,1]x[1] = b′[0]

A[1,0]x[0] = b[1]−A[1,1]x[1] = b′[1],

whereb′ is the new vector that results from the folding operation. This yields a set oftwo equations
with one unknown. Either may be used to solve for variable 0.

More generally, assume that we are given ann×n matrix A and a partitionp which contains a
set of variable indices that we wish to solve for. The equation for variablei is

n

∑
j=0

A[i, j]x[j] = b[i]

∑
j∈p

A[i, j]x[j]+ ∑
j 6∈p

A[i, j]x[j] = b[i]

∑
j∈p

A[i, j]x[j] = b[i]−∑
j 6∈p

A[i, j]x[j]

∑
j∈p

A[i, j]x[j] = b′[i].

This yieldsn equations in|p| unknowns, which is an over-constrained system. We wish to select a
subset of the equations with which to work; we adopt the convention that wewill use the equations

862

PRIORITIZATION METHODS FORACCELERATING MDP SOLVERS

corresponding to the variable indices in the partition. Specifically, we may define a diagonalselector
matrix as

Kp[i, i] =

{

1 i ∈ p
0 otherwise.

Then, to select a subset of equations fromA,x andb, we will let A′= KpAKp, x′= Kpx, andb′= Kpb.
Note thatA′ is still ann×n matrix, but with many empty rows and columns. If rowi in A′ is empty,
columni will also be empty, and the corresponding entries in both bothx′ andb′ will also be zero.
The entire system may be compacted by eliminating such zero entries and mappingvariable indices
from the original system to new variable indices in a compacted system, which may then be passed
to an arbitrary subsolver. Selection and compaction can be accomplished simultaneously through
the use of prolongation and restriction operators (Saad, 1996), but wehave adopted the current
approach for simplicity of explanation. We note that GPS with this fold/extract method can be
considered a prioritized Multiplicative Schwarz Procedure (Schwarz, 1890; Saad, 1996).

Once the problemA′x′ = b′ is constructed, any number of direct or indirect linear system solvers
can be used. Exact policy evaluation usually involves inverting a matrix, which is typically aO(n3)
operation. Since we only need to solveA′x′ = b′ to within ε, and because of our interest in per-
formance, we we can opt instead for approximate policy evaluation. Fortunately, this does not
compromise the accuracy of the final solution: Bertsekas and Tsitsiklis (1996) establish the funda-
mental soundness of approximate policy evaluation, and provides boundson the optimality of the
final policy based on the evaluation error.

In this work, we use Richardson iteration (which is equivalent to value iteration) and GMRES as
policy evaluators. GMRES is considered by the numerical analysis community tobe the standard it-
erative method for large, sparse, asymmetric matrices. Saad (1996) presents an excellent discussion
of iterative methods and Barrett et al. (1994) present template-based implementations of common
iterative methods.

2.5 Variable Reordering

As noted previously, it is possible to use standard value iteration to solve a partition. We would
like to optimize this step in the algorithm, but we have already seen that we cannotuse a priority
queue – the overhead is excessive, which is why we used partitions in the first place. Instead of a
gooddynamicordering, we therefore opt for a goodstaticordering. Specifically, we wish to reorder
the states in the partition such that for each sweep, they are backed up in anapproximately optimal
order. This ordering of states is computed once, during initialization. Note that variable reordering
is only effective when Gauss-Seidel iterations are used; it does not affect Jacobi-style iterations, and
may not affect other methods of solving linear systems. In particular, variable reordering is only
applicable to prioritized policy iteration if partitions are evaluated using a Gauss-Seidel iterative
method.

We wish to back up a statesonly when all of the statessdepends on have been backed up. This
suggests the use of a topological sort on the states, and indeed, this yieldsan optimal ordering of
states if the graph is acyclic. Since a topological sort is not defined for cyclic graphs, a more general
possibility is to reorder the states in the matrix to make the matrix “near triangular.” Specifically,
we wish to permute the iteration matrix to minimize the maximum row sum in the upper triangle.

863

WINGATE AND SEPPI

Algorithm 5 Variable reordering
1: // Initialization: dc is an array representing the in-degree of each state
2: dc← 0
3: for all s∈ p do
4: for all a∈ A do
5: for all s′ ∈ p do if ((Pr(s′|s,a) 6= 0) thenincrement(dc[s′])
6: end for
7: end for
8:

9: // Main loop:finalorder is an array representing the final state ordering
10: for i = 0..|p|−1 do
11: let sbe the index of the smallest non-negative value indc

12: dc[s]←−1
13: finalorder[|p|−1− i]← s
14: for all a∈ A do
15: for all s′ ∈ p do if ((Pr(s′|s,a) 6= 0) thendecrement(dc[s′])
16: end for
17: end for

The reason for this follows. We begin with the generic problemx = Ax+b, whereA is a matrix
andx,b are column vectors. This suggests an iterative method of the form

xt+1 = Axt +b (2)

which corresponds to a Jacobi-style iterative method. Now, letA = (L + D +U), whereL is the
lower-triangular part ofA, D is the diagonal part, andU is the upper-triangular part. Using Gauss-
Seidel iterations, Eq. 2 can be expressed asxt+1 = Lxt+1 +(U +D)xt +b (recall that Gauss-Seidel
iterations use state values as soon as they are available). This can be rearranged to yield

xt+1 = (I −L)−1(U +D)xt +(I +L)−1b. (3)

This is the most basic regular splitting of the matrixA; see Puterman (1994) for a more comprehen-
sive treatment of regular splittings and of the specifics of Gauss-Seidel vs. Jacobi iterations.

It is well known that both asynchronous and synchronous relaxationsof the formxt+1 = f (xt)
converge whenf satisfies the definitions of a contraction mapping (Bertsekas and Tsitsiklis, 1989).
Proofs of contraction have been constructed for several important cases, including linear relaxations.
Iterations in the form of Eq. 2 are guaranteed to converge if the spectralradiusρ(A) < 1.

The convergence of Eq. 3 is therefore governed byρ((I −L)−1(U + D)), which is a difficult
expression to simplify. However, it is also well known thatρ(AB) < ‖A‖‖B‖ for any matrix norm;
since the infinity-norm of a matrix corresponds to the largest row-sum in thematrix, convergence
will be governed by‖(I −L)−1‖∞ and‖(U +D)‖∞. (Tangentially, we note that, because(I −L) is
lower-triangular, its inverse is also lower-triangular, and the eigenvaluestherefore correspond to the
diagonal entries. It is easy to show that the diagonals will still be ones afterinverting, meaning that
ρ((I − L)−1) is simply 1). We therefore seek some permutation ofA which will minimize either
‖(I − L)−1‖∞ (which is difficult to do because of the inverse), or‖(U + D)‖∞. Note that if such

864

PRIORITIZATION METHODS FORACCELERATING MDP SOLVERS

a minimizing permutation is obtained, and the graph defined by the matrix is acyclic,(U + D) is
empty, and the system converges in one pass.

As Knuth (1993) states, this problem is NP-complete, because it includes asa very special case
the “Feedback Arc Set” problem, which “was shown to be NP-complete in Karp’s classic paper
(Miller and Thatcher, 1972)”. However, heuristics have been proposed: Knuth (1993) experiments
with a downhill method to find a permutation that is locally optimal (in the sense that moving any
individual row increases the row-sum), but his method is computationally expensive. Modified
topological sorts (in which any edge that completes a cycle is deleted) have also been proposed
which are efficient, and which form the basis of the strategy we follow.

The foregoing analysis has been in terms of a generic matrixA. However, the transition matrix
of a discrete MDP depends on the operative policy at any given time. Whatmatrix should be used
to compute a new variable ordering? We use an aggregate matrix which incorporates all of the
transitions possible under any policy, all of which are weighted equally. This represents an implicit
assumption that we are optimizing for an expected case where all policies areequally likely, but if
additional information about the likelihood of different policies is available, itcould be leveraged
during this phase.

The final variable reordering algorithm is a modified topological sort, and isshown in Algorithm
5. The algorithm operates on a partitionp, and generates the arrayfinalorder, which lists the order
in which states should be backed up.

2.6 Convergence, Stopping Criteria and Complexity

Convergence of GPS with a value-iteration subsolver is established by noting that it is an asyn-
chronous variant of traditional value iteration. Convergence is guaranteed for such algorithms pro-
vided that every state is backed up infinitely often (Bertsekas, 1982, 1983; Gullapalli and Barto,
1994). Practically, this can be guaranteed as long as no state is starved ofbackups. In our algo-
rithm, states will be backed up until they have converged, at which point a new set of states will be
selected. If a state has someBt(s) > ε, it will eventually be backed up; if no such state exists, the
problem is solved. Convergence of approximate policy iteration and asynchronous policy iteration
has been established by Bertsekas and Tsitsiklis (1996); once again, thestipulation is that each state
must be visited infinitely often, and once again, it is clear that our algorithm does not starve any
state that hasBt(s) > ε.

Here, we also note that if a statesnever hasBt(s) > ε, it never needs to be backed up. Of course,
there is no performance gain in detecting that a single state never needs to bebacked up, because
it takes just as long to computeBt(s) as it does to back the state up – but partitions change that.
Because the states in a partitionp are “blocked off” from the rest of the problem, detection of the
fact that they may not need to be backed up can be highly efficient: onlyBt of the cross-partition
dependencies must be examined. If they never move aboveε, nothing in p needs to be backed
up (assuming the partition is internally solved). Thus, the “infinite updates” stipulation of most
asynchronous convergence proofs represent sufficient conditions, but not necessary conditions.

Stopping criteria are easily established. The largest difference betweena value function estimate
and the optimal value function can be characterized in terms of the Bellman error magnitude. This
has already been accomplished by Williams and Baird (1993); similar results can be easily derived
by using equation 6.3.7 of Puterman’s book (Puterman, 1994):

‖Vt −V∗‖ ≤Mt−1/(1− γ). (4)

865

WINGATE AND SEPPI

Name Description

PI-Rich Policy iteration with Richardson policy evaluator
PI-GMRES Policy iteration with GMRES policy evaluator
PPI-Rich-H1 Partitioned PI, prioritized w/H1, using Richardson evaluator
PPI-Rich-H2 Same, but withH2 priority metric
PPI-GMRES-H1 Partitioned PI, prioritized w/H1, using GMRES evaluator
PPI-GMRES-H2 Same, but withH2 priority metric

VI Standard value iteration
VI-VRE Value iteration with partitions, NO priority, and variable reordering
PVI-H1 Partitioned value iteration, prioritized withH1
PVI-H1-VRE Same, plus variable reordering
PVI-H2 Partitioned value iteration, prioritized withH2
PVI-H2-VRE Same, plus variable reordering

Figure 6: Algorithms tested.

The maximum difference provides a natural stopping criterion. The algorithm can stop whenMt <
ε(1− γ), and will be guaranteed to have anε-optimal policy. A more common bound (for example,
Puterman, 1994) is that if‖Vt+1−Vt‖< ε(1− γ)/2γ, then‖Vt+1−V∗‖< ε/2. The slight difference
in the two equations can be accounted for by noting that we previously stipulated that all rewards
be positive (which allows us to provide a tighter bound by avoiding absolute values), and because
of a minor difference in time subscripting.

The space complexity of GPS is quite good. The largest overhead comes from the need to store
a partial inverse model, but this is always a subset of the whole problem. Additional memory is
needed for the priority queue (O(|P|)), for the state-to-partition mapping (O(|S|)), and the partition-
to-state maps (O(|P|+ |S|)).

3. Experimental Setup

We tested twelve different combinations of the basic enhancements we have discussed, which are
shown in Figure 6. Most are self-explanatory, except the VI-VRE algorithm. VI-VRE was designed
to isolate the impact of variable reordering, so to accomplish this, the problem was partitioned, and
variables were reordered within each partition. Then, for each sweep,the algorithm iterated over all
partitions, and backed up each state within each partition in the prescribed order.

All value iteration and Richardson iteration solvers used Gauss-Seidel backups. When GMRES
was needed, we used the AZTEC package (Tuminaro et al., 1999), whichis an implementation of
several iterative methods developed by Sandia National Laboratories.

Two types of partitioning were tested. Most experiments used graph-based partitions generated
by the METIS package (Karypis and Kumar, 1998), but some used geometrical information. This
was done by laying down a regular grid of partitions over the state space. Various grids were tested;
the best was a simple grid with square cells.

The algorithms were tested against several problems of differing complexity. Success was mea-
sured by the amount of time taken, by the number of backups performed, and by how accurate the
resulting value function was. We tested two types of problems. The first were deterministic mini-

866

PRIORITIZATION METHODS FORACCELERATING MDP SOLVERS

Figure 7: On the left, the Kuhn triangulation of a (3d) cube. Ad-dimensional hypercube is tes-
sellated (implicitly) intod! simplices. On the right, control of each(s,a) pair is tracked
until the resulting states′ enters a new hypercube. Barycentric coordinates relative to
the enclosing simplex are computed, and are used to represent probabilistictransitions to
vertices.

mum time optimal control problems, which are continuous time, and involve continuous action and
state dimensions (these were discretized as described below). These control problems were selected
because the number of states used in the discretization could be varied at will,while maintaining a
constant expected degree, thus allowing us to generate families of highly related MDPs. The second
set of problems were versions of the SysAdmin problem described by Guestrin et al. (2003). These
are inherently discrete, stochastic problems with very dense transition matrices.

We will briefly describe the process used to discretize the control problems, but we note here
that this process is tangential to the research focus of this paper. Thereare many other methods
which could have been used to discretize the problems; naturally, this particular method introduces
a bias with respect to the original problem, but since the solution engine simply expects a discrete
MDP, the details of where it came from are somewhat irrelevant.

To discretize the space, we use the general numerical stochastic control techniques described by
Kushner and Dupuis (2001); our specific implementation closely followed that of Munos and Moore
(2002) (except that novariablediscretization is used). Instead, the space is discretized once in the
initialization phase. We refer the reader to their work for a complete description of the technique
with comprehensive citations on component elements.

Figure 7 illustrates the discretization process. The state space is divided intohypercubes by
regularly dividing each dimension, and a Kuhn triangulation is implemented (implicitly) inside of
each hypercube. The use of Kuhn triangles is particularly appropriate because once discretized,
each state depends upon exactlyd+1 other states. In addition, the combination of hypercubes and
Kuhn triangles has excellent space and time performance characteristics,which greatly accelerated
the experimental cycle. The hypercubes completely tessellate the space, and the Kuhn triangles
completely tessellate each hypercube. The vertices defining the hypercube grid are used as the states
in the MDP. The transition matrix is computed by iterating over each vertexs. For each available
actiona, the system dynamics are integrated using Runge-Kutta and tracked until theresulting state
s′ enters a new hypercube. The barycentric coordinates ofs′ with respect to the enclosing simplex
are then computed. The states can then be said to transition non-deterministically to a vertex in
the enclosing simplex with probability equal to the related barycentric coordinate (since barycentric
coordinates always sum to one). As Munos and Moore (2002) state, “doing this interpolation is thus

867

WINGATE AND SEPPI

mathematically equivalent to probabilistically jumping to a vertex: we approximate adeterministic
continuous process by astochasticdiscrete one” (emphasis in original).

Approximation of the value function is performed by computing exact values at each of the
vertices, and interpolating the value across the interior of each hypercube. Interpolation is linear
within each simplex. Since these problems are continuous time, a slightly differentform of the
value function equation was used:

Vt(s,a) =
Z τ

0
γtR(s(t),a)dt+ γτ ∑

s′∈S

Pr(s′|s(τ),a)max
a′∈A

Vt−1(s
′,a′)

whereτ is the amount of time it took fors′ to enter the new hypercube (or exit the state space), with
the convention thatτ = ∞ if s′ never exited the original hypercube.

All results were obtained on a dual Opteron 246 with 8G of RAM. For partitioned solvers, there
were always about 200 states in each partition, unless otherwise indicated. Results are deterministic,
so wallclock tests were only run enough times to ensure accuracy.

3.1 Problem Details

Mountain car (MCAR) is a two-dimensional minimum-time optimal control problem. A small car
must rock back and forth until it gains enough momentum to carry itself up to thetop of the hill
(see Figure 8). In order to receive any reward, the car must exit the state space on the right-hand
side (positive position), with a velocity close to zero. In order to make resultsmore comparable to
the other problems studied, the reward function was modified from the traditional gradient reward
to be a single-point reward: the agent received a reward only upon exiting the state space with a
velocity (within a threshold) of zero. This did not substantially change the shape of the resulting
value function. The state space is defined by position (x∈ [−1,1]) and velocity (˙x∈ [−4,4]).

The single-arm pendulum (SAP) is also a two dimensional minimum time optimal control prob-
lem. The agent has two actions available (bang-bang control is sufficientfor this problem) repre-
senting positive and negative torques applied to rotating pendulum, which theagent must learn to
swing up and balance. Similar to MCAR, the agent cannot move the pendulum from the bottom to
the top directly, but must learn to rock it back and forth. Rewards are zero everywhere but in the
balanced region. The state space is defined by the angle of the link (θ1) and the angular velocity of
the link (θ̇1 ∈ [−15,15]). The two actions are±10 Newton.

The double-arm pendulum (DAP) is a four dimensional minimum time optimal control problem
(see Figure 8). It is similar to SAP, except that there are two links. It is the second link which the
agent must balance vertically, but it is a free-swinging link. This variant of DAP is different from
the easier Acrobot problem, where force is applied at the junction betweenthe two links (Sutton,
1996), and from a horizontal double-arm pendulum (where the main link rotates in the horizontal
plane, and the secondary link rotates vertically with respect to the main link). This version of
DAP is the complete swing-up-and-balance problem; other variants only treat the balancing aspect.
Rewards are zero everywhere but in the balanced region. The state space is defined by the two
link angles (θ1,θ2) and their angular velocities (θ̇1 ∈ [−10,10] radians/s,θ̇2 ∈ [−15,15] radians/s).
Values outside these ranges are almost impossible to achieve, and are not necessary for the optimal
policy. The two actions are±10 Newton.

SysAdmin is an inherently discrete, highly non-deterministic problem with a fairlylarge num-
ber of actions. A systems administrator must maintain a network ofn connected computers. At

868

PRIORITIZATION METHODS FORACCELERATING MDP SOLVERS

1O

O1

O2

O2

Goal

Resistance

Thrust

Gravity

Figure 8: The left figure shows the MCAR problem (figure adapted fromMunos and Moore, 2002).
The car must rock itself back and forth to generate enough momentum to exit the state
space. The state space is described by the position and velocity of the car.The right
figure shows the DAP problem. The agent must swing the secondary link intothe vertical
position and keep it there. The state space is described by four variables: θ1, θ2, θ̇1 and
θ̇2. The same dynamics are used for the SAP problem.

each timestep, the administrator is paid proportionally to the number of machines that are on-line;
the goal of the problem is to maximize the amount of money made. The state space isa binary
vector, with each bit representing whether or not a machine is working. Machines fail with a fixed
probability, with a failed machine increasing the probability of failure of any machine connected to
it. The administrator hasn+ 1 actions available: actioni corresponds to rebooting machinei, and
actionn+1 means that nothing is rebooted. A rebooted machine is guaranteed to be working on the
next timestep. We used a network of 10 machines, connected in a ring topology; other network sizes
were tested, with substantially similar results. See the paper by Guestrin et al. (2003) for specifics
on generating the transition probabilities.

4. Results

Our experiments generated many positive results. First, the enhancements we have discussed accel-
erated the solution to many problems by as much as two orders of magnitude, whilemaintaining a
high degree of accuracy. TheH2 metric usually outperformed theH1 metric, and variable reorder-
ing almost always helped. On the MCAR problem, many of the algorithms avoidedmany useless
backups, to the point of never processing several states. In addition,GPS exhibited fairly good
space complexity. However, there were some negative results. First, all of the enhancements (with
the exception of variable reordering) exhibited very poor behavior on the SysAdmin problem. Sec-
ond, we observed that it was difficult to tune the parameters of the algorithm.Finally, we observed
that none of our enhancements were optimal.

869

WINGATE AND SEPPI

4.1 Positive Results

Figures 9, 10 and 11 show that the enhancements constituting GPS clearly accelerate normal value
and policy iteration for the SAP problem; substantially similar results were obtained for the MCAR
problem. The gains were even better for the DAP problem, as shown in Figures 12 and 13, although
the enhancements that worked the best on SAP and MCAR were differentthan the enhancements
that worked the best on DAP. To solve a 160,000 state version of SAP, for example, VI required
about 23 seconds, but PVI-H2-VRE required about 1.24 seconds.For a 6.25 million state version
of DAP, VI required 110.64 seconds, but PVI-H1 required only 8.28 seconds. Similar performance
gains were observed by enhancing policy iteration: PI-Rich and PI-GMRES solved the 6.25 million
state DAP in about 250 seconds each; the partitioned, prioritized variants ranged in times between
12.53 and 22.77 seconds. It is also interesting to note that GPS solved both MCAR and SAP
in about the same amount of time for any given discretization, even though they represent very
different problems (in the sense that value information flows through them very differently).

TheH2 metric usually exhibited better behavior than theH1 metric; the only exception was the
DAP problem (this is discussed in the next section). The results also demonstrate that, while solving
the control problems, the relative advantages of the enhancements were consistent as the problem
size changed. This could be due to the fact that although the discretization level is changing, other
fundamental properties of the MDP are not: the expected degree of any vertex is constant, the
number of actions is very small, and there is only one reward in the system.

Variable reordering was almost always very effective on these control problems. In most exper-
iments, reordering reduced time and backups by at least a factor of 2, and even in the cases when it
did not help, we never saw a situation where it hurt in any statistically significant way. VRE thus
appears to be a good enhancement, considering the low overhead and ease of implementation.

An additional advantage of prioritization is that some of the prioritized algorithmsnever pro-
cessed certain states in the MCAR problem. Figure 16 demonstrates this graphically: large regions
of the state space (indicated by a dark blue color) were never processed, because the agent can never
reach the goal state from them. This is a significant result from a practicalstandpoint: no additional
code or information about the problem was necessary, but a full 19% ofthe state space was never
processed. This behavior manifested itself in the algorithm by a priority of zero that never changed.

For all policy iteration variants, the Richardson iteration subsolver often outperformed the GM-
RES subsolver. This is surprising, since Krylov methods are generally considered superior to their
more naive counterparts. It is possible that the use of preconditioning mayshow GMRES in a more
positive light, but such experiments are left to future research. We consider this a positive result
because it indicates that using “naive” algorithms such as Modified Policy Iteration (Puterman and
Shin, 1978) (which interleaves rounds of policy improvement with rounds of value iteration) may
not be such a bad idea after all; the use of more sophisticated general matrixsolvers may not be
very fruitful because of the extremely specific type of matrix that is used in RL problems.

To validate the resulting policies from GPS, a 75,000,000 state version of DAPwas run (an
empirically determined minimum resolution needed for an effective control policy). This was done
in the continuous domain by overlaying the discretization structure on the original space. Policies
are exact at the vertices, so distance-weighted vertex voting was used togenerate policies inside
each simplex. A very good result is that GPS solved it (toε = 0.0001) in only about four hours. The
resulting control policy performed perfectly, and represented the firsttime we solved DAP using
any algorithm. We should note that this problem was run on an SGI Origin 3000; the SGI was about

870

PRIORITIZATION METHODS FORACCELERATING MDP SOLVERS

one third as fast as the Opteron used in all of the other experiments, and is ashared machine which
is always heavily used.

4.2 Negative Results

The most significant negative result is the poor performance of GPS on the SysAdmin problem.
Figure 14 shows some representative results: the best performers arestandard PI and VI, and the
worst are any GPS variant (except, of course, the variants which used only variable reordering;
these showed slightly improved performance). As it turns out, SysAdmin is anexample of the
theoretically worst-case performance for GPS when compared to standard methods, and therefore
represents the other extreme of the performance spectrum.

The problem lies in state interdependence. The transition matrix of this problemis extremely
dense: under any policy, there is a non-zero probability of transitioning from any state to 50% of
all of the other states. This is problematic for two reasons: first, the reprioritization calculations are
very expensive, and second, the problem is not amenable to a divide-and-conquer strategy. Instead,
this problem is like the one shown in Figure 2, where the best solution is a round-robin backup
ordering. Thus, all of the overhead associated with maintaining priorities ispureoverhead, in the
sense that solution times would have been just as good without the effort.

The negative results are therefore not all that surprising, but deserve more quantification. A
theoretical worst-case scenario for GPS can be estimated by consideringa fully connected MDP
(Pr(s′|s,a) 6= 0 ∀s,a,s′). The two critical factors in the reprioritization overhead are 1) the fact
that backing up a state is costly, which is true for any algorithm but which additionally implies
that recomputingHt is costly, and 2) the fact that every state is dependent upon every otherstate,
implying that |SDP(p)| will be large for all p, and thatHt will need to be recomputed for a large
number of states. The very worst case occurs when just one state is included in each partition.
Assume that just one backup per states is needed to solve a partition. Then, to reprioritize dependent
partitions, we must recompute the priority for every dependent state (O(|S|)), by recomputingHt(s),
which costsO(|S||A|). This incursO(|S|2|A|) overhead per backup. Using fewer partitions helps, but
even then performance is worse than that of normal VI, because the sameO(|S|2|A|) reprioritization
overhead is incurred whenever a partition is solved. The extra overhead is not justified when a
round-robin method works just as well.

Additional experiments were conducted to discover which features of SysAdmin lead to the poor
performance. These involved reducing the number of available actions, pruning low-probability
transitions, testing various partition sizes, etc. GPS still performed poorly onthese modified prob-
lems. The current hypothesis is that all versions of SysAdmin consideredstill exhibit the same basic
interdependence, which means that it is difficult to partition the problem cleanly, which implies that
solving one partition before moving on to the next is not the best strategy. This leads to the fol-
lowing general conclusion: highly interdependent states must be solved concurrently; spending too
much time solving in isolation any one part of a problem which is highly interdependent on another
part is wasted effort. This suggests that a better strategy for future versions of GPS may be to solve
each partition inexactly, instead of to withinε, but such an algorithm is left to future research.

The MCAR and SAP problems demonstrate that reordering often helps, thatRichardson is better
as a policy evaluator than GMRES, and that the using theH2 priority metric often yields better
performance than using theH1metric. However, DAP represents an exception to all three: Figure 12
shows that both variable reordering and theH2 metric worsened performance, and Figure 13 shows

871

WINGATE AND SEPPI

 0

 5

 10

 15

 20

 25

 0 40000 80000 120000 160000

T
im

e
to

 s
ol

ve
 (

se
co

nd
s)

Number of states

VI
PVI-H1
PI-Rich

PPI-Rich-H1
PI-GMRES

PPI-GMRES-H1

Figure 9: Impact of using theH1 metric on the SAP problem. They axis is time to solve in seconds
(lower is better), and thex axis is the number of states used to discretize the problem. The
reader should compare VI to PVI-H1, PI-Rich to PPI-Rich-H1, etc. These results show
that using partitioning and prioritization withH1 always improves performance on this
problem (although it does not improve by much between PI-GMRES and PPI-GMRES-
H1). The improvement is especially large for VI. Partitions were generatedusing METIS.

GMRES outperforming Richardson, as well asH1 outperformingH2. In both sets of experiments,
the largest performance gain seems to be due to the general idea of prioritization and partitioning;
the specific variant of GPS used does not affect performance proportionately as much. Figure 12
also shows that, for a small number of states, VI slightly outperformed any GPS variant. Since each
state always depends ond+1 other states, the graph diameter of these problems may be smaller.

Neither our priority metrics, our variable reordering algorithm, nor our partitioning methods
are optimal. For example, Figure 15 clearly shows that graph-based partitioning is not as effective
as partitions based on geometrical information. Although the minimum-cut partitioning problem
is NP-complete, it is unlikely that the suboptimality in our partitioning is what causesthe poor
performance; a more likely explanation is that we are partitioning based on thewrong criteria.
Figure 5 shows that PVI-H2-VRE/200 performs fewer backups than PVI-H2-VRE/1. With PVI-
H2-VRE/1, backups are executed in strict priority order, but with PVI-H2-VRE/200, backups are
executed in an order that is partly due to the priority metric, and partly due to variable reordering.
This fact implies thatH2 generates a suboptimal ordering.

In order to obtain the best results, partition sizes had to be selected manually (however, it is
also possible to present this as a positive result: the fact that the system was fast enough to allow
us to tune this parameter is significant). Figures 14 and 15 demonstrate that partitioning is largely
problem-dependent: on the SysAdmin problem, adding any partitions alwayshurt performance. For
MCAR, adding partitions initially improved performance, but adding too many worsened it again.
We do not know how to predict a good number of partitions, except to observe that using somewhere
between 100 and 400 states per partition tended to yield very good results onthe control problems.

872

PRIORITIZATION METHODS FORACCELERATING MDP SOLVERS

 0

 5

 10

 15

 20

 25

 0 40000 80000 120000 160000

T
im

e
to

 s
ol

ve
 (

se
co

nd
s)

Number of states

VI
PVI-H2
PI-Rich

PPI-Rich-H2
PI-GMRES

PPI-GMRES-H2

Figure 10: Impact of using theH2 metric on the SAP problem. The results show that using par-
titioning and prioritization withH2 always improves performance. In contrast to the
previous figure, it substantially improves PI-GMRES. Partitions were generated using
METIS.

 0

 5

 10

 15

 20

 25

 0 40000 80000 120000 160000

T
im

e
to

 s
ol

ve
 (

se
co

nd
s)

Number of states

VI
VI-VRE
PVI-H1
PVI-H2

PVI-H1-VRE
PVI-H2-VRE

Figure 11: Impact of using VRE on SAP. VRE always improves performance on this problem, but
the impact is especially dramatic on normal VI (improving performance by an order
of magnitude). The lowest line shows the very best times obtained for solvingSAP
using any algorithm – at a size of 160,000, it takes about 0.85 seconds. Partitions were
generated using METIS.

873

WINGATE AND SEPPI

 0

 20

 40

 60

 80

 0 5e+06 1e+07 1.5e+07 2e+07 2.5e+07

T
im

e
to

 s
ol

ve
 (

se
co

nd
s)

Number of states

VI
VI VRE
PVI H1

PVI H1 VRE
PVI H2

PVI H2 VRE

Figure 12: Results of the value iteration algorithms on the DAP problem. The results contrast some-
what with the results for MCAR and SAP:H1 outperformedH2, and VRE negatively
affected performance. However, any GPS variant greatly outperformed standard VI,
with or without VRE. Partitions were generated using geometrical information.

 0

 20

 40

 60

 80

 0 5e+06 1e+07 1.5e+07 2e+07 2.5e+07

T
im

e
to

 s
ol

ve
 (

se
co

nd
s)

Number of states

PI Rich
PI GMRES

PPI Rich H1
PPI GMRES H1

PPI Rich H2
PPI GMRES H2

Figure 13: Results of the policy iteration algorithms on the DAP problem. Once again, the re-
sults contrast with MCAR and SAP:H1 outperformedH2, and GMRES outperformed
Richardson iteration. However, like the value iteration algorithms, GPS variants greatly
outperformed their naive counterpart. Partitions were generated using geometrical in-
formation.

874

PRIORITIZATION METHODS FORACCELERATING MDP SOLVERS

 20

 40

 60

 80

 100

 1 10 100

T
im

e
to

 s
ol

ve
 (

se
co

nd
s)

Number of partitions

VI
PI Rich

PI GMRES
PVI H1

PVI H2 VRE

Figure 14: Performance on the SysAdmin-10 problem, as a function of the number of partitions
used. Only a representative sample of all algorithms is shown. The results contrast
sharply with previous results: VI and PI dramatically outperform GPS variants, and
adding partitions never helps any algorithm. VRE barely affects performance. Partitions
were generated using METIS.

 0.1

 1

 10

 100

 1 10 100 1000 10000

T
im

e
to

 s
ol

ve
 (

se
co

nd
s)

Number of partitions

Geometrical
Uniform
Average

Max

Figure 15: Results contrasting partitioning methods (note the double log scale). Shown are solu-
tion times using METIS generated partitions (with three different edge-weight criteria),
compared to a geometrically generated partitioning. The edge-weight criteriaare 1)
maximum probability under any policy, 2) average over all policies, and 3) uniform
cost. The geometric partitions perform best. Results come from the MCAR problem
using a 300x300 state discretization and the PVI-H2-VRE solver.

875

WINGATE AND SEPPI

Figure 16: The MCAR control policy. Green (light gray) is positive thrust, red (medium gray) is
negative thrust, and dark blue (dark gray) indicates that the partition wasnever pro-
cessed. On the left: using one state per partition, the resolution of the unvisited states is
very high, and corresponds exactly to the discontinuities in the value function. On the
right: same, but using 100 states per partition. A partition can be skipped onlyif all of
the states inside can be skipped.

5. Related Work

This work is about the efficient backpropagation of correct value function estimates. Other re-
searchers who have investigated similar issues of efficiency have produced results that are tangible
and compelling, but their algorithms are not directly comparable to ours because they have been
developed in the context of on-line, model-free learning. Our algorithms, incontrast, explicitly
assume the availability of a complete model.

The difference in these domains is significant and shifts the emphasis of the work. Model-free
algorithms do not have the luxury of executing backups to states they have not visited; model-
based algorithms, in contrast, can execute backups to any state, in any order. This fact frees us
to examine different types of questions. For example, most model-free algorithms must content
themselves with backpropagating information along experience traces, butthere is no reason to
suppose that an experience trace (played in any order) represents an optimalsequence of backups.
It is a surrogate for what is truly desired: the ability to digest the consequences of corrected value
function estimates as quickly and thoroughly as possible, throughout the entire problem. Thus,
instead of examining questions related to maximizing the utility of experience traces, this work
examines questions related to finding globally optimal backup sequences.

There are three primary classes of methods that researchers have used to accelerate the back-
propagation of correct value information. Algorithmically, these methods form a poor basis for
comparison, but conceptually, they illustrate several important points.

First is the class oftrace propagationmethods, such as TD(λ) (Sutton, 1988), Q(λ) (Peng and
Williams, 1994), SARSA(λ) (Rummery and Niranjan, 1994), Fast Q(λ) (Reynolds, 2002) and Ex-
perience Stack Replay (Reynolds, 2002). These methods store a record of past experiences. As
value function estimates are corrected, the changes are propagated backwards along the experience
trace. Relative to value iteration, these methods derive enhanced performance partly from backing

876

PRIORITIZATION METHODS FORACCELERATING MDP SOLVERS

up states in a principled order (that is, backwards) and by only backing up a subset of all states.
These ideas of principled ordering and partial sweeps are central in thiswork.

Second, there areforced generalizationmethods, such as Eligibility Traces (Singh and Sutton,
1996), PQ-learning (Zhu and Levinson, 2002) and Propagation-TD (Preux, 2002). These methods
attempt to compute the value for a state based on information that was not directlyassociated with
an experience trace. States selected for backup may have been part ofa previous experience trace,
or may have a geometrical or geodesic relationship to states along the actual trace (this happens
implicitly with function approximators, but is forced to happen explicitly in these tabular methods).

Third, there areprioritized computationmethods, such as Prioritized Sweeping (Moore and
Atkeson, 1993) and Queue-DYNA (Peng and Williams, 1993). These methods order the backups in
a principled way by constructing priority queues based on Bellman error. The idea of prioritizing
backups is also central to our paper, but these methods raise many questions that merit further study.
It is from these questions that our work springs.

Other researchers have considered extensions to the three basic classes previously enumerated,
but the extensions do not match our domain of interest. For example, Andre et al. (1998) propose
a continuous extension to Prioritized Sweeping, and Zhang and Zhang (2001) discuss a method for
accelerating the convergence of value iteration in POMDPs. It is also well known that the dual of any
MDP can be solved by linear programming. However, Littman et al. (1995) point out that “existing
algorithms for solving LPs with provable polynomial-time performance are impractical for most
MDPs. Practical algorithms for solving LPs based on the simplex method appear prone to the same
sort of worst-case behavior as policy iteration and value iteration.” Guestrin et al. (2003) present
efficient algorithms for solving factored MDPs, but the efficiency they describe relies on closed-
form expressions for state spaces that are never explicitly enumerated.Gordon (1999) provides a
thorough survey of other MDP solution techniques, such as state aggregation, interpolated value
iteration, approximate policy iteration, policies without values, etc.

6. Conclusions and Future Research

Based on our observations, there are several important conclusions which clarify directions for
future research. In the quest for an optimal sequence of backups, the gains to be had from prioritized
computation are real and compelling, but there is a lack of understanding asto what constitutes
optimality and how it can be achieved. A better understanding of why GPS works is needed: more
principled approaches to selecting priority metrics, reordering methods, and partitioning schemes
are essential. Ideally, such principled methods would all be combined in a unified architecture.

Partitioning with a priority metric seems to be the most important improvement. Even though
we observed that our partitioning criteria was suboptimal, and that our reordering algorithm was
suboptimal, and that bothH1 andH2 are suboptimal, the fact that they were not perfect seemed to
make less of a difference than the fact that we used them at all. This was shown clearly by DAP: the
addition of VRE and the specific priority metric used did not affect things proportionately as much
as the initial use of partitions.

The variability in these results make it clear that more theory is needed to guide thedevelop-
ment and selection of such enhancements. The most useful would be problem features and opti-
mality definitions that would indicate which metric, reordering method and partitioning scheme are
maximally effective, and which would guide the development of new enhancements. These may
include distributional properties of the reward functions, distributional properties of transition ma-

877

WINGATE AND SEPPI

trices, strongly/weakly connected component analyses, etc. When do our enhancements work well?
The rule of thumb seems to be “on problems with large diameter;” there is also evidence that they
work well on problems with sparse rewards and a sparse transition matrix. We conclude that perhaps
the control problems selected show GPS in its very best light – however, it was only GPS which
made it possible for us to solve a 75,000,000, explicitly enumerated discrete state MDP. Without
question, the algorithms are effective on certain types of problems.

More generally, the results indicate that dramatically improved performance ispossible for al-
gorithms that exploit problem-specific structure in an intelligent way. This motivates research into
new types of representations (and companion algorithms) that are designed from the beginning with
efficiency in mind. There are also many improvements that could be made using current ideas. For
example, variable reordering can be considered a surrogate for an intra-partition priority metric.
In the same way that partitioning a problem alleviates suboptimal backups, partitioning a partition
might improve efficiency. The choice of a single-level partitioning scheme was arbitrary; perhaps a
better solution is to generate a continuum of partitions with priority metrics at eachlevel.

Overall, the results of this work have improved our ability to experiment with RL problems
and have opened the doors of several fascinating avenues of research. At the very least, this work
has enabled certain very large MDPs to be solved in tractable amounts of time and space, which
would not have been possible otherwise; hopefully, this advance will allowresearchers to design
and tackle ever larger and more relevant problems. But the results also indicate that there are strong
possibilities for even more efficient solution methods in the future, some of which may be radically
different than anything considered to date, and which may enable even more intelligent systems to
be created.

On-Line Appendix

The reader is encouraged to refer to

http://aml.cs.byu.edu/papers/prioritizationmethods/

for additional multi-media materials. Several videos are available which graphically demonstrate
the different backup orders imposed by the different priority metrics. The GPS source code is also
available for download.

Acknowledgments

The authors wish to thank Todd Peterson, Michael Goodrich, Dan Ventura and Martha Wingate
for their patient revisions and cogent suggestions. They would also like tothank the anonymous
reviewers for their attention to detail and excellent feedback.

David Wingate is supported under a National Science Foundation GraduateResearch Fellow-
ship.

References

Charles J. Alpert.Multi-way graph and hypergraph partitioning. PhD thesis, University of Califor-
nia Los Angeles, Los Angeles, CA, 1996.

878

PRIORITIZATION METHODS FORACCELERATING MDP SOLVERS

David Andre, Nir Friedman, and Ronald Parr. Generalized prioritized sweeping. Advances in
Neural Information Processing Systems, 10:1001–1007, 1998.

Richard Barrett, Michael Berry, Tony F. Chan, James Demmel, June Donato, Jack Dongarra, Victor
Eijkhout, Roldan Pozo, Charles Romine, and Henk Van der Vorst.Templates for the Solution of
Linear Systems: Building Blocks for Iterative Methods, 2nd Edition. SIAM, Philadelphia, PA,
1994.

Andrew G. Barto, S. J. Bradtke, and Satinder P. Singh. Learning to actusing real-time dynamic
programming.Artificial Intelligence, 72(1):81–138, 1995.

Dimitri P. Bertsekas. Distributed dynamic programming.IEEE Transactions on Automatic Control,
27:610–616, 1982.

Dimitri P. Bertsekas. Distributed asynchronous computation of fixed points.Mathematics Program-
ming, 27:107–120, 1983.

Dimitri P. Bertsekas and John Tsitsiklis.Neuro-Dynamic Programming. Athena Scientific, Belmont,
MA, 1996.

Dimitri P. Bertsekas and John N. Tsitsiklis.Parallel and Distributed Computation: Numerical
Methods. Prentice-Hall, Englewood Cliffs, NJ, 1989.

Thomas Dean and Robert Givan. Model minimization in Markov Decision Processes. InProceed-
ings of The Fourteenth National Conference on Artificial Intelligence, pages 106–111, 1997.

Geoffrey J. Gordon.Approximate Solutions to Markov Decision Processes. PhD thesis, Carnegie
Mellon University, Pittsburgh, PA, 1999.

Carlos Guestrin, Daphne Koller, Ronald Parr, and Shobha Venkataraman. Efficient solution algo-
rithms for factored MDPs.Journal of Artificial Intelligence Research, 19:399–468, 2003.

Vijaykumar Gullapalli and Andrew G. Barto. Convergence of indirect adaptive asynchronous value
iteration algorithms.Advances in Neural Information Processing Systems, 6:695–702, 1994.

George Karypis and Vipin Kumar. Multilevel k-way partitioning scheme for irregular graphs.Jour-
nal of Parallel and Distributed Computing, 48:96–129, 1998.

Michael J. Kearns and Satinder P. Singh. Near-optimal reinforcement learning in polynomial time.
Machine Learning, 49:209–232, 2002.

Donald E. Knuth.The Stanford GraphBase: A Platform for Combinatorial Computing. ACM Press,
New York, NY, 1993.

Harold J. Kushner and Paul Dupuis.Numerical methods for stochastic control problems in contin-
uous time, Second Edition. Springer-Verlag, New York, NY, 2001.

Michael L. Littman, Thomas L. Dean, and Leslie P. Kaelbling. On the complexity of solving
Markov Decision Problems. InProceedings of the Eleventh Annual Conference on Uncertainty
in Artificial Intelligence, pages 394–402, 1995.

879

WINGATE AND SEPPI

Raymond E. Miller and James W. Thatcher.Complexity of computer computations. Plenum Press,
New York, NY, 1972.

Andrew W. Moore and Christopher G. Atkeson. Prioritized sweeping: Reinforcement learning with
less data and less time.Machine Learning, 13:103–130, 1993.

Andrew W. Moore and Christopher G. Atkeson. The parti-game algorithm for variable resolution
reinforcement learning in multidimensional state space.Machine Learning, 21:199–233, 1995.

Remi Munos and Andrew W. Moore. Variable resolution discretization in optimal control. Machine
Learning, 49:291–323, 2002.

Jing Peng and John Williams. Efficient learning and planning within the dyna framework. In
Proceedings of the Second International Conference on Simulation of Adaptive Behavior, pages
437–454, 1993.

Jing Peng and Ronald J. Williams. Incremental multi-step Q-learning. InProceedings of the
Eleventh International Conference on Machine Learning, pages 226–232, 1994.

Philippe Preux. Propagation of Q-values in tabular TD(lambda). InProceedings of the Thirteenth
European Conference on Machine Learning, pages 369–380, 2002.

Martin L. Puterman.Markov Decision Processes–Discrete Stochastic Dynamic Programming. John
Wiley and Sons, Inc., New York, NY, 1994.

Martin L. Puterman and Moon C. Shin. Modified policy iteration algorithms for discounted Markov
Decision Problems.Management Science, 24:1127–1137, 1978.

Stuart I. Reynolds.Reinforcement Learning with Exploration. PhD thesis, University of Birming-
ham, Birmingham, United Kingdom, 2002.

Gavin A. Rummery and Mahesan Niranjan. On-line Q-learning using connectionist systems. Tech-
nical Report CUED/F-INFENG/TR 166, Cambridge University, Cambridge, United Kingdom,
1994.

Yousef Saad.Iterative Methods for Sparse Linear Systems. PWS Publishing, Boston, 1996.

Hermann A. Schwarz.Gesammelte Mathematische Abhandlungen, volume 2. Springer-Verlag,
1890.

Satinder P. Singh and Richard S. Sutton. Reinforcement learning with replacing eligibility traces.
Machine Learning, 22:123–158, 1996.

Richard S. Sutton. Learning to predict by the methods of temporal differences.Machine Learning,
3:9–44, 1988.

Richard S. Sutton. Generalization in reinforcement learning: Successful examples using sparse
coarse coding.Advances in Neural Information Processing Systems, 8:1038–1044, 1996.

Ray S. Tuminaro, Mike Heroux, S. A. Hutchinson, and John N. Shadid.Official Aztec User’s Guide:
Version 2.1. Sandia National Laboratory, Albuquerque, NM, 1999.

880

PRIORITIZATION METHODS FORACCELERATING MDP SOLVERS

Ronald J. Williams and Leemon C. Baird. Tight performance bounds on greedy policies based on
imperfect value functions. Technical Report NU-CCS-93-14, Northeastern University, Boston,
MA, 1993.

David Wingate and Kevin D. Seppi. Cache efficiency of priority metrics for MDP solvers. InAAAI
Workshop on Learning and Planning in Markov Processes, pages 103–106, 2004a.

David Wingate and Kevin D. Seppi. P3VI: A partitioned, prioritized, parallelvalue iterator. In
Proceedings of the Twenty-First International Conference on MachineLearning, pages 863–870,
2004b.

Nevin L. Zhang, Stephen S. Lee, and Weihong Zhang. A method for speeding up value iteration in
partially observable Markov Decision Processes. InProceedings of the Fifteenth Conference on
Uncertainty in Artificial Intelligence, pages 696–703, 1999.

Nevin L. Zhang and Weihong Zhang. Speeding up the convergence of value iteration in partially
observable Markov Decision Processes.Journal of Artificial Intelligence Research, 14:29–51,
2001.

Weiyu Zhu and Stephen Levinson. PQ-learning: an efficient robot learning method for intelligent
behavior acquisition. InProceedings of the Seventh International Conference on Intelligent Au-
tonomous Systems, 2002.

881

Journal of Machine Learning Research 6 (2005) 883–904 Submitted 12/04; Revised 3/05; Published 5/05

Learning from Examples as an Inverse Problem

Ernesto De Vito DEVITO@UNIMO .IT

Dipartimento di Matematica

Universit̀a di Modena e Reggio Emilia

Modena, Italy

and INFN, Sezione di Genova,

Genova, Italy

Lorenzo Rosasco ROSASCO@DISI.UNIGE.IT

Andrea Caponnetto CAPONNETTO@DISI.UNIGE.IT

Umberto De Giovannini UMBERTO.DEGIOVANNINI @FASTWEBNET.IT

Francesca Odone ODONE@DISI.UNIGE.IT

DISI

Universit̀a di Genova,

Genova, Italy

Editor: Peter Bartlett

Abstract

Many works related learning from examples to regularization techniques for inverse problems, em-

phasizing the strong algorithmic and conceptual analogy ofcertain learning algorithms with regu-

larization algorithms. In particular it is well known that regularization schemes such as Tikhonov

regularization can be effectively used in the context of learning and are closely related to algo-

rithms such as support vector machines. Nevertheless the connection with inverse problem was

considered only for the discrete (finite sample) problem andthe probabilistic aspects of learning

from examples were not taken into account. In this paper we provide a natural extension of such

analysis to the continuous (population) case and study the interplay between the discrete and con-

tinuous problems. From a theoretical point of view, this allows to draw a clear connection between

the consistency approach in learning theory and the stability convergence property in ill-posed in-

verse problems. The main mathematical result of the paper isa new probabilistic bound for the

regularized least-squares algorithm. By means of standardresults on the approximation term, the

consistency of the algorithm easily follows.

Keywords: statistical learning, inverse problems, regularization theory, consistency

c©2005 Ernesto De Vito, Lorenzo Rosasco, Andrea Caponnetto, Umberto De Giovannini and Francesca Odone.

DE V ITO, ROSASCO, CAPONNETTO, DE GIOVANNINI AND ODONE

1. Introduction

The main goal of learning from examples is to infer an estimator from a finite setof examples. The

crucial aspect in the problem is that the examples are drawn according to afixed but unknown prob-

abilistic input-output relation and the desired property of the selected function is to be descriptive

also of new data, i.e. it shouldgeneralize. The fundamental work of Vapnik and further develop-

ments (see Vapnik (1998); Alon et al. (1997) and Bartlett and Mendelson(2002) for recent results)

show that the key to obtain a meaningful solution is to control the complexity of thehypothesis

space. Interestingly, as pointed out in a number of papers (see Poggio and Girosi (1992); Evgeniou

et al. (2000) and references therein), this is in essence the idea underlying regularization techniques

for ill-posed problems (Tikhonov and Arsenin, 1977; Engl et al., 1996). Not surprisingly the form of

the algorithms proposed in both theories is strikingly similar (Mukherjee et al., 2002) and the point

of view of regularization is indeed not new to learning (Poggio and Girosi, 1992; Evgeniou et al.,

2000; Vapnik, 1998; Arbib, 1995; Fine, 1999; Kecman, 2001; Schölkopf and Smola, 2002). In par-

ticular it allowed to cast a large class of algorithms in a common framework, namelyregularization

networks or regularized kernel methods (Evgeniou et al., 2000; Schölkopf and Smola, 2002).

Anyway a careful analysis shows that a rigorous mathematical connectionbetween learning the-

ory and the theory of ill-posed inverse problems is not straightforward since the settings underlying

the two theories are different. In fact learning theory is intrinsically probabilistic whereas the theory

of inverse problem is mostly deterministic. Statistical methods were recently applied in the context

of inverse problems (Kaipio and Somersalo, 2005). Anyway a Bayesian point of view is considered

which differs from the usual learning theory approach. Recently the connection between learning

and inverse problems was considered in the restricted setting in which the elements of the input

space are fixed and not probabilistically drawn (Mukherjee et al., 2004;Kurkova, 2004). This cor-

responds to what is usually called nonparametric regression with fixed design (Györfi et al., 1996)

and when the noise level is fixed and known, the problem is well studied in thecontext of inverse

problems (Bertero et al., 1988). In the case of fixed design on a finite gridthe problem is mostly that

we are dealing with an ill-conditioned problem, that isunstablew.r.t. the data. Though such setting

is indeed close to the algorithmic setting from a theoretical perspective it is notgeneral enough to

allow a consistency analysis of a given algorithm since it does not take care of the random sampling

providing the data. In this paper we extend the analysis to the setting of nonparametric regression

with random design (Gÿorfi et al., 1996).

Our analysis and contribution develop in two steps. First, we study the mathematical con-

nections between learning theory and inverse problems theory. We consider the specific case of

quadratic loss and analyse the population case (i.e. when the probability distribution is known) to

show that the discrete inverse problem which is solved in practice can be seen as the stochastic

discretization of an infinite dimensional inverse problem. This ideal problem is, in general,ill-posed

(Tikhonov and Arsenin, 1977) and its solution corresponds to the targetfunction which is the fi-

884

LEARNING FROM EXAMPLES AS AN INVERSEPROBLEM

nal goal in learning theory. This clarifies in particular the following importantfact. Regularized

solutions in learning problems should not only provide stable approximate solutions to the discrete

problem but especially give continuous estimates of the solution to the ill-posedinfinite dimensional

problem. Second, we exploit the established connection to study the regularized least-squares al-

gorithm. This passes through the definition of a natural notion of discretization noise providing a

straightforward relation between the number of available data and the noise affecting the problem.

Classical regularization theory results can be easily adapted to the needs of learning. In partic-

ular our definition of noise together with well-known results concerning Tikhonov regularization

for inverse problems with modelling error can be applied to derive a new probabilistic bound for

the estimation error of regularized least squares improving recently proposed results (Cucker and

Smale, 2002a; De Vito et al., 2004). The approximation term can be studied through classical spec-

tral theory arguments. The consistency of the algorithm easily follows. As the major aim of the

paper was to investigate the relation between learning from examples and inverse problem we just

prove convergence without dealing with rates. Anyway the approach proposed in Cucker and Smale

(2002a); De Vito et al. (2004) to study the approximation term can be straightforwardly applied to

derive explicit rates under suitable a priori conditions.

Several theoretical results are available on regularized kernel methodsfor large class of loss

functions. The stability approach proposed in Bousquet and Elisseeff (2002) allows to find data-

dependent generalization bounds. In Steinwart (2004) it is proved that such results as well as other

probabilistic bounds can be used to derive consistency results without convergence rates. For the

specific case of regularized least-squares algorithm a functional analytical approach to derive consis-

tency results for regularized least squares was proposed in Cucker and Smale (2002a) and eventually

refined in De Vito et al. (2004) and Smale and Zhou (2004b). In the latter theconnection between

learning and sampling theory is investigated. Some weaker results in the same spirit of those pre-

sented in this paper can be found in Rudin (2004). Anyway none of the mentioned papers exploit the

connection with inverse problems. The arguments used to derive our results are close to those used

in the study of stochastic inverse problems discussed in Vapnik (1998). From the algorithmic point

of view Ong and Canu (2004) apply other techniques than Tikhonov regularization in the context of

learning. In particular several iterative algorithms are considered and convergence with respect to

the regularization parameter (semiconvergence) is proved.

The paper is organized as follows. After recalling the main concepts and notation of statistical

learning (Section 2) and of inverse problems (Section 3), in Section 4 we develop a formal connec-

tion between the two theories. In Section 5 the main results are stated, discussed and proved. In the

Appendix we collect some technical results we need in our proofs. Finally inSection 6 we conclude

with some remarks and open problems.

885

DE V ITO, ROSASCO, CAPONNETTO, DE GIOVANNINI AND ODONE

2. Learning from Examples

We briefly recall some basic concepts of statistical learning theory (for details see Vapnik (1998);

Evgeniou et al. (2000); Schölkopf and Smola (2002); Cucker and Smale (2002b) and references

therein).

In the framework of learning from examples, there are two sets of variables: the input space

X, which we assume to be a compact subset ofR
n, and the output spaceY, which is a subset ofR

contained in[−M,M] for someM ≥ 0. The relation between the inputx∈ X and the outputy∈Y is

described by a probability distributionρ(x,y) = ν(x)ρ(y|x) on X×Y. The distributionρ is known

only through a samplez = (x,y) = ((x1,y1), . . . ,(x`,y`)), calledtraining set, drawn independently

and identically distributed (i.i.d.) according toρ. Given the samplez, the aim of learning theory is

to find a functionfz : X → R such thatfz(x) is a good estimate of the outputy when a new inputx is

given. The functionfz is calledestimatorand the map providingfz, for any training setz, is called

learning algorithm.

Given a measurable functionf : X →R, the ability of f to describe the distributionρ is measured

by its expected riskdefined as

I [f] =
Z

X×Y
V(f (x),y)dρ(x,y),

whereV(f (x),y) is theloss function, which measures the cost paid by replacing the true labely with

the estimatef (x). In this paper we consider the square loss

V(f (x),y) = (f (x)−y)2.

With this choice, it is well known that the regression function

g(x) =
Z

Y
ydρ(y|x)

is well defined (sinceY is bounded) and is the minimizer of the expected risk over the space of

all the measurable real functions onX. In this senseg can be seen as the ideal estimator of the

distribution probabilityρ. However, the regression function cannot be reconstructed exactly since

only a finite, possibly small, set of examplesz is given.

To overcome this problem, in the framework of the regularized least squares algorithm (Wahba,

1990; Poggio and Girosi, 1992; Cucker and Smale, 2002b; Zhang, 2003), an hypothesis spaceH

of functions is fixed and the estimatorfz
λ is defined as the solution of the regularized least squares

problem,

min
f∈H

{1
`

`

∑
i=1

(f (xi)−yi)
2 +λΩ(f)}, (1)

whereΩ is a penalty term andλ is a positive parameter to be chosen in order to ensure that the

discrepancy.

I [fz
λ]− inf

f∈H
I [f]

886

LEARNING FROM EXAMPLES AS AN INVERSEPROBLEM

is small with high probability. Sinceρ is unknown, the above difference is studied by means of a

probabilistic boundB(λ, `,η), which is a function depending on the regularization parameterλ, the

number̀ of examples and the confidence level 1−η, such that

P
[

I [fz
λ]− inf

f∈H
I [f] ≤ B(λ, `,η)

]

≥ 1−η.

We notice that, in general, inff∈H I [f] is larger thanI [g] and represents a sort of irreducible error

(Hastie et al., 2001) associated with the choice of the spaceH . We do not require the infimum

inf f∈H I [f] to be achieved. If the minimum onH exists, we denote the minimizer byfH .

In particular, the learning algorithm isconsistentif it is possible to choose the regularization

parameter, as a function of the available dataλ = λ(`,z), in such a way that

lim
`→+∞

P
[

I [fz
λ(`,z)]− inf

f∈H
I [f] ≥ ε

]

= 0, (2)

for everyε > 0. The above convergence in probability is usually called(weak) consistencyof the

algorithm (see Devroye et al. (1996) for a discussion on the differentkind of consistencies).

In this paper we assume that the hypothesis spaceH is a reproducing kernel Hilbert space

(RKHS) onX with a continuous kernelK. We recall the following facts (Aronszajn, 1950; Schwartz,

1964). The kernelK : X ×X → R is a continuous symmetric positive definite function, where

positive definitemeans that

∑
i, j

aia jK(xi ,x j) ≥ 0.

for anyx1, . . .xn ∈ X anda1, . . .an ∈ R.

The spaceH is a real separable Hilbert space whose elements are real continuous functions

defined onX. In particular, the functionsKx = K(·,x) belong toH for all x∈ X, and

H = span{Kx |x∈ X}
〈Kx,Kt〉H = K(x, t) ∀x, t ∈ X,

where〈·, ·〉H is the scalar product inH . Moreover, since the kernel is continuous andX is compact

κ = sup
x∈X

√

K(x,x) = sup
x∈X

‖Kx‖H < +∞, (3)

where‖·‖H is the norm inH . Finally, givenx∈ X, the followingreproducingproperty holds

f (x) = 〈 f ,Kx〉H ∀ f ∈ H . (4)

In particular, in the learning algorithm (1) we choose the penalty term

Ω(f) = ‖ f‖H
2,

so that, by a standard convex analysis argument, the minimizerfz
λ exists, is unique and can be

computed by solving a linear finite dimensional problem, (Wahba, 1990).

With the above choices, we will show that the consistency of the regularizedleast squares algo-

rithm can be deduced using the theory of linear inverse problems we reviewin the next section.

887

DE V ITO, ROSASCO, CAPONNETTO, DE GIOVANNINI AND ODONE

3. Ill-Posed Inverse Problems and Regularization

In this section we give a very brief account of the main concepts of linear inverse problems and

regularization theory (see Tikhonov and Arsenin (1977); Groetsch (1984); Bertero et al. (1985,

1988); Engl et al. (1996); Tikhonov et al. (1995) and referencestherein).

Let H andK be two Hilbert spaces andA : H → K a linear bounded operator. Consider the

equation

A f = g (5)

whereg∈ K is theexactdatum. Finding the functionf satisfying the above equation, givenA and

g, is the linear inverse problem associated to (5). In general the above problem is ill-posed, that

is, the solution either not exists, is not unique or does not depend continuously on the datumg.

Existence and uniqueness can be restored introducing the Moore-Penrose generalized solutionf †

defined as the minimal norm solution of the least squares problem

min
f∈H

‖A f −g‖2
K . (6)

It can be shown (Tikhonov et al., 1995) that the generalized solutionf † exists if and only ifPg∈
Range(A), whereP is the projection on the closure of the range ofA. However, the generalized

solution f † does not depend continuously on the datumg, so that findingf † is again an ill-posed

problem. This is a problem since the exact datumg is not known, but only anoisydatumgδ ∈ K is

given, where‖g−gδ‖K ≤ δ. According to Tikhonov regularization (Tikhonov and Arsenin, 1977)

a possible way to find a solution depending continuously on the data is to replace Problem (6) with

the following convex problem

min
f∈H

{‖A f −gδ‖2
K +λ‖ f‖2

H }, (7)

and, forλ > 0, the unique minimizer is given by

f λ
δ = (A∗A+λI)−1A∗gδ, (8)

whereA∗ the adjoint operator ofA. A crucial issue is the choice of the regularization parameterλ
as a function of the noise. A basic requirement is that thereconstruction error

∥

∥

∥
f λ
δ − f †

∥

∥

∥

H

is small. In particular,λ must be selected, as a function of the noise levelδ and the datagδ, in such

a way that the regularized solutionf λ(δ,gδ)
δ converges to the generalized solution, that is,

lim
δ→0

∥

∥

∥
f λ(δ,gδ)
δ − f †

∥

∥

∥

H
= 0, (9)

for anyg such thatf † exists.

888

LEARNING FROM EXAMPLES AS AN INVERSEPROBLEM

Remark 1 We briefly comment on the well known difference between ill-posed and ill-conditioned

problems (Bertero et al., 1988). Finite dimensional problems are often well-posed. In particular it

can be shown that if a solution exists unique then continuity of A−1 is always ensured. Nonethe-

less regularization is needed since the problems are usually ill conditioned and lead to unstable

solutions.

Sometimes, another measure of the error, namely theresidual, is considered according to the fol-

lowing definition
∥

∥

∥
A fλ

δ −Pg
∥

∥

∥

K
=
∥

∥

∥
A fλ

δ −A f†
∥

∥

∥

K
, (10)

which will be important in our analysis of learning. Comparing (9) and (10),it is clear that while

studying the convergence of the residual we do not have to assume that the generalized solution

exists.

We conclude this section noting that the above formalism can be easily extended to the case of

a noisy operatorAδ : H → K where

‖A−Aδ‖ ≤ δ,

and‖·‖ is the operator norm (Tikhonov et al., 1995).

4. Learning as an Inverse Problem

The similarity between regularized least squares and Tikhonov regularization is apparent comparing

Problems (1) and (7). However while trying to formalize this analogy several difficulties emerge.

• To treat the problem of learning in the setting of ill-posed inverse problems wehave to define

a direct problem by means of a suitable operatorA between two Hilbert spacesH andK .

• The nature of the noiseδ in the context of statistical learning is not clear .

• We have to clarify the relation between consistency, expressed by (2), and the convergence

considered in (9).

In the following we present a possible way to tackle these problems and showthe problem of learn-

ing can be indeed rephrased in a framework close to the one presented in the previous section.

We let L2(X,ν) be the Hilbert space of square integrable functions onX with respect to the

marginal measureν and we define the operatorA : H → L2(X,ν) as

(A f)(x) = 〈 f ,Kx〉H ,

whereK is the reproducing kernel ofH . The fact thatK is bounded, see (3), ensures thatA is a

bounded linear operator. Two comments are in order. First, from (4) we see that the action ofA on

889

DE V ITO, ROSASCO, CAPONNETTO, DE GIOVANNINI AND ODONE

an elementf is simply

(A f)(x) = f (x) ∀x∈ x, f ∈ H ,

that is, A is the canonical inclusion ofH into L2(X,ν). However it is important to note thatA

changes the norm since‖ f‖H is different to‖ f‖L2(X,ν). Second, to avoid pathologies connected

with subsets of zero measure, we assume thatν is not degenerate.1 This condition and the fact that

K is continuous ensure thatA is injective (see the Appendix for the proof).

It is known that, considering the quadratic loss function, the expected riskcan be written as

I [f] =
Z

X
(f (x)−g(x))2dν(x)+

Z

X×Y
(y−g(x))2dρ(x,y)

= ‖ f −g‖2
L2(X,ν) + I [g],

whereg is the regression function (Cucker and Smale, 2002b) andf is any function inL2(X,ν). If

f belongs to the hypothesis spaceH , the definition of the operatorA allows to write

I [f] = ‖A f −g‖2
L2(X,ν) + I [g]. (11)

Moreover, ifP is the projection on the closure of the range ofA, that is, the closure ofH into

L2(X,ν), then the definition of projection gives

inf
f∈H

‖A f −g‖2
L2(X,ν) = ‖g−Pg‖2

L2(X,ν) . (12)

Given f ∈ H , clearlyPA f = A f , so that

I [f]− inf
f∈H

I [f] = ‖A f −g‖2
L2(X,ν)−‖g−Pg‖2

L2(X,ν) = ‖A f −Pg‖2
L2(X,ν) , (13)

which is the square of the residual off .

Now, comparing (11) and (6), it is clear that the expected risk admits a minimizerfH on the

hypothesis spaceH if and only if fH is precisely the generalized solutionf † of the linear inverse

problem

A f = g. (14)

The fact thatfH is the minimal norm solution of the least squares problem is ensured by the fact

thatA is injective.

Let now z = (x,y) = ((x1,y1), . . . ,(x`,y`)) be the training set. The above arguments can be

repeated replacing the setX with the finite set{x1, . . . ,x`}. We now get a discretized version ofA

by defining thesampling operator(Smale and Zhou, 2004a)

Ax : H → E` (Ax f)i = 〈 f ,Kxi 〉H = f (xi),

1. This means that all the open non-void subsets ofX have strictly positive measure.

890

LEARNING FROM EXAMPLES AS AN INVERSEPROBLEM

whereE` = R
` is the finite dimensional euclidean space endowed with the scalar product

〈

w,w′〉
E` =

1
`

`

∑
i=1

wiw
′
i .

It is straightforward to check that

1
`

`

∑
i=1

(f (xi)−yi)
2 = ‖Ax f −y‖2

E` ,

so that the estimatorfz
λ given by the regularized least squares algorithm, see Problem (1), is the

Tikhonov regularized solution of the discrete problem

Ax f = y. (15)

At this point it is useful to remark the following three facts. First, in learning from examples rather

than finding a stable approximation to the solution of the noisy (discrete) Problem (15), we want to

find a meaningful approximation to the solution of the exact (continuous) Problem (14) (compare

with Kurkova (2004)). Second, in statistical learning theory, the key quantity is the residual of the

solution, which is a weaker measure than the reconstruction error, usuallystudied in the inverse

problem setting. In particular, consistency requires a weaker kind of convergence than the one

usually studied in the context of inverse problems . Third, we observe thatin the context of learning

the existence of the minimizerfH , that is, of the generalized solution, is no longer needed to define

good asymptotic behavior. In fact when the projection of the regression function is not in the range

of A the ideal solutionfH does not exist but this is not a problem since Eq. (12) still holds.

After this preliminary considerations in the next section we further develop our analysis stating

the main mathematical results of this paper.

5. Regularization, Stochastic Noise and Consistency

Table 1 compares the classical framework of inverse problems (see Section3) with the formulation

of learning proposed above. We note some differences. First, the noisydata spaceE` is different

from the exact data spaceL2(X,ν) so thatA andAx belong to different spaces, as well asg and

y. A measure of the difference betweenAx andA, and betweeng andy is then required. Second,

bothAx andy are random variables and we need to relate the noiseδ to the number̀ of examples

in the training setz. Given the above premise our derivation of consistency results is developed

in two steps: we first study the residual of the solution by means of a measureof the noise due to

discretization, then we show a possible way to give a probabilistic evaluation of the noise previously

introduced.

891

DE V ITO, ROSASCO, CAPONNETTO, DE GIOVANNINI AND ODONE

Inverse problem Learning theory

input spaceH hypothesis space RKHSH

data spaceK target spaceL2(X,ν)

norm inK ‖ f‖K norm inL2(X,ν) ‖ f‖L2(X,ν)

exact operatorA inclusion ofH into L2(X,ν)

exact datumg regression functiong(x) =
R

Y ydρ(y|x)
generalized solutionf † ideal solutionfH

reconstruction error
∥

∥ f − f †
∥

∥

H
residual‖A f −A fH ‖2

L2(X,ν) = I [f]− I [fH]

noisy data spaceK E`

noisy datagδ ∈ K y ∈ E`

noisy operatorAδ : H → K sampling operatorAx : H → E`

Tikhonov regularization Regularized least squares algorithm

Table 1: The above table summarizes the relation between the theory of inverse problem and the

theory of learning from examples. When the projection of the regression function is not in

the range of the operatorA the ideal solutionfH does not exist. Nonetheless, in learning

theory, if the ideal solution does not exist the asymptotic behavior can still bestudied since

we are looking for the residual.

5.1 Bounding the Residual of Tikhonov Solution

In this section we study the dependence of the minimizer of Tikhonov functional on the operatorA

and the datag. We indicate withL(H) andL(H ,K) the Banach space of bounded linear operators

from H into H and fromH into K respectively. We denote with‖·‖L(H) the uniform norm in

L(H) and, if A ∈ L(H ,K), we recall thatA∗ is the adjoint operator. The Tikhonov solutions of

Problems (14) and (15) can be written as

f λ = (A∗A+λI)−1A∗g,

f λ
z = (A∗

xAx +λI)−1A∗
xy

(see for example Engl et al., 1996, Chapter 5, page 117). The above equations show thatf λ
z and

f λ depend only onA∗
xAx and A∗A, which are operators fromH into H , and onA∗

xy and A∗g,

which are elements ofH . This observation suggests that noise levels could be evaluated controlling

‖A∗
xAx −A∗A‖L(H) and‖A∗

xy−A∗g‖H .

For this purpose, for everyδ = (δ1,δ2) ∈ R
2
+, we define the collection of training sets

Uδ := {z ∈ (X×Y)`| ‖A∗
xy−A∗g‖H ≤ δ1, ‖A∗

xAx −A∗A‖L(H) ≤ δ2}.

892

LEARNING FROM EXAMPLES AS AN INVERSEPROBLEM

Recalling thatP is the projection on the closure of the range ofA andY ⊂ [−M,M], we are ready to

state the following theorem.

Theorem 2 Givenλ > 0, the following inequality holds
∣

∣

∣

∣

∥

∥

∥
A fλ

z −Pg
∥

∥

∥

L2(X,ν)
−
∥

∥

∥
A fλ −Pg

∥

∥

∥

L2(X,ν)

∣

∣

∣

∣

≤ δ1

2
√

λ
+

Mδ2

4λ

for any training setz ∈ Uδ.

We postpone the proof to Section 5.4 and briefly comment on the above result.The first term in the

l.h.s. of the inequality is exactly the residual of the regularized solution whereas the second term

represents the approximation error, which does not depend on the sample. Our bound quantifies the

difference between the residual of the regularized solutions of the exact and noisy problems in terms

of the noise levelδ = (δ1,δ2). As mentioned before this is exactly the kind of result needed to derive

consistency. Our result bounds the residual both from above and below and is obtained introducing

the collectionUδ of training sets compatible with a certain noise levelδ. It is left to quantify the

noise level corresponding to a training set of cardinality`. This will be achieved in a probabilistic

setting in the next section, where we also discuss a standard result on the approximation error.

5.2 Stochastic Evaluation of the Noise and Approximation Term

In this section we give a probabilistic evaluation of the noise levelsδ1 andδ2 and we analyze the

behavior of the term
∥

∥A fλ −Pg
∥

∥

L2(X,ν)
. In the context of inverse problems a noise estimate is a part

of the available data whereas in learning problems we need a probabilistic analysis.

Theorem 3 Let0 < η < 1. Then

P
[

‖A∗g−Ax
∗y‖H ≤ δ1(`,η), ‖A∗A−Ax

∗Ax‖L(H) ≤ δ2(`,η)
]

≥ 1−η

whereκ = supx∈X

√

K(x,x),

δ1(`,η) =
Mκ
2

ψ
(

8
`

log
4
η

)

δ2(`,η) =
κ2

2
ψ
(

8
`

log
4
η

)

with ψ(t) = 1
2(t +

√
t2 +4t) =

√
t +o(

√
t).

We refer again to Section 5.4 for the complete proof and add a few comments. The one proposed

is just one of the possible probabilistic tools that can be used to study the above random variables.

For example union bounds and Hoeffding’s inequality can be used introducing a suitable notion of

covering numbers onX×Y.

An interesting aspect in our approach is that the collection of training sets compatible with a

certain noise levelδ does not depend on the regularization parameterλ. This last fact allows us

893

DE V ITO, ROSASCO, CAPONNETTO, DE GIOVANNINI AND ODONE

to consider indifferently data independent parameter choicesλ = λ(`) as well as data dependent

choicesλ = λ(`,z). Since through data dependent parameter choices the regularization parameter

becomes a function of the given sampleλ(`,z), in general some further analysis is needed to ensure

that the bounds hold uniformly w.r.t.λ.

We now consider the term
∥

∥A fλ −Pg
∥

∥

L2(X,ν)
which does not depend on the training setz and

plays the role of an approximation error (Smale and Zhou, 2003; Niyogi andGirosi, 1999). The

following is a trivial modification of a classical result in the context of inverse problems (see for

example Engl et al. (1996) Chapter 4, Theorem 4.1, p. 72).

Proposition 4 Let fλ the Tikhonov regularized solution of the problem A f= g, then the following

convergence holds

lim
λ→0+

∥

∥

∥
A fλ −Pg

∥

∥

∥

L2(X,ν)
= 0.

We report the proof in the Appendix for completeness. The above proposition ensures that, indepen-

dently of the probability measureρ, the approximation term goes to zero asλ → 0. Unfortunately

it is well known, both in learning theory (see for example Devroye et al. (1996); Vapnik (1998);

Smale and Zhou (2003); Steinwart (2004)) and inverse problems theory(Groetsch, 1984), that such

a convergence can be arbitrarily slow and convergence rates can be obtained only under some as-

sumptions either on the regression functiong or on the probability measureρ (Smale and Zhou,

2003). In the context of RKHS the issue was considered in Cucker and Smale (2002a); De Vito

et al. (2004) and we can strightforwardly apply those results to obtain explicit convergence rates.

We are now in the position to derive the consistency result that we presentin the following

section.

5.3 Consistency and Regularization Parameter Choice

Combining Theorems 2 and 3 with Proposition 4, we easily derive the following result (see Section

5.4 for the proof).

Theorem 5 Given 0 < η < 1, λ > 0 and ` ∈ N, the following inequality holds with probability

greater that1−η

I [fz
λ]− inf

f∈H
I [f] ≤

[(

Mκ
2
√

λ
+

Mκ2

4λ

)

ψ
(

8
`

log
4
η

)

+
∥

∥

∥
A fλ −Pg

∥

∥

∥

L2(X,ν)

]2

(16)

=



Mκ2

√

log 4
η

2λ2`
+
∥

∥

∥
A fλ −Pg

∥

∥

∥

L2(X,ν)
+o

(
√

1
λ2`

log
4
η

)





2

whereψ(·) is defined as in Theorem 3. Moreover, ifλ = O(l−b) with 0 < b < 1
2, then

lim
`→+∞

P
[

I [fz
λ(`,z)]− inf

f∈H
I [f] ≥ ε

]

= 0.

894

LEARNING FROM EXAMPLES AS AN INVERSEPROBLEM

for everyε > 0.

As mentioned before, the second term in the right hand side of the above inequality is an approxi-

mation error and vanishes asλ goes to zero. The first term in the right hand side of Inequality (16)

plays the role of sample error. It is interesting to note that sinceδ = δ(`) we have an equivalence

between the limit̀ → ∞, usually studied in learning theory, and the limitδ → 0, usually considered

for inverse problems. Our result presents the formal connection between the consistency approach

considered in learning theory, and the regularization-stability convergence property used in ill-posed

inverse problems. Although it is known that connections already exist, as far as we know, this is the

first full connection between the two areas, for the specific case of square loss.

We now briefly compare our result with previous work on the consistency of the regularized

least squares algorithm. Recently, several works studied the consistency property and the related

convergence rate of learning algorithms inspired by Tikhonov regularization. For the classification

setting, a general discussion considering a large class of loss functionscan be found in Steinwart

(2004), whereas some refined results for specific loss functions can be found in Chen et al. (2004)

and Scovel and Steinwart (2003). For regression problems in Bousquet and Elisseeff (2002) a large

class of loss functions is considered and a bound of the form

I [fz
λ]− Iz[fz

λ] ≤ O

(

1√
`λ

)

is proved, whereIz[fz
λ] is the empirical error.2 Such a bound allows to prove consistency using the

error decomposition in Steinwart (2004). The square loss was considered in Zhang (2003) where,

using leave-one out techniques, the following bound in expectation was proved

Ez(I [fz
λ]) ≤ O

(

1
`λ

)

.

Techniques similar to those used in this paper are used in De Vito et al. (2004)to derive a bound of

the form

I [fz
λ]− inf

f∈H
I [f] ≤

(

S(λ, `)+
∥

∥

∥
A fλ −Pg

∥

∥

∥

L2(X,ν)

)2

whereS(λ, `) is a data-independent bound on
∥

∥

∥
fz

λ − f λ
∥

∥

∥

L2(X,ν)
. In that caseS(λ, `) ≤ O

(

1√
`λ

3
2

)

and we see that Theorem 4 givesS(λ, `) ≤ O
(

1√
`λ

)

. Moreover in Cucker and Smale (2002a),

Theorem 2 givesO
(

log`√
`λ2

)

as it can be seen from Equation (3) at p. 12. Finally our results were

recently improved in Smale and Zhou (2004b), where, using again techniques similar to those pre-

sented here, a bound of the formS(λ, `) ≤ O
(

1√
`λ

)

+O
(

1

`λ
3
2

)

is obtained. It is worth noting that

in general working on the square root of the error leads to better overall results.

2. We recall that the empirical error is defined asIz[f] = 1
` ∑`

i=1V(f (xi),yi).

895

DE V ITO, ROSASCO, CAPONNETTO, DE GIOVANNINI AND ODONE

5.4 Proofs

In this section we collect the proofs of the theorems that we stated in the previous sections. e first

now prove the bound on the residual for the Tikhonov regularization.

Proof [of Theorem 2] The idea of the proof is to note that, by triangular inequality,we can write
∣

∣

∣

∣

∥

∥

∥
A fλ

z −Pg
∥

∥

∥

L2(X,ν)
−
∥

∥

∥
A fλ −Pg

∥

∥

∥

L2(X,ν)

∣

∣

∣

∣

≤
∥

∥

∥
A fλ

z −A fλ
∥

∥

∥

L2(X,ν)
(17)

so that we can focus on the difference between the discrete and continuous solutions. By a simple

algebraic computation we have that

f λ
z − f λ = (A∗

xAx +λI)−1A∗
xy− (A∗A+λI)−1A∗g

= [(A∗
xAx +λI)−1− (A∗A+λI)−1]A∗

xy+(A∗A+λI)−1(A∗
xy−A∗g) (18)

= (A∗A+λI)−1(A∗A−A∗
xAx)(A

∗
xAx +λI)−1A∗

xy+(A∗A+λI)−1(A∗
xy−A∗g).

and we see that the relevant quantities for the definition of the noise appear.

We claim that
∥

∥A(A∗A+λI)−1
∥

∥

L(H)
=

1

2
√

λ
(19)

∥

∥(A∗
xAx +λI)−1A∗

x

∥

∥

L(H)
=

1

2
√

λ
. (20)

Indeed, letA = U |A| be the polar decomposition ofA. The spectral theorem implies that

‖A(A∗A+λI)−1‖L(H) = ‖U |A|(|A|2 +λI)−1‖L(H) = ‖|A|(|A|2 +λI)−1‖L(H)

= sup
t∈[0,‖|A|‖

t
t2 +λ

.

A direct computation of the derivative shows that the maximum oft
t2+λ is 1

2
√

λ
and (19) is proved.

Formula (20) follows replacingA with Ax.

Last step is to plug Equation (18) into (17) and use Cauchy-Schwartz inequality. Since‖y‖E` ≤
M, (19) and (20) give

∣

∣

∣
‖A fλ

z −Pg‖L2 − ‖A fλ −Pg‖L2

∣

∣

∣
≤ M

4λ
‖A∗A−A∗

xAx‖L(H) +
1

2
√

λ
‖A∗

xy−A∗g‖H

so that the theorem is proved.

The proof of Theorem 2 is a straightforward application of Lemma (8) (seeAppendix) .

Proof [Theorem 2] The proof is a simple consequence of estimate (26) applied to therandom vari-

ables

ξ1(x,y) = yKx

ξ2(x,y) = 〈·,Kx〉H Kx = Kx⊗Kx

896

LEARNING FROM EXAMPLES AS AN INVERSEPROBLEM

where

1. ξ1 takes value inH , L1 = κM andv∗1 = A∗g, see (21), (23);

2. ξ2 takes vales in the Hilbert space of Hilbert-Schmidt operators, which can beidentified with

H ⊗H , L2 = κ2 andv∗2 = T, see (22), (24).

Replacingη with η/2, (26) gives

‖A∗g−Ax
∗y‖H ≤ δ1(`,η) =

Mκ
2

ψ
(

8
`

log
4
η

)

‖A∗A−Ax
∗Ax‖L(H) ≤ δ2(`,η) =

κ2

2
ψ
(

8
`

log
4
η

)

,

respectively, so that the thesis follows.

Finally we combine the above results to prove the consistency of the regularized least squares

algorithm.

Proof [Theorem 4] Theorem 1 gives

‖A fλ
z −Pg‖L2(X,ν) ≤

(

1

2
√

λ
δ1 +

M
4λ

δ2

)

+‖A fλ −Pg‖L2(X,ν).

Equation (13) and the estimates for the noise levelsδ1 andδ2 given by Theorem 2 ensure that

√

I [fz
λ]− inf

f∈H
I [f] ≤

(

Mκ
2
√

λ
+

Mκ2

4λ

)

ψ
(

8
`

log
4
η

)

+
∥

∥

∥
A fλ −Pg

∥

∥

∥

L2(X,ν)

and (16) simply follows taking the square of the above inequality. Let nowλ = 0(`−b) with

0 < b < 1
2, the consistency of the regularised least squares algorithm is proved byinverting the

relation betweenε andη and using the result of Proposition (4) (see Appendix).

6. Conclusions

In this paper we analyse the connection between the theory of statistical learning and the theory of

ill-posed problems. More precisely we show that, considering the quadraticloss function, the prob-

lem of finding the best solutionfH for a given hypothesis spaceH is a linear inverse problem and

that the regularized least squares algorithm is the Tikhonov regularizationof the discretized version

of the above inverse problem. As a consequence, the consistency of thealgorithm is traced back to

the well known convergence property of the Tikhonov regularization. Aprobabilistic estimate of

the noise is given based on a elegant concentration inequality in Hilbert spaces.

897

DE V ITO, ROSASCO, CAPONNETTO, DE GIOVANNINI AND ODONE

An open problem is extending the above results to arbitrary loss functions.For other choices of

loss functions the problem of finding the best solution gives rise to a non linear ill-posed problem and

the theory for this kind of problems is much less developed than the corresponding theory for linear

problems. Moreover, since, in general, the expected riskI [f] for arbitrary loss function does not

define a metric, the relation between the expected risk and the residual is notclear. Further problems

are the choice of the regularization parameter, for example by means of the generalized Morozov

principle (Engl et al., 1996) and the extension of our analysis to a wider class of regularization

algorithms.

Acknowledgments

We would like to thank M.Bertero, C. De Mol, M. Piana, T. Poggio, S. Smale, G.Talenti and A.

Verri for useful discussions and suggestions. This research has been partially funded by the INFM

Project MAIA, the FIRB Project ASTAA and the IST Programme of the European Community,

under the PASCAL Network of Excellence, IST-2002-506778.

Appendix A. Technical Results

First, we collect some useful properties of the operatorsA andAx.

Proposition 6 The operator A is a Hilbert-Schmidt operator fromH into L2(X,ν) and

A∗φ =
Z

X
φ(x)Kxdν(x), (21)

A∗A =
Z

X
〈·,Kx〉H Kxdν(x), (22)

whereφ ∈ L2(X,ν), the first integral converges in norm and the second one in trace norm.

Proof The proof is standard and we report it for completeness.

Since the elementsf ∈ H are continuous functions defined on a compact set andν is a probability

measure, thenf ∈ L2(X,ν), so thatA is a linear operator fromH to L2(X,ν). Moreover the Cauchy-

Schwartz inequality gives

|(A f)(x)| = |〈 f ,Kx〉H | ≤ κ ‖ f‖H ,

so that‖A f‖L2(X,ν) ≤ κ‖ f‖H andA is bounded.

We now show thatA is injective. Let f ∈ H andW = {x∈ X | f (x) 6= 0}. AssumeA f = 0,

thenW is a open set, sincef is continuous, andW has null measure, since(A f)(x) = f (x) = 0 for

ν-almost allx∈ X. The assumption thatν is not degenerate ensuresW be the empty set and, hence,

f (x) = 0 for all x∈ X, that is, f = 0.

We now prove (21). We first recall the map

X 3 x 7→ Kx ∈ H

898

LEARNING FROM EXAMPLES AS AN INVERSEPROBLEM

is continuous since‖Kt −Kx‖H
2 = K(t, t)+K(x,x)−2K(x, t) for all x, t ∈ X, andK is a continuous

function. Hence, givenφ ∈ L2(X,ν), the mapx 7→ φKx is measurable fromX to H . Moreover, for

all x∈ X,

‖φ(x)Kx‖H = |φ(x)|
√

K(x,x) ≤ |φ(x)|κ.

Sinceν is finite, φ is in L1(X,ν) and, hence,φKx is integrable, as a vector valued map. Finally, for

all f ∈ H ,
Z

X
φ(x)〈Kx, f 〉H dν(x) = 〈φ,A f〉L2(X,ν) = 〈A∗φ, f 〉H ,

so, by uniqueness of the integral, Equation (21) holds.

Equations (22) is a consequence of Equation (21) and the fact that the integral commutes with

the scalar product.

We now prove thatA is a Hilbert-Schmidt operator. Let(en)n∈N be a Hilbert basis ofH . Since

A∗A is a positive operator and|〈Kx,en〉H |2 is a positive function, by monotone convergence theorem,

we have that

Tr(A∗A) = ∑
n

Z

X
|〈en,Kx〉H |2dν(x)

=
Z

X
∑
n
|〈en,Kx〉H |2dν(x)

=
Z

X
〈Kx,Kx〉H dν(x)

=
Z

X
K(x,x)dν(x) < κ2

and the thesis follows.

Corollary 7 The sampling operator Ax : H → E` is a Hilbert-Schmidt operator and

Ax
∗y =

1
`

`

∑
i=1

yiKxi (23)

Ax
∗Ax =

1
`

`

∑
i=1

〈·,Kxi 〉H Kxi . (24)

Proof The content of the proposition is a restatement of Proposition 6 and the factthat the integrals

reduce to sums.

For sake of completeness we report a standard proof on the convergence of the approximation

error.

Proof [of Proposition 4] Consider the polar decompositionA = U |A| of A (see, for example, Lang

(1993)), where|A|2 = A∗A is a positive operator onH andU is a partial isometry such that the

899

DE V ITO, ROSASCO, CAPONNETTO, DE GIOVANNINI AND ODONE

projectorP on the range ofA is P = UU∗. Let dE(t) be the spectral measure of|A|. Recalling that

f λ = (A∗A+λ)−1A∗g = (|A|2 +λ)−1|A|U∗g

the spectral theorem gives

∥

∥

∥
A fλ −Pg

∥

∥

∥

2

K
=

∥

∥U |A|(|A|2 +λ)−1|A|U∗g−UU∗g
∥

∥

2
K

=

=
∥

∥

∥

(

|A|2
(

|A|2 +λ
)−1−1

)

U∗g
∥

∥

∥

2

H
=

=
Z ‖|A|‖

0

(

t2

t2 +λ
−1

)2

d〈E(t)U∗g,U∗g〉H .

Let rλ(t) = t2

t2+λ −1 = − λ
t2+λ , then

|rλ(t)| ≤ 1 and lim
λ→0+

rλ(t) = 0 ∀t > 0,

so that the dominated convergence theorem gives that

lim
λ→0+

∥

∥

∥
A fλ −Pg

∥

∥

∥

2

K
= 0.

Finally, to prove our estimate of the noise we need the following probabilistic inequality due to

Pinelis and Sakhanenko (1985). (See Yurinsky, 1995, for the version presented int he following.)

Lemma 8 Let Z be a probability space andξ be a random variable on X taking value in a real

separable Hilbert spaceH . Assume that the expectation value v∗ = E[ξ] exists and there are two

positive constants H andσ such that

‖ξ(z)−v∗‖H ≤ H a.s

E[‖ξ−v∗‖2
H] ≤ σ2.

If zi are drawn i.i.d. from Z, then, with probability greater than1−η,
∥

∥

∥

∥

∥

1
`

`

∑
i=1

ξ(zi)−v∗
∥

∥

∥

∥

∥

≤ σ2

H
g

(

2H2

`σ2 log
2
η

)

= δ(`,η) (25)

where g(t) = 1
2(t +

√
t2 +4t). In particular

δ(`,η) = σ

√

2
`

log
2
η

+o

(
√

1
`

log
2
η

)

900

LEARNING FROM EXAMPLES AS AN INVERSEPROBLEM

Proof It is just a testament to Th. 3.3.4 of Yurinsky (1995), see also Steinwart (2003). Consider the

set of independent random variables with zero meanξi = ξ(zi)−v∗ defined on the probability space

Z`. Since,ξi are identically distributed, for allm≥ 2 it holds

`

∑
i=1

E[‖ξi‖m
H] ≤ 1

2
m!B2Hm−2,

with the choiceB2 = `σ2. So Th. 3.3.4 of Yurinsky (1995) can be applied and it ensures

P

[

1
`

∥

∥

∥

∥

∥

`

∑
i=1

(ξ(zi)−v∗)

∥

∥

∥

∥

∥

≥ xB
`

]

≤ 2exp

(

− x2

2(1+xHB−1)

)

for all x≥ 0. Lettingδ = xB
` , we get the equation

1
2
(
`δ
B

)2 1
1+ `δHB−2 =

`δ2σ−2

2(1+δHσ−2)
= log

2
η

,

sinceB2 = `σ2. Definingt = δHσ−2

`σ2

2H2

t2

1+ t
= log

2
η

.

The thesis follows, observing thatg is the inverse of t2

1+t and thatg(t) =
√

t +o(
√

t).

We notice that, ifξ is bounded byL almost surely, thenv∗ exists and we can chooseH = 2L and

σ = L so that

δ(`,η) =
L
2

g

(

8
`

log
2
η

)

. (26)

In Smale and Y. (2004) a better estimate is given, replacing the functiont2

1+t with t log(1+t), anyway

the asymptotic rate is the same.

References

N. Alon, S. Ben-David, N. Cesa-Bianchi, and D. Haussler. Scale sensitive dimensions, uniform

convergence, and learnability.Journal of the ACM, 44:615–631, 1997.

A. Arbib, M. The Handbook of Brain Theory and Neural Networks. The MIT Press, Cambridge,

MA, 1995.

N. Aronszajn. Theory of reproducing kernels.Trans. Amer. Math. Soc., 68:337–404, 1950.

P. L. Bartlett and S. Mendelson. Rademacher and Gaussian complexities.Journal of Machine

Learning Research, 3:463–482, 2002.

M. Bertero, C. De Mol, and E. R. Pike. Linear inverse problems with discrete data. I. General

formulation and singular system analysis.Inverse Problems, 1(4):301–330, 1985.

901

DE V ITO, ROSASCO, CAPONNETTO, DE GIOVANNINI AND ODONE

M. Bertero, C. De Mol, and E. R. Pike. Linear inverse problems with discrete data. II. Stability and

regularisation.Inverse Problems, 4(3):573–594, 1988.

O. Bousquet and A. Elisseeff. Stability and generalization.Journal of Machine Learning Research,

2:499–526, 2002.

D. Chen, Q. Wu, Y. Ying, and D. Zhou. Support vector machine soft margin classifiers: Error

analysis.Journal of Machine Learning research, 5:1143–1175, 2004.

F. Cucker and S. Smale. Best choices for regularization parameters in learning theory: on the

bias-variance problem.Foundations of Computationals Mathematics, 2:413–428, 2002a.

F. Cucker and S. Smale. On the mathematical foundations of learning.Bull. Amer. Math. Soc. (N.S.),

39(1):1–49 (electronic), 2002b.

E. De Vito, A. Caponnetto, and L. Rosasco. Model selection for regularized least-squares algorithm

in learning theory.to be published in Foundations of Computational Mathematics, 2004.

L. Devroye, L. Gÿorfi, and G. Lugosi.A Probabilistic Theory of Pattern Recognition. Number 31

in Applications of mathematics. Springer, New York, 1996.

H. W. Engl, M. Hanke, and A. Neubauer.Regularization of inverse problems, volume 375 of

Mathematics and its Applications. Kluwer Academic Publishers Group, Dordrecht, 1996.

T. Evgeniou, M. Pontil, and T. Poggio. Regularization networks and support vector machines.Adv.

Comp. Math., 13:1–50, 2000.

L. Fine, T. Feedforward Neural Network Methodology. Springer-Verlag, 1999.

C. W. Groetsch.The theory of Tikhonov regularization for Fredholm equations of the first kind,

volume 105 ofResearch Notes in Mathematics. Pitman (Advanced Publishing Program), Boston,

MA, 1984.

M. Györfi, L.and Kohler, A. Krzyzak, and H. Walk.A Distribution-free Theory of Non-parametric

Regression. Springer Series in Statistics, New York, 1996, 1996.

T. Hastie, R. Tibshirani, and J. Friedman.The Elements of Statistical Learning. Springer, New

York, 2001.

J. Kaipio and E. Somersalo.Statistical and Computational Inverse Problems. Springer, 2005.

V. Kecman.Learning and Soft Computing. The MIT Press, Cambridge, MA, 2001.

V. Kurkova. Learning from data as an inverse problem. In J. Antoch, editor, COMPSTAT2004,

pages 1377–1384. Springer-Verlag, 2004.

902

LEARNING FROM EXAMPLES AS AN INVERSEPROBLEM

S. Lang.Real and Functional Analysis. Springer, New York, 1993.

S. Mukherjee, P. Niyogi, T. Poggio, and R. Rifkin. Statistical learning: Stability is sufficient for gen-

eralization and necessary and sufficient for consistency of empirical risk minimization. Technical

Report CBCL Paper 223, Massachusetts Institute of Technology, january revision 2004.

S. Mukherjee, R. Rifkin, and T. Poggio. Regression and classification with regularization.Lectures

Notes in Statistics: Nonlinear Estimation and Classification, Proceedings from MSRI Workshop,

171:107–124, 2002.

P. Niyogi and F. Girosi. Generalization bounds for function approximationfrom scattered noisy

data.Adv. Comput. Math., 10:51–80, 1999.

C.S. Ong and S. Canu. Regularization by early stopping. Technical report, Computer Sciences

Laboratory, RSISE, ANU, 2004.

I. F. Pinelis and A. I. Sakhanenko. Remarks on inequalities for probabilities of large deviations.

Theory Probab. Appl., 30(1):143–148, 1985. ISSN 0040-361X.

T. Poggio and F. Girosi. A theory of networks for approximation and learning. In C. Lau, editor,

Foundation of Neural Networks, pages 91–106. IEEE Press, Piscataway, N.J., 1992.

C. Rudin. A different type of convergence for statistical learning algorithms. Technical report,

Program in Applied and Computational Mathematics Princeton University, 2004.

B. Scḧolkopf and A.J. Smola.Learning with Kernels. MIT Press, Cambridge, MA, 2002. URL

http://www.learning-with-kernels.org.

L. Schwartz. Sous-espaces hilbertiens d’espaces vectoriels topologiques et noyaux associés (noyaux

reproduisants).J. Analyse Math., 13:115–256, 1964.

C. Scovel and I. Steinwart. Fast rates support vector machines.submitted to Annals of Statistics,

2003.

S. Smale and Yao Y. Online learning algorithms. Technical report, Toyota Technological Institute,

Chicago, 2004.

S. Smale and D. Zhou. Estimating the approximation error in learning theory.Analysis and Appli-

cations, 1(1):1–25, 2003.

S. Smale and D. Zhou. Shannon sampling and function reconstruction frompoint values. Bull.

Amer. Math. Soc. (N.S.), 41(3):279–305 (electronic), 2004a.

S. Smale and D. Zhou. Shannon sampling II : Connections to learning theory. preprint, 2004b.

903

DE V ITO, ROSASCO, CAPONNETTO, DE GIOVANNINI AND ODONE

I. Steinwart. Sparseness of support vector machines.Journal of Machine Learning Research, 4:

1071–1105, 2003.

I. Steinwart. Consistency of support vector machines and other regularized kernel machines.ac-

cepted on IEEE Transaction on Information Theory, 2004.

A. N. Tikhonov, A. V. Goncharsky, V. V. Stepanov, and A. G. Yagola. Numerical methods for

the solution of ill-posed problems, volume 328 ofMathematics and its Applications. Kluwer

Academic Publishers Group, Dordrecht, 1995. Translated from the 1990 Russian original by R.

A. M. Hoksbergen and revised by the authors.

A.N. Tikhonov and V.Y. Arsenin.Solutions of Ill Posed Problems. W. H. Winston, Washington,

D.C., 1977.

V. N. Vapnik. Statistical learning theory. Adaptive and Learning Systems for Signal Processing,

Communications, and Control. John Wiley & Sons Inc., New York, 1998. A Wiley-Interscience

Publication.

G. Wahba.Spline models for observational data, volume 59 ofCBMS-NSF Regional Conference Se-

ries in Applied Mathematics. Society for Industrial and Applied Mathematics (SIAM), Philadel-

phia, PA, 1990.

V. Yurinsky. Sums and Gaussian vectors, volume 1617 ofLecture Notes in Mathematics. Springer-

Verlag, Berlin, 1995.

T. Zhang. Leave-one-out bounds for kernel methods.Neural Computation, 13:1397–1437, 2003.

904

Journal of Machine Learning Research 6 (2005) 905–936 Submitted 11/04; Revised 4/05; Published 5/05

Loopy Belief Propagation: Convergence and Effects of Message Errors

Alexander T. Ihler IHLER@ALUM .MIT.EDU

Donald Bren School of Information and Computer Science
University of California, Irvine
Irvine, CA 92697 USA

John W. Fisher III FISHER@CSAIL.MIT.EDU

Alan S. Willsky WILLSKY @MIT.EDU

Massachusetts Institute of Technology
Cambridge, MA 02139, USA

Editor: David Maxwell Chickering

Abstract
Belief propagation (BP) is an increasingly popular method of performing approximate inference

on arbitrary graphical models. At times, even further approximations are required, whether due
to quantization of the messages or model parameters, from other simplified message or model
representations, or from stochastic approximation methods. The introduction of such errors into the
BP message computations has the potential to affect the solution obtained adversely. We analyze
the effect resulting from message approximation under two particular measures of error, and show
bounds on the accumulation of errors in the system. This analysis leads to convergence conditions
for traditional BP message passing, and both strict bounds and estimates of the resulting error in
systems of approximate BP message passing.

Keywords: belief propagation, sum-product, convergence, approximate inference, quantization

1. Introduction

Graphical models and message-passing algorithms defined on graphs comprise a growing field of
research. In particular, thebelief propagation(or sum-product) algorithm has become a popular
means of solving inference problems exactly or approximately. One part ofits appeal lies in its
optimality for tree-structured graphical models (models which contain no loops). However, its is
also widely applied to graphical models with cycles. In these cases it may not converge, and if it
does its solution is approximate; however in practice these approximations areoften good. Recently,
some additional justifications for loopy belief propagation have been developed, including a handful
of convergence results for graphs with cycles (Weiss, 2000; Tatikonda and Jordan, 2002; Heskes,
2004).

The approximate nature of loopy belief propagation is often a more than acceptable price for
performing efficient inference; in fact, it is sometimes desirable to makeadditionalapproximations.
There may be a number of reasons for this—for example, when exact message representation is
computationally intractable, the messages may be approximated stochastically (Koller et al., 1999)
or deterministically by discarding low-likelihood states (Coughlan and Ferreira, 2002). For belief
propagation involving continuous, non-Gaussian potentials, some form ofapproximation is required
to obtain a finite parameterization for the messages (Sudderth et al., 2003; Isard, 2003; Minka,

c©2005 Alexander T. Ihler, John W. Fisher III and Alan S. Willsky.

IHLER, FISHER AND WILLSKY

2001). Additionally, simplification of complex graphical models through edge removal, quantiza-
tion of the potential functions, or other forms of distributional approximation may be considered in
this framework. Finally, one may wish to approximate the messages and reducetheir representation
size for another reason—to decrease the communications required for distributed inference applica-
tions. In distributed message passing, one may approximate the transmitted message to reduce its
representational cost (Ihler et al., 2004a), or discard it entirely if it is deemed “sufficiently similar”
to the previously sent version (Chen et al., 2004). Through such meansone may significantly reduce
the amount of communications required.

Given that message approximation may be desirable, we would like to know what effect the
errors introduced have on our overall solution. In order to characterize the approximation effects
in graphs with cycles, we analyze the deviation from the solution given by “exact” loopy belief
propagation (not, as is typically considered, the deviation of loopy BP from the true marginal distri-
butions). As a byproduct of this analysis, we also obtain some results on theconvergence of loopy
belief propagation.

We begin in Section 2 by briefly reviewing the relevant details of graphical models and be-
lief propagation. Section 4 then examines the consequences of measuring a message error by its
dynamic range. In particular, we explain the utility of this measure and its behavior with respect
to the operations of belief propagation. This allows us to derive conditions for the convergence
of traditional loopy belief propagation, and bounds on the distance between any pair of BP fixed
points (Sections 5.1–5.2), and these results are easily extended to many approximate forms of BP
(Section 5.3). If the errors introduced are independent, as is a typical assumption in, for example,
quantization analysis (Gersho and Gray, 1991; Willsky, 1978), tighter estimates of the resulting
error can be obtained (Section 5.5).

It is also instructive to examine other measures of message error, in particular ones which em-
phasize more average-case (as opposed to pointwise or worst-case) differences. To this end, we
consider a KL-divergence based measure in Section 6. While the analysisof the KL-divergence
measure is considerably more difficult and does not lead to strict guarantees, it serves to give some
intuition into the behavior of perturbed BP under an average-case difference measure.

2. Graphical Models

Graphical models (Lauritzen, 1996; Kschischang et al., 2001) providea convenient means of rep-
resenting conditional independence relations among large numbers of random variables. Specif-
ically, each nodes in an undirected graph is associated with a random variablexs, while the
set of edgesE is used to describe the conditional dependency structure of the variablesthrough
graph separation. If every path between two setsA andC passes through another setB [see Fig-
ure 1(a)], the sets of variablesxA = {xs : s∈ A} andxC = {xs : s∈ C} must be independent given
the values ofxB = {xs : s∈ B}. Thus, the distributionp(xA,xB,xC) can be written in the form
p(xB)p(xA|xB)p(xC|xB).

It can be shown that a distributionp(x) is consistent with (i.e., satisfies the conditional indepen-
dence relations specified by) an undirected graph if it factors into a product of potential functions
ψ defined on the cliques (fully-connected subsets) of the graph, and thatthe converse is also true
if p(x) is strictly positive (Clifford, 1990). For convenience, we confine our attention to graphical

906

LOOPY BP: CONVERGENCE ANDEFFECT OFMESSAGEERRORS

u

u

u

t s

1

2

3

1 1

1 1 1 1

2
2

2

2

3
3

3

4
4

4

3 4

(a) (b) (c)

Figure 1: (a) Graphical models describe statistical dependency; here, the setsA andC are independent given
B. (b) BP propagates information fromt and its neighborsui is to s by a simple message-passing
procedure; this procedure is exact on a tree, but approximate in graphs with cycles. (c) For a
graph with cycles, one may show an equivalence betweenn iterations of loopy BP and the depth-
n computation tree [shown here forn = 3 and rooted at node1; example from Tatikonda and
Jordan (2002)].

models with at most pairwise potential functions, so that the distribution factorsaccording to

p(x) = ∏
(s,t)∈E

ψst(xs,xt)∏
s

ψs(xs).

This is a typical assumption for belief propagation, and can be taken without incurring any real loss
of generality since a graphical model with higher-order potential functions may always be converted
to a graphical model with only pairwise potential functions through a process of variable augmenta-
tion, though this may also increase the nodes’ state dimension undesirably; see, for example, Weiss
(2000).

2.1 Belief Propagation

The goal of belief propagation (BP) (Pearl, 1988), also called the sum-product algorithm, is to
compute the marginal distributionp(xt) at each nodet. BP takes the form of a message-passing
algorithm between nodes, expressed in terms of an update to the outgoing message at iterationi
from each nodet to each neighbors in terms of the previous iteration’s incoming messages fromt ’s
neighborsΓt [see Figure 1(b)],

mi
ts(xs) ∝

Z

ψts(xt ,xs)ψt(xt) ∏
u∈Γt\s

mi−1
ut (xt)dxt . (1)

Typically each message is normalized so as to integrate to unity (and we assume that such normal-
ization is possible). For discrete-valued random variables, of course,the integral is replaced by a
summation. At any iteration, one may calculate thebelief at nodet by

Mi
t(xt) ∝ ψt(xt) ∏

u∈Γt

mi
ut(xt). (2)

For tree-structured graphical models, belief propagation can be used toefficiently perform exact
marginalization. Specifically, the iteration (1) converges in a finite number of iterations (at most the
length of the longest path in the graph), after which the belief (2) equals thecorrect marginalp(xt).
However, as observed by Pearl (1988), one may also apply belief propagation to arbitrary graphical

907

IHLER, FISHER AND WILLSKY

models by following the samelocal message passing rules at each node and ignoring the presence
of cycles in the graph; this procedure is typically referred to as “loopy” BP.

For loopy BP, the sequence of messages defined by (1) is not guaranteed to converge to a fixed
point after any number of iterations. Under relatively mild conditions, one mayguarantee the ex-
istence of fixed points (Yedidia et al., 2004). However, they may not be unique, nor are the results
exact [the beliefMi

t does not converge to the true marginalp(xt)]. In practice however the procedure
often arrives at a reasonable set of approximations to the correct marginal distributions.

2.2 Computation Trees

It is sometimes convenient to think of loopy BP in terms of itscomputation tree. Tatikonda and
Jordan (2002) showed that the effect ofn iterations of loopy BP at any particular nodes is equivalent
to exact inference on a tree-structured ‘unrolling” of the graph froms. A small graph, and its
associated 4-level computation tree rooted at node1, are shown in Figure 1(c).

The computation tree with depthn consists of all length-n paths emanating froms in the original
graph which do not immediately backtrack (though they may eventually repeatnodes).1 We draw
the computation tree as consisting of a number oflevels, corresponding to each node in the tree’s
distance from the root, with the root node at level 0 and the leaf nodes at level n. Each level may
contain multiple replicas of each node, and thus there are potentially many replicas of each node in
the graph. The root nodes has replicas of all neighborsΓs in the original graph as children, while
all other nodes have replicas of all neighbors except their parent node as children.

Each edge in the computation tree corresponds to both an edge in the originalgraphand an
iteration in the BP message-passing algorithm. Specifically, assume an equivalent initialization of
both the loopy graph and computation tree—i.e., the initial messagesm0

ut in the loopy graph are
taken as inputs to the leaf nodes. Then, the upward messages from leveln to level n− 1 match
the messagesm1

ut in the first iteration of loopy BP, and more generally, a upward messagemi
ut on

the computation tree which originates from a nodeu on leveln− i +1 to its parent nodet on level
n− i is identical to the message from nodeu to nodet in the ith iteration of loopy BP (out ofn total
iterations) on the original graph. Thus, the incoming messages to the root node (level 0) correspond
to the messages in thenth iteration of loopy BP.

2.3 Message Approximations

Let us now consider the concept ofapproximateBP messages. We begin by assuming that the “true”
messagesmts(xs) are some fixed point of BP, so thatmi

ts = mi+1
ts . We may ask what happens when

these messages are perturbed by some (perhaps small) error functionets(xs). Although there are
certainly other possibilities, the fact that BP messages are combined by takingtheir product makes
it natural to consider multiplicative message deviations (or additive in the log-domain):

m̂i
ts(xs) = mts(xs)e

i
ts(xs).

To facilitate our analysis, we split the message update operation (1) into two parts. In the first,
we focus on the messageproducts

M̂i
ts(xt) ∝ ψt(xt) ∏

u∈Γt\s

m̂i
ut(xt) M̂i

t(xt) ∝ ψt(xt) ∏
u∈Γt

m̂i
ut(xt) (3)

1. Thus in Figure 1(c), the computation tree includes the sequence1−2−4−1, but not the sequence1−2−4−2.

908

LOOPY BP: CONVERGENCE ANDEFFECT OFMESSAGEERRORS

where the proportionality constant is chosen to normalizeM̂. The second operation, then, is the
messageconvolution

m̂i+1
ts (xs) ∝

Z

ψts(xs,xt)M̂
i
ts(xt)dxt (4)

where againM̂ is a normalized message or product of messages.
In this paper, we use the convention that lowercase quantities (mts,ets, . . .) refer to messages and

message errors, while uppercase ones (Mts,Ets,Mt , . . .) refer to their products—at nodet, the product
of all incoming messages and the local potential is denotedMt(xt), its approximationM̂t(xt) =
Mt(xt)Et(xt), with similar definitions forMts, M̂ts, andEts.

3. Overview of Results

To orient the reader, we lay out the order and general results which are obtained in this paper. We
begin in Section 4 by examining adynamic rangemeasured(e) of the variability of a message error
e(x) (or more generally of any function) and show how this measure behaves with respect to the
BP equations (1) and (2). Specifically, we show in Section 4.2 that the measure logd(e) is sub-
additive with respect to the product operation (3), and contractive with respect to the convolution
operation (4).

Applying these results to traditional belief propagation results in a new sufficient condition for
BP convergence (Section 5.1), specifically

max
s,t ∑

u∈Γt\s

d(ψut)
2−1

d(ψut)
2 +1

< 1; (5)

and this condition may be further improved in many cases. The condition (5) can be shown to be
slightly stronger than the sufficient condition given in Tatikonda and Jordan (2002), and empirically
appears to be stronger than that of Heskes (2004). In experiments, thecondition appears to be
tight (exactly predicting uniqueness or non-uniqueness of fixed points)for at least some problems,
such as binary–valued random variables with attractive potentials. More importantly, however, the
methodin which it is derived allows us to generalize to many other situations:

1. Using the same methodology, we may demonstrate that any two BP fixed points must be
within a ball of a calculable diameter; the condition (5) is equivalent to this diameter being
zero (Section 5.2).

2. Both the diameter of the bounding ball and the convergence criterion (5)are easily improved
for graphical models with irregular geometry or potential strengths, leadingto better condi-
tions on graphs which are more “tree-like” (Section 5.3).

3. The same analysis may also be applied to the case of quantized or otherwiseapproximated
messages and models (potential functions), yielding bounds on the resultingerror (Section 5.4).

4. If we regard the message errors as a stochastic process, a similar analysis with a few addi-
tional, intuitive assumptions gives alternate, tighter estimates (though not necessarily bounds)
of performance (Section 5.5).

909

IHLER, FISHER AND WILLSKY

m(x)

m̂(x) }
}

0

logd(e)

αmin

logm/m̂

(a) (b)

Figure 2: (a) A messagem(x) and an example approximation ˆm(x); (b) their log-ratio
logm(x)/m̂(x), and the error measure logd(e).

Finally, in Section 6 we perform the same analysis for a less strict measure ofmessage error [i.e.,
disagreement between a messagem(x) and its approximation ˆm(x)], namely the Kullback-Leibler
divergence. This analysis shows that, while failing to provide strict bounds in several key ways,
one is still able to obtain some intuition into the behavior of approximate message passing under an
average-case difference measure.

In the next few sections, we first describe the dynamic range measure and discuss some of its
salient properties (Section 4). We then apply these properties to analyze the behavior of loopy belief
propagation (Section 5). Almost all proofs are given in an in-line fashion, as they frequently serve
to give intuition into the method and meaning of each result.

4. Dynamic Range Measure

In order to discuss the effects and propagation of errors, we first require a measure of the difference
between two messages. In this section, we examine the following measure onets(xs): let d(ets)
denote the function’sdynamic range,2 specifically

d(ets) = sup
a,b

√

ets(a)/ets(b). (6)

Then, we have thatmts≡ m̂ts (i.e., the pointwise equality conditionmts(x) = m̂ts(x)∀x) if and only if
logd(ets) = 0. Figure 2 shows an example ofm(x) andm̂(x) along with their associated errore(x).

4.1 Motivation

We begin with a brief motivation for this choice of error measure. It has a number of desirable
features; for example, it is directly related to the pointwise log error betweenthe two distributions.

Lemma 1. The dynamic range measure(6) may be equivalently defined by

logd(ets) = inf
α

sup
x
| logαmts(x)− logm̂ts(x)| = inf

α
sup

x
| logα− logets(x)|.

Proof. The minimum is given by logα = 1
2(supa logets(a)+ infb logets(b)), and thus the right-hand

side is equal to12(supa logets(a)− infb logets(b)), or 1
2(supa,b logets(a)/ets(b)), which by definition

is logd(ets).

2. This measure has also been independently investigated to provide a stability analysis for the max-product algorithm
in Bayes’ nets (acyclic, directed graphical models) (Chan and Darwiche, 2005). While similar in some ways, the
analysis for acyclic graphs is considerably simpler; loopy graphs require demonstrating a rate of contraction, which
we show is possible for the sum-product algorithm (Theorem 8).

910

LOOPY BP: CONVERGENCE ANDEFFECT OFMESSAGEERRORS

The scalarα serves the purpose of “zero-centering” the function logets(x) and making the mea-
sure invariant to simple rescaling. This invariance reflects the fact that thescale factor for BP
messages is essentially arbitrary, defining a class of equivalent messages. Although the scale factor
cannot be completely ignored, it takes on the role of a nuisance parameter.The inclusion ofα in
the definition of Lemma 1 acts to select particular elements of the equivalence classes (with respect
to rescaling) from which to measure distance—specifically, choosing the closest such messages in
a log-error sense. The log-error, dynamic range, and the minimizingα are depicted in Figure 2.

Lemma 1 allows the dynamic range measure to be related directly to an approximationerror
in the log-domain when both messages are normalized to integrate to unity, using the following
theorem:

Theorem 2. The dynamic range measure can be used to bound the log-approximationerror:

|logmts(x)− logm̂ts(x)| ≤ 2logd(ets) ∀x.

Proof. We first consider the magnitude of logα:

∀x,

∣

∣

∣

∣

log
αmts(x)
m̂ts(x)

∣

∣

∣

∣

≤ logd(ets)

⇒
1

d(ets)
≤

αmts(x)
m̂ts(x)

≤ d(ets)

⇒
Z

m̂ts(x)dx
1

d(ets)
≤ α

Z

mts(x)dx≤
Z

m̂ts(x)dxd(ets)

and since the messages are normalized,| logα| ≤ logd(ets). Then by the triangle inequality,

|logmts(x)− logm̂ts(x)| ≤ |logαmts(x)− logm̂ts(x)|+ |logα| ≤ 2logd(ets) .

In this light, our analysis of message approximation (Section 5.4) may be equivalently regarded
as a statement about the required quantization level for an accurate implementation of loopy belief
propagation. Interestingly, it may also be related to a floating-point precision onmts(x).

Lemma 3. Letm̂ts(x) be an F-bit mantissa floating-point approximation to mts(x). Then,logd(ets)≤
2−F +O(2−2F).

Proof. For anF-bit mantissa, we have|mts(x)− m̂ts(x)| < 2−F ·2blog2 mts(x)c ≤ 2−F ·mts(x). Then,
using the Taylor expansion of log

[

1+(m̂
m−1)

]

≈ (m̂
m−1) we have that

logd(ets) ≤ sup
x

∣

∣

∣

∣

log
m̂(x)
m(x)

∣

∣

∣

∣

≤ sup
x

m̂(x)−m(x)
m(x)

+O

(

(

sup
x

m̂(x)−m(x)
m(x)

)2
)

≤ 2−F +O
(

2−2F) .

Thus our measure of error is, to first order, similar to the typical measure ofprecision in floating-
point implementations of belief propagation on microprocessors. We may also related(e) to other
measures of interest, such as the Kullback-Leibler (KL) divergence.

911

IHLER, FISHER AND WILLSKY

Lemma 4. The KL-divergence satisfies the inequality D(mts‖m̂ts) ≤ 2logd(ets)

Proof. By Theorem 2, we have

D(mts‖m̂ts) =
Z

mts(x) log
mts(x)
m̂ts(x)

dx≤
Z

mts(x)(2logd(ets))dx= 2logd(ets) .

Finally, a bound on the dynamic range or the absolute log-error can also beused to develop
confidence intervals for the maximum and median of the distribution.

Lemma 5. Let m̂(x) be an approximation of m(x) with logd(m̂/m) ≤ ε, so that

m̂+(x) = exp(2ε)m̂(x) m̂−(x) = exp(−2ε)m̂(x)

are upper and lower pointwise bounds on m(x), respectively. Then we have a confidence region on
the maximum of m(x) given by

argmax
x

m(x) ∈ {x : m̂+(x) ≥ max
y

m̂−(y)}

and an upper bound µ on the median of m(x), i.e.,

Z µ

−∞
m(x) ≥

Z ∞

µ
m(x) where

Z µ

−∞
m̂−(x) =

Z ∞

µ
m̂+(x)

with a similar lower bound.

Proof. The definitions ofm̂+ andm̂− follow from Theorem 2. Given these bounds, the maximum
value ofm(x) must be larger than the maximum value of ˆm−(x), and this is only possible at locations
x for which m̂+(x) is also greater than the maximum of ˆm−. Similarly, the left integral ofm(x) (−∞
to µ) must be larger than the integral of ˆm−(x), while the right integral (µ to ∞) must be smaller than
for m̂+(x). Thus the median ofm(x) must be less thanµ.

These bounds and confidence intervals are illustrated in Figure 3: giventhe approximate mes-
sagem̂ (solid black), a bound on the error yields ˆm+(x) and m̂−(x) (dotted lines), which yield
confidence regions on the maximum and median values ofm(x).

4.2 Additivity and Error Contraction

We now turn to the properties of our dynamic range measure with respect to the operations of
belief propagation. First, we consider the error resulting from taking the product (3) of a number of
incoming approximate messages.

Theorem 6. The log of the dynamic range measure is sub-additive:

logd
(

Ei
ts

)

≤ ∑
u∈Γt\s

logd
(

ei
ut

)

logd
(

Ei
t

)

≤ ∑
u∈Γt

logd
(

ei
ut

)

.

912

LOOPY BP: CONVERGENCE ANDEFFECT OFMESSAGEERRORS

Area = A
Area = A

Confidence Region on Maximum (Right boundary of) Conf. Region on Median
(a) (b)

Figure 3: Using the error measure (6) to find confidence regions on maximum and median lo-
cations of a distribution. The distribution estimate ˆm(x) is shown in solid black, with
| logm(x)/m̂(x)| ≤ 1

4 bounds shown as dotted lines. Then, the maximum value ofm(x)
must lie above the shaded region, and the median value is less than the dashedvertical
line; a similar computation gives a lower bound.

Proof. We show the left-hand sub-additivity statement; the right follows from a similar argument.
By definition, we have

logd
(

Ei
ts

)

= logd
(

M̂i
ts/Mi

ts

)

=
1
2

logsup
a,b

∏ei
ut(a)/∏ei

ut(b).

Increasing the number of degrees of freedom gives

≤
1
2

log∏ sup
au,bu

ei
ut(au)/ei

ut(bu) = ∑ logd
(

ei
ut(x)

)

.

Theorem 6 allows us to bound the error resulting from a combination of the incoming approx-
imations from two different neighbors of the nodet. It is also important that logd(e) satisfy the
triangle inequality, so that the application of two successive approximations results in an error which
is bounded by the sum of their respective errors.

Theorem 7. The log of the dynamic range measure satisfies the triangle inequality:

logd(e1e2) ≤ logd(e1)+ logd(e2) .

Proof. This follows from the same argument as Theorem 6.

We may also derive a minimum rate of contraction occurring with the convolution operation (4).
We characterize the strength of the potentialψts by extending the definition of the dynamic range
measure:

d(ψts)
2 = sup

a,b,c,d

ψts(a,b)

ψts(c,d)
. (7)

When this quantity is finite, it represents a minimum rate ofmixingfor the potential, and thus causes
a contraction on the error. This fact is exhibited in the following theorem.

Theorem 8. When d(ψts) is finite, the dynamic range measure satisfies a rate of contraction:

d
(

ei+1
ts

)

≤
d(ψts)

2d
(

Ei
ts

)

+1

d(ψts)
2 +d

(

Ei
ts

) . (8)

913

IHLER, FISHER AND WILLSKY

log d(ψ)2 d(E)+1
d(ψ)2+d(E)

logd(E)

logd(ψ)2

lo
g

d
(e

)
→

logd(E) →

Figure 4: Three bounds on the error outputd(e) as a function of the error on the product of incom-
ing messagesd(E).

Proof. See Appendix A.

Two limits are of interest. First, if we examine the limit as the potential strengthd(ψ) grows,
we see that the error cannot increase due to convolution with the pairwise potentialψ. Similarly, if
the potential strength is finite, the outgoing error cannot be arbitrarily large(independent of the size
of the incoming error).

Corollary 9. The outgoing message error d(ets) is bounded by

d
(

ei+1
ts

)

≤ d
(

Ei
ts

)

d
(

ei+1
ts

)

≤ d(ψts)
2 .

Proof. Let d(ψts) or d
(

Ei
ts

)

tend to infinity in Theorem 8.

The contractive bound (8) is shown in Figure 4, along with the two simpler bounds of Corol-
lary 9, shown as straight lines. Moreover, we may evaluate the asymptotic behavior by considering
the derivative

∂
∂d(E)

d(ψ)2d(E)+1

d(E)+d(ψ)2

∣

∣

∣

∣

∣

d(E)→1

=
d(ψ)2−1

d(ψ)2 +1
= tanh(logd(ψ)).

The limits of this bound are quite intuitive: for logd(ψ) = 0 (independence ofxt andxs), this deriva-
tive is zero; increasing the error in incoming messagesmi

ut has no effect on the error inmi+1
ts . For

d(ψ) → ∞, the derivative approaches unity, indicating that for very larged(ψ) (strong potentials)
the propagated error can be nearly unchanged.

We may apply these bounds to investigate the behavior of BP in graphs with cycles. We begin
by examining loopy belief propagation with exact messages, using the previous results to derive a
new sufficient condition for BP convergence to a unique fixed point. When this condition is not
satisfied, we instead obtain a bound on the relative distances between any two fixed points of the
loopy BP equations. This allows us to consider the effect of introducing additional errors into the
messages passed at each iteration, showing sufficient conditions for thisoperation to converge, and
a bound on the resulting error from exact loopy BP.

914

LOOPY BP: CONVERGENCE ANDEFFECT OFMESSAGEERRORS

5. Applying Dynamic Range to Graphs with Cycles

In this section, we apply the framework developed in Section 4, along with the computation tree
formalism of Tatikonda and Jordan (2002), to derive results on the behavior of traditional belief
propagation (in which messages and potentials are represented exactly).We then use the same
methodology to analyze the behavior of loopy BP for quantized or otherwiseapproximated mes-
sages and potential functions.

5.1 Convergence of Loopy Belief Propagation

The work of Tatikonda and Jordan (2002) showed that the convergence and fixed points of loopy
BP may be considered in terms of a Gibbs measure on the graph’s computation tree. In particular,
this led to the result that loopy BP is guaranteed to converge if the graph satisfies Dobrushin’s
condition (Georgii, 1988). Dobrushin’s condition is a global measure, and difficult to verify; given
in Tatikonda and Jordan (2002) is the easier to check sufficient condition(often called Simon’s
condition),

Theorem 10 (Simon’s condition). Loopy belief propagation is guaranteed to converge if

max
t ∑

u∈Γt

logd(ψut) < 1. (9)

where d(ψ) is defined as in(7).

Proof. See Tatikonda and Jordan (2002).

Using the previous section’s analysis, we obtain the following, stronger condition, and (after the
proof) show analytically how the two are related.

Theorem 11 (BP convergence). Loopy belief propagation is guaranteed to converge if

max
(s,t)∈E

∑
u∈Γt\s

d(ψut)
2−1

d(ψut)
2 +1

< 1 (10)

Proof. By induction. Let the “true” messagesmts be any fixed point of BP, and consider the in-
coming error observed by a nodet at level n− 1 of the computation tree (corresponding to the
first iteration of BP), and having parent nodes. Suppose that the total incoming error logd

(

E1
ts

)

is bounded above by some constant logε1 for all (t,s) ∈ E . Note that this is trivially true (for any
n) for the constant logε1 = maxt ∑u∈Γt

logd(ψut)
2, since the error on any messagemut is bounded

above byd(ψut)
2.

Now, assume that logd
(

Ei
ut

)

≤ logεi for all (u, t) ∈ E . Theorem 8 bounds the maximum log-
error logd

(

Ei+1
ts

)

at any replica of nodet with parents, wheres is on leveln− i of the tree (which
corresponds to theith iteration of loopy BP) by

logd
(

Ei+1
ts

)

≤ gts(logεi) = Gts(εi) = ∑
u∈Γt\s

log
d(ψut)

2 εi +1

d(ψut)
2 + εi

. (11)

We observe a contraction of the error between iterationsi andi +1 if the boundgts(logεi) is smaller
than logεi for every(t,s) ∈ E , and asymptotically achieve logεi → 0 if this is the case for any value
of εi > 1.

915

IHLER, FISHER AND WILLSKY

Definingz= logε, we may equivalently showgts(z) < z for all z> 0. This can be guaranteed
by the conditionsgts(0) = 0, g′ts(0) < 1, andg′′ts(z) ≤ 0 for eacht,s. The first is easy to verify, as is
the last (term by term) using the identityg′′ts(z) = ε2G′′

ts(ε)+εG′
ts(ε); the second (g′ts(0) < 1) can be

rewritten to give the convergence condition (10).

We may relate Theorem 11 to Simon’s condition by expanding the setΓt \ s to the larger set
Γt , and observing that logx ≥ x2−1

x2+1 for all x ≥ 1 with equality asx → 1. Doing so, we see that
Simon’s condition is sufficient to guarantee Theorem 11, but that Theorem 11 may be true (implying
convergence) when Simon’s condition is not satisfied. The improvement over Simon’s condition
becomes negligible for highly-connected systems with weak potentials, but can be significant for
graphs with low connectivity. For example, if the graph consists of a single loop then each nodet
has at most two neighbors. In this case, the contraction (11) tells us that theoutgoing message in
either direction isalwaysas close or closer to the BP fixed point than the incoming message. Thus
we easily obtain the result of Weiss (2000), that (for finite-strength potentials) BP always converges
to a unique fixed point on graphs containing a single loop. Simon’s condition,on the other hand,
is too loose to demonstrate this fact. The form of the condition in Theorem 11 is also similar to a
result shown for binary spin models; see Georgii (1988) for details.

However, both Theorem 10 and Theorem 11 depend only on the pairwisepotentialsψst(xs,xt),
and not on the single-node potentialsψs(xs), ψt(xt). As noted by Heskes (Heskes, 2004), this
leaves a degree of freedom to which the single-node potentials may be chosen so as to minimize the
(apparent) strength of the pairwise potentials. Thus, (9) can be improvedslightly by writing

max
t ∑

u∈Γt

min
ψu,ψt

logd

(

ψut

ψuψt

)

< 1 (12)

and similarly for (10) by writing

max
(s,t)∈E

∑
u∈Γt\s

min
ψu,ψt

d
(

ψut
ψuψt

)2
−1

d
(

ψut
ψuψt

)2
+1

< 1. (13)

To evaluate this quantity, one may also observe that

min
ψu,ψt

d

(

ψut

ψuψt

)4

= sup
a,b,c,d

ψts(a,b)

ψts(a,d)

ψts(c,d)

ψts(c,b)
.

In general we shall ignore this subtlety and simply write our results in terms ofd(ψ), as given in (9)
and (10). For binary random variables, it is easy to see that the minimum–strengthψut has the form

ψut =

[

η 1−η
1−η η

]

,

and that when the potentials are of this form (such as in the examples of this section) the two
conditions are completely equivalent.

We provide a more empirical comparison between our condition, Simon’s condition, and the
recent work of Heskes (2004) shortly. Similarly to Heskes (2004), we shall see that it is possible to
use the graph geometry to improve our bound (Section 5.3); but perhaps more importantly (and in
contrast to both other methods), when the condition isnot satisfied, we still obtain useful informa-
tion about the relationship between any pair of fixed points (Section 5.2), allowing its extension to
quantized or otherwise distorted versions of belief propagation (Section 5.4).

916

LOOPY BP: CONVERGENCE ANDEFFECT OFMESSAGEERRORS

5.2 Distance of Multiple Fixed Points

Theorem 11 may be extended to provide not only a sufficient condition fora unique BP fixed point,
but an upper bound on distance between the beliefs generated by successive BP updates and any
BP fixed point. Specifically, the proof of Theorem 11 relied on demonstrating a bound logεi on the
distance from some arbitrarily chosen fixed point{Mt} at iterationi. When this bound decreases
to zero, we may conclude that only one fixed point exists. However, evenshould it decrease only
to some positive constant, it still provides information about the distance between any iteration’s
belief and the fixed point. Moreover, applying this bound to another, different fixed point{M̃t} tells
us that all fixed points of loopy BP must lie within a sphere of a given diameter [as measured by
logd

(

Mt/M̃t
)

]. These statements are made precise in the following two theorems:

Theorem 12 (BP distance bound). Let {Mt} be any fixed point of loopy BP. Then, after n> 1
iterations of loopy BP resulting in beliefs{M̂n

t }, for any node t and for all x

logd
(

Mt/M̂n
t

)

≤ ∑
u∈Γt

log
d(ψut)

2 εn−1 +1

d(ψut)
2 + εn−1

whereεi is given byε1 = maxs,t d(ψst)
2 and

logεi+1 = max
(s,t)∈E

∑
u∈Γt\s

log
d(ψut)

2 εi +1

d(ψut)
2 + εi

.

Proof. The result follows directly from the proof of Theorem 11.

We may thus infer a distance bound between any two BP fixed points:

Theorem 13 (Fixed-point distance bound). Let{Mt}, {M̃t} be the beliefs of any two fixed points
of loopy BP. Then, for any node t and for all x

| logMt(x)/M̃t(x)| ≤ 2logd
(

Mt/M̃t
)

≤ 2 ∑
u∈Γt

log
d(ψut)

2 ε+1

d(ψut)
2 + ε

(14)

whereε is the largest value satisfying

logε = max
(s,t)∈E

Gts(ε) = max
(s,t)∈E

∑
u∈Γt\s

log
d(ψut)

2 ε+1

d(ψut)
2 + ε

. (15)

Proof. The inequality| logMt(x)/M̃t(x)| ≤ 2logd
(

Mt/M̃t
)

follows from Theorem 2. The rest fol-
lows from Theorem 12—taking the “approximate” messages to be any other fixed point of loopy
BP, we see that the error cannot decrease over any number of iterations. However, by the same
argument given in Theorem 11,g′′ts(z) < 0, and forz sufficiently large,gts(z) < z. Thus (15) has at
most one solution greater than unity, andεi+1 < εi for all i with εi → ε asi → ∞. Letting the number
of iterationsi → ∞, we see that the message “errors” logd

(

Mts/M̃ts
)

must be at mostε, and thus
the difference inMt (the belief of the root node of the computation tree) must satisfy (14).

917

IHLER, FISHER AND WILLSKY

Thus, if the value of logε is small (the sufficient condition of Theorem 11 is nearly satisfied)
then although we cannot guarantee convergence to a unique fixed point,we can still make a strong
statement: that the set of fixed points are all mutually close (in a log-error sense), and reside within a
ball of diameter described by (14). Moreover, even though it is possiblethat loopy BP does not con-
verge, and thus even after infinite time the messages may not correspond toanyfixed point of the BP
equations, we are guaranteed by Theorem 12 that the resulting belief estimateswill asymptotically
approach the same bounding ball [achieving distance at most (14) fromall fixed points].

5.3 Path-Counting

If we are willing to put a bit more effort into our bound-computation, we may beable to improve
it further, since the bounds derived using computation trees are very much “worst-case” bounds. In
particular, the proof of Theorem 11 assumes that, as a message error propagates through the graph,
repeated convolution withonly the strongest set of potentials is possible. But often even if the
worst potentials are quite strong, every cycle which contains them may also contain several weaker
potentials. Using an iterative algorithm much like belief propagation itself, we mayobtain a more
globally aware estimate of how errors can propagate through the graph.

Theorem 14 (Non-uniform distance bound). Let{Mt} be any fixed point belief of loopy BP. Then,
after n≥ 1 iterations of loopy BP resulting in beliefs{M̂n

t }, for any node t and for all x

| logMt(x)/M̂t(x)| ≤ 2logd
(

Mt/M̂n
t

)

≤ 2 ∑
u∈Γt

logυn
ut

whereυi
ut is defined by the iteration

logυi+1
ts = log

d(ψts)
2 εi

ts+1

d(ψts)
2 + εi

ts

logεi
ts = ∑

u∈Γt\s

logυi
ut (16)

with initial conditionυ1
ut = d(ψut)

2.

Proof. Again we consider the error logd
(

Ei
ts

)

incoming to nodet with parents, wheret is at level
n− i + 1 of the computation tree. Using the same arguments as Theorem 11 it is easy to show by
induction that the error products logd

(

Ei
ts

)

are bounded above byεi
ts, and the individual message

errors logd
(

ei
ts

)

are bounded above byυi
ts, and . Then, by additivity we obtain the stated bound on

d(En
t) at the root node.

The iteration defined in Theorem 14 can also be interpreted as a (scalar) message-passing proce-
dure, or may be performed offline. As before, if this procedure resultsin logεts→ 0 for all (t,s)∈ E

we are guaranteed that there is a unique fixed point for loopy BP; if not, we again obtain a bound
on the distance between any two fixed-point beliefs. When the graph is perfectly symmetric (every
node has identical neighbors and potential strengths), this yields the same bound as Theorem 12;
however, if the potential strengths are inhomogeneous Theorem 14 provides a strictly better bound
on loopy BP convergence and errors.

This situation is illustrated in Figure 5—we specify two different graphical models defined on a
5×5 grid in terms of their potential strengths logd(ψ)2, and compute bounds on the dynamic range
d
(

Mt/M̃t
)

of any two fixed point beliefsMt , M̃t for each model. (Note that, while potential strength

918

LOOPY BP: CONVERGENCE ANDEFFECT OFMESSAGEERRORS

0 0.5 1 1.5 2 2.5
0

2

4

6

8

10
Simple bound, grids (a) and (b)
Nonuniform bound, grid (a)
Nonuniform bound, grid (b)
Simons condition

lo
g

d
(E

t)
→

ω →
(a) (b) (c)

Figure 5: (a-b) Two small (5×5) grids. In (a), the potentialsψ are all of equal strength (logd(ψ)2 =
ω), while in (b) several potentials (thin lines) are weaker (logd(ψ)2 = .5ω). The methods
described may be used to compute bounds (c) on the distanced(Et) between any two
fixed point beliefs as a function of potential strengthω.

does not completely specify the graphical model, it is sufficient for all the bounds considered here.)
One grid (a) has equal-strength potentials logd(ψ)2 = ω, while the other has many weaker potentials
(ω/2). The worst-case bounds are the same (since both have a node with four strong neighbors),
shown as the solid curve in (c). However, the dashed curves show the estimate of (16), which
improves only slightly for the strongly coupled graph (a) but considerablyfor the weaker graph (b).
All three bounds give considerably more information than Simon’s condition (dotted vertical line).

Having shown how our bound may be improved for irregular graph geometry, we may now com-
pare our bounds to two other known uniqueness conditions (Tatikonda and Jordan, 2002; Heskes,
2004). Simon’s condition can be related analytically, as described in Section 5.1. On the other hand,
the recent work of Heskes (2004) takes a very different approachto uniqueness based on analysis of
the minima of the Bethe free energy, which directly correspond to stable fixedpoints of BP (Yedidia
et al., 2004). This leads to an alternate sufficient condition for uniqueness. As observed in Heskes
(2004) it is unclear whether a unique fixed point necessarily implies convergence of loopy BP. In
contrast, our approach gives a sufficient condition for the convergence of BP to a unique solution,
which implies uniqueness of the fixed point.

Showing an analytic relation between all three approaches does not appear straightforward; to
give some intuition, we show the three example binary graphs compared in Heskes (2004), whose
structures are shown in Figure 6(a-c) and whose potentials are parameterized by a scalarη > .5,
namely

ψ =

[

η 1−η
1−η η

]

(17)

(so thatd(ψ)2 = η
1−η). The trivial solutionMt = [.5;.5] is always a fixed point, but may not be

stable; the preciseηcrit at which this fixed point becomes unstable (implying the existence of other,
stable fixed points) can be found empirically for each case (Heskes, 2004); the same values may
also be found algebraically by imposing symmetry requirements on the messages(Yedidia et al.,
2004). This value may then be compared to the uniqueness bounds of Tatikonda and Jordan (2002),
the bound of Heskes (2004), and this work; these are shown in Figure 6.

Notice that our bound is always better than Simon’s condition, though for theperfectly symmet-
ric graph the margin is not large (and decreases further with increased connectivity, for example a
cubic lattice). Additionally, in all three examples our method appears to outperform that of Heskes

919

IHLER, FISHER AND WILLSKY

Method (a) (b) (c)
Simon’s condition .62 .62 .62
Heskes’ condition .55 .58 .65
This work .67 .79 .88
Empirical .67 .79 .88

(a) (b) (c) ηcrit

Figure 6: Comparison of various uniqueness bounds: for binary potentials parameterized byη, we
find the predictedηcrit at which loopy BP can no longer be guaranteed to be unique. For
these simple problems, theηcrit at which the trivial (correct) solution becomes unstable
may be found empirically. Examples and empirical values ofηcrit from Heskes (2004).

(2004), though without analytic comparison it is unclear whether this is always the case. In fact, for
these simple binary examples, our bound appears to be tight.

However, our method also allows us to make statements about the results of loopy BP after
finite numbers of iterations, up to some finite degree of numerical precision in the final results.
For example, we may also find the value ofη below which BP will attain a particular precision,
say logd

(

Mt/M̂n
t

)

< 10−3 in at leastn = 100 iterations [obtaining the values{.66, .77, .85} for the
grids in Figure 6(a), (b), and (c), respectively].

5.4 Introducing Intentional Message Errors and Censoring

As discussed in the introduction, we may wish to introduce or allowadditionalerrors in our mes-
sages at each stage, in order to improve the computational or communication efficiency of the algo-
rithm. This may be the result of an actual distortion imposed on the message (perhaps to decrease
its complexity, for example quantization), or the result of censoring the message update (reusing the
message from the previous iteration) when the two are sufficiently similar. Errors may also arise
from quantization or other approximation of the potential functions. Such additional errors may be
easily incorporated into our framework.

Theorem 15. If at every iteration of loopy BP, each message is further approximated insuch a way
as to guarantee that the additional distortion has maximum dynamic range atmostδ, then for any
fixed point beliefs{Mt}, after n≥ 1 iterations of loopy BP resulting in beliefs{M̂n

t } we have

logd
(

Mt/M̂n
t

)

≤ ∑
u∈Γt

logυn
ut

whereυi
ut is defined by the iteration

logυi+1
ts = log

d(ψts)
2 εi

ts+1

d(ψts)
2 + εi

ts

+ logδ logεi
ts = ∑

u∈Γt\s

logυi
ut

with initial conditionυ1
ut = δd(ψut)

2.

Proof. Using the same logic as Theorems 12 and 14, apply additivity of the log dynamic range
measure to the additional distortion logδ introduced to each message.

920

LOOPY BP: CONVERGENCE ANDEFFECT OFMESSAGEERRORS

As with Theorem 14, a simpler bound can also be derived (similar to Theorem12). Either
gives a bound on the maximum total distortion from any true fixed point which will be incurred by
quantized or censored belief propagation. Note that (except on tree-structured graphs) this doesnot
bound the error from the true marginal distributions, only from the loopy BPfixed points.

It is also possible to interpret the additional error as arising from an approximation to the correct
single-node and pairwise potentialsψt ,ψts.

Theorem 16. Suppose that{Mt} are a fixed point of loopy BP on a graph defined by potentialsψts

andψt , and let{M̂n
t } be the beliefs of n iterations of loopy BP performed on a graph with potentials

ψ̂ts andψ̂t , where d(ψ̂ts/ψts) ≤ δ1 and d(ψ̂t/ψt) ≤ δ2. Then,

logd
(

Mt/M̂n
t

)

≤ ∑
u∈Γt

logυn
ut + logδ2

whereυi
ut is defined by the iteration

logυi+1
ts = log

d(ψts)
2 εi

ts+1

d(ψts)
2 + εi

ts

+ logδ1 logεi
ts = logδ2 + ∑

u∈Γt\s

logυi
ut

with initial conditionυ1
ut = δ1d(ψut)

2.

Proof. We first extend the contraction result given in Appendix A by applying the inequality

R

ψ(xt ,a) ψ̂(xt ,a)
ψ(xt ,a)M(xt)E(xt)dxt

R

ψ(xt ,b) ψ̂(xt ,b)
ψ(xt ,b)M(xt)E(xt)dxt

≤

R

ψ(xt ,a)M(xt)E(xt)dxt
R

ψ(xt ,b)M(xt)E(xt)dxt
·d(ψ̂/ψ)2 .

Then, proceeding similarly to Theorem 15 yields the definition ofυi
ts, and including the additional

errors logδ2 in each message product (resulting from the product withψ̂t rather thanψt) gives the
definition ofεi

ts.

Incorrect modelŝψ may arise when the exact graph potentials have been estimated or quantized;
Theorem 16 gives us the means to interpret the (worst-case) overall effects of using an approximate
model. As an example, let us again consider the model depicted in Figure 6(b). Suppose that
we are givenquantizedversions of the pairwise potentials,ψ̂, specified by the value (rounded to
two decimal places)η = .65. Then, the true potentialψ hasη ∈ .65± .005, and thus is within
δ1 ≈ 1.022= (.35)(.655)

(.345)(.65) of the known approximation̂ψ. Applying the recursion of Theorem 16
allows us to conclude that the solution obtained using the approximate modelψ̂ and true modelψ
are within logd(e) ≤ .36, or alternatively that the beliefs found using the approximate model are
correct to within a multiplicative factor of about 1.43. The samêψ, with η assumed correct to three
decimal places, gives a bound logd(e) ≤ .04, or multiplicative factor of 1.04.

5.5 Stochastic Analysis

Unfortunately, the bounds given by Theorem 16 are often pessimistic compared to actual perfor-
mance. We may use a similar analysis, coupled with the assumption of uncorrelated message errors,
to obtain a more realistic estimate (though no longer a strict bound) on the resulting error.

921

IHLER, FISHER AND WILLSKY

Proposition 17. Suppose that the errorslogets are random and uncorrelated, so that at each iter-
ation i, for s 6= u and any x, E

[

logei
st(x) · logei

ut(x)
]

= 0, and that at each iteration of loopy BP,
the additional error (in the log domain) imposed on each message is uncorrelated with variance at
most(logδ)2. Then,

E
[

(

logd
(

Ei
t

))2
]

≤ ∑
u∈Γt

(

σi
ut

)2
(18)

whereσ1
ts = logd(ψts)

2 and

(

σi+1
ts

)2
=

(

log
d(ψts)

2 λi
ts+1

d(ψts)
2 +λi

ts

)2

+(logδ)2 (

logλi
ts

)2
= ∑

u∈Γt\s

(

σi
ut

)2
.

Proof. Let us define the (nuisance) scale factorαi
ts = argminα supx | logαei

ts(x)| for each errorei
ts,

and letζi
ts(x) = logαi

tse
i
ts(x). Now, we model the error functionζi

ts(x) (for eachx) as a random
variable with mean zero, and bound the standard deviation ofζi

ts(x) by σi
ts at each iterationi; under

the assumption that the errors in any two incoming messages are uncorrelated, we may assert addi-
tivity of their variances. Thus the variance of∑Γt\sζi

ut(x) is bounded by(logλi
ts)

2. The contraction
of Theorem 8 is a non-linear relationship; we estimate its effect on the errorvariance using a sim-
ple sigma-point quadrature (“unscented”) approximation (Julier and Uhlmann, 1996), in which the
standard deviationσi+1

ts is estimated by applying Theorem 8’s nonlinear contraction to the standard
deviation of the error on the incoming product (logλi

ts).

The assumption of uncorrelated errors is clearly questionable, since propagation around loops
may couple the incoming message errors. However, similar assumptions have yielded useful analy-
sis of quantization effects in assessing the behavior and stability of digital filters (Willsky, 1978). It
is often the case that empirically, such systems behave similarly to the predictionsmade by assum-
ing uncorrelated errors. Indeed, we shall see that in our simulations, theassumption of uncorrelated
errors provides a good estimate of performance.

Given the bound (18) on the variance of logd(E), we may apply a Chebyshev-like argument to
provide probabilistic guarantees on the magnitude of errors logd(E) observed in practice. In our
experiments (Section 5.6), the 2σ distance was almost always larger than the observed error. The
probabilistic bound derived using (18) is typically much smaller than the boundof Theorem 15 due
to the strictly sub-additive relationship between the standard deviations. However, the underlying
assumption of uncorrelated errors makes the estimate obtained using (18) unsuitable for deriving
strict convergence guarantees.

5.6 Experiments

We demonstrate the dynamic range error bounds for quantized messages with a set of Monte Carlo
trials. In particular, for each trial we construct a binary–valued 5×5 grid with uniform potential
strengths, which are either (1) all positively correlated, or (2) randomlychosen to be positively or
negatively correlated (equally likely); we also assign random single-node potentials to each variable
xs. We then run a quantized version of BP forn = 100 iterations from the same initial conditions,
rounding each log-message to discrete values separated by 2logδ (ensuring that the newly intro-
duced error satisfiesd(e) ≤ δ). Figure 7 shows the maximum belief error in each of 100 trials of
this procedure for various values ofδ.

922

LOOPY BP: CONVERGENCE ANDEFFECT OFMESSAGEERRORS

10
−3

10
−2

10
−1

10
0

10
−3

10
−2

10
−1

10
0

10
1

Strict bound
Stochastic estimate
Positive corr. potentials
Mixed corr. potentials

δ →

m
ax

lo
gd

(E
t)

10
−3

10
−2

10
−1

10
0

10
−3

10
−2

10
−1

10
0

10
1

δ →

m
ax

lo
gd

(E
t)

(a) logd(ψ)2 = .25 (b) logd(ψ)2 = 1

Figure 7: Maximum belief errors incurred as a function of the quantization error. The scatterplot
indicates the maximum error measured in the graph for each of 200 Monte Carlo runs;
this is strictly bounded above by Theorem 15, solid, and bounded with high probability
(assuming uncorrelated errors) by Proposition 17, dashed.

.

Also shown are two performance estimators—thebound on belief error developed in Sec-
tion 5.4, and the 2σ estimate computed assuming uncorrelated message errors as in Section 5.5.
As can be seen, the stochastic estimate is a much tighter, more accurate assessment of error, but it
does not possess the same strong theoretical guarantees. Since [as observed for digital filtering ap-
plications (Willsky, 1978)] the errors introduced by quantization are typically close to independent,
the assumptions underlying the stochastic estimate are reasonable, and empirically we observe that
the estimate and actual errors behave similarly.

6. KL-Divergence Measures

Although the dynamic range measure introduced in Section 4 leads to a number of strong guarantees,
its performance criterion may be unnecessarily (and undesirably) strict. Specifically, it provides a
pointwiseguarantee, thatmandm̂are close for every possible statex. For continuous-valued states,
this is an extremely difficult criterion to meet—for instance, it requires that the messages’ tails
match almost exactly. In contrast, typical measures of the difference between two distributions
operate by an average (mean squared error or mean absolute error) or weighted average (Kullback-
Leibler divergence) evaluation. To address this, let us consider applying a measure such as the
Kullback-Leibler (KL) divergence,

D(p‖p̂) =
Z

p(x) log
p(x)
p̂(x)

dx.

The pointwise guarantees of Section 4 are necessary to bound performance even in the case of
“unlikely” events. More specifically, the tails of a message approximation canbecome important if
two parts of the graph strongly disagree, in which case the tails of each message are the only overlap
of significant likelihood. One way to discount this possibility is to consider the graph potentials
themselves (in particular, the single node potentialsψt) as a realization of random variables which
“typically” agree, then apply a probabilistic measure to estimate the typical performance. From this

923

IHLER, FISHER AND WILLSKY

viewpoint, since a strong disagreement between parts of the graph is unlikely we will be able to
relax our error measure in the message tails.

Unfortunately, many of the properties which we relied on for analysis of thedynamic range
measure do not strictly hold for a KL-divergence measure of error, resulting in anapproximation,
rather than a bound, on performance. In Appendix B, we give a detailedanalysis of each property,
showing the ways in which each aspect can break down and discussing the reasonability of simple
approximations. In this section, we apply these approximations to develop a KL-divergence based
estimate of error.

6.1 Local Observations and Parameterization

To make this notion concrete, let us consider a graphical model in which the single-node poten-
tial functions are specified in terms of a set of observation variablesy = {yt}; in this section we
will examine the average (expected) behavior of BP over multiple realizationsof the observation
variablesy. We further assume that both the priorp(x) and likelihoodp(y|x) exhibit conditional
independence structure, expressed as a graphical model. Specifically, we assume throughout this
section that the observation likelihood factors as

p(y|x) = ∏
t

p(yt |xt), (19)

in other words, that each observation variableyt is local to (conditionally independent given) one
of thext . As for the prior modelp(x), for the moment we confine our attention to tree-structured
distributions, for which one may write (Wainwright et al., 2003)

p(x) = ∏
(s,t)∈E

p(xs,xt)

p(xs)p(xt)
∏

s
p(xs). (20)

The expressions (19)-(20) give rise to a convenient parameterizationof the joint distribution, ex-
pressed as

p(x,y) ∝ ∏
(s,t)∈E

ψst(xs,xt)∏
s

ψx
s(xs)ψy

s(xs) (21)

where

ψst(xs,xt) =
p(xs,xt)

p(xs)p(xt)
and ψx

s(xs) = p(xs) , ψy
s(xs) = p(ys|xs). (22)

Our goal is to compute the posterior marginal distributionsp(xs|y) at each nodes; for the tree-
structured distribution (21) this can be performed exactly and efficiently byBP. As discussed in the
previous section, we treat the{yt} as random variables; thus almost all quantities in this graph are
themselves random variables (as they are dependent on theyt), so that the single node observation
potentialsψy

s(xs), messagesmst(xt), etc.are random functions of their argumentxs. The potentials
due to the prior (ψst andψx

s), however, are not random variables as they do not depend on any of the
observationsyt .

For models of the form (21)-(22), the (unique) BP message fixed point consists of normalized
versions of the likelihood functionsmts(xs) ∝ p(yts|xs), whereyts denotes the set of all observations
{yu} such thatt separatesu from s. In this section it is also convenient to perform aprior-weighted

924

LOOPY BP: CONVERGENCE ANDEFFECT OFMESSAGEERRORS

normalization of the messagesmts, so that
R

p(xs)mts(xs) = 1 (as opposed to
R

mts(xs) = 1 as as-
sumed previously); we again assume this prior-weighted normalization is always possible (this is
trivially the case for discrete-valued statesx). Then, for a tree-structured graph, the prior-weight
normalized fixed-point message fromt to s is precisely

mts(xs) = p(yts|xs)/p(yts) (23)

and the products of incoming messages tot, as defined in Section 2.3, are equal to

Mts(xt) = p(xt |yts) Mt(xt) = p(xt |y).

We may now apply aposterior-weighted log-errormeasure, defined by

D(mut‖m̂ut) =
Z

p(xt |y) log
mut(xt)

m̂ut(xt)
dxt ; (24)

and may relate (24) to the Kullback-Leibler divergence.

Lemma 18. On a tree-structured graph, the error measureD(Mt ,M̂t) is equivalent to the KL-
divergence of the true and estimated posterior distributions at node t:

D(Mt‖M̂t) = D(p(xt |y)‖p̂(xt |y)).

Proof. This follows directly from the definitions ofD, and the fact that on a tree, the unique fixed
point has beliefsMt(xt) = p(xt |y).

Again, the errorD(mut‖m̂ut) is a function of the observationsy, both explicitly through the term
p(xt |y) and implicitly through the messagemut(xt), and is thus also a random variable. Although
the definition ofD(mut‖m̂ut) involves theglobalobservationy and thus cannot be calculated at node
u without additional (non-local) information, we will primarily be interested in the expected value
of these errors over many realizationsy, which is a function only of the distribution. Specifically,
we can see that in expectation over the datay, it is simply

E [D(mut‖m̂ut)] = E

[

Z

p(xt)mut(xt) log
mut(xt)

m̂ut(xt)
dxt

]

. (25)

One nice consequence of the choice of potential functions (22) is the locality of prior infor-
mation. Specifically, ifno observationsy are available, and only prior information is present, the
BP messages are trivially constant [mut(x) = 1 ∀x]. This ensures that any message approximations
affect only the data likelihood, and not the priorp(xt); this is similar to the motivation of Paskin and
Guestrin (2004), in which an additional message-passing procedure is used to create this parame-
terization.

Finally, two special cases are of note. First, ifxs is discrete-valued and the prior distribu-
tion p(xs) constant (uniform), the expected message distortion with prior-normalized messages,
E[D(m‖m̂)], and the KL-divergence of traditionally normalized messages behave equivalently, i.e.,

E [D(mts‖m̂ts)] = E

[

D

(

mts
R

mts

∥

∥

m̂ts
R

m̂ts

)]

925

IHLER, FISHER AND WILLSKY

where we have abused the notation of KL-divergence slightly to apply it to the normalized likelihood
mts/

R

mts. This interpretation leads to the same message-censoring criterion used in Chen et al.
(2004).

Secondly, when the statexs is a discrete-valued random variable taking on one ofM possible
values, a straightforward uniform quantization of the value ofp(xs)m(xs) results in a bound on the
divergence (25). Specifically, we have the following lemma:

Lemma 19. For an M-ary discrete variable x, the quantization

p(x)m(x) →{ε,3ε, . . . ,1− ε}

results in an expected divergence bounded by

E [D(m(x)‖m̂(x))] ≤ (2log2+M)Mε+O(M3ε2).

Proof. Defineµ(x) = p(x)m(x), andµ̄(x) ∈ {ε,3ε, . . . ,1− ε} (for eachx) to be its quantized value.
Then, the prior-normalized approximation ˆm(x) satisfies

p(x)m̂(x) = µ̄(x) / ∑
x

µ̄(x) = µ̄(x)/C

whereC∈ [1−Mε,1+Mε]. The expected divergence

E [D(m(x)‖m̂(x))] = ∑
x

p(x)m(x) log
m(x)
m̂(x)

≤ ∑
x

µ(x) log
µ(x)
µ̄(x)

+∑
x
| logC|.

The first sum is at its maximum forµ(x) = 2ε andµ̄(x) = ε, which results in the value∑x(2log2)ε.
Applying the Taylor expansion of the log, the second sum∑ | logC| is bounded above byM2ε +
O(M3ε2).

Thus, for example, for uniform quantization of a message with binary–valued statex, fidelity up
to two significant digits (ε = .005) results in an errorD which, on average, is less than.034.

We now state the approximations which will take the place of the fundamental properties used
in the preceding sections, specifically versions of the triangle inequality, sub-additivity, and contrac-
tion. Although these properties donot hold in general, in practice useful estimates are obtained by
making approximations corresponding to each property and following the same development used
in the preceding sections. (In fact, experimentally these estimates still appearquite conservative.)
A more detailed analysis of each property, along with justification for the approximation applied, is
given in Appendix B.

6.2 Approximations

Three properties of the dynamic range described in Section 4 are importantin the error analysis
of Section 5—a form of the triangle inequality, enabling the accumulation of errors in successive
approximations to be bounded by the sum of the individual errors, a formof sub-additivity, enabling
the accumulation of errors in the message product operation to be boundedby the sum of incoming
errors, and a rate of contraction due to convolution with each pairwise potential. We assume the
following three properties for the expected error; see Appendix B for amore detailed discussion.

926

LOOPY BP: CONVERGENCE ANDEFFECT OFMESSAGEERRORS

Approximation 20 (Triangle Inequality). For a true BP fixed-point message mut and two approx-
imationsm̂ut, m̃ut, we assume

D(mut‖m̃ut) ≤ D(mut‖m̂ut)+D(m̂ut‖m̃ut). (26)

Comment.This is not strictly true for arbitrary ˆm, m̃, since the KL-divergence (and thusD) does
not satisfy the triangle inequality.

Approximation 21 (Sub-additivity). For true BP fixed-point messages{mut} and approximations
{m̂ut}, we assume

D(Mts‖M̂ts) ≤ ∑
u∈Γt\s

D(mut‖m̂ut). (27)

Approximation 22 (Contraction). For a true BP fixed-point message product Mts and approxima-
tion M̂ts, we assume

D(mts‖m̂ts) ≤ (1− γts)D(Mts‖M̂ts) (28)

where

γts = min
a,b

Z

min[ρ(xs,xt = a) , ρ(xs,xt = b)]dxs ρ(xs,xt) =
ψts(xs,xt)ψx

s(xs)
R

ψts(xs,xt)ψx
s(xs)dxs

.

Comment.For tree-structured graphical models with the parametrization described by(21)-(22),
ρ(xs,xt) = p(xs|xt), andγts corresponds to the rate of contraction described by Boyen and Koller
(1998).

6.3 Steady-State Errors

Applying these approximations to graphs with cycles, and following the same development used
for constructing the strict bounds of Section 5, we find the following estimatesof steady-state error.
Note that, other than those outlined in the previous section (and described in Appendix B), this
development involves no additional approximations.

Approximation 23. After n≥ 1 iterations of loopy BP subject to additional errors at each iteration
of magnitude (measured byD) bounded above by some constantδ, with initial messages{m0

tu}
satisfyingD(mtu‖m0

tu) less than some constant C, results in an expected KL-divergence between a
true BP fixed point{Mt} and the approximation{M̂n

t } bounded by

Ey
[

D(Mt‖M̂n
t)
]

= Ey

[

D(Mt‖M̂
n

t)
]

≤ ∑
u∈Γt

((1− γut)εn−1
ut +δ)

whereε0
ts = C and

εi
ts = ∑

u∈Γt\s

((1− γut)εi−1
ut +δ).

Comment.The argument proceeds similarly to that of Theorem 15. Letεi
ts bound the quantity

D(Mts‖M̂ i
ts) at each iterationi, and apply Approximations 20-22.

927

IHLER, FISHER AND WILLSKY

We refer to the estimate described in Approximation 23 as a “bound-approximation”, in order
to differentiate it from the stochastic error estimate presented next.

Just as a stochastic analysis of message error gave a tighter estimate for thepointwise difference
measure, we may obtain an alternate Chebyshev-like “bound” by assuming that the message pertur-
bations are uncorrelated (already an assumption of the KL additivity analysis) and that we require
only an estimate which exceeds the expected error with high probability.

Approximation 24. Under the same assumptions as Approximation 23, but describing the error in
terms of its variance and assuming that these errors are uncorrelated gives the estimate

E
[

D(Mt‖M̂
n

t)2
]

≤ ∑
u∈Γt

(σn−1
ut)2

where(σ0
ts)

2 = C and
(σi

ts)
2 = ∑

u∈Γt\s

((1− γut)σi−1
ut)2 +δ2.

Comment.The argument proceeds similarly to Proposition 17, by induction on the claim that (σi
ut)

2

bounds the variance at each iterationi. This again applies Theorem 29 ignoring any effects due to
loops, as well as the assumption that the message errors are uncorrelated(implying additivity of the
variances of each incoming message). As in Section 5.5, we take the 2σ value as our performance
estimate.

6.4 Experiments

Once again, we demonstrate the utility of these two estimates on the same uniform grids used
in Section 5.6. Specifically, we generate 200 example realizations of a 5× 5 binary grid and its
observation potentials (100 with strictly attractive potentials and 100 with mixed potentials), and
compare a quantized version of loopy BP with the solution obtained by exact loopy BP, as a function
of KL-divergence boundδ incurred by the quantization levelε (see Lemma 18).

Figure 8(a) shows the maximum KL-divergence from the correct fixed point resulting in each
Monte Carlo trial for a grid with relatively weak potentials (in which loopy BP is analytically guar-
anteed to converge). As can be seen, both the bound (solid) and stochastic estimate (dashed) still
provide conservative estimates of the expected error. In Figure 8(b) we repeat the same analysis but
with stronger pairwise potentials (for which convergence to a unique solution is not guaranteed but
typically occurs in practice). In this case, the bound-based estimate of KL-divergence is trivially
infinite—its linear rate of contraction is insufficient to overcome the accumulationrate. However,
the greater sub-additivity in the stochastic estimate leads to the non-trivial curve shown (dashed),
which still provides a reasonable (and still conservative) estimate of the performance in practice.

7. Conclusions and Future Directions

We have described a framework for the analysis of belief propagation stemming from the view that
the message at each iteration is some noisy or erroneous version of some true BP fixed point. By
measuring and bounding the error at each iteration, we may analyze the behavior of various forms
of BP and test for convergence to the ideal fixed-point messages, or bound the total error from any
such fixed point.

928

LOOPY BP: CONVERGENCE ANDEFFECT OFMESSAGEERRORS

10
3

10
 2

10
 1

10
 4

10
 3

10
 2

10
 1

10
0

10
1

Expectation bound

Stochastic estimate

Positive corr. potentials

Mixed corr. potentials

δ →

av
g

D
(M

t‖
M̂

t)

10
−3

10
−2

10
−1

10
−4

10
−3

10
−2

10
−1

10
0

10
1

δ →

av
g

D
(M

t‖
M̂

t)

(a) logd(ψ)2 = .25 (b) logd(ψ)2 = 1

Figure 8: KL-divergence of the beliefs as a function of the added message errorδ. The scatterplots
indicates the average error measured in the graph for each of 200 MonteCarlo runs,
along with the expected divergence bound (solid) and 2σ stochastic estimate (dashed).
For stronger potentials, the upper bound may be trivially infinite; in this examplethe
stochastic estimate still gives a reasonable gauge of performance.

.

In order to do so, we introduced a measure of the pointwise dynamic range,which represents
a strong condition on the agreement between two messages; after showing itsutility for common
inference tasks such as MAP estimation and its transference to other common measures of error, we
showed that under this measure the influence of message errors is both sub-additive and measurably
contractive. These facts led to conditions under which traditional belief propagation may be shown
to converge to a unique fixed point, and more generally a bound on the distance between any two
fixed points. Furthermore, it enabled analysis of quantized, stochastic, or other approximate forms
of belief propagation, yielding conditions under which they may be guaranteed to converge to some
unique region, as well as bounds on the ensuing error over exact BP.If we further assume that
the message perturbations are uncorrelated, we obtain an alternate, tighterestimate of the resulting
error.

The second measure considered an average case error similar to the Kullback-Liebler diver-
gence, in expectation over the possible realizations of observations within the graph. While this
gives no guarantees about any particular realization, the difference measure itself is able to be much
less strict (allowing poor approximations in the distribution tails, for example). Analysis of this case
is substantially more difficult and leads to approximations rather than guarantees, but explains some
of the observed similarities in behavior among the two forms of perturbed BP. Simulations indicate
that these estimates remain sufficiently accurate to be useful in practice.

Further analysis of the propagation of message errors has the potential togive an improved
understanding of when and why BP converges (or fails to converge),and potentially also the role of
the message schedule in determining the performance. Additionally, there aremany other possible
measures of the deviation between two messages, any of which may be able to provide an alternative
set of bounds and estimates on performance of BP using either exact or approximate messages.

Acknowledgments

929

IHLER, FISHER AND WILLSKY

The authors would like to thank Tom Heskes, Martin Wainwright, Erik Sudderth, and Lei Chen for
many helpful discussions. Thanks also to the anonymous reviewers of JMLR for their insightful
comments, and for suggesting the improvement of equation (13). This research was supported in
part by AFOSR grant F49620-00-0362 and by ODDR&E MURI through ARO grant DAAD19-00-
0466. Portions of this work have appeared as a conference paper (Ihler et al., 2004b).

Appendix A. Proof of Theorem 8

Because all quantities in this section refer to the pair(t,s), we suppress the subscripts. The error
measured(e) is given by

d(e)2 = d(m̂/m)2 = max
a,b

R

ψ(xt ,a)M(xt)E(xt)dxt
R

ψ(xt ,a)M(xt)dxt
·

R

ψ(xt ,b)M(xt)dxt
R

ψ(xt ,b)M(xt)E(xt)dxt
(29)

subject to a few constraints: positivity of the messages and potential functions, normalization of
the message productM, and the definitions ofd(E) andd(ψ). In order to analyze the maximum
possible value ofd(e) for any functionsψ, M, andE, we make repeated use of the following
property:

Lemma 25. For f1, f2, g1, g2 all positive,

f1 + f2
g1 +g2

≤ max

[

f1
g1

,
f2
g2

]

.

Proof. Assume without loss of generality thatf1/g1 ≥ f2/g2. Then we havef1/g1 ≥ f2/g2 ⇒
f1g2 ≥ f2g1 ⇒ f1g1 + f1g2 ≥ f1g1 + f2g1 ⇒

f1
g1

≥ f1+ f2
g1+g2

.

This fact, extended to more general sums, may be applied directly to (29) to prove Corollary 9.
However, a more careful application leads to the result of Theorem 8. The following lemma will
assist us:

Lemma 26. The maximum of d(e) with respect toψ(xt ,a), ψ(xt ,b), and E(xt) is attained at some
extremum of their feasible function space. Specifically,

ψ(x,a) = 1+(d(ψ)2−1)χA(x) E(x) = 1+(d(E)2−1)χE(x)

ψ(x,b) = 1+(d(ψ)2−1)χB(x)

whereχA, χB, andχE are indicator functions taking on only values 0 and 1.

Proof. We simply show the result forψ(x,a); the proofs forψ(x,b) andE(x) are similar. First, ob-
serve that without loss of generality we may scaleψ(x,a) so that its minimum value is 1. Now con-
sider a convex combination of any two possible functions: letψ(xt ,a) = α1ψ1(xt ,a)+ α2ψ2(xt ,a)
with α1 ≥ 0, α2 ≥ 0, andα1 + α2 = 1. Then, applying Lemma 25 to the left-hand term of (29) we
have

α1
R

ψ1(xt ,a)M(xt)E(xt)dxt +α2
R

ψ2(xt ,a)M(xt)E(xt)dxt

α1
R

ψ1(xt ,a)M(xt)dxt +α2
R

ψ2(xt ,a)M(xt)dxt

≤ max

[R

ψ1(xt ,a)M(xt)E(xt)dxt
R

ψ1(xt ,a)M(xt)dxt
,

R

ψ2(xt ,a)M(xt)E(xt)dxt
R

ψ2(xt ,a)M(xt)dxt

]

. (30)

930

LOOPY BP: CONVERGENCE ANDEFFECT OFMESSAGEERRORS

Thus,d(e) is maximized by taking whichever ofψ1, ψ2 results in the largest value—an extremum.
It remains only to describe the form of such a function extremum. Any potential ψ(x,a) may be

considered to be the convex combination of functions of the form
(

d(ψ)2−1
)

χ(x)+ 1, whereχ
takes on values{0,1}. This can be seen by the construction

ψ(x,a) =
Z 1

0

(

d(ψ)2−1
)

χy
m(x,a)+1 dy

where χy
m(x,a) =

{

1 ψ(x,a) ≥ 1+(d(ψ)2−1)y

0 otherwise.

Thus, the maximum value ofd(e) will be attained by a potential equal to one of these functions.

Applying Lemma 26, we define the shorthand

MA =
Z

M(x)χA(x) MB =
Z

M(x)χB(x) ME =
Z

M(x)χE(x)

MAE =
Z

M(x)χA(x)χE(x) MBE =
Z

M(x)χB(x)χE(x)

α = d(ψ)2−1 β = d(E)2−1,

giving

d(e)2 ≤ max
M

1+αMA +βME +αβMAE

1+αMB +βME +αβMBE
·
1+αMB

1+αMA
.

Using the same argument outlined by Equation 30, one may argue that the scalars MAE, MBE, MA,
andMB must also be extremum of their constraint sets. Noticing thatMAE should be large andMBE

small, we may summarize the constraints by

0≤ MA, MB, ME ≤ 1 MAE ≤ min[MA, ME] MBE ≥ max[0, ME − (1−MB)]

(where the last constraint arises from the fact thatME + MB−MBE ≤ 1). We then consider each
possible case:MA ≤ ME, MA ≥ ME, . . . In each case, we find that the maximum is found at the
extremaMAE = MA = ME andME = 1−MB. This gives

d(e)2 ≤ max
M

1+(α+β+αβ)ME

1+α+(β−α)ME
·
1+α−αME

1+αME
.

The maximum with respect toME (whose optimum is not an extreme point) is given by taking the
derivative and setting it to zero. This procedure gives a quadratic equation; solving and selecting
the positive solution givesME = 1

β(
√

β+1−1). Finally, plugging in, simplifying, and taking the
square root yields

d(e) ≤
d(ψ)2d(E)+1

d(ψ)2 +d(E)
.

931

IHLER, FISHER AND WILLSKY

Appendix B. Properties of the Expected Divergence

We begin by examining the properties of the expected divergence (25) ontree-structured graphical
models parameterized by (21)-(22); we discuss the application of these results to graphs with cycles
in Appendix B.4. Recall that, for tree-structured models described by (21)-(22), the prior-weight
normalized messages of the (unique) fixed point are equivalent to

mut(xt) = p(yut|xt)/p(yut),

and that the message products are given by

Mts(xt) = p(xt |yts)Mt(xt) = p(xt |y).

Furthermore, let us define theapproximatemessages ˆmut(x) in terms of some approximate like-
lihood function, i.e.,m̂ut(x) = p̂(yut|xt)/p̂(yut) where p̂(yut) =

R

p̂(yut|xt)p(xt)dxt . We may then
examine each of the three properties in turn: the triangle inequality, additivity,and contraction.

B.1 Triangle Inequality

Kullback-Leibler divergence is not a true distance, and in general, it does not satisfy the triangle
inequality. However, the following generalization does hold.

Theorem 27. For a tree-structured graphical model parameterized as in(21)-(22), and given
the true BP message mut(xt) and two approximationŝmut(xt), m̃ut(xt), suppose that mut(xt) ≤
cutm̂ut(xt) ∀xt . Then,

D(mut‖m̃ut) ≤ D(mut‖m̂ut)+cutD(m̂ut‖m̃ut)

and furthermore, ifm̂ut(xt) ≤ c∗utm̃ut(xt) ∀xt , then mut(xt) ≤ cutc∗utm̃ut(xt) ∀xt .

Comment.Sincem,m̂ are prior-weight normalized (
R

p(x)m(x) =
R

p(x)m̂(x) = 1), for a strictly
positive priorp(x) we see thatcut ≥ 1, with equality if and only ifmut(x) = m̂ut(x) ∀x. However,
this is often quite conservative and Approximation 20 (cut = 1) is sufficient to estimate the resulting
error. Moreover, we shall see that the constants{cut} are also affected by the product operation,
described next.

B.2 Near-Additivity

For BP fixed-point messages{mut(xt)}, approximated by the messages{m̂ut(xt)}, the resulting error
is not quite guaranteed to be sub-additive, but is almost so.

Theorem 28. The expected error E[D(Mt‖M̂t)] between the true and approximate beliefs is nearly
sub-additive; specifically,

E
[

D(Mt‖M̂t)
]

≤ ∑
u∈Γt

E [D(mut‖m̂ut)]+
(

Î − I
)

(31)

where I= E

[

log p(y)/ ∏
u∈Γt

p(yut)

]

and Î = E

[

log p̂(y)/ ∏
u∈Γt

p̂(yut)

]

.

932

LOOPY BP: CONVERGENCE ANDEFFECT OFMESSAGEERRORS

Moreover, if mut(xt) ≤ cutm̂ut(xt) for all xt and for each u∈ Γt , then

Mt(xt) ≤ ∏
u∈Γt

cutC
∗
t M̂t(xt) C∗

t =
p̂(y)

∏u∈Γt
p̂(yut)

∏u∈Γt
p(yut)

p(y)
(32)

Proof. By definition we have

E[D(Mt‖M̂t)] = E

[

Z

p(xt ,y) log
Mt(xt)

M̂t(xt)
dxt

]

= E

[

Z

p(xt |y) log
p(xt)

p(xt)

p(y|xt)

p̂(y|xt)

p̂(y)

p(y)
dxt

]

.

Using the Markov property of (21) to factorp(y|xt), we have

= E

[

Z

p(xt |y) ∑
u∈Γt

log
p(yut|xt)

p̂(yut|xt)
+ p(xt |y) log

p̂(y)

p(y)
dxt

]

and, applying the identitymut(xt) = p(yut|xt)/p(yut) gives

= ∑
u∈Γt

E

[

Z

p(xt |y) log
mut(xt)

m̂ut(xt)

]

+E

[

log
p̂(y)

∏u p̂(yut)

∏u p(yut)

p(y)

]

dxt

= ∑
u∈Γt

E [D(mut‖m̂ut)]+(Î − I)

whereÎ , I are as defined. Here,I is the mutual information (the divergence from independence) of
the variables{yut}u∈Γt . Equation (32) follows from a similar argument.

Unfortunately, it isnot the case that the quantitŷI − I must necessarily be less than or equal
to zero. To see how it may be positive, consider the following example. Letx = [xa,xb] be a two-
dimensional binary random variable, and letya andyb be observations of the specified dimension
of x. Then, ifya andyb are independent (I = 0), the true messagesma(x) andmb(x) have a regular
structure; in particular,ma andmb have the forms[p1p2p1p2] and[p3p3p4p4] for somep1, . . . , p4.
However, we have placed no such requirements on the messageerrors m̂/m; they have the poten-
tially arbitrary formsea = [e1e2e3e4], etc.. If either message errorea,eb doesnot have the same
structure asma,mb respectively (even if they are random and independent), thenÎ will in general
not be zero. This creates theappearanceof information betweenya andyb, and the KL-divergence
will not be strictly sub-additive.

However, this is not a typical situation. One may argue that in most problems ofinterest, the
informationI between observations is non-zero, and the types of message perturbations [particularly
random errors, such as appear in stochastic versions of BP (Sudderth et al., 2003; Isard, 2003; Koller
et al., 1999)] tend to degrade this information on average. Thus, is is reasonable to assume thatÎ ≤ I .

A similar quantity defines the multiplicative constantC∗
t in (32). WhenC∗

t ≤ 1, it acts to reduce
the constant which boundsMt by M̂t ; if this occurs “typically”, it lends additional support for Ap-
proximation (20). Moreover, ifE[C∗

t] ≤ 1, then by Jensen’s inequality, we haveÎ − I ≤ 0, ensuring
sub-additivity as well.

933

IHLER, FISHER AND WILLSKY

B.3 Contraction

Analysis of the contraction of expected KL-divergence is also non-trivial; however, the work of Boyen
and Koller (1998) has already considered this problem in some depth for the specific case of directed
Markov chains (in which additivity issues do not arise) and projection-based approximations (for
which KL-divergence does satisfy a form of the triangle inequality). We may directly apply their
findings to construct Approximation 22.

Theorem 29. On a tree-structured graphical model parameterized as in(21)-(22), the error mea-
sureD(M,M̂) satisfies the inequality

E [D(mts‖m̂ts)] ≤ (1− γts)E
[

D(Mts‖M̂ts)
]

where γts = min
a,b

Z

min[p(xs|xt = a) , p(xs|xt = b)]dxs.

Proof. For a detailed development, see Boyen and Koller (1998); we merely sketchthe proof here.
First, note that

E [D(mts‖m̂ts)] = E

[

Z

p(xs|y) log
p(yts|xs)

p(yts)

p̂(yts)

p̂(yts|xs)

]

= E

[

Z

p(xs|yts) log
p(xs|yts)

p̂(xs|yts)

]

= E [D(p(xs|yts)‖p̂(xs|yts))]

(which is the quantity considered by Boyen and Koller, 1998) and furtherthat

p(xs|yts) =
Z

p(xs|xt)p(xt |yts)dxt .

By constructing two valid conditional distributionsf1(xs|xt) and f2(xs|xt) such thatf1 has the form
f1(xs|xt) = f1(xs) (independence ofxs, xt), and

p(xs|xt) = γts f1(xs|xt)+(1− γts f2(xs|xt)

one may use the convexity of KL-divergence to show

D(p(xs|yts)‖p̂(xs|yts)) ≤ γtsD(f1∗ p(xt |yts)‖ f1∗ p̂(xt |yts))+

(1− γts)D(f2∗ p(xt |yts)‖ f2∗ p̂(xt |yts))

where “∗” denotes convolution, i.e.,f1 ∗ p(xt |yts) =
R

f1(xs|xt)p(xt |yts)dxt . Since the conditional
f1 induces independence betweenxs andxt , the first divergence term is zero, and sincef2 is a valid
conditional distribution, the second divergence term is less thanD(p(xt |yts)‖p̂(xt |yts)) (see Cover
and Thomas, 1991). Thus we have a minimum rate of contraction of(1− γts).

It is worth noting that Theorem 29 gives alinear contraction rate. While this makes for sim-
pler recurrence relations than the nonlinear contraction found in Section 4.2, it has the disadvantage
that, if the rate of error addition exceeds the rate of contraction it may resultin a trivial (infinite)
bound. Theorem 29 is the best contraction rate currently known for arbitrary conditional distri-
butions, although certain special cases (such as binary–valued random variables) appear to admit
stronger contractions.

934

LOOPY BP: CONVERGENCE ANDEFFECT OFMESSAGEERRORS

B.4 Graphs with Cycles

The analysis and discussion of each property (Appendices B.1–B.3) also relied on assuming a tree-
structured graphical model, and using the direct relationship between messages and likelihood func-
tions for the parameterization (21)-(22). However, for BP on generalgraphs, this parameterization
is not valid.

One way to generalize this choice is given by the re-parameterization around some fixed point
of loopy BP on the graphical model of the prior. If the original potentialsψ̃st, ψ̃x

s specify the prior
distribution [cf. (22)],

p(x) ∝ ∏
(s,t)∈E

ψ̃st(xs,xt)
˜∏sψ

x
s(xs) (33)

then given a BP fixed point{M̃st,M̃s} of (33), we may choose a new parameterization of the same
prior ψst,ψx

s given by

ψst(xs,xt) =
M̃st(xs)M̃ts(xt)ψ̃st(xs,xt)

M̃s(xs)M̃t(xt)
and ψx

s(xs) = M̃s(xs). (34)

This parameterization ensures that uninformative messages [mut(xt) = 1 ∀xt] comprise a fixed point
for the graphical model ofp(x) as described by the new potentials{ψst,ψs}. For a tree-structured
graphical model, this recovers the parameterization given by (22).

However, the messages of loopy BP are no longer precisely equal to the likelihood functions
m(x) = p(y|x)/p(y), and thus the expectation applied in Theorem 28 is no longer consistent with
the messages themselves. Additionally, the additivity and contraction statements were developed
under the assumption that the observed datay along different branches of the tree are conditionally
independent; in graphs with cycles, this is not the case. In the computation tree formalism, instead
of being conditionally independent, the observationsy actuallyrepeatthroughout the tree.

However, the assumption of independence is precisely the same assumption applied by loopy
belief propagation itself to perform tractable approximate inference. Thus, for problems in which
loopy BP is well-behaved and results in answers similar to the true posterior distributions, we may
expect our estimates of belief error to be similarly incorrect but near to the true divergence.

In short, all three properties required for a strict analysis of the propagation of errors in BP fail,
in one sense or another, for graphs with cycles. However, for many situations of practical interest,
they are quite close to the real average-case behavior. Thus we may expect that our approximations
give rise to reasonable estimates of the total error incurred by approximateloopy BP, an intuition
which appears to be borne out in our simulations (Section 6.4).

References

X. Boyen and D. Koller. Tractable inference for complex stochastic processes. InUncertainty in Artificial
Intelligence, pages 33–42, 1998.

H. Chan and A. Darwiche. A distance measure for bounding probabilistic belief change. International
Journal of Approximate Reasoning, 38(2):149–174, Feb 2005.

L. Chen, M. Wainwright, M. Cetin, and A. Willsky. Data association based on optimization in graphical
models with application to sensor networks. Submitted toMathematical and Computer Modeling, 2004.

P. Clifford. Markov random fields in statistics. In G. R. Grimmett and D. J. A. Welsh, editors,Disorder in
Physical Systems, pages 19–32. Oxford University Press, Oxford, 1990.

935

IHLER, FISHER AND WILLSKY

J. M. Coughlan and S. J. Ferreira. Finding deformable shapesusing loopy belief propagation. InEuropean
Conference on Computer Vision 7, May 2002.

H. Georgii. Gibbs measures and phase transitions. Studies in Mathematics. de Gruyter, Berlin / New York,
1988.

A. Gersho and R. M. Gray.Vector quantization and signal compression. Kluwer, Boston, 1991.

T. Heskes. On the uniqueness of loopy belief propagation fixed points. Neural Computation, 16(11):2379–
2413, 2004.

A. T. Ihler, J. W. Fisher III, and A. S. Willsky. Communication-constrained inference. Technical Report
2601, MIT, Laboratory for Information and Decision Systems, 2004a.

A. T. Ihler, J. W. Fisher III, and A. S. Willsky. Message errors in belief propagation. InNeural Information
Processing Systems, 2004b.

M. Isard. PAMPAS: Real–valued graphical models for computer vision. In IEEE Computer Vision and
Pattern Recognition, 2003.

S. Julier and J. Uhlmann. A general method for approximatingnonlinear transformations of probability
distributions. Technical report, RRG, Dept. of Eng. Science, Univ. of Oxford, 1996.

D. Koller, U. Lerner, and D. Angelov. A general algorithm forapproximate inference and its application to
hybrid Bayes nets. InUncertainty in Artificial Intelligence 15, pages 324–333, 1999.

F. Kschischang, B. Frey, and H.-A. Loeliger. Factor graphs and the sum-product algorithm.IEEE Transac-
tions on Information Theory, 47(2):498–519, February 2001.

S. L. Lauritzen.Graphical Models. Oxford University Press, Oxford, 1996.

T. Minka. Expecatation propagation for approximate bayesian inference. InUncertainty in Artificial Intelli-
gence, 2001.

M. A. Paskin and C. E. Guestrin. Robust probabilistic inference in distributed systems. InUncertainty in
Artificial Intelligence 20, 2004.

J. Pearl.Probabilistic Reasoning in Intelligent Systems. Morgan Kaufman, San Mateo, 1988.

E. B. Sudderth, A. T. Ihler, W. T. Freeman, and A. S. Willsky. Nonparametric belief propagation. InIEEE
Computer Vision and Pattern Recognition, 2003.

S. Tatikonda and M. Jordan. Loopy belief propagation and gibbs measures. InUncertainty in Artificial
Intelligence, 2002.

M. J. Wainwright, T. S. Jaakkola, and A. S. Willsky. Tree–based reparameterization analysis of sum–product
and its generalizations.IEEE Transactions on Information Theory, 49(5), May 2003.

Y. Weiss. Correctness of local probability propagation in graphical models with loops.Neural Computation,
12(1), 2000.

A. Willsky. Relationships between digital signal processing and control and estimation theory.Proceedings
of the IEEE, 66(9):996–1017, September 1978.

J. S. Yedidia, W. T. Freeman, and Y. Weiss. Constructing freeenergy approximations and generalized belief
propagation algorithms. Technical Report 2004-040, MERL,May 2004.

936

Journal of Machine Learning Research 6 (2005) 937–965 Submitted 7/04; Revised 4/05; Published 6/05

Learning a Mahalanobis Metric from Equivalence Constraints

Aharon Bar-Hillel AHARONBH@CS.HUJI.AC.IL
Tomer Hertz TOMBOY@CS.HUJI.AC.IL
Noam Shental FENOAM@CS.HUJI.AC.IL
Daphna Weinshall DAPHNA@CS.HUJI.AC.IL
School of Computer Science & Engineering and Center for Neural Computation
The Hebrew University of Jerusalem
Jerusalem, Israel 91904

Editor: Greg Ridgeway

Abstract
Many learning algorithms use a metric defined over the input space as a principal tool, and

their performance critically depends on the quality of thismetric. We address the problem of
learning metrics using side-information in the form of equivalence constraints. Unlike labels, we
demonstrate that this type of side-information can sometimes be automatically obtained without
the need of human intervention. We show how such side-information can be used to modify the
representation of the data, leading to improved clusteringand classification.

Specifically, we present the Relevant Component Analysis (RCA) algorithm, which is a simple
and efficient algorithm for learning a Mahalanobis metric. We show that RCA is the solution of
an interesting optimization problem, founded on an information theoretic basis. If dimensionality
reduction is allowed within RCA, we show that it is optimallyaccomplished by a version of Fisher’s
linear discriminant that uses constraints. Moreover, under certain Gaussian assumptions, RCA can
be viewed as a Maximum Likelihood estimation of the within class covariance matrix. We conclude
with extensive empirical evaluations of RCA, showing its advantage over alternative methods.
Keywords: clustering, metric learning, dimensionality reduction, equivalence constraints, side
information.

1. Introduction

A number of learning problems, such as clustering and nearest neighborclassification, rely on some
a priori defined distance function over the input space. It is often the case that selecting a “good”
metric critically affects the algorithms’ performance. In this paper, motivated by the wish to boost
the performance of these algorithms, we study ways to learn a “good” metric using side information.

One difficulty in finding a “good” metric is that its quality may be context dependent. For
example, consider an image-retrieval application which includes many facialimages. Given a
query image, the application retrieves the most similar faces in the database according to some
pre-determined metric. However, when presenting the query image we may beinterested in retriev-
ing other images of the same person, or we may want to retrieve other faces with the same facial
expression. It seems difficult for a pre-determined metric to be suitable fortwo such different tasks.

In order to learn a context dependent metric, the data set must be augmented by some additional
information, or side-information, relevant to the task at hand. For example we may have access
to the labels ofpart of the data set. In this paper we focus on another type of side-information,

c©2005 Aharon Bar Hillel, Tomer Hertz, Noam Shental and Daphna Weinshall.

BAR HILLEL , HERTZ, SHENTAL AND WEINSHALL

in which equivalence constraintsbetween a few of the data points are provided. More specifically
we assume knowledge about small groups of data points that are known to originate from the same
class, although their label is unknown. We term these small groups of points“chunklets”.

A key observation is that in contrast to explicit labels that are usually provided by a human
instructor, in many unsupervised learning tasks equivalence constraintsmay be extracted with min-
imal effort or even automatically. One example is when the data is inherently sequential and can be
modelled by a Markovian process. Consider for example movie segmentation,where the objective is
to find all the frames in which the same actor appears. Due to the continuous nature of most movies,
faces extracted from successive frames in roughly the same location canbe assumed to come from
the same person. This is true as long as there is no scene change, which can be robustly detected
(Boreczky and Rowe, 1996). Another analogous example is speaker segmentation and recognition,
in which the conversation between several speakers needs to be segmented and clustered according
to speaker identity. Here, it may be possible to automatically identify small segmentsof speech
which are likely to contain data points from a single yetunknownspeaker.

A different scenario, in which equivalence constraints are the naturalsource of training data,
occurs when we wish to learn from several teachers who do not know each other and who are not
able to coordinate among themselves the use of common labels. We call this scenario ‘distributed
learning’.1 For example, assume that you are given a large database of facial imagesof many people,
which cannot be labelled by a small number of teachers due to its vast size. The database is therefore
divided (arbitrarily) intoP parts (whereP is very large), which are then given toP teachers to
annotate. The labels provided by the different teachers may be inconsistent: as images of the same
person appear in more than one part of the database, they are likely to be given different names.
Coordinating the labels of the different teachers is almost as daunting as labelling the original data
set. However, equivalence constraints can be easily extracted, since points which were given the
same tag by a certain teacher are known to originate from the same class.

In this paper we study how to use equivalence constraints in order to learnan optimal Maha-
lanobis metric between data points. Equivalently, the problem can also be posed as learning a good
representation function, transforming the data representation by the square root of the Mahalanobis
weight matrix. Therefore we shall discuss the two problems interchangeably.

In Section 2 we describe the proposed method–the Relevant Component Analysis (RCA) algo-
rithm. Although some of the interesting results can only be proven using explicitGaussian assump-
tions, the optimality of RCA can be shown with some relatively weak assumptions, restricting the
discussion to linear transformations and the Euclidean norm. Specifically, in Section 3 we describe a
novel information theoretic criterion and show that RCA is its optimal solution. IfGaussian assump-
tions are added the result can be extended to the case where dimensionality reduction is permitted,
and the optimal solution now includes Fisher’s linear discriminant (Fukunaga, 1990) as an inter-
mediate step. In Section 4 we show that RCA is also the optimal solution to another optimization
problem, seeking to minimize within class distances. Viewed this way, RCA is directlycompared to
another recent algorithm for learning Mahalanobis distance from equivalence constraints, proposed
by Xing et al. (2002). In Section 5 we show that under Gaussian assumptions RCA can be inter-
preted as the maximum-likelihood (ML) estimator of the within class covariance matrix. We also
provide a bound over the variance of this estimator, showing that it is at mosttwice the variance of
the ML estimator obtained using the fully labelled data.

1. A related scenario (which we call ‘generalized relevance feedback’), where users of a retrieval engine are asked to
annotate the retrieved set of data points, has similar properties.

938

MAHALANOBIS METRIC FROMEQUIVALENCE CONSTRAINTS

The successful application of RCA in high dimensional spaces requires dimensionality reduc-
tion, whose details are discussed in Section 6. An online version of the RCA algorithm is presented
in Section 7. In Section 8 we describe extensive empirical evaluations of theRCA algorithm. We
focus on two tasks–data retrieval and clustering, and use three types ofdata: (a) A data set of frontal
faces (Belhumeur et al., 1997); this example shows that RCA with partial equivalence constraints
typically yields comparable results to supervised algorithms which use fully labelled training data.
(b) A large data set of images collected by a real-time surveillance application,where the equiva-
lence constraints are gathered automatically. (c) Several data sets from the UCI repository, which
are used to compare between RCA and other competing methods that use equivalence constraints.

1.1 Related Work

There has been much work on learning representations and distance functions in the supervised
learning settings, and we can only briefly mention a few examples. Hastie and Tibshirani (1996)
and Jaakkola and Haussler (1998) use labelled data to learn good metrics for classification. Thrun
(1996) learns a distance function (or a representation function) for classification using a “leaning-to-
learn” paradigm. In this setting several related classification tasks are learned using several labelled
data sets, and algorithms are proposed which learn representations and distance functions in a way
that allows for the transfer of knowledge between the tasks. In the work of Tishby et al. (1999)
the joint distribution of two random variablesX andZ is assumed to be known, and one seeks a
compact representation ofX which bears high relevance toZ. This work, which is further developed
in Chechik and Tishby (2003), can be viewed as supervised representation learning.

As mentioned, RCA can be justified using information theoretic criteria on the onehand, and
as an ML estimator under Gaussian assumptions on the other. Information theoretic criteria for
unsupervised learning in neural networks were studied by Linsker (1989), and have been used since
in several tasks in the neural network literature. Important examples are self organizing neural
networks (Becker and Hinton, 1992) and Independent Component Analysis (Bell and Sejnowski,
1995)). Viewed as a Gaussian technique, RCA is related to a large family of feature extraction
techniques that rely on second order statistics. This family includes, among others, the techniques
of Partial Least-Squares (PLS) (Geladi and Kowalski, 1986), Canonical Correlation Analysis (CCA)
(Thompson, 1984) and Fisher’s Linear Discriminant (FLD) (Fukunaga, 1990). All these techniques
extract linear projections of a random variableX, which are relevant to the prediction of another
variableZ in various settings. However, PLS and CCA are designed for regression tasks, in which
Z is a continuous variable, while FLD is used for classification tasks in whichZ is discrete. Thus,
RCA is more closely related to FLD, as theoretically established in Section 3.3. Anempirical
investigation is offered in Section 8.1.3, in which we show that RCA can be used to enhance the
performance of FLD in the fully supervised scenario.

In recent years some work has been done on using equivalence constraints as side information.
Both positive (‘a is similar to b’) and negative (‘a is dissimilar from b’) equivalence constraints were
considered. Several authors considered the problem of semi-supervised clustering using equivalence
constraints. More specifically, positive and negative constraints were introduced into the complete
linkage algorithm (Klein et al., 2002), the K-means algorithm (Wagstaff et al.,2001) and the EM
of a Gaussian mixture model (Shental et al., 2004). A second line of research, to which this work
belongs, focuses on learning a ‘good’ metric using equivalence constraints. Learning a Mahalanobis
metric from both positive and negative constraints was addressed in the work of Xing et al. (2002),

939

BAR HILLEL , HERTZ, SHENTAL AND WEINSHALL

presenting an algorithm which uses gradient ascent and iterative projections to solve a convex non
linear optimization problem. We compare this optimization problem to the one solved byRCA in
Section 4, and empirically compare the performance of the two algorithms in Section 8. The initial
description of RCA was given in the context of image retrieval (Shental etal., 2002), followed by
the work of Bar-Hillel et al. (2003). Recently Bilenko et al. (2004) suggested a K-means based clus-
tering algorithm that also combines metric learning. The algorithm uses both positive and negative
constraints and learns a single or multiple Mahalanobis metrics.

2. Relevant Component Analysis: The Algorithm

Relevant Component Analysis (RCA) is a method that seeks to identify and down-scale global
unwanted variability within the data. The method changes the feature space used for data repre-
sentation, by a global linear transformation which assigns large weights to “relevant dimensions”
and low weights to “irrelevant dimensions” (see Tenenbaum and Freeman, 2000). These “relevant
dimensions” are estimated usingchunklets, that is, small subsets of points that are known to belong
to the same althoughunknownclass. The algorithm is presented below as Algorithm 1 (Matlab code
can be downloaded from the authors’ sites).

Algorithm 1 The RCA algorithm

Given a data setX = {xi}
N
i=1 andn chunkletsCj = {x ji}

n j

i=1 j = 1. . .n, do

1. Compute the within chunklet covariance matrix (Figure 1d)

Ĉ =
1
N

n

∑
j=1

n j

∑
i=1

(x ji −mj)(x ji −mj)
t , (1)

wheremj denotes the mean of the j’th chunklet.

2. If needed, apply dimensionality reduction to the data usingĈ as described in Algorithm 2 (see
Section 6).

3. Compute the whitening transformation associated withĈ: W = Ĉ− 1
2 (Figure 1e), and apply

it to the data points:Xnew= WX (Figure 1f), whereX refers to the data points after dimen-
sionality reduction when applicable. Alternatively, use the inverse ofĈ in the Mahalanobis
distance:d(x1,x2) = (x1−x2)

tĈ−1(x1−x2).

More specifically, pointsx1 andx2 are said to be related by a positive constraint if it is known
that both points share the same (unknown) label. If pointsx1 and x2 are related by a positive
constraint, andx2 and x3 are also related by a positive constraint, then a chunklet{x1,x2,x3} is
formed. Generally, chunklets are formed by applying transitive closure over the whole set of positive
equivalence constraints.

The RCA transformation is intended to reduce clutter, so that in the new feature space, the inher-
ent structure of the data can be more easily unravelled (see illustrations in Figure 1a-f). To this end,
the algorithm estimates the within class covariance of the datacov(X|Z) whereX andZ describe the
data points and their labels respectively. The estimation is based on positive equivalence constraints

940

MAHALANOBIS METRIC FROMEQUIVALENCE CONSTRAINTS

only, and does not use any explicit label information. In high dimensional data, the estimated ma-
trix can be used for semi-supervised dimensionality reduction. Afterwards, the data set is whitened
with respect to the estimated within class covariance matrix. The whitening transformationW (in
Step 3 of Algorithm 1) assigns lower weights to directions of large variability, since this variability
is mainly due to within class changes and is therefore “irrelevant” for the taskof classification.

(a) (b) (c)

(d) (e) (f)

Figure 1: An illustrative example of the RCA algorithm applied to synthetic Gaussian data. (a)
The fully labelled data set with 3 classes. (b) Same data unlabelled; clearly theclasses’
structure is less evident. (c) The set of chunklets that are provided to theRCA algorithm
(points that share the same color and marker type form a chunklet). (d) The centered
chunklets, and their empirical covariance. (e) The whitening transformation applied to
the chunklets. (f) The original data after applying the RCA transformation.

The theoretical justifications for the RCA algorithm are given in Sections 3-5. In the following
discussion, the term ‘RCA’ refers to the algorithm either with or without dimensionality reduction
(optional Step 2). Usually the exact meaning can be readily understood in context. When we
specifically discuss issues regarding the use of dimensionality reduction, we may use the explicit
terms ‘RCA with (or without) dimensionality reduction’.

RCA does not use negative equivalence constraints. While negative constraints clearly contain
useful information, they are less informative than positive constraints (see counting argument be-
low). They are also much harder to use computationally, due partly to the factthat unlike positive
constraints, negative constraints are not transitive. In our case, the näıve incorporation of negative
constraints leads to a matrix solution which is the difference of two positive definite matrices, and
as a results does not necessarily produce a legitimate Mahalanobis metric. Analternative approach,
which modifies the optimization function to incorporate negative constraints, as used for example by
Xing et al. (2002), leads to a non-linear optimization problem with the usual associated drawbacks

941

BAR HILLEL , HERTZ, SHENTAL AND WEINSHALL

of increased computational load and some uncertainty about the optimality of thefinal solution.2 In
contrast, RCA is the closed form solution of several interesting optimization problem, whose com-
putation is no more complex than a single matrix inversion. Thus, in the tradeoff between runtime
efficiency and asymptotic performance, RCA chooses the former and ignores the information given
by negative equivalence constraints.

There is some evidence supporting the view that positive constraints are more informative than
negative constraints. Firstly, a simple counting argument shows that positive constraints exclude
more labelling possibilities than negative constraints. If for example there areM classes in the
data, two data points haveM2 possible label combinations. A positive constraint between the points
reduces this number toM combinations, while a negative constraint gives a much more moderate
reduction toM(M−1) combinations. (This argument can be made formal in information theoretic
terms.) Secondly, empirical evidence from clustering algorithms which use both types of constraints
shows that in most cases positive constraints give a much higher performance gain (Shental et al.,
2004; Wagstaff et al., 2001). Finally, in most cases in which equivalenceconstraints are gathered
automatically, only positive constraints can be gathered.

Step 2 of the RCA algorithm applies dimensionality reduction to the data if needed.In high
dimensional spaces dimensionality reduction is almost always essential for the success of the algo-
rithm, because the whitening transformation essentially re-scales the variabilityin all directions so
as to equalize them. Consequently, dimensions with small total variability cause instability and, in
the zero limit, singularity.

As discussed in Section 6, the optimal dimensionality reduction often starts with Principal Com-
ponent Analysis (PCA). PCA may appear contradictory to RCA, since it eliminates principal dimen-
sions with small variability, while RCA emphasizes principal dimensions with small variability.
One should note, however, that the principal dimensions are computed in different spaces. The
dimensions eliminated by PCA have small variability in the original data space (corresponding to
Cov(X)), while the dimensions emphasized by RCA have low variability in a space whereeach
point is translated according to the centroid of its own chunklet (corresponding toCov(X|Z)). As a
result, the method ideally emphasizes those dimensions with large total variance,but small within
class variance.

3. Information Maximization with Chunklet Constraints

How can we use chunklets to find a transformation of the data which improves itsrepresentation?
In Section 3.1 we state the problem for general families of transformations anddistances, present-
ing an information theoretic formulation. In Section 3.2 we restrict the family of transformation to
non-singular linear maps, and use the Euclidean metric to measure distances.The optimal solution
is then given by RCA. In Section 3.3 we widen the family of permitted transformations to include
non-invertible linear transformations. We show that for normally distributed data RCA is the opti-
mal transformation when its dimensionality reduction is obtained with a constraints based Fisher’s
Linear Discriminant (FLD).

2. Despite the problem’s convexity, the proposed gradient based algorithm needs tuning of several parameters, and is
not guaranteed to find the optimum without such tuning. See Section 8.1.5 for relevant empirical results.

942

MAHALANOBIS METRIC FROMEQUIVALENCE CONSTRAINTS

3.1 An Information Theoretic Perspective

Following Linsker (1989), an information theoretic criterion states that an optimal transformation of
the inputX into its new representationY, should seek to maximize the mutual informationI(X,Y)
betweenX andY under suitable constraints. In the general case a setX = {xi} of data points inR D

is transformed into the setY = { f (xi)} of points inR K . We seek a deterministic functionf ∈ F
that maximizesI(X,Y), whereF is the family of permitted transformation functions (a “hypotheses
family”).

First, note that sincef is deterministic, maximizingI(X,Y) is achieved by maximizing the
entropyH(Y) alone. To see this, recall that by definition

I(X,Y) = H(Y)−H(Y|X)

whereH(Y) andH(Y|X) are differential entropies, asX andY are continuous random variables.
Since f is deterministic, the uncertainty concerningY whenX is known is minimal, thusH(Y|X)
achieves its lowest possible value at−∞.3 However, as noted by Bell and Sejnowski (1995),H(Y|X)
does not depend onf and is constant for every finite quantization scale. Hence maximizingI(X,Y)
with respect tof can be done by considering only the first termH(Y).

Second, note also thatH(Y) can be increased by simply ‘stretching’ the data space. For example,
if Y = f (X) for an invertible continuous function, we can increaseH(Y) simply by choosingY =
λ f (X) for any λ > 1. In order to avoid the trivial solutionλ → ∞, we can limit the distances
between points contained in a single chunklet . This can be done by constraining the average
distance between a point in a chunklet and the chunklet’s mean. Hence the optimization problem is

max
f∈F

H(Yf) s.t.
1
N

n

∑
j=1

n j

∑
i=1

||y ji −my
j || ≤ κ (2)

where{y ji}
n , n j

j=1,i=1 denote the set of points inn chunklets after the transformation,my
j denotes the

mean of chunkletj after the transformation, andκ is a constant.

3.2 RCA: The Optimal Linear Transformation for the Euclidean Norm

Consider the general problem (2) for the familyF of invertible linear transformations, and using
the squared Euclidean norm to measure distances. Sincef is invertible, the connection between
the densities ofY = f (X) andX is expressed bypy(y) = px(x)

|J(x)| , where|J(x)| is the Jacobian of the
transformation. Frompy(y)dy= px(x)dx, it follows thatH(Y) andH(X) are related as follows:

H(Y) = −
Z

y

p(y) logp(y)dy= −
Z

x

p(x) log
p(x)
|J(x)|

dx= H(X)+ 〈log|J(x)|〉x.

For the linear mapY = AX the Jacobian is constant and equals|A|, and it is the only term in
H(Y) that depends on the transformationA. Hence Problem (2) is reduced to

max
A

log|A| s.t.
1
N

n

∑
j=1

n j

∑
i=1

||y ji −my
j ||

2
2 ≤ κ.

3. This non-intuitive divergence is a result of the generalization of information theory to continuous variables, that is,
the result of ignoring the discretization constant in the definition of differential entropy.

943

BAR HILLEL , HERTZ, SHENTAL AND WEINSHALL

Multiplying a solution matrixA by λ > 1 increases both thelog|A| argument and the constrained
sum of within chunklet distances. Hence the maximum is achieved at the boundary of the feasible
region, and the constraint becomes an equality. The constantκ only determines the scale of the
solution matrix, and is not important in most clustering and classification tasks, which essentially
rely on relative distances. Hence we can setκ = 1 and solve

max
A

log|A| s.t.
1
N

n

∑
j=1

n j

∑
i=1

||y ji −my
j ||

2
2 = 1. (3)

Let B = AtA; sinceB is positive definite and log|A| = 1
2 log|B|, Problem (3) can be rewritten as

max
B�0

log|B| s.t.
1
N

n

∑
j=1

n j

∑
i=1

||x ji −mj ||
2
B = 1, (4)

where||.||B denotes the Mahalanobis distance with weight matrixB. The equivalence between the
problems is valid since for anyB� 0 there is anA such thatB = AtA, and so a solution to (4) gives
us a solution to (3) (and vice versa).

The optimization problem (4) can be solved easily, since the constraint is linear in B. The
solution isB = 1

DĈ−1, whereĈ is the average chunklet covariance matrix (1) andD is the dimen-
sionality of the data space. This solution is identical to the Mahalanobis matrix compute by RCA
up to a global scale factor, or in other words, RCA is a scaled solution of (4).

3.3 Dimensionality Reduction

We now solve the optimization problem (4) for the family of general linear transformations, that is,
Y = AX whereA∈ MK×D andK ≤ D. In order to obtain workable analytic expressions, we assume
that the distribution ofX is a multivariate Gaussian, from which it follows thatY is also Gaussian
with the entropy

H(Y) =
D
2

log2πe+
1
2

log|Σy| =
D
2

log2πe+
1
2

log|AΣxA
t |.

Following the same reasoning as in Section 3.2 we replace the inequality with equality and letκ = 1.
Hence the optimization problem becomes

max
A

log|AΣxA
t | s.t.

1
N

n

∑
j=1

n j

∑
i=1

||x ji −mj ||
2
AtA = 1. (5)

For a given target dimensionalityK, the solution of the problem is Fisher linear discriminant
(FLD),4 followed by the whitening of the within chunklet covariance in the reduced space. A sketch
of the proof is given in Appendix A. The optimal RCA procedure therefore includes dimensionality
reduction. Since the FLD transformation is computed based on the estimated withinchunklet co-
variance matrix, it is essentially a semi-supervised technique, as describedin Section 6. Note that
after the FLD step, the within class covariance matrix in the reduced space is always diagonal, and
Step 3 of RCA amounts to the scaling of each dimension separately.

4. Fisher Linear Discriminant is a linear projectionA from R D to R K with K < D, which maximizes the determinant
ratio max

A∈MK×D

ASt At

ASwAt , whereSt andSw denote the total covariance and the within class covariance respectively.

944

MAHALANOBIS METRIC FROMEQUIVALENCE CONSTRAINTS

4. RCA and the Minimization of Within Class Distances

In order to gain some intuition about the solution provided by the information maximization crite-
rion (2), let us look at the optimization problem obtained by reversing the roles of the maximization
term and the constraint term in problem (4):

min
B

1
N

n

∑
j=1

n j

∑
i=1

||x ji −mj ||
2
B s.t. |B| ≥ 1. (6)

We interpret problem (6) as follows: a Mahalanobis distanceB is sought, which minimizes
the sum of all within chunklet squared distances, while|B| ≥ 1 prevents the solution from being
achieved by “shrinking” the entire space. Using the Kuhn-Tucker theorem, we can reduce (6) to

min
B

n

∑
j=1

n j

∑
i=1

||x ji −mj ||
2
B−λ log|B| s.t. λ ≥ 0, λ log|B| = 0. (7)

Differentiating this Lagrangian shows that the minimum is given byB = |Ĉ|
1
DĈ−1, whereĈ is the

average chunklet covariance matrix. Once again, the solution is identical tothe Mahalanobis matrix
in RCA up to a scale factor.

It is interesting, in this respect, to compare RCA with the method proposed recently by Xing
et al. (2002). They consider the related problem of learning a Mahalanobis distance using side
information in the form of pairwise constraints (Chunklets of size> 2 are not considered). It is
assumed that in addition to the set of positive constraintsQP, one is also given access to a set of
negative constraintsQN–a set of pairs of points known to be dissimilar. Given these sets, they pose
the following optimization problem:

min
B

∑
(x1,x2)∈QP

||x1−x2||
2
B s.t. ∑

(x1,x2)∈QN

||x1−x2||B ≥ 1, B� 0. (8)

This problem is then solved using gradient ascent and iterative projectionmethods.
In order to allow a clear comparison of RCA with (8), we reformulate the argument of (6) using

only within chunklet pairwise distances. For each pointx ji in chunklet j we have

x ji −mj = x ji −
1
n j

n j

∑
k=1

x jk =
1
n j

n j

∑
k=1

(x ji −x jk).

Problem (6) can now be rewritten as

min
B

1
N

n

∑
j=1

1

n2
j

n j

∑
i=1

||∑(x ji −x jk)||
2
B s.t. |B| ≥ 1. (9)

When only chunklets of size 2 are given, as in the case studied by Xing et al. (2002), (9) reduces to

min
B

1
2N

n

∑
j=1

||x j1−x j2||
2
B s.t. |B| ≥ 1. (10)

Clearly the minimization terms in problems (10) and (8) are identical up to a constant (1
2N).

The difference between the two problems lies in the constraint term: the constraint proposed by
Xing et al. (2002) uses pairs of dissimilar points, whereas the constraint inthe RCA formulation
affects global scaling so that the ‘volume’ of the Mahalanobis neighborhood is not allowed to shrink
indefinitely. As a result Xing et al. (2002) are faced with a much harder optimization problem,
resulting in a slower and less stable algorithm.

945

BAR HILLEL , HERTZ, SHENTAL AND WEINSHALL

5. RCA and Maximum Likelihood: The Effect of Chunklet Size

We now consider the case where the data consists of several normally distributed classes sharing
the same covariance matrix. Under the assumption that the chunklets are sampled i.i.d. and that
points within each chunklet are also sampled i.i.d., the likelihood of the chunklets’distribution can
be written as

n

∏
j=1

n j

∏
i=1

1

(2π)
D
2 |Σ| 1

2

exp(− 1
2(x ji−mj)

tΣ−1(x ji−mj)).

Writing the log-likelihood while neglecting constant terms and denotingB = Σ−1, we obtain

n

∑
j=1

n j

∑
i=1

||x ji −mj ||
2
B−N log|B|, (11)

whereN is the total number of points in chunklets. Maximizing the log-likelihood is equivalent
to minimizing (11), whose minimum is obtained whenB equals the RCA Mahalanobis matrix (1).
Note, moreover, that (11) is rather similar to the Lagrangian in (7), where the Lagrange multiplier
is replaced by the constantN. Hence, under Gaussian assumptions, the solution of Problem (7) is
probabilistically justified by a maximum likelihood formulation.

Under Gaussian assumptions, we can further define anunbiasedversion of the RCA estimator.
Assume for simplicity that there areN constrained data points divided inton chunklets of sizek
each. TheunbiasedRCA estimator can be written as

Ĉ(n,k) =
1
n

n

∑
j=1

1
k−1

k

∑
i=1

(x ji −mi)(x ji −mi)
t ,

whereĈ(n,k) denotes the empirical mean of the covariance estimators produced by each chunklet.
It is shown in Appendix B that the variance of the elementsĈi j of the estimating matrix is bounded
by

Var(Ĉi j (n,k)) ≤ (1+
1

k−1
)Var(Ĉi j (1,nk)), (12)

whereĈi j (1,nk) is the estimator when all theN = nk points are known to belong to the same class,
thus forming the best estimate possible fromN points. This bound shows that the variance of the
RCA estimator rapidly converges to the variance of the best estimator, even for chunklets of small
size. For the smallest possible chunklets, of size 2, the variance is only twiceas high as the best
possible.

6. Dimensionality Reduction

As noted in Section 2, RCA may include dimensionality reduction. We now turn to address this
issue in detail. Step 3 of the RCA algorithm decreases the weight of principaldirections along
which the within class covariance matrix is relatively high, and increases the weight of directions
along which it is low. This intuition can be made precise in the following sense:

Denote by{λi}D
i=1 the eigenvalues of the within class covariance matrix, and consider the

squared distance between two points from the same class||x1−x2||
2. We can diagonalize the within

946

MAHALANOBIS METRIC FROMEQUIVALENCE CONSTRAINTS

class covariance matrix using an orthonormal transformation which does not change the distance.
Therefore, let us assume without loss of generality that the covariance matrix is diagonal.

Before whitening, the average squared distance isE[||x1− x2||
2] = 2∑D

j=1 λ j and the average
squared distance in directioni is E[(xi

1−xi
2)

2] = 2λi . After whitening these values become 2D and
2, respectively. Let us define the weight of dimensioni, W(i) ∈ [0,1], as

W(i) =
E[(xi

1−xi
2)

2]

E[||x1−x2||2]

Now the ratio between the weight of each dimension before and after whitening is given by

Wbe f ore(i)

Wa f ter(i)
=

λi

1
D ∑D

j=1 λ j
. (13)

In Equation (13) we observe that the weight of each principal dimension increases if its initial
within class variance was lower than the average, and vice versa. When there is high irrelevant
noise along several dimensions, the algorithm will indeed scale down noise dimensions. However,
when the irrelevant noise is scattered among many dimensions with low amplitude in each of them,
whitening will amplify these noisy dimensions, which is potentially harmful. Therefore, when the
data is initially embedded in a high dimensional space, the optional dimensionality reduction in
RCA (Step 2) becomes mandatory.

We have seen in Section 3.3 that FLD is the dimensionality reduction technique which maxi-
mizes the mutual information under Gaussian assumptions. Traditionally FLD is computed from
fully labelled training data, and the method therefore falls within supervised learning. We now
extend FLD, using the same information theoretic criterion, to the case of partial supervision in
the form of equivalence constraints. Specifically, denote bySt andSw the estimators of the total
covariance and the within class covariance respectively. FLD maximizes thedeterminant ratio

max
A∈MK×D

AStAt

ASwAt (14)

by solving a generalized eigenvector problem. The row vectors of the optimal matrix A are the first
K eigenvectors ofS−1

w St . In our case the optimization problem is of the same form as in (14), with
the within chunklet covariance matrix from (1) playing the role ofSw. We compute the projection
matrix using SVD in the usual way, and term this FLD variant cFLD (constraints based FLD).

To understand the intuition behind cFLD, note that both PCA and cFLD removedimensions
with small total variance, and hence reduce the risk of RCA amplifying irrelevant dimensions with
small variance. However, unsupervised PCA may remove dimensions that are important for the
discrimination between classes, if their total variability is low. Intuitively, better dimensionality
reduction can be obtained by comparing the total covariance matrix (used byPCA) to the within
class covariance matrix (used by RCA), and this is exactly what the partially supervised cFLD is
trying to accomplish in (14).

The cFLD dimensionality reduction can only be used if the rank of the within chunklet covari-
ance matrix is higher than the dimensionality of the initial data space. If this condition does not hold,
we use PCA to reduce the original data dimensionality as needed. The procedure is summarized
below in Algorithm 2.

947

BAR HILLEL , HERTZ, SHENTAL AND WEINSHALL

Algorithm 2 Dimensionality reduction: Step 2 of RCA
Denote byD the original data dimensionality. Given a set of chunklets{Cj}

n
j=1 do

1. Compute the rank of the estimated within chunklet covariance matrixR = ∑n
j=1(|Cj | − 1),

where|Cj | denotes the size of the j’th chunklet.

2. If (D > R), apply PCA to reduce the data dimensionality toαR, where 0< α < 1 (to ensure
that cFLD provides stable results).

3. Compute the total covariance matrix estimateSt , and estimate the within class covariance
matrix usingSw = Ĉ from (1). Solve (14), and use the resultingA to achieve the target data
dimensionality.

7. Online Implementation of RCA

The standard RCA algorithm presented in Section 2 is a batch algorithm which assumes that all
the equivalence constraints are available at once, and that all the data is sampled from a stationary
source. Such conditions are usually not met in the case of biological learning systems, or artificial
sensor systems that interact with a gradually changing environment. Consider for example a system
that tries to cluster images of different people collected by a surveillance camera in gradually chang-
ing illumination conditions, such as those caused by night and day changes.In this case different
distance functions should be used during night and day times, and we wouldlike the distance used
by the system to gradually adapt to the current illumination conditions. An onlinealgorithm for
distance function learning is required to achieve such a gradual adaptation.

Here we briefly present an online implementation of RCA, suitable for a neural-network-like
architecture. In this implementation a weight matrixW ∈ MD×D, initiated randomly, is gradually
developed to become the RCA transformation matrix. In Algorithm 3 we presentthe procedure for
the simple case of chunklets of size 2. The extension of this algorithm to general chunklets is briefly
described in Appendix C.

Algorithm 3 Online RCA for point pairs

Input: a stream of pairs of points(xT
1 ,xT

2), wherexT
1 xT

2 are known to belong to the same class.
Initialize W to a symmetric random matrix with||W|| << 1.
At time step T do:

• receive pairxT
1 ,xT

2 ;

• let h = xT
1 −xT

2 ;

• applyW to h, to gety = Wh;

• updateW = W+η(W−yytW).

whereη > 0 determines the step size.

Assuming local stationarity, the steady state of this stochastic process can befound by equating
the mean update to 0, where the expectation is taken over the next example pair(xT+1

1 ,xT+1
2). Using

948

MAHALANOBIS METRIC FROMEQUIVALENCE CONSTRAINTS

the notations of Algorithm 3, the resulting equation is

E[η(W−yytW)] = 0 ⇒ E[I −yyt] = I −WE[hht]Wt = 0 ⇒ W = PE[hht]−
1
2 ,

whereP is an orthonormal matrixPPt = I . The steady stateW is the whitening transformation of
the correlation matrix ofh. Sinceh = 2(x1−

(x1+x2)
2), it is equivalent (up to the constant 2) to the

distance of a point from the center of its chunklet. The correlation matrix ofh is therefore equivalent
to the within chunklet covariance matrix. ThusW converges to the RCA transformation of the
input population up to an orthonormal transformation. The resulting transformation is geometrically
equivalent to RCA, since the orthonormal transformationP preserves vector norms and angles.

In order to evaluate the stability of the online algorithm we conducted simulations which con-
firmed that the algorithm converges to the RCA estimator (up to the transformationP), if the gradient
steps decrease with time (η = η0/T). However, the adaptation of the RCA estimator for such a step
size policy can be very slow. Keepingη constant avoids this problem, at the cost of producing a
noisy RCA estimator, where the noise is proportional toη. Henceη can be used to balance this
tradeoff between adaptation, speed and accuracy.

8. Experimental Results

The success of the RCA algorithm can be measured directly by measuring neighborhood statistics,
or indirectly by measuring whether it improves clustering results. In the following we tested RCA
on three different applications using both direct and indirect evaluations.

The RCA algorithm uses only partial information about the data labels. In this respect it is
interesting to compare its performance to unsupervised and supervised methods for data represen-
tation. Section 8.1 compares RCA to the unsupervised PCA and the fully supervised FLD on a
facial recognition task, using the YaleB data set (Belhumeur et al., 1997).In this application of
face recognition, RCA appears very efficient in eliminating irrelevant variability caused by varying
illumination. We also used this data set to test the effect of dimensionality reduction using cFLD,
and the sensitivity of RCA to average chunklet size and the total amount of points in chunklets.

Section 8.2 presents a more realistic surveillance application in which equivalence constraints
are gathered automatically from a Markovian process. In Section 8.3 we conclude our experimental
validation by comparing RCA with other methods which make use of equivalenceconstraints in a
clustering task, using a few benchmark data sets from the UCI repository (Blake and Merz, 1998).
The evaluation of different metrics below is presented usingcumulative neighbor puritygraphs,
which display the average (over all data points) percentage of correctneighbors among the firstk
neighbors, as a function ofk.

8.1 Applying RCA to Facial Recognition

The task here is to classify facial images with respect to the person photographed. In these exper-
iments we consider a retrieval paradigm reminiscent of nearest neighborclassification, in which a
query image leads to the retrieval of its nearest neighbor or its K-nearestneighbors in the data set.
Using a facial image database, we begin by evaluating nearest neighbor classification with the RCA
distance, and compare its performance to supervised and unsupervisedlearning methods. We then
move on to address more specific issues: In 8.1.4 we look more closely at the two steps of RCA,
Step 2 (cFLD dimensionality reduction) and Step 3 (whitening w.r.t.Ĉ), and study their contribu-
tion to performance in isolation. In 8.1.5 the retrieval performance of RCA is compared with the

949

BAR HILLEL , HERTZ, SHENTAL AND WEINSHALL

Figure 2: A subset of the YaleB database which contains 1920 frontal face images of 30 individuals
taken under different lighting conditions.

algorithm presented by Xing et al. (2002). Finally in 8.1.6 we evaluate the effect of chunklets sizes
on retrieval performance, and compare it to the predicted effect of chunklet size on the variance of
the RCA estimator.

8.1.1 THE DATA SET

We used a subset of the yaleB data set (Belhumeur et al., 1997), which contains facial images of 30
subjects under varying lighting conditions. The data set contains a total of 1920 images, including
64 frontal pose images of each subject. The variability between images of thesame person is mainly
due to different lighting conditions. These factors caused the variability among images belonging to
the same subject to be greater than the variability among images of different subjects (Adini et al.,
1997). As preprocessing, we first automatically centered all the images using optical flow. Images
were then converted to vectors, and each image was represented using itsfirst 60 PCA coefficients.
Figure 2 shows a few images of four subjects.

8.1.2 OBTAINING EQUIVALENCE CONSTRAINTS

We simulated the‘distributed learning’scenario presented in Section 1 in order to obtain equiva-
lence constraints. In this scenario, we obtain equivalence constraints using the help ofT teachers.
Each teacher is given a random selection ofL data points from the data set, and is asked to give
his own labels to all the points, effectively partitioning the data set into equivalence classes. Each
teacher therefore provides both positive and negative constraints. Note however that RCA only uses
the positive constraints thus gathered. The total number of points in chunklets grows linearly with
TL, the number of data points seen by all teachers. We control this amount, whichprovides a loose
bound on the number of points in chunklets, by varying the number of teachers T and keepingL
constant. We tested a range of values ofT for which TL is 10%, 30%, or 75% of the points in the
data set.5

The parameterL controls the distribution of chunklet sizes. More specifically, we show in
Appendix D that this distribution is controlled by the ratior = L

M whereM is the number of classes
in the data. In all our experiments we have usedr = 2. For this value the expected chunklet size is

5. In this scenario one usually obtains mostly ‘negative’ equivalence constraints, which are pairs of points that are
known to originate from different classes. RCA doesnotuse these ‘negative’ equivalence constraints.

950

MAHALANOBIS METRIC FROMEQUIVALENCE CONSTRAINTS

roughly 2.9 and we typically obtain many small chunklets. Figure 3 shows a histogram of typical
chunklet sizes, as obtained in our experiments.6

2 3 4 5 6 7 8 9 10
0

20

40

60

80

100

120
30% of points in chunkelts

Figure 3: Sample chunklet size distribution obtained using the distributed learning scenario on a
subset of the yaleB data set with 1920 images fromM = 30 classes. L is chosen such that
r = L

M = 2. The histogram is plotted for distributed learning with 30% of the data points
in chunklets.

8.1.3 RCAON THE CONTINUUM BETWEEN SUPERVISED ANDUNSUPERVISEDLEARNING

The goal of our main experiment in this section was to assess the relative performance of RCA as
a semi-supervised method in a face recognition task. To this extent we compared the following
methods:

• Eigenfaces (Turk and Pentland, 1991): this unsupervised method reduces the dimensionality
of the data using PCA, and compares the images using the Euclidean metric in the reduced
space. Images were normalized to have zero mean and unit variance.

• Fisherfaces (Belhumeur et al., 1997): this supervised method starts by applying PCA dimen-
sionality reduction as in the Eigenfaces method. It then uses all the data labelsto compute the
FLD transformation (Fukunaga, 1990), and transforms the data accordingly.

• RCA: the RCA algorithm with dimensionality reduction as described in Section 6, that is,
PCA followed by cFLD. We varied the amount of data in constraints providedto RCA, using
thedistributed learningparadigm described above.

The left panel in Figure 4 shows the results of the different methods. Thegraph presents the
performance of RCA for low, moderate and high amounts of constrained points. As can be seen,
even with low amounts of equivalence constraints the performance of RCA ismuch closer to the
performance of the supervised FLD than to the performance of the unsupervised PCA. With Mod-
erate and high amounts of equivalence constraints RCA achieves neighbor purity rates which are

6. We used a different sampling scheme in the experiments which address the effect of chunklet size, see Section 8.1.6.

951

BAR HILLEL , HERTZ, SHENTAL AND WEINSHALL

10 20 30 40 50 60
0.4

0.5

0.6

0.7

0.8

0.9

1

Number of neighbors

%
 o

f c
or

re
ct

 n
ei

gh
bo

rs

YaleB

PCA
RCA 10%
RCA 30%
RCA 75%
FLD

10 20 30 40 50 60
0.4

0.5

0.6

0.7

0.8

0.9

1

Number of neighbors

%
 o

f c
or

re
ct

 n
ei

gh
bo

rs

YaleB

FLD
FLD+RCA

Figure 4: Left: Cumulative purity graphs for the following algorithms and experimental conditions:
Eigenface (PCA), RCA 10%, RCA 30%, RCA 75%, and Fisherface (FLD). The percent-
ages stated for RCA are the fractions of data points presented to the ‘distributed learning’
oracle, as discussed in Section 8.1.2. The data was reduced to dimension 60using PCA
for all the methods. It was then further reduced to dimension 30 using cFLDin the three
RCA variants, and using FLD for the Fisherface method. Results were averaged over 50
constraints realizations. The error bars give the Standard Errors of the Mean (SEMs).
Right: Cumulative purity graphs for the fully supervised FLD, with and without fully
labelled RCA. Here RCA dramatically enhances the performance of FLD.

higher than those achieved by the fully supervised Fisherfaces method, while relying only on frag-
mentary chunklets with unknown class labels. This somewhat surprising result stems from the fact
that the fully supervised FLD in these experiments was not followed by whitening.

In order to clarify this last point, note that RCA can also be used when given a fully labelled
training set. In this case, chunklets correspond uniquely and fully to classes, and the cFLD algorithm
for dimensionality reduction is equivalent to the standard FLD. In this setting RCA can be viewed
as an augmentation of the standard, fully supervised FLD, which whitens theoutput of FLD w.r.t
the within class covariance. The right panel in Figure 4 shows comparative results of FLD with and
without whitening in the fully labelled case.

In order to visualize the effect of RCA in this task we also created some “RCAfaces”, following
Belhumeur et al. (1997): We ran RCA on the images after applying PCA, andthen reconstructed the
images. Figure 5 shows a few images and their reconstruction. Clearly RCA dramatically reduces
the effect of varying lighting conditions, and the reconstructed images of the same individual look
very similar to each other. The Eigenfaces (Turk and Pentland, 1991) method did not produce
similar results.

8.1.4 SEPARATING THE CONTRIBUTION OF THEDIMENSIONALITY REDUCTION AND

WHITENING STEPS INRCA

Figure 4 presents the results of RCA including the semi-supervised dimensionality reduction of
cFLD. While this procedure yields the best results, it mixes the separate contributions of the two
main steps of the RCA algorithm, that is, dimensionality reduction via cFLD (Step 2)and whitening

952

MAHALANOBIS METRIC FROMEQUIVALENCE CONSTRAINTS

Figure 5: Top: Several facial images of two subjects under different lighting conditions. Bottom:
the same images from the top row after applying PCA and RCA and then reconstructing
the images. Clearly RCA dramatically reduces the effect of different lightingconditions,
and the reconstructed images of each person look very similar to each other.

of the inner chunklet covariance matrix (Step 3). In the left panel of Figure 6 these contributions are
isolated.

It can be seen that when cFLD and whitening are used separately, they both provide considerable
improvement in performance. These improvements are only partially dependent, since the perfor-
mance gain when combining both procedures is larger than either one alone.In the right panel of
Figure 6 we present learning curves which show the performance of RCA with and without dimen-
sionality reduction, as a function of the amount of supervision provided to the algorithm. For small
amounts of constraints, both curves are almost identical. However, as the number of constraints
increases, the performance of RCA dramatically improves when using cFLD.

8.1.5 COMPARISON WITH THEMETHOD OFX ING ET AL .

In another experiment we compared the algorithm of Xing et al. (2002) to RCA on the YaleB data
set using code obtained from the author’s web site. The experimental setup was the one described in
Section 8.1.2, with 30% of the data points presented to the distributed learning oracle. While RCA
uses only the positive constraints obtained, the algorithm of Xing et al. (2002) was given both the
positive and negative constraints, as it can make use of both. Results areshown in Figure 7, showing
that this algorithm failed to converge when given high dimensional data, andwas outperformed by
RCA in lower dimensions.

8.1.6 THE EFFECT OFDIFFERENTCHUNKLET SIZES

In Section 5 we showed that RCA typically provides an estimator for the within class covariance
matrix, which is not very sensitive to the size of the chunklets. This was doneby providing a
bound on the variance of the elements in the RCA estimator matrixĈ(n,k). We can expect that
lower variance of the estimator will go hand in hand with higher purity performance. In order to
empirically test the effect of chunklets’ size, we fixed the number of equivalence constraints, and

953

BAR HILLEL , HERTZ, SHENTAL AND WEINSHALL

10 20 30 40 50 60
0.4

0.5

0.6

0.7

0.8

0.9

1

Number of neighbors

%
 o

f c
or

re
ct

 n
ei

gh
bo

rs

YaleB

Euclid
RCA
cFLD
cFLD+RCA

0.1 0.2 0.3 0.4 0.5 0.6 0.7
0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

% of constrained points

%
 o

f c
or

re
ct

 n
ei

gh
bo

rs

YaleB

RCA
RCA+cFLD

Figure 6: Left: Cumulative purity graphs for 4 experimental conditions: original space, RCA with-
out cFLD, cFLD only, and RCA with cFLD (using the Euclidean norm in all cases).
The data was reduced to 60 dimensions using unsupervised PCA. The semisupervised
techniques used constraints obtained by distributed learning with 30% of the data points.
RCA without cFLD was performed in the space of 60 PCA coefficients, whilein the last
2 conditions dimensionality was further reduced to 30 using the constraints. Results were
averaged over 50 constraints realizations. Right: Learning curves–neighbor purity per-
formance for 64 neighbors as a function of the amount of constraints. The performance is
measured by averaging (over all data points) the percentage of correct neighbors among
the first 64 neighbors. The amount of constraints is measured using the percentage of
points given to the distributed learning oracle. Results are averaged over15 constraints
realizations. Error bars in both graphs give the standard errors of themean.

varied the size of the chunkletsS in the range{2−10}. The chunklets were obtained by randomly
selecting 30% of the data (total ofP = 1920 points) and dividing it into chunklets of sizeS.7

The results can be seen in Figure 8. As expected the performance of RCAimproves as the size
of the chunklets increases. Qualitatively, this improvement agrees with the predicted improvement
in the RCA estimator’s variance, as most of the gain in performance is alreadyobtained with chun-
klets of sizeS= 3. Although the bound presented is not tight, other reasons may account for the
difference between the graphs, including the weakness of the Gaussianassumption used to derive
the bound (see Section 9), and the lack of linear connection between the estimator’s variance and
purity performance.

8.2 Using RCA in a Surveillance Application

In this application, a stationary indoor surveillance camera provided shortvideo clips whose begin-
ning and end were automatically detected based on the appearance and disappearance of moving
targets. The database therefore included many clips, each displaying onlyone person of unknown
identity. Effectively each clip provided a chunklet. The task in this case wasto cluster together all
clips in which a certain person appeared.

7. When necessary, the remainingmod(0.3P,S) points were gathered into an additional smaller chunklet.

954

MAHALANOBIS METRIC FROMEQUIVALENCE CONSTRAINTS

10 20 30 40 50 60
0

0.2

0.4

0.6

0.8

1

Number of neighbors

%
 o

f c
or

re
ct

 n
ei

gh
bo

rs

Before FLD − High dimesion

Euclid
RCA
Xing

10 20 30 40 50 60

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Number of neighbors

%
 o

f c
or

re
ct

 n
ei

gh
bo

rs

After FLD − Low dimesion

Euclid
RCA
Xing

Figure 7: The method of Xing et al. (2002) and RCA on the YaleB facial imagedata set. Left:
Neighbor purity results obtained using 60 PCA coefficients. The algorithm ofXing et al.
(2002) failed to converge and returned a metric with chance level performance. Right:
Results obtained using a 30 dimensional representation, obtained by applying cFLD to
the 60 PCA coefficients. Results are averaged over 50 constraints realizations. The error
bars give the standard errors of the mean.

2 3 4 5 6 7 8 9 10
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Chunklet Sizes

%
 E

rr
or

2 4 6 8 10
0

0.5

1

1.5

2

2.5

Cunklet sizes

B
ou

nd
 o

f v
ar

ia
nc

e
ra

tio

Figure 8: Left: Mean error rate on all 64 neighbors on the yaleB data setwhen using 30% of the data
in chunklets. In this experiment we varied the chunklet sizes while fixing the total amount
of points in chunklets. Right: the theoretical bound over the ratio between thevariance of
the RCA matrix elements and the variance of the best possible estimator using the same
number of points (see inequality 12). The qualitative behavior of the graphs is similar,
seemingly because a lower estimator variance tends to imply better purity performance.

The task and our approach: The video clips were highly complex and diversified, for several
reasons. First, they were entirely unconstrained: a person could walk everywhere in the scene,
coming closer to the camera or walking away from it. Therefore the size and resolution of each
image varied dramatically. In addition, since the environment was not constrained, images included

955

BAR HILLEL , HERTZ, SHENTAL AND WEINSHALL

0 20 40 60 80 100
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

k−th neighbor

pe
rc

en
t o

f c
or

re
ct

 n
ei

gh
bo

rs

L*a*b* space before RCA
After RCA

Figure 9: Left: several images from a video clip of one subject. Right: cumulative neighbor purity
results before and after RCA.

varying occlusions, reflections and (most importantly from our perspective) highly variable illu-
mination. In fact, the illumination changed dramatically across the scene both in intensity (from
brighter to darker regions), and in spectrum (from neon light to naturallighting). Figure 9 shows
several images from one input clip.

We sought to devise a representation that would enable the effective clustering of clips, focusing
on color as the only low-level attribute that could be reliably used in this application. Therefore our
task was to accomplish some sort of color constancy, that is, to overcome thegeneral problem of
irrelevant variability due to the varying illumination. This is accomplished by the RCA algorithm.

Image representation and RCA Each image in a clip was represented by its color histogram
in L∗a∗b∗ space (we used 5 bins for each dimension). We used the clips as chunkletsin order to
compute the RCA transformation. We then computed the distance between pairs of images using
two methods:L1 and RCA (Mahalanobis). We used over 6000 images from 130 clips (chunklets) of
20 different people. Figure 9 shows the cumulative neighbor purity overall 6000 images. One can
see that RCA makes a significant contribution by bringing ‘correct’ neighbors closer to each other
(relative to other images). However, the effect of RCA on retrieval performance here is lower than
the effect gained with the YaleB data base. While there may be several reasons for this, an important
factor is the difference between the way chunklets were obtained in the two data sets. The automatic
gathering of chunklets from a Markovian process tends to provide chunklets with dependent data
points, which supply less information regarding the within class covariance matrix.

8.3 RCA and Clustering

In this section we evaluate RCA’s contribution to clustering, and compare it to alternative algorithms
that use equivalence constraints. We used six data sets from the UCI repository. For each data set
we randomly selected a setQP of pairwise positive equivalence constraints (or chunklets of size 2).
We compared the following clustering algorithms:

956

MAHALANOBIS METRIC FROMEQUIVALENCE CONSTRAINTS

a. K-means using the default Euclidean metric and no side-information (Fukunaga, 1990).

b. Constrained K-means + Euclidean metric: the K-means version suggested byWagstaff et al.
(2001), in which a pair of points(xi ,x j) ∈ QP is always assigned to the same cluster.

c. Constrained K-means + the metric proposed by Xing et al. (2002): The metricis learnt from
constraints inQP. For fairness we replicated the experimental design employed by Xing
et al. (2002), and allowed the algorithm to treat all unconstrained pairs ofpoints as negative
constraints (the setQN).

d. Constrained K-means + RCA: Constrained K-means using the RCA Mahalanobis metric learned
from QP.

e. EM: Expectation Maximization of a Gaussian Mixture model (using no side-information).

f . Constrained EM: EM using side-information in the form of equivalence constraints (Shental
et al., 2004), when using the RCA distance metric as the initial metric.

Clustering algorithmsa andeare unsupervised and provide respective lower bounds for comparison
with our algorithmsd and f . Clustering algorithmsb andc compete fairly with our algorithmd,
using the same kind of side information.

Experimental setup To ensure fair comparison with Xing et al. (2002), we used exactly the same
experimental setup as it affects the gathering of equivalence constraintsand the evaluation score
used. We tested all methods using two conditions, with: (i) “little” side-informationQP, and (ii)
“much” side-information. The set of pairwise similarity constraintsQP was generated by choosing
a random subset of all pairs of points sharing the same class identityci . Initially, there areN
‘connected components’ of unconstrained points, whereN is the number of data points. Randomly
choosing a pairwise constraint decreases the number of connected components by 1 at most. In
the case of “little” (“much”) side-information, pairwise constraints are randomly added until the
number of different connected componentsKc is roughly 0.9N (0.7N). As in the work of Xing et al.
(2002), no negative constraints were sampled.

Following Xing et al. (2002) we used a normalized accuracy score, the ”Rand index” (Rand,
1971), to evaluate the partitions obtained by the different clustering algorithms. More formally,
with binary labels (or two clusters), the accuracy measure can be written as

∑
i> j

1{1{ci = c j} = 1{ĉi = ĉ j}}

0.5m(m−1)
,

where 1{}̇ denotes the indicator function(1{True}= 1),1{False}= 0), {ĉi}
m
i=1 denotes the cluster

to which pointxi is assigned by the clustering algorithm, andci denotes the “correct” (or desirable)
assignment. The score above is the probability that the algorithm’s decision regarding the label
equivalence of two points agrees with the decision of the “true” assignmentc.8

Figure 10 shows comparative results using six different UCI data sets. Clearly the RCA met-
ric significantly improved the results over the original K-means algorithms (boththe constrained

8. As noted by Xing et al. (2002), this score should be normalized when the number of clusters is larger than 2. Nor-
malization is achieved by sampling the pairs(xi ,x j) such thatxi andx j are from the same cluster with probability 0.5
and from different clusters with probability 0.5, so that “matches” and “mismatches” are given the same weight.

957

BAR HILLEL , HERTZ, SHENTAL AND WEINSHALL

a b c d e f a b c d e f
0.5

0.6

0.7

0.8

0.9

1

K
c
=153 K

c
=127

WINE P=168 D=12 M=3

N
or

m
al

iz
ed

 R
an

d
S

co
re

a b c d e f a b c d e f
0.5

0.6

0.7

0.8

0.9

1

K
c
=548 K

c
=400

BALANCE P=625 D=4 M=3

N
or

m
al

iz
ed

 R
an

d
S

co
re

a b c d e f a b c d e f
0.5

0.6

0.7

0.8

0.9

1

K
c
=269 K

c
=187

IONOSPHERE P=351 D=34 M=2

N
or

m
al

iz
ed

 R
an

d
S

co
re

a b c d e f a b c d e f
0.5

0.6

0.7

0.8

0.9

1

K
c
=41 K

c
=34

SOYBEAN P=47 D=35 M=4

N
or

m
al

iz
ed

 R
an

d
S

co
re

a b c d e f a b c d e f
0.5

0.6

0.7

0.8

0.9

1

K
c
=447 K

c
=354

BOSTON P=506 D=13 M=3

N
or

m
al

iz
ed

 R
an

d
S

co
re

a b c d e f a b c d e f
0.5

0.6

0.7

0.8

0.9

1

K
c
=133 K

c
=116

IRIS P=150 D=4 M=3

N
or

m
al

iz
ed

 R
an

d
S

co
re

Figure 10: Clustering accuracy on 6 UCI data sets. In each panel, the sixbars on the left correspond
to an experiment with ”little” side-information, and the six bars on the right correspond
to ”much” side-information. From left to right the six bars correspond respectively to
the algorithms described in the text, as follows: (a) K-means over the originalfeature
space (without using any side-information). (b) Constrained K-means over the original
feature space. (c) Constrained K-means over the feature space suggested by Xing et al.
(2002). (d) Constrained K-means over the feature space created by RCA. (e) EM over
the original feature space (without using any side-information). (f) Constrained EM
(Shental et al., 2004) over the feature space created by RCA. Also shown areP–the
number of points,M–the number of classes,D–the dimensionality of the feature space,
andKc–the mean number of connected components. The results were averaged over
20 realizations of side-information. The error bars give the standard deviations. In all
experiments we used K-means with multiple restarts as in done by Xing et al. (2002).

and unconstrained versions). Generally in the context of K-means, we observe that using equiva-
lence constraints to find a better metric improves results much more than using this information to
constrain the algorithm. RCA achieves comparable results to those reported by Xing et al. (2002),
despite the big difference in computational cost between the two algorithms (see Section 9.1).

The last two algorithms in our comparisons use the EM algorithm to compute a generative
Gaussian Mixture Model, and are therefore much more computationally intensive. We have added
these comparisons because EM implicitly changes the distance function over the input space in a
locally linear way (that is, like a Mahalanobis distance). It may therefore appear that EM can do
everything that RCA does and more, without any modification. The histogram bins marked by (e)
in Figure 10 clearly show that this is not the case. Only when we add constraints to the EM, and
preprocess the data with RCA, do we get improved results as shown by the histogram bins marked
by (f) in Figure 10.

958

MAHALANOBIS METRIC FROMEQUIVALENCE CONSTRAINTS

9. Discussion

We briefly discuss running times in Section 9.1. The applicability of RCA in general conditions is
then discussed in 9.2.

9.1 Runtime Performance

Computationally RCA relies on a few relatively simple matrix operations (inversionand square root)
applied to a positive-definite square matrix, whose size is the reduced dimensionality of the data.
This can be done fast and efficiently and is a clear advantage of the algorithm over its competitors.

9.2 Using RCA when the Assumptions Underlying the Method are Violated

−10

−5

0

5

10

−10

−5

0

5

10
−10

−5

0

5

10

xy

z

−10

−5

0

5

10

−10

−5

0

5

10
−10

−5

0

5

10

xy

z

Figure 11: Extracting the shared component of the covariance matrix usingRCA: In this exam-
ple the data originates from 2 Gaussian sources with the following diagonal covariance
matrices: diag(C1) = (ε,1,2) and diag(C2) = (1,ε,2). (a) The original data points
(b) The transformed data points when using RCA. In this example we used allof the
points from each class as a single chunklet and therefore the chunklet covariance ma-
trix is the average within-class covariance matrix. As can be seen RCA clearly down-
scales the irrelevant variability in the Z axis, which is the shared component of the 2
classes covariance matrices. Specifically, the eigenvalues of the covariance matrices
for the two classes are as follows (forε = 0.1): class 1–(3.947,1.045,0.009) before
RCA, and(1.979,1.001,0.017) after RCA; class 2–(3.953,1.045,0.010) before RCA,
and(1.984,1.001,0.022) after RCA. In this example, the condition numbers increased
by a factor of 3.78 and 4.24 respectively for both classes.

In order to obtain a strict probabilistic justification for RCA, we listed in Section 5the following
assumptions:

1. The classes have multi-variate normal distributions.

2. All the classes share the same covariance matrix.

3. The points in each chunklet are an i.i.d. sample from the class.

959

BAR HILLEL , HERTZ, SHENTAL AND WEINSHALL

What happens when these assumptions do not hold?
The first assumption gives RCA its probabilistic justification. Without it, in a distribution-free

model, RCA is the best linear transformation optimizing the criteria presented in Sections 3-4:
maximal mutual information, and minimal within-chunklet distance. These criteria are reasonable
as long as the classes are approximately convex (as assumed by the use ofthe distance between
chunklet’s points and chunklet’s means). In order to investigate this point empirically, we used
Mardia’s statistical tests for multi-variate normality (Mardia, 1970). These tests (which are based on
skewness and kurtosis) showed that all of the data sets used in our experiments are significantly non-
Gaussian (except for the Iris UCI data set). Our experimental results therefore clearly demonstrate
that RCA performs well when the distribution of the classes in the data is not multi-variate normal.

The second assumption justifies RCA’s main computational step, which uses theempirical aver-
age of all the chunklets covariance matrices in order to estimate the global withinclass covariance
matrix. When this assumption fails, RCA effectively extracts the shared component of all the classes
covariance matrices, if such component exists. Figure 11 presents an illustrative example of the use
of RCA on data from two classes with different covariance matrices. A quantitative measure of
RCA’s partial success in such cases can be obtained from the change inthecondition number(the
ratio between the largest and smallest eigenvalues) of the within-class covariance matrices of each
of the classes, before and after applying RCA. Since RCA attempts to whiten the within-class co-
variance, we expect the condition number of the within-class covariance matrices to decrease. This
is indeed the case for the various classes in all of the data sets used in our experimental results.

The third assumption may break down in many practical applications, when chunklets are auto-
matically collected and the points within a chunklet are no longer independent of one another. As a
result chunklets may be composed of points which are rather close to each other, and whose distribu-
tion does not reflect all the typical variance of the true distribution. In this case RCA’s performance
is not guaranteed to be optimal (see Section 8.2).

10. Conclusion

We have presented an algorithm which uses side-information in the form of equivalence constraints,
in order to learn a Mahalanobis metric. We have shown that our method is optimalunder several
criteria. Our empirical results show that RCA reduces irrelevant variabilityin the data and thus
leads to considerable improvements in clustering and distance based retrieval.

Appendix A. Information Maximization with Non-Invertible Linear
Transformations

Here we sketch the proof of the claim made in Section 3.3. As before, we denote byĈ the average
covariance matrix of the chunklets. We can rewrite the constrained expression from Equation 5 as

1
N

n

∑
j=1

n j

∑
i=1

(x ji −mj)
tAtA(x ji −mj) = tr(AtAĈ) = tr(AtĈA).

Hence the Lagrangian can be written as

log|AΣxA
t |−λ(tr(AĈAt)−1).

960

MAHALANOBIS METRIC FROMEQUIVALENCE CONSTRAINTS

Differentiating the Lagrangian with respect toA gives

ΣxA
t(AΣxA

t)−1 = λĈAt .

Multiplying by A and rearranging terms, we getI
λ = AĈAt . Hence as in RCA,A must whiten

the data with respect to the chunklet covarianceĈ in a yet to be determined subspace. We can now
use the equality in (5) to findλ:

tr(AĈAt) = tr(
I
λ
) =

K
λ

= 1 =⇒ λ = K

=⇒ AĈAt =
1
K

I ,

whereK is the dimension of the projection subspace.
Next, since in our solution spaceAĈAt = 1

K I , it follows that log|AĈAt | = K log 1
K holds for all

points. Hence we can modify the maximization argument as follows:

log|AΣxA
t | = log

|AΣxAt |

|AĈAt |
+K log

1
K

Now the optimization argument has a familiar form. It is known (Fukunaga, 1990) that maximiz-
ing the determinant ratio can be done by projecting the space on the span of the firstK eigenvectors
of Ĉ−1Σx. Denote byG the solution matrix for this unconstrained problem. This matrix orthogo-
nally diagonalizes botĥC andΣx, soGĈGt = Λ1 andGΣxGt = Λ2 for Λ1,Λ2 diagonal matrices. In

order to enforce the constraints we define the matrixA=
√

1
K Λ−0.5

1 G and claim thatA is the solution
of the constrained problem. Notice that the value of the maximization argument does not change
when we switch fromA to G sinceA is a product ofG and another full ranked matrix. It can also be
shown thatA satisfies the constraints and is thus the solution of the Problem (5).

Appendix B. Variance Bound on the RCA Covariance Estimator

In this appendix we prove Inequality 12 from Section 5. Assume we haveN = nk data points
X = {x ji}

n,k
i=1, j=1 in n chunklets of sizek each. We assume that all chunklets are drawn independently

from Gaussian sources with the same covariance matrix. Denoting bymi the mean of chunklet i, the
unbiased RCA estimator of this covariance matrix is

Ĉ(n,k) =
1
n

n

∑
j=1

1
k−1

k

∑
i=1

(x ji −mi)(x ji −mi)
T .

It is more convenient to estimate the convergence of the covariance estimate for data with a
diagonal covariance matrix. We hence consider a diagonalized version of the covariance, and return
to the original covariance matrix toward the end of the proof. LetU denote the diagonalization
transformation of the covariance matrixC of the Gaussian sources, that is,UCUt = Λ whereΛ is
a diagonal matrix with{λi}

D
i=1 on the diagonal. LetZ = UX = {zji}

n,k
i=1, j=1 denote the transformed

data. Denote the transformed within class covariance matrix estimation byĈu(n,k) = UĈ(n,k)U t ,
and denote the chunklet means bymu

i = Umi . We can analyze the variance ofĈu as follows:

var(Ĉu(n,k)) = var[
1
n

n

∑
i=1

1
k−1

k

∑
j=1

(zji −mu
i)(zji −mu

i)
T]

961

BAR HILLEL , HERTZ, SHENTAL AND WEINSHALL

=
1
n

var[
1

k−1

k

∑
j=1

(zji −mu
1)(zji −mu

1)
T]. (15)

The last equality holds since the summands of the external sum are sample covariance matrices of
independent chunklets drawn from sources with the same covariance matrix.

The variance of the sample covariance, assessed fromk points, for diagonalized Gaussian data
is known to be (Fukunaga, 1990)

var(Ĉii) =
2λ2

i

k−1
; var(Ĉi j) =

λiλ j

k
; cov(Ĉi j ,Ĉkl) = 0.

Hence (15) is simply

var(Ĉu
ii) =

2λ2
i

n(k−1)
; var(Ĉu

i j) =
λiλ j

nk
; cov(Ĉu

i j ,Ĉ
u
kl) = 0.

ReplacingN = nk, we can write

var(Ĉu
ii) =

2λ2
i

N(1− 1
k)

; var(Ĉu
i j) =

λiλ j

N
; cov(Ĉu

i j ,Ĉ
u
kl) = 0,

and for the diagonal termŝCu
ii

var(Ĉu(
N
k

,k)ii) =
2λ2

i

N(1− 1
k)

=
k

k−1
2λ2

i

N
≤

k
k−1

2λ2
i

N−1
=

k
k−1

var(Ĉu(1,N)ii).

This inequality trivially holds for the off-diagonal covariance elements.
Getting back to the original data covariance, we note that in matrix elements notation Ĉi j =

∑D
q,r=1Ĉu

qrUiqU jr whereD is the data dimension. Therefore

var[Ĉi j (n,k)]

var[Ĉi j (1,nk)]
=

∑D
q,r=1var[Ĉu(n,k)qrUiqU jr]

∑D
q,r=1var[Ĉu(1,nk)qrUiqU jr]

≤
∑D

q,r=1
k

k−1var[Ĉu(1,nk)qrUiqU jr]

∑D
q,r=1var[Ĉu(1,nk)qrUiqU jr]

=
k

k−1
,

where the first equality holds becausecov(Ĉu
i j ,Ĉ

u
kl) = 0.

Appendix C. Online RCA with Chunklets of General Size

The online RCA algorithm can be extended to handle a stream of chunklets ofvarying size. The
procedure is presented in Algorithm 4.

The steady state of the weight matrixW can be analyzed in a way similar to the analysis in
Section 3. The result isW = PE[1

n ∑n
i=1(x

T
i −mT)(xT

i −mT)t]−
1
2 whereP is an orthonormal matrix,

and soW is equivalent to the RCA transformation of the current distribution.

962

MAHALANOBIS METRIC FROMEQUIVALENCE CONSTRAINTS

Algorithm 4 Online RCA for chunklets of variable size
Input: a stream of chunklets where the points in a chunklet are known to belong to the same class.
Initialize W to a symmetric random matrix with||W|| << 1.
At time step T do:

• receive a chunklet{xT
1 , ...,xT

n} and compute its meanmT = 1
n ∑n

i=1xT
i ;

• computen difference vectorshT
i = xT

i −mT ;

• transformhT
i usingW, to getyT

i = WhT
i ;

• updateW = W+η∑n
i=1(W−yT

i (yT
i)tW).

whereη > 0 determines the step size.

Appendix D. The Expected Chunklet Size in the Distributed Learning Paradigm

We estimate the expected chunklet size obtained when using the distributed learning paradigm in-
troduced in Section 8. In this scenario, we use the help ofT teachers, each of which is provided with
a random selection ofL data points. Let us assume that the data containsM equiprobable classes,
and that the size of the data set is large relative toL. Define the random variablesx j

i as the number of
points from classi observed by teacherj. Due to the symmetry among classes and among teachers,
the distribution ofx j

i is independent ofi and j, thus defined asx. It can be well approximated by a
Bernoulli distributionB(L, 1

M), while considering onlyx≥ 2 (sincex = 0,1 do not form chunklets).
Specifically,

p(x = i|x 6= 0,1) =
1

1− p(x = 0)− p(x = 1)

(

L
i

)

(
1
M

)i(1−
1
M

)L−i i = 2,3,

We can approximatep(x = 0) andp(x = 1) as

p(x = 0) = (1−
1
M

)
L

≈ e−
L
M , p(x = 1) =

L
M

(1−
1
M

)
L−1

≈
L
M

e−
L
M .

Using these approximations, we can derive an approximation for the expected chunklet size as
a function of the ratior = L

M :

E(x|x 6= 0,x 6= 1) =
L
M − p(x = 1)

1− p(x = 0)− p(x = 1)
'

r(1−e−r)

1− (r +1)e−r .

References

Y. Adini, Y. Moses, and S. Ullman. Face recognition: The problem of compensating for changes in
illumination direction. Inproc. of IEEE PAMI, volume 19(7), pages 721–732, 1997.

A. Bar-Hillel, T. Hertz, N. Shental, and D. weinshall. Learning distance functions using equivalence
relations. In T. Fawcett and Nina Mishra, editors,20th International Conference on Machine
Learning, Wahington DC, 2003. AAAI press.

963

BAR HILLEL , HERTZ, SHENTAL AND WEINSHALL

S. Becker and G. E. Hinton. A self-organising neural network that discovers surfaces in random-dot
stereograms.Nature, 355:161–163, 1992.

P. N. Belhumeur, J. Hespanha, and D. Kriegman. Eigenfaces vs. fisherfaces: Recognition using
class specific linear projection.IEEE PAMI 8, 19(7):711–720, 1997.

A. J. Bell and T. J. Sejnowski. An information-maximization approach to blind separation and blind
deconvolution.Neural Computation, 7(6):1129–1159, 1995.

M. Bilenko, S. Basu, and R.J Mooney. Integrating constraints and metric learning in semi-
supervised clustering. InProc. 21st International Conf. on Machine Learning, Banff Canada,
2004. AAAI press. URLciteseer.ist.psu.edu/705723.html.

C. L. Blake and C. J. Merz. UCI repository of machine learning databases, 1998. URL
http://www.ics.uci.edu/∼mlearn/MLRepository.html.

J. S. Boreczky and L. A. Rowe. Comparison of video shot boundary detection techniques.SPIE
Storage and Retrieval for Still Images and Video Databases IV, 2664:170–179, 1996.

G. Chechik and N. Tishby. Extracting relevant structures with side information. In S Becker,
S. Thrune, and K. Obermayer, editors,Advances in Neural Information Processing Systems, vol-
ume 15. The MIT Press, 2003.

K. Fukunaga.Statistical Pattern Recognition. Academic Press, San Diego, 2nd edition, 1990.

P. Geladi and B. Kowalski. Partial least squares regression: A tutorial.Analytica Chimica Acta,
185:1–17, 1986.

T. Hastie and R. Tibshirani. Discriminant adaptive nearest neighbor classification and regression.
In David S. Touretzky, Michael C. Mozer, and Michael E. Hasselmo, editors,Advances in Neural
Information Processing Systems, volume 8, pages 409–415. The MIT Press, 1996.

T. Jaakkola and D. Haussler. Exploiting generative models in discriminativeclassifiers, 1998.

D. Klein, S. Kamvar, and C. Manning. From instance-level constraints to space-level constraints:
Making the most of prior knowledge in data clustering. InProc. 19th International Conf. on
Machine Learning, 2002. URLciteseer.nj.nec.com/klein02from.html.

R. Linsker. An application of the principle of maximum information preservationto linear systems.
In David S. Touretzky, editor,Advances in Neural Information Processing Systems, pages 186–
194. Morgan Kaufmann, 1989.

K. V. Mardia. Measures of multivariate skewness and kurtosis with applications. Biometrika, 36:
519–530, 1970.

W. M. Rand. Objective criteria for the evaluation of clustering method.Journal of the American
Statistical Association, 66(366):846–850, 1971.

N. Shental, A. Bar-Hillel, T. Hertz, and D. Weinshall. Computing gaussian mixture models with
em using equivalence constraints. In Sebastian Thrun, Lawrence Saul, and Bernhard Scḧolkopf,
editors,Advances in Neural Information Processing Systems 16. MIT Press, Cambridge, MA,
2004.

964

MAHALANOBIS METRIC FROMEQUIVALENCE CONSTRAINTS

N. Shental, T. Hertz, D. Weinshall, and M. Pavel. Adjustment learning and relevant component
analysis. In A. Heyden, G. Sparr, M. Nielsen, and P. Johansen, editors,7th European Conference
on Computer Vision, volume 4, 2002.

J. B. Tenenbaum and W. T. Freeman. Separating style and content with bilinear models.Neural
Computation, 12(6):1247–1283, 2000.

B. Thompson.Canonical correlation analysis: Uses and interpretation. Newbury Park CA: SAGE,
1984.

S. Thrun. Is learning the n-th thing any easier than learning the first? In David S. Touretzky,
Michael C. Mozer, and Michael E. Hasselmo, editors,Advances in Neural Information Process-
ing Systems, volume 8, pages 640–646. The MIT Press, 1996.

N. Tishby, F. C. Pereira, and W. Bialek. The information bottleneck method. In Proc. of the 37-th
Annual Allerton Conference on Communication, Control and Computing, pages 368–377, 1999.

M. A. Turk and A.P Pentland. Face recognition using eigenfaces. InProc. of IEEE CVPR, pages
586–591, 1991.

K. Wagstaff, C. Cardie, S. Rogers, and S. Schroedl. Constrained K-means clustering with back-
ground knowledge. InProc. 18th International Conf. on Machine Learning, pages 577–584.
Morgan Kaufmann, San Francisco, CA, 2001.

E. P. Xing, A. Y. Ng, M. I. Jordan, and S. Russell. Distance metric learning with application
to clustering with side-information. InAdvances in Neural Information Processing Systems,
volume 15. The MIT Press, 2002.

965

Journal of Machine Learning Research 6 (2005) 967–994 Submitted 2/04; Revised 8/04; Published 6/05

Algorithmic Stability and Meta-Learning

Andreas Maurer ANDREASMAURER@COMPUSERVE.COM

Adalbertstrasse 55
D-80799 M̈unchen, Germany

Editor: Tommi Jaakkola

Abstract

A mechnism of transfer learning is analysed, where samples drawn from different learning tasks
of an environment are used to improve the learners performance on a new task. We give a gen-
eral method to prove generalisation error bounds for such meta-algorithms. The method can be
applied to the bias learning model of J. Baxter and to derive novel generalisation bounds for meta-
algorithms searching spaces of uniformly stable algorithms. We also present an application to
regularized least squares regression.

Keywords: algorithmic stability, meta-learning, learning to learn

1. Introduction

We formally study the phenomenon oftransfer, where novel tasks and concepts are learned more
quickly and reliably through the application of past experience. Transfer is fundamental to human
learning (see Robins, 1998, for an overview of the psychological literature) and offers a way to
partially escape the implications of theNo Free Lunch Theorem(NFLT).

The NFLT states that no algorithm is superior to another when averaged uniformly across all
learning tasks. In a real environment, however, not all learning tasks occur equally likely. They are
distributed according to some environmental distributionE , which is far from uniform. By gather-
ing information on this distribution of tasks, a learner can possibly find an algorithm to outperform
other algorithms, but, of course, only on average over the distributionE .

This mechanism ofmeta-learninghas been analysed by Jonathan Baxter (1998, 2000) and
there have been several successful experiments in practical machine-learning contexts (see Caruana,
1998; Thrun, 1996, 1998) and Section 6). In this paper we extend the results in Baxter (2000) and
offer a general method to control the generalization error of meta-learning. We begin by reviewing
some notions of learning theory.

Generalization error bounds. Statistical learning theory deals withdata andhypotheses. A
data pointzmay be an input-output pairz= (x,y) and a hypothesiscmay be some functionx 7→ c(x),
but for many theoretical results data and hypotheses can be arbitrary objectsz andc, related only
through a nonnegativeloss function l(c,z) which measures how poorly the hypothesisc applies to
the data pointz. The familiar square lossl (c,(x,y)) = (c(x)−y)2 is an example wherez= (x,y)
with y∈ R andc : x 7→ c(x) ∈ R.

A learning taskis modelled by a probability distributionD on the set of data points,D(z) being
interpreted as the probability that the data pointz will be encountered under the conditions of the

c©2005 Andreas Maurer.

MAURER

taskD. For a given hypothesisc therisk

R(c,D) = Ez∼D [l (c,z)] (1)

measures how poorly the hypothesisc is expected to perform onD.
A learning algorithm Atakes asample S= (z1, ...,zm) of data, drawn iid from the distributionD

defining the learning task, and computes a hypothesisA(S). The returned hypothesis should work
well on the same learning taskD, so we want the riskR(A(S) ,D) to be small. The quantity

ES∼Dm [R(A(S) ,D)] (2)

would be a natural measure for the performance of a given algorithmA with respect to a given
learning taskD.

Unfortunately the distributionD itself is generally unknown, so that we cannot compute or
bound (2) directly. We do, however, know the sampleSwhich was drawn fromD, and we may give
a performance guarantee forA conditioned onS, but for arbitraryD. Such ageneralization error
boundis typically given by specifying a two argument functionB(δ,S), whereδ > 0 is a confidence
parameter, and the requirement that

∀D,Dm{S: R(A(S) ,D) ≤ B(δ,S)} ≥ 1−δ. (3)

The bound above states that with high probability (1−δ) in Sthe learning-resultA(S) will have risk
bounded byB. Section 3 will give examples of generalization error bounds.

Meta-Learning. This paper describes a mechanism by which a sequenceS=(S1, ...,Sn) of
samples, drawn from different learning tasksD1, ...,Dn, can be used to improve and predict the
performance of a learner on anunknown future task. We will give bounds analogous to (3) and also
present a practical algorithm.

The crucial idea, due to J. Baxter (1998, 2000), is that the learning tasks Di originate from
an environmentof tasks, which is a probability distributionE on the set of learning tasks. The
encounter with a new learning task is thus modelled as a random event, a drawD ∼ E of a task
D. Subsequent to the draw ofD a sampleS= (z1, ...,zm) may be generated by a sequence ofm
independentdraws fromD. Let DE (S) be the overall probability for anm-sampleS to arise in this
way,

DE (S) = ED∼E [Dm(S)] .

The accumulation of experience is then modelled byn independentdraws of samplesSi ∼ DE ,
resulting in the sample-sequence ormeta-sampleS=(S1, ...,Sn) (also called ’support sets’ by S.
Thrun, 1998, or(n,m)-samples by J. Baxter, 2000). The probability forS to arise in this manner is
(DE)n(S) and depends completely on the environmentE . We generally usem to denote the size of
the ordinary samples andn for the size of the meta samples. We also use bold lettersD, S, l, etc
to distinguish objects of meta-learning from the corresponding objects of ordinary learningD, S, l ,
etc.

A learners behaviour is formally described by a learning algorithmA. To say that the meta-
sampleS is used to determine the behaviour of the learner on future learning tasks can therefore be
expressed in the equation

A = A (S)

968

STABILITY AND META-LEARNING

whereA is a function which returns a learning algorithm for every meta-sampleS. The objectA
will be called ameta-algorithm. SinceA (S) is an algorithm we can train it with a sampleSto obtain
a hypothesisA(S)(S).

An example of a meta-algorithm is feature-learning whereA selects a feature map to preprocess
the input of a fixed algorithm. Another example is given in Section 6. In general, any method that
adjusts the parameters of an algorithm on the basis of the experience made withother learning tasks
can be regarded as a meta-algorithm.

To state generalization error bounds for meta-algorithms, we need to definea statistical mea-
sure of the performance of an algorithmA with respect to an environmentE , analogous to the risk
R(c,D) of a hypothesisc with respect to a taskD. The risk (1) measures the expected loss of a
hypothesis for future data drawn from the task distributionD, so the analogous quantity for an algo-
rithm should measure the expected loss of the hypothesis returned by the algorithm for future tasks
drawn from the environmental distributionE . A corresponding experiment involves the random
draw of a taskD from E , training the algorithm with a sampleSdrawn randomly and independently
from D, and applying the resulting hypothesis to data randomly drawn fromD. Formally

R(A,E) = ED∼E [ES∼Dm [R(A(S) ,D)]] = ED∼E [ES∼Dm [Ez∼D [l (A(S) ,z)]]] . (4)

The transfer riskR(A,E) measures how well the algorithmA is adapted to the environmentE . If
E is non-uniform the NFLT doesn’t apply, and we may hope to optimizeR(A,E) in A.

If the environment was known, we could in principle selectA so as to minimize (4), but the only
available information is the past experience or meta-sampleS. The situation is analogous to ordinary
learning. Now suppose thatA is a meta algorithm. The idea is to boundR(A (S) ,E) in terms ofS
with high probability inS, asS is drawn from the environmentE for every environmentE . GivenS
we can then reason that, regardless ofE , the bound is true with high probability. Formally we seek
a functionB such that, given a confidence parameterδ,

∀E ,(DE)n{S : R(A (S) ,E) ≤ B(δ,S)} ≥ 1−δ. (5)

The principal contribution of this paper is a general method to prove bounds of this type for
different classes of meta-algorithms.

The Method. Given an algorithmA, let l (A,S) be anestimatorfor the risk ofA(S) given the
sampleS= (z1, ...,zm). For example setl = lempwith the empirical estimator

lemp(A,S) =
m

∑
i=1

l (A(S) ,zi) .

We then write, usingES∼DE
[f (S)] = ED∼E [ES∼Dm [f (S)]],

R(A (S) ,E)

= ES∼DE
[l (A (S) ,S)]+ED∼E [ES∼Dm [R(A (S)(S) ,D)− l (A (S) ,S)]]

≤ ES∼DE
[l (A (S) ,S)]+sup

D,S′

∣

∣ES∼Dm
[

R
(

A
(

S′)(S) ,D
)

− l
(

A
(

S′) ,S
)]∣

∣ . (6)

969

MAURER

To control the first term in the last line it suffices to prove a bound of the type

∀D ∈ M1(Zm) ,Dn{S : ES∼D [l (A (S) ,S)] ≤ Π(δ,S)} ≥ 1−δ, (7)

whereD ∈ M1(Zm) refers to any probability distribution on the setZm of m-samples. Notice that
(7) has exactly the same structure as an ordinary generalization error bound (3) whereD has been
repaced withD, Swith S, A with A, l with l, andB with Π. We therefore propose to use established
results of learning theory to obtain the statement (7). Because it controls future values of the esti-
mator, a two-argument functionΠ satisfying (7) will be called anestimator prediction boundfor A
with respect to the estimatorl.

The simplest case, where a nontrivial estimator prediction bound can be found, occurs whenA
searches only a finite set of algorithms, but there are many other possibilities, some are listed in
Section 3.

Suppose that we have established (7). To obtain (5) it will be sufficient tobound the second
term in the last line of (6).

Methods for deriving ordinary generalization error bounds often usean intermediate bound on
the estimation error

|R(A(S) ,D)− l (A,S)| ,
valid for all distributions with high probability inS, for example by bounding the complexity of a
hypothesis space searched byA. Such bounds lead to a general method to control the second term
in (6) and to prove (5). Theorem 5 states a corresponding result, whichis applied in Section 5.2 to
improve on the results in (Baxter, 2000).

A second method to bound the estimation error in (6) involves the notion ofalgorithmic sta-
bility. This method is less general but more elegant and often gives tighter bounds. Bousquet and
Elisseeff (2002) have shown how generalization error bounds for learning algorithms can be ob-
tained in an easy, elegant and direct way. Instead of measuring the size of the space which the
algorithm searches, they concentrate directly on continuity properties of the algorithm in its depen-
dence on the training sample. A learning algorithm isuniformlyβ-stableif the omission of a single
example doesn’t change the loss of the returned hypothesis by more thanβ, for any data point and
training sample possible. Many algorithms are stable and stable algorithms have simple bounds on
their estimation error. Corresponding theorems can be found in (Bousquet, Elisseeff, 2002). The
requirement of stability has been weakened and the results have been extended by Kutin and Nyogi
(2002).

If for someβ and allS the algorithmA (S) is uniformlyβ-stable, then the estimation term in (6)
can be bounded in a particularly simple way, namely by 2β, as stated in Theorem 6.

Results. Algorithmic stability is also useful at a different level to prove that a meta-algorithm
A has an estimator prediction bound. This can be done by appealing to Theorem 12 in (Bousquet,
Elisseeff, 2002) (stated as Theorem 2 in Section 3). The following is an immediate consequence of
this theorem in combination with our Theorem 6:

Theorem 1 Suppose the meta-algorithmA satisfies the following two conditions:
1. For every meta sampleS=(S1, ...,Sn), let S\i be the same asS except that one of the Si has

been deleted. Then for everyS,S\i and every ordinary sample S we have
∣

∣

∣
lemp(A (S) ,S)− lemp

(

A
(

S\i
)

,S
)∣

∣

∣
≤ β′.

970

STABILITY AND META-LEARNING

2. For every ordinary sample S= (z1, ...,zm), let S\i is the same as S except that one of the zi

has been deleted. Then for every meta sampleS and every S and S\i we have

∣

∣

∣
l (A (S)(S) ,z)− l

(

A (S)
(

S\i
)

,z
)∣

∣

∣
≤ β.

Then for every environmentE we have, with probability greater than1−δ in the meta-sample
S=(S1, ...,Sn) drawn from(DE)n, the inequality

R(A (S) ,E) ≤ 1
n

n

∑
i=1

lemp(A (S) ,Si)+2β′ +
(

4nβ′ +M
)

√

ln(1/δ)

2n
+2β. (8)

The left hand side of the last inequality measures the expected performance of the algorithm
A (S) for all, and potentially yet unknown, tasks of the environmentE . The right side is composed
of an empirical estimate and terms depending on the sample sizesn andm, the stability parameters
β′ andβ and the confidence parameterδ. If β′

≈ 1/na andβ ≈ 1/mb, with a > 1/2 andb > 0, the
bound of the theorem becomes non-trivial.

We apply these results to a practical meta-algorithm for least squares regression. This meta-
algorithm is related to theChorus of Prototypesintroduced by Edelman (1995), so we call itCP-
Regression. CP-Regression takes the meta-sampleS=(S1, ...,Sn) and uses a primitive algorithmA0

to compute a set of corresponding regression functionsh1, ...,hn. For any new input objectx the
feature vector ofx is then mixed with (or even replaced by) the vector(h1(x) , ...,hn(x)). Finally
A (S) is defined to be regularized least squares regression with this modified input representation.
We show that Theorem 1 applies to this meta-algorithm, withβ′

≈ 1/n andβ ≈ 1/mas required.
CP-Regression can be implemented in practice and preliminary experiments seem to indicate

that meta-learning gives a practical advantage over ordinary regularized least squares regression.

Outline of the Paper. In Section 2 we give a summary of the definitions and notation used
in the paper. This section is intended as a reference for the reader. In Section 3 we show how to
obtain estimator prediction bounds from standard results in learning theory.In Section 4 we derive
transfer risk bounds for meta-algorithms. In Section 5 we attempt a comparison of our bounds to
ordinary generalization error bounds and compare our method and results to the approach taken
by J. Baxter (2000). In Section 6 we discuss regularized least squares regression, introduce CP-
regression, analyse its properties and present some preliminary experimental results.

2. Definitions and Notation

This section is intended as a reference for the notation and definitions usedin the paper.

Measurability. Any subset which we explicitely define on a measurable space will be assumed
measurable, as will be any function. Thus for example ’F ⊆R’ is shorthand for the statement ’F ⊆R

andF is Lebesgue-measurable’.M1(X) will always denote the space of probability measures on a
measurable spaceX. We supplyM1(X) with anyσ-algebra containing theσ-algebra generated by
the set of functions

µ∈ M1(X) 7→ Ex∼µ [f]

971

MAURER

for all bounded measurable functionsf and all singleton sets{µ} for µ∈M1(X). In this wayM1(X)
becomes itself a measurable space and it makes sense to talk aboutM1(M1(X)).

Learning and Algorithms. ThroughoutZ will be a measurable space ofdata-points z∈ Z, C a
space ofhypothesesor concepts c∈C andl : C×Z→ [0,M] a loss function. Samplesare polytuples
S∈ S∞

m=1Zm, andlearning algorithmsare symmetric functions

A :
∞

[

m=1

Zm →C.

Symmetry, which will be essential for our use of stability, means that for any permutationπ on
{1, ...,m} and anyS∈ Zm we haveA(π(S)) = A(S) whereπ(S) refers to the permuted sample

π(z1, ...,zm) =
(

zπ(1), ...,zπ(m)

)

.

The set of such algorithms depends only onC andZ and will be denoted byA (C,Z). The hypothesis
A(S) is what results whenA is trained withS.

Learning Tasks and Risk. A learning taskis specified by a probability measureD ∈ M1(Z).
Given such a taskD and a hypothesisc∈C and a loss functionl we use

R(c,D) = Ez∼D [l (c,z)]

to denote therisk (=expected loss) of the hypothesisc in taskD w.r.t. the loss functionl .

Generalization Error Bounds. A function B : (0,1]×S∞
m=1Zm → [0,M] is a generalization

error boundfor the algorithmA∈ A (C,Z) with respect to the loss functionl iff

∀D ∈ M1(Z) ,∀δ > 0,Dm{S: R(A(S) ,D) ≤ B(δ,S)} ≥ 1−δ.

Estimators and Algorithmic Stability. The leave-one-out estimator lloo and theempirical
estimator lempare the functions (the notation is from Bousquet, Elisseeff, 2002)

l loo, lemp: A (C,Z)× (Zm) → [0,M]

defined forA∈ A (C,Z) andS= (z1, ...,zm) ∈ Zm by

l loo(A,S) =
1
m

m

∑
i=1

l
(

A
(

S\i
)

,zi

)

,

whereS\i generally denotes the sampleSwith the i-th element deleted, and

lemp(A,S) =
1
m

m

∑
i=1

l (A(S) ,zi) .

For β > 0 an algorithmA∈ A (C,Z) is calleduniformlyβ-stable w.r.t. the loss function lif

|l (A(S) ,z)− l
(

A
(

S\i
)

,z
)

| < β,

972

STABILITY AND META-LEARNING

for everym, for everyS∈ Zm, z∈ Z andi ∈ {1, ...,m}.

Environments and Induced Distributions. A meta-learning task is specified by anenviron-
ment

E ∈ M1(M1(Z))

which models the drawing of learning tasksD ∼ E . The environmentE defines aninduced distri-
butionDE ∈ M1(Zm), by

DE (F) = ED∼E [Dm(F)] for F ⊆ Zm measurable. (9)

The corresponding expectation for a measurable functionf onZm is then

ES∼DE
[f] = ED∼E [ES∼Dm [f (S)]] .

The induced distributionDE models the probabilityDE (S) for anm-sampleS to arise when a task
D is drawn from the environmentE , followed bym independent draws of examples from the same
distributionD. DE is not a product measure, but a mixture of symmetric product measures, and
therefore itself symmetric. Repeated, independent draws fromDE give rise tometa-samples(see
below).

Transfer Risk. Given an environmentE ∈ M1(M1(Z)), an algorithmA∈ A (C,Z) and a loss
function l : C×Z → [0,M] the transfer riskof A in the environmentE w.r.t. the loss functionl is
given by

R(A,E) = ED∼E [ES∼Dm [R(A(S) ,D)]] .

It gives the expected risk of the hypothesisA(S) for a taskD randomly drawn from the environment
and the sampleS randomly drawn from this task. It measures how poorly the algorithmA is suited
to the environmentE .

Meta-Samples and Meta-Algorithms. We use the letterS to denote ameta-sample, S =
(S1, ...,Sn) ∈ (Zm)n. Such can be generated by a sequence ofn independent draws from some distri-
butionD∈M1(Zm), typically the distributionDE induced by an environmentE , that isS∼ (DE)n.

A (A (C,Z) ,Zm) is the set ofmeta algorithms. That is for A ∈ A (A (C,Z) ,Zm) and S ∈
S∞

n=1(Zm)n the objectA (S) is the algorithmA = A (S) ∈ A (C,Z) which results from trainingA
with the meta-sampleS. Given anm-sampleS, the objectA (S)(S) is the hypothesis returned by the
algorithmA (S), when trained with an ordinary sampleS.

Estimator Prediction Bounds. A function Π : (0,1]× S∞
n=1(Zm)n → [0,M] is an estima-

tor prediction boundfor the meta-algorithmA ∈ A (A (C,Z) ,Zm) with respect to the estimator
l : A (C,Z)× (Zm) → [0,M] iff

∀D ∈ M1(Zm) ,∀δ > 0,Dn{S : ES∼D [l (A (S) ,S)] ≤ Π(δ,S)} ≥ 1−δ. (10)

An estimator prediction bound is formally equivalent to an ordinary generalization bound under the
identificationsZ ↔ Zm, C↔ A (C,Z) , l ↔ l, A↔ A, B↔ Π.

Meta-Estimators. Given an estimatorl : A (C,Z)×(Zm)→ [0,M] theempirical meta-estimator
lemp is the function

lemp: A (A (C,Z) ,Zm)× (Zm)n → [0,M]

973

MAURER

defined forA ∈ A (A (C,Z) ,Zm) andS= (S1, ...,Sn) ∈ (Zm)n by

lemp(A,S) =
1
n

n

∑
i=1

l (A (S) ,Si) .

The meta-estimatorl loo is defined analogously. These definitions depend on the choice of the esti-
matorl itself. For example ifl=l loo then

(l loo)emp(A,S) =
1
n

n

∑
i=1

l loo(A (S) ,Si) .

Ordinary learning Meta learning
Data z∈ Z S= (z1, ...,zm) ∈ Zm

Samples S= (z1, ...,zm) ∈ Zm S= (S1, ...,Sn) ∈ (Zm)n

Hypotheses c∈C A∈ A (C,Z)

Algorithms A∈ A (C,Z) A ∈ A (A (C,Z) ,Zm)

Loss function l : C×Z → [0,M] l : A (C,Z)×Zm → [0,M] ,
wherel = lempor l loo

Learning Task D ∈ M1(Z) D ∈ M1(Zm), typically
D = DE whereDE is
induced by an environment
E ∈ M1(M1(Z)) (see(9))

Empirical lemp(A,S) = lemp(A,S) =

estimator = 1
m ∑m

i=1 l (A(S) ,zi) = 1
n ∑n

i=1 l (A (S) ,Si)

Risk R(c,D) = Ez∼D [l (c,z)] ES∼D [l (A,S)]

Bound Generalization error Estimator prediction

Table 1: This table relates the descriptions of ordinary and meta-learning tasks.

An important object which isnot mapped is the transfer riskR(A,E). Correspondingly an
estimator prediction bound isnot a generalization error bound for the transfer risk.

Covering Numbers.These definitions are taken from (Anthony, Bartlett, 1999). LetX be a set,
X0 ⊆ X. Forε > 0 and a metricd onX the covering numbersN (ε,X0,d) are defined by

N (ε,X0,d) = min
{

N ∈ N : ∃(x1, ...,xN) ∈ XN,∀x∈ X0,∃i,d(x,xi) ≤ ε
}

.

For a classF of real functions onX andS= (x1, ...,xn) ∈ Xn defineF �S⊆ R
n by

F |S = {(f (x1) , ..., f (xn)) : f ∈ F } ,

and define, forε > 0 and any givenn,

N1(ε,F ,n) = sup
S∈Xn

N (ε,F |S,d1) ,

974

STABILITY AND META-LEARNING

whered1 is the metric onRn defined by

d1(x,y) =
1
n

n

∑
i=1

|xi −yi | .

Loss Function Classes.Let H ⊆ C. The loss function classF (H , l) is the family of real
functions

F (H , l) =
{

z∈ Z 7→ l (c,Z) : c∈ H
}

.

For F (H , l) we use the topology of pointwise convergence which it inherits as a subsetof [0,M]Z.
A set H ⊆ C is called closed if F (H , l) is closed in this topology (and therefore also com-
pact by Tychonoffs theorem). IfH is closed then any finite linear combination of functionsc ∈
H 7→∑i αi l (c,zi) attains minima and maxima inH .

ForH ⊆A (C,Z) and a given estimatorl : A (C,Z)×Zm→ [0,M] we define an analogous (meta-)
loss function class

F (H, l) = {S∈ Zm 7→ l (A,S) : A∈ H} .

3. Estimator Prediction Bounds

In this section we give examples of estimator prediction bounds obtained fromestablished results
of statistical learning theory.

Selection from a Finite Set.Set the bound on the loss functionM to be equal to 1 for simplicity
and suppose that there is afiniteset of hypothesesH ={c1, ...,cK} ⊆C. Define the algorithmA for
a sampleS= (z1, ...,zm) ∈ Zm by

A(S) = argmin
c∈H

1
m

m

∑
j=1

l (c,zj) .

A well known application of Hoeffdings inequality and a union bound (see e.g. Anthony, Bartlett,
1999) give, for anyδ > 0,

∀D,Dm

{

S: sup
c∈H

∣

∣

∣

∣

∣

R(c,D)− 1
m

m

∑
j=1

l (c,zj)

∣

∣

∣

∣

∣

≤
√

ln(K/δ)

2m

}

≥ 1−δ, (11)

which gives the following generalization error bound forA:

∀D ∈ M1(Z) ,∀δ > 0,Dm{S: R(A(S) ,D) ≤ B(δ,S)} ≥ 1−δ

with

B(δ,S) = lemp(A,S)+

√

lnK + ln(1/δ)

2m
.

Note that this bound also holds for every algorithm searching a finite set ofhypotheses of cardinality
at mostK, that is for every algorithm withA(S) ∈ H for all Sand some setH with

∣

∣H
∣

∣≤K.
We now use the table at the end of the previous section. SubstitutingZm for Z, A (C,Z) for C,

l = lemp or l = l loo for l and a finite set of algorithms{A1, ...,AK} for {c1, ...,cK} , we arrive at the
following statement:

975

MAURER

Every meta algorithmA that suchA (S) ∈ {A1, ...,AK} for all S=(S1, ...,Sn) has the estimator
prediction bound

∀D ∈ M1(Zm) ,∀δ > 0,Dn{S : ES∼D [l (A (S) ,S)] ≤ Π(δ,S)} ≥ 1−δ

with

Π(δ,S) = lemp(A,S)+

√

lnK + ln(1/δ)

2n
. (12)

Selection from a Set of Bounded Complexity.Again withM = 1 consider a subsetH ⊆C. It
follows from the analysis in chapter 17 in (Anthony, Bartlett, 1999) and Theorem 21.1 of the same
reference, that the following holds for every 0< ε < 1 and every distributionD onZ:

Dm

{

S∈ Zm : ∀c∈ H ,

∣

∣

∣

∣

∣

Ez∼D [l (c,z)]− 1
m

m

∑
j=1

l (c,zj)

∣

∣

∣

∣

∣

≤ ε

}

≥ 1−4N1

(ε
8
,F (H , l) ,2m

)

e
−ε2m

32 . (13)

which implies the following generalization error bound, valid for every algorithm A searching only
the hypothesis spaceH :

B(δ,S) = lemp(A,S)+ inf

{

t : 4N1

(t
8
,F (H , l) ,2m

)

e
−t2m

32 ≤ δ
}

. (14)

Suppose now thatH ⊆ A (C,Z) is a space of algorithms and fix an estimatorl = l loo or l = lemp.
SubstitutingZm for Z, A (C,Z) for C, l for l andH for H , andF (H, l) for F (H , l) in the above,
we obtain analogous to (13):

For every 0< ε < 1 and every distributionD onZm:

Dm

{

S∈(Zm)n : ∀A∈ H,

∣

∣

∣

∣

∣

ES∼D [l (A,S)]− 1
n

n

∑
j=1

l (A,Sj)

∣

∣

∣

∣

∣

≤ ε

}

≥ 1−4N1

(ε
8
,F (H, l) ,2n

)

e
−ε2n

32 .

Every meta-algorithmA suchA (S) ∈ H for all S has thus the estimator prediction bound

Π(δ,S) = lemp(A,S)+ inf

{

t : 4N1

(t
8
,F (H, l) ,2n

)

e
−t2n

32 ≤ δ
}

. (15)

Uniformly Stable Algorithms . Now let M > 0 be arbitrary. Bousquet and Elisseeff (2002)
prove that uniformlyβ-stable algorithms have a generalization error bound with sample-independent
bound on the estimation error:

976

STABILITY AND META-LEARNING

Theorem 2 Let A∈ A (C,Z) be uniformlyβ-stable. Then for any learning task D∈ M1(Z) and any
positive integer m, with probability greater1−δ in a sample S drawn from Dm

l (A(S) ,D) ≤ l loo(A,S)+β+(4mβ+M)

√

ln 1
δ

2m

and

l (A(S) ,D) ≤ lemp(A,S)+2β+(4mβ+M)

√

ln 1
δ

2m
.

These bounds are good if we can show uniformβ-stability with β ≈ 1/ma, with a > 1/2. The
notion of uniform stability easily transfers to meta-algorithms to give estimator prediction bounds.
Fix an estimatorl = l loo or l = lemp and suppose that the meta-algorithm satisfies the following
condition:

For every meta sampleS=(S1, ...,Sn), if S′ is the same asS except that one of theSi has been
deleted, and for every ordinary sampleSwe have

∣

∣l (A (S) ,S)− l
(

A
(

S′) ,S
)∣

∣≤ β.

Theorem 2 then gives the estimator prediction bounds

Πloo(δ,S) = l loo(A,S)+β+(4nβ+M)

√

ln 1
δ

2n
(16)

and

Πemp(δ,S) = lemp(A,S)+2β+(4nβ+M)

√

ln 1
δ

2n
. (17)

4. Transfer Risk Bounds for Meta Algorithms

To derive the results in this section we need the following simple lemma, which can also be found
in (Bousquet, Elisseeff, 2002).

Lemma 3 Let A∈ A (C,Z). Then for any learning task D∈ M1(Z)

1. We have ES∼Dm [l loo(A,S)] = ES′∼Dm−1 [R(A(S′) ,D)].
2. If A is uniformlyβ-stable then|ES∼Dm [lemp(A,S)]−ES∼Dm [l loo(A,S)] | ≤ β.

Proof Using the permutation symmetry ofA and of the measureDm we get

ES∼Dm [l loo(A,S)] =
1
m

m

∑
i=1

ES∼Dm

[

l
(

A
(

S\i
)

,zi

)]

=
1
m

m

∑
i=1

ES′∼Dm−1

[

Ez∼D
[

l
(

A
(

S′
)

,z
)]]

= ES′∼Dm−1

[

R
(

A
(

S′
)

,D
)]

.

977

MAURER

Also

|ES∼Dm [lemp(A,S)− l loo(A,S)] |

≤ 1
m

m

∑
i=1

∣

∣

∣
ES

[

l (A(S) ,zi)− l
(

A
(

S\i
)

,zi

)]∣

∣

∣

≤ 1
m

m

∑
i=1

|ES[β]| = β.

Suppose now that we have an estimator prediction boundΠ for the meta-algorithmA with
respect to the estimatorl, so that, for allδ > 0,

∀D ∈ M1(Zm) ,Dn{S : ES∼D [l (A (S) ,S)] ≤ Π(δ,S)} ≥ 1−δ, (18)

where the estimatorl :A (C,Z)×Zm → [0,M] refers to eitherlempor l loo. We have outlined several
ways to obtain such bounds in Section 3.

Whenl = l loo the bound (18) is already powerful by itself. By the definition ofDE and the first
conclusion of Lemma 3 we have

ES∼DE
[l loo(A (S) ,S)] = ED∼E [ES∼Dm [l loo(A (S) ,S)]]

= ED∼E

[

ES′∼Dm−1

[

R
(

A (S)
(

S′
)

,D
)]]

.

SubstitutingDE for D in (18) we conclude

Theorem 4 If the meta-algorithmA satisfies the estimator prediction bound (18) withl = l loo then
for every environmentE , with probability greater than1−δ in the meta sample drawn from(DE)n

we have
ED∼E [ES∼Dm−1 [R(A (S)(S) ,D)]] ≤ Π(δ,S) . (19)

The left side of (19) is not quite equal to the transfer riskR(A,E). Here is a first application of
this bound: Let{A1, ...,AK} be a finite collection of algorithms. For any meta sampleS= (S1, ...,Sn)
defineA (S) to be

A (S) = arg min
A∈{A1,...,AK}

1
n

n

∑
i=1

l loo(A,Si) .

The meta-algorithmA selects the algorithm with the lowest leave-one-out error on average over the
meta-sample. Applying the estimator prediction bound (12) for this type of algorithm in combina-
tion with (19) above then gives, for anyE and with probability greater than 1−δ in the meta sample
drawn from(DE)n,

ED∼E [ES∼Dm−1 [R(A (S)(S) ,D)]] ≤ 1
n

n

∑
i=1

l loo(A (S) ,Si)+

√

ln(K/δ)

2n
. (20)

A similar result should hold ifl loo is replaced by any other, nearly unbiased estimator. A popular
procedure, for example, is dividing the samplesS∈ S into training- and test-samples to estimate the

978

STABILITY AND META-LEARNING

generalization performance of an algorithm. If we chose from a finite set of candidates the algorithm
A (S) which performs best on average over the test data inS, when trained with the training data in
S, then we are implementing a version of the above meta-algorithm, and a corresponding version
of (20) gives a probable performance guarantee forA (S) on future learning tasks drawn from the
same environment asS.

For more sophisticated meta-algorithms we need to consider the casel = lemp. In this case
an estimator prediction bound only bounds the expected empirical errorlemp(A (S) ,S) of A (S)
for a sampleSdrawn fromDE , but it does not give any generalization guarantee for the hypothesis
A (S)(S). For exampleA (S) could be some single-nearest-neighbour algorithm for which we would
havelemp(A (S) ,S) = 0 for almost allS, butA (S) would have poor generalization performance.

Recall the decomposition of the transfer risk (6) in the introduction:

R(A (S) ,E)

≤ ES∼DE
[l (A (S) ,S)]+sup

D,S′

∣

∣ES∼Dm
[

R
(

A
(

S′) ,D
)

− l
(

A
(

S′) ,S
)]∣

∣ .

The estimator prediction bound controls the first term above, so it remains to bound the second
term which is independent ofS. We need to bound the expected estimation error of the estimatorl
uniformly for all distributionsD and all algorithmsA (S) for all meta-samplesS.

Theorem 5 Suppose the meta-algorithmA has an estimator prediction boundΠ with respect to the
estimatorl = lemp , and that for everyη > 0 there is a number B(η) such that for every distribution
D ∈ M1(Z), and every meta-sampleS we have

Dm{S: |R(A (S)(S) ,D)− lemp(A (S) ,S)| ≤ B(η)} ≥ 1−η. (21)

Let ε = infη (B(η)+Mη). Then for every environmentE , with probability greater than1−δ in S
as drawn from(DE)n we have

R(A (S) ,E) ≤ Π(δ,S)+ ε.

Proof For anyD, S and arbitraryη we have

ES∼Dm [R(A (S)(S) ,D)]

≤ ES∼Dm [lemp(A (S) ,S)]+ES∼Dm [|R(A (S)(S) ,D)− lemp(A (S) ,S)|]
≤ ES∼Dm [lemp(A (S) ,S)]+B(η)+Mη,

where (21) was used in the last inequality. Taking the expectationD ∼ E gives

R(A (S) ,E) = ED∼E [ES∼Dm [R(A (S)(S) ,D)]]

≤ ED∼E [ES∼Dm [lemp(A (S) ,S)]]+ ε
= ES∼DE

[lemp(A (S) ,S)]+ ε
≤ Π(δ,S)+ ε,

where the last inequality holds with probability greater than 1− δ in the meta-sampleS as drawn
from (DE)n by virtue of the estimator prediction bound (18) applied withDE in place ofD.

979

MAURER

The condition (21) is often satisfied, typically withB(δ) decreasing as ln(1/δ) in δ and asm−1/2

in m, so we should get a boundε decreasing about as quickly as
√

ln(m)/m. Using the results in
Section 3, now on the level of ordinary learning, we see that the above theorem can be applied

• if everyA (S) selects a hypothesis from a finite setH (S) of choices with
∣

∣H (S)
∣

∣≤ K for all
S. This follows from (11) TheH (S) may of course be different for differentS..

• if everyA (S) selects a hypothesis from a setH (S)⊆C with uniformly bounded complexities.
Here we use (13). An application is given in Section 5.2.

• if everyA (S) is uniformly β-stable withβ ≈ 1/m. This follows from Theorem 2.

In the last case we can give a much better bound, where the additional error termε is often of
order 1/m:

Theorem 6 Suppose the meta-algorithmA has an estimator prediction boundΠ with respect to
the estimatorl = lemp , and that for someβ the algorithmsA (S) are uniformlyβ-stable for every
meta-sampleS. Then for any environmentE andδ > 0, with probability greater than1−δ in S as
drawn from(DE)n

R(A (S) ,E) ≤ Π(δ,S)+2β.

Proof We have

ES∼Dm [R(A (S)(S) ,D)] ≤ ES′∼Dm−1

[

R
(

A (S)
(

S′
)

,D
)]

+β
= ES∼Dm [l loo(A (S) ,S)]+β
≤ ES∼Dm [lemp(A (S) ,S)]+2β,

where the first inequality follows directly from uniform stability and the next lines follow from
Lemma 3. Taking the expectationD ∼ E and using the estimator prediction bound (18) withDE in
place ofD gives the result in just as in the proof of the previous theorem.

Theorem 1 now follows immediately from Theorem 6 and from the estimator prediction bound
(17) in Section 3. In Section 6 an application of this theorem to a practical meta-learning algorithm
is discussed.

The estimator prediction boundΠ(δ,S) will typically depend on the sizen of the meta-sample
S= (S1, ...,Sn), and not on the sizemof the constituting samplesSi . One may therefore wonder, how
we can have anm-dependence of the estimation error as 2β (often order 1/m), while in Theorem 2

(Bousquet, Elisseeff, 2002) it is 2β + O
(

√

1/m
)

. The reason for this difference is that to bound

the transfer-risk in the above proof we only need to bound the expectationin S of the random
variableR(A (S)(S) ,D), whereas the proof of Theorem 2 in (Bousquet, Elisseeff, 2002) needs to
use McDiarmid’s concentration inequality to bound this random variable itself with high probability

in S, which is where theO
(

√

1/m
)

term comes from.

980

STABILITY AND META-LEARNING

5. Comparison to Other Results

In this section we relate our results to others, beginning with a comparison to ordinary generaliza-
tion bounds. Then we compare our method to the approach taken by J. Baxter (2000) where the
generalization of meta-algorithms is also studied.

5.1 Comparison to Ordinary Generalization Error Bounds

Are our results better or worse than ordinary generalization error bounds? This question is at the
same time very important and very imprecise, because the two kinds of results refer to different
objects and situations.

The ordinary generalization error bound (examples in Section 3) applies toa situation where a
sampleShas already been drawn from an unknown taskD and the estimatorlemp(A,S) already has
a definite value. It typically has the structure

∀D,Dm{S: R(A(S) ,D) ≤ lemp(A,S)+ ε0} ≥ 1−δ

whereε0 is a bound on the estimation error. Oftenε0 ≈
√

1/m.
Our bounds on the other hand apply to a situation where only the meta-sampleS is known, and

typically have the structure

∀E ,(DE)n{S : R(A (S) ,E) ≤ Π(δ,S)+ ε′0
}

≥ 1−δ

whereΠ(δ,S) is the estimator prediction bound andε′0 is again a bound on the estimation error,
uniformly valid for all algorithmsA = A (S) for anyS.

To getε′0 our method always requires some condition (uniform bounds on estimation errors,β-
stability) on the algorithmsA (S), which is also sufficient to prove an ordinary generalization error
bound for such algorithmsA (S). The corresponding estimation errors are about the same in our
bounds and in the ordinary generalization error bounds. In case of Theorem 5 ourε′0 is slightly
worse than that of the ordinary bound (i.e.

√

ln(m)/mvs
√

1/m), in case of Theorem 6 it is actually

better (2β vs 2β+O
(

√

1/m
)

). Let’s ignore these differences and putε0 = ε′0. Comparing the two

bounds therefore involves a comparison of the estimator prediction boundΠ(δ,S) to a ’generic’
value of the estimatorlemp(A,S).

Our boundΠ(δ,S) has the disadvantage that it contains an additional error of meta-estimation.
But as the sizen of the meta-sampleSbecomes large, corresponding to an experienced meta-learner,
this additional term tends to zero, andΠ(δ,S) is likely to win over the ’generic’lemp(A,S), because
A (S) is likely to outperform the ’generic’ algorithmA on the meta-sampleS. To make this precise
we have to give more meaning to the word ’generic’.

While it is easy to define a generic value ofS (simply takingS∼ DE if some environmentE is
given), it is not so clear how we should pick a generic algorithmA. For simplicity consider a finite
set of algorithms{A1, ...,AK}. We should selectA uniformly at random from this set to obtain a
generic algorithm. The generic value oflemp(A,S) is then

Γ = ES∼DE

[

1
K

K

∑
k=1

lemp(Ak,S)

]

.

981

MAURER

The meta algorithm to consider for comparison is

A (S) = arg min
A∈{A1,...,AK}

1
n ∑

S∈S
lemp(A,S)

with the estimator prediction bound

ES∼DQ [lemp(A (S) ,S)] ≤
K

min
k=1

1
n ∑

Si∈S
lemp(Ak,Si)+

√

ln(K/δM)

2n

= Π(δM,S) , (22)

whereδM is the confidence parameter associated with the draw of the meta-sampleS. Now let

∆(S) =
1
K

K

∑
k=1

1
n ∑

S∈S
lemp(Ak,S)−

K
min
k=1

1
n ∑

S∈S
lemp(Ak,S) .

∆(S) will be positive unless all algorithms behave the same on the meta-sample, in whichcase it
is zero and meta-learning is indeed pointless (essentially an empirical instantiation of the NFLT).
With the boundM on the loss function equal to 1, an application of Hoeffding’s inequality gives,
with probability greater than 1−δM in a meta sampleSdrawn from(DE)n,

1
n ∑

S∈S

1
K

K

∑
k=1

lemp(Ak,S) ≤ Γ+

√

ln(1/δM)

2n
,

so with probability greater than 1−2δM in the meta-sampleS we have

Γ−Π(δM,S) ≥ ∆(S)−
√

ln(1/δM)+
√

lnK + ln(1/δM)√
2n

, (23)

in addition to validitiy of our bound (22). So for large meta-samplesSour bounds will very probably
be true and better than the generic value of ordinary generalization boundsby a margin of roughly
∆(S).

For a practical perspective consider image recognition, when the tasks inthe support ofE share
a certain invariance property (say image rotation), and there is only one algorithm in {A1, ...,AK}
having this invariance property. We can then expect the wrong algorithms tohave fairly large losses
for a given meta sampleS, so that∆(S) will have order≈ 1.

5.2 Comparison to the Bias Learning Model

The approach taken in Baxter (2000) can be partially reformulated in our framework. We will
consider only ERM-algorithms inA (C,Z) which have the form

AH (S) = argmin
c∈H

1
m ∑

zi∈S

l (c,zi) , (24)

for some closed setH ⊆C (the assumption of closure ensures existence of the minimum). Actually
Baxter (2000) allows any algorithm searching the setH , such as regularized algorithms, but the

982

STABILITY AND META-LEARNING

analysis in (Baxter, 2000) does not exploit the advantages of regularisation and we stick to ERM for
definiteness and motivation.

The traditional method to give generalization error bounds for such algorithms is described in
(Anthony, Bartlett, 1999) or (Vapnik, 1995) and involves the study of thecomplexity of the function
spaceFH =

{

z 7→ l (c,z) : c∈ H
}

in terms of covering numbers or related quantities, and proceeds
to prove a uniform bound on the estimation error, such as (13) in Section 3, valid for all c ∈ H ,
and with high probability in the sampleS. This leads to corresponding generalization error bounds.
We have sketched a version of this approach which can be applied both to ordinary and to meta
algorithms in Section 3.

The choice of thehypothesis spaceH completely defines the algorithm (24). A collection of
such algorithms can therefore be viewed as a familyH of closed subsetsH ⊆ C which define the
algorithmsAH by virtue of formula (24). A corresponding meta-algorithm takes a meta-sample
S, sampled from an environmentE as usual, and returns an algorithmA (S) = AH (S) for some
hypothesis spaceH (S) ∈ H. The meta-algorithm can thus be equivalently considered as a map
S→H (S) or

H :
∞

[

n=1

(Zm)n → H.

Such a meta-algorithm effectivelylearns the hypothesis spaceH (S), and in (Baxter, 2000) it is
called abias learner. For the remainder of this section takeH to be fixed and letA be any meta-
algorithm defined by the ERM formulaA (S) = AH (S) for some mapS 7→H (S) ∈ H. We also
assume the boundM on the loss function to be equal to 1.

In our framework it is natural to study covering numbers for the space ofalgorithms

HH=
{

AH : H ∈H
}

and use them to derive an estimator prediction bound (15) as outlined in Section 3. Imposing
a uniform bound on the complexities of the hypothesis spaces inH then allows the application
of Theorem 5. Putting together the estimator prediction bound (15), the uniform bound on the
estimation error (13) and Theorem 5, we arrive at

Corollary 7 Let

ε0 = inf
γ>0

{

γ+4 sup
H ∈H

N1

(γ
8
,F (H , l) ,2m

)

e−γ2m/32

}

and, forδ > 0,

ε1 = inf

{

t : 4N1

(t
8
,F (H, l) ,2n

)

e
−t2n

32 ≤ δ
}

.

Then for any environmentE , with probability at least1− δ in the draw of a meta-sampleS from
(DE)n, we have

R
(

AH (S),E
)

≤ 1
n ∑

Si∈S
lemp

(

AH (S),Si

)

+ ε1+ε0.

For convenience of comparison we give implicit bounds on the sample complexities, which are
easily derived usingε0 = ε1 = ε/2 andγ = ε/4:

983

MAURER

Corollary 8 For any0 < ε < 1, δ > 0, if

n≥ 128
ε2 ln

(

4N1
(ε

16,F (HH, lemp) ,2n
)

δ

)

(25)

and

m≥ 512
ε2 ln

(

4supH ∈H
N1
(ε

32,F (H , l) ,2m
)

ε

)

, (26)

then for any environmentE , with probability greater thanδ in the draw of a meta-sampleS from
(DE)n, we have

R
(

AH (S),E
)

≤ 1
n ∑

Si∈S
lemp

(

AH (S),Si

)

+ ε.

J. Baxter (2000) also defines capacities forH, but aims at giving a bound on

sup
H ∈H

∣

∣

∣

∣

∣

ED∼E

[

inf
c∈H

R(c,D)

]

− 1
n ∑

Si∈S
lemp(AH ,Si)

∣

∣

∣

∣

∣

valid with high probability inS as drawn from(DE)n for anyE . A corresponding bound on

erE (H (S)) := ED∼E

[

inf
c∈H (S)

R(c,D)

]

(27)

(which in Baxter, 2000, is called thegeneralization error of the bias learner), results. This is
Theorem 2 in (Baxter, 2000). The expression (27) is the expected riskof the optimal hypothesis in
H (S) asD is drawn from the environment.

The inequality

erE (H (S)) = ED∼E

[

ES∼Dm

[

inf
c∈H (S)

R(c,D)

]]

≤ ED∼E

[

ES∼Dm

[

R
(

AH (S) (S) ,D
)]]

= R
(

AH (S),E
)

(28)

shows that our bounds on the transfer risk also provide bounds on (27). Note however that a bound
on (27) does not itself guarantee generalization, because we may not find the optimal hypothesis
from a finite future sample. This is similar to the estimator prediction bounds in our approach and
contrary to our bounds on the transfer risk.

In Theorem 3 of Baxter (2000) the capacity of a givenH is used to formulate a uniform bound
on the estimation error of the hypotheses inH similar to (13). If corresponding capacity bounds

held forall hypothesis spacesH ∈ H, a bound on the transfer riskR
(

AH (S),E
)

would result from

the bound on (27) in a way parallel to our approach (in Baxter, 2000 a bound on the transfer risk
comparable to our bounds is never stated). In this case the results become comparable and the

984

STABILITY AND META-LEARNING

bounds on the sample complexities look similar. This is not surprising since both derivations of
bounds are rooted in the same classical method (see e.g. Vapnik, 1995).

The sample complexity bounds on them-sample depending on the uniform capacity bound are
then essentially the same in Baxter (2000) as in (26) (if we disregard that Baxter, 2000, imposes
additional conditions onm in Theorem 2). For a comparison we therefore focus on the sample
complexity bounds on the sizen of the meta-sample. In Baxter (2000) Theorem 2, to get

erE (H (S)) ≤ 1
n ∑

Si∈S
lemp

(

AH (S),Si

)

+ ε

with probability at least 1−δ in S, it is required that

n≥ 256
ε2 ln

8C
(ε

32,H
∗)

δ
, (29)

and there is an additional condition onm.
To compare (29) with our bound (25), we disregard the constants (whichare better in (25)) and

concentrate on a comparison of the complexity measuresC(ε,H∗) andN1(ε,F (HH, lemp) ,n).
In (Baxter, 2000) the capacityC(ε,H∗) is defined as follows: ForH ∈ H define a real function

H ∗ onM1(Z) by
H ∗ (D) = inf

c∈H
R(c,D) .

In (Baxter, 2000) there are assumptions to guarantee thatH ∗ is measurable onM1(Z), and since it
is obviously bounded we haveH ∗ ∈ L1(M1(Z) ,Q) for any probability measureQ ∈M1(M1(Z)).
UsedQ to denote the metric inL1(M1(Z) ,Q) and denote

H
∗ =

{

H ∗ : H ∈ H
}

.

Then
C(ε,H∗) = sup

Q∈M1(M1(Z))

N (ε,H∗,dQ) .

It turns out that our complexity measures are bounded by those in Baxter (2000).

Proposition 9 For all ε, n
N1(ε,F (HH, lemp) ,n) ≤C(ε,H∗) .

Proof For a sampleS= (z1, ...,zm) ∈ Zm useDS to denote the empirical distributionDS∈ M1(Z)
induced byS:

DS =
1
m

m

∑
i=1

δzi ,

whereδz is the unit mass concentrated atz∈ Z. Note that forH ∈ H we have

H ∗ (DS) = inf
c∈H

1
m

m

∑
i=1

l (c,zi) = lemp(AH ,S) .

For a meta-sampleS=(S1, ...,Sn)∈ (Zm)n useQS to denote the empirical distributionQS∈M1(M1(Z))
induced byS:

QS =
1
n

n

∑
i=1

δDSi
,

985

MAURER

whereδD is the unit mass concentrated atD ∈ M1(Z).
Now take any meta-sampleS=(S1, ...,Sn) ∈ (Zm)n and letN = N (ε,H∗,dQS). Then there is a

set of functions{Ψ1, ...,ΨN} ⊆ L1(M1(Z)) such that for everyH ∈ H there is somei such that

ε ≥ dQS (H ∗,Ψi)

=
1
n

n

∑
j=1

∣

∣H ∗ (DSj

)

−Ψi
(

DSj

)∣

∣

=
1
n

n

∑
j=1

∣

∣lemp(AH ,Sj)−Ψi
(

DSj

)∣

∣ . (30)

On the other hand we have

F (HH, lemp) |S =
{

(lemp(AH ,S1) , ..., lemp(AH ,Sn)) : H ∈ H
}

,

so, settingxi ∈ R
n with (xi) j = Ψi

(

DSj

)

, we see from (30) that every member ofF (HH, lemp) |S is
within d1-distanceε of somexi . It follows that

N (ε,F (HH, lemp) |S,d1) ≤ N (ε,H∗,dQS) ,

whence

N1(ε,F (HH, lemp) ,n) = sup
S∈(Zm)n

N (ε,F (HH, lemp) |S,d1)

≤ sup
S∈(Zm)n

N (ε,H∗,dQS)

≤ sup
Q∈M1(M1(Z))

N (ε,H∗,dQ)

= C (ε,H∗)

We can conclude that our bounds are normally applicable when those in (Baxter, 2000) are. It
may however happen, that our covering numbers increase polynomially inn, in which case we still
get tight bounds, but the capacities in (Baxter, 2000) are infinite.

6. A Meta-Algorithm for Regression

In this section we present a meta-learning algorithm for function estimation. The algorithm is based
on regularized least-squares regression, or ridge regression(as in Bousquet, Elisseeff, 2002, or
Christianini, Shawe-Taylor, 2000) and preliminary experiments appear promising.

To implicitly also define a ’kernelized’ version of the algorithm, we describe it ina setting where
the input spaceis a subsetX of the unit ball{‖x‖ ≤ 1} in a separable, possibly infinite dimensional
Hilbert spaceH, with an appropriately defined inner product.

Theoutput spaceY is the interval[0,1], the data spaceZ is given byZ = X ×Y ⊆{‖x‖ ≤ 1}×
[0,1] and a learning task is given by a distributionD ∈ M1(X ×Y). ThenD(x,y) is interpreted as
the probability of finding the input valuex associated with the output valuey in the context of the
taskD.

986

STABILITY AND META-LEARNING

As a hypothesis or concept space we consider the bounded linear functionalsh onH which can
be identified with membersh∈ H via the action of the inner producth(x) = 〈h,x〉 in H.

As a loss function we usel : H ×Z → R+ given by

l (h,(x,y)) = (〈h,x〉−y)2 .

This loss function is unbounded contrary to what is generally required in this paper. It will however
turn out that the effective hypothesis space searched by the algorithms inthis section is the ball
{

‖h‖ ≤ λ−1/2
}

whereλ is the regularization parameter introduced below.

6.1 Regularized least squares Regression

A standard algorithmA∈A(H,Z) for this type of problem is defined as follows: LetS= (z1, ...,zm)=
((x1,y1) , ...,(xm,ym)) ∈ Zm be a sample. We write, forh∈ H,

L(h) =
1
m

m

∑
i=1

(〈h,xi〉−yi)
2 +λ‖h‖2

and define
A(S) = argmin

h∈H
L(h) . (31)

Note thatλ‖A(S)‖2 ≤ L(A(S)) ≤ L(0) ≤ 1 so‖A(S)‖ ≤ λ−1/2. The effective hypothesis space is
then

{

‖h‖ ≤ λ−1/2
}

, as claimed above. Thus|〈h,x〉| ≤ λ−1/2 and the loss function is bounded by
λ−1.

Any component ofh perpendicular to all thexi will only increaseL, so we may assume that
A(S) is in the subspace generated by{x1, ...,xm}, in other words

A(S) =
m

∑
i=1

αixi (32)

for some (possibly non-unique) vectorα ∈ R
m. To find α we substitute (32) inL and equate the

gradient to zero. The result of this well known computation is the formula

(G+mλI)α = y (33)

whereGi j =
〈

xi ,x j
〉

is theGramian matrix, here considered as an operator onR
m, I = δi j is the

identity, andy = (y1, ...,ym) the set of target values in the sample, here considered as a vector
y ∈ R

m. Equation (33) can be efficiently solved forα using the Cholesky decomposition method.
The formula for the empirical loss ofA(S) is, using (32) and (33)

lemp(A,S) =
1
m

m

∑
i=1

((Gα)i −yi)
2

=
1
m

m

∑
i=1

(((G+mλI)α)i −yi −mλαi)
2

=
1
m

m

∑
i=1

(−mλαi)
2

= mλ2
m

∑
i=1

α2
i . (34)

It follows from example 3 in (Bousquet, Elisseeff, 2002) that the algorithmA so defined is
β-stable withβ = 2/(λm).

987

MAURER

6.2 A Meta-Algorithm

Consider now a meta sampleS= (S1, ...,Sn), drawn from(DE)n for some environmentE , and sup-
pose that we have used some ’primer’ algorithmA0 (for example the regression algorithm above
for an appropriate value ofλ = λ0) to train corresponding regression functionshk = A0(Sk) ∈ H.
The sequence of vectors(A0(S1) , ...,A0(Sn)) = (h1, ...,hn) in some way contains our experiences
with the environmentE . The idea of the meta-algorithm is now to use thehk asadditional fea-
tures to describe a given new data-pointx. We do this by combining then-dimensional vector
(h1(x) , ...,hn(x)) with the existing descriptionx∈ H.

The intuitive motivation is that we expect thehi to already describe relevant properties (sym-
metries, elimination of irrelevant features) of the environment, that we rely on, in particular if the
sample-sizes are rather small. Imagine the classification (by thresholding of aregression functions)
of character-images of a new character set, say the greek characters, after having learnt other char-
acter sets (roman, gothic etc). We could attempt to describe the image of the characterα by saying
that ’it looks a little bit like an x anda lot like an a, but ratherunlike an l ’. On the basis of this
description a person might recognize the characterα, without any previousvisual training data for
α.

The termsa little bit like, a lot like andunlike are quantifications given by previously learnt
regression functions forx, a and l , which may already have a certain robustness relative to defor-
mations, changes in scaling or variations in line thickness. If the sample-sizem is large we can
derive such robustness more directly and reliably from the training data for α itself, but for a very
small sample-size we expect the new features to be helpful. The whole idea isstrongly related to the
Chorus of Prototypesintroduced by Edelman (1995), so we will call our algorithmCP-Regression.

To formally define the algorithm, consider a ’primer’ algorithmA0∈A (H,Z) such that‖A0(S)‖≤
κ for all S∈ Zm. For example we could take forA0 the regularized least squares regression, as de-
fined above, with a regularization parameterλ0, in which case we would haveκ = λ−1/2

0 . Fix a
mixture parameterµ∈ [0,1] which will be used to interpolate between the old and the new features
and a regularization parameterλ > 0.

Now let the meta-sampleS = (S1, ...,Sn) be given. We have to define an algorithmA (S) ∈
A (H,Z). On the vectorspaceH we define a new inner product〈., .〉S by

〈x1,x2〉S = (1−µ)〈x1,x2〉+
µ

κ2n

n

∑
k=1

〈A0(Sk) ,x1〉〈A0(Sk) ,x2〉 , (35)

which is positive definite for 0≤ µ < 1 (in the caseµ = 1 we can use a quotient construction to
replaceH, which then becomesn′-dimensional withn′ ≤ n). We will use‖.‖S to denote the norm
corresponding to〈., .〉S.

Let S∈ Zn be any sample,S= (z1, ...,zm) = ((x1,y1) , ...,(xm,ym)) with xi ∈ H, ‖xi‖ ≤ 1, yi ∈
[0,1]. We define

A (S)(S) = argmin
h∈H

1
m

m

∑
i=1

(〈h,xi〉S−yi)
2 +λ‖h‖2

S

and the corresponding regression function

A (S)(S)(x) = 〈A (S)(S) ,x〉S.

988

STABILITY AND META-LEARNING

Note that

‖x‖2
S = (1−µ)‖x‖2 +

µ
κ2n

n

∑
k=1

〈A0(Sk) ,x〉2

≤ (1−µ)‖x‖2 +
µ

κ2n

n

∑
i=1

κ2‖x‖2 = ‖x‖2 ,

soX ⊆ {‖x‖S ≤ 1}. ThereforeA (S) is ordinary regularized least squares regression with the mod-
ified inner product〈., .〉S. It follows from the analysis in (Bousquet, Elisseeff, 2002) that the algo-
rithmsA (S) are uniformlyβ-stable withβ = 2/(mλ), for every meta-sampleS, with respect to the
square loss function we use.

The implementation ofA is straightforward: GivenS = (S1, ...,Sn) one computes the vectors
hk = A0(Sk). Now for any newm-sampleS the Gramian

(GS)i j =
〈

xi ,x j
〉

S = (1−µ)
〈

xi ,x j
〉

+
µ

κ2n

n

∑
k=1

〈hk,xi〉〈hk,x2〉

is determined, and the equation(GS+mλI)α = y is solved forα using Cholesky decomposition.
We then get the regression function

x 7→
m

∑
i=1

αi 〈xi ,x〉S =

= (1−µ)
m

∑
i=1

αi 〈xi ,x〉+µ
n

∑
k=1

γk 〈hk,x〉

with

γk =
1

κ2n

m

∑
i=1

αi 〈hk,xi〉 .

In a nonlinear case, when the inner product inH is defined by a complicated kernel, this regres-
sion function may be cumbersome to compute since all the computations of〈hk,x〉 will each again
involve m computations of the kernel. Also the entire meta-sampleS has then to be present in
memory. In a linear case, when the vectorspace operations inH can be performed explicitly, the
computational burden is significantly reduced to the computation of a single inner product〈h,x〉 of
x with the vector

h = (1−µ)
m

∑
i=1

αixi +µ
n

∑
k=1

γkhk

which is determined once during training.

6.3 Analysis of CP-Regression

As already noted the algorithmsA (S) are uniformlyβ-stable withβ = 2/(mλ), for every meta-
sampleS, with respect to square loss. This gives condition 2 for the application of Theorem 1.

The first condition, essential for the estimator prediction bound, is satisfiedby virtue of the
following proposition which is proven in the next subsection:

989

MAURER

Corollary 10 The algorithmA is uniformlyβ′-stable w.r.t. lempin the sense that, ifS=(S1, .,Sk, ..,Sn)
is a meta sample andS′=(S1, .,Sk−1,Sk+1..,Sn) is the same asS, with only some Sk deleted, then

∣

∣lemp(A (S) ,S)− lemp
(

A
(

S′) ,S
)∣

∣≤ β′

for every sample S∈ Zm, with

β′ =
4µ

λ(n−1)
.

Substitution in Theorem 1 gives, for every environmentE with probability at least 1− δ in a
meta-sampleS drawn from(DE)n,

R(A (S) ,E) ≤ 1
n ∑

Si∈S
lemp(A (S) ,Si)+

+
8µ

λ(n−1)
+

(

16µn
λ(n−1)

+
1
λ

)

√

ln(1/δ)

2n
+

4
mλ

. (36)

The bound gives a performance guarantee of the algorithm applied to future tasks on the basis
of the empirical term

(lemp)emp(A,S) =
1
n ∑

Si∈S
lemp(A (S) ,Si) . (37)

If µ = 0, corresponding to no meta-learning at all, the bound (36) becomes more attractive to look
at, but we expect the empirical term to be larger. For smalln it is better to take smallµ, while
for very large values ofn the value ofµ which results in the smallest empirical term is best. It is
tempting to minimize the bound with respect toµ. Unfortunately (36) applies only if the parameters
of A have been fixed in advance, it does not justify the selection of the parametersλ, µ or the choice
of the primer algorithmA0 which enters the bound only indirectly through the term (37)). Although
this problem can be partially eliminated (see the method of sieves as used in Anthony, 1999), it
remains a major weakness of our algorithm. A more principled approach wouldinvolve the direct
minimization of

1
n ∑

Si∈S
lemp(A,Si)+N(A)

whereN(A) would be some meta-regularizer. Our algorithm attempts to decrease the quantity(37)
only indirectly by the passage to (presumably) more reliable features.

6.4 Stability of CP-Regression

In this subsection we prove Proposition 10. For a bounded operatorT on a real Hilbert spaceH we
use‖T‖∞ to denote its operator norm

‖T‖∞ = sup
‖x‖≤1

‖Tx‖ = sup
‖x‖,‖y‖≤1

|〈Tx,y〉|

and useTt , Ker(T) andRan(T) to denote its transpose, nullspace and range respectively. A sym-
metric operator satisfies〈Tx,y〉 = 〈x,Ty〉 for all x andy (i.e. T = Tt), and a positive operator is a
symmetric operator also satisfying〈Tx,x〉 ≥ 0 for all x.

990

STABILITY AND META-LEARNING

Lemma 11 Let G1 and G2 be positive operators andλ > 0. Then
1. Gi +λI is invertible,

2.
∥

∥

∥
(Gi +λI)−1

∥

∥

∥

∞
≤ 1/λ and

3. we have
∥

∥

∥
(G1 +λI)−1− (G2 +λI)−1

∥

∥

∥

∞
≤ 1

λ2 ‖G1−G2‖∞ .

4. Let x1 and x2 satisfy(Gi +λI)xi = y. Then

∣

∣

∣
‖x1‖2−‖x2‖2

∣

∣

∣
≤ 2λ−3‖G1−G2‖∞ ‖y‖2 .

Proof 1. If (Gi +λI)x = 0 then−λ‖x‖ = 〈Gix,x〉 ≥ 0 sox = 0. ThusGi + λI is 1-1, and since
Ran(Gi +λI) = Ran

(

(Gi +λI)t)= Ker(Gi +λI)⊥ = {0}⊥ it is also onto.
2. Suppose(Gi +λI)x = y. Then

λ2‖x‖2 = ‖y−Gix‖2 = ‖y‖2−2〈Gix,y〉+‖Gix‖2

= ‖y‖2−2〈Gix,Gix+λx〉+‖Gix‖2

= ‖y‖2−‖Gix‖2−2λ〈x,Gix〉 ≤ ‖y‖2 ,

which proves the second conclusion.
3. We have

(

(G1 +λI)−1− (G2 +λI)−1
)

(G2 +λI)

= (G1 +λI)−1(G1 +λI +G2−G1)− (G2 +λI)−1(G2 +λI)

= (G1 +λI)−1(G2−G1) ,

so, using the second conclusion,

∥

∥

∥
(G1 +λI)−1− (G2 +λI)−1

∥

∥

∥

∞

=
∥

∥

∥
(G1 +λI)−1(G2−G1)(G2 +λI)−1

∥

∥

∥

∞

≤
∥

∥

∥
(G1 +λI)−1

∥

∥

∥

∞
‖G2−G1‖∞

∥

∥

∥
(G2 +λI)−1

∥

∥

∥

∞

≤ λ−2‖G1−G2‖∞ .

Finally, using the first three conclusions, ifxi = (Gi +λI)−1y, then

∣

∣

∣
‖x1‖2−‖x2‖2

∣

∣

∣
= |〈x1 +x2,x1−x2〉|
≤ (‖x1‖+‖x2‖)‖x1−x2‖
≤

(

2λ−1‖y‖
)(

λ−2‖G1−G2‖∞ ‖y‖
)

.

991

MAURER

Proof of Proposition 10. SupposeS=(S1, .,Sk0, ..,Sn) is a meta sample and thatS′=(S1, .,Sk0−1,Sk0+1..,Sn)
is the same asS, with only someSk0 deleted. We have to show that

∣

∣lemp(A (S) ,S)− lemp
(

A
(

S′) ,S
)∣

∣≤ 4µ
λ(n−1)

for every sampleS= (z1, ...,zm) = ((x1,y1) , ...,(xm,ym)) ∈ Zm.
Let G andG′ be the gramian matrices arising from the vectorsxi and the inner products〈., .〉S

and〈., .〉S′ respectively, that is

Gi j =
〈

xi ,x j
〉

S andG′
i j =

〈

xi ,x j
〉

S′ .

We regardG andG′ as operators onRm and use‖.‖m and〈., .〉m for the canonical norm and inner
product inR

m respectively.
We have, using (35) and denotinghk = A0(Sk),

Gi j −G′
i j =

−µ
κ2n(n−1) ∑

k6=k0

〈hk,xi〉
〈

hk,x j
〉

+
µ

κ2n
〈hk0,xi〉

〈

hk0,x j
〉

so, if η andγ are any two unit vectors inRm, we have, withv = ∑m
i=1 ηixi andw = ∑m

i=1 γ jx j ,

∣

∣

〈(

G−G′)η,γ
〉

m

∣

∣ =
−µ

κ2n(n−1) ∑
k6=k0

〈hk,v〉〈hk,w〉+
µ

κ2n
〈hk0,v〉〈hk0,w〉

≤ µ
κ2n(n−1) ∑

k6=k0

‖hk‖2‖v‖‖w‖+
µ

κ2n
‖hk0‖2‖v‖‖w‖

≤ 2µ
n−1

‖v‖‖w‖

Now using the triangle and Cauchy Schwarz inequalities

‖v‖ =

∥

∥

∥

∥

∥

m

∑
i=1

ηixi

∥

∥

∥

∥

∥

≤
m

∑
i=1

|ηi |‖xi‖ ≤ ‖η‖m

(

m

∑
i=1

‖xi‖2

)1/2

≤ m1/2

and similarly
‖w‖ ≤ m1/2,

so that|〈(G−G′)η,γ〉m| ≤ (2µm)/(n−1). Sinceη andγ were arbitrary unit vectors we have

∥

∥G−G′∥
∥

∞ ≤ 2µm
n−1

. (38)

Now if α andα′ are vectors inRm which are solutions of(G−mλI)α = y and(G′−mλI)α′ = y
respectively, andy ∈ R

m is a vector with|yi | ≤ 1, then, using the last conclusion of Lemma 11
together with (38),

∣

∣

∣
‖α‖2

m−
∥

∥α′∥
∥

2
m

∣

∣

∣
≤ 2(mλ)−3∥

∥G−G′∥
∥

∞ ‖y‖2
m

≤ 4m−2λ−3µ‖y‖2
m/(n−1)

≤ 4m−1λ−3µ/(n−1) .

992

STABILITY AND META-LEARNING

Using the formula (34) for the empirical error in regularised least squares regression then gives

∣

∣lemp(A (S) ,S)− lemp
(

A
(

S′) ,S
)∣

∣ = mλ2
∣

∣

∣
‖α‖2

m−
∥

∥α′∥
∥

2
m

∣

∣

∣

≤ 4µ
λ(n−1)

.

7. Conclusion

We have employed established analytical tools of statistical learning theory to analyze transfer learn-
ing. The notion of uniform algorithmic stability has proven to be particularly useful. Many interest-
ing problems remain, of which we mention only two:

1. The unnatural requirement, that all sample-sizes be equal to the meta-learner, should be elim-
inated.

2. CP-Regression could be implemented and systematically tested with a nonlinearkernel.

References

M. Anthony, P. Bartlett,Learning in Neural Networks: Theoretical Foundations, Cambridge Uni-
versity Press 1999.

J. Baxter, Theoretical Models of Learning to Learn, inLearning to Learn, S. Thrun, L. Pratt Eds.
Springer 1998.

J. Baxter, A Model of Inductive Bias Learning,Journal of Artificial Intelligence Research12: 149-
198, 2000.

O. Bousquet, A. Elisseeff, “Stability and Generalization”,Journal of Machine Learning Research,
2: 499-526, 2002.

R. Caruana, Multitask Learning, inLearning to Learn, S. Thrun, L. Pratt Eds. Springer 1998.

N. Christianini, J. Shawe-Taylor,Support Vector Machines, Cambridge University Press 2000.

L. Devroye, L. Gÿorfi, G. Lugosi,A Probabilistic Theory of Pattern Recognition. Springer, 1996.

S. Edelman, Representation, similarity and the chorus of prototypes.Minds and Machines, 45-68,
1995.

W. Hoeffding, “Probability inequalities for sums of bounded random variables”, Journal of the
American Statistical Association, 58:13-30, 1963.

S. Kutin, P. Niyogi, Almost-everywhere algorithmic stability and generalization performance, Tech-
nical report , Department of Computer Science, University of Chicago,2002.

993

MAURER

D. McAllester, “Some PAC-Bayesian Theorems”,Proceedings of the Eleventh Annual Conference
In Computational Learning Theory, 230-234, 1998.

C. McDiarmid, “Concentration”, inProbabilistic Methods of Algorithmic Discrete Mathematics, p.
195-248. Springer, Berlin, 1998.

A. Robins, Transfer in Congnition, inLearning to Learn, S. Thrun, L. Pratt Eds. Springer 1998.

S. Thrun,Explanation-Based Neural Network Learning, Kluwer 1996.

S.Thrun, Lifelong Learning Algorithms, inLearning to Learn, S.Thrun, L.Pratt Eds. Springer 1998.

V. Vapnik,The Nature of Statistical Learning Theory, Springer 1995.

D. H. Wolpert,The Mathematics of Generalization, Addison Wesley, 1995.

994

Journal of Machine Learning Research 6 (2005) 995–1018 Submitted 11/04; Revised 4/05; Published 6/05

Matrix Exponentiated Gradient Updates for On-line Learning and
Bregman Projection

Koji Tsuda KOJI.TSUDA@TUEBINGEN.MPG.DE

Max Planck Institute for Biological Cybernetics
Spemannstrasse 38
72076 T̈ubingen, Germany,and
Computational Biology Research Center
National Institute of Advanced Science and Technology (AIST)
2-42 Aomi, Koto-ku, Tokyo
135-0064, Japan

Gunnar Rätsch GUNNAR.RAETSCH@TUEBINGEN.MPG.DE

Friedrich Miescher Laboratory of the Max Planck Society
Spemannstrasse 35
72076 T̈ubingen, Germany

Manfred K. Warmuth MANFRED@CSE.UCSC.EDU

Computer Science Department
University of California
Santa Cruz, CA 95064, USA

Editor: Yoram Singer

Abstract
We address the problem of learning a symmetric positive definite matrix. The central issue is to de-
sign parameter updates that preserve positive definiteness. Our updates are motivated with thevon
Neumanndivergence. Rather than treating the most general case, we focus on two key applications
that exemplify our methods: on-line learning with a simple square loss, and finding a symmetric
positive definite matrix subject to linear constraints. Theupdates generalize the exponentiated gra-
dient (EG) update and AdaBoost, respectively: the parameter is now a symmetric positive definite
matrix of trace one instead of a probability vector (which inthis context is a diagonal positive def-
inite matrix with trace one). The generalized updates use matrix logarithms and exponentials to
preserve positive definiteness. Most importantly, we show how the derivation and the analyses of
the original EG update and AdaBoost generalize to the non-diagonal case. We apply the resulting
matrix exponentiated gradient(MEG) update andDefiniteBoostto the problem of learning a kernel
matrix from distance measurements.

1. Introduction

Most learning algorithms have been developed to learn avectorof parameters from data. However,
an increasing number of papers are now dealing with more structured parameters. More specifically,
when learning a similarity or a distance function among objects, the parameters are defined as asym-
metric positive definite matrixthat serves as a kernel (e.g., Xing et al., 2003; Shai-Shwartz et al.,
2004; Tsang and Kwok, 2003; Tsuda and Noble, 2004). Learning is typically formulated as a pa-
rameter updating procedure to optimize aloss function. The gradient descent update is one of

c©2005 Koji Tsuda, Gunnar R̈atsch and Manfred K. Warmuth.

TSUDA, RÄTSCH AND WARMUTH

the most commonly used algorithms, but it is not appropriate when the parameters form a posi-
tive definite matrix, because the updated parameter matrix does not necessarily stay positive def-
inite. Xing et al. (2003) solved this problem by always correcting the updated matrix to be pos-
itive definite. However no bound has been proven for this update-and-correct approach. Also,
Shai-Shwartz et al. (2004) proposed an on-line algorithm for learning akernel matrix when only
some of the class labels of the examples are provided. This algorithm is also based on the update-
and-correction approach, but since the update step performs rank-one modification, the correction
step can be efficiently implemented. They have shown a generalization boundinspired by similar
previously known bounds for the perceptron.

In this paper, we introduce thematrix exponentiated gradient updatewhich works as follows:
First, the matrix logarithm of the current parameter matrix is computed. Then a step is taken in the
direction of the steepest descent of the loss function. Finally, the parameter matrix is updated to the
exponential of the modified log-matrix. Our update preserves symmetry and positive definiteness
because the matrix exponential maps any symmetric matrix to a symmetric positive definite matrix.

Bregman divergences play a central role in the motivation and the analysis of on-line learning
algorithms(Kivinen and Warmuth, 1997). A learning problem is essentially defined bya loss func-
tion and a divergence that measures the discrepancy between parameters. More precisely, the up-
dates are motivated by minimizing the sum of the loss function and the Bregman divergence, where
the loss function is multiplied by a positive learning rate. Different divergences lead to radically
different updates (Kivinen and Warmuth, 1997, 2001). For example, the gradient descent update
is derived from the squared Euclidean distance, and the exponentiated gradient update from the
Kullback-Leibler divergence (relative entropy). In this work we use the von Neumanndivergence
(also called quantum relative entropy) for measuring the discrepancy between two positive definite
matrices (Nielsen and Chuang, 2000). We derive a newmatrix exponentiated gradient updatefrom
this divergence (which is a Bregman divergence for symmetric positive definite matrices). Finally
we proverelative loss boundsusing thevon Neumanndivergence as a measure of progress.

We apply our techniques to solve the following related key problem that has received a lot of
attention recently (Xing et al., 2003; Shai-Shwartz et al., 2004; Tsang andKwok, 2003; Tsuda
and Noble, 2004). Find a symmetric positive definite matrix that satisfies a number of linear
inequality constraints. The newDefiniteBoostalgorithm greedily chooses a violated linear con-
straint and performs an approximated Bregman projection. In the diagonalcase, we recover Ada-
Boost (Schapire and Singer, 1999). We also show how the convergence proof of AdaBoost general-
izes to the non-diagonal case.

2. Preliminaries

In this section, we first present mathematical definitions and basic lemmas.

2.1 Matrix Basics

We denote matrices by capital bold letters and restrict ourselves to square matrices with real entries
in this paper. For any such matrixA ∈ R

d×d, expA and logA denote the matrix exponential and
logarithm, respectively. The matrix exponential is defined as the following power series,

exp(A) := I +A+
1
2!

A2 +
1
3!

A3 + · · · . (2.1)

996

MATRIX EXPONENTIATED GRADIENT UPDATES

In the case of symmetric matrices, the matrix exponential operation can be computed using the
eigenvalue decompositionA = V ΛV >, whereV is an orthonormal matrix with the eigenvectors
of A as columns andΛ the diagonal matrix of eigenvalues. Thus,expA = V (expΛ)V >, where
(expΛ)i,i = exp(Λi,i). The matrix logarithmlogA is defined as the inverse function ofexpA, which
does not always exist for arbitraryA. However, whenA is symmetric and strictly positive definite,
logA is computed aslogA := V (logΛ)V >, where(logΛ)i,i = logΛi,i . Throughout the paper loga
and expa denote the natural logarithm and exponential of scalar “a”.

A square matrix is positive definite if all its eigenvalues are strictly positive. Positive semi-
definiteness only requires the non-negativity of the eigenvalues. For twomatricesA andB, A �
B iff B−A is positive semi-definite. Similarly,A ≺ B iff B−A is (strictly) positive definite.

The trace of a matrix is the sum of its diagonal elements, i.e. tr(A) = ∑i Ai,i and thus tr(AB) =

∑i, j Ai, jB j,i = tr(BA). In matrix algebra, tr(AB) plays a similar role as the dot product for vectors.
Furthermore, tr(A) = ∑i λi , whereλi are the eigenvalues ofA and the determinant det(A) = ∏i λi .

If F(W) : R
d×d →R is a real-valued function on matrices, then∇WF(W) denotes thegradient

with respect to matrixW :

∇WF(W) =




∂F
∂W11

· · · ∂F
∂W1d

...
. ..

...
∂F

∂Wd1
· · · ∂F

∂Wdd


 .

For example, it is easy to see that∇Atr(AB) = B>. More examples of computing gradients are
given in Appendix A.

For a square matrixX, sym(X) = (X +X>)/2 denotes the symmetric part ofX. If W is
symmetric andX an arbitrary matrix, then

tr(WX) = tr

(
W

X +X>

2

)
+ tr

(
W

X −X>

2

)
= tr(W sym(X)). (2.2)

Our analysis requires the use of the Golden-Thompson inequality (Golden,1965):

tr(exp(A+B)) ≤ tr(exp(A)exp(B)), (2.3)

which holds for arbitrarysymmetricmatricesA andB.
We also need the following two basic inequalities for symmetric matrices. The firstone gener-

alizes the following simple inequality, which is a realization of Jensen’s inequalityfor the convex
function exp(x): For any 0≤ a≤ 1 andρ1,ρ2 ∈ R,

exp(aρ1 +(1−a)ρ2) ≤ aexp(ρ1)+(1−a)exp(ρ2).

In the below generalization, the distribution(a,1−a) is replaced by(A,I −A), whereA is any
symmetric matrix for which0 � A � I.

Lemma 2.1 For any symmetric matrixA ∈ R
d×d such that0 � A � I, and anyρ1,ρ2 ∈ R,

exp(Aρ1 +(I −A)ρ2) � Aexp(ρ1)+(I −A)exp(ρ2).

997

TSUDA, RÄTSCH AND WARMUTH

Proof AssumeA is eigen-decomposed asA = V ΛV >, whereΛ is the diagonal matrix of eigen-
values andV is an orthogonal matrix with the eigenvectors ofA as columns. By assumption,
0≤ λk ≤ 1. Letθk be thek-th eigenvalue of the left hand side of the inequality that we are to prove.
Clearlyθk = exp(λkρ1+(1−λk)ρ2) and by Jensen’s inequality,θk ≤ λk exp(ρ1)+(1−λk)exp(ρ2).
Let Θ be the diagonal matrix with entriesθk. ThenΘ � Λexp(ρ1)+(I−Λ)exp(ρ2), and by multi-
plying both sides byV from left and byV > from right, we obtain the desired inequality.

Lemma 2.2 For any positive semi-definite symmetric matrixA ∈ R
d×d and any two symmetric

matricesB,C ∈ R
d×d, B � C impliestr(AB) ≤ tr(AC).

Proof Let D = C −B, thenD � 0 by assumption. Suffices to show that tr(AD) ≥ 0. Let us
eigen-decomposeA asV ΛV >. SinceV V > = V >V = I, D = V PV > whereP = V >DV � 0.
Then tr(AD) = tr(V ΛV >V PV >) = tr(ΛP) = ∑n

i=1 λiPii . SinceP is positive semi-definite, the
diagonal elementsPii are nonnegative. Also by assumption the eigenvaluesλi of A are nonnegative.
Thus we conclude that tr(AD) ≥ 0.

2.2 Von Neumann Divergence or Quantum Relative Entropy

If F is a real-valued strictly convex differentiable function on the parameterdomain (a subset of
matrices inRd×d) andf(W) := ∇WF(W), then the Bregman divergence between two parameters
W̃ andW is defined as

∆F(W̃ ,W) := F(W̃)−F(W)− tr((W̃ −W)f(W)>).

Since F is strictly convex,∆F(W̃ ,W) is also strictly convex in its first argument. Furthermore, the
gradient in the first argument has the following simple form:

∇
W̃

∆F(W̃ ,W) = f(W̃)−f(W),

since∇Atr(AB) = B> (cf. Section 2.1).
For the divergences used in this paper, we restrict ourselves to the domain of symmetric positive

definite matrices. Our main choice of F is F(W) = tr(W logW −W), which is calledvon Neu-
mann entropyor quantum entropy. The strict convexity of this function is well known (Nielsen and
Chuang, 2000). Furthermore we show in Appendix A that∇WF(W) = f(W) = logW .

The Bregman divergence corresponding to this choice of F is thevon Neumann divergenceor
quantum relative entropy(e.g., Nielsen and Chuang, 2000):

∆F(W̃ ,W) = tr(W̃ logW̃ −W̃ logW −W̃ +W).

In this paper, we are primarily interested in the case when the parameters arenormalized in the
sense that tr(W) = tr(W̃) = 1. Symmetric positive definite matrices of trace one are related to
density matrices commonly used in Statistical Physics. For normalized parametersthe divergence
simplifies to

∆F(W̃ ,W) = tr(W̃ logW̃ −W̃ logW).

998

MATRIX EXPONENTIATED GRADIENT UPDATES

If W = ∑i λiviv
>
i is our notation for the eigenvalue decomposition, then the von Neumann

entropy1 becomes F(W) = ∑i λi logλi . We can rewrite the normalized divergence2 as

∆F(W̃ ,W) = ∑
i

λ̃i logλ̃i −∑
i, j

λ̃i logλ j(ṽ
>
i v j)

2. (2.4)

This divergence quantifies the difference in the eigenvalues as well as the eigenvectors. When both
eigen systems are the same (i.e., ˜vi = vi), then the divergence becomes the usual relative entropy

between the eigenvalues∆F(W̃ ,W) = ∑i λ̃i log λ̃i
λi

.

2.3 Rotation Invariance

One can visualize a symmetric positive definite matrixW = ∑i λiviv
>
i = V ΛV > as an ellipse,

where the eigenvectorsvi are the axes of the ellipse and the square-roots of the eigenvalues (i.e.√
λi) are the lengths of the corresponding axes. Thus the von Neumann divergence quantifies the

“discrepancy” between two ellipses and is invariant under a simultaneous rotation of both eigen
systems. That is, for any orthonormal matrixU , the von Neumann divergence has the property that

∆F(W̃ ,W) = ∆F(UW̃U>,UWU>). (2.5)

This follows from (2.4) and

∆F(Ṽ Λ̃Ṽ >,V ΛV >) = ∆F(UṼ Λ̃(UṼ)>,UV Λ(UV)>).

However, the divergence is decidedly not invariant under the unitary rotation of both parameters,
i.e. typically∆F(W̃ ,W) 6= ∆F(UW̃ ,UW) for an orthonormal matrixU . This is because such ro-
tations can change the sign of the eigenvalues. Also rotating symmetric matrices typically produces
non-symmetric matrices.

There is a second important divergence between symmetric positive definitematrices that is
invariant under the simultaneous rotation of both eigen systems (2.5). It is a Bregman divergence
based on the strictly convex function F(W) =− logdet(W) (e.g., Boyd and Vandenberghe (2004))
over the cone of positive definite matrices. Note that F(W) = −∑i logλi , where theλi denote the
eigenvalues ofW . Also sincef(W) = ∇WF(W) = (W−1)> = W−1, the Bregman divergence
becomes:

∆F(W̃ ,W) = log
det(W)

det(W̃)
+ tr(W−1W̃)−d

= ∑
i

log
λi

λ̃i
+ tr(W−1W̃)−d,

whered is the dimension of the parameter matrices. We call this theLogDetdivergence. Notice
that in this case, F(W) is essentially minus the log of the volume of the ellipseW , and the LogDet
divergence is the relative entropy between two multidimensional Gaussians with fixed mean and
covariance matrices̃W andW , respectively (see Singer and Warmuth, 1999). At the end of Section
3.1 we will also briefly discuss the updates derived from the LogDet divergence. Note that for this
divergence∆F(W̃ ,W) = ∆F(UW̃ ,UW) for any orthonormal matrixU and parameter matrices
in the domain ofF .

1. F(W) can be extended to symmetric positive semi-definite matrices by using the convention 0log0= 0.
2. The domain of the first argument can be extended to symmetric positive semi-definite matrices.

999

TSUDA, RÄTSCH AND WARMUTH

3. On-line Learning

In this section we present a natural extension of theexponentiated gradient(EG) update (Kivinen
and Warmuth, 1997) to an update for symmetric positive definite matrices.

3.1 Motivation of the Updates

On-line learning proceeds in trials. In the most basic form, the on-line algorithm produces a param-
eterWt at trial t and then incurs a lossLt(Wt). In this paper, the parameters are square matrices in
R

d×d.
In a refined form, the algorithm aims to predict a label and several actions occur in each trial:

The algorithm first receives aninstanceXt in some instance domainX . It then produces a prediction
ŷt for the instanceXt based on the algorithm’s current parameter matrixWt and receives a labelyt .
(The prediction ˆyt and the labelyt lie some labeling domainY .) Finally the algorithm incurs a real
valued lossL(ŷt ,yt) and updates its parameter matrix toWt+1.

For example in Section 3.3 we consider a case where the labeling domainY is the real line.
The on-line algorithm we analyze for this case predicts with ˆyt = tr(WtXt) and is based on the loss
Lt(Wt) = L(ŷt ,yt) = (ŷt −yt)

2.
In this section we only discuss updates at a high level and only consider thebasic form of the

on-line algorithm. We assume thatLt(W) is convex in the parameterW (for all t) and that the
gradient∇WLt(W) is a well defined matrix inRd×d. In the update, we aim to solve the following
problem (see Kivinen and Warmuth, 1997, 2001):

Wt+1 = argmin
W

∆F(W ,Wt)+ηLt(W), (3.1)

where the convex function F defines the Bregman divergence andη is a non-negative learning rate.
The update balances two conflicting goals: staying close to the old parameterWt (as quantified by
the divergence) and achieving small loss on the current labeled instance. The learning rate becomes
a trade-off parameter.

We can eliminate the argmin by setting the gradient (with respect toW) of its objective to zero:

Wt+1 = f−1(f(Wt)−η∇WLt(Wt+1)) . (3.2)

If we assume thatf andf−1 preserve symmetry, then constrainingW in (3.1) to be symmetric
changes the update to (cf. Appendix B for details):

Wt+1 = f−1(f(Wt)−ηsym(∇WLt(Wt+1))) . (3.3)

The aboveimplicit update is usually not solvable in closed form. A common way to avoid this
problem (Kivinen and Warmuth, 1997) is to approximate∇WLt(Wt+1) by ∇WLt(Wt), leading to
the followingexplicitupdate for the constraint case:

Wt+1 = f−1(f(Wt)−ηsym(∇WLt(Wt))) .

In the case of the von Neumann divergence, the functionsf(W) = logW andf−1(Q) = expQ

clearly preserve symmetry. When using this divergence we arrive at thefollowing (explicit) update:

1000

MATRIX EXPONENTIATED GRADIENT UPDATES

Wt+1 = exp


log

sym.pos.def.︷︸︸︷
Wt −ηsym(

pos. semi. def.︷ ︸︸ ︷
∇WLt(Wt))︸ ︷︷ ︸

symmetric




︸ ︷︷ ︸
symmetric positive definite

. (3.4)

We call this update theunnormalized matrix exponentiated gradient update. Note thatf(W) =
logW maps symmetric positive definite matrices to arbitrary symmetric matrices, and after adding
a scaled symmetrized gradient, the functionf−1(Q) = expQ maps the symmetric exponent back
to a symmetric positive definite matrix.

When the parameters are constrained to trace one, then we arrive at theMatrix Exponentiated
Gradient (MEG) update, which generalizes the exponentiated gradient (EG) update of Kivinen and
Warmuth (1997) to non-diagonal matrices:

Wt+1 =
1
Zt

exp(logWt −ηsym(∇WLt(Wt))) , (3.5)

where Zt = tr(exp(logWt −ηsym(∇WLt(Wt)))) is the normalizing constant (See Appendix B for
details.)

Finally, observe that for the LogDet divergencef(W) = ∇WF = −W−1 and f−1(Q) =
−Q−1. Thus bothf and f−1 negate and invert all eigenvalues. Both functions also preserve
symmetry. However,f−1 does not map an arbitrary symmetric matrix back to a symmetric positive
definite matrix. Note that for this divergence update (3.3) becomes

Wt+1 = −


−(

sym.pos.def.︷︸︸︷
Wt)−1−ηsym(

pos.semi.def.︷ ︸︸ ︷
∇WLt(Wt+1))︸ ︷︷ ︸

symmetric negative definite




−1

︸ ︷︷ ︸
symmetric positive definite

.

This update also preserves symmetric positive definiteness of the parametermatrix under the as-
sumption that the gradient∇WLt(Wt+1) is positive semi-definite: IfWt is symmetric positive def-
inite, thenf(Wt) is symmetric negative definite. Using this assumption, we have that the argument
of f−1 is symmetric negative definite and thereforeWt+1 is again symmetric positive definite.

In this paper we prove a certain type of relative loss bound for the MEG update which generalize
the analogously known bounds for the EG algorithm to the non-diagonal case. To our knowledge,
no relative loss bounds have been proven for the above update that is derived from the LogDet
divergence. For this update, such bounds are not even known for the diagonal case. Also, if the
gradients of the loss are only known to be symmetric thenη must be small in order to guarantee that
Wt+1 stays in the positive definite cone.

3.2 Numerically Stable MEG Update

The MEG update (3.5) is numerically unstable when the eigenvalues ofWt are around zero. How-
ever we can “unwrap” this update to the following:

Wt+1 =
1

Z̃t
exp

(
ctI + logW1−η

t

∑
s=1

sym(∇WLs(Ws))

)
,

1001

TSUDA, RÄTSCH AND WARMUTH

where the constant̃Zt normalizes the trace ofWt+1 to one. As long as the eigenvalues ofW1 are
not too small, the computation oflogW1 is stable. Note that the update is independent of the choice
of ct ∈ R. We incrementally maintain an eigenvalue decomposition of the matrix in the exponent
(O(n3) per iteration):

VtΛtV
>

t = ctI + logW1−η
t

∑
s=1

sym(∇WLs(Ws))

where the constantct is chosen so that the maximum eigenvalue of the above is zero. NowWt+1 =
Vt exp(Λt)V

>
t /tr(exp(Λt)). The pseudo-code is given in Algorithm 1.

Algorithm 1 Pseudo-code of the matrix exponentiated gradient (MEG) algorithm for quadratic Loss
ChooseW1 andη
Initialize G0 = logW1

for t = 1,2, . . . do
Obtain instance matrixXt

Predictŷt = tr(WtXt)
Obtain labelyt and determine the lossLt = (yt − ŷt)

2

UpdateGt = Gt−1−2η(ŷt −yt)sym(Xt)
Compute spectral decomposition:Gt = VtΛtV

>
t

UpdateWt+1 = Vt exp(Λt −ctI)V >
t /tr(exp(Λt −ctI)), wherect = maxs(Λt)s,s

end for

3.3 Relative Loss Bounds

For the sake of simplicity we now restrict ourselves to the case when the algorithm predicts with
ŷt = tr(WtXt) and the loss function is quadratic:Lt(Wt) = L(ŷt ,yt) := (ŷt −yt)

2.
We begin with the definitions needed for the relative loss bounds. LetS = (X1,y1), . . . ,

(XT ,yT) denote a sequence of examples, where the instance matricesXt ∈R
d×d and the labelsyt ∈

R. The total loss of the on-line algorithm on the entire sequenceS is LMEG(S) = ∑t
t=1(tr(WtXt)−

yt)
2. We prove a bound on therelative loss LMEG(S)−LU(S) that holds for any comparator param-

eterU . Such a comparator parameter is any symmetric positive semi-definite matrixU with trace
one, and its total loss is defined asLU(S) = ∑T

t=1(tr(UXt)−yt)
2. The relative loss bound is derived

in two steps: Lemma 3.1 upper bounds the relative loss for an individual trialin terms of the progress
towards the comparator parameterU (as measured by the divergence). In the second Lemma 3.2,
the bound for individual trials is summed to obtain a bound for a whole sequence. These two lem-
mas generalize similar lemmas previously proven for the exponentiated gradient update (Lemmas
5.8 and 5.9 of Kivinen and Warmuth, 1997).

Lemma 3.1 Let Wt be any symmetric positive definite matrix. LetXt be any square matrix for
which the eigenvalues ofsym(Xt) have range at most r, i.e.

λmax(sym(Xt))−λmin(sym(Xt)) ≤ r.

AssumeWt+1 is produced fromWt by the MEG update with learning rateη, and letU be any
symmetric positive semi-definite matrix. Then for any b> 0 and a= η = 2b/(2+ r2b):

a (yt − tr(WtXt))
2

︸ ︷︷ ︸
MEG-loss

−b (yt − tr(UXt))
2

︸ ︷︷ ︸
U -loss

≤ ∆F(U ,Wt)−∆F(U ,Wt+1)︸ ︷︷ ︸
progress towardsU

. (3.6)

1002

MATRIX EXPONENTIATED GRADIENT UPDATES

The above type of inequality is central to all relative loss bounds (Kivinenand Warmuth, 1997). If
the loss of the algorithm is small, then the inequality becomes vacuous. However, if the algorithm
incurs a large loss, then its parameterWt must make progress towards any parameter vectorU that
has small loss on the current example (if such parameters exist).

The proof of this inequality is given in Appendix C. It has the same structureas the correspond-
ing previous lemma proven for the exponentiated gradient algorithm, but nowwe apply the various
matrix inequalities given at the end of Section 2.1 (in particular the Golden-Thompson inequality
(2.3) and the approximation of the matrix exponential (Lemma 2.1)). These inequalities will also
be essential for the analysis ofDefiniteBoostin the next section.

Lemma 3.2 Let S be any sequence of examples with square real matrices as instances and real
labels, and let r be an upper bound on the range of eigenvalues of the symmetric part of each
instance matrix of S. Let the initial parameterW1 and comparison parameterU be arbitrary
symmetric positive definite matrices of trace one. Then for any c such thatη = 2c/(r2(2+c)),

LMEG(S) ≤
(

1+
c
2

)
LU(S)+

(
1
2

+
1
c

)
r2∆F(U ,W1). (3.7)

Proof For the maximum tightness of (3.6),a should be chosen asa = η = 2b/(2+ r2b). Let
b = c/r2, and thusa = 2c/(r2(2+c)). Then (3.6) is rewritten as

2c
2+c

(yt − tr(WtXt))
2−c(yt − tr(UXt))

2 ≤ r2(∆F(U ,Wt)−∆F(U ,Wt+1))

Adding the bounds fort = 1, · · · ,T, we get

2c
2+c

LMEG(S)−cLU(S) ≤ r2(∆F(U ,W1)−∆F(U ,Wt+1)) ≤ r2∆F(U ,W1),

which is equivalent to (3.7).

AssumingLU(S) ≤ Lmax and ∆F(U ,W1) ≤ dmax, then the bound (3.7) is tightest whenc =
r
√

2dmax/Lmax. With this choice ofc, we have

LMEG(S)−LU(S) ≤ r
√

2Lmaxdmax+
r2

2
∆F(U ,W1).

In particular, ifW1 = 1
dI, then∆F(U ,W1) = logd−∑i λi log 1

λi
≤ logd. Additionally, whenLmax=

0, then the total loss of the algorithm is bounded byr2 logd
2 .

Note that the MEG algorithm generalizes the EG algorithm of Kivinen and Warmuth (1997). In
the case of linear regression, a square of a product of dual norms appears in the bounds for the EG
algorithm: ||u||21X2

∞. Hereu is a parametervectorandX∞ is an upper bound on the infinity norm
of the instance vectorsxt . Note the correspondence with the above bound (which generalizes the
bounds for EG to the non-diagonal case): the one norm of the parametervector is replaced by the
trace and the infinity norm by the maximum range of the eigenvalues.

4. Bregman Projection andDefiniteBoost

Using the von Neumann divergence, we will generalize the boosting algorithms for matrix parame-
ters.

1003

TSUDA, RÄTSCH AND WARMUTH

4.1 Preliminaries

In this section, we address the following Bregman projection problem of finding a positive semi-
definite symmetric matrixW ∈ R

d×d of trace one satisfying a set of linear constraints:3

W ∗ = argmin
W

∆F(W ,W1) (4.1)

s.t. W = W>, tr(W) = 1

tr(WC j) ≤ 0, for j = 1, . . . ,n,

where the symmetric positive definite matrixW1 of trace one is the initial parameter matrix and
C1, . . . ,Cn are arbitrary matrices. Note that we do not explicitly constrainW to be positive semi-
definite because when the von Neumann divergence is used, then the solution W ∗ will always
be positive semi-definite. Prior knowledge aboutW is encoded in the constraints, and the ma-
trix closest toW1 is chosen among the matrices satisfying all constraints. Tsuda and Noble (2004)
employed this approach for learning a kernel matrix among graph nodes, and this method can be po-
tentially applied to learn a kernel matrix in other settings (e.g., Xing et al., 2003; Tsang and Kwok,
2003). In the previous work by (Tsuda and Noble, 2004), an algorithmwas developed that pro-
cesses a batch of constraints. The problem was converted to a dual unconstraint problem (as done
below) and an iterative gradient descent algorithm was given. However, no convergence proofs were
provided previously. In this paper we give on-line algorithms with strong convergence proofs.4

The problem (4.1) is a projection ofW1 to the intersection of convex regions defined by
the constraints. It is well known that the Bregman projection into the intersection of convex re-
gions can be solved by sequential projections to each region (Bregman, 1967; Censor and Lent,
1981). In the original papers only asymptotic convergence was shown.More recently a connection
(Kivinen and Warmuth, 1999; Lafferty, 1999) was made to the AdaBoostalgorithm which has an
improved convergence analysis (Freund and Schapire, 1997; Schapire and Singer, 1999). We gen-
eralize the latter algorithm and its analysis to symmetric positive definite matrices andcall the new
algorithmDefiniteBoost. As in the original setting, onlyapproximateprojections (Figure 1) are
required to show fast convergence.

Before presenting the algorithm, let us describe the dual problem of minimizingthe von Neu-
mann divergence subject to linear constraints (4.1). The dual variablesare the Lagrange multipliers
α ∈ R

n (α ≥ 0) associated with this optimization problem:

α∗ = argmax
α≥0

− log

{
tr

(
exp(logW1−

n

∑
j=1

α j sym(C j))

)}
. (4.2)

See Appendix D for a detailed derivation of the dual problem that handlesthe case when the con-
straint matrixC j is allowed to be an arbitrary square matrix. Previous derivations requiredsymmet-
ric C j (Tsuda and Noble, 2004). When (4.1) is feasible, the optimal solution is described as

W ∗ =
1

Z(α∗)
exp(logW1−

n

∑
j=1

α∗
j sym(C j)),

3. Note that ifη is large then the on-line update (3.1) becomes a Bregman projection subject to a single equality
constraint tr(W Xt) = yt .

4. The methodology employed in this paper is not limited to on-line learning. For example in Littlestone et al. (1992),
cf. Corollary 15, the EG algorithm was used for solving a system of linear equations and fast convergence was shown.

1004

MATRIX EXPONENTIATED GRADIENT UPDATES

� � � � � � � � � � �
� � � 	 �
 � � � �

� � �
 �
� � � 	 �
 � � � �

�

� �

� �

� �

� ��

� ��

� ��

Figure 1: The intersection of two convex sets (here two straight lines) canbe found by projecting
back and forth between the two sets with exact Bregman projections (W1,W2, . . .). In
this paper we use certain approximate projections (W1,W

′
2, . . .). Now each projection

may over or undershoot the alternating target set. Nevertheless, globalconvergence to the
optimal solution is still guaranteed via our proofs.

where Z(α∗) = tr
(

exp(logW1−∑n
j=1 α∗

j sym(C j))
)

andα∗ is the optimal dual solution.

4.2 Exact Bregman Projections

Problem (4.1) can be solved with the following algorithm: Start from some initial parameterW1

(for instanceW1 = 1
dI). At the t-th step, choose an unsatisfied constraintjt , i.e. tr(WtC jt) > 0.5

Then solve the following Bregman projection with respect to the chosen constraint:

Wt+1 = argmin
W

∆F(W ,Wt) (4.3)

s.t. W = W>, tr(W) = 1,

tr(WC jt) ≤ 0.

By means of a Lagrange multiplierα, the dual problem is described as (cf. Appendix D)

α∗
t = argmin

α≥0
tr(exp(logWt −αsym(C jt))) . (4.4)

Using the solution of the dual problem,Wt is updated as

Wt+1 =
1

Zt(α∗
t)

exp(logWt −α∗
t sym(C jt)) (4.5)

where the normalization factor is Zt(α∗
t) = tr(exp(logWt −α∗

t sym(C jt))). If Wt is symmetric
positive definite, thenWt+1 is as well. Note that we can use the same numerically stable reformu-
lation of the update as discussed in Section 3.2.

5. For instance, the most unsatisfied constraint, i.e.jt = argmaxj=1,··· ,n tr(WtC j), can be chosen.

1005

TSUDA, RÄTSCH AND WARMUTH

4.3 Approximate Bregman Projections

The solution of (4.4) cannot be obtained in closed form. However, one can use the following ap-
proximate choice ofαt :

α̂t =
1

λmax
t −λmin

t
log

(
1+ rt/λmax

t

1+ rt/λmin
t

)
, (4.6)

when the eigenvalues ofsym(C jt) lie in the interval[λmin
t ,λmax

t] andrt = tr(WtC jt). Since the most
unsatisfied constraint is chosen,rt ≥ 0 and thuŝαt ≥ 0. We call this approximate Bregman projection
algorithmDefiniteBoost. It may be seen as a natural extension of AdaBoost (cf. Section 4.5), where
probability distributions are replaced by symmetric positive definite matrices of trace one. The
pseudo-code of DefiniteBoost is given in Algorithm 2.

Algorithm 2 Pseudo-code of the DefiniteBoost algorithm;λmin
t and λmax

t are lower and upper
bounds on the eigenvalues ofsym(Ct).

ChooseW1

Initialize G0 = logW1

for t = 1,2, . . . do
Choose an unsatisfied constraintjt (i.e. tr(WtC jt) > 0) or stop when all constraints satisfied
Compute constraint violationrt = tr(WtC jt)

Compute approximate step sizeα̂t =
1

λmax
t −λmin

t
log

(
1+ rt/λmax

t

1+ rt/λmin
t

)

UpdateGt = Gt−1− α̂t sym(C jt)
Compute spectral decomposition:Gt = VtΛtVt

UpdateWt+1 = Vt exp(Λt −ctI)V >
t /tr(exp(Λt −ctI)), wherect = maxs(Λt)s,s

end for

Although the projection is done only approximately,6 the convergence of the dual objective (4.2)
can be shown using the following upper bound of the negative dual objective , i.e.

tr

(
exp(logW1−

n

∑
j=1

α j sym(C j))

)
.

Theorem 4.1 The negative exponentiated dual objective is bounded from above by

tr

(
exp

(
logW1−

T

∑
t=1

α̂t sym(C jt)

))
≤

T

∏
t=1

ρ(rt), (4.7)

where

α̂t =
1

λmax
t −λmin

t
log

(
1+ rt/λmax

t

1+ rt/λmin
t

)
, rt = tr(WtC jt),

and

ρ(rt) =

(
1− rt

λmax
t

) λmax
t

λmax
t −λmin

t

(
1− rt

λmin
t

) −λmin
t

λmax
t −λmin

t
.

6. The approximate Bregman projection (withαt as in (4.6)) can also be motivated as an on-line algorithm based on an
entropic loss and learning rate one (following Section 3 and Kivinen and Warmuth (1999)).

1006

MATRIX EXPONENTIATED GRADIENT UPDATES

The proof of this inequality for our setting is given in Appendix E. The bound (4.7) is monotonically
decreasing, becauseρ(rt) ≤ 1. Also, since we always chose a violated constraint (if there is one),
we havert > 0 and thereforeρ(rt) < 1 (or we stop). Thus the dual objective (4.2) continues to
increase until all constraints are satisfied.

4.4 Convergence Speed

Next we determine the maximal number of iterations needed to find a matrixW which satisfies all
constraints up to the predetermined accuracyε, i.e. tr(WC j) ≤ ε, for 1≤ j ≤ n. The algorithm
selects in each iteration an constraintjt that is violated by at leastε (i.e. rt = tr(WtC jt) ≥ ε), or
stops if no such constraint exists. Assuming the algorithm stops at(T + 1)-th step, we derive an
upper bound onT as a function ofε.

For simplicity, let us assumeW1 = 1
dI, λmin

j = −λ, and λmax
j = λ (for all j). Denote by

hprimal(W) andhdual(α) the primal and dual objective functions in (4.1) and (4.2), respectively.

hprimal(W) = ∆F(W ,W1) (4.8)

hdual(α) = − logtr

(
exp

(
logW1−

n

∑
j=1

α j sym(C j)

))
(4.9)

The primal objective is upper-bounded by logd, since∆F(W ,W1) = ∑i λi logλi + logd ≤ logd.
Since the algorithm stops at the(T + 1)-th iteration (withrt ≥ ε for t = 1, . . . ,T), we get from
Theorem 4.1:

exp(−hdual(α̃)) = tr

(
exp

(
logW1−

T

∑
t=1

α̂t sym(C jt)

))
≤
(

λ2− ε2

λ2

)T/2

,

whereα̃ is the cumulative coefficient vector for the constraints, i.e.α̃ j = ∑T
t=1 α̂tδ(jt = j), for

1≤ j ≤ n.
Thus the objective in (4.2) is lower bounded by1

2T ε2

λ2 , since

hdual(α̃) ≥ − log

(
λ2− ε2

λ2

)T/2

≥ Tε2

2λ2 , (4.10)

where the last inequality follows by convexity of− log
(

λ2−ε2

λ2

)
with respect toε. At the optimal

solutionW ∗ andα∗, the values of the objective functions coincide, i.e.hdual(α
∗) = hprimal(W

∗).
Finally, we obtain

Tε2

2λ2 ≤ hdual(α̃) ≤ hdual(α
∗) = hprimal(W

∗) ≤ logd,

and the upper boundT ≤ 2λ2 logd
ε2 . In summary, we have proven the following:

Corollary 4.2 Suppose we are solving problem(4.1) with DefiniteBoost, whereC j (j = 1, . . . ,n)
are arbitrary matrices withλmin(C j) ≥ −λ andλmax(C j) ≤ λ andW1 = 1

dI. Assume an optimal
solutionW ∗ to (4.1)exists and the algorithm selects in each iteration anε-violated constraint, i.e.

1007

TSUDA, RÄTSCH AND WARMUTH

rt = tr(WtC jt) ≥ ε, or stops if no such constraint exists. Then after at most T= 2λ2 logd
ε2 iterations,

DefiniteBoost stops and the resultingW satisfies all linear constraints up to accuracyε, i.e.

tr(WC j) ≤ ε for all j = 1, . . . ,n.

This result implies that we can solve (4.1) with accuracyε in O(d3 logd/ε2) operations (exclud-
ing the cost of identifying violated constraints). Similar bounds on the number of iterations for
solving a system of linear equations with the EG algorithm were first proven in(Littlestone et al.,
1992, Corollary 15). Observe that if (4.1) is not feasible, then one may continue findingε-violated
constraints and the primal objective can become unbounded, i.e.∑t α̂t may become unbounded.

4.5 Relation to Boosting

When all matrices are diagonal, then DefiniteBoost specializes to the AdaBoost algorithm (Schapire
and Singer, 1999). Let{xi ,yi}d

i=1 be the training samples, wherexi ∈ R
m andyi ∈ {−1,1}. Let

h1(x), . . . ,hn(x) ∈ [−1,1] be the weak hypotheses. For thej-th hypothesish j(x), let us defineC j =
diag(y1h j(x1), . . . ,ydh j(xd)). Since|yhj(x)| ≤ 1, we may chooseλmax

t = 1 andλmin
t = −1 for anyt.

SettingW1 = 1
dI, the dual objective (4.7) is rewritten as

− log

(
1
d

d

∑
i=1

exp

(
−yi

n

∑
j=1

α jh j(xi)

))
,

which is equivalent to the exponential loss function used in AdaBoost. Since C j andW1 are di-
agonal, the matrixWt stays diagonal after the update. Ifwt,i = (Wt)i,i , the updating formula (4.5)
becomes the AdaBoost update:wt+1,i = wt,i exp(−αtyiht(xi))/Zt(αt). The approximate solution of
αt (4.6) is described asαt = 1

2 log 1+rt
1−rt

, wherert is the weighted training error of thet-th hypothesis,

i.e. rt = ∑d
i=1wt,iyiht(xi).

4.6 Solving Semi-definite Programs

Suppose we aim to solve the following semi-definite programming problem:

W ∗ = argmin
W ,θ

θ (4.11)

s.t. tr(W) = 1,W � 0,W = W>

tr(WC j) ≤ θ, for j = 1, . . . ,n.

If one would know the optimalθ∗ beforehand, then following problem would lead to an optimal
solution of (4.11):

W ∗ = argmin
W

∆F(W ,
1
d
I) (4.12)

s.t. tr(W) = 1,W = W>

tr(W (C j −θ∗I)) ≤ 0, for j = 1, . . . ,n.

Running DefiniteBoost on the above problem with matricesC̃ j = (C j − θ∗I) can approximate
the solution of (4.12) rather efficiently and, hence, it is only left to determinethe optimal value

1008

MATRIX EXPONENTIATED GRADIENT UPDATES

θ∗. If it is chosen too small, then no feasible solution to (4.12) exists and DefiniteBoost will not
terminate after 2λ2 logd/ε2 iterations with accuracyε,7 whereλmin(C̃j) ≥ −λ andλmax(C̃j) ≤ λ.
If it is chosen too large, then a feasible solution exists and DefiniteBoost terminates in a bounded
number of iterations. Hence one has a way of identifying whenθ < θ∗ and alsoθ > θ∗. This allows
the design of a binary search procedure to approximateθ∗ in a few steps. Based on this idea we
previously proposed a margin maximizing version of AdaBoost (Rätsch and Warmuth, 2002). For
this algorithm we could show that afterO(logd log(1/ε)/ε2) iterations the algorithm achieved an
optimal solution within accuracyε. We claim that the outlined binary search procedure can also
be applied in combination with DefiniteBoost for solving the semi-definite problem(4.11) in time
O(d3 logd log(1/ε)/ε2) (excluding the cost of identifying violated constraints). Additionally we
assert that a slightly more advanced adaptation ofθ during the optimization (as was done by Rätsch,
2001; R̈atsch and Warmuth, 2005, for the diagonal case) will yield the reduced time complexity of
O(d3 logd/ε2). Rigorous proofs of these conjectures go beyond the scope of this paper.

5. Experiments on Learning Kernels

In this section, our technique is applied to learning a kernel matrix from a setof distance measure-
ments. This application is not on-lineper se, but it shows nevertheless that the theoretical bounds
can be reasonably tight on natural data.

WhenK is a d× d kernel matrix amongd objects, then theKi j characterizes the similarity
between objectsi and j. In the feature space,Ki j corresponds to the inner product between ob-
ject i and j, and thus the Euclidean distance can be computed from the entries of the kernel ma-
trix (Scḧolkopf and Smola, 2002). In some cases, the kernel matrix is not given explicitly, but only
a set of distance measurements is available. The data are represented either as (i) quantitative dis-
tance values (e.g., the distance betweeni and j is 0.75), or (ii) qualitative evaluations (e.g., the
distance betweeni and j is small) (Xing et al., 2003; Tsuda and Noble, 2004). Our task is to obtain
a positive definite kernel matrix which fits well to the given distance data.

5.1 On-line Kernel Learning

In the first experiment, we consider the on-line learning scenario in which only one distance example
is shown to the learner at each time step. The distance example at timet is described as{at ,bt ,yt},
which indicates that the squared Euclidean distance between objectsat andbt is yt . Let us define
a time-developing sequence of kernel matrices as{Wt}T

t=1, and the corresponding points in the
feature space as{xti}d

i=1 (i.e. (Wt)ab = x>
taxtb). Then, the total loss incurred by this sequence is

T

∑
t=1

(
‖xtat −xtbt‖2−yt

)2
=

T

∑
t=1

(tr(WtXt)−yt)
2,

whereXt is a symmetric matrix whose(at ,at) and (bt ,bt) elements are 0.5,(at ,bt) and (bt ,at)
elements are -0.5, and all the other elements are zero. We consider a controlled experiment in which
the distance examples are created from a knowntarget kernel matrix. We used a 52× 52 kernel
matrix amonggyrB proteins of bacteria (d = 52). This data contains three bacteria species (see
Tsuda et al., 2003, for details). Each distance example is created by randomly choosing one element
of the target kernel. The initial parameter was set asW1 = 1

dI. When the comparison matrixU is set

7. This statement is slightly simplified. Please check Rätsch and Warmuth (2002) for details.

1009

TSUDA, RÄTSCH AND WARMUTH

0 0.5 1 1.5 2 2.5 3

x 10
5

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Iterations

T
ot

al
 L

os
s

0 0.5 1 1.5 2 2.5 3

x 10
5

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Iterations

C
la

ss
ifi

ca
tio

n
E

rr
or

Figure 2: Numerical results of on-line learning. (Left) total loss against the number of iterations.
The dashed line shows the loss bound. (Right) classification error of the nearest neighbor
classifier using the learned kernel. The dashed line shows the error by the target kernel.

to the target matrix, then because all the distance examples are derived from this matrix,LU(S) = 0
andLmax = 0. Therefore we choose learning rateη = 2, which minimizes the relative loss bound of
Lemma 3.2. The total loss of the kernel matrix sequence obtained by the matrix exponential update
is shown in Figure 2 (left). In the plot, we have also shown the relative loss bound. The bound
seems to give a reasonably tight performance guarantee—it is about twicethe actual total loss.
To evaluate the learned kernel matrix, the prediction accuracy of bacteriaspecies by the nearest
neighbor classifier is calculated (Figure 2, right), where the 52 proteins are randomly divided into
50% training and 50% testing data. The value shown in the plot is the test erroraveraged over 10
different divisions. It took a large number of iterations (∼ 2×105) for the error rate to converge
to the level of the target kernel. In practice one can often increase the learning rate for faster
convergence, but here we chose the small rate suggested by our analysis to check the tightness of
the bound.

5.2 Kernel Learning by Bregman Projection

Next, let us consider a batch learning scenario where we have a set of qualitative distance evaluations
(i.e. inequality constraints). Givenn pairs of similar objects{a j ,b j}n

j=1, the inequality constraints
are constructed as‖xa j −xb j‖≤ γ, j = 1, . . . ,n, whereγ is a predetermined constant. IfX j is defined
as in the previous section andC j = X j − γI, the inequalities are then rewritten as tr(WC j) ≤
0, j = 1, . . . ,n. The largest and smallest eigenvalues of anyC j are 1− γ and−γ, respectively.
As in the previous section, distance examples are randomly generated fromthe target kernel matrix
betweengyrB proteins. Settingγ = 0.2/d, we collected all object pairs whose distance in the feature
space is less thanγ to yield 980 inequalities (n = 980). Figure 3 (left) shows the convergence of
the dual objective function as proven in Theorem 4.1. The convergence was much faster than the
previous experiment, because in the batch setting, one can choose the mostunsatisfied constraint
and optimize the step size as well. Figure 3 (right) shows the classification error of the nearest

1010

MATRIX EXPONENTIATED GRADIENT UPDATES

0 50 100 150 200 250 300
15

20

25

30

35

40

45

50

55

Iterations

D
ua

l O
bj

0 50 100 150 200 250 300
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Iterations

C
la

ss
ifi

ca
tio

n
E

rr
or

Figure 3: Numerical results of Bregman projection. (Left) convergenceof the dual objective func-
tion. (Right) classification error of the nearest neighbor classifier usingthe learned kernel.

neighbor classifier. As opposed to the previous experiment, the error rate is higher than that of
the target kernel matrix, because a substantial amount of information is lostby the conversion to
inequality constraints.

6. Summary and Discussion

We motivated and analyzed a new update for symmetric positive matrices using the von Neumann
divergence. We showed that the standard bounds for on-line learningand boosting generalize to
the case when the parameters are symmetric positive definite matrices of trace one instead of a
probability vector. As in quantum physics, the eigenvalues act as probabilities. In addition to
the applications suggested by the experiments, our algorithm can be straightforwardly applied to
learning a covariance matrix. It would also be interesting to use a robust lossLt(W) for the purpose
of ignoring outliers (Huber, 1981) and investigate possible applications ofour learning algorithms
to quantum statistical inference problems (Barndorff-Nielsen et al., 2003).

Our method is designed for learning a positive definite parameter matrix of fixed size. It is
not straightforward to extend it to the case where the size of the parameter matrix grows on-line
as more examples are seen. Our methods immediately generalize to the Hermitian matrices, i.e.
square matrices inCd×d for which A = Ā> = A∗. The spectral decomposition of these matrices
becomesA = UΛU ∗, whereU is a unitary matrix (i.e.UU ∗ = I) andΛ is a diagonal matrix of
real eigenvalues. In the case when all entries of the matrix are real, then Hermitianis equivalent
to symmetric. All algorithms of this paper (and their analyzes) immediately generalize to the case
when symmetric is replaced by Hermitian and symmetric positive definite by positiveHermitian
(i.e. Hermitian with positive eigenvalues). In particular, the Golden-Thompson inequality, Jensen’s
inequality for the matrix exponential (Lemma 2.1) and Lemma 2.2 all hold for Hermitianmatrices.
Note that density matrices (as used in Statistical Physics) are positive Hermitianmatrices of trace
one.

1011

TSUDA, RÄTSCH AND WARMUTH

Acknowledgments

We dedicate this paper to Nick Littlestone who first proved relative loss bounds for an algorithm
in the EG family—his well knownWinnowalgorithm for learning disjunctions (Littlestone, 1988,
1989).

K.T. and G.R. gratefully acknowledge partial support from the PASCAL Network of Excellence
(EU #506778). M.W. was supported by NSF grant CCR 9821087 and UCDiscovery grant LSIT02-
10110. This work was partially done while G.R. was still at Fraunhofer FIRST in Berlin and Max
Planck Institute for Biological Cybernetics in Tübingen. Part of this work was done while all three
authors were visiting the National ICT Australia in Canberra.

Appendix A. Derivatives of Matrix Functions

The matrix functions considered in this paper are mostly trace functions e.g. tr(exp(W)) and
tr(W logW), which we will expand into power series. Thus we begin with computing the gra-
dient of F(W) = tr(W k). The partial derivative with respect to(i, j) element is described as

∂tr(W k)

∂Wi j
= lim

λ→0

tr((W +λEi j)
k)− tr(W k)

λ
,

whereEi j is the sparse matrix whose(i, j) element is one and all the others are zero. For example,
whenk = 3,

(W +λEi j)
3 = (W 3 +λEi j WW +λWEi j W +λWWEi j)+O(λ2).

The trace is simply described as

tr((W +λEi j)
3) = tr(W 3)+3λtr(Ei j W

2)+O(λ2)

= tr(W 3)+3λ[W 2] j,i +O(λ2).

Therefore,∇W tr(W 3) = 3(W 2)>. For generalk, we get

∇W tr(W k) = k(W k−1)>. (A.1)

The matrix exponential is defined as

exp(W) = I +W +
1
2!

W 2 +
1
3!

W 3 + · · · .

Applying (A.1) to all terms, we get∇W tr(exp(W)) = exp(W)>. Next, let us calculate the gradient
of tr(W logW −W). Using the expansion

logW =
∞

∑
i=1

(−1)i−1

i
(W −I)i ,

we get

W logW −W =
∞

∑
i=2

(−1)i

i(i−1)
(W −I)i −I.

Applying the shifted version of (A.1), i.e.∇W tr((W − I)k) = k((W − I)k−1)>, to all terms, the
gradient is obtained as∇W tr(W logW −W) = (logW)>. WhenW is symmetric, then one can
drop the transposition. Thus in in this case∇W tr(expW) = expW .

1012

MATRIX EXPONENTIATED GRADIENT UPDATES

Appendix B. Derivation of the MEG Update

In this appendix we derive parameter updates when the parameter must meetsome linear constraints.
One method is to incorporate such constraints into the strictly convex function Fdefining the Breg-
man divergence. The modified function F is then only defined when the constraints are met. The
updates always have the simple form (3.2). However this method often leadsto difficult forms of F
andf = ∇F. Here we choose the alternate method of keeping the linear constraints on theside. We
begin by discussing how to enforce symmetry. Consider the following optimization problem, where
Xt is an arbitrary matrix inRd×d, Wt an arbitrary symmetric matrix inRd×d andyt ∈ R:

Wt+1 = argmin
W

∆F(W ,Wt)+ηLt(W)

s.t.W = W>.

We assume that∇WLt(W) is always a well defined matrix inRd×d.
We introduce one Lagrange multiplierΓi, j for the each of the constraintsWi, j = W j,i . This

contributes the termΓi, j(Wi, j −W j,i) to the Lagrangian. In matrix form these constraints can be
summarized as tr(Γ(W>−W)) = tr((Γ>−Γ)W). This gives us the Lagrangian

L(W ,Γ) = ∆F(W ,Wt)+ηLt(W)+ tr((Γ>−Γ)W).

for Γ ∈ R
d×d. Setting the gradient with respect toW to zero yields:

Wt+1 = f−1
(
f(Wt)−η∇WLt(Wt+1)− (Γ−Γ

>)
)

.

Since the objective is convex, it suffices to exhibit a choice ofΓ such that the symmetry constraint
is satisfied. Under the assumption thatf andf−1 preserve symmetry,Γ = −η∇WLt(Wt+1)/2
achieves this and the update becomes (3.3):

Wt+1 = f−1
(
f(Wt)−ηsym(∇WLt(Wt+1))

>)
)

.

For the normalized case we still need to enforce the trace one constraint onWt+1. This adds a
termδ(tr(W)−1) to the Lagrangian and the update now has the form

Wt+1 = exp
(

logWt −η∇WLt(Wt+1)− (Γ−Γ
>)−δI

)
.

ChoosingΓ = −η∇WLt(Wt+1)/2 and

δ = − log(tr(exp(logWt −ηsym(∇WLt(Wt+1)))))

enforces the symmetry and trace constraints and after approximating the gradient we arrive at the
explicit MEG update (3.5).

Appendix C. Proof of Lemma 3.1

Let δt = −2η(tr(XWt)−yt), then the right hand side of (3.6) can be reformulated as

∆F(U ,Wt)−∆F(U ,Wt+1) = δt tr(UXt)− logtr(exp(logWt +δt sym(Xt))).

1013

TSUDA, RÄTSCH AND WARMUTH

Therefore, (3.6) is equivalent tof ≤ 0, where

f = logtr(exp(logWt +δt sym(Xt)))−δt tr(UXt)+a(yt − tr(WtXt))
2−b(yt − tr(UXt))

2.

Let us bound the first term. Due to Golden-Thompson inequality (2.3), we have

tr(exp(logWt +δt sym(Xt))) ≤ tr(Wt exp(δt sym(Xt))) . (C.1)

The right hand side can be rewritten as

exp(δt sym(Xt)) = exp(r0δt)exp(δt(sym(Xt)− r0I)).

Let r0 be a lower bound of the eigenvalues ofsym(Xt). By assumption, the range of the eigenvalues
of sym(Xt) is at mostr, i.e.

r0I � sym(Xt) � (r0 + r)I.

Thus0 � A � I, for A = (sym(Xt)− r0I)/r. Applying Lemma 2.1 with this choice ofA and
ρ1 = rδt , ρ2 = 0, we obtain

exp(δt(sym(Xt)− r0I)) � I − sym(Xt)− r0I

r
(1−exp(rδt)).

SinceWt is symmetric positive definite and both sides of the above inequality are symmetric,we
can apply Lemma 2.2 by pre-multiplying the inequality byWt and taking a trace of both sides:

tr(Wt exp(δt sym(Xt))) ≤ exp(r0δt)

(
1− tr(WtXt)− r0

r
(1−exp(rδt))

)
.

Note that we used the assumption that tr(Wt) = 1. The above gives an upper bound on the right
hand side of inequality (C.1) We now plug this upper bound into the first term of f and obtainf ≤ g,
where

g = r0δt + log(1− tr(WtXt)−r0
r (1−exp(rδt)))− tr(UXt)δt

+a(yt − tr(WtXt))
2−b(yt − tr(UXt))

2. (C.2)

Let us definez= tr(UXt) and maximize the upper bound (C.2) with respect toz. Solving ∂g
∂z = 0,

we havez= yt −δt/(2b) = yt +η(tr(XtWt)−yt)/b. Substituting this into (C.2), we have the upper
boundg≤ h where

h = 2ηr0(yt − tr(XtWt))+ log
(

1− tr(XtWt)−r0
r (1−exp(2ηr(y− tr(XtWt))))

)

−2ηyt(yt − tr(XtWt))+(a+ η2

b (y− tr(XtWt))
2.

We now upper bound the second term using the inequality log(1− p(1−expq)) ≤ pq+ q2/8, for
0≤ q≤ 1 andq∈ R (Helmbold et al., 1997):

h≤ (yt − tr(XtWt))
2

2b
((2+ r2b)η2−4bη+2ab).

It remains to showq = (2+ r2b)η2−4bη + 2ab≤ 0. We easily see thatq is minimized forη =
2b/(2+ r2b) and that for this value ofη we haveq≤ 0 if and only ifa≤ 2b/(2+ r2b).

1014

MATRIX EXPONENTIATED GRADIENT UPDATES

Appendix D. Derivation of the DefiniteBoost Dual Problem

For the sake of brevity we assume that the primal problem has one inequality constraint (note that
(4.1) has multiple constraints):

W ∗ = argmin
W

tr(W (logW − logW1)+W1−W

s.t. tr(WC) ≤ 0

tr(W) = 1

W = W>.

Following Appendix B we arrive at the Lagrangian

L(W ,α,β,Γ) := tr(W (logW − logW1)+W1−W +αtr(WC)+

+β(tr(W)−1)+ tr((Γ>−Γ)W), (D.1)

which is minimized w.r.t.W and maximized w.r.t.α ≥ 0, β ∈ R andΓ ∈ R
d×d. Setting the gradient

w.r.t. W to zero we obtain

W ∗ = exp(logW1−αC−βI − (Γ−Γ
>)

= exp(−β)exp(logW1−αC− (Γ−Γ
>).

We now enforce the symmetry constraint, giving usΓ = −α(C−C>)/2, and plug this choice into
the above

W ∗ = exp(−β)exp(logW1−αsym(C)).

Similarly, β = logtr(exp(logW1−α sym(C))) enforces the trace constraint. Now

W ∗ = exp(logW1−αsym(C)/Z(α),

whereZ(α) = − logtr(exp(logW1−αsym(C))). PluggingW ∗ into in the Lagrangian, we obtain
the dual optimization problem for one constraint:

α∗ = argmax
α≥0

− logZt(α).

One can easily verify that the solution of the problem withn constraints is of the form:

α∗ = argmax
α≥0

− logtr(exp(logW1−
n

∑
j=1

α j sym(C j))).

Appendix E. Proof of Theorem 4.1

Recall the definition of the normalization factor Zt(α) = tr(exp(logWt −αsym(C jt))) of Definite-
Boost. By the Golden-Thompson inequality,

Zt(α) ≤ tr(Wt exp(−αsym(C jt))). (E.1)

1015

TSUDA, RÄTSCH AND WARMUTH

Similarly to the proof of Lemma 3.1, we now upper bound the right hand side of this inequal-
ity by applying lemmas 2.1 and 2.2. We chooseA as (λmin

t I + sym(C jt))/(λmax
t + λmin

t). Then
sym(C jt) can be expressed asλmax

t A−λmin
t (I −A) and0 � A � I. Thus by Lemma 2.1,

exp(−αsym(C jt)) � exp(−αλmax
t)A+exp(αλmin

t)(I −A).

SinceWt is positive definite and both sides of the above inequality are symmetric, we canapply
Lemma 2.2 by multiplying this inequality byWt and taking a trace of both sides:

tr(Wt exp(−αsym(C jt))) ≤ exp(−αλmax
t)tr(WtA)+exp(αλmin

t)tr(Wt(I −A)) .

By expandingA and using the shorthandrt = tr(WtC jt), we obtain

Zt(α) ≤ exp(−αλmax
t)

λmin
t + rt

λmax
t +λmin

t
+exp(αλmin)

λmax
t − rt

λmax
t +λmin

t
.

We now choose theα that minimizes the right hand side of the above inequality (which is theα̂t

given in equation (4.6)). With this choice, the inequality becomes

Zt(α̂t) ≤ (1− rt

λmax
t

)
λmax
t

λmax
t +λmin

t (1+
rt

λmin
t

)
λmin
t

λmax
t +λmin

t . (E.2)

Applying the update rule (4.5)T times, we have

WT+1 =
exp(logW1−∑T

t=1 α̂t sym(C jt))

∏t Zt(α̂t)
.

Taking the trace of both sides and rearranging terms, we get

tr

(
exp(logW1−

T

∑
t=1

α̂t sym(C jt))

)
=

T

∏
t=1

Zt(α̂t).

By using the bound (E.2) for each Zt(αt), the inequality of the theorem readily follows.

References

O. E. Barndorff-Nielsen, R. D. Gill, and P. E. Jupp. On quantum statistical inference.J. R. Statist.
Soc. B, 65(4):775–816, 2003.

S. Boyd and L. Vandenberghe.Convex Optimization. Cambridge University Press, 2004.

L. M. Bregman. The relaxation method of finding the common point of convex sets and its applica-
tion to the solution of problems in convex programming.USSR Computational Mathematics and
Physics, 7:200–217, 1967.

Y. Censor and A. Lent. An iterative row-action method for interval convex programming.Journal
of Optimization Theory and Applications, 34(3):321–353, July 1981.

Y. Freund and R. E. Schapire. A decision-theoretic generalization of on-line learning and an appli-
cation to boosting.Journal of Computer and System Sciences, 55(1):119–139, 1997.

1016

MATRIX EXPONENTIATED GRADIENT UPDATES

S. Golden. Lower bounds for the Helmholtz function.Phys. Rev., 137:B1127–B1128, 1965.

D. Helmbold, R. E. Schapire, Y. Singer, and M. K. Warmuth. A comparison of new and old algo-
rithms for amixture estimation problem.Machine Learning, 27(1):97–119, 1997.

P. J. Huber.Robust Statistics. John Wiley and Sons, New York, 1981.

J. Kivinen and M. K. Warmuth. Exponentiated gradient versus gradientdescent for linear predictors.
Information and Computation, 132(1):1–63, 1997.

J. Kivinen and M. K. Warmuth. Boosting as entropy projection. InProceedings of the 12th Annual
Conference on Computational Learning Theory, pages 134–144. ACM Press, New York, NY,
1999.

J. Kivinen and M. K. Warmuth. Relative loss bounds for multidimensional regression problems.
Machine Learning, 45(3):301–329, 2001.

J. Lafferty. Additive models, boosting, and inference for generalizeddivergences. InProceedings
of the 12th Annual Conference on Computational Learning Theory, pages 125–133. ACM Press,
New York, NY, 1999.

N. Littlestone. Learning when irrelevant attributes abound: A new linear-threshold algorithm.Ma-
chine Learning, 2:285–318, 1988.

N. Littlestone.Mistake Bounds and Logarithmic Linear-threshold Learning Algorithms. PhD thesis,
Technical Report UCSC-CRL-89-11, University of California, SantaCruz, 1989.

N. Littlestone, P. M. Long, and M. K. Warmuth. On-line learning of linear functions. Technical
Report UCSC-CRL-91-29, University of California, Santa Cruz, May1992.

M. A. Nielsen and I. L. Chuang.Quantum Computation and Quantum Information. Cambridge
University Press, 2000.

G. Rätsch.Robust Boosting via Convex Optimization. PhD thesis, University of Potsdam, Potsdam,
Germany, October 2001.

G. Rätsch and M. K. Warmuth. Maximizing the margin with boosting. InProceedings of the
15th Annual Conference on Computational Learning Theory, pages 319–333. Springer, Sydney,
Australia, 2002.

G. Rätsch and M. K. Warmuth. Efficient margin maximization with boosting. submitted to Journal
of Machine Learning Research, 2005.

R. E. Schapire and Y. Singer. Improved boosting algorithms using confidence-rated predictions.
Machine Learning, 37:297–336, 1999.

B. Scḧolkopf and A. J. Smola.Learning with Kernels. MIT Press, Cambridge, MA, 2002.

S. Shai-Shwartz, Y. Singer, and A. Y. Ng. Online and batch learning of pseudo-metrics. In C. E.
Brodley, editor,Machine Learning, Proceedings of the Twenty-first International Conference
(ICML 2004). ACM Press, New York, NY, 2004.

1017

TSUDA, RÄTSCH AND WARMUTH

Y. Singer and M. K. Warmuth. Batch and on-line parameter estimation of Gaussian mixtures based
on the joint entropy. In M. S. Kearns, S. A. Solla, and D. A. Cohn, editors, Advances in Neural
Information Processing Systems 11 (NIPS’98), pages 578–584. MIT Press, 1999.

I. W. Tsang and J. T. Kwok. Distance metric learning with kernels. InProceedings of the Interna-
tional Conference on Artificial Neural Networks (ICANN’03), pages 126–129. Springer Verlag,
New York, NY, 2003.

K. Tsuda, S. Akaho, and K. Asai. The em algorithm for kernel matrix completion with auxiliary
data.Journal of Machine Learning Research, 4:67–81, May 2003.

K. Tsuda and W. S. Noble. Learning kernels from biological networks by maximizing entropy.
Bioinformatics, 20(Suppl. 1):i326–i333, 2004.

E. P. Xing, A. Y. Ng, M. I. Jordan, and S. Russell. Distance metric learning with application to
clustering with side-information. In S. Thrun S. Becker and K. Obermayer, editors,Advances in
Neural Information Processing Systems 15, pages 505–512. MIT Press, Cambridge, MA, 2003.

1018

Journal of Machine Learning Research 6 (2005) 1019–1041 Submitted 11/04; Revised 3/05; Published 7/05

Gaussian Processes for Ordinal Regression

Wei Chu CHUWEI@GATSBY.UCL.AC.UK

Zoubin Ghahramani ZOUBIN@GATSBY.UCL.AC.UK

Gatsby Computational Neuroscience Unit
University College London
London, WC1N 3AR, UK

Editor: Christopher K. I. Williams

Abstract

We present a probabilistic kernel approach to ordinal regression based on Gaussian processes. A
threshold model that generalizes theprobit function is used as the likelihood function for ordinal
variables. Two inference techniques, based on the Laplace approximation and the expectation prop-
agation algorithm respectively, are derived for hyperparameter learning and model selection. We
compare these two Gaussian process approaches with a previous ordinal regression method based
on support vector machines on some benchmark and real-worlddata sets, including applications of
ordinal regression to collaborative filtering and gene expression analysis. Experimental results on
these data sets verify the usefulness of our approach.

Keywords: Gaussian processes, ordinal regression, approximate Bayesian inference, collaborative
filtering, gene expression analysis, feature selection

1. Introduction

Practical applications of supervised learning frequently involve situationsexhibiting an order among
the different categories, e.g. a teacher always rates his/her students by giving grades on their overall
performance. In contrast to metric regression problems, the grades areusually discrete and finite.
These grades are also different from the class labels in classification problems due to the existence
of ranking information. For example, grade labels have the orderingF < D < C < B < A. This is
a learning task of predicting variables of ordinal scale, a setting bridging between metric regression
and classification referred to asranking learningor ordinal regression.

There is some literature about ordinal regression in the domain of machine learning. Kramer
et al. (2001) investigated the use of a regression tree learner by mappingthe ordinal variables into
numeric values. However there might be no principled way of devising an appropriate mapping
function. Frank and Hall (2001) converted an ordinal regression problem into nested binary clas-
sification problems that encode the ordering of the original ranks, and then the results of standard
binary classifiers can be organized for prediction. Har-Peled et al. (2003) proposed a constraint
classification approach for ranking problems based on binary classifiers. Cohen et al. (1999) con-
sidered general ranking problems in the form of preference judgements. Herbrich et al. (2000)
applied the principle of Structural Risk Minimization (Vapnik, 1995) to ordinalregression lead-
ing to a new distribution-independent learning algorithm based on a loss function between pairs of
ranks. Shashua and Levin (2003) generalized the formulation of support vector machines to or-

c©2005 Wei Chu and Zoubin Ghahramani.

CHU AND GHAHRAMANI

dinal regression and the numerical results they presented shows a significant improvement on the
performance compared with the on-line algorithm proposed by Crammer and Singer (2002).

In the statistics literature, most of the approaches are based on generalized linear models (Mc-
Cullagh and Nelder, 1983). The cumulative model (McCullagh, 1980) is well-known in classical
statistical approaches for ordinal regression, in which they rely on a specific distributional assump-
tion on the unobservable latent variables and a stochastic ordering of the input space. Johnson and
Albert (1999) described Bayesian inference on parametric models for ordinal data using sampling
techniques. Tutz (2003) presented a general framework for semiparametric models that extends
generalized additive models (Hastie and Tibshirani, 1990) by incorporating nonparametric parts.
The nonparametric components of the regression model are fitted by maximizingpenalized log
likelihood, and model selection is carried out using AIC.

Gaussian processes (O’Hagan, 1978; Neal, 1997) have provided apromising non-parametric
Bayesian approach to metric regression (Williams and Rasmussen, 1996) and classification prob-
lems (Williams and Barber, 1998). The important advantage of Gaussian process models (GPs) over
other non-Bayesian models is the explicit probabilistic formulation. This not only provides prob-
abilistic predictions but also gives the ability to infer model parameters such asthose that control
the kernel shape and the noise level. The GPs are also different from the semiparametric approach
of Tutz (2003) in several ways. First, the additive models (Fahrmeir and Tutz, 2001) are defined by
functions in each input dimension, whereas the GPs can have more general non-additive covariance
functions; second, the kernel trick allows to use infinite basis function expansions; third, the GPs
perform Bayesian inference in the space of the latent functions.

In this paper, we present a probabilistic kernel approach to ordinal regression in Gaussian pro-
cesses. We impose a Gaussian process prior distribution on the latent functions, and employ an
appropriate likelihood function for ordinal variables which can be regarded as a generalization of
the probit function. Two Bayesian inference techniques are applied to implement modeladapta-
tion by using the Laplace approximation (MacKay, 1992) and the expectationpropagation (Minka,
2001) respectively. Comparisons of the generalization performance against the support vector ap-
proach (Shashua and Levin, 2003) on some benchmark and real-worlddata sets, such as movie
ranking and gene expression analysis, verify the usefulness of this approach.

The paper is organized as follows: in Section 2, we describe the Bayesianframework in Gaus-
sian processes for ordinal regression; in Section 3, we discuss the Bayesian techniques for hyperpa-
rameter inference; in Section 4, we present the predictive distribution forprobabilistic prediction; in
Section 5, we give some extensive discussion on these techniques; in Section 6, we report the results
of numerical experiments on some benchmark and real-world data sets; we conclude this paper in
Section 7.

2. Bayesian Framework

Consider a data set composed ofn samples. Each of the samples is a pair of input vectorxi ∈ R d

and the corresponding targetyi ∈ Y whereY is a finite set ofr ordered categories. Without loss
of generality, these categories are denoted as consecutive integersY = {1,2, . . . , r} that keep the
known ordering information. The main idea is to assume an unobservable latent function f (xi) ∈ R

associated withxi in a Gaussian process, and the ordinal variableyi dependent on the latent function
f (xi) by modelling the ranks as intervals on the real line. A Bayesian framework is described with
more details in the following.

1020

GAUSSIAN PROCESSES FORORDINAL REGRESSION

2.1 Gaussian Process Prior

The latent functions{ f (xi)} are usually assumed as the realizations of random variables indexed
by their input vectors in a zero-mean Gaussian process. The Gaussian process can then be fully
specified by giving the covariance matrix for any finite set of zero-mean random variables{ f (xi)}.
The covariance between the functions corresponding to the inputsxi andx j can be defined by Mercer
kernel functions (Wahba, 1990; Schölkopf and Smola, 2001), e.g. Gaussian kernel which is defined
as

Cov[f (xi), f (x j)] = K (xi ,x j) = exp

(

−κ
2

d

∑
ς=1

(xς
i −xς

j)
2

)

(1)

whereκ > 0 andxς
i denotes theς-th element ofxi .1 Thus, the prior probability of these latent

functions{ f (xi)} is a multivariate Gaussian

P (f) =
1

Z f
exp

(

−1
2

f TΣ−1 f

)

(2)

where f = [f (x1), f (x2), . . . , f (xn)]
T , Z f = (2π)

n
2 |Σ|

1
2 , andΣ is then×n covariance matrix whose

i j -th element is defined as in (1).

2.2 Likelihood for Ordinal Variables

The likelihood is the joint probability of observing the ordinal variables given the latent functions,
denoted asP (D| f) whereD denotes the target set{yi}. Generally, the likelihood can be evaluated
as a product of the likelihood function on individual observation:

P (D| f) =
n

∏
i=1

P (yi | f (xi)) (3)

where the likelihood functionP (yi | f (xi)) could be intuitively defined as

Pideal(yi | f (xi)) =

{

1 if byi−1 < f (xi) ≤ byi ,
0 otherwise

(4)

whereb0 = −∞ andbr = +∞ are defined subsidiarily,b1 ∈ R and the other threshold variables can
be further defined asb j = b1 +∑ j

ι=2 ∆ι with positive padding variables∆ι andι = 2, . . . , r −1. The
role ofb1 < b2 < .. . < br−1 is to divide the real line intor contiguous intervals; these intervals map
the real function valuef (xi) into the discrete variableyi while enforcing the ordinal constraints.
The likelihood function (4) is used for ideally noise-free cases. In the presence of noise from
inputs or targets, we may explicitly assume that the latent functions are contaminated by a Gaussian
noise with zero mean and unknown varianceσ2.2 N (δ;µ,σ2) is used to denote a Gaussian random
variableδ with meanµ and varianceσ2 henceforth. Then the ordinal likelihood function becomes

P (yi | f (xi)) =
Z

Pideal(yi | f (xi)+δi)N (δi ;0,σ2)dδi = Φ
(

zi
1

)

−Φ
(

zi
2

)

(5)

1. Other Mercer kernel functions, such as polynomial kernels and spline kernels etc., can also be used in the covariance
function.

2. In principle, any distribution rather than a Gaussian can be assumed for the noise on the latent functions.

1021

CHU AND GHAHRAMANI

-9 -6 0 6 9

0

0.2

0.4

0.6

0.8

1

f(x)

Ordinal Likelihood Function P(y|f(x))

-9 -6 0 6 9
-15

-10

-5

0

5

10

15

f(x)

 d -ln P(y|f(x)) / df(x)

-9 -6 0 6 9

0

0.2

0.4

0.6

0.8

1

f(x)

d
2
 -ln P(y|f(x)) / d

2
f(x)

y=1 y=2 y=3

y=1

y=1

y=2

y=2

y=3

y=3

b
1
=-3 b

2
=3 b

1
=-3 b

1
=-3 b

2
=3 b

2
=3

Figure 1: The graph of the likelihood function for an ordinal regressionproblem withr = 3, along
with the first and second order derivatives of the loss function (negative logarithm of the
likelihood function), where the noise varianceσ2 = 1, and the two thresholds areb1 =−3
andb2 = +3.

wherezi
1 =

byi− f (xi)

σ , zi
2 =

byi−1− f (xi)

σ , andΦ(z) =
R z
−∞ N (ς;0,1)dς. Note that binary classification

is a special case of ordinal regression whenr = 2, and in this case the likelihood function (5) be-
comes theprobit function. The quantity− lnP (yi | f (xi)) is usually referred to as the loss function
`(yi , f (xi)). The derivatives of the loss function with respect tof (xi) are needed in some approx-
imate Bayesian inference methods. The first order derivative of the lossfunction can be written
as

∂`(yi , f (xi))

∂ f (xi)
=

1
σ

N (zi
1;0,1)−N (zi

2;0,1)

Φ(zi
1)−Φ(zi

2)
(6)

and the second order derivative can be given as

∂2`(yi , f (xi))

∂2 f (xi)
=

1
σ2

(

N (zi
1;0,1)−N (zi

2;0,1)

Φ(zi
1)−Φ(zi

2)

)2

+
1

σ2

zi
1N (zi

1;0,1)−zi
2N (zi

2;0,1)

Φ(zi
1)−Φ(zi

2)
. (7)

We present graphs of the ordinal likelihood function (5) and the derivatives of the loss function
in Figure 1 as an illustration. Note that the first order derivative (6) is a monotonically increasing
function of f (xi), and the second order derivative (7) is always a positive value between 0 and 1

σ2 .
Given the facts thatPideal(yi | f (xi) + δi) is log-concave in(f (xi),δi) andN (δi ;0,σ2) is also log-
concave, as pointed out by Pratt (1981), the convexity of the loss function follows, because the
integral of a log-concave function with respect to some of its arguments is a log-concave function
of its remaining arguments (Brascamp and Lieb, 1976, Cor. 3.5).

2.3 Posterior Probability

Based on Bayes’ theorem, the posterior probability can then be written as

P (f |D) =
1

P (D)

n

∏
i=1

P (yi | f (xi))P (f) (8)

where the prior probabilityP (f) is defined as in (2), the likelihood functionP (yi | f (xi)) is defined
as in (5), andP (D) =

R

P (D| f)P (f)d f .

1022

GAUSSIAN PROCESSES FORORDINAL REGRESSION

The Bayesian framework we described above is conditional on the model parameters including
the kernel parametersκ in the covariance function (1) that control the kernel shape, the threshold
parameters{b1,∆2, . . . ,∆r−1} and the noise levelσ in the likelihood function (5). All these param-
eters can be collected intoθ, which is the hyperparameter vector. The normalization factorP (D)
in (8), more exactlyP (D|θ), is known as the evidence forθ, a yardstick for model selection. In the
next section, we discuss techniques for hyperparameter learning.

3. Model Adaptation

In a full Bayesian treatment, the hyperparametersθ must be integrated over theθ-space. Monte
Carlo methods (Neal, 1997) can be adopted here to approximate the integraleffectively. However
these might be prohibitively expensive to use in practice. Alternatively, weconsider model se-
lection by determining an optimal setting forθ. The optimal values of hyperparametersθ can be
simply inferred by maximizing the posterior probabilityP (θ|D), whereP (θ|D) ∝ P (D|θ)P (θ).
The prior distribution on the hyperparametersP (θ) can be specified by domain knowledge, or al-
ternatively some vague uninformative distribution. The evidence is given by a high dimensional
integral,P (D|θ) =

R

P (D| f)P (f)d f . A popular idea for computing the evidence is to approxi-
mate the posterior distributionP (f |D) as a Gaussian, and then the evidence can be calculated by an
explicit formula (MacKay, 1992; Csató et al., 2000; Minka, 2001). In this section, we describe two
Bayesian techniques for model adaptation by using the Laplace approximation and the expectation
propagation respectively.

3.1 MAP Approach with Laplace Approximation

The evidence can be calculated analytically after applying the Laplace approximation at the max-
imum a posteriori (MAP) estimate, and gradient-based optimization methods can then be used to
infer the optimal hyperparameters by maximizing the evidence. The MAP estimate on the latent
functions is referred tof MAP = argmaxf P (f |D), which is equivalent to the minimizer of negative
logarithm ofP (f |D), i.e.

S(f) =
n

∑
i=1

`(yi , f (xi))+
1
2

f TΣ−1 f (9)

where`(yi , f (xi)) = − lnP (yi | f (xi)) is known as the loss function. Note that∂2S(f)
∂ f ∂ f T = Σ−1 +Λ is a

positive definite matrix, whereΛ is a diagonal matrix whoseii -th entry is∂2`(yi , f (xi))
∂2 f (xi)

given as in (7).

Thus, this is a convex programming problem with a unique solution.3 The Laplace approximation
of S(f) refers to carrying out the Taylor expansion at the MAP point and retainingthe terms up
to the second order (MacKay, 1992). Since the first order derivative with respect tof vanishes at
f MAP, S(f) can also be written as

S(f) ≈ S(f MAP)+
1
2
(f − f MAP)T (Σ−1 +ΛMAP

)

(f − f MAP) (10)

whereΛMAP denotes the matrixΛ at the MAP estimate. This is equivalent to approximating the pos-
terior distributionP (f |D) as a Gaussian distribution centered onf MAP with the covariance matrix

3. The Newton-Raphson formula can be used to find the solution for simplecases.

1023

CHU AND GHAHRAMANI

(Σ−1 + ΛMAP)−1, i.e. P (f |D) ≈ N (f ; f MAP,(Σ−1 + ΛMAP)−1). Using the Laplace approximation
(10) andZ f defined as in (2), the evidence can be computed analytically as follows

P (D|θ) =
1

Z f

Z

exp(−S(f))d f ≈ exp(−S(f MAP))|I +ΣΛMAP|−
1
2 (11)

whereI is ann×n identity matrix. The gradients of the logarithm of the evidence (11) with respect
to the hyperparametersθ can be derived analytically. Then gradient-based optimization methods
can be employed to search for the maximizer of the evidence. Refer to Appendix A for the detailed
gradient formulae and the outline of our algorithm for model adaptation.

3.2 Expectation Propagation with Variational Methods

The expectation propagation algorithm (EP) is an approximate Bayesian inference method (Minka,
2001), which can be regarded as an extension of assumed-density-filter (ADF). The EP algorithm
has been applied in Gaussian process classification along with variational methods for model selec-
tion (Seeger, 2002; Kim and Ghahramani, 2003). In the setting of Gaussian processes, EP attempts
to approximateP (f |D) as a product distribution in the form ofQ(f) = ∏n

i=1 t̃i(f (xi))P (f) where
t̃i(f (xi)) = si exp(−1

2 pi(f (xi)−mi)
2). The parameters{si ,mi , pi} in {t̃i} are successively optimized

by minimizing the following Kullback-Leibler divergence,

t̃new
i = argmin

t̃i
KL
(

Q(f)

t̃old
i

P (yi | f (xi))

∥

∥

∥

∥

Q(f)

t̃old
i

t̃i

)

. (12)

SinceQ(f) is in the exponential family, this minimization can be simply solved by moment match-
ing up to the second order. A detailed updating scheme can be found in Appendix B. At the
equilibrium of Q(f), we obtain an approximate posterior distribution asP (f |D) ≈ N (f ;(Σ−1 +
Π)−1Πm,(Σ−1+Π)−1) whereΠ is a diagonal matrix whoseii -th entry ispi andm= [m1,m2, . . . ,mn]

T .
Variational methods can be used to optimize the hyperparametersθ by maximizing the lower

bound on the logarithm of the evidence. By applying Jensen’s inequality, we have

logP (D|θ) = log
R P (D| f)P (f)

Q(f) Q(f)d f ≥ R

Q(f) log P (D| f)P (f)
Q(f) d f

=
R

Q(f) logP (D| f)d f +
R

Q(f) logP (f)d f − R

Q(f) logQ(f)d f = F (θ).
(13)

The lower boundF (θ) can be written as an explicit expression at the equilibrium ofQ(f), and then
the gradients with respect toθ can be derived by neglecting the possible dependency ofQ(f) on θ.
The detailed formulation can be found in Appendix C.

4. Prediction

We have described two techniques, the MAP approach and the EP approach, to infer the optimal
model. At the optimal hyperparameters we inferred, denoted asθ∗, let us take a test casex for
which the targetyx is unknown. The latent variablef (x) and the column vectorf containing then
zero-mean random variables{ f (xi)}n

i=1 have the prior joint multivariate Gaussian distribution, i.e.

[

f
f (x)

]

∼ N

[(

0
0

)

,

(

Σ k
kT K (x,x)

)]

1024

GAUSSIAN PROCESSES FORORDINAL REGRESSION

wherek = [K (x,x1),K (x,x2), . . . ,K (x,xn)]
T . The conditional distribution off (x) given f is a

Gaussian too, denoted asP (f (x)| f ,θ∗) with mean f TΣ−1k and varianceK (x,x)− kTΣ−1k. The
predictive distribution ofP (f (x)|D,θ∗) can be computed as an integral overf -space, which can be
written as

P (f (x)|D,θ∗) =
Z

P (f (x)| f ,θ∗)P (f |D,θ∗)d f . (14)

The posterior distributionP (f |D,θ∗) can be approximated as a Gaussian by the MAP approach or
the EP approach (refer to Section 3). The predictive distribution (14) can then be simplified as a
GaussianN (f (x);µx,σ2

x) with meanµx and varianceσ2
x. In the MAP approach, we reach

µx = kTΣ−1 f MAP and σ2
x = K (x,x)−kT(Σ+Λ−1

MAP)−1k. (15)

While in the EP approach, we get

µx = kT(Σ+Π−1)−1m and σ2
x = K (x,x)−kT(Σ+Π−1)−1k. (16)

The predictive distribution over ordinal targetsyx is

P (yx|x,D,θ∗) =
R

P (yx| f (x),θ∗)P (f (x)|D,θ∗)d f(x)

= Φ
(

byx−µx√
σ2+σ2

x

)

−Φ
(

byx−1−µx√
σ2+σ2

x

)

.

The predictive ordinal scale can be decided as argmax
i

P (yx = i|x,D,θ∗).

5. Discussion

In the MAP approach, the mean of the predictive distribution depends on theMAP estimatef MAP,
which is unique and can be found by solving a convex programming problem.Evidence maximiza-
tion is useful if the Laplace approximation around the mode pointf MAP gives a good summary of
the posterior distributionP (f |D). While in the approach of expectation propagation, the mean of
the predictive distribution depends on the approximate mean of the posterior distribution. When
the true shape ofP (f |D) is far from a Gaussian centered on the mode, the EP approach can have
a great advantage over the Laplace approximation. However the EP algorithm cannot guarantee
convergence, though it usually works well in practice.

The gradient-based optimization method usually requests evidence evaluationat tens of different
settings ofθ before the minimum is found. For eachθ, the inversion of the matrixΣ is required that
costs time atO(n3), wheren is the number of training samples. Recently, Csató and Opper (2002)
proposed a fast training algorithm for Gaussian processes in which the set of basis vectors are
determined on-line for sparse representation. Lawrence et al. (2003)proposed a greedy selection
with criteria based on information-theoretic principles for sparse Gaussianprocesses (Seeger, 2003).
Tresp (2000) proposed the Bayesian committee machines to divide and conquer large data sets,
while using infinite mixtures of Gaussian Processes (Rasmussen and Ghahramani, 2002) is another
promising technique. These algorithms can be applied directly in the settings of ordinal regression
for speedup.

Feature selection is an essential part in modelling. In Gaussian processes, the automatic rele-
vance determination (ARD) method proposed by MacKay (1994) and Neal(1996) can be embedded

1025

CHU AND GHAHRAMANI

into the covariance function (1) as follows:

Cov[f (xi), f (x j)] = K (xi ,x j) = exp

(

−1
2

d

∑
ς=1

κς(x
ς
i −xς

j)
2

)

(17)

whereκς > 0 is the ARD parameter.4 The gradients with respect to the variables{lnκς} can also
be derived analytically for model adaptation. The optimal value of the ARD parameterκς indicates
the relevance of theς-th input feature to the target. The form of feature selection we use here
results in a type of feature weighting. Furthermore, the linear combination of heterogeneous kernels
with positive coefficients is still a valid covariance function. Lanckriet et al. (2004) suggest to
learn the kernel matrix with semidefinite programming. In the Bayesian framework, these positive
coefficients for kernels could be treated as hyperparameters, and optimized using the evidence as a
criterion for optimization.

Note that binary classification is a special case of ordinal regression withr = 2, and the like-
lihood function (5) becomes theprobit function whenr = 2. Both of theprobit function and the
logistic function can be used as the likelihood function in binary classification,while they have
different origins. Due to the dichotomous nature in the classes of multi-classification, discriminant
functions are constructed for each class and then compete again others via thesoftmaxfunction to
determine the likelihood. The logistic function, as a special case of thesoftmaxfunction, comes
from general classification problems.

In metric regression, warped Gaussian processes (Snelson et al., 2004) assume that there is
a nonlinear, monotonic, and continuous warping function relating the observed targets and some
latent variables in a Gaussian process. The warping function, which is learned from the data, can be
thought of as a pre-processing transformation applied before modelling with a Gaussian process. A
different (and very common) approach to dealing with this preprocessingis to discretizethe target
values intor different bins. These discrete values are clearly ordinal, and applying ordinal regression
to these discrete values seems the natural choice. Interestingly, as the number of discretization bins
r is increased, the ordinal regression model becomes very similar to the warped Gaussian processes
model. In particular, by varying the thresholds in our ordinal regressionmodel, it can approximate
any continuous warping function.

6. Numerical Experiments

We start this section with a simple synthetic data set to visualize the behavior of these algorithms,
and report the experimental results on sixteen benchmark data sets.5 Then we perform experiments
on a collaborative filtering problem using the “EachMovie” data, and on Gleason score prediction
from gene microarray data related to prostate cancer. Shashua and Levin (2003) generalized the sup-
port vector formulation by finding multiple thresholds to define parallel discriminant hyperplanes
for ordinal scales, and reported that the performance of the supportvector approach is better than
that of the on-line algorithm (Crammer and Singer, 2002). The problem sizein the large-margin
ranking algorithm of Herbrich et al. (2000) is a quadratic function of the training data size making
the algorithmic complexityO(n4)–O(n6). This makes the experiments on large data sets computa-
tionally difficult. Thus, we decide to limit our comparisons to the support vectorapproach (SVM)

4. These ARD parameters control the covariance length-scale of the Gaussian process along each input dimension.
5. These data sets are publicly available at http://www.liacc.up.pt/∼ltorgo/Regression/DataSets.html.

1026

GAUSSIAN PROCESSES FORORDINAL REGRESSION

of Shashua and Levin (2003) and the two versions of our approach, the MAP approach with Laplace
approximation (MAP) and the EP algorithm with variational methods (EP). In our implementation,6

we used the routine L-BFGS-B (Byrd et al., 1995) as the gradient-basedoptimization package, and
started from the initial values of hyperparameters to infer the optimal values inthe criterion of the
approximate evidence (11) for MAP or the variational lower bound (13) for EP respectively.7 The
improved SMO algorithm (Keerthi et al., 2001) was adapted to implement the SVMapproach (refer
to Chu and Keerthi (2005) for detailed description and extensive discussion),8 and 5-fold cross vali-
dation was used to determine the optimal values of model parameters (the kernel parameterκ and the
regularization factorC) involved in the problem formulations. The initial search was done on a 7×7
coarse grid linearly spaced in the region{(log10C, log10κ)|−3≤ log10C ≤ 3,−3≤ log10κ ≤ 3},
followed by a fine search on a 9× 9 uniform grid linearly spaced by 0.2 in the(log10C, log10κ)
space. We have utilized two evaluation metrics which quantify the accuracy ofpredictive ordinal
scales{ŷ1, . . . , ŷt} with respect to true targets{y1, . . . ,yt}:

• Mean absolute erroris the average deviation of the prediction from the true target, i.e.
1
t ∑t

i=1 |ŷi −yi |, in which we treat the ordinal scales as consecutive integers;

• Mean zero-one errorgives an error of 1 to every incorrect prediction that is the fraction of
incorrect predictions.

6.1 Artificial Data

Figure 2 presents the behavior of the three algorithms using the Gaussian kernel (1) on a synthetic
2D data with three ordinal scales. In the support vector approach, the optimal thresholds were
determined by the SMO algorithm and 5-fold cross validation was used to decide the optimal values
of the kernel parameter and the regularization factor. As for the Gaussian process algorithms, model
adaptation (see Section 3) was used to determine the optimal values of the kernel parameter, the
noise level and the thresholds automatically. The figure shows that all the algorithms are working
reasonably well on this task.

6.2 Benchmark Data

We collected nine benchmark data sets (Set I in Table 1) that were used formetric regression prob-
lems. The target values were discretized into ordinal quantities using equal-length binning. These
bins divide the range of target values into a given number of intervals thatare of same length. The
resulting rank values are ordered, representing these intervals of the original metric quantities. For
each data set, we generated two versions by discretizing the target valuesinto five and ten intervals
respectively. We randomly partitioned each data set into training/test splits asspecified in Table 1.
The partition was repeated 20 times independently. The Gaussian kernel (1) was used in these three
algorithms. The test results are recorded in Tables 2 and 3. The performance of the MAP and EP
approaches are closely matching. Our Gaussian process algorithms oftenyield better results than

6. The two versions of our proposed approach were implemented in ANSI C, and the source code is accessible at
http://www.gatsby.ucl.ac.uk/∼chuwei/code/gpor.tar.

7. In numerical experiments, the initial values of the hyperparameters were usually chosen asσ2 = 1, κ = 1/d for
Gaussian kernel, the thresholdb1 = −1 and∆ι = 2/r. We suggest to try several starting points in practice, and then
choose the best model by the objective functional.

8. The source code in ANSI C is available at http://www.gatsby.ucl.ac.uk/∼chuwei/code/svorim.tar.

1027

CHU AND GHAHRAMANI

0 1 2 3 4
−3

−2

−1

0

1

2

3
Lo

w
er

 N
oi

se

The SVM Approach

−40.37

−26.79

0 1 2 3 4
−3

−2

−1

0

1

2

3
The MAP Approach

−1.01

0.46

0 1 2 3 4
−3

−2

−1

0

1

2

3
The EP Approach

−2.33

−0.96

0 1 2 3 4
−3

−2

−1

0

1

2

3

H
ig

he
r

N
oi

se

The SVM Approach

−27.83

−22.96

0 1 2 3 4
−3

−2

−1

0

1

2

3
The MAP Approach

−1.56

−0.44

0 1 2 3 4
−3

−2

−1

0

1

2

3
The EP Approach

−3.22

−1.26

Figure 2: The performance of the three algorithms on a synthetic three-rank ordinal regression
problem. The discriminant function values of the SVM approach, and the predictive
mean values of the two Gaussian process approaches are presented ascontour graphs in-
dexed by the two thresholds. The upper graphs are for the case of lower noise level, while
the lower graphs are for the case of higher noise level. The training samples we used are
presented in these graphs. The dots denote the training samples of rank 1,the crosses
denote the training samples of rank 2 and the circles denote the training samplesof rank
3.

the support vector approach on the average value, especially when thenumber of training samples
is small.

In the next experiment, we selected seven very large metric regression data sets (Set II in Table
1). The input vectors were normalized to zero mean and unit variance coordinate-wise. The target
values of these data sets were discretized into 10 ordinal quantities using equal-frequency binning.
For each data set, a small subset was randomly selected for training and then tested on the remaining
samples, as specified in Table 1. The partition was repeated 100 times independently. To show the
advantage of explicitly modelling the ordinal nature of the targets, we also employed the standard
Gaussian process algorithm (Williams and Rasmussen, 1996) for metric regression (GPR)9 to tackle
these ordinal regression tasks, where the ordinal targets were naively treated as continuous values
and the predictions for test cases were rounded to the nearest ordinalscale. The Gaussian kernel
(1) was used in the four algorithms. From the test results in Table 4, the ordinal regression algo-

9. In the GPR, the type-II maximum likelihood was used for model selection.

1028

GAUSSIAN PROCESSES FORORDINAL REGRESSION

Data Sets Attributes(Numeric,Nominal) Training Instances Instancesfor Test
Diabetes 2(2,0) 30 13
Pyrimidines 27(27,0) 50 24
Triazines 60(60,0) 100 86
Wisconsin Breast Cancer 32(32,0) 130 64

Set I Machine CPU 6(6,0) 150 59
Auto MPG 7(4,3) 200 192
Boston Housing 13(12,1) 300 206
Stocks Domain 9(9,0) 600 350
Abalone 8(7,1) 1000 3177
Bank Domains(1) 8(8,0) 50 8142
Bank Domains(2) 32(32,0) 75 8117
Computer Activity(1) 12(12,0) 100 8092

Set II Computer Activity(2) 21(21,0) 125 8067
California Housing 8(8,0) 150 15490
Census Domains(1) 8(8,0) 175 16609
Census Domains(2) 16(16,0) 200 16584

Table 1: Data sets and their characteristics. “Attributes” state the number of numerical and nominal
attributes. “Training Instances” and “Instances for Test” specify the size of training/test
partition. The partitions we generated and the test results on individual partitions can be
accessed at http://www.gatsby.ucl.ac.uk/∼chuwei/ordinalregression.html.

Mean zero-one error Mean absolute error
Data SVM MAP EP SVM MAP EP
Diabetes 57.31±12.09% 54.23±13.78% 54.23±13.78% 0.7462±0.1414 0.6615±0.1376 0.6654±0.1373
Pyrimidines 41.46±8.49% 39.79±7.21% 36.46±6.47% 0.4500±0.1136 0.4271±0.0906 0.3917±0.0745
Triazines 54.19±1.48% 52.91±2.15% 52.62±2.66% 0.6977±0.0259 0.6872±0.0229 0.6878±0.0295
Wisconsin ?70.78±3.73% 65.00±4.71% 65.16±4.65% 1.0031±0.0727 1.0102±0.0937 1.0141±0.0932
Machine 17.37±3.56% 16.53±3.56% 16.78±3.88% 0.1915±0.0423 0.1847±0.0404 0.1856±0.0424
Auto MPG ?25.73±2.24% 23.78±1.85% 23.75±1.74% 0.2596±0.0230 0.2411±0.0189 0.2411±0.0186
Boston 25.56±1.98% 24.88±2.02% 24.49±1.85% 0.2672±0.0190 0.2604±0.0206 0.2585±0.0200
Stocks 10.81±1.70% 11.99±2.34% 12.00±2.06% 0.1081±0.0170 0.1199±0.0234 0.1200±0.0206
Abalone 21.58±0.32% 21.50±0.22% 21.56±0.36% 0.2293±0.0038 0.2322±0.0025 ?0.2337±0.0072

Table 2: Test results of the three algorithms using a Gaussian kernel. The targets of these bench-
mark data sets were discretized by 5 equal-length bins. The results are the averages over
20 trials, along with the standard deviation. We use the bold face to indicate the cases in
which the average value is the lowest in the results of the three algorithms. Thesymbols
? are used to indicate the cases in which the indicated entry is significantly worsethan the
winning entry; A p-value threshold of 0.01 in Wilcoxon rank sum test was used to decide
statistical significance.

rithms are clearly superior to the naive approach of applying standard metric regression. We also
observed that the performance of Gaussian process algorithms are significantly better than that of
the support vector approach on six of the seven data sets. This verifiesour judgement in the previous
experiment that our Gaussian process algorithms yield better performancethan the support vector
approach on small data sets. Although the EP approach often yields better results of mean zero-one
error than the MAP approach on these tasks, we have not detected any statistically significant dif-
ference on their performance. In Table 4 we also report their negativelogarithm of the likelihood in
prediction (NLL). The performance of the MAP and EP approaches areclosely matching too with
no statistically significant difference.

1029

CHU AND GHAHRAMANI

Mean zero-one error Mean absolute error
Data SVM MAP EP SVM MAP EP
Diabetes ?90.38±7.00% 83.46±5.73% 83.08±5.91% 2.4577±0.4369 2.1385±0.3317 2.1423±0.3314
Pyrimidines 59.37±7.63% 55.42±8.01% 54.38±7.70% 0.9187±0.1895 0.8771±0.1749 0.8292±0.1338
Triazines ?67.91±3.63% 63.72±4.34% 64.01±3.78% 1.2308±0.0874 1.1994±0.0671 1.2012±0.0680
Wisconsin ?85.86±3.78% 78.52±3.58% 78.52±3.51% 2.1250±0.1500 2.1391±0.1797 2.1437±0.1790
Machine 32.63±3.84% 33.81±3.91% 33.73±3.64% 0.4398±0.0688 0.4746±0.0727 0.4686±0.0763
Auto MPG 44.01±2.30% 43.96±2.81% 43.88±2.60% 0.5081±0.0263 0.4990±0.0352 0.4979±0.0340
Boston 42.06±2.49% 41.53±2.77% 41.26±2.86% 0.4971±0.0305 0.4920±0.0330 0.4896±0.0346
Stocks 17.74±2.15% ?19.90±1.72% ?19.44±1.91% 0.1804±0.0213 ?0.2006±0.0166 ?0.1960±0.0184
Abalone 42.84±0.86% 42.60±0.91% 42.27±0.46% 0.5160±0.0087 0.5140±0.0075 0.5113±0.0053

Table 3: Test results of the three algorithms using a Gaussian kernel. The targets of these bench-
mark data sets were discretized by 10 equal-length bins. The results are theaverages over
20 trials, along with the standard deviation. We use the bold face to indicate the cases in
which the average value is the lowest in the results of the three algorithms. Thesymbols
? are used to indicate the cases in which the indicated entry is significantly worsethan the
winning entry; A p-value threshold of 0.01 in Wilcoxon rank sum test was used to decide
statistical significance.

Mean zero-one error NLL
Data GPR SVM MAP EP MAP EP
Bank(1) ?59.43± 2.80 % 49.07± 2.69 % 48.65± 1.93 % 48.35± 1.91 % 1.14± 0.07 1.14± 0.07
Bank(2) ?86.37± 1.49 % ?82.26± 2.06 % 80.96± 1.51 % 80.89± 1.52 % 2.20± 0.09 2.20± 0.09
CompAct(1) ?65.52± 2.31 % ?59.87± 2.25 % 58.52± 1.73 % 58.51± 1.53 % 1.65± 0.16 1.64± 0.14
CompAct(2) ?59.30± 2.27 % ?54.79± 2.10 % 53.80± 1.84 % 53.92± 1.68 % 1.49± 0.11 1.48± 0.09
California ?76.13± 1.27 % ?70.63± 1.40 % 69.60± 1.12 % 69.58± 1.11 % 1.89± 0.08 1.89± 0.09
Census(1) ?78.06± 0.81 % ?74.69± 0.94 % 73.71± 0.77 % 73.71± 0.77 % 2.04± 0.08 2.05± 0.08
Census(2) ?78.02± 0.85 % ?76.01± 1.03 % 74.53± 0.81 % 74.48± 0.84 % 2.03± 0.06 2.03± 0.07

Table 4: Test results of the four algorithms using a Gaussian kernel. The targets of these bench-
mark data sets were discretized by 10 equal-frequency bins. The resultsare the average
over 100 trials, along with the standard deviation. “GPR” denotes the standard algorithm
of Gaussian process metric regression that treats the ordinal scales as continuous values.
“NLL” denotes the negative logarithm of the likelihood in prediction. We use the bold face
to indicate the cases in which the average value is the lowest mean zero-one error of the
four algorithms. The symbols? are used to indicate the cases in which the indicated entry
is significantly worse than the winning entry; A p-value threshold of 0.01 in Wilcoxon
rank sum test was used to decide statistical significance.

For these data sets, the overall training time of MAP and EP approaches wassubstantially less
than that of the SVM approach. This is because the MAP and EP approaches can tune the model
parameters by gradient descent that usually required evidence evaluations at tens of different settings
of θ, whereas k-fold cross validation for the SVM approach required evaluations at 130 different
nodes ofθ on the grid for every fold. For larger data sets, the SVM approach may stillhave an
advantage on training time due to the sparseness property in its computation.

1030

GAUSSIAN PROCESSES FORORDINAL REGRESSION

6.3 Collaborative Filtering

Collaborative filtering exploits correlations between ratings across a population of users. The goal
is to predict a person’s rating on new items given the person’s past ratings on similar items and the
ratings of other people on all the items (including the new item). The ratings are ordered, making
collaborative filtering an ordinal regression problem. We carried out ordinal regression on a subset
of the EachMovie data (Compaq, 2001).10 The rates given by the user with ID number “52647”
on 449 movies were used as the targets, in which the numbers of zero-to-five star are 40, 20, 57,
113, 145 and 74 respectively. We selected 1500 users who contributedthe most ratings on these
449 movies as the input features. The ratings given by the 1500 users oneach movie were used as
the input vector accordingly. In the 449×1500 input matrix, about 40% elements were observed.
We randomly selected a subset with size{50,100, . . . ,300} of the 449 movies for training, and
then tested on the remaining movies. At each size, the random selection was carried out 20 times
independently.

Pearson correlation coefficient is the most popular correlation measure (Basilico and Hofmann,
2004), which corresponds to a dot product between normalized rating vectors. For instance, if
applied to the movies, we can define the so-calledz-scores as

z(v,u) =
r(v,u)−µ(v)

σ(v)

whereu indexes users,v indexes movies, andr(v,u) is the rating on the moviev given by the user
u. µ(v) andσ(v) are the movie-specific mean and standard deviation respectively. This correlation
coefficient, defined as

K (v,v′) = ∑
u

z(v,u)z(v′,u)

where∑u denotes summing over all the users, was used as the covariance/kernel function in our
experiments for the three algorithms. As not all ratings are observed in the input vectors, we con-
sider twoad hocstrategies to deal with missing values: mean imputation and weighted low-rank
approximation. In the first case, unobserved values are identified with themean value, that means
their correspondingz-score is zero. In the second case, we applied the EM procedure described
by Srebro and Jaakkola (2003) to fill in the missing data with the estimate. In the input matrix,
observed elements were weighted by one and missing data were given weight zero. The low rank
was fixed at 2. In Figure 3, we present the test results of the two cases at different training data
size. Using mean imputation, SVM produced a bit more accurate results than Gaussian processes
on mean absolute error. In the cases with low rank approximation as preprocessing, the performance
of the three algorithms are highly competitive, and more interestingly, we observed about 0.08 im-
provement on mean absolute error for all the three algorithms. A serious treatment on the missing
data could be an interesting research topic for future work.

6.4 Gene Expression Analysis

Singh et al. (2002) carried out microarray expression analysis on 12600 genes to identify genes
that might anticipate the clinical behavior of prostate cancer. Fifty-two samples of prostate tumor
were investigated. For each sample, the Gleason score ranging from 6 to 10, was given by the

10. The Compaq System Research Center ran the EachMovie service for 18 months. 72916 users entered a total of
2811983 numeric ratings on 1628 movies, i.e. about 2.4% are rated by zero-to-five star.

1031

CHU AND GHAHRAMANI

50 100 150 200 250 300
0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

M
e

a
n

 a
b

so
lu

te
 e

rr
o

r

Training data size

with Mean Imputation

50 100 150 200 250 300
0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Training data size

with Weighted Low−rank Approximation

50 100 150 200 250 300

0.5

0.55

0.6

0.65

0.7

M
e

a
n

 z
e

ro
−

o
n

e
 e

rr
o

r

Training data size
50 100 150 200 250 300

0.5

0.55

0.6

0.65

0.7

Training data size

Figure 3: The test results of the three algorithms on the subset of EachMovie data over 20 trials.
The grouped boxes represent the results of SVM (left), MAP (middle) and EP (right)
respectively at different training data size. The notched-boxes havelines at the lower
quartile, median, and upper quartile values. The whiskers are lines extending from each
end of the box to the most extreme data value within 1.5·IQR(Interquartile Range) of the
box. Outliers are data with values beyond the ends of the whiskers, which are displayed by
dots. The higher graphs are for the results of mean absolute error and thelower graphs are
for mean zero-one error. The cases of mean imputation are presented in the left graphs,
and the cases with weighted low-rank approximation as preprocessing arepresented in
the right graphs.

1032

GAUSSIAN PROCESSES FORORDINAL REGRESSION

1 3 5 10 40 200 1000 12600
0

0.1

0.2

0.3

0.4

0.5

0.6

The SVM Approach

Number of selected genes

M
ea

n
ze

ro
−

on
e

er
ro

r

1 3 5 10 40 200 1000 12600
0

0.1

0.2

0.3

0.4

0.5

0.6

The MAP Approach

Number of selected genes
1 3 5 10 40 200 1000 12600

0

0.1

0.2

0.3

0.4

0.5

0.6

The EP Approach

Number of selected genes

1 3 5 10 40 200 1000 12600
0

0.1

0.2

0.3

0.4

0.5

0.6

The SVM Approach

Number of selected genes

M
ea

n
ab

so
lu

te
 e

rr
or

1 3 5 10 40 200 1000 12600
0

0.1

0.2

0.3

0.4

0.5

0.6

The MAP Approach

Number of selected genes
1 3 5 10 40 200 1000 12600

0

0.1

0.2

0.3

0.4

0.5

0.6

The EP Approach

Number of selected genes

Figure 4: The test results of the three algorithms using a linear kernel on theprostate cancer data of
selected genes. The horizonal axes are indexed on log2 scale. The rungs in these boxes
indicate the mean values, and the heights of these vertical boxes indicate the standard
deviations over the 20 trials.

1033

CHU AND GHAHRAMANI

pathologist reflecting the level of differentiation of the glands in the prostatetumor. Predicting the
Gleason score from the gene expression data is thus a typical ordinal regression problem. Since
only 6 samples had a score greater than 7, we merged them as the top level, leading to three levels
{= 6,= 7,≥ 8} with 26, 20 and 6 samples respectively. We randomly partitioned the data into 2
folds for training and test and repeated this partitioning 20 times independently. An ARD linear
kernel K (xi ,x j) = ∑d

ς=1 κςx
ς
i x

ς
j was used to evaluate feature relevance. These ARD parameters

{κς} were optimized by evidence maximization. According to the optimal values of theseARD
parameters, the genes were ranked from irrelevant to relevant. We thenremoved the irrelevant
genes gradually based on the rank list. The gene number was reduced from 12600 to 1. At each
number of selected genes, a linear kernelK (xi ,x j) = ∑d

ς=1xς
i x

ς
j was used in the three algorithms for

a fair comparison. Figure 4 presents the test results of the three algorithms for different numbers of
selected genes. We observed great and steady improvement using the subset of genes selected by
the ARD technique. The best validation output is achieved around 40 top-ranked features. In this
case, with only 26 training samples, the Bayesian approaches perform much better than the SVM,
and the EP approach is generally better than the MAP approach but the difference is not statistically
significant.

7. Conclusion

Ordinal regression is an important supervised learning problem with properties of both metric re-
gression and classification. In this paper, we proposed a simple yet novel nonparametric Bayesian
approach to ordinal regression based on a generalization of theprobit likelihood function for Gaus-
sian processes. Two approximate inference procedures were derived in detail for evidence evalua-
tion and model adaptation. The approach intrinsically incorporates ARD feature selection and pro-
vides probabilistic prediction. The existent fast algorithms for Gaussian processes can be adapted
directly to tackle relatively large data sets. Experiments on benchmark and real-world data sets show
that the generalization performance is competitive and often better than support vector methods.

Acknowledgments

The main part of this work was carried out at Institute for Pure and AppliedMathematics (IPAM) of
UCLA. We thank David L. Wild for stimulating this work and for many discussions. We also thank
David J. C. MacKay for valuable comments. Wei Chu was supported by the National Institutes of
Health and its National Institute of General Medical Sciences division under Grant Number 1 P01
GM63208. Zoubin Ghahramani was partially supported from CMU by DARPA under the CALO
project. The reviewers’ thoughtful comments are gratefully appreciated.

Appendix A. Gradient Formulae for Evidence Maximization

Evidence maximization is equivalent to finding the minimizer of the negative logarithm of the evi-
dence which can be written in an explicit expression as follows

− lnP (D|θ) ≈
n

∑
i=1

`(yi , fMAP(xi))+
1
2

f T
MAPΣ−1 f MAP +

1
2

ln |I +ΣΛMAP|.

1034

GAUSSIAN PROCESSES FORORDINAL REGRESSION

Initialization choose a favorite gradient-descent optimization package
select the starting pointθ for the optimization package

Looping while the optimization package requests evidence/gradient evaluation atθ
1. find the MAP estimate by solving the convex programming problem (9)
2. evaluate the negative logarithm of the evidence (18) at the MAP
3. calculate the gradients with respect toθ (18)–(18)
4. feed the evidence and gradients to the optimization package

Exit Return the optimalθ found by the optimization package

Table 5: The outline of our algorithm for model adaptation using the MAP approach with Laplace
approximation.

We usually collect{lnκ, lnσ,b1, ln∆2, . . . , ln∆r−1} as the set of variables to tune. This definition of
tunable variables is helpful to convert the constrained optimization problem into an unconstrained
optimization problem. The outline of our algorithm for model adaptation is described in Table 5.

The derivatives of− lnP (D|θ) with respect to these variables can be derived as follows:

∂− lnP (D|θ)

∂ lnκ
=

κ
2

trace

[

(Λ−1
MAP +Σ)−1∂Σ

∂κ

]

− κ
2

f T
MAPΣ−1∂Σ

∂κ
Σ−1 f MAP

+
κ
2

trace

[

Λ−1
MAP(Λ−1

MAP +Σ)−1Σ
∂ΛMAP

∂κ

]

;

∂− lnP (D|θ)

∂ lnσ
= σ

n

∑
i=1

∂`(yi , fMAP(xi))

∂σ
+

σ
2

trace

[

Λ−1
MAP(Λ−1

MAP +Σ)−1Σ
∂ΛMAP

∂σ

]

;

∂− lnP (D|θ)

∂b1
=

n

∑
i=1

∂`(yi , fMAP(xi))

∂b1
+

1
2

trace

[

Λ−1
MAP(Λ−1

MAP +Σ)−1Σ
∂ΛMAP

∂b1

]

;

∂− lnP (D|θ)

∂ ln∆ι
= ∆ι

n

∑
i=1

∂`(yi , fMAP(xi))

∂∆ι
+

∆ι

2
trace

[

Λ−1
MAP(Λ−1

MAP +Σ)−1Σ
∂ΛMAP

∂∆ι

]

.

Note that at the MAP estimateΣ−1 f MAP = −∑n
i=1

∂`(yi , f (xi))
∂ f

∣

∣

∣

f= f MAP

. For more details, let us define

sρ =
(zi

1)
ρN (zi

1;0,1)

Φ(zi
1)−Φ(zi

2)

and

vρ =
(zi

1)
ρN (zi

1;0,1)− (zi
2)

ρN (zi
2;0,1)

Φ(zi
1)−Φ(zi

2)

whereρ runs from 0 to 3,zi
1 =

byi− f (xi)

σ andzi
2 =

byi−1− f (xi)

σ . Theii -th entry of the diagonal matrixΛ
is denoted asΛii , which is defined as in (7), i.e.Λii = 1

σ2 (v0)
2 + 1

σ2 v1. The detailed derivatives are
given in the following:

• ∂Λii
∂κ = ∂Λii

∂ f T
∂ f
∂κ .

• ∂Λii
∂ f (xi)

= 1
σ3 (2(v0)

3 +3v0v1 +v2−v0).

1035

CHU AND GHAHRAMANI

• ∂ f
∂κ = Λ−1(Λ−1 +Σ)−1 ∂Σ

∂κ Σ−1 f .

• ∂`(yi , f (xi))
∂σ = v1

σ .

• ∂Λii
∂σ = − 2

σ Λii +
1

σ3 (2v0v2 +2(v0)
2v1−v1 +(v1)

2 +v3)+ ∂Λii

∂ f T
∂ f
∂σ .

• ∂ f
∂σ = Λ−1(Λ−1+Σ)−1Σψσ, whereψσ is a column vector whosei-th element is1

σ2 (v0−v0v1−
v2).

• ∂Λii
∂b1

= − ∂Λii
∂ f (xi)

+ ∂Λii

∂ f T
∂ f
∂b1

.

• ∂ f
∂b1

= Λ−1(Λ−1 +Σ)−1Σψb, whereψb is a column vector whosei-th element isΛii .

• ∂`(yi , f (xi))
∂∆ι

=







− v0
σ if yi > ι;

− s0
σ if yi = ι;

0 otherwise.

• ∂Λii
∂∆ι

=















− ∂Λii
∂ f (xi)

+ ∂Λii

∂ f T
∂ f
∂∆ι

if yi > ι;

ϕi +
∂Λii
∂ f

∂ f T

∂∆ι
if yi = ι;

∂Λii
∂ f

∂ f T

∂∆ι
otherwise.

• ϕi = ∂Λii
∂∆ι

= 1
σ3 (s0−2v0s1−2(v0)

2s0−s2−v1s0).

• ∂ f
∂∆ι

= Λ−1(Λ−1 + Σ)−1Σψ∆, whereψ∆ is a column vector whosei-th element is defined as

ψi
∆ =







Λii i.e. 1
σ2 ((v0)

2 +v1) if yi > ι;
1

σ2 (v0s0 +s1) if yi = ι;
0 otherwise.

Appendix B. Approximate Posterior Distribution by EP

The expectation propagation algorithm attempts to approximateP (f |D) in form of a product of
Gaussian distributionsQ(f) = ∏n

i=1 t̃(f (xi))P (f) wheret̃(f (xi)) = si exp(−1
2 pi(f (xi)−mi)

2). The
updating scheme is given as follows.

The initial states:

• individual meanmi = 0 ∀i ;

• individual inverse variancepi = 0 ∀i ;

• individual amplitudesi = 1 ∀i ;

• posterior covarianceA = (Σ−1 +Π)−1, whereΠ = diag(p1, p2, . . . , pn) ;

• posterior meanh = AΠm, wherem= [m1,m2, . . . ,mn]
T .

Looping i from 1 ton until there is no significant change in{mi , pi ,si}n
i=1:

• t̃(f (xi)) is removed fromQ(f) to get a leave-one-out posterior distributionQ\i(f) having

1036

GAUSSIAN PROCESSES FORORDINAL REGRESSION

– variance off (xi): λ\i
i = Aii

1−Aii pi
;

– mean off (xi): h\i
i = hi +λ\i

i pi(hi −mi) ;

– others withj 6= i: λ\i
j = A j j andh\i

j = h j .

• t̃(f (xi)) in Q(f) is updated by incorporating the messageP (yi | f (xi)) into Q\i(f):

– Zi =
R

P (yi | f (xi))N (f (xi);h
\i
i ,λ\i

i)d f(xi) = Φ(z̃1)−Φ(z̃2)

wherez̃1 =
byi−h\i

i
√

λ\i
i +σ2

andz̃2 =
byi−1−h\i

i
√

λ\i
i +σ2

.

– βi = ∂ logZi

∂λ\i
i

= − 1
2(λ\i

i +σ2)

(

z̃1N (z̃1;0,1)−z̃2N (z̃2;0,1)
Φ(z̃1)−Φ(z̃2)

)

.

γi = ∂ logZi

∂h\i
i

= − 1
√

λ\i
i +σ2

(

N (z̃1;0,1)−N (z̃2;0,1)
Φ(z̃1)−Φ(z̃2)

)

. (18)

– υi = γ2
i −2βi .

– hnew
i = h\i

i +λ\i
i γi .

– pnew
i = υi

1−λ\i
i υi

.

– mnew
i = h\i

i + γi
υi

.

– snew
i = Zi

√

λ\i
i pnew

i +1exp
(

γ2
i

2υi

)

.

• Note thatpnew
i > 0 all the time, because 0< υi < 1

λ\i
i +σ2

and thenλ\i
i υi < 1.

• if pnew
i ≈ pi , skip this sample and this updating; otherwise update{pi ,mi ,si}, the posterior

meanh and covarianceA as follows:

– Anew= A −ρaiaT
i whereρ =

pnew
i −pi

1+(pnew
i −pi)Aii

andai is thei-th column ofA .

– hnew= h+ηai whereη = γi+pi(hi−mi)
1−Aii pi

andγi is defined as in (18).

As a byproduct, we can get the approximate evidenceP (D|θ) at the EP solution, which can be
written as

n

∏
i=1

si
det

1
2 (Π−1)

det
1
2 (Σ+Π−1)

exp

(

B
2

)

whereB = ∑i j Ai j (mi pi)(mj p j)−∑i pim2
i .

Appendix C. Gradient Formulae for Variational Bound

At the equilibrium ofQ(f), the variational boundF (θ) can be analytically calculated as follows:

F (θ) =
n

∑
i=1

Z

N (f (xi);hi ,Aii) ln(P (yi | f (xi)))d f(xi)−
1
2

ln |I +ΣΠ|

−1
2

trace((I +ΣΠ)−1)− 1
2

mT(Σ+Π−1)−1Σ(Σ+Π−1)−1m+
n
2

.

1037

CHU AND GHAHRAMANI

Note that(Σ + Π−1)−1m can be directly obtained by{γi} defined as in (18). The gradient ofF (θ)
with respect to the variables{lnκ, lnσ,b1, ln∆2, . . . , ln∆r−1} can be given in the following:

∂F (θ)
∂ lnκ = κ

Z

Q(f)
∂ logP (f)

∂κ
d f

= −κ
2

trace

(

Σ−1 ∂Σ
∂κ

)

+
κ
2

hTΣ−1∂Σ
∂κ

Σ−1h+
κ
2

trace

(

Σ−1 ∂Σ
∂κ

Σ−1A

)

= −κ
2

trace

(

(Π−1 +Σ)−1∂Σ
∂κ

)

+
κ
2

mT(Π−1 +Σ)−1∂Σ
∂κ

(Π−1 +Σ)−1m ,

∂F (θ)
∂ lnσ = σ∑n

i=1
R

N (f (xi);hi ,Aii)
∂ lnP (yi | f (xi))

∂σ d f(xi)

= −∑{1≤yi<r}
R

N
(

f (xi);
hiσ2+Aii byi

σ2+Aii
, σ2Aii

σ2+Aii

)

byi − f (xi)√
2π(σ2+Aii)

exp

(

− (hi−byi)
2

2(σ2+Aii)

)

P (yi | f (xi))
d f(xi)

+∑{1<yi≤r}
R

N
(

f (xi);
hiσ2+Aii byi−1

σ2+Aii
, σ2Aii

σ2+Aii

)

byi−1− f (xi)√
2π(σ2+Aii)

exp

(

−
(hi−byi−1)2

2(σ2+Aii)

)

P (yi | f (xi))
d f(xi) ,

∂F (θ)
∂b1

= ∑n
i=1

R

N (f (xi);hi ,Aii)
∂ lnP (yi | f (xi))

∂b1
d f(xi)

= ∑{1≤yi<r}
R

N (f (xi);
hiσ2+Aii byi

σ2+Aii
, σ2Aii

σ2+Aii
)

1√
2π(σ2+Aii)

exp

(

− (hi−byi)
2

2(σ2+Aii)

)

P (yi | f (xi)
d f(xi)

−∑{1<yi≤r}
R

N (f (xi);
hiσ2+Aii byi−1

σ2+Aii
, σ2Aii

σ2+Aii
)

1√
2π(σ2+Aii)

exp

(

−
(hi−byi−1)2

2(σ2+Aii)

)

P (yi | f (xi))
d f(xi) ,

∂F (θ)
∂ ln∆ι

= ∆ι ∑n
i=1

R

N (f (xi);hi ,Aii)
∂ lnP (yi | f (xi))

∂∆ι
d f(xi)

= ∆ι ∑{ι≤yi<r}
R

N (f (xi);
hiσ2+Aii byi

σ2+Aii
, σ2Aii

σ2+Aii
)

1√
2π(σ2+Aii)

exp

(

− (hi−byi)
2

2(σ2+Aii)

)

P (yi | f (xi)
d f(xi)

−∆ι ∑{ι<yi≤r}
R

N (f (xi);
hiσ2+Aii byi−1

σ2+Aii
, σ2Aii

σ2+Aii
)

1√
2π(σ2+Aii)

exp

(

−
(hi−byi−1)2

2(σ2+Aii)

)

P (yi | f (xi))
d f(xi) ,

where∑{ι<yi≤r} means summing over all the samples whose targets satisfyι < yi ≤ r, and these one-
dimensional integrals can be approximated using Gaussian quadrature or calculated by Romberg
integration at some appropriate accuracy.

References

J. Basilico and T. Hofmann. Unifying collaborative and content-based filtering. In Proceedings of
the 21th International Conference on Machine Learning, pages 65–72, 2004.

H. J. Brascamp and E. H. Lieb. On extensions of the Brunn-Minkowski and Prekopa-Leindler the-
orems, including inequalities for log concave functions, and with an application to the diffusion
equation.Journal of Functional Analysis, 22:366–389, 1976.

R. H. Byrd, P. Lu, and J. Nocedal. A limited memory algorithm for bound constrained optimization.
SIAM Journal on Scientific and Statistical Computing, 16(5):1190–1208, 1995.

W. Chu and S. S. Keerthi. New approaches to support vector ordinal regression. Technical report,
Yahoo! Research Labs, 2005.

1038

GAUSSIAN PROCESSES FORORDINAL REGRESSION

W. W. Cohen, R. E. Schapire, and Y. Singer. Learning to order things.Journal of artificial intelli-
gence research, 10:243–270, 1999.

Compaq. EachMovie.http://research.compaq.com/SRC/eachmovie/, 2001.

K. Crammer and Y. Singer. Pranking with ranking. In T. G. Dietterich, S. Becker, and Z. Ghahra-
mani, editors,Advances in Neural Information Processing Systems 14, pages 641–647, Cam-
bridge, MA, 2002. MIT Press.

L. Csat́o, E. Fokoúe, M. Opper, B. Schottky, and O. Winther. Efficient approaches to Gaussian pro-
cess classification. In Sara A. Solla, Todd K. Leen, and Klaus-RobertMüller, editors,Advances
in Neural Information Processing Systems 12, pages 251–257, 2000.

L. Csat́o and M. Opper. Sparse online Gaussian processes.Neural Computation, The MIT Press,
14:641–668, 2002.

L. Fahrmeir and G. Tutz.Multivariate Statistical Modelling Based on Generalized Linear Models.
New York, Springer-Verlag, 2nd edition, 2001.

E. Frank and M. Hall. A simple approach to ordinal classification. InProceedings of the European
Conference on Machine Learning, pages 145–165, 2001.

S. Har-Peled, D. Roth, and D. Zimak. Constraint classification: A new approach to multiclass
classification and ranking. In S. Thrun S. Becker and K. Obermayer, editors,Advances in Neural
Information Processing Systems 15, pages 785–792, 2003.

T. Hastie and R. Tibshirani.Generalized Additive Models. Chapman and Hall, London, 1990.

R. Herbrich, T. Graepel, and K. Obermayer. Large margin rank boundaries for ordinal regression.
In Advances in Large Margin Classifiers, pages 115–132. MIT Press, 2000.

V. E. Johnson and J. H. Albert.Ordinal Data Modeling (Statistics for Social Science and Public
Policy). Springer-Verlag, 1999.

S. S. Keerthi, S. K. Shevade, C. Bhattacharyya, and K. R. K. Murthy.Improvements to Platt’s SMO
algorithm for SVM classifier design.Neural Computation, 13:637–649, March 2001.

H. Kim and Z. Ghahramani. The EM-EP algorithm for Gaussian process classification. InProc. of
the Workshop on Probabilistic Graphical Models for Classification (at ECML), 2003.

S. Kramer, G. Widmer, B. Pfahringer, and M. DeGroeve. Prediction of ordinal classes using regres-
sion trees.Fundamenta Informaticae, 47:1–13, 2001.

G. R. G. Lanckriet, N. Cristianini, P. Bartlett, L. El Ghaoui, and M. I. Jordan. Learning the kernel
matrix with semidefinite programming.Journal of Machine Learning Research, 5:27–72, 2004.

N. D. Lawrence, M. Seeger, and R. Herbrich. Fast sparse Gaussian process methods: The infor-
mative vector machine. In S. Becker, S. Thrun, and K. Obermayer, editors, Advances in Neural
Information Processing Systems 15, pages 609–616, 2003.

1039

CHU AND GHAHRAMANI

D. J. C. MacKay. A practical Bayesian framework for back propagation networks.Neural Compu-
tation, 4(3):448–472, 1992.

D. J. C. MacKay. Bayesian methods for backpropagation networks. InJ. L. van Hemmen, E. Do-
many, and K. Schulten, editors,Models of Neural Networks III, pages 211–254, New York, 1994.
Springer-Verlag.

P. McCullagh. Regression models for ordinal data.Journal of the Royal Statistical Society B, 42
(2):109–142, 1980.

P. McCullagh and J. A. Nelder.Generalized Linear Models. Chapman & Hall, London, 1983.

T. P. Minka.A family of algorithms for approximate Bayesian inference. PhD thesis, Massachusetts
Institute of Technology, January 2001.

R. M. Neal.Bayesian Learning for Neural Networks. Lecture Notes in Statistics, No. 118. Springer-
Verlag, New York, 1996.

R. M. Neal. Monte Carlo implementation of Gaussian process models for Bayesian regression and
classification. Technical Report No. 9702, Department of Statistics, University of Toronto, 1997.

A. O’Hagan. Curve fitting and optimal design for prediction (with discussion). Journal of the Royal
Statistical Society B, 40(1):1–42, 1978.

J. W. Pratt. Concavity of the log likelihood.Journal of the American Statistical Association, 76
(373):103–106, 1981.

C. E. Rasmussen and Z. Ghahramani. Infinite mixtures of Gaussian process experts. In T. G.
Dietterich, S. Becker, and Z. Ghahramani, editors,Advances in Neural Information Processing
Systems 14, pages 881–888, 2002.

B. Scḧolkopf and A. J. Smola.Learning with Kernels – Support Vector Machines, Regulariza-
tion, Optimization and Beyond. Adaptive Computation and Machine Learning. The MIT Press,
December 2001.

M. Seeger. Notes on Minka’s expectation propagation for Gaussian process classification. Technical
report, University of Edinburgh, 2002.

M. Seeger. Bayesian Gaussian process models: PAC-Bayesian generalisation error bounds and
sparse approximations. PhD thesis, University of Edinburgh, July 2003.

A. Shashua and A. Levin. Ranking with large margin principle: two approaches. In S. Thrun
S. Becker and K. Obermayer, editors,Advances in Neural Information Processing Systems 15,
pages 937–944. MIT Press, 2003.

D. Singh, P. G. Febbo, K. Ross, D. G. Jackson, J. Manola, C. Ladd,P. Tamayo, A. A. Renshaw,
A. V. D’Amico, J. P. Richie, E. S. Lander, M. Loda, P. W. Kantoff, T. R. Golub, and W. R.
Sellers. Gene expression correlates of clinical prostate cancer behavior. Cancer Cell, 1:203–209,
2002. www.genome.wi.mit.edu/MPR/prostate.

1040

GAUSSIAN PROCESSES FORORDINAL REGRESSION

E. Snelson, Z. Ghahramani, and C. Rasmussen. Warped Gaussian processes. In Sebastian Thrun,
Lawrence Saul, and Bernhard Schölkopf, editors,Advances in Neural Information Processing
Systems 16, pages 337–344, 2004.

N. Srebro and T. Jaakkola. Weighted low-rank approximations. InProceedings of the Twentieth
International Conference on Machine Learning, pages 720–727, 2003.

V. Tresp. A Bayesian committee machine.Neural Computation, 12(11):2719–2741, November
2000.

G. Tutz. Generalized semiparametrically structured ordinal models.Biometrics, 59:263–273, June
2003.

V. N. Vapnik. The Nature of Statistical Learning Theory. New York: Springer-Verlag, 1995.

G. Wahba.Spline Models for Observational Data, volume 59 ofCBMS-NSF Regional Conference
Series in Applied Mathematics. SIAM, 1990.

C. K. I. Williams and D. Barber. Bayesian classification with Gaussian processes.IEEE Transac-
tions on Pattern Analysis and Machine Intelligence, 20(12):1342–1351, 1998.

C. K. I. Williams and C. E. Rasmussen. Gaussian processes for regression. In D. S. Touretzky,
M. C. Mozer, and M. E. Hasselmo, editors,Advances in Neural Information Processing Systems,
volume 8, pages 598–604, 1996. MIT Press.

1041

Journal of Machine Learning Research 6 (2005) 1043–1071 Submitted 5/03; Revised 10/04; Published 7/05

Learning the Kernel with Hyperkernels

Cheng Soon Ong∗ CHENGSOON.ONG@TUEBINGEN.MPG.DE

Max Planck Institute for Biological Cybernetics and
Friedrich Miescher Laboratory
Spemannstrasse 35
72076 T̈ubingen, Germany

Alexander J. Smola ALEX .SMOLA @NICTA .COM.AU

Robert C. Williamson BOB.WILLIAMSON @NICTA .COM.AU

National ICT Australia
Locked Bag 8001
Canberra ACT 2601, Australia
and Australian National University

Editor: Ralf Herbrich

Abstract

This paper addresses the problem of choosing a kernel suitable for estimation with a support
vector machine, hence further automating machine learning. This goal is achieved by defining
a reproducing kernel Hilbert space on the space of kernels itself. Such a formulation leads to a
statistical estimation problem similar to the problem of minimizing a regularized risk functional.

We state the equivalent representer theorem for the choice of kernels and present a semidefinite
programming formulation of the resulting optimization problem. Several recipes for constructing
hyperkernels are provided, as well as the details of common machine learning problems. Experi-
mental results for classification, regression and novelty detection on UCI data show the feasibility
of our approach.

Keywords: learning the kernel, capacity control, kernel methods, support vector machines, repre-
senter theorem, semidefinite programming

1. Introduction

Kernel methods have been highly successful in solving various problemsin machine learning. The
algorithms work by implicitly mapping the inputs into a feature space, and finding a suitable hy-
pothesis in this new space. In the case of the support vector machine (SVM), this solution is the
hyperplane which maximizes the margin in the feature space. The feature mapping in question is
defined by a kernel function, which allows us to compute dot products in feature space using only
objects in the input space. For an introduction to SVMs and kernel methods, the reader is referred
to numerous tutorials such as Burges (1998) and books such as Schölkopf and Smola (2002).

Choosing a suitable kernel function, and therefore a feature mapping, isimperative to the suc-
cess of this inference process. This paper provides an inference framework for learning the kernel
from training data using an approach akin to the regularized quality functional.

∗. This work was done when the author was at the Australian National University.

c©2005 Cheng Soon Ong, Alexander J. Smola and Robert C. Williamson.

ONG, SMOLA AND WILLIAMSON

1.1 Motivation

As motivation for the need for methods to learn the kernel, consider Figure 1, which shows the sep-
arating hyperplane, the margin and the training data for a synthetic data set. Figure 1(a) shows the
classification function for a support vector machine using a Gaussian radial basis function (RBF)
kernel. The data has been generated using two Gaussian distributions with standard deviation 1
in one dimension and 1000 in the other. This difference in scale creates problems for the Gaus-
sian RBF kernel, since it is unable to find a kernel width suitable for both directions. Hence, the
classification function is dominated by the dimension with large variance. Increasing the value of
the regularization parameter,C, and hence decreasing the smoothness of the function results in a
hyperplane which is more complex, and equally unsatisfactory (Figure 1(b)). The traditional way
to handle such data is to normalize each dimension independently.

Instead of normalising the input data, we make the kernel adaptive to allow independent scales
for each dimension. This allows the kernel to handle unnormalised data. However, the resulting
kernel would be difficult to hand-tune as there may be numerous free variables. In this case, we
have a free parameter for each dimension of the input. We ‘learn’ this kernel by defining a quantity
analogous to the risk functional, called the quality functional, which measuresthe ‘badness’ of the
kernel function. The classification function for the above mentioned data isshown in Figure 1(c).
Observe that it captures the scale of each dimension independently. In general, the solution does not
consist of only a single kernel but a linear combination of them.

−3000 −2000 −1000 0 1000 2000 3000 4000 5000 6000

−1

0

1

2

3

4

5

Large variance dimension

S
m

a
ll

 v
a

ri
a

n
ce

 d
im

e
n

si
o

n

(a) Standard Gaussian RBF kernel
(C=10)

−3000 −2000 −1000 0 1000 2000 3000 4000 5000 6000

−1

0

1

2

3

4

5

Large variance dimension

S
m

a
ll

 v
a

ri
a

n
ce

 d
im

e
n

si
o

n

(b) Standard Gaussian RBF kernel
(C=108)

−3000 −2000 −1000 0 1000 2000 3000 4000 5000 6000

−1

0

1

2

3

4

5

Large variance dimension

S
m

a
ll

 v
a

ri
a

n
ce

 d
im

e
n

si
o

n

(c) RBF-Hyperkernel with adaptive
widths

Figure 1: For data with highly non-isotropic variance, choosing one scalefor all dimensions leads
to unsatisfactory results. Plot of synthetic data, showing the separating hyperplane and
the margins given for a uniformly chosen length scale (left and middle) and an automatic
width selection (right).

1.2 Related Work

We analyze some recent approaches to learning the kernel by looking atthe objective function that
is being optimized and the class of kernels being considered. We will see later(Section 2) that this
objective function is related to our definition of a quality functional. Cross validation has been used
to select the parameters of the kernels and SVMs (Duan et al., 2003, Meyer et al., 2003), with vary-
ing degrees of success. The objective function is the cross validation risk, and the class of kernels
is a finite subset of the possible parameter settings. Duan et al. (2003) andChapelle et al. (2002)

1044

HYPERKERNELS

test various simple approximations which bound the leave one out error, orsome measure of the
capacity of the SVM. The notion of Kernel Target Alignment (Cristianini etal., 2002) uses the ob-
jective functiontr(Kyy⊤) wherey are the training labels, andK is from the class of kernels spanned
by the eigenvectors of the kernel matrix of the combined training and test data. The semidefinite
programming (SDP) approach (Lanckriet et al., 2004) uses a more general class of kernels, namely
a linear combination of positive semidefinite matrices. They minimize the margin of the resulting
SVM using a SDP for kernel matrices with constant trace. Similar to this, Bousquet and Herrmann
(2002) further restricts the class of kernels to the convex hull of the kernel matrices normalized by
their trace. This restriction, along with minimization of the complexity class of the kernel, allows
them to perform gradient descent to find the optimum kernel. Using the idea of boosting, Crammer
et al. (2002) optimize∑t βtKt , whereβt are the weights used in the boosting algorithm. The class
of base kernels{Kt} is obtained from the normalized solution of the generalized eigenvector prob-
lem. In principle, one can learn the kernel using Bayesian methods by defining a suitable prior, and
learning the hyperparameters by optimizing the marginal likelihood (Williams and Barber, 1998,
Williams and Rasmussen, 1996). As an example of this, when other information isavailable, an
auxiliary matrix can be used with the EM algorithm for learning the kernel (Tsuda et al., 2003).
Table 1 summarizes these approaches. The notationK � 0 means thatK is positive semidefinite,
that is for alla∈ R

n, a⊤Ka > 0.

Approach Objective Kernel class (K)
Cross Validation CV Risk Finite set of kernels
Alignment y⊤Ky {∑m

i=1 βiviv⊤i such thatvi are eigenvectors ofK}
SDP margin {∑m

i=1 βiKi such thatKi � 0, trKi = c}
Complexity Bound margin {∑m

i=1 βiKi such thatKi � 0, trKi = c,βi > 0}
Boosting Exp/LogLoss Base kernels from generalized eigenvector problem
Bayesian neg. log-post. dependent on prior
EM Algorithm KL Divergence linear combination of auxiliary matrix

Table 1: Summary of recent approaches to kernel learning.

1.3 Outline of the Paper

The contribution of this paper is a theoretical framework for learning the kernel. Using this frame-
work, we analyze the regularized risk functional. Motivated by the ideas of Cristianini et al. (2003),
we show (Section 2) that for most kernel-based learning methods there exists a functional, thequal-
ity functional, which plays a similar role to the empirical risk functional. We introduce a kernel
on the space of kernels itself, ahyperkernel(Section 3), and its regularization on the associated
hyper reproducing kernel Hilbert space (Hyper-RKHS). This leadsto a systematic way of parame-
terizing kernel classes while managing overfitting (Ong et al., 2002). We give several examples of
hyperkernels and recipes to construct others (Section 4). Using this general framework, we consider
the specific example of using the regularized risk functional in the rest of the paper. The positive
definiteness of the kernel function is ensured using the positive definiteness of the kernel matrix
(Section 5), and the resulting optimization problem is a semidefinite program. Thesemidefinite
programming approach follows that of Lanckriet et al. (2004), with a different constraint due to a

1045

ONG, SMOLA AND WILLIAMSON

difference in regularization (Ong and Smola, 2003). Details of the specificoptimization problems
associated with theC-SVM, ν-SVM, Lagrangian SVM,ν-SVR and one class SVM are defined in
Section 6. Experimental results for classification, regression and noveltydetection (Section 7) are
shown. Finally some issues and open problems are discussed (Section 8).

2. Kernel Quality Functionals

We denote byX the space of input data andY the space of labels (if we have a supervised learning
problem). Denote byXtrain := {x1, . . . ,xm} the training data and withYtrain := {y1, . . . ,ym} a set of
corresponding labels, jointly drawn independently and identically from someprobability distribu-
tion Pr(x,y) on X × Y . We shall, by convenient abuse of notation, generally denoteYtrain by the
vectory, when writing equations in matrix notation. We denote byK the kernel matrix given by
Ki j := k(xi ,x j) wherexi ,x j ∈ Xtrain andk is a positive semidefinite kernel function. We also use trK
to mean the trace of the matrix and|K| to mean the determinant.

We begin by introducing a new class of functionalsQ on data which we will callquality func-
tionals. Note that by quality we actually meanbadnessor lack of quality, as we would like to
minimize this quantity. Their purpose is to indicate, given a kernelk and the training data, how
suitable the kernel is for explaining the training data, or in other words, thequalityof the kernel for
the estimation problem at hand. Such quality functionals may be the Kernel Target Alignment, the
negative log posterior, the minimum of the regularized risk functional, or anyluckiness function for
kernel methods. We will discuss those functionals after a formal definition of the quality functional
itself.

2.1 Empirical and Expected Quality

Definition 1 (Empirical Quality Functional) Given a kernel k, and data X,Y, we define Qemp(k,X,Y)
to be anempirical quality functionalif it depends on k only via k(xi ,x j) where xi ,x j ∈ X for
1 6 i, j 6 m.

By this definition,Qemp is a function which tells us how well matchedk is to a specific data setX,Y.
Typically such a quantity is used to adaptk in such a manner thatQemp is optimal (for example,
optimal Kernel Target Alignment, greatest luckiness, smallest negative log-posterior), based on this
onesingledata setX,Y. Provided a sufficiently rich class of kernelsK it is in general possible to
find a kernelk∗ ∈ K that attains the minimum of any suchQemp regardless of the data. However,
it is very unlikely thatQemp(k∗,X,Y) would be similarly small for otherX,Y, for such ak∗. To
measure the overall quality ofk we therefore introduce the following definition:

Definition 2 (Expected Quality Functional) Denote by Qemp(k,X,Y) an empirical quality func-
tional, then

Q(k) := EX,Y
[

Qemp(k,X,Y)
]

is defined to be the expected quality functional. Here the expectation is taken over X,Y, where all
xi ,yi are drawn fromPr(x,y).

Observe the similarity between the empirical quality functional,Qemp(k,X,Y), and the empirical
risk of an estimator,Remp(f ,X,Y) = 1

m ∑m
i=1 l(xi ,yi , f (xi)) (wherel is a suitable loss function); in

1046

HYPERKERNELS

both cases we compute the value of a functional which depends on some sample X,Y drawn from
Pr(x,y) and a function and in both cases we have

Q(k) = EX,Y
[

Qemp(k,X,Y)
]

andR(f) = EX,Y
[

Remp(f ,X,Y)
]

.

Here R(f) denotes the expected risk. However, while in the case of the empirical risk we can
interpretRemp as the empirical estimate of the expected lossR(f) = Ex,y[l(x,y, f (x))], due to the
general form ofQemp, no such analogy is available for quality functionals. Finding a general-
purpose bound of the expected error in terms ofQ(k) is difficult, since the definition ofQ depends
heavily on the algorithm under consideration. Nonetheless, it provides a general framework within
which such bounds can be derived.

To obtain a generalization error bound, it is sufficient thatQemp is concentrated around its
expected value. Furthermore, one would require the deviation of the empirical risk to be upper
bounded byQemp and possibly other terms. In other words, we assume a) we have given a concen-
tration inequality on quality functionals, such as

Pr
{

|Qemp(k,X,Y)−Q(k)| > εQ
}

< δQ,

and b) we have a bound on the deviation of the empirical risk in terms of the quality functional

Pr
{

|Remp(f ,X,Y)−R(f)| > εR
}

< δ(Qemp).

Then we can chain both inequalities together to obtain the following bound

Pr
{

|Remp(f ,X,Y)−R(f)| > εR
}

< δQ +δ(Q+ εQ).

This means that the bound now becomes independent of the particular valueof the quality func-
tional obtainedon the data, rather than the expected value of the quality functional. Bounds ofthis
type have been derived for Kernel Target Alignment (Cristianini et al.,2003, Theorem 9) and the
Algorithmic Luckiness framework (Herbrich and Williamson, 2002, Theorem17).

2.2 Examples ofQemp

Before we continue with the derivations of a regularized quality functionaland introduce a cor-
responding reproducing kernel Hilbert space, we give some examplesof quality functionals and
present their exact minimizers, whenever possible. This demonstrates thatgiven a rich enough fea-
ture space, we can arbitrarily minimize the empirical quality functionalQemp. The difference here
from traditional kernel methods is the fact that we allow the kernel to change. This extra degree of
freedom allows us to overfit the training data. In many of the examples below,we show that given a
feature mapping which can model the labels of the training data precisely, overfitting occurs. That
is, if we use the training labels as the kernel matrix, we arbitrarily minimize the qualityfunctional.
The reader who is convinced that one can arbitrarily minimizeQemp, by optimizing over a suitably
large class of kernels, may skip the following examples.

Example 1 (Regularized Risk Functional) These are commonly used in SVMs and related kernel
methods (see Wahba (1990), Vapnik (1995), Schölkopf and Smola (2002)). They take on the general
form

Rreg(f ,Xtrain,Ytrain) :=
1
m

m

∑
i=1

l(xi ,yi , f (xi))+
λ
2
‖ f‖2
H (1)

1047

ONG, SMOLA AND WILLIAMSON

where‖ f‖2
H

is the RKHS norm of f and l is a loss function such that for f(xi) = yi , l(xi ,yi ,yi) = 0.
By virtue of the representer theorem (see Section 3) we know that the minimizer of (1) can be written
as a kernel expansion. This leads to the following definition of a quality functional, for a particular
loss functional l:

Qregrisk
emp (k,Xtrain,Ytrain) := min

α∈Rm

[

1
m

m

∑
i=1

l(xi ,yi , [Kα]i)+
λ
2

α⊤Kα

]

. (2)

The minimizer of (2) is somewhat difficult to find, since we have to carry out a double minimization
over K andα. However, we know that Qregrisk

emp is bounded from below by0. Hence, it is sufficient if

we can find a (possibly) suboptimal pair(α,k) for which Qregrisk
emp ≤ ε for anyε > 0:

• Note that for K= βyy⊤ and α = 1
β‖y‖2 y we have Kα = y andα⊤Kα = β−1. This leads to

l(xi ,yi , f (xi)) = 0 and therefore Qregrisk
emp (k,Xtrain,Ytrain) = λ

2β . For sufficiently largeβ we can

make Qregrisk
emp (k,Xtrain,Ytrain) arbitrarily close to0.

• Even if we disallow setting K arbitrarily close to zero by settingtrK = 1, finding the minimum
of (2) can be achieved as follows: let K= 1

‖z‖2 zz⊤, where z∈ R
m, andα = z. Then Kα = z

and we obtain

1
m

m

∑
i=1

l(xi ,yi , [Kα]i)+
λ
2

α⊤Kα =
m

∑
i=1

l(xi ,yi ,zi)+
λ
2
‖z‖2

2. (3)

Choosing each zi = argminζ l(xi ,yi ,ζ(xi))+
λ
2ζ2, whereζ are the possible hypothesis functions

obtained from the training data, yields the minimum with respect to z. Since (3) tends to zero
and the regularized risk is lower bounded by zero, we can still arbitrarily minimize Qregrisk

emp .
This is not surprising since the set of allowable K is huge.

Example 2 (Cross Validation) Cross validation is a widely used method for estimating the gener-
alization error of a particular learning algorithm. Specifically, the leave-one-out cross validation is
an almost unbiased estimate of the generalization error (Luntz and Brailovsky, 1969). The quality
functional for classification using kernel methods is given by:

Qloo
emp(k,Xtrain,Ytrain) := min

α∈Rm

[

1
m

m

∑
i=1

−yi sign([Kαi]i)

]

,

which is optimized in Duan et al. (2003), Meyer et al. (2003).
Choosing K= yy⊤ andαi = 1

‖yi‖2 yi , whereαi and yi are the vectorsα and y with the ith element

set to zero, we have Kαi = yi . Hence we can match the training data perfectly. For a validation set of
larger size, i.e. k-fold cross validation, the same result can be achieved by defining a corresponding
α.

Example 3 (Kernel Target Alignment) This quality functional was introduced by Cristianini et al.
(2002) to assess the alignment of a kernel with training labels. It is defined by

Qalignment
emp (k,Xtrain,Ytrain) := 1− tr(Kyy⊤)

‖y‖2
2‖K‖F

. (4)

1048

HYPERKERNELS

Here‖y‖2 denotes theℓ2 norm of the vector of observations and‖K‖F is the Frobenius norm, i.e.,
‖K‖2

F := tr(KK⊤) = ∑i, j(Ki j)
2. This quality functional was optimized in Lanckriet et al. (2004). By

decomposing K into its eigensystem one can see that (4) is minimized, if K= yy⊤, in which case

Qalignment
emp (k∗,Xtrain,Ytrain) = 1− tr(y⊤yy⊤y)

‖y‖2
2‖yy⊤‖F

= 1− ‖y‖4
2

‖y‖2
2‖y‖2

2

= 0.

We cannot expect that Qalignment
emp (k∗,X,Y) = 0 for data other than that chosen to determine k∗, in

other words, a restriction of the class of kernels is required. This was also observed in Cristianini
et al. (2003).

The above examples illustrate how existing methods for assessing the quality ofa kernel fit
within the quality functional framework. We also saw that given a rich enough class of kernelsK ,
optimization ofQempoverK would result in a kernel that would be useless for prediction purposes,
in the sense that they can be made to look arbitrarily good in terms ofQemp but with the result that
the generalization performance will be poor. This is yet another example ofthe danger of optimizing
too much and overfitting – there is (still) no free lunch.

3. Hyper Reproducing Kernel Hilbert Spaces

We now propose a conceptually simple method to optimize quality functionals over classes of ker-
nels by introducing a reproducing kernel Hilbert spaceon the kernel k itself, so to say, a Hyper-
RKHS. We first review the definition of a RKHS (Aronszajn, 1950).

Definition 3 (Reproducing Kernel Hilbert Space) Let X be a nonempty set (the index set) and
denote byH a Hilbert space of functions f: X → R. H is called a reproducing kernel Hilbert
space endowed with the dot product〈·, ·〉 (and the norm‖ f‖ :=

√

〈 f , f 〉) if there exists a function
k : X ×X → R with the following properties.

1. k has the reproducing property

〈 f ,k(x, ·)〉 = f (x) for all f ∈ H ,x∈ X ;

in particular, 〈k(x, ·),k(x′, ·)〉 = k(x,x′) for all x,x′ ∈ X .

2. k spansH , i.e.H = span{k(x, ·)|x∈ X } whereX is the completion of the set X.

In the rest of the paper, we use the notationk to represent the kernel function andH to represent
the RKHS. In essence,H is a Hilbert space of functions, which has the special property of being
generated by the kernel functionk.

The advantage of optimization in an RKHS is that under certain conditions the optimal solutions
can be found as the linear combination of a finite number of basis functions, regardless of the
dimensionality of the spaceH the optimization is carried out in. The theorem below formalizes this
notion (see Kimeldorf and Wahba (1971), Cox and O’Sullivan (1990)).

Theorem 4 (Representer Theorem)Denote byΩ : [0,∞) → R a strictly monotonic increasing
function, byX a set, and by l: (X ×R

2)m → R∪{∞} an arbitrary loss function. Then each mini-
mizer f∈ H of the general regularized risk

l ((x1,y1, f (x1)) , . . . ,(xm,ym, f (xm)))+Ω(‖ f‖H)

1049

ONG, SMOLA AND WILLIAMSON

admits a representation of the form

f (x) =
m

∑
i=1

αik(xi ,x), (5)

whereαi ∈ R for all 1 6 i 6 m.

3.1 Regularized Quality Functional

To learn the kernel, we need to define a function space of kernels, a methodto regularize them and
a practical optimization procedure. We will address each of these issues inthe following. We define
an RKHS on kernelsk : X ×X → R, simply by introducing the compounded index set,X := X ×X
and by treatingk as a functionk : X → R:

Definition 5 (Hyper Reproducing Kernel Hilbert Space) Let X be a nonempty set. and denote
by X := X ×X the compounded index set. The Hilbert spaceH of functions k: X → R, endowed
with a dot product〈·, ·〉 (and the norm‖k‖ =

√

〈k,k〉) is called a hyper reproducing kernel Hilbert
space if there exists a hyperkernel k: X ×X → R with the following properties:

1. khas the reproducing property〈k,k(x, ·)〉= k(x) for all k∈H ; in particular, 〈k(x, ·),k(x′, ·)〉=
k(x,x′).

2. kspansH , i.e.H = span{k(x, ·)|x∈ X }.

3. k(x,y,s, t) = k(y,x,s, t) for all x,y,s, t ∈ X .

This is a RKHS with the additional requirement of symmetry in its first two arguments(in fact,
we can have a recursive definition of an RKHS of an RKHS ad infinitum, with suitable restric-
tions on the elements). We define the corresponding notations for elements, kernels, and RKHS by
underlining it. What distinguishesH from a normal RKHS is the particular form of its index set
(X = X 2) and the additional condition onk to be symmetric in its first two arguments, and therefore
in its second two arguments as well.

This approach of defining a RKHS on the space of symmetric functions of twovariables leads us
to a natural regularization method. By analogy with the definition of the regularized risk functional
(1), we proceed to define the regularized quality functional.

Definition 6 (Regularized Quality Functional) Let X,Y be the combined training and test set of
examples and labels respectively. For a positive semidefinite kernel matrixK on X, theregularized
quality functionalis defined as

Qreg(k,X,Y) := Qemp(k,X,Y)+
λQ

2
‖k‖2
H , (6)

whereλQ > 0 is a regularization constant and‖k‖2
H

denotes the RKHS norm inH .

Note that although we have possibly non positive kernels inH , we define the regularized quality
functional only on positive semidefinite kernel matrices. This is a slightly weaker condition than
requiring a positive semidefinite kernelk, since we only require positivity on the data. SinceQemp

depends onk only via the data, this is sufficient for the above definition. Minimization ofQreg is

1050

HYPERKERNELS

less prone to overfitting than minimizingQemp, since the regularization termλQ

2 ‖k‖2
H

effectively
controls the complexity of the class of kernels under consideration. Bousquet and Herrmann (2002)
provide a generalization error bound by estimating the Rademacher complexityof the kernel classes
in the transduction setting. Regularizers other than‖k‖2

H
are possible, such asℓp penalties. In this

paper, we restrict ourselves to theℓ2 norm (6). The advantage of (6) is that its minimizer satisfies
the representer theorem.

Lemma 7 (Representer Theorem for Hyper-RKHS) LetX be a set, Qempan arbitrary empirical
quality functional, and X,Y the combined training and test set, then each minimizer k∈ H of the
regularized quality functional Qreg(k,X,Y) admits a representation of the form

k(x,x′) =
m

∑
i, j

βi j k((xi ,x j),(x,x
′)) for all x,x′ ∈ X, (7)

whereβi j ∈ R, for each1 6 i, j 6 m.

Proof All we need to do is rewrite (6) so that it satisfies the conditions of Theorem 4. Let xi j :=
(xi ,x j). ThenQemp(k,X,Y) has the properties of a loss function, as it only depends onk via its values
at xi j . Note too that the kernel matrixK also only depends onk via its values atxi j . Furthermore,
λQ

2 ‖k‖2
H

is an RKHS regularizer, so the representer theorem applies and (7) follows.

Lemma 7 implies that the solution of the regularized quality functional is a linear combination of
hyperkernels on the input data. This shows that even though the optimizationtakes place over an
entire Hilbert space of kernels, one can find the optimal solution by choosing among a finite number.

Note that the minimizer (7) is not necessarily positive semidefinite. In practice,this is not what
we want, since we require a positive semidefinite kernel but we do not have any guarantees for
examples in the test set. Therefore we need to impose additional constraints of the typeK � 0 or
k is a Mercer Kernel. While the latter is almost impossible to enforce directly, the former could be
verified directly, hence imposing a constraint only on the values of the kernel matrixk(xi ,x j) rather
than on the kernel functionk itself. This means that the conditions of the Representer Theorem
apply and (7) applies (with suitable constraints on the coefficientsβi j).

Another option is to be somewhat more restrictive and require that all expansion coefficients
βi, j > 0 and all the functions be positive semidefinite kernels. This latter requirement can be for-
mally stated as follows: For any fixedx∈ X the hyperkernelk is a kernel in its second argument; that
is for any fixedx∈ X , the functionk(x,x′) := k(x,(x,x′)), with x,x′ ∈ X , is a positive semidefinite
kernel.

Proposition 8 Given a hyperkernel, kwith elements such that for any fixed x∈ X , the function
k(xp,xq) := k(x,(xp,xq)), with xp,xq ∈ X , is a positive semidefinite kernel, andβi j > 0 for all i , j =
1, . . . ,m, then the kernel

k(xp,xq) :=
m

∑
i, j=1

βi j k(xi ,x j ,xp,xq)

is positive semidefinite.

Proof The result is obtained by observing that positive combinations of positive semidefinite ker-
nels are positive semidefinite.

1051

ONG, SMOLA AND WILLIAMSON

While this may prevent us from obtaining the minimizer of the objective function, ityields a
much more amenable optimization problem in practice, in particular if the resulting cone spans a
large enough space (as happens with increasingm). In the subsequent derivations of optimization
problems, we choose this restriction as it provides a more tractable problem inpractice. In Section 4,
we give examples and recipes for constructing hyperkernels. Beforethat, we relate our framework
defined above to Bayesian inference.

3.2 A Bayesian Perspective

A generative Bayesian approach to inference encodes all knowledgewe might have about the prob-
lem setting into a prior distribution. Hence, the choice of the prior distribution determines the
behaviour of the inference, as once we have the data, we condition on theprior distribution we have
chosen to obtain the posterior, and then marginalize to obtain the label that we are interested in. One
popular choice of prior is the normal distribution, resulting in a Gaussian process (GP). All prior
knowledge we have about the problem is then encoded in the covariance of the GP. There exists a
GP analog to the support vector machine (for example Opper and Winther (2000), Seeger (1999)),
which is essentially obtained (ignoring normalizing terms) by exponentiating the regularized risk
functional used in SVMs.

In this section, we derive the prior and hyperprior implied by our framework of hyperkernels.
This is obtained by exponentiatingQreg, again ignoring normalization terms. Given the regularized
quality functional (Equation 6), with theQemp set to the SVM with squared loss, we obtain the
following equation.

Qreg(k,X,Y) :=
1
m

m

∑
i=1

(yi − f (xi))
2 +

λ
2
‖ f‖2
H +

λQ

2
‖k‖2
H .

Exponentiating the negative of the above equation gives,

exp(−Qreg(k,X,Y)) =

exp

(

− 1
m

m

∑
i=1

(yi − f (xi))
2

)

exp

(

−λ
2
‖ f‖2
H

)

exp

(

−λQ

2
‖k‖2
H

)

.
(8)

We compare Equation (8) to Gaussian process estimation. The general scheme is known in
Bayesian estimation as hyperpriors (Bishop, 1995, Chapter 10), which determine the distribution of
the priors (here the GP with covariancek). Figure 2 describes the model of an ordinary GP, wheref
is drawn from a Gaussian distribution with covariance matrixK andy is conditionally independent
given f . For hyperprior estimation, we draw the priorK from a distribution instead of setting it.

Gaussian Process ?>=<89:;?
k chosen by user

// ?>=<89:;K // ?>=<89:;f //?>=<89:;y

Figure 2: Generative model for Gaussian process estimation

1052

HYPERKERNELS

To determine the distribution from which we draw the prior, we compute the hyperprior explic-
itly. For given dataZ = {X,Y} and applying Bayes’ Rule, the posterior is given by

p(f |Z,k) =
p(Z| f ,k)p(f |k)p(k)

p(k|Z)p(Z)
. (9)

We have the directed graphical model shown in Figure 3 for a Hyperkernel-GP, where we as-
sume that the covariance matrix of the Gaussian processK is drawn according to a distribution
before performing further steps of dependency calculation. We shall now explicitly compute the
terms in the numerator of Equation (9).

Hyperkernel GP ONMLHIJKk0,k
p(k|k0,k)

//?>=<89:;k
p(f |k)

// ?>=<89:;f
p(y| f ,x)

//?>=<89:;y

Figure 3: Generative model for Gaussian process estimation using hyperpriors onk defined byk.

In the following derivations, we assume that we are dealing with finite dimensional objects, to
simplify the calculations of the normalizing constants in the expressions for the distributions. Given
that we have additive Gaussian noise, that isε ∼ N (0, 1

γε
I), then,

p(y| f ,x) ∝ exp
(

−γε

2
(y− f (x))2

)

.

Therefore, for the whole data set (assumed to be i.i.d.),

p(Y| f ,X) =
m

∏
i=1

p(yi | f ,xi) =

(

2π
γε

)−m
2

exp

(

−γε

2

m

∑
i=1

(yi − f (xi))
2

)

.

We assume a Gaussian prior on the functionf , with covariance functionk. The positive semidefinite
function,k, defines an inner product〈·, ·〉H k

in the RKHS denoted byH k. Then,

p(f |k) =

(

2π
γ f

)− F
2

exp
(

−γ f

2
〈 f , f 〉H k

)

whereF is the dimension off andγ f is a constant.
We assume a Wishart distribution (Lauritzen, 1996, Appendix C), withp degrees of freedom

and covariancek0, for the prior distribution of the covariance functionk, that isk∼Wm(p,k0). This
is a hyperprior used in the Gaussian process literature:

p(k|k0) =
|k| p−(m+1)

2 exp
(

−1
2tr(kk0)

)

Γm(p)|k| p
2

whereΓm(p) denotes the Gamma distribution,Γm(p) = 2
pm
2 π

m(m−1)
4 ∏m

i=1 Γ
(

p−i+1
2

)

. For more de-

tails of the Wishart distribution, the reader is referred to Lauritzen (1996).
Observe that tr(kk0) is an inner product between two matrices. We can define a general inner

product between two matrices, as the inner product defined in the RKHS denoted byH :

p(k|k0,k) =
|k| p−(m+1)

2 exp
(

−1
2〈k,k0〉H

)

Γm(p)|k| p
2

.

1053

ONG, SMOLA AND WILLIAMSON

We can interpret the above equation as measuring the similarity between the covariance matrix
that we obtain from data and the expected covariance matrix (given by the user). This similarity
is measured by a dot product defined byk. Substituting the expressions forp(Y|X, f), p(f |k) and
p(k|k0,k) into the posterior (Equation 9), we get Equation (10) which is of the same form as the
exponentiated negative quality (Equation 8):

exp

(

−γε

2

m

∑
i=1

(yi − f (xi))
2

)

exp
(

−γ f

2
〈 f , f 〉H k

)

exp

(

−1
2
〈k,k0〉H

)

. (10)

In a nutshell, we assume that the covariance function of the GPk, is distributed according to a
Wishart distribution. In other words, we have two nested processes, a Gaussian and a Wishart pro-
cess, to model the data generation scheme. Hence we are studying a mixture of Gaussian processes.
Note that the maximum likelihood (ML-II) estimator (MacKay, 1994, Williams and Barber, 1998,
Williams and Rasmussen, 1996) in Bayesian estimation leads to the same optimization problems as
those arising from minimizing the regularized quality functional.

4. Hyperkernels

Having introduced the theoretical basis of the Hyper-RKHS, it is natural toask whether hyperker-
nels,k, exist which satisfy the conditions of Definition 5. We address this question by giving a set
of general recipes for building such kernels.

4.1 Power Series Construction

Supposek is a kernel such thatk(x,x′) ≥ 0 for all x,x′ ∈ X , and supposeg : R → R is a function
with positive Taylor expansion coefficients, that isg(ξ) = ∑∞

i=0ciξi for basis functionsξ, ci > 0 for
all i = 0, . . . ,∞, and convergence radiusR. Then for pointwise positivek(x,x′) ≤

√
R,

k(x,x′) := g(k(x)k(x′)) =
∞

∑
i=0

ci(k(x)k(x
′))i (11)

is a hyperkernel. Fork to be a hyperkernel, we need to check that first,k is a kernel, and second,
for any fixed pair of elements of the input data,x, the functionk(x,(x,x′)) is a kernel, and third
that is satisfies the symmetry condition. Here, the symmetry condition follows fromthe symmetry
of k. To see this, observe that for any fixedx, k(x,(x,x′)) is a sum of kernel functions, hence it
is a kernel itself (sincekp(x,x′) is a kernel ifk is, for p ∈ N). To show thatk is a kernel, note
that k(x,x′) = 〈Φ(x),Φ(x′)〉, whereΦ(x) := (

√
c0,

√
c1k1(x),

√
c2k2(x), . . .). Note that we require

pointwise positivity, so that the coefficients of the sum in Equation (11) are always positive. The
Gaussian RBF kernel satisfies this condition, but polynomial kernels of odd degree are not always
pointwise positive. In the following example, we use the Gaussian kernel to construct a hyperkernel.

Example 4 (Harmonic Hyperkernel) Suppose k is a kernel with range[0,1], (RBF kernels satisfy
this property), and set ci := (1−λh)λi

h, i ∈ N, for some0 < λh < 1. Then we have

k(x,x′) = (1−λh)
∞

∑
i=0

(

λhk(x)k(x′)
)i

=
1−λh

1−λhk(x)k(x′)
. (12)

1054

HYPERKERNELS

For k(x,x′) = exp(−σ2‖x−x′‖2) this construction leads to

k((x,x′),(x′′,x′′′)) =
1−λh

1−λhexp(−σ2(‖x−x′‖2 +‖x′′−x′′′‖2))
. (13)

As one can see, forλh → 1, k converges toδx,x′ , and thus‖k‖2
H

converges to the Frobenius norm of
k on X×X.

It is straightforward to find other hyperkernels of this sort, simply by consulting tables on power
series of functions. Table 2 contains a short list of suitable expansions.

g(ξ) Power series expansion Radius of Convergence
expξ 1+ 1

1!ξ+ 1
2!ξ

2 + 1
3!ξ

3 + . . .+ 1
n! ξ

n + . . . ∞
sinhξ 1

1!ξ+ 1
3!ξ

3 + 1
5!ξ

5 + . . .+ 1
(2n+1)! ξ

(2n+1) + . . . ∞
coshξ 1+ 1

2!ξ
2 + 1

4!ξ
4 + . . .+ 1

(2n)! ξ
(2n) + . . . ∞

arctanhξ ξ
1 + ξ3

3 + ξ5

5 + . . .+ ξ2n+1

2n+1 + . . . 1

− ln(1−ξ) ξ
1 + ξ2

2 + ξ3

3 + . . .+ ξn

n + . . . 1

Table 2: Hyperkernels by Power Series Construction.

However, if we want the kernel to adapt automatically to different widths for each dimension,
we need to perform the summation that led to (12) for each dimension in its arguments sepa-
rately. Such a hyperkernel corresponds to ideas developed in automaticrelevance determination
(ARD) (MacKay, 1994, Neal, 1996).

Example 5 (Hyperkernel for ARD) Let kΣ(x,x′)= exp(−dΣ(x,x′)), where dΣ(x,x′)= (x−x′)⊤Σ(x−
x′), andΣ is a diagonal covariance matrix. Take sums over each diagonal entryσ j = Σ j j separately
to obtain

k((x,x′),(x′′,x′′′)) = (1−λh)
d

∑
j=1

∞

∑
i=0

(

λhkΣ(x,x′)kΣ(x′′,x′′′)
)i

=
d

∏
j=1

1−λh

1−λhexp
(

−σ j((x j −x′j)
2 +(x′′j −x′′′j)2)

) . (14)

Eq. (14) holds since k(x) factorizes into its coordinates. A similar definition also allows us to use a
distance metric d(x,x′) which is a generalized radial distance as defined by Haussler (1999).

4.2 Hyperkernels Invariant to Translation

Another approach to constructing hyperkernels is via an extension of a result due to Smola et al.
(1998) concerning the Fourier transform of translation invariant kernels.

Theorem 9 (Translation Invariant Hyperkernel) Suppose k((x1−x′1),(x2−x′2)) is a function which
depends on its arguments only via x1 − x′1 and x2 − x′2. Let F1k(ω,(x2− x′2)) denote the Fourier
transform with respect to(x1−x′1).

1055

ONG, SMOLA AND WILLIAMSON

The function kis a hyperkernel if k(τ,τ′) is a kernel inτ,τ′ andF1k(ω,(x′′−x′′′))≥0 for all (x′′−
x′′′) andω.

Proof From (Smola et al., 1998) we know that fork to be a kernel in one of its arguments, its
Fourier transform has to be nonnegative. This yields the second condition. Next, we need to show
thatk is a kernel in its own right. Mercer’s condition requires that for arbitraryf the following is
positive:

R

f (x1,x′1) f (x2,x′2)k((x1−x′1),(x2−x′2))dx1dx′1dx2dx′2
=

R

f (τ1 +x′1,x
′
1) f (τ2 +x′2,x

′
2)dx1,2k(τ1,τ2)dτ1dτ2

=
R

g(τ1)g(τ2)k(τ1,τ2)dτ1dτ2,

whereτ1 = x1−x′1 andτ2 = x2−x′2. Hereg is obtained by integration overx1 andx2 respectively.
The latter is exactly Mercer’s condition onk, when viewed as a function of two variables only.

This means that we can check whether a radial basis function (for exampleGaussian RBF, exponen-
tial RBF, damped harmonic oscillator, generalizedBn spline), can be used to construct a hyperkernel
by checking whether its Fourier transform is positive.

4.3 Explicit Expansion

If we have a finite set of kernels that we want to choose from, we can generate a hyperkernel which
is a finite sum of possible kernel functions. This setting is similar to that of Lanckriet et al. (2004).

Supposeki(x,x′) is a kernel for eachi = 1, . . . ,n (for example the RBF kernel or the polynomial
kernel), then

k(x,x′) :=
n

∑
i=1

ciki(x)ki(x
′),ki(x) > 0,∀x (15)

is a hyperkernel, as can be seen by an argument similar to that of section 4.1. k is a kernel since
k(x,x′) = 〈Φ(x),Φ(x′)〉, whereΦ(x) := (

√
c1k1(x),

√
c2k2(x), . . . ,

√
cnkn(x)).

Example 6 (Polynomial and RBF combination) Let k1(x,x′) = (〈x,x′〉+b)2p for some choice of
b∈ R

+ and p∈ N, and k2(x,x′) = exp(−σ2‖x−x′‖2). Then,

k((x1,x′1),(x2,x′2)) = c1(〈x1,x′1〉+b)2p(〈x2,x′2〉+b)2p

+c2exp(−σ2‖x1−x′1‖2)exp(−σ2‖x2−x′2‖2)
(16)

is a hyperkernel.

5. Optimization Problems for Regularized Risk based Quality Functionals

We will now consider the optimization of the quality functionals utilizing hyperkernels. We choose
the regularized risk functional as the empirical quality functional; that is we set Qemp(k,X,Y) :=
Rreg(f ,X,Y). It is possible to utilize other quality functionals, such as the Kernel TargetAlignment
(Example 12). We focus our attention on the regularized risk functional, which is commonly used
in SVMs. Furthermore, we will only consider positive semidefinite kernels. For a particular loss
function l(xi ,yi , f (xi)), we obtain the regularized quality functional.

min
k∈H

min
f∈H k

1
m

m

∑
i=1

l(xi ,yi , f (xi))+
λ
2
‖ f‖2
H k

+
λQ

2
‖k‖2
H . (17)

1056

HYPERKERNELS

By the representer theorem (Theorem 4 and Corollary 7) we can write theregularizers as
quadratic terms. Using the soft margin loss, we obtain

min
β

min
α

1
m

m

∑
i=1

max(0,1−yi f (xi))+
λ
2

α⊤Kα+
λQ

2
β⊤Kβ subject toβ > 0 (18)

whereα ∈ R
m are the coefficients of the kernel expansion (5), andβ ∈ R

m2
are the coefficients of

the hyperkernel expansion (7).
For fixedk, the problem can be formulated as a constrained minimization problem inf , and

subsequently expressed in terms of the Lagrange multipliersα. However, this minimum depends
onk, and for efficient minimization we would like to compute the derivatives with respect tok. The
following lemma tells us how (it is an extension of a result in Chapelle et al. (2002)):

Lemma 10 Let x∈ R
m and denote by f(x,θ),ci : R

m → R convex functions, where f is parameter-
ized byθ. Let R(θ) be the minimum of the following optimization problem (and denote by x(θ) its
minimizer):

minimize
x∈Rm

f (x,θ) subject to ci(x) ≤ 0 for all 1≤ i ≤ n.

Then∂ j
θR(θ) = D j

2 f (x(θ),θ), where j∈ N and D2 denotes the derivative with respect to the second
argument of f .

Proof At optimality we have a saddlepoint in the Lagrangian

∂xL (x,α) = ∂x f (x,θ)+
n

∑
i=1

αi∂xci(x) = 0. (19)

Furthermore, for allθ the Kuhn-Tucker conditions have to hold, and in particular also∑n
i=1 αi∂θci(x(θ))=

0, since for allαi > 0 the conditionci(x) = 0 and therefore also∂θci(x(θ)) = 0 has to be satisfied.
Taking higher order derivatives with respect toθ yields

0 = ∂ j
θ

[

n

∑
i=1

αi∂xci(x(θ))
∂x
∂θ

]

= ∂ j
θ

[

−∂x f (x,θ)
∂x
∂θ

]

. (20)

Here the last equality follows from (19). Next we use

∂ j+1
θ f (x,θ) = ∂ j

θ

[

D2 f (x,θ)+∂x f (x,θ)
∂x
∂θ

]

= ∂ j
θD2 f (x,θ).

Repeated application then proves the claim.

Instead of directly minimizing Equation (18), we derive the dual formulation. Using the ap-
proach in Lanckriet et al. (2004), the corresponding optimization problems can be expressed as a
SDP. In general, solving a SDP would be take longer than solving a quadratic program (a traditional
SVM is a quadratic program). This reflects the added cost incurred for optimizing over a class of
kernels.

Semidefinite programming (Vandenberghe and Boyd, 1996) is the optimization of a linear ob-
jective function subject to constraints which are linear matrix inequalities and affine equalities.

1057

ONG, SMOLA AND WILLIAMSON

Definition 11 (Semidefinite Program) A semidefinite program (SDP) is a problem of the form:

min
x

c⊤x

subject to F0 +
q

∑
i=1

xiFi � 0 and Ax= b

where x∈ R
p are the decision variables, A∈ R

p×q, b∈ R
p, c∈ R

q, and Fi ∈ R
r×r are given.

In general, linear constraintsAx+a> 0 can be expressed as a semidefinite constraintdiag(Ax+a)�
0, and a convex quadratic constraint(Ax+b)⊤(Ax+b)−c⊤x−d 6 0 can be written as

[

I Ax+b
(Ax+b)⊤ c⊤x+d

]

� 0.

Whent ∈ R, we can write the quadratic constrainta⊤Aa6 t as‖A
1
2 a‖ 6 t. In practice, linear and

quadratic constraints are simpler and faster to implement in a convex solver.
We derive the corresponding SDP for Equation (17). The following proposition allows us to

derive a SDP from a class of general convex programs. It follows theapproach in Lanckriet et al.
(2004), with some care taken with Schur complements of positive semidefinite matrices (Albert,
1969), and its proof is omitted for brevity.

Proposition 12 (Quadratic Minimax) Let m,n,M ∈ N, H : R
n → R

m×m, c : R
n → R

m, be linear
maps. Let A∈ R

M×m and a∈ R
M. Also, let d: R

n → R and G(ξ) be a function and the further
constraints onξ. Then the optimization problem

minimize
ξ∈Rn

maximize
x∈Rm

−1
2x⊤H(ξ)x−c(ξ)⊤x+d(ξ)

subject to H(ξ) � 0
Ax+a > 0
G(ξ) � 0

(21)

can be rewritten as

minimize
t,ξ,γ

1
2t +a⊤γ+d(ξ)

subject to









diag(γ) 0 0 0
0 G(ξ) 0 0
0 0 H(ξ) (A⊤γ−c(ξ))
0 0 (A⊤γ−c(ξ))⊤ t









� 0
(22)

in the sense that theξ which solves (22) also solves (21).

Specifically, when we have the regularized quality functional,d(ξ) is quadratic, and hence we obtain
an optimization problem which has a mix of linear, quadratic and semidefinite constraints.

Corollary 13 Let H,c,A and a be as in Proposition 12, andΣ � 0. Then the solutionξ∗ to the
optimization problem

minimize
ξ

maximize
x

−1
2x⊤H(ξ)x−c(ξ)⊤x+ 1

2ξ⊤Σξ

subject to H(ξ) � 0
Ax+a > 0
ξ > 0

(23)

1058

HYPERKERNELS

can be found by solving the semidefinite programming problem

minimize
t,t ′,ξ,γ

1
2t + 1

2t ′ +a⊤γ

subject to γ > 0
ξ > 0
‖Σ 1

2 ξ‖2 6 t ′
[

H(ξ) (A⊤γ−c(ξ))
(A⊤γ−c(ξ))⊤ t

]

� 0

(24)

Proof By applying proposition 12, and introducing an auxiliary variablet ′ which upper bounds the
quadratic term ofξ, the claim is proved.

Comparing the objective function in (21) with (18), we observe thatH(ξ) andc(ξ) are linear in
ξ. Let ξ′ = εξ. As we varyε the constraints are still satisfied, but the objective function scales with
ε. Sinceξ is the coeffient in the hyperkernel expansion, this implies that we have a set of possible
kernels which are just scalar multiples of each other. To avoid this, we add an additional constraint
on ξ which is1⊤ξ = c, wherec is a constant. This breaks the scaling freedom of the kernel matrix.
As a side-effect, the numerical stability of the SDP problems improves considerably. We chose a
linear constraint so that it does not add too much overhead to the optimization problem We make
one additional simplification of the optimization problem, which is to replace the upper bound of
the squared norm (‖Σ 1

2 ξ‖2 6 t ′) with and upper bound on the norm (‖Σ 1
2 ξ‖ 6 t ′).

In our setting, the regularizer for controlling the complexity of the kernel is taken to be the
squared norm of the kernel in the Hyper-RKHS. By looking at the constraints of Equation (24), this
is expressed as a bound on the norm (‖Σ 1

2 ξ‖ 6 t ′). Comparing this result to the SDP obtained in
Lanckriet et al. (2004, Theorem 16), we see that the correspondingregularizer in their setting is
tr(K) = c, wherec is a constant. Hence the main difference between the two SDPs is the choice
of the regularizer for the kernel. However, the motivations of the two methods are different. This
paper sets out an induction framework for learning the kernel, and for aparticular choice ofQemp,
namely the regularized risk functional, we obtain an SDP which has similarities to the approach of
Lanckriet et al. (2004). On the other hand, they start out with a transduction problem and derive the
optimization problem directly. It is unclear at this point which is the better approach.

From the general framework above (Corollary 13, we derive several examples of machine learn-
ing problems, specifically binary classification, regression, and single class (also known as novelty
detection) problems. The following examples illustrate our method for simultaneously optimizing
over the class of kernels induced by the hyperkernel, as well as the hypothesis class of the machine
learning problem. We consider machine learning problems based on kernelmethods which are de-
rived from (17). The derivation is essentially by application of Corollary13 with the two additional
conditions above.

6. Examples of Hyperkernel Optimization Problems

In this section, we define the following notation. Forp,q, r ∈ R
n,n ∈ N let r = p◦ q be defined

as element by element multiplication,r i = pi × qi (the Hadamard product, or the.∗ operation in
Matlab). The pseudo-inverse (also known as the Moore-Penrose inverse) of a matrixK is denoted
K†. Let ~K be them2 by 1 vector formed by concatenating the columns of anm by m matrix.

1059

ONG, SMOLA AND WILLIAMSON

We define the hyperkernel Gram matrixK by putting togetherm2 of these vectors, that is we set
K = [~Kpq]

m
p,q=1. Other notations include: the kernel matrixK = reshape(Kβ) (reshaping am2 by 1

vector,Kβ, to am by m matrix),Y = diag(y) (a matrix withy on the diagonal and zero everywhere
else),G(β) = YKY (the dependence onβ is made explicit),I the identity matrix,1 a vector of ones
and1m×m a matrix of ones. Letw be the weight vector andboffset the bias term in feature space,
that is the hypothesis function in feature space is defined asg(x) = w⊤φ(x)+boffsetwhereφ(·) is the
feature mapping defined by the kernel functionk.

The number of training examples is assumed to bem, that isXtrain = {x1, . . . ,xm} andYtrain =
y = {y1, . . . ,ym}. Where appropriate,γ andχ are Lagrange multipliers, whileη andξ are vectors
of Lagrange multipliers from the derivation of the Wolfe dual for the SDP,β are the hyperkernel
coefficients,t1 andt2 are the auxiliary variables. Whenη ∈ R

m, we defineη > 0 to mean that each
ηi > 0 for i = 1, . . . ,m.

We derive the corresponding SDP for the case whenQemp is aC-SVM (Example 7). Derivations
of the other examples follow the same reasoning, and are omitted.

Example 7 (Linear SVM (C-parameterization)) A commonly used support vector classifier, the
C-SVM (Bennett and Mangasarian, 1992, Cortes and Vapnik, 1995) uses anℓ1 soft margin, l(xi ,yi , f (xi))=
max(0,1−yi f (xi)), which allows errors on the training set. The parameter C is given by the user.
Setting the quality functional Qemp(k,X,Y) = minf∈H

C
m ∑m

i=1 l(xi ,yi , f (xi))+ 1
2‖w‖2

H
,

min
k∈H

min
f∈H k

C
m

m

∑
i=1

ζi +
1
2
‖ f‖2
H k

+
λQ

2
‖k‖2
H

subject to yi f (xi) > 1−ζi

ζi > 0

(25)

Recall the dual form of the C-SVM,

max
α∈Rm

∑m
i=1 αi − 1

2 ∑m
i=1 αiα jyiy jk(xi ,x j)

subject to ∑m
i=1 αiyi = 0

0 6 αi 6
C
m for all i = 1, . . . ,m.

By considering the optimization problem dependent on f in (25), we can use the derivation of
the dual problem of the standard C-SVM. Observe that we can rewrite‖k‖2

H
= β⊤Kβ due to the

representer theorem for hyperkernels. Substituting the dual C-SVM problem into (25), we get the
following matrix equation,

min
β

max
α

1⊤α− 1
2α⊤G(β)α+

λQ

2 β⊤Kβ

subject to α⊤y = 0
0 6 α 6

C
m

β > 0

(26)

This is of the quadratic form of Corollary 13 where x= α, θ = β, H(θ) = G(β), c(θ) = −1,

Σ = CλQK, the constraints are A=
[

y −y I −I
]⊤

and a=
[

0 0 0 C
m1

]⊤
. Applying

Corollary 13, we obtain the corresponding SDP.

1060

HYPERKERNELS

The proof of Proposition 12 uses the Lagrange method. As an illustration of how this proof
proceeds, we derive it for this special case of the C-SVM. The Lagrangian associated with (26) is

L(α,β,γ,η,ξ) = 1⊤α− 1
2

α⊤G(β)α+
λQ

2
β⊤Kβ+ γy⊤α+η⊤α−ξ⊤(α− C

m
1),

whereβ > 0,η > 0,ξ > 0. The minimum is achieved at

α = G(β)†(γy+1+η−ξ),

and the corresponding dual optimization problem is

minimize
β,γ,η,ξ

1
2

z⊤G(β)†z+
C
m

ξ⊤1+
λQ

2
β⊤Kβ,

where z= γy+1+ η−ξ. From this point, we replace the quadratic terms with auxiliary variables
t1 and t2, and apply the Schur complement lemma (Albert, 1969). The resulting SDP after replacing
‖K

1
2 β‖2 6 t2 by‖K

1
2 β‖ 6 t2, and introducing the scale breaking constraint1⊤β = 1 is

minimize
β,γ,η,ξ

1
2t1 + C

mξ⊤1+
λQ

2 t2

subject to η > 0,ξ > 0,β > 0
‖K

1
2 β‖ 6 t2,1⊤β = 1

[

G(β) z
z⊤ t1

]

� 0.

(27)

Note that the value of the support vector coefficients,α, which optimizes the corresponding La-
grange function is G(β)†z, and the classification function, f= sign(K(α ◦ y)−boffset), is given by
f = sign(KG(β)†(y◦z)− γ).

Example 8 (Linear SVM (ν-parameterization)) An alternative parameterization of theℓ1 soft
margin was introduced by Schölkopf et al. (2000), where the user defined parameterν ∈ [0,1] con-
trols the fraction of margin errors and support vectors. Usingν-SVM as Qemp, that is, for a given
ν, Qemp(k,X,Y) = minf∈H

1
m ∑m

i=1 ζi +
1
2‖w‖2

H
− νρ subject to yi f (xi) > ρ− ζi and ζi > 0 for all

i = 1, . . . ,m, the corresponding SDP is given by

minimize
β,γ,η,ξ,χ

1
2t1−χν+ξ⊤ 1

m +
λQ

2 t2

subject to χ > 0,η > 0,ξ > 0,β > 0
‖K

1
2 β‖ 6 t2,1⊤β = 1

[

G(β) z
z⊤ t1

]

� 0

(28)

where z= γy+χ1+η−ξ.
The value ofα which optimizes the corresponding Lagrange function is G(β)†z, and the classi-

fication function, f= sign(K(α◦y)−boffset), is given by f= sign(KG(β)†(y◦z)− γ).

1061

ONG, SMOLA AND WILLIAMSON

Example 9 (Quadratic SVM or Lagrangian SVM) Instead of using anℓ1 loss class, Mangasar-
ian and Musicant (2001) use anℓ2 loss class,

l(xi ,yi , f (xi)) =

{

0 if yi f (xi) > 1
(1−yi f (xi))

2 otherwise
,

and regularized the weight vector as well as the bias term. The empirical quality functional derived
from this is Qemp(k,X,Y) = minf∈H

1
m ∑m

i=1 ζ2
i + 1

2(‖w‖2
H

+ b2
offset) subject to yi f (xi) > 1− ζi and

ζi > 0 for all i = 1, . . . ,m. The resulting dual SVM problem has fewer constraints, as is evidenced
by the smaller number of Lagrange multipliers needed in the corresponding SDP below.

minimize
β,η

1
2t1 +

λQ

2 t2

subject to η > 0,β > 0
‖K

1
2 β‖ 6 t2,1⊤β = 1

[

H(β) (η+1)
(η+1)⊤ t1

]

� 0

(29)

where H(β) = Y(K +1m×m+λmI)Y, and z= γ1+η−ξ.
The value ofα which optimizes the corresponding Lagrange function is H(β)†(η +1), and the

classification function, f= sign(K(α ◦ y)− boffset), is given by f= sign(KH(β)†((η + 1) ◦ y) +
y⊤(H(β)†(η+1))).

Example 10 (Single class SVM or Novelty Detection)For unsupervised learning, the single class
SVM computes a function which captures regions in input space where the probability density
is in some sense large (Schölkopf et al., 2001). A suitable quality functional Qemp(k,X,Y) =
minf∈H

1
νm ∑m

i=1 ζi +
1
2‖w‖2

H
−ρ subject to f(xi) > ρ−ζi , andζi > 0 for all i = 1, . . . ,m, andρ > 0.

The corresponding SDP for this problem is

minimize
β,γ,η,ξ

1
2t1 +ξ⊤ 1

νm− γ+
λQ

2ν t2

subject to η > 0,ξ > 0,β > 0
‖K

1
2 β‖ 6 t2

[

K z
z⊤ t1

]

� 0

(30)

where z= γ1+ η− ξ, andν ∈ [0,1] is a user selected parameter controlling the proportion of the
data to be classified as novel.

The score to be used for novelty detection is given by f= Kα−boffset, which reduces to f=
η−ξ, by substitutingα = K†(γ1+η−ξ), boffset= γ1 and K= reshape(Kβ).

Example 11 (ν-Regression)We derive the SDP forν regression (Scḧolkopf et al., 2000), which
automatically selects theε insensitive tube for regression. As in theν-SVM case in Example 8,
the user defined parameterν controls the fraction of errors and support vectors. Using theε-
insensitive loss, l(xi ,yi , f (xi)) = max(0, |yi − f (xi)|−ε), and theν-parameterized quality functional,
Qemp(k,X,Y) = minf∈H C

(

νε+ 1
m ∑m

i=1(ζi +ζ∗i)
)

subject to f(xi)−yi 6 ε−ζi , yi − f (xi) 6 ε−ζ∗i ,

1062

HYPERKERNELS

ζ(∗)
i > 0 for all i = 1, . . . ,m andε > 0, the corresponding SDP is

minimize
β,γ,η,ξ,χ

1
2t1 + χν

λ +ξ⊤ 1
mλ +

λQ

2λ t2

subject to χ > 0,η > 0,ξ > 0,β > 0
‖K

1
2 β‖ 6 t2,1⊤β = stddev(Ytrain)

[

F(β) z
z⊤ t1

]

� 0

, (31)

where z=

[

−y
y

]

− γ
[

1
−1

]

+η−ξ−χ
[

1
1

]

and F(β) =

[

K −K
−K K

]

.

The Lagrange function is minimized forα = F(β)†z, and substituting into f= Kα−boffset, we
obtain the regression function f=

[

−K K
]

F(β)†z− γ.

Example 12 (Kernel Target Alignment) For the Kernel Target Alignment approach (Cristianini
et al., 2002), Qemp = tr(Kyy⊤) = y⊤Ky, we directly minimize the regularized quality functional,
obtaining the following optimization problem (Lanckriet et al., 2002),

minimize
β

1
2t1 +

λQ

2 t2

subject to β > 0
‖K

1
2 β‖ 6 t2,1⊤β = 1

[

K y
y⊤ t1

]

� 0.

(32)

Note that for the case of Kernel Target Alignment, Qemp does not provide a direct formulation for
the hypothesis function, but instead, it determines a kernel matrix K. This kernel matrix, K, can be
utilized in a traditional SVM, to obtain a classification function.

7. Experiments

In the following experiments, we use data from the UCI repository. Where the data attributes are
numerical, wedid not perform any preprocessingof the data. Boolean attributes are converted
to {−1,1}, and categorical attributes are arbitrarily assigned an order, and numbered {1,2, . . .}.
The optimization problems in Section 6 were solved with an approximate hyperkernel matrix as de-
scribed in Section 7.1. The SDPs were solved using SeDuMi (Sturm, 1999), and YALMIP (Löfberg,
2002) was used to convert the equations into standard form. We used the hyperkernel for automatic
relevance determination defined by (14) for the hyperkernel optimization problems. The scaling
freedom that (14) provides for each dimension means we do not have to normalize data to some
arbitrary distribution.

For the classification and regression experiments, the datasets were split into 100 random permu-
tations of 60% training data and 40% test data. We deliberately did not attempt to tune parameters
and instead made the following choices uniformly for all datasets in classification, regression and
novelty detection:

• The kernel widthσi , for each dimension, was set to 50 times the 90% quantile of the value
of |xi −x j | over the training data. This ensures sufficient coverage without havingtoo wide a
kernel. This value was estimated from a 20% random sampling of the training data.

1063

ONG, SMOLA AND WILLIAMSON

• λ was adjusted so that1λm = 100 (that isC = 100 in the Vapnik-style parameterization of
SVMs). This has commonly been reported to yield good results.

• ν = 0.3 for classification and regression. While this is clearly suboptimal for many datasets,
we decided to choose it beforehand to avoid having to changeany parameter. Clearly we
could use previous reports on generalization performance to setν to this value for better
performance. For novelty detection,ν = 0.1 (see Section 7.6 for details).

• λh for the Harmonic Hyperkernel was chosen to be 0.6, giving adequate coverage over various
kernel widths in (12) (smallλh emphasizes wide kernels almost exclusively,λh close to 1 will
treat all widths equally).

• The hyperkernel regularization constant was set toλQ = 1.
• For the scale breaking constraint1⊤β = c, c was set to 1 for classification as the hypothesis

class only involves the sign of the trained function, and therefore is scale free. However,
for regression,c := stddev(Ytrain) (the standard deviation of the training labels) so that the
hyperkernel coefficients are of the same scale as the output (the constant offsetboffset takes
care of the mean).

In the following experiments, the hypothesis function is computed using the variables of the
SDP. In certain cases, numerical problems in the SDP optimizer or in the pseudo-inverse may pre-
vent this hypothesis from optimizing the regularized risk for the particular kernel matrix. In this
case, one can use the kernel matrixK from the SDP and obtain the hypothesis function via a stan-
dard SVM.

7.1 Low Rank Approximation

Although the optimization of (17) has reduced the problem of optimizing over twopossibly infi-
nite dimensional Hilbert spaces to a finite problem, it is still formidable in practice as there arem2

coefficients forβ. For an explicit expansion of type (15) one can optimize in the expansion coef-
ficientski(x)ki(x′) directly, which leads to a quality functional with anℓ2 penalty on the expansion
coefficients. Such an approach is appropriate if there are few terms in (15).

In the general case (or if the explicit expansion has many terms), one canuse a low-rank approx-
imation, as described by Fine and Scheinberg (2001) and Zhang (2001). This entails picking from
{

k((xi ,x j), ·)|1≤ i, j ≤ m2
}

a small fraction of terms,p (wherem2 ≫ p), which approximatek on
Xtrain×Xtrain sufficiently well. In particular, we choose anm× p truncated lower triangular matrixG
such that‖PKP⊤−GG⊤‖F 6 δ, whereP is the permutation matrix which sorts the eigenvalues ofK
into decreasing order, andδ is the level of approximation needed. The norm,‖ · ‖F is the Frobenius
norm. In the following experiments, the hyperkernel matrix was approximatedto δ = 10−6 using
the incomplete Cholesky factorization method (Bach and Jordan, 2002).

7.2 Classification Experiments

Several binary classification datasets1 from the UCI repository were used for the experiments. A
set of synthetic data (labeled syndata in the results) sampled from two Gaussians was created to
illustrate the scaling freedom between dimensions. The first dimension had a standard deviation
of 1000 whereas the second dimension had a standard deviation of 1 (a sample result is shown in
Figure 1). The results of the experiments are shown in Table 3.

1. We classified window vs. non-window for glass data, the other datasetsare all binary.

1064

HYPERKERNELS

From Table 3, we observe that our method achieves state of the art resultsfor all the datasets,
except the “heart” dataset. We also achieve results much better than previously reported for the
“credit” dataset. Comparing the results forC-SVM and Tuned SVM, we observe that our method is
always equally good, or better than aC-SVM tuned using 10-fold cross validation.

Data C-SVM ν-SVM Lag-SVM Best other CV Tuned SVM (C)
syndata 2.8±2.4 1.9±1.9 2.4±2.2 NA 5.9±5.4 (108)
pima 23.5±2.0 27.7±2.1 23.6±1.9 23.5 24.1±2.1 (104)

ionosph 6.6±1.8 6.7±1.8 6.4±1.9 5.8 6.1±1.8 (103)
wdbc 3.3±1.2 3.8±1.2 3.0±1.1 3.2 5.2±1.4 (106)
heart 19.7±3.3 19.3±2.4 20.1±2.8 16.0 23.2±3.7 (104)

thyroid 7.2±3.2 10.1±4.0 6.2±3.1 4.4 5.2±2.2 (105)
sonar 14.8±3.7 15.3±3.7 14.7±3.6 15.4 15.3±4.1 (103)
credit 14.6±1.8 13.7±1.5 14.7±1.8 22.8 15.3±2.0 (108)
glass 6.0±2.4 8.9±2.6 6.0±2.2 NA 7.2±2.7 (103)

Table 3: Hyperkernel classification: Test error and standard deviation in percent. The second, third
and fourth columns show the results of the hyperkernel optimizations ofC-SVM (Exam-
ple 7),ν-SVM (Example 8) and Lagrangian SVM (Example 9) respectively. The results
in the fifth column shows the best results from (Freund and Schapire, 1996, Rätsch et al.,
2001, Meyer et al., 2003). The rightmost column shows aC-SVM tuned in the traditional
way. A Gaussian RBF kernel was tuned using 10-fold cross validation onthe training data,
with the best value ofC shown in brackets. A grid search was performed on(C,σ). The
values ofC tested were{10−2,10−1, . . . ,109}. The values of the kernel width,σ, tested
were between 10% and 90% quantile of the distance between a pair of sample of points in
the data. These quantiles were estimated by a random sample of 20% of the training data.

7.3 Effect ofλQ and λh on Classification Error

In order to investigate the effect of varying the hyperkernel regularization constant,λQ, and the
Harmonic Hyperkernel parameter,λh, we performed experiments using theC-SVM hyperkernel
optimization (Example 7). We performed two sets of experiments with each of ourchosen datasets.
The results shown in Table 4.

From Table 4, we observe that the variation in classification accuracy over the whole range
of the hyperkernel regularization constant,λQ is less than the standard deviation of the classifica-
tion accuracies of the various datasets (compare with Table 3). This demonstrates that our method
is quite insensitive to the regularization parameter over the range of values tested for the various
datasets.

The method shows a higher sensitivity to the harmonic hyperkernel parameter. Since this pa-
rameter effectively selects the scale of the problem, by selecting the “width” of the kernel, it is to
be expected that each dataset would have a different ideal value ofλh. It is to be noted that the
generalization accuracy atλh = 0.6 is within one standard deviation (see Table 3 and 4) of the best
accuracy achieved over the whole range tested.

1065

ONG, SMOLA AND WILLIAMSON

λh λQ

Data Error Deviation Error Deviation
syndata 3.0±1.1 2.2 2.8±0.0 2.2
pima 25.7±2.6 1.9 24.5±0.1 1.5

ionosph 6.6±1.0 1.7 7.2±0.1 1.9
wdbc 2.9±0.4 0.9 2.7±0.2 0.8
heart 19.7±2.0 3.0 19.4±0.9 2.8

thyroid 6.5±2.8 3.0 6.7±0.3 3.7
sonar 15.7±1.6 3.4 15.1±0.2 3.3
credit 16.0±1.8 1.6 14.7±0.4 1.6
glass 5.9±1.0 2.3 5.2±0.3 2.3

Table 4: Effect of varyingλh andλQ on classification error. In the left experiment, we fixedλQ =
1, andλh was varied with the valuesλh = {0.1,0.2, . . . ,0.9,0.92,0.94,0.96,0.98}.In the
right, we setλh = 0.6 and variedλQ = {10−4,10−3, . . . ,105}. The error columns (columns
2 and 4) report the average error on the test set and the standard deviation of the error
over the different parameter settings. The deviation columns (columns 3 and5) report the
average standard deviation over 10 random 60%/40% splits.

7.4 Computational Time

One of the concerns of an SDP optimization problem is the computational complexity. Instead
of performing worst case analysis of computational complexity, we perform an empirical test to
investigate the scaling behaviour of the proposed method. The total computationtime for the first 10
splits of the data was measured, and the average time taken for each split wascomputed and plotted
on a log scale plot in Figure 4. The slope of the graph demonstrates that we have an approximately
cubic scaling in computational time.

7.5 Regression Experiments

In order to demonstrate that we can solve problems other than binary classification using the same
framework, we performed some experiments using regression and noveltydetection datasets. The
results of the regression experiments are shown in Table 5. We usedthe same parameter settingsas
in the previous section.

Comparing the second and fourth columns, we observe that the hyperkernel optimization prob-
lem performs better than aε-SVR tuned using cross validation for all the datasets except the servo
dataset. Meyer et al. (2003) used a 90%/10% split of the data for their experiments, while we used
a 60%/40% split, which may account for the better performance in the cpu and servo datasets. The
reason for the much better rate on the “auto imports” dataset remains a mystery.

7.6 Novelty Detection

We applied the single class support vector machine to detect outliers in the USPS data. The test set
of the default split in the USPS database was used in the following experiments. The parameterν
was set to 0.1 for these experiments, hence selecting up to 10% of the data asoutliers.

1066

HYPERKERNELS

Figure 4: A log scale plot of computational time (in seconds), measured usingMATLAB’s cputime,
against the number of examples in the respective datasets. The slope of theleast squares
fit through the points are 3.13, 3.05 and 3.03 forC-SVM (Example 7),ν-SVM (Exam-
ple 8) and Lag-SVM (Example 9) respectively, demonstrating that the algorithms have
approximately cubic scaling.

Data ν-SVR Best other CV Tunedε-SVR
auto-mpg 7.83±0.96 7.11 9.47±1.55

boston 12.96±3.38 9.60 15.78±4.30
auto imports(×106) 5.91±2.41 0.25 7.51±5.33

cpu(×103) 4.41±3.64 3.16 12.02±20.73
servo 0.74±0.26 0.25 0.62±0.25

Table 5: Hyperkernel regression: Mean Squared Error. The second column shows the results from
the hyperkernel optimization of theν-regression (Example (11)). The results in the third
column shows the best results from (Meyer et al., 2003). The rightmost column shows a
ε-SVR with a gaussian kernel tuned using 10-fold cross validation on the training data.
Similar to the classification setting, grid search was performed on(C,σ). The values ofC
tested were{10−2,10−1, . . . ,109}. The values of the kernel width,σ, tested were between
the 10% and 90% quantiles of the distance between a pair of sample of points in the data.
These quantiles were estimated by a random 20% sample of the training data.

1067

ONG, SMOLA AND WILLIAMSON

Figure 5: Top rows: Images of digits ‘1’ and ‘2’, considered novel byalgorithm; Bottom: typical
images of digits ‘1’ and ‘2’.

Since there is no quantitative method for measuring the performance of novelty detection, we
cannot directly compare our results with the traditional single class SVM. We can only subjectively
conclude, by visually inspecting a sample of the digits, that our approach works for novelty detection
of USPS digits. Figure 5 shows a sample of the digits. We can see that the algorithm identifies
‘novel’ digits, such as in the top two rows of Figure 5. The bottom two rows shows a sample of
digits which have been deemed to be ‘common’.

8. Summary and Outlook

The regularized quality functional allows the systematic solution of problems associated with the
choice of a kernel. Quality criteria that can be used include Kernel Target Alignment, regularized
risk and the log posterior. The regularization implicit in our approach allows the control of overfit-
ting that occurs if one optimizes over a too large a choice of kernels.

We have shown that when the empirical quality functional is the regularized risk functional,
the resulting optimization problem is convex, and in fact is a SDP. This SDP, which learns the best
kernel given the data, has a Bayesian interpretation in terms of a hierarchical Gaussian process. We
define more general kernels which may have many free parameters, and optimize over them without
overfitting. The experimental results on classification demonstrate that it is possible to achieve state
of the art performance using our approach with no manual tuning. Furthermore, the same framework
and parameter settings work for various data sets as well as regression and novelty detection.

This approach makes support vector based estimation approaches more automated. Parameter
adjustment is less critical compared to when the kernel is fixed, or hand tuned. Future work will fo-
cus on deriving improved statistical guarantees for estimates derived via hyperkernels which match
the good empirical performance.

Acknowledgments

1068

HYPERKERNELS

The authors would like to thank Stéphane Canu, Laurent El Ghaoui, Michael Jordan, John Lloyd,
Daniela Pucci de Farias, Matthias Seeger, Grace Wahba and the referees for their helpful com-
ments and suggestions. The authors also thank Alexandros Karatzoglou for his help with SVLAB.
National ICT Australia is funded through the Australian Government’sBacking Australia’s Ability
initiative, in part through the Australian Research Council.

References

A. Albert. Conditions for positive and nonnegative definiteness in terms ofpseudoinverses.SIAM
Journal on Applied Mathematics, 17(2):434 – 440, 1969.

N. Aronszajn. Theory of reproducing kernels.Transactions of the American Mathematical Society,
68:337 – 404, 1950.

F. R. Bach and M. I. Jordan. Kernel independent component analysis. Journal of Machine Learning
Research, 3:1 – 48, 2002.

K. P. Bennett and O. L. Mangasarian. Robust linear programming discrimination of two linearly
inseparable sets.Optimization Methods and Software, 1:23 – 34, 1992.

C. M. Bishop.Neural Networks for Pattern Recognition. Clarendon Press, Oxford, 1995.

O. Bousquet and D. Herrmann. On the complexity of learning the kernel matrix. In Advances in
Neural Information Processing Systems 15, pages 399–406, 2002.

C. J. C. Burges. A tutorial on support vector machines for pattern recognition. Data Mining and
Knowledge Discovery, 2(2):121 – 167, 1998.

O. Chapelle, V. Vapnik, O. Bousquet, and S. Mukherjee. Choosing multipleparameters for support
vector machines.Machine Learning, 46(1):131 – 159, 2002.

C. Cortes and V. Vapnik. Support vector networks.Machine Learning, 20:273 – 297, 1995.

D. Cox and F. O’Sullivan. Asymptotic analysis of penalized likelihood and related estimators.
Annals of Statistics, 18:1676 – 1695, 1990.

K. Crammer, J. Keshet, and Y. Singer. Kernel design using boosting. InAdvances in Neural
Information Processing Systems 15, pages 537–544, 2002.

N. Cristianini, J. Shawe-Taylor, A. Elisseeff, and J. Kandola. On kernel-target alignment. In T. G.
Dietterich, S. Becker, and Z. Ghahramani, editors,Advances in Neural Information Processing
Systems 14, pages 367 – 373, Cambridge, MA, 2002. MIT Press.

N. Cristianini, J. Kandola, A. Elisseeff, and J. Shawe-Taylor. On optimizing kernel alignment.
Technical report, UC Davis Department of Statistics, 2003.

K. Duan, S.S. Keerthi, and A.N. Poo. Evaluation of simple performance measures for tuning svm
hyperparameters.Neurocomputing, 51:41 – 59, 2003.

S. Fine and K. Scheinberg. Efficient SVM training using low-rank kernel representations.Journal
of Machine Learning Research, 2:243 – 264, Dec 2001. http://www.jmlr.org.

1069

ONG, SMOLA AND WILLIAMSON

Y. Freund and R. E. Schapire. Experiments with a new boosting algorithm. InProceedings of the
International Conference on Machine Learing, pages 148 – 146. Morgan Kaufmann Publishers,
1996.

D. Haussler. Convolutional kernels on discrete structures. TechnicalReport UCSC-CRL-99 - 10,
Computer Science Department, UC Santa Cruz, 1999.

R. Herbrich and R.C. Williamson. Algorithmic luckiness.Journal of Machine Learning Research,
3:175 – 212, 2002.

G. S. Kimeldorf and G. Wahba. Some results on Tchebycheffian spline functions.J. Math. Anal. Ap-
plic., 33:82 – 95, 1971.

G. Lanckriet, N. Cristianini, P. Bartlett, L. El Ghaoui, and M. Jordan. Learning the kernel matrix
with semidefinite programming. InProceedings of the International Conference on Machine
Learning, pages 323–330. Morgan Kaufmann, 2002.

G. Lanckriet, N. Cristianini, P. Bartlett, L. El Ghaoui, and M. I. Jordan. Learning the kernel matrix
with semi-definite programming.Journal of Machine Learning Research, 5:27 – 72, 2004.

S. L. Lauritzen.Graphical Models. Oxford University Press, 1996.

J. Löfberg. YALMIP, yet another LMI parser, 2002. http://www.control.isy.liu.se/ ˜jo-
hanl/yalmip.html.

A. Luntz and V. Brailovsky. On estimation of characters obtained in statisticalprocedure of recog-
nition (in Russian).Technicheskaya Kibernetica, 3, 1969.

D. J. C. MacKay. Bayesian non-linear modelling for the energy predictioncompetition.ASHRAE
Transcations, 4:448 – 472, 1994.

O. L. Mangasarian and D. R. Musicant. Lagrangian support vector machines.Journal of Machine
Learning Research, 1:161 – 177, 2001.

D. Meyer, F. Leisch, and K. Hornik. The support vector machine under test. Neurocomputing, 55
(1–2):169–186, 2003.

R. Neal.Bayesian Learning in Neural Networks. Springer, 1996.

C. S. Ong and A. J. Smola. Machine learning using hyperkernels. InProceedings of the Interna-
tional Conference on Machine Learning, pages 568–575, 2003.

C. S. Ong, A. J. Smola, and R. C. Williamson. Hyperkernels. InNeural Information Processing
Systems, volume 15, pages 495–502. MIT Press, 2002.

M. Opper and O. Winther. Gaussian processes and SVM: Mean field andleave-one-out. In A. J.
Smola, P. L. Bartlett, B. Scḧolkopf, and D. Schuurmans, editors,Advances in Large Margin
Classifiers, pages 311 – 326, Cambridge, MA, 2000. MIT Press.

G. Rätsch, T. Onoda, and K. R. M̈uller. Soft margins for adaboost.Machine Learning, 42(3):287 –
320, 2001.

1070

HYPERKERNELS

B. Scḧolkopf and A. J. Smola.Learning with Kernels. MIT Press, 2002.

B. Scḧolkopf, A. J. Smola, R. C. Williamson, and P. L. Bartlett. New support vectoralgorithms.
Neural Computation, 12:1207 – 1245, 2000.

B. Scḧolkopf, J. Platt, J. Shawe-Taylor, A. J. Smola, and R. C. Williamson. Estimatingthe support
of a high-dimensional distribution.Neural Computation, 13(7):1443–1471, 2001.

M. Seeger. Bayesian methods for support vector machines and Gaussian processes. Master’s thesis,
University of Edinburgh, Division of Informatics, 1999.

A. J. Smola, B. Scḧolkopf, and K.-R. M̈uller. The connection between regularization operators and
support vector kernels.Neural Networks, 11(5):637 – 649, 1998.

J. F. Sturm. Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones.
Optimization Methods and Software, 11/12(1 - 4):625 – 653, 1999.

K. Tsuda, S. Akaho, and K. Asai. The EM algorithm for kernel matrix completion with auxiliary
data.Journal of Machine Learning Research, 4:67–81, 2003.

L. Vandenberghe and S. Boyd. Semidefinite programming.SIAM Review., 38(1):49 – 95, 1996.

V. Vapnik. The Nature of Statistical Learning Theory. Springer, New York, 1995.

G. Wahba.Spline Models for Observational Data, volume 59 ofCBMS-NSF Regional Conference
Series in Applied Mathematics. SIAM, Philadelphia, 1990.

C. K. I. Williams and C. E. Rasmussen. Gaussian processes for regression. In D. S. Touretzky,
M. C. Mozer, and M. E. Hasselmo, editors,Advances in Neural Information Processing Systems
8, pages 514 – 520, Cambridge, MA, 1996. MIT Press.

Christopher K. I. Williams and David Barber. Bayesian classification with Gaussian processes.
IEEE Transactions on Pattern Analysis and Machine Intelligence PAMI, 20(12):1342 – 1351,
1998.

T. Zhang. Some sparse approximation bounds for regression problems.In Proc. 18th International
Conf. on Machine Learning, pages 624 – 631. Morgan Kaufmann, San Francisco, CA, 2001.

1071

Journal of Machine Learning Research 6 (2005) 1073–1097 Submitted 6/04; Revised 7/05; Published 7/05

A Generalization Error for Q-Learning

Susan A. Murphy SAMURPHY@UMICH .EDU

Department of Statistics
University of Michigan
Ann Arbor, MI 48109-1107, USA

Editor: Michael Littman

Abstract
Planning problems that involve learning a policy from a single training set of finite horizon tra-

jectories arise in both social science and medical fields. Weconsider Q-learning with function
approximation for this setting and derive an upper bound on the generalization error. This upper
bound is in terms of quantities minimized by a Q-learning algorithm, the complexity of the approx-
imation space and an approximation term due to the mismatch between Q-learning and the goal of
learning a policy that maximizes the value function.

Keywords: multistage decisions, dynamic programming, reinforcement learning, batch data

1. Introduction

In many areas of the medical and social sciences the following planning problem arises. A training
set or batch ofn trajectories ofT +1-decision epochs is available for estimating a policy. A decision
epoch at timet, t = 0,1, . . . ,T, is composed of information observed at timet, Ot , an action taken at
time t, At and a reward,Rt . For example there are currently a number of ongoing large clinical trials
for chronic disorders in which, each time an individual relapses, the individual is re-randomized
to one of several further treatments (Schneider et al., 2001; Fava et al.,2003; Thall et al., 2000).
These are finite horizon problems withT generally quite small,T = 2−4, with known exploration
policy. Scientists want to estimate the best “strategies,” i.e. policies, for managing the disorder.
Alternately the training set of n trajectories may be historical; for example data inwhich clinicians
and their patients are followed with i! nformation about disease process, treatment burden and treat-
ment decisions recorded through time. Again the goal is to estimate the best policy for managing
the disease. Alternately, consider either catalog merchandizing or charitable solicitation; informa-
tion about the client, and whether or not a solicitation is made and/or the form ofthe solicitation
is recorded through time (Simester, Peng and Tsitsiklis, 2003). The goal is toestimate the best
policy for deciding which clients should receive a mailing and the form of the mailing. These latter
planning problems can be viewed as infinite horizon problems but onlyT decision epochs per client
are recorded. IfT is large, the rewards are bounded and the dynamics are stationary Markovian then
this finite horizon problem provides an approximation to the discounted infinite horizon problem
(Kearns, Mansour and Ng, 2000).

These planning problems are characterized by unknown system dynamicsand thus can also be
viewed as learning problems as well. Note there is no access to a generativemodel nor an online
simulation model nor the ability to conduct offline simulation. All that is available is then tra-
jectories ofT + 1 decision epochs. One approach to learning a policy in this setting is Q-learning

c©2005 Susan A. Murphy.

MURPHY

(Watkins, 1989) since the actions in the training set are chosen accordingto a (non-optimal) explo-
ration policy; Q-learning is an off-policy method (Sutton and Barto, 1998).When the observables
are vectors of continuous variables or are otherwise of high dimension, Q-learning must be com-
bined with function approximation.

The contributions of this paper are as follows. First a version of Q-learning with function ap-
proximation, suitable for learning a policy with one training set of finite horizontrajectories and a
large observation space, is introduced; this “batch”version of Q-learning processes the entire train-
ing set of trajectories prior to updating the approximations to the Q-functions.An incremental
implementation of batch Q-learning results in one-step Q-learning with function approximation.
Second performance guarantees for this version of Q-learning are provided. These performance
guarantees do not assume assume that the system dynamics are Markovian. The performance guar-
antees are upper bounds on the average difference in value functionsor more specifically the average
generalization error. Here the generalization error for batch Q-learning is defined analogous to the
generalization error in supervised learning (Schapire et al., 1998); it isthe average diffe! rence in
value when using the optimal policy as compared to using the greedy policy (from Q-learning) in
generating a separate test set. The performance guarantees are analogous to performance guarantees
available in supervised learning (Anthony and Bartlett, 1999).

The upper bounds on the average generalization error permit an additional contribution. These
upper bounds illuminate the mismatch between Q-learning with function approximation and the
goal of finding a policy maximizing the value function (see the remark following Lemma 2 and
the third remark following Theorem 2). This mismatch occurs because the Q-learning algorithm
with function approximation does not directly maximize the value function but rather this algorithm
approximates the optimal Q-function within the constraints of the approximation space in a least
squares sense; this point is discussed as some length in section 3 of Tsitsiklisand van Roy (1997).

In the process of providing an upper bound on the average generalization error, finite sample
bounds on the difference in average values resulting from different policies are derived. There are
three terms in the upper bounds. The first term is a function of the optimization criterion used in
batch Q-learning, the second term is due to the complexity of the approximation space and the last
term is an approximation error due to the above mentioned mismatch. The third termwhich is a
function of the complexity of the approximation space is similar in form to generalization error
bounds derived for supervised learning with neural networks as in Anthony and Bartlett (1999).
From the work of Kearns, Mansour, and Ng (1999, 2000) and Peshkin and Shelton (2002), we
expect and find as well here that the number of trajectories needed to guarantee a specified error
level is exponential in the horizon time,T. The upper bound does not depend on the dimension
of the observablesOt ’s. This is in contrast to the results of Fiechter (1994, 1997) in which the
upper bound on the average generalization error depends on the number of possible values for the
observables.

A further contribution is that the upper bound on the average generalization error provides a
mechanism for generalizing ideas from supervised learning to reinforcement learning. For example
if the optimal Q-function belongs to the approximation space, then the upper bounds imply that
batch Q-learning is a PAC reinforcement learning algorithm as in Feichter (1994, 1997); see the
first remark following Theorem 1. And second the upper bounds provide a starting point in using
structural risk minimization for model selection (see the second remark after Theorem 1).

In Section 2, we review the definition of the value function and Q-function for a (possibly non-
stationary, non-Markovian) finite horizon decision process. Next we review batch Q-learning with

1074

GENERALIZATION ERROR

function approximation when the learning algorithm must use a training set ofn trajectories. In
Section 5 we provide the two main results, both of which provide the number of trajectories needed
to achieve a given error level with a specified level of certainty.

2. Preliminaries

In the following we use upper case letters, such asO andA, to denote random variables and lower
case letters, such aso and a, to denote instantiates or values of the random variables. Each of
the n trajectories is composed of the sequence{O0, A0, O1, . . . , AT , OT+1} whereT is a finite
constant. DefineOt = {O0, . . . ,Ot} and similarly forAt . Each actionAt takes values in finite,
discrete action spaceA and Ot takes values in the observation spaceO. The observation space
may be multidimensional and continuous. The arguments below will not require the Markovian
assumption with the value ofOt equal to the state at timet. The rewards areRt = rt(Ot ,At ,Ot+1)
for rt a reward function and for each 0≤ t ≤ T (if the Markov assumption holds then replaceOt

with Ot andAt with At). We assume that the rewards are bounded, taking values in the interval
[0,1].

We assume the trajectories are sampled at random according to a fixed distribution denoted by
P. Thus the trajectories are generated by one fixed distribution. This distribution is composed of
the unknown distribution of eachOt conditional on(Ot−1,At−1) (call these unknown conditional
densities{ f0, . . . fT}) and an exploration policy for generating the actions. Denote the exploration
policy by pT = {p0, . . . , pT} where the probability that actiona is taken given history{Ot ,At−1}
is pt(a|Ot ,At−1) (if the Markov assumption holds then, as before, replaceOt with Ot andAt−1

with At−1.) We assume thatpt(a|ot ,at−1) > 0 for each actiona ∈ A and for each possible value
(ot ,at−1); that is, at each time all actions are possible. Then the likelihood (underP) of the trajectory,
{o0,a0,o1, . . . ,aT ,oT+1} is

f0(o0)p0(a0|o0)
T

∏
t=1

ft(ot |ot−1,at−1)pt(at |ot ,at−1) fT+1(oT+1|oT ,aT). (1)

Denote expectations with respect to the distributionP by anE.
Define a deterministic, but possibly non-stationary and non-Markovian, policy, π, as a sequence

of decision rules,{π1, . . . ,πT}, where the output of the timet decision rule,πt(ot ,at−1), is an action.
Let the distributionPπ denote the distribution of a trajectory whereby the policyπ is used to generate
the actions. Then the likelihood (underPπ) of the trajectory{o0,a0,o1, . . . ,aT ,oT+1} is

f0(o0)1a0=π0(o0)

T

∏
j=1

f j(o j |o j−1,a j−1)1a j=π j (o j ,a j−1) fT+1(oT+1|oT ,aT) (2)

where for a predicateW, 1W is 1 if W is true and is 0 otherwise. Denote expectations with respect
to the distributionPπ by anEπ.

Note that since (1) and (2) differ only in regard to the policy for generating actions, an expec-
tation with respect to eitherP or Pπ that does not involve integration over the policy results in the
same quantity. For example,E [Rt |Ot ,At] = Eπ [Rt |Ot ,At], for any policyπ.

Let Π be the collection of all policies. In a finite horizon planning problem (permitting non-
stationary, non-Markovian policies) the goal is to estimate a policy that maximizesEπ[∑T

j=1Rj |O0 =

o0] overπ ∈Π. If the system dynamics are Markovian and eachr j(o j ,a j ,o j+1) = γ j r(o j ,a j ,o j+1)

1075

MURPHY

for r a bounded reward function andγ ∈ (0,1) a discount factor, then this finite horizon problem
provides an approximation to the discounted infinite horizon problem (Kearns Mansour and Ng,
2000) forT large.

Given a policy,π, the value function for an observation,o0, is

Vπ(o0) = Eπ

[
T

∑
j=1

Rj

∣∣∣∣O0 = o0

]
.

Thet-value function for policyπ is the value of the rewards summed from timet on and is

Vπ,t(ot ,at−1) = Eπ

[
T

∑
j=t

Rj

∣∣∣∣Ot = ot ,At−1 = at−1

]
.

If the Markovian assumption holds then(ot ,at−1) in the definition ofVπ,t is replaced byot . Note that
the time 0 value function is simply the value function (Vπ,0 = Vπ). For convenience, setVπ,T+1 = 0.
Then the value functions satisfy the following relationship:

Vπ,t(ot ,at−1) = Eπ [Rt +Vπ,t+1(Ot+1,At)|Ot = ot ,At−1 = at−1]

for t = 0, . . . ,T. The timet Q-function for policyπ is

Qπ,t(ot ,at) = E[Rt +Vπ,t+1(Ot+1,At)|Ot = ot ,At = at].

(The subscript,π, can be omitted as this expectation is with respect to the distribution ofOt+1 given
(Ot ,At), ft+1; this conditional distribution does not depend on the policy.) In Section 4 we express
the difference in value functions for policỹπ and policyπ in terms of the advantages (as defined in
Baird, 1993). The timet advantage is

µπ,t(ot ,at) = Qπ,t(ot ,at)−Vπ,t(ot ,at−1).

The advantage can be interpreted as the gain in performance obtained by following actionat at time
t and thereafter policyπ as compared to following policyπ from timet on.

The optimal value functionV∗(o) for an observationo is

V∗(o) = max
π∈Π

Vπ(o)

and the optimalt-value function for history(ot ,at−1) is

V∗t (ot ,at−1) = max
π∈Π

Vπ,t(ot ,at−1).

As is well-known, the optimal value functions satisfy the Bellman equations (Bellman, 1957)

V∗t (ot ,at−1) = max
at∈A

E[Rt +V∗t+1(Ot+1,At)|Ot = ot ,At = at].

Optimal, deterministic, timet decision rules must satisfy

π∗t (ot ,at−1) ∈ argmax
at∈A

E[Rt +V∗t+1(Ot+1,At)|Ot = ot ,At = at].

The optimal timet Q-function is

Q∗t (ot ,at) = E[Rt +V∗t+1(Ot+1,At)|Ot = ot ,At = at],

and thus the optimal timet advantage, which is given by

µ∗t (ot ,at) = Q∗t (ot ,at)−V∗t (ot ,at−1),

is always nonpositive and furthermore it is maximized inat atat = π∗t (ot ,at−1).

1076

GENERALIZATION ERROR

3. Batch Q-Learning

We consider a version of Q-learning for use in learning a non-stationary, non-Markovian policy
with one training set of finite horizon trajectories. The term “batch”Q-learning is used to emphasize
that learning occurs only after the collection of the training set. The Q-functions are estimated
using an approximator (i.e. neural networks, decision-trees etc.) (Bertsekas and Tsitsiklis, 1996;
Tsitsiklis and van Roy, 1997) and then the estimated decision rules are the argmax of the estimated
Q functions. LetQt be the approximation space for thetth Q-function, e.g.Qt = {Qt(ot ,at ;θ) :
θ ∈ Θ}; θ is a vector of parameters taking values in a parameter spaceΘ which is a subset of a
Euclidean space. For convenience setQT+1 equal to zero and writeEn f for the expectation of an
arbitrary function,f , of a trajectory with respect to the probability obtained by choosing a trajectory
uniformly from the training set ofn trajectories (for example,En [f (Ot)] = 1/n∑n

i=1 f (Oit) for Oit

the tth observation in theith trajectory). In batch Q-learning using dynamic programming and
function approximation solve the following backwards through timet =!T,T−1, . . . ,1 to obtain

θt ∈ argmin
θ

En

[
Rt +max

at+1
Qt+1(Ot+1,At ,at+1;θt+1)−Qt(Ot ,At ;θ)

]2

. (3)

Suppose that Q-functions are approximated by linear combinations ofp features (Qt = {θTqt(ot ,at) :
θ ∈ Rp}) then to achieve (3) solve backwards through time,t = T,T−1, . . . ,0,

0 = En

[(
Rt +max

at+1
Qt+1(Ot+1,At ,at+1;θt+1)−Qt(Ot ,At ;θt)

)
qt(Ot ,At)

T
]

(4)

for θt .
An incremental implementation with updates between trajectories of (3) and (4) results in one-

step Q-learning (Sutton and Barto, 1998, pg. 148, putγ = 1, assume the Markov property and no
need for function approximation). This is not surprising as Q-learning can be viewed as approxi-
mating least squares value iteration (Tsitsiklis and van Roy, 1996). To see the connection consider
the following generic derivation of an incremental update. Denote theith example in a training set
by Xi . Defineθ̂n to be a solution of∑n

i=1 f (Xi ,θ) = 0 for f a givenp dimensional vector of functions
and each integern. Using a Taylor series, expand∑n+1

i=1 f (Xi , θ̂(n+1)) in θ̂(n+1) aboutθ̂(n) to obtain a
between-example update toθ̂(n):

θ̂(n+1)← θ̂(n) +
1

n+1

(
En+1

(
−∂ f (X, θ̂n)

∂θ̂n

))−1

f (Xn+1, θ̂n).

Replace 1
n+1

(
En+1

(
− ∂ f (X,θ̂n)

∂θ̂n

))−1
by a step-sizeαn (αn→ 0 asn→∞) to obtain a general formula

for the incremental implementation. Now consider an incremental implementation of (4) for each
t = 0, . . . ,T. Then for eacht, X = (Ot+1,At), θ = θt and

f (X,θt) =

(
Rt +max

at+1
Qt+1(Ot+1,At ,at+1; θ̂(n+1)

t+1)−Qt(Ot ,At ;θt)

)
qt(Ot ,At)

T

is a vector of dimensionp. The incremental update is

θ̂(n+1)
t ← θ̂(n)

t +αn

(
Rt +max

at+1
Qt+1(Ot+1,At ,at+1; θ̂(n+1)

t+1)−Qt(Ot ,At ; θ̂(n)
t)

)
qt(Ot ,At)

T)

1077

MURPHY

for t = 0, . . . ,T. This is the one-step update of Sutton and Barto (1998, pg. 148) withγ = 1 and
generalized to permit function approximation and nonstationary Q-functionsand is analogous to
the TD(0) update of Tsitsiklis and van Roy (1997) permitting non-Markovian, nonstationary value
functions.

Denote the estimator of the optimal Q-functions based on the training data byQ̂t for t = 0, . . . ,T
(for simplicity, θ is omitted). The estimated policy,π̂, satisfieŝπt(ot ,at−1) ∈ argmaxat Q̂t(ot ,at) for
eacht. Note that members of the approximation spaceQt need not be “Q-functions” for any policy.
For example the Q-functions corresponding to the use of a policyπ (Qπ,t , t = 0, . . . ,T) must satisfy

E[Rt +Vπ,t+1(Ot+1,At)|Ot ,At] = Qπ,t(Ot ,At)

whereVπ,t+1(Ot+1,At) = Qπ,t+1(Ot+1,At ,at+1) with at+1 set equal toπt+1(Ot+1,At). Q-learning
does not impose this restriction on{Q̂t , t = 0, . . . ,T}; indeed it may be that no member of the
approximation space can satisfy this restriction. None-the-less we refer tothe Q̂t ’s as estimated
Q-functions. Note also that the approximation for the Q-functions combined with the definition
of the estimated decision rules as the argmax of the estimated Q functions places implicit re-
strictions on the set of policies that will be considered. In effect the space of interesting po-
lices is no longerΠ but ratherΠQ = {πθ,θ ∈ Θ} whereπθ = {π1,θ, . . . ,πT,θ} and where each
πt,θ(ot ,at−1) ∈ argmaxat Qt(ot ,at ;θ) for someQt ∈ Qt .

4. Generalization Error

Define the generalization error of a policyπ at an observationo0 as the average difference between
the optimal value function and the value function resulting from the use of policy π in generating a
separate test set. The generalization error of policyπ at observationo0 can be written as

V∗(o0)−Vπ(o0) =−Eπ

[
T

∑
t=0

µ∗t (Ot ,At)
∣∣∣O0 = o0

]
(5)

whereEπ denotes the expectation using the likelihood (2). So the generalization errorcan be ex-
pressed in terms of the optimal advantages evaluated at actions determined bypolicy π; that is when
eachAt = πt(Ot ,At−1). Thus the closer each optimal advantage,µ∗t (Ot ,At) for At = πt(Ot ,At−1) is
to zero, the smaller the generalization error. Recall that the optimal advantage, µ∗t (Ot ,At), is zero
whenAt = π∗t (Ot ,At−1). The display in (5) follows from Kakade’s (ch. 5, 2003) expression for the
difference between the value functions for two policies.
Lemma 1

Given policiesπ̃ andπ,

Vπ̃(o0)−Vπ(o0) =−Eπ

[
T

∑
t=0

µπ̃,t(Ot ,At)
∣∣∣O0 = o0

]
.

Setπ̃ = π∗ to obtain (5). An alternate to Kakade’s (2003) proof is as follows.
Proof. First note

Vπ(o0) = Eπ

[
T

∑
t=0

Rt

∣∣∣O0 = o0

]
= Eπ

[
Eπ

[
T

∑
t=0

Rt

∣∣∣OT ,AT

]∣∣∣∣O0 = o0

]
. (6)

1078

GENERALIZATION ERROR

And Eπ

[
∑T

t=0Rt

∣∣∣OT ,AT

]
is the expectation with respect to the distribution ofOT+1 given the his-

tory (OT ,AT); this is the densityfT+1 from Section 2 andfT+1 is independent of the policy used
to choose the actions. Thus we may subscriptE by eitherπ or π̃ without changing the expectation;

Eπ

[
∑T

t=0Rt

∣∣∣OT ,AT

]
= Eπ̃

[
∑T

t=0Rt

∣∣∣OT ,AT

]
= ∑T−1

t=0 Rt +Qπ̃,T(OT ,AT). The conditional expecta-

tion can be written in a telescoping sum as

Eπ

[
T

∑
t=0

Rt

∣∣∣OT ,AT

]
=

T

∑
t=0

Qπ̃,t(Ot ,At)−Vπ̃,t(Ot ,At−1)

+
T

∑
t=1

Rt−1 +Vπ̃,t(Ot ,At−1)−Qπ̃,t−1(Ot−1,At−1)

+Vπ̃,0(O0)

The first sum is the sum of the advantages. The second sum is a sum of temporal-difference errors;
integrating the temporal-difference error with respect to the conditional distribution of Ot given
(Ot−1,At−1), denoted byft in Section 2, we obtain zero,

E [Rt−1 +Vπ̃,t(Ot ,At−1)|Ot−1,At−1] = Qπ̃,t−1(Ot−1,At−1)

(as beforeE denotes expectation with respect to (1); recall that expectations that do not integrate
over the policy can be written either with anE or anEπ). Substitute the telescoping sum into (6)
and note thatVπ̃,0(o0) = Vπ̃(o0) to obtain the result.

In the following Lemma the difference between value functions corresponding to two policies,
π̃ andπ, is expressed in terms of both theL1 andL2 distances between the optimal Q-functions
andany functions{Q0,Q1, . . . ,QT} satisfyingπt(ot ,at−1) ∈ argmaxat Qt(ot ,at), t = 0, . . . ,T and
any functions{Q̃0,Q̃1, . . . ,Q̃T} satisfyingπ̃t(ot ,at−1) ∈ argmaxat Q̃t(ot ,at), t = 0, . . . ,T. We as-
sume that there exists a positive constant,L for which pt(at |ot ,at−1)≥ L−1 for eacht and all pairs
(ot ,at−1); if the stochastic decision rule,pt , were uniform thenL would be the size of the action
space.
Lemma 2
For all functions,Qt satisfyingπt(ot ,at−1) ∈ argmaxat Qt(ot ,at), t = 0, . . . ,T, and all functionsQ̃t

satisfyingπ̃t(ot ,at−1) ∈ argmaxat Q̃t(ot ,at), t = 0, . . . ,T we have,

|Vπ̃(o0)−Vπ(o0)| ≤
T

∑
t=0

2Lt+1E
[
|Qt(Ot ,At)− Q̃t(Ot ,At)|

∣∣∣O0 = o0

]

+
T

∑
t=0

2Lt+1E
[
|Q̃t(Ot ,At)−Qπ̃,t(Ot ,At)|

∣∣∣O0 = o
]

and

|Vπ̃(o0)−Vπ(o0)| ≤
T

∑
t=0

2L(t+1)/2

√
E
[(

Qt(Ot ,At)− Q̃t(Ot ,At)
)2
∣∣∣O0 = o0

]

+
T

∑
t=0

2L(t+1)/2

√
E
[(

Q̃t(Ot ,At)−Qπ̃,t(Ot ,At)
)2
∣∣∣O0 = o

]
,

whereE denotes expectation with respect to the distribution generating the training sample (1).
Remark:

1079

MURPHY

1. Note that in general argmaxat Qπ̃,t(ot ,at) may not beπ̃t thus we can not choosẽQt = Qπ̃,t .
However if π̃ = π∗ then we can choosẽQt = Q∗t (= Qπ∗,t by definition) and the second term
in both upper bounds is equal to zero.

2. This result can be used to emphasize one aspect of the mismatch between estimating the opti-
mal Q function and the goal of learning a policy that maximizes the value function. Suppose
Q̃t = Q∗t , π̃ = π∗. The generalization error is

V∗(o0)−Vπ(o0)≤
T

∑
t=0

2L(t+1)/2

√
E
[
(Qt(Ot ,At)−Q∗t (Ot ,At))2

∣∣∣O0 = o0

]

for Qt any function satisfyingπt(ot ,at−1) ∈ argmaxat Qt(ot ,at). Absent restrictions on the
Qts, this inequality cannot be improved in the sense that choosing eachQt = Q∗t andπt = π∗t
yields 0 on both sides of the inequality. However an inequality in the opposite direction
is not possible, since as was seen in Lemma 1,V∗(o0)−Vπ(o0) involves theQ functions
only through the advantages (see also (7) below withπ̃ = π∗). Thus for the difference in
value functions to be small, the average difference betweenQt(ot ,at)−maxat Qt(ot ,at) and
Q∗t (ot ,at)−maxat Q∗t (ot ,at) must be small; this does not require that the average difference
betweenQt(ot ,at) andQ∗t (ot ,at) is small. The mismatch is not unexpected. For example,
Baxter and Bartlett (2001) provide an example in which the approximation space for the
value function includes a value function for which the greedy policy is optimal,yet the greedy
policy found by temporal difference learning (TD(1!)) function performs very poorly.

Proof. Defineµt(ot ,at) = Qt(ot ,at)−maxat Qt(ot ,at) for eacht; note thatµt(ot ,at) evaluated at
at = πt(ot ,at−1) is zero. Start with the result of Lemma 1. Then note the difference between the
value functions can be expressed as

Vπ̃(o0)−Vπ(o0) =
T

∑
t=0

Eπ

[
µt(Ot ,At)−µπ̃,t(Ot ,At)

∣∣∣O0 = o0

]
. (7)

sincePπ putsat = πt(ot ,at−1) andµt(ot ,at) = 0 for this value ofat . When it is clear from the context
µt (µπ̃,t) is used as abbreviation forµt(Ot ,At) (µπ̃,t(Ot ,At)) in the following. AlsoQπ̃,t(Ot ,At−1,at)
with at replaced bỹπt(Ot ,At−1) is written asQπ̃,t(Ot ,At−1, π̃t). Consider the absolute value of the
tth integrand in (7):

|µt −µπ̃,t |
= |Qt(Ot ,At)−max

at
Qt(Ot ,At−1,at)−Qπ̃,t(Ot ,At)+Qπ̃,t(Ot ,At−1, π̃t)|

≤ |Qt(Ot ,At)−Qπ̃,t(Ot ,At)|+ |max
at

Qt(Ot ,At−1,at)−Qπ̃,t(Ot ,At−1, π̃t)|.

Since maxat Q̃t(Ot ,At−1,at) = Q̃t(Ot ,At−1, π̃t) and for any functions,h and h′, |maxat h(at)−
maxat h′(at)| ≤maxat |h(at)−h′(at)|,

∣∣∣∣max
at

Qt(Ot ,At−1,at)−Qπ̃,t(Ot ,At−1, π̃t)

∣∣∣∣
≤max

at

∣∣Qt(Ot ,At−1,at)− Q̃t(Ot ,At−1,at)
∣∣

+
∣∣Q̃t(Ot ,At−1, π̃t)−Qπ̃,t(Ot ,At−1, π̃t)

∣∣ .

1080

GENERALIZATION ERROR

We obtain|µt −µπ̃,t |

≤ 2max
at
|Qt(Ot ,At−1,at)− Q̃t(Ot ,At−1,at)|

+2max
at
|Q̃t(Ot ,At−1,at)−Qπ̃,t(Ot ,At−1,at)| (8)

≤ 2L∑
at

|Qt(Ot ,At−1,at)− Q̃t(Ot ,At−1,at)|pt(at |Ot ,At−1)

+2L∑
at

|Q̃t(Ot ,At−1,at)−Qπ̃,t(Ot ,At−1,at)|pt(at |Ot ,At−1).

Insert the above into (7) and use Lemma A1 to obtain|Vπ̃(o0)−Vπ(o0)|

≤ 2L
T

∑
t=0

Eπ

[

∑
at

|Qt(Ot ,At−1,at)− Q̃t(Ot ,At−1,at)|pt(at |Ot ,At−1)
∣∣∣O0 = o0

]

+Eπ

[

∑
at

|Q̃t(Ot ,At−1,at)−Qπ̃,t(Ot ,At−1,at)|pt(at |Ot ,At−1)
∣∣∣O0 = o0

]

= 2L
T

∑
t=0

E

[(
t−1

∏̀
=0

1A`=π`

p`(A`|O`,A`−1)

)
∣∣Qt − Q̃t

∣∣
∣∣∣∣O0 = o0

]

+E

[(
t−1

∏̀
=0

1A`=π`

p`(A`|O`,A`−1)

)
∣∣Q̃t −Qπ̃,t

∣∣
∣∣∣∣O0 = o0

]

≤ 2
T

∑
t=0

Lt+1E

[∣∣Qt − Q̃t
∣∣
∣∣∣∣O0 = o0

]
+2

T

∑
t=0

Lt+1E

[∣∣Q̃t −Qπ̃,t
∣∣
∣∣∣∣O0 = o0

]

(Qt , Qπ̃,t is used as abbreviation forQt(Ot ,At), respectivelyQπ̃,t(Ot ,At)). This completes the proof
of the first result.

Start from (8) and use Ḧolder’s inequality to obtain,|Vπ̃(o0)−Vπ(o0)|

≤ 2
T

∑
t=0

Eπ

[
max

at
|Qt(Ot ,At−1,at)− Q̃t(Ot ,At−1,at)|

∣∣∣O0 = o0

]

+Eπ

[
max

at
|Q̃t(Ot ,At−1,at)−Qπ̃,t(Ot ,At−1,at)|

∣∣∣O0 = o0

]

≤ 2
T

∑
t=0

√
Eπ

[
max

at
|Qt(Ot ,At−1,at)− Q̃t(Ot ,At−1,at)|2

∣∣∣O0 = o0

]

+

√
Eπ

[
max

at
|Q̃t(Ot ,At−1,at)−Qπ̃,t(Ot ,At−1,at)|2

∣∣∣O0 = o0

]

≤ 2
T

∑
t=0

√√√√LEπ

[

∑
at

|Qt(Ot ,At−1,at)− Q̃t(Ot ,At−1,at)|2pt(at |Ot ,At−1)
∣∣∣O0 = o0

]

+2
T

∑
t=0

√√√√LEπ

[

∑
at

|Q̃t(Ot ,At−1,at)−Qπ̃,t(Ot ,At−1,at)|2pt(at |Ot ,At−1)
∣∣∣O0 = o0

]
.

1081

MURPHY

Now use Lemma A1 and the lower bound on thept ’s to obtain the result,

|Vπ̃(o0)−Vπ(o0)| ≤ 2
T

∑
t=0

√√√√LE

[
t−1

∏̀
=0

1A`=π`

p`(A`|O`,A`−1)

(
Qt − Q̃t

)2
∣∣∣O0 = o0

]

+

√√√√LE

[
t−1

∏̀
=0

1A`=π`

p`(A`|O`,A`−1)

(
Q̃t −Qπ̃,t

)2
∣∣∣O0 = o0

]

≤ 2L(t+1)/2
T

∑
t=0

√
E
[(

Qt − Q̃t
)2
∣∣∣O0 = o0

]

+

√
E
[(

Q̃t −Qπ̃,t
)2
∣∣∣O0 = o0

]
.

5. Finite Sample Upper Bounds on the Average Generalization Error

Traditionally the performance of a policyπ is evaluated in terms of maximum generalization er-
ror: maxo[V∗(o)−Vπ(o)] (Bertsekas and Tsitsiklis, 1996). However here we consider an average
generalization error as in Kakade (2003) (see also Fiechter, 1997; Kearns, Mansour and Ng, 2000;
Peshkin and Shelton, 2002); that is

R

o[V
∗(o)−Vπ(o)]dF(o) for a specified distributionF on the

observation space. The choice ofF with density f = f0 (f0 is the density ofO0 in likelihoods (1)
and (2)) is particularly appealing in the development of a policy in many medicaland social science
applications. In these cases,f0 represents the distribution of initial observations corresponding to a
particular population of subjects. The goal is to produce a good policy forthis population of sub-
jects. In general as in Kakade (2003)F may be chosen to incorporate domain knowledge concerning
the steady state dis! tribution of a good policy. If only a training set of trajectories is available for
learning and we are unwilling to assume that the system dynamics are Markovian, then the choice
of F is constrained by the following consideration. If the distribution ofO0 in the training set (f0)
assigns mass zero to an observationo′, then the training data will not be able to tell us anything
aboutVπ(o′). Similarly if f0 assigns a very small positive mass too′ then only an exceptionally
large training set will permit an accurate estimate ofVπ(o′). Of course this will not be a problem
for the average generalization error, as long asF also assigns very low mass too′. Consequently in
our construction of the finite sample error bounds for theaveragegeneralization error, we will only
consider distributionsF for which the density ofF , say f , satisfies supo | f (o)

f0(o) | ≤M for some finite
constantM. In this case the average generalization error is bounded above by

Z

V∗(o)−Vπ(o)dF(o) ≤ ME [V∗(O0)−Vπ(O0)]

= −MEπ

[
T

∑
t=0

µ∗t (Ot ,At)

]
.

The second line is a consequence of (5) and the fact that the distribution of O0 is the same under
likelihoods (1) and (2).

In the following theorem a non-asymptotic upper bound on the average generalization error is
provided; this upper bound depends on the number of trajectories in the training set (n), the per-

1082

GENERALIZATION ERROR

formance of the approximation on the training set, the complexity of the approximation space and
of course on the confidence (δ) and accuracy (ε) demanded. The batch Q-learning algorithm min-
imizes quadratic forms (see (3)); thus we represent the performance offunctions{Q0,Q1, . . . ,QT}
on the training set by these quadratic forms,

Errn,Qt+1(Qt) = En

[
Rt +max

at+1
Qt+1(Ot+1,At ,at+1)−Qt(Ot ,At)

]2

for eachj (recallQT+1 is set to zero andEn represents the expectation with respect to the probability
obtained by choosing a trajectory uniformly from the training set).

The complexity of eachQt space can be represented by it’s covering number (Anthony and
Bartlett, 1999, pg 148). SupposeF is a class of functions from a space,X, to R. For a sequence
x = (x1, . . . ,xn) ∈ Xn, defineF|x to be a subset ofRn given byF|x = {(f (x1), . . . , f (xn)) : f ∈ F }.
Define the metricdp on R

n by dp(z,y) = (1/n∑n
i=1 |zi−yi |p)1/p for p a positive integer (forp = ∞,

defined∞(z,y) = maxn
i=1 |zi − yi |). ThenN (ε,F|x,dp) is defined as the minimum cardinality of an

ε-covering ofF|x with respect to the metricdp. Next givenε > 0, positive integern, metricdp and
function class,F , the covering number forF is defined as

Np(ε,F ,n) = max{N (ε,F|x,dp) : x∈ Xn}.

In the following theorem,F = {maxat+1 Qt+1(ot+1,at)−Qt(ot ,at) : Qt ∈ Qt , t = 0, . . . ,T} and
(x)+ is x if x > 0 and zero otherwise.
Theorem 1
Assume that the functions inQt , t ∈ 0, . . . ,T are uniformly bounded. Suppose that there exists a pos-
itive constant, sayL, for which pt(at |ot ,at)≥ L−1 for all (ot ,at) pairs, 0≤ t ≤ T. Then forε > 0 and
with probability at least 1−δ, over the random choice of the training set, every choice of functions,
Q j ∈ Q j , j = 0, . . . ,T with associated policyπ defined byπ j(o j ,a j−1) = argmaxa j Q j(o j ,a j) and
every choice of functions̃Q j ∈ Q j , j = 0, . . . ,T with associated policỹπ defined byπ̃ j(o j ,a j−1) =
argmaxa j Q̃ j(o j ,a j) the following bound is satisfied,

R |Vπ̃(o)−Vπ(o)|dF(o)

≤ 6ML1/2
T

∑
t=0

[T

∑
i=t

(16)i−tLi (Errn,Qi+1(Qi)−Errn,Qi+1(Q̃i)
)+
]1/2

+ 12ML1/2ε

+ 6ML1/2
T

∑
t=0

T

∑
i=t

(16)(i−t)/2Li/2
√

E[Q̃i(Oi ,Ai)−Qπ̃,i(Oi ,Ai)]2.

for n satisfying

4(T +1)N1

(
ε2

32M′(16L)(T+2)
,F ,2n

)
exp

{
− ε4n

32(M′)2(16L)2(T+2)

}
≤ δ (9)

and whereM′ is a uniform upper bound on the absolute value off ∈ F andE represents the expec-
tation with respect to the distribution (1) generating the training set.

Remarks:

1083

MURPHY

1. Suppose thatQ∗t ∈ Qt for eacht. SelectQ̃t = Q∗t and Q̂t = argminQt∈Qt Errn,Q̂t+1
(Qt), t =

T,T −1, . . . ,0 (recallQT+1, Q̂T+1 are identically zero). Then with probability greater than
1−δ, we obtain,

Z

V∗(o)−V̂π(o)dF(o)≤ 12ML1/2ε (10)

for all n satisfying (9). Thus, as long as the covering numbers for eachQt and thus forF
do not grow too fast, estimating eachQt by minimizing Errn,Q̂t+1

(Qt) yields a policy that
consistently achieves the optimal value. Suppose the approximation spacesQt , t = 0, . . . ,T
are feed-forward neural networks as in remark 4 below. In this case the training set sizen
sufficient for (10) to hold need only be polynomial in(1/δ,1/ε) and batch Q-learning is a
probably approximate correct (PAC) reinforcement learning algorithm as defined by Fiechter
(1997). As shown by Fiechter (1997) this algorithm can be converted to an efficient on-line
reinforcement learning algorithm (here the word on-line implies updating the policy between
trajectories).

2. Even whenQ∗t does not belong toQt we can add the optimalQ function at each time,t, to
the approximation space,Qt with a cost of no more than an increase of 1 to the covering

numberN1

(
ε2

32M′(16L)(T+2) ,F ,2n
)

. If we do this the result continues to hold when we setπ̃ to

an optimal policyπ∗ and setQ̃t = Q∗t for eacht; the generalization error is

Z

V∗(o)−Vπ(o)dF(o) ≤ 6ML1/2
T

∑
t=0

[T

∑
i=t

(16)i−tLiErrn,Qi+1(Qi)

]1/2

+ 12ML1/2ε

for all n satisfying (9). This upper bound is consistent with the practice of using a policy π̂
for which π̂t(ot ,at−1) ∈ argmaxat Q̂t(ot ,at) andQ̂t ∈ argminQt∈Qt Errn,Q̂t+1

(Qt). Given that
the covering numbers for the approximation space can be expressed in a sufficiently simple
form (as in remark 4 below), this upper bound can be used to carry out model selection
using structural risk minimization (Vapnik, 1982). That is, one might consider a variety of
approximation spaces and use structural risk minimization to use the training datato choose
which approximation space is best. The resulting upper bound on the average generalization
error can be found by using the above result and Lemma 15.5 of Anthony and Bartlett (1999).

3. The restriction onn in (9) is due to the complexity associated with the approximation space
(e.g. theQt ’s). The restriction is crude; to see this, note that if there were only a finite number
of functions inF thenn need only satisfy

2(T +1)|F |exp

{
− 2ε4n

(3M′)2(16L)2(T+2)

}
= δ

(use Hoeffding’s inequality; see Anthony and Bartlett, pg 361, 1999) and thus for a given
(ε,δ) we may set the number of trajectories in the training setn equal to

(3M′)2(16L)2(T+2)

2ε4 ln

(
2(T +1)|F |

δ

)
.

1084

GENERALIZATION ERROR

This complexity term appears similar to that achieved by learning algorithms (e.g.see An-
thony and Bartlett, 1999, pg. 21) or in reinforcement learning (e.g. Peshkin and Shelton,
2002) however note thatn is of the orderε−4 rather than the usualε−2. Theε−4 term (instead
of ε−2) is attributable to the fact thatErrQt+1(Qt) is not only a function ofQt but also ofQt+1.
However further assumptions on the approximation space permit an improvedresult. See
Theorem 2 below for one possible refinement. Note the needed training setsizen depends
exponentially on the horizon timeT but not on the dimension of the observation space. Thi!
s is not unexpected as the upper bounds on the generalization error of both Kearns, Man-
sour and Ng (2000) and Peshkin and Shelton’s (2002) policy search methods (the latter using
a training set and importance sampling weights) also depend exponentially on the horizon
time.

4. WhenF is infinite, we use covering numbers for the approximation spaceQt and then appeal
to Lemma A2 in the appendix to derive a covering number forF ; this results in

N1(ε,F ,n)≤ (T +1) max
t=0,...,T

N1

(
ε

2|A | ,Qt , |A |n
)2

.

One possible approximation space is based on feed-forward neural networks. From Anthony
and Bartlett (1999) we have that if eachQ j is the class of functions computed by a feed-
forward network withW weights andk computation units arranged inL layers and each com-
putation unit has a fixed piecewise-polynomial activation function withq pieces and degree

no more thaǹ, thenN1(ε,Qt ,n)≤ e(d+1)
(

2eM′
ε

)d
whered = 2(W+1)(L+1) log2(4(W+

1)(L+1)q(k+1)/ ln2)+2(W +1)(L+1)2 log2(`+1)+2(L+1). To see this combine An-
thony and Bartlett’s Theorems 8.8, 14.1 and 18.4. They provide covering numbers for func-
tions computed by other types of neural networks as well. A particularly simpleneural net-
work is an affine combination of a given set ofp input features; i.e.f (x) = ω0 + ∑p−1

i=1 ωixi

for (1,x) a vector ofp real valued features and eachωi ∈ R. Suppose eachQt is a class of
functions computed by this network. Then Theorems 11.6 and 18.4 of Anthony and Bartlett

imply thatN1(ε,Qt ,n)≤ e(p+1)
(

2eM′
ε

)p
. In this case

n≥ 32(M′)4(16L)2(T+2)

ε4 log

(
4(T +1)2e2(p+1)2

(
128e|A |(M′)2(16L)T+2

)2p

δε4p

)
.

This number will be large for any reasonable accuracy,ε and confidence,δ.

Proof of Theorem 1. An upper bound on the average difference in value functions can be obtained
from Lemma 2 by using Jensen’s inequality and the assumption that the the density of F (f) satisfies
supo | f (o)

f0(o) | ≤M for some finite constantM:

Z

|Vπ̃(o)−Vπ(o)|dF(o) ≤ M
T

∑
t=0

2L(t+1)/2
√

E
[
Qt(Oi ,Ai)− Q̃t(Oi ,Ai)

]2

+M
T

∑
t=0

2L(t+1)/2
√

E
[
Q̃t −Qπ̃,t

]2
(11)

1085

MURPHY

whereQ̃t , Qπ̃,t is used as abbreviation for̃Qt(Ot ,At), respectivelyQπ̃,t(Ot ,At). In the following an

upper bound on eachE
[
Qt − Q̃t

]2
is constructed.

The performance of the approximation on an infinite training set can be represented by

ErrQt+1(Qt) = E

[
Rt +max

at+1
Qt+1(Ot+1,At ,at+1)−Qt

]2

for eacht (recallQT+1 = 0, also we abbreviateQt(Ot ,At) by Qt whenever no confusion may arise).
The errors,Err ’s, can be used to provide an upper bound on theL2 norms on the Q-functions by the
following argument. ConsiderErrQt+1(Qt)−ErrQt+1(Q̃t) for eacht. Within each of these quadratic
forms add and subtract

Qπ̃,t+1(Ot+1,At , π̃t+1)−Qπ̃,t −E

[
max
at+1

Qt+1(Ot+1,At ,at+1)−Qπ̃,t+1(Ot+1,At , π̃t+1)|Ot ,At

]
.

In the aboveQπ̃,t+1(Ot+1,At , π̃t+1) is defined asQπ̃,t+1(Ot+1,At ,at+1) with at+1 replaced bỹπt+1(Ot+1,
At). Expand each quadratic form and use the fact thatE [Rt +Qπ̃,t+1(Ot+1,At , π̃t+1)|Ot ,At] = Qπ̃,t .
Cancelling common terms yields

E

[
Qπ̃,t −Qt +E

[
max
at+1

Qt+1(Ot+1,At ,at+1)−Qπ̃,t+1(Ot+1,At , π̃t+1)|Ot ,At

]]2

−E

[
Qπ̃,t − Q̃t +E

[
max
at+1

Qt+1(Ot+1,At ,at+1)−Qπ̃,t+1(Ot+1,At , π̃t+1)|Ot ,At

]]2

.

Add and subtract̃Qt in the first quadratic form and expand. This yields

ErrQt+1(Qt)−ErrQt+1(Q̃t) =

E
[
Q̃t −Qt

]2
+2E

[
Q̃t −Qt

][
Q̃t −Qπ̃,t

]

+2E

[
(Q̃t −Qt)

(
max
at+1

Qt+1(Ot+1,At ,at+1)−max
at+1

Q̃t+1(Ot+1,At ,at+1)

)]

+2E

[
(Q̃t −Qt)

(
max
at+1

Q̃t+1(Ot+1,At ,at+1)−Qπ̃,t+1(Ot+1,At , π̃t+1)

)]
. (12)

Using the arguments similar to those used around Equation (8) and using the fact that(x+ y)2 ≤
2x2 +2y2 we obtain,

ErrQt+1(Qt)−ErrQt+1(Q̃t)≥ E
[
Qt − Q̃t

]2

−4
(

E[Qt − Q̃t]
2
(

E
[
Q̃t −Qπ̃,t

]2
+LE

[
Qt+1− Q̃t+1

]2
+LE

[
Q̃t+1−Qπ̃,t+1

]2))1/2
.

Using this inequality we can now derive an upper bound on eachE
[
Qt − Q̃t

]2
in terms of theErr ’s

and theE
[
Q̃t+1−Qπ̃,t+1

]
’s. Define

mt = L−(T−t)E
[
Q̃t −Qπ̃,t

]2
andbt = L−(T−t)E

[
Qt − Q̃t

]2

and
et = L−(T−t) (ErrQt+1(Qt)−ErrQt+1(Q̃t)

)

1086

GENERALIZATION ERROR

for t ≤ T andbT+1 = mT+1 = eT+1 = 0. We obtain

et ≥ bt −4
√

bt(mt +bt+1 +mt+1).

Completing the square, reordering terms, squaring once again and using the inequality(x+ y)2 ≤
2x2 +2y2 yieldsbt ≤ 16(bt+1 +mt +mt+1)+2et for t ≤ T. We obtain

bT−t ≤ 2
t

∑
i=0

(16)ieT−t+i +
t

∑
i=1

(16)i(16+1)mT−t+i +16mT−t .

Inserting the definitions ofbT−t , eT−t+i and reordering, yields

E
[
Qt − Q̃t

]2 ≤ 2
T

∑
i=t

(16L)i−t (ErrQi+1(Qi)−ErrQi+1(Q̃i)
)

+
T

∑
i=t+1

(16)i−t(16+1)LT−tmi +LT−tmt . (13)

As an aside we can start from (12) and derive the upper bound,

ErrQt+1(Qt)−ErrQt+1(Q̃t)≤ E
[
Qt − Q̃t

]2

+4L(T−t)

√
L−(T−t)E

[
Qt − Q̃t

]2(
mt +L−(T−t−1)E

[
Qt+1− Q̃t+1

]2
+mt+1

)
.

This combined with (13) implies that minimizing eachErrQt+1(Qt)−ErrQt+1(Q̃t) in Qt is equivalent

to minimizing eachE
[
Qt − Q̃t

]2
in Qt modulo the approximation termsmt for t = 0, . . . ,T.

Returning to the proof next note that

ErrQt+1(Qt)−ErrQt+1(Q̃t) ≤
∣∣ErrQt+1(Qt)−Errn,Qt+1(Qt)

∣∣
+
∣∣ErrQt+1(Q̃t)−Errn,Qt+1(Q̃t)

∣∣

+
(
Errn,Qt+1(Qt)−Errn,Qt+1(Q̃t)

)+

where(x)+ is equal tox if x≥ 0 and is equal to 0 otherwise. Note that if eachQt minimizesErrn,Qt+1

as in (3) then the third term is zero. Substituting into (13), we obtain

E
[
Qt − Q̃t

]2 ≤ 2
T

∑
i=t

(16L)i−t
(∣∣ErrQi+1(Qi)−Errn,Qi+1(Qi)

∣∣

+
∣∣ErrQi+1(Q̃i)−Errn,Qi+1(Q̃i)

∣∣

+
(
Errn,Qi+1(Qi)−Errn,Qi+1(Q̃i)

)+
)

+
T

∑
i=t+1

(16)i−t(16+1)Li−tE[Q̃i−Qπ̃,i]
2 +E[Q̃t−Qπ̃,t]

2.

Combine this inequality with (11); simplify the sums and use the fact that forx,y both nonneg-
ative

√
x+y≤√x+

√
y to obtain

R |Vπ̃(o)−Vπ(o)|dF(o)

≤ 6ML1/2
T

∑
t=0

[T

∑
i=t

(16)i−tLi (Errn,Qi+1(Qi)−Errn,Qi+1(Q̃i)
)+
]1/2

1087

MURPHY

+ 12ML1/2(16L)(T+2)/2
√

max
t

sup
Qt ,Qt+1

∣∣ErrQt+1(Qt)−Errn,Qt+1(Qt)
∣∣

+ 6ML1/2
T

∑
t=0

T

∑
i=t

(16)(i−t)/2Li/2
√

E[Q̃i−Qπ̃,i]2.

All that remains is to provide an upper bound on

P

[
T

[

i=0

{
for someQt∈Qt , t=0,...,T

∣∣ErrQt+1(Qi)−Errn,Qi+1(Qi))
∣∣> ε′

}
]

.

This probability is in turn bounded above by

T

∑
i=0

P
[

for someQt∈Qt , t=0,...,T
∣∣ErrQi+1(Qi)−Errn,Qi+1(Qi)

∣∣> ε′
]
.

Anthony and Bartlett (1999, pg. 241) use Hoeffding’s inequality along with the classical techniques
of symmetrization and permutation to provide the upper bound (see also van der Vaart and Wellner,
1996),

P
[

for someQt∈Qt , t=0,...,T
∣∣ErrQi+1(Qi)−Errn,Qi+1(Qi)

∣∣> ε′
]

≤ 4N1

(
ε′

32M′
,F ,2n

)
exp

{
− (ε′)2n

32(M′)2

}
.

Putε = (16L)(T+2)/2
√

ε′ to obtain the results of the theorem.
Suppose the Q functions are approximated by linear combinations ofp features; for eacht =

0, . . . ,T, denote the feature vector byqt(ot ,at). The approximation space is then,

Qt = {Qt(ot ,at) = θTqt(ot ,at) : θ ∈Θ}

whereΘ is a subset ofRp. In this case, the batch Q-learning algorithm may be based on (4); we
represent the performance of the functions{Q0, . . . ,Qt} on the training set by

Ẽrrn,Qt+1(Qt) = En

[(
Rt +max

at+1
Qt+1(Ot+1,At ,at+1)−Qt(Ot ,At)

)
qt(Ot ,At)

]

for t = 0, . . . ,T (recall En represents the expectation with respect to the probability obtained by
choosing a trajectory uniformly from the training set). In this theorem

F ′ =
p

[

i=1

T
[

t=1

{(
rt +max

at+1
Qt+1(ot+1,at+1;θt+1)−Qt(ot ,at ;θt)

)
qti(ot ,at) : θt ,θt+1 ∈Θ

}
.

Define the functions{Q̄0, . . . ,Q̄T}, and the policy,̄π, as follows. First definēQT(OT ,AT) to be the
projection ofE [RT |OT ,AT] on the space spanned byqT . Then set̄πT(oT ,aT−1)∈argmaxaT Q̄T(oT ,aT).
Next for t = T−1, . . . ,0, setQ̄t(Ot ,At) as the projection ofE

[
Rt + Q̄t+1(Ot+1,At , π̄t+1)|Ot ,At

]
on

the space spanned byqt (recall Q̄t+1(Ot+1,At , π̄t+1) is defined asQ̄t+1(Ot+1,At ,at+1) with at+1

replaced bȳπt+1(Ot+1,At)). And setπ̄t(ot ,at−1) ∈ argmaxat Q̄t(ot ,at). These projections are with

1088

GENERALIZATION ERROR

respect toP, the distribution which generated the trajectories in the training set (the likelihood is in
(1)).
Theorem 2
Suppose that there exists a positive constant, sayL, for which pt(at |ot ,at−1)≥ L−1 for all (ot ,at−1),
0≤ t ≤ T. Suppose that for eacht, x∈ Rp, xTEqtqT

t x > η||x||2 whereη > 0 (|| · || is the Euclidean
norm). Also assume thatΘ is a closed subset of{x∈ Rp : ||x|| ≤MΘ} and for all (t, i), the ith
component in the vectorqt is pointwise bounded;|qti | ≤ MQ for MQ a constant. Then forε > 0,
with probability at least 1−δ, over the random choice of the training set, every choice of functions,
Qt ∈ Qt and functionsQ̃t , t = 0, . . . ,T with associated policies defined byπ with πt(ot ,at−1 ∈
argmaxat Qt(ot ,at) andπ̃ with π̃t(ot ,at−1) ∈ argmaxat Q̃t(ot ,at) respectively, the following bounds
are satisfied,

T

∑
t=0

L(t+1)E|Q̄t(Ot ,At)−Qt(Ot ,At)| ≤
√

pMQ /η
T

∑
t=0

L(t+1)
T

∑
j=t

(
LpM2

Q /η
) j−t ||Ẽrrn,Q j+1(Q j)||

+ 4ε.

for t = 0, . . . ,T, whereE represents the expectation with respect to the distribution (1) generating
the training set and

Z

|Vπ̃(o)−Vπ(o)|dF(o) ≤ 2M
√

pMQ /η
T

∑
t=0

L(t+1)
T

∑
j=t

(
LpM2

Q /η
) j−t ||Ẽrrn,Q j+1(Q j)||

+ 8Mε

+2M
T

∑
t=0

L(t+1)E
∣∣Q̄t(Ot ,At)− Q̃t(Ot ,At)

∣∣

+2M
T

∑
t=0

L(t+1)E
∣∣Q̃t(Ot ,At)−Qπ̃,t(Ot ,At)

∣∣

for n larger than

(
C
ε

)2

log

(
B
δ

)
(14)

whereC = 4
√

2M′pT+1/2M2T+1
Q η−(T+1)LT+1, M′ is a uniform upper bound on the absolute value

on all f ∈ F ′ andB = ε−2p46p+3p2T p+p+3(T +1)2e2p+2(M′)4p|A |pM(2T+1)2p
Q η−2p(T+1) L2p(T+1)

Remarks:

1. DefineQ̂t as a zero of̃Errn,Q̂t+1
(Qt), t = T,T−1, . . . ,0 (recall thatQ̂T+1 is identically zero).

Suppose thatQ∗t ∈ Qt for eacht; in this caseQ̄t = Q∗t for all t (we ignore sets of measure zero
in this discussion). Then with probability greater than 1−δ andπ̃ = π∗, Q̃t = Q∗t we obtain

Z

V∗(o)−V̂π(o)dF(o)≤ 8Mε

for all n satisfying (14). Thus estimating eachQt by solvingẼrrn,Qt+1(Qt) = 0, t = T, . . . ,0,
yields a policy that consistently achieves the optimal value.

1089

MURPHY

2. Again defineQ̂t as a zero of̃Errn,Q̂t+1
(Qt), t = T,T −1, . . . ,0. Given twoT + 1 vectors of

functionsQ′ = {Q′0, . . . ,Q′T} andQ = {Q0, . . . ,QT} define

`(Q′,Q) =
T

∑
t=0

Lt+1E
∣∣Q′t(Ot ,At)−Qt(Ot ,At)

∣∣ .

Then the first result of Theorem 2 implies that`(Q̄,Q̂) converges in probability to zero.
From Lemma 2 we have that

R |Vπ̃(o)−Vπ(o)|dF(o) ≤ 2M`(Q,Q̃)+ 2M`(Qπ̃,Q̃) and thus
R |Vπ̃(o)−V̂π(o)|dF(o) is with high probability bounded above by 2M`(Q̄,Q̃)+2M`(Qπ̃,Q̃).
Consequently the presence of the third and fourth terms in Theorem 2 is notsurprising. It is
unclear whether the “go-between”Q̃t is necessary.

3. Recall the space of policies implied by the approximation spaces for the Q-functions is
given by ΠQ = {πθ,θ ∈ Θ} where πθ = {π1,θ, . . . ,πT,θ} and where eachπt,θ(ot ,at−1) ∈
argmaxat Qt(ot ,at ;θ) for someQt ∈ Qt . Suppose that maxπ∈ΠQ

R

Vπ(o)dF(o) is achieved by
some member ofΠQ andπ̃∈ argmaxπ∈ΠQ

R

Vπ(o)dF(o). Ideally Q-learning would provide a
policy that achieves the highest value as compared to other policies inΠQ (as is the case with
π̃). This is not necessarily the case. As discussed in the above remark batch Q-learning yields
estimated Q-functions for which̀(Q̄,Q̂) converges to zero. The policȳπ may not produce a
maximal value; that is

R

Vπ̃(o)−Vπ̄(o)dF(o) need not be zero (see also the remark following
Lemma 2). Recall from Lemma 2 that 2M`(Q̄,Q̃)+ 2M`(Q̃,Qπ̃) is an upper bound on this
difference. It is not hard to see that`(Q̃,Qπ̃) is zero if and only ifπ̃ is the optimal policy;
indeed the optimal Q-function would belong to the approximation space. The Q-learning al-
gorithm does not directly maximize the value function. As remarked in Tsitsiklis and van Roy
(1997) the goal of the Q-learning algorithm is to construct an approximationto the optimal
Q-function within the constraints imposed by the app! roximation space; this approximation
is a projection when the approximation space is linear. Approximating the Q-function yields
an optimal policy if the approximating class is sufficiently rich. Ormoneit and Sen(2002)
consider a sequence of approximation spaces (kernel based spacesindexed by a bandwidth)
and make assumptions on the optimal value function which guarantee that this sequence of
approximations spaces is sufficient rich (as the bandwidth decreases withincreasing training
set size) so as to approximate the optimal value function to any desired degree.

4. Again defineQ̂t as a zero of̃Errn,Q̂t+1
(Qt), t = T,T −1, . . . ,0. Since`(Q̄,Q̂) converges in

probability to zero, one might think that
R |Vπ̄(o)− V̂π(o)|dF(o) should be small as well.

Referring to Lemma 1, we have that the difference in value functions
R |Vπ̄(o)−V̂π(o)|dF(o)

can be expressed as the sum overt of the expectation ofQπ̄,t(Ot ,At−1, π̂t)−Qπ̄,t(Ot ,At−1, π̄t).
However`(Q̄,Q̂) small does not imply that̂π and π̄ will be close nor does it imply that
Qπ̄,t(Ot ,At−1, π̂t)−Qπ̄,t(Ot ,At−1, π̄t) will be small. To see the former consider an action
space with 10 actions, 1, . . . ,10 andQ̂t(ot ,at) = 1 for a = 1, . . . ,9, Q̂t(ot ,10) = 1+1/2ε and
Q̄t(ot ,at) = 1−1/2ε for a = 2, . . . ,10, Q̄t(ot ,1) = 1. SoQ̄t andQ̂t are uniformly less thanε
apart yet the argument of their maxima are 1 and 10.

Proof of Theorem 2. Fix Qt = θT
t qt , θ ∈ Θ for t = 0, . . . ,T. Define an infinite training sample

version ofẼrrn as

ẼrrQt+1(Qt) = E

[(
Rt +max

at+1
Qt+1(Ot+1,At ,at+1)−Qt

)
qt

]

1090

GENERALIZATION ERROR

= E

[(
Q̄t +max

at+1
Qt+1(Ot+1,At ,at+1)− Q̄t+1(Ot+1,At , π̄t+1)−Qt

)
qt

]

whereQt is an abbreviation forQt(Ot ,At). To derive the last equality recall that̄Qt(Ot ,At) is the
projection of
E
[
Rt + Q̄t+1(Ot+1,At , π̄t+1)|Ot ,At

]
on the space spanned byqt . SinceQ̄t is a projection we can

write Q̄t = θT
π̄,tqt for someθπ̄,t ∈ Θ. Also we can writeQt = θT

t qt for someθt ∈ Θ. The Ẽrr ’s
provide a pointwise upper bound on the differences,|Q̄t −Qt |, as follows. Rearrange the terms in
ẼrrQt+1 using the fact thatEqtqT

t is invertible to obtain

(θπ̄,t −θt) =
(
Eqtq

T
t

)−1
ẼrrQt+1(Qt)

−
(
Eqtq

T
t

)−1
E

[(
max
at+1

Qt+1(Ot+1,At ,at+1)− Q̄t+1(Ot+1,At , π̄t+1)

)
qt

]
.

Denote the Euclidean norm of ap dimensional vectorx by ||x||. Then

∣∣(θπ̄,t −θt)
Tqt
∣∣ ≤ (1/η)

∣∣∣
∣∣∣ẼrrQt+1(Qt)

∣∣∣
∣∣∣ ||qt ||+

(1/η)E

[∣∣∣∣max
at+1

Qt+1(Ot+1,At ,at+1)− Q̄t+1(Ot+1,At , π̄t+1)

∣∣∣∣ ||qt ||
]
||qt ||

≤ (1/η)
∣∣∣
∣∣∣ẼrrQt+1(Qt)

∣∣∣
∣∣∣ ||qt ||+(1/η)LE

[∣∣Qt+1− Q̄t+1
∣∣ ||qt ||

]
||qt ||

≤ (1/η)
√

pMQ

∣∣∣
∣∣∣ẼrrQt+1(Qt)

∣∣∣
∣∣∣+(1/η)LpM2

Q E
[∣∣Qt+1− Q̄t+1

∣∣]

for t ≤ T. To summarize

E
∣∣Q̄t −Qt

∣∣ ≤ (1/η)
√

pMQ

∣∣∣
∣∣∣ẼrrQt+1(Qt)

∣∣∣
∣∣∣+(1/η)LpM2

Q E
[∣∣Qt+1− Q̄t+1

∣∣]

whereQt , Q̄t is an abbreviation forQt(Ot ,At), respectivelyQ̄t(Ot ,At), for eacht.
As in the proof of Theorem 1, these inequalities can be solved for each E

∣∣Q̄t −Qt
∣∣ to yield

E
∣∣Q̄t −Qt

∣∣ ≤ (
√

pMQ /η)
T

∑
j=t

(LpM2
Q /η) j−t

∣∣∣
∣∣∣ẼrrQ j+1(Q j)

∣∣∣
∣∣∣

≤ (
√

pMQ /η)
T

∑
j=t

(LpM2
Q /η) j−t

∣∣∣
∣∣∣Ẽrrn,Q j+1(Q j)− ẼrrQ j+1(Q j)

∣∣∣
∣∣∣

+(
√

pMQ /η)
T

∑
j=t

(LpM2
Q /η) j−t

∣∣∣
∣∣∣Ẽrrn,Q j+1(Q j)

∣∣∣
∣∣∣ .

Simplifying terms we obtain

T

∑
t=0

L(t+1)E|Q̄t −Qt | ≤
√

pMQ /η
T

∑
t=0

L(t+1)
T

∑
j=t

(
LpM2

Q /η
) j−t ||Ẽrrn,Q j+1(Q j)||

+ 4pT+1/2M2T+1
Q η−(T+1)LT+1max

t

∣∣∣
∣∣∣Ẽrrn,Qt+1(Qt)− ẼrrQt+1(Qt)

∣∣∣
∣∣∣ .
(15)

1091

MURPHY

Consider each component of each of theT +1, pdimensional vectors,̃Errn,Qi+1(Qi))−ẼrrQi+1(Qi)
for anε′ > 0:

P

[
T

[

i=0

p
[

j=1

{
for someθi ,θi+1∈Θ,qi∈Qi ,qi+1∈Qi+1

∣∣∣Ẽrrn,Qi+1(Qi) j − ẼrrQi+1(Qi)) j

∣∣∣> ε′
}]

.

This probability is in turn bounded above by

T

∑
i=0

p

∑
j=1

P
[
for someθi ,θi+1∈Θ,qi∈Qi ,qi+1∈Qi+1

∣∣∣Ẽrrn,Qi+1(Qi) j − ẼrrQi+1(Qi)) j

∣∣∣> ε′
]
.

In Lemmas 17.2, 17.3, 17.5, Anthony and Bartlett (1999) provide an upperbound on the probability

P
[

for somef ∈ F has|En(` f)−E(` f)| ≥ ε′
]

where` f (x,y) = (y− f (x))2. These same lemmas (based on the classical arguments of symmetriza-
tion, permutation and reduction to a finite set) can be used forf ∈ F ′ since the functions inF ′ are
uniformly bounded. Hence for eachj = 1, . . . , p andt = 0, . . . ,T

P
[

for someθt ,θt+1 ∈Θ,qt ∈ Qt ,qt+1 ∈ Qt+1 has
∣∣∣Ẽrrn,Qt+1(Qt) j − ẼrrQt+1(Qt) j

∣∣∣> ε′
]

≤ 4N1

(
ε′

16M′
,F ′,2n

)
exp

{
− (ε′)2n

32(M′)2

}
.

Setε = pT+1/2M2T+1
Q η−(T+1)LT+1ε′. Thus forn satisfying

4p(T +1)N1

(
ε

16M′pT+1/2M2T+1
Q η−(T+1)LT+1

,F ′,2n

)

exp




− ε2n

32(M′)2
(

pT+1/2M2T+1
Q η−(T+1)LT+1

)2




≤ δ, (16)

the first result of the theorem holds.
To simplify the constraint onn, we derive a covering number forF ′ from covering numbers for

theQt ’s. Apply Lemma A2 part 1, to obtain

N1(ε,Vt+1,n)≤N1

(
ε
|A | ,Qt+1, |A |n

)

for Vt+1 =
{

maxat+1 Qt+1(ot+1,at+1) : Qt+1 ∈ Qt+1
}

. Next apply Lemma A2, parts 2 and 3, to
obtain

N1(ε,F ′,n)≤
T−1

∑
t=0

N1

(
ε

2|A |M′ ,Qt+1, |A |n
)

N1

(ε
2M′

,Qt ,n
)

+N1

(ε
M′

,QT ,n
)

.

1092

GENERALIZATION ERROR

Theorems 11.6 and 18.4 of Anthony and Bartlett imply thatN1(ε,Qt ,n) ≤ e(p+1)
(

2e
ε
)p

for each
t. Combining this upper bound with (16) and simplifying the algebra yields (14).

Next Lemma 2 implies:

Z

|Vπ̃(o)−Vπ(o)|dF(o) ≤ M
T

∑
t=0

2L(t+1)E
∣∣Qt − Q̄t

∣∣

+M
T

∑
t=0

2L(t+1)E
∣∣Q̄t − Q̃t

∣∣ +M
T

∑
t=0

2L(t+1)E
∣∣Q̃t −Qπ̃,t

∣∣ .

This combined with the first result of the theorem implies the second result.

6. Discussion

Planning problems involving a single training set of trajectories are not unusual and can be expected
to increase due to the widespread use of policies in the social and behavioral/medical sciences (see,
for example, Rush et al., 2003; Altfeld and Walker, 2001; Brooner, andKidorf, 2002); at this time
these policies are formulated using expert opinion, clinical experience and/or theoretical models.
However there is growing interest in formulating these policies using empiricalstudies (training
sets). These training sets are collected under fixed exploration policies and thus while they allow
exploration they do not allow exploitation, that is, online choice of the actions.If subjects are
recruited into the study at a much slower rate than the calendar duration of thehorizon, then it is
possible to permit some exploitation; some of this occurs in the field of cancer research (Thall, Sung
and Estey, 2002).

This paper considers the use of Q-learning with dynamic programming and function approxima-
tion for this planning purpose. However the mismatch between Q-learning andthe goal of learning
a policy that maximizes the value function has serious consequences and emphasizes the need to use
all available science in choosing the approximation space. Often the availablebehaviorial or psycho-
social theories provide qualitative information concerning the importance ofdifferent observations.
In addition these theories are often represented graphically via directed acyclic graphs. However in-
formation at the level of the form of the conditional distributions connecting the nodes in the graphs
is mostly unavailable. Also due to the complexity of the problems there are oftenunknownmiss-
ing common causes of different nodes in the graphs. See http://neuromancer.eecs.umich.edu/dtr for
more information and references. Methods that can use this qualitative information to minimize t!
he mismatch are needed.

Acknowledgments

We would like to acknowledge the help of the reviewers and of Min Qian in improving this pa-
per. Support for this project was provided by the National Institutes of Health (NIDA grants K02
DA15674 and P50 DA10075 to the Methodology Center).

Appendix A.

Recall that the distributions,P andPπ differ only with regards to the policy (see (1) and (2)). Thus
the following result is unsurprising. Letf (OT+1,AT) be a (measurable) nonnegative function; then

1093

MURPHY

Eπ f can be expressed in terms of an expectation with respect to the distributionP if we assume that
pt(at |ot ,at−1) > 0 for each(ot ,at) pair and eacht. The presence of thep js in denominator below
represent the price we pay because we only have access to training trajectories with distributionP;
we do not have access to trajectories from distributionPπ.
Lemma A1 Assume thatPπ[p0(A0|S0) > 0] = 1 andPπ[pt(At |Ot ,At−1) > 0] = 1 for t = 1, . . . ,T.
For any (measurable) nonnegative function ofg(Ot ,At), theP-probability that

Eπ [g(Ot ,At)|S0] = E

[(
t

∏̀
=0

1A`=π`

p`(A`|O`,A`−1)

)
g(Ot ,At)

∣∣∣∣S0

]

is one fort = 0, . . . ,T.
Proof: We need only prove that

E [h(S0)Eπ [g(Ot ,At)|S0]] = E

[
h(S0)E

[(
t

∏̀
=0

1A`=π`

p`(A`|O`,A`−1)

)
g(Ot ,At)

∣∣∣∣S0

]]

for any (measurable) nonnegative function,h. Consider the two likelihoods ((1) and (2)) for a
trajectory up to timet. Denote the dominating measure for the two likelihoods for the trajectory up
to timet asλt . By assumption,

Z

h(s0)g(ot ,at)

(
T

∏̀
=0

1A`=π`

p`(a`|o`,a`−1)

)
f0(s0)p0(a0|s0)

t

∏
j=1

f j(sj |o j−1,a j−1)p j(a j |o j ,a j−1)dλt(ot ,at)

=
Z

h(s0)g(ot ,at) f0(s0)1a0=π0(s0)

t

∏
j=1

f j(sj |o j−1,a j−1)1a j=π j (o j ,a j−1) dλt(ot ,at).

By definition the left hand side isE
[
h(S0)g(Ot ,At)

(
∏ j

`=0
1A`=π`

p`(A`|O`,A`−1)

)]
and the right hand side

is Eπ[h(S0)g(Ot ,At)]. Expressing both sides as the expectation of a conditional expectation, we
obtain,

Eπ[h(S0)Eπ[g(Ot ,At)|S0]] = E

[
h(S0)E

[
g(Ot ,At)

(
t

∏̀
=0

1A`=π`

p`(A`|O`,A`−1)

)∣∣∣∣S0

]]
.

Note that the distribution ofS0 is the same regardless of how the actions are chosen, that is the
distribution ofS0 is the same under bothP andPπ. Thus

E[h(S0)Eπ[g(Ot ,At)|S0]] = E

[
h(S0)E

[
g(Ot ,At)

(
t

∏̀
=0

1A`=π`

p`(A`|A`,A`−1)

)∣∣∣∣S0

]]
.

Lemma A2 For p, q, r, s, N positive integers andMF , MG , MΘ positive reals, define the following
classes of real valued functions,

H ⊆ {h(x,a) : x∈ R
p, a∈ {1, . . . ,N}}

F ⊆
{

f (x) : x∈ R
q, sup

x
| f (x)| ≤MF

}

G ⊆
{

g(x,y) : x∈ R
q, y∈ R

r , sup
x,y
|g(x,y)| ≤MG

}

1094

GENERALIZATION ERROR

and

Θ⊆
{

θ ∈ R
s : max

i=1,...,s
|θi | ≤MΘ

}
.

The following hold.

1. If V =
{

maxah(x,a) : h∈H
}

thenN1(ε,V ,n)≤N1(ε/N,H ,Nn).

2. For|a| ≤ 1, |b| ≤ 1, if V = {a f(x)+bg(x,y) : f ∈ F , g∈ G}
thenN1(ε,V,n)≤N1(ε/2,F ,n)N1(ε/2,G ,n).

3. If V = F ∪G thenN1(ε,V ,n)≤N1(ε,F ,n)+N1(ε,G ,n).

4. If V = {θ1 f1(x)+ . . .+θs fs(x) : fi ∈ F , (θ1, . . . ,θs) ∈Θ}
thenN1(ε,V ,n)≤ e(s+1)

(
4esMΘMF

ε

)s
N∞

(
ε

4sMΘ
,F ,n

)s
.

Proof. We prove 1. and 4.; the proofs of 2. and 3. are straightforward and are omitted. Consider 1.
Given(x1, . . . ,xn), theε-covering number for the class of points inR

Nn,{
(h(xi ,a) : i = 1, . . . ,n,a = 1, . . .N) ;h∈H

}
is bounded above byN1(ε,H ,Nn). Note that for

(zia, i = 1, . . . ,n, a = 1, . . . ,N),

1/n
n

∑
i=1

∣∣∣∣ max
a=1,...,N

h(xi ,a)− max
a=1,...,N

zia

∣∣∣∣ ≤ 1/n
n

∑
i=1

max
a=1,...,N

|h(xi ,a)−zia|

≤ 1/n
n

∑
i=1

N

∑
a=1

|h(xi ,a)−zia| .

Thus theε-covering number for the class of points inR
n, {
(
maxN

a=1h(xi ,a) : i = 1, . . . ,n
)

; h∈H } is
bounded above byN1(ε,H ,Nn). Using the definition of covering numbers for classes of functions
we obtainN1(ε,V ,n)≤N1

(ε
N ,H ,Nn

)
.

Next consider 4. Putx = (x1, . . . ,xn) (eachxi ∈ R
q) and f (xi) = (f1(xi), . . . , fs(xi))

T . Then there
exists{z1, . . . ,zN }, (N = N∞(ε/(4sMΘ),F ,n); zj ∈ R

n) that form the centers of anε/(4sMΘ)-cover
for F . To eachzj we can associate anf ∈ F , say f ∗j so that{ f ∗1 , . . . , f ∗

N
} form the centers of an

ε/(2sMΘ)-cover forF . Then given{ f1, . . . , fs} ∈ F there existsj∗ ∈ {1, . . . ,N } for j = 1, . . . ,s,
so that max1≤ j≤smax1≤i≤n | f j(xi)− f ∗j∗(xi)| ≤ ε/(2sMΘ). Then

(1/n)
n

∑
i=1

∣∣∣∣∣
s

∑
j=1

θ j f j(xi)−θ j f ∗j∗(xi)

∣∣∣∣∣≤ ε/2.

DefineF ′ =
{

∑s
j=1 θ j f ∗j∗ : θ j ∈Θ

}
. Theorems 11.6 and 18.4 of Anthony and Bartlett (1996) imply

thatN1(ε/2,F ′,n)≤ e(s+1)
(

4esMΘMF

ε

)s
These two combine to yield the result.

References

M. Altfeld and B. D. Walker. Less is more? STI in acute and chronic HIV-1 infection. Nature
Medicine7:881–884, 2001.

1095

MURPHY

M. Anthony and P. L. Bartlett.Neural Network Learning: Theoretical Foundations. Cambridge,
UK: Cambridge University Press, 1999.

L. Baird. Advantage updating. Technical Report. WL-TR-93-1146, Wright-Patterson Air Force
Base, 1993.

J. Baxter and P. L. Bartlett. Infinite-horizon policy-gradient estimation.J. Artificial Intelligence
Research15:319–350, 2001.

R. E. BellmanDynamic Programming. Princeton: Princeton University Press, 1957.

D. P. Bertsekas and J. N. Tsitsiklis. Neuro-Dynamic Programming. Belmont, MA.: Athena Scien-
tific. 1996.

R. K. Brooner and M. Kidorf. Using behavioral reinforcement to improve methadone treatment
participation.Science and Practice Perspectives1:38–48, 2002.

M. Fava, A. J. Rush, M. H. Trivedi, A. A. Nierenberg, M. E. Thase,H. A. Sackeim, F. M. Quitkin,
S. Wisniewski, P. W. Lavori, J. F. Rosenbaum, D. J. Kupfer. Background and rationale for the
sequenced treatment alternative to relieve depression (STAR*D) study.Psychiatric Clinics of
North America26(3):457–494, 2003.

C. N. Fiechter Efficient Reinforcement Learning. InProceedings of the Seventh Annual ACM
Conference on Computational Learning Theory (COLT 1994), pages 88–97, New Brunswick,
NJ, 1994.

C. N. Fiechter. Expected Mistake Bound Model for On-Line Reinforcement Learning. InProceed-
ings of the Fourteenth International Conference on Machine Learning, Douglas H. Fisher (Ed.),
Nashville, Tennessee, pages 116–124, 1997.

S. M. Kakade. On the Sample Complexity of Reinforcement Learning. Ph.D. thesis, University
College, London, 2003.

M. Kearns, Y. Mansour, and A. Y. Ng. A Sparse sampling algorithm for near-optimal planning in
large Markov decision processes.Machine Learning, 49(2-3): 193–208, 1999.

M. Kearns, Y. Mansour and A. Y. Ng. Approximate planning in large POMDPs via reusable trajec-
tories. InAdvances in Neural Information Processing Systems, 12, MIT Press, 2000.

D. Ormoneit and S. Sen: Kernel-Based Reinforcement Learning.Machine Learning49(2-3):161–
178 2002.

L. Peshkin and C. R. Shelton. Learning from scarce experience. InProceedings of the Nineteenth
International Conference on Machine Learning (ICML 2002)Claude Sammut, Achim G. Hoff-
mann (Eds.) pages 498–505, Sydney, Australia, 2002.

A. J. Rush, M. L. Crismon, T. M. Kashner, M. G. Toprac, T. J. Carmody, M. H. Trivedi, T. Suppes,
A. L. Miller, M. M. Biggs, K. Shores-Wilson, B. P. Witte, S. P. Shon, W. V.Rago, K. Z. Altshuler,
TMAP Research Group. Texas medication algorithm project, phase 3 (TMAP-3): Rationale and
study design.Journal of Clinical Psychiatry, 64(4):357–69, 2003.

1096

GENERALIZATION ERROR

L. S. Schneider, P. N. Tariot, C. G. Lyketsos, K. S. Dagerman, K. L. Davis, S. Davis, J. K. Hsiao,
D. V. Jeste, I. R. Katz, J. T. Olin, B. G. Pollock, P. V. Rabins, R. A. Rosenheck, G. W. Small,
B. Lebowitz, J. A. Lieberman. National Institute of Mental Health clinical antipsychotic trials
of intervention effectiveness (CATIE).American Journal of Geriatric Psychiatry, 9(4):346–360,
2001.

R. E. Schapire, P. Bartlett, Y. Freund and W. S. Lee. Boosting the margin:A new explanation for
the effectiveness of voting methods.The Annals of Statistics, 26(5):1651–1686, 1998.

D. I. Simester, P. Sun, and J. N. Tsitsiklis. Dynamic catalog mailing policies.unpublished
manuscript, Available electronically at http://web.mit.edu/jnt/www/Papers/P-03-sun-catalog-
rev2.pdf, 2003.

R. S. Sutton and A. G. Barto.Reinforcement Learning: An Introduction. The MIT Press, Cambridge,
Mass, 1998.

P. F. Thall, R. E. Millikan and H. G. Sung. Evaluating multiple treatment coursesin clinical trials.
Statistics and Medicine19:1011-1028, 2000.

P. F. Thall, H. G. Sung and E. H. Estey. Selecting therapeutic strategies based on efficacy and death
in multicourse clinical trials.Journal of the American Statistical Association, 97:29-39, 2002.

J. N. Tsitsiklis and B. Van Roy. Feature-based methods for large scale dynamic programming,Ma-
chine Learning, 22:59-94, 1996.

J. N. Tsitsiklis and B. Van Roy. An analysis of temporal-difference learning with function approxi-
mation.IEEE Transactions on Automatic Control, 42(5):674-690, 1997.

A. W. van der Vaart and J. A. Wellner.Weak Convergence and Empirical Processes. Springer, New
York, 1996.

C. J. C. H. Watkins. Learning from Delayed Rewards. Ph.D. thesis, Cambridge University, 1989.

1097

