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Abstract

We develop a closed form asymptotic formula to compute thegimal likelihood of data given a
naive Bayesian network model with two hidden states andrpifemtures. This formula deviates
from the standard BIC score. Our work provides a concretmpi@that the BIC score is generally
incorrect for statistical models that belong to stratifigganential families. This claim stands in
contrast to linear and curved exponential families, whieeeBIC score has been proven to provide
a correct asymptotic approximation for the marginal liketd.

Keywords: Bayesian networks, asymptotic model selection, Bayesimmation criterion (BIC)

1. Introduction

Statisticians are often faced with the problem of choosing the appropriatel thatibest fits a given
set of observations. One example of such problem is the choice of sguctiearning of Bayesian
networks (Heckerman et al., 1995; Cooper and Herskovits, 1992kudh cases the maximum
likelihood principle would tend to select the model of highest possible dimensantrary to the
intuitive notion of choosing the right model. Penalized likelihood approashel as AIC have
been proposed to remedy this deficiency (Akaike, 1974).

We focus on the Bayesian approach to model selection by which a mibidethosen according
to the maximum posteriori probability given the observed @ata

P(M|D) OP(M,D) =P(M)P(D|M) = P(M)/QP(D|M,00)P((0|M)d(o,

wherew denotes the model parameters ddlenotes the domain of the model parameters. In
particular, we focus on model selection using large sample approximati®iNtD), calledBIC -
Bayesian Information Criterion

The critical computational part in using this criterion is evaluating the margingliti&od in-
tegralP(D|M) = [ P(D|M, w)P(w|M)dw. Given an exponential mod& we write P(D|M) as a
function of the averaged sufficient statisti¢gsof the dateD, and the numbeN of data points irD:

1IN, Yo, M) = [ 0N coM)doo, (1)

wherep(w|M) is the prior parameter density for modd, and L is the log-likelihood function
of model M. Recall that the sufficient statistics for multinomial sampleshddinary variables

(©2005 Dmitry Rusakov and Dan Geiger.
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(X1,...,%n) is simply the countdN - Yp for each of the possible"Joint states. Often the prior
P(M) is assumed to be equal for all models, in which case Bayesian model seisgbieriormed
by maximizingI[N,Yp,M]. The quantity represented I/N,Yp,M) = InI|N,Yp,M] is called the
BIC scoreof modelM.

For many types of models the asymptotic evaluation of Eq. I, -asc, uses a classical Laplace
procedure. This evaluation was first performed for Linear Exporie(iti®) models (Schwarz,
1978) and then for Curved Exponential (CE) models under some addlitentmical assumptions
(Haughton, 1988). It was shown that

S(N,YD,M):N~InP(YD]wML)—gInN+R, (2)
where InP(Yp|wwi ) is the log-likelihood ofYp given the maximum likelihood parameters of the
model andl is the model dimension, i.e., the number of parameters. The erroRterR(N, Yp, M)
was shown to be bounded for a fix¥sl (Schwarz, 1978) and uniformly bounded for'gll — Y in
CE models (Haughton, 1988) Bls— . For convenience, the dependencevbis suppressed from
our notation in the rest of this paper.

The use of BIC score for Bayesian model selection for Graphical Maslealid for Undirected
Graphical Models without hidden variables because these are LE mageistfen, 1996). The
justification of this score for Directed Graphical Models (called Bayesiatwhirks) is somewhat
more complicated. On one hand discrete and Gaussian DAG models are CE (@xlger et al.,
2001; Spirtes et al., 1997). On the other hand, the theoretical justificdtitve 8IC score for CE
models has been established under the assumption that the model containes th&tribution - the
one that has generated the observed data. This assumption limits the applichtiigyproof of
BIC score’s validity for Bayesian networks in practical setups.

Haughton (1988) proves that if at least one of several models corttensue distribution,
then the BIC score is the correct approximatiori[fd, Yo] and the correct model will be chosen
by BIC score with probability 1 asl — c0. However, this claim does not guarantee correctness of
the asymptotic expansion BN, Yp] for models that do not contain the true distribution, nor does it
guarantee correctness of model selection for fiNitd he last problem is common to all asymptotic
methods, but having a correct asymptotic approximatiori[fdrYp] provides some confidence in
this choice.

The evaluation of the marginal likelihod@N, Yp| for Bayesian networks with hidden variables
is a wide open problem because the class of distributions representeslybgi& networks with
hidden variables is significantly richer than curved exponential model# &t into the class of
Stratified Exponential (SE) models (Geiger et al., 2001). The evaluatitreaharginal likelihood
for this class is complicated by two factors. First, some of the parameters aidtel may be
redundant, and should not be accounted in the BIC score (Geiger #8986, Settimi and Smith,
1998). Second, the set of maximum likelihood points is sometimes a complex teeffeicting
surface rather than a single maximum likelihood point as in the proven aaskissiar and curved
exponential models. Recently, major progress has been achieved iziagaynd evaluating this
type of integrals (Watanabe, 2001). Herein, we apply these techniquesdel selection among
Bayesian networks with hidden variables.

The focus of this paper is the asymptotic evaluatiof{Nf Yp] for a binary naive Bayesian model
with binary features. This model, described fully in Section 3, is useful issdiaation of binary
vectors into two classes (Friedman et al., 1997). Our results are derntsat similar assumptions
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to the ones made by Schwarz (1978) and Haughton (1988). In this senspaper generalizes
the mentioned works, providing valid asymptotic formulas for a new type of imargkelihood
integrals. The resulting asymptotic approximations, presented in Theomdewidfe from the stan-
dard BIC score. Hence the standard BIC score is not justified fordayenodel selection among
Bayesian networks with hidden variables. Moreover, no uniform dconeula exists for such mod-
els; ouradjusted BIC scorehanges depending on the different types of singularities of the safficie
statistics, namely, the coefficient of theNrierm (Eq. 2) is no Iongepg but rather a function of the
sufficient statistics. An additional result presented in Theorem 5 desdfile asymptotic marginal
likelihood given a degenerate (missing links) naive Bayesian model; it conepits the main result
presented by Theorem 4.

The rest of this paper is organized as follows. Section 2 introduces tleepbof asymptotic
expansions and presents methods of asymptotic approximation of integreti®ns3 reviews naive
Bayesian models and explicates the relevant marginal likelihood integralsdee models. Sec-
tion 4 states and explains our main results and Section 5 gives a proof odtliinearem 4 that
demonstrates the mathematical techniques used herein. The full prooftbéorems is deferred to
Appendices A and B. Section 6 discusses our contributions and outlinee fesearch directions.

2. Asymptotic Approximation of Integrals

Exact analytical formulas are not available for many integrals arising iatipea In such cases
approximate or asymptotic solutions are of interest. Asymptotic analysis is ahbadranalysis
that is concerned with obtaining approximate analytical solutions to problemieatparameter or
some variable in an equation or integral becomes either very large ormaitl $n this section we
review basic definitions and results of asymptotic analysis in relation to the &hfigyr Yp] under
study.

Let zrepresent a large parameter. We say thaj is asymptotically equato g(z) for z— oo if
lim,. f/g=1, and write

f(z) ~9(z), asz— co.

Equivalently,f (z) is asymptotically equal tg(z) if lim ;.. r /g= 0, denoted = o(g), wherer(z) =
f(z) — 9(2) is the absolute error of approximation.

We often approximaté (z) by several terms via an iterative approximation of the error terms.
An asymptotic approximation by terms has the forni(z) = S1'1 angn(z) +0(gm(2)), asz — oo,
where{g} is anasymptotic sequeneehich means thadn;1(z) = 0(gn(z)) asz— . An equivalent
definition is

m-1
f(2) = 3 @0n(2) +O(gm(2)), asz— o,
n=1
where the big 'O’ symbol states that the error term is bounded by a camstétiple of gm(z). The
latter definition of asymptotic approximation is often more convenient and wi kiseein, mostly
for m= 3. A good introduction to asymptotic analysis can be found in (Murray, 1984

The objective of this paper is deriving asymptotic approximation of margirgifi&od integrals
as represented by Eq. 1, which for exponential families have the form

T[N, Yp] — /Q e N1(OYo) () dew @3)

3
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Figure 1: The classical Laplace procedure for approximation of integrer N ®u(x)dx, where
f achieves single minimum in the range of integration. (a) The exponential inte-
grand functions in one dimension, for differeNt The largeN the more mass of
the function is concentrated in the small neighborhood of the extremum. @ )}Wdn
dimensional integrand functioe~**¥*¥) (N = 1). The isosurfaces are ellipses.
(c) Ellipsoid-like isosurfaces of the three dimensional log-likelihood fumctimction
f=— [O.2In91+O.2In92+O.2In93+0.4ln(1—91— 0, — 63)]

wheref (w, Yp) = — L(Yp|w) is the minus log-likelihood function. We focus on exponential models,
for which the log-likelihood of sampled data is equaNdimes the log-likelihood of the averaged
sufficient statistics. Note that the specific models discussed in this papadaesl exponential.
Consider Eq. 3 for some fixed,. For largeN, the main contribution to the integral comes
from the neighborhood of the minimum éf i.e., the maximum of-N f(w, Yp). See illustration on
Figure 1(a,b). Thus, intuitively, the approximationI@, Yp| is determined by the form of near
its minimum onQ. In the simplest casé&(w) achieves a single minimum ey in the interior of
Q and this minimum is non-degenerate, i.e., the Hessian mafifixwy ) of f at wy is of full
rank. In this case the isosurfaces of the integrand function near the minimarmellipsoids (see
Figure 1b,c) and the approximation BN, Yp] for N — o is the classical Laplace approximation
(see, e.g., Wong, 1989, page 495) as follows.

Lemma 1 (Laplace Approximation) Let
() = [ MWy
u

where Uc RY. Suppose that f is twice differentiable and convex (#f,(u) is positive definite),
the minimum of f on U is achieved on a single internal poitwis continuous and (o) # O. If
[ (N) absolutely converges, then

I(N) ~ Ce Nfllo)N=0/2 (4)

where C= (2m)9/2u(ug) [det# f (up)] "2 is a constant.

Note that the logarithm of Eq. 4 yields the form of BIC score as presenté&aib2.

However, in many cases, and, in particular, in the case of naive Bayesiavorks to be defined
in the next section, the minimum dfis achieved not at a single point §& but rather on a variety
Wp C Q. Sometimes, this variety may l-dimensional surface (smooth manifold)@in which
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case the computation of the integral is locally equivalent todthed’ dimensional classical case.
The hardest cases to evaluate happen when the veMigtpntains self-intersections.

Recently, an advanced mathematical method for approximating this type ofalstégis been
introduced to the machine learning community by Watanabe (2001). Belowigfly latlescribe this
method and state the main results. First, we introduce the main theorem thasarsatuleevaluate
the asymptotic form of[N,Yp] asN — o computed in a neighborhood of a maximum likelihood
point}

Theorem 2 (based on Watanabe, 2001) Let
I(N) :/ e N Wy w)dw
We

where W is some closed-box around w, which is a minimum point of f in Wand f(wp) = 0.
Assume that f and p are analytic functionsapg) # 0. Then,

INT(N) =A1InN+ (m; —1)InInN 4+ O(1)

where the rational numbeéy; < 0and the natural number prare the largest pole and its multiplicity
of the meromorphic (analytic + poles) function that is analytically continued from

W= e WP (ReA) >0) (5)

wheres > 0is a sufficiently small constant.

The above theorem states the main claim of the proof of Theorem 1 in (Vida2@01). Con-
sequently, the approximation of the marginal likelihood intedfidl Yp] (Eq. 3) can be determined
by the poles of

Juo(N) = [ [F(w) = £ (o)) piw)dw

€

evaluated in the neighborhood$ of pointswg on which f attains its minimum. This claim, which
is further developed in Section 5, holds because the minimuhtwf — f (wp) is zero and the main
contribution tol[N, Yp] comes from the neighborhoods around the minimumg of

Often, however, it is not easy to find the largest pole and multiplicity(adj defined by Eq. 5.
Here, another fundamental mathematical theory is helpful. rébkelution of singularitiesn alge-
braic geometry transforms the integdgh ) into a direct product of integrals of a single variable.

Theorem 3 (Atiyah, 1970 Resolution Theorem) Let f(w) be a real analytic function defined in a
neighborhood 0B € RY. Then there exists an open set W that inclugles real analytic manifold
U, and a proper analytic map gJ — W such that:

1. g:U\Up — W\ Wp is an isomorphism, wheredi= f~1(0) and Uy = g~ (Wp).

1. Throughout this paper we use stylddsymbol to denote our particular marginal likelihood integrals rather than
standard[” symbol that denote general integrals appearing in theorems, exsiapdieauxiliary derivations.

2. Recall that the pole of the complex functiéfe) is the point where it has a finite number of negative terms in its
Laurent expansion, i.ef(z) =a_m/(z—20)"+...+ap+a1(z—2) +.. .. In this case it is said thét(z) has a pole
of order (or multiplicity)matzy. (See, e.g., Lang (1993), Sectior35
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2. For each point pe U there are local analytic coordinates, . ..,Uy) centered at p so that,
locally near p, we have

f(g(ug,...,uq)) = a(u,.. .7ud)u'§l ...ugd,

where k> 0 and gu) is an analytic function with analytic inverdg’a(u).

This theorem is based on the fundamental results of Hironaka (1964hanqmocess of changing
to u-coordinates is known as resolution of singularities.

Theorems 2 and 3 provide an approach for computing the leading terms isytmpiatic ex-
pansion of Id]N, Yp]:

1. Cover the integration domaia by a finite union of open neighborhoodg. This is possible
under the assumption th@tis compact.

2. Find a resolution magy and manifoldU, for each neighborhood/, by resolution of sin-
gularities. Note that in the process of resolution of singularltigsnay be further divided
into subregion&Jyg by neighborhoods of different poinfsc Uq, as specified by Theorem 3.
Select a finite cover dfly by Ugg, this is possible since closure of edghis also compact.

3. Compute the integral(A) (Eg. 5) in each regioM,g = da(Ugg) and find its poles and their
multiplicity. This integral, denoted by,g, becomes

JupN) = fug, FOW(w)dw
= iy T (G (W) 1(a (1) 4 (w)]du (6)

= fugs AWM R UG M(Ga (U)) |G (u)] dus

where|g,(u)| is the Jacobian determinant. The last integration (up to a constant) is done
by boundinga(u) and u(gq(u)), using the Taylor expansion fdgy|, and integrating each
variableu; separately. The largest polgg of J,g and its multiplicitym,g are now found.

4. The largest pole and multiplicity af(A) are Aqg)- = maxqp) Aqp and the corresponding
multiplicity mqg)-. If the (a)* values that maximizégg are not unique, then th@3)*
value that maximizes the corresponding multipliaity,g)- is chosen.

In order to demonstrate the above method, we conclude this section with mplexapproxi-
mating the integral

+& p+e o+
1[N] :/ 8/ s/ 8e*N(U§U§+U§U§+U§U§)du1duZdu3 @)
—-& J—¢ J—¢
asN tends to infinity. This approximation dfN] is an important component in establishing our

main results. The key properties of the integrand function in Eq. 7 are iltedtmna Figure 2.
Watanabe’s method calls for the analysis of the poles of the following function

+€ +€ +€
JA) = / / / (U2U3 + u2u3 + u3u) durdupdus. (8)
—& —& —&

To find the poles ofJ(A) we transform the integrand function into a more convenient form by
changing to new coordinates via the process of resolution of singularife®btain the needed
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Figure 2: Part (a) depicts an isosurfacedf (1t HUit5+55) (or alternatively ofi2u3+ u2u2 + U2U2)
and its set of maximum (minimum) points which coincide with the three axis. Part (b)
depicts four isosurfaces of the same function for its different valube.iJosurfaces are
not ellipsoids as in the classical Laplace case of a single maximum (see E@ure

transformations for the integral under study, we apply a technique datedng-upwhich consists
of a series ofjuadratic transformationsFor an introduction to these techniques see (Abhyankar,
1990).

Rescaling the integration range(te1,1) and then taking only the positive octant yields

_ aN+3 2012 202 21 12\A

J(A) =877 [ q)s (Ut + UTU5 + U3u3) du
_ QcdA+3 21,2 2,2 21 12\A
=8¢ (fO<UZ,U3<U1<l+ fO<U17U3<Uz<l + fO<U1,U2<U3<l) (U1U2 + U1u3 + UZUS) du.

The three integrals are symmetric, so we evaluate only the first. Using theatjodhnsformation
Uz = UpUp, Uz = UpUs, which modifies the integration range<Qus, us < u; < 1 to be(0,1)3, yields

Ji(\) :/ (u§u§+u§u§+u§u§)xdu:/ uP2(u3 + U3 4 udul) du.
O<up,uz<uy<1 (0,2)3

We now divide the rangé0, 1)3 to the regions G< uz < Uup < 1 and 0< up < uz < 1. Again these
cases are symmetric and so we continue to evaluate only the first using gfernaationus = upus,

Ju(\) = / UM 2(u3 + U3 + w3 du= / uP 2 (14 ud -+ udug)du
0<Uz<Up<1 (01)3

Since the function(1+ u + u3u3) is bounded on the region of integration, namely 1 + uZ +
usu3 < 3 for all 0 < up,uz < 1, it follows that

g [ AR dud < I < 24600 [ AR dude,  (9)
(071)2 (071)2
yielding
1
854)‘+3 < J\) < 2484)\+3 .
@3z =M= (A +3)(2A+2)
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Figure 3: A naive Bayesian model. Class variaBlis latent.

ThusJ(A) has poles ak = —3/4 and\ = —1 with multiplicity m= 1. The largest pole is = —3/4
with multiplicity m= 1. We conclude, using Theorem 2, thi| defined by Eq. 7 is asymptotically
equal tocN— 3.

We note that in this process of resolution of singularities we have implicitly cordplésterms
ki, ko, ks, the functiona(u) and the Jacobian determindgt(u)| (in Eg. 6). In particular, we have
established thadt; = 4, ko = 2, ks = 0, a(u) = 1+ u3 + ugu3 and|g'(u)| = udu, for the appropriate
range under study. The mappiggof Theorem 3) is the composition of the two transformations
we used and is defined via = uy, Up = u1U» andus = uiUpu3. However, this explicit form is not
needed for the evaluation of the target integral, as long as the vallearaf|g’'(u)| are derived.

In the proof of our theorems we perform a similar process of resolutigingfularities pro-
ducing implicitly the mappingy which is guaranteed to exist according to Theorem 3, and which
determines the values &f and|g'(u)| needed for evaluation of poles of functidf\) as required
by Theorem 2.

3. Naive Bayesian M odels

A naive Bayesian mode¥l for discrete variableX = {X,..., Xy} is a set of joint distributions for
X that factor according to the tree structure depicted on Figure 3, whectafwevariabl€ is never
observed. Formally, a probability distributi®{X = x) belongs to a naive Bayesian model if and
only if

P(X =x) = glP(C:cj)iElP(Xi =x[C=g)),

wherex = (x4, ...,X) is then-dimensional binary vector of values ¥f r is the number of hidden
states andtj denotes a particular unobserved state (class). Intuitively, this modetilies the
generation of data that comes front sourcescy,...,c.. Naive Bayesian models are a subclass
of Bayesian networks (Pearl, 1988) and they are widely used in clugtéCimeeseman and Stutz,
1995).

In this work we focus on naive Bayesian networks that have two hidteess( = 2) and
n binary feature variableX;,...,X,. We denote the parameters definipg; = 1|c1) by &, the
parameters defining(x; = 1|cz) by by, and the parameters definipfc; = 1) byt. These parameters
are called themodel parameters We denote thgoint space parameters (X = x) by 6x. The
following mapping, named,, relates these two sets of parameters:

n

9x=tﬂa‘(l—a)l‘”+<1—t)_|£lbi’“'<1—bi)l‘x‘, (10)

8
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and the marginal likelihood integral (Eqg. 1) for these models becomes
INYol = [ eNEKINO oo (11)
(071)2n+1

wherew= (ay,...,an,b1,...,bn,t) are the model parametets js the sample size, and the averaged
sufficient statistic¥ is the number of samples for whiéh= x divided by the sample sizd.

4. Main Results

This section presents an asymptotic approximation of the int&iNa¥p| (Eqg. 11) for naive Bayesian
networks consisting of binary variabl&s, . .., X, and two hidden states. It is based on two results.
First, the classification of singular points for these types of models (Geligdr, 2001). Second,
Watanabe’s approach as explained in Section 2, which provides a metluidaio the correct
asymptotic formula of[N, Yp] for the singular points not covered by the classical Laplace approxi-
mation scheme.

Let Y= {(y1,....y2)|yi > 0,3 yi = 1} be the set of possible values of the averaged sufficient
statisticSYp = (Y1,...,Yan) for dataD = {(X 1,... ,xi,n)}i'\'zl. In our asymptotic analysis we let the
sample sizéN grow to infinity.

Let Yp C Y be the pointgys, ..., yn) that correspond to the joint space parameters of the distri-
butions that can be represented by binary naive Bayesian models Wiittary variables. In other
words, assuming the indices yfare written as vector®y, ..., 8,) of n zeros and ones, points in
Yo are those that can be parameterized via

V.0 =[]0+ -0 [ (2B (12

wheret, a= (a,...,a,) andb = (by,...,by) are the 2+ 1 model parameters, as defined in Sec-
tion 3.

Geiger et al. (2001) classify the singular points of the algebraic varietiieoparameters of
binary naive Bayesian networks into two clasSesdS. This classification is used here to classify
the possible statistics arising from binary naive Bayesian networks witkrelift parameters; The
setSis the set of pointgys, ...,yn) such that Eq. 12 holds and @l = b; except for at most two
indices in{1,...,n}. Intuitively, each such point represents a probability distribution thatbean
defined by a naive Bayesian model (Figure 3) with all links removed éxatepost two.

The setS C Sis the set of points represented by a naive Bayesian model, just as Bheazs,
but with all links removed; namely, a distribution where all variables are mutiradlgpendent
and independent of the class variable as well. These statistics are parzedeway(s,,. s, =
Mlia) (1—a)d.

ClearlyS C SC Yp C Y. We call points inYp \ S regular pointsand points in setS\ S andS
typel andtype2 singularities respectively. We now present our main result.

Theorem 4 (Asymptotic Marginal Likelihood Formula) LetI[N,Yp] (Egs. 10 and 11) be the marg-
inal likelihood of data with averaged sufficient statistigs §fven the naive Bayesian model with
binary variables and two hidden states with parameters (a, b,t). Namely,

H[NvYD} = f(0’1)2n+1 eNEXYxmBX((,o) u(m)dw’
(13)
Bixa,nx) = ETTM1 & (1 — )% + (1 —t) [y by (1 — i),

9
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where x= (x1,...,Xn) denotes the binary vector of length n and the vectgraivd 6 of length2"
are indexed by x. Letpyand p satisfy the following assumptions:

A1 Bounded densityThe density (w) is bounded and bounded away from zerdbs (0,1)2"+1,
A2 Positive statisticsThe statistics Y = (Y1,...,Yxn) are such thaty>0fori=1,...,2".

A3 Statistics stabilityThere exists a sample sizg dlich that the averaged sufficient statistigs Y
is equal to a limiting statistics Y for all sample size$NNg.

Then, for > 3 as N— oo

(@) IfY € Yo\ S (regular point)

INI[N,Yp] = NInP(Y |ewL) — ntil InN -+ 0O(1), (14)
(b) IfY € S\ S (typel singularity)
2n—1
INT[N,Yp] = NInP(Y|wwL) — 5 INN+0(1), (15)
(c) IfY € S (type2 singularity)
INT[N, Yo] = NINP(Y [cow ) — %1 INN +O(1), (16)

wherewy are the maximum likelihood parameters for the averaged sufficient statistic Y
Moreover, for n=2, S= Yy = Y and

(d) IfY ¢ S (namely, Ye S\ S),

INI[N,Yp] = NInP(Y|wmL) — gInN +0(1), 17)
(e) Ifyes,
INT[N,Yp] = NInP(Y|oowmL) — :—;InN+2InInN+O(1), (18)
and for n=1,
(f) In]I[N,YD]:NInP(Y|wM|_)—%InN+O(1),
(19)
as N— oo,

The first assumption that the prior dengitis bounded has been made by all earlier works; in some
applications it holds and in some it does not. The proof and results, hawewvebe easily modified

to apply to any particular kind of singularity gf as long as the form of singularity is specified. The
second and third assumptions are made to ease the proof; the third assungstialso made by
(Schwarz, 1978). Removing these assumptions is beyond the scopepplis

10
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Note that Eq. 15 corresponds to selectig= —% andm; = 1 in Watanabe’s method and

Eq. 16 corresponds to selecting= —%1 andmy = 1. Both formulas are different from the stan-
dard BIC score, given by Eq. 14, which only applies to regular poirtsely, the points irYp \ S.

In contrast to the standard BIC score, which is uniform for all po¥fatsthe asymptotic approxi-
mation given by ouadjusted BIC scoréepends on the value ¥f= Yp through the coefficient of
InN.

One might be tempted to think that the coefficient of thienN term can be guessed by vari-
ous intuitive considerations. We now discuss three such erroneous ttefmst, the number of
parameters of the model that generates a singular j¥piig n+ 1 for case (c) because there are
n+ 1 independent binary variables (the class variablerafehture variables). This may seem to
explain the coefficient of IN in case (c). However, using the same reasoning for case (b) yields
the coefficien{n+ 3)/2 which differs from the correct coefficient. Another attempt is to claim that
the coefficient of—InN is half the number of parameters in the naive Bayesian model minus the
number of redundant parameters in the model that genefatéis particular, for case (b), the num-
ber of redundant parameters in the generative model4s3) — (n+ 1) = 2 and so the speculated
coefficient should b¢2n+1—2)/2 = (2n— 1) /2 which is the correct coefficient. However, using
the same reasoning for case (c) yields the coefficiap2 2vhich is wrong. Finally, computing the
maximum rank of the Jacobian of the map from the model parameters to the jad®t garameters
(defined by Eq. 22) at the maximum likelihood parametays for singular statistic¥p yields the
correct coefficient for case (b) but the wrong coefficigrt— 1)/2 for case (c).

The next theorem specifies the asymptotic behavior of marginal likelihoagt&isgfor degener-
ate naive Bayesian models, namely, when some of the links are missing. Tdrisrtheomplements
Theorem 4 and its proof is explicated in Appendix B.

Theorem 5 Let M be the degenerate naive Bayesian model with two hidden states dndm b
feature variables of which m are independent of the hidden state and let

w= (a.l, e ,an_m7 b:]_7 ey bn_rn,t,Cn_m_t'_]_7 .o .7Cn)

be the2n — m+ 1 model parameters of M. L&[N,Yp] be the marginal likelihood of data D with
averaged sufficient statisticg given model M. Namely,

1IN, Yo] = fio,gymis €25 (w)deo,
(20)
B = (M8 (1—a) ™ + (1-t) L0 (1 - b)) Ml mea & (1 - )%,

where x= (xg,...,%,) denotes the binary vector of length n and the vectgraivd 6 of length2"
are indexed by x. Letpyand i satisfy the following assumptions:

A1 Bounded densityThe density (w) is bounded and bounded away from zerdbs (0, 1)2"+1,
A2 Positive statisticsThe statistics Y = (Y1, ...,Yxn) are such thatyy> Ofori=1,...,2".

A3 Statistics stabilityThere exists a sample sizg duch that the averaged sufficient statistigs Y
is equal to a limiting statistics Y for all sample sizes>N\N,.

Assume also that ¥ Yy and that the parameterization of Y (as is Eq. 12) corresponds to a binary
naive Bayesian model WMwhich shares k links with model M. Then, forxim — 3 as N— oo:

11
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(@) If k> 3 (regular point)

INT[N, Yo] = NInP(Y [cow ) — meJrO(l),
(b) If k=2 (typel singularity)
INT[N, Yo] = NInP(Y[em) — me—I—O(l),

(c) Ifk=0o0r k=1 (type2 singularity)

1
INT[N, Yo] = NInP(Y [cow ) — % INN +O(1),

wherewy are the maximum likelihood parameters of statistics Y .
Furthermore, form=n—2

(d) If k=2 (typel singularity)

1
INTN, Yo] = NInP(Y e ) — % InN +O(1).

Note thathere -1 =2n—m-1, since m=n—2.

(e) Ifk=0or k=1 (type2 singularity)
n+1
INI[N,Yp] = NInP(Y |emL) — 5 INN+2InInN +O(1),

and form=n—1orm=n,
(f) INT[N, Yo] = NInP(Y[com ) — gInN+O(1),
regardless of k as N- o,

An adversary may argue that evaluating the marginal likelihood on singuilatisgs not needed
because one could exclude from the model all singular points which oré/haasure zero. The
remaining set would be a smooth manifold defining a curved exponential naodieto the standard
BIC score would be a correct asymptotic expansion as long as theYpolrets not been excluded.
However, this proposed remedy is not perfect because in some situdigotata may come from a
model that yields singular statistics relative to the models being compared.

As an example of incorrect Bayesian model selection by the standarddBt€, sonsider the
problem of selecting between two naive Bayesian modielsand M,, as depicted on Figure 4.
Suppose that the data is generated by the third nldgeBoth modeldvi; andM> can not represent
the target distributionMt) exactly, therefore, given a large enough sample, the choice of thd mode
depends on the particular distribution representedvlgyand its parameters. Intuitively, if the
dependencies 0f; andX; on the hidden nod€ in modelMr are stronger than the dependency of
X4 on the hidden node, then one should prefer mddlebver modeM,, and vice versa.

12
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Figure 4: An example of incorrect Bayesian model selection by the sti&rscore Mt repre-
sents the generating model, akid, M, represent models being compared. If the max-
imum likelihoods of data giveM; andM, happen to be equal, e.g., for true model pa-
rametersy = 0.75,a,=0.2,a3=0.12 a4 =0.17,b; = 0.33, b, = 0.12, b3 = 0.07, by =
0.77,a5 =bs = 0.2, ag = bg = 0.6, t = 0.42, then the model selection procedure based on
the standard BIC score will prefer moddl, as it is less penalized comparedMie. Us-
ing the adjusted BIC formula (Theorem 5), on the other hand, gives\antate tdvi,,
reflecting its higher marginal likelihood.

Now, if the maximum likelihoods of the data given modi&l and given modeM, happen to be
equal, which is possible whexy, depends strongly o@ in Mt (Figure 4), then the standard choice
of the model is dictated by the penalty term of the BIC score (Eq. 2). Thalfyeerm is smaller for
M1, which contains less parameters tihds and, consequently, the model preferred by the standard
BIC score isM;. However, the adjusted BIC approximation formula for the marginal likelitfood
models with hidden variables penalizes molllelless than mode¥l; (Theorem 5). Therefore, the
marginal likelihood of the data given moddb is asymptotically larger than that of moddl and
it should be chosen according to a Bayesian model selection procgikme enough data.

Note that when comparing a naive Bayesian model versus a sub-modek thie data comes
from the smaller model, then the standard BIC score may underevaluategberardel, but this
would not lead to an incorrect model selection.

5. Proof Outline of Theorem 4

The proof of Theorem 4 consists of two logical parts. The first partagtioof of claim (a) of The-
orem 4 that follows from the fact that for regular statisics Y \ Sthere are only two (symmetric)
maximum likelihood points at each of which the log-likelihood function is propestyvex. Hence,
the marginal likelihood integral can be approximated by the classical Lapiatieod (Lemma 1).
The proof of Theorem 4a, which reflects standard practice, is providdppendix A.2. The sec-
ond logical part consists of the proofs of claims (b) and (c) of Theatemd requires the advanced
techniques of Watanabe (Section 2). First, the intefjMiYp] is transformed by a series of trans-
formations into a simpler one. Second, the sets of extremum points of the etp@maximum
log-likelihood points) are found, and then the new integral is computed inglghinorhoods of
extremum points. Finally, the logarithm of the largest contribution gives tlsgatkeasymptotic
approximation of the original integral. We focus on one thread of ourfpmoich demonstrates
this method, deferring the full proof to Appendix A.

13
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5.1 Useful Transformations

Decomposing the transformatidnfrom the model paramete(a, b,t) to the joint space parameters
By, as defined by Eq. 13, facilitates the evaluation of the intdgialYp]. We decompos#& into a
series of three transformatioilsg, T, Tz such thafl = Tzo T, 0 T;. We call the model parameters
(a,b,t) - the source coordinateand the parametef - the target coordinatesThe transformations
T1 andT; are diffeomorphisms, namely, one-to-one differentiable mappings with eliffiable in-
verses, that change the source and target coordinates, redyeetickare defined in such a way
that the intermediate transformati@dy which carries all the information about the singularities, is
simple to analyze. These transformations are from (Geiger et al., 2001).

Denote the domain of the model parameterby [0, 1]2""1 and the domain of the joint space
parameters byd = Ax_q, whereAyn_1 = {(01,...,0:_1)|0; > 0,5 a; < 1} is the closed 2—1
dimensional unit simplex. Letl = T;(Q) be the image of;, A = T, }(©) be the preimage ofs,
andT, : U — A be the transformation that relates these sets. These transformationgaiasscs
follows:

T T T
Qabt) = Uugy — Nz < Og)

where the indices denote the names of the coordinates used to describerdspanding spaces.
We now present these three transformations.

Transformation T;: We definel; : Q — U via

s=2t—1, ui:ai%bi, X =ta+((1—t)b, i=1...,n (21)

The mappindf; is a diffeomorphism with detly, | = 2-"*1. The inverse transformation is given by
t=(s+1)/2, a=%x+(1-9s)u, bj=x—(1+su, i=1,...,n (22)
Furthermore, it can be verified thatis the set of point$x, u,s) € R" x R" x R such that

0<x <1 -1<s<1l, —Xx<(1-sui<l-x, Xx—1<(1+9)u <x. (23)

Transformation T3: We defineT; : A — © as the inverse of a composition of two transformations
Ts1 andTsy. First, consider the nonsingular transformatien: © — A’ defined by

Vij k= > Bxe,... %)
(X150 %n); ST Xi=Xj=...=%=1

wherev; stands for the probability of thiéh feature being truey;; stands for the probability that the
ith and jth features are both true, etc. We now expmagsi using the model paramete(a, b, t)
via

Vij.k =taaj...ac+ (1-t)bb;j...by. (24)

Using Eq. 22, we rewrite Eq. 24 obtaining
Vi=X, Vij=XX+(1-s?)uuj,

Vijk = XXXk + (1 — %) (XUj Ui + UiX; U + UiUjXi) — 25(1 — S*)Ujuj U (25)
Vi r =X1X2 - X + Si_o Pi(S) (3 “products ofi u’s andr —i x's”)

14
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wherep;(s) =1/2[(1—9)'(1+5)+ (—1—9)'(1—s)], and, in particularp,(s) = 1—s* andps(s) =
—25(1—5°).

Now we subtract products of the firstcoordinates to remove the leading terms. So, we do
Zj = Vij —Vivj. Then we subtract products of the firstoordinates with one of the new coordinates
to remove the second terms, nameily, = Vijkx — ViVjVk — ZjVk — ZkV| — ZjkVi, and so forth. We end
up with the transformatiofiz, : A’ — A defined by

Z =Vi, Zj=Vij—ViVj, Zjk =Vijk —ViVjVk— ZjVk — ZkVj — ZjVi, etc (26)

where the indices of the coordinates are non-empty subsets{af...,n}. In particular, thez
coordinate corresponding to a $&t {1,...,n} isz, thez coordinate corresponding {é} is z, and
thez coordinate corresponding @, j,k} C {1,...,n} is zj, etc.

The transformation33; andTs, are diffeomorphisms with Jacobian determinant 1. The trans-
formationTs is defined byTs = T;; o Tt : A — ©. Hence, T is a diffeomorphism with Jacobian
determinant equal to 1.

Transformation T,: We definel, : U c R?*1 — A ¢ R?1via
Z =X, zj=pAUlj, ..., Zi2 r = pPr(S)usliz...Ur (27)

obtained by combining Egs. 25 and 26. We use the notationu, s) when the dependence nfon
(x,u,s) needs to be explicated. Note that this transformation is not a diffeomorpbram>f 3.
Transformationdi, T, andTs are similar to transformations used by (Settimi and Smith, 2000)
in the study of the geometry of parametric spaces for Bayesian networks idibrhvariables.
These transformations can be regarded as reparameterizations dfthBangesian models in terms
of moments. In particular, if the hidden and observable nodes are assoimae states-1 and 1,
thens=E[C], u; = CoV\X;,C)/Var(C), pi(s) = E[(C—s)'] andzz = E[[]i_1(X —E[X])].

5.2 Preliminary Lemmas

Based on the transformatioiig, T, and T3, we present two lemmas that facilitate the evaluation
of the integrall[N,Yp]. The first lemma states that under AssumptidisandA3, the integral
I[N, Yp] can be asymptotically evaluated in theu,s) coordinates for a limiting statistics, while
dismissing the contribution of the density functipn The second lemma shows that the resulting
integralﬁ[N,Y] can be evaluated using the quadratic form inzkeordinates.

Lemma6 Letl[N,Yp] be defined by Eq. 13, namely,
_ N 3, YyIn By (w)
IIN, Yp] /(071)2“19 H(w)dw
and assume p is boundedijfand Y5 is stable (/8). Let
N, Y] = / e NTOXUS) gy duds (28)
u
where .
f(x,u,8) = fy — Y2 Y InGi[x,u,9,
(29)

B[x,u,s = (T30 T2)[x,U,8], Om[x,u,s=1—-52716[xu,s|

15
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and where § = maxy , scu 52, Y InBi[x,u,g and Y is the limiting statistics obYas specified by
Assumption B, namely, ¥ =Y for N> Ng.
Then, ¥ = P(Y|wwu.) and

INT[N,Yp] = N fy +InT[N,Y] +O(1) (30)
forallN > 1.

Proof: SinceT; is a diffeomorphismfy = P(Y|wwu) and the integral[N, Yp] can be evaluated in
(x,u,s) coordinates by introducing the constant factor of Jacobian determifaheformatioril,
Jr, = 2-™1 Moreoverp(w) is bounded and thus the integral evaluated wittv) = 1 is within
a constant factor df[N, Yp] and sinceYp is equal toY starting fromN, fixing Yp to Y introduces
finite number of approximation errors fot < Ng that can be bounded. ThugN,Y] is within a
constant factor of the integréN, Yp] multiplied by eN ™ with the constants independent Nrand
Yp. EQ. 30 expresses this fact in a logarithmic sclle.

Lemma7 Considerﬁ[N,Y} and f(x,u,s) as defined in Lemma 6 (Egs. 28 and 29). Let the zero set
Uo = argminy,seu f(x,U,s) be the set of minimum points ofxfu,s) in U. Let

N.Y] = maxJo[N.Y] and Jg [N :/ e NZ (@ w92 ?gx dud 31
JIN.Y] = maxIp[N.Y) and IpNj= | s @D
where z(x,u,s) is the I-th coordinate of(x;, u,s) = Tz[x,u,s], Z is the I-th coordinate of A, U, S|
and U is ane-box neighborhood of o= (X', U/, s") € Ug. (Note that]p,[N] does not depend onY,
while J[N,Y] depends on Y through the form of sgt)u

IfY is positive (&) and Y € Yy, then

InI[N,Y] =InJ[N,Y]+O(1) forallN> 1. (32)

The proof of this lemma uses the facts thgis a diffeomorphismyJ is compact, the contributions
of non-maximum regions of f are exponentially small, and th& @&imensional poin¥ > 0 corre-
sponds to a maximum likelihood parameters of naive Bayesian network wittybiagables and
two hidden states. The proof is explicated in Appendix A.1.

Lemmas 6 and 7 jointly state that the asymptotic forms ¢f\1Y] and InI[N, Yp| are identical
up to an additive term\ fy and a constant provided théis the limiting statistics o¥p (Assumption
A3).

5.3 Analysisof Type 2 Singularity

We now focus on the proof of Theorem 4c that deals with the singular pimirfs LetY € S.
Our starting point in proving Theorem 4c is integfaN, Y] (Eq. 31), which by Lemmas 6 and 7
specifies the asymptotic form &fN, Yp]. We evaluate the contributiord$,[N] to J[N, Y] from the
neighborhoods of extremum poingg = (X, U',s) € Up. The largest contribution determines the
asymptotic form of integrdl[N,Yp] asN — c andYp =Y.

Lety= (yi,...,Yn) be the model parameters of thendependent variables that define tHe 2
dimensional poin¥ € S, namely

y] = z Y(al,...ﬁn)a J = 1, ey n (33)
3e{0,1}",st. §j=1
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Furthermorey < S if and only if for all 6 € {0,1}", equalityYs, 5, = |‘|i”:1yi6i (1—v)*% holds

fory={y1,...,yn} given by Eq. 33.
LetV denote the closure of a 9ét The zero sett)y can be written as the union off 2 sets

n
Uo = Up_ UUg, U [ Uy, (34)
j=1
where

Uo_:{(x:y,u,s:flﬂui € (%,%),i:l,...,n}, Wo- ={(a,b=y,t=0)|a € (0,1)},

Uo+:{(x=y,u,s:1)|ui6(Lgl.%),i:l,...,n}, Woy ={(a=vy,bt=1)|b €(0,1)},
(35)
Ui =0,Vi # j;
uje (-3,1)se(-1,1); { a=bi=y,vi#j; }
Ugi =<{ (x=v,u,s ! 22 i=<(abt ,
0 (x=v,u.s)| -yj < (A-9s)u; <1-yj, Woj (ab1)] taj+ (1-t)bj =vy;j

Yj—1< (149s)uj <y;

and wheréAo_ = T, 1(Uo_), Wo = T; H(Uo), andWo; = T; *(Uo;j) are the same sets expressed
using the model paramete(a, b,t).
The zero set)p, namely the minimum points df, is divided into five disjoint sets:

CL (x,u,s) € Ugj\ UijYoi.

C2: (X,u,s) € N;Vo;.

C3: (X,u,s) € Ug- UUg; \ U;Uo;.

C4: (¥,u,s) € U [Uo- UUo; NUo; \ Uiz Uai] -
C5: (¥,U,s) € (Uo- UUo:)N); Uo;.-

These five disjoint sets and their boundaries caygrbecausd)o, NUg- = 0 and Uy NUgj =
MNkYok- The set)q is shown in Figure 5 along with a representative point fl@irthroughCs.

Note thatUyp is a union of twon-dimensional planeBgy_, Up, andn two-dimensional planes
Uoj, j =1,...,n. Consequently, one could perhaps guess from the classical Lajplpaexanation
analysis that because the zero subblgts Ug. have dimensiom, the coefficient of the IN term
would be at least-(2n+1—n)/2= —(n+1)/2. Indeed this happens, but a formal proof requires
to closely examine the form df near the different minimum points. This evaluation is complicated
by the fact that the zero planes intersect (see Figure 5), and sueh{€asC4, C5) are not covered
by the classical Laplace approximation analysis.

The proof proceeds case by case by evaluating the intefjsgN] (Eq. 31) around points
po = (X,U,s) from the setsC1 throughC5. Then, the maximal asymptotic value Hf[N] is
the approximation of [N, Y], as specified by Lemma 7. We now treat c&8ewhich demonstrates
the main ideas, deferring the other cases to Appendix A.

According to cas€2, (X, U, s’) = ;Uo;j. Each point of cas€?2 satisfiesf = 0 andx/ = y; for
i=1,...,nands # +1. Furthermore, itz coordinates satisfg = x{ foralli=1,...,nandz =0
for all other indices. Letp(x,u,s) =3, [z(X +x,U' +u,s +5) —Z]?. Note thatg(x, u,s) is term
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Projection of U, onto (s,u‘,uj), fory; =0.2, ¥ = 0.3

Figure 5: The setly projected or(s,u;, u;j), for x, =y = 0.2, x; = y; = 0.3. Examples of points of
typesC1-C5 are marked.

in the exponent of the integrand 6fN, Y] centered around the minimum poif¥,u’,s’). Using
transformationT, (Eg. 27), we obtain

oxus) = 3 [z2(X+xu+us+s) -7

= Jila— Z] + YijijlZ lej + Yiik,izj Akl Zik — Z|/Jk
(36)

= [(Xi/‘i‘xi)_xil]z‘i‘zu’i#j [(1— (SI+S)2)Uin —0]2+“higher order term’s

=S¥+ iz [(L—s?)uuj — (s+25)suuj] % + *higher order term'é

The higher order terms are multiplication of three, four and mgieand their contribution is
bounded by the terms explicitly Written in Eg. 36. For example, third terms arerof (zj, —
Z)? = 4(S +9)*(1— (S +9)?)?uuiug < 5eufuf for all s, uj, uj, Uk < € for € small enough. Similar
bounds can be obtained for all hlgh order terms in Eq. 36. Thus, thagalnpart ofg, that bounds
@ within the multiplicative constant near zero, is given by

(~|)(X, u,s) = ZXI'2+ ul uj (37)
1 ij,1#]
and@(x, u,s) < @(x,u,s) < 2¢(x,u,s) for all s, u;, u; < € for € small enough.

Since the multiplicative constants in the exponent can be transferred to thelivatitip con-
stants of integral itself by changing the integration range around zeneaandling, we only need to
evaluate the asymptotic form of mteg[ﬁé (Zi¥ 431549 gxdudsin order to get the asymptotic
form of integralJ[N,Y € S] (Eq. 31) within a constant muItipIy.

18
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The quadratic form i’s contributes aftN~"/2 factor to the integral[N]. This can be shown by
decomposing the integral and integrating out:t® We are left with the evaluation of the integral

= [ eMmeiiay
(—g,4+€)n

Forn = 3, this is precisely the integral evaluated as example in Section 2 which wad tobe
asymptotically equal toN~ 7. Generalizing the approach demonstrated in the example in Section 2
to n > 3 we obtain that the largest pole &f)) is A; = —n/4 with multiplicity m= 1, soJ[N] is
asymptotically equal taN~4. Thus the contribution of the neighborhood(af,u’,s) € N;Uoj to
JN,Y € S]iscN~ 7.

In summary, we have analyzed c&# showing that the contribution fN,Y € S] is cN- 7.

The dominating contributions in the casg, C4, andC5, are all equal teN— "% (the proof of this
claim is given in Appendix A). The dominating contribution in c&kis onlycN*zn—El. Also, the
various border points dfly do not contribute more than the corresponding internal points. Thus,
JIN,Y] = cN~"z for Y’ € S Consequently, due to Lemmas 6 and M Yp] = N-P(Y|oomL) —

™1 InN+0O(1), as claimed by Theorem 48

6. Discussion

This paper presents an asymptotic approximation of the marginal likelihooatafgiven a naive
Bayesian model with binary variables (Theorem 4). This Theorem prtheg the classical BIC
score that penalizes the log-likelihood of a model%byN is incorrect for Bayesian networks with
hidden variables and suggests an adjusted BIC score. Moreovarjfomu penalty term exists for
such models in the sense that the penalty term, i.e., the coefficienlptiEpends on the averaged
sufficient statistics. This result resolves an open problem regardinglidéy of the classical BIC
score for stratified exponential families, raised in (Geiger et al., 2001).

The major limitation of Theorem 4 arises from Assumptid®sandA3. While Assumption
Al (bounded density) is often satisfied in applications, Assum@b(positive statistics) is only
sometimes satisfied and AssumptiaB (statistics stability) is never satisfied in practice. Never-
theless, this Theorem is an essential advance towards developing asyBpaj@sian methods for
model selection among naive Bayesian models in particular, and for Bayestiaorks with hidden
variables in general. We now highlight the steps required for obtainin{idy peactical asymptotic
model selection score for arbitrary latent Bayesian networks, namel@aypesian networks with
hidden variables.

1. Develop a closed form asymptotic formula for marginal likelihood integ@af types of
statisticsy given an arbitrary latent Bayesian model.

2. Extend these solutions by developimgiformasymptotic approximations valid for converg-
ing statisticsYyp — Y asN — c. A uniform asymptotic approximation is an approximation
that has the error term bounded for'gllnearY and for allN.

3. Develop an algorithm that, given a Bayesian network with hidden vasainlé a data set with
statisticsYp, determines the possible singularity types of the limit statidiesid applies the
appropriate asymptotic formula developed in step 2.
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Our work provides a first step for naive Bayesian networks and areta framework to pursue
these tasks.

Theorem 4 shows that when comparing the classical BIC score with justed BIC score
(Eg. 2 versus Egs. 15, 16), one can see that a naive Bayesiarrketitioall links present is some-
what under-evaluated using the classical BIC score for singular stalfdtiecause the penalty term
reduces fron{2n+ 1) /2 in the classical score {&n—1)/2 (or (n+1)/2) in the adjusted score. We
conjecture that such under evaluation occurs for general Bayestawnks with hidden variables.
As a result, when the data shows weak dependencies for some linksiesftaing in evaluation of
the marginal likelihood near singular points of the model, then those models withlmks might
be under evaluated using BIC, but correctly evaluated with a uniformpi®tic formula that takes
the proximity to a singular points into account. An illustrative example of incomexlel choice
by the standard BIC score has been presented in Figure 4.

We conclude with two remarks. First, we note that the adjusted penalty tesn1Eg16) falls
within the range of penalty terms, studied by Keribin (2000), that lead tocaungistency estimators
in a frequentist’s interpretation.

Second, we note that, the sets of singular poBasdS are defined in (Geiger et al., 2001) as
the singular points of the algebraic varieties of distributions representbihbyy naive Bayesian
networks in the joint space parameters space, while here the same seatfirazd ds sets aftatis-
tics pointsY which give rise to singular maximum likelihood in the model parameters space.
the singular points of the joint space parameters space, regular logdir@tes do not exist and
the usual coordinates (i.e., the model parameters) that parameterizettbétress model variety
have a number of coordinates crushed into a single point. This results ineosysfaces of maxi-
mum likelihood points in the model parameter space and, consequently,saaratard behavior of
marginal likelihood integrals which we have started to explore in this papesth&n ramification
of this observation is that a bounded prior density defined on the modaheéers may accumu-
late massively on a single point on the model variety in the joint space paraspeiss, violating
the boundedness assumption of the prior density and thus yielding natasiapproximations to
marginal likelihood integrals in the joint space parameters.
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Appendix A. Proof of Theorem 4 (TheMain Theorem)

We start with the proof of Lemma 7, which requires two additional lemmas. Thepreceed with
a case by case proof of Theorem 4.

A.1 Proof of Lemma 7

The proof of Lemma 7 uses Lemmas 8 and 9. In particular, Lemma 8 states tlcat adosion of
the claim made by Lemma 7 (Eq. 32) holds in the neighborhood of extremum mgintsder two
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additional assumptions denoted B§ andB2. Lemma 9 shows thd&1 andB2 hold. Finally, the
proof of Lemma 7 elevates the local version to the global claim.

Lemma8 Let
f(x,u,s) = fy — Y2, Y In6i[x,u,s,

(38)
B[x,u,§ = (T30 T2)[x,U,8], On[x,u,s=1-52716[xu,s|

where § = maxy ¢)cu zizilYi In6;[x,u,s] and Y= (Yi,...,Yan) is @ non-negative vector with sum
of elements equal tb. Let the zero set )= argmin, s cu f(X,u,s) be the set of minimum points
of f(x,u,s)onU, let p = (X,U,s) be a pointin |y and let

o) [N,Y] = /U e NTuS) gy duds (39)

where U is some small neighborhood of.pAlso, let
Jpo[N] :/ e V@S -2) gy duds
Ue

where z(x, u,s) is the I-th coordinate of(x, u,s) = T2[x, u, s and % is the I-th coordinate of X, ', §].
Further assume thatX, U, s') satisfies

Bl. 6 =Tz0Ty(X,U,s) is a minimum of f as function & f(6') = 0andUgf(6") = 0.

B2. f, as a function 06, is strictly convex ab’ = 8(X', U, <), i.e., the matrixy f (6/) is positive
definite.

Then, 3
INTpo[N,Y] =InJp [N]+0O(1) forallN>1. (40)

(The right hand side of Eq. 40 depends on 'Y through tfle @rm.)

Proof: Sincelgf (6') = 0, Hp f(6') is positive definite ands : A,) — Og) is a diffeomorphism, it
follows that,f(Z) = 0 and#L4 f (Z) is positive definite. Alsof (Z) = 0. Thereforef as a function
of zcan be approximated by a quadratic form néas T,(xX,U,s) via

mZ(Z. ~-7)? < f(2) < nzZ(Z. —7)?, forze A, (41)

where/\; is some sufficiently small neighborhood #f andn,n, > 0 are slightly smaller and
larger, respectively, than all eigenvalues#éff (Z). Consequently, sincg : U — A is continuous,
there exists neighborhoddt of py such thatl,(Ug) C A¢ and Inequality 41 holds foz(x,u,s) =
Ta2(x,u,s) for all points(x, u,s) in Ug. Using Inequality 41 for evaluatinﬁo[N,Y] (Eq. 39) yields

/ e_r]ZN Yi( (Xvuvs)_zi)zdxdu ds< ﬁpo [N)Y] < / e_nlN Si(z (X,U,S)—Z;)dedu ds
Due to Theorem 2, the bounding integrals are asymptotically equivalentaimtdtiplicative con-
stant, because the poles and multiplicities of the correspod@dunctions (Eq. 5) that determine
their asymptotic behavior are the same for any constant multiplig$fx, u,s) — Z )2, and in par-
ticular, for the multipliers)1, no and 1.1
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Lemma9 Let f(u,x,s) be as defined by Eq. 38, namely,

f(x,u,8) = fy — 52, Y In8[x,u,8g,
B[x,u,§ = (T30 T2)[x,u,8], Bn[x,us=1-y2716/xu,s|

where § = maxy ysecu Ei{lYi In6;[x,u,s] and Y= (Y,...,Yn) is @ vector inYyp (defined by Eq. 12)
such that > 0 (A2). Let the zero setd)= argminy g cu f(X,U,s) be the set of minimum points of
f, and let(X,u,s) be a pointin Y. Then X, u',;s) =0, and

Bl. 8 =Tz0Ty(X,U,s) isaminimum pomtoffasfunctlonefon@ f(6)=0andOf(0') =
Furthermore 8 = (Y1,...,Y_;) andOf (X, U,s) =

B2. f as afunction o is strictly convex a®', i.e., # f (6/) is positive definite.

B3. Ifn>3and Ye Yp\ S, then fx,u,s) is strictly convex afx',u’,s'), that is, the matrix
Hiug (X, U,S) is positive definite.

B4. Also, if n> 3 and Y€ Yp\ S, then | consists only of two distinct poin{s(,u’,s’) and
(X", u",s"), such that k= X", U = —u” and $ = —¢".

Proof: The claimf (X,u’,s') = f(8') = 0 follows directly from the definitions of, & and fy.
Consider ClainB1. The pointdy = (Y1,...,Y_1) is the unique minimum of, as a function
of 8, on ©, becausefy — f(0) = ¥;YiIn6i[x,u,g is the logarithm of a multinomial distribution.
SinceY € Yy, the distribution specified b§p can be represented by the model parameters, namely,
B0 € (T30 T2)[Uo]. Consequentlydp = (Tzo T2)[Ug] becausé is the unique minimum of. So,0/ =
80 = (Y1,...,Yn_1). Furthermore, becaude> 0, 6’ is an internal point 0® yielding g f (6’) = 0.
Finally Of (xo, Uo, S0) = J(T30T2)(x0, Uo,So) e f(6') = 0 as well.
ClaimB2 is established by explicit calculations. The Hessian magik(6') at®’ = (Yi,...,Yan_1)
is given by
= fori# j
¢t fori=j

(%61 (0], = {

Consequently, for ang e RZ'-1 a0, it follows that
1

2

Claim B3 follows from the proof of Theorem 12 of (Geiger et al., 2001), whibbves that
the Jacobian of the transformatidpis of maximal rank fom > 3 for points(x,U’,s) that satisfy
0 = T,[¥,U,s] € Yo\ S The mentioned theorem and claB imply that for alla € R?"*1, a #£ 0,

2

al - Hyf(6)-a= zl—Jri

2
| >o
Y Yo 6“] >

aT'}[(x,u,s)f(X@UOaSO) a=a'- [J(TsoTz)(XO Uo, So ) %f( ) T30Tz)<X07u0750) a
= [J7oz) (X0: Uo, o) - } - HoF(0') - [J1s0my) (%0, Uo, S0) - @] =bT - Hef(8')-b >0,

whereb = Jir,.1,) (X0, Uo, S0) - @ This proves ClainB3 becauséH f (6') is positive definite ant # 0
lestJ,.t,) would not be of maximal rank.
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Claim B4 follows from claimB1 that®’ = (Y1,...,Y_1) and from Theorem 13 in (Geiger et al.,
2001), which states that f@& < Yp \ S, there are exactly two source poirfts u, s), precisely the
ones specified by ClaiB4, that satisfyd’ = T,[x,u,s. B

Proof of Lemma 7: Lemma 8 combined with Lemma 9 establish the asymptotic behavior of
ﬁ[N,Y] in the gp, neighborhood of a single minimumpg (Eq. 40). Now, sincdJ is closed and
bounded (Eqg. 23), it isompact Hence, from an arbitrary infinite set efneighborhoods of points
in U, there exist a finite subset of disjoint neighborhoods of points that coveiJ. The neighbor-
hoods that do not contain minimum points can be discarded since their ctiotibuthe integral is
exponentially small, i.e., a contribution boundedeby)'® versuse N wherec; > c,. LetU) C Ug
denote the finite set of points froby, the neighborhoods of which are chosen to ca¥gr Also,
let J|N, Y] denote the maximal contribution IN, Y], as in Lemma 7 (Eq. 31). We obtain

J[NvY] < H[N7Y] < Z JPO[N] SkJ[N>Y]> (42)
pocU}

wherek is the number of points id)). Taking the logarithm of Eq. 42 yields Eq. 32 which establishes
Lemma 71

ClaimsB3 andB4 of Lemma 9 have not been used in the proof of Lemma 7. These claims are
needed in the next section.

A.2 Proof of Theorem 4a (Regular Statistics Case)

Theorem 4a rephrases standard facts regarding asymptotic expahswegrals around a single
extremum point. Recall that Theorem 4a states thg #£ Y for N > Np, Y, >O0fori=1,...,2"and
Y € Yo\ S then asymptotic approximation ofIfN, Yp] (Eq. 13) equal&l In P(Y [w ) — 2”“ InN+

O(1) (Eqg. 14). To prove this claim we use Lemma 6 which statesl{ihatyp| and]I[N Y] have the
same asymptotic approximation up to a multiplicative consedifit and computei|N,Y] using
Lemma 1 (Laplace approximation).

We start by noticing thalN, YD] absolutely converges for afy> 1 andYp > 0. That is because
the integrand functioNZ%"&W) — . 8, (w)N% satisfies 0< By(w)N*% < 1 for all N, Yp, i and

= (a,b,t) € Q and becausp(a,b,t) is a probability density function of2, thus integral [N, Yp]
is finite (and less than 1). Consequenilm,Y] also absolutely converges for ahy> 1 and any
Y >0, as required in order to use Lemma 1.

Consider now the integrd[N,Y] = J,, e Nf*4Sdxduds Since the value o& N (49 outside
the small neighborhoods of the minimurhss exponentially small, so the asymptotic behavior of
I[N,Y] onU is actually described by integration§N, Y] in the small neighborhoods of minimums
of f (Lemma 7). Sincé[N,Y] converges and Claim3l, B3 andB4 of Lemma 9 hold, it follows
that in sufficiently small neighborhoods of the two internal minimum points tifie integraﬁ[N,Y]
can be computed by Lemma 1 (Laplace Approximation).

Consequently, integratini;:jN,Y] in the full neighborhoods of the maximum likelihood points
(X, U, ) € Up, that lie on the border df}, introduces only a constant multiplicative errors to the
approximation. This is shown by considering the inteéfNI,Y] around minimum points of in
the equivalent (sinc@; is a diffeomorphism) coordinatés, b,t), which have the full integration
domainQ = (0,1)?"1. In these coordinates, approximatifigyy a quadratic form (as performed
by Laplace approximation) ofa, b,t) and integrating in a full neighborhood of border point results
in multiplicative error factor of ®wherek is the number of border coordinates.
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We now apply Lemma 1 to the small neighborhoods of the two minimum pointsawid by
combining Eqg. 30 with the logarithm of sum of two approximations describeddoylEve obtain
the Theorem 428

Theorem 4a does not specify tB¢1) term. The constant ter@is well known in explicit form
when the minimum of is achieved on a single point, as specified by Lemma 1. In our case, the min-
imum of f is achieved on two points(,u’, s') and(x”,u”,s") and by taking the integralgy v ¢)[N]
andJ e ¢ [N] in (a,b,t) coordinates and accounting for the partial integration domains for the
border points we obtain

/ / 4/ /! /! 1/
C= wln(zmﬂn W, b, t) - Ha, bt —kIn2,
2 VdetH f(a,b,t) /detH f(a’ b t")

where(d, b/, t') = T, 1 (X, U, 9), (@,b",t") = T, (X", u",s") andk is the number of border coordi-
nates of(a’,b/,t’) (or equivalently of(a”’,b”,t”)). Note thate’ =b”, b’ =a” andt’ =1—t".

A.3 Proof of Theorem 4b (Type 1 Singularity)

Theorem 4b states thatYp =Y for N > Np, Y; > 0fori=1,...,2"andY € S\ S, then In[[N, Yp|

(Eq. 13) is asymptotically equal tdP(Y |wwu) — 2”—51 InN +O(1) (Eg. 15). To prove this claim

we first employ Lemma 6, which relatdéN, Yp] with I[N,Y] (Egs. 28 and 30) and Lemma 7,
which related[N, Y] with J[N,Y] (Egs. 31 and 32). Consequently, it remains to evalifteY] =
MaXp,cu, Jpo [N].  For this task, one needs to examine the neighborhoods of arbitrary minimum
points po € Up of f. However, forY € S\ S (singularity of type 1), the functiorf can not be
approximated by quadratic form and Lemma 1 (Laplace Approximation) n@faqplies. Instead

we use Watanabe's method.

Let (a,b,t) be the parameterization &fc Sas described by the definition 8f(Eq. 12) with
a = b for alli #1,k. Also, letZ), = T, 1(Y)k = (1— (2t — 1)?) - 3 . &b The zero sety is
given by

X=a, Vi=1...,n i#IlKk,
x =ta +(1-t)by,
Uo=<¢ (Xu,8) €U | xx=tax+ (1—1t)by; : (43)
U=0, Vi=1,...ni%lk
Uy, U, S, such thafl—s?)uug = 7,

Note thatz, # 0 anduj,u, # 0, s # +1 for (X, U, ) € Up, becaus®& ¢ S. The sel)y is depicted
in Figure 6.

We now apply the method of Watanabe, as described in Section 2, to evaledteetyrals
Jm[N, Y] for po € Up. We examine the form of the exponent functionlig[N, Y], @(x, u,s) which
is equal toy | [z (x,u,S) — Z1%, in a small neighborhood gy = (X, U,s) € Up. The coordinates of
Z =To(X,U,s) areZ = x; for all i, Z, = (1—s?)u/u, and all otherz’s are zero. Substituting
as a function ofx, u,s) into @ and translating théx, u,s) coordinates so thdi',u’,s') becomes the
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Projection of U onto (s.u,u) Projection of Uy onto (s,u u), extreme statistics

(a) (b)

Figure 6: The projection of sély onto(s,us,uy) space. The zero se is defined by type 1 singu-
larity statistics. (a) lllustration is fax; = 0.18,x, = 0.28, 7, = 0.0096, that correspond
to statisticsY generated by true distributiom; = 0.1, a, = 0.2, b; = 0.3, b, = 0.4 and
t = 0.6. Upper and lower bounds an are shown by mesh-grid. (b) lllustration of set
Uo for extreme (almost type 2) singular statistics of type 1 that is generatagd-by0.1,

a, =0.2,b; = 0.3, b, = 0.4 andt = 0.005. The zero set is very close to the zero set for
type 2 singularity statistics depicted in Figure 5(b).

origin, yields

oxus)= 3 [z(X+xU+us+s)—Z]?

= Silz(X +xU +u,s +s) —ZJ?
+ [z.k(x’+x,u’+u,s’+s)—4k]2
+ ik (>(+Xau’+u,§+5)—4]2t [Zk(X + XU +U,8 +9) — 7]
+ Y jA K |:Zij(X/+X,U,+U,S’+S)—4j:| +...

= 3l +x) = X2 )
+[(1— ($ +92) (U +u) (U + ) — (1 $?)yup]*
43k (L= (S +9D) (U +u)ui — 0>+ [(1— (S +92) (U +uu — 0]
+ 304k [(1—(S+9?)u; —0]2+...

= ILX
+[~28uus+ (1 S2)uu + (1 - s2)uuy + “smaller term&]
+ 3k [(L—$2)Uu; +“smaller termé)* + [(1— s2)uui + ...
+ 31 j4k [(1—s?)uiuj + “smaller term§] 2L,

The phrase “smaller terms” and dots denotes higher order terms that incudéles that are
present in the explicit terms of the sum and can be discarded for suffjcemnall (x,u,s). In
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particular, the ternz (x, u,s) — Z, is rewritten via
Zk(X +x,U +u,s +9) —Z, = (1—(s+5)?)(u +u) (U + ) — (1—s?)ulu

= — (28 +9uus+ ((1—52) — 28s— ) (U + W)U
+((1—5?) - 29's— &)U u.

Consequently fos' # 0, sufficiently smalle ands,u;,ux € (—¢,€) it follows thatC; < —(28' +
U, < C;, C; < [(1—52) — 28's— 2][uj + U] < C andC; < [(1—s?) — 28's— |yl < C; for C;,
1, C5, Cs, C;, C; slightly smaller and larger the®y, = —25'u/uj,, C; = (1—5?)u, Cz = (1—s?)u.
Consequently, in order to approximate the intedalN] (Eq. 31) forpp = (X', U, s') with ' # 0,

it remains to approximate the integral

J1N] = [e Ne(xusigxduds 45)
where @ (x,u,8) = 32+ [Cis+Cou +(33uk]2+ ik GiU?
and where;, G,, C; and¢ are non-zero constants.

Similar analysis of the principal part af(x,u,s) (Eq. 44) function can be applied for the
neighborhoods ofig = (X,U’,s) with s'= 0. It reveals that in order to approximalg,[N| for
po = (X, U, s) with s = 0 we should approximate the integral

J2N] = [e Ne(xusidxduds (46)
where @(x,u,8) = ;%2 + [C182+Cou +ésuk]2+ ik GiUZ,

and whereC;, C,, C3 andd are non-zero constants that are slightly larger or smaller thanu,
u anduy? 4 u2.

From Eq. 45, by changing the coordinates te Cis+ Cou; +Cai, we obtain that in the neigh-
borhoods of the points iy with ' # 0, that f can be described by quadratic form in 21
variables, so their contribution N, Y] is cN*E

The analysis of neighborhoods of pointsllg with s = 0 is harder. Integrating ow; and
u; variables yieldsl\l‘zan2 multiplicative factor to the asymptotic approximationbﬂN], leaving
us to compute of the contribution gfe NS +C2U+Csuil* dsdyduy;. The changes of variablés-
(Cu; +Cauj) /€, transforms the remaining part $$[N] to

- &1 e
Ja[N] = / ' / “e N+ gt
—&1 —&2

The zero set of the exponent function is a one-dimensional ¢urve s2, so we expecis|N] be at
leastcN~z, as verified below.
Watanabe’s method fdiz[N] calls for the analysis of the poles of the function

_ 2\
I = /(171)2(52 +t)?dsdt

Here, we transform the original integration range if#dl, 1) by rescaling, introducing only con-
stant multipliers to the integral. The analysis of the poled(af is in the spirit of example shown
in Section 2. We present this analysis completely to demonstrate a number ofantpsubtle
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points in the evaluation of integrals by resolution of singularities. E.g., we canse the binomial
formula for expandings® +t)?, sinceA is not necessarily an integer.

The integrald(A) is symmetric relative t@, so we consider onlg > O for the evaluation of its
poles. Changing the coordinates via +t2 we obtain

/ / sz+t”dsdt—/ / 2(+1?) 2Adsdt+/ / 2(L — 122 dsdt

The first integral is easy to evaluate by standard substituients for 0 < s<t < 1 andt = st for
0 <t <s< 1. Thus, the first integral contributes a pole\at —% with multiplicity 1. The second
integral, however, can not be evaluated in this way, since, the substitutidsfor0<s<t <1
gives the integraly [o 2t 2(s> — 1)?'dsdt, where the ternfs? — 1) is not bounded away from zero
on (0,1) and thus can not be ignored when identifying the poles.

To overcome this difficulty let = s+t andu = s—t, yielding

min(v,2—v)
//Zt t2)2dsdt= = // (v—u)uv?dudv
max(—V,v— 2

and

2/ /_vv u) 2)‘\/2"dudv<//2t t2)2dsdt< > //_VV DPPdudy  (47)

Computing the lower bound in Eq. 47, we obtain

%folffv(v—u)u”v”dudv: %fo VZA+1 1 ULy uz”z} }
V4)\+2dv_

1
= 3ot DD
The upper limit is correspondinglyz%. Hence, the largest pole dfA) is A = —%, with
multiplicity m=1 and the overall contribution of the neighborhoods of pomtsvith s = 0 to
JIN,Y] is againcN~ "z, and it is the same as for poingg for which s’ 0. The point(X,u’,s)
need not be an mternal point of. Such border points have a smaller domain of integration than an
internal point, therefore they do not contribute mord[fd, Y] than internal pointsl

It is interesting to compare Figure 6b and Figure 5, to see that as aYpeaii®\ S approaches
Y’ € S, the zero set fo¥ depicted by Figure 6 approaches the zero seYfaepicted in Figure 5.

A.4 Proof of Theorem 4c (Type 2 Singularity)

The outline of the proof of Theorem 4c is presented in Section 5.3 includinggticification of the
zero setJp and five principal case31-C5 that correspond to different locations of extremum points
(X,U,9) € Up. Recall that we are interested in the evaluation of the contribution of the baigh
hood of each of the points of typ€4-C5 to the integrall[N, Y] (Eq. 31). The maximal contribution
determine, according to Lemmas 6 and 7, the asymptotic behavior of the intipgrdd] (Eq. 11)
of interest. We now treat these cases one by one.

Case C1:(X,U,s) € Ugj \ Ui£jUoi for somej. Each such pointx',u’,s) satisfiesu; = 0, for
alli=1,....,ni+#j; U #0; s #=£1; z =x; andz; , = 0. Using the approach of Watanabe
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we analyze the form of the exponent functigrof integrand ofJp,[N] near the minimum point
po = (X,U,s). Centering(x, u,s) around(x,u’,s') we obtain

(p(X,U,S) = ZI[ZI(XI+X5X/+U751+S)_4]2

= il +xU +u,8+9) —ZP+5i[7;(X +x,U +u,8 +9) - Z;]?
+ Yikzjlz(X + XU +u,8 +5) — Z,]° + “higher order terné

2
= il +x) = X2+ Tixj {(1— (S +9)2) (U +uj)ui —0}
+ 3 [(L= (8 +9)?)uiuk — 0] 4 “higher order terné

2
= Si¥+Tis {(l—s’z)u’jui + “smaller termé}
+ Yikzj [(1—S?)uue— (s+ 25’)suuk]2+“higher order termé

Since,u’j # 0 ands # +1, the principal part ofp, that boundsp within a multiplicative constant, is

o(x,u,8) = X+ 5 0

Hence,Jp,[N] is cN—"2". One should have expected this result because the zeldy ga$ a 2-
dimensional surface, yielding a dimensionality drop of 2 due to two locallyrréait parameters.

Case C2:(X, U, ) =(N;Uo;j. This case is analyzed in Section 5.3.

Case C3: (X,U,s) € Up_ UUq. \ UjUgj. Each such pointx,u’,s) satisfiesu; # 0 for all
j=1,...,nands = +1. We have

ex.u,s)= Yi[z(X+xu+us+s)—7]?
= Sila(X +x U +u,s+9)—Z+ 3 i[z;(X +xU +U,8 +85) - Z;]?
+zi,j.k[zijk(xl+Xau/+uasl+s)_Zi/jk]2+-"

2
= 304 +%) = X2+ 51 | (1= (8 +97) (U +u) (U] +uj) —0]

2
3208+ 9L (S )+ 0]
- ZiXi2+Zi,j [—Zs'ui’u’js+“smallertermé}2

2
+ ik [4u{u’j u.s+ “smaller termé} + “higher order term’&

So, the principal part apis of the formy; x? +s2. The fact that integration range feis one sided,
i.e. s> 0 (ors< 0) changes the integrdh,[N] only by a constant multiply (12) relatively to the

“full” neighborhood. Thus the contribution of this regionN, Y] is cN-"3".
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Case C4:(xX,U,s) € U; [Uo- UUg NUoj \ Ni-jUqi], for somej. Each such pointx,u,s)
satisfies| # 0 for somej; uj = 0 for alli # j; ands' = +£1. We have

(p(X,U,S) = Z|[Z|(X/+X,U/—|—U,SI+S)—Z”2
= YilaX +xu+us +9) =2+ 5[z (X +xU +u,8 +5) —Z]?
+ Sikej[Zk(X +X,U +u,8 +5) — Z,]? + “higher order termé

= SR X2+ S (L (9D +uu 0]

+ Sk [(1= (8 +5)?) ik —0]° +*higher order term's (48)

2
= Zi)(i'z"'zi;éj {:Fzsujui:lzzsujl]i—SZU/jUi—SZUjUi}

+ D0kt [F2syu, — SLu; U | 2y “higher order term’s
~ Zixi2+822i¢jui2.

Integrating out thes ; X2 terms fromJ 5, [N], we see that they contribute factorf 3 to Jp,[N]. So,
we are left with analysis of the poles of

J\) :/Wesz}‘ (?Zluiz))\dsdu

The standard change of variableaite= uiy; fori=2,...,n—1 gives

n—1
JAN) =c 21+ 5 u?) dsdu
M)=cf SRS )
Thus the largest pole dffA) (for n> 2) isA = —% with multiplicity m= 1 and the contribution of

the neighborhood of thied, U, s) is cN-"%.

Case C5: (X,U,s) € (Up- UUp;)(N;Uoj. Each such poinfx’,u’,s) satisfiesu; = 0 for all
i=1,...,nands = 41. This is the deepest singularity, the crossing of all (except oneyzanes
of Ug. We have

oxus) = 3[z(X+xU+us+s)—Z?

= Jila(X+xU+u,8 49 —ZP+73; [z (X + XU +U,S +5) -7
—I—zi’j.k[ijk(X/+X,U/+U,S’+S)—Z‘-'jk]z'f-...

= Sil4+%) = X2+ 55 [(1— (8 +952)uy; — 0]

+3ijk[-2(8+9)(1— (s +9)?)uiujuc — O] ? 1 “higher order term'é (49)

= Ti+Yi; [:F25uuj—szuiuj]2
+ 3 i k[4syujug + “smaller term§]2 + “higher order terms
< SR

The higher order terms are bounded by scs%uéuj2 term, because of the special formmfs) term
inz12 i (EQ. 27). l.e., the functiop; (s +8) = 1/2(1— (S +9)?)[(1— (s +9)) "1 — (1) L(1+ (s +
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s))'~*] can be rewritten aroursl= +1 aspi(s +s) = s-1/2(28 +9)[(1— (s +9))' 1 — (—1)"1(1+
(s +9))'""!. Thus, any high-order termf, (X +x,u,+1+s) is of form

Z k(X +xu,E1+s) = Ul ug - B(9),

wherep(s) = 1/4(28 +9)?[(1— (§ +9)) 1 — (—1)""1(1+ (S +9))""1]? and where is the size of
index set{ij ...k}. Consequently, this term is boundedslﬁylizuj2 for sandu small enough.

They; x2 terms contributeN—2 multiplicative factor toJ p,[N], so we should only analyze the

poles of
A
J\) = u?u? | dsdu
e

The analysis is similar to the one presented in Section 2, but with additionablesiaThus the
largest pole ofi(A) this time isA = —% and notA = —n/4. The multiplicity of the pole\ = —% is
one and so the contribution of the neighborhood&@D, +1) is cN~—"%". This analysis is incorrect
for n = 2 because then the suph u?u contains only one term and this results in increasing the
multiplicity of the poleA = —1/2.

The interesting fact about the last two cases is that in the neighborhddgl cdindUg, the
growth of the functionp is dominated bys? and thus the multiplicity of the maximal pole 3f))
is always one and the Inkterms do not appear in the approximation af }y{N]. This changes in
the casen = 2, where the dimensionalities Bf_ andUp. are the same as bk;’s, as explicated in
the next section.

Summary of Proof of Theorem 4 for typsingularity, Y& S: Among the possible cas€4-C5
the largest contribution to th&N,Y] comes from points witls = +1. Note that various bor-
der points ofUy that we do not consider in the above analysis do not contribute more than the
corresponding internal points because their domain of integration is smaers, InJ[N,Y] =
—™1InN 4+ O(1) and due to Lemmas 6 and 7,IN,Yp] = NP(Y|ww.) — FInN + O(1) as
claimed.®

A.5 Proof of Claims (d,e) of Theorem 4 (Casen = 2)

Claims (d,e) of Theorem 4 state thatrif=2, Yp =Y for N > Ng andY; >0 fori =1,...,2",
INT[N,Yp] (Eq. 13) is asymptotically equal 8P(Y |wu) — %In N+ O(1) (Eqg. 17) forY ¢ S and
asymptotically equal ttNP(Y |wy) — %InN +2InInN + O(1) (Eq. 18) forY € S. Similar to the
proofs of Claims (b,c), we first employ Lemma 6, which reld{es Yp] with I[N, Y] (Egs. 28 and 30)
and Lemma 7, which relateIEN,Y] with J[N,Y] (Egs. 31 and 32). Consequently, it remains to
evaluatel [N, Y] = maxyecu, J p,[N]. For this task, one needs examine the neighborhoods of arbitrary
minimum pointspg € Ug of the functionf. From the definition o¥, Yo andS(Section 4) it follows
thatS= Yy = Y for n = 2. Note that there is no regular points in this case. We now modify the
proofs of type 1 and type 2 singularities to fit to the case2.

Typel singularity: The zero setg is the same set as described by Eq. 43 Wwithl andk = 2.
The analysis of the form of the exponent functipof the integrand of ,, [N] gives Egs. 45 and 46
without they . ;¢ u? terms. Thus, by the same analysis, the contribution of these regions to the

integralJ[N, Y] is cN~2 and application of Lemmas 6 and 7 concludes the proof.
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Type2 singularity: The zero sety = Ug_ UUg; UUg1UUp; is the same set as described by
Egs. 34 and 35. Now, howevedy , Ug., Uz andUg, are of the same dimension, namely, two.
This fact changes the asymptotic approximation.

Consider the casé31-C5 one by one. There is no change in caSésandC3 where the point
(X,U,9) lies on the proper two dimensional surfat&g, Uo, or Ug_, Ug,. Here, the functiorp
can be approximated by 3 variables, resulting in the contribwtior?/? of these regions td[N, Y].

The more complex situation is (€2, C4 andC5 cases, where zero planes of the same dimension
meet. Generally, the intersection points of zero surfaces of the same dimansiexpected to give
rise to a InIrN term. While this is not always a case, e.g., see example in Section 2, thix terim
does appear now. We have:

C2: The principal part o is x2 + x5 + uzu2, as specified by Eq. 37. Integrating out tfeterms
we obtain through the analysis of the poleslof) = [u?u2*du;du, that the largest pole of
J(A) is A = —1/2 with multiplicity m= 2. Thus the contribution of this region fgN, Y] is
cN=3/2InN.

C4: The principal part ofpis X2 + x3 + 5?3 or x2 + x5 + Su? (see Eq. 48). Similarly to the case
C2, the contribution of this region N, Y] is cN~%/2InN.

C5: Here, the principal part afis x2 +x2 +s?u2u2 (see Eq. 49). Once again, we integrate outthe
variables and analyze the poleslgi) = [ s?u*usdsdudu,. The largest pole ik = —1/2
with multiplicity m = 3, and thus the contribution of this region JN, Y], including the
factors from integrating out the’s, is cN~%/2In2N.

Summarizing the contributions of the neighborhoods of various critical ptntg € S, we see
thatJ[N,Y] ~ cN-¥2In?N and, consequently, iiN,Y] =N fy — 3InN+2IinInN+O(1). B

A.6 Proof of Theorem 4f (Casen=1)

Theorem 4f states that i =1, Yp =Y for N > Np and Vi, Y, > 0, then IH[N,Yp] (Eqg. 13) is
asymptotically equal tlP(Y [win ) — $INN-+0(1) (Eg. 19). Once again, we firstemploy Lemma 6,
which related[N, Yp] with I[N, Y] (Egs. 28 and 30) and Lemma 7, which reldi@s Y] with J[N, Y]
(Egs. 31 and 32). Consequently, it remains to evallifNeY| = maxycu, Jp,[N]. For this task, one
needs examingp,[N] in the neighborhoods of arbitrary minimum poimg< Ug of the functionf.

From the definitions o/, Yo andS, for n = 1, there is no distinction between different type
of statistics andr = Yo = S. Moreover, according to Theorem 2 the asymptotic form of the in-
tegral Jp,[N] = J,, e N@*U9-% dxdudsis determined by the poles dfA) = f, (z1(x,u,s) —
2’1)2"\dxdud$ where, in this case;(x,u,s) —z, = xf. Once again, contributions of poinpg € Ug
lying on the boundary df) can be ignored, since their domains of integration are smaller than do-
mains of integration of the corresponding internal points. Thus, the kgpgésofJ(A) isA = —1/2
with multiplicity m= 1 and In [N, Yp] is asymptotically equal tbl fy — % INN+0O(1). 1

We can also compute the integiié, Yp| (Eq. 11) directly fom=1 andYp =Y. Itis

IN,Y] = /( . N(Yolnfat+b(1-0)+Yan[(1-a)t-+(1-b)(1-1]) 3 b t)dadbdt
01
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whereY; = 1—Yj. Ignoring the density(a, b,t) by using the assumption of bounded densi§)(
and changing the variablesxe= at+ b(1—t), we rewritel|N, Y] is asymptotically equivalent form

. it beN(Yolnx+Y1In[H])
H[NN]:/O /0 b_a/a dxdadb

Consider now i
I1N,Y] = / NI IN(1-%) 4
a

for some 0< a< b <1 (the casd > a is symmetric). This is the integral of the beta distribution
with a = NYy+1 andp = NY; + 1 (DeGroot, 1970, page 40). Lé&tx) = YoInx+YiIn(1—Xx). The
maximum of the integrand functiofx) on [0,1] is achieved axg = Yo and it iseN (). There are
three cases to consider according to the locatio oélative to(a, b).

1. Internal point, ¥ = Yo € (a,b). In this case

f(Yo+Xx) = f(Yo)+Yoln (1+ %) +(1=Yo)In (1— ﬁ)

= f(Y)+Y (Y—XO —22t O(XS)) +(1-Yo) (;—é0 — w +O(X3))

= f(Yo)— W{YO)XZJrO()@).
Thus, in the small neighborhood &, f can be approximated by quadratic form and the
classic Laplace approximation (Lemma 1) can be applied yieltifig,Y] ~ c;eN ¥ N-1/2,
Moreover, sincel;[N,Y] and €N are continuous functions df andxg = Yo, uniform
asymptotic bounds oy [N, Y] exists for allxp in a proper closed subset ¢&,b) asN —
«. l.e., the integral1[N,Y] is bounded within a constant multiplies &N~z and these
constants are independent@fandN for all X € [a+€,b—¢] andN > 1. Note that the above
approximation off is only valid forYy # 0, 1 (AssumptiomA2). Otherwise, the approximation
of f is non-quadratic.

2. Border point, ¥ = Yp € {a,b}. The expansion fof (Y, + x) is the same, but the integration is
performed only on the half of the interval, which results in half the constantiof to the final
approximation compared with the previous case.

3. Maximum of f is outside df,b]. Let m denote the maximum o™ on [a,b], i.e., m=
MaXc(ap €"*. We havel;|N,Y] < (b—a)mN < czeN¥N~1/2, for some appropriate constant
C3.

The above analysis shows thafN, Y] < c,ppe™ *N~1/2 for some constarg,p, for all a andb. Fur-
thermore]l[N,Y] > o€ ¥ N~1/2 for somecioy > 0 for (a,b) € {(a,b)|a< Yo,b > Yo,b—a> 2& >
0}. Since the later region has a non-zero Lebesgue measure, it followgNhet ~ ce¥¥N~-1/2
and INI[N,Y] =N fy — $InN+O(1).

Appendix B. Proof of Theorem 5

Theorem 5 states the asymptotic approximation for the marginal likelihood gidegenerate bi-
nary naive Bayesian mod# that hasm missing links. In order to prove this theorem we examine
the log-likelihood function of the degenerate model and decompose it intgendeate part and
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a naive Bayesian part. These parts define two probability functions thab@ependent and the
marginal likelihood of data is computed relevant to each one of them. Combirengshlts gives

Theorem 5.
Let Y be the log-likelihood function of the marginal likelihood integral (Eq. 20)tfer degen-
erate binary naive Bayesian network described in Theorem 5. We have

ty@bt,c)= 3,Y%In6y(w)
= Ix% [In e(xl,...,xn,m)(aa b,t) + Zin:nfm_yl(xi Inci+ (1—x)In(1— Ci))]

= Z(Xl.,....,xn,m) [Ine(xls~~~;xn—m)(a’ b’t) ) Z(Xn—m+1>--~axn)YX]
+ ¥t nemea (Ex Y InGi + 3 V(1) In(1—ci))

= Z(xl....a,xn_m)Y(x1,4.4,xn,m)|ne(x1,...,xn,m)(avbat)
+ ¥ mi (I +(1-Y)In(1-q))
where(xy, ..., %) are binary vectors of lengty Yoy, x. 1) = ¥ (xo 1) Y0, x0) @NAYi =
Y (XX, L%, Yoo THE NEW statisticyy, . «, ) andYi's are positive, becauseis positive A2).
Using the assumptions of bounded densiAg)(and stable statistic#\8), the marginal likelihood
integrall[N, Y] (Eg. 20) can be rewritten as

n

I[N, Yp] ~I[N,Y] =

1
/0 ciNYi(l—ci)N“Yi)dq] /(01)zn @@, (50)
i=n—m+1 b4

wherexX’= (x1,...,X—m). The firstm integrals are integrals over the beta distribution (DeGroot,
1970, page 40) and

Ny v F(NY, +1)F(N(1-Yi)+1)
NY (1 _ o \NO-Y)qe — ' '
/0 ¢ '(1-q) dg F(N+2)
The asymptotic behavior of Gamma function is well understood and it is deschip Stirling

formula, I (2) = e 22 2/2n[1+O(z 1)] (Murray, 1984, page 38), and thuslife) = —z+ (z2—
$)Inz+0O(1). Using the equality IiY N-+1) = InY N+ O(1), we obtain

FNY+D)M(N(1-Y)+1)
r(N-+2)

In

= (NY+ 2)In(NY +2) + (N(1-Y) + 1) In(N(1 - ¥)) + 1) — (N+ 3)In(N+2) + O(1)
= (NY + 2)InNY + (N(1-Y)) + ) InN(1 - ¥) — (N+ 3)InN + O(1)
=—2InN+N(YInY; + (1-Y))In(1-Y)) + O(1).

Hence, the contribution of the first integrals to I[N, Y] is NIn p(Ya_mt1,- .-, YalomL) — ZInN.
The second integral in Eq. 50 is exactly of the type analyzed in Theoramd4he theorem follows
by summing up the contributions of these two palts.
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Abstract

Support vector machines (SVMs) have been recognized asfdhe most successful classifica-
tion methods for many applications including text clasatiien. Even though the learning ability
and computational complexity of training in support veatoachines may be independent of the
dimension of the feature space, reducing computationalptaxity is an essential issue to effi-
ciently handle a large number of terms in practical applicet of text classification. In this paper,
we adopt novel dimension reduction methods to reduce thertiion of the document vectors
dramatically. We also introduce decision functions for ¢teatroid-based classification algorithm
and support vector classifiers to handle the classificatioblpm where a document may belong to
multiple classes. Our substantial experimental resutbgvshat with several dimension reduction
methods that are designed particularly for clustered dagder efficiency for both training and
testing can be achieved without sacrificing prediction smcyiof text classification even when the
dimension of the input space is significantly reduced.

Keywords: dimension reduction, support vector machines, text diaasion, linear discriminant
analysis, centroids

1. Introduction

Text classification is a supervised learning task for assigning text dodarieepre-defined classes
of documents. It is used to find valuable information from a huge collecticiextfdocuments
available in digital libraries, knowledge databases, the world wide web (WW\akid company-wide
intranets, to name a few. Several characteristics have been obsememidnspace based methods
for text classification (20; 21), including the high dimensionality of the inmace, sparsity of
document vectors, linear separability in most text classification problerdsthaenbelief that few
features are irrelevant. It has been conjectured that an aggrdsseasion reduction may result in
a significant loss of information, and therefore, result in poor classiitaesults (13).

Assume that training daixi, yi) with y; € {—1,+1} for 1 <i < nare given. The dual formula-
tion of soft margin support vector machines (SVMs) with a kernel fundti@md control parameter

(©2005 Hyunsoo Kim, Peg Howland and Haesun Park.
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Cis
1 n
max a; — = GidjyiyjK(Xi,Xj), (1)
i izl 2i,z
st. aiyi=0, 0<ao;<C, i=1,...,n.
2

The kernel function
K(Xi,Xj) =< @(xi),0(x;) >,

where <,> denotes an inner product between two vectors, is introduced to handli@esrly
separable cases without any explicit knowledge of the feature magppirige formulation (1) shows

that the computational complexity of SVM training depends on the number oirtgadlata samples
which is denoted aB. The dimension of the feature space does not influence the computational
complexity of training or testing due to the use of the kernel function.

However, an often neglected fact is that the computational complexity ofrtgadepends on
thedimension of the input spac&his is clear when we consider some typical kernel functions such
as the linear kernel

K(X,Xj) =< X, Xj >,

the polynomial kernel
K(X, %) = [< X, X} > +[3]d,

whered is the degree of the polynomial, and the Gaussian RBF (radial basis funietiorel
K (x,x;) = exp(—yllx —xi%),

wherey is a parameter to control. The evaluation of the kernel funa&pends on the dimension of
the input datasince the kernel functions contain the inner product of two input veétoithe linear
or polynomial kernels or the distance of two vectors for the Gaussian RBtek Leta; denote
the optimal solution for (1). The optimal separating hyperplafea*,b) also requires evaluation
of the kernel function since

f(x,a*,b) = Z a;yiK(xi,x)+b
Xi €SV
whereSV denotes the set of support vectdrss a bias given by

~miny_g < W5 Q(Xi) > +max,— 1 < W, (Xi) >

b= >

and |
iz 141 1

Therefore, more efficient testing as well as training is expected from dimeneduction.

Throughout the paper, we will assume that the document set is repgdsaranm x n term-
document matriXA = (&;j ), in which each column represents a document, and eachantspre-
sents the weighted frequency of terin documentj (1; 2). The clustering of data is assumed to be
performed previously.
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In the next section, we review Latent Semantic Indexing (LSI) (2; 1)ckwhses the truncated
singular value decomposition (SVD) as a low-rank approximatidgh dflthough the truncated SVD
provides the closest approximationAdn Frobenius o, norm, LSI ignores the cluster structure
while reducing the dimension of the data. In contrast, in Section 3, we rewesra dimension
reduction methods that are especially effective for classification of cadsidata: two methods
based on centroids (16; 12), and one method which is a generalizationasfdiseriminant analysis
(LDA) using the generalized singular value decomposition (GSVD) (1@h W¥mension reduction,
computational complexity can be dramatically reduced for all classifiers imgjuglipport vector
machines and k-nearest neighbor classification. For k-nearestooeiglassification (kNN), the
distances of vector pairs need to be computed when finding k nearelsbaesg Therefore, one can
significantly reduce computational complexity by dimension reduction.

In many document data sets, documents can be assigned to more than tereuglas clas-
sification. To handle this problem more effectively, we introduce a thitdgbased extension of
several classification algorithms in Section 4. Our numerical experimentsali@strat the cluster-
preserving dimension reduction algorithms we employ reduce the data dimevigiont any sig-
nificant loss of information. In fact, in many cases, they seem to havefwt ef noise reduction,
since prediction accuracy becomes better after dimension reduction wheggaced to that in the
original high dimensional input space.

2. Low-Rank Approximation Using Latent Semantic Indexing

LSl is based on the assumption that there is some underlying latent semarttiorstin the term-

document matrix that is corrupted by the wide variety of words used in dattsraad queries. This
is referred to as the problem of polysemy and synonymy (6). The basidddiat if two document
vectors represent the same topic, they will share many associating wibinds keyword, and they
will have very close semantic structures after dimension reduction via SWs LSI/SVD breaks
the original relationship of the data into linearly independent componentsvl@re the original

term vectors are represented by left singular vectors and docunetatsby right singular vectors.
That s, ifl <rank(A), then

Ax ULV’

, Where the columns adf;, are the leading) left singular vectorsg; is anl x | diagonal matrix with
thel largest singular values in nonincreasing order along its diagonal, anmblinens ofV, are
the leading right singular vectors. Theﬁ|\/,T is the reduced dimensional representatioi\obr
equivalently, a new documeqte R™! can be represented in thelimensional space @=U,"q.

This low-rank approximation has been widely applied in information retri2jal Since the
complete orthogonal decomposition such as ULV or URV has computatiomahtdjes over the
SVD including easier updating (22; 23; 24) and downdating (17), diman&duction by these
faster low-rank orthogonal decompositions has also been exploitetH{8)ever, LSI ignores the
cluster structure while reducing the dimension. In addition, since there iseooetical optimum
value for the reduced dimension, potentially expensive experimentation enegghired to deter-
mine a reduced dimensidn As we report in Section 5, classification results after LSI vary de-
pending upon the reduced dimension, classification method, and similarity reemsployed. The
experimental results confirm that when the data set is already clusteeedintension reduction
methods we present in the next section are more effective for classificdtiew data.
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Algorithm 1 : Centroid algorithm for Dimension Reduction

Given a data seh € R™" with p clusters and a vectar € R™1, this algorithm computes p
dimensional representatidéne RP*! of q.

1. Compute the centroig of theith cluster, 1<i < p
2.SetC=[c; ¢ -+ Cp

3. Solve min [|Cq —ql|2

Algorithm 2 : Orthogonal Centroid algorithm for Dimension Reduction

Given a data sef € R™" with p clusters and a vectar € R™?, this algorithm computes p
dimensional representatid@nof q.

1. Compute the centroig of theith cluster, 1<i < p
2.SetC=[c; ¢ -+ cp
3. Compute the reduced QR decompositio€pivhich isC = QpR

4. §=Qpq

3. Dimension Reduction Algorithms for Clustered Data

To achieve greater efficiency in manipulating data represented in a high slanahspace, it is
often necessary to reduce the dimengloamatically. In this section, several dimension reduction
methods that preserve the cluster structure are reviewed. Each methogtatie choose a projec-
tion to a reduced dimensional space that will capture the cluster structtie dhta collection as
much as possible.

3.1 Centroid-based Algorithms for Dimension Reduction of Clusteredata

Suppose we are given a data matAixwhose columns are grouped infoclusters. Instead of
treating each column of the matrix equally regardless of its membership in a specific cluster as
in LSI/SVD, we want to find a lower dimensional representaloaf A so that thep clusters are
preserved irY. Given a term-document matrix, the problem is to find a transformation that maps
each document vector in the dimensional space to a vector in thdimensional space for some

| < m. For this, either the dimension reducing transformat@ne R'*™ is computed explicitly

or the problem is formulated as a rank reducing approximation where tha giatrixA is to be
decomposed into two matricBsandY. That is,

A~ BY 2

whereB € R™! with rank®) = | andY € R'*" with rank(Y) = |. The matrixB accounts for the
dimension reducing transformation. However, it is not necessary to dertipudimension reducing
transformatiorG from B explicitly, as long as we can find the reduced dimensional representation
of a given data item. If the matriR is already determined, the matixcan be computed by solving
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the least squares problem (8; 12; 16)
min||BY —Alle.- ®3)

Any given document] € R™? can be transformed to the lower dimensional space by solving the
minimization problem

_min [|B4—ql2. (4)
qERle

Latent Semantic Indexing that utilizes the SVD (LSI/SVD) can be viewed asiation of the
model (2) withB = U, (16), whereU;ZV|" is the rankl truncated SVD ofA. Thend =U,"q is
obtained by solving the least squares problem

min ||Bg — = min ||U§—qll». 5
quMH q—all2 quMH 1a—qll2 (5)

In the Centroid dimension reduction algorithm (see Algorithm 1),ithecolumn of B is the
centroid vector of théh cluster, which is the average of the data items inttheluster, for 1<i < p.
This matrixB is called the centroid matrix. Then, any vectpe R™1 can be represented in the
p dimensional space &g the solution of the least squares problem (4), whgiie the centroid
matrix. In the Orthogonal Centroid algorithm (see Algorithm 2), phdimensional representation
of a data vectog € R™! is given asjj = Q,T)q whereQ)p is an orthonormal basis for the centroid
matrix obtained from its QR decomposition.

The centroid-based dimension reduction algorithms are computationally Ehstban LSI/SVD.
They are also more effective when the data are already clustered. githbe centroid-based
schemes can be applied only when the data are linearly separable, tisejtaloée for text classifi-
cation problems, since text data is usually linearly separable in the originahsiiomal space (13).
For a nonlinear extension of the Orthogonal Centroid method that utilizaslKenctions, see (18).

3.2 Generalized Discriminant Analysis based on the Generalized Singular Vadu
Decomposition

Recently, a new algorithm has been developed for cluster-preseriimension reduction based
on the generalized singular value decomposition (GSVD) (10). This algog#éneralizes classi-
cal discriminant analysis, by extending its application to very high-dimenk@ata such as that
encountered in text classification.

Classical discriminant analysis (7; 25) preserves cluster structure kimizang the scatter
between clusters while minimizing the scatter within clusters. For this purposwijttiin-cluster
scatter matrixS, and the between-cluster scatter magxare defined. If we denote by the set
of column indices that belong to the clusten; the number of columns in clustgrandc the global
centroid, then

o

Su= Zw(aj —ci)(aj—a),

i=1jeN;
and
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Algorithm 3 LDA/GSVD

Given a data matribA € R™" with p clusters, this algorithm computes the columns of the matrix
G e R™(P-1) which preserves the cluster structure in the reduced dimensional, spati also
computes thg — 1 dimensional representatianof A.

1. ComputeHp € R™P andH,, € R™" from A according to Eqns. (7) and (6), respectively.

2. Compute the complete orthogonal decompositioH ef (Hy, Hy)T € R(P*W>M which is

PTHQ—((F; g).

3. Lett =rank(H).
4. Compute W from the SVD dP(1: p,1:t), which isUTP(1:p,1:t)W = Za.

5. Compute the firsp — 1 columns of

1
x=a( 5" 7).

and assign them tG.

6. Y=G'A

Since ,
trace(Sy) = lay —cill3
I;]GZI.

measures the closeness within the clusters, and
p

waceS) =y 3 ol
1I=1]elN;

measures the remoteness between the clusters, the goal is to minimize the foi@enaximizing
the latter in the reduced dimensional space. Once again I&firgR'*™ denote the transformation
that maps a column of in the m dimensional space to a vector in thelimensional space, the
goal can be expressed as the simultaneous minimization off @48gG) and maximization of
tracdG' $,G).

When S, is nonsingular, this simultaneous optimization is commonly approximated by maxi-
mizing

J1(G) = tracd (G"S,G) 1(GTS,G)).
It is well known that the global maximum is achieved when the columr afe the eigenvectors
of S;'S, that correspond to thielargest eigenvalues (7; 25). In fact, when the reduced dimension
| > p—1, traceS,'S,) is exactly preserved upon dimension reduction, and edyals - - +Ap_1,
where each\; > 0. Without loss of generality, we assume that the term-document nfatsiyarti-
tioned as
A=A, -, A
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where the columns of each blogk € R™"™ belong to the clustar Defining the matrices

Hw = [a1 —C1,82 —C1,...,a8n — Cp] € R™" (6)
and

Hp = [y/M1(CL—©),...,/Mp(Cp —C)] € R™P, (7)
then

Sv=HwH, and S =H,H].

As the product of am x n matrix with ann x m matrix, S, will be singular when the number of
termsm exceeds the number of documents In that case, classical discriminant analysis fails.
However, if we rewrite the eigenvalue probleptSx; = Aix; as

BZHpH. i = o2HyH,! i,

it can be solved by the GSVD.

The resulting algorithm, called LDA/GSVD, is summarized in Algorithm 3. It follcie
construction of the Paige and Saunders (15) proof, but only compuwtesettessary part of the
GSVD. The most expensive step of LDA/GSVD is the complete orthogorwmposition of the
compositeH matrix in Step 2. When mayp,n) < m, the SVD ofH = [H/,H}}] € R(P*W*M can pe
computed by first computing the reduced QR decomposkibr= Qy Ry, and then computing the

SVD of Ry € R(PTMx(pn) 55
B S 0\ 7
RH_Z<O 0>P.

2y O
H=RLQL=P( o O)ZTQL,

This gives

where the columns d@yZ € R™(P+1) are orthonormal. There exists othogo@a R™™ whose
first p+n columns arQyZ. Hence

(Zn 0\ 7

where there are nom—t zero columns to the right ofy;. SinceRy € R(PH*(PM s 3 much
smaller matrix tharH € R(P*W*M the required memory is substantially reduced. In addition, the
computational complexity of the algorithm is reducedtamr?) + O(n®) (8), since this step is the
dominating part.

4. Classification Methods

To test the effect of dimension reduction in text classification, three diffasiassification methods
were used: centroid-based classification, k-nearest neighbor)(ldld support vector machines
(SVMs). Each classification method is modified by introducing some threslatlés to perform
classification correctly when a document has membership in multiple class#ss bection, we
briefly review the three classification methods and discuss their modifications.

43



KiM, HOWLAND AND PARK

Algorithm 4 : Centroid-based Classification
Given a data matriA with p clusters and corresponding centroids;, 1 <i < p, and a vector
q € R™, this method finds the indejxof the cluster in which the vectay belongs.

e find the indexj such thasim(q,¢;), 1 <i < p, is minimum (or maximum), whersim(q, ¢;)
is the similarity measure betweerandc;. (For examplesim(q,c;) = ||q — Gi||2 using thel,
norm, and we take the index with the minimum value. Using the cosine measure,

. q'c

and we take the index with the maximum value.)

4.1 Centroid-based Classification

Centroid-based classification, summarized in Algorithm 4, is one of the singidssification meth-
ods. A test document is assigned to a class that has the most similar centsingy the cosine
similarity measure, we can classify a test docuney computing

q'c
arg maX —m——— 8
9025 Tall2llllz ©

whereg; is the centroid of théth cluster of the training data. When dimension reduction is per-
formed by the Centroid algorithm, the centroids of the full space become linmesg € RP*! of
the identity matrix. Then the decision rule becomes

q'e
arg max ————, ©)
1<i<p [|Q]]2]|& |2

whereq is the reduced dimensional representation of the docuqerttis shows that classification
can be performed by simply finding the indesf the vectoig with the largest component. Centroid-
based classification has the advantage that the computation involved is dxtsam@e. We can
also classify using the, norm similarity measure by finding the centroid that is closest ito Lo
norm.

The original form of centroid-based classification finds the nearegtaid and assigns the
corresponding class as the predicted class. To allow an assignment dbeurment to multiple
classes, we introduce the decision rule for centroid-based classifieation

y(x, J) = sign{sim(x, c;) — 67}, (10)

wherey(x, j) € {+1,—1} is the classification for documertwith respect to class (if y > 0 then
the class ig, else the class is ng}, sim(x, ¢j) is the similarity between the test documerand the
centroid vector; for the classj, ande‘J? is the class specific threshold for the binary decision for
y(X, j) in centroid-based classification. In this way, documentll be a member of class if its
similarity to the centroid vectar; for the class is above the threshold.
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Algorithm 5 : k Nearest Neighbor (kNN) Classification

Given a data matribA = [ay, ..., a,] with p clusters and a vectay € R™, this method finds the
cluster in which the vectay belongs.

1. Using the similarity measusgm(q,a;) for 1 < j <n, find thek nearest neighbors of
2. Among thesd vectors, count the number belonging to each cluster.

3. Assignq to the cluster with the greatest count in the previous step.

4.2 k-Nearest Neighbor Classification

The kNN algorithm, summarized in Algorithm 5, is one of the most commonly usedifitasgion
methods. To correctly predict the membership of a document which belonggtiple classes, we
used the following modified decision rule for KNN (29):

y(x, j) = sign{ sim(x, d;)y(d;, ) — 8NN} (11)

diekNN

wherekNN s the set of k nearest neighbors for documen{(d;, j) € {+1, —1} is the classification
for document; with respect to clasg (if y > 0 then the class i§, else the class is ng}, sim(x, d;)
is the similarity between the test documenand the training documeik;, ande'j‘NN is the class
specific threshold for KNN classification.

4.3 Support Vector Machines

The optimal separating hyperplane of the one-vs-rest binary clagsifiebe obtained by conven-
tional SVMs. We introduce the following decision rule for support vectochitzes as

y(x, i) =sign{ 5 aiyiK(x,x)+b—65"M}, (12)

Xi €SV

wherey(x, j) € {+1,—1} is the classification for documenrtwith respect to clasg, SV is the set

of support vectors, arﬂ?v'\" is the class specific threshold for the binary decision. This threshold is
set so that a new documenimust not be classified to belong to clgsshen it is located very close

to the optimal separating hyperplane, i.e. when the decision is made with a lohilitylidVe use

the linear kerneK =< x, x; >, the polynomial kerneK = [< X, x; > +1]d , whered is the degree of

the polynomial, and the Gaussian RBF (radial basis function) ké&rekexp(—y||x — xi||%), where

yis a parameter that controls the width of the Gaussian function.

5. Experimental Results

Prediction results are compared for the test documents in the full spaceut\giin dimension re-
duction as well as those in the reduced space obtained by LSI/SVD, @e@rthogonal Centroid,
and LDA/GSVD dimension reduction methods. For SVMs, we optimized the negatimn param-
eterC, polynomial degrea for the polynomial kernel, ang for the Gaussian RBF (radial basis
function) kernel for each full and reduced dimension data set.
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classification The rankapproximation of LSI/SVD

methods =5 1=100 [=200 [=300 I=500 [=1000 1=1246 [=1247 Full
centroid () 716 822 834 839 848 84.9 85.2 85.2 85.2
centroid (Cosine) 785 869 87.1 876 88.0 88.2 88.3 88.3 88.3
5NN (Lo) 778 688 554 492 638 76.9 79.0 79.0 79.0
15NN (L2) 775 69.7 527 503 76.3 74.7 83.4 83.4 834
30NN (L2) 775 643 478 580 808 73.2 83.8 83.8 83.8

5NN (Cosine) 778 822 791 79.6 794 78.7 77.8 778 77.8
15NN (Cosine) 80.2 831 825 836 829 82.5 82.5 825 825
30NN (Cosine) 798 834 838 841 84.2 84.1 83.8 83.8 83.8
SVM 79.1 876 884 885 886 89.2 89.7 89.7 88.9

Table 1: Text classification accuracy (%) using centroid-based ctzdifi, k-nearest neighbor
classification, and SVMs, with LSI/SVD dimension reduction on the MEDLINiEadet.
The Euclidean normL() and the cosine similarity measure (Cosine) were used for the
centroid-based and kNN classification.

The first data set that we used was a subset of the MEDLINE datalihs® elasses. Each class
has 500 documents. The set was divided into 1250 training document&Qdeist documents.
After stemming and stoplist removal, the training set contains 22095 distinct.t&wnshis data,
each document belongs to only one class, and we used the original fohe three classification
algorithms without introducing the threshold.

The second data set was the “ModApte” split of the Reuter-21578 tégtton. We only used
90 classes for which there is at least one training and one test examplehirclaas. It contains
7769 training documents and 3019 test documents. The training set calit@ihs distinct terms
after preprocessing with stoplist removal and stemming. The Reuter datargeins documents
that belong to multiple classes, so the classification methods utilize thresholds.

We used a standard weight factor for each word stem:

@ (x) = Liloglidfi) (13)

K
wheret f; is the number of occurrences of teinm document, id f; = n/d is the ratio between
the total number of documentsand the number of documerdscontaining the term, ankl is the
normalization constant that makig||> = 1.

Table 1 reports text classification accuracy for the MEDLINE data sagusSI/SVD with a
range of values for the reduced dimension. The smallest reduced dimgnsi®, is included in
order to compare with centroid-based and LDA/GSVD methods, which estihecdimension to 5
and 4, respectively. Since the training set has the nearly-full ranR4%,iwe include the reduced
dimensions 1246 and 1247 at the high end of the range. For a traininfjsiz¢ 4250, the reduced
dimensionl = 300 is generous. However, we observe that KNN classification lyitihorm simi-
larity produces poor classification results foralues from 100 to 500. This is consistent with the
common belief that cosine similarity performs better with unnormalized text data, élbssifica-
tion accuracy using 5NN lags that for higher values of k, suggestind#ftaits too small for classes
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kernel Dimension reduction methods
Full Centroid Orthogonal  LDA/ LDA/
Centroid GSVD4 GSVD5
22095<1250 5x1250 B5x1250  4x1250 5x1250

linear (C=1.0) 88.1 88.9 85.9 86.5 86.6
linear (C=10.0) 88.9 88.5 88.3 86.7 86.7
linear (C=50.0) 88.9 87.7 88.8 87.1 87.1
linearP 88.9 88.9 89.0 87.4 87.4
polynomial(d=2) 88.6 88.9 88.9 87.3 87.3
polynomial(d=3) 88.0 89.0 88.8 87.4 87.4
polynomial(d=4) 87.5 88.9 88.8 87.2 87.2
polynomial(d=5) 86.5 88.6 88.8 87.1 87.1
polynomiafP 88.6 89.0 88.9 87.4 87.4
RBF (y=0.5) 88.5 89.0 89.0 87.1 87.2
RBF (y=1.0) 87.6 89.2 89.0 87.3 87.2
RBF (y=1.5) 86.3 89.1 88.8 87.4 87.3
RBFP 88.7 89.2 89.0 87.4 87.3

Table 2: Text classification accuracy (%) with different kernels in S\Wiith and without dimen-
sion reduction on the MEDLINE data set. The regularization paranifer each case
was optimized by numerical experiments. Dimension of each training term-do¢umae
trix is shown. LDA/GSVD4 and LDA/GSVDS5 represent the results from LBSVD
where the reduced dimensions are 4 and 5, respectively.

of size 250. It is noteworthy that even with LSI, which makes no attempt teepve the cluster
structure upon dimension reduction, SVM classification achieves verystenssclassification re-
sults for reduced dimensions of 100 or greater, and the SVM accuxaegeds that of the other
classification methods.

Table 2 shows text classification accuracy (%) with different kernel®M<$ with and without
dimension reduction on the MEDLINE data set. Note that the IRifeaalues are optimal over all
the values of the regularization parame@athat we tried, and the RBP! values are optimal over
all they values we tried. This table shows that the prediction results in the reducedsionare
similar to those in the original full dimensional space, while achieving a signifieaduction in
time and space complexity. In the reduced space obtained by the Orthdgemabid dimension
reduction algorithm, the classification accuracy is insensitive to the choite deernel. Thus, we
can choose the linear kernel in this case instead of the computationally npenesése polynomial
or RBF kernel.

Table 3 shows classification accuracy obtained by all three classificatitirodse— centroid-
based, kNN with three different values of k, and the optimal result frétil S for each dimension
reduced data set and the full space. For the LDA/GSVD dimension reduaithod, the classi-
fication accuracy with cosine similarity measure is lower with centroid-basedifitation as well
as with kNN, while the results with, norm are better. This is due to the formulation of trace
optimization criteria in terms of thie; norm. With LDA/GSVD, documents from the same class in
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classification Dimension reduction methods
methods Full Centroid Orthogonal  LDA/ LDA/
Centroid GSVD4 GSVD5
22095<1250 5x1250 5<1250  4x1250 5x1250

centroid (2) 85.2 88.0 85.2 88.7 88.7
centroid (Cosine) 88.3 88.0 88.3 83.9 83.9
5NN (L2) 79.0 88.4 88.6 81.5 86.6
15NN (Lo) 83.4 88.3 87.8 88.7 88.6
30NN (L2) 83.8 88.8 88.5 88.7 88.5
5NN (Cosine) 77.8 88.6 88.2 83.8 84.1
15NN (Cosine) 82.5 88.2 88.5 83.8 84.1
30NN (Cosine) 83.8 88.3 88.6 83.8 84.1
SVM 88.9 89.2 89.0 87.4 87.4

Table 3:

Table 4:

Text classification accuracy (%) using centroid-based clagsif, k-nearest neighbor
classification, and SVMs, with and without dimension reduction on the MEDLdld&
set. The Euclidean norni§) and the cosine similarity measure (Cosine) were used for
centroid-based and kNN classification.

class Dimension reduction
Full Centroid Orthogonal  LDA/ LDA/
Centroid GSVD4 GSVD5
22095<1250 5x1250 5<1250  4x1250 5x1250

heart attack 924 94.4 94.4 92.4 92.4
colon cancer 84.8 84.8 86.0 83.2 83.2
glycemic 95.6 97.6 98.0 95.2 95.2
oral cancer 82.0 75.2 73.6 78.8 78.8
tooth decay 89.6 94.0 92.8 87.2 87.2
microavg 88.9 89.2 89.0 87.4 87.4

Text classification accuracy (%) of the 5 classes and the migexgad performance over
all 5 classes on the MEDLINE data set. All results are from SVMs using opkieraels.

the full dimensional space tend to be transformed to a very tight clusteearteva single point in
the reduced space, since the LDA/GSVD algorithm tends to minimize the trace wftthin cluster

scatter.
error.

This seems to make it difficult for SVMs to find a binary classifier withgeneralization

Table 4 shows text classification accuracy for the 5 classes using S\Mand without dimen-
sion reduction methods on the MEDLINE data set. The colon cancer ahdameer documents
were relatively hard to classify correctly.

The

REUTERS data set has many documents that are classified to more tasse® cwhereas

no document is classified to belong to more than one class in the MEDLINE elat&hile we
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classification Dimension reduction
methods Full Centroid Orthogonal
Centroid
11941x9579 90<9579 90<9579
centroid(») 78.89 73.32 78.00
centroid(Cosine) 80.45 74.79 80.46
15NN 78.65 81.70 85.51
30NN 80.21 81.94 86.19
45NN 80.29 81.01 84.79
SVM 87.11 84.54 87.03

Table 5: Comparison of micro-averagedscores for 3 different classification methods with and
without dimension reduction on the REUTERS data set. The Euclidean hgjrar(d the
cosine similarity measure (Cosine) were used for the centroid-basedickigs. The
cosine similarity measure was used for the kNN classification. The dimensibie &dll
training term-document matrix is 11949579 and that of the reduced matrix is88679.

could handle relatively large matrices using a sparse matrix representat@parse QR decom-
position in the Centroid and Orthogonal Centroid dimension reduction methesigits for the
LDA/GSVD dimension reduction method are not reported, since we ranfosemory while com-
puting the GSVD. For this data set, we built a series of threshold-basesifieless optimizing the
thresholds to capture the multiple class membership. All class specific thres(@@iﬂ, ¢, GJ-SVM)
are determined by numerical experiments. Though we obtained precis@hbeeak even points
by optimizing the thresholds, we report values of Faeneasure (26) which is defined as

- 2P (14)
r+p
wherer is recall andp is precision for a binary classification. Table 5 shows that the effe@sagen
of classification was preserved for the Orthogonal Centroid dimensituttien algorithm, while it
became worse for the Centroid dimension reduction algorithm. This is due ¢parpy of the Cen-
troid algorithm that the centroids of the full space are projected to the colahthe identity matrix
in the reduced space. This orthogonality between the centroids may makieitltid represent the
multiclass membership of a document by separating closely related classefiraéiasion reduc-
tion. The pattern of prediction measufefor each class is also preserved by Orthogonal Centroid
in Table 6. The macro-averag€&g and micro-averageB; for the 10 most frequent classes are also
presented.

6. Conclusion and Discussion

In this paper, we applied three methods, Centroid, Orthogonal Centruid,2A/GSVD, which are
designed for reducing the dimension of clustered data. For comparigoalse applied LSI/SVD,
which does not attempt to preserve cluster structure upon dimensiorticedud/e tested the ef-
fectiveness in classification with dimension reduction using three diffetassification methods:
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class Dimension reduction
Full Centroid Orthogonal
Centroid
11941x9579 90<9579 90<9579
earn 98.25 97.49 96.60
acq 95.57 95.45 94.94
money-fx 75.78 77.97 79.44
grain 92.88 86.62 92.26
crude 88.11 86.49 87.70
trade 75.32 75.11 77.25
interest 77.99 78.13 83.21
ship 84.09 85.71 88.00
wheat 84.14 81.94 84.06
corn 87.27 74.78 89.47
microavg (top 10) 92.21 91.32 92.21
avg (top 10) 85.94 83.96 87.32
microavg(all) 87.11 84.54 87.03

Table 6: F; scores of the 10 most frequent classes and micro-averaged pemfigroger all 90
classes on the REUTERS data set. All results are from SVMs using optimadl&e
The dimension of the full training term-document matrix is 1199579 and that of the
reduced matrix is 999579.

SVMs, kNN, and centroid-based classification. For the three clusésepring methods, the re-
sults show surprisingly high prediction accuracy, which is essentially time ses in the original
full space, even with very dramatic dimension reduction. They justify dimansduction as a
worthwhile preprocessing stage for achieving high efficiency andtfimess. Especially for KNN
classification, the savings in computational complexity in classification after dioreneduction
are significant. In the case of SVM the savings are also clear, since taaaidetween two pairs
of input data points need to be computed repeatedly with and without the tieelafrnel function,
and the vectors become significantly shorter with dimension reduction.

We have also introduced threshold based classifiers for centroid-bssification and SVMs
in order to capture the overlap structure between closely related cl&ssel&ction results with the
Centroid dimension reduction method became better compared to those fronti #pate for the
completely disjoint MEDLINE data set, but became worse for the REUTERS sid. Since the
Centroid dimension reduction method maps the centroids to unit vegtarsich are orthogonal
to each other, it is helpful for the disjoint data set, but not for a data ketmcontains documents
belonging multiple classes. We observed that prediction accuracy with theganal Centroid di-
mension reduction algorithm was preserved for SVMs as well as with ééfiiesed classification.
The Orthogonal Centroid dimension reduction method maximizes the betwegsr cklationship
using the relatively inexpensive reduced QR decomposition, comparedA63aSVD which also
considers the within cluster relationship but requires a more expensieaeealing decomposition
such as the singular value decomposition (10; 11).
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The better prediction accuracy using SVMs is due to low generalization lgyronaximizing
the margin, and the capability to handle non-linearity by kernel choice. Adfnooost classes of
the Reuters-21578 data set are linearly separable (13), there seemrsotadlevel of non-linearity.
For non-linearly separable data, SVMs with appropriate nonlinear kienmetions would work as a
better classifier. Another way to handle non-linearly separable data iplpragnlinear extensions
of the dimension reduction methods, including those presented in (18; 199f the dimension
reduction methods presented here can also be applied to visualize thediighasional structure
by reducing the dimension to 2- or 3-dimensional space.

We conclude that dramatic dimension reduction of text documents can beedhweithout
sacrificing classification accuracy. For the document sets we testedittimg@nal Centroid method
did particularly well at preserving the cluster structure from the full dirferad representation.
That is, the prediction accuracies for Orthogonal Centroid rival thbsee full space, even though
the dimension is reduced to the number of clusters. The savings in computatomaexity are
significant using either KNN classification or SVM.
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Abstract

We extend existing theory on stability, namely how much g¢iearin the training data influence the
estimated models, and generalization performance ofrdetgstic learning algorithms to the case
of randomized algorithms. We give formal definitions of gisbfor randomized algorithms and
prove non-asymptotic bounds on the difference betweenrtipgrizal and expected error as well
as the leave-one-out and expected error of such algorithaigiepend on their random stability.
The setup we develop for this purpose can be also used forajyrgtudying randomized learning
algorithms. We then use these general results to study teet®bf bagging on the stability of
a learning method and to prove non-asymptotic bounds onrtédigtive performance of bagging
which have not been possible to prove with the existing thebstability for deterministic learning
algorithms!

Keywords: stability, randomized learning algorithms, sensitivityalysis, bagging, bootstrap
methods, generalization error, leave-one-out error.

1. Introduction

The stability of a learning algorithm, namely how changes to the training datano#ube result of
the algorithm, has been used by many researchers to study the generafizafivmance of several
learning algorithms (Devroye and Wagner, 1979; Breiman, 1996briseard Ron, 1999; Bousquet
and Elisseeff, 2002; Kutin and Niyogi, 2002; Poggio et al., 2004). Desgertain difficulties with
theories about stability, such as the lack so far of tight bounds as welvas lmunds (Bousquet
and Elisseeff, 2002), the study of learning methods using notions of stabiptpmising although
it is still at its infancy. For example, recently Poggio et al. (2004) havevahmnditions for the
generalization of learning methods in terms of a stability notion that have possifieations for
new insights on diverse learning problems.

1. This work was done while A.E. was at the Max Planck Institute for BiolaigBybernetics in Tuebingen, Germany.
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The existing theory, however, is developed only for deterministic learrliggyithms (Bous-
quet and Elisseeff, 2002), therefore it cannot be used to studyetamber of algorithms which
are randomized, such as bagging (Breiman, 1996a), neural netveorgsrtain Bayesian learning
methods. Theoal of this papeiis to improve upon this analysis. To this end, we present a nat-
ural generalization of the existing theory to the case of randomized algorithereby extending
the results of (Bousquet and Elisseeff, 2002), and formally provedeon the performance of
randomized learning algorithms using notions of randomized stability that weedefio prove
our results we have also extended the results of (Bousquet and Hlig862j that hold only for
symmetric learning algorithms to the case of asymmetric ones. We then prove agglecation
of our results, new non-asymptotic bounds for bagging (Breiman, }986andomized learning
method. Finally, we note that our work also provides an approach thdteased for extending
other studies, for example other results on stability, done for deterministidgthlgs to the case of
randomized learning algorithms.

The paper is organized as follows. For completeness and comparisorswwepiicate in Sec-
tion 2 the key notions of stability and the generalization bounds we extena:ddar deterministic
methods in the literature. We then extend these notions — Definitions 7, 10,3anddnd gen-
eralization bounds — Theorems 9, 12 and 15 — to the case of randomizedds@th®ection 3.
Finally, in Section 4 we present an analysis of bagging within the stability tHifesmework.

2. Stability and Generalization for Deterministic Algorithms

In this section we briefly review the results in (Devroye and Wagner 18&8rns and Ron, 1999;
Bousquet and Elisseeff, 2002) that show that stability is linked to genatializfor deterministic
learning methods. We assume here that all algorithms are symmetric, that isuticeime does not
change when the elements in the training set are permuted. In the next seetionil extend sta-
bility concepts to the case of randomized learning methods and remove this syrasmtmption.

2.1 Basic Notation

In the following, calligraphic font is used for sets and capital letters tefeumbers unless explic-
itly defined. LetX be a set))” a subset of a Hilbert space and defiie= X x . X is identified
as the input space ard as the output space. Given a learning algorithmve definef,, to be the
solution of the algorithm when the training sbt= {z = (x,yi), i =1,...,m} € Z™ drawn i.i.d.
from a distributior? is used. AlgorithmA is thus interpreted as a function fraBf" to (9)*, the set
of all functions fromx to 9, and we use the notatiok(D) = f,. We denote byD\' the training
setD\ {z} obtained by removing poir{k;,yi). More formally, point is replaced by the empty set
which we assume the learning method treats as having this point simply removedv weed
this for our analysis below. We denote By the training set obtained by changing pofmt,y;)
from DintoZ = (X,y'), that is the setD\ {z})UZ.

For any pointz = (x,y) and functionf (real valued or binary) we denote l8yf,z) the loss
(error) whenf (x) is predicted instead of (¢ is the loss function). We define the expected errof of
also known agieneralization errotby the equation

Rygen[f] = Ez [((f,2)].
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We also define thempirical erroras

F\)emp Zlg (f,z)

and theleave—one—out erroas
RIOO Ze f@\l 5 Z|

Note that the last two errors are functions®f For the case of classification we ue-yf(x))

as the loss functiord, where®(-) is the Heavyside function. The analysis we will do concerns
classification as well as regression. For the latter we will mainly focus ondbe that is a
Lipschitzian loss function, that is, we assume that there exists a positigtacdB such that, for
every fy, f; € (9)* andz= (x,y) € Z, there holds the inequality( f1,2) — ¢(f2,2)| < Bly1 —Ya|.
Note that the absolute value satisfies this condition Bith 1, whereas the square loss satisfies the
condition provided the sé&Y is compact.

2.2 Hypothesis Stability

The first notion of stability we consider has been stated in (Bousquet arské&ffis2002) and is
inspired by the work of Devroye and Wagner (1979). It is very closetat Kearns and Ron
(1999) defined as hypothesis stability:

Definition 1 (Hypothesis Stability) An algorithm A hasiypothesis stabilit¥3y, w.r.t. the loss func-
tion £ if the following holds:

Vi€ {L..,m}, Enz (10102 — £(fp1,2)]] < B

It can be shown (Bousquet and Elisseeff, 2002) that when an algohi#ts hypothesis stabilif§,
and forall training setsD we have, for everg € Z, that 0< /(fp,z) < M, M being a positive
constant, then the following relation between the leave-one-out errdharekpected error holds:

Theorem 2 (Hypothesis stability leave-one-out error bound)Let f; be the outcome of a learn-
ing algorithm with hypothesis stabilim (w.r.t. a loss functiorf such thatd < ¢(f,z) < M). Then
with probability 1 — & over the random draw of the training sé,

M2+ 6MmBm,
2m ’

Ryen| fn] < Rioo fp] + \/5_1 (1)
The proof consists of first bounding the second order momenR@f| o] — Rioo| fp]) and then
applying Chebychev's inequality. A similar bound ¢Rgen| ] — Rioo[fp])? holds. Theorem 2
holds for any loss functions as long as stability can be proved w.r.t. thisuassdn.

In the following, we will say that an algorithm is stable when its stability scales lfkg, ih which
case the difference between the generalization and leave-one-outseof the ordetO(1/\/m).
Many algorithms are stable according to this definition, see (Devroye et8lg; Bousquet and
Elisseeff, 2002) for a discussion. For example, with respect to theifidation loss,k-Nearest
Neighbor k—NN) is k/m stable. This is discussed in the next example.
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Example 1 (Hypothesis Stability ofk-Nearest Neighbor k-NN)) With respect to the classifica-

tion loss, k-NN is at Ieag%—] stable. This can be seen via symmetrization arguments. For the sake of
simplicity we give here the proof for tHeNN only. Let ybe the neighborhood of such that the
closest point in the training set to any point ¢isz. Thel—NN algorithm computes its output via

the following equation (we assume here that the probability thapgears twice in the training set

is negligible):

fp(X) = _iYi Ixevi (X)

wherels is the indicator function of set S. The difference between the |666gsz) and /(f,),2)
is then defined by the sat ¥Here we assume théts the classification loss. We then have that

Eol[t(fn,,2) — L(Fpi, )] < P(w).

Note that ydepends orD. Now averaging ove® we need to computey, [P(v;)] which is the same
for all i because thejzare drawn i.i.d. from the same distribution. But, we have,

] = Eﬂ),z [‘ilxevi (X)] .

The last equality comes from the fact that for fix@dnd z, only ond,cy, (X) is non-zero. We also
have that

1=Egp;[|fo(X)]] =Enp; [ __iYi Ixev, (X)

1=Ep, [i Lew (x)] = MEo [P(V})].

Consequenthyg [P(v;)] = % and thel-NN has hypothesis stability bounded abové iy.

A bound similar to Equation (1) can be derived for the empirical error vehglightly different
notion of stability is used (Bousquet and Elisseeff, 2002).

Definition 3 (Pointwise hypothesis stability) An algorithm A haspointwise hypothesis stability
Bm w.r.t. the loss functiod if the following holds :

Vie {17 . 'am}v EfD,Z HE( f@vzi) _E( f@\iuzazi)H < Bm~

Note that we adopted the same notatanfor all notions of stability since it should always be
clear from the context which is the referred notion. As for the case pdtinesis stability and leave-
one-out error above, it can also be shown (Bousquet and Elis286#) that when an algorithm has
pointwise hypothesis stabilityi, and if for all training set®, 0 < ¢(f,z) < M, then the following
relation between the empirical error and the expected error holds:

Theorem 4 (Pointwise hypothesis stability empirical error bound) Let fp be the outcome of a
learning algorithm with pointwise hypothesis stabilfiy, (w.r.t. a loss functiory such thatO <
¢(fp,z) <M). Then with probabilityl — d over the random draw of the training s&X,

M2+ 12MmBy,
2m '

Rgen[fZ)] < Remp[fl)} + \/6

2. We slightly changed the definition to correct one mistake that has beetegout by Poggio et al., (2004): the
difference of losses is taken here between two outcomes trained optdaifisqual sizes.

(2)
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2.3 Uniform Stability

The application of bound (1) to different algorithris ..., fg with stabilitiesph, q=1,...,Q, is
usually done by using the union bound (Vapnik, 1998). Applying Thed2&) times, we get with
probability 1— 9,

M2 4+ 6MmBrh
2m '

\V/q € {17 LR Q}7 Rgen[ fq] S RZoo[fq] + \/6_1Q (3)

In such situations, we would like to have a dependence ifQpgo that we can have large values of
Q without increasing the bound too much. To this end, we need a strongen ndttability called
uniform stability (Bousquet and Elisseeff, 2002).

Definition 5 (Uniform Stability) An algorithm A hasiniform stability 3, w.r.t. the loss functiod
if the following holds

VD e ZM Vie {1,....m}, [|6(fn,.) — (fpi, )]l < P 4)

It is easily seen that the uniform stability is an upper bound on hypothedip@intwise hy-
pothesis stability (Bousquet and Elisseeff, 2002). Uniform stability candeel in the context of
regression to get bounds as follows (Bousquet and Elisseeff, 2002)

Theorem 6 Let f; be the outcome of an algorithm with uniform stabi[By w.r.t. a loss functior
such that0 < ¢(fp,z) < M, for all ze Z and all setsD. Then, for any n¥» 1, and anyd € (0,1),
each of the following bounds holds with probability- d over the random draw of the training set
D,

Roe o] < R ]+ 2B+ (4B + M) 1/ 29L/0) ©
and
Roer ] < Reo[fo] + B + (4B + M) 250 ©

The dependence aomis 4/log(1/8) which is better than the bounds given in terms of hypothesis
and pointwise hypothesis stability.

It is important to note that these bounds hold only for regression. Uniébaiility can also be
used for classification with margin classifiers to get similar bounds, but wetpursue this here
for simplicity. In the next section, for simplicity we also consider random umifetability only for
regression. Classification can be treated with appropriate changes likeusquet and Elisseeff,
2002).

Example 2 (Uniform Stability of regularization methods) Regularization-based learning algo-
rithms such as Regularization Networks (RN’s) (Poggio and Girosi, 1880 Support Vector Ma-
chines (SVM’s), see, for example, (Vapnik, 1998), are obtainedrigniming the functional

m
0(f,2) + Al
2
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whereA > Ois a regularization parameter anff ||« is the norm of f in a reproducing kernel Hilbert
space associated to a symmetric and positive definite kern KX — R. A typical example is
the Gaussian, Kx,t) = exp(—||x —t]|?/202), wherea is a parameter controlling the width of the
kernel. Depending on the loss function used, we obtain different learnitigosls. RN’s use the
square loss while SVM’s regression uses the {0$sz) = | (X) —yle, WherelE|e = |§| — € if [E| > &,
and zero otherwisg.

It can be shown (Bousquet and Elisseeff, 2002) that for Lipschitzflmedions, the uniform
stability of these regularization methods scalesl@s. This results is in agreement with the fact
that for smallA, the solution tends to fit perfectly the data and Theorem 6 does not give eesiitlg
bound. On the contrary, whexis large the solution is more stable and Theorem 6 gives a tight
bound. Hence, there is a trade-off between stability and deviation betgemeralization and
empirical error that is illustrated here by the role of the regularization pasterA.

Finally, we note that the notion of uniform stability may appear a little restrictiveesthe
inequality in Equation (4) has to hold over all training s&tsA weaker notion of stability has been
introduced by Kutin and Niyogi (2002) with related exponential bounds d& not discuss this
issue here for simplicity, and we conjecture that the analysis we do belobecganerally adapted
for other notions of stability.

3. Stability and Generalization for Randomized Algorithms

The results summarized in the previous section concern only deterministimgafgorithms. For
example they cannot be applied to certain neural networks as well asmbagegthods. In this
section we generalize the theory to include randomized learning algorithms.

3.1 Informal Reasoning

Let A be a randomized learning algorithm, that is a function frgfhx ® onto (9)* whereRg_is

a space containing elementshat model the randomization of the algorithm and is endowed with
a probability measurg;. For notational convenience, we will use the shorthépg to denote the
outcome of the algorithn& applied on a training seD with a random parameter. We should
distinguish between two types of randomness that are exemplified by theifajlexamples.

Example 3 (Bootstrapping once)Let R = {1,...,m}P, p<m, and definé,, forr € ®, to be a
multinomial distribution with m parametefd/m,...,1/m). This random process models the sub-
sampling with replacement of p elements from a set of m distinct elemenislgdithm A that
takes as input a training sa®, performs a sub-sampling with replacement and runs a method such
as a decision tree on the sub-sampled training set is typically modeled awlamazed algorithm
taking as inputs a training set and an elememt X _just described.

In this first example we see that the randomness depenaiswhich is different from what the
second example describes.

3. Note that in the statistical learning theory literature (Vapnik, 1998), SvMusually presented in term of mathe-
matical programming problems and the paramates replaced byC = 1/(2\) which now appears in front of the
empirical error.
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Example 4 (Initialization weights) Let ® = [0,1]% and defineP, to be the uniform distribution
overR. Such a random process appear in the initialization procedure of Néegdlkorks when the
initial weights are chosen randomly. In the latter case, a multi-layer péroapvith k weights can
be understood as an algorithm A taking a training set and a random ve&aR_as inputs.

We consider the following issues for the definitions of stability for randomagdrithms be-
low.

e We give stability definitions that reduce to deterministic stability concepts whea ih&o
randomness, that i%_is reduced to one element with probability 1.

e We assume that the randomness of an algorithm (randomnegsioindependent of the
training set?, althoughr may depend on the size of this set, There are two main reasons
for this: first, it simplifies the calculations; second, the randomnes$ia$ generally nothing
to do with the randomness of the training d&t Most of the time our knowledge about the
distribution over is known perfectly, like in the examples above, and we would like to take
advantage of that. Adding some dependencies betwaad? reduces this knowledge since
nothing is assumed about the distribution ogZeirom which 2 is drawn.

e We also consider the general case that the randomization paranet®l’ is decomposed
as a vector of independent random paramatets(ry,...,rt) where each; is drawn from
the distributionP} . For example, this model can be used to model the randomization of
bagging (Breiman, 1996a), where eagltorresponds to one random subsampling from the
data, and th@ subsamples are all drawn independently. To summarize, we will make use of
the following assumption:

Assumption 1: We assume that= (rq,...,rt) wherery, t =1,..., T are random elements
drawn independently from the same distribution and write R to indicate the product
nature ofr.

e Finally we assume that we can re-use a draw foir different training set sizes, for example
for mandm— 1. We need this assumption for the definitions of stability below to be well
defined as well as for the leave-one-out error definition we use fdormized methods.

To develop the last issue further, let us consider how to compute a le&vett error estimate
when the algorithm depends on a random vecttbrat changes with the number of training exam-
ples. One way is to sample a new random vect@vhich in this case will concern onlgpn— 1
training points) for each fold/iteration. This is done, for example, by Keamd Ron (1999) when
they introduce the notion of the random error stability. However, this inteslimore instabilities
to the algorithms whose behavior can be different not only becausanges in the training set but
also because of changes in the random paft more stable leave-one-out procedure for a random-
ized algorithm would be to fix and to apply the leave-one-out method only on the sampling of the
training set — a deterministic leave-one-out error (Evgeniou et al., 20bwrefore for each leave-
one-out iteration, when we leave one point out — which is replaced, alissassed in Section 2.1,
with an empty set which we assume the learning method does not use — we saenéefor the
remainingm— 1 points. For instance, in Example 3.1 we would use the same bootstrap samples
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that we used when having atl points, with the point left out replaced by the empty set that is not

used for training, for each leave-one-out iteration. In that case,on# deed to re-sample and

the leave-one-out estimate concerns an algorithm that is closer to whansieler onm points.
Therefore, in what follows, keeping in mind Example 3, we assume the folgpwin

Assumption 2: The same& can be applied to 4 and f, where D\ is the setD where point i
is replaced by the empty set. We also consider the deterministic leavaeisbeerar computed as
described above.

Note that this assumption is not restrictive about the kind of learning methedamconsider. For
example both in Example 3.1 and 3.2 the sar(iee. subsamples or initialization of neural network
weights) can be used fonandm— 1 training points.

3.2 Random Hypothesis Stability
The first definition we consider is inspired by the hypothesis stability forahétéstic algorithms.

Definition 7 (Random Hypothesis Stability) A randomized algorithm A hasndom hypothesis
stability B, w.r.t. the loss functio# if the following holds:

vie{1,....mEpyr [

f( f@,r,z) _f( f@\i7raz)‘:| < Bm- (7)

Note that the value in the left hand side (l.h.s.) of Equation (7) can varyiffereht indexes
i. If r is fixed then the random hypothesis stability is exactly the same as the hypdctadsiisy
except that the resulting algorithm need not be symmetric anymore: if we sémegi@ining data
using a fixed, permuting two data points might lead to different samplings and hence to eediffe
outcome. This means that we cannot apply the results for the case of désdmailgorithms and
we have to consider other bounds on the variance of the differenceéetive generalization and
empirical (or leave-one-out) errors. We prove in the appendix the foilplemma.

Lemma 8 For any (hon-symmetric) learning algorithm A and loss functisoch thaD < /(f,z) <
M we have for the leave-one-out error:

2 m
€ [(Ren~Roo)?] < S0+ 01 3 Enall(f2) (11,2 ®)

Using Chebychev’s inequality, this lemma leads to the inequality

Utp,s,2) —z(f@\iﬁr,z)’ , r}
rn€2

2M2 12M Zln;l ED,Z
Pp (Rgen[f@,r] —Reol o r] > €] I’) < — + [

., 9)

where we use the notatidjX,Y] for the expectation oX conditioned orY, andP].|r] for the condi-
tional probability. By integrating Equation (9) with respect tand using the properiy [Ex[g(X,Y)|Y]] =
Ex v[g(X,Y)] we derive the following theorem about the generalization and leavesonerrors of
randomized learning methods:
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Theorem 9 Let f5, be the outcome of a randomized algorithm with random hypothesis stability
Bm w.r.t. a loss functiorf such thatd < ¢(f,z) <M, forally € 9, r € R and all setsD. Then with
probability 1 — & with respect to the random draw of tde@andr,

2M2 -+ 12MmBy,

= (10)

Rgen( f@,r) < Rfoo[fﬂr] + \/6_1

Notice that in the case that we make Assumption 1 nothing changes since thatintegf (9)
w.r.t.r does not depend on the decomposition naturerofde in Assumption 1.

As in the deterministic case, it is possible to define a different notion of stabilitgrive bounds
on the deviation between the empirical error and the generalization emamadmized algorithms:

Definition 10 (Random Pointwise Hypothesis Stability) A randomized algorithm A hagandom
pointwise hypothesis stabilif§, w.r.t. the loss functiod if the following holds:

Vie {17 .- '7m}7EQ)m7I’7Z E(f@JyZi) _E(fﬂ)\iuzﬂ’azi) < Bm' (11)

Using the following lemma proved in the appendix,

Lemma 11 For any (non-symmetric) learning algorithm A and loss functisnch thad < ¢(f,z) <
M we have for the empirical error,

2M?2 M I
€ [(Roen— Remd?] < 10+ 7S Ena[(fn.2) (U Epupn)]. (12)

we can derive as before the theorem:
Theorem 12 Let fp, be the outcome of a random algorithm with random pointwise hypothesis

stability Bm w.r.t. a loss functior? such thatd < ¢(f,z) <M, forally € 9, r € R and all setsD.
Then with probabilityl —  with respect to the random draw of tlie andr,

2M2 + 12MmBy,

- (13)

Ryen(fo,r) < Remp for] + \/51

We note that both for Theorems 9 and 12 (Lemmas 8 and 11) one can furtheve the
constants of the bounds — as is typically the case with bounds in the literature.

The parallel with the deterministic case is striking. However when we consigardom space
R reduced to only one element, then the bounds we obtain here are worsevgirassume non-
symmetric learning algorithms.
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3.3 Random Uniform Stability

The uniform stability definition (Definition 5) for deterministic algorithms can bieeded as fol-
lows:

Definition 13 (Uniform Stability of Randomized Algorithms) We say that a randomized learn-
ing algorithm has uniform stabilit3,, w.r.t. the loss functiod if, for every i=1,...,m

SUp[E; [£(foy2)] ~ ¢ [(1p1,.2)]| <Bm (14)

Note that this definition is consistent with Definition 5 which holds for determinigtizrsetric
learning algorithms.

To link uniform stability to generalization, the following result by McDiarmid (298see also
(Devroye et al., 1996), is central.

Theorem 14 (Bounded Difference Inequality) Letr = (r4,...,rt) € ® be T independent random
variables ¢; can be vectors, as in Assumption 1, or scalars) drawn from the santmlpfity
distributionP,. Assume that the function @& " — R satisfies

sup |G(r17"'7rT)_G(r17'"art—lar{7rt+l7"'7rT)‘ <G, t= 17"'7T' (15)
TR & N g

where ¢ is a nonnegative function of t. Then, for every 0

P[G(ry,...,r7) —E [G(ry,...,r1)] > €] < exp{—Zez/ ic[z} . (16)

For the next theorem we replace Bef Theorem 14 with/(f,, z) and require that, for every
D e zMandze Z, {(fp,,z) satisfies the inequality in Equation (15). This is a mild assumption but
the bounds below will be interesting only if, fér— oo, ¢ goes to zero at least agT. We usep
as the supremum of thegs of Theorem 14.

Theorem 15 Let fy be the outcome of a randomized learning algorithm satisfying Assumptions 1
and 2 with uniform stability3, w.r.t. the loss functioid. Letp be such that for all t

sup Sup‘é( f@,(rl,...,rT)>Z) _E( f@,(r17...,rt,l,r{,rt+1,.4.,rT)az)‘ < P,
F1,.f1,rf Z

as in Equation (15) for G being(fp,,z) andr = (ry,...,rt). The following bound holds with
probability at leastl — 6 with respect to the random draw of tlieandr,

Reenl frr) < Romed frr) + 2B+ (%ﬂmnﬁm + Jﬁp) (\/1092/%). 17)

and,

Reer( o) < Roo( s ) + Brn-+ (M - 2”‘@%* 2B ﬁp) (ViogZ/®).  (18)
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Furthermore, assuming thf,_1, the random uniform stability for training sets of size-, is
greater thanB,, we can simplify Equation (18) to:

Reenl f) < Rioof ) + B+ (%”:ﬁml VT p) (V/109(2/3)). (19)

Notice that the assumption for the simplification we make in the theorenfghatis greater
thanB, is natural: when points are added to the training set, the outcome of a lealpamighsn
is usually more stable. Moreover, boundsfncan be used here so that the condifian 1 > Bm
can be replaced by a condition on these bounds: we would require thadthels o3, are non-
increasing irm.

We note thatp may depend both on the number of random variablesnd the number of
training datam. In the bagging example below we estimate a boung @mt depends only om,
the number of subsamples we do for the bagging process — it may or mag posbible to show
thatp depends omn, too, but this is an open question. We do not know of an example where
also depends om or, alternatively, of a case where it can be shown that it is not possiblavep
depend omm. The latter case would imply that for fixédthe empirical (leave-one-out) error does
not converge to the expected erromamcreases. This is, however, an open question and potentially
a weakness for the framework we develop here.

Finally note that, as in the deterministic case discussed in Section 2, results sintilaséan
Theorem 15 can be given for classification following the same line as ins@aei and Elisseeff,
2002).

4. Stability of Bagging and Subbagging

In this section we discuss an application of the results derived above ginga@@reiman, 1996a)
and subbagging, see, for example, (Andonova et al., 2002), twomngirdd algorithms which work
by averaging the solutions of a learning algorithm trained a number of timesnoilom subsets of
the training set. We will analyze these methods within the stability frameworkezsabove. To
this end, we need to study how bagging and subbagging “affect” the stalbilitg base (underlying)
learning algorithm. First we present more formally what we mean by bagging.

4.1 Bagging

Bagging consists of training the same learning algorithm on a numleédifferent bootstrap sets
of a training setD and by averaging the obtained solutions. We denote these bootstrap g&ts py
fort=1,...,T, where the; € R = {1,...,m}™ are instances of a random variable corresponding
to samplingwith replacement o elements from the training sé (recall the notation in Example
3). Such random variables have a multinomial distribution with paramgderts., ). The overall
bagging model can thus be written as:

1 T
F@,r = ?t; f@(n)- (20)
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Here we assume that the base learning mettigdl {feats multiple copies of a training point
(for example when many copies of the same point are sampled) as oné poirending the results
below to the case where multiple copies of a point are treated as such israqusgstion.

The reader should also keep in mind that the base learning algorithm maylbeaitsemized
with random parametex When trained on the-th bootstrap setD(r¢), this algorithm will output
the solutionfy ;) 5. However, to simplify the notation, we suppress the synspiol our discussion
below.

In what follows, we compute an upper bound on the random hypothesisitgtidy bagging.
For regression, we have then the following proposition:

Proposition 4.1 (Random hypothesis stability of bagging for regressn) Assume that the logs
is B—lipschitzian w.rt. its first variable. Letf, r € R, be the outcome of a bagging algorithm
whose base machine#¥ has (pointwise) hypothesis stabiligy w.r.t. the/s loss function. Then the
random (pointwise) hypothesis stabilfty, of Fp, with respect ta/ is bounded by

m kyk
Bm < Bkzlﬁpr [d(l’) = k] )
where dr), r € R, is the number of distinct sampled points in one bootstrap iteration.

Proof
We first focus on hypothesis stability. Let us assume first #ha fixed andz too. We would

like to bound:
T tE D(rt)7 T tE D\'(rt)7

wherer,,...,rr are i.i.d. random variables modeling the random sampling of bagging andghavin
the same distribution as Sincel is B—lipschitzian, and the; are i.i.d.,| (D, z) can be bounded as:

i (fﬂ)(rt) (x) — f@\i(n) (X)> u

t

B
|(Q),Z) < _El'l ,fT[

-t

To simplify the notation we denote y(D(r),x) the difference betweefi,(x) and fp)(x).
We have that

fory (%) = Tty (9] = BEr [|foe) 00 = T (9] ]

E[JAD(r), 3] = Er[IAMD(r),X)] (Lier + Ligr)]
= E [IA(D(r), )| Lier] + Er [[A(D(r), X)| Ligg]

Note that the second part of the last line is equal to zero becauseivgheot inr, pointz does not
belong toD(r) and, thusD(r) = D\i(r). We conclude that

|(D,2) < BE; [|A(D(r),X)| Lir] .

4. This means that if for example the underlying learning algorithm is aahaatwork, this algorithm is modified by a
preprocessing step so that the training set consists only of distinct data.po
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We now take the average w.ri andz
Ep2[I(D,2)] < BE; px[|A(D(r),X)|Lier] =

= BE, [ED,X[|A(@(r)7X)‘] 1ier] = BE, [Vd(r)lier] ) (21)

where the last equality follows by noting tha, « [|A(D(r),X)|] is bounded by the hypothesis sta-
bility yqr) of a training set of sizel(r). We now note that when averaging w.r.t.the important
variable about is the sized(r):

m
Er [Vd(r)lier] = z Pr [d(r) = K YEr [Lier;d(r) = K].
K=1
Now note that, by symmetng; [1ic;d(r) = k| = k/m. This concludes the proof for hypothesis
stability. The proof for pointwise stability is exactly the same except that in fitmué21) there is
no expectation w.r.zandzis replaced by,. [ |

The bounds we just proved depend on the quantitiéd(r) = k|, where, we recall thed(r),
r € R, is the number of distinct sampled points in one bootstrap iteration. It candvensifior
example by applying Theorem 14, that the random varidfi¢ is sharply concentrated around its
mode which is fok = (1— %)m ~ 0.632m. For that reason, in what follows we will assume that the
previous bounds can be approximately rewritten as:

Bm < .632BY 632m.

For example iB = 1 andy, scales appropriately witin the bounds on the random (pointwise)
hypothesis stability of the bagging predictor are better than those on thdwjsah hypothesis
stability of a single predictor trained on the whole training set. Notice alsogBatis the probability
that the bootstrapped set will contain a specific (any) point, also usedtify jihe .632 bootstrap
error estimates (Efron and Tibshirani, 1997).

Similar results can be shown for the random (pointwise) hypothesis stabiligfessification.
In particular:

Proposition 4.2 (Random hypothesis stability of bagging for classificain) Let Fp, be the out-
come of a bagging algorithm whose base machine has (pointwise) hgsositabilityym, w.r.t. the
classification loss function. Then, the (pointwise) random hypothesis stddility Fp , w.r.t. the
/1 loss function is bounded by

< Kyk
<2y TP [d(r) =K.

Proof The proof is the same as in the above proposition except that the lossiagpkarein is the
/1 loss and, soB = 1. The functionsf ) being{+1,—1} valued, the term:

Epz[|fo(X) — fpi(X)]]

is equal to the term
2Ep 2 [8(—yfp(X)) —B(=yfpi(X))]-
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So that stability w.r.t. thé; loss function can be replaced by stability w.r.t. the classification loss,
and the proof can be transposed directly. [ |

Example 5 k-NN) As previously seen, k-NN has hypothesis stability equﬁlSoch that bagging
k-NN has stability with respect to classification loss bounded by

< 1B o k
2§1W’]P’r[d() jj=2 n’]IPr[ P ZR =2

=1
So bagging does not improve stability, which is also experimentally veri&tdiman (1996a).
The next proposition establishes the link between the uniform stability ofibggmd that of

the base learning algorithm for regression. As before, classificatiolbedreated similarly, see
(Bousquet and Elisseeff, 2002).

Proposition 4.3 (Random uniform stability of bagging for regression) Assume that the logsis
B-lipschitzian with respect to its first variable. Lep F be the outcome of a bagging algorithm
whose base machine has uniform stabijityw.r.t. the/; loss function. Then the random uniform
stability B, of Fp, with respect to is bounded by

Bm<Bzf1P>r (r) =K. (22)
Proof The random uniform stability of bagging is given by

14 14
Er, =S f 2l =4 = T2 .
; M0t TtZl D(ry) TtZl D\i(ry)

Bm = sup
Q)a

This can be bound by taking the absolute valued inside the expectation, fohewing the same
lines as in the proof of Proposition 4.1 we have:

Bm < Bsup{E; [A(D(r),xX)Lic]}

DX

where, we recalld(D(r),X) = | fp() — fpu()| and functionlic, is equal to one if pointis sampled
during bootstrapping and zero otherW|se We then have

Bm <BE, !SUp{A(@(r)7X)}1ier] .
DX
Now we observe that

SUp{A(D(r),x)} = sup {A(D(r),X)} = Yu(r)

DX D(r),x

Placing this bound in the previous one gives

Bm < Er [Vd(r)lier] .

The proof is now exactly the same as in the final part of Proposition 4.1. |
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Example 6 (SVM regression) We have seen in Example 2 that the uniform stability of a SVM w.r.t.
the /1 loss is bounded bg/A. The uniform stability of bagging SVM is then roughly bounded by
0.632/\ if the SVM is trained on all bootstrap sets with the s&m8&o that the bound on the random
uniform stability of a bagged SVM is better than the bound on the uniform stabilitydimgle SVM
trained on the whole training set with the same

4.2 Subbagging

Subbagging is a variation of bagging where the $@¢s;),t = 1,...,T are obtained by sampling
p < mpoints from? withoutreplacement. Like in bagging, a base learning algorithm is trained on
each setD(r) and the obtained solutiorfs, ) are combined by average.

The proofs above can then be used here directly which gives the fojowgper bounds on
stability for subbagging:

Proposition 4.4 (Stability of subbagging for regression)Assume that the logsis

B-lipschitzian w.r.t. its first variable. Let#; be the outcome of a subbagging algorithm whose base
machine is symmetric and has uniform (resp. hypothesis or pointwis¢h®gis) stabilityy, w.r.t.
the¢; loss function, and subbagging is done by sampling p points without repéaterfihen the
random uniform (resp. hypothesis or pointwise hypothesis) staBilityf Fp, w.r.t. £ is bounded

by

p
Bm < Bypa-

For classification, we have also the following proposition, again only fpothesis or pointwise
hypothesis stability as in Section 2:

Proposition 4.5 ((P.) Hypothesis stability of subbagging for classificain) Let Fp, be the out-
come of a subbagging algorithm whose base machine is symmetric ahgiathesis (resp. point-
wise hypothesis) stability, with respect to classification loss, and subbagging is done by sampling
p points without replacement. Then the random hypothesis (resp. partypsthesis) stabilit@,

of Fp, with respect to thé; loss function is bounded by

Bm < 2Vp£-

4.3 Bounds on the Performance of Subbagging

We can now prove bounds on the performance of bagging and subbayge present the following
theorems for subbagging but the same statements hold true for baggirg imlte@e bounds below,
% is replaced by ! %]P} [d(r) = k] which is roughly equal to 832y, 32m whenmis sufficiently
large.

Theorem 16 Assume that the logds B-lipschitzian w.r.t. its first variable. LetJ; be the outcome
of a subbagging algorithm. Assume subbagging is done with T sets of sigesampled without
replacement from» and the base learning algorithm has hypothesis stabyiityand pointwise
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hypothesis stability;,,, both stabilities being w.r.t. théloss. The following bounds hold separately
with probability at leastL — &

2M2+12MB

Rgen( Fﬂ),r) < RZOO(F@J) + \/5_1 m PYo (23)
2MZ2 + 12MBpy;,

Rgen(For) < RemgFor) + \/61 m P, (24)

Proof The inequalities follow directly from plugging the result of Proposition 4.4 irediems 9
and 12 respectively. [ |

Note that, as in Proposition 4.2, the same result holds for classification if W@ se2 and
M=1.

The following theorem holds for regression. The extension to the caglasdification can be
done again as in (Bousquet and Elisseeff, 2002).

Theorem 17 Assume that the logds B-lipschitzian w.r.t. its first variable. LetJ; be the outcome
of a subbagging algorithm. Assume subbagging is done with T sets of sigesampled without
replacement fron® and the base learning algorithm has uniform stabiltyw.r.t. the/ loss. The
following bounds hold separately with probability at ledst o in the case of regression

Roen(For) < Rioo(Fos) + Br‘:’p + (M +AB(m/m—1)pVp ﬁBM) V09278, (25)

v2m VT

and

Bpy M+4Bpy, +/2BM
Ryen(Fo,r) < Remp(Fo,r) +2 mp + < Jom Py T ) V109 2/6. (26)

Proof We recall that = (ry,...,rt) and introducethe notation

t

rY=(ry,...,re1,r rees, ..o r).

Note that

[0(Fpyr,2) — U(Fpyi,2)| =

T T
l (21 f@(rs),2> -/ ( Z f@(rs) + f@(r/),Z
S= s=1,s+#t

Thus, the constam in Theorem 15 is bounded as

(Fos.2)~ ((Foe2)| < 2M.

p=sup

r,re

The result then follows by using this theorem and Proposition 4.4. |

We comment on some characteristics of the above bounds for subbagging:
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e In Theorem 16 if, asn — oo, % — 0 then the empirical or leave-one-out error converge to
the expected error. In particular, if= O(1) asm — o the empirical or leave-one-out error
converge to the expected one@g&l//m). This convergence is in probability as opposed to

the convergence provided by Theorem 17 which is almost surely.

¢ Although we can derive bounds for bagging using our theory in secttbat3vere not possi-
ble to derive with the existing theory summarized in Section 2, our results figilgdo not
show that bagging actually improves performance. Indeed, for exaropiparing Theorems
17 and 6, it is not clear which bound is tighter as that depends on the nts&ay.M, B, and
other constants) and the behaviorygfas p increases. Developing tighter bounds or lower
bounds within our analysis for bagging is needed for this purpose. Tarsapen problem.

e Theorem 17 indicates that the effects of the number of subsampkesf the form%, SO
there is no need for a larde, as also observed in practice (Breiman, 1996a). For example,
it is sufficient thatT scales as/m. This result improves upon the analysis of (Evgeniou et
al., 2004) where in order to have convergence of the empirical or lea@esur error to the
expected error it was required thits infinite.

e The bounds provided by Theorem 17 imply that the empirical or leavesaherror converge
to the expected error provided, as— oo, that'\oim"1 — 0 and T — o. The latter condition is

not a problem in practice, for example one could chobse O(,/m) to get convergence,
but it indicates a weak point of the uniform stability analysis as opposed thyipethesis
stability analysis above. As we discussed above, it may be possible to shopatameter

p appearing in Theorem 15 dependsroifior the case of bagging, or to show that this is not
possible in which case it will be a limitation of our approach. This is an opellgm

5. Conclusions

We presented a theory of random stability for randomized learning methads¢halso applied to
study the effects of bagging on the stability of a learning method. This is angéateof the existing
theory about the stability and generalization performance of deterministiengsyric) learning
methods (Bousquet and Elisseeff 2002). We note that the setup thavelemed for this analysis,
such as the issues and assumptions that we considered in Section 3, may bsed for other
studies of randomized learning algorithms — such as extensions of otheetha@oout stability from
deterministic to randomized learning methods. The bounds we proved shoallipthe relation
of the generalization error to the stability of the (random) algorithm. Thereriemily no lower
bound hence we cannot practically use the bounds when the numbeaaiidesmall (e.g., several
hundreds or thousands, which is the case in many current applicatibms)issue concerns both
the deterministic (Bousquet and Elisseeff, 2002) as well as the randsen €eveloping tighter
bounds as well as lower bounds in order to be able to use the theory pleddiere in practice is an
open question.
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Appendix A. Proofs of Lemmas 3.1 and 3.2

The proofs of Lemmas 3.1 and 3.2 follow directly the proof that has beamgiv(Bousquet and
Elisseeff, 2002). We reproduce the proof here with the changes thatquired to handle non
symmetric algorithms. Before entering the core of the calculations, let us ute@bme convenient
notation. We will denote by

Eij(Z,Z’,Z’/) :E(fﬂj(zz),z”) (27)

the loss of an algorithm trained on
Q)I,j(zazl) = (217"'7Zi—lazvzi+17"'7Zj—l7zlvzj+l7"'7zm)

which represents the training sétwherez andz; have been replaced lyandz. Wheni = j,
it is required thaz = Z. Note that the position of andz; matters here since the algorithm is not
symmetric. Since we hav®, j(z,zj) = Dk (%, z) for anyi, j andk,! in {1,...,m}, we use the
notation/(z) to denotetij(z,zj,z) for alli andj in {1,...,m}. According to these notations we
have

4ij(0.2),7) = {(fpi,2),
that is, we replace by the empty set when it is removed from the training set. Si)¢®,z;,z)
does not depend opy we will denote it by¥;.

Different tricks such as decomposing sums, renaming and permuting leariaitl be used in
the following calculations. Since the proofs are very technical and mostiydio we explain here
more precisely what these steps are. Decomposing sums is the main stepaittiations. The
idea is to transform a differenee-b into a suma—b = zik:la; —a;11 (@ =aandax 1 = b) so that
the quantities; — a1 in the sum can be bounded by terms of the fdm, [|4ij (z,zj,z) — £(z)]].
the latter being directly related to the notion of stability we defined. Renamingblesigorre-
sponds to simply changing the name of one variable into another one. Mtistepfthis change
will be done betweem, z andz; using the fact that and thez’s are independently and identically
distributed so that averaging w.iztis the same as w.r%.. The last technigue we use is symmetriza-
tion. The following simple lemma will allow us to perform some symmetrization withouhgimey
significantly the outcome of a (stable) learning algorithm.

Lemma 18 Let A be a (non-symmetric) algorithm and fdie as defined in Equation (27), we have
Wi, j) € {1,...,m}?2

ED,Z HE(Z) _Eij (Zj,Zi,Z)H < g (ED,Z,Z’ HEIJ (Z’,ZJ’,Z) _E(Z)H +ED.,Z,Z’ Hglj (Zi,Z,,Z) _E(Z)H) . (28)

Proof We have

Bz [|0(2) — 4} (z).3,2)[] <Epaz [[((2) —4ij(Z,7,2)|]
+Eop2z[|6j(Z,2,2) - 4j(Z.2,2)|] + Enzz [|6i(Z.2,2) — 4j(zj,2,2)|] (29)
Since the distribution oveD is i.i.d., integrating with respect tg is the same as integrating w.r.t.

zj or Z, and we can swap the role Bfandz in the second term of the r.h.s. , andzpfndz; in the
last term.

Epzz [|0i(Z,2,2) = 4ij(Z,2,2)|] = Eopzz[|l(2)—4j(z,Z,2)|]
Enzz[[6i(Z.2,2) ~ ij(z,2,2)|] = Ensz[|6j(Z,2,2-4(2)]],
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which gives the following result:

Eo.[|0(2) - 4ij(z,2.2)|] < 2Eop.[|6j(Z,7.2)—L(2)|] + Eon.[|6j(z.Z,2—€(2)|] (30)
If instead of (29) we used the following decomposition,
Ep. [|0(2) —4i(2),2,2)|] <Eop,z [[0(2) —4ij(z,Z,2)]]
+Eop.z [6i(2,2,2) - 0(2,Z,2)|| + Ep 2 [|0(2.Z,2) — i (2),2,2)|],
it would have led to
Ep. [[0(2) —4ij(zj,2,2)|] <Eop.[|6j(Z.21,2) = £(2)|] + 2B, [|6ij(z,.Z,2) — £(2)]] -

Averaging this inequality with (30), we get the final result. |

Note that the quantity appearing in the r.h.s. of Equation (28) can be bobydkifierent quantities
related to pointwise hypothesis stability or to hypothesis stability. We have indeed

Enz[|0(2) - 4ij(2,7,2)|] <3(Enz[|ti(22,2)—0(z)|] +En.|[|6i(z.27)—t(z)]]). (31)

which is related to the definition of pointwise hypothesis stability and will be udeshvihe focus
is on empirical error. We have also

Eo. [[0(2) —4i(2),7,2)|] <3(Ep[|6j(0,2),2) —£(2)|] +Eo[|6ij(z,0,2)—4(2)]]),

which is related to bounds on the leave-one-out error. Both boundsthawsame structure and it
will turn out that the following calculations are almost identical for leave-oneerror and empirical
error. We can now start the main part of the proofs. The notations dieuttifo digest but the ideas
are simple and use only the few formal steps we have described beferirst\étate the following
lemma as in (Bousquet and Elisseeff, 2002):

Lemma 19 For any (non-symmetric) learning algorithm A, we have
2 1 2 0

Ep [(Rgen— Remp)?] < -~ ;E@,z,z’ [6(2)0(Z)] - 2 Z Epz[l(2)((z)]
i) i#]

+ % ; Ep[0(z)0(z)] + % i (Epzz [€(2)0(Z)] — 2Ep,[0(2)0(z)] +Ep [g(zi)z])
iZ] i=
and
Ep [(Rgen— Réoo)z} < % i; Epzz [f(Z)f(Z,)] — % i% Ep, [0(2)4]
+ % ; Ep[6ilij(z,0,7)]
iZ]
1 m

+ Zl (Epzz [€(2)0(2)] — 2Ep, [6(2)6] +Exp [67]) .
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Proof We have

E@[RSen] = Eop |:EZ£(Z)2:|
= Ep.z [((2)((Z)]
_ rizi JEDZZ[e(z)e(z)anziE@,Lz [L(2)e(2)],
and also
E@[RgenRemd = E@ [Rgen%ig(zi)]
_ %iiE@[Rgené(z)]
= S Esula)
- %i#JE@z[é(Z)K(Z.)]+%iiE@z[£(Z)g(z|)]
and also
Ep[RgerRioo] = En !Rgenn%_ifi]
_ nl]iiE@{Rgenei]
= %'iEa)z[f(Z)m
= %lijsz[ﬁ(Z)E.]—I—%iiE@zWZ)m

Also we have

and

Eop [R[%oo]

which concludes the proof.

ELISSEEFF, EVGENIOU AND PONTIL

iE@ €] + % ; Ex[4itij(z,0,2)],
i= iZ]

3+
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Continuing the proof of Lemma 3.2, we now formulate the first inequality of Leménasl

Eop [(Rgen— Remp)z] < % ; Eﬂz,z’ [E(Z)K(Z,)} - Eﬂz w(Z)g(Zi)]
iZ]

~~

+ % iiEﬂ,zz [(2U2)] - 2B, [(2)0(2)] +Ep [£(2)] .
K

Using the fact that the loss is boundedMywe have
K = Epaz [l(2) (U(Z)~z))] +En,[l(z) (U(z) —£(2)]
< 2M2

Now we rewritel as
Epzz [E(z)é(z’)] —Ep [l(2)l(z)] =
= EQ),Z,Z’ [E(Z)E(z’) — Eij (Z’,Zj,Z)eij (Z’, Zj,Z,)] R
where we renameg asZ in the second term. We have then
| = Epzz [(£(2) —4}(27,2)0(Z)]
+Ep2z [(6j(22),2) - ij(Z,2,2)0(Z)]
+Enpzz [(U(Z)—1ij(Z.2,2))ti(Z,2,2)] -

Thus,
1| <3MEp .z [[6j(22,2) - (2)]] - (32)

Next we rewrite] as
Ep[0(z)0(2))] — En[t(D)0(2)] = En a7 [6i(2Z,2)4§(22,2) — £(2)((7)]
where we renameq} asZ andz aszin the first term. We have also
J=En,7 [6i(2Z,2)6j(2Z,7) - 4ij(Z,2,2)6i(Z,2,2)]
where we renamer] asZ andz; asz in the second term. Using Equation 31, we have
J<Ep,z[6j(zZ,2)6i(2Z,2) - tij(z,Z,2)4:i(Z,7,2Z)]

J
+3M (Ep[|6ij(z.2,2) —(z)|] +En.[|j(z,22)—€(z)]]). (33)

Let us focus on);, we have

h=Eop,, [(tij(zZ,2)-tj(z2,2)tij(zZ,2)
+Epzz [(4j(22,2) — 4ij(2,2,2)tij (2 2,2)]
+Eop.z [(bj(22,2) - 4ij(Z,2,2))(z,Z,2)]
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and

N =Eop.7((4j(z,2,2) — 4ij(z.2,2)) 4 (Z,Z),7)]
+Ep 2z [(4)(2,2),2) — 4ij(2,2),2)) 4 (Z,2,)]
+Ep27((4ij(2,2,2) — 4ij(z,2),2))j (2,2, 2)]

where we replacedby z, z by zandZ by z; in the first term, and by z andZ by z; andz by zin
the second term and, in the last term, we renamést z andz by z;. Thus,

31| < 2MEon, [|6ij(2,2j,2) — €(z)|] + MEp .z [|6ij(z,2,7) — £(z))]] - (34)
Summing Equation (32) with the inequality drderived from Equations (34) and (33), we obtain
1+J < 8MEq,[|tj(z2,2)—(z)|] +4MEos, [|4j(z,2.2) — £(z)|] -

To boundl + J, we can swap the role éfand j (note thati and j are under a sum and that we can
permute the role afandj in this sum without changing anything). In that case, we obtain

| +J < AMEy, [|6j(2,2,2) — £(z)|] + BMEp . |4 (z,2,2) — £(z;)]] -
Averaging over this bound and the previous one, we finally obtain
| +J3<6M (En[|lij(z2,2)—(z)|] +Eo.[|tj(z.22)—4(z)|])-

The above concludes the proof of the bound for the empirical erraniha 3.2).

The bound for the leave-one-out error (Lemma 3.1) can be obtainediinilarsvay. Indeed,
we notice that if we rewrite the derivation for the empirical error, we simpleha remove from
the training set the point at which the loss is computed. That is, we simply haeplaxe all the
quantities of the fornti; (z,Z,z) by ¢;(0,Z,2). Itis easy to see that the above results are modified
in a way that gives the correct bound for the leave-one-out error.

Appendix B. Proof of Theorem 3.4

Proof We first prove Equation (17) and then show how to derive Equation @8)h proofs are
very similar except for some calculations.

LetK(D,r) = Rgen(fn) — Remd fn,) the random variable which we would like to bound. For
this purpose, we first show thHtis close to its expectation w.rit.and then show how this average
algorithm is controlled by its stability.

For everyr,se R, andT € N, we have

K(D.6)~K(D,9)| =
= [Eeltln 2 ~t(1p02] = 1 3 ((1r.2)~H(1152)

< Eo[|(fper2) ~ Ufns2)]] + %i}ﬁ(fﬂr,a) U(tpea)].
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Thus, using the definition o, this equation implies (when ands differ only in one of theT
coordinates) that

sup |K(D,ry,....r1) —K(D,ra,... 1 1,1, g1, 1) < 2p
Iyl T,0F

and applying Theorem 14 we obtain (note tiais independent af)
]P)r [K<Q)7r) - EI’ [K(Q)7r)] > € ’ Q)] < eXp{_Ez/Zsz} .

We also have
E@[Pr [K(Q),I’) —EK(D,r) > SH —
=Ep[P; [K(D,r) —EK(D,r) > €| D]] < exp{—€?/2Tp?}.

Setting the r.h.s. equal @and writinge as a function od we have that with probability at least
1—dw.r.t. the random sampling @ andr:

K(D,r)—E/K(D,r) <+v2Tp+/log(1/d). (35)
We first bound the expectation Ef( D,r). We defineG(D, z) := E; [((fp,,2)]. We have

E@,r [K(Q),r)] = EQ) E,

6(D.2) - %iemm”

= Ep,[G(D,2)] - %_iE@ (G(D,2)]

IN®

2+ Epy,[6(01.2)] - & ZlE 6(0".2)]

—
Nl

= 2Bnm (36)

where(a) is derived from the fact that the algorithm has random uniform stafflifythat is,

sup
D,z

G(0,2)~G(D".2)| <Bm,

and (b) comes fromEy, [G(DV,7)] = E i, [G(DV,2)] (it amounts to changing into 2). We
would like now to apply Theorem 14 &, [K(D,r)]. To this aim, we bound (recall thap' =
D\'UZ):

|Er [Er [K(D,1)—K(D',1)]]| =

1
m

(Er [g(ffDi,Hzl)} —Er [g(f@,hzi)})—i_%; Er[g(fﬂ)\i7razj>] —E [e(f@,l’azj)]
17]
() (b)

~~

+;; Er [((fpir.2Z)] —Erll(f i, Z)]+Er [Ez [U(fpr.2) —(fpi,2)]]| (37)
i#]
© (d)
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where(a) is bounded byM (b), (c) are bounded bfm and(d) is similarly bounded by . So
that sup, , , |Er [K(D,1)] - E; [K(D',1)]| < M + 4B, and we derive that

2me?
o e <o 2L

which implies that with probability at least-10 w.r.t. the random sampling @b andr

M +4mBn,
v2m

Observe that the inequalities in Equations (35) and (38) hold simultaneoitblyprmbability at
least 1— 26. The result follows by combining those inequalities and setirgd/2.

The proof of Equation (19) follows the same reasoning except that tie ohEquations (36)
and (37) are different. We have

Er [K(D.1)] < 2B+ l0g(1/3). (38)

EfD,r[K(@’r)] = Eop

E.[G(D,2)] - n%ie(@\i,a)]

~ Epal6(02] 3 Epa[6(0" 2)
B

and denotingh\"I the setD wherez andz; have been removed, arf\} the setD' wherez; has
been removed (foj # i),

IN

|E¢ [K(D,1)] —Er [K(D,1)]| =

%(Er [f(f@\ipzi)} —E V( D\ ra ;Ef fopi r’ZJ —Er [(( f@\i~j,r’zj)}

(@) (b)

+— ;Er @\IJ rvz] } Er [g(f@i\i‘razj)} +Er [Ez [e(f@,ﬂz) _g(fl)i,rvz)” .
© @

Finally, note tha{a) is bounded b)}ﬂm, (b) and(c) are bounded b1 and(d) by 2B, [ |
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Abstract

A central challenge in learning probabilistic graphicaldats is dealing with domains that involve
hidden variables. The common approach for learning modelmpaters in such domains is the
expectation maximizatiofiEM) algorithm. This algorithm, however, can easily gepfprad in sub-
optimal local maxima. Learning the modsttuctureis even more challenging. Ttetructural EM
algorithm can adapt the structure in the presence of hiddaables, but usually performs poorly
without prior knowledge about the cardinality and locatidthe hidden variables. In this work, we
present a general approach for learning Bayesian netwadtkshidden variables that overcomes
these problems. The approach builds on itifermation bottleneckramework of Tishby et al.
(1999). We start by proving formal correspondence betwkernnformation bottleneck objective
and the standard parametric EM functional. We then use ¢infegpondence to construct a learning
algorithm that combines an information-theoretic smamjhierm with a continuation procedure.
Intuitively, the algorithm bypasses local maxima and agsesuperior solutions by following a
continuous path from a solution of, an easy and smooth, tthrgetion, to a solution of the desired
likelihood function. As we show, our algorithmic framewaaows learning of the parameters
as well as the structure of a network. In addition, it alsowad us to introduce new hidden vari-
ables during model selection and learn their cardinalitg d&monstrate the performance of our
procedure on several challenging real-life data sets.

Keywords: Bayesian networks, hidden variables, information bo#ttdn continuation, variational
methods
1. Introduction

Probabilistic graphical models have been widely used to model real wontdhids and are par-
ticularly appealing due to their natural interpretation. Despite extensieanesin learning these
models from data (Pearl, 1988; Heckerman, 1998), learning littien(or laten? variables has

A preliminary version of this paper appeared in the Proceedings of thetéinth Conference on Uncertainty in
Atrtificial, 2003 (UAI '03).
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remained a central challenge in learning graphical models in general, @ayesiBn networks in
particular. Hidden entities play a central role in many real-life problems: &nawn regulating
mechanism can be the key to complex biological systems; correlating symptomntdimigit a hid-
den fundamental problem in a diagnostic system; an intentionally maskedreicopawer might
be the cause of related financial phenomena. Indeed, hidden vatghilesly serve as a summa-
rizing mechanism that “captures” information from some of the observeadblas and “passes”
this information to some other part the network. As such, hidden variabhesimlify the network
structure and consequently lead to better generalization.

When learning the parameters of a Bayesian network with missing valuesdamhi@riables,
the most common approach is to use some variant ofxpectation maximizatiofEM) algorithm
(Dempster et al., 1977; Lauritzen, 1995). This algorithm performs algreearch of the likelihood
surface and converges to a local stationary point (usually a local maximUmiortunately, in
challenging real-life learning problems, there are many local maxima that&arEM in a poor
solution. Attempts to address this problem use a variety of strategigs Glover and Laguna
(1993); Kirkpatrick et al. (1983); Rose (1998); Elidan et al. (2002Yhen learning structure, the
structural EM (SEM) algorithm (Friedman, 1997; Meila and Jordan, 1998; Thiessah,et998)
can adapt the network topology. In this approach, as in the classi@hparc EM algorithm, we
use the distribution induced by our current model, to probabilisticadiynpletethe data. Unlike
parametric EM, we then use the completed data to evaluate different canslideteires. This
allows us to perform structure improvement steps inNh&tepof a structural EM iteration. As
in the case of EM, while convergence is guaranteed, the algorithm typicailyecges to a local
maximum.

An even more challenging problem is thatrabdel selectiomvith hidden variables. This in-
volves choosing the number of hidden variables, their cardinalities anceffendencies between
them and the observed entities of the domain. These decisions are cruadliése good gen-
eralization. In particular, in hard real-life learning problems, structuMI&ll perform poorly
unless some prior knowledge of the interaction between the hidden anvedsariables exists or
if the cardinality of the hidden variables is not (at least approximately) knoktese challenging
problems have received surprisingly little attention.

In this paper, we introduce a new approach to learning Bayesian netwittkhidden variables.
We pose the learning problem as an the optimization of a target function thadésca tradeoff
between two information theoretic objectives. The first objective is to casspreormation about
the training data. Intuitively, this is required when we want to generaliza fifee training data
to new unseen instances. The second objective is to make the hiddernegnmdbrmative about
the observed attributes to ensure they preserveetegantinformation. This objective is directly
related to maximizing the likelihood of the training data. By exploring differelfattiree weightings
of these two objectives, we are able to bypass local maxima and learn bettelsmo

Our approach builds on theformation bottleneckramework of Tishby et al. (1999) and its
multivariate extension (Friedman et al., 2001). This framework providesadsttor constructing
a set of new variable§ that are stochastic functions of one set of variaMemnd at the same time
provide information on another set of variabksThe intuition is that the new variabldscapture
the relevant aspects f that are informative about. We show how to pose the learning problem
within the multivariate information bottleneck framework and derive a targgrdragian for the
hidden variables. We then show that this Lagrangian is an extension o&grargian formulation
of EM of Neal and Hinton (1998), with an additional regularization term. 8ytmlling the strength
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of this information theoretic regularization term usingcale parametemwe can explore a range of
target functions. On the one end of the spectrum there is a trivial tatggtewcompression of the
data is total and all relevant information is lost. On the other extreme is the targ#ion of EM.

This continuum of target functions allow us to learn using a procedure atethby thedeter-
ministic annealingapproach (Rose, 1998). We start with the optimum of the trivial targetium
and slowly change the scale parameter while tracking the local optimum solttéatka step on
the way. To do so, we present an alternative view of the optimization probléme jjoint space of
the model parameters and the scale parameter. This provides an appedliod foescanning the
range of solutions as inomotopy continuatiofMWatson, 2000).

We generalize oumformation bottleneck expectation maximizati@B-EM) framework for
multiple hidden variables and any Bayesian network structure. To makerigdeasible for large,
real-life problems we show how to introduce variational approximation asomsgnto the frame-
work. We further show that, similarly to the case of standard parametric Edvie is a formal
relation between the information bottleneck objective in this case andatiational EM func-
tional (Jordan et al., 1998).

We then extend the approach to deal with structure learning. As we shewaweasily in-
corporate our method into the structural EM framework to deal witdel selectionwith hidden
variables. In doing so, we perform continuation interleaved with modettahesteps that change
the structure and the scope of the model. On top of standard structure ntamhfisteps of adding
and removing edges, we introduce two model enrichment operators thatdalintage of emergent
information cues during the continuation process. The first operatoadapot the cardinality of a
hidden variable. Specifically, the cardinality of a hidden variable can asereluring the contin-
uation process, increasing the likelihood as long as it is beneficial to ddtsmsecond operator
introduces new hidden variables into the network structure. Intuitiveljdl@ehn variable is intro-
duced as a parent of a subset of nodes whose interactions are gxudined by the current model.

We demonstrate the effectiveness of our information bottleneck EM algoiitiseveral learn-
ing scenarios. First, we learn parameters in general Bayesian netfeorkeveral challenging
real-life data sets and show significant improvement in generalizationrpexfce on held-out test
data. Second, we demonstrate the importance of cardinality adaptatiorofbggoeralization. We
then show how our operator for enriching the network structure with nddehn variables leads to
significantly superior models, for several complex real-life problems. lligjn@e show that com-
bining both structure enrichment and cardinality adaptation results in furtiprovement of test
performance.

The paper is organized as follows. In Section 2, we give a short bagkd on learning
Bayesian networks and on tiMultivariate information bottleneckf Friedman et al. (2001). In
Section 3, we present the basic framework of our IB-EM algorithm. Irti@ee, we show how
to combine this algorithm with continuation to bypass local maxima. In Section 5 teadxhe
framework to multiple hidden variables. In Section 6, we demonstrate the mathpadufameter
learning in real-life scenarios. In Section 7, we show how our method eatoimbined with the
structural EM algorithm to learn the structure of a network with hidden viegabln Section 8,
we take advantage of emergent structure during the continuation praoelsgresent a method for
learning the cardinality of the hidden variables. We apply this method to realdttein Section 9.
In Section 10, we address the model selection challenge of learning neenhicriables. We
present experimental evaluation for several real-life problems in Settiom Section 12, we give
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a brief overview of relevant works, and in Section Section 13 we end wiiscussion and future
directions.

2. Background

In this section we briefly present the basics of learning Bayesian nedvirork data followed by the
essentials of thenultivariate information bottlenedkamework that forms the basis of our approach.

2.1 Bayesian Networks

Consider a finite sek = {Xi,...,Xy} of random variables, where each variaflemay take on
values from a finite set, denoted Wgl(X;). We use capital letter such XsY, Z for variable names
and lower case letters suchyay, zto denote specific values taken by those variables. We use bold
letters such a¥X,Y,Z when referring to sets of variables. Bayesian networkPearl, 1988) is

an annotated directed acyclic graph that encodes a joint probability digiribaver X. Formally,

a Bayesian network oveX is a pairB = (G,0). The first componentg, is a directed acyclic
graph whose vertices correspond to the random variablgs iffthe edges in the graph represent
direct dependencies between the variables. The gfa@presents independence properties that are
assumed to hold in the underlying distribution: E&¢ls independent of its non-descendants given
its parentdg denoted byX; L NonDescendant$Pg). The second componer®, represent the
set of parameters that quantify the network. Each node is annotated eotidéional probability
distribution RX; | Pg), representing the conditional probability of the noeiven its parents in

G, defined by the parametets, ,, for each value o andPa. A Bayesian network defines a
unique joint probability distribution ovek given by

P(Xq,.. |‘1P>Q|Pa.

In this distribution, a variabl&; is independent of the rest of the variables giveiMerkov blanket
variables. These include the variable’s parents, direct children anpattemits of those children
(spouses).

Given a network structurg, the problem of learning a Bayesian network can be stated as fol-
lows: Given a training seb = {x[1],...,x[M]} of instances oK C X, we want to learn parameters
for the network. In theMaximum Likelihoodsetting we want to find the parameter valiethat
maximize the log-likelihood function

logP(D | G,8) = ZIogP m | G,8).

This function can be equivalently (up to a multiplicative constant) writteEgifogP(X | G,0)]
whereP is the empirical distribution irD. When all instances i are complete, estimating the
maximum likelihoogbarameters can be done efficiently using a closed form solution. This @s/olv
empirical sufficient statistics in the form of joint counts

N(x,pa) = Zl{><| | =X, Pa[m| = paj}, 1

where 14 } is the indicator function. When learning multinomial conditional parameterizaiging
Dirichlet priors (DeGroot, 1970) amounts to augmenting the empirical couittispseudo-counts
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a(x;,pa ).t These can thought of as adding imaginary instances that are distribatediag to a
certain distribution€.g, uniform) to the training data (Heckerman, 1998). Consequently, from this
point on we view priors as modifying the empirical distributiBrwith additional instances, and
then apply the maximum likelihood principle.

When learning with hidden variables, the problem is more complex. Since sen@bonly
partial instances, learning also involves “guessing” the values of thehidariables. In thexpec-
tation maximizatio{EM) algorithm (Dempster et al., 1977; Lauritzen, 1995) and its variantsl(N
and Hinton, 1998), this issue is addressed by using an auxiliary distribQtibat provides a proxy
for the empirical distribution. In the M-step of EM we estimate parameters aghhibis was the
true empirical distribution. In the E-step, we use the data and the currerdl tmodptimize the
auxiliary distribution over the hidden values resulting icompletedcempirical distribution. Each of
these steps is simpler than the original problem and is guaranteed notéaskethe likelihood. Un-
fortunately, EM iterations are prone to getting trapped at local maxima, sautestep is biased by
the choices made by the previous ones. Attempts to address this problemansyaof strategies
(e.g, Glover and Laguna (1993); Kirkpatrick et al. (1983); Rose (19E83an et al. (2002)).

Learning the structure of a network poses additional challenges asriiteenof possible struc-
tures is super-exponential. In practice, structure learning is typicallg deing a local search
procedure, which examines local structure changes that are eadigteda(add, delete or reverse
an edge). This search is usually guided by a scoring function such agDheprinciple based
score (Lam and Bacchus, 1994) or B&yesian scoréBDe) (Heckerman et al., 1995). Both scores
penalize the likelihood of the data to limit the model complexity. An important charsiiteof
these scoring functions is that when the data instances are complete (dzatigraining instance
assigns values to all of the variables) the scomeisomposableMore precisely, the score can be
rewritten as the sum

Score(G: D) = Z FamScorg (Pa : D),
|

where FamScosgis thelocal contribution ofX; to the total network score. This term depends only
on values ofX; andPay; in the training instances. In particular, the BDe score is defined as

Scorgpe(G : D) = ZZ (Iog ( ( i +Z|Og N(x, pa&>)<.+p0;1()x)l pa,)))) @

whererl is the Gamma function that generalizes the factorial function for real nuenthes terms
a() are hyper-parameters of the prior distributions over the parameterizatidrtbe termsl() are
the corresponding empiricalfficient statistics

In the presence of incomplete data or hidden variables, the structurardivework (Fried-
man, 1997; Meila and Jordan, 1998; Thiesson et al., 1998) can adapettivork structure. In this
approach, as in classicprametricEM, we use the distribution induced by our current model to
probabilistically complete the data. Unlike parametric EM, we then use the compitiztb eval-
uate different candidate structures, and perform structure improvesteps in theM-stepof the
structural EM iteration. As in the case of EM, convergence is guaransdieeit to a local maxi-
mum. Scoring candidate structures in this scenario is more complex, and ctionpafahe score is
typically intractable. Thus, we need to resort to approximations such @&htheseman-Stu(€S)

IThe use of pseudo-counts is slightly different depending on whethdow#AP or Bayesian estimation and depends
on the representation used (see (Thiesson, 1997) for more details).
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score (Cheeseman et al., 1988; Chickering and Heckerman, 199 edmbines the likelihoods
of the parameters found by EM, with an estimate of the penalty term associatestuitture.

2.2 Multivariate Information Bottleneck

Theinformation bottlenecknethod (Tishby et al., 1999) is a general non-parametric information-
theoretic clustering framework. Given a joint distributi@qY, X) of two variables, it attempts to
extract the relevant information théicontains abouX. We can think of such information extraction
as partitioning the possible valuesYfinto coarser distinctions that are still informative abut
(The actual details are more complex, as we shall see shortly). For exarglmight want to
partition the wordsY) appearing in several documents in a way that is most relevant to the topics
(X) of these documents.

To achieve this goal, we first need a relevance measure between tvamraadables< andY
with respect to some probability distributi@(X,Y). The symmetrianutual informatiormeasure
(Cover and Thomas, 1991)

. Qx.y)
lo(X:Y) = 3 Qey)log oo

is a natural choice as it measures the average number of bits neededey tum informationX
contains abouY and vice versa. It is bounded from below by zero when the variabdemdepen-
dent, and attains its maximum when one variable is a deterministic function of ttre othe

The next step is to introduce a new varialle This variable provides thbottleneckrelation
betweenX andY. In our words and documents example, we Wartb maintain the distinctions
between wordsY) that provide information for determining the topic of a documexi. ( For
example, the wordanusic’ and 'lyrics’ typically occur together and are typical of the same topic,
and thus the distinction between them does not contribute to the prediction tufice At the
same time, we wari to distinguish betweemiusic’ and ’politics’ as they correlate with markedly
different topics. Formally, we definE using a stochastic functio@(T | Y). On the one hand we
wantT to compres¥, while on the other hand we want it to preserve information that is relevant
to X. Using the mutual information defined above, a balance between theserwpetiog goals is
achieved by minimization of the Lagrangian

LIQ] = 1o(Y;T) =Blo(T; X), 3)

where the paramet@rcontrols the tradeoff. Tishby et al. (1999) show that the optimal partition fo
a given value of3 satisfies

Qt)

Qlty) = 7y, exp{—BD(Q(X | Y)[Q(X 1))},
where P(x)
X
D(P(X)[Q(X)) = ZP(X) log@

is the Kulback Leibler divergence between the distributidasdQ over the set of random variables
X (Cover and Thomas, 1991). Repeated iterations of these equatioriktf@nay converge to a
(local) maximum where all equations are satisfied. Practical application @fhi®ach for various
clustering problems was demonstrated in several works (e.qg., (Slonimistria/T2000, 2001)).
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Figure 1: Definition ofGin and Gout for the multivariate information bottleneck frameworkin
encodes the distributio® that compresse¥. Gout encodes the distributioR that we
want to approximate usin@.

The multivariate extension of this framework (Friedman et al., 2001) allows osnsider the
interactions of multiple observed variables using several bottleneck iesialfor example, we
might want to compress word¥) in a way that preserves information both on the topic of the
document X;) and on the author of that documei). In addition, there probably is a strong
correlation between the author and the topics he writes about. Evidentlyuthieen of possible
interactions may be large, and so the framework allows us to specify thecitivesawe desire.
These interactions are represented via two Bayesian networks. Tthedited Gin, represents the
required compression, and the second, callgg represents the independencies that we are striving
for between the bottleneck variables and the target variables. In Figu}g 4pecifies thal is a
stochastic function of its parent in the graph Gou specifies that we want to makeY and the
variablesx;’s independent of each other.

Formally, the framework of Friedman et al. (2001), attempts to minimize the Lg@gan

L(l) [gina Gout] — Igin _ BIgOUt7

where

19 =5 1(%;Pg))

and the information is computed with respect to the probability distribution repexséy the net-
work G. This objective is a direct generalization of Eq. (3), and as beforetatrée self-consistent
equations characterize the optimal partitioning. Note that, as in the basic inimnnbattleneck

formulation, the two objective of the above Lagrangian are competing. Ganghband we want to
compress the information between all bottleneck variablesd their parents i;i,. On the other

hand we want to preserve, or maximize, the information between the varaidebeir parents in
Gout-

Friedman et al. (2001) also present an analogous variational prirtcgtakill be useful in our
framework. Briefly, the problem is reformulated as a tradeoff betweemoession of mutual in-
formation inGin so that the bottleneck variable(Bhelp us describe a joint distribution that follows
that form of a target Bayesian netwotf,. Formally, they attempt to minimize the following
objective function

L(Z) [Q7 P] = IQ(Y;T) +yD(Q(Y7T7X)HP(Y7T7X))7 (4)
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whereQ and P are joint probabilities that can be represented by the networkg,0dnd Gout,
respectively. The two principals are analogous under the transforn&ﬂ@qi—y and assuming

IGn — Io(Y;T). See Friedman et al. (2001) for more details of the relation between the tvad-prin
pals.

The minimization of the above Lagrangian is over possible parameterizatiédpdrdfy) (the
marginalQ(Y, X) is given and fixed) and over possible parameterizatior3¥fT, X) that can be
represented byjo,t. In other words, we want to compre¥sin such a way that the distribution
defined byGin is as close as possible to desired distributiozgf. The analogous principal gives
us a new view on why these two objectives are conflicting: Consider a dittnithat is consistent
with Gin so thatT is independent oK givenY. On the other hand, a distribution consistent with a
specific choice ofj,,t may require thak is independent of givenT. Constructing a distribution
where both of these requirements actually hold is not useful, may resditthiait is equal to either
X orY, making this bottleneck variable redundant.

The scale parametgibalances the above two factors. Whes zero we are only interested in
compressing the variab¥ and we resort to the trivial solution of a single cluster (or an equivalent
parameterization). Wheyis high we concentrate on choosiQgT | Y) that is close to a distribution
satisfying the independencies encodeddyy. Returning to our word-document example. We
might be willing to forgo the distinction betweefoodtball’ and 'baseball’ in which case we would
sety to a relatively low value. On the other hand, we might even want to make a miistitection
between Pentium’ and 'Celeron’ in which case we would satto a high value. Obviously, there is
no single correct value gfbut rather a range of possible tradeoffs. Accordingly, severabaghes
were devised to explore the spectrum of solutionguasies. These include Deterministic annealing
like approaches that start with small valuey@ind progressively increase it (Friedman et al., 2001),
as well as agglomerative approaches that start with a highly refined soduttbgradually compress
it (Slonim and Tishby, 2000, 2001; Slonim et al., 2002).

3. Information Bottleneck Expectation Maximization

The main focus of the multivariate information bottleneck (see is on distrib@ioh | Y) that

is a local maxima solution of the Lagrangian This distribution can be thought af soft clus-
tering of the original data. Our emphasis in this work is somewhat differeitenG data set
D = {x[1],...,x[M]} over the observed variablés we are interested in learning a better genera-
tive model describing the distribution of the observed attribdted hat is, we want to give high
probability to new data instances from the same source. In the learnedkgiveohidden variables
will serve to summarize some part of the data while retaining the relevant infiorman (some) of
the observed variables.

We start by extending the multivariate information bottleneck framework fotasle of gener-
alization where, in addition to the task of clustering, we are also interestediirigahe generative
modelP. We emphasize that this is a conceptually different task. In particular,ciimenon view
of the information bottleneck framework is as a non-parametric informaticore¢tie method for
clustering (the obvious exception is the work of Slonim and Weiss (2002) nmexatibelow). In
generative learning, on the other hand, we are interested in modeling thibutisn. That is, we
are ultimately interested iparameterizinga specific model so that our generalization prediction on
unseen future instances is improved. We start by considering this taslefoase of a single hidden
variableT and then, in Section 5, extend the framework to several hidden variables.
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3.1 The Information Bottleneck EM Lagrangian

If we were only interested in theaining data and the cardinality of the hidden variable allows
it, each state of the hidden variable would have been assigned to a difiestance. Consider,
for example, a variabl@ with |T| states that defines a soft clustering on the specific identity of
words {¥) appearing in documents while preserving the information relevant to the g&piof
these documents. Now suppose we are given a set of instdheegword|i],topicfi]} wherei
goes from 1 taVl, the number of instances. |I[f| = M then we could simply deterministically set
Q(T =i | word[i]) = 1 and then predidbpic]i] perfectly. While this model achieves perfect training
performance, it will clearly have no generalization abilities. Since we aodratisrested in unknown
future samples, we intuitively require that the learned model “forget” tleeifips of the training
examples. However, in doing so we will also deteriorate the (previouslyrdetistic) prediction of
the observed variables. Thus, there is a tradeoff between the coimprekthe identity of specific
instances and the preservation of the information relevant to the obsemedles.

We now formalize this idea for the task of learning a generative model ogesattiables< and
the hidden variabld@. We define an additional variab¥eto be the instance identity in the training
data?. Thatis,Y takes values iq1,...,M} andY[m] = m. We defineQ(Y, X) to be the empirical
distribution of the variableX in the data, augmented with the distribution of the new variable
For each instancg x[y] are the valueX take in the specific instance. We now apply the information
bottleneck framework with the grapii, of Figure 1. The choice of the gragh,: depends on the
network model that we want to learn. We take it to be the target Bayesiamret@mugmented by
the additional variabléy, where we seT asY’s parent. For simplicity, we consider as a running
example the simple clustering model 6§, whereT is the parent 0¥y, ..., X,. In practice, and
as we show in Section 6 any choice @f,: can be used. We now want to optimize the Bottleneck
objective as defined by these two networks. This will attempt to define atworal probability
Q(T |Y) sothatQ(T,Y,X) =Q(T | Y)Q(Y, X) can be approximated by a distribution that factorizes
according toGoyt. This construction will aim to find' that captures the relevant information the
instance identity has about the observed attributes. The following proposiiwretely defines the
objective function for the particular choice 6f, and Gyt We are dealing with.

Proposition 1
Let

1. Y be the instance identity as defined above;
2. Gin be a Bayesian network structure such that such that T is independ¥ngigén Y ; and
3. Gout be a Bayesian network structure such thatY is a leaf with T as its only parent.

Then, minimizing the information bottleneck objective function in Eq. (4) is elgaiv@ minimizing
the Lagrangian

Lew = 1o(T;Y) — Y(Eq[logP(X, T)] — Eq[logQ(T)]),
as a function of QT | Y) and R(X,T).

Note that once the above conditions are satisfied, we can still arbitraribsehtbe structure of
Gout,» Which encodes independencies of the distribuRome ultimately wish to learn.
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Proof: Using the chain rule and the fact thatand X are independent given in Gout), we can
write P(Y,X,T) =P(Y | T)P(X,T). Similarly, using the chain rule and the fact tha@andT are
independent givel in Gin, we can writeQ(Y, X, T) =Q(Y | T)Q(T)Q(X | Y). Thus,

QY | T)Q(T)Q(X[Y)
P(Y | T)P(X,T)
= DQ(Y[T)|P(Y[T))
+ Eq[logQ(X [ Y)]
+ EqllogQ(T)]
— Eg[logP(X,T)].

D(Q(Y, X, T)|P(Y,X,T)) = Eq|log

By settingP(Y | T) = Q(Y | T), the first term reaches zero, its minimal value. The second term is
a constant since we cannot change the input distrib@@iot | Y). Thus, we need to minimize the
last two terms and the result follows immediatdly.

An immediate question is how this target function relates to standard maximum like lésem-
ing. To explore the connection, we use a formulation of EM introduced & &ed Hinton (1998).
Although EM is usually thought of in terms of changing the parameters of tgettéunctionP,
Neal and Hinton show how to view it as a dual optimizatiorPadind an auxiliary distributio®.
This auxiliary distribution replaces the given empirical distribut@{X) with a completed empir-
ical distributionQ(X,T). Using our notation in the above discussion, we can write the functional
defined by Neal and Hinton as

¥ [Q,P] = Eq[logP(X,T)] 4+ Ho(T | Y), (5)

whereHqg(T | Y) = Eq[—10gQ(T | Y)], andQ(X,Y) is fixed to be the observed empirical distribu-
tion.

Theorem 2 (Neal and Hinton, 1998f (Q*,P*) is a stationary point off, then P is a stationary
point of the log-likelihood functiofg(logP(X)].

Moreover, Neal and Hinton show that an EM iteration corresponds to margniz [Q, P] with
respect toQ(T | Y) while holdingP fixed, and then maximizingF [Q, P] with respect tdP while
holdingQ(T | Y) fixed. The form of7 [Q,P] is quite similar to the IB-EM Lagrangian, and indeed
we can relate the two.

Theorem 3 Ly = (1—y)Io(T;Y) —y7F [Q,P].

Proof: Plugging the identityHo(T | Y) = —Eg[logQ(T)] — Io(T;Y) into the EM functional we
can write

¥ 1Q,P] = Eq[logP(X,T)] — Eq[logQ(T)] — Io(T;Y).
If we now multiply this byy, and re-arrange terms, we get the form of Propositidh 1.

As a consequenceajinimizingthe IB-EM Lagrangian is equivalent toaximizinghe EM func-
tional combined with an information theoretic regularization term. Wienl, the solutions of
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the Lagrangian and the EM functional coincide and finding a local minimurygfis equivalent

to finding a local maximum of the likelihood function. Slonim and Weiss (2008Yide a similar
result for the specific case where the generative model is a mixture micaleimvariateX. Their
formulation is different than ours in several subtle details that do not alldiweat relation between
the two methods. Nonetheless, both Slonim and Weiss (2002) and Theleow3hat for a par-
ticular value ofy, the information bottleneck Lagrangian coincides with the likelihood objecfive o
EM. The main difference between the two results is the choice of genematidels, in our case
general multi-variate Bayesian networks, and in the case of Slonim and {2662), univariate
mixture models.

3.2 The Information Bottleneck EM Algorithm

Using the above results, we can now describelttiermation Bottleneck EMigorithm given a
specific value ofy. The algorithm can be described similarly to the EM iterations of Neal and
Hinton (1998).

e E-step Maximize — Lgy by varyingQ(T | Y) while holdingP fixed.
e M-step: Maximize — Lgy by varyingP while holdingQ fixed.

Note that the algorithm is formulated in terms of maximizinge,, rather than minimizingg, to
enhance the relation between the Lagrangian and the EM objective.

The M-Step is essentially the standard maximum likelihood optimization of Bayesiaorks.
To see that, note that the only term that invol¥®is Eg[logP(X,T)]. This term has the form of a
log-likelihood function, wher&) plays the role of the empirical distribution. Since the distribution
is over all the variables, we can use sufficient statistid® foir efficient estimates, just as in the case
of complete data. Thus, thé step consists of computing expected sufficient statistics gyemd
then using a closed form formula for choosing the parametdps of

The E-step is a bit more involved. We need to maximize with respe@(Tq Y). To do this we
use the following two results that are variants of Theorem 7.1 and The®reof Friedman et al.
(2001) and proved using similar techniques (see Appendix A for the rfodifjp

Proposition 4 Let L¢\ be defined viaGi, and Gou as in Proposition 1. QT | Y) is a stationary
point of Lg,, with respect to a fixed choice of P if and only if for all valuest and y of T énd
respectively,

Q1Y) = 5 QU™ P(xlyL )Y, ©)

A"

where Zy,y) is a normalizing constant:

ZWW=ZQMPWMWWW
t

Note that, as can be expected from Theorem 3, wher the update equation reduces}( | y) O
P(x]y],t) which is equivalent to the standard EM update equation.

Proposition 5 A stationary point of_¢,, is achieved by iteratively applying the self-consistent equa-
tions of Proposition 4.
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Combining this result with the result of Neal and Hinton that show that optimizafi@hincreases
F(P,Q), we conclude that both the E-step and the M-step increasg until we reach a stationary
point. As in standard EM, in most cases the stationary convergence eaatted by applying these
self-consistent equations will be a local maximum-ofe,,, or a local minimum ofZg,,.

4. Bypassing Local Maxima using Continuation

As discussed in the previous section, the parametmlances between compression of the data
and the fit of parameters tGout. Wheny is close to 0, our only objective is compressing the
data and the effective dimensionality Bfwill be 1, leading to a trivial solution (or an equivalent
parameterization). At larger valuesyive pay more and more attention to the distributiorGgf:,

and we can expect additional statesTofo be utilized. Ultimately, we can expect each sample to
be assigned to a different cluster (if the dimensionalityf adllows it), in which case there is no
compression of and the information about thés is fully preserved. Theorem 3 also tells us that
at the limit of y = 1 our solution will actually converge to one of the standard EM solutions. In
this section we show how to utilize the inherent tradeoff determinegtbybypass local maxima
towards a better solution gt= 1.

Naively, we could allow a large cardinality for the hidden variableyseta high value and find
the solution of the bottleneck problem. There are several drawbacks tapitrisach. First, we will
typically converge to a sub-optimal solution for the given cardinalityyaradl the more so foy =1
where there are many such maxima. Second, we often do not know theatiéydhat should be
assigned to the hidden variable. If we use a cardinalitylféinat is too large, learning will be less
robust and might become intractable.Tithas too low a dimensionality, we will not fully utilize
the potential of the hidden variable. We would like to somehow identify the lalefiumber of
clusters without having to simply try many options.

To cope with this task, we adopt tlieterministic annealingtrategy (Rose, 1998). In this
strategy, we start witly = 0 where a single cluster solution is optimal and compression is total.
We then progress toward higher valuesyof his gradually introduces additional structure into the
learned model. Intuitively, the algorithm starts at a place where a singef@asmpute solution
exists, and tracks it through various stages of progressively complietiasis hopefully bypassing
local maxima by staying close to the optimal solution at each valye Dfiere are several ways of
executing this general strategy. The common approach is simply to ingréadixed steps, and
after each increment apply the iterative algorithm to re-attain a (local) maximalivathew value
of y. On the problems we examine in Section 6, this naive approach did not guouessful.

Instead, we use a more refined approach that utilipedinuation methodfor executing the
annealing strategy. This approach automatically tunes the magnitude ofesharitpe value of,
and also tracks the solution from one iteration to the next. To perform catitm, we view the
optimization problem in the joint space of the parametersyard this space we want to follow a
smooth path from the trivial solution gt= 0 to a solution ay = 1. Furthermore, we would like this
path to follow a local maximum afey. As was shown above, this is equivalent to requiring that the
fixed point equations hold at all points along the path. Continuation thecays@, 2000) guaran-
tees that, excluding degenerate cases, such a path, free of discorsjrindeed exists. Figure 2
shows a synthetic illustration of the setup. (a) shows the likelihood functitimeedivo extremes of
the easy solution at= 0 and the EM function at= 1 in the joint(y, Q)-space. (b) shows the range
of solutions between these extremes and marks the desired path we wouldikevto
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Figure 2: Synthetic illustration of the continuation process. (a) shows gyelikalihood function
aty= 0 and the complex EM function gt= 1. (b) spans the full range of functions and
marks the desired path for following the maximum. (c) demonstrates a single step in
continuation process. The gradiem G is computed and then the orthogonal direction
is taken.

We start by characterizing such paths. Note that once we fix the paraQéterY ), the M-step
maximization of the parametershis fully determined as a function . Thus, we tak&(T |Y)
andy as the only free parameters in our problem. As we have shown in Proposjtishen the
gradient of the Lagrangian is zero, Eg. (6) holds for each valt@wodly. Thus, we want to consider
paths where all of these equations hold. Rearranging terms and takingiHqg(6) we define

Gty(Q)Y) = —logQ(t | y) + (1 —-y)logQ(t) +ylogP(x[y],y) —logZ(y,y). (7)

Clearly, Gt y(Q,y) = 0 exactly when Eq. (6) holds for alandy. Our goal is then to follow an
equi-potential path where &8y ,(Q,y) functions are zero starting from some small valug op to
the desired EM solution gt= 1.

Suppose we are at a poif@o, o), whereG y(Qo, Yo) = O for allt andy. We want to move in a
directionA = (dQ,dy) so that(Qo +dQ, Yo + dy) also satisfies the fixed point equations. To do so,
we want to find a directiod, so that

\V/t,y, DQ,VGLY(QO’VO) A= O’ (8)

wherellg Gt y(Qo, Yo) is the gradient oGy y(Qo, Yo) with respect to the parametegsandy. Com-
puting these derivatives with respect to each of the parameters resuligiivative matrix

_ (%) | 26,Qy)
Hy(Qu) = (SR | 2 ). (9

Rows of the matrix correspond to each of the- |T| x |Y| functions of Eg. (7), corresponding to
joint combinations of théT | states of the bottleneck variableand thelY| = M number of possible
values of the instance identity variabfe The columns correspond to theparameters o as well
asy. The entries correspond to the partial derivative of the function agedoieith the row with
respect to the parameter associated with the column.
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To find a directiom that satisfies Eq. (8) we need to satisfy the matrix equation

Hty(Qo,Yo)A = 0. (10)

In other words, we are trying to find a vector in the null-spacegiQo, Yo) (Qo, Yo). The matrixH
is anL x (L + 1) matrix and its null-space is defined by the intersectioh tdngent planes, and is
of dimensionL +1— RankH; y(Q,y)). Numerically, excluding measure zero cases (Watson, 2000),
we expect Ranft: y(Qo,Yo)) to be full,i.e., L. Thus, a unique line that (up to scaling) defines the
null space, and we can choose any vector along it. To follow the path ttamet objective at
y = 1 we choose the direction that always increasése discuss the choice of the length of this
vector below). Returning to Figure 2, (c) illustrates this process. Shoyamis(y, Q)-space with
the grey-level denoting the value of the likelihood function. At each poirthénlearning process
the gradient ofs is evaluated and the orthogonal direction is taken to follow the desired path.
Finding this direction, however, can be costly. Notice tHa}(Q,y) is of sizeL(L +1). This
number is quadratic in the training set size, and full computation of the matrix iaotipal even
for small data sets. Instead, we resort to approximatipgQ,y) by a matrix that contains only

the diagonal entrieg%ﬁ)y) and the last columﬂw. While we cannot bound the extent of
this diagonal approximation, we note that the diagonal terms are also theigrotant ones and
many off diagonal terms are zero. Once we make the approximation, welsarEs). (10) in time
linear inL. (See Appendix B for a full development bf and the computation of the orthogonal
direction. )

Note that once we find a vectdrthat satisfies Eq. (10), we still need to decide on its length,
or the size of the step we want to take in that direction. There are varioudasthapproaches,
such as normalizing the direction vector to a predetermined size. Howewerr, problem, we have
a natural measure of progress that stems from the tradeoff define@ bgrgfet Lagrangiamy,, ,
wherel (T;Y) increases whef captures more and more information about the samples during the
annealing procedure. That is, the “interesting” steps in the learning sgaxur wher (T;Y)
grows. These are exactly the points where the balance between the twadndhmd agrangian
changes and the second term grows sufficiently to allow the first term teasek(T;Y). Using
I(T;Y) to gauge the progress of the annealing procedure is appealing sincenibisgarametric
measure that does not involve the form of the particular distribution of stt€reln addition, in
all runsI(T;Y) starts at 0, and is upper-bounded by the log of the cardinalify afid we are thus
given a scale of progress.

With this intuition at hand, we want to normalize the step size by the expectedediT;Y).

That is, we calibrate our progress with respect toatiialamount of regularization applied at the
current value ofy. At regions wherd (T;Y) is not sensitive to changes in the parameters, we can
proceed rapidly. On the other hand, if small changes in the parameteltsimnesignificant changes

of I(T;Y), then we want to carefully track the solution. Figure 3 illustrates the difteréetween
using a predetermined step pand partitioningl (T;Y) in order to determine the step size. Itis
evident the using(T;Y) causes the method to concentrate on the region of interest in terms of rapid
change of the Lagrangian.

Formally, we computélg /(T;Y) and rescale the direction vector so that

(Oyla(T3Y)) A=k, (11)
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Figure 3: lllustration of the step size calibration process. Both graphs steochange in informa-
tion betweenl andY as a function ofy. The circles denote values gto be evaluated.
(a) shows naive calibration when fixed steps are taken iy taage. (b) shows calibra-
tion that uses fixed steps in the information range. The grey circle showsdln of
dramatic change of the Lagrangian.

wheree is a predetermined step size that is a fraction of Tdg We also bound the minimal and
maximal change ity so that we do not get trapped in too many steps or alternatively overlook the
regions of change.

Finally, although the continuation method takes us in the correct directionpgiexamation as
well as inherent numerical instability can lead us to a suboptimal path. Towitip¢his situation,
we adopt a commonly used heuristic used in deterministic annealing. At daelhoig, we slightly
perturb the current solution and re-iterate the self-consistent equé&tiocnsverge on a solution. If
the perturbation leads to a better value of the Lagrangian, we take it asroentsolution.

To summarize, our procedure works as follows: we start with O for which only trivial
solutions exists. At each stage we compute the joint directionaoidQ(T | Y) that will leave the
fixed point equations intact. We then take a small step in this direction and apdivliBerations
to attain the fixed point equilibrium at the new valueyofVe repeat these iterations until we reach
y=1.

5. Multiple Hidden Variables

The framework we described in the previous sections can easily accorteariedming networks
with multiple hidden variables simply by treatifigas a vector of hidden variables. In this case, the
distributionQ(T | Y) describes th@int distribution of the hidden variables for each valué/oand
P(T,X) describes their joint distribution with the attributésn the desired network. Unfortunately,

if the number of variable¥ is large, the representation T | Y) grows exponentially, and this
approach becomes infeasible.

One strategy to alleviate this problem is to fo@€l | Y) to have a factorized form. This reduces
the cost of representing and also the cost of performing inference. As an example, we caneequir
that Q(T | Y) is factored as a produ¢q; Q(T; | Y). This assumption is similar to thmean field
variational approximatior(e.g, Jordan et al. (1998)).
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Figure 4: Definition of networks for the multivariate information bottlenecknfeavork with mul-
tiple hidden variables. Shown ag, with the mean fieldassumption, and a possible
choice forGout.

In the multivariate information bottleneck framework, different factorizagiohQ(T | Y) cor-
respond to different choices of networlgy,. For example, the mean field factorization is achieved
when Gi, is such that the only parent of eathis Y, as in Figure 4. In general, we can consider
other choices where we introduce edges between the diff&’enfor any such choice dfi,, we
get exactly the same Lagrangian as in the case of a single hidden variaelendin difference is
that sinceQ has a factorized form, we can decompdgéT;Y). For example, if we use the mean
field factorization, we get

Io(T:Y) = 3 Io(T::Y).

Similarly, we can decompodeg[logP(X, T)] into a sum of terms, one for each familyf These
two factorization can lead to tractable computation of the first two terms of theahg@n as written

in Proposition 1. Unfortunately, the last teg[logQ(T )] cannot be evaluated efficiently. Thus, we
approximate this term &g; Eq[logQ(T;)]. For the mean field factorization, the resulting Lagrangian
(with this lower bound approximation) has the form

Liw= 3 lo(TiY) -y (EQ[logP(XaT)} -y EQ[|09Q(Ti)]> - (12)

The form of £_,, is valid, if Proposition 1 still holds for the case of multiple hidden variables.
This is immediate if we make the following requirements, similar to those made for tbeotas
single hidden variable:

1. Y is the instance identity;

2. Gin is a Bayesian network structure such that all of the variablese independent of given
Y; and

3. Goutis a Bayesian network structure such tias a child of T and has no other parents. This
implies that inGoyt, Y is independent of alK givenT.
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The last requirement is needed so that we caP8ét T) = Q(Y | T) in the proof of Proposition 1.
As in the case of a single hidden variable, we can now characterize fpuetlgguations that hold
in stationary points of the Lagrangian.

Proposition 6 Let £, be defined viaGi, and Gout as in Eq. (12). Assumingmean fieldapproxi-
mation for QT | Y), a (local) maximum ong is achieved by iteratively solving, independently for
each hidden variable i, the self-consistent equations

QY = QU VeOER (LY}

where
EP(ti,y) = Eq(Tj.y) [l0gP(X[y], T)]
and Z(i,y,y) is a normalizing constant that equals to

Z(iyy) = 3 Q ! Yexp{yEP (t/,y) } .
i

See Appendix A for the proof.

The only difference from the case of a single hidden variables is in tme éfrthe expecta-
tion EP(t,y). It is easy to see that when a single hidden variable is consideredRfdy) =
logP(x[y],t), the two forms coincide. It is also easy to see that this term decomposes inoaf s
expectations, one for each factor in the factorizatioR.0fVe note that only terms that average over
factors that involveT; are of interest irEP (ti,y). All other terms do not depend on the valueTgf
and can be absorbed by the normalizing constant. THRSE;,y) can still be computed efficiently.

A more interesting consequence (see theorem below) of this discussioat iwhbny = 1,
maximizing LEM is equivalent to performingnean field EMJordan et al., 1998). Thus, by using
the modified Lagrangian we generalize this variational learning principtk aarwe show below
manage to reach better solutions.

The formulation is easily extensible to a general variational approximatio@ where Gin
allows, in addition to the dependence of edglonY, dependencies between the differgrg. In
this case, we get

Io(T;Y) = ¥ Io(T:;Paf™).

Similarly, Eq[logP(X,T)] decomposes according to tjuént families of T; in P and inQ. That is,

each term in the decomposition depend§iits parent®a’" in Gin, and its parent®a”™" in Gout.
As in the case of the mean field variational approximation, the last EsftogQ(T)] cannot be

evaluated efficiently. We approximate it using a decomposition that followsrnhetsre ofGi, as
EqllogQ(T)] ~ ¥ EqllogQ(Ti | TNPa™)|. (13)
|

We can now reformulate the results of Theorem 3 for this general case:

Theorem 7 Let Q(T | Y) decompose according to any structuyg where all Ts are descendents
of Y and replaceEg[logQ(T)] by a decomposition as defined in Eq. (13). Then for the resulting
Lagrangian

Liy=(1-Y) Y Io(Ti;Pa™) —yF 7 [Q,P],
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Figure 5: (a) A quadrant based hierarchy structure with 21 hiddaabtas for modeling 16 16
images in thdigit domain. (b) Test log-loss of tHB-EM algorithm for the model of (a)
compared to the cumulative performance of 50 random EM and mean fieldi& r

where " [Q, P] is defined as in Eq. (5), except that the above decomposition foHagtbg P(X, T)]
andHg(T |Y) is used.

Proof: This is a direct result of the fact that in the proof of Theorem 3, noraptions were made
of the form of Q. I

The above theorem extends the formal relation of the information bottlenek taagrangian
and the EM functional for any form of variational approximation encdaedi,. In particular, when
y =1, finding a local minimum ngM is equivalent to finding a local maximum of the likelihood
function when the same variational approximation is used in the EM algorithm. Synika can
derive the fixed point equations with each for different choiceg;gf The change to Proposition 6
is simply a different decomposition f&P (i, y)

To summarize, the IB-EM algorithm of Section 3.2 can be easily generalizexhttidimultiple
hidden variables by simply altering the form BP (t;,y) in the fixed point equations. All other
details, such as the continuation method, remain unchanged.

6. Experimental Validation: Parameter Learning

To evaluate the IB-EM method for the task of parameter learning, we examigentsalization
performance on several types of models on three real-life data seteHaechitecture, we consider
networks with hidden variables of different cardinality, where for noavuge the same cardinality
for all hidden variables in the same network. We now briefly describe tteessds and the model
architectures we use.

e The Stock data set records up/same/down daily changes of 20 major US technologg sto
over a period of several years (Boyen et al., 1999). The trainingdeties 1213 samples and
the test set includes 303 instances. We trained a Naive Bayes hiddableranodel where
the hidden variable is a parent of all the observations.
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e The Digits data set contains 7291 training instances and 2007 test instances frai/SR&
(US Postal Service) data set of handwritten digits (see http://www.kerndlinescorg/data.html).
An image is represented by 256 variables, each denoting the gray leeeleobixel in a
16 x 16 matrix. We discretized pixel values into 10 equal bins.

On this data set we tried several network architectures. The first isveé Bayes model with
a single hidden variable. In addition, we examined more complex hierarahiwaéls. In
these models we introduce a hidden parent to each quadrant of the incagevwely. The
3-level hierarchy has a hidden parent to each 8x8 quadrant, andriogimer hidden variable
that is the parent of these four hidden variables. The 4-level higrateints with 4x4 pixel
blocks each with a hidden parent. Every 4 of these are joined into an &MBant by another
level of hidden variables, totaling 21 hidden variables, as illustrated in &oyar).

e TheYeast data set contains measurements of the expression of the Baker’s grastig 173
experiments (Gasch et al., 2000). These experiments measure theegpasise to changes
in its environmental conditions. For each experiment the expression & ¢dles were
measured. We discretized the expression levels of genes into range/sdme/up by using a
threshold of one standard deviation from above and below the generserpeession across
all experiments. In this data set, we treat each gene as an instance thstribeatt by its
behavior in the different experiments. We randomly partitioned the data irt® #8ining
instances (genes) and 1230 test instances.

The model we use for this data set has an hierarchical structure with dérhidriables in
a 4-level hierarchy that was determined by the biological expert baseldeonature of the
different experiments, as illustrated schematically in Figure 6. In this steycddu24 similar
conditions (filled nodes) such as different hypo-osmotic shocks aldrei of a common
hidden parent (unfilled nodes). These hidden parents are in theirhildnen of further ab-
straction of conditions. For example, the heat shock and heat shock xwithtive stress
hidden nodes, are both children of a common more abstract heat nodmt Aidden vari-
able is the common parents of these high-level abstractions. Intuitivelyhédden variable
encodes how the specific instance (a gene) is altered in the relevapsgroconditions.

As a first sanity check, for each model (and each cardinality of hidddaahles) we performed
50 runs of EM with random starting points. The parameter sets learned endifsent runs have
a wide range of likelihoods both on the training set and the test set. Thests @ which we
elaborate below), indicate that these learning problems are challenging sertke that EM runs
can be trapped in markedly different local maxima.

Next, we considered the application of IB-EM on these problems. Werpeefba single IB-EM
run on each problem and compared it to the 50 random EM runs, and &6adamdom mean field
EM runs. For example, Figure 5 compares the test set performanchk@tbeod per instance) of
these runs on thBigit data set with a 4-level hierarchy of 21 hidden variables with 2 states each.
The solid line shows the performance of the IB-EM solutioly at 1. The two dotted lines show
the cumulative performance of the random runs. As we can see, théliBw&del is superior to
all the mean field EM runs, as well as all of the exact EM runs. Figure &slioe result for the
biological expert constructed hierarchy Yefast data set with binary variables. As can be seen, in
this harder domain, the superiority of the exact EM runs over mean fieldugllis more evident.
Yet, the IB-EM run which also use the mean field approximation, is still able fwasgrall of the
50 random exact EM runs.
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Figure 6: (@) A structure constructed by the biological expert foivtzat data set based on prop-
erties of different experiments. 5-24 similar conditions (filled nodes) goeegjated by
a common hidden parent (unfilled nodes). These hidden nodes are esnddldren
of further abstraction nodes of similar experiments, which in their turn aitdreh of
the single root node. (b) Comparison of test performance when leattmengarameters
of the structure of (a) with binary variables. Shown is test log-likelihoadmstance of
the IB-EM algorithm and the cumulative performance of 50 random EM as well as 50

random mean field EM runs.

It is important to note the time required by these runs, all on a Pentium IV 2.4 d¢hine.
For theDigit data set, a single mean field EM run requires approximately 2.5 hours, enkMa
run requires roughly 17 hours, and the single IB-EM run requiresojest 85 hours. As the IB-EM
run reaches a solution that is better than all of this runs, it offers araipgeoerformance to time
tradeoff. This is even more evident for theast data set where the structure is somewhat more
complex and the difference between exact learning and the mean fieltkapation is greater. For
this data set, the single IB-EM is still superior and takes significantly less timeatsamgle exact
EM.

Figure 7 compares the test log-likelihood per instance performance dBeEM algorithms
and 50 random EM runs for a range of models for #eck, Digit and Yeast data sets. In most
cases, IB-EM is better than 80% of the EM runs and is often as good or bedie the best of
them. The advantage of IB-EM is particularly pronounced for the more mpodels with
higher cardinalities. Table 1 provides more details of these runs includimgpeaformance and
comparison to 50 random mean field EM runs.

We also compared the IB-EM method to the perturbation method of Elidan eb@R)2Briefly,
their method alters the landscape of the likelihood by perturbing the relatigintrgs the samples
and progressively diminishing this perturbation as a factor of the temperptuameter. In the
Stockdata set, the perturbation method initialized with a starting temperature of 4 ainthdactor
of 0.95, had performance similar to that of IB-EM. However, the running time eforturbation
method was an order of magnitude longer. For the other data sets we cedsit®ve, running
the perturbation method with the same parameters proved to be impractical. Véhesed more
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Train Log-Likelihood Test Log-Likelihood

Model || IB-EM Random EM Mean Field EM IB-EM Random EM Mean Field EM

%< 100% 80% | %< 100% 80% %< 100% 80% | %< 100% 80%
Stock
Cc=3 -19.91 | 62% -19.90 -19.90 -19.90 76% -19.88  -19.89
Cc=4 -19.47 | 98% -19.46  -19.52 -19.52 96% -19.52  -19.62
C=5 -19.16 | 94% -19.15  -19.24 -19.31 98% -19.30 -19.39
Digit
C=5 -429.95| 36%  -428.67 -429.11 -439.91 | 56%  -439.03 -439.47
C=10 -411.44| 100% -411.72 -413.9¢ -425.33 | 100% -425.36 -427.0%
DigH3
Cc=2 -442.02| 100% -442.02 -442.29 100% -442.03 -442.2() -450.812| 92%  -450.76 -450.92 82%  -450.76 -450.84
C=3 -428.77| 100% -428.85 -429.02 100% -428.83 -429.02 -437.798| 98%  -437.74 -438.20 98%  -437.74 -438.04
DigH4
c=2 -425.43| 100% -425.54 -425.81 100% -425.61 -425.94 -433.279| 100% -433.30 -433.5% 100% -433.40 -433.71
Cc=3 -407.60| 100% -407.75 -408.56 100% -408.49 -408.83 -415.798| 100% -415.88 -416.48 100% -416.37 -416.77
Yeast
c=2 -148.13| 100% -148.32 -148.79 100% -148.89 -149.71 -147.48 | 100% -147.51 -147.87 100% -147.92 -148.78
Cc=3 -139.44| 100% -139.58 -140.0% 100% -140.09 -140.87 -138.38 | 100% -138.57 -139.00 100% -139.06 -139.92
C=4 -136.36| 100% -136.72 -136.97 100% -137.72 -138.28 -135.65 | 100% -135.96 -136.16 100% -136.92 -137.34

Table 1: Comparison of the IB-EM algorithm, 50 runs of EM with random stgntiaints, and 50 runs of mean field EM from the same
random starting points. Shown are train and test log-likelihood per instantkee best and 80th percentile of the random runs.
Also shown is the percentile of the runs that are worse than the IB-ENtseBata sets shown include a Naive Bayes model for the
Stock data set and theigit data set; a 3 and 4 level hierarchical model for gt data setBigH3 andDigH4); and an hierarchical
model for theYeast data set. For each model we show several cardinalities for the hiddablear shown in the first column.
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Figure 7: Comparison of log-likelihood per instance test performance eoiBREM algorithm
(black 'X") and 50 runs of EM with random starting points. The vertical Isteows
the range of the random runs and boxes mark the 20%-80% range. ddaghewn (x-
axis) include a Naive Bayes model for tBeck data set and thbigit data set; a 4 level
hierarchical model for th®igit data set Digit Hier); a hierarchical model for th&east
data set. For each model we show several cardinalities for the hiddablear shown in
the x-axis.

efficient parameter settings, the perturbation method’s performanceigvagcantly inferior to
that of IB-EM. These results do not contradict those of Elidan et al0Zp®ho showed some
improvement for the case of parameter learning but mainly focused onwseuearning, with and
without hidden variables.

To demonstrate the effectiveness of the continuation method we exdByBaB®! during the
progress ofy. Figure 8 illustrates the progression of the algorithm onQtoek data set. (a) shows
training log-likelihood per instance of parameters in intermediate points in tleegso This panel
also shows the values gkvaluated during the continuation process (circles). These were ma@lua
using the predicted change I(T;Y) shown in (b). As we can see, the continuation procedure fo-
cuses on the region where there are significant changé3 ity) approximately corresponding the
areas of significant changes in the likelihood. For both3teek andDigit data sets, we also tried
changingy naively from 0 to 1 as in standard annealing procedures, without perfgrcontinua-
tion. This procedure often “missed” the superior local maxima even whegatamber (1000) of
y values were used in the process. In fact, in most runs the results wéetteothan the average
random EM run emphasizing the importance of the continuation in the anneatiogss.

7. Learning Structure

Up until now, we were only interested in parameter learning. However,ahlife it is often not
the case that the structure is given. A structure that is too simple will notlbaa@faithfully cap-
ture the distribution, while an overly complex structure will deteriorate our atiditearn. In this
section we consider the case where the set of hidden variables is fidetiein cardinalities are
known, and we want to learn the network structure. Clearly, this probldmarder than simple
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Figure 8: The continuation process for a Naive Bayes model ostiduk data set. (a) Shows the
progress of training likelihood as a functionywfompared to the best of 50 EM random
runs. Black circles illustrate the progress of the continuation procedudeioting the
value ofy at the end of each continuation step. Calibration is done using information
between the hidden variableand the instance identity shown in (b) as a function of

parameter learning, which is just one of the tasks we have to perform ircenisigo. The common
approach to this model selection task is to use@e-based approackhere we search for a struc-
ture that maximizes some score. Common scores such as the BDe scorer(htatlet al., 1995)
balance the likelihood achieved by the model and its complexity. Thus, mddetisa is achieved
independently of the search procedure used (see Section 2.1 for atails)d

We now aim to extend thiB-EM framework for the task of structure learning using a score-
based approach. Naively, we could simply consider different strestamd for each one apply the
IB-EM procedure to estimate parameters, and then evaluate its generaliitigrusing the score.
Such an approach is extremely inefficient, since it spends a non-trimi@liat of time to evaluate
each potential candidate structure. In this work we advocate a stratedgyaged on the structural
EM framework of Friedman (1997). In structural EM, we use the completismibutionQ that is
a result of the E-Step to computgpected sufficient statisticBhat is, instead of Eq. (1), we use

Eqtiv)[N(%, pay)] ZZQ =x,Pa =pa,t|Y=m).

These statistics are then used in Mestepwhen structure modification steps are evaluated. Thus,
instead of assuming that the target structggg: is fixed, we define the Lagrangian as a function of
the pair(Gout, ). Then, in the M-step, we can consider different choiceggf and evaluate how
each of them changes the score. Given the expected statistics, thenpisldentical in form to
learning from a fully observed data set and computation of the score is siffillar facilitates an
efficient greedy search procedure that uses local edge modificattbe teetwork structure. The
EM procedure of Section 3.2 is thus revised as follows:

e E-step: Maximize — Lgy by varyingQ(T | Y) while holdingP fixed.
e M-step: While holdingQ fixed:
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— Search for the structurgo,: of P that maximizes Scogge(G : D), using the sufficient
statistics ofQ.

— Maximize — Lgy, by varying the parameters Bfusing the structur&,,: selected.

In practice, since the BDe score is not a linear function of the suffictatistics, we approx-
imate it in theM-step using the Cheeseman-Stutz (Cheeseman et al., 1988) approximation. It is
important to note the distinction between the optimization of the Lagrangian andfttiegt score.
Specifically, optimizing the Lagrangian involves maximization of the likelihood aleittyan infor-
mation theoretic regularization term that does not depend. ddn the other hand, optimization of
the structure is performed using the BDe model selection score. This is mdittedpaalid since
each optimization step is ignorant of the inner mechanics of the other stepevidgwone might
wonder why the use of a score is needed at all if regularization is alfgadgnt in the form of the
information theoretic term in the Lagrangian. It is easy to understand teenrdar this if we look
at the final stage of learning whegr= 1. At this point, as we have shown, optimizing the Lagrangian
is equivalent to optimizing the EM objective. Using the same objective to attaptugre will result
in dense structures. In particular, it will be beneficial to add an edgedestwany two variables
that are not perfectly independent in the training data. Thus, while thangation encoded in the
Lagrangian is needed to smooth the parametric EM problem, a model selegtiderization via a
score is also needed to constrain the network structure.

Using the structural EM framework allows us to apply our framework to 8iredearning and
to use various search operators as simple plug-ins. For generali&apesvorks, for example, one
can consider the standard add, delete and reverse edge operhtoonlyf requirement in this case
is that a hidden variable is constrained to be non-leaf, in which case itMescredundant and can
be marginalized out. In addition, as in the case of learning parameters gvetilaguaranteed to
converge for a given value gf However, as in parametric EM, convergence is typically to a local
maximum. In fact, the problem now has two facets: First, local maxima that fesuitevaluation
of Q in the E-step. Second, local maxima in the discrete structure search spate ttie greedy
nature of the search algorithm.

Although the method described above applies for any Bayesian netwodtst, for concrete-
ness we focus on learnitgerarchiesof hidden variables in the following sections. In this sub-class
of networks each variable has at most one parent, and that parewotimas hidden variable. This
implies that the hierarchy of hidden variables captures the dependertiesen the observed at-
tributes. Since we are dealing with hierarchies we consider search sa¢psplace the parent of a
variable by one of the hidden variables. Such moves preserve thdldwerarchy structure, repo-
sitioning a single observed variable, or a sub-hierarchy. We apply #tepe in a greedy manner,
from the one that leads to the largest improvement, as long as the resultiaghieis acyclic.

8. Learning Cardinality

In real life, it is often the case that we do not know the cardinality of a hiddsgiable. In a
clustering application, for example, we typically do not know of a benefimimhber of clusters
and need to either use some arbitrary choice or spend time evaluating pegsibilities. Naively,
we might try to set a high cardinality so that we can capture all potential ctustéwwever, this
approach can lead to bad generalization performance due to oveseepation. The discussion in
Section 4 on the behavior of the model as a functiopmiovides insight on the effect of cardinality
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Figure 9: Effective cardinality as a function pfluring the learning process for tistock data set
using a Naive Bayes model. Cardinality is evaluated using local decomposititie
BDe score.

selection. When examining the models during the continuation process, eevelbisat for lower
values ofy the effectivecardinality of the hidden variable is smaller than its cardinality in the model
(we elaborate on how this is measured below). Figure 9 shows an exantpis pfhienomenon for
the Naive Bayes model of th&ock data set. Thus, limiting the cardinality of the hidden variable is
in effect similar to stopping the continuation process at sprmd.. This is, by definition, equivalent
to using a regularized version of the EM objective, which can avoid dtiadfi

The most straightforward approach to learning the cardinality of a hiddeabte is simply to
try a few values, and for each value apply IB-EM independently. Wetltaim compare the value
of the EM objective (ay = 1) corresponding to the different cardinalities. However, models with
higher cardinality will achieve a higher likelihood and will thus always beselmoas preferable by
the Lagrangian, at the risk of overfitting the training data. In the previeaian we discussed
the use of a model selection score as a measure for preferring onekstwzture over another.
The same score can also be readily applied for this scenario of cardireléstion. Whether the
complexity is a result of a dense structure or an increased number ohe@s due to a high
cardinality of a variable, all common scores balance the likelihood with the numfeplexity,
either explicitly as in the case of the MDL score (Lam and Bacchus, 199 micitly as in the
case of the Bayesian (BDe) score (Heckerman et al., 1995). Thus,ryrtolatructure learning, we
use the Lagrangian when estimating parameters and turn to the score witeming the black-
box model selection step. One problem with this simple approach is that it caxtieenely time
consuming. If we want to trik different cardinalities for each hidden variable, we have to carry out
|H|¥ independent IB-EM runs, whet#l | is the number of hidden variables.

The intuition that the “effective” cardinality of the hidden variable will incseas we consider
larger values of suggests that we increasing the model complexity during the continuatioegstoc
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A simple method is as follows. At each stage allow the model an extra, seemidglydant, state
for the hidden variable. As soon as this state is utilized, we increase thealdydby adding a
new “spare” state. The annealing process, by nature, automatically utiizasew state when it
is beneficial to do so. The task we face is to determine when all the statesiddentvariables
are being utilized and therefore a new redundant state is needed. blyid\state of a variable is
being used if it captures a distinct behavior that is not captured by dtttess That is, for any state
i, no other statg is similar.

To determine whether statds different than all other states, we start by evaluating the cost
that we incur due to the merging of stateith another statg. We denote bij a new state that
combines both and j and alterQ so that

QT=ij|Y=y)=QT=i|Y=y)+QT=j|Y=y). (14)

We then use this to reestimate the parameteBiofthe M-step, and examine the resulting change
to the Lagrangian. As shown in Slonim et al. (2002), the difference in ggdngian before and
after the merge is a sum of Jensen-Shannon divergence terms thatenbasdifference between
the conditional distribution of each child variable given the two states of tleehidariable. This is

in fact the change in likelihood of the model resulting from merging the statbsambe computed
efficiently.

Now that we have the change in the Lagrangian due to the merging of stétestatej, we
have to determine whether this change is significant. As already noted nugiegstates will always
improve the likelihood so that the difference in the Lagrangian is not suffiéée model selection.
Instead, we can use the BDe score to take into account both the improvientieatikelihood and
the change in the model complexity as in Elidan and Friedman (2001). Onaleygpproperty
of the BDe score is that it ibcally decomposableThat is, Eq. (2) decomposes according to the
different values of each variables. Thus, the difference betweeBDigescore after and before the
merge of statesand | is only in the terms wher€ appears:

ScorQ;De(giAj_: D) — Scorgpe(Gi,j : D) =

(T=i,j.pa)) N*(T=i.pa)) FN"(T—].pa))
2 pa lOQW log ra(T=i,pa)) ~log'f rar=i.pa) | T

T T

YeSpa |OQM€T|,JJ+ZC|09%
T M(N"(c,pa,T

~ 10 F ety — 2elo8 Tate pact=i)
T T

~ log Pl — 5 clog TR eEsT=l) |

where the first summation correspond to the family @ind its parents, and the second summation is
over allC that are children of and corresponds to the families of the childref @nd their parents.
N*(x) = N(x) +a(x) and correspond tmtal count statistics that include the imaginary prior counts
(see Section 2.1). As all the terms are functions of these simple sufficigistista the above
difference can be computed efficiently. Moreover, as in the case of #lélilod computation, the
sufficient statistics needed when merging two states are simply the sum ofttbcstaeeded for
scoring the individual states. Thus, we can easily evaluate all pairwigerstages to determine if
anytwo states ofl are similar.
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Figure 10: Evaluating adaptive cardinality selection for gheck and theYeast data sets with a
Naive Bayes model. The "X’ marks the performance of runs with adaptvdinality
selection. The line shows performance of individual runs with a fixedigality. The
top panel shows training set performance, and the bottom one testfggt@ce.

To summarize, the resulting procedure is as follows. We start with a binedinadity for the
hidden variables gt= 0. At each stage, befoxds increased, we determine for each hidden variable
if all its states are utilized: For each pair of states we evaluate the BDe sfferertte between
the model with the two states and the model with the states merged. If the difésgpasitive for
all pairs of states then all states are considered utilized and a new stateets dptimizing the
Lagrangian using IB-EM will utilize this new state automatically when it will be bierad to do so,
causing the introduction of a new “spare” state, and so on.

In an early work leading to the formulation of the Information Bottleneck fraor&yPereira
et al., 1993) used a similar idea to gauge the effective number of clusteeflyBor each cluster
a slightly perturbed cluster (twin state) was incorporated in the model allovaicly @uster to split
into two distinct ones. Similar procedures were used in deterministic anneRlosg(1998) and
later information bottleneck implementations (Tishby et al., 1999; Slonim et al)2T6e method
we presented in this section differs in two important aspects. First, we usdel sabection score to
determine when it is beneficial to declare that a redundant cluster is adieailyused. This allows
us to avoid using an arbitrary distance measure to determine if two clustergelivSecond, the
above allows us to use a single redundant cluster rather than a twin fostaée, which significantly
reduces the model complexity. While this may not be crucial in standard d¢hgssenario, it is of
great importance for the large models with many hidden variables that wigleoirsthis paper.

9. Experimental Validation: Learning Cardinality

We now want to evaluate the effectiveness of our method for adaptidmedity during the anneal-
ing process. For this, we would like to compare the cardinality and modehachi®y the method
to naive selection of the cardinality. To make this feasible, we look at thexdafta Naive Bayes
model with a single hidden variable for tistock and theYeast data set introduced in Section 6.

107



ELIDAN AND FRIEDMAN

We trained the models using the IB-EM algorithm where the hidden variablesggned a fixed
cardinality, and repeated this for different cardinalities. We then appliechdaptive cardinality
method to the same model. Figure 10 compares the adaptive cardinality seleati®OX’ rmark)
vs. the fixed cardinality runs for both data sets. As we can see, thesanti learns models that
generalize nearly as well as the best models learned with fixed cardinatigseTresults indicate
that our method manages to increase cardinality while tracking a high likelifmotios, and that
the decision when to add a new state manages to avoid adding spurious states.

A more complex scenario is where, for tieast data set, we learn the hierarchy supplied by
the biological expert for 62 of the experiments. In this hierarchy thexeédridden variables that
aggregate similar experimentsHegat node that aggregates 5 of these hidden variables and a root
node that is the parent of botteatand the additionallitrogen Depletiomode. Figure 11 shows the
structure along with the cardinalities of the hidden variables learned by alochand compares
the performance of our method to model learned with different fixed cditi#sa As can be seen
in (b), the performance of our final model is close to the optimal perforeuauiih fixed cardinality.

(c) shows that this is achieved with a similar complexity to the simpler of the supeddels (at a
fixed cardinality of 10).

10. Learning New Hidden Variables

The ideas presented in Section 7 are motivated by the fact that in real ligreviypically not
given the structure of the Bayesian network. The situation is often evea coonplex. Hidden
variables, as their name implies, are not only unobserved but can alstkbewn entities. In this
case, we do not even know which variables to include in our model. Thusjaneto determine
the number of hidden variables, their cardinality, their relation to the obdetasgables, and their
inter-dependencies. This situation is clearly much more complex than strigdnnéng and might
seem hopeless at first. However, as in the case of cardinality adaptesttmsgkd in Section 8, we
can use emergent cues of the continuation process to suggest @aneffesthod.

Recall the behavior of our target Lagrangian as a functiof. oFor small values of, the
emphasis of the Lagrangian is on compressing the instance identity, and des viariables are
(almost) independent of the observed attributes. Thus, at this stage, la siwgel would be able
to perform just as well as a complex one. In fact, to increase learningstrodiss, we will want
to favor the simpler model and avoid redundant representational complekétywe increassy,
the hidden variables start capturing properties of the data. In this soceharmeed for the more
complex structure becomes relevant as it will allow the learning procedimgtove performance.

The above intuition suggests that at small valuegwé start with a simple hierarchy (say, one
with only a single hidden variable). When the continuation reaches larlyers/afy, the Lagrangian
can tolerate more complex structures. Thus, we want to adapt the compleiity leierarchy as
we progress. To do so, we consider a search operator that enfichssucture of hierarchy with
a new hidden variable. (This operator is much in the spirit of the “top-dastraitegy explored by
Adachi and Hasegawa (1996) in learning evolutionary trees.)

Suppose that we want to consider the addition of a new hidden variablébéwetwork struc-
ture. For simplicity, consider the scenario shown in Figure 12, where wevgth a Naive Bayes
network with a hidden variabl&; as root and want to add a hidden varialbjeas a parent of a
subseiC of Ty’s children. Intuitively, we want to select a sub&ethat is not “explained well” by
T, and where we expect to gain a lot by the introductioi-ofFormally, we evaluate the change in
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Figure 11: Cardinality learning for theeast data set on the structure provided by the biological ex-
pert. (a) shows the structure along with the nodes annotated with the déydesned
by our adaptive approach. (b) shows the test set log-likelihood pesioce of models
learned with different fixed cardinalities (solid line). The horizontal @aslne marks
the performance of our adaptive cardinality method. (c) shows plot thdauof pa-
rameters for each of these models (solid line) with the dashed horizontal lirkingna
the number of parameters of the model learned by our method.

our target Lagrangian as the result of inserfiagnto the network structure

Ley — Lérvl =
—1o(T2;Y) +YEg[logP' (T2 | T1) —10gQ(T2) + Yicc [logP’ (X | T2) —logP(Xi | T1)]],

whereP andP’ are the models before and after the change to the network, respeciihelyerm
logP(X; | T1) can be readily evaluated from the current model for eaehC and the termgg(T2;Y)
andEqg[logQ(T)] can be easily bounded. However, to evaluatdXd@ | T1) or 3icc logP’ (X | T2)

we need to actually choose addT, to the current structure and optimi€&T, | Y). This can be
too costly as the number of possible subsgtsan be large even for a relatively small number of
variables. Thus, we want to somehow approximate the above terms efficisimtyonly the current
model. The following bound allows us to do so by bounding the contributiorhidden variable.
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Figure 12: Example of enrichment with new hidden variabless parent of a subsé of the
observed variableX; ... X,.

Proposition 8 Let P be a Bayesian network model with a hidden variahlaid denote byC an
observed subset 0f § children. Let P be the result of replacing;Tas a parent ofC by T,, making
T, a child of T, and optimizing the parameters of the model using the IB-EM algorithm fovalue
ofy. Then

EqllogQ(C | Ty)] > Eq|  logP (X | T2) +logP' (T2 | Ta)
ieC

Proof: Using the chain rule and positivity of entropy, we can write
EqllogQ(C|T1)] = —Hq(C|Ty)
= —[Ho(C.T2 | )~ Ho(T2 | €. Ty)|
> —Hq(C,T2|Ty)
= —[Ho(C | T2.Tu) + Ho(Tz | Ty

'Z:quq | X+ %1, T2, Ta) + Ho(Tz | Ta)|
“ie

> | HQ(Xi|T2)+HQ(T2|T1)}

Tie

Z: logP (X | T2) +logP’ (T2 | Tl)] :

Eq

The last inequality result from the fact that entropy conditioned on lesablas can only increase.
The final equivalence is a result of the construction of the M-Step &NMB-whereQ is used when
in the optimization of the parameters®f I

The above proposition provides a bound on the extent to which a hiddeibkainduces cor-
relations in the marginal distribution. The result is intuitive — the contribution séiition of a
new hidden variable cannot exceed the entropy of its children givendhe&nt hidden parent. If
we use the bound instead of the original term, we get an over-optimistic estifmite potential
profitability of adding a new hidden variable. However, the scenariosrev@terested in are those
in which the information between the hidden variable and its children is high andritropy of
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Figure 13: Synthetic example demonstrating the information signal for addwghidden vari-
ables. (a) shows the original structure that generated the sampléeso\s the structure
used in learning without the hidden variafle (c) shows the information as a function
of y between the hidden variables and the observed variables. As learoipiggses,
the total information rises and the distribution of the direct childre;0f captured
significantly better (dotted). The information with the original childrerTgp{dashed)
remains small.

the hidden variable is low (or there would be no need for it in the network$uth cases, we can
expect the bound to be tight in both inequalities.

The above bound provides us with an information signal for putative riddeh variables.
In practice, searching for the best sub&etan be impractical even for relatively small networks.
Instead, we use the following greedy approach: first, for each hidaléable, we limit our attention
to up toK (we use 20) of its children with the highest entropy individually. We thersicarall
three-node subsets of these children whose entropy level passesisestmld (see details in the
experiments below). Intuitively, such seeds will capture the core of timalsigeeded to attract other
nodes when structure change is allovfed.

Another complication in using the above signal is a consequence of thelemgnerocess itself.
For small values off we can expect, and indeed we wa@tto smooth out all statistical signals.
This will make most subsets appear equally appealing for adding a hiddablearsinceT; will
not be informative about them. In Section 4, we have shownl#@t; T) is a natural measure for
the progress of the continuation process. To demonstrate the phenoimé¢herstructure learning
scenario, Figure 13 shows a simple synthetic experiment where the sangrkegenerated from

2|n synthetic experiments for different structures where the netwoekssiltt made computations feasible, these three
node seeds always included two or three variables of the optimal largsets
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the structure shown in (a) and a Naive Bayes model witfipwtas used when learning. (c) shows
the information between the hidden variableand the observed children (solid), its direct children
in the generating distribution (dotted) and the childrenTgf{dashed). Up to some point in the
annealing process, the information content of the hidden variable is lowhandformation with
both subsets of variables is low. When the hidden variable starts to captudisthibution of
the observed variables, the two subsets diverge and Whitaptures its original direct children
significantly better, the children oF, still have high entropy givef;. Thus, we want to start
considering our information “cue” only when the hidden parent becomesmimgful, that is only
whenlg(Y; T;) passes some threshold.

Finally, we note that although the discussion so far assumed that we haeeaBhyes model
and considered the addition of a single new hidden variable, it is easilyajizeel for any forms of
P where inP’ we separate a hidden variablesArirom its observed children by introducing a new
hidden variable.

To summarize, our approach for learning a new hidden variblfter several such variables) is
as follows: At each value of, we first evaluatdg(Y;T) to determine if it is above the threshold,
signifying that the hidden variable is capturing some of the distribution oveesi®f the variables.
If this is the case, we greedily search for subsets of children of the midalgable that have high
entropy. These are subsets that are not predicted well by their hiddentpFor the subset with the
highest entropy, we suggest a putative new hidden variable that is riet jpé the variables in the
subset. The purpose of this new variable is to improve the prediction of bsetuariables, which
are not sufficiently explained by the current model. We then continue withatemeter estimation
and structure learning procedure as is. If, after structure seatgtidan variable has at most one
child, it is in fact redundant and can be removed from the structure. \Wdtehe entire procedure
until no more hidden variable are added and the structure learning preceahverges.

11. Full Learning — Experimental Validation

We want to evaluate the effectiveness of our method when learning stueiiln and without the
introduction of new hidden variables into the model. We examined two real-life skts: The
Stock data set and theeast data set (see Section 6). For tYeast data set we look at a subset of 62
experiments related to heat conditions and Nitrogen depletion.

In Figure 14 we consider average test set performance mtdhedata set. To create a baseline
for hierarchy performance, we traim\aive hierarchy with a single hidden variable and cardinality
of 3 totaling 122 parameters. We start by evaluating structure learning witteuintroduction of
new hidden variables. To do this, we generated 25 random hierarcitiies nary hidden variables
that are parents of the observed variables and a common root paréngt®faparameters. We then
use structural EM (Friedman, 1997) to adapt the structure by usigglace-parenbperator where
at each local step an observed node can replace its hidden parentan Ag seen in Figure 14,
standard structure learning applied to the IB-EM framework significantly ones the model’s
performance. In fact, many of the 25 random runs withSbarch operator surpass the performance
of theNaive model using fewer parameters.

Next, we evaluate the ability of the new hidden variable enrichment operatorpimve the
model. We denote binrich the IB-EM run with the automatic enrichment operator. We denote by
Enrich+Search the run with this operator augmented with structure search operators in theds-
As can be seen in Figure 14, the performancg&rafch by itself was not able to compete with the
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Figure 14: Comparison of performance on 8teck data set of Naive hierarchiiéive), 25 hierar-
chies with replace-parent sear@eérch) , hierarchy learned with enrichment operator
(Enrich) and hierarchy learned with enrichment and replace-parent s&amith).

Naive or theSearch method. This is not surprising as we cannot expect the information signal to
introduce “perfect” hidden variables into the hierarchy. Indeed, wdmmbining the enrichment
operator with structure adaptatioBnfich+Search), our method was able to exceed all other runs.
The learned hierarchy had only two hidden variables (requiring onlya8&rpeters). These results
show the enrichment operator effectively added useful hidden Vesiaind that the ability to adapt
the structure of the network is crucial for utilizing these hidden variablestbdist extent.

There are two thresholds used by our algorithm for learning new hiddeables. First, as
noted in Section 10, due to the nature of the annealing process we coaditieg new hidden
variable only when the informatiohy(Y; T) of a hidden variabld in the current structure passes
some threshold. In the results presented in this section we use a thresBOkb off the maximum
value the information can reach which is limited by the cardinality ofLowering this threshold
to as far as 10% or raising it to 40% had negligible effect on the results. yWeathesize that this
robustness is caused by the fact that, typically, the cardinalitywafl be much lower thary. Thus,
whenT undergoes the transition from being redundant to being informative, @emattion content
rises drastically, even if it captures only a small aspedt.of

The threshold used to limit the number of candidate subsets, however, isntesesting. Re-
call from Section 10 that the greedy procedure only considers sulbhete entropy passes some
threshold. More precisely, we consider only subsets whose entrgggpaome percentage of the
maximum entropy possible for this subset. Thus, using a lower thresholdtiadiieallows more
hidden variables. This is observed empirically in Figure 15(a) forvdeast data set. A possible
concern is that lowering the threshold too much will results in many hiddenblesideading to
overfitting. However, as is evident in Figure 15(b), even when the nupfifedden variables is 20,
these new variables are effective in that they improve the generalizatifammpance on unseen test
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Figure 15: Learning new hidden variables for tfeast data set. (a) shows the number of variables
learned as a function of the threshold on the percentage of entropyubisatsused in
the greedy procedure. (b) shows the corresponding test set Idipditid per instance
performance and the performance of the model supplied by the biologioatte

data. In fact, with just a few extra variables, our method successfulpassed the performance of
the structure supplied by the biological expert. Obviously, at some powihdtoo many variables
will lead to overfitting. We could not examine this scenario due to the running 8oéned to learn
such large networks.

To qualitatively assess the value of our method, we show in Figure 16 tlotustdearned for
the Stock data set with binary variables and the entropy threshold set at 95%t(ses@at 92.5%
and 97.5% were almost identical for this data set). The emergent structwidést with the “High-
tech giants” and “Internet” group dominating the model. The “Varied” graupta&ins “Canon” and
“Sony” that manufacture varied technology products such as elecsigotimtographic, computer
peripheral, etc. The “Japanese” relation of “Toyota” to these comparaesnterestingly stronger
than the relation to the “Car” group.

Finally, we applied runs that combine both automatic cardinality adaptation aicthment of
the structure with new hidden variables. Table 2 shows the train and téstrpance for theStock
data set. Shown are several runs with Emeich operator and fixed cardinality. For each run, the
number of hidden variables added during the learning process (excltidrigitial root node) is
noted. Also shown is the automatic cardinality method usin@thescore along with the different
cardinalities of the 6 hidden variables introduced into the network structineecombined method
was able to surpass the best of the fixed cardinality models in terms of temrémimance with
fewer than 70% of the parameters. In addition, the fact that the combined anietipooves test
performance but has worse training likelihood, demonstrates its ability to averditting.

12. Related Work

To define the IB-EM algorithm, we introduced a formal relation between tloerimdtion bottleneck
(IB) target Lagrangian and the EM functional. This allowed us to formulaiafarmation-theoretic
regularization for our learning problem. Given this objective, we useddsvdral ideas to make
learning feasible. First, following all annealing methods, we slowly diminish e tef “pertur-
bation” as a way to reach a solution of the hard objective. Second, weonsi@uation to define a
stable traversal from an easy problem to our goal problem.
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Figure 16: Structure learned for tis¢ock data set using the enrichment operator augmented with
structure search that use the replace-parent operator. All the hiddi@ibles (circles)
are binary and the subset entropy threshold was set at 95%. Theechifieach leaf
are annotated with a plausible interpretation.

A multitude of regularization forms are used in machine learning, typically dépgron the
specific form of the target function (see Bishop (1995) and refeewithin). Information-theoretic
regularization has been used for classification with partially labeled datay8er and Jaakkola
(2002) and for general scenarios in deterministic annealing (Ros8).199

Of the annealing methods, the well knowimulated annealingKirkpatrick et al., 1983) is
least similar to ours. Rather than changing the form of the objective fun@iamulated annealing
allows the search procedure to make “downhill” moves with some diminishingapiiity. This
changes the way the procedure traverses the search space anditaltowstentially reach pre-
viously unattainable solutions. Several papers (Heckerman et al., C&@zkering, 1996; Elidan
et al., 2002) have shown that Simulated annealing is not effective whemirigd8ayesian networks.

Weight annealingElidan et al., 2002), on the other hand, skews the target function ditagctly
perturbing the weights of instances in diminishing magnitudes. Thus, like ouothdtbhanges
the form ofQ directly but does not use an information-theoretic regularization. Weighealing
can actually be applied to a wider variety of problems than our method, inclsttincture search
with complete data. However, like other annealing methods, it requires a gaaireme. For the
large problems with hidden variables we explored in this paper, Weightéinggroved inferior
with similar running times, and impractical with the settings of Elidan et al. (2002).

Finally, like our method, deterministic annealing (Rose, 1998) alters the pndipfeexplicitly
introducing an information-theoretic regularization term. Specifically, follgwhe widely recog-
nized maximum entropy principléJaynes, 1957), deterministic annealing penalizes the objective
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Log-likelihood | # of # of
Cardinality Train | Test | hiddens| parameters
2 -19.62| -19.62| 5 89
3 -19.32| -19.37| 5 146
5 -18.87| -19.04| 6 304
10 -18.53| -18.96| 5 769
20 -18.43| -18.98| 5 2340
BDe (9,6,7,7,7,7)|| -18.65| -18.94| 6 526

Table 2: Effect of cardinality when inserting new hidden variables into gteaork structure with
theEnrich operator for theStock data set. A 95% entropy threshold was used for the hidden
variable discovery algorithm. The table shows results for several fexatimalities as well
as the automatic cardinality method using the BDe score. Shown is the log-likelifgzo
instance for training as well as test data, the number of hidden varialdeth@mumber
of parameters in the model. For the automatic method, the cardinalities of ea@m hidd
variable is noted.

with a term that is the entropy of the model. A concrete application of deterministieading to
graphical models was suggested by Ueda and Nakano (1998). Howen learning graphical
models, the deterministic annealing was not found to be superior to stanliafel. &, (Smith and
Eisner, 2004)§. In particular, Whiley and Titterington (2002); Smith and Eisner (2004))\siby
applying deterministic annealing to standard unsupervised learning otBayeetworks with hid-
den variables is problematic. One possible explanation for why our methdd well for these
methods is the difference in motivation of the regularization term. Specificaifyteom was moti-
vated by the need for generalization where one want to compress the iddr#jtgcific instances.
Another important difference between the two methods is that, like Weighaéingedeterministic
annealing requires the specification of a cooling policy which makes it polgritigoractical for
large generative problems. This problem may be avoided using a method santilarone we used
in this work. We leave this prospect as well as the challenge of bettersiadding the relation
between the entropy and information regularization terms for future study.

Continuation methods are a well developed field in mathematics (Watson, 200l these
methods are used extensively and successfully to solve practical eriginehallenges such as
complex polynomial systems, they have not been frequently used in machméte Recently,
Corduneanu and Jaakkola (2002) used continuation to determine acter®flance between la-
beled and unlabeled data. To our knowledge this is the first work in leagnagghical models to
use continuation to traverse from an easy solution to the desired maximum loetinoblem.

A complementary aspect of our work is the introduction of modification opexdto hidden
variables. Our method both for learning the cardinality of a hidden variabie for introducing
new hidden variables into the network structure, relies on the annealinggzrand utilizes emer-
gent signals. The problem of evaluating the cardinality of a hidden varnataegraphical model

3Smith and Eisner (2004) also suggest a variant of the deterministic lannakgorithm that appears to work well
but is only applicable in the context of semi-supervised learning or whenitzal informed starting point for the EM
algorithm is at hand.
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was explored in several worke.), Chang and Fung (1990); Elidan and Friedman (2001)). The
work of Stolcke and Omohundro (1993) for HMMs was the first to uséuatimn of pairwise state
merges to determine adapt the cardinality. In Elidan and Friedman (200&xterd their method
for general Bayesian networks, and Slonim et al. (2002) used a simpeoach within the infor-
mation bottleneck framework. All of these methods start with a large humbeatefss and then
apply bottom-up agglomeration to merge overlaps in the state space and reducdancies. By
contrast, our method is able to take an “add-when-needed” approdcheda mergers are evaluated
not to collapse states but rather to determine if a new one is needed. |$mmEs also explored
methods for introducing new hidden variables into the network structurerddhspecific classes
of Bayesian networkse(g, Martin and VanLehn (1995); Spirtes et al. (1993); Zhang (2004)) o
for general models using a structural signature approach (Elidan 208l). Our contribution in
enriching the structure with new hidden variables is twofold. First, we stgde natural informa-
tion signature as a “cue” for the presence of a hidden variable. Unlikstthetural signature this
signature is flexible and is able to weight the influence of different chileso8econd, we use the
enrichment approach in conjunction with the continuation approach faadsypg local maxima.
As in cardinality learning, we are able to utilize emergent signals allowing thedunttion of new
hidden variables into simpler models rendering them more effective.

13. Discussion and Future Work

In this work we addressed the challenge of learning models with hidderbiesiia real-life scenar-
ios. We presented a general approach for learning the parametddslefntvariables in Bayesian
networks and introduced model selection operators that allow learnirgnohitden variables and
their cardinality. We showed that the method achieves significant improvemetallenging real-

life problems.

The contribution of this work is threefold. First, we made a formal connedigtween the
objective functionals of the information bottleneck framework (Tishby efl8B9; Friedman et al.,
2001) and maximum likelihood learning for graphical models. The informatattidmeck and
its extensions are originally viewed as methods to understand the structardigifibution. We
showed that in some sense the information bottleneck and maximum likelihood estizuaitwo
sides of the same coin. The information bottleneck focuses on the distribditianiables in each
instance, while maximum likelihood focuses on the projection of this distributich@®estimated
model. This understanding extends to general Bayesian networks #re results of Slonim and
Weiss (2002) that relate the original information bottleneck and maximum likaliestmation in
univariate mixture distributions.

Second, the introduction of the IB-EM principle allowed us to use an appriteat starts with
a solution aty = 0 and progresses toward a solution in the more complex landscape df This
general scheme is commondeterministic annealingpproaches (Rose, 1998; Ueda and Nakano,
1998). These approaches “flatten” the posterior landscape by r#isidiggelihood to the power of
y. The main technical difference of our approach is the introduction ofalagzation term that
is derived from the structure of the approximation of the probability of thentatariables in each
instance. This was combined with a continuation method for traversing the noathtlie trivial
solution aty = 0 to a solution aty = 1. Unlike standard approaches in deterministic annealing
and information bottleneck, our procedure can automatically detect impodgioins where the
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solution changes drastically and ensure that they are tracked closphgliminary experiment the
continuation method was clearly superior to standard annealing strategies.

Third, we introduced model enrichment operators for inserting new hidddables into the
network structure and adapting their cardinality. These operators ecoifisally geared toward
utilizing the emergent cues resulting from the annealing procedure. T¢u#ied in models that
generalize better and achieve equivalent or better results with a relainghje model.

The methods presented here can be extended in several directioiswEican improve the
introduction of new hidden variables into the structure by formulating betignéss” that can be
efficiently calculated for larger clusters. Second, we can use altegnatiiational approximations
as well as adaptive approximation during the learning process. Thirdianeto explore methods
for stopping aty < 1 as an alternative way for improving generalization performance.
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Appendix A. Fixed Point Equations

We now develop the fixed point equations use for solving the target hggna of our approach.
We start with the case of a single hidden variables and then address thgenaeral scenario of
multiple hidden variables.

A.1l Single Hidden Variable

Proposition 4: Let Lg be defined viagi, and Gout as in Proposition 1. QT |Y) is a stationary
point of £¢,, with respect to a fixed choice of P if and only if for all valuest and y of T and
respectively,

Qt|y) = Q) YP(x[yl, 1)),

Z(y,y)

where Zy,y) is a normalizing constant and equals to
Z(y,y) = Z Q") YP(x[y].t'])". (15)
t

To prove the proposition we use the following

Lemma 9 (El-Hay and Friedman, 2001) Let @) be a joint distribution over a set of random
variablesX, that decomposes according t@X) = [1; Q(X | U;). Then

af(x) ]
0Q(x;, ;) |

OEq[f(X)]

0Q(% | up) = Q(ui)EQ('IXi,ui)[f(X)] + EQ[
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The following is an immediate results of that fact tkt) = ¥, Q(y)Q(t|y')

~0Q(T) )
1{T =to}. 16
We use this and an instantiation of the above lemma to prove the following:
Lemma 10
0lQ(T;Y) Q(tolyo)
= lo .
aQltoyo) <79 Q1)
Proof: We definef (T,Y) = log orr () ()) log é(‘)> so that using Eq. (16), we can write
of(T,Y)  0dlogQ(T |Y) B 0logQ(T)
0Q(to | Yo) 0Q(to | Yo) ~ 9Q(to | Yo)
1 Q(Yo)
= ——1{T=ty,Y= 1{T =to}.
Qo yo) 1T =107 =¥~ ) HT =)

Plugging this into Lemma 9, we get

. dl Q(TY)
dlo(T;Y) = Q(Yo) Eo( ftoyo) [|og M} +Eo |:OgQ(T>]

9Q(to | yo) Q(T) 9Q(to, Yo)
— Quolog 20 Q) 2 ) - el Qo) 22
~ Quo)log g% + Q) [ ) Yoy to!y]
= Q(vo)log ((Q(’(’O))'O)+Q(yo) [1-1
= Q(yo)logQg(J0§'°).

Using Eq. (16) and Lemma 9 with(T,Y) = logQ(T), the following is immediate.
Lemmall

0Eq[logQ(T)]

1
dQ(to | Yo) Q(¥o) = Q(Yo) [logQ(to) +1].

= Q(Yo0)logQ(to) + Q(to) ~—— Qlto)

Proof of the proposition: We want to findQ(T | Y) that are stationary points of the Lagrangian
Ley and where the constrainfg Q(t | y) = 1 hold for anyy. Thus, using Lagrange multipliers, we
want to optimize

= 1o(T;Y) —Y(Eq[logP(X, T)] — Eq[log Q(T +z7\y<ZQ (t]y)— )
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SinceP is fixed, using Lemma 9 witti (Y, X, T) = logP(X, T), we can write
0Eqg[logP(X,T)]

0Q(to | Yo)
Combining this with Lemma 10 and Lemma 11, we get

6Q(?tLoE|Myo) = Q(Yo) [l0gQ(to | yo) — (1) 10gQ(to) +Y—YIogP(X[yo]to)] +Ay-

Dividing by Q(yo) and equating to 0, we get after rearranging of terms

Q(to]yo) = €0/ VI HYQ(to) - YP(x[yo] o). (17)
This must hold for any valuy andyg. Usingy; Q(t | yo) = 1 we get

= Q(Yo) logP(X[yo], to)-

Mvo/QY0)+Y — 1 )
31 Q) YP(X[yo], t)

We get the desired result by plugging this into Eq. (17).

A.2 Multiple Hidden Variables

Proposition 6: Let £;,, be defined viagin and Gout as in Eq. (12). Assumingraean fieldapproxi-
mation for QT | Y), a (local) maximum OL;M is achieved by iteratively solving, independently for
each hidden variable i, the self-consistent equations

Qlily) = Z(ilyy) Q(t;) Y expEPEY),

where
EP(ti,y) = Eq(Tjt.y) [l0gP(X[y], T)]
and Z(i,y,y) is a normalizing constant that equals to

Z{.yy) =2 Q(t/) L VexpEPHy)
t

Proof: Using themean fieldassumption, the information and entropy terms in the Lagrangian
decompose as follows

Lo, = S 1o(Ti;Y) -y (EQ[IogP(X,T)} -> EQ[IOQQ(Ti)]> :

When computing the derivative with respect to the parameters of a speaifabhesT;, the only
change from the case of single hidden variable, is in the derivatide,@dbgP(X, T)] given fixed
P. Again using Lemma 9 with (Y, X, T) = logP(X, T) we get
0Eqg[logP(X,T)]
0Q(tio | Yo)

from which we get the change from Proposition 4 to Proposition 6 for tee oamultiple hidden
variablesl

= EQ(T‘tiOvyO) [IOg P(X[VO] ; T)] )
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Appendix B. Computing the Continuation Direction

We now develop the precise computations needed to perform continuaties@tbed in Section 4.
We start with the case of a single hidden variafiles

B.1 Single Hidden Variable

Consider again Eg. (7), where we now write the normalization #fyry) explicitly:
Gry(Qy) = —logQ(t|y)+(1-Yy)logQ(t) +ylogP(x[y],t)

—log Z exp1-V)109Q(t)+ylogP(XY.t) (18)
t

Z(yy)

We want to compute the derivative Gf y(Q,y) with respect to the parameters apdind and then
use the orthogonal direction for continuation. The will follow a direction iriclitthe fix point
equations remain unchanged, and the local maximum is tracked. To do stanvby expressing
logP(x[y],t) as a function of the paramete@s

The maximum likelihood parameters of IBgX, T) for the conditional distribution of the chil-
drenX; of T in Goyut are

5 2y QY)QUY)1{xily] =x,paily] = pa} +a(x,pa,t) _ A(X,pa;,t)
HPa s, QWQY)1{pa] = pa} +a(pat) A(pay.t)
where 1} is the indicator functionq() are the hyper-parameters of the Dirichlet prior distribution

(see Section 2.1) an@ are used to denote the total counts (including prior) used for estimation.
Similarly the maximum likelihood parameters of the distributioTajiven its parents are

5 Yy () (tly)1{pa,[y] = pa} +a(pa,t) _ A(pa;t)
ha = TS Qy)L{palyl =pa) +a(pa)  N(pa) |

We now consider each term @& ,(Q,y) and compute its derivative with respect to these parameters

of Q.

(19)

(20)

0logP(x[y].t)
COMPUTATION OF 30(toyo)

The derivatives of the parameters expressed in Eq. (19) are
98y pa
aQ(o|yo) o)
= wtoact | 1Yol = pa;[yo] = pa }AL(pa;.t) — 1{pa[yo] = pa }A(x.pa,t) | (21
= Quoldpabarpal (1 fxfyo] = x }((Pa,1) — A((%, P&y, )

fort =tp and are zero otherwise. Similarly, the derivatives of the parameters. ¢2&gare

0pa  Q(yo) B o Qo) -
Qo | yo) _ N (pa)2 [1{pa[yo] = pa } N (pa;) — 0] = A (pay) 1{pa[yo] = pa} (22)
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fort =tg, and are zero otherwise. The log-probability of a specific instanceeanitien as
logP(x[y],t) =10g6ypa [yl + > 1096jpa iVl + 3 1096y pa Y], (23)
i i£tCh
whereCh denotes the children dfin Gout and6, [y] is the parameter corresponding to the values
appearing in instancg We note that the last summation does not depend on the paraQéteys,
and by plugging Eq. (21) and Eq. (22) into Eqg. (23), we get
dlogP(x[yl,t) 1  0Gpa[y] 1 Opaly]
0Q(to | yo) et\pq[ 19Q(to | Yo) i Oy |pa, [y] 0Q(to | yo)

= Q(yo) Upa [yol=pa [y}

A(Pay)Bjpay [Yo] (24)
+Sicon AL (1] = x{yel} (P — (X pa)|
EQ(yO) ( Y, )7

where in the last line we ugB(y,t) to denote the expression in the square brackets.

0logZ(yo,y)
COMPUTATION OF 30(y0)

Using Eq. (16) from Appendix A and the above, we can write
0 (1—y)logQ(t) +ylogP(x[y],t) _ [1; ]
3Q(t | 0) = Q(Yo) 0 TYD(y;t) | (25)

We can now use Eg. (25) to write the derivativeAyly,y) since it is a summation over similar
expressions

Y

S = Zey P I OIROL >Q<y>[ﬂ YDt
= 7557 QUY0) Q) YP(xly]:to)Y | & +vD<yo,to>} (26)
—QU0)Q(to] Yo) [ 5 +YP(¥o o)

where the last equality follows from Proposmon 4,

Gry(Qy)
COMPUTATION OF aQ(to|yo)

We combine Eg. (25) and Eq. (26) to write

0Gry(Q.Y) _ B 1-y
T @Y 1y yo) + Q- Qlio 30 [

+YD(Yo,to) | - (27)

COMPUTATION OF"'OQTZV(V’V)

The only term that is not immediate is the derivativeZgy, y) with respect toy

dl
ogazy(y’y) = Ze xpf 17¥108QE)+YI0gPLY) [ 1og Q(t') 4 log P(X[y], )]

- Z Sy QU PO [-10g Q) + 0gP((y. )
—ZQ Y) [logP(xy].t) ~ logQ(t)]
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from which follows

0Gy(Q,

P —logPixi 1) ~10gQ() — 3 Q) logP(xy] 1) ~logQ)]. (28
COMPUTATION OF THE CONTINUATION DIRECTION

We can now compute all the elements of the derivative matrix of Eg. (9)

Hy(Qy) = (253 e )

To compute the orthogonal direction to the derivative, we solve Eq. (10)

H(Q,y)A=0.

As noted in Section 4, this can be prohibitively expensive and we resbit@y) with a diagonal

approximation for elements % computed in Eq. (27). We denote hy; the diagonal entry

forY =yandT =t andh&t the corresponding derivative with respecytdVe then have to solve a
set of equations of the form

dt,yhy,t + dyhy,t =0,

whered; y, anddy are the elements @. Settingd, = 1 (an equivalent solution up to scaling) we get
the unique solution
hV

AY
Ghy=——2.
Y hy,t

NormalizingA using the derivative ofg(T;Y) as described in Eq. (11) can now be easily computed
given the Lemma 10 in Appendix A.

B.2 Multiple Hidden Variables

When computing the derivative with respect to the parameters associated gjitbcific hidden
variablet;, the only change i ,(Q,y) is that logP(x[y],t) is replaced byEq s y) [l0gP(X[y], T)].
In this case we simply compute the expectation of Eq. (24) oveiTthehat are in the Markov
blanket oft;. The rest of the details remain the same.
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Abstract

A family of kernels for statistical learning is introducduat exploits the geometric structure of
statistical models. The kernels are based on the heat eguatithe Riemannian manifold defined
by the Fisher information metric associated with a statidtiamily, and generalize the Gaussian
kernel of Euclidean space. As an important special casaglebased on the geometry of multi-
nomial families are derived, leading to kernel-based legralgorithms that apply naturally to
discrete data. Bounds on covering humbers and Rademacdtragas for the kernels are proved
using bounds on the eigenvalues of the Laplacian on Rieraammanifolds. Experimental results
are presented for document classification, for which theofissultinomial geometry is natural and
well motivated, and improvements are obtained over thalstahuse of Gaussian or linear kernels,
which have been the standard for text classification.

Keywords: kernels, heat equation, diffusion, information geometryt classification

1. Introduction

The use of Mercer kernels for transforming linear classification angssgn schemes into nonlin-
ear methods is a fundamental idea, one that was recognized early in #epmtaent of statistical
learning algorithms such as the perceptron, splines, and support wemtbines (Aizerman et al.,
1964; Kimeldorf and Wahba, 1971; Boser et al., 1992). The resaeggractivity on kernel methods
in the machine learning community has led to the further development of this imptatamique,
demonstrating how kernels can be key components in tools for tackling nankitata analysis
problems, as well as for integrating data from multiple sources.

Kernel methods can typically be viewed either in terms of an implicit represemtatia high
dimensional feature space, or in terms of regularization theory and smg¢Bmggio and Girosi,
1990). In either case, most standard Mercer kernels such as thsi@uaaos radial basis function
kernel require data points to be represented as vectors in Euclideaas Sfas initial processing
of data as real-valued feature vectors, which is often carried out sdamocmanner, has been
called the “dirty laundry” of machine learning (Dietterich, 2002)—while the ihEaclidean fea-
ture representation is often crucial, there is little theoretical guidance oritlstvuld be obtained.
For example, in text classification a standard procedure for prepagndattument collection for
the application of learning algorithms such as support vector machines ipresesit each docu-
ment as a vector of scores, with each dimension corresponding to a tessiblgafter scaling by
an inverse document frequency weighting that takes into account thiulisin of terms in the
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collection (Joachims, 2000). While such a representation has proverefitebtve, the statistical
justification of such a transform of categorical data into Euclidean spaceisar.

Motivated by this need for kernel methods that can be applied to disciategarical data,
Kondor and Lafferty (2002) propose the use of discrete diffusionéde and tools from spectral
graph theory for data represented by graphs. In this paper, weggaprelated construction of
kernels based on the heat equation. The key idea in our approach igitoviiéh a statistical
family that is natural for the data being analyzed, and to represent datirdas on the statistical
manifold associated with the Fisher information metric of this family. We then expgdometry
of the statistical family; specifically, we consider the heat equation with ce$pe¢he Riemannian
structure given by the Fisher metric, leading to a Mercer kernel definélleoappropriate function
spaces. The result is a family of kernels that generalizes the familiar @adssnel for Euclidean
space, and that includes new kernels for discrete data by beginningtatitiisal families such as
the multinomial. Since the kernels are intimately based on the geometry of the Fifslvaradtion
metric and the heat or diffusion equation on the associated Riemannian mawialdfer to them
here asnformation diffusion kernels

One apparent limitation of the discrete diffusion kernels of Kondor antettsf(2002) is the
difficulty of analyzing the associated learning algorithms in the discrete seffinig. stems from
the fact that general bounds on the spectra of finite or even infinitdgrae difficult to obtain,
and research has concentrated on bounds on the first eigenvalseedtl families of graphs. In
contrast, the kernels we investigate here are over continuous parapaates gven in the case where
the underlying data is discrete, leading to more amenable spectral analysisanMraw on the
considerable body of research in differential geometry that studiesgbevalues of the geometric
Laplacian, and thereby apply some of the machinery that has been devdtmpanalyzing the
generalization performance of kernel machines in our setting.

Although the framework proposed is fairly general, in this paper we focuthe application
of these ideas to text classification, where the natural statistical family is the omisih In the
simplest case, the words in a document are modeled as independentrdraves fixed multino-
mial; non-independent draws, correspondinggrams or more complicated mixture models are
also possible. Fon-gram models, the maximum likelihood multinomial model is obtained simply
as normalized counts, and smoothed estimates can be used to remove thd herosapping is
then used as an embedding of each document into the statistical family, wagentimetric frame-
work applies. We remark that the perspective of associating multinomial maatélsndividual
documents has recently been explored in information retrieval, with promieswts (Ponte and
Croft, 1998; Zhai and Lafferty, 2001).

The statistical manifold of the-dimensional multinomial family comes from an embedding
of the multinomial simplex into the-dimensional sphere which is isometric under the the Fisher
information metric. Thus, the multinomial family can be viewed as a manifold of congtsitive
curvature. As discussed below, there are mathematical technicalities domeyscand edges on
the boundary of the multinomial simplex, but intuitively, the multinomial family can bevedkin
this way as a Riemannian manifold with boundary; we address the technicajiteesrbunding”
procedure on the simplex. While the heat kernel for this manifold doesawvet & closed form, we
can approximate the kernel in a closed form using the leading term in thenetica expansion,

a small time asymptotic expansion for the heat kernel that is of great usderediial geometry.
This results in a kernel that can be readily applied to text documents, anis thall motivated
mathematically and statistically.
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We present detailed experiments for text classification, using both the B/ab# Reuters data
sets, which have become standard test collections. Our experimenttd nedicate that the multi-
nomial information diffusion kernel performs very well empirically. This imygment can in part
be attributed to the role of the Fisher information metric, which results in pointstine®oundary
of the simplex being given relatively more importance than in the flat Euclideancm&iewed
differently, effects similar to those obtained by heuristically designed tenghireg schemes such
as inverse document frequency are seen to arise automatically fromaheetyg of the statistical
manifold.

The remaining sections are organized as follows. In Section 2 we reviewlthwant concepts
that are required from Riemannian geometry, including the heat kernal deneral Riemannian
manifold and its parametrix expansion. In Section 3 we define the Fisher metaciated with a
statistical manifold of distributions, and examine in some detail the special agisesmultinomial
and spherical normal families; the proposed use of the heat kernelparametrix approximation
on the statistical manifold is the main contribution of the paper. Section 4 ddriresls on cov-
ering numbers and Rademacher averages for various learning algotiithinse the new kernels,
borrowing results from differential geometry on bounds for the geomeaacian. Section 5
describes the results of applying the multinomial diffusion kernels to textifitzg®on, and we
conclude with a discussion of our results in Section 6.

2. The Heat Kernel

In this section we review the basic properties of the heat kernel on a Rieamamanifold, together
with its asymptotic expansion, the parametrix. The heat kernel and its pavaexgiansion contains
a wealth of geometric information, and indeed much of modern differenti@hgty, notably index
theory, is based upon the use of the heat kernel and its generalizattmfindamental nature of the
heat kernel makes it a natural candidate to consider for statistical Igappiications. An excellent
introductory account of this topic is given by Rosenberg (1997), analughoritative reference for
spectral methods in Riemannian geometry is Schoen and Yau (1994). BnAppA we review
some of the elementary concepts from Riemannian geometry that are re@srdgubse concepts
are not widely used in machine learning, in order to help make the paper gibomstained.

2.1 The Heat Kernel

The Laplacian is used to model how heat will diffuse throughout a geonreaitfold; the flow is
governed by the following second order differential equation with initialdiions
of
— —Af =
ot 0
f(x,00 = fo(X).

The valuef (x,t) describes the heat at locatigrat timet, beginning from an initial distribution of

heat given byfy(x) at time zero. The heat or diffusion kerngl(x,y) is the solution to the heat
equationf (x,t) with initial condition given by Dirac’s delta functiod,. As a consequence of the
linearity of the heat equation, the heat kernel can be used to generatdutien to the heat equation
with arbitrary initial conditions, according to

1) = [ Ke(xy) foly)dy.
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As a simple special case, consider heat flow on the circle, or one-dimehsjghereéM = S,
with the metric inherited from the Euclidean metricRA Parameterizing the manifold by and@le
and lettingf (6,t) = y$_,a;(t) cogj8) be the discrete cosine transform of the solution to the heat
equation, with initial conditions given bg;(0) = a;, it is seen that the heat equation leads to the
equation

(o)

Z; (% aj(t) + ja; (t)) cogj6) =0,
E

which is easily solved to obtaia; (t) = e i and thereforef (6,t) = 5§ 0q; e it cog jB). As the
time parametet gets large, the solution convergesft®,t) — ap, which is the average value of
f; thus, the heat diffuses until the manifold is at a uniform temperature. giesx the solution in
terms of an integral kernel, note that by the Fourier inversion formula

00

f(e,t) = ;<f,é19>e*12té19
J

1 @
- = e 11ei®e 119y () do,
o s > o(9)do

thus expressing the solution &$,t) = [« K:(6, @) fo(¢) dfor the heat kernel
Kq ( 9)*i S e " cos(j(6— )
1(9.0) = ZHJ; j0-9).

This simple example shows several properties of the general solution dietiteequation on a
(compact) Riemannian manifold; in particular, note that the eigenvalues oéthellscale aj ~
e~ where the dimension in this casedis= 1.

WhenM = R, the heat kernel is the familiar Gaussian kernel, so that the solution to the hea
equation is expressed as

1 _(x-y)?
f(x,t):ﬁ/Re 2" fo(y)dy,

and it is seen that as— oo, the heat diffuses out “to infinity” so thdtx,t) — O.

WhenM is compact, the Laplacian has discrete eigenvaluesug < iy < [ --- with corre-
sponding eigenfunctiong satisfyingA@ = —@. When the manifold has a boundary, appropriate
boundary conditions must be imposed in orderActo be self-adjoint. Dirichlet boundary con-

ditions set@|;, = 0 and Neumann boundary conditions requ%&‘ = 0 wherev is the outer

M
normal direction. The following theorem summarizes the basic properti¢sddrernel of the heat
equation orM; we refer to Schoen and Yau (1994) for a proof.

Theorem 1 Let M be a complete Riemannian manifold. Then there exists a functo@KR ;. x
M x M), called the heat kernel, which satisfies the following properties for gllexM, with
Kt(" ) = K(tv ) )

1. K{(Xv y) =kt (ya X)

2. lim_oKe(x,y) = 8(Y)
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3. (A— %) Ki(x,y) =0
4. KXy = JuKi=s(X,2)Ks(z,y)dz for any s> 0.

If in addition M is compact, thend<an be expressed in terms of the eigenvalues and eigenfunctions
of the Laplacian as Kx,y) = 5i° oe M@ (X) o (y).

Properties 2 and 3 imply th# (x,y) solves the heat equation ¥, starting from a point heat
source at. It follows thate®fo(x) = f(x,t) = i, Ki(x,y) fo(y) dy solves the heat equation with
initial conditionsf (x,0) = fo(X), since

oMY _ [ O

_ /Ammw%wmy
M

N / Ke(x,y) fo(y) dy
M
= Af(xt),

and lim_o f(x,t) = [y, lim;_oK(x,y)dy = fo(x). Property 4 implies thag*e® = el+92, which
has the physically intuitive interpretation that heat diffusion for tinig the composition of heat
diffusion up to timeswith heat diffusion for an additional tirte- s. Sincee® is a positive operator,

| [ kixyggdxdy = [ f(x)égxax
MJM M
= (g,é%g) > 0.

ThusK;(x,y) is positive-definite. In the compact case, positive-definiteness follinestty from
the expansioiii(x,y) = S5 o€ '@ (x) @ (y), which shows that the eigenvalueskafas an integral
operator ar@ M. Together, these properties show tKatlefines a Mercer kernel.

The heat kerneK;(x,y) is a natural candidate for measuring the similarity between points be-
tweenx,y € M, while respecting the geometry encoded in the mejri€urthermore it is, unlike
the geodesic distance, a Mercer kernel—a fact that enables its use iticstiakisrnel machines.
When this kernel is used for classification, as in our text classificatiorrempnts presented in
Section 5, the discriminant functign(x) = ¥; a;yiK¢(X,X;) can be interpreted as the solution to the
heat equation with initial temperatuyg(x;) = a;y; on labeled data points, and initial temperature
Yo(X) = O elsewhere.

2.1.1 THE PARAMETRIX EXPANSION

For most geometries, there is no closed form solution for the heat kernalvewér, the short
time behavior of the solutions can be studied using an asymptotic expansiahtbalf@rametrix
expansionin fact, the existence of the heat kernel, as asserted in the aboverthésmost directly
proven by first showing the existence of the parametrix expansion.dim8eé we will employ the
first-order parametrix expansion for text classification.

Recall that the heat kernel on flaédimensional Euclidean space is given by

2
KtEuc“d(X,y) _ (4T[t)‘5exp<—HX 4ty‘ >
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where||x—y||2 = S, |x —yi|? is the squared Euclidean distance betweandy. The parametrix
expansion approximates the heat kernel locally as a correction to this &arcllteat kernel. To
begin the definition of the parametrix, let
_n d? X,
R ) = () Fexp(~ o)) (alcy) stk )

for currently unspecified functiongs(x,y), but whered?(x,y) now denotes the square of the geodesic
distance on the manifold. The idea is to obtinrecursively by solving the heat equation approxi-
mately to ordet™, for small diffusion timet.

Letr =d(x,y) denote the length of the radial geodesic frotny € Vy in the normal coordinates
defined by the exponential map. For any functids) andh(r) of r, it can be shown that

2
Af Eer(log\/detg)g

dr2 dr dr
dfdh
A(fh) = fAh+hAf+Zaa.
Starting from these basic relations, some calculus shows that
A=) B — (tmagy) (4rt)F exp r )
o) ' m 4t
wheny, are defined recursively as
1
detg) 2
w = () @
r
P = r‘quo/ Wyt (Ag_1) s 1ds fork > 0. (4)
0

With this recursive definition of the functionlg, the expansion (1), which is defined only locally,
is then extended to all ¥l x M by smoothing with a “cut-off functionty, with the specification

thatn : R, — [0,1] isC* and
0 r>1
n(r) = { _

1 r<c

for some constant & ¢ < 1. Thus, the ordem parametrix is defined as

K™ (x.y) = n(d(x,y) A" (xy).

As suggested by equation (2<)t(m) is an approximate solution to the heat equation, and satisfies
Ki(X,y) = Kt(m) (x,y) +0O(t™) for x andy sufficiently close; in particular, the parametrix is not unique.
For further details we refer to (Schoen and Yau, 1994; Rosenb@®d)1

While the parametrbKt(m) is not in general positive-definite, and therefore does not define a
Mercer kernel, it is positive-definite farsufficiently small. In particular, define the functidit) =
minspedK{™), where minspec denotes the smallest eigenvalue. Thisra continuous function
with f(0) =1 sinceK(()m) =|. Thus, there is some time intervi@ €) for which Kt(m) is positive-
definite in caseé < [0,€). This fact will be used when we employ the parametrix approximation to
the heat kernel for statistical learning.
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3. Diffusion Kernels on Statistical Manifolds

We now proceed to the main contribution of the paper, which is the applicatitredfeat kernel
constructions reviewed in the previous section to the geometry of statistindiefs, in order to
obtain kernels for statistical learning.

Under some mild regularity conditions, general parametric statistical families eqoipped
with a canonical geometry based on the Fisher information metric. This geohasripng been
recognized (Rao, 1945), and there is a rich line of research in statisfitisthreads in machine
learning, that has sought to exploit this geometry in statistical analysis;a&e(K989) for a survey
and discussion, or the monographs by Kass and Vos (1997) and Anthilagaoka (2000) for
more extensive treatments. The basic properties of the Fisher informatioic aretrreviewed in
Appendix B.

We remark that in spite of the fundamental nature of the geometric perspéttstatistics,
many researchers have concluded that while it occasionally providiedesiasting alternative in-
terpretation, it has not contributed new results or methods that canndith@ed through more
conventional analysis. However in the present work, the kernel mgtivegoropose can, arguably,
be motivated and derived only through the geometry of statistical manifolds.

The following two basic examples illustrate the geometry of the Fisher informatidmcraad
the associated diffusion kernel it induces on a statistical manifold. Therisphnormal family
corresponds to a manifold of constant negative curvature, and the nmaiéihoorresponds to a
manifold of constant positive curvature. The multinomial will be the most impoexrainple that
we develop, and we report extensive experiments with the resultinglgénreection 5.

3.1 Diffusion Kernels for Gaussian Geometry

Consider the statistical family given by = {p(-|6)}eco Where® = (y,0) and p(-|(K,0)) =
A((K,6°l,_1), the Gaussian having meanc R"! and variances?l,_1, with ¢ > 0. Thus,0 =
R"1 x R, . A derivation of the Fisher information metric for this family is given in Appenglig,
where it is shown that under coordinates define®by 1 for 1 <i <n-—1and6, = \/2(n—1)a,
the Fisher information matrix is given by

1
gij(6) = 529

Thus, the Fisher information metric giv€s= R"! x R, the structure of the upper half plane in
hyperbolic space. The distance minimizing or geodesic curves in hypespaloe are straight lines
or circles orthogonal to the mean subspace.

In particular, the univariate normal density has hyperbolic geometry. gsnaralization in
this 2-dimensional case, any location-scale family of densities is seen tda&ebolic geometry
(Kass and Vos, 1997). Such families have densities of the form

P (o)) = ot (*5*)

o o

where(y,0) e Rx Ry andf : R —R.

1. By astatistical manifoldwe mean simply a manifold of densities together with the metric induced by therFis
information matrix, rather than the more general notion of a Riemannianifofhtogether with a (possibly non-
metric) connection, as defined by Lauritzen (1987).
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Figure 1: Example decision boundaries for a kernel-based classifieg idormation diffusion
kernels for spherical normal geometry with= 2 (right), which has constant negative
curvature, compared with the standard Gaussian kernel for flat Eanlisieace (left).
Two data points are used, simply to contrast the underlying geometries. uFedc
decision boundary for the diffusion kernel can be interpreted statistibgllyoting that
as the variance decreases the mean is known with increasing certainty.

The heat kernel on the hyperbolic spdd® has the following explicit form (Grigor'yan and
Noguchi, 1998). For odd = 2m+ 1 it is given by

G O S AN A
Ki(X) = oz \sinhrar ) &P it 4 )’ ®)
and for evem = 2m+ 2 it is given by
21?2
o) = I V2 ( l 2>m wsex\p%(_w_m) (6)
ORI m | zg® \sinhrar )y coshs— coshr

wherer = d(x,X) is the geodesic distance between the two poini&"nif only the mearf = pis
unspecified, then the associated kernel is the standard Gaussian RBF- ke

A possible use for this kernel in statistical learning is where data pointstueatly represented
as sets. That is, suppose that each data point is of theXeenixy, X, ... Xm} wherex; € R"1,
Then the data can be represented according to the mapping which sehdg@ae of points to

the corresponding Gaussian under the MiE: (fi(x),3(x)) wherefi(x) = L 3;x andG(x)? =

m
23106 — 092

In Figure 3.1 the diffusion kernel for hyperbolic spa@#is compared with the Euclidean space
Gaussian kernel. The curved decision boundary for the diffusiarekenakes intuitive sense, since
as the variance decreases the mean is known with increasing certainty.

Note that we can, in fact, considbt as a manifold with boundary by allowing > 0 to be
non-negative rather than strictly positige> 0. In this case, the densities on the boundary become
singular, as point masses at the mean; the boundary is simply giveMby R"~, which is a
manifold without boundary, as required.
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3.2 Diffusion Kernels for Multinomial Geometry

We now consider the statistical family of the multinomial ove# 1 outcomes, given by =
{p(-18)}eco Where® = (61,05,...,6,) with 6; € (0,1) and S ;6; < 1. The parameter spac@
is the opem-simplex®, defined in equation (9), a submanifoldf+1.

To compute the metric, let= (X1,X2,...,X,+1) denote one draw from the multinomial, so that
X, € {0,1} andy;x = 1. The log-likelihood and its derivatives are then given by

n+1

logp(x|8) = Xilog6;
i; i i

dlogp(x|6) X;

06; Bi
0%logp(x|8) X
600~ g

96,08, o

Since?, is ann-dimensional submanifold &"+1, we can express, v € ToM as(n+1)-dimensional
vectors inTeR™?! = R™1; thus,u = ™ lue, v=yMlvie. Note that due to the constraint
zi”jll 6; = 1, the sum of the+ 1 components of a tangent vector must be zero. A basifdris

{elz (1,0,...,0,-1) ", = (0,1,0,...,0,—1)7,....en = (o,o,...,o,l,—l)T} .

Using the definition of the Fisher information metric in equation (10) we then ctampu

n+1n+1 02 Iog p(x| e)
(uvie = _ZZ“V’ { 36i08, ]
n+1 5
= —Y WE{—x/6;
i; iVi { i |}
B n—kluivi
= o

While geodesic distances are difficult to compute in general, in the case afittimomial
information geometry we can easily compute the geodesics by observingdistatidard Euclidean
metric on the surface of the positivesphere is the pull-back of the Fisher information metric on
the simplex. This relationship is suggested by the form of the Fisher informgitien in equation
(10).

To be concrete, the transformatibiify,...,0n.1) = (2v/041,...,2v/0n11) is a diffeomorphism
of the n-simplex &, onto the positive portion of tha-sphere of radius 2; denote this portion of
the sphere as;f = {6 e R™1 : sM162=2 6, > 0}. Given tangent vectors= 3" !ue,v=
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AVaVN

Figure 2: Equal distance contours #mfrom the upper right edge (left column), the center (center
column), and lower right corner (right column). The distances are ctedpusing the
Fisher information metrig (top row) or the Euclidean metric (bottom row).

1y, the pull-back of the Fisher information metric through? is

n+1 n+1
he(UaV) = 962/4 (F*_l z ukem':*_l ZW&)
k=1 1=

n+1n+1
= Y > uvige(F ecF )
F s
n+1n+1 4 1 1
= uv Y = (F&)i (Fo )
25" 2w
ntintl 4 6, 819
= UV —
22" 2% 2 2

Since the transformatiol : (%,,9) — (S, h) is an isometry, the geodesic distart{®,6’) on
P, may be computed as the shortest curveSgreconnecting=(0) andF (6). These shortest curves
are portions of great circles—the intersection of a two dimensional plashg ar-and their length

is given by
n+1
d(8,0") = 2arcco 0,6 | . (7)
{5 o)
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Figure 3: Example decision boundaries using support vector machinegwatmation diffusion
kernels for trinomial geometry on the 2-simplex (top right) compared with the atend
Gaussian kernel (left).

In Appendix B we recall the connection between the Kullback-Leiblerrdimece and the in-
formation distance. In the case of the multinomial family, there is also a close nsaipowith the
Hellinger distance. In particular, it can easily be shown that the Hellingtardie

h(8.6) = \/Z (Vo)

d(6,6') = 2sin(d(8,8')/4) .

Thus, a®’ — 6, dy agrees With%d to second order:

is related tad(6,6') by

d4(6,0) = %d(e,e') +0(d%8,0))

The Fisher information metric places greater emphasis on points near thedopuwvhich is
expected to be important for text problems, which typically have sparsetisgtisigure 2 shows
equal distance contours @b using the Fisher information and the Euclidean metrics.

While the spherical geometry has been derived as the information georaetyfihite multi-
nomial, the same geometry can be used non-parametrically for an arbitizsgtaf probability
measures, leading to spherical geometry in a Hilbert space (Dawid,.1977)

3.2.1 THE MULTINOMIAL DIFFUSION KERNEL

Unlike the explicit expression for the Gaussian geometry discussed ,aheve is not an explicit
form for the heat kernel on the sphere, nor on the positive orthahiea§phere. We will therefore
resort to the parametrix expansion to derive an approximate heat kertieé multinomial.

Recall from Section 2.1.1 that the parametrix is obtained according to theshguahsion given
in equation (1), and then extending this smoothly to zero outside a neigltsbdfidhe diagonal,
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as defined by the exponential map. As we have just derived, this resthis fiollowing parametrix
for the multinomial family:

R™(6,6) = (41t) 2 ex

p(_ arccog(z/é'\/@)> (wo(e’el)+,..+L|_jm(9,9/)tm) .

The first-order expansion is thus obtained as
K”(6,6') = n(d(6,6))R” (8,6).

Now, for then-sphere it can be shown that the functipmof (3), which is the leading order correc-
tion of the Gaussian kernel under the Fisher information metric, is given by

()

rnfl

Wo(r)

n—1)

. _(
_(sinr 2
- r

(n-1) , (n=1)(5n-1) ,
12 " T 1220 "

(Berger et al., 1971). Thus, the leading order parametrix for the multinatifiasion kernel is

= 1+ +0(r®)

. -
PO (0,0) = (4rt) ? exp<—4—ltd2(97 9/)> <%> ‘

In our experiments we approximate this kernel further as
R (6,0) = (41t) 2 exp(f1 arccod(v- \/@)>

by appealing to the asymptotic expansion in (8) and the explicit form of thendistgiven in (7);
note that(sinr/r)™" blows up for larger. In Figure 3 the kernel (3.2.1) is compared with the
standard Euclidean space Gaussian kernel for the case of the trinondiall, the: 2, using an SVM
classifier.

3.2.2 ROUNDING THE SIMPLEX

The case of multinomial geometry poses some technical complications for tlysiarmd diffusion
kernels, due to the fact that the open simplex is not complete, and moriggwedwsure is not a dif-
ferentiable manifold with boundary. Thus, it is not technically possible tdyaggveral results from
differential geometry, such as bounds on the spectrum of the Laplasiatopted in Section 4. We
now briefly describe a technical “patch” that allows us to derive all ofineded analytical results,
without sacrificing in practice any of the methodology that has been diesivéar.

Let A, = P, denote the closure of the open simplex; tisis the usual probability simplex
which allows zero probability for some items. However, it does not formmapaet manifold with
boundary since the boundary has edges and corners. In othes,Wocdl chartsh : U — R™
cannot be defined to be differentiable. To adjust for this, the idea is tmtfthe edges” of\, to
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Figure 4: Rounding the simplex. Since the closed simplex is not a manifold withdaoy we
carry out a “rounding” procedure to remove edges and cornerg.dfaunded simplex
is the closure of the union of alk-balls lying within the open simplex.

obtain a subset that forms a compact manifold with boundary, and thatyckyggroximates the
original simplex.

Ford > 0, letBs(x) = {y| || x—Y]|| < &} denote the open Euclidean ball of raddusentered ax.
Denote byCs(?,) the d-ball centersof 7, the points of the simplex whoseballs lie completely
within the simplex:

Cs(Pn) = {x€ Py : Bs(X) C P} .

Finally, let f.Pné denote the-interior of &, which we define as the union of @&balls contained in
Pn:
2= |J Bs(x).

X€Cs(%n)

Thed-rounded simplexR? is then defined as the closuté = #?.

The rounding procedure that yield$ is suggested by Figure 4. Note that in generaldhe
rounded simplexA2 will contain points with a single, but not more than one component having zero
probability. The sef? forms a compact manifold with boundary, and its image under the isometry
F:(®h,9) — (S, h) is a compact submanifold with boundary of thephere.

Whenever appealing to results for compact manifolds with boundary in tlesvfog, it will
be tacitly assumed that the above rounding procedure has been cartrindh® case of the multi-
nomial. From a theoretical perspective this enables the use of boungecmasof Laplacians for
manifolds of non-negative curvature. From a practical viewpoint itiireg only smoothing the
probabilities to remove zeros.

4. Spectral Bounds on Covering Numbers and Rademacher Averag

We now turn to establishing bounds on the generalization performanceradl keachines that use
information diffusion kernels. We first adopt the approach of Guo ¢2aD2), estimating covering
numbers by making use of bounds on the spectrum of the Laplacian on arRiemananifold,
rather than on VC dimension techniques; these bounds in turn yield boarnte expected risk of
the learning algorithms. Our calculations give an indication of how the urnidgreometry influ-
ences the entropy numbers, which are inverse to the covering numbetsewshow how bounds
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on Rademacher averages may be obtained by plugging in the spectrdstfoum differential ge-
ometry. The primary conclusion that is drawn from these analyses is tmattfre point of view of
generalization error bounds, diffusion kernels behave essentiallathe as the standard Gaussian
kernel.

4.1 Covering Numbers

We begin by recalling the main result of Guo et al. (2002), modifying theirtimotaslightly to
conform with ours. LeM c RY be a compact subset dfdimensional Euclidean space, and suppose
thatK : M x M — R is a Mercer kernel. Denote by > A, > --- > 0 the eigenvalues &€, that is,
of the mappingf — [, K(-,y) f(y)dy, and let;(-) denote the corresponding eigenfunctions. We
assume thatx = sup |||, < .

Givenm pointsx; € M, the kernel hypothesis class foe= {x} with weight vector bounded by
Ris defined as the collection of functions given by

Fr(X) ={f: f(x)=(w,P(x)) for some|w|| <R},

whered(-) is the mapping fronM to feature space defined by the Mercer kernel, @ndland||-||
denote the corresponding Hilbert space inner product and norm. flinsepest to obtain uniform
bounds on the covering numbet§(e, 7r(x)), defined as the size of the smallestover of 7r(x)
in the metric induced by the norfif ||007X =maxX-1. m|f(x)|.

Theorem 2 (Guo et al., 2002)Given an integer & N, let j: denote the smallest integer j for which

1

Ao A ]
)‘j+1<< lnz J>

and define

Thensup,emm A(&;, Fr(X)) < n.

To apply this result, we will obtain bounds on the indiggsising spectral theory in Riemannian
geometry.

Theorem 3 (Li and Yau, 1980) Let M be a compact Riemannian manifold of dimension d with
non-negative Ricci curvature, and l6t< W < pp < --- denote the eigenvalues of the Laplacian
with Dirichlet boundary conditions. Then

ci(d) (%,)g < Hj < cp(d) <J$—l>s

where V is the volume of M and and ¢ are constants depending only on the dimension.
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Note that the manifold of the multinomial model (afterounding) satisfies the conditions of
this theorem. Using these results we can establish the following bounds erimcpmumbers for
information diffusion kernels. We assume Dirichlet boundary conditiorsmélar result can be
proven for Neumann boundary conditions. We include the constantvol(M) and diffusion coef-
ficientt in order to indicate how the bounds depend on the geometry.

Theorem 4 Let M be a compact Riemannian manifold, with volume V, satisfying the corglitfon
Theorem 3. Then the covering numbers for the Dirichlet heat kegrah K1 satisfy

ogac(e. 7209) =0 (5 J1oa™>* (7)) ®

Proof By the lower bound in Theorem 3, the Dirichlet eigenvalues of the heaekiér(x, y), which
o\ 2
are given by\j = e, satisfy log\; < —tcy(d) (\l,) ‘. Thus,

2 2

“Liog (AL >'Ej il a+§|0 n> o9 (1 a+§|0n
PN )= T4 \v) TN =tagaly) o9

where the second inequality comes frqﬁzlip > foj xPdx = g% Now using the upper bound of
Theorem 3, the inequalityj; < j will hold if

2 2
tc —2 a>—Io A >tci l a+glon
2\ z OAj+1 =2 1d+2 Vi j g

tco (.. 2 ¢
_< _|_2 d —
e (J(J ) :

The above inequality will hold in case

or equivalently

d d

2 d+2 2 d+2

j> _Ae logn " > | (Veldt2) logn "
o t(CZ_CldLH) o tcy

2 d+2
since we may assume that> cy; thus, j;, < |C; (@ Iogn> for a new constartt; (d). Plug-
ging this bound orj}, into the expression fag;, in Theorem 2 and using

© 2 2
e’ :O<eJn ) ,
i=]

S
n

we have after some algebra that

d
1 t N2 o
log (8_n> =Q (<\ﬁ) loga+z n) .

Inverting the above expression in Ingives equation (8). |

We note that Theorem 4 of Guo et al. (2002) can be used to show thaotlmis ldoes not, in fact,
depend orm andx. Thus, for fixed the covering numbers scale as e, F) = O (Iogd%2 (%))

and for fixede they scale as log((g, ) = O (t‘%) in the diffusion timet.
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4.2 Rademacher Averages

We now describe a different family of generalization error bounds #rabe derived using the ma-
chinery of Rademacher averages (Bartlett and Mendelson, 200@etBat al., 2004). The bounds
fall out directly from the work of Mendelson (2003) on computing locarages for kernel-based
function classes, after plugging in the eigenvalue bounds of Theorem 3.

As seen above, covering number bounds are related to a complexity ténmfofm

1
. )\1...)\-* T o
C(n)Jm( = ‘"> + 3 N
i=Th

In the case of Rademacher complexities, risk bounds are instead coniypbesimilar, yet simpler
expression of the form

I=Jf

where nowj; is the smallest integej for which Aj < r (Mendelson, 2003), withl acting as a
parameter bounding the error of the family of functions. To place this into somiext, we quote
the following results from Bartlett et al. (2004) and Mendelson (2008)clwvapply to a family of
loss functions that includes the quadratic loss; we refer to Bartlett etGd4jZor details on the
technical conditions.

Let (X1,Y1),(X2,Y2)..., (X, Yn) be an independent sample from an unknown distribuiton
on X x 9%, wherey Cc R. For a given loss functiod : & x 9 — R, and a familyg of mea-
surable functions : X — 9, the objective is to minimize the expected Idsg(f(X),Y)]. Let
Els = infrcgEls, wherels(X,Y) = £(f(X),Y), and letf be any member of for which Enl; =
infsczEnls whereE, denotes the empirical expectation. TRademacher averagef a family
of functions® = {g: X — R} is defined as the expectati®@R,& = E [SUQEQ5 Rug] with Ryg =
%zi”:loi 9(X), whereas,...,on are independent Rademacher random variables; that(cs,=
1)=p(oi=-1) =3

Theorem 5 (Bartlett et al., 2004) Let§ be a convex class of functions and definby
. *\2 bx
W(r)=aER{feF:E(f-f) gr}+F
where a and b are constants that depend on the loss funé&tidbhen when £ (r),
dx
F * < —
E(Ef ls ) <cr+ o

with probability at leastl — e *, where ¢ and d are additional constants.
Moreover, suppose that K is a Mercer kernel ahe- { f € # : || f|x <1} is the unit ball in
the reproducing kernel Hilbert space associated with K. Then

22 . bx
Yr)<a /ﬁglmm{r,)\j}jLF.
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Thus, to bound the excess risk for kernel machines in this frameworlfitesito bound the

term
o = imin{r,m
=

= jF‘I’—%—-z Ai

I=J7

involving the spectrum. Given bounds on the eigenvalues, this is typicaiyteds.

Theorem 6 Let M be a compact Riemannian manifold, satisfying the conditions of Tihe8re
Then the Rademacher tetinfor the Dirichlet heat kernel Kon M satisfies

so<0 () ()

for some constant C depending on the geometry of M.

[N[=X

Proof We have that

P2(r) = 5 min{r,Aj}
=1
= jir+ Y et
=l

© 2

. _ id

< iy et
=3

2
< jir4Cetald

for some constartt, where the first inequality follows from the lower bound in Theorem 3. But
jr <jincaselog\j,1>r,or, again from Theorem 3, if

tco(] +1)§ < —logA;j < Iog%

or equivalently,

It follows that

for some new consta@”. [ ]

From this bound, it can be shown that, with high probability,

E (ef—ef*) o) ('ng n) ,
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which is the behavior expected of the Gaussian kernel for Euclideae spa
Thus, for both covering numbers and Rademacher averages, thegesaunds are essentially

the same as those that would be obtained for the Gaussian kernel on thelifla¢nsional torus,
which is the standard way of “compactifying” Euclidean space to get a tepldhaving only dis-
crete spectrum; the results of Guo et al. (2002) are formulated for tealcad, corresponding to
the circleSt. While the bounds for diffusion kernels were derived for the caseositige curva-
ture, which apply to the special case of the multinomial, similar bounds for glemanifolds with
curvature bounded below by a negative constant should also be algainab

5. Multinomial Diffusion Kernels and Text Classification

In this section we present the application of multinomial diffusion kernels to tbielgm of text
classification. Text processing can be subject to some of the “dirty lgtimelfierred to in the
introduction—documents are cast as Euclidean space vectors with speigating schemes that
have been empirically honed through applications in information retrievagmr#tan inspired from
first principles. However for text, the use of multinomial geometry is naturdlvaell motivated,;
our experimental results offer some insight into how useful this geometryom&yr classification.

5.1 Representing Documents

Assuming a vocabulary of sizen+ 1, a document may be represented as a sequence of words over
the alphabeV. For many classification tasks it is not unreasonable to discard word, andeed,
humans can typically easily understand the high level topic of a documensjydting its contents

as a mixed up “bag of words.” Let, denote the number of times tewmappears in a document.
Then {x,}vev is the sample space of the multinomial distribution, with a document modeled as
independent draws from a fixed model, which may change from documeéacument. It is nat-

ural to embed documents in the multinomial simplex using an embedding fmﬁ:tiﬁﬁ*l — P

We consider several embeddin@shat correspond to well known feature representations in text
classification (Joachims, 2000). Ttegm frequencytf) representation uses normalized counts; the
corresponding embedding is the maximum likelihood estimator for the multinomial disribu

s (X X
th(x)— (ZiXi,...,ziXi>.

Another common representation is basedtem frequency, inverse document freque(ttyf).
This representation uses the distribution of terms across documents tordiscoumon terms;
the document frequency ¢ bf termv is defined as the number of documents in which term
appears. Although many variants have been proposed, one of the dienmlaaost commonly used
embeddings is

étﬁdf(x)z ( x1log(D/d f1) Xn+1log(D/d an))
Yixlog(D/df)” " Fixlog(D/df)
whereD is the number of documents in the corpus.
We note that in text classification applications the tf and tfidf representatiertgcally nor-
malized to unit length in th&, norm rather than thé&; norm, as above (Joachims, 2000). For
example, the tf representation with normalization is given by

( X1 Xn+1>
X | =30
YiX 2iX
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and similarly for tfidf. When used in support vector machines with linear arsGan kerneld, ,-
normalized tf and tfidf achieve higher accuracies than theimormalized counterparts. However,
for the diffusion kernelsl.; normalization is necessary to obtain an embedding into the simplex.
These different embeddings or feature representations are compattesl experimental results
reported below.

To be clear, we list the three kernels we compare. First, the linear kemjigeis by

K-"(0,0') =0 e’—me 4
’ — V- — Z v Uy -
v=1

The Gaussian kernel is given by

il 60?2
K?ausie/’e/) — (2T[O') 2 exp<_%>

where |6 —€'|? = Ciﬂe\,—e(,yz is the squared Euclidean distance. The multinomial diffusion
kernel is given by

KMt(0,0') = (41t) 2 exp(—f{—L arccod(v/8- \/@)> :
as derived in Section 3.

5.2 Experimental Results

In our experiments, the multinomial diffusion kernel using the tf embeddingoaagpared to the
linear or Gaussian (RBF) kernel with tf and tfidf embeddings using a stigpotor machine clas-
sifier on the WebKB and Reuters-21578 collections, which are standsaicsdts for text classifica-
tion.

The WebKb dataset contains web pages found on the sites of foursitis® (Craven et al.,
2000). The pages were classified according to whether they werenstéalaulty, course, project
or staff pages; these categories contain 1641, 1124, 929, 504 @nidsidnces, respectively. Since
only the student, faculty, course and project classes contain more tBados0ments each, we
restricted our attention to these classes. The Reuters-21578 datasaillscdon of newswire
articles classified according to news topic (Lewis and Ringuette, 1994)oudththere are more
than 135 topics, most of the topics have fewer than 100 documents; foettsen, we restricted
our attention to the following five most frequent classes: earn, acq, rRengyain and crude, of
sizes 3964, 2369, 717, 582 and 578 documents, respectively.

For both the WebKB and Reuters collections we created two types of bilzsiftcation tasks.
In the first task we designate a specific class, label each document ita#i®eas a “positive”
example, and label each document on any of the other topics as a “@égai@mple. In the second
task we designate a class as the positive class, and choose the ndgasite be the most frequent
remaining class (student for WebKB and earn for Reuters). In bo#scése size of the training
set is varied while keeping the proportion of positive and negative doctsneenstant in both the
training and test set.

Figure 5 shows the test set error rate for the WebKB data, for a emags/e instance of the one-
versus-all classification task; the designated class was course. dilies ffer the other choices of
positive class were qualitatively very similar; all of the results are summainZeable 1. Similarly,
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Figure 5: Experimental results on the WebKB corpus, using SVMs for liftedated) and Gaussian

(dash-dotted) kernels, compared with the diffusion kernel for the multidofddid).
Classification error for the task of labeling course vs. either facultyeptoor student is
shown in these plots, as a function of training set size. The left plot usggrésentation
and the right plot uses tfidf representation. The curves shown arerthieates averaged
over 20-fold cross validation, with error bars representing one stdrakviation. The
results for the other “1 vs. all” labeling tasks are qualitatively similar, andtereefore
not shown.
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Figure 6: Results on the WebKB corpus, using SVMs for linear (dottedizmnssian (dash-dotted)

kernels, compared with the diffusion kernel (solid). The course pagelabeled positive
and the student pages are labeled negative; results for other latebpaigualitatively
similar. The left plot uses tf representation and the right plot uses tfidéseptation.
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Figure 7: Experimental results on the Reuters corpus, using SVMs for (idetied) and Gaussian
(dash-dotted) kernels, compared with the diffusion kernel (solid). cldsses acq (top),
and moneyFx (bottom) are shown; the other classes are qualitatively simharleft
column uses tf representation and the right column uses tfidf. The cumeasmsare
the error rates averaged over 20-fold cross validation, with errar tegresenting one
standard deviation.
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Figure 8: Experimental results on the Reuters corpus, using SVMs for (idetied) and Gaussian
(dash-dotted) kernels, compared with the diffusion (solid). The classe®yFx (top)
and grain (bottom) are labeled as positive, and the class earn is labeliyacghe left
column uses tf representation and the right column uses tfidf representation
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tf Representation tfidf Representation
Task L || Linear Gaussian Diffusion Linear Gaussian Diffusiorn
40 || 0.1225 0.1196 0.0646 | 0.0761 0.0726 0.0514
80| 0.0809 0.0805 0.0469 | 0.0569 0.0564 0.0357
coursevs. all| 120 || 0.0675 0.0670 0.0383 || 0.0473 0.0469 0.0291
200 || 0.0539 0.0532 0.0315 || 0.0385 0.0380 0.0238
400 || 0.0412 0.0406 0.0241 | 0.0304 0.0300 0.0182
600 || 0.0362 0.0355 0.0213 || 0.0267 0.0265 0.0162

40 || 0.2336  0.2303 0.1859 || 0.2493 0.2469 0.1947
80 || 0.1947 0.1928 0.1558 | 0.2048 0.2043 0.1562
faculty vs. all | 120 || 0.1836  0.1823 0.1440 | 0.1921 0.1913 0.1420
200 || 0.1641 0.1634 0.1258 || 0.1748 0.1742 0.1269
400 || 0.1438 0.1428 0.1061 | 0.1508 0.1503 0.1054
600 || 0.1308 0.1297 0.0931 || 0.1372 0.1364 0.0933

40 || 0.1827 0.1793 0.1306 | 0.1831 0.1805 0.1333
80 || 0.1426  0.1416 0.0978 | 0.1378 0.1367 0.0982
projectvs. all| 120 || 0.1213  0.1209 0.0834 | 0.1169 0.1163 0.0834
200 | 0.1053 0.1043 0.0709 || 0.1007 0.0999 0.0706
400 || 0.0785 0.0766 0.0537 | 0.0802 0.0790 0.0574
600 || 0.0702 0.0680 0.0449 | 0.0719 0.0708 0.0504

40 || 0.2417 0.2411 0.1834 || 0.2100 0.2086 0.1740
80 || 0.1900 0.1899 0.1454 || 0.1681 0.1672 0.1358
studentvs. allf 120 | 0.1696  0.1693 0.1291 | 0.1531 0.1523 0.1204
200 | 0.1539 0.1539 0.1134 || 0.1349 0.1344 0.1043
400 | 0.1310 0.1308 0.0935 || 0.1147 0.1144 0.0874
600 || 0.1173 0.1169 0.0818 || 0.1063 0.1059 0.0802

Table 1: Experimental results on the WebKB corpus, using SVMs for lifganssian, and multi-
nomial diffusion kernels. The left columns use tf representation and thé galbmns
use tfidf representation. The error rates shown are averages abissiimg 20-fold cross
validation. The best performance for each training set kiieshown in boldface. All
differences are statistically significant according to the pditedt at the 0.05 level.

Figure 7 shows the test set error rates for two of the one-versugpaltienents on the Reuters data,
where the designated classes were chosen to be acq and moneyFx.thdiretults for Reuters
one-versus-all tasks are shown in Table 3.

Figure 6 and Figure 8 show representative results for the second tygassification task,
where the goal is to discriminate between two specific classes. In the ctise\WEbKB data the
results are shown for course vs. student. In the case of the Reutarthdaesults are shown for
moneyFx vs. earn and grain vs. earn. Again, the results for the otlsseslare qualitatively similar;
the numerical results are summarized in Tables 2 and 4.

In these figures, the leftmost plots show the performance of tf featuriss thvd rightmost plots
show the performance of tfidf features. As mentioned above, in the €ése diffusion kernel we
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tf Representation tfidf Representation
Task L || Linear Gaussian Diffusion| Linear Gaussian Diffusiorn
40 || 0.0808 0.0802 0.0391 || 0.0580 0.0572 0.0363
80| 0.0505 0.0504 0.0266 | 0.0409 0.0406 0.0251
course vs. student 120 || 0.0419 0.0409 0.0231 | 0.0361 0.0359 0.0225
200 || 0.0333 0.0328 0.0184 || 0.0310 0.0308 0.0201
400 || 0.0263 0.0259 0.0135 || 0.0234 0.0232 0.0159
600 || 0.0228 0.0221 0.0117 || 0.0207 0.0202 0.0141

40 || 0.2106 0.2102 0.1624 || 0.2053 0.2026 0.1663
80| 0.1766 0.1764 0.1357 || 0.1729 0.1718 0.1335
faculty vs. student 120 || 0.1624 0.1618 0.1198 | 0.1578 0.1573 0.1187
200 || 0.1405 0.1405 0.0992 | 0.1420 0.1418 0.1026
400 || 0.1160 0.1158 0.0759 | 0.1166 0.1165 0.0781
600 || 0.1050 0.1046 0.0656 | 0.1050 0.1048 0.0692

40 || 0.1434 0.1430 0.0908 | 0.1304 0.1279 0.0863
80 || 0.1139 0.1133 0.0725 | 0.0982 0.0970 0.0634
project vs. student 120 || 0.0958  0.0957 0.0613 || 0.0870 0.0866  0.0559
200 | 0.0781 0.0775 0.0514 || 0.0729 0.0722 0.0472
400 || 0.0590 0.0579 0.0405 | 0.0629 0.0622 0.0397
600 || 0.0515 0.0500 0.0325 || 0.0551 0.0539 0.0358

Table 2: Experimental results on the WebKB corpus, using SVMs for lifganssian, and multi-
nomial diffusion kernels. The left columns use tf representation and the cabmns
use tfidf representation. The error rates shown are averages abtsiimg 20-fold cross
validation. The best performance for each training set kil shown in boldface. All
differences are statistically significant according to the paitedt at the 0.05 level.

uselL; normalization to give a valid embedding into the probability simplex, while for the liard
Gaussian kernels we ukg normalization, which works better empirically thanfor these kernels.
The curves show the test set error rates averaged over 20 iterations® validation as a function

of the training set size. The error bars represent one standardidevieor both the Gaussian and
diffusion kernels, we test scale parametar@¢ for the Gaussian kernel and'22 for the diffusion
kernel) in the se{0.5,1,2,3,4,5,7,10}. The results reported are for the best parameter value in
that range.

We also performed experiments with the popular Mod-Apte train and test sptitdéaop 10
categories of the Reuters collection. For this split, the training set has @00tdocuments and
is highly biased towards negative documents. We report in Table 5 thestemtcuracies for the
tf representation. For the tfidf representation, the difference betweediffierent kernels is not
statistically significant for this amount of training and test data. The provided set is more
than enough to achieve outstanding performance with all kernels useédharabsence of cross
validation data makes the results too noisy for interpretation.

In Table 6 we report the F1 measure rather than accuracy, since thisneéasommonly used
in text classification. The last column of the table compares the presentdid keish the published
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tf Representation tfidf Representation
Task L || Linear Gaussian Diffusion Linear Gaussian Diffusion
80| 0.1107 0.1106 0.0971 | 0.0823 0.0827 0.0762
120 || 0.0988 0.0990 0.0853 | 0.0710 0.0715 0.0646
earnvs. all 200 || 0.0808 0.0810 0.0660 || 0.0535 0.0538 0.0480
400 || 0.0578 0.0578 0.0456 || 0.0404 0.0408 0.0358
600 || 0.0465 0.0464 0.0367 || 0.0323 0.0325 0.0290

80 || 0.1126 0.1125 0.0846 || 0.0788 0.0785 0.0667
120 || 0.0886 0.0885 0.0697 | 0.0632 0.0632 0.0534
acq vs. all 200 || 0.0678 0.0676 0.0562 | 0.0499 0.0500 0.0441
400 || 0.0506 0.0503 0.0419 || 0.0370 0.0369 0.0335
600 || 0.0439 0.0435 0.0363 | 0.0318 0.0316 0.0301

80| 0.1201 0.1198 0.0758 || 0.0676 0.0669 0.0647
120 || 0.0986 0.0979 0.0639 | 0.0557 0.0545 0.0531
moneyFx vs. all| 200 || 0.0814 0.0811 0.0544 | 0.0485 0.0472 0.0438
400 || 0.0578 0.0567 0.0416 | 0.0427 0.0418 0.0392
600 || 0.0478 0.0467 0.0375 || 0.0391 0.0385 0.0369

80 || 0.1443 0.1440 0.0925 || 0.0536 0.0518 0.0595
120 | 0.1101 0.1097 0.0717 || 0.0476 0.0467 0.0494
grainvs.all | 200 || 0.0793 0.0786 0.0576 | 0.0430 0.0420 0.0440
400 || 0.0590 0.0573 0.0450 || 0.0349 0.0340 0.0365
600 || 0.0517 0.0497 0.0401 || 0.0290 0.0284 0.0306

80 || 0.1396 0.1396 0.0865 || 0.0502 0.0485 0.0524
120 || 0.0961 0.0953 0.0542 || 0.0446 0.0425 0.0428
crudevs.all | 200 || 0.0624 0.0613 0.0414 | 0.0388 0.0373 0.0345
400 || 0.0409 0.0403 0.0325 || 0.0345 0.0337 0.0297
600 || 0.0379 0.0362 0.0299 || 0.0292 0.0284 0.0264

Table 3: Experimental results on the Reuters corpus, using SVMs for liGaarssian, and multi-
nomial diffusion kernels. The left columns use tf representation and theaigumns use
tfidf representation. The error rates shown are averages obtaimgd2@sfold cross vali-
dation. The best performance for each training setlsigseshown in boldface. An asterisk
(*) indicates that the difference is not statistically significant accordingegtired test
at the 0.05 level.

results of Zhang and Oles (2001), withtaindicating the diffusion kernel F1 measure is greater
than the result published in Zhang and Oles (2001) for this task.

Our results are consistent with previous experiments in text classificatiog 8%Ms, which
have observed that the linear and Gaussian kernels result in very simifarrpance (Joachims
et al., 2001). However the multinomial diffusion kernel significantly outpens the linear and
Gaussian kernels for the tf representation, achieving significantly lower ete than the other
kernels. For the tfidf representation, the diffusion kernel consistentlyeoforms the other kernels
for the WebKb data and usually outperforms the linear and Gaussiankéonéhe Reuters data.
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tf Representation tfidf Representation
Task L || Linear Gaussian Diffusion| Linear Gaussian Diffusion
40 || 0.1043 0.1043 0.102% 0.0829 0.0831 0.0814
80 || 0.0902 0.0902 0.0856 0.0764 0.0767 0.0730
acq vs. earn 120 || 0.0795 0.0796 0.0715 0.0626 0.0628 0.0562
200 || 0.0599 0.0599 0.0497 0.0509 0.0511 0.0431
400 || 0.0417 0.0417 0.0340 0.0336 0.0337 0.0294

40 || 0.0759 0.0758 0.0474 | 0.0451 0.0451 0.0372
80 || 0.0442 0.0443 0.0238 0.0246 0.0246  0.0177
moneyFx vs. earnp 120 || 0.0313 0.0311 0.0160 0.0179 0.0179 0.0120
200 || 0.0244 0.0237 0.0118 0.0113 0.0113  0.0080
400 | 0.0144 0.0142 0.0079 0.0080 0.0079  0.0062

40 || 0.0969 0.0970 0.0543 0.0365 0.0366 0.0336
80 || 0.0593 0.0594 0.0275 0.0231 0.0231 0.0201
grainvs.earn | 120 || 0.0379 0.0377 0.0158 0.0147 0.0147 0.0114
200 || 0.0221 0.0219 0.0091 0.0082 0.0081 0.0069
400 || 0.0107 0.0105 0.0060 0.0037 0.0037 0.0037

40 || 0.1108 0.1107 0.0950 || 0.0583 0.0586 0.0590
80| 0.0759 0.0757 0.0552 0.0376 0.0377 0.0366

crude vs. earn | 120 || 0.0608 0.0607 0.0415 0.0276 0.0276 0.0284
200 | 0.0410 0.0411 0.0267 || 0.0218 0.0218 0.0225
400 | 0.0261 0.0257 0.0194 0.0176 0.017% 0.0181

Table 4: Experimental results on the Reuters corpus, using SVMs for liGaarssian, and multi-
nomial diffusion kernels. The left columns use tf representation and theaigumns use
tfidf representation. The error rates shown are averages obtaimgd2@sfold cross vali-
dation. The best performance for each training setlsiseshown in boldface. An asterisk
(*) indicates that the difference is not statistically significant accordingagtired test
at the 0.05 level.

The Reuters data is a much larger collection than WebKB, and the docuraqoeficy statistics,
which are the basis for the inverse document frequency weighting in thedfidesentation, are
evidently much more effective on this collection. It is notable, however, ttt@multinomial in-
formation diffusion kernel achieves at least as high an accuracy withewse of any heuristic
term weighting scheme. These results offer evidence that the use of multirgearaetry is both
theoretically motivated and practically effective for document classification.

6. Discussion and Conclusion

This paper has introduced a family of kernels that is intimately based on timeegggoof the Rie-
mannian manifold associated with a statistical family through the Fisher informatitric méhe
metric is canonical in the sense that it is uniquely determined by requiremeéntanénce Cencov,
1982), and moreover, the choice of the heat kernel is natural bedeeffectively encodes a great
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Category | Linear RBF | Diffusion

earn 0.01159| 0.01159| 0.01026
acq 0.01854| 0.01854| 0.01788
money-fx | 0.02418| 0.02451| 0.02219
grain 0.01391| 0.01391| 0.01060

crude 0.01755| 0.01656| 0.01490
trade 0.01722| 0.01656| 0.01689
interest 0.01854| 0.01854| 0.01689

ship 0.01324| 0.01324| 0.01225
wheat 0.00894| 0.00794| 0.00629
corn 0.00794| 0.00794| 0.00563

Table 5: Test set error rates for the Reuters top 10 classes usingutfeieaThe train and test sets
were created using the Mod-Apte split.

Category | Linear | RBF | Diffusion | + |

earn 0.9781 | 0.9781| 0.9808 | —
acq 0.9626 | 0.9626 | 0.9660 | +
money-fx | 0.8254 | 0.8245| 0.8320 | +
grain 0.8836 | 0.8844 | 0.9048 | —
crude 0.8615| 0.8763 | 0.8889 | +
trade 0.7706 | 0.7797 | 0.8050 | +
interest | 0.8263 | 0.8263 | 0.8221 | +
ship 0.8306 | 0.8404 | 0.8827 | +
wheat 0.8613 | 0.8613 | 0.8844 | —
corn 0.8727 | 0.8727 | 0.9310 | +

Table 6: F1 measure for the Reuters top 10 classes using tf featurestairhand test sets were
created using the Mod-Apte split. The last column compares the presestéts weith the
published results of Zhang and Oles (2001), with &ndicating the diffusion kernel F1
measure is greater than the result published in Zhang and Oles (20@1isftask.

deal of geometric information about the manifold. While the geometric perspantstatistics has
most often led to reformulations of results that can be viewed more traditiotieliernel methods
developed here clearly depend crucially on the geometry of statistical families
The main application of these ideas has been to develop the multinomial diffusiosl.ké

related use of spherical geometry for the multinomial has been develop@dus/(1998). Our ex-
perimental results indicate that the resulting diffusion kernel is indeectifdor text classification
using support vector machine classifiers, and can lead to significantierpemts in accuracy com-
pared with the use of linear or Gaussian kernels, which have been tliastdor this application.
The results of Section 5 are notable since accuracies better or compar#ibse obtained using
heuristic weighting schemes such as tfidf are achieved directly througletmeeairic approach. In
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part, this can be attributed to the role of the Fisher information metric; becétise square root in
the embedding into the sphere, terms that are infrequent in a documeffeativgy up-weighted,
and such terms are typically rare in the document collection overall. The pritegree of freedom
in the use of information diffusion kernels lies in the specification of the mapmidigta to model
parameters. For the multinomial, we have used the maximum likelihood mappingséloé other
model families and mappings remains an interesting direction to explore.

While kernel methods generally are “model free,” and do not make disitsital assumptions
about the data that the learning algorithm is applied to, statistical models offgradeantages, and
thus it is attractive to explore methods that combine data models and purelynilistive meth-
ods. Our approach combines parametric statistical modeling with non-pai@uhisariminative
learning, guided by geometric considerations. In these aspects it is relateimethods proposed
by Jaakkola and Haussler (1998). However, the kernels propogbeé icurrent paper differ sig-
nificantly from the Fisher kernel of Jaakkola and Haussler (1998patticular, the latter is based
on the scoréJglogp(X| é) at a single poiné in parameter space. In the case of an exponential
family model it is given by a covariandér (x,X) = 5; (xi — Eg[Xi]) (X — Eg[Xi]); this covariance
is then heuristically exponentiated. In contrast, information diffusion kemre based on the full
geometry of the statistical family, and yet are also invariant under repé&ednration of the family.
In other conceptually related work, Belkin and Niyogi (2003) suggestameéng distances on the
data graph to approximate the underlying manifold structure of the data. lcetbesthe underlying
geometry is inherited from the embedding Euclidean space rather than tlee gesimetry.

While information diffusion kernels are very general, they will be difficulctonpute in many
cases—explicit formulas such as equations (5—6) for hyperbolic spaceare. To approximate
an information diffusion kernel it may be attractive to use the parametricésgaadesic dis-
tance between points, as we have done for the multinomial. In cases wheatistdrece itself is
difficult to compute exactly, a compromise may be to approximate the distancedmetearby
points in terms of the Kullback-Leibler divergence, using the relation with thledf information
that is noted in Appendix B. In effect, this approximation is already inc@atear into the ker-
nels recently proposed by Moreno et al. (2004) for multimedia applicatiehigh have the form
K(6,6) O exp(—aD(8,6')) ~ exp(—20d?(8,6')), and so can be viewed in terms of the leading
order approximation to the heat kernel. The results of Moreno et al. {2084uggestive that dif-
fusion kernels may be attractive not only for multinomial geometry, but alsméch more complex
statistical families.
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Appendix A. The Geometric Laplacian

In this appendix we briefly review some of the elementary concepts from Ri@iarageometry that
are used in the construction of information diffusion kernels, since thaseepts are not widely
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used in machine learning. We refer to Spivak (1979) for details andeiulthckground, or Mil-
nor (1963) for an elegant and concise overview; however most inttody texts on differential
geometry include this material.

A.1 Basic Definitions

An n-dimensional differentiable manifolMl is a set of points that is locally equivalent & by
smooth transformations, supporting operations such as differentiatiomalg a differentiable
manifoldis a setM together with a collection dbcal charts{(U;, ¢i)}, whereU; C M with U;U; =
M, and¢; : Ui ¢ M — R" is a bijection. For each pair of local chaftd;, ¢;) and (U;, ), itis
required thath;(U;NU;) is open anabi; = ¢ o<|)JT1 is a diffeomorphism.

The tangent spacg,M = R" at p € M can be be thought of as directional derivatives operating
onC*”(M), the set of real valued differentiable functiohsM — R. Equivalently, the tangent space
ToM can be viewed in terms of an equivalence class of curved passing througlp. Two curves
C1:(—¢€,&) — M andc, : (—€,€) — M are equivalent ap in casec;(0) = c2(0) = panddocy
and¢ o c; are tangent ap for some local charb (and therefore all charts), in the sense that their
derivatives at 0 exist and are equal.

In many cases of interest, the manifditlis a submanifold of a larger manifold, oftéki",

m > n. For example, the opemdimensional simplex, defined by

2= {0k sMle =1 6 >0} (9)

is a submanifold oR™. In such a case, the tangent space of the submari¥fditis a subspace
of T,R™, and we may represent the tangent vectoesT,M in terms of the standard basis of the
tangent spacgR™=R"™, v= zi”;lvi €. The opem-simplex is a differential manifold with a single,
global chart.

A manifold with boundarys defined similarly, except that the local chatts ¢) satisfyd(U) C
R™, thus mapping a patch & to the half-spac&"™" = {x € R"|x, > 0}. In general, iU andV are
open sets iR"" in the topology induced froR", andf : U — V is a diffeomorphism, thef in-
duces diffeomorphisms Ifit IntU — IntV andof : 0U — aV, wheredA = AU (R"~! x {0}) and
IntA= AU {x € R"|x, > 0}. Thus, it makes sense to define theerior IntM = Uy ¢ ~1(Int(¢p(U)))
andboundaryoM = Uy$—1(a(¢(U))) of M. Since InM is open it is am-dimensional manifold
without boundary, andM is an(n— 1)-dimensional manifold without boundary.

If f:M — N is a diffeomorphism of the manifol onto the manifoldN, then f induces a
push-foward mapping. fof the associated tangent spaces. A vector field T M is mapped to the
push-forwardf, X € TN, satisfying(f.X)(g) = X(go f) for all g € C*(N). Intuitively, the push-
forward mapping transforms velocity vectors of curves to velocity veatbithe corresponding
curves in the new manifold. Such a mapping is of use in transforming metridesasbed next.

A.2 The Laplacian

The construction of our kernels is based on the geometric Lapladimorder to define the gener-

. . - . 2 2 2 . .
alization of the familiar Laplaciap = % + % 4+t % onR" to manifolds, one needs a notion
1 2 n

2. As described by Nelson (1968), “The Laplace operator in its vanwarsifestations is the most beautiful and central
object in all of mathematics. Probability theory, mathematical physicgjémanalysis, partial differential equations,
the theory of Lie groups, and differential geometry all revolve arotinigl sun, and its light even penetrates such
obscure regions as number theory and algebraic geometry.”
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of geometry, in particular a way of measuring lengths of tangent vectoRiem/annian manifold
(M, g) is a differentiable manifol® with a family of smoothly varying positive-definite inner prod-
uctsg = gp on T,M for eachp € M. Two Riemannian manifoldéM, g) and(N, h) areisometricin
case there is a diffeomorphisfmt M — N such that

for everyX,Y € T,M andp € M. Occasionally, hard computations on one manifold can be trans-
formed to easier computations on an isometric manifold. Every manifold candeg@Riemannian
metric. For example, every manifold can be embeddékfifor somem > n (the Whitney embed-
ding theorem), and the Euclidean metric induces a metric on the manifold undantiezlding. In
fact, every Riemannian metric can be obtained in this way (the Nash embedeorgrit).

In local coordinatesy can be represented gg(v,w) = ¥ ; gij (p) viw; whereg(p) = [gij (p)]
is a non-singular, symmetric and positive-definite matrix depending smoothfy, and tangent
vectorsv andw are represented in local coordinatepatsv = 3\, Vi 0, andw = 31 W; 0;p. As
an example, consider the opesimensional simplex defined in (9). A metric &+ expressed
by the symmetric positive-definite mat&= [gij] € R(™1>* (1) induces a metric o, as

— n+1,. n+1,, :n+ln+1 ETRY?
gp(v,U) =gp (Y77 uie, y i vier) Zizgu UiVj .
i=1j=1

The metric enables the definition of lengths of vectors and curves, arefdredistance be-
tween points on the manifold. The length of a tangent vectprai¥ is given by||v|| = /(V,V)p, V€
ToM and the length of a curve: [a,b] — M is then given by (c) = fab ||E(t)||dt wherec(t) is the
velocity vector of the path at timet. Using the above definition of lengths of curves, we can define
the distancel(x,y) between two points,y € M as the length of the shortest piecewise differentiable
curve connecting andy. This geodesic distance tlrns the Riemannian manifold into a metric
space, satisfying the usual properties of positivity, symmetry and the leigmgguality. Rieman-
nian manifolds also support convex neighborhoods. In particulgrsiiM, there is an open sét
containingp such that any two points &f can be connected by a uniqgue minimal geodesig.in

A manifold is said to bgeodesically complete case every geodesic curegt), t € [a,b], can
be extended to be defined for ale R. It can be shown (Milnor, 1963), that the following are
equivalent: (1)M is geodesically complete, (2) is a complete metric oM, and (3) closed and
bounded subsets ®&fl are compact. In particular, compact manifolds are geodesically complete.
The Hopf-Rinow theorem (Milnor, 1963) asserts thaMifis complete, then any two points can
be joined by a minimal geodesic. This minimal geodesic is not necessarily yraqueeen by
considering antipodal points on a sphere. Exponential magxp, maps a neighborhood of
0 € TxM diffeomorphically onto a neighborhood gfc M. By definition, expv is the pointy,(1)
wherey, is a geodesic starting atwith initial velocity v = %\t:o. Any such geodesic satisfies
Yiv(S) = W(rs) for r > 0. This mapping defines a local coordinate systemvbialled normal
coordinatesunder which many computations are especially convenient.

For a functionf : M — R, the gradient grafl is the vector field defined by

(gradf(p),X) = X(f).
In local coordinates, the gradient is given by
of

i o
(grad) =3 of 5

158



DIFFUSION KERNELS ONSTATISTICAL MANIFOLDS

where [gij (p)] is the inverse ofgij(p)]. The divergence operator is defined to be the adjoint of
the gradient, allowing “integration by parts” on manifolds with special strectin orientation of

a manifold is a smooth choice of orientation for the tangent spaces, meanirfgrthacal charts

¢i and¢;, the differentialD(¢; o ¢;)(x) : R" — R" is orientation preserving, so the sign of the
determinant is constant. If a Riemannian manifiglds orientable, it is possible to definevalume
form py, where ifvy, vo, ..., vy € ToM (positively oriented), then

H(VL,...,Vh) = q/detvi,vj).

A volume form, in turn, enables the definition of tbivergenceof a vector field on the manifold.
In local coordinates, the divergence is given by

. 1 0
divX = mza—xl (\/detg)q>

where deg denotes the determinant of the magjx
Finally, theLaplace-Beltrami operatoon functions is defined by

A =divograd,

which in local coordinates is thus given by

_ 1 L0 i gergof
Af= \/detgzaxj <Zg detgaxi> ’

These definitions preserve the familiar intuitive interpretation of the ususiatqrs in Euclidean
geometry; in particular, the gradient points in the direction of steepesihtasnd the divergence
measures outflow minus inflow of liquid or heat.

Appendix B. Fisher Information Geometry

Let§ = {p(-|0) }oco be ann-dimensional regular statistical family on a sét Thus, we assume
that® C R" is open, and that there isafinite measures on X, such that for eacB € ©, p(-|8)
is a density with respect tg, so thatf, p(x|6) dpu(x) = 1. We identify the manifoldV with © by
assuming that for eache X the mappin® — p(x|8) isC”.

Let d; denoted/06;, and/g(X) = log p(x|8). TheFisher information metric a@ € © is defined
in terms of the matrixg(8) € R™" given by

6i(6) = Eolatodifel = | P(x|0)3ilogp(x|8)d;logp(x|&)d(x).

Since the score (8) = 0ifg has mean zerag;j(6) can be seen as the variances(®), and is
therefore positive-definite. By assumption, it is smoothly varyin@,irand therefore defines a
Riemannian metric o® = M.

An equivalent and sometimes more suggestive form of the Fisher inforrmatinx, as will be
seen below for the case of the multinomial, is

6;(®) = 4/ 01v/p(x[8);y/p([8)d(x.
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Yet another equivalent form @ (6) = —Eg[0;0i¢s]. To see this, note that

Eolojaite] = [ p(x|8)0;6ilogp(x|8)k(x

_ p(x|6)
- —/» <|e>wa.p<x|e )due0 ~ [ 3,0p(x|8) dhx)

— [ pix ey P AR dig — 0,0, [ pix|6)

_ _/pr\e 9;1og p(x|6)d;log p(x| 6) di(x)

Since there are many possible choices of metric on a given differentiabiéoidart is impor-
tant to consider the motivating properties of the Fisher information metric. helyitithe Fisher
information may be thought of as the amount of information a single data pgipliess with respect
to the problem of estimating the parameerThis interpretation can be justified in several ways,
notably through the efficiency of estimators. In particular, the asymptotianae of the maximum
likelihood estimatoB obtained using a sample of sinés (ng(8))~1. Since the MLE is asymptot-
ically unbiased, the inverse Fisher information represents the asymptoticafiions of the MLE
around the true value. Moreover, by the C&arRao lower bound, the variance of any unbiased
estimator is bounded from below fng(6)) 1. Additional motivation for the Fisher information
metric is provided by the results @fencov (1982), which characterize it as the only metric (up to
multiplication by a constant) that is invariant with respect to certain probabilisticeeaningful
transformations called congruent embeddings.

The connection with another familiar similarity measure is worth noting herg. alidq are
two densities ot with respect tqu, the Kullback-Leibler divergencB(p, q) is defined by

/1p )log z dp(x).

The Kullback-Leibler divergence behaves at nearby points like tharsqof the information dis-
tance. More precisely, it can be shown that

o pa)
a—p 2D(p,q)

9

where the convergence is uniformd(9, q) — 0. As we comment in the text, this relationship may
be of use in approximating information diffusion kernels for complex models.

B.1 Fisher information for the Spherical Gaussian

Here we derive the Fisher information for the special case of the fagnity{p(-|0) }eco Where
8= (h,0) andp(-| (4, 0)) = A(1,0ln_1), the Gaussian having meare R"~* and variancel,,_1,
with ¢ > 0. The parameter space is tfBs= R" 1 x R, .

To compute the Fisher information metric for this family, it is convenient to use ¢nergl
expression given by equation (10). lat=0/0y; fori =1...n—1, andd, = 0/do. Then simple

160



DIFFUSION KERNELS ONSTATISTICAL MANIFOLDS

calculations yield, for Ki,j<n-1

n-1 _ 2
gj(0) = - Rnilaiaj ( Z %) p(x|0)dx

1

n-1 _ 2
0:(8) = — [ 00 (121%) p(x|6) dx
= 2/, (-1 p(xi9)dx

=0

n—-1 _ 2
0(®) = — [ 00 (— s % ~(n—1) Iogc) p(x|8) dx

k=1
3 n-1 N1
- @ /]Rn—l kZl(Xk B pk)z p(X’ e) dx— ?
2(n—1)
= 0-2 .

Letting © be new coordinates defined By= 1 for 1 <i <n—1and6, = /2(n—1)g0, itis
seen that the Fisher information matrix is given by

1
9i(8) = 8-

Thus, the Fisher information metric givés= R"! x R, the structure of the upper half plane in
hyperbolic space.
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Abstract

The problem of extracting the relevant aspects of data wadqusly addressed through timgor-
mation bottleneckiB) method, through (soft) clustering one variable whitegerving information
about anotherrelevance variable. The current work extends these ideas to obtaitiragous rep-
resentations that preserve relevant information, ratrear tiscrete clusters, for the special case of
multivariate Gaussian variables. While the general contisuB problem is difficult to solve, we
provide an analytic solution for the optimal representatiod tradeoff between compression and
relevance for the this important case. The obtained optie@ksentation is a noisy linear projec-
tion to eigenvectors of the normalized regression mét;jﬁ;l, which is also the basis obtained
in canonical correlation analysis. However, in Gaussiantti® compression tradeoff parameter
uniquely determines the dimension, as well as the scale aif emenvector, through a cascade
of structural phase transitions. This introduces a noverpretation where solutions of different
ranks lie on a continuum parametrized by the compressicel.le@ur analysis also provides a
complete analytic expression of the preserved informati®m function of the compression (the
“information-curve”), in terms of the eigenvalue spectrafithe data. As in the discrete case, the
information curve is concave and smooth, though it is madéft#rent analytic segments for each
optimal dimension. Finally, we show how the algorithmicahedeveloped in the IB framework
provides an iterative algorithm for obtaining the optimauSsian projections.

Keywords: information bottleneck, Gaussian processes, dimensigmatiuction, canonical cor-
relation analysis

1. Introduction

Extracting relevant aspects of complex data is a fundamental task in macine¢eand statistics.
The problem is often that the data contains many structures, which makecitidifti define which
of them are relevant and which are not in an unsupervised mannexx&mple, speech signals may
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be characterized by their volume level, pitch, or content; pictures camkeddy their luminosity
level, color saturation or importance with regard to some task.

This problem was addressed in a principled manner by the information batl@Bg approach
(Tishby et al., 1999). Given the joint distribution of a “source” varia¥land another “relevance”
variableY, IB operates to compres§ while preserving information abodt The variabley thus
implicitly defines what is relevant iiXX and what is not. Formally, this is cast as the following
variational problem

mnL: L=1(X;T)—-BI(T;Y) (1)
p(tlx)

whereT represents the compressed representatiod wfa the conditional distributiong(t|x),
while the information thal maintains orY is captured by the distributiop(y|t). This formulation

is general and does not depend on the type ofXhé distribution. The positive paramet@r
determines the tradeoff between compression and preserved reldeamtdtion, as the Lagrange
multiplier for the constrained optimization problem g I (X;T) —B(I(T;Y) —cons). SinceT

is a function ofX it is independent of givenX, thus the three variables can be written as the Markov
chainY — X —T. From the information inequality we thus hav&; T) —BI(T;Y) > (1-B)I(T;Y),

and therefore for all values @f< 1, the optimal solution of the minimization problem is degenerated
I(T;X)=1(T;Y) = 0. As we will show below, the range of degenerated solutions is evern famge
Gaussian variables and depends on the eigen spectrum of the var@aladeamce matrices.

The rationale behind the IB principle can be viewed as model-free “lookisigernthe black-
box” system analysis approach. Given the input-outputy) “black-box” statistics, IB aims to
construct efficient representationsXafdenoted by the variablg, that can account for the observed
statistics ofY. IB achieves this using a single tradeoff parameter to represent theffradeveen
the complexity of the representationXf measured by(X; T), and the accuracy of this representa-
tion, measured by(T;Y). The choice of mutual information for the characterization of complexity
and accuracy stems from Shannon’s theory, where information minimizatiogsponds to optimal
compression in Rate Distortion Theory, and its maximization corresponds to opifioranation
transmission in Noisy Channel Coding.

From a machine learning perspective, IB may be interpreted as regdlgenerative modeling.
Under certain conditions(T;Y) can be interpreted as an empirical likelihood of a special mixture
model, and (T; X) as penalizing complex models (Slonim and Weiss, 2002). While this interpreta-
tion can lead to interesting analogies , it is important to emphasize the diffsreficst, IB views
[(X;T) not as a regularization term, but rather corresponds to the distortiotraions the origi-
nal system. As a result, this constraint is useful even when the joint disbribis known exactly,
because the goal of IB is to obtain compact representations rather thatiniate density. Inter-
estingly,| (T;X) also characterizes the complexity of the representatias the expected number
of bits needed to specify thefor a givenx. In that role it can be viewed as an expected “cost” of
the internal representation, as in MDL. As is well acknowledged nowcsotmding with distortion
and channel coding with cost are dual problems (see for example Shat®0; Pradhan et al.,
2003). In that information theoretic sense, IBsif dual where the resulting source and channel
are perfectly matched (as in Gastpar and Vetterli, 2003).

The information bottleneck approach has been applied so far mainly to datdga@riables,
with a discretél that represents (soft) clustersXfIt has been proved useful for a range of applica-
tions from documents clustering (Slonim and Tishby, 2000) through heotla analysis (Dimitrov
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and Miller, 2001) to gene expression analysis (Friedman et al., 2001k@irk and Kaski, 2001)
(for a more detailed review of IB clustering algorithms see Slonim (2003pwe¥er, its general
information theoretic formulation is not restricted, both in terms of the natureeafdhiables< and

Y, as well as of the compression variallelt can be naturally extended to nominal, categorical, and
continuous variables, as well as to dimension reduction rather than clgstiecimiques. The goal
of this paper is apply the IB for the special, but very important, case of§an processes which
has become one of the most important generative classes in machine lehr@iddition, this is the
first concrete application of IB to dimension reduction with continuous cossgbrepresentation,
and as such exhibit interesting dimension related phase transitions.

The general solution of IB for continuous yields the same set of self-consistent equations
obtained already in (Tishby et al., 1999), but solving these equatiottssfalistributiong(t|x), p(t)
and p(y|t) without any further assumptions is a difficult challenge, as it yields norulineupled
eigenvalue problems. As in many other cases, however, we show hetiedipgoblem turns out to
be analytically tractable whex andY are joint multivariate Gaussian variables. In this case, rather
than using the fixed point equations and the generalized Blahut-Arimotdthlgaas proposed in
(Tishby et al., 1999), one can explicitly optimize the target function with retsiwethe mapping
p(t|x) and obtain a closed form solution of the optimal dimensionality reduction.

The optimal compression in the Gaussian information bottleneck (GIB) is defiterms of the
compression-relevance tradeoff (also known as the “InformationeCupy “Accuracy-Complexity”
tradeoff), determined by varying the paramdieil he optimal solution turns out to be a noisy linear
projection to a subspace whose dimensionality is determined by the par@méter subspaces are
spanned by the basis vectors obtained as in the well kreamonical correlation analysi§CCA)
(Hotelling, 1935), but the exact nature of the projection is determined iniquerway via the
parametef. Specifically, a increases, additional dimensions are added to the projection variable
T, through a series of critical points (structural phase transitions), wititeeaame time the relative
magnitude of each basis vector is rescaled. This process continuedluhélralevant information
aboutY is captured ifiT. This demonstrates how the IB principle can provide a continuous measure
of model complexity in information theoretic terms.

The idea of maximization of relevant information was also taken inlth&x framework of
Becker and Hinton (Becker and Hinton, 1992; Becker, 1996), whiatloviied Linsker’s idea of
information maximization (Linsker, 1988, 1992). In the Imax setting, theréveseone-layer feed
forward networks with input$g, X, and outputs neurong, Yp; the output neurory, serves to
define relevance to the output of the neighboring netwgrk Formally, the goal is to tune the
incoming weights of the output neurons, such that their mutual informat}anYy) is maximized.

An important difference betwedmax and the IB setting, is that in thienax setting, | (Ya; Yp) is
invariant to scaling and translation of t&s since the compression achieved in the mapping: Y,
is not modeled explicitly. In contrast, the IB framework aims to characterizdgpendence of the
solution on the explicit compression terdil; X), which is ascale sensitiveneasure when the
transformation is noisy. This view of compressed representdtiohthe inputsX is useful when
dealing with neural systems that are stochastic in nature and limited in theinssespamplitudes
and are thus constrained to finlt@'; X).

The current paper starts by defining the problem of relevant informatitraction for Gaussian
variables. Section 3 gives the main result of the paper: an analyticalatberation of the optimal
projections, which is then developed in Section 4. Section 5 develops dtiealaexpression for
the GIB compression-relevance tradeoff - the information curve. Segsbows how the general IB
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algorithm can be adapted to the Gaussian case, yielding an iterative algtmittimaling the optimal
projections. The relations to canonical correlation analysis and codingsidighinformation are
discussed in Section 9.

2. Gaussian | nfor mation Bottleneck

We now formalize the problem of information bottleneck for Gaussian vasahlet(X,Y) be two
jointly multivariate Gaussian variables of dimensians ny and denote by, the covariance
matrices ofX,Y and by, their cross-covariance matrixThe goal of GIB is to compress the vari-
ableX via a stochastic transformation into another variable R™, while preserving information
aboutY. The dimension oT is not explicitly limited in our formalism, since we will show that the
effective dimension is determined by the valugof

It is shown in Globerson and Tishby (2004) that the optimum for this prolieobtained by
a variableT which is also jointly Gaussian witlX. The formal proof uses the entropy power
inequality as in Berger and Zamir (1999), and is rather technical, but aitiiatexplanation is
that sinceX andY are Gaussians, the only statistical dependencies that connect theiiaearh
Therefore, a linear projection &f is sufficient to capture all the information théthas onY. The
Entropy-power inequality is used to show that a linear projectioX,ofvhich is also Gaussian in
this case, indeed attains this maximum information.

Since every two centered random variableand T with jointly Gaussian distribution can be
presented through the linear transformafloa AX+¢&, whereg ~ N(0, Z¢ ) is another Gaussian that
is independent oX, we formalize the problem using this representatioil ods the minimization

rAr);rng LOX;T)—=BI(T;Y) (2)

over the noisy linear transformations &fZ¢
T=AX+E &~N(0,Z). (3)

ThusT is normally distributed ~ N(0, %) with & = AS,AT + Z;.

Interestingly, the tern§ can also be viewed as an additive noise term, as commonly done in
models of learning in neural networks. Under this viéwserves as a regularization term whose
covariance determines the scales of the problem. While the goal of GIB isddh#optimal
projection parameter, 3¢ jointly, we show below that the problem factorizes such that the optimal
projectionA does not depend on the noise, which does not carry any informatiar abo

3. The Optimal Projection

The first main result of this paper is the characterization of the op#g2alas a function off

1. For simplicity we assume th&tandY have zero means arg, 2y are full rank. Otherwis& andY can be centered
and reduced to the proper dimensionality.
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Theorem 3.1 The optimal projection T= AX + & for a given tradeoff parameteB is given by
2s =Ixand

[OT;...;OT] 0<B<PY
[le-{,OT;...;OT] RS <B<BS
A= [alvT;GZV-zr;OT;...;OT] BS, < B < B° (4)

where{v{,v],...,v] } are left eigenvectors of,,>, ! sorted by their corresponding ascending
eigenvalues\i, Az, ..., An, BS = ﬁ are critical 3 values,qa; are coefficients defined hy, =

% r = viTvai, 0" is an nx dimensional row vector of zeros, and semicolons separate

rows in the matrix A.

This theorem asserts that the optimal projection consists of eigenvecm,ﬁ)fl, combinedin
an interesting manner: F@rvalues that are smaller than the smallest critical p@iptcompression
is more important than any information preservation and the optimal solution iegfemdrated one
A=0. AsBis increased, it goes through a series of critical pofiffsat each of which another
eigenvector oEX|yZ;1 is added tA. Even though the rank & increases at each of these transition
points,A changes continuously as a functionf$ince at each critical poifi°; the coefficient;
vanishes. Thuf parameterizes a sort of “continuous rank” of the projection.

To illustrate the form of the solution, we plot the landscape of the targetiime together
with the solution in a simple problem wheXec R? andY € R. In this caseé has a single non-zero
row, thusA can be thought of as a row vector of length 2, that proj&cte a scalaiA: X — R,

T € R Figure 1 shows the target functighas a function of the (vector of length 2) projecti@nin
this example, the largest eigenvalué\is= 0.95, yielding¢; = 20. Therefore, foff = 15 (Figure
1A) the zero solution is optimal, but f@@ = 100> (3¢ (Figure 1B) the corresponding eigenvector
is a feasible solution, and the target function manifold contains two mirror minire@.idcreases
from 1 to o, these two minima, starting as a single unified minimum at zero, sght,atnd then
diverge apart teo.

We now turn to prove Theorem 3.1.

4. Deriving the Optimal Projection

We first rewrite the target function as
L=1(X;T)=BI(T;Y) =h(T) —h(T[X) = Bh(T) +Bh(T[Y) (5)

whereh is the (differential) entropy of a continuous variable

h(X) = _/ f(x)log f (x)dx.

X
Recall that the entropy of ddimensional Gaussian variable is
h(X) = 7 log ((2re)
2
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Figure 1: The surface of the target functigrcalculated numerically as a function of the optimiza-
tion parameters in two illustrative examples with a scalar projedioR’> — R. Each
row plots the target surfacé both in 2D (left) and 3D (right) as a function of the (two
dimensional) projectioné. A. For 3 = 15, the optimal solution is the degenerated so-
lution A= 0. B. For 3 = 100, a non degenerate solution is optimal, together with its
mirror solution. Thezx|y2;1- eigenvector of smallest eigenvalue, with a norm computed
according to Theorem 3.1 is superimposed, showing that it obtains thd giaglienum
of L. Parameters’ values,y = [0.1 0.2], Zx = I, 2z = 0.3l2,2.
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where|x| denotes the determinant ©fand2y is the covariance ok. We therefore turn to calcu-
late the relevant covariance matrices. From the definitioh ole haveZ = A%y, iy = A,y and
> = ALAT + Z¢. Now, the conditional covariance matixy, can be used to calculate the covari-
ance of the conditional variablB|Y, using the Schur complement formula (see e.g., Magnus and
Neudecker, 1988)

iy = Tt — Ty, T = AT AT + 3.

The target function can now be rewritten as

L = log(|%t]) —log(|Zx|) — Blog(|t|) + Blog(|y|)- (6)
= (1-P)log(|ASAT +Z¢|) —log(|Z¢ |) + Blog(|AS,yAT + Z¢|)

Although £ is a function of both the noisE; andthe projectionA, Lemma A.1 in Appendix A
shows that for every paifA,Z;), there is another projectioA such that the paifA,|) obtains

the same value of. This is obtained by settingd = vD-VA whereZ; = VDVT, which yields
(A ) = L(AZ). 2 This allows us to simplify the calculations by replacing the noise covariance
matrix Z; with the identity matrixq.
To identify the minimum of£Z we differentiate£ with respect to the projectioA using the
algebraic identity5; log(|ACAT |) = (ACA")~12AC which holds for any symmetric matri3:

oL

A = (1—B)(ASAT +1g) 12A%, + B(AZ AT +1g) 12AS,,. 7)

Equating this derivative to zero and rearranging, we obtain necessadijtions for an internal
minimum of £, which we explore in the next two sections.

4.1 Scalar Projections

For clearer presentation of the general derivation, we begin with atskétbe proof by focusing
on the case wherE is a scalar, that is, the optimal projection matiis a now a single row vector.
In this case, both, AT andAZ)quT are scalars, and we can write

B—1) [AZyAT+1
< ) () A= Alzend. @)
This equation is therefore an eigenvalue problem in which the eigenvadpesd orA. It has two

types of solutions depending on the valugofirst, A may be identically zero. Otherwisd,must
T
be the eigenvector d‘tx‘yZ;l, with an eigenvalua = % ':zg‘xyAAlel

To characterize the values @for which the optimal solution does not degenerate we find when
the eigenvector solution is optimal. Denote the normapfvith respect tcA by r = ‘?‘ZA(HAZ WhenA
is an eigenvector df,, %, !, Lemma B.1 shows thatis positive and thafZ,, %, 1Z,AT = Ar||Al|2.
Rewriting the eigenvalue and isolatifid| |2, we have

_B(1-A) -1
0<[JA2 == —. 9)

2. Although this holds only for full rankg, it does not limit the generality of the discussion since low rank matrices
yield infinite values of£ and are therefore suboptimal.
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Figure 2: A. The regions of §,A) pairs that lead to the zero (red) and eigenvector (blue) solutions.
B. The norm||A||? as a function off andA over the feasible region.

This inequality provides a constraint ghand A that is required for a non-degenerated type of
solution
-1

NSt o B>(1-N71 (10)

thus defining a critical valu@®(A) = (1—A)~1. For B < BS(A), the weight of compression is
so strong that the solution degenerates to zero and no information is cabedX or Y. For
B > B¢(A) the weight of information preservation is large enough, and the optimal soliatid\ is
an eigenvector o£X|yZ;1. The feasible regions for non degenerated solutions and the [pajim
as a function of3 andA are depicted in Figure 2.

For some3 values, several eigenvectors can satisfy the condition for non degedeolutions
of Equation (10). Appendix C shows that the optimum is achieved by the\aigtar ofzx‘yZ;l
with the smallest eigenvalue. Note that this is also the eigenvecmﬁglzyXZ;l with the largest
eigenvalue. We conclude that for scalar projections

(11)

wherev; is the eigenvector oIX‘yZ;l with the smallest eigenvalue.

4.2 TheHigh-Dimensional Case

We now return to the proof of the general, high dimensional case, whildcwibthe same lines as
the scalar projection case. Setting the gradient in Equation (7) to zereardkring we obtain

% [(AS AT + 1) (ASAT +1g) A= A[Z4,5 1. (12)

Equation (12) shows that the muItipIicationmij;l by A must reside in the span of the rows
of A. This means that should be spanned by up ip eigenvectors oEX‘yZ;l. We can therefore
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represent the projectiokhas a mixturéd =WV where the rows d¥ are left normalized eigenvectors

of ZX‘yZ;l andW is a mixing matrix that weights these eigenvectors. The form of the mixing matrix
W, that characterizes the norms of these eigenvectors, is described olltherfg lemma, which

is proved in Appendix D.

Lemma4.1 The optimum of the cost function is obtained with a diagonal mixing matrix W of the
form

W = diag \/B(l_m_l,...,\/B(l_)"‘)_l,o,...,o (13)

A1r1 Akl

where{A,...,A¢} are k< ny eigenvalues o}ZX‘yZ;l with critical B valuesf®,,...,B% <B. ri =
vl Z,v; as in Theorem 3.1.

The proof is presented in Appendix D.

We have thus characterized the set of all minima ond turn to identify which of them achieve
the global minima.

Corollary 4.2
The global minimum of is obtained with all\; that satisfyA; < %

The proof is presented in Appendix D.

Taken together, these observations prove that for a given valfietbé optimal projection is
obtained by taking all the eigenvectors whose eigenvalueatisfyd > ﬁ and setting their norm
according toA = WV with W determined as in Lemma 4.1. This completes the proof of Theorem
3.1.

5. The GIB Information Curve

The information bottleneck is targeted at characterizing the tradeoff betwiemation preserva-
tion (accuracy of relevant predictions) and compression. Interestimglgh of the structure of the
problem is reflected in thmformation curve namely, the maximal value of relevant preserved in-
formation (accuracy),(T;Y), as function of the complexity of the representatioxXpfmeasured by
[(T;X). This curve is related to the rate-distortion function in lossy source codswyell as to the
achievability limit in source coding with side-information (Wyner, 1975; Cama Thomas, 1991).
It was shown to be concave under general conditions (Gilad-Batletaal., 2003), but its precise
functional form depends on the joint distribution and can reveal ptigsasf the hidden structure of
the variables. Analytic forms for the information curve are known only y\special cases, such
as Bernoulli variables and some intriguing self-similar distributions. The toallyaracterization
of the Gaussian IB problem allows us to obtain a closed form expressidheganformation curve
in terms of the relevant eigenvalues.
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Figure 3: GIB information curve obtained with four eigenvaldes- 0.1,0.5,0.7,0.9. The informa-
tion at the critical points are designated by circles. For infifiteurve is saturated at
the log of the determinar}t logA;. For comparison, information curves calculated with
smaller number of eigenvectors are also depicted (all curves calculat@dfd.000).
The slope of the un-normalized curve at each point is the correspofiding he tangent
at zero, with slop@ 1 = 1 — A4, is super imposed on the information curve.

To this end, we substitute the optimal projecti&(f) into | (T;X) andl (T;Y) and rewrite them
as a function of8

B(TiX) = Zlog(IAZAT +1q) (14)
= Slog(|(B(1 D) ~1)DY)
n(B) A\
- 32 oo((B-05M)

1n®)
BTY) = 1(TiX) =5 5 10gB1-),

whereD is a diagonal matrix whose entries are the eigenvalue‘s(‘gigl as in Appendix D, and
n(B) is the maximal index such thaf3 > ﬁ Isolating as a function ofg(T; X) in the correct
range ofng and therlg(T;Y) as a function ofg(T; X) we have

TY) = 1(TX) — Mog [ [TA=A)7 +e™% [A% (15)
; = , — =109 —Aj)"n +e N ipm
2'9\[1 i
where the products are over tfiest n = ng(1;x)) eigenvalues, since these obey the critigal
condition, withc,, <1(T;X) < ¢y 41 andcy, = {":Ellog);i_'llji )
I n
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The GIB curve, illustrated in Figure 3, is continuous and smooth, but is budieveral seg-
ments: as(T;X) increases additional eigenvectors are used in the projection. Thatieriof the
curve, which is equal t@~1, can be easily shown to be continuous and decreasing, therefore the
information curve is concave everywhere, in agreement with the gecmmahvity of information
curve in the discrete case (Wyner, 1975; Gilad-Bachrach et al., 2008like the discrete case
where concavity proofs rely on the ability to use a large number of clusiensavity is guaranteed
here also for segments of the curve, where the number of eigenverddimided a-priori.

At each value of (T; X) the curve is bounded by a tangent with a sIBpé(I (T; X)). Generally
in IB, the data processing inequality yields an upper bound on the slope atigin, 371(0) < 1,
in GIB we obtain a tighter bound3—1(0) < 1—A;. The asymptotic slope of the curve is always
zero, asB — oo, reflecting the law of diminishing return: adding more bits to the description of
X does not provide higher accuracy abdut This relation between the spectral properties of the
covariance matrices raises interesting questions for special cases tivbepectrum can be better
characterized, such as random-walks and self-similar processes.

6. An Iterative Algorithm

The GIB solution is a set of scaled eigenvectors, and as such can batadcusing standard tech-
niques. For example gradient ascent methods were suggested fonde@@A (Becker, 1996;
Borga et al., 1997). An alternative approach is to use the generalvtedgorithm for 1B prob-
lems (Tishby et al., 1999). This algorithm that can be extended to contiramiables and repre-
sentations, but its practical application for arbitrary distributions leads tindinear generalized
eigenvalue problem whose general solution can be difficult. It is therd@iteresting to explore the
form that the iterative algorithm assumes once it is applied to Gaussianlearidioreover, it may
be possible to later extend this approach to more general parametric distrigich as general
exponential forms, for which linear eigenvector methods may no longeddguate.

The general conditions for the IB stationary points were presented hpylist al. (1999) and
can be written for a continuous varialdey the following self consistent equations for the unknown
distributionsp(t|x), p(y|t) andp(t):

pt) = /dxp(x p(t|x) (16)
PO = o /dxp(xy (tx)
pitx) = (U)e BDK [p(y1) (i)

whereZ(B) is a normalization factor (partition function) and is independent.oft is important
to realize that those conditions assume nothing about the representatadie/@rand should be
satisfied byany fixed point of the IB Lagrangian. WheX, Y andT have finite cardinality, those
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equations can be iterated directly in a Blahut-Arimoto like algorithm,

P(tk) —BDkL [p(Y|x
tealx) = e BDkL[P(YP)|[p(yIt)] 17
p( k+1‘ ) Zk+l<X; B) ( )

Plters) = / X Pt 1)
S XY Pl

where each iteration results in a distribution over the variableX andY. The second and third
equations calculatp(tx;1) and p(y|tk+1) using standard marginalization, and the Markov property
Y — X —Tk. These iterations were shown to converge to the optiiiay Tishby et al. (1999).

For the general continuolssuch an iterative algorithm is clearly not feasible. We show here,
how the fact that we are confined to Gaussian distributions, can be used those equations into
an efficient parameter updating algorithm. We conjecture that algorithmsfanyeters optimiza-
tions can be defined also for parametric distribution other than Gaussighsas other exponential
distributions that can be efficiently represented with a small number of ptgesne

In the case of Gaussign(x,y), when p(tx|x) is Gaussian for somle, so arep(t), p(y|tk) and
p(tk+1/X). In other words, the set of Gaussign($|x) is invariant under the above iterations. To see
why this is true, notice thab(y|tk) is Gaussian sinc& is jointly Gaussian withX. Also, p(tk;1|x)
is Gaussian sincBk . [p(Y|X)||p(Yltk)] between two Gaussians contains only second order moments
in y andt and thus its exponential is Gaussian. This is in agreement with the gensrtidathe
optima (which are fixed points of 17) are Gaussian (Globerson and Ti&0by). This invariance
allows us to turn the IB algorithm that iterates over distributions, into an algotithatriterates over
the parameters of the distributions, being the relevant degrees of fineéadbe problem.

Denote the variabld@ at timek by Tx = AX + &k, wheregx ~ A((0,%, ). The parametera
andZ at timek+ 1 can be obtained by substitutiig in the iterative 1B equations. As shown in
Appendix E, this yields the following update equations

1
28 <thk\y (B-1) Ztk ) (18)
Ak+l = BzEk+1ztk|y ( _zy‘xz;)

wherez,,, %y, are the covariance matrices calculated for the varigble
This algorithm can be interpreted as repeated projectiéf of the matrid — Zy|XZ;1 (whose
eigenvectors we seek) followed by scaling V‘ﬁﬁimz@ly- It thus has similar form to the power

method for calculating the dominant eigenvectors of the migr‘igf_;l (Demmel, 1997; Golub and
Loan, 1989). However, unlike the naive power method, where onlyitiggesdominant eigenvector
is preserved, the GIB iterative algorithm maintains several differenheggtors, and their number
is determined by the continuous paramdteaind emerges from the iterations: All eigenvectors
whose eigenvalues are smaller than the crifica@nish to zero, while the rest are properly scaled.
This is similar to an extension of the naive power method know@réisogonal Iteration in which
the projected vectors are renormalized to maintain several non vanishitgyss€Jennings and
Stewart, 1975).

Figure 4 demonstrates the operation of the iterative algorithm for a four diorei X andY.
The tradeoff parametd¥ was set to a value that leads to two vanishing eigenvectors. The norm of
the other two eigenvectors converges to the correct values, whiclivareig Theorem 3.1.

P(Yltkr1) tm
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Ainv(V)

~a o
100 1000 34
iterations

Figure 4: The norm of projection on the four eigenvectorE@’Z;l, as evolves along the operation
of the iterative algorithm. Each line corresponds to the length of the projeaftimme row
of A on the closest eigenvector. The projection on the other eigenvectorsaaishes
(not shown). B was set to a value that leads to two non vanishing eigenvectors. The
algorithm was repeated 10 times with different random initialization points, isigoivat
it converges within 20 steps to the correct valaes

The iterative algorithm can also be interpreted as a regressXmnfT viaY. This can be seen
by writing the update equation f@%. 1 as

Acr1 = zzk+lz[;|])-/ (Zytkzgl) (zyngl) : (19)

SinceZyXZ;1 describes the optimal linear regressoXobn Y, the operation of,1 on X can be
described by the following diagram

Tyt Sy oyt Zg 1 T
X = Hy|x A lthWxM’TkH (20)

where the last step scales and normalikes

7. Relation To Other Works

The GIB solutions are related to studies of two main types: studies of eigesvhhsed co-
projections, and information theoretic studies of continuous compressiemneWéw both below.
7.1 Canonical Correlation Analysisand I max

The Gaussian information bottleneck projection derived above uses tegigigenvectors of the
matrix S, 2t =1 — Zy 5, 12,5, 1. Such eigenvectors are also usedamonical correlation anal-
ysis(CCA) (Hotelling, 1935; Thompson, 1984; Borga, 2001), a method stuagtive statistics that
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finds linear relations between two variables. Given two variakleg CCA finds a set of basis vec-
tors for each variable, such that the correlation coefficient betwegardiection of the variables on
the basis vectors is maximized. In other words, it finds the bases in whiclotfeation matrix is
diagonal and the correlations on the diagonal are maximized. The basbe aigenvectors of the
matricesy, 15,5, 15, ands, 15,5, 15, and the square roots of their corresponding eigenvalues
are thecanonical correlation coefficientsCCA was also shown to be a special case of continu-
ous Imax (Becker and Hinton, 1992; Becker, 1996), when the Imaxarnksaare limited to linear
projections.

Although GIB and CCA involve the spectral analysis of the same matrices,hiény some
inherent differences. First of all, GIB characterizes not only thergigetors but also their norm,
in a way that that depends on the trade-off param@teSince CCA depends on the correlation
coefficient between the compressed (projected) versioKsanidY, which is anormalizedmeasure
of correlation, it is invariant to a rescaling of the projection vectors. Irtresh for any value of,
GIB will choose one particular rescaling given by Theorem 3.1.

While CCA is symmetric (in the sense that bothandY are projected), IB is non symmetric
and only theX variable is compressed. It is therefore interesting that both GIB and G&Ahe
same eigenvectors for the projectionaf

7.2 Multiterminal Information Theory

The information bottleneck formalism was recently shown (Gilad-Bachrad. eP003) to be
closely related to the problem of source coding with side information (WA£5). In the lat-
ter, twodiscretevariablesX,Y are encoded separately at raRsR, and the aim is to use them
to perfectly reconstruct. The bounds on the achievable rates in this case were found in (Wyner,
1975) and can be obtained from the IB information curve.

When considering continuous variables, lossless compression at fitgiteisano longer pos-
sible. Thus, mutual information for continuous variables is no longer irg&aple in terms of the
actual number of encoding bits, but rather serves as an optimal me&sfogmation between vari-
ables. The IB formalism, although coinciding with coding theorems in the disceste, is more
general in the sense that it reflects the tradeoff between compressiamf@amation preservation,
and is not concerned with exact reconstruction.

Lossy reconstruction can be considered by introducing distortion mesaasgrdone for source
coding of Gaussians with side information by Wyner (1978) and by BexgdrZamir (1999) (see
also Pradhan, 1998), but these focus on the region of achievabdeurader constrained distortion
and are not relevant for the question of finding the representationdwhjature the information
between the variables. Among these, the formalism closest to ours is thargérBand Zamir
(1999) where the distortion in reconstructikgs assumed to be small (high-resolution scenario).
However, their results refer to encoding rates and as such go to infinthyeadistortion goes to
zero. They also analyze the problem for scalar Gaussian variabtahebone-dimensional setting
does not reveal the interesting spectral properties and phase tramsitiich appear only in the
multidimensional case discussed here.

7.3 Gaussian | B with Side I nformation

When handling real world data, the relevance variabtgten contains multiple structures that are
correlated toX, although many of them are actually irrelevant. The information bottleneck with
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side information IBSI) (Chechik and Tishby, 2002) alleviates this problem using side information
in the form of anirrelevancevariableY — about which information is removedBSI thus aims to
minimize

L=1XT)=B(I(T;Y")=yI(T;Y7)) (21)

This formulation can also be extended to the Gaussian case, in a manner sirthi@ptaginal
GIB functional. Looking at its derivative with respect to the projectioyields

oL

5a = ( 1=B+BY J(ADAT +14) 12A%,
+ B (ASyy+ AT +1g) 12AZ
- By (Azx\y- AT + Id)_lZAZx|y—-

While GIB relates to an eigenvalue problem of the foxk= AZX|yZ;1, GIB with side information
(GIBSI) requires to solve of a matrix equation of the foNA + A*AZX‘WZ;l = A*Azx‘yfzgl,
which is similar in form to a generalized eigenvalue problem. However, unigkelard generalized
eigenvalue problems, but as in the GIB case analyzed in this paper, thwadiges themselves
depend on the projectioh

8. Practical Implications

The GIB approach can be viewed as a method for finding the best lingj@cpon of X, under a
constraint onl (T; X). Another straightforward way to limit the complexity of the projection is to
specify its dimension in advance. Such an approach leaves open thi@guéshe relative weight-
ing of the resulting eigenvectors. This is the approach taken in classids| @itzre the number of
eigenvectors is determined according to a statistical significance test, andafghts are then set
to /1—A;. This expression is the correlation coefficient between'th@CA projections orX and

Y, and reflects the amount of correlation captured byittherojection. The GIB weighting scheme
is different, since it is derived to preserve maximum information under thgoession constraint.
To illustrate the difference, consider the case wHhere 17—&3 so that only two eigenvectors are

used by GIB. The CCA scaling in this caseJid — A1, andv/1—A,. The GIB weights are (up to

a constanthy = /%2 ap = /%22 which emphasizes large gaps in the eigenspectrum, and
can be very different from the CCA scaling.

This difference between CCA scaling and GIB scaling may have implicatiohsmaspects of
learning in practical applications. First, in applications involving compressigsaussian signals
due to limitation on available band-width. This is the case in the growing field sbsetworks in
which sensors are often very limited in their communication bandwidth due tgyeoenstraints. In
these networks, sensors communicate with other sensors and transmittibor about their local
measurements. For example, sensors can be used to monitor chemicalsticitres, temperature
or light conditions. Since only few bits can be transmitted, the information has twimpressed
in a relevant way, and the relative scaling of the different eigenvetiscemes important (as in
transform coding Goyal, 2001). As shown above, GIB describesptimal transformation of the
raw data into information conserving representation.

The second aspect where GIB becomes useful is in interpretation of Glatky, canonical
correlation analysis is widely used for finding relations between multi-var@igraious variables,
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in particular in domains which are inherently high dimensional such as metggr@lon Storch
and Zwiers, 1999) chemometrics (Antti et al., 2002) and functional MRdrains (Friman et al.,
2003). Since GIB weights the eigenvectors of the normalized crosdatiwrematrix in a different
way than CCA, it may lead to very different interpretation of the relative ingyae of factors in
these studies.

9. Discussion

We applied the information bottleneck method to continuous jointly Gaussian kesdlandy,
with a continuous representation of the compressed varibbl®Ve derived an analytic optimal
solution as well as a new general algorithm for this problem (GIB) whichaget solely on the
spectral properties of the covariance matrices in the problem. The soltdioB4$B are character-
ized in terms of the trade-off paramefebetween compression and preserved relevant information,
and consist of eigenvectors of the maﬁ%,z)jl, continuously adding up vectors as more complex
models are allowed. We provide an analytic characterization of the optimaififduetween the
representation complexity and accuracy - the “information curve” - whitdtes the spectrum to
relevant information in an intriguing manner. Besides its clean analytic steyc®iB offers a way
for analyzing empirical multivariate data when only its correlation matrices eamstimated. In that
case it extends and provides new information theoretic insight to the classimaical correlation
analysis.

The most intriguing aspect of GIB is in the way the dimensionality of the reptaen changes
with increasing complexity and accuracy, through the continuous valuesdfdtde-off parameter
B. While both mutual information values vary continuously on the smooth informatiorecthe
dimensionality of the optimal projectiohincreases discontinuously through a cascade of structural
(second order) phase transitions, and the optimal curve moves froamafgic segment to another.
While this transition cascade is similar to the bifurcations observed in the appficaititB to
clustering through deterministic annealing, this is the first time such dimensiamsitions are
shown to exist in this context. The ability to deal with all possible dimensions inggesailgorithm
is a novel advantage of this approach compared to similar linear statisticalqeeb as CCA and
other regression and association methods.

Interestingly, we show how the general IB algorithm which iterates ovérilalitions, can be
transformed to an algorithm that performs iterations over the distributarsimeters This algo-
rithm, similar to multi-eigenvector power methods, converges to a solution in whechuimber of
eigenvectors is determined by the paramgtén a way that emerges from the iterations rather than
defined a-priori.

For multinomial variables, the IB framework can be shown to be related in some bnogises
to maximum-likelihood estimation in a latent variable model (Slonim and Weiss, 200&puld
be interesting to see whether the GIB-CCA equivalence can be extendegive@ a more general
understanding of the relation between IB and statistical latent variable models.

While the restriction to a Gaussian joint distribution deviates from the more glatistribution
independent approach of IB, it provides a precise example to the wagsentations with differ-
ent dimensions can appear in the more general case. We believe that ¢hidf imensionality-
transitions appears for more general distributions, as can be reveatedhin cases by applying
the Laplace method of integration (a Gaussian approximation) to the integrale getteral IB
algorithm for continuoud'.
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The more general exponential forms, can be considered as a kednedizton of 1B (see Mika
et al., 2000) and appear in other minimum-information methods (such as SDRer&dm and
Tishby, 2003). these are of particular interest here, as they behav&éilkissian distributions in
the joint kernel space. The Kernel Fisher-matrix in this case will take tleeofdhe original cross
covariance matrix of the variables in GIB.

Another interesting extension of our work is to networks of Gaussianege®s. A general
framework for that problem was developed in Friedman et al. (2001 ppptied for discrete vari-
ables. In this framework the mutual information is replaced by multi-informatind,the depen-
dencies of the compressed and relevance variables is specified thveu@raphical models. It
is interesting to explore the effects of dimensionality changes in this moreajdraanework, to
study how they induce topological transitions in the related graphical madetame edges of the
graphs become important only beyond corresponding critical valueg dfatieoff parametes.
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Appendix A. Invarianceto the Noise Covariance Matrix

LemmaA.1 For every pair(A, X¢) of a projection A and a full rank covariance matrk, there
exist a matrixA such thatC (A, lg) = L(A, Zg), where } is the n x n; identity matrix.

Proof: Denote by the matrix which diagonalize%, namelyz; =V DVT, and bycthe determinant
c=|vVD-|=|vVD-IVT|. SettingA = vD-VAwe have

LA1) = (1-B)log(|AZ,AT +14|) —log(|la|) + Blog(|AZ,,AT +14]) (22)
= (1-B)log(c|AS,AT +2¢|c) — log(c|=¢|c) + Blog(c|AZy, AT +2¢|C)
(1-B) log(|AZAT +5¢|) — log(|Ze|) + Blog(|AS, AT + ¢ )

where the first equality stems from the fact that the determinant of a matrikigirds the product
of the determinants(]

Appendix B. Properties of Eigenvalues of ZX‘yZ;l and 2y

LemmaB.1 Denote the set of left normalized eigenvector&,gfz, ! by v; (||vi|| = 1) and their
corresponding eigenvalues Ry. Then

1. All the eigenvalues are real and satiffix A; <1
2. 3r; > 0s.t.v] v = §jri.
3. V;rzx‘ij = 5ij)\iri-

The proof is standard (see e.g. Golub and Loan, 1989) and is brbaghtor completeness.
Proof:
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1. The matrice&,, %, andZ,ys, 15,5, * are positive semi definite (PSD), and their eigenval-
ues are therefore positive. Sinkg %, ' = | — 5,5, 15,5, 1, the eigenvalues &, >, * are
bounded between 0 and 1.

1
2. Denote by the matrix whose rows arg’. The matrixVZ; is the eigenvector matrix of
_1 _1 1 _1 _1 _1 1 1
Zx “Zxy2x * since (VZ%) Sx 2ZyZx 2 =V 3x? = (Vi 2t ZF = DVZE. From the
1 _1 1
fact that>y ZZX|yZX 2 js symmetricV 23 is orthogonal, and thug>,V T is diagonal.
3. Follows from ZZVFZX‘yzglzXVj = AiVFZXVj = Aidijj .

O

Appendix C. Optimal Eigenvector

For somef} values, several eigenvectors can satisfy the conditions for non eleged solutions
(Equation 10). To identify the optimal eigenvector, we substitute the vallig&df from Equation
(9) AZ,yAT =rA||A||? andAZ,AT = r||Al|? into the target functior. of Equation (6), and obtain

£~ -pog( M=) ¢ plog(pa- ). 23)

Sincef > 1, this is monotonically increasing kand is minimized by the eigenvector&th;l
with the smallest eigenvalue. Note that this is also the eigenvecmn}‘lzwz;l with the largest
eigenvalue.

Appendix D. Optimal Mixing Matrix

LemmaD.1 The optimum of the cost function is obtained with a diagonal mixing matrix W of the

form
W = diag \/B(l_“)_l,...,w(l_)"‘)_l,o,...,o (24)

A1y Aklk

where{A,...,A¢} are k< ny eigenvalues o}ZX‘yZ;l with critical B valuesp®,,...,BS < B. ri =
vl Zyv; as in Theorem 3.1.

Proof: We writeVth,Z;1 = DV whereD is a diagonal matrix whose elements are the corre-
sponding eigenvalues, and denotefbthe diagonal matrix whosé' element isi. Whenk = ny,
we substituted = WYV into Equation (12), and eliminaké from both sides to obtain
-1 _
«TTKWDMV+WMRW#M)HW:WD
Use the fact thaiV is full rank to multiply byW -1 from the left and by —(WRW 4+ 14)W from
the right
B-1

Tr@mMWH@:mMMW+m
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Rearranging, we have
W'W = [B(I -D) - 1](DR)*, (25)

which is a diagonal matrix.
While this does not uniquely characterl& we note that using properties of the eigenvalues
from lemma B.1, we obtain

IALAT +1g] = [WVZVTWT 4 14| = WRW +1g).

Note thatWW RW' has left eigenvectord/T with corresponding eigenvalues obtained from the di-
agonal matridWTWR Thus if we substituté into the target function in Equation (6), a similar
calculation yields

L=(1-P) _ilog (1w 2ri +1) + B'ilog (1w [[Zrii +1) (26)

where||w] | |2 is theit" element of the diagonal &K/TW. This shows that. depends only on the
norm of the columns o#V, and all matrice®V that satisfy (25) yield the same target function. We
can therefore choose to taléto be the diagonal matrix which is the (matrix) square root of (25)

W = /[B(1 ~ D) ~1(DR) 2 (27)

which completes the proof of the full rank £ ny) case.

In the low rank k < ny) caséWV does not mix all the eigenvectors, but oklgf them. To prove
the lemma for this case, we first show that any such low rank matrix is equiv@eterms of the
target function value) to a low rank matrix that has okilyon zero rows. We then conclude that the
non zero rows should follow the form described in the above lemma.

Consider a, x ny matrix W of rankk < ny, but without any zero rows. L&l be the set of left
eigenvectors ofVW' (that is, WW™ =UAUT). Then, sincWW' is Hermitian, its eigenvectors
are orthonormal, thugJW)(WU)T = A andW’ = UW is a matrix withk non zero rows andy — k
zero lines. Furthermor®y’ obtains the same value of the target function, since

L = log(IW'RWT + 5£|) + Blog(I\W'DRWT + 5Z) (28)

B)log(

B)log(JUWRW UT+UUT5Z|) + Blog([UWDRW U '+ UU T5§))
B)log(|U|IWRW +3Z[|UT|) + Blog(|U [[UWDRW U™+ 22U T|)
B)log(

(
= (
(
(1-B) log(IWRW -+ 5Z) + Blog(\W DRW T + 5¢|),

1—
1—
1—
1—

where we have used the fact thais orthonormal and hend®l| = 1. To complete the proof note
that the non zero rows &Y’ also haven, — k zero columns and thus define a square matrix of kank
for which the proof of the full rank case apply, but this time by projecting dinzensiork instead
of ne. J

This provides a characterization of all local minima. To find which is the globaimum, we
prove the following corollary.

Corollary D.2
The global minimum of is obtained with all\; that satisfyA; < %
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Proof: Substituting the optimalv of Equation (27) into Equation (26) yields
k
L= Z(B—l)log)\i+log(1—)\i)+ f(B). (29)
i=

Since 0<A <1landB > = w L is minimized by taking all the eigenvalues that satify ﬁ
O]

Appendix E. Deriving the Iterative Algorithm

To derive the iterative algorithm in Section 6, we assume that the distribpfigix) corresponds
to the Gaussian variabl& = AX + &. We show below thap(tk;1|x) corresponds tdi;1 =
AkJrlX + Ek+l with EkJrl ~ N(07 zzk+1) and

1
25, = (thk\y (B-1)z, ) (30)
A1 = BZEk+1ztk|y ( — Zyjx ;1)

We first substitute the Gaussigfty|x) ~ N(AkX, ¢, ) into the equations of (17), and treat the
second and third equations. The second equatity) = [, p(x)p(tk|x)dx is a marginal of the
Gaussiarm, = AcX + &, and yields a Gaussign(tx) with zero mean and covariance

T = AAL +Zg, (31)
The third equationp(y|tk) = ﬁ Jx p(X,y) p(t|x)dx defines a Gaussian with mean and covariance
matrix given by:
Wi = By 2 Z (b Hy) = Zy Xy o= Bl (32)
Ty = Ty InZy Thy = Iy — AR, TR
where we have used the fact thgt= , = 0, and define the matriB = =, 5, ' as the regressor

of tx ony. Finally, we return to the first equation of (17), that defipég, 1|x) as

P(te) gD
t _ ke [P(YIX)|[p(yItd)]
( k+l|X) Z(X, B) e (33)
We now show thap(tk1/x) is Gaussian and compute its mean and covariance matrix.

The KL divergence between the two Gaussian distributions, in the expohEguation (33) is
known to be

2y
2D [POMIIPOYI] = log S+ Tr(EZ0 (34)

(M Pyin) "2 (Hyix — By

The only factor which explicitly depends on the value af the above expression|ig, derived in
Equation (32), is linear ib. The KL divergence can thus be rewritten as

Dk [p(YIX)[[p(Y[te)] = c(X) + %(P‘y\x —Bidic) "2, (Hyx — Bi)-
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Adding the fact thap(t) is Gaussian we can write the log of Equation (33) as a quadratic form in
t:

109 P(tics1]X) = Z(X) + (tr1 — B 1) T, o (ke — P, 1)
where

1
ZEk+1 - (BBk Y|tk Bk+ztk> (35)
Moax = AxpaX
At = B Bl 5,0

This shows thap(ty, 1/x) is a Gaussiafik; 1 = Axr1X+ Ekr1, With & ~ N(0,Zg, ).
To simplify the form ofAx, 1, %, ,,, we use the two following matrix inversion lemm&ghich
hold for any matrice&, F, G,H of appropriate sizes whds, H are invertible:

(E-FH'G)™* E'+E'F(H-GE 'F)'GE™ (36)
(E-FH!'G)'FH! = E'FH-GE'F)?

UsingE =%, F =2y, H = 5y, G= 5y, By = 2y, % 1 in the first lemma we obtain

Ztkly %+ B, yite B

Replacing this into the expression &y, ,, in Equation (35) we obtain

Tt = (BL - (B-1%Y) g (37)
Finally using agairE 2y, F = %4y, H =%y, G = %y, in the second matrix lemma, we have
by ‘yztkyZ‘ = Ztk Ztkwat , which turns the expression fé 1 in Equation (35) into
Ag1 = Bzzkﬂz(;ﬁyztkyz—lzyxz—l (38)
Bzzk+1ztk\yAkzxyz Ry
= By I A -y Y

which completes the derivation of the algorithm as described in (17).
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Abstract

AdaBoost.M2 is a boosting algorithm designed for multislpsoblems with weak base classifiers.
The algorithm is designed to minimize a very loose bound entithining error. We propose two
alternative boosting algorithms which also minimize bosimeh performance measures. These
performance measures are not as strongly connected topiketed error as the training error, but
the derived bounds are tighter than the bound on the traarireg of AdaBoost.M2. In experiments
the methods have roughly the same performance in minimthigraining and test error rates. The
new algorithms have the advantage that the base classifiafdsiminimize the confidence-rated
error, whereas for AdaBoost.M2 the base classifier shoutdmize the pseudo-loss. This makes
them more easily applicable to already existing base ¢iassi The new algorithms also tend to
converge faster than AdaBoost.M2.

Keywords: boosting, multiclass, ensemble, classification, decistamps

1. Introduction

Most papers about boosting theory consider two-class problems. Msétiplablems can be either
reduced to two-class problems using error-correcting codes (Allwteih,e2000; Dietterrich and
Bakiri, 1995; Guruswami and Sahai, 1999) or treated more directly usisg tlassifiers for multi-
class problems. Freund and Schapire (1996 and 1997) proposdddhthan AdaBoost.M1 which
is a straightforward generalization of AdaBoost using multiclass basdfidess An exponential
decrease of an upper bound of the training error rate is guarantéelgaas the error rates of the
base classifiers are less than 1/2. For more than two labels this conditioe tam testrictive for
weak classifiers like decision stumps which we use in this paper. Freun8dagpire overcame
this problem with the introduction of the pseudo-loss of a clasdifiet x Y — [0,1] :

1 1
Stzi(l—ht<xiayi)+m—_l ht(x.,y)>
Y7Vi

In the algorithm AdaBoost.M2, each base classifier has to minimize the psessimstead of the
error rate. As long as the pseudo-loss is less than 1/2, which is easilyatdador weak base
classifiers as decision stumps, an exponential decrease of an upperdothe training error rate
is guaranteed.

In this paper, we will derive two new direct algorithms for multiclass problerntls decision
stumps as base classifiers. The first one is called GrPloss and has itsrotiggrgradient descent

(©2005 Qinther Eibl and Karl-Peter Pfeiffer.
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framework of Mason et al. (1998, 1999). Combined with ideas of FramddSchapire (1996, 1997)
we get an exponential bound on a performance measure which weaadig$oss error. The second
algorithm was motivated by the attempt to make AdaBoost.M1 work for weakdiassifiers. We
introduce the maxlabel error rate and derive bounds on it. For bothithlignay, the bounds on the
performance measures decrease exponentially under conditions wigasy to fulfill by the base
classifier. For both algorithms the goal of the base classifier is to minimize tlieleoce-rated
error rate which makes them applicable for a wide range of already exisisgclassifiers.

Throughout this pape= {(xi,Vi); i = 1,...,N)} denotes the training set where eachelongs
to some instance or measurement spaead each label; is in some label set. In contrast to the
two-class casey can haveY| > 2 elements. A boosting algorithm calls a given weak classification
algorithmh repeatedly in a series of rountls= 1,...,T. In each round, a sample of the original
training setSis drawn according to the weighting distributi@a and used as training set for the
weak classification algorithrh. Dy (i) denotes the weight of exampief the original training set
S The final classifieH is a weighted majority vote of th& weak classifiersy, wherea; is the
weight assigned tb;. Finally, the elements of a skt that maximize and minimize a functidnare
denoted arg g']/laf((m) and argmrenl\ilnf (m) respectively.

2. Algorithm GrPloss

In this section we will derive the algorithm GrPloss. Mason et al. (199891@mbedded Ad-
aBoost in a more general theory which sees boosting algorithms as draeseent methods for the
minimization of a loss function in function space. We get GrPloss by applyingrémient descent
framework especially for minimizing the exponential pseudo-loss. We farssider slightly more
general exponential loss functions. Based on the gradient desaerévfork, we derive a gradient
descent algorithm for these loss functions in a straight forward waydtid®e?.1. In contrast to the
general framework, we can additionally derive a simple update rule faampling distribution as
it exists for AdaBoost.M1 and AdaBoost.M2. Gradient descent doepnostde a special choice
for the “step size'ti;. In Section 2.2, we define the pseudo-loss error and dayig minimization
of an upper bound on the pseudo-loss error. Finally, the algorithm is sinddlifi¢he special case
of decision stumps as base classifiers.

2.1 Gradient Descent for Exponential Loss Functions

First we briefly describe the gradient descent framework for the tasscase witly = {—1, +1}.
As usual a training sé8= {(x,yi); i =1,...,N)} is given. We are considering a function space
F =lin(#) consisting of functions : X — R of the form

. T

f(xa,B) = Zla‘h‘(X;Bt)’ he : X — {+1}
t=

with @ = (0y,...,a7) € RT, B= (B1,...,Br) andh; € H. The parameter; uniquely determine
h; therefored and3 uniquely determind. We choose a loss function

L(F) = Bl (FOO. W] = BBy [Iyf())]] 1R —Rxo
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where for example the choice ff (x),y) = e Y leads to

LS it
i=

The goal is to findf* = argfm;pL(f).
€
The gradient in function space is defined as:

oL(f +el .
oL = HEE o im

where for two arbitrary tupleg andv'we denote

1 V=V
1 Vi =
/(9) {o V£V,
A gradient descent method always makes a step in the “direction” of the¢inegradient-OL( f)(x).
However—[L(f)(x) is not necessarily an element @f, so we replace it by an elementof F

which is as parallel te-OL( f)(x) as possible. Therefore we need an inner product 7 x ¥ — R,
which can for example be chosen as

. 1N -
ﬁﬁ>=5¢;fW0Hm)

This inner product measures the agreemerft afd f on the training set. Using this inner product
we can set

B :=arg rréaX—DL(ft,l),h(. i B))

andh; :=h(-; ;). The inequality—OL(fi_1),h(Bt)) <0 means that we can not find a good “direc-
tion” h(B), so the algorithm stops, when this happens. The resulting algorithm isigi¥égure 1.

Input: training setS, loss function, inner product, ) : ¥ x ¥ — R, starting valuefy.
t:=1
Loop: while (—OL(fi—1),h(Bt)) > 0

o Bii= argrréaX—DL(ft—l)vh(B)>
o g :=argminL(fi-1+ah(R)))

o fr="fi_1+ah(B)
Output: fi, L(f)

Figure 1: Algorithm gradient descent in function space

Now we go back to the multiclass case and modify the gradient descent foaknenorder to
treat classifierd of the formf : X xY — R, wheref(x,y) is a measure of the confidence, that an
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object with measuremenishas the labey. We denote the set of possible classifiers with For
gradient descent we need a loss function and an inner prodygt dve choose

N Y|

lef x,Y) f(x.y)

which is a straightforward generalization of the definition for the two-clasec The goal of the
classification algorithm GrPloss is to minimize the special loss function

f)::%IZI(f,i) with I(f,i)_exp[ ( f(Xi, i)+ ;M )] (1)

T f(x,y)
P

The term

compares the confidence to label the exampt®rrectly with the mean confidence of choosing one
of the wrong labels. Now we consider slightly more general exponentsflmgtions

[(f,i) =exp[v(f,i)] with exponent-lossv(f,i)=vy+ ZVy(i)f(Xi,y) ,
y

where the choice
1

vo::—Landvy(i):{_z1 Y=y

2 AR # Vi

leads to the loss function (1). This choice of the loss function leads to thathlgagiven in Fig-
ure 2. The properties summarized in Theorem 1 can be shown to hold oigtiihan.

Input: training setS, maximum number of boosting roundls
Initialisation: fo:=0,t:=1,Vi: Dy(i):= &.
Loop: Fort=1,...,T do

e hy=arg nﬂ]ing Di(i)v(h,i)

o If 3iDi(i)v(ht,i) > vo: T :=t—1, goto output.

e Chooseay;.

e Updatef; = f_; +aihy andDy4(i) :% c(D) (aghy, i)
Output: fr, L(fr)

Figure 2: Gradient descent for exponential loss functions
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Theorem 1 For the inner product

N 1Y
21 Zlf(xi,y)h(m y)

and any exponential loss functiond i) of the form

I(f,1) =exp[v(f,i)] with v(f,i)=vo+ > w(i)f(x,y)
y

where ¢ and v (i) are constants, the following statements hold:
(i) The choice of hthat maximizes the projection on the negative gradient

he = argmax—0L(fi-1),h)
is equivalent to that minimizing the weighted exponent-loss

h = arg mhinlz Dy (i)v(h,i)

with respect to the sampling distribution

(fad) _ 1(fead)

Dy (i) := iZ/'(ft—l,i/) = 7,

(if) The stopping criterion of the gradient descent method

(=0OL(ft-1),h(Br)) <O

leads to a stop of the algorithm, when the weighted exponent-loss gets positive
Z Dt > \o.
(iif) The sampling distribution can be updated in a similar way as in AdaBoasgube rule
. 1_ . :
Drra(i) = o Di(i)l (ach, i),
{
where we defineiAs a normalization constant

Z Dt (i)l (ahy, i)

which ensures that the update.D is a distribution.

In contrast to the general framework, the algorithm uses a simple updat®rihe sampling
distribution as it exists for the original boosting algorithms. Note that the algouiies not specify
the choice of the step sizg, because gradient descent only provides an upper bouiog. dWe
will derive a special choice fam; in the next section.
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Proof. The proof basically consists of three steps: the calculation of the gtattiercthoice for base
classifierh; together with the stopping criterion and the update rule for the sampling distributio
(i) First we calculate the gradient, which is defined by

L(f +KLy) —L(F)
k

DL(f)(va) = II<ILnO

_ 1 xy=(xy
for Ly (X,Y) = {0 Em ?ég:,’y,g .
So we get fox = x;:

L(f+Kklgy) = % exp

vo+;vv(i)f(xi,y')+kvy(i)] = %I(f,i)ek"y(”.

Substitution in the definition dflL(f) leads to

I(f,1)(ew — 1)

OL()06.y) = lim {EETEZD 1 )
" ey = { - @
Y= hiw) x=x

Now we insert (2) intod —OL(fi_1),h) and get
1 o 1 . .
<_|:|L(ftfl)a h[> = _N Z Z I (ftfb')Vy(')h(XiaY) = _N Z I (ftflal)(v(hal) _VO)' (3)
Ty [
If we define the sampling distributidd; up to a positive constak_; by

Di(i) :=G_1l(fi—1,i), (4)

we can write (3) as

(~OL(a)h) =~ 3 DD —v0) = — = (z Dy(iyv(h,i) —vO> NG

Since we requir€;_1 to be positive, we get the choice lafof the algorithm
h = arg rr;]aX—DL(ft_l), h) =arg rrp]inz Di(i)v(h,i).
|
(ii) One can verify the stopping criterion of Figure 2 from (5)

(~OL(fi1),h) <0 ¥ D(iv(h,i) > Vo.

(i) Finally, we show that we can calculate the update rule for the sampling distiD.
Dera(i) = Cl(f,i) =Gl (fog+agh,i)
= C['(ft_l, I)l (Gtht,i) = %Dt(l)l (Gth[,i).
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This means that the new weight of exampis a constant multiplied witl; (i)l (a:h;,i). By com-
paring this equation with the definition df we can determin€;

G

G = Z
Sincel is positive and the weights are positive one can show by induction, thaCaisgositive,
which we required before. |

2.2 Choice ofa; and Resulting Algorithm GrPloss

The algorithm above leaves the step lengithwhich is the weight of the base classifier unspec-
ified. In this section we define the pseudo-loss error and dexiley minimization of an upper
bound on the pseudo-loss error.

Definition: A classifierf : X x Y — R makes a pseudo-loss error in classifying an exampiéh

labelk, if L

The corresponding training error rate is denotegl®yr:

1
plerr = N Z ( leyl ‘Y|_1y ) f(X|,y)> .

The pseudo-loss error counts the proportion of elements in the trainifgrsehich the confi-
dencef(x,k) in the right label is smaller than theverageconfidence in the remaining labels

Sy f(x,y)/([Y|—1). Thus it is a weak measure for the performance of a classifier in the sense
Zk

f(x,k) <

that it can be much smaller than the training error.
Now we consider the exponential pseudo-loss. The constant term p$éuelo-loss leads to a
constant factor which can be put into the normalizing constant. So with thetabefi

u(f,i):= f(XiA/i)—ﬁ > fx.y)

Y#Yi
the update rule can be written in the shorter form
. 1. .
Dia(i) = ZDI(I) —agu(h, Wlth Z = ZD e—otu(hei)/2

We present our next algorithm, GrPloss, in Figure 3, which we will deaive justify in what
follows.
(i) Similar to Schapire and Singer (1999) we first bowidrr by the product of the normalization
constants

—

plerr < [1%. (6)
N
To prove (6), we first notice that
1 fT7
plerr < N IZ (7)
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Input: training setS= {(x1,y1),..., (XN, YN); % € X, ¥ € Y},
Y ={1,...,]Y|}, weak classification algorithm with outplat X xY — [0, 1]
Optionally T: maximal number of boosting rounds

Initialization: Dy(i) = &.
Fort=1,...,T:

e Train the weak classification algorithhg with distribution D;, whereh; should maximize

Ut = Zi Dt(l)U(h[,l)
e If Uy <0: goto output withl :=t —1

ot =1In 1+U
A

N S
De1(i) = 7 De(i)e deu(hei)/2,

e Set

e Update D:

whereZ; is a normalization factor (chosen so tiiat ;1 is a distribution)

Output: final classifieH (x):

ye

_
H() = argmaxi (xy) = arg mgx(zlath«x, y))
t

Figure 3: Algorithm GrPloss

Now we unravel the update rule

. 1 i .
DT+1(|) _ Ze—uTu(hT,l)/ZDT(I)

1 autriva : .
— —_— e TU(hT,I)/Ze GT,]_LI(hT,]_,I)/ZD _
It 1 r-1()
T

vy
= ... =Dy(i)[]euhi/2 >
tI:! 4

where the last equation uses the property thatlinear inh. Since
1 NP |

1=5SD =N e ufni/2rm —

Z Y ZNe tElZT
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we get Equation (6) by using (7) and the equation above

e utiy2_
plerr < = § e Uf/2— M z.
N2 1

(i) Derivation of a:
Now we derivea; by minimizing the upper bound (6). First, we plug in the definitiorZof

-y (3oume ).

Now we get an upper bound on this product using the convexity of thetibme %" between—1
and +1 (fromh(x,y) € [0, 1] it follows thatu € [—1,+-1]) for positiveay:

nz<N (Z -
Now we choose; in order to minimize this upper bound by setting the first derivative with réspec
to o to zero. To do this, we define

I\)IH

— u(hy,i))et 2% +<1+u<n,i>>e-%“f1> . ®)

= ZDt(i)U(ht )

Since eachu; occurs in exactly one factor of the bound (8) the resultfoonly depends ok); and
not onUs, s+#t, more specifically
o = In (1Y
TU\1—u )

Note thatJ; has its values in the interval1, 1], becausex € [—1,+1] andD; is a distribution.
(iii) Derivation of the upper bound of the theorem:
Now we substituter; back in (8) and get after some straightforward calculations

=M

Using the inequality/1—x < (1— %x) < e/2for x € [0,1] we can get an exponential bound on

Mz ) ]
tuzt <exp [tZL_UtZ/Z] .

If we assume that each classifrerfulfills U; > 8, we finally get

T
rlzt S e—BZT/Z

(iv) Stopping criterion:

The stopping criterion of the slightly more general algorithm directly resultsemtw stopping
criterion to stop, wheb); < 0. However, note that the bound depends on the squasgin§tead of
U; leading to a formal decrease of the bound even when 0.
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We summarize the foregoing argument as a theorem.

Theorem 2If for all base classifiersft X xY — [0, 1] of the algorithm GrPloss given in Figure 3

Ui .= ZDt(I)U(ht,l) >0

holds ford > 0 then the pseudo-loss error of the training set fulfills

;
plerr < r!\/l— U2 <e¥T/2, (9)
=

2.3 GrPloss for Decision Stumps

So far we have considered classifiers of the fowrnX x Y — [0,1]. Now we want to consider base
classifiers that have additionally the normalization property

Z( h(x,y)=1 (10)
ye

which we did not use in the previous section for the derivation;ofThe decision stumps we used
in our experiments find an attribuéeand a values which are used to divide the training set into two
subsets. If attributa is continuous and its value onis at mostv thenx belongs to the first subset;
otherwisex belongs to the second subset. If attribates categorical the two subsets correspond
to a partition of all possible values afinto two sets. The predictioh(x,y) is the proportion of
examples with labey belonging to the same subsetasSince proportions are in the intenjal 1]
and for each of the two subsets the sum of proportions is one our destsimps have both the
former and the latter property (10). Now we use these properties to minimizetartigpund on the
pseudo-loss error and further simplify the algorithm.

(i) Derivation ofay:
To geta; we can start with

plerr < |-lzt ﬂ(ZDt eowh )

which was derived in part (i) of the proof of the previous section. Rivetsimplify u(h,i) using the
normalization property and get

1
(h I) ’Y“ ‘ h(xivyi) - W (11)
In contrast to the previous sectiarth,i) € [_W 1] for h(x;,yi) € [0, 1], which we will take into
account for the convexity argument:
plerr < I_llet ) (N0 y1) €7/2 4 (1 he (g, ) €/ M2 (12)
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Setting the first derivative with respectdgto zero leads to

_2v=y Y=
= Y| In< 1—r t)’

where we defined

(i) Upper bound on the pseudo-loss error:
Now we pluga; in (12) and get

T 1or (VDAY (Y] = D\
p'errét[l(“(‘rtuvr—l)) ra-o(MEH) ) a9

(iii) Stopping criterion:

As expected for; = 1/|Y| the corresponding factor is 1. The stopping criterign< O can be
directly translated into; > 1/|Y|. Looking at the first and second derivative of the bound one can
easily verify that it has a unique maximumrat= 1/|Y|. Therefore, the bound drops as long as
r. > 1/|Y|. Note again that since = 1/|Y| is a unique maximum we get a formal decrease of the
bound even when > 1/|Y|.

(iv) Update rule:

Now we simplify the update rule using (11) and insert the new choicg ahd get

D) = 2W ganixan-1M) o g, - pn (=D
Z 1—r¢
Also the goal of the base classifier can be simplified, because maxinigzisgquivalent to maxi-
mizing ry.

We will see in the next section, that the resulting algorithm is a special cabe @figorithm
BoostMA of the next chapter witb=1/|Y]|.

3. BoostMA

The aim behind the algorithm BoostMA was to find a simple modification of AdaBddsn order
to make it work for weak base classifiers. The original idea was influebgea frequently used
argument for the explanation of ensemble methods. Assuming that the iraividssifiers are
uncorrelated, majority voting of an ensemble of classifiers should lead to bettdts than using
one individual classifier. This explanation suggests that the weight sdifilers that perform better
than random guessing should be positive. This is not the case for AdaBido In AdaBoost.M1
the weight of a base classifiaris a function of the error rate, so we tried to modify this function
so that it gets positive, if the error rate is less than the error rate of nagdessing. The resulting
classifier AdaBoost.M1W showed good results in experiments (Eibl aritfePf002). Further
theoretical considerations led to the more elaborate algorithm which we cadt8 which uses
confidence-rated classifiers and also compares the base classifierentthiiformative rule.

In AdaBoost.M2, the sampling weights are increased for instances fohwinécpseudo-loss
exceeds 1/2. Here we want to increase the weights for instances, tieebmase classifiehn :
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X xY — [0,1] performs worse than the uninformative or what we call the maxlabel rutee T
maxlabel rule labels each instance as the most frequent label. As a caefidded classifier, the
uninformative rule has the form

maxlabel rule X xY — [0,1] : h(x,y) := %,
whereNy is the number of instances in the training set with lab&o it seems natural to investigate
a modification where the update of the sampling distribution has the form

et (ht(%i.yi)—c)

Diea(i) = Du(i) =5 —— with 1= ZlDt (hx)—€).

wherec measures the performance of the uninformative rule. Later we will set

=3 (%)

and justify this setting. But up to that point we let the choice open and just requiree (0,1).
We now define a performance measure which plays the same role as tde-sesierror.

Definition 1 Let ¢ be a number if0,1). A classifier f: X xY — [0,1] makes a maxlabel error in
classifying an example x with label k, if

f(x,k) <c.

The maxlabel error for the training set is called mxerr:

1 N
mxerr:= N;I (f(x,yi) <c).

The maxlabel error counts the proportion of elements of the training setiioh the confidence
f(x,k) in the right label is smaller tham The number must be chosen in advance. The higbés,
the higher is the maxlabel error for tkameclassifierf; therefore to get a weak error measure we
setc very low. For BoostMA we chooseas the accuracy for the uninformative rule. When we use
decision stumps as base classifiers we have the prapexty) € [0,1]. By normalizingay, ..., dr,
so that they sum to one, we ensure,y) € [0, 1] (Equation 15).

We present the algorithm BoostMA in Figure 4 and in what follows we justify astablish
some properties about it. As for GrPloss the modus operandi consistslimitfian upper bound on
mxerrand minimizing the bound with respectdo
() Bound of mxerrin terms of the normalization constaras
Similar to the calculations used to bound the pseudo-loss error we begimbglibhgmxerrin terms
of the normalization constank: We have

1 = ZDH-l ZDt
1 ! 1o -
easth|Y| - e

)| gzswz

Zs

e a (he (%i,yi)—c)

0]
Zle=
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Input: training setS= {(x1,y1),..., (XN, YN); % € X, i € Y},
Y ={1,...,|Y|}, weak classification algorithm of the forhnt X x Y — [0, 1].
Optionally T: number of boosting rounds

Initialization: Dy(i) = &.
Fort=1,...,T:

e Train the weak classification algorithimwith distributionDy, whereh; should maximize

=Y Du(ih . 0)

e If ry <c: goto output withT :=t—1

e Set 10
. —C)I't
ai=1In (c(l—rt))'
e Update D:
) e (e (xiy)—0)
D (i) = Di(i) = ——

whereZ; is a normalization factor (chosen so tliat 1 is a distribution)

Output: Normalizeay,...,or and set the final classifiéf(x):

.
H(x) = arg maxd (xy)=arg 523X<t;atht (%, y)>

Figure 4: Algorithm BoostMA

So we get
_ 1 (few)—exay
m Z = N IZe : (14)
Using
3 A —(f(x ) —
LC) B UL EOR0 LN (15)
3o
and (14) we get
mxerr < [ Z. (16)
t

(i) Choice ofa;:

Now we bound[] Z: and then we minimize it, which leads us to the choiceofFirst we use the
t

definition ofZ; and get

Zi = D (i)e %t ((xiy)—c) | 17
[1% U(Ztme ) an
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Now we use the convexity @ %("%.¥)=0) for hy(x;,y;) between 0 and 1 and the definition
re:= Ith(i)ht(XiaYi)
and get
mxerr < D ZDt(i) (ht(Xi,Yi)e_G‘(l_C) +(1- ht(Xi,yi))ea‘C>
= U (rte*‘“(l*c) +(1—rt)e°“°>.
We minimize this by setting the first derivative with respeatitdo zero, which leads to

B (1—o)rt
O(t—ln <7C(1—|’t) .
(iii) First bound onmxerr.

To get the bound omxerrwe substitute our choice far; in (17) and get

(1—o)re ) (1 —rp)\ o)
e D ((c(l—rt;> ,ZDt(I) ((1—c)trt) > (18)

he (%,¥1) . .
Now we bound the ternﬁ fgl_;;trf) by use of the inequality

x*<1l-a+ax forx>0andac[0,1],

which comes from the convexity of for a between 0 and 1 and get

c(l—r)

B he (xi,¥i)
(c(l rt)) < 1—he(Xi,¥i)+ b (%, Vi)

(1—c)ry (1—o)r¢
Substitution in (18) and simplifications lead to
ré(1—ry)t=c
mxerr < U (m . (19)

The factors of this bound are symmetric aroung ¢ and take their maximum of 1 there. Therefore
if re > cis valid the bound omxerrdecreases.

(iv) Exponential decrease afxerr.

To prove the second bound we set= ¢+ d with & € (0,1 — c¢) and rewrite (19) as

1-c c
mxerr < |_| (1 %) (1+g> )
. _

We can bound both terms using the binomial series: all terms of the series fafsthierm are
negative, we stop after the terms of first order and get

6 1-c
-2 ) <1-a
() s
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The series of the second term has both positive and negative terms,paagftetothe positive term

of first order and get .
<1+ g) <1+6.

mxerr< [(1-&).
t

Thus

Using 1+ x < e forx< 0 leads to

2.
mxerr<e 9T,

We summarize the foregoing argument as a theorem.
Theorem 3If all base classifiers fwith h(x,y) € [0, 1] fulfill
It .= ZDt(l)hl(th') >c+90
|

for & € (0,1—c) (and the condition & (0,1)) then the maxlabel error of the training set for the
algorithm in Figure 4 fulfills

rf(1—ryte —5°T
mxerr < D (m <e . (20)

Remarks: 1.) Choice affor BoostMA: since we use confidence-rated base classification algwrith
we choose the training accuracy for the confidence-rated uninforenati® forc, which leads to

N N 2
iy Ene g ) >

2.) For base classifiers with the normalization property (10) we can get ¢éesiexypression for the
pseudo-loss error. From

y;(f(x,y) :y;(Zatht(x,y) = Zat(l—ht(x,k)) = Zat — f(xk)

f

we get
W 1
v [Y]

1 (X
fx k)< —- Y f - 22
y T
That means that if we choose= 1/|Y| for BoostMA the maxlabel error is the same as the pseudo-
loss error. For the choice (21) othis is the case when the group proportions are balanced, because

then
1

-3 (%) -3 (%) M-

For this choice ot the update rule of the sampling distribution for BoostMA gets

Dt+1(i) = DtT(I)e_qt(ht(XiM)—l/Y) and o;=In <(’Yl’ - 1)rt> ,
£ — It
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which is just the same as the update rule GrPloss for decision stumps. Summtrégadwo re-
sults we can say that for base classifiers with the normalization propertghthiee (21) forc of
BoostMA and data sets with balanced labels, the two algorithms GrPloss astMBoand their
error measures are the same.

3.) In contrast to GrPloss the algorithm does not change when the bas#ietadditionally fulfills
the normalization property (10) because the algorithm only bhg&sy; ).

4. Experiments

In our experiments we focused on the derived bounds and the prgmtidalmance of the algo-
rithms.

4.1 Experimental Setup

To check the performance of the algorithms experimentally we performestiengnts with 12 data
sets, most of which are available from the UCI repository (Blake and M&28). To get reliable
estimates for the expected error rate we used relatively large data setstiognof about 1000
cases or more. The expected classification error was estimated eitherdbgaderate or 10-fold
cross-validation. A short overview of the data sets is given in Table 1.

| Database | N | fLabels| 4 Variables| Error Estimation| Labels \
car* 1728 4 6 10-CV unbalanced
digitbreiman | 5000 10 7 test error balanced
letter 20000 26 16 test error balanced
nursery * 12960 4 8 10-CV unbalanced
optdigits 5620 10 64 test error balanced
pendigits 10992 10 16 test error balanced
satimage * 6435 6 34 test error unbalanced
segmentation 2310 7 19 10-CV balanced
waveform 5000 3 21 test error balanced
vehicle 846 4 18 10-CV balanced
vowel 990 11 10 test error balanced
yeast * 1484 10 9 10-CV unbalanced

Table 1: Properties of the databases

For all algorithms we used boosting by resampling with decision stumps as laasdiers.
We used AdaBoost.M2 by Freund and Schapire (1997), BoostMA auitiy ..y (Ny/N)2 and the
algorithm GrPloss for decision stumps of Section 2.3 which correspondsdsti@8 with ¢ =
1/|Y|. For only four databases the proportions of the labels are significantiglamced so that
GrPloss and BoostMA should have greater differences only for tlesedfitabases (marked with
a*). As discussed by Bauer and Kohavi (1999) the individual sampligightsD; (i) can get very
small. Similar to was done there, we set the weights of instances which weve 1@lé° to 1019,
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We also set a maximum number of 2000 boosting rounds to stop the algorithm stapping
criterion is not satisfied.

4.2 Results

The experiments have two main goals. From the theoretical point of view antissted in the
derived bounds. For the practical use of the algorithms, it is important todbthe training and
test error rates and the speed of the algorithms.

4.2.1 DERIVED BOUNDS

First we look at the bounds on the error measures. For the algorithmdsda®12, Freund and
Schapire (1997) derived the upper bound

-
(Y| —1)2"1 r!\/et(l— &) (23)
t=
on the training error. We have three different bounds on the psewsdaetoor of Grploss: the term
Mz (24)
t

which was derived in the first part of the proof of Theorem 2, the tightemd (9) of Theorem
2 and the bound (13) for the special case of decision stumps as basiierkasIn Section 3, we
derived two upper bounds on the maxlabel error for BoostMA: term &4 the tighter bound (20)
of Theorem 3.

For all algorithms their respective bounds hold for all time steps and forasdl sets. Bound
(23) on the training error of AdaBoost.M2 is very loose — it even excédds eight of the 12 data
sets, which is possible due to the factéf — 1 (Table 2). In contrast to the bound on the training
error of AdaBoost.M2, the bounds on the pseudo-loss error of GsRlnd the maxlabel error of
BoostMA are below 1 for all data sets and all boosting rounds. In thaesehey are tighter than
the bounds on the training error of AdaBoost.M2.

As expected, bound (13) derived for the special case of decisiompstas base classifiers on
the pseudo-loss error is smaller than bound (9) of Theorem 2 whiclndose the normalization
property (10) of the decision stumps.

For both GrPloss and BoostMA, bound (24) is the smallest bound sincetaios the fewest
approximations. For BoostMA, term (24) is a bound on the maxlabel endrfa GrPloss term
(24) is a bound on the pseudo-loss error. For unbalanced data satsgattabel error is the “harder”
error measure than the pseudo-loss error, so for these data sets(Bdyis higher for BoostMA
than for GrPloss. For balanced data sets the maxlabel error and trdogess error are the same.
Bound (9) for GrPloss is higher for these data sets than bound (20 astBIA. This suggests that
bound (9) for GrPloss could be improved by more sophisticated calculations

4.2.2 GOMPARISON OF THEALGORITHMS

Now we wish to compare the algorithms with one another. Since GrPloss arstiNBddliffer only
for the four unbalanced data sets, we focus on the comparison of GnRitbsAdaBoost.M2 and
make only a short comparison of GrPloss and BoostMA. For the subsecumparisons we take

205



EIBL AND PFEIFFER

AdaBoost.M2 GrPloss BoostMA
training error [%] pseudo-loss error [%] maxlabel error [%0]
Database trerr BD23 | plerr | BD24 | BD13 | BD9 | mxerr | BD24 | BD20
car* 0 33.9 0 34| 11.1| 319 78| 63.1| 719
digitbreiman | 25.5 3274 05 3.7| 19.9| 81.0 10| 119| 356
letter 46.1 1013.1| 0.4 72| 27.8| 94.3 0.4 8.1| 295
nursery * 14.2 78.7 0 0 05| 111 0 0.8 7.6
optdigits 0 421.1 0 0 20| 514 0 0 0.1
pendigits 13.8 190.2 0 0 0.1| 42.6 0 0 0.1
satimage * | 15.9 118.5| 0.1 1.8 13.2| 62.3 3.8| 26.0| 50.1
segmentation 7.5 96.2 0 0.4 2.8| 30.5 0 0.4 35
vehicle 26.5 101.2| 0.1 28| 14.7| 50.0 0.1 3.3| 16.5
vowel 30.9 273.8 0 0 0.1| 40.4 0 0.1 3.0
waveform 12.5 48.4 0 0.5 6.3| 23.3 0 0.4 6.0
yeast * 60.2 365.0/ 0.4 6.6 26.0| 83.6| 49.2| 99.2| 99.6

Table 2: Performance measures and their bounds in percent at thengaosind with minimal
training error. trerr, BD23: training error of AdaBoost and its bou28){ plerr, BD24
,BD13 ,BD9: pseudo-loss error of GrPloss and its bounds (24), (iB8j9; mxerr, BD24,
BD20: maxlabel error of BoostMA and its bounds (24) and (20).

all error rates at the boosting round with minimal training error rate as was lopEibl and Pfeiffer
(2002).

First we look at the minimum achieved training and test error rates. Theytsaggests Ad-
aBoost.M2 to work best in minimizing the training error. However, GrPlosmsde have roughly
the same performance with maybe AdaBoost.M2 leading by a slight edge §Tabled 4, Figure
5). The difference in the training error mainly carries over to the diffeeen the test error. Only
for the data sets digitbreiman and yeast do the training and the test ewodffierent algorithms
(Table 4). Both the training and the test error favor AdaBoost.M2 for ata dets and GrPloss for
four data sets with two draws (Table 4).

While GrPloss and AdaBoost.M2 were quite close for the training and test rates, this is
not the case for the pseudo-loss error. Here, GrPloss is the cleagvegainst AdaBoost.M1 with
eight wins and four draws (Table 4). The reason for this might be thetHat bound (13) on the
pseudo-loss error of GrPloss is tighter than bound (23) on the traimogarAdaBoost.M2 (Table
2). For the data set nursery, bound (13) on the pseudo-loss é@Ptoss (0.5%) is smaller than
the pseudo-loss error of AdaBoost.M2 (1.9%). So for this data set,do(iB) can explain the
superiority of GrPloss in minimizing the pseudo-loss error.

Due to the fact that only four data sets are significantly unbalanced, it sasy to assess the
difference between GrPloss and BoostMA. GrPloss seems to have &gading the training and
test error rates (Tables 3 and 5). For the experiments, the corstdBoostMA was chosen as
the training accuracy for the confidence-rated uninformative rule @&i)the unbalanced data sets,
this c exceeds 1]Y|, which is the corresponding choice for GrPloss (22). A change-ofmaybe
even adaptively during the run — could possibly improve the performaiieavish to make further
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training error test error
Database AdaM2 | GrPloss| BoostMA | AdaM2 | GrPloss| BoostMA
car* 0 0 7.75 0 0 7.75
digitoreiman | 25.49| 25.63 25.63| 27.51| 27.13 27.38
letter 46.07| 40.02 40.14| 47.18| 41.70 41.70
nursery * 14.16| 12.37 12.63| 14.27| 12.35 12.67
optdigits 0 0 0 0 0 0
pendigits 13.82| 17.17 17.20| 18.61| 20.44 20.75
satimage * 15.85| 15.69 16.87| 18.25| 17.80 18.90
segmentation 7.49 9.05 8.90 8.40 9.31 9.48
vehicle 26.46| 30.15 30.19| 35.34| 38.16 36.87
vowel 30.87| 41.67 42.23| 54.33| 67.32 67.32
waveform 12.45| 14.55 14.49| 16.63| 18.17 17.72
yeast * 60.18| 59.31 60.61| 60.65| 61.99 62.47

Table 3: Training and test error at the boosting round with minimal training;evmdd and italic
numbers correspond to high%%) and medium¢ 1.5%) differences to the smallest of the
three error rates

GrPloss vs. AdaM2
Database trerr | testerr| plerr | speed
car* 0 0 0 +
digitbreiman -
letter
nursery *
optdigits
pendigits - -
satimage * +
segmentation
vehicle - -
vowel - -
waveform - -
yeast * + -
total 4-2-6 | 4-2-6

+ + +

+
+
+
o

+ 1 0 + +

++0+0 + +0 + + +
+ 4+ + + 4+

-0 | 10-0-2

e
I

Table 4. Comparison of GrPloss with AdaBoost.M2: win-loss-table for theitrgerror, test error,
pseudo-loss error and speed of the algorithm (+/0/-: win/draw/loss Rlo&s)

investigations about a systematic choicecdbr BoostMA. Both algorithms seem to be better in
the minimization of their corresponding error measure (Table 5). The smidretites between
GrPloss and BoostMA occurring for the nearly balanced data sets tanlga@ome from the small
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Figure 5: Training error curves: solid: AdaBoost.M2, dashed: G ldstted: BoostMA

differences in the group proportions, but also from differences imeébhampling step and from the
partition of a balanced data set into unbalanced training and test sets duoasgvalidation.

Performing a boosting algorithm is a time consuming procedure, so the spaadalgorithm
is an important topic. Figure 5 indicates that the training error rate of Gri¥a=creasing faster
than the training error rate of AdaBoost.M2. To be more precise, we lathleatumber of boosting
rounds needed to achieve 90% of the total decrease of the trainingaeofFor 10 of the 12 data
sets, AdaBoost.M2 needs more boosting rounds than GrPloss, so Gs&4wss to lead to a faster
decrease in the training error rate (Table 4). Besides the humber difgposunds, the time for
the algorithm is also heavily influenced by the time needed to construct a lasdier. In our
program, it took longer to construct a base classifier for AdaBoost.Mause the minimization of
the pseudo-loss which is required for AdaBoost.M2 is not as straighdfdras the maximization
of ry required for GrPloss and BoostMA. However, the time needed to cohstroase classifier
strongly depends on programming details, so we do not wish to over-emglhiaisiaspect.
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GrPloss vs. BoostMA
Database | trerr | testerr| plerr | mxerr | speed
car* + + + o -
nursery * + + o] o] +
satimage *| + + + - o]
yeast * + + + - -
total 4-0-0| 4-0-0 | 3-1-0| 0-2-2 | 1-0-2

Table 5: Comparison of GrPloss with BoostMA for the unbalanced data waétstoss-table for
the training error, test error, pseudo-loss error, maxlabel erbspaed of the algorithm
(+/o/-: win/draw/loss for GrPloss)

5. Conclusion

We proposed two new algorithms GrPloss and BoostMA for multiclass probléthsmeak base
classifiers. The algorithms are designed to minimize the pseudo-loss edrtieamaxlabel error
respectively. Both have the advantage that the base classifier minimizemfidence-rated error
instead of the pseudo-loss. This makes them easier to use with alreadygekistim classifiers.
Also the changes to AdaBoost.M1 are very small, so one can easily getuwhalgerithms by

only slight adaption of the code of AdaBoost.M1. Although they are noigded to minimize

the training error, they have comparable performance as AdaBoost.Mdriexperiments. As
a second advantage, they converge faster than AdaBoost.M2. AdaR@ominimizes a bound
on the training error. The other two algorithms have the disadvantage of mingrboinnds on

performance measures which are not connected so strongly to thetexkmeor. However the
bounds on the performance measures of GrPloss and BoostMA are tigdwtethe bound on the
training error of AdaBoost.M2, which seems to compensate for this distayan
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Abstract

One way to describe anomalies is by saying that anomaliesadreoncentrated. This leads to the
problem of finding level sets for the data generating den¥ity interpret this learning problem as
a binary classification problem and compare the correspgrdassification risk with the standard
performance measure for the density level problem. In @asr it turns out that the empirical
classification risk can serve as an empirical performancasome for the anomaly detection prob-
lem. This allows us to compare different anomaly detectigorithmsempirically, i.e. with the
help of a test set. Furthermore, by the above interpretat®mnan give a strong justification for the
well-known heuristic of artificially sampling “labeled” s®les, provided that the sampling plan is
well chosen. In particular this enables us to propose a stigpotor machine (SVM) for anomaly
detection for which we can easily establish universal iaacy. Finally, we report some experi-
ments which compare our SVM to other commonly used methadisding the standard one-class
SVM.

Keywords: unsupervised learning, anomaly detection, density leetdssification, SVMs

1. Introduction

Anomaly (or novelty) detection aims to detect anomalous observations frgstens In the ma-
chine learning version of this problem we cannot directly model the noreta\aour of the system
since it is either unknown or too complex. Instead, we have some sampieatises from which
the normal behaviour is to be learned. This anomaly detection learning pralale many important
applications including the detection of e.g. anomalous jet engine vibrationblésee et al., 1999;
Hayton et al., 2001; King et al., 2002), abnormalities in medical data (ses3Jemko et al., 1995;
Campbell and Bennett, 2001), unexpected conditions in engineerin@éséerges et al., 1998) and
network intrusions (see Manikopoulos and Papavassiliou, 2002; Yeuh@how, 2002; Fan et al.,
2001). For more information on these and other areas of applicationdlessweany methods for
solving the corresponding learning problems we refer to the recengyswfvMarkou and Singh
(2003a,b).

It is important to note that a typical feature of these applications is that otdpeled samples
are available, and hence one has to make some a-priori assumptionsnoalieaan order to be
able to distinguish between normal and anomalous future oberservatioasf e most common
ways to define anomalies is by saying thabmalies are not concentratésee e.g. Ripley, 1996;

(©2005 Ingo Steinwart, Don Hush and Clint Scovel.
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Schblkopf and Smola, 2002). To make this preciseQdie ourunknown data-generating distribu-
tion on the input spac® which has a densit with respect to &nown reference distribution gn
X. Obviously, the density level sefé > p}, p > 0, describe the concentration Qf Therefore to
define anomalies in terms of the concentration one only has to fix a threshelg I[2v0 so that a
samplex € X is considered to be anomalous whenéawer) < p. Consequently, our aim is to find
the set{h < p} to detect anomalous observations, or equivalentlyptievel set’h > p} to describe
normal observations.

We emphasize that given the data-generating distrib@itime choice ofi determines the den-
sity h, and consequentinomalies are actually modeled by both p gndUnfortunately, many pop-
ular algorithms are based on density estimation methods that implicitly agstore the uniform
distribution (e.g. Gaussian mixtures, Parzen windows lendarest neighbors density estimates)
and therefore for these algorithms defining anomalies is restricted to theeafaicWith the lack
of any further knowledge one might feel that the uniform distribution isss@aable choice fqu,
however there are situations in which a differgris more appropriate. In particular, this is true
if we consider a modification of the anomaly detection problem wiasenot known but can be
sampled from. We will see that unlike many others our proposed method ndteleoth problems.

Finding level sets of an unknown density is also a well known problem in titatishich has
some important applications different from anomaly detection. For examgien ibe used for the
problem of cluster analysis as described in by Hartigan (1975) andaSwetval. (2001), and for
testing of multimodality (see e.g. fler and Sawitzki, 1991; Sawitzki, 1996). Some other appli-
cations including estimation of non-linear functionals of densities, density d&iimaegression
analysis and spectral analysis are briefly described by Polonik (1998jortunately, the algo-
rithms considered in these articles cannot be used for the anomaly detecitdanp since the
imposed assumptions drare often tailored to the above applications and are in general unrealistic
for anomalies.

One of the main problems of anomaly detection—or more precisely density letegdtibn—is
the lack of an empirical performance measure which allows us to comparenbeadjzation perfor-
mance of different algorithms by test samples. By interpreting the densitydietextion problem as
binary classification with respect to an appropriate measure, we shothéhairresponding empir-
ical classification risk can serve as such an empirical performance redas@nomaly detection.
Furthermore, we compare the excess classification risk with the standéwchpence measure for
the density level detection problem. In particular, we show that both quarditeasymptotically
equivalent and that simple inequalities between them are possible under mddi@es on the
densityh.

A well-known heuristic (see e.g. Fan et al., 2001; Gdlaz and Dagupta, 2003; Yu et al., 2004;
Theiler and Cai., 2003) for anomaly detection is to generate a labeled ddig assigning one
label to the original unlabeled data and another label to a set of artificiatlgrgted data, and
then apply a binary classification algorithm. By interpreting the density levettien problem as
a binary classification problem we can show that this heuristic can be Btrjustjfied provided
that the sampling plan for the artificial samples is chosen in a certain way andetielassification
algorithm is well-adopted to this plan. We will work out this justification in detail lbgvging how to
modify the standard support vector machine (SVM) for classificationeatablishing a consistency
result for this modification. Finally we report some experiments comparing tladiet SVM with
some other commonly used algorithms including Gaussian maximum-likelihood me#matithe
standard one-class SVM proposed by @kbpf et al. (2001).
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2. Detecting Density Levels is a Classification Problem

We begin with rigorously defining the density level detection (DLD) probleathis end let{ X, 4)

be a measurable space gund knowndistribution on(X,4). Furthermore, leQ be anunknown
distribution on(X,4) which has arunknowndensityh with respect tqy, i.e.dQ=hdu Given a

p > O the sef h > p} is called thep-level sebf the densityh. Throughout this work we assume that
{h=p} is ap-zero set and hence it is als@azero set. For the density level detection problem and
related tasks this is a common assumption (see e.g. Polonik, 1995; TsyhaRkay,

Now, the goal of the DLD problem is to find an estimate of thkevel set ofh. To this end
we need some information which in our case is given to us by a training setxi,...,xn) €
X", We will assume in the following thal is i.i.d. drawn fromQ. With the help ofT a DLD
algorithm constructs a functiofy : X — R for which the sef fr > 0} is an estimate of thp-level
set{h > p} of interest. Since in generdfy > 0} does not excactly coincide witfh > p} we need
aperformance measurghich describes how we{lfr > 0} approximates the s¢h > p}. Probably
the best known performance measure (see e.g. Tsybakov, 199D&&hand Lindenbaum, 1997,
and the references therein) for measurable functfons — R is

Sunp() == W({f >0} & {h>p}),

whereA denotes the symmetric difference. Obviously, the smaler,(f) is, the more{ f > 0}
coincides with the-level set oh and a functiorf minimizesSn if and only if { f > 0} is p-almost
surely identical td h > p}. Furthermore, for a sequence of functidas X — R with S, h(fn) — 0
we easily see that sigh(x) — Lin-p1 (X) for p-almost allx € X, and since is absolutely continuous
with respect tqu the same convergence hol@salmost surely. Finally, it is important to note, that
the performance measusgn p is insensitive tqi-zero sets. Since we cannot detgaero sets using
a training sefl drawn fromQ" this feature is somehow natural for our model.

Although S, n o Seems to be well-adapted to our model, it has a crucial disadvantage in that we
cannot computesno(f) since{h > p} is unknown to us. Therefore, we havedstimateit. In
our model the only information we can use for such an estimationtéstaset W= (X1,...,%m)
which is i.i.d. drawn fromQ. Unfortunately, there is no method known to estimée(f) from
W with guaranteedaccuracy in terms ah, f, pandp, and we strongly believe that such a method
cannot exist. Because of this lack, we canawipirically compare different algorithms in terms of
the performance measusgn,p.

Let us now describe another performance measure which has merits sinfjaydut addi-
tionally has an empirical counterpart, i.e. a method to estimate its value with guedateuracy
by only using a test set. This performance measure is based on interghetibg.D problem as
a binary classification problem in whichis assumed to be positively labeled and infinitely many
negatively labeled samples are available by the knowledge dfo make this precise we write
Y :={-1,1} and define

Definition 1 Letp and Q be probability measures on X ar@(@®, 1). Then the probability measure
Qospon XxY is defined by

QOsH(A) = SExla(X,1) + (1 —8)Expla(x,—1)

for all measurable subsets@ X x Y. Here we used the shorthabgl(x,y) := 1a((X,Y)).
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Roughly speaking, the distributid@ ©s L measures the “1-slice” o C X x Y by sQand the
“—1-slice” by (1—s)u. Moreover, the measure := Q s can obviously be associated with a
binary classification problem in which positive samples are drawn 8Qand negative samples
are drawn from(1 —s)u. Inspired by this interpretation let us recall that the binary classification
risk for a measurable functioh: X — R and a distributio® on X x Y is defined by

Re(f) = P({(xy) :signf(x) #y}),

where we define sign=1if t > 0 and sign = —1 otherwise. Furthermore, tiBayes riskRp of P
is the smallest possible classification risk with respe, toe.

Ro = inf{ﬂ{p(f) [f:X—=R measurabl}.

We will show in the following that learning with respect 8, is equivalent to learning with
respect takp(.). To this end we begin by computing the marginal distribufirand thesupervisor
n(x) :=P(y=1|x),xe X, of P:= Qs

Proposition 2 Let 4 and Q be probability measures on X such that Q has a density h witbates
to y, and let = (0,1). Then the marginal distribution of P=- Qosp on X is R = sQ+ (1—s)p.
Furthermore, we R-a.s. have

sh(x)

PY=10= R+ 1-s

Proof As recalled in the appendiR(y = 1|x), x € X, is a regular conditional probability and hence
we only have to check the condition of Corollary 19. To this end we firstdasby the definition
of P := Qospu that for all non-negative, measurable functidnsX x Y — R we have

/ fdP — s/ f(x,l)Q(dx)+(1—s)/ f(x, —~1)p(d)
XxY X X
Therefore, forA € 4 we obtain

sh(x)
/AXY shix)+1— sp(d)g dy)

B sh(x) sh(x)
- s/ S L CITCE RN A I
/ sou(ax)

= 5 [ B (DR + (1-9) [ Ly (x ~ V()

= 1 dP.
/A><Y X x{1}

Note that the formula for the marginal distributi®y in particular shows that thg-zero sets
of X are exactly thé>¢-zero sets oK. As an immediate consequence of the above proposition we
additionally obtain the following corollary which describes fitevel set oth with the help of the
supervisom:
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Corollary 3 Let p and Q be probability measures on X such that Q has a density h witbatet®
u. Forp > 0we write s= - and define P= Qosp. Then fom(x) := P(y = 1|x), x€ X, we have

= Ip
u(in>1/2} 5 th>p}) = 0,
i.e.{n > 1/2} p-almost surely coincides witth > p}.

Proof By Proposition 2 we see thgtx) > % is p-almost surely equivalent tg&“%_s > % which
is equivalent tch(x) > =5 = p. u

The above results in particular show that every distribufar= Q ©s 1 with dQ := hdpand
se€ (0,1) determines a triplép, h,p) with p ;= (1—s)/s and vice-versa. In the following we
therefore use the shorthaggl(f) := Synp(f).

Let us now compareRp(.) with Sp(.). To this end recall, that binary classification aims to
discriminate{n > 1/2} from {n < 1/2}. In view of the above corollary it is hence no surprise that
Re(.) can serve as a surrogate f(.) as the following theorem shows:

Theorem 4 Let p and Q be probability measures on X such that Q has a density h wihates

to p. Letp > O be a real number which satisfieg{lo = p}) = 0. We write s= Flp and define

P:= QosM. Then for all sequencddy) of measurable functions, f X — R the following are
equivalent:

i) Ro(fn) — Re.
In particular, for a measurable function:fX — R we haveSp(f) = 0if and only if Rp(f) = Rp.
Proof Forn e N we definek, := {f, > 0} A {h> p}. Since by Corollary 3 we know({h > p} A
{n> %}) = 0 it is easy to see that the classification riskiptan be computed by
Re(fn) = Ko+ [ [2n—1/dR. ®
Now, {|2n — 1| = 0} is ap-zero set and henceRx-zero set. The latter implies that the measures
|2n — 1|dR« andPx are absolutely continuous with respect to each other, and hence we have
|2n —1|dR(En) — O if and only if P« (En) — 0.

Furthermore, we have already observed after Proposition Pthamdp are absolutely continuous
with respect to each other, i.e. we also have

Px(En) — 0 if and only if H(En) — 0.
Therefore, the assertion follows frasa( fn) = W(En). [ |

Theorem 4 shows that instead of usifigas a performance measure for the density level de-
tection problem one can alternatively use the classification®igk). Therefore, we will estab-
lish some basic properties of this performance measure in the following. Terdisve write
L(y,t) := 1 _w (Y1), y € Y andt € R, for the standard classification loss function. With this nota-
tion we can comput&p( f):
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Proposition 5 Let u and Q be probability measures on X. Igor 0 we write s.= Flp and define
P := Q&sU. Then for all measurable :fX — R we have

1 . :
Ro(f) = FpEQl (1,signf) + FppELﬂ (—1,signf).

Furthermore, for the Bayes risk we have

Re < min{ﬁlp,rpp}

and

1 p
= —FEpl +—E) .
RP 1 o Q-+{h<p} 1 P H-+{h>p}

Proof The first assertion directly follows from

Re(f) = P({(xy):signf(x) #y})
= P({(x,1):signf(x) = —1}) +P({(x,—1) : signf (x) = 1})
= sQ({signf = —1}) + (1—s)u({signf = 1})
= sEgl(1,signf)+ (1—s)E,l (—1,signf).

The second assertion directly follows frafp < Rp(1x) < sandZRp < Rp(—1x) < 1—s. Finally,
for the third assertion recall thdt= 1;n. 0, — 141<p) is a function which realizes the Bayes ridl.

As described at the beginning of this section our main goal is to find a peafoze measure for
the density level detection problem which has an empirical counterpariewof Proposition 5
the choice of an empirical counterpart (. ) is rather obvious:

Definition 6 Let u be a probability measure on X apd> 0. Then for T= (xy,...,X,) € X" and a
measurable function fX — R we define

Rr(f) = ﬁiil (1,signf(xi)) + %pEul (—1,signf).

If we identify T with the corresponding empirical measure it is easy to seeRhét) is the
classification risk with respect to the measiiresu for s:= Flp. Then for measurable functions
f: X — R, e.g. Hoeffding’s inequality shows tha&s (f) approximates the true classification risk
Re(f) in a fast and controllable way.

It is highly interesting that the classification rig(.) is strongly connected with another ap-
proach for the density level detection problem which is based on thellgotexcess masisee
e.g. Hartigan, 1987; Mler and Sawitzki, 1991; Polonik, 1995; Tsybakov, 1997, and ther-refe
ences therein). To be more precise let us first recall that the excesfrmsneasurable function

f: X — R is defined by
Tp(f) = Q({f > 0}) —pu({f > 0}),

whereQ, p andp have the usual meaning. The following proposition shows Rpdt) and Zp(.)
are essentially the same:
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Proposition 7 Let u and Q be probability measures on X. Igor 0 we write s.= Flp and define
P := Q&sU. Then for all measurable :fX — R we have

Ep(f) = 1-(1+p)Re(f).
Proof We obtain the assertion by the following simple calculation:

e(f) = Q({f>0})—pu({f=0}
1-Q({f <0}) —pu({f >0})
1—Q({signf = —1}) — pu({signf = 1})
= 1-(1+p)Re(f).

If Qis an empirical measure based on a traininglset the definition of£p(.) then we obtain
am empirical performance measure which we denot&fly). By the above proposition we have

Er(f) = 1—%_il(l,signfm))—pEuu—l,signf) 1 (14 p)Rs(F) @

for all measurablef : X — R. Now, given a clasgf of measurable functions fror to R the
(empirical) excess mass approach considered e.g. by Hartigan (M819r and Sawitzki (1991);
Polonik (1995); Tsybakov (1997), chooses a functfere F which maximizesZEr (.) within 7.

By equation (2) we see that this approach is actually a type of empirical risknimation (ERM).
Surprisingly, this connection has not been observed, yet. In partitudeexcess mass has only been
considered as an algorithmic tool, but not as a performance measuteadnthe papers dealing
with the excess mass approach measures the performarng€.byIn their analysis an additional
assumption on the behaviour lofaround the levep is required. Since this condition can also be
used to establish a quantified version of Theorem 4 we will recall it now:

Definition 8 Let p be a distribution on X and:lX — [0, ) be a measurable function withhdp=
1, i.e. his a density with respect to p. For> 0 and0 < g < « we say that h hap-exponent if
there exists a constant € 0 such that for all sufficiently small:+ O we have

u({lh—p| <t}) < cti. 3)

Condition (3) was first considered by Polonik (1995, Thm. 3.6). Thisepatso provides an
example of a class of densities &4, d > 2, which has exponemt= 1. Later, Tsybakov (1997,
p. 956) used (3) for the analysis of a density level detection method whizdsiesd on a localized
version of the empirical excess mass approach.

Interestingly, condition (3) is closely related to a concept for binary iflesson called the
Tsybakov noise exponent (see e.g. Mammen and Tsybakov, 199%aKay 2004; Steinwart and
Scovel, 2004) as the following proposition proved in the appendix shows:

Proposition 9 Let y and Q be distributions on X such that Q has a density h with respectur .

p > 0 we write s= Flp and define P= Qosp. Then for0 < g < « the following are equivalent:
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i) h hasp-exponeng.

ii) P has Tsybakov noise exponent q, i.e. there exists a constar@t€Lich that for all sufficiently
small t> 0 we have

P(|2n—1/<t) < C-td 4)

In recent years Tsybakov's noise exponent has played a cratéafar establishing learning
rates faster than~2 for certain algorithms (see e.g. Mammen and Tsybakov, 1999; Tsyh2B0«;
Steinwart and Scovel, 2004). Remarkably, it was already observeddoymen and Tsybakov
(1999), that the classification problem can be analyzed by methods dgigileseloped for the
DLD problem. However, to our best knowledge the exact relation betwe=DLD problem and
binary classification has not been presented, yet. In particular, itdideen observed yet, that this
relation opens @on-heuristicway to use classification methods for the DLD problem as we will
discuss in the next section.

As already announced we can also establish inequalities betssesamd Rp(.) with the help of
the p-exponent. This is done in the following theorem:

Theorem 10 Letp > 0 and p and Q be probability measures on X such that Q has a density h with
respect to u. For s= Flp we write P:= QSs . Then the following statements hold:

i) If h is bounded then there exists a constant 6 such that for all measurable :fX — R we
have

Re(f) —Re < cSp(f).

i) If h has p-exponent ¢t (0, ] then there exists a constantcO such that for all measurable

f : X — R we have
q

Self) < o(Re(f) — Re) 7.

Proof The first assertion directly follows from (1) and Proposition 2. The sd@ssertion follows
from Proposition 9 and a result of Tsybakov (2004, Prop. 1). |

Remark 11 We note that many of the results of this section can be generalized to thevlcase
Q is not absolutely continuous with respect to 1. Indeed, select an auxitfi@asures such that
both Q and p are absolutely continuous with respecv.toFor example one could choose=

Q—;“. Consequently we have©h;v and pu= hyv for some real valued functiong land tp. Then

Proposition 2 holds with fx) := {03, where one defines the righthand side tocbghen h(x) =
ho(x) = 0. One can also show that h isR.s. independent of the choicewf Corollary 3 holds
where the measure of the symmetric difference is evaluated with either (Hmvwever it appears
that only the “Rp(f) — Rp = Sp(f) — 0" assertion of Theorem 4 holds instead of equivalence.
Finally, Propositions 5 and 7 hold, Proposition 9 holds with a suitable genextitin of Definition

8 of p-exponent, and the second assertion of Theorem 10 holds.
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3. A Support Vector Machine for Density Level Detection

In the previous section we have shown that the DLD problem can be iatethas a binary clas-
sification problem in which one conditional class probability is known. We sbaw that this
interpretation has far reaching algorithmic consequences. To this end éstsume that we give
each sample of our training s€t= (x,...,X,) drawn fromQ the label 1. Additionally we gen-
erate a second training st = (x,...,x/,) from pand label each sample of it with1l. Merging
these labeled sample sets gives a new training set which then can be usdainayy classifica-
tion algorithm. By our considerations in the previous section it seems reasadimaexpect that
the used classification algorithm actually learns the DLD problem providedttbaalgorithm is
well-adjusted to the sample set sizes and the parameter

In the following we work this high-level approach out by constructing &MSor the DLD
problem. To this end l&k: X x X — R be a positive definite kernel with reproducing kernel Hilbert
space (RKHSH. Furthermore, left be a known probability measure ghandl : Y x R — [0, )
be thehingeloss function, i.el(y,t) := max{0,1—yt}, y€ Y, t € R. Then for a training set
T =(x1,...,%) € X", aregularization parametgr> 0, andp > 0 we initially define

frun == arg{g,@\\ﬂl% le pEX~ul( 1, f(x)), (5)
and
(Fran Bryn) 1= argminh [ + oo Z' (LF(6)+5)+ ol (-1, F () +). (6)
A P
c

The decision function of th&VM without offseis fr,, : X — R and analogously, th8VM with
offsethas the decision functiofy it bT wr s X — R

Although the measurg is known, almost always the expectati@in. I (—1, f(x)) can only
be numerically computed which requires finitely many function evaluatiorfs ¢f the integrand
of this expectation was smooth we could use some known deterministic methodsosedhese
function evaluations efficiently. However, since the hinge loss is notrdifteable there is no such
method known to us. According to our above plan we will therefore usetspﬂiln— (X455 X))
which are randomly sampled fromto approximateEy.,l (—1, f(x)) by 2 S5 1I( 1,f(x)). We
denote the corresponding approximate solutions of (5) and (6 by and(fT T )\;bTT’ ), re-
spectively. Furthermore, in these cases the formulations (5) and (&ertical to the standard
L1-SVM formulations besides the weighting factors in front of the empiricadreaerms. There-
fore, the derivation of the corresponding dual problems is straigh#fiawFor example, the dual
problem for (6) can be written as follows:

max i_ﬁlai+iglori’—%iéluia,-k(xi,xj)—%l nz:1 k(X )+ Z i k(x;, Xj)

s.t. Eui—goﬂzo
=T =R (7)
0<a< (ﬁp) i=1,..n,
0<al < (lipp)n” i=1,..,n
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The fact that the SVM for DLD essentially coincides with the standard LM3so allows us to
modify many known results for these algorithms. For simplicity we will only statersistency
result which describes the case where wenisen random samples fromin order to approximate
the expectation with respect o However, it is straight forward to extend the result to the more
general case af = rn samples for some positivec Q. In order to formulate the result we have to
recall the notion of universal kernels (see Steinwart, 2001). To tlidetrX be a compact metric
space, say a closed and bounded subsBfofWe denote the space of all continuous functions on
X by C(X). As usual, this space is equipped with the supremum Hofp Then the RKHSH of a
continuous kernet on X is embedded int€(X), i.e.H C C(X), where the inclusion is continuous.
We say that the kernddis universal if in additionH is dense irC(X), i.e. for everyf € C(X) and
everye > 0 there exists g € H with || f —g]|,, < €. Some examples of universal kernels including
the Gaussian RBF kernels were presented by Steinwart (2001).

Now we can formulate the announced result:

Theorem 12 (Universal consistency)et X be a compact metric space and k be a universal kernel
on X. Furthermore, lep > 0, and p and Q be probability measures on X such that Q has a density
h with respect to yu. For s= Flp we write P:= Q&g . Then for all sequence3,,) of positive
numbers with\, — 0 and r?\ﬁ — oo and for alle > 0 we have

(Q® u)”((T,T’) eXMx X": Rp(fryin) < iRere) 0,

for n — . The same result holds for the SVM with offset if one replaces the condkfon:no
by the slightly stronger assumptiondy logn — c. Finally, for both SVMs it suffices to assume
N} — oo for somed > 0 if one uses a Gaussian RBF kernel.

Sketch of the Proof Let us introduce the shorthand= Q ® | for the product measure 6 and L.
Moreover, for a measurable functidn X — R we define the functioh® f : X x X — R by

1 P
| o f(x,X):= 1erI(l,f(x))Jr1er (-1, f(X)), x,X € X.
Furthermore, we writéo f(x,y) :=1(y, f(X)), x€ X,y € Y. Then it is easy to check that we always
haveE,l ® f =Epl o f. Analogously, we seBrq1/| © f =Ero o f, if T@ T’ denotes the product
measure of the empirical measures base@ andT’. Now, using Hoeffding’s inequality fov it is
easy to establish a concentration inequality in the sense of Steinwart (2805JIL5). The rest of
the proof is analogous to the steps of Steinwart (2005). [ |

Recall that by Theorem 4 consistency with respecR#0.) is equivalent to consistency with
respect taSp(.). Therefore we immediately obtain the following corollary

Corollary 13 Under the assumptions of Theorem 12 both the DLD-SVM with offset andutith
offset are universally consistent with respecs0.), i..Sp( fr . +br ) — 0andSp(frri5,) — 0
in probability.

Remark 14 We have just seen that our DLD-SVM whose design was based on theégsienibed
in the beginning of this section can learn arbitrary DLD problems. It shdaddalmost clear that
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a similar approach and analysis is possible for many other classificatiorridhgas. This gives a
strong justification for the well-known heuristic of adding artificial samplesrtoraaly detection
problems with unlabeled data. However, it is important to note that this justicanly holds for
the above sampling plan and suitably adjusted classification algorithms, atdtiher, heuristic
sample plans may actually lead to bad learning performance (cf. the dguamhof Section 5)

4. Experiments

We present experimental results for anomaly detection problems wheret#iéssa subset oRY.

A total of four different learning algorithms are used to produce funstiowhich declare the set
{x: f(x) < 0} anomalous. A distinct advantage of the formulation in Section 2 is that it allows us
to makequantitativecomparisons of different functions by comparing estimates of theirgigk )
which can be computed from sample data. In particular consider a datais¢88) whereS
contains samples drawn fro@ and S contains samples drawn from(in what follows (S S) is
either training data, validation data, or test data). Based on Definition 6fivediee empirical risk

of f with respect tqS, S) to be

1 . p .

Riss)(f) EDIE ngl(l,&gnf(x))Jr T+p)S| X;I( 1,signf (x)). (8)
A smaller risk indicates a better solution to the DLD problem. Since theRisk) depends ex-
plicitly on p additional insight into the performance bfcan be obtained from the two error terms.
Specifically the quantityé Yxes! (1,signf(x)) is an estimate oR({f < 0}) which we call the
alarm rate (i.e. the rate at which samples will be labeled anomalous Jpyand the quantity
ﬁ Sxes | (—1,signf(x)) is an estimate ofi({f > 0}) which we call thevolumeof the predicted
normal set. There is an obvious trade-off between these two quantitiefgritbe optimal solu-
tions for fixedp smaller alarm rates correspond to larger volumes and vice versa. Abso tlie
expression for the risk in Proposition 5 it is clear that for any two functwitis the same alarm rate
we prefer the function with the smaller volume and vice versa. More generdign comparing
different solution methods it is useful to consider the values of thesetitjgarthat are achieved
by varying the value op in the design process. Sugerformance curveare presented in the
comparisons below.

We consider three different anomaly detection problems, two are synthdtan is an applica-
tion in cybersecurity. In each case we define a problem instance to béeaddpsisting of samples
from Q, samples fromy, and a value for the density level We compare four learning algorithms
that accept a problem instance and automatically produce a funttitine density level detec-
tion support vector machine (DLD-SVM), the one-class support vecémhine (LCLASS-SVM),
the Gaussian maximum-likelihood (GML) method, the mixture of Gaussians maximulihdiéd
(MGML) method! The first is the algorithm introduced in this paper, the second is an algorithm
based on the the one-class support vector machine introduced bik&uhet al. (2001) and the
others (including the Parzen windows method) are based on some of theonusion paramet-
ric and non-parametric statistical methods for density-based anomaly detecR8. Each of the
four learning algorithms is built on a core procedure that contains one i@ fre@ parameters. The
availability of a computable risk estimate makes it possible to determine values$emhemeters

1. We also experimented with a Parzen windows method, but do not inttledesults because they were substantially
worse than the other methods in every case.
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using a principled approach that is applied uniformly to all four core ghoes. In particular this
is accomplished as follows in our experiments. The data in each problemdessgartitioned into
three pairs of sets; the training s€1§ T'), the validation set§V,V’) and the test set®,W’). The
core procedures are run on the training sets and the values of thafeeaqiers are chosen to min-
imize the empirical risk (8) on the validation sets. The test sets are used to egigrmi@nance.
We now describe the four learning algorithms in detail.

In the DLD-SVM algorithm we employ the SVMiith offsetdescribed in Section 3 with a
Gaussian RBF kernel

k(x,X) = e OIxI?,

With A ando? fixed and the expected vallg..,l (—1, f(x) + b) in (6) replaced with an empirical
estimate based of’ this formulation can be solved using, for example, €R8VC option in the
LIBSVM software (see Chang and Lin, 2004) by settthg 1 and setting the class weightswe =
1/(A[T|(1+p)) andw_1 = p/(A[T’|(14p)). The regularization parametérsandao? are chosen to
(approximately) minimize the empirical rigky ) (f) on the validation sets. This is accomplished
by employing a grid search ovarand a combined grid/iterative search o@gr In particular, for
each value ol from a fixed grid we seek a minimizer ovef by evaluating the validation risk at a
coarse grid ob? values and then performing a Golden search over the interval defintg tiyo
a2 values on either side of the coarse grid minimtims the overall search proceeds tfec?)
pair with the smallest validation risk is retained.

The 1CLASS-SVM algorithm is based on the one-class support vectdnimeamtroduced
by Sctolkopf et al. (2001). Recall that this method neither makes the assumptiothénatis a
reference distributiomu nor usesT’ in the production of its decision functioh. Consequently
it may be harder to compare the empirical results of the 1CLASS-SVM with thiodee other
methods in a fair way. Again we employ the Gaussian RBF kernel with widtinpsteac?. The
one-class formulation of Sékkopf et al. (2001) contains a parametewhich controls the size of
the set{x € T : f(x) <0} (and therefore controls the meas@€{ f < 0}) through generalization).
With v and o? fixed a solution can be obtained using thre-class-SVM  option in theLIBSVM
software. To use this 1-class algorithm to solve an instance of the DLDegpnolve determine
automatically as a function @f. In particular bottv ando? are chosen to (approximately) minimize
the validation risk using the search procedure described above forlthe /M where the grid
search fol\ is replaced by a Golden search (o@r1]) for v.

The GML algorithm produces a functioh= g —t wheret is an offset andy is a Gaussian
probability density function whose mean and inverse covariance aravdeésl from maximum
likelihood estimates formed from the training data(see e.g. Duda et al., 2000). In particular
the inverse covariance takes the fo(E+ Al)~! whereZ is the maximum likelihood covariance
estimate and the regularization tekins a scaled identity matrix which guarantees that the inverse is
well-defined and numerically stable. Once the parametegsaoé determined the offsets chosen
to minimize the training riskR;r /. The regularization parametris chosen to (approximately)
minimize the validation risk by searching a fixed grid\ofalues.

The MGML algorithm is essentially the same as the GML method excepg tha mixture oK
Gaussians whose maximum likelihood parameter estimates are determined ugtngeh&ation-
Maximization (EM) algorithm of Dempster et al. (1977). The same regularizgoameter is used

2. If the minimum occurs at more than one grid point or at an end poinGtilden search interval is defined by the
nearest grid points that include all minimal values.
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Train | Validate| Test
Number ofQ samples| 1000 500 100,000
Number ofu samples| 2000 | 2000 | 100,000

A grid (DLD-SVM/GML/MGML) | 1.0, 0.5, 0.1, 0.05, 0.01, ..., 0.0000005, 0.0000001
o grid (DLD-SVM/1CLASS-SVM)| 0.001, 0.01, 0.05, 0.1, 0.5, 1.0, 5.0, 10.0, 100/0

Table 1: Parameters for experiments 1 and 2.

for all inverse covariance estimates and bdtandK are chosen to (approximately) minimize the
validation risk by searching a fixed grid X, K) values.

Data for the first experiment are generated using an approach des@memic a type of real
problem wherex is a feature vector whose individual components are formed as lineari-comb
nations of raw measurements and therefore the central limit theorem is ug®wdke a Gaussian
assumption foR. Specifically, samples of the random variakle Q are generated by transforming
samples of a random variahlethat is uniformly distributed ovel0, 1]2”. The transform it = Au
whereA is a 10-by-27 matrix whose rows contain betwaes 2 andm =5 non-zero entries with
value I/m (i.e. each component of is the average of uniform random variables). Thu3 is
approximately Gaussian with me&@.5,0.5) and supporf0,1]*°. Partial overlap in the nonzero
entries across the rows Afguarantee that the componentxaire partially correlated. We choge
to be the uniform distribution ove®, 1]'°. Data for the second experiment are identical to the first
except that the vectdn,0,0,0,0,0,0,0,0,1) is added to the samplesxfvith probability 0.5. This
gives a bi-modal distributio® that approximates a mixture of Gaussians. Also, since the support
of the last component is extended®2] the corresponding componentofs also extended to this
range. A summary of the data and algorithm parameters for experimentsZlisstown in Table
1. Note that the test set sizes are large enough to provide very acestiatates of the risk.

The four learning algorithms were applied for valuep odnging from.01 to 100 and the results
are shown in Figure 1. Figures 1(a) and 1(c) plot the empiricalRigky.) versusp while Figures
1(b) and 1(d) plot the corresponding performance curves. Sinaathds approximately Gaussian
it is not surprising that the best results are obtained by GML (first éxgert) and MGML (both
experiments). However, for most valuespothe next best performance is obtained by DLD-SVM
(both experiments). The performance of 1CLASS-SVM is clearly worar the other three at
smaller values op (i.e. larger values of the volume), and this difference is more substantiat in th
second experiment. In addition, although we do not show it, this diffefisres&en more pronounced
(in both experiments) at smaller training and validation set sizes. Thedesrassignificant be-
cause values @ substantially larger than one appear to have little utility here since they yield alarm
rates that do not conform to our notion that anomalies are rare evergslditionp > 1 appears
to have little utility in the general anomaly detection problem since it defines ananiraliegions
where the concentration @ is much larger than the concentrationpfwhich is contrary to our
premise that anomalies are not concentrated.

The third experiment considers an application in cybersecurity. The gdalrsonitor the
network traffic of a computer and determine when it exhibits anomalous behakie data for
this experiment was collected from an active computer in a normal workinigoenvent over the
course of 16 months. The features in Table 2 were computed from theimgitigetwork traffic.
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The averages were computed over one hour time windows giving a totdbé#1feature vectors.
The feature values were normalized to the raf@@&] and treated as samples fro;n ThusQ
has support irf0,1]*2. Although we would like to choosg to capture a notion of anomalous
behavior for this application, only the DLD-SVM method allows such a chditeis, since both
GML and MGML define densities with respect to a uniform measure and wetewisompare with
these methods, we chopéo be the uniform distribution ove, 1]*2. A summary of the data and
algorithm parameters for this experiment is shown in Table 3. Again, we Mi&eltb point out that
this choice may actually penalize the 1CLASS-SVM since this method is not loasée notion
of a reference measure. However, we currently do not know any affggoach which treats the

T T T
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1CLASS-SVM with its special strucure in a fairer way.

The four learning algorithms were applied for valuep odnging from.005 to 50 and the results
are summarized by the empirical risk curve in Figure 2(a) and the corrdsgoperformance curve
in Figure 2(b). The empirical risk values for DLD—SVM and MGML are rig&entical except for
p = 0.05 where the MGML algorithm happened to cho#se- 1 to minimize the validation risk
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Feature Number | Description

Number of sessions

Average number of source bytes per session
Average number of source packets per session
Average number of source bytes per packet
Average number of destination bytes per sessiagn
Average number of destination packets per session
Average number of destination bytes per packet
Average time per session

Number of unique destination IP addresses
Number of unique destination ports

Number of unique destination IP

addresses divided by total number of sessions
Number of unique destination

ports divided by total number of sessions

O©C O NOOOUILDWNPEF

el
N )

=
N

Table 2: Outgoing network traffic features.

Train | Validate | Test
Number ofQ samples| 4000 2000 5664
Number ofu samples| 10,000 100,000| 100,000

X grid (DLD—SVM/GML/MGML) 0.1,0.01, 0.001, ..., 0.0000001
02 grid (DLD-SVM/1CLASS-SVM)| 0.001, 0.01, 0.05, 0.1, 0.5, 1.0, 5.0, 10.0, 100.

Table 3: Parameters for cybersecurity experiment.
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(i.e. the MGML and GML solutions are identical pt= 0.05). Except for this case the empirical
risk values for DLD-SVM and MGML are much better than 1CLASS-SVM &idL at nearly
all values ofp. The performance curves confirm the superiority of DLD-SVM and MGRlut
also reveal differences not easily seen in the empirical risk curvasexample, all four methods
produced some solutions with identical performance estimates for diffeadunds ofp which is
reflected by the fact that the performance curves show fewer poimstta@orresponding empirical
risk curves.
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(a) Risk curves. (b) Performance curves.

Figure 2: Cybersecurity experiment.

5. Discussion

A review of the literature on anomaly detection suggests that there are magsytovaharacterize
anomalies (see e.g. Markou and Singh, 2003a,b). In this work we asshategzhomalies are not
concentrated. This assumption can be specified by choosing a refeneasur@ which determines
a density and a level valye The density then quantifies the degree of concentration and the density
level p establishes a threshold on the degree that determines anomalies.Eémdyp play key
roles in thedefinitionof anomalies. In practice the user choogesdp to capture some notion of
anomaly that he deems relevant to the application.

This paper advances the existing state of “density based” anomaly detictiom following
ways.

e Most existing algorithms make an implicit choiceiofusually the Lebesgue measure) whereas
our approach allowp to be any measure that defines a density. Therefore we accommodate
a larger class of anomaly detection problems. This flexibility is in particular impowhen
dealing with e.g. categorical data. In addition, it is the key ingredient wheatirdy with
hidden classification problemg/hich we will discuss below.

e Prior to this work there have been no methods known to rigorously estimatettfoerpance
based orunlabeleddata. Consequently, it has been difficult to compare different methods
for anomaly detection in practice. We have introduced an empirical perfmenaeasure,
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namely the empirical classification risk, that enables such a comparisioartloypar, it can
be used to perform a model selection based on cross validation. Furtieere infinite
sample version of this empirical performance measure is asymptotically &muiva the
standard performance measure for the DLD problem and under mild assosipequalities
between them have been obtained.

e By interpreting the DLD problem as a binary classification problem we caweadi-known
classification algorithms for DLD if we generate artificial samples fforiiVe have demon-
strated this approach which is a rigorous variant of a well-known heuf@tianomaly de-
tection in the formulation of the DLD-SVM.

These advances have created a situation in which much of the knowledtgssification can now
be used for anomaly detection. Consequently, we expect substantacadvin anomaly detection
in the future.

Finally let us consider a different learning scenario in which anomaly tietemethods are also
commonly employed. In this scenario we are interested in solving a binaryfidassn problem
given only unlabeled data. More precisely, suppose that there is a digirly on X x {—1,1}
and the samples are obtained from tharginal distributionvy on X. Since labels exist but are
hidden from the user we call this lddden classification problem (HCPMHidden classification
problems for example occur in network intrusion detection problems whereintggactical to
obtain labels. Obviously, solving a HCP is intractable if no assumptions are omatie labeling
process. One such assumption is that one class consists of anomaldysologentrated samples
(e.g. intrusions) while the other class reflects normal behaviour. Makiag@#sumption rigorous
requires the specification of a reference measuamd a thresholg. Interestingly, whervy is
absolutely continuodswith respect ta/( . |y = 1) solving the DLD problem with

Q = vx
o= v(ly=1)
p = 2v(Xx{1})

gives the Bayes classifier for the binary classification problem assdaite v. Therefore, in
principle the DLD formalism can be used to solve the binary classificationgmrobin the HCP
however, although information aboQt= vy is given to us by the samples, we must rely entirely
on first principle knowledge tguess pandp. Our inability to choosgt andp correctly determines
the model errorthat establishes the limit on how well the classification problem associated with
can be solved with unlabeled samples. This means for example that wheoraalardetection
method is used to produce a classifiefior a HCP its anomaly detection performarge( f) with
P:=Qospands:= rlp may be very different from its hidden classification performafgef ).

In particular®p(f) may be very good, i.e. very close £, while R, (f) may be very poor, i.e. far
above®,. Another consequence of the above considerations is that the comnaticg it mea-
suring the performance of anomaly detection algorithms on (hidden) bifessification problems

is problematic. Indeed, the obtained classification errors depend on tred eronk and thus they
provide an inadequate description how well the algorithms solve the anontaistida problem.

3. This assumption is actually superfluous by Remark 11.
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Furthermore, since the model error is strongly influenced by the partid@&it is almost impos-
sible to generalize from the reported results to more general statementshoddbe classification
performance of the considered algorithms.

In conclusion although there are clear similiarities between the use of the Dinafism for
anomaly detection and its use for the HCP there is also an important diffellertbe first case the
specification oftandp determines thdefinitionof anomalies and therefore there is no model error,
whereas in the second case the model error is determined by the chpiead.
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Appendix A. Regular Conditional Probabilities

In this apendix we recall some basic facts on conditional probabilities gutreconditional prob-
abilities. We begin with

Definition 15 Let (X, 4,P) be a probability space and C 4 a sube-algebra. Furthermore, let
A€ 4 and g: (X,C) — R be R-integrable. Then g is called a conditional probability of A with

respect toC if
/ 15dP = / gdP
C C

for allC € C. In this case we write (A|C) := Q.

Furthermore we need the notion of regular conditional probabilities. To tidslet (X, 4)
and(Y,B) be measurable spaces dnthe a probability measure giX x Y, 4 ® B). Denoting the
projection ofX x Y ontoX by 1y we Writengl(ﬂl) for the sube-Algebra of4 ® B which is induced
by m«. Recall, that this sulo-Algebra is generated by the collection of the gketsY, A< 4. For
later purpose, we also notice that this collection is obviously stable agaiitst ifitersections.
Finally, Px denotes the marginal distribution Bfon X, i.e. Px(A) = P(1i *(A)) for all Ac 4.

Now let us recall the definition of regular conditional probabilities:

Definition 16 Amap R.|.) : B x X — [0,1] is called aregular conditional probabilitef P if the
following conditions are satisfied:

i) P(.|x) is a probability measure ofy, B) for all x € X.
i) x — P(B|X) is 4-measurable for all Bz B.

i) Forall A € 4, Be B we have
P(Ax B) — /AP(B]x)R((dx).

Under certain conditions such regular conditional probabilities exist. Tadre precise, recall
that a topological space is calledlishif its topology is metrizable by a complete, separable metric.
The following theorem in the book of Dudley (2002, Thm. 10.2.2) givesfiicgnt condition for
the existence of a regular conditional probability:
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Theorem 17 If Y is a Polish space then a regular conditional probability.P) : B x X — [0,1]
of P exists.

Regular conditional probabilities play an important role in binary classificairoblems. In-
deed, given a probability measuPeon X x {—1,1} the aim in classification is to approximately
find the se{P(y = 1/x) > 1}, where “approximately” is measured by the classification risk.

Let us now recall the connection between conditional probabilities andbregpnditional prob-
abilities (see Dudley, 2002, p. 342 and Thm. 10.2.1):

Theorem 18 If a conditional probability F.|.) : B x X — [0, 1] of P exists then we P-a.s. have
P(Bjx) = P(X x B|rg*(2))(x,Y).

As an immediate consequence of this theorem we can formulate the followittftteegular
conditional probabilities.

Corollary 19 LetBe Band f: X — [0,1] be 4-measurable. Then(k) = P(B|x) Px-a.s. if

/ foT[de:/ 1X><BdP
AxY AxY

forall A € 4.

Proof The assertion follows from Theorem 18, the definition of conditional abdties and the
fact that the collection of the sefsx Y, A € 4 is stable against finite intersections. |

Appendix B. Proof of Proposition 9

Proof of Proposition 9 By Proposition 2 we havgn — 1| = H}%g\ and hence we observe

{lan—1/ <t} {lh—p| < (h+p)t}

{—(h+pt<h—p<(h+p)t}

1-t 1+t
= B <h<—}
{1+tp_ _1—tp ’
whenever O<t < 1.

Now let us first assume th& has Tsybakov exponeqt> 0 with some constar@ > 0. Then
using

1t 1+t
{lh—p[<tp} = {(1-t)p<h<(1+t)p} C {mpghgﬁp}

we find
Pc({Ilh—p|<tp}) < Px({|2n—1|<t}) < Ct9,

which by Px = 517Q+ 5971 shows thah hasp-exponent .
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Now let us conversely assume thahas p-exponentg with some constant > 0. Then for
0<t<1we have

Q({lh—pl<t}) = /Xlﬂh—mst}hdu

- 11h_oj<prhd

/{h 14y Hin-pisyhM

1 / Lip oenyd
(1+p) thetipy N-PI<U H
(1+pu({[h—pl <t}).

IA

UsingPx = 517Q+ 5411 we hence find

Pe({lh-pl <t}) < 2u({lh-pl <t}) < 2ct
for all sufficiently smalk € (0,1). Let us now defing := % andt; ;= % This immediately gives

1-t = 171 and 1+t = 7. Furthermore, we obviously also haye< t;. Therefore we find

{i:pghﬁiip} = {1-t)p<h<(1+t)p}
c {A-t)p<h<(1+t)p}
= {lh—p| <tp}.

1

Hence for all sufficiently smatl > 0 witht < T2

i.e.trp < 1, we obtain

P({|2n—-1/ <t}) < P({|h—p| <tp}) < 2C(tp)9 < 2C(1+2p)%I9.

From this we easily get the assertion. |
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Abstract

A new algorithmic framework called denoising source sefiamaDSS) is introduced. The
main benefit of this framework is that it allows for the easyalepment of new source separation
algorithms which can be optimised for specific problems. hiis framework, source separation
algorithms are constructed around denoising procedutas.rdsulting algorithms can range from
almost blind to highly specialised source separation #lgos. Both simple linear and more com-
plex nonlinear or adaptive denoising schemes are consid&ame existing independent compo-
nent analysis algorithms are reinterpreted within the D@s&work and new, robust blind source
separation algorithms are suggested. The framework igatkds a one-unit equivalent to an EM
algorithm for source separation. However, in the DSS fraamkw is easy to utilise various kinds
of denoising procedures which need not be based on gereeratidels. In the experimental sec-
tion, various DSS schemes are applied extensively to datifiata, to real magnetoencephalograms
and to simulated CDMA mobile network signals. Finally, wais extensions to the proposed DSS
algorithms are considered. These include nonlinear ohServmappings, hierarchical models and
over-complete, nonorthogonal feature spaces. With thetemsions, DSS appears to have rele-
vance to many existing models of neural information procgss
Keywords: blind source separation, BSS, prior information, dengisdenoising source separa-
tion, DSS, independent component analysis, ICA, magnegg@ralograms, MEG, CDMA

1. Introduction

In recent years, source separation of linearly mixed signals has atteaatie range of researchers.
The focus of this research has been on developing algorithms that make d@sgumptions about
the underlying process, thus approaching blind source separati@).(Bependent component
analysis (ICA) (Hywarinen et al., 2001b) clearly follows this tradition. This blind approachggive
the algorithms a wide range of possible applications. ICA has been a valoahlén particular,

in testing certain hypotheses in magnetoencephalogram (MEG) and etegipbalogram (EEG)
analysis (see Vigrio et al., 2000).
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Nearly always, however, there is further information available in the axeatal setup, other
design specifications or from accumulated knowledge due to scientifiarobseFor example in
biomedical signal analysis (see Gazzaniga, 2000; Rangayyan, 28@2ful design of experimental
setups provides us with presumed signal characteristics. In man-madelteph such as a CDMA
mobile system (see Viterbi, 1995), the transmitted signals are even moreteglstric

The Bayesian approach provides a sound framework for including jprfiormation into in-
ferences about the signals. Recently, several Bayesian ICA algorfthwesbeen suggested (see
Knuth, 1998; Attias, 1999; Lappalainen, 1999; Miskin and MacKay,12@houdrey and Roberts,
2001; d. F. R. Hgjen-Sgrensen et al., 2002; Chan et al., 2003). dffezyaccurate estimations
for the linear model parameters. For instance, universal densityxdp@tion using a mixture of
Gaussians (MoG) may be used for the source distributions. Furthermerar,chical models can be
used for incorporating complex prior information (see Valpola et al., 208&yvever, the Bayesian
approach does not always result in simple or computationally efficientitigcs.

FastICA (Hy\warinen, 1999) provides a set of algorithms for performing ICA baseapbimis-
ing easily calculable contrast functions. The algorithms are fast but oftea accurate results can
be achieved by computationally more demanding algorithms (Giannakopowbs¥399), for ex-
ample by the Bayesian ICA algorithms. Valpola and Pajunen (2000) analyséaictors behind the
speed of FastICA. The analysis suggested that the nonlinearity usedti@/&aan be interpreted
as denoising and taking Bayesian noise filtering as the nonlinearity resufeest Bayesian ICA.

Denoising corresponds to procedural knowledge while in most apipesdo source separation,
the algorithms are derived from explicit objective functions or generatigdels. This corresponds
to declarative knowledge. Algorithms are procedural, however. Thokdhtive knowledge has to
be translated into procedural form, which may result in complex and compudijialemanding
algorithms.

In this paper, we generalise the denoising interpretation of Valpola anad?aj2000) and
introduce a source separation framework called denoising sourceaiepgdDSS). We show that
it is actually possible to construct the source separation algorithms aroemtivising methods
themselves. Fast and accurate denoising will result in a fast and seca@aration algorithm.
We suggest that various kinds of prior knowledge can be easily forntuilateerms of denoising.
In some cases a denoising scheme has been used to post-processithaftes separation (see
Vigneron et al., 2003), but in the DSS framework this denoising can lzefasthe source separation
itself.

The paper is organised as follows: After setting the general problemezrisource separation
in Sec. 2, we review an expectation-maximisation (EM) algorithm as a solutiogeexative linear
model and a one-unit version of it (Sec. 2.1). We interpret the nonligesr denoising and call this
one-unit algorithm DSS. Equivalence of the linear DSS and a power méthsbbwn in Sec. 2.2.
In Sec. 2.3, the convergence of the DSS algorithms is analysed. Theli&&is analysed via the
power method. To shed light on the convergence of the nonlinear DS&fime local eigenvalues,
giving analysis similar to the linear case. The applicability of two common extensiathe power
method—deflation and spectral shift—are discussed in the rest of thersdoti®ec. 3, we suggest
an approximation for an objective function that is maximised by the DSS algoritiWes then
introduce some practical denoising functions in Sec. 4. These denoigiotidns are extensively
applied to artificial mixtures (Sec. 5.1) and to MEG recordings (Secs. 8.3.8). We also apply a
DSS algorithm to bit-stream recovery in a simulated CDMA network (Sec. bisally, in Sec. 6,

234



DENOISING SOURCE SEPARATION

we discuss extensions to the DSS framework and their connections to mbdelsal information
processing.

2. Source Separation by Denoising

Consider a linear instantaneous mixing of sources:

X =AS+v, (1)
where
X1 S
X2 S
X = . ) S=
XM SN

The source matriXs consists ofN sources. Each individual sourseconsists ofT samples, that
is,s =[s(1)...s(t)...s(T)]. Note that in order to simplify the notation throughout the paper,
we have defined each source to be a row vector instead of the more traditadomn vector.
The symbolt often stands for time, but other possibilities inclugeg, space. For the rest of
the paper, we refer tb as time, for convenience. The observatidhgonsist ofM mixtures of
the sources, that i = [X(1) ... x(t) ... %(T)]. Usually it is assumed thafl > N. The linear
mappingA = [a; a; - - - an] consists of the mixing vectoes = [az ayi ... avi] ", and is usually called
the mixing matrix. In the model, there is some Gaussian ngiseo. The sources, the noise and
hence also the mixtures can be assumed to have zero mean without losingligebecause the
mean can always be removed from the data.

If the sources are assumed i.i.d. Gaussian, this is a general, linear faatgsia model with
rotational invariance. There are several ways to fix the rotatiento separate the original sources
S. Some approaches assume structure for the mixing matrix. If no structwsuisiad, the solution
to this problem is usually called blind source separation (BSS). Note thaipieach is not really
blind, since one always needs some information to be able to fix the rotatiom s piece of
information is the non-Gaussianity of the sources, which leads to the repempiljar ICA methods
(see Hyarinen et al., 2001b). The temporal structure of the sources may beagsems in Tong
et al. (1991); Molgedey and Schuster (1994); Belouchrani et 897}t Ziehe and Nlller (1998);
Pham and Cardoso (2001).

The rest of this section is organised as follows: first we review an EMridthgo for source
separation and a one-unit version derived from it in Sec. 2.1. Then&-Masteps have natural
interpretations as denoising of the sources and re-estimation of the mixitgg, vespectively, and
the derived algorithm provides the starting point for the DSS framewaorkek. 2.2, we show that
a Gaussian source model leads to linear denoising. Such a DSS is egfuigaRCA of suitably
filtered data, implemented by the classical power method. The convergktime@SS algorithms
are discussed in Sec. 2.3. For the linear DSS algorithms, the well-knowargemce results of the
power method are used. Furthermore, the same results may be exploiteel fimniinear case by
defining local eigenvalues. They play a similar role as the (global) eigeswatuthe linear case.
Deflation and symmetric method for extracting several sources are relievgec. 2.4. Sec. 2.5
discusses a speedup technique called spectral shift.
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2.1 One-Unit Algorithm for Source Separation

The EM algorithm (Dempster et al., 1977) is a method for performing maximum ldeditesti-
mation when part of the data is missing. One way to perform EM estimation in tleeotdisear
models is to assume that the missing data consists of the sources and that themaixingeeds to
be estimated. In the following, we review one such EM algorithm by BermoddCamdoso (1999)
and a derivation of a one-unit version of it by Hyrinen et al. (2001b).

The algorithm proceeds by alternating two steps: 1) E-step and 2) M-btahe E-step, the
posterior distribution for the sources is calculated based on the knowamththe current estimate
of the mixing matrix using Bayes’ theorem. In the M-step, the mixing matrix is fitted tonéve
source estimates. In other words:

E —step :computg(S) = p(S|A, X) = p(X|A, S)p(S)/p(X|A) (2)
M — step :findAnew = argmaxEy s [log p(S, X|A)] = CysCasa- (3)

The covariances are computed as expectationsgf@r

17 17
Cxs= 3 EX()st )TIX,A] = = Zi )TIX,A] 4)
t=
1 T
Css= f E[S t)S<t)T’X7A]7 (5)

wherex(t) = [xy(t) -+~ xi(t) --- xm(t)]T ands(t) = [sy(t) -~ sj(t) --- sy(t)]T are used to denote the
values of all of the mixtures and the sources at the time instamespectively.

Many source separation algorithms preprocess the data by normalisiraytv@ace to the unit
matrix,i.e., Cxx = XXT /T = 1. This is referred to as sphering or whitening and its result is that any
signal obtained by projecting the sphered data on any unit vector hasean and unit variance.
Furthermore, orthogonal projections yield uncorrelated signals. Byghisroften combined with
reducing the dimension of the data by selecting a principal subspace wdnthirts most of the
energy of the original data.

Because of the indeterminacy of scale in linear models, it is necessary ithéx e variance
of the sources or the norm of the mixing matrix. It is usual to fix the variahtieessources to unity:
SS' /T =1. Then, assuming that the linear independent-source model holds aadstherinfinite
amount of data, with Gaussian noise, the covariance of the sphered ds&SiA" /T + 3, =
AAT +5, =1, i.e, a unit matrix because of the sphering. If the noise variance is propattion
to the covariance of the data that is due to the sourices,>, 0 AAT, it holds thatAAT O,
which means that the mixing matri is orthogonal for sphered data. Furthermore, the likelihood
L(S) = p(X]A,S) of S can be factorised:

L(S) =C[Li(s). (6)

where the constar@ is independent 0&. The constanC reflects the fact that likelihoods do not
normalise the same way as probability densities. The above factorisation stithies unique if
Li(s) are appropriately normalised. In the case of a linear model with Gauss&e) a@onvenient
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normalisation is to require the maximum Iof(s) to equal one. The terms can then be shown to
equal

Lis) =exp(~ 5(s —a ) Zd e —a )7 @)

wherea ! is theith row vector ofA~! andZs, 01 is a diagonal matrix with the diagonal elements
equallingo?/(a &).

Since the priomp(S) factorises, too, the sources are independent in the postgBprand the
covarianceCss is diagonal. This means th&gs reduces to scaling of individual sources in the
M-step (3).

Noisy estimates of the sources can be recoveref syA ~1X which is the mode of the likeli-
hood. SinceA~! O AT because of the sphering and the postegi@®) depends on the data only
through the likelihood.(S), the expectation [B|X,A] is a function of ATX, or for individual
sources, 5[X,A] = f(aTX). In the case of Gaussian source mogé$), this function is linear
(further discussion in Sec. 2.2). The expectation can be computed eixaestlgne other cases, too,
e.g, when the source distributions are mixtures of Gaussians (M®&Jther cases the expectation
can be approximated for instance by (S| = S+¢&dlogp(S)/dS, where the constarstdepends
on the noise variance.

In the EM algorithm, all the components are estimated simultaneously. Howesesppering
renders it possible to extract the sources one-by-one (seéridgn et al., 2001b, for a similarly
derived algorithm):

s=w'X (8)

st =1(s) 9)

wt =XstT (10)
W

Whew = W (11)

In this algorithm, the first step (8) calculates the noisy estimate of one scquta®aesponds to the
mode of the likelihood. It is a convention to denote the mixing veatavhich in this case is also
the separating vector, by. The second step (9) corresponds to the expectatisreérg(S) and
can be seen as denoising based on the model of the sources. Ndt{s)tisha row-vector-valued
function of a row-vector argument. The re-estimation step (10) calculadesetln ML estimate of
the mixing vector and the M-step (3) is completed by normalisation (11). Thieptethe norm
of the mixing vector from diverging. Although this algorithm separates on@mponent, it has
been shown that the original sources correspond to stable fixed pbthis @gorithm under quite
general conditions (see Theorem 8.1, Egmen et al., 2001b), provided that the independent-source
model holds.

In this paper, we interpret the step (9) as denoising. While this interpretatioot novel, it
allows for the development of new algorithms that are not derived stantimy §enerative mod-
els. We call all of the algorithms where Eq. (9) can be interpreted as deg@isd that have the
form (8)—(11) DSS algorithms.

1. MoG as the source distributions would lead to ICA.
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2.2 Linear DSS

In this section, we show that separation of Gaussian sources using Balp&ithm results in
linear denoising. This is called linear DSS and it converges to the eigened@alata matrix that
has been suitably filtered. The algorithm is equivalent to the classicalrpoethod applied to the
covariance of the filtered data.

First, let us assume the Gaussian source to have an autocovariancexnairhe prior proba-
bility density function for a Gaussian source is given by

1 1
— —___ex ——sZ‘lsT> ,
/7‘2_’_[255‘ p( 2 SS

whereZgs is the autocovariance matrix of the source &hg| is its determinant. Furthermore, as
noted in Eq. (7), the likelihoot(s) is an unnormalised Gaussian with a diagonal covariaigge

p(s) =

L(s) = exp(—%(s— wTX)Zg o (s— WTX)T> .

After some algebraic manipulation, the Gaussian posterior is reached:

1 1
s) = exp| —Z(s— = I(s— T),
(9 = —ar-exp( (s (s
with meanp = wTX (I +032g51)_1, and varianc& ' = % + 3., Hence, the denoising step (9)
becomes )
st =f(s) =s(l +025d) " =sD, (12)
which corresponds to linear denoising. The denoising step in the DSSthaigar = f(s) is thus
equivalent to multiplying the current source estimaeth a constant matri.
To gain more intuition about the denoising, it is useful to consider the eigendacomposition
of D. It turns out thaD andZsshave the same eigenvectors and the eigenvalue decompositions are
Tss=VAsVT (13)
D=VApVT, (14)
whereV is an orthonormal matrix with the eigenvectors as columns/arsth diagonal matrix with
the corresponding eigenvalues on the diagonal. The eigenvaluescdeel i@s
1

= > -
1+f—;i

Ap;

Note thathp; is a monotonically increasing function a ;. Those directions of are suppressed
the most which have the smallest variances according to the prior moslel of
Now, let us pack the different phases of the algorithm (8), (12), tddgther:

w = XstT = XDs" = XDX Tw.

11
The transpose was dropped frdnsince it is symmetric. By writing\p = /\5/\5T =A*A*T and
addingVTV =1 in the middle, we may split the denoising matrix into two parts:

D — D*D*T’
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whereD* = VA*VT. Further, let us denot = XD*. This brings the DSS algorithm for estimating
one separating vector into the form

t=77Tw. (15)

This is the classicgbower methodsee Wilkinson, 1965) implementation for principal component
analysis (PCA). Note thatZ " is the unnormalised covariance matrix. The algorithm converges to
thefixed pointw* satisfying

AW =227 /Tw*, (16)

where corresponds to the principal eigenvalue of the covariance magix/T andw* is the
principal direction. The asterisk is used to stress the fact that the estimataeésfixed point.

The operation of the linear DSS algorithm is depicted in Fig. 1. Figure lashewsources
that have been mixed into Fig. 1b. The mixing vectors have been plotted byshedilines. The
curve shows the standard deviation of the data projected in differewtidims. It is evident that the
principal eigenvector (solid line) does not separate any of the souFmeghat two things would
be needed: 1) The mixing vectors should be orthogonal. 2) The eigesvshould differ. After
sphering in Fig. 1c, the basis and sphered mixing vectors are roughlygortal. However, any
unit-length projection yields unit variance, and PCA still cannot separatesdhrces. The first
source has a somewhat slower temporal evolution and low-pass filtetaigsrenore of that signal,
giving it a larger eigenvalue. This is evident in Fig. 1d which shows theided data and the first
eigenvector, which is now aligned with the (sphered) mixing vector of the stmwce. The sources
can then be recovered lsy=w"X.

There are other algorithms for separating Gaussian sources (TohgX% ; Molgedey and
Schuster, 1994; Belouchrani et al., 1997; Ziehe aridiéd, 1998) and, although functionally dif-
ferent, they yield similar results for the example given above. All theseigigms assume that the
autocovariance structure of the sources is time-invariant corresgptalifoeplitz autocovariance
and filtering matrice&ssandD. In our analysiszsscan be any covariance matrix, and only one out
of four examples in Sec. 4.1 has the Toeplitz form.

2.3 Convergence Analysis

In this section, we analyse the convergence properties of DSS algorithriige case of linear de-
noising, we will refer to well-known convergence properties of the pawethod €.g, Wilkinson,
1965). The analysis extends to nonlinear denoising under the assumipiditise mixing model
holds and there is an infinite amount of data.

Linear DSS is equivalent to the power method whose convergence ingovigy the eigenval-
uesA; corresponding to the fixed pointg". If some of the eigenvalues are equil€ Aj, i # j),
the fixed points are degenerate and there are subspaces of fixed [yoantyg case, it is possible to
choose an orthonormal basis spannedpyThis means that any can be represented as

w=3 gw, a7)
.Z !
wherec; = wTwi*. With a linear denoising functiofy,, the unnormalised estimate™ is

Xfl (Z cS ) X qu“n Zc,Xfl,n s)=T ZCi)\iwi*, (18)
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Figure 1: (a) Original sources, (b) scatter-plot of the mixtures, (c) sphe@@ X and (d) denoised
dataZ = XD*. The dashed lines depict the mixing vectors and the solid lines the largest
eigenvector. The curves denote the standard deviation of the projedtitme alata in
different directions.
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where); is theith eigenvalue corresponding tg ands’ = w;TX. The normalisation step (11)
changes the contributions of the fixed points by equal fractions. Aftiéerations, the relative

contributions of the fixed points thus change fr@;rrinto E;;ﬂ
J

If there are two fixed pointe/;” andwj that have identical eigenvaluas= Aj, the linear DSS
cannot separate between the two. This means, for instance, that it isssilble to separate Gaus-
sian sources that have identical autocovariance matiiee,ss = Zs;5; Or in other words sources
whose time structures do not differ. Otherwise, as long as0, the algorithm converges globally
to the source with the largest eigenvalue.

The speed of convergence in the power method (hence in linear DS&)definearly on the
log-ratio of the largest (absolute) eigenvalues|lag/|A2|, where|A1| > |Ao| > |Ai|, i =3,...,N.
Note that absolute values of the eigenvalues have been used. While theatigs are usually
positive, there are cases where negative eigenvalues may exist,tfordasn the case of complex
data or when using the so-callsdectral shiftwhich is discussed in Sec. 2.5.

The above analysis for linear denoising functions makes no assumptimunsiaé data-generating
process. As such it does not extend to nonlinear denoising functi@asi®e there can be more or
less fixed points than the dimensionality of the data, and the fixed pejntge not, in general,
orthogonal. We shall therefore assume that the data are generatecepgmaeént sources by the
model (1) and the assumptions discussed in Sec. 2.1 heldthe mixing vectors are orthogonal
after sphering. Under these assumptions, the orthonormal basis dpayitiee mixing vectors
corresponds to fixed points of the DSS algorithm. This holds becausetfr@imdependence of
different sources; it follows that

.1
lim ?t;Sj (t)fi(s)=0 (19)

fori # j.

In the linear power method, eigenvalugsgovern the rate of relative changes of the contribu-
tions of individual basis vectors in the estimate. We shall ddéinal eigenvalued;(s) which play
similar roles in nonlinear DSS. Unlike the constant eigenvaljethe local eigenvalues have dif-
ferent values depending on the current source estimate. The forfirdlide is as follows. Assume
that the current weight vector and the subsequent unnormalised rigiMwector are

w=Y ci(sw; (20)

wh = > vi(swi . (21)

The local eigenvalue is defined to be the relative change in the contribution:

¥i(s)
¥i(s) =TG(9Ai(s) & Ai(s) = = Ok (22)
The idea of the DSS framework is that the user can tailor the denoising fartottbe task at hand.
The denoising can but need not be based on the E-step (2) derradchfgenerative model. The
purpose of defining the local eigenvalues is to draw attention to the factarsrining separation
quality and convergence speed.
The first thing to consider is whether the algorithm converges at all. Itssiple to view the

nonlinear denoising as linear denoising which is constantly adapted to theesgatimate. This
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means that different sources can have locally the largest eigenvhathe.ddaptation is consistent,
i.e., Ai(s) grows monotonically witlt;, all stable fixed points correspond to the original sources. In
general, the best separation quality and the fastest convergencéeigedcivhen\;(s) is very large
compared to al\j(s) with j # i in the vicinity of 5.

Sometimes it may be sufficient to separate a signal subspace. Then it ghdoothe denoising
function to make the eigenvalues corresponding to this subspace largeredrpéhe rest but the
eigenvalues do not need to differ within the subspace.

If the mixture model (1) holds and there is an infinite amount of data, the a®@an usually
be separated even in the linear case because minute differences in tivalkeige of the sources are
sufficient for separation. In practice, the separation is based on arfinitéer of samples and the
ICA model only holds approximately. Conceptually, we can think that therérae eigenvalues and
mixing vectors but the finite sample size introduces noise to the eigenvaludsadage between
mixing vectors. In practice the separation quality is therefore much better [bta¢ eigenval-
ues differ significantly around the fixed points and this is often easiesthievacwith nonlinear
denoising which utilises a lot of prior information.

2.4 Deflation

The classical power method has two common extensions: deflation andasghifit They are
readily available for the linear DSS since it is equivalent to the power metpplikd to filtered
data via Eqg. (2.2). It is also relatively straightforward to apply them in thdinear case.

Linear DSS algorithms converge globally to the source whose eigenvadubénkargest magni-
tude. Nonlinear DSS algorithms may have several fixed points but eveit theseful to guarantee
that the algorithm converges to a source estimate which has not beeregktyat The deflation
method is a procedure which allows one to estimate several sources bydigrapiplying the DSS
algorithm several times. The convergence to previously extractedesoigrprevented by making
their eigenvalues zeravyh = w — AATw (Luenberger, 1969), wher now contains the already
estimated mixing vectors.

Note that in this deflation scheme, it is possible to use different kinds ofislaggrocedures
when the sources differ in characteristics. Also, if more than one s@estimated simultaneously,
the symmetric orthogonalisation methods proposed for symmetric FastiCA(idgn, 1999) can
be used. It should be noted, however, that such symmetric orthogdimalisannot separate sources
with linear denoising where the eigenvalues of the sources are globalliacbns

2.5 Spectral Shift

As discussed in Sec. 2.2, the matrix multiplication (15) in the power method do@samote the
largest eigenvalue effectively compared to the second largest elgeriféhey have comparable
values. The convergence speed in such cases can be increasedaed spectral shift(Wilkin-
son, 1965) which modifies the eigenvalues without changing the fixed pdinhthe fixed point of
the DSS algorithm,

AW = XfT(s)/T. (23)

2. The set of the eigenvalues is often called the eigenvalue spectrum.
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If the denoising function is multiplied by a scalar, the convergence of theitigodoes not change
in any way because the scaling will be overruled by the normalisation stg¢p Allleigenvalues
will be scaled but their ratios, which are what count in convergeneehatraffected.

Adding a multiple ofsinto f(s) does not affect the fixed points becadx& [ w. However the
ratios of the eigenvalues get affected and hence the convergerem dpesummaryf(s) can be
replaced by

a(s)[f(s) +B(s)s], (24)

wherea (s) andf(s) are scalars. The multiplier(s) is overruled by the normalisation step (11) and
has no effect on the algorithm. The tefdfs)s is turned intoT 3(s)w in the re-estimation step (8)
and does affect the convergence speed but not the fixed pointglavit can turn a stable fixed
point unstable or vice versa). This is because all eigenvalues areddbyffis):

X[f(s) +B(s)S]T /T = MW" + B(s )W* = [\ + B(S")]w*.

The spectral shift usinf(s) modifies the ratios of the eigenvalues and the ratio of the two largest
eigenvalued becomes[A1 + B(S)]/[A2 + B(S)]| > |A1/A2|, provided thatB(s) is negative but not
much smaller thar-A,. This procedure can greatly accelerate convergence.

For very negativg(s), some eigenvalues will become negative. In fadd(#) is small enough,
the absolute value of the originally smallest eigenvalue will exceed that ofribmally largest
eigenvalue. Iterations of linear DSS will then minimise the eigenvalue rathenthaimise it.

We suggest that it is often reasonable to shift the eigenvalue cordiggoto the Gaussian
signalv to zero. Some eigenvalues may then become negative and the algorithmaeargeo
to fixed points corresponding to these eigenvalues rather than the pasigge In many cases,
this is perfectly acceptable because, as will be further discussed irBSe@ny deviation from
the Gaussian eigenvalue is indicative of signal. A side effect of a negaienvalue is that the
estimatew changes its sign at each iteration. This is not a problem but needs to bim kejmd
when determining the convergence.

Since the convergence of the nonlinear DSS is governed by local elgesythe spectral shift
needs to be adapted to the changing local eigenvalues to achieve optimalgaste speed. In
practice, the eigenvalug, of a Gaussian signal can be estimated by lineari§{sgaround the
current source estimage

f(s+ As) =~ f(s) + AsJ(s) (25)
Mo(8) ~ —f(S“‘Q iGN —sv‘l(s)vT JT =vI(VT/T (26)
B(S) = E[-A(S)] ~ —trd(s)/T 27)

The last step follows from the fact that the elements afe mutually uncorrelated and have zero
mean and unit variance. Hedgs) denotes the Jacobian matrix ) computed as. For lin-

ear denoisingl(s) = D and hence3 does not depend os If denoising is instantaneouse.,

f(s) = [f1(s(1)) f2(s(2)) ...], the shift can be written g¥s) = — 3 f/(s(t))/T. This is the spectral
shift used in FastICA (Hyarinen, 1999), but it has been justified as an approximation to Newton'’s
method and our analysis thus provides a novel interpretation.

3. Since the denoising operation presumably preserves some of tiaamghnoise, it is reasonable to assume that all
eigenvalues are originally positive.
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Sometimes the spectral shift turns out to be either too modest or too strodinglea slow
convergence or lack of convergence, respectively. For this neasosuggest a simple stabilisation
rule, henceforth called 179-rule: instead of updatninto wney defined by Eq. (11), it is updated
into

AW = Wnew— W, (29)

wherey is the step size and the orthogonalisation has been added in case seweras sre to be
extracted. Originallyy = 1, but if the consecutive steps are taken in nearly opposite directiens,
the angle betweeAw and Awyq is greater than 179 theny = 0.5 for the rest of the iterations.
A stabilised version of FastiICA has been proposed bydtyen (1999) as well and a procedure
similar to the one above has been used. The different speedup techoapsdered above, and
some additional ones, are studied further by Valpola creis (2004).

Sometimes there are several signals with similar large eigenvalues. It mayetirapdssible to
use spectral shift to accelerate their separation significantly becassebifeigenvalues that would
assume very negative values exceeding the signal eigenvalues in magittitat case, it may be
beneficial to first separate the subspace of the signals with large digesnfiaom the smaller ones.
Spectral shift will then be useful in the signal subspace.

3. Approximation for the Objective Function

The virtue of the DSS framework is that it allows one to develop procedimaice separation
algorithms without referring to an exact objective function or a generativdel. However, in many
cases an approximation of the underlying objective function is neverthesesul. In this section,
we propose such an approximation (Sec. 3.1) and discuss its uses, igatuaitoring (Sec. 3.2)
and acceleration of convergence (Sec. 3.3) as well as analysisavhtiep results (Sec. 3.4).

3.1 The Objective Function of DSS

The power-method version of the linear DSS algorithm maximises the varjamtg||>. When
the denoising is performed for the source estimétgs= sD, the equivalent objective function is
g(s) = sDs" = sfl_(s). We propose this formula as an approximatgfor the objective function
for nonlinear DSS as well:

G(s) =sf (s). (30)

There is, however, an important caveat to be made. Note that Eq. (2ddié@scthe scalar func-
tionsa(s) andf(s). This means that functionally equivalent DSS algorithms can be implemented
with slightly different denoising functionf§s) and while they would converge exactly to the same
results, the approximation (30) might yield completely different values. ¢ty fay tuninga(s),

B(s) or both, the approximatiog($) could be made to yield any function which need not have any
correspondence to the trgés).

Due toa(s) andf(s), it seems virtually impossible to write down a simple approximation of
g(s) that could not go wrong with a malevolent choicef (). In the following, however, we argue
that Eg. (30) is in most cases a good approximation and it is usually easydk whether it behaves
as desired—yields values which are monotonic in signal-to-noise ratio (SNiRjloes not,a(s)
andp(s) can be easily tuned to correct this.
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Let us first check what would be the DSS algorithm maximigj(g). "Obviously, the approxi-
mation is good if the algorithm turns out to use a denoising similéfdo The following Lagrange
equation holds at the optimum:

Ow[d(s) — € h(w)] =0, (31)

whereh denotes the constraints under which the optimisation is performed amne the corre-
sponding Lagrange multipliers. In this case, only unit-length projection x®est@re considered,
i.e, h(w) =w™w —1=0, and it thus follows that

XOs8' (s) — 28w = 0. (32)

Substituting 2 with the appropriate normalising factor which guarantge$| = 1 results in the
following fixed point:
XOG" ()
W= -—— 33
X7 3

Usings=w'X and (30), and omitting normalisation yields
wt =X[fT(s)+J7(5)s'], (34)

whereld is the Jacobian df. This should conform with the corresponding steps (9) and (10) in the
nonlinear DSS which usd$s) for denoising. This is true if the two terms in the square brackets
have the same formge., f(s) 0 sJ(s).

As expected, in the linear case the two algorithms are exactly the same bdwudaeobian is
a constant matrix anfs) = sJ. The denoised sources are also proportionaliXs) in some special
nonlinear cases, for instance, wheg) = s".

3.2 Negentropy Ordering

The approximation (30) can be readily used for monitoring the conveegafiiaSS algorithms. Itis
also easy to use it for ordering the sources based on their SNR if kswaraes are estimated using
DSS with the samé(s). However, simple ordering based on Eq. (30) is not possible if differen
denoising functions are used for different sources because thexapgation does not provide a
universal scaling.

In these cases it is useful to order the source estimates by their negentnagh is a nor-
malised measure of structure in the signal. Differential entiémf a random variable is a measure
of disorder and is dependent on the variance of the variable. Neggrit@ normalised quantity
measuring the difference between the differential entropy of the compand a Gaussian compo-
nent with the same variance. Negentropy is zero for the Gaussian distnilaumibnon-negative for
all distributions since among the distributions with a given variance, the @audistribution has
the highest entropy.

Calculation of the differential entropy assumes the distribution to be knowsually this is
not the case and estimation of the distribution is often difficult and computatiodgeifyanding.
Following Hyvarinen (1998), we approximate the negentrdijg) by

N(s) = H(v) —H(s) ~ ng[d(s) — §(v)]?, (35)

wherev is a normally distributed variable. The reasoning behind Eq. (35) isgitsatcarries in-
formation about the distribution &f If §(s) equalsg(v), there is no evidence of the negentropy to
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be greater than zero, so this is whe(s) should be minimised. A Taylor series expansiorNg$)
w.r.t. §(s) aroundg(v) yields the approximation (35) as the first non-zero term.

Comparison of signals extracted with different optimisation criteria presuraggigweighting
constants)g are known. We propose tha} can be calibrated by generating a signal with a known,
nonzero negentropy. Negentropy ordering is most useful for sigvailsh have a relatively poor
SNR—the signals with a good SNR will most likely be selected in any case. fbhense choose
our calibration signal to have SNR of 0 dBg., it contains equal amounts of signal and noise in
terms of energyss = (v +sopt)/\/§, wheresopt is a pure signal having no noise. It obeys fully
the signal model implicitly defined by the corresponding denoising funéti@incesyp: andv are
uncorrelatedss has unit variance. The entropywf/2 is

H(v/v2) =H(v)+logl/v2=H(v)—1/2log2.

Since the entropy can only increase by adding a second, indepeimgteaitssy;, H(ss) > H(v) —
1/2log2. It thus holdN(ss) = H(v) —H(ss) < 1/2log2. One can usually expect thsgg; has a lot
of structure,i.e., its entropy is low. Then its addition t/+/2 does not significantly increase the
entropy. It is therefore often reasonable to approximate

N(ss) ~ 1/2log2= 1/2bit, (36)

where we chose base-2 logarithm yielding bits. Dependingog it may also be possible to
compute the negentropy(ss) exactly. This can then be used instead of the approximation (36).

The coefficients)g in Eq. (35) can now be solved by requiring that the approximation (35)
yields Eq. (36) forss. This results in

1
9= 2@ — o))

and finally, substitution of the approximation of the objective function (3@) &g. (37) into Eq.
(35) yields the calibrated approximation of the negentropy:

bit (37)

2
N(S) ~ [sfT(s) —viT(v)]

T =

3.3 Spectral Shift Revisited

In Sec. 2.5, we suggested that a reasonable spectral shift is to movgeheadue corresponding
to a Gaussian signa&lto zero. This leads to minimising(s), when the largest absolute eigenvalue
is negative. It does not seem very useful to mining&®), a function that measures the SNR of the
sources, but as we saw with negentropy and its approximation (35) s\@kle< g(v) are, in fact,
indicative of signal. A reasonable selection fois thus—A, given by (27) which leads linear DSS
to extremisegy(s) — g(v) or, equivalently, to maximise the negentropy approximation (35).

A well known example where the spectral shift by the eigenvalue of askausignal is use-
ful is the mixture of both super- and sub-Gaussian distributions. A DSSithgodesigned for
super-Gaussian distributions would lead\to A, for super-Gaussian ardd< A, for sub-Gaussian
distributions A, being the eigenvalue of the Gaussian signal. By shifting the eigenvalugspec
by —Ay, the most non-Gaussian distributions will result in the largest absoluteveiges regard-
less of whether the distribution is super- or sub-Gaussian. By using ¢#ograpshift it is therefore
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possible to extract both super- and sub-Gaussian distributions with @itgnecheme which is
designed for one type of distribution only.

Consider for instancgs) = tanhs which can be used as a denoising function for sub-Gaussian
signals while, as will be further discussed in Sec. 4.8.3,tanhs = —(tanhs— s) is a suitable
denoising for super-Gaussian signals. This shows that dependingearhtice of3, DSS can
find either sub-Gaussiaf8 & 0) or super-Gaussiad (= —1) sources. With the FastICA spectral
shift (27), B will always lie in the range-1 < B < tantf 1— 1 ~ —0.42. In generalp will be closer
to —1 for super-Gaussian sources which shows that FastICA is able tbitsdspectral shift to the
source distribution.

3.4 Detection of Overfitting

In exploratory data analysis, DSS is very useful for giving better insigh the data using a linear
factor model. However, it is possible that DSS extracts structures thaluaréo noisej.e., the
results may be overfits.

Overfitting in ICA has been extensively studied b§r&a and Vidario (2003). It was observed
that it typically results in signals that are mostly inactive, except for a simijfke sin DSS the type
of the overfitted results depends on the denoising criterion.

To detect an overfitted result, one should know what it looks like. Astdimsroximation, DSS
can be performed with the same amount of i.i.d. Gaussian data. Then allulite present cases of
overfitting. An even better characterisation of the overfitting results canbtzéned by mimicking
the actual data characteristics as closely as possible. In that case it isantgormake sure that
the structure assumed by the signal model has been broken. Both thadBamgerfitting test and
the more advanced test are used throughout the experiments in Sebs35.2—

Note that in addition to visual test, the methods described above provide ua githntitative
measure as well. Using the negentropy approximation (38), we can setshald under which the
sources are very likely overfits and do not carry much real structaréhe simple case of linear
DSS, the negentropy can be approximated easily using the correspeigimyalue.

4. Denoising Functions in Practice

DSS is a framework for designing source separation algorithms. The idbkatithe algorithms
differ in the denoising functiofi(s) while the other parts of the algorithm remain mostly the same.
Denoising is useful as such and therefore there is a wide literature lissicpted denoising meth-
ods to choose from (see Anderson and Moore, 1979). Moreorerusually has some knowledge
about the signals of interest and thus possesses the information neededdising. In fact, quite
often the signals extracted by BSS techniques would be post-procegsetiite noise in any case
(see Vigneron et al., 2003). In the DSS framework, the available degoisithods can be directly
applied to source separation, producing better results than purely blimidees. There are also
very general noise reduction techniques such as wavelet denoisimpliD et al., 1995; Vetterli
and Kovacevic, 1995) or median filtering (Kuosmanen and Astola, 198hwcan be applied in
exploratory data analysis.

In this section, we discuss denoising functions ranging from simple bugifolinear ones to
sophisticated nonlinear ones with the goal of inspiring others to try out tiveidenoising methods.
The range of applicability of the examples spans from cases where kagevébout the signals is
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relatively specific to almost blind source separation. Many of the dendigirgjions discussed in
this section are applied in experiments in Sec. 5.

The DSS framework has been implemented in an open-source and pubtitgbéey MATLAB
package (DSS, 2004). The package contains the denoising functidepaedups discussed in this
paper and in another paper (Valpola aréde®, 2004). It is modular and allows for custom-made
functions (denoising, spectral shift, and other parts) to be nested imtbgrgram.

Before proceeding to examples of denoising functions, we note that Gt wot be very
useful if very exact denoising would be needed. Fortunately, this iallysoot the case and it
is enough for the denoising functidifs) to remove more noise than signal (see Hymen et al.,
2001b, Theorem 8.1), assuming that the independent source mods! Adid is because the re-
estimation steps (10) and (11) constrain the sostttethe subspace spanned by the data. Even if
the denoising discards parts of the signal or creates nonexistent signalgimation steps restore
them.

If there is no detailed knowledge about the characteristics of the signaétavih, it is useful
to bootstrap the denoising functions. This can be achieved by starting Vetived/ general signal
characteristics and then tuning the denoising functions based on anaiitsestructure in the noisy
signals extracted in the first phase. In fact, some of the nonlinear DSBtlalge can be regarded
as linear DSS algorithms where a linear denoising function is adapted to trmespleading to
nonlinear denoising.

4.1 Detailed Linear Denoising Functions

In this section, we consider several detailed, simple but powerful, lin@wising schemes. We
introduce the denoisings using the denoising mdxiwhen feasible. We consider efficient imple-
mentation of the denoisings as well.

The eigenvalue decompaosition (14) shows that any denoising in linear @83 edmplemented
as an orthonormal rotation followed by a point-wise scaling of the samplesogatibn back to the
original space. The eigenvalue decomposition of the denoising niawiten offers good intuitive
insight into the denoising function as well as practical means for its implementation

4.1.1 ON/OFF-DENOISING

Consider designed experimengsg, in the fields of psychophysics or biomedicine. It is usual to
control them by having periods of activity and non-activity. In suchegipents, the denoising can
be simply implemented by

D =diagm), (39)

whereD refers to the linear denoising matrix in Eg. (9) and

(40)

1,for the active parts
0, for the inactive parts

This amounts to multiplying the source estimatby a binary mask, where ones represent the
active parts and zeroes the non-active parts. Notice that this maskiogdpre actually satisfies
D = DDT. This means that DSS is equivalent to the PCA applied to dendiseXD even with

4. By masking we refer to point-wise multiplication of a signal or a transédiom of a signal.

248



DENOISING SOURCE SEPARATION

exactly the same filtering. In practice this DSS algorithm could be implemented Ayapflied to
the active parts of the data with the sphering stage would still involving the vadadéeset.

4.1.2 DENOISING BASED ONFREQUENCY CONTENT

If, on the other hand, signals are characterised by having certaineiney components, one can
transform the source estimate to a frequency space, mask the speemgumijth a binary mask,
and inverse transform to obtain the denoised signal:

D=VApV',

whereV is the transform/\p is the matrix with the mask on its diagonal, avid is the inverse
transform. The transforrv can be implemented for example with the Fourier transfoomby
discrete cosine transform (DCT). After the transform, the signal is fdtesing the diagonal matrix

A, i.e, by a point-wise scaling of the frequency bins. Finally the signal is inveesesformed
usingVT. In the case of linear time-invariant (LTI) filtering, the filtering matrix has @pliz
structure and the denoising characteristics are manifested only in the diagainix \p, while the
transforming matrix/ represents a constant rotation. When this is the case, the algorithm can be
further simplified by imposing the transformation on the sphered X¥afehen the iteration can be
performed in the transformed basis. This trick has been exploited in theXpstiment of Sec. 5.2.

4.1.3 PECTROGRAMDENOISING

Often a signal is well characterised by what frequencies occur attimhes. This is evident.g,
in oscillatory activity in the brain where oscillations often occur in bursts. Rangple of source
separation in such data is studied in Sec. 5.2. The time-frequency behasgiobe described
by calculating DCT in short windows in time. This results in a combined time andiérexy
representation, i.e., a spectrogram, where the masking can be applied.

There is a known dilemma in the calculation of the spectrogram: detailed destrgftibe
frequency content does not allow detailed information of the activity in timevaredversa. In other
words, a large amount of different frequency biRswill result in a small amount of time locations
T;. Wavelet transforms (Donoho et al., 1995; Vetterli and Kovacevichl8@ve been suggested
to overcome this problem. There an adaptive or predefined basisgediffeom the pure sinusoids
used in Fourier transform or DCT, is used to divide the resources of timiéraquency behaviour
optimally in some sense. Another possibility is to use the so-called multitaper teehifgtcival
and Walden, 1993, Ch. 7).

Here we apply an overcomplete-basis approach related to the above mdtisidad of having
just one spectrogram, we use several time-frequency analyses wétediff;’'s andTs’s. Then the
new estimate of the projection™ is achieved by summing the new estimates of each of the
time-frequency analysesr™ = y;w;".

4.1.4 DENOISING OFQUASIPERIODIC SIGNALS

As a final example of denoising based on detailed source charactemstissder Fig. 2a. Let us
assume to be known beforehand that the sigrnads a repetitive structure and that the average

5. Note that the eigenvalue decomposition contains real rotations instezmngiex, but Fourier transform is usu-
ally seen as a complex transformation. To keep the theory simple, wéeomsal Fourier transform where the
corresponding sine and cosine terms have been separated in diffier@ents.
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repetition rate is known. The quasi-periodicity of the signal can be usedrform DSS to get a
better estimate. The denoising proceeds as follows:
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Figure 2: a) Current source estimateof a quasiperiodic signal b) Peak estimates c) Average signal
Save (two periods are shown for clarity). d) Denoised source estingate e) Source
estimate corresponding to the re-estimaigg,..

Estimate the locations of the peaks of the current source estitfitg 2b).
Chop each period from peak to peak.
Dilate each period to a fixed length L (linearly or nonlinearly).

Average the dilated periods (Fig. 2c).

a . nhpoE

Let the denoised source estimatebe a signal where each period has been replaced by the
averaged period dilated back to its original length (Fig. 2d).

The re-estimated signal in Fig. 2e, based on the denoised signsthows significantly better
SNR compared to the original source estingta Fig. 2a.

This averaging is a form of linear denoising since it can be implemented as mmaittiplica-
tion. Furthermore, it presents another case in addition to the binary masitiege DSS is equiva-
lent to the power method even with exactly the same filtering. It would not heteage from the
denoising matrixD itself thatD = DDT. However, this becomes evident should one consider the
averaging of source estimaté (Fig. 2d) that is already averaged.

Note that there are cases where chopping from peak to peak doesamahtge the best result.
This is especially true when the periods do not span the whole section fakitp peak, but there
are parts where the response is silent. Then there is a need to estimate the térige periods
separately.
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4.2 Denoising Based on Estimated Signal Variance

In the previous section, several denoising schemes were introducaitiof them, the details of the
denoising were assumed to be known. It is as well possible to estimate thisidgrspecifications
from the data. This makes the denoising nonlinear or adaptive. In this rIseet@ consider a
particular ICA algorithm in the DSS framework, suggesting modifications wimghove separation
results and robustness.

4.2.1 KURTOSISBASEDICA

Consider one of the best known BSS approaches, ICA by optimisatioe shtinple kurtosis of the
sources. The objective function is thefs) = 3 s*(t)/T —3(3 sz(t)/T)z. Since the source variance
has been fixed to unity, we can simply ug@) = S s*(t)/T and derive the functiori(s) from
gradient ascend. This yieldsg(s) = 4/Ts°, wheres® = [$3(1)s*(2) ...]. Selectinga(s) = T/4
andp(s) =0in Eqg. (24) then resultin

f(s)=¢. (41)

This implements an ICA algorithm with nonlinear denoising. So far, we havesftred to denois-
ing, but a closer examination of Eq. (41) reveals that one can, in faatpiete® as beings masked
by &%, the latter being a somewnhatinea estimate of signal variance and thus relating to SNR.

Kurtosis as an objective function is notorious for being prone to overfigmjproducing very
spiky source estimatesg&h and Vidario, 2003; Hywarinen, 1998). For illustration of this consider
Fig. 3. There one iteration of DSS using kurtosis-based denoising isnshéssume that via
some means, the source estimate shown in Fig. 3a has been reachedurtheseems to contain
increased activity in three portions (around time instances 1000, 23@Day. As well, it contains
a peak roughly at time instance 4700. The signal variance estingatthe mask is shown in Fig. 3b.
While it has boosted somewhat the broad activity compared to the silenttbarteagnification of
the peak is far greater. Thus the denoised source estghglég. 3c) has nearly nothing else except
the peak. The new source estimaig,, based on the new projectiavhey, is a clear spike having
little left of the broad activity.

The denoising interpretation suggests that the failure to extract the brtigitlyds due to a poor
estimate of SNR.

4.2.2 BETTERESTIMATE FOR THE SIGNAL VARIANCE

Let us now consider a related but better founded estimate. Assumgishaamposed of Gaussian
noise with a constant variancd and of a Gaussian signal with non-stationary variasgge). From
Eqg. (12) it follows that
o5(t)
ofy(t)’
whereo?,(t) = o2(t) + 02 is the total variance of the observation. This is also the maximum-a-
posteriori (MAP) estimate.

The kurtosis-based DSS (41) can be obtained from this MAP estimate if thal siriance is
assumed to be far smaller than the total variance. In that case it is reEstmassumes?, to
be constant and?(t) can be estimated bs?(t) — 2. Subtraction ofo? does not affect the fixed
points as it can be embedded in the tfdta) = —o3 in Eq. (24). Likewise, the division bg2,(t)
is absorbed bw(s).

st (t) = s(t)

(42)
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Figure 3: a) Source estimateb) Mask $(t) c) Denoised source estimate = f(s) = s° d) Source
estimate corresponding to the re-estimatagd,..

Comparison of Eq. (42) and Eq. (41) immediately suggests improvements tortbhsik-based
DSS. For instance, it is clear thatsf(t) is large enough, it is not reasonable to assumedfid) is
small compared t@?(t). Instead, the mask should saturate for lasgf¢). This already improves
robustness against outliers and alleviates the tendency to produce cpikg gstimates.

We suggest the following improvements over the kurtosis-based denaisiotjadn (41):

1. The estimates of signal variance and total variance are based aalssw&ervations. The
rationale of smoothing is the assumption of smoothness of the signal variaqeactice this
can be achieved by low-pass filtering the variance of the time, frequanayne-frequency
description ofs(t), yielding the approximation of total variance.

2. The noise variance is likewise estimated from the data. It should be sodheflkdoft min-
imum of the estimated total variances because the estimate can be expectes taniaawm
fluctuations. We suggest the following formula:

o5 = C (exp{E [log (oy(t) +03)] } — 03) - (43)

The noise variance? appears on both sides of the equation, but at the right-hand side, it
appears only to prevent rare small valuesgffrom spoiling the estimate. Hence, we suggest
to use the previously estimated value on the right-hand side. The co@stanined such that

the formula gives a consistent estimate of the noise variance if the sotiroatess, in fact,
nothing but Gaussian noise.

3. The signal variance should be close to the estimate of the total variance tménestimate of
the noise variance. Since a variance cannot be negative and the estfith&téotal variance
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has fluctuations, we use a formula which yields zero only when the totahearia zero but
which asymptotically approacheg,(t) — a? for large values of the total variance:

03(t) = \/Ofey(t) + 0 — 0. (44)

As an illustration of these improvements consider Fig. 4 where one iteratio®8fusing the
MAP estimate is shown. The first two subplots (Fig. 4a and b) are identicaletoribs using
kurtosis-based denoising. In Fig. 4c, the variance estimate is smoothedlosipass filtering.
Note that the broad activity has been magnified when compared to the spikalaime instance
4700. The noise levad?, calculated using Eq. (43), is shown using a dashed line. Corresgpndin
masking (Fig. 4d) results in a denoised source estimate using Eq. (42)) 8hbig. 4e. Finally, the
new source estimatgew is shown after five iterations of DSS in Fig. 4f. DSS using the MAP-based
denoising has clearly removed a considerable amount of backgrouse a® well as the lonely
spike.
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Figure 4: a) Source estimateb) §(t) ¢) Smoothed total variance with the noise level in dashed line
d) Denoising mask e) Denoised source estingath Source estimate after five iterations
of DSS.

The exact details of these improvements are not crucial, but we wanteovwaisat the denois-
ing interpretation of Eq. (41) can carry us quite far. The above estimhigged into Eq. (42) yield
a DSS algorithm which is far more robust against overfitting, does natugmthe spiky signal
estimates and in general yields signals with better SNRs than kurtosis.

Despite the merits of the DSS algorithm described above, there is still onkeprotith it.
While the extracted signals have excellent SNR, they do not necessarigpond to independent
sourcesi.e., the sources may remain mixed. This is because there is nothing in the dendigihg
could discard other sources. In terms of eigenvalues, vghern the vicinity of one of the fixed
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pointss’, the local eigenvalug;(s) is much larger than,, as it should, buh(s") may be large,
too, which means that the iterations do not remove the contribution of the neakees efficiently.

Assume, for instance, that two sources have clear-cut and nolapping times of strong ac-
tivity (02(t) > 0) and remain silent for most of the time4(t) = 0). Suppose that one source is
present for some time at the beginning of the data and another at the etid: ddirrent source
estimate is a mixture of both, the mask will have values close to one at the begamdnaft the
end of the signal. Denoising can thus clean the noise from the signal estbagiiecannot decide
between the two sources.

In this respect, kurtosis actually works better than DSS based on the iatyonaements. This
is because the mask never saturates and small differences in the strignselative contribu-
tions of two original sources in the current source estimate will be amplifiéis @roblem only
occurs in the saturated regime of the mask and we therefore suggest a wiagifieation of the
MAP estimate (42):

2u
fu(s) = s(t)it;—tﬁg

wherep is a constant slightly greater or equal to one. Note that this modification ilyuseaded
at the beginning of the iterations only. Once the source estimate is dominatee loy the original
sources and the contributions of the other sources fall closer to the Isvedethe values of the
mask are smaller for the other original sources possibly still present irstimeaged source.

Another approach is based on the observation that orthogonalising thegmedtorsA cancels
only the linear correlations between different sources. Higher-azdeelations may still exist.
It can be assumed that competing sources contribute to the currentceagatimate:o?,(t) =
02(t) + 02 + 02erdt), Wherea?, . {t) stands for the estimate of total leakage of variance from
the other sources. Valpola anér8h (2004) showed that decorrelating the variance-based masks
actively promotes the separation of the sources. This bares resemtugroposals of the role of
divisive normalisation on cortex (Schwartz and Simoncelli, 2001) and tol#ssical ICA method
called JADE (Cardoso, 1999).

The problems related to kurtosis are well known and several other impnovethear functions
f(s) have been proposed. However, some aspects of the above denempegjally smoothing
of the total-variance estima®g(t), have not been suggested previously although they arise quite
naturally from the denoising interpretation.

; (45)

4.2.3 TANH-NONLINEARITY INTERPRETED ASSATURATED VARIANCE ESTIMATE

A popular replacement of the kurtosis-based nonlinearity (41) is therbgjie tangent tants)
operating point-wise on the sources. It is generally considered to berotmrst against overfitted
and spiky source estimates than kurtosis. By selectiisy= —1 andp(s) = —1, we arrive at

fi(s) = s(t) — tanHs(t)] = s(t) <1— %) . (46)
Now the term multiplyings(t) can be interpreted as a mask related to SNR. Unlike theemaask
s?(t) resulting from kurtosis, the tanh-based mask (46) saturates, thougkmdast.
The variance based mask (45) with the improvements considered abeve affiew interpre-
tation for the robustness of the tanh-mask. Parameter vafiiesl andu = 1.08 give an excellent
fit between the masks as shown in Fig. 5. The advantages of the denoisprgpase are thai?
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0.1f —— tanh-based mask B
— - variance-based mas

Figure 5: The tanh-based denoising makk tanh(s) /s is shown together with the variance-based
denoising mask proposed here. The parameters in the proposedwessi? = 1 and
p= 1.08. We have scaled the proposed mask to match the scale of the tanh-tesed m

can be tuned to the source estimatean be controlled during the iterations and the estimate of the
signal variance can be smoothed. These features contribute to theresiatginst overfitting and
spiky source estimates.

4.3 Other Denoising Functions

There are cases where the system specification itself suggests sonsngeschemes. One such
case, CDMA transmission, is described in Sec. 5.4. Another example isesseparation with a
microphone array combined with speech recognition. Many speechnitiongsystems rely on

generative models which can be readily used to denoise the speech.signals

Often it would be useful to be able to separate the sources onknen real time. Since there
exists online sphering algorithms (see Douglas and Cichocki, 1997; (Ja),Ir@al time DSS can
be considered as well. One simple case of online denoising is presented/mgraverage filters.
Such online filters are typically not symmetric and the eigenvalues (14) of thiexi¥®X ™ may
be complex numbers. These eigenvalues come in conjugate pairs anclagoas to sine-cosine
pairs. The resulting DSS algorithm converges to a 2-D subspace ponaiag to the eigenvalues
with largest absolute magnitude, but fails to converge within the subspacesider, for example,
a case of two harmonic oscillatory sources. It has a rotational invariarecepace defined by the
corresponding sine-cosine pair. Batch DSS algorithms with temporally symrdetraising would
converge to some particular rotation, but non-symmetric on-line denoisirfgsfy) = s(t — 1)
would keep oscillating between sine and cosine components.
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The above is a special case of subspace analysis and there amld stver examples where
the sources can be grouped to form interesting subspaces. This tam ¢tesee.g, when all the
sources are not independent of each others, but form subsihatese mutually independent. It
may be desirable to use the information in all sou8ésr denoising any particular sourse This
leads to the following denoising functiog = fi(S). Some form of subspace rules can be used to
guide the extraction of interesting subspaces in DSS. It is possible torfoethg the independence
criterion at the borders of the subspaces. This can be achieved bpanating a neighbourhood
denoising rule in DSS, resulting in a topographic ordering of the souftes suggests a fast fixed-
point algorithm that can be used instead of the gradient-descent-baseglaphic ICA (Hywarinen
etal., 2001a).

Itis also possible to combine various denoising functions when the scaneebaracterised by
more than one type of structure. Note that the combination order might bialdiarche outcome.
This is simply because, in gener8l(f;(s)) # f; (fi(s)) wheref; andf; present two different linear
or nonlinear denoisings. As an example, consider the combination of the énézf-mask (39)
and (40), and the nonlinear variance-based mask (45): the noise estitnatiomes significantly
more accurate when the on/off-masking is performed only after the nontieeaising.

Finally, a source might be almost completely known. Then it is possible to apgétaled
matched filter to estimate the mixing coefficients or the noise level. Detailed matchesi Hdiee
been used in Sec. 5.1 to get an upper limit of the SNRs of the source estimates.

4.4 Spectral Shift and Approximation of the Objective Function with Mask-Based
Denoisings

In Sec. 3.1, it was mentioned that a DSS algorithm may work perfectly fingBbymay still fail to
approximate the true objective functionafs) and(s) are not selected suitably. As an example,
consider the mask-based denoisings where denoising is implemented by mudtighigirsource
point-wise by a mask. Without loss of generality, it can be assumed that théas been rotated
with V and the masking operates directly on the source. According to Eqg@D)= 3, s?(t)m(t),
wherem(t) is the mask. If the mask is constant w.stdenoising is linear and Eg. (30) is an exact
formula, but let us assume that the mask is computed based on the cutnest sstimats.

In some cases it may be useful to normalise the mask and this could be implemeseedra
ways. Some possibilities that may come to mind are to normalise the maximum value anthe s
of squared values of the mask. While this type of normalisation has no effettte behaviour of
DSS, it can render the approximation (30) useless. This is because a riafiatanask usually
corresponds to a source with a low SNR. However, after normalisatiorsutineof values in the
mask would be greatest for a maximally flat mask and this tends to produce dligis\of the
approximation ofy(s) conflicting with the low SNR.

As a simple example, consider the mask tonfe) = s?(t). This corresponds to the kurtosis-
based denoising (41). Now the sum of squared values of the mags&*{s), but so issf (s). If
the mask were normalised by dividing by the sum of squares, the approxinfa@ipwould always
yield a constant value of one, totally independers.of

A better way of normalising a mask is to hormalise the sum of the values. Th€B®ahould
always yield approximately the same value if the mask and source estimaterelated but the
value would be greater for cases where the magnitude of the sourceetated with the value of
the mask. This is usually a sign of a structured source and a high SNR.
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The above normalisation also has the benefit that the eigenvalue of aigbasigmal can be
expected to be roughly constant. Assuming that the maskdoes not depend very much on the
source estimate, the Jacobian mafr{g) of f(s) is roughly diagonal withm(t) as the elements on
the diagonal. The trace df(s) needed for the estimate of the eigenvalue of a Gaussian signal in
(27) is theny, m(t) and the appropriate spectral shift is

1
B=—5 3 m). (47)
The spectral shift can thus be approximated to be constant due to thelisatina.

5. Experiments

In this section, we demonstrate the separation capabilities of the algorithresjge®arlier. The
experiments can be carried out using the publicly available MATLAB paekB$S, 2004).

The experimental section contains the following experiments: First, in Seavé deparate ar-
tificial signals with different DSS schemes, some of which can be implementBddtyCA (1998);
Hyvarinen (1999). Furthermore, we compare the results to one standaralt@Athm, JADE
(1999); Cardoso (1999). In Secs. 5.2-5.3, linear and nonlineardlfg®ithms are applied exten-
sively in the study of magnetoencephalograms (MEG). Finally, in Sec. &cbyvery of CDMA
signals is demonstrated. In each experiment after the case of artifici@espuwve first discuss
the nature of the expected underlying sources. Then we describe twdekige in the form of
denoising.

5.1 Artificial Signals

Artificial signals were mixed to compare different DSS schemes and JAREI(So, 1999). Ten
mixtures of the five sources were produced and independent whitewiassadded with different
SNRs ranging from nearly noiseless mixtures of 50dB to -10dB, a vesyrase. The original
sources and the mixtures are shown in Figs. 6a and 6b respectivelpiXtuees shown have SNR
of 50 dB.

5.1.1 UNEAR DENOISING

In this section, we show how the simple linear denoising schemes describedt.id.$ can be
used to separate the artificial sources. These schemes require pvde#éige about the source
characteristics.

The base frequencies of the first two signals were assumed to be kidwa.two band-pass
filtering masks were constructed around these base frequencies. ifthartti fourth source esti-
mates were known to have periods of activity and non-activity. The thilkmawn to be active
in the second quadrant and the fourth a definite period in the latter haly. Wéiee denoised using
binary masks in the time domain. Finally, the fifth source had a known quasiderepetition
rate and was denoised using the averaging procedure described khBéand Fig. 2. Since all
the five denoisings are linear, five separate filtered data sets werecptbdnd PCA was used to
recover the principal components. The separation results are desiriBec. 5.1.3 together with
the results of other DSS schemes and JADE.
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Figure 6: (a) Five artificial signals with simple frequency content (signals 1 andig)pke on/off
non-stationarity in time domain (signals 3 and 4) or quasi-periodicity (sigalb) Ten
mixtures of the signals in (a).

5.1.2 NONLINEAR EXPLORATORY DENOISING

In this section, we describe an exploratory source separation of theiartignals. One author of
this paper gave the mixtures to the other author whose task was to separatigittad signals. The
testing author did not receive any additional information, so he wasdaocapply a blind approach.
He chose to use the masking procedure based on the instantaneousevastimate, described in
Sec. 4.2. To enable the separation of both sub- and super-Gaussigessm the MAP-based
signal-variance-estimate denoising, he used the spectral shift (4énstive convergence, he used
the 179-rule to control the step sigg28). Finally, he did not smoot¥(t) but used it directly as
the estimate of the total instantaneous variasggt).

Based on the separation results of the variance-based DSS, he flatisrd specific masks for
each of the sources. He chose to denoise the first source in frgo@main with a strict band-pass
filter around the main frequency. The testing author decided to denoisedtwedssource by a sim-
ple denoising functiofi(s) = sign(s). This makes quite an accurate signal model though it neglects
the behaviour of the source in time. The third and fourth signal seemed ¢oplesiods of activity
and non-activity. He found an estimate for the active periods by inspetttingpstantaneous vari-
ance estimates’, and devised simple binary masks. The last signal seemed to consist oétitgr
positive and negative peaks with a fixed inter-peak-interval as wedlrag sidditive Gaussian noise.
The signal model was tuned to model the peaks only.

5.1.3 SPARATION RESULTS

In this section, we compare the separation results of the linear denoismd($4.), variance-based
denoising and adapted denoising (Sec 5.1.2) to other DSS algorithmstitujgay we compare to
the popular denoising schenfgs) = s® andf(s) = tanh(s), suggested for use with FastICA (1998).
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We compare to JADE (Cardoso, 1999) as well. During sphering in JAREuimber of dimensions
was either reduced(= 5) or all the ten dimensions were kept=£ 10).

We restrained from using deflation in all the different DSS schemes to awufidring from
cumulative errors in the separation of the first sources. Instead oneeseas extracted with each
of the masks several times using different initial veatountil five sufficiently different source
estimates were reached (see Himberg anddrdyen, 2003; Meinecke et al., 2002, for further pos-
sibilities along these lines). Deflation was only used if no estimate could be floural the 5
sources. This was often the case for poor SNR under 0dB.

To get some idea of statistical significance of the results, each algorithmsedsto separate
the sources ten times with the same mixtures, but with different measuremesd.nbie average
SNRs of the sources are depicted in Fig. 7. The straight line above all38esBhemes represents
the optimal separation. It is achieved by calculating the unmixing matrix explicithgubke true
sources.

60
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-o- pow3 DSS
-+ - tanh DSS
@ 401 —— variance—based DSS
g ~o adapted DSS
DZ: 30H V- JADE, n=5 X PR T
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Figure 7:Average SNRs for the estimated sources averaged over 10 runs.

With outstanding SNR> 20 dB), linear DSS together with JADE and kurtosis-based DSS
perform the worst, while the other, nonlinear DSS approaches: tasdgdbaophisticated variance
estimate and the adapted one perform better. The gap between thess igrougre than two
standard deviations of the 10 runs, making the difference statistically sagmtific

With moderate SNRs (between 0 and 20 dB), all algorithms perform quite &llite poor SNR
(< 0 dB), the upper group consist of the linear and adapted DSS as weé aptilmal one and the
lower group consists of the blind approaches. This seems reasoriab&ejtsnakes sense to rely
more on prior knowledge when the data are very noisy.
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5.2 Exploratory Source Separation in Rhythmic MEG Data

In biomedical research it is usual to design detailed experimental frarkeworexamine inter-
esting phenomena. Hence it offers a nice field of application for both bliddspecialised DSS
schemes. In the following, we test the developed algorithms in signal anafysagnetoencephalo-
grams (MEG, Fumalainen et al., 1993). MEG is a completely non-invasive brain imaging technique
measuring the magnetic fields on scalp caused by synchronous activitydortbg.

Since the early EEG and MEG recordings, cortical electromagnetic rhytlames glayed an
important role in clinical researclke.g, in detection of various brain disorders, and in studies of
development and aging. It is believed that the spontaneous rhythms,aredifiparts of the brain,
form a kind of resting state that allows for quicker responses to stimuli byetlspecific areas.
For example deprivation of visual stimuli by closing one’s eyes inducesmbeda-rhythm on the
visual cortex, characterised by a strong 8-13 Hz frequency compoRer a more comprehensive
discussion regarding EEG and MEG, and their spontaneous rhythnibesgerks by Niedermeyer
and Lopes da Silva (1993) andakfalainen et al. (1993).

In this paper, we examine an MEG experiment where the subject is askeldtaoy closing
her eyes (producing-rhythm). There is also a control state where the subject has her egas op
The data has been sampled with= 200 Hz, and there aré = 65536 time samples giving total
of more than 300 seconds of measurement. The magnetic fields are maasinged 122-channel
MEG device. Some source separation results of this data have beeteddppreh et al. (2001).
Prior to any analysis, the data are high-pass filtered with cut-off frexyuefinl Hz, to get rid of the
dominating very low frequencies.

5.2.1 DENOISING INRHYTHMIC MEG

Examination of the average spectrogram in Fig. 8a reveals clear strsigtdieating the existence
of several, presumably distinct, phenomena. The burst-like activity dr&QrHz and the steady
activity at 50 Hz dominate the data, but there seem to be some weaker pmenameell,e.g,
on frequencies higher than 50 Hz. To amplify these, we not only spherddta spatially but
temporally as well. This temporal decorrelation actually makes the separatiter lhat finding the
weaker phenomena easier. The normalised and filtered spectrogramwis ishFig. 8b.

The spectrogram data seems well suited for demonstrating the explodat@rgnalysis use
of DSS. As some of the sources seem to have quite steady frequerteytciontime, along with
others changing in time, we used two different time-frequency analyseéssasibed in Sec. 4.1.3
with lengths of the spectrfs = 1 andT; = 256. The first spectrogram is then actually the original
frequency-normalised and filtered data with time information only.

We apply the several noise-reduction principles based on the estimatadceaof the signal
and the noise discussed in Sec. 4.2. Specifically, the power spectrofjtamsource estimate is
smoothed over time and frequency using 2-D convolution with Gaussian wgd®he standard
deviations of the Gaussian windows wexe= 8/mtandos = 8/1t After this, the instantaneous esti-
mate of the source variance is found using Eq. (44). Then we get tlogsdersource estimate using
Eq. (45) together with the spectral shift (47). Initially we havelset1.3. This is then decreased
by 0.1 every time DSS has converged, uptit 1 is reached. Finally, the new projection vector is
calculated using the stabilised version (28), (29) with the 179-rule in dodmsure convergence.
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Figure 8: (a) Averaged spectrogram of all 122 MEG channels. (b) Frequecsnalised spectro-
gram.

5.2.2 FPARATION RESULTS

The separated signals, depicted in Fig. 9, include several interestingesolDue to poor contrast
in Fig. 9, we show enhanced and smoothed spectrograms of selectedtintgrbut low contrast,
components (1a, 1b, 1c and 4c) in Fig. 10. There exist severalesowitha-activity (1a, 1d and
2b for example). The second and fifth source are clearly related to tergime. The third source
depicts an interesting signal caused probably by some anomaly in either theringalevice itself
or its physical surroundings. In source 4c, there is another, prddyardefactual source, composed
of at least two steady frequencies around 70 Hz.

The DSS approach described above seems to be reliable and fast: thealedeporrelation of
the data enabled the finding of very weak sources and yet we fourtaseleara-sources as well.
Valpola and @rek (2004) have further studied the convergence speed, reliability abititgtaf
DSS with various speedup methods, such as the spectral shift usedlDA=aSonvergence speed
exceeding standard FastICA by 50 % was reported.

Though quite a clear separation of the sources was achieved, soradatkogetween the sig-
nals remains. Better SNR and less talk would probably be achieved by tumirgetivising to
the characteristics of each different signal group. In the next seatiershow that with specific
knowledge it is possible to find even very weak phenomena in MEG data DSIBg

5.3 Adaptive Extraction of the Cardiac Subspace in MEG

Cardiac activity causes magnetic fields as well. Sometimes these are strdlegiedein MEG and
can pose a serious problem for the signal analysis of the neural pleeaoof interest. In this data,
however, the cardiac signals are not visible to the naked eye. Thusawetawdemonstrate the
capability of DSS to extract some very weak cardiac signals, using detaitedrgormation in an
adaptive manner.
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Figure 9: Spectrograms of the extracted components (comps. la—1e on thestapwmp
Time and frequency axes as in Fig. 8.

5.3.1 DENOISING OF THECARDIAC SUBSPACE

A clear QRS complex, which is the main electromagnetic pulse in the cardiac cgolbe extracted
from the MEG data using standard BSS methods, such as kurtosis- dpaaeb-denoising. Due
to its sparse nature, this QRS signal can be used to estimate the places @frthehts. With the
places known, we can guide further search using the averaging B88seribed in Sec. 4.1. Every
now and then, we re-estimate the QRS onsets needed for the averaging DSS

When the estimation of the QRS locations has been stabilised, a subspacetmpased of
signals having activity phase-locked to the QRS complexes can be extracted

5.3.2 SPARATION RESULTS

Figure 11 depicts five signals averaged around the QRS complexesl @isimg the procedure
above® The first signal presents a very clear QRS complex, whereas thedsenercontains the

6. For clarity, two identical cycles of averaged heart beats are alslaysn.
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Figure 10: Enhanced and smoothed spectrograms of the selected componemtsgond to
sources 1a, 1b, 1c and 4c in Fig. 9). Time and frequency axes as iB.Fig.

small P and the T waves. An interesting phenomenon is found in the third sifpeaé is a clear
peak at the QRS onset, which is followed by a slow attenuation phase. Wemedhat it originates
from some kind of relaxing state.

Two other heart-related signals were also extracted. They both showradeibection during
the QRS complex, but have as well significant activity elsewhere. Thessigmals might present
a case of overfitting, which was contemplated in Sec. 3.4. To test this hgmtiee performed
DSS using the same procedure and the same denoising function, but foetiereed data. As the
estimated QRS onsets will then be misaligned, the resulting signals should bevetfits. The
results are shown in Fig. 12. The eigenvalues corresponding to the QRSeax and the second
signal having the P and T waves are approximately 10 times higher than tlogatiaigenvalue
of the reversed data. Thus they clearly exhibit some real structure iratheab already expected.
The eigenvalues corresponding to the last three signals are comparéideptincipal eigenvalue
of the reversed data, the two largest being somewhat greater. It @edds to expect that all three
carry some real structure as there is a nonzero correlation betweersthe/di signals having the
main cardiac responses and the overfitted component correspondirglangbst eigenvalue from
the reversed data. In the three other signals, there probably ocecuesm@rfitting as well, since
the signals have similar structures to the last two signals of the actual selesgeseriment shown
in Fig. 11.
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Figure 11:Averages of three heart-related signals and presumably two overfigsugts.

It is worth noticing that even the strongest component of the cardiapaoéss rather weakly
present in the original data. The other components of the subspacardte thetectable without
advanced methods beyond blind source separation. This clearly deatesdtre power that DSS
can provide for an exploring researcher.

5.4 Signal Recovery in CDMA

Mobile systems constitute another important signal processing applicatepriraaeldition to biomed-
ical signal processing. There are several ways to allow multiple usesetthe same communica-
tion channel, one being a modulation scheme called code-division-multippssa(CDMA, Viterbi,
1995). In this section we consider bit-stream recovery in a simplified simulafiafCDMA net-
work.

In CDMA, each user has a unique signature quasi-orthogonal to thatsigs of the other
users. The user codes each complex bihich he sends using this signature. This coded bit
stream is transmitted through the communication channel, where it is mixed with ttzdsso the
other transmitters. The mixture is corrupted by some noise as well, due to mulipogtagation,
Doppler shifts, interfering signals, etc.

To recover the sent bit stream, the receiver decodes the signal withahenlsignature. Ideally
then, the result would be ones and zeros repeated the number of timespoarding to the signa-

7. Here a scheme called QAM is used: two bits are packed into one conipligxrbaking a 90 phase shift in the other
bit.
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Figure 12:Averages of five signals from the cardiac control experiment, shovaag overfits.

ture length. In practice, noise and other interfering signals cause varatwthe bits are usually
extracted by majority voting.

If there are multiple paths through which a particular bit stream is sent to teévee or the
transmitter and receiver have multiple antennas, the so-called RAKE preceaiu be used: The
path coefficients are estimated based on the so-called pilot bit streamseHatear known bit
streams and sent frequently by the transmitter. Different bit streams arestimemed together
before the majority voting. In RAKE-ICA (Raju and Ristaniemi, 2002), ICA sed to blindly
separate the desired signal from the interference of other usersesd fhis yields better results
in the majority voting.

5.4.1 DENOISING OFCDMA SIGNALS

We know that the original bit stream should consist of repeated codimgtsiges convoluted by
the original complex bits. First the bit stream is decoded using a standactida algorithm. The
denoised signal is then the recoding of the decoded bit stream.

This DSS approach is nonlinear. If the original bit-stream estimate is vecgumnate .9, due
to serious interference of other users or external noise, the nonippasach might get stuck in a
deficient local minimum. To prevent this, we first initialise by running a simpleggirDSS. There
we only exploit the fact that the signal should consist of repetitions ofigratire multiplied by a
complex number. The nonlinearity of the denoising is gradually increased firshiterations.
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5.4.2 FPARATION RESULTS

We sent 100 blocks of 200 complex bits. The sent bits were mixed using darstrof 15 other
users. For simplicity we set all the path delays to zero. The signal-to-retise(lSNR) varied from

-10 to 15 dB. The length of the spreading signature was 31. The mixtunesme&asured using
three antennas. We did not consider multi-path propagation.

Figure 13 sums up the results of the CDMA experiments. The comparison toAKE Rigo-
rithm shows that DSS performs better in all situations except in the highd®t Bhere RAKE is
slightly better. Note that RAKE needs the pilot bits to estimate the mixing while our impkaiem
of DSS was able to do without them. The better performance of DSS for IdwiSKxplained by
the fact that DSS actively cancels disturbing signals while RAKE ignores.the
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Figure 13:Bit- and block-error rates for different SNRs for DSS and RAKE.

CDMA bit streams consist of known headers that are necessary fatasthCDMA techniques
to estimate several properties of the transmission channel. The DSS frawisvable to use the
redundancy of the payload signal, and therefore less pilot sequareegeded. In addition, bits
defined by the actual data such as error-correcting or check bits all@vem better denoising of
the desired stream. Furthermore, it is possible to take multi-path propagatioaictiant using
several delayed versions of the received signal. This should theit hesa kind of averaging
denoising when a proper delay is used analogous to the multi-resolutianogpam DSS described
in Sec. 4.1.3. In the case of moving transmitters and receivers, DSS miait &x@ Doppler effect.
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6. Discussion

In this paper, we developed several DSS algorithms. Moreover, D8 af promising framework
for developing additional extensions. In this section, we first summarisextieasions that have
already been mentioned in previous sections and then discuss some agxilergions.

We discussed an online learning strategy in Sec. 4.3, where we notedyinaatric online
denoising may fail to converge within a 2-D subspace. However, symmetnigising procedures
performing similar functions may easily be generated.

We also noted that the masking based on the instantaneous variance ir2Seaysave prob-
lems in separating the actual sources, though it effectively separatesidgesubspace from the
signal subspace. We proposed a simple modification to magnify small difiesdretween the vari-
ance estimates of different sources. Furthermore, we noted that afoetteled alternative is to
consider explicitly the leakage of variance between the signals. Then ttla@ees of the signals
can be decorrelated using similar techniques to those suggested by &anvebBimoncelli (2001).
This idea has been pursued further in the DSS framework (Valpola aredS2004), making the
variance-based masking a very powerful approach to sourceasigpar-urthermore, the variance-
based mask saturates on large values. This reduces the tendencetdrsuifoutliers. However,
data values that differ utterly from other data points probably carry nosisti@g information at all.
Even more robustness could then be achieved if the mask would start &adean large enough
values.

In this paper, we usually considered the sources to have a one-dimansiarcture, which
is used to implement the denoising. We already applied successfully two-dimahdenoising
techniques for the spectrograms. Furthermore, it was mentioned in Sattfzdlindex of different
sampless(t) might refer as well to space as to time. In space it becomes natural to appindilte
in 2D or even in 3D. For example, the astrophysical ICA (Funaro et &d3R@ould clearly benefit
from multi-dimensional filtering.

Source separation is not the only application of ICA-like algorithms. Angpthegortant field
of application is feature extraction. ICA has been used for example in tihacérn of features
from natural images, similar to those that are found in the primary visuabc@@shausen and
Field, 1996). It is reasonable to consider DSS extensions that hameshggested in the field of
feature extraction as well. For instance, until now we have only considbesextraction of mul-
tiple components by forcing the projections to be orthogonal. Howeveagrtiwsgonal projections
resulting from over-complete representations provide some clear ageantspecially in sparse
codes (Bldiak, 1990), and may be found useful in the DSS framework as well.

Throughout this paper, we have considered linear mapping from tmeesoto the observations
but nonlinear mappings can be used, too. One such approach is stavefaaalysis (SFA, Wiskott
and Sejnowski, 2002) where the observations are first expanddidesmty and sphered. The ex-
panded data are then high-pass filtered and projections minimising the easignestimated. Due
to the nonlinear expansion, it is possible to stack several layers of SEépoaf each others to
extract higher-level slowly changing features, resulting in hierartBEA.

Interestingly, SFA is directly related to DSS. Instead of minimising the variafteelagh-pass
filtering as in SFA, the same result may be obtained by maximising the variancdoaftpass
filtering. SFA is thus equivalent to DSS with nonlinear data expansion angéss filtering as
denoising. This is similar to earlier proposadsy, by Foldiak (1991).
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There are several possibilities for the nonlinear feature expansionrertidcal DSS. For in-
stance kernel PCA (Sékkopf et al., 1998), sparse coding or liquid state machines (Maass et al.,
2002) can be used.

The hierarchical DSS can be used in a fully supervised setting by fixingcthvat@ons of the
topmost layer to target outputs. Supervised learning often suffersdimmlearning in deep hierar-
chies because the way information is represented gradually changesierdrehy. It is therefore
difficult to use the information about the target output for learning the taglesse to the inputs. The
benefit of hierarchical DSS is that learning on lower levels is not dep@rahly on the information
propagated from the target output because the context includes tatelelhyed information from
the inputs. In this approach, the mode of learning shifts smoothly from mosilypenvised learn-
ing to mostly supervised learning from the input layer towards the output [&ysimilar mixture
of supervised and unsupervised learning has been suggestsitding{and Knig (2001).

7. Conclusion

The work in linear source separation has concentrated on blind apye®txfix the rotational am-
biguity left by the factor analysis model. Usually, however, there is additiof@mation available
to find the rotation either more efficiently or more accurately. In this papereveldped an algo-
rithmic framework called denoising source separation (DSS). We showeddhoising can be used
for source separation and that the results are often better than with bpnobapes. The better the
denoising is, the better the results are. Furthermore, many blind soume@tep techniques can
be interpreted as DSS algorithms using very general denoising prindipleatticular, we showed
that FastICA is a special case of DSS which also implies that DSS can be tiiopally very
efficient.

The main benefit of the DSS framework is that it allows for easy developofi@etv source sep-
aration algorithms which are optimised for the specific problem at handeTharwide literature
on signal denoising to choose from and in some cases denoising wouseéthéan post-processing
in any case. All the tools needed for DSS are then readily available.

We have launched an open-source MATLAB package for implementingdf@sithms (DSS,
2004). It contains the denoising functions and speedup method prédere But more impor-
tantly, the modular coding style makes it easy to tune the denoising functionstéo beit the
separation problems at hand and even to build in completely new denoisicigphsito achieve
better performance.

In the experimental section, we demonstrated DSS in various sourceasepansks. We
showed how denoising can be adapted to the observed characteristighals extracted with
denoising based on vague knowledge. From MEG signals, we were abt&agot very accurately
subspaces such as thesubspace or the very weak components of the cardiac subspacealdsSS
proved to be able to recover CDMA signals better than the standard RAKBitee under poor
SNR.

Finally, we discussed potential extensions of DSS. It appears that B&S a sound basis for
developing hierarchical, nonlinear feature extraction methods and thecions to cortical models
of attention and perception suggest a promising starting point for future wo
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Abstract

We discuss basic prediction theory and its impact on classifin success evaluation, implications
for learning algorithm design, and uses in learning algariexecution. This tutorial is meant to
be a comprehensive compilation of results which are botbrétially rigorous and quantitatively
useful.

There are two important implications of the results preseéittere. The first is that common
practices for reporting results in classification shouldrafe to use the test set bound. The second
is that train set bounds can sometimes be used to directliyat®tearning algorithms.

Keywords: sample complexity bounds, classification, quantitativeros

1. Introduction

Classifiers are functions which partition a set into two classes (for exathgleset of rainy days
and the set of sunny days). Classifiers appear to be the most simpleviabmteicision making

element so their study often has implications for other learning systems. @esaife sufficiently

complex that many phenomena observed in machine learning (theoreticalyearireentally) can

be observed in the classification setting. Yet, classifiers are simple enongdikeotheir analysis
easy to understand. This combination of sufficient yet minimal complexityajptucing phenomena
makes the study of classifiers especially fruitful.

The goal of this paper is an introduction to the theory of prediction for ifileaion. Here
“prediction theory” means statements about the future error rate of katassifiers. A typical
statement has the form, “With probability-16 over an i.i.d. draw of some sample, the expected
future error rate of a classifier is bounded tp, error rate on samp)& These statements are con-
fidence intervals on the error rate of a learned classifier. Many of teeséis have been presented
elsewhere, although the style, tightness, and generality of the presemtaiofien new here (and
particularly oriented towards practical use). The focus of this tutoriahi$hose results which are
both theoretically sound and practically useful.

There are several important aspects of learning which the theory &stielight on. Perhaps the
most important of these is the problem of performance reporting for clxssifiMany people use
some form of empirical variance to estimate upper and lower bounds. Thigis@-prone practice,
and the test set bound in Section 3 implies a better method by nearly any metgefully this
will become common practice.

After discussing the test set bound we cover the Occam’s Razor bthedimplest train set
bound, which explains (and quantifies) the common phenomenon of ovegtfitia also prove that

(©2005 John Langford.
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the Occam’s Razor bound cannot be improved without incorporating mftranation and apply
the bound to decision trees.

Next, we discuss two train set bounds, the PAC-Bayes bound and thdesaampression
bound, which have proved to give practical results for more genéaasifiers, such as support
vector machines and neural networks. All of the results here shoulédily @epproachable and
understandable. The proofs are simple, and examples are given. rBdintelated work are also
given.

There are some caveats about the scope of this document.

1. All of the results presented here fall in the realm of classical statistigsarticular, all ran-
domizations are over draws of the data, and our results have the foronfadence intervals.

2. This tutorial inotcomprehensive for prediction theory in general (which would be exiseme
difficult due to the scope of the subject). We only focus on those resultingequantifiably
interesting performance.

3. In particular, other nonquantitative uses of bounds (such as jmguitdirect motivations for
learning algorithms via constant fitting) do exist. We do not focus on thasshese.

The layout of this document is as follows.

Section 2 presents the formal model.

Section 3 presents the test set bound.

Section 4 presents the Occam’s Razor bound.

Section 5 presents the PAC-Bayes bound.

e Section 6 presents the sample compression bound.

The formal model and test set bound must be understood in order tocagpreall later results.
There is no particular dependency between the various train set baerg®sent.

2. Formal Model

There are many somewhat arbitrary choices of learning model. The onusevean (at best) be
motivated by its simplicity. Other models such as the online learning model (KihanenWar-
muth, 1997), PAC learning (Valiant, 1984), and the uniform convergemadel (Vapnik and Cher-
vonenkis, 1971) differ in formulation, generality, and in the scope of egfd#ible questions. The
strongest motivation for studying the prediction theory model here is simplisitycarresponding
generality of results. The appendix discusses the connections betegamsvmodels.

2.1 Basic Quantities

We are concerned with a learning model in which examples of (input, outpir§ pome inde-
pendently from some unknown distribution (similar to Shawe-Taylor et al.8,188d many other
papers). The goal is to find a function capable of predicting the outpahghe input. There are
several mathematical objects we work with.

274



PRACTICAL PREDICTION THEORY FORCLASSIFICATION

| Object | Description \
X The (arbitrary) space of the input to a classifier
Y={-11} The output of a classification.
An (unknown) distribution oveX x Y
A sequence of examples drawn independently fiom
= |§| the number of examples
A function mappingX toY

o|3|n0

Table 1: Mathematical objects in the considered model.

There are several distinctions between this model and other (perhapdanvliar) models.
There is no mention of a classifier space, because the results do notdgpmn a classifier space.
Also, the notion of a distribution oK x Y is strictly more general than the “target concept” model
which assumes that there exists some funcfiolX — Y used to generate the label (Valiant, 1984).
In particular we can model noisy learning problems which do not havetearY value for each
X value. This generalization is essentially “free” in the sense that it doesdultio the complexity
of presenting the results.

It is worth noting that theonly unverifiable assumption we make is that examples are drawn
independently fronD. The strength of all the results which follow rests upon the correctneabssof
assumption.

Sometimes, we decorate these objects with labelsSikg, (a train set) or Sest (a test set).
These decorations should always be clear.

Example 1 Weather prediction: Will it rain today or not? In this case=Xbarometric pressure,
observations of cloud cover or other sensory input and ¥ if the prediction is “no rain” and1
otherwise. The distribution D is over sensory inputs and outcomes. Tiigesaget S, might consist
of m= 100(observation, outcome) pairs such as (pressure low, cloudy, rggreéssure high, cloudy,
not rain), etc. A classifier, c, is any function which predicts “rain” or “hoain” based upon the
observation.

Note that the independence assumption here is not perfectly satisfiedghitiiaaeems to be
a reasonable approximation for well-separated days. In any applicatidghis theory, it must be
carefully judged whether the independence assumption holds or not.

2.2 Derived Quantities

There are several derived quantities which the results are stated in terms o

Definition 2.1 (True Error) The true error g of a classifier ¢ is defined as the probability that the
classifier errs:

o= Pr(ex)#Y)

under draws from the distribution D.

1. Throughout this tutorial we use the word 'set’ when ’sequence’ iatvid actually meant. This usage pattern is
historical.
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The true error is sometimes called the “generalization error”. Unfortunaked\true error is not an
observable quantity in our model because the distribudiamunknown. However, there is a related
guantity which is observable.

Definition 2.2 (Empirical Error) Given a sample set S, thenpirical erroy€s is the observed num-
ber of errors:

(xy)~S

E=m Pr (c(x)#£y) = ZI Xi) £ Vi)

where [) is a function which maps “true” td. and “false” to 0. Also,Pry).s(...) is a probability
taken with respect to the uniform distribution over the set of examples, S.

The empirical error is sometimes called the “training error”, “test error*,obbserved error” de-
pending on whether it is the error on a training set, test set, or a moreafjeaer

Example 2 (continued) The classifier ¢ which always predicts “not rain” might haneempirical
error of 38 out of 100examples and an unknown true error rate (which might in fadd.bg

2.3 Addressable Questions

Given the true errocp of a classifierc we can precisely describe the distribution of success and
failure on future examples drawn accordindoThis quantity is derived from the unknown distri-
butionD, so our effort is directed toward upper and lower bounding the valwg &r a classifier
C.

The variations in all of the bounds that we present are related to the mettatbasing a
classifierc. We cover two types of bounds:

1. Test: Use examples in a test set which were not used in picking

2. Train: Use examples for both choosingnd evaluating.

These methods are addressed in the next two sections.

It is worth noting that one question thaannotbe addressed in this model is “Can learning
occur for my problem?” Extra assumptions (Valiant, 1984; Vapnik and \@menkis, 1971) are
inherently necessary.

3. The Test Set Method

The simplest bound arises for the classical technique of usifigsh examples to evaluate a clas-
sifier. In a statistical setting, this can be viewed as computing a confidenoeairftg the binomial
distribution as in (Clopper and Pearson, 1934). This section is orgaimizetivo subsections:

e Subsection 3.1 presents the basic upper bound on the true error radg,dpproximations,
and a lower bound.

e Subsection 3.2 discusses the implications of the test set bound on edimgpractice. A
better method for error reporting is applied to several datasets and this i@@® shown.
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Empirical Error distribution

0.2 I I I I
true error
2
%
8 01t -
o
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0 1 | | 1
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Empirical Error Rate

Figure 1: A depiction of the binomial distribution. The cumulative of the binomitdésarea under
the curve up to some point on the horizontal axis.
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3.1 The Bound

Before stating the bound, we note a few basic observations which makesthlésriess surprising.
The principal observable quantity is the empirical engofa classifier. What is the distribution of
the empirical error for a fixed classifier? For each example, our indigmee assumption implies
the probability that the classifier makes an error is given by the true epgof,his can be modeled
by a biased coin flip: heads if you are right and tails if you are wrong.

What is the probability of observinigerrors (heads) out afi examples (coin flips)? This is a
very familiar distribution in statistics called the binomial and so it should not barisinig that the
bounds presented here are fundamentally dependent upon the cuendistiilbbution of a binomial.
For the following definitionB(p) is the distribution of a Bernoulli coin flip.

Definition 3.1 (Binomial Tail Distribution)

Bin(m,k,cD)zZl sz@ - (Zﬁgk) Z)< i >CE(1—CD)m_j

equals the probability that m examples (coins) with error rate (bigspmduce k or fewer errors
(heads).
A depiction of the binomial distribution is given in Figure 1.

For the learning problem, we always choose a biagyodind X; =error or not on théth example.
With these definitions, we can interpret the binomial tail as the probability ofrguiresal error less
than or equal td.

Since we are interested in calculating a bound on the true error givenfidexaced, and an
empirical errorcg, it is handy to define the inversion of a binomial tail.

Definition 3.2 (Binomial Tail Inversion)

Bin(m,k,d) = mé:\x{p: Bin(m,k, p) > &}

equals the largest true error such that the probability of observing k arertheads” is at leas®.

For intuition’s sake, the quantit8in (m, k,8) obeys the following inequalities (some of which we
prove later).

1. Bin(mk,8) < X 4 'n5

2k In?3 2In5

2. Bin(mk,d) < +

e 27

3. Bin(m,0,9) <D
With these definitions finished, the results are all very simple statements.
Theorem 3.3 (Test Set Bound) For all D, for all classifiers c, for &l (0, 1]

< Bin(m,¢ >1-0.
s|~3|3rm (co <Bin(m,&s,3)) >1-93
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Figure 2: A graphical depiction of the test set bound. The first grapiicts several possible bino-
mials given their true error rates. The second depicts several binonaaltsweth a tail
cut. The third figure shows the binomials consistent with the tail cut and aixbéest
error. The worst case over all true error rates is the consistent bihaittiethe largest

bias.

Note thatmin this equation isntest= |Sest, the size of the test set.

Proof (pictorially in 2) The proof is just a simple identification with the binomial. For anyritis-
tion over(x,y) pairs and any classifie; there exists some probability, that the classifier predicts
incorrectly. We can regard this event as a coin flip with lmgs Since each example is picked
independently, the distribution of the empirical error is a binomial distribution.

Whatever our true errarp is, with probability 1— & the observatiorms will not fall into a tail
of sized. Assuming (correctly with probability 4 &) that the empirical error is not in the binomial
tail, we can constrain (and therefore bound) the value of the true @yror [ |

The test set bound is, essentially, perfectly tight. For any classifier witlfiaiently large true
error, the bound is violated exactlydgortion of the time.
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Two Functions
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Figure 3: A graph suggestirgg®™ > (1—¢)™.

3.1.1 APPROXIMATIONS

There are several immediate corollaries of the test set bound (3.3) wieichae convenient when
a computer is not handy. The first corollary applies to the limited “realizat@#ing where you
happen to observe 0 test errors.

Corollary 3.4 (Realizable Test Set Bound) For all D, For all classifiers c, fordadl (0, 1]
R In}
Pr |6s=0=cp<—2]>1-0.
S~Dm m

Proof Specializing the test set bound (Theorem 3.3) to the zero empirical @ser we get
Bin(m,0,e) = (1—¢)"<e®M

Setting this equal td and solving fore gives us the result. The last inequality can be most simply
motivated by comparing graphs as in figure 3.
|

Approximations which hold for arbitrary (nonzero) error rates relyruffee Chernoff bound which
we state next, for completeness. For this bound (and it's later applicatiengyevload the defini-
tion of KL-divergence so it applies to tma g € [0, 1] variables.

Definition 3.5 (KL-divergence overload) KL(q||p) = qlog% + (1—q)|ogi%g for p>qandO
otherwise.
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Lemma 3.6 (Relative Entropy Chernoff Bourfdfor % < p:

Bin(mk, p) < e MKL(llp)

Proof (Originally from (Chernoff, 1952). The proof here is based on (@8gy For allA > 0, we
have

m
Bin(mk, p) = VL (ZK < k) = Pr <e—rm%zim:m > e—m)\ﬁk]) .
1=

mepm
Using Markov’s inequalityX > 0, EX =, = Pr(X > 9) < ‘—6‘), this must be less than or equal to

EXmN pmei)\ z:’n:l X
e Ak

Using independence, this expression is equal to

m
& (pe?+(1-p)) .
and rewriting, we get
gnfd),
wheref(A) =A& +In(pe?+1-p).

A is a free parameter which can be optimized to find the tightest possible boorfihdTthe
optimal value, find\* so thatf’(A\*) = 0.

k pe
Ozf/ )\* =
() m peM+1-p
o A A
m _\* . o A
= IO(pe +1 p>_e
k Kk \
m_p=(1-2)e?
= p(l p) <l m)e
. 1-k
:>e2\ :Fll( m)7
m(1—p)

EInBJr l—E In 1-p = —KL EHp .
m k m 1—k m
m m

Using the Chernoff bound, we can loosen the test set bound to achimewesaanalytic form.

2. The closely related Hoeffding bound (Hoeffding, 1963) makesdheesstatement for sums|@ 1] random variables.
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Corollary 3.7 (Agnostic Test Set Bound) For all D, for all classifiers c, for&aé (0O, 1]

¢ In i
Pr (KL <—S|cD> < —5> >1-3.
S~Dm m m

Proof Loosening the test set bound (theorem 3.3) with the Chernoff approxinrfa)tié}] < Ccp we

get

Bin (m,k, cp) < e KL (wllo).

Setting this equal td, and solving for gives the result. |

The agnostic test set bound can be further loosened by boundingltiesofdlL(q||p).

Corollary 3.8 (Agnostic Test Set Bound II) For all classifiers c, fora#: (0, 1]
Pr lcp<=+4+4/=—]>1-6.

Proof Use the approximation
k k
KL (= > 2(cp — —)?
(lle0) =200 )
with the Chernoff bound and test set bounds to get the result. [ |

The differences between the agnostic and realizable case are furtdlymetated to the decrease in
the variance of a binomial as the bias (i.e. true error) approaches Otiothis implies using the
exact binomial tail calculation can resultfianctional(rather than merely constant) improvements
on the above corollary.

3.1.2 ATESTSET LOWER BOUND

The true error can be lower bounded using a symmetric application of theteahméques.

Theorem 3.9 (Test Set Lower Bound) For all classifiers, c, forak (0, 1]
> mi : 1-Bi ¢ > >1-0.
Sftgm (CD > mpln{p 1-Bin(m,€s, p) > 6}> >1-9

The proof is completely symmetric. Note that both bounds hold with probability2d since
Pr(AorB) < Pr(A) 4+ Pr(B). This is particularly convenient when the square-root version of the
Chernoff approximation is used in both directions to get

Cs

/In%
<\ =2|>1-0s.
m 2m

vc Pr Cp— —
S~Dm

Example 3 (continued) letd = 0.1. Using the square root Chernoff bound witg = 38 out of
100 examples, we get the confidence intengiec[0.26,0.50]. Using an exact calculation for the
binomial tail, we get g € [0.30,0.47]. In general, as the observed error moves tow@rthe exact
calculation provides a tighter confidence interval than the agnostic ajpition.

282



PRACTICAL PREDICTION THEORY FORCLASSIFICATION

3.1.3 THE STATE OF THEART

Although the test set bound is very well understood, the same cannaidoef ©ther testing meth-
ods. Only weak general results in this model are known for some varifintess validation (see
Blum et al., 1999). For specific learning algorithms (such as nearestlaily stronger results are
known (see Devroye et al., 1996). There are a wide range of edsentianalyzed methods and a
successful analysis seems particularly tricky although very worthwhilenideted.

3.2 Test Set Bound Implications

There are some common practices in machine learning which can be improapgimation of the
test set bound. When attempting to calculate a confidence interval on thertougate given the
test set, many people follow a standard statistical prescription:

1. Calculate the empirical meqm:“cstTGSt = %2{11' (h(x;) # Vi).
2. Calculate the empirical varian@ = =25 s, (1(c(x) = yi) — 1)2.

3. Pretend that the distribution is Gaussian with the above variance andumbrstronfidence
interval by cutting the tails of the Gaussian cumulative distribution at &h@2some other)
point.

This approach is motivated by the fact that for dixed true error rate, the distribution of the
observed accuracy behaves like a Gausasisymptotically. Here, asymptotically means “in the
limit as the number of test examples goes to infinity”.

The problem with this approach is that it leads to fundamentally misleading rasustsown in
Figure 4. To construct this figure, a collection of discrete (aka “nomiriafjure datasets from the
UCI machine learning database were split into training and test sets. A detiséoclassifier was
learned on each training set and then evaluated on the held-out test set.

This “misleading” is both pessimistic and (much worse) optimistic. The pessimistinecaaen
by intervals with boundaries less than O or greater than 1 and the optimismseyvoily what
happens when the test error is 0. When we observe perfect classificaur confidence interval
shouldnot have size 0 for any finiten.

The basic problem with this approach is that the binomial distribution is not simiéeGeussian
when the error rate is near 0. Since our goal is finding a classifier with 8 so®&error, it is
essential that the means we use to evaluate classifiers work in this regimeestThket bound can
satisfy this requirement (and, in fact, operates well for all true erginres).

1. The test set bound approacheveroptimistic.

2. The test set bound based confidence interval always returnppan and lower bound in
[0,1].

The 2 method is a relic of times when computational effort was expensive. It issiople and
easy to calculate a bound based upon the cumulative distribution of the bir{seedlangford).

The test set bound can be thought of as a game where a “Learner” steongonvince a
reasonable “Verifier” of the amount of learning which has occurradtoRally we can represent
this as in Figure 5.
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Holdout vs. 2 Sigma Bound
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Figure 4: This is a graph of the confidence intervals implied by the test sedtheorem 3.3) on
the left, and the approximate confidence intervals implied using the common two sigma
rule motivated by asymptotic normality on the right. The upper bounds of theséést
bound haved = 0.025 failure rate, so as to be comparable with the 2-sigma approach.
The test set bound is better behaved as the confidence interval isezbtdithe interval
[0,1] and is never over-optimistic.
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Test Set Bound

5
Verifier Learner

classifier ¢ Choose «

Evaluate Bound

Draw Examples

Figure 5: For this diagram “increasing time” is pointing downwards. The oatjuirement for
applying this bound is that the learner must commit to a classifier without kngevled
of the test examples. A similar diagram for train set bounds is presenteddattis
somewhat more complicated). We can think of the bound as a technique bly thikic
“Learner” can convince the “Verifier” that learning has occurraati(the degree to which
it has occurred). Each of the proofs can be thought of as a commumigattocol for
an interactive proof of learning by the Learner.
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4. The Occam’s Razor Bound

Given that the simple test set bound works well, why do we need to engageherfwork? There
is one serious drawback to the test set technique—it requiggs otherwise unused examples. An
extramiestexamples for the training set decreases the true error of the learnethbgis to O from
0.5 for some natural learning algorithm/learning problem pairs. This loss rébrpeance due to
holding out examples is very severe.

There is another reason why training set based bounds are important.lé4aning algorithms
implicitly assume that the train set accuracy “behaves like” the true errooiosihg the hypothesis.
With an inadequate number of training examples, there may be very little relapdretveen the
behavior of the train set accuracy and the true error. Training setl@sunds can be usé@dthe
training algorithm and can provide insight into the learning problem itself.

This section is organized into three subsections.

1. Subsection 4.1 states and proves the Occam’s Razor bound.
2. Subsection 4.2 proves that the Occam’s Razor bound cannot be edprogeneral.

3. Subsection 4.3 discusses implications of the Occam’s Razor bound @md s#sults for its
application.

4.1 The Occam’s Razor Bound

This Occam’s Razor bound (Blumer et al., 1987; McAllester, 1999) in mppecximate forms has
appeared elsewhere. We use “prior” (with quotes) here becausenitiddrary probability distri-
bution over classifiers and not necessarily a Bayesian prior. The distiris important, because
the theory holds regardless of whether or not a Bayesian prior is used.

Theorem 4.1 (Occam’s Razor Bound) For all D, for all “priors” Rc) over the classifiers c, for all
o€ (0,1
: ¢p < Bin(m, & >1—
P (Vc: cp < Bin(m,és,dP(c))) >1-0

The application of the Occam’s Razor bound is somewhat more complicatethihapplication
of the test set bound. Pictorially, the protocol for bound application isrgim Figure 6. It is very
important to notice that the “prio?(c) must be selectebleforeseeing the training examples.
Proof (pictorially in Figure 7) First, note that P(c) = 0, thenBin (m,s,0) = 1 and the bound is
always valid. The remainder of this proof applies to the countable sesatisfyingP(c) > 0.

The proof starts with the test set bound:

< Bin(m,é >1-—
ve Pr (co < Bin(m,&s,8P(c))) > 1—3P(c)
Negating this statement, we get

Ve SE’Drm (co > Bin(m,€s,8P(c))) < dP(c)
then, we apply the union bound in a nonuniform manner. The union baygdtkat PfA or B) <
Pr(A) + Pr(B). Applying the union bound to every classifier with a positive measure givesal
probability of failure of

oP(c)=8 3 P(c)=3
c:P(c)>0 c:P(c)>0
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Occam’s Razor Bound

o)
Verifier Learner
w

Draw Training
Examples m examples

Classifier, ¢
Evaluate Boun M’

Choose (

Figure 6: In order to apply the Occam’s Razor bound it is necessaryhthathoice of “prior” be
made before seeing any training examples. Then, the bound is calculatsiu@on the
chosen classifier. Note thatigt “legal” to chose the classifier based upon the pR¢x)
as well as the empirical errag.”
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Occam Bound Calculation
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Figure 7: The sequence of pictures is the pictorial representation ofdbégf the Occam’s Razor
Bound. The first figure shows a set of classifiers, each with a tail fcsbme varying
depth. The second picture shows an observed training error and skilgobinomial
distributions for a chosen classifier. The third picture shows the truesenbich are
consistent with the observation and the tail cuts. The fourth picture shevtsuin error
bound.

which implies Bin
Pr (o1 oo > Bin(més 3P(©))) <&

Negating this again completes the proof. |

4.1.1 GccAM’S RAZOR COROLLARIES

Just as with the test set bound, we can relax the Occam’s Razor bohadrém 4.1) with the
Chernoff approximations to get a somewhat more tractable expression.

Corollary 4.2 (Chernoff Occam’s Razor Bound) For all D, for all “priors” f) over classifiers,
forall & € (0,1]:

~ 1 1
Cs InW‘i‘lnS

P : < = > 1— 6
svDrm veico s m + 2m -
Proof Approximate the binomial tail with the Chernoff Bound (lemma 3.6). [ |
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Many people are more familiar with a degenerate form of this bound wik@re= \W1| andH is
some set of classifiers. In that case, simply replagggrwith In|H|. The form presented here is

both more general and necessary if the bound is to be used in practice.
Other corollaries as in Section 3.1.1 exist for the Occam’s Razor boumgknieral, just substi-
tuted — dP(c).
4.1.2 CccaM’S RAZOR LOWER BOUND
Just as for the test set bound, a lower bound of the same form applies.

Theorem 4.3 (Occam’s Razor Lower Bound) For all D, for all “priors” i¢) over the classifiers,
c, foralld < (0,1

SVPDrm (Vc: Cp > mF!n{p: 1-Bin(m,¢s, p) > 6P(c)}> >1-20.

Example 4 (continued) Suppose that instead of havii@p test examples, we halD0 train ex-
amples. Also suppose that before seeing the train examples, we commPi@)l t00.1 for ¢ the
constant classifier which predicts “no rain”. Then, the Chernoff apgmations of the upper and
lower bound give the intervalpce [0.22,0.54]. With an exact calculation, we gef & [0.26,0.51].

4.1.3 THE STATE OF THEART
A very large amount of work has been done on train set bounds. iti@dtb those included here,

there are:

1. Reinterpretations of uniform convergence (Vapnik and Chenldseh971) results for con-
tinuously parameterized classifiers.

2. Reinterpretations of PAC convergence (Valiant, 1984) results.

3. Shell bounds (Langford and McAllester, 2000) which take advantdighe distribution of
true error rates on classifiers.

4. Train and test bounds (Langford, 2002) which combine train setemtdet bounds.

5. (Local) Rademacher complexity (Bartlett et al., 2004) results which tdiaerdage of the
error geometry of nearby classifiers.

... and many other results.

Of this large amount of work only a small fraction has been shown to belusefreal-world
learning algorithm/learning problem pairs. The looseness of train sed baseds often precludes
analytical use.

4.2 The Occam’s Razor Bound is Sometimes Tight

The question of tightness for train set bounds is important to address,rgsailhem have been
extremely loose. The simplest method to address this tightness is constrestiibit a learning
problem/algorithm pair for which the bound is almost achieved. For the telsbaad, this is trivial
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as any classifier with a large enough true error will achieve the bourrdh&drain set bound, this
is not so trivial.

How tight is the Occam’s Razor bound (4.1)? The answepigetimesight. In particular, we
can exhibit a set of learning problems where the Occam’s Razor boarmibtae made significantly
tighter as a function of the observables,5, P(c), andcs. After fixing the value of these quantities
we construct a learning problem exhibiting this near equivalence to then®s®azor bound.

Theorem 4.4 (Occam’s Razor tightness) For all®), m, k,d there exists a learning problem D and
algorithm such that:

P (3c: és<k and @ > Bin(m,&s,3P(c))) > 5 &%

Furthermore, if ¢ is the classifier with minimal training error, then:

* Bin Ax =2
P (cp > Bin(m,&5,0P(c))) > 86— &°.

Intuitively, this theorem implies that we can not improve significantly on the é&cRazor bound
(Theorem 4.1) without using extra information about our learning problem.

Proof The proof is constructive: we create a learning problem on which lsegations are likely.
We start with a priolP(c), probability of errord, m, and a targeted empirical error numbler,For
succinctness we assume tR4t) has support on a finite set of sine

To define the learning problem, leX:= {0,1}" andY = {0,1}.

The distributionD can be drawn by first selectingwith a single unbiased coin flip, and then
choosing théth component of the vectot independently, R(Xy,...,X,)[|Y) =M, Pr(X|Y) . The
individual components are chosen s@Re=Y|Y) = Bin (m,k, 3P(c)).

The classifiers we consider just use one feature to make their classifiGation= x. The true
error of these classifiers is given bgs = Bin (m,k, 8P(c)).

This particular choice of true errors implies that if any classifier has anwadt$rain error, then
the classifier with minimal train error must have a too-small train error.

Using this learning problem, we know that:

Ve, vo € (0,1] P (co > Bin(m,€s,8P(c))) = dP(c)

(negation)
= Vc,vo e (0,1): P (co < Bin(m,&s,8P(c))) = 1—3P(c)

(independence)

=Vde (0,1 : (VC o < Bin(m,&s,8P(c))) < [1(1-3P(c))

(negation)

=Vvde (0,1 : (Hch > Bin (m, €s, dP(c) 1-T](@-3P(c

C

n

= 5 8P(c) [1(1-3P(e) > iamco(l—a) ~5-&
i= 1<l i=
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holdout bound vs. micro bound
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Figure 8: Thisis a plot comparing confidence intervals built based updashset bound (Theorem
3.3) with an 80%/20% train/test split on the left and the Occam’s Razor bdumabfem
4.1) with all data in the training set on the right. The Occam’s razor boundigtsmes
superior on the smaller data sets and always nonvacuous (in contrastythar train
set bounds).

where the last inequality follows froifl —a)(1—b) > 1—a—bfora,b € [0,1]. [ |

The lower bound theorem implies that we can not improve an Occam’s Ragatéitement. How-
ever, it is important to note that large improvements are possible if we usesatheres of infor-
mation. To see this, just note the case where every single classifier Isajgpba the same. In
this case the “right” bound would the be ttestset bound, rather than the Occam’s Razor bound.
The PAC-Bayes bound and the sample compression bound presentech@xtisections use other
sources of information. Another common source of information is specializttialassifiers of
some specific sort.

4.3 Occam’s Razor Bound Implications

The Occam’s Razor bound is strongly related to compression. In partiftadany self-terminating
description languagé,(c), we can associate a “prioP(c) = 2~14() with the property thay . P(c) <
1. Consequently, short description length classifiers tend to have a tigieergence and the
penalty term, IQJ(l—C) is the number of “nats” (bits base e). For any language fixed befonegste
training sequence, classifiers with shorter description lengths have tightads on the true error
rate.
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One particularly useful description language to consider is the executoa of a learning
algorithm. If we carefully note the sequence of data-dependent cheltehk a learning algorithm
makes, then the output classifier can be specified by a sequence $setaasl choice, third choice,
first choice, etc....” This is the idea behind microchoice bounds (LangiwddBlum, 1999). Results
for this approach are reported in Figure 8 and are strong enough &s @t empirical existence
proof that Occam’s Razor bounds can be made tight enough for wggdlitation.

5. PAC-Bayes Bound

The PAC-Bayes bound (McAllester, 1999) is particularly exciting beedusan provide quantita-
tively useful results for classifiers witleal valuedparameters. This includes such commonly used
classifiers as support vector machines and neural netwWdFkss section is divided into three parts:

1. Subsection 5.1 states and proves the PAC-Bayes Bound.

2. Subsection 5.2 shows that the PAC-Bayes Bound is nearly as tightsiblpagiven the ob-
servations.

3. Subsection 5.3 discusses results from the application of the PAC-Bayesl to support
vector machines.

5.1 The PAC-Bayes Bound

The PAC-Bayes bound has been improved by tightening (Langford aede®, 2001) and then
with a much simpler proof (Seeger, 2002) since it was originally stated. fBiensent and proof
presented here incorporate these improvements and improve on them slightly.

The PAC-Bayes bound is dependent upon two derived quantities gaaggvtrue error:

Qo = Ec-qCp
and an average train error rate:
~ és
=E..0—.
QS c~Q m

These quantities can be interpreted as the train error rate and truefdtremoeta-classifier which
chooses a classifier according@oevery time a classification is made. If we refer to this meta-
classifier ag), the notation for error rates is consistent with our earlier notation.

The “interactive proof of learning” viewpoint of the PAC-Bayes boisshown in Figure 9. Itis
essentially the same as for the Occam’s Razor bound except for the comntitrtientnetaclassifier
Q rather than the classifier

Theorem 5.1 (PAC-Bayes Bound) For all D, for all “priors” Fc) over the classifiers c, for all
o< (0,1):

KL(Q||P) + In 1+l
(QHr)n+ 5>21_5

Fin (vcz(c) KL, (Gsl|Qo) <

where KLQ||P) = Ec.gIn % is the KL-divergence between Q and P.

3. There is a caveat here—the bound only applies to stochastic ver$ithesatassifiers. However, the probability that
the stochastic classifier differs from the classifier can be made veiy. sma

292



PRACTICAL PREDICTION THEORY FORCLASSIFICATION

PAC-Bayes Bound
o)

Verifier Learner

Draw Training

Examples W

"Posterior", Q(c)

Choose Q(c)

Evaluate Bound

Figure 9: The “interactive proof of learning” associated with the PAGe3abound. The figure is
the same as for the Occam’s razor bound, except that instead of committirgirnglex
classifier, the PAC-Bayes bound applies to any distribution over classifier

Note that the PAC-Bayes bound applies to distributionover classifiers. Whe@ is concentrated
on one classifier, we have KQ||P) = In 5, just as in the Occam’s razor boufiahith the only

distinction being the additiv@% term. It is somewhat surprising that the bound holdssfcary
distributionQ with only the slight worsening bﬁln(’;—*l).

Since the KL-divergence applies to distributions over continuous valaeghgeters, the PAC-
Bayes bound can be nontrivially tight in this setting as well. This fact is uselderapplication
section.

We first state a couple simple lemmas that are handy in the proof. The intuitidmdbibiis
lemma is that the expected probability of an event is not too small.

Lemma 5.2 For all D, for all P(c), for all 4 € (0,1]:

1 m—+1
Pr ( Ece — < >1-9
stm( “PPrg pn(Cs=Cg) ~ & > =
Proof Note that:
Ve E (Es=k) ! =m+1
SD PI’gNDm ZSMD”1 - PI’gNDm (ég = k) N '

Taking the expectation over classifiers according tand switching the order of expectation, we
get

4. As weakened with the relative entropy Chernoff bound (Lemmadhéhe binomial.
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1
Es pmEc. — —=m+1
S~bme PPrSNDm (CS = Cg)

and using the Markov inequalitX(> 0, EX =y, = Pr(X > %‘) < 0), we get

1 m+1
VP Pr - ~ — > < 0.
S~Dm (EC P Prg..pm (CS = Cg) 0 >

The next lemma shows that a certain expectation is bounded by the Kullledloleiddistance be-
tween two coin flips, just as for the relative entropy Chernoff boundnfipa 3.6).

Lemma 5.3 Fix all example sequences S. For al{«):

ECNQmPr% ~
3~.om(€s=Cy)
> KL .
m > KL(Qs||Qp)
Proof L
EevolN 5y ety e n 1
= — CNQ
m m M\ Bs1_ ou)m-¢
(& )eba-—eome
1 1 Cs
> —_E;..oln > Eq..oKL [ —||c
,mEcQ 2 EcQ <m|D>

5o ( o) eb(a-corm

where the last inequality follows from the relative entropy Chernoff lublBincea‘?—l.gq KL(q||p) =

—% — 115 < 0 the function is concave in both arguments. Jensen's inequdlityy) concave

= Ef(x,y) > f(EX Ey)) gives us

> KL (Ec~qCs||Ec~qCp),
which completes the proof. |

With these two lemmas, the PAC-Bayes theorem is easy to prove.
Proof (Of the PAC-Bayes theorem) Fix a training SetLet

! T P(c).

Ps(c) = PRSP
Praon (Cs = Cs) Bavp i {aiay)

Ps(c) is a normalized distribution because it has the f@gP(c) whereP(c) is a distribution.

Q(c) A4 1
= 0<KL(Q||Ps) =Ecqgln | == Pr (€g= ~ —
< KL(QIIPe) = Eexoln | 5o o P, (G5 = 6 B " Prg—on (ds — d)
=KL (QI|P) — Ec.glIn ! +InE 1
T Prgon(Eg =) " Prg_pn (ds=dg)
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= Ecwgln

— — <KL P)+InEyg. ~ -
Prg.pm(€g =Cs) ~ (QIIP)+InEq "pr.

Applying lemma 5.3 on the left hand term we get

3 1
MKL (Qs||Qp) < KL(Q||P) +InE4-p S
PrSfNDm (ds = dg)
This holds for allS. Applying Lemma 5.2 which randomizes ov&rwe get the theorem. [ |

5.2 The PAC-Bayes Bound is Sometimes Tight

Since the PAC-Bayes bound is (almost) a generalization of the Occam’s BRarad, the tightness
result for Occam’s Razor also applies to PAC-Bayes bounds.

5.3 Application of the PAC-Bayes Bound

Applying the PAC-Bayes bound requires specialization (Langford dnaav8-Taylor, 2002). Here,
we specialize to classifiers of the form

c(X) = sign(W-X) .

Note that via the kernel trick, support vector machines also have this form.
The specialization is naturally expressed in terms of a few derived quantities

1. The cumulative distribution of a Gaussian. Egx) = [’ \/%[efxz/z_ Here we usé rather
thanF to denote the fact that we integrate frorto co rather than—oo to x.

2. A “posterior” distributionQ(W, i) which isN(p, 1) for somep > 0 in the direction of# and
N(0,1) in all perpendicular directions.

3. The normalized margin of the examples

yW-X
I 111

Y(Ry) =

4. A stochastic error rat€(W, b)s = Exy-sF (Wy(XY)) -

This last quantity in particular is very important to understand. Considera$e a1 approaches
infinity. When the margin is negative (indicating an incorrect classificato)y(X,y)) approaches
1. When the margin is positive (py(X,y)) approaches 0. Thu(W, l)s is a softened form of the
empirical errorcs which takes into account the margin.

Corollary 5.4 (PAC-Bayes Margin Bound) For all distributions D, for dllc (0, 1], we have

W m1
Pr| wi,p: KL (Q(W, W)s||Q(W: ))<7+'j >1-5
SuDm 7”' 7“3 auD >~ m et .
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Proof The proofis very simple. We just chose the pifor N(0, 1)" and work out the implications.
Since the Gaussian distribution is the same in every direction, we can reitrgeobordinate
system of the prior to have one dimension parallett&ince the draws in the parallel and perpen-

dicular directions are independent, we have

KL(QI|P) = KL(QLI[P1) +KL(N(K 1)[[N(0, 1))

12
2

as required.

All that remains is calculating the stochastic error @(W, Ws. Fix a particular examplé&, y).
This example has a natural decompositioa X + X, into a componeng parallel to the weight
vectorw and a componert, perpendicular to the weight vector.

To classify, we draw weight vectat’ from Q(W, ). ThisW consists of three components,
W= VT/H W, W Herev*\/|| ~ N(l,1) is parallel to the original weight vectow/, ~ N(0,1)

which is parallel toX, andw | is perpendicular to boti and%. We have
Q.S — Exy- st quup! (37 Sian(w )

- EZyNS,WNpr (yW X< O)

If we letw) = [|W)||, w, = ||, ||, x; = [[%|, andx, = [|X.||, and assume (without loss of gener-
ality) thaty = 1 we get

= Baysw ~niunw ~nog)! (y(WIIXH FW X)) < 0)
= ExayNSEW‘,‘NN(u,l) EWlNN(O,l)I (y(WHXH —|—WJ_XL) < O)

X
= Exy~sE/ no) E\leN(O,l)I (yu< —yZ YW, - X ) '

Using the symmetry of the Gaussian, this is:

/ ’ XJ_
= Exy~sB7 o) B ~nio)! <yu§ yz JryWLX_|>

Using the fact that the sum of two Gaussians is a Gaussian:

v~N| O 1+T

= Exy~sE (
"

> L (yu<yv)
= Exy~sE
NGy

= Egy~sF (Wy(X))
finishing the proof. [ |

)I (YH< yv)
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Using the corollary, the true error bouiw, i)p satisfies the equation:

2
w2 m+1
> +InT%

KL (Q(W, Ws{|Q(W. Wp) = *—

This is an implicit equation fo@ which can be easily solved numerically.

The bound is stated in terms of dot products here, so naturally it is possikézrielize the
result using methods from (Herbrich and Graepel, 2001). In kermefaen, the bound applies to
classifiers (as output by SVM learning algorithms) of the form:

c(x) = sign <iaik(xi,x)> . (1)

Since, by assumptiork is a kernel, we know thak(x;,x) = ®(x) - ®(x) where ®(x) is some
projection into another space. In kernelized form, we ek = ", aik(x;,X), X- X = K(x,X),

— =

W-W=y; ;aia;K(x;,x;), defining all of the necessary quantities to calculate the normalized margin,

y(x,y) = Zﬂ;zik(xi,x)
\/k(x, X) ¥i.j=1,1 00t jK(X;, Xj)

One element remains, which is the valueuofUnfortunately the bound can be nonmonotonic
in the value ofyy, but it turns out that for classifiers learned by support vector mashingeason-
able datasets, there is only one valuguafhich is (locally, and thus globally) minimal. A binary
search over some reasonable rangp (fay from 1 to 100) can find the minima quickly, given the
precomputation of the margins. It is worth noting again here that we areheating”—the bound
holds for all values oft simultaneously.

The computational time of the bound calculation is dominated by the calculation wigtiggns
which is O (m?) wherem is the number of support vectors with a nonzero associated his
computational time is typically dominated by the time of the SVM learning algorithm.

5.3.1 RESULTS

Application of this bound to support vector machines is of significant impoetdrecause SVMs
are reasonably effective and adaptable classifiers in common and véddsgse. An SVM learns
a kernelized classifier as per equationY1).

We apply the support vector machine to 8 UCI database problems chosetiéodiiiteria “two
classes” and “real valued input features”. The problems vary in siee an order of magnitude
from 145 to 1428 examples. In Figure 10 we use a 70/30 train/test split dbtiae

In all experiments, we use SVMlight (Joachims) with a Gaussian kernefrendefault band-
width. Results for other reasonable choices of the “C”, bandvfidthd kernel appear to be quali-
tatively similar (although of course they differ quantitatively).

It is important to note that the PAC-Bayes margin bounaiprecisely a bound (or confidence
interval) on the true error rate of the learned classifier. Instead, it is a&troerate bound on an

5. Some SVM learning algorithms actually learn a classifier of the fafx). = sign(b+ zi”;laik(xi,x)). We do not
handle this form here.

6. Note that the bandwidth of a Gaussian kernel used by an SVM is natlgirelated to the optimized value pfwe
find.
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test set bound
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Figure 10: This figure shows the results of applying SVMlight to 8 dataséisanaussian kernel
and a 70/30 train/test split. The observed test error rate is graphedas@m the
test set, we calculate a binomial confidence interval (probability of boaihdé equals
0.01) which upper bounds the true error rate. On the training set we cat¢h&aPAC-
Bayes margin bound for an optimized choicquof
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Figure 11: In addition to comparing with everything in Figure 10, we graphntlaegin bound
whenall of the data is used for the train set. Note that it improves somewhat on the
margin bound calculated using the 70% train set (7/10 margin bound), benhoagh
to compete with the test set bound.

associated stochastic classifier chosen so as to have a similar test &rrdrhrase bounds can be
regarded as bounds for the original classifier only under an additamsaimption: that picking a

classifier according to the majority vote of this stochastic distribution doesarsen the true error

rate. This is not true in general, but may be true in practice.

It is of course unfair to compare the train set bound with the test set bmuad/0/30 train/test
split because a very tight train set bound would imply that it is unnecessamwen have a test set.
In Figure 11 we compare the true error bounds on all of the data to the tarebeunds generated
from the 70/30 train/test split.

The results show that the PAC-Bayes margin bound is tight enough to ggfal unformation,
but still not competitive with the test set bounds. This is in strong contrast witadition of
guantitatively impractical margin bounds. There are several uses dedidabounds which provide
some information but which are not fully tight.

1. They might be combined with a train/test bound (Langford, 2002).

2. The train set bound might easily become tighter for smaller sample sizesvdhisbserved
in (Langford, 2002).

3. The train set bound might still have the right “shape” for choosing @timal parameter
setting, such as “C” in a support vector machine.
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6. Sample Compression Bound

The sample compression bound (Littlestone and Warmuth), (Floyd and Warbh9®®h) is like the
PAC-Bayes bound in that it applies to arbitrary precision continuous #atiessifiers. Unlike
the PAC-Bayes bound, it applies meaningfully to nonstochastic classifidgasmstream learning
algorithms do not optimize the sample compression metric, so the bound applicatmmesvhat
rarer. Nonetheless, there do exist some reasonably competitive leatgorghms for which the
sample compression bound produces significant results.

The section is organized as follows:

1. Subsection 6.1 states and proves the sample compression bound.

2. Subsection 6.2 shows that the sample compression bound is nearly @s fagigsible given
the observations.

3. Subsection 6.3 discusses results from the application of the sample ssiaprbound to
support vector machines.

6.1 The Sample Compression Bound

The sample compression bound (Littlestone and Warmuth) (Floyd and Warh@®b) stated here
differs from older results by generalization and simplification but the bdehdvior is qualitatively
identical.

Suppose we have a learning algoritt¢S) whose training is “sparsé’in the sense that the
output classifier is dependent upon only a subset of the &&= A(S) for S C S The sample
compression bound is dependent on the ermysy On the subses— S. The motivation here is that
the examples which the learning algorithm doesdepend upon are “almost” independent and so
we can “almost” get a test set bound. In general, the bound becomes tghte dependent subset
S becomes smaller and as the error number on the nondependentSul&dtecomes smaller.

Viewed as an interactive proof of learning (in Figure 12), the sample cessjmm bound is
unique amongst training set bounds because it does not reguyimgitial commitment to a measure
over the classifier?.

Theorem 6.1 (Sample Compression Bound) For alE (0,1], D, A:

S o)
Pr (VS C S withc=A(S): cp <Bin <m,és_g,>> >1-20.
S“Dm< m(\sTsO

Proof Suppose we knew in advance that the learning algorithm will not depem sgime subset
of the examples. Then, the “undependent” subset acts like a test sgivandis a test set bound:

s3] s-3|

7. This is satisfied, for example, by the support vector machine algovithich only depends upon the set of support
vectors.

8. However, we can regard the commitment to a learning algorithm as ditilmgemmitment to a measure over
classifiers which is dependent on the learning algorithm and the distribigiverating the data. Viewed from this
perspective, the sample compression bound is the Occam’s Razud,xcept for the minor detail that the set of
evaluating examples varies.
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Sample Compression Bound

o)
Verifier Learner

Learning Algorithm A
Draw Training

Examples W
Choose Subse

Subset S’
N S' c=AS)
Evaluate Boun

For c=A(S)

Figure 12: The interactive proof of learning for the sample compressiond Note that the learn-
ing algorithm is arbitrary here, similar to the test set bound.

(Note that, technically, it is possible to refer & unambiguously before randomizing ov@by
specifying the indexes @& contained irS.) Negating this, we get

VS CS c:A(S):ngm <CD>W<m,é&g,m( 6m )>> < m( 0

m
5= \&S|)
and using the union bound (ror B) < Pr(A) 4 Pr(B)) over each possible subs&t, we get
Pr <HSCSWithc AS): ¢ >W<mé 0 >><6
= = - Cp ,Cs-8, ——m .
S-bT m(s")

Negating this again gives us the proof. [ |

6.2 The Sample Compression Bound is Sometimes Tight

We can construct a learning algorithm/learning problem pair such that thplsaompression
bound is provably near optimal, as a function of its observables.

Theorem 6.2 (Sample Compression Tightness) For&#t (0, 1], m, k, there exists a distribution D
and learning algorithm A s.t.

Pr <HSgSwith c=A(S): cD>W<m,é&g,ﬁ>> > 35— &

m
S~D S-S
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furthermore, if 3 minimizeBin (é&g, = o )), then
59|

Pr (c*:A(S*): cg>ﬁ<m,égg,ﬁ)> >898

m
Sb =

Proof The proof is constructive and similar to the Occam’s Razor tightness resuttarticular,
we show how to construct a learning algorithm which outputs classifiersethahdependently
depending on the subs8tused.

Consider an input spacé= {0, 1}2m. Each variable in the input spagg can be thought of as
indexing a unigue subs& C Sof the examples. In the rest of the proof, we index variables by the
subset they correspond to.

Draws from the distributiorD can be made by first flipping an unbiased coin to get 1
with probability 05 andy = —1 with probability 05. The distribution orX consists of a set of
independent values after conditioningyrChoose

= o)
Pr(xg #Yy) = Bin (m, K, @> .

Now, the learning algorithnA\(S) is very simple—it just outputs the classifigix) = xg. On the
setS— S, we have

k
VSI Pr (é&g > —> =1-— .
S-bm m m(|s£13\)

Using independence, we get

k 0
Pr (VS s g > —> = 1- ——~ |-
S“Dm( S m D ( m(&sq))

Negating, we get

k 0
Pr (VS és g < —> —1-M(1- —
S”Dm< > m I;l ( m(&s))

and doing some algebra, we get the result. |

6.3 Application of the Sample Compression Bound

One obvious application of the sample compression bound is to support weatbines, since the
learned classifier is only dependent on the set of support vectdgsislthe set of support vectors
thenS— S is the set of nonsupport vectors. Unfortunately, it turns out that thés dot work so
well, as observed in Figure 13.

There are other less common learning algorithms for which the sample coipréssind
works well. The set covering machine (Marchand and Shawe-Tayl04,)has an associated bound
which is a variant of the sample compression bound.
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Figure 13: The sample compression bound applied to the output of a $wpptar machine with
a Gaussian kernel. Here we use- 0.01

7. Discussion

Here, we discuss several aspects and implications of the presentatkboun

7.1 Learning Algorithm Design

Everytrain set bound implies a learning algorithm: choose the classifier which minimigéguth
error bound. This sounds like a rich source of learning algorithms, bug ire some severe caveats
to that statement.

1. Itis important to note that the form of a train set bound dum$mply that this minimization
is a good idea. Choosing between two classifiers based upon their boudeund implies a
better worst-case bound on the true error. It does not imply an improwecktror. In many
situations, there is some other metric of comparison (such as train errol) inHact creates
better behavior.

. Another strong caveat is that, historically, train set bounds have siroplyeen tight enough
on real datasets for a nonvacuous application. This is changing withesats, but more
progress is necessary.

. Often the optimization problem is simply not very tractable. In addition to saropi@lexity,
learning algorithms must be concerned with run time and space usage.
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7.2 Philosophy

Train set bounds teach us about ways in which verifiable learning ishp@sa subject which
borders on philosophy. The train set bound presented here essestiallys that a reasonable
person will be convinced of learning success when a short-descrigtesifier does well on train
set data. The results here dotimply that this is the only way to convincingly learn. In fact, the
(sometimes large) looseness of the Occam’s Razor bound suggestséhatetiods for convincing
learning processes exist. This observation is partially shown by the agiiresat bounds which are
presented.

7.3 Conclusion

This introduction to prediction theory covered two styles of bound: the &¢$t®ind and the train
set bound. There are two important lessons here:

1. Test set bounds provide a better way to report error rates atfideoce intervals on future
error rates than some current methods.

2. Train set bounds can provide useful information.

It is important to note that the train set bound and test set bound techragrie®t mutually ex-
clusive. Itis possible to use both simultaneously (Langford, 2002)daimdy so is often desirable.
Test set bounds are improved by the “free” information about the tragmirgg and train set bounds
become applicable, even when not always tight.
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Appendix A.

For those interested in comparing models, uniform convergence (VapdilkChervonenkis, 1971)
additionally requires the axiom of choice (to achieve empirical risk minimizatind)sahypothesis
space of bounded complexity. Typical theorems are of the form “aftexamples, all training
errors are near to true errors”.

The PAC learning model (Valiant, 1984) requires a polynomial time complexityileg algo-
rithm and the assumption that the learning problem comes from some clasmeifiseare of the
form “after m examples learning will be achieved”.

Both of these models can support stronger statements than the basic pnettietboy model
presented here. Results from both of these models can apply herepgfteprdate massaging.

The online learning model (Kivinen and Warmuth, 1997) makeassumptions. Typical the-
orems have the form “This learning algorithm’s performance will be nealgaod as anyone of
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a set of classifiers.” The online learning model has very generaltsesud nd ability to answer
guestions about future performance as we address here.

The prediction theory model can most simply be understood as a slightmnefinef the infor-
mation theory model.
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Abstract

A unified approach is taken for deriving new generalizatiataddependent bounds for several
classes of algorithms explored in the existing literatuyedifferent approaches. This unified ap-
proach is based on an extension of Vapnik’s inequality forclsses of sets to random classes of
sets - that is, classes depending on the random data, invanader permutation of the data and
possessing the increasing property. Generalization tsoarelderived for convex combinations of
functions from random classes with certain properties.oAtgms, such as SVMs (support vec-
tor machines), boosting with decision stumps, radial basistion networks, some hierarchies of
kernel machines or convex combinations of indicator funriover sets with finite VC dimension,
generate classifier functions that fall into the above eated/Ne also explore the individual com-
plexities of the classifiers, such as sparsity of weightsvagidhted variance over clusters from the
convex combination introduced by Koltchinskii and Pandtwet2004), and show sparsity-type and
cluster-variance-type generalization bounds for randasses.

Keywords: complexities of classifiers, generalization bounds, SVbtjng classifiers, random
classes

1. Introduction

Statistical learning theory explores ways of estimating functional depegdesm a given collec-
tion of data. It, also referred to as the theory of finite samples, doesIgaine priori knowledge
about a problem to be solved. Note that “to control the generalization inrdéimeefvork of this
paradigm, one has to take into account two factors, namely, the quality ohamgtion of given
data by the chosen function and the capacity of the subset of functiemsvihich the approxi-
mating function was chosen” (Vapnik, 1998). Typical measures of thadity of sets of functions
are entropy measures, VC-dimensions anddimensions. Generalization inequalities such as Vap-
nik's inequalities for VC-classes, which assert the generalization qpeaface of learners froffixed
class of functions and take into account the quality of approximation ohgihega by the chosen
function and the capacity of the class of functions, were proven to Halusduilding successful
learning algorithms such as SVMs (Vapnik, 1998).

An extension of Vapnik’s inequality, for VC classes of sets (Vapnik 8 %hthony and Shawe-
Taylor, 1993) and VC-major classes of functions to classes of funcéiaminsfying Dudley’s uniform
entropy conditions, was shown by Panchenko (2002). A class ofifunscF = {f : X — [-1,1]}

(©2005 Savina Andonova Jaeger.
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satisfies Dudley’s uniform entropy condition if
/ logY2D(F,u)du < oo,
0

whereD(F,u) denotes Koltchinksii packing numbers defined for example by Dudley)16©
Panchenko (2002). Applications of the inequality were shown in sepagrs (Koltchinskii and
Panchenko, 2002; Koltchinskii et al., 2003a; Koltchinskii and Pankte2004) which explored the
generalization ability of ensemble classification methods, that is, learningthfgerthat combine
several classifiers into new voting classifiers with better performande $Tudy of the convex hull,
con# ), of a given base function clasd has become an important object of study in machine
learning literature” (Koltchinskii and Panchenko, 2004). New measofraglividual complexities

of voting classifiers derived in related work (Koltchinskii et al., 2003alt¢hinskii and Panchenko,
2004; Koltchinskii et al., 2003b) were shown theoretically and experinigiiteplay an important
role in the generalization performance of the classifiers from ctnwf a given base function class
H. In order to do so, the base cla&sis assumed to have Koltchinskii packing numbers satisfying
the following condition

D(H,u) <KMV)u™,

for someV > 0, and whereK depends only oV. “New margin type bounds that are based to
a greater extent on complexity measures of individual classifier funcfions the convex hull,
are more adaptive and more flexible than previously shown bounds” fioéikii and Panchenko,
2004).

Here, we are interested in studying the generalization performance aifdns from a convex
hull of randomclass of functions (random convex hull), that is, the class of learnars isnger
fixed and depends on the data. This is done by deriving a new versivapriik’'s inequality
applied to random classes, that is, a bound for relative deviationsqpfdneies from probabilities
for random classes of events. The proof of the inequality mirrors thefpaf Vapnik's inequality
for non-random classes of sets (see Vapnik et al., 1974; Vapnilg; ¥98hony and Shawe-Taylor,
1993) but with the observation that the symmetrization step of the proof caarbedcout for
random classes of sets. The new version of Vapnik’s inequality is thelredo derive flexible
and adaptive bounds on the generalization errors of learners frmhomaconvex hulls. We exploit
techniques previously used in deriving generalization bounds forexacmmbinations of functions
from non-random classes in (Koltchinskii and Panchenko, 200d)saveral measures of individual
classifier complexities, such as effective dimension, pointwise variancegigtited variance over
clusters, similar to the measures introduced by Koltchinskii and Panch20Rd )

Surprisingly, the idea of studying random convex hulls allows one simultestgd®o prove
generalization results, and incorporate measures of classifier complexitiesbounds, for several
existing algorithms such as SVMs, boosting with decision stumps, radial hagisdn networks
and combinations of indicator functions over sets with finite VC dimension. Is @oteworthy
that an extension on the VC theory of statistical learning to data depernuer@ssof classifiers was
recently found by Cannon et al., 2002, who defined a measure of coitydiexdata dependent
hypothesis classes and provide data dependent versions of bouadsiodeviance and estimation
error.
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2. Definition of Random Classes

First, an inequality that concerns the uniform relative deviation over doranclass of events of
relative frequencies from probabilities is exhibited. This inequality is ameiae of the following
Vapnik’s inequality for a fixed VC-clasg (with finite VC-dimensiorV) of sets (see Vapnik et al.
(1974); Vapnik (1998); Anthony and Shawe-Taylor (1993)):

n

OB CO) s <)

Inequality (2.1) allows one to prove stronger generalization results f@raleproblems dis-
cussed in (Vapnik, 1998). In order to extend the above inequality tmramthsses of sets, we intro-
duce the following definitions. L&tZ,.S,[P) be a probability space. For a samplg,...,z,}, z €
Z,i=1,...,n,definez" = (z,...,zy) and letl (Z") = {z : 1 <i < n}. Let C(Z") € S be a class of
sets, possibly dependent on the sanile (z,...,z,) € Z".

The integerd ) (2") is defined to be the number of distinct sets of the fakm1(z"), whereA
runs throughC(2"), that is,Ap») (2") = card{AN{z,...,z},A€ C(Z")} . The random collection

of level setsC(2") = {A: {z€ Z:h(z) <0},he H(z, .. .,zn)}, where#(2") is a random class

of functions possibly depending ahserves as a useful example. We &g\ | (Z") a representation
of the sample” by the sefA. Aq»)(2") is the number of different representation{at, . .., z,} by
functions from#{ (2").

Now consider the random collectia(Z") of S-measurable subsets &f

P”(sup (2.1)

CeC

C(Z")={A:Ac S},

having the following properties:

1) C(z”)QC<z”Uy>,z”eZ”,yeZ 2.2)

(the incremental properjy

2) Clzrtays+ 2um) = C(21, . 70), (2.3)

for any permutatiomof {z,...,z,} (the permutation properjy

The relative frequency ok € C(Z") onZ" = (z,...,z,) € Z" is defined to be
1 . 1
Pa(A) = ﬁ|{| 1z €A = n 1(Z) A,
where|A| denotes the cardinality of a sét
Let P" be the product measure arcopies of(Z,.$,P), andE, the expectation with respect to

P". Define
G(n) = EnAC(z“) (Zn)
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3. Main Results

Given the above definitions, the following theorem holds.

Theorem 1 Forany t> 0,

. P(A) — Pr(A) w2
Pn ZnEZn. S — 7 S 2>ty <4G(2n)e 1. 34
{ Ry e } <46(2n) (3.4)

The proof of this theorem is given in the following Section 4. Observe thitefrandom col-
lection C of sets is a VC-class (Vapnik, 1998), then the inequality (3.4) is the sama@mgké
inequality (2.1) for VC-classes. Based on this theorem and the abovitioes, several results on
the generalization performance and the complexity of classifiers frononacthsses are exhibited
below.

The following notation and definitions will be used from here on. (&{4) be a measurable
space (space of instances) and tgke- {—1,1} to be the set of labels. Lé be the probabil-
ity measure on(X x 9,4 x 2{-31}) and let(X,Y),i = 1,...,n be i.i.d random pairs ix x 9,
randomly sampled with respect to the distributBof a random variabléX,Y). The probability
measure on the main sample space on which all of the random variablegineel aéll be denoted
by P. LetZz=Xx9,Z = (X,Y;),i=1,...,nandZ" = (Z,...,Z,). We will also define several
random classes of functions and show how several learning algoritanesage functions from the
convex hulls of random classes.

Consider the following four problems for which bounds on the generalizatioors will be
shown using inequality (3.4).

Problem 1. Support vector machine (SVM) classifiers with uniformly bounded kerne

Consider any solution of an SVM algorithfi{x) = S 1 AiYK(X;,X), whereK(.,.) : X x X —
[0,1] is the kernel and; > 0. sign(f(x)) is used to classifx € X in class+1 or —1. Take the
random function class

H(Z™) = {YiK(X,x) :i=1,...,n},

which depends on the random sampfec Z". The classifier function

n)“)\_, i=1...,
ZJ:l |

belongs to cony# (Z")) and the probability of erraP(Y f(X) < 0) =P(Y f'(X) <0).

Problem 2. Classifiers, built by some two-level component based hierarchieghdf $Heisele
et al. (2001);Andonova (2004)) or kernel-based classifiers (likkeathe produced by radial basis
function (RBF) networks).

We explore component based hierarchies, such that the first levet dfigharchy is formed
by SVM classifiers (with kerneK) built on each component (formed for example by projecting
of the input spacex C R™ of instances onto subspacef, | < m) and the second level of the
hierarchy is a linear combination of the real-valued outputs on each contpoh#re classifier
functions from the first level (for example, applying SVM with linear kérmeboosting methods
on the output from the first level). In our formulation, the components ohiberchy can depend
on the training data (for example, found through dimensionality reductiomitiges, such as self-
organizing maps (SOM, Kohonen (1990))). The type of the hierarthiaasifier functions are of

n

f/(x) —_ihi’\ﬁK%X), A=
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this form sigr f (x)), where
d n
f(x,0,Q,w,) = Z Z al YK (QiX;, QIx),Y = +1,

whereQ! are the projections of the instances (determining the “componetnl%’é),R,O(ij >0.0ne
can conside@’ being nonlinear transformation of the instance space, for example appiyang
functions. LefK(x,t)| < 1,¥x,t € X. Consider the random function class

}[(Xla"-vxn) = {iK(QJXhQJ)Q i S n7j = 17"'7d}7

wheren is the number of training poin{s<,Y;) andd is the number of the components.
In the case of RBF networks with one hidden layer and a linear thresheldlabsifier function
is of the form

d A
= Zli;cx'jKoj (Gi,X)

wherec;,i =1,...,Aare centers of clusters, formed by clustering the training piis .., X,} and
oj (they can depend on the training d&¥4.Y;),i = 1,...,n) are different widths for the Gaussian

=12

kernel,Kq,(ci,x) =e ° . Consider the following random function class
}[(Zn) = {:l:Koj(Ci,X) i< ﬁ?] < d}a

wherenis the number of clusters, which is bounded by the nunmbef training points, and the
cluster centergc; }i' ; depend on the training instancgs }* ;

Without loss of generallty, we can considee conv(}[(Z”)) in both of the above described
algorithms, after normalizing the classifier function with the sum of the abscllites of the coef-
ficients in front of the random functions.

Problem 3. Boosting over decision stumps.

Given a finite set ofd functions{h; : X x X — [—1,1]} for i < d, define the random class
of asH (Xq,...,%n) = {hi(Xj,x) : j < n,i <d}, wheren is the number of training pointsx;,Y;).
This type of random class is used for example in aggregating combinedieldsg boosting over
decision stumps. Indeed, decision stumps are simple classfiiets, the types 2(x < a) —1
or 21(x > a)— 1, wherei € {1,...,m} is the direction of splitting X ¢ R™ anda c R is the
threshold. It is clear that the threshadcan be chosen amor)q,...,x,i1 (the performance of the
stump will remain the same on the training data). In this case,hgkg, x) = 2| (X' < in) —1or
hi(Xj,%) = 21 (x > X1) — L and#{ (Xq, ..., %) = {h (X}, %), hi(X;,X) 1 ] <n,i < m} and taked = 2m,

Without loss of generality, we can considee conv(#H (X, ..., %)), after normalizing with
the sum of the absolute values of the coefficients.

Problem 4. VC-classes of sets.

Let the random class of functior®$(Z") has the property that for aii € #(Z"), he {-1,1}
the VC dimensiorV of the class of set§{x € X : h(x) = 1},h € #(Z")} is finite.

A classifier is formed by taking convex combinations of functions from thesct&(Z"). Prob-
lem 4, in the case when the clagsis not depending on the random samgle was approached
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before with the previously existing VC-inequalities for indicator functionapiMk, 1998; Vapnik
et al., 1968). The results shown here for Problem 4 in the case wheéna random class, are
comparable to those derived before for indicators over class of setéinifethvVC dimension.

In genera) all of the above four types of problems, consider the convex combirsadibfunc-
tions from the random convex hull

F(Z") = conv(H(Z") = | ) F(2"),
TeN
Fr(Z") = {ZLahihi N > 0,50 A = Ly € #(2")}, (3.5)

where# (Z") is for example one of the random classes defined above, such that|itt&l) | =
card(#H(Z")) is finite, or H(Z") is a collection of indicators over random class of sets with finite
VC-dimension.

General problem:

We are interested is the following general problem:

Let AH be a general-base class of uniformly bounded functions with valuésinl]. Let
Z1,...,20,Z = (X%,Yi) € X x 9 be i.i.d. (training data) sampled with respect to the distribution
[P. Assume that based on the d&g...,Z, one selects a class of functiort§(Z") C A that is
either

i) with finite cardinalitydepending on the data, such that

In(supln\ﬂr-][(zn)\)lnn L 0forn— o, OF

ii) H(Z") C #H is a collection of indicator function&Ic —1:C € (zn} over a class of setzn
with finite VC-dimension V

We will call # (Z") arandom-base classf functions. We are interested in studying the gen-
eralization errors for classifier functiorfse conv(# (Z")) that are produced by broad classes of
algorithms. Let us take

G'(n,#H)=_sup [H(Z")],

Zne(Xx )

when A is the general-base class and the random-base cl#5&&5 are with finite cardinality
H(Z"), and take
N ne\V
e =(F) -
when# is the general-base and the random-base cla&g$&8) are collections of indicators over
class of sets with finite VC-dimensidh(Problem 4).

From the definitions and Problems 1, 2 and 3, it is clear@i&nh, #) < 2n for Problem 1 and
G*(n,H) < 2nd for Problems 2 and 3. For completeness of the results in cagg(Zf') being a
collection of indicators over class of sets with finite VC-dimensignve will assume that > Zle

Following the notation by Koltchinskii and Panchenko (2004)#¢é#(Z")) be the collection
of all discrete distributions over the random-base clag¥"). Let A € P(H(Z")) and f(x) =
Jh(x)A(dh), which is equivalent tof € con(H(Z")). The generalization error of any classifier
function is defined as

P(sign(f(x)) #y) = P(yf(x) < 0) =E(l(yf(x) < 0)).
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Given an i.i.d sampléX,Y;),i = 1,...n from the distributionP, let P, denote the empirical distri-
bution and for any measurable functigon X x 9, let

IP>g:/g(><,y)dIP>(><,y), Png—%ig(m,\ﬁ)-

The first bound we show for the generalization errors of functionms flandom classes of functions
is the following:

Theorem 2 Let A be a general-base class of functions. For any 0, with probability at least
1—et, for any nii.d. random pairgXy,Y1),...,(Xs,Yn) randomly drawn with respect to the
distributionP, for all A € P(H (Z")) and f(x) = [h(x)A(dh),

P(yf(x) <0) < inf (u%+(1@( f(x)<26)+}+U)%)2+} (3.6)
y = _0<5§1 ny = n na .

where

U= % <t+|n%+ %lne*(zn,ﬂ)ﬂn(snw)) .
The proof of this theorem is given in Section 4. It is based on randomoajppation of a function
and Hoeffdingéernoff inequality as in (Koltchinskii and Panchenko, 2004), explditiegroperties

of random class of the level sets of the margins of the approximating fusctiefined in the proof
and Inequality (3.4).

The first result for the generalization error of classifiers from €@y where # is a fixed
VC-class, was achieved by Schapire et al. (1998). They explainededheralization ability of
classifiers from con\#{) in terms of the empirical distributiofi,(y f(x) < &), f € con#) of the
quantityy f(x), known in the literature asargin (“confidence” of prediction of the example x) and
proposed several boosting algorithms that are built on the idea of maximizmgetgin. Important
properties, development, improvements and optimality of the generalizatidtsrekthis type for
broader fixed classes of functiof§were shown by Koltchinskii and Panchenko (2004). The bound
on the generalization error shown here is valid for random classescidas and is not optimized
for convergence with respectio Here, we have a different goal: to prove generalization results for
random classes of functions that relate to broader classes of algorExpisring the optimality of
this result remains an open question.

In the rest of the paper, we will explore the individual complexity of classific conu #),
following the line of investigation begun by Koltchinskii and Panchenko 20@Ve will explore
the structure of theandom convex hukhnd show bounds similar to the ones by Koltchinskii and
Panchenko (2004) that reflect some measures of complexity of coovexications.

First, we explore how the sparsity of the weights of a function from a nandonvex hull
influences the generalization performance of the convex combinatiog, kéeall from Koltchinskii
and Panchenko (2004), by sparsity of the weights in convex combinatiermean rapidity of
decrease. Fa¥ > 0 andf(x) = ZiTzl?\ihi (X),3iAi = 1,A; > 0, let us define thelimensiorfunction
by

T 8inn
en(f,d) = (T—Z(l—)\k)52>. (3.7)

k=1

313



ANDONOVA

100 [Ht

90 [ \

80 \ equal
\ weights
70 \

60 - \

50+ polynomial
decrease of
40 - ~ weights

e (f,delta)

301 ~

exponential ~ _

20k decrease of ~ ~
weights - - _

10

o°

0.2 0.4 0.6 0.8 1

Figure 1: Dimension Function; From top to bottom: equal,polynomial, exponeatecdy; the x-
axis is9, the y-axis is dimension function value.

The name of this function is motivated by the fact that it can be interpretedimsemsion of
a subset of the random convex hull cofi() containing a function approximating“well enough”
(Koltchinskii and Panchenko, 2004). In a way, the dimension functiorsarea the sparsity of the
weights in the convex combinatioh We plot the dimension function (see Fig. 1) in the cases
whenT = 100,n = 1000 and the weight$)\i}iT:1 are equal, polynomially decreasing; & i~2)
and exponentially decreasin; (= €~'+1)). One can see in Fig. 1 that when the weights decrease
faster, the dimension function values are uniformly smaller with respectt@, 1. (For different
sparsity measures of voting classifiers from convex hulls of VC-majosetasee (Koltchinskii et
al. (2003a); Koltchinskii and Panchenko (2004); Andonova (2004)

Theorem 3 (Sparsity bound) For anyt 0, with probability at leastL — e, for any ni.i.d. random
pairs (X1,Y1),..., (X, Yn) randomly drawn with respect to the distributi@for all A € P(H(Z"))
and f(x) = S1_; Aihi(x),

1 2 1
PYf(0 <0) < inf (UM (Balyf( <28)+U+2)M2) "+ (3.8)

where

U= %(t+|ng+en(f,6)InG*(2n,ﬂ{)+aq(f,6)ln(§Inn)+|n(8n+4)).
The proof of this theorem is also shown in Section 4. It is based on raagpnoximation of func-
tions similarly to the proof of Theorem 2, Hoeffdir@ernoff inequality, properties of conditional

expectation, exploring the capacity of random class of the level sets ofidhgins of the approx-
imating functions and Inequality (3.4). The constants are explicit. For mgpgrignental results,
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showing the behavior of the above bound in the case of convex combisatiatecision stumps,
such as those produced by various boosting algorithms (see Anddt®A4),. There, it is shown
experimentally that the sparsity bound is indicative of the generalizatioorpesthce of a classifier
from the convex hull of stumps. For further results and new algorithms,inglizarious notions of
sparsity of the weight of convex combinations (see Koltchinskii et al., 2D0® the case of hard
margin SVM classifiers (x) = S, AiK(X;,x) with uniformly bounded kernels, the bound with
margind becomes of order

min(T,852Inn)
n

P(yf(x) <0) < Ins,
because
en(f,8) < min(T,85 2Inn).

The inequality fore,( f,d) follows from the inequality1—A)P > 1— pA for A € [0,1] andp > 1,
and the fact thay|_, \¢ < 1.

This zero-error bound is comparable to the compression bound (Littlestahé/armuth, 1986)
of order%ln 2. and the bounds of Bartlett and Shawe-Taylor (1999), whkre % In?n and
R<1incase oK(x,y) < 1. WhenT < nthe bound in (3.8) is an improvement of the last bound.
For exampleT <« nwhen SVMs produce very “sparse” solutions (small number of sumeetors),
that is, the vector of weightf\1,...,AT) is sparse. The sparseness (in the sense of there being a
small number of support vectors) of the solutions of SVMs was recentjoeed by Steinwart
(2003), where lower bounds (of ordén)) on the numbel of support vectors for specific types
of kernels were shown; in those cases, the bound in (3.8), relaxed tppiee bound 0&,(f,d) <
min(T,85~2Inn), is probably not a significant improvement of the result of Bartlett andvBha
Taylor (1999). The sparsity of weights of the solutions of SVMs, urtdesas rapidity of decrease
of weights, is in need of further exploration, as it would provide better inmsigo the bound (3.8)
of the generalizations error.

We now notice also that, becausg f,8) < min(T,85 ?Inn) andG*(n, #) < 2n for Problem
1 andG*(n, #) < 2nd for Problems 2, 3 an@*(n, #) = (%E)V , the bound (3.8) is extension of the
results of Breiman (1999) for zero-error case, and is similar in nature t@#ult of Koltchinskii and
Panchenko (2004) and Koltchinskii et al. (2003b), but now holdingédodomclasses of functions.

Motivations for considering different bounds on the generalizatioor exfr classifiers that take
into account measures of closeness of random functions in convexreatiohs and their clustering
properties were given by Koltchinskii and Panchenko (2004). We mawew those complexities
and show bounds on the generalization error, that are similar to the comengdoy Koltchinskii
and Panchenko (2004), but applied for different classes of fumtidhe proofs of the results are
similar to those exhibited by Koltchinskii and Panchenko (2004).

Recall that a pointwise variance bfwith respect to the distributioh € P(#(Z")) is defined

by
02 (x) = / (h9 - / h(X)A(d h))z)\(d h, (3.9)

where,02(x) = 0 if and only if hy(x) = hp(x) for all hy,h, € #(Z") (Koltchinskii and Panchenko,
2004). The following theorem holds:

Theorem 4 For any t> O with probability at leastL— e, for any ni.i.d. random pairéxy,Y1),..., (Xn, Yn)
randomly drawn with respect to the distributinfor all A € P(H(Z")) and f(x) = [ h(x)A(dh),
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P(yf(x) <0) < inf (ZIP’n(yf(x) < 28) 4 4Pn(05(X) > 2) +

0<d<y<1
8 ( 56y . 2y) 6
= (W(Inn)lnG (2n, H) +In(8n+4) +t+In 6> + n)' (3.10)

wi<<

+

The proof is given in Section 4. This time, the proof incorporates randmmoaimations of the
classifier function and its variance, Bernstein’s inequality as in (Koltcliinakl Panchenko, 2004),
exploring the capacity of random class of the level sets of the margins apgiveximating functions
and Inequality (3.4).

This result is an improvement of the above margin-bound in the case thattgh@antwise
variance is small, that is, the classifier functidnsn the convex combinatiorh are close to each
other. The constants in the bound are explicit. From the Remark of ThebneiiKoltchinskii and
Panchenko, 2004) and the above inequality (3.10), one can see thamhlinyIPnci might provide
a complexity penalty in thgeneral clas®f problems defined above.

A result that improves inequality (3.10) by exploring the clustering propedfehe convex
combination from aandomconvex hull will now be shown.

GivenA € P(H(Z")) and f(x) = [ h(x)A(dh), represent as

—

0 (i)
f=Sa; 5Alh
; klk K

with 3,0 = 1,T < w,hl!) € 7(2").

Consider an elemert € CP(M), that is, ¢ = (ay,...,0p,AL,...,AP), such thataj € A(m) =
{tkm*",ke Nt € {1,2,3,...,mk}}, meN,A=3P oA, and\' € P(H(Z")),i =1,...,p. De-
note byag = minicgy . p O, where {ai}ip:l are called the cluster weightsc is interpreted as

a decomposition ok into p clusters as in (Koltchinskii and Panchenko, 2004). For an element
ce CP(N), aweighted variance over clusters is defined by

0%(C;x) = i afo2i(x), (3.11)
=1

whereofk(x) are defined in (3.9). One can see in Fig. 2 that when the number of thersluste
increases, the weighted variance over clusters uniformly decredsts (s the left). If there are

p small clusters among functiotns, ..., hr, then one should be able to choose elenwentCP(A)

so thato?(c; x) will be small on the majority of data poind, . .., X, (Koltchinskii and Panchenko,
2004). The following theorem holds:

Theorem 5 For any me N, for any t> 0 with probability at leastl — e, the following is true for
any n i.i.d. random pairgXs,Y1),...,(Xn, Yn) randomly drawn with respect to the distributid

forany p> 1, ce CP(A), A = 3P aiAl € P(#(ZM)), such thatay, ..., ap € A(m) with 30 < 1

and f(x) = [h(x)A(dh)
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P(yf(x) <0) < inf (ZJP’n(yf(x) < 20) +4IP’n(02(c; X) >vy/3)+

0<o<y<1
+ §(56 l(lnn)lnG*(Zn H)+In(Bn+4)+2 : In{ lo ﬂJrl +
0\ P 7 le gmaé
1 p’riyy 6

The proof is given in the following Section 4. Here, the proof incorparat®re sophisticated
random approximations of the classifier function and its weighted variarrelusters, Bernstein’s
inequality as in (Koltchinskii and Panchenko, 2004), exploring the égpattrandom class of the
level sets of the margins of the approximating functions and Inequality (Bt above bound can
be simplified in the following way:

P(yf(x) < 0) < inf (2[P’n(yf(x) < 28) 4 4P, (0%(c;x) > y/3) +
0<d<y<1

+ 2 (56p6—y2 (Inn)InG*(2n, H) +1In(8n+4) +

18

Define the numbep), (m,n,y,8) of (y,d)-clusters ofA as the smallegp, for which there exists
ce CAp such that (Koltchinskii and Panchenko, 2004)
Y

Pn(0?(c;x) > y) < 56p 5 (Inn)InG"(2n, 7).

2
+ 2(p+1)in (logma_];+1> +2pn2+t+in L T‘AV)).
C
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Recall thatG*(n,#) < 2n for Problem 1 and>*(n, #) < 2nd for Problems 2, 3 an@®*(n, H) =

(”ve)v Then the above simplified bound implies that foriak= $P , aiAl € P(#£(Z")), such that
ai,...,0p € A(m) with 5 a; <1,

. A Y %
P <0) <K inf (B(yf(<8) + Pa(mny.8) g (nn)inG (2n, 50)
In (log, = +1
+ ﬁ)\(ma n,y, 6) ( nac ) ) .

Observe that iy = 9, then

(Inn)InG*(2n, #)
nd

In (Iogm o+ 1)
n )

Byf() <0) <K(Ba(yf() <8) + Pr(mn.33)

+ p\)\(ma n, 67 6)

The above bound is an improvement of the previous bounds in the casetidre is a small
numberp, of clusters so that the resulting weighted variance over clusters is smalbravided
that the minimum of the cluster weight$ is not too small. The bounds shown above are similar in
nature to the bounds by Koltchinskii and Panchenko (2004) for blasses? satisfying a general
entropy condition. The advantages of the current results are that tbegpplicable for random
classes of functions. The bounds derived here are with explicit aasst&or more information
regarding the empirical performance of the bounds and the complexities raieeof boosting
with stumps and decision trees (see Koltchinskii et al., 2003b; Andon6@4,)2There, it is shown
experimentally that generalization bounds based on weighted variancelosters and margin
capture the generalization performance of classifiers produced byas®oosting algorithms over
decision stumps. Our goal here is to show theoretically the impact of the caigpkxns on the
generalization performance of functions from random convex hullgsiwthappen to capture well
known algorithms such as SVMs. More experimental evidences are chée@xplore the above
complexities in the setting of thgeneral problendefined here.

4. Proofs
First we will prove the following lemma that will be used in the proof of Theofem

Lemma 6 For n large enough, if X is a random variable with value§h 1}, P(X=1)=p, p€
[%, 1] and X, ..., X, are independent random realizations of X (Bernoulli trials), then

l n
P(=SX>p]|>
n i;
Sketch of the Proof of Lemma 6
We want to prove that
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Observe that i"=2 < p < 1, thenn > np>n—1 and the inequality becomes > (=L ) > 1,
which is true fom > 2.
Assume thap < ”;nl The proof of the inequality in this case relies on Poisson and Gaussian

approximation to binomial distribution. L&, = 51! ; X andZ, = % Notice that

p(13500) -pisomm -pa0

We want to show that there i, such that for any > ng the following is true for anyp € [%, 1- 1]

n
1 n
Pl = P > >
( n;x > p) >
From the Poisson-Verteilung approximation theorem, (see Borowkog, T9igorem 7, chapter
5, page 85) it follows that

N

s W2
P&Gzw= ) Set——,

k;p kl n
wherep = np > 2. From the properties of the Poisson cumulative distribution fund&oxp) =
et ZZJO %’ one can see that1F (x|p) > 1—F(2]|2) > 0.32 forx < pandu > 2. Therefore,

5 5

PS> W >1-F( - >0382- " = 0.32—np?.
Now, from the Berry-Essen Theorem (see Feller, 1966, chapter XVI, page 515) one cae der

that
33  E(XX-EX)? _33 PP+ (1-p? p)
4 \/n (X—EX)2)3 4 . /np(1-p)
Therefore,P(Z, > 0) > 0.5— 33 CPHAP? The goal is to findny such that for anyr > ny and

np(1-p)
pe [2,1- 1] the following is true:

IP(Zh > 0)-0.5| <

33 PP+(1-p? 1
max{0.32— np?,0.5— 7 m } > 2

Let x = np?. One can see that the first ternBR— np? = 0.32— x is decreasing with respect 0

and the second term®- 33 i 3. _P+A-P” 5 increasing with respect to The
np(1-p) (1-p)(nx)4

solutionx(n) of the equation
33 x/n+(1-x/n)?

0.32—x=05——
(1— x/n) (nx)fll

4

is decreasing with respect toand therefore one can fing, such that fom > ng the inequality
0.32—x(n) > 0.25 is true.
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Remark: A shorter proof could be achieved if one directly shows thatfer |2, 1],

A stronger version of the above inequality for apyandn was used in (Vapnik (1998), page

133); however, a reference to a proof of this inequality appearsmilyrto be unavailable.
O

Proof of Theorem 1

The proof of Inequality (3.4) for random collection of sets of Theorerolbbws the three
main steps - Symmetrization, Randomization and Tail Inequality (see VapniB);1Q8thony and
Shawe-Taylor (1993)). The difference with other approaches iglibatymmetrization step of the
proof is carried out for random classes invariant under permutatfitam,ane combines the training
set with a ghost sample and uses the incremental property of the randesn &late that sym-
metrization for a random subset under similar incremental and permutatiparfies was proved
for the “standard” Vapnik’s inequality by Gat (1999) (bounding thechlite deviation).

Lett > O be fixed. Assume that> 2/t2, otherwise ifn < 2/t2, then 4exp"*/4 > 1; nothing
more need be proved.

Denote the set

_1 .
A= {x:(xl,...7xn)€Z”: sup PO 526 €C) zt}.

CeC(x) P(C)
Assume there exist a s, such that

P(C)—33 1 €C) _
P(Cx) B

t. (4.13)

ThenP(Cy) > t2. We have assumed thet> 2, thereforeP(C,) > 2.

Letx = (x},...,X,) be independent copy of= (x1,...,X,). It can be observed (see Lemma
6 and Anthony and Shawe-Taylor (1993), Theorem 2.1) that $hiCg) = E(I(y € Cx)) > % then
with probability at least 14

P(C)< Y 10X eCy). (4.14)

From the assumption (4.13) and (4.14), then si@% is a monotone and increasing function in
x> 0 (a> 0), we have that

P(Cx) — 23 1(% €Cy)
B(Cy)
P(C) — 3316 €Cy)
VARG +E31(% €Cy)
31X eC)-15I(xeC)
VEESIKeC)+131(xeC)

O<t

<
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From (4.14) and the above inequality,

Hixen) <P (RIS IKEC) ke A)

<PX< 15104 €G)~ 15106 £y >t)
VAESIKeC)+E31(x €Cy)

1 / 1 .
<py [ sup 231X eC)—=351(x€C) >t
cecto /435 1(€C)+131(% €C))

Taking the expectatioRiy of both sides,

PX<SUP P(C)—%zilgmec>2t>§

CeC(x) P(C

il 15 (x
< 4Py y ( sup %. I €C)—+3il(x €C) . t)
n )

(using increasing property)

ls.(x 1 ((x
<4Py, | sup 1Sil(XeC)—13il(x €C) .
CeC(xX) \/:—ZL(% Zil(xi/ 6C)+%Zi|(xi €C))

(using permutation property)

1s e(l1(x < (e
—ape. | sup 2 EUKECIHIEC)
CeC(xx) \/%(%ziloq €C)+151(x €C))

(using Hoeffding-Azuma’s inequality)

. nt?
< 4K (AC(X7X') <X17 e 7Xn7X€L7 vee 7X:’])exp ( Zi(li*li,)z ) )
A5

: nt?
< 4EX,X/ <AC(X7X’) (X]_, e ,Xn,Xll, e ,x’n)exp<—7> )

= 4G(2n) exp(—n?tz> .

Here the increasing (2.2) and permutation (2.3) properties of the randbect®on of sets have
been used .

The following lemma will be useful in the proofs of Theorems 2, 3, 4 and 5.
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Lemma?7 LetZ,...,Z, be ni.i.d. random variables randomly drawn with respect to the distribu-
tionP, Z = (X,Y;) € X x 9. Let

Guk(Z") ={C:C={(xy) € X x 7 :yg(x) <8}, g€ Gnk(Z"),d€[0,1]},

where
gN,k(Z”):{ NElk.h 2),he H(Z"),1<k <N-— k+1k.eN},N,keN

and # (Z") is a random-base class from the general problem. Then
G(n) = Enbgyy(z0 (Z") < min ((n-+ 1) (N —k+1)4(G"(n, 7)), 2") .

If k=N, thenk; = 1 andGnn(Z") = {9:9(2) = & 31 hi(2),h € #(Z")}, whereN € N. In this
case, itis clear thab(n) = EnA, zn) (2") < mln((n+l)(G*(n,}[))N,2”).

Proof.
Following the notation we have to prove thatAf(Z") is with finite cardinalityH (Z"), then

G(n) = Enlgyy(zn) (Z") < min ((n+ 1)(N—k+1)*E, (H (zn)k> 72n)

and if #(Z") is a collection of indicators from the general problem, then
. ne
G(n) = Enlg, zn (Z") < min ((n+ 1)(N —k+ 1)K (v ) ,2”) .

First, let# (Z") be with finite cardinalityH (Z"). Then
cardGn k(Z") < (N —k+1)*H(ZMK,

because for eaae Gy k(Z") there arek different functiondy, € H(Z") participating in the convex
combination and the integer coefficieri(se {1,...,N —k+ 1}. Also, for fixedg € Gnk(Z"), it
follows that

card{{yg ) <8z z},8€ 1,1} < (n+1).
<.

(This is clear after re-orderingg(X1),...,Ya0(Xn) — Yi;9(X,)
values ofd € {Y,,9(X,),...,Yi,0(X,),1}.) Therefore

<Y;,9(X,) and taking for

G(n) =Enlgyy(zn) (Z7) < min ((n+ 1)(N— k+ DKEH (Zn)k,zn) <

< min ((n+ 1)(N —k+1)%(G*(n, }[))k,zn) .

Next, let #(Z") be a collection of indicators over class of sets with finite VC-dimen$ion
Then, for fixed® € [0, 1], the number of possible representationgif . . ., Z,) by the clasgi k(Z",0) =
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{C:C={(xy) € X x 9 :yg(X) <8}, g€ Gnk(Z"} is bounded byN —k+ 1)k (%E)Vk. Similarly
to the previous case, for fixepe Gnk(Z"),

card{{yg <8}z, 2}, 8€ [0, 1}} (n+1),
and therefore

G() = Eng 20 (2°) < min <(n+ HIN-—k+1¥(7) k,zn) _

— min <(n+ 1)(N —k+ DK(G*(n, y{))k,zn) .

O
Next, the proofs of Theorem 2,3, 4 and 5 are shown. They follow clabeyproofs given by
Koltchinskii and Panchenko (2004) and Koltchinskii et al. (2003byiam random classes of func-
tions. We adjust the proofs to hold for random classes of functions img uisequality 3.4 from
Theorem 1.

Define the function 5
gab) =2 i@z )

that is convex foma > 0 and increasing with respect&pdecreasing with respect o

Proof of Theorem 2.

LetZ; = (X1,Y1),...,Zn = (X, Yn) be i.i.d samples randomly drawn with respect to the distri-
butionP. Let us first fixd € (0,1] and letf = S}_; Achx € conM(#(Z")) be any function from the
convex hull of #(Z"), where# (Z") is the random-base class defined in the general problem.
Given N > 1, generate i.i.d sequence of functiobs...,§y according to the distribution =
(A1,.., A7), P (& =hy) =Acfork=1,..., T and§; are independent df( X, Yi) }r_;. ThenEg&;(x) =
Stoa Achi().

Consider a function

1N
X) =N k;ﬁk(X)
which plays the role of a random approximationfah the following sense:
P <0)  =P(yf(x)<0ygx) <3)+P(yf(x) <0ygx) >3)
< P(yg(x) < 8) +ExyPg (Egyg(x) < 0,yg(x) > 3)
(

J
< P(yg(x 6) + ExyPe ( yo(X) — Egyg(x) > 6)
)

) <
) <
N
P(yg(X) <8) +ExyPs (kz (Y&i (X) — YEg&i(x)) > N6>
2

—Nb&
< P(yg) < 8) +exp(——). (4.15)
where in the last step is applied Hoeffdi@grnoff inequality. Then,

P(yf(x) <0) <P(yg(x) <) +exp(~N&?/2). (4.16)
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Similarly to the above inequality, one can derive that,
E¢Pn (yg(x) < 5) <P, (yf(x) < 26> +exp(—N&2/2). (4.17)
For any random realization of the sequeige .., &y, the random functiomg belongs to the class

Gu(@) = {F3Nhie) by e 32 ).
Consider the random collection of level sets for fixéd N,

@) ={c={(xy exx7:yg <8}.ge Gu(). 8¢ (0.1]}.

Clearly C(Z") satisfies conditions (2.2) and (2.3). In order to apply the inequality forgahdam
collection of sets (3.4), one has to estim@m) = E"Arzn)(Z"). By Lemma 7 it follows that
G(n) < (G*(n,H))N(n+1).

From this and Theorem 1, we have

P(C)—isM . I(X eC n
P"( sup (©)-55ml(%€C) >t] < 4G(2n)e*%2 <
Cec(zn) P(C)

N

2

< 4G 2nH)N (2n+1)e T =e Y,

where a change of variablés= \/‘ﬁ‘(u+NIn(G*(2n, H))+In(8n+4)) is made. So, for a fixed
0 € (0,1], for anyu > 0 with probability at least + e™Y, it follows that

P(yg(x) <8)— 251 1(Yig(X) <9)
P(yg(x) <)

The functiong(a, b),a > 0 is convex. Therefore,

< \/%(quNln(G*(Zn,}[))+In(8n+4)). (4.18)

Ee@(P(ya(x) < ), Pa(ya(x) < 8)) > 0 EcP(va(X) < 8), EePa(yg(x) < ).

Based on the monotonic properties@#f, b) and inequalities (4.16) and (4.17), it is obtained that
for anyd € (0, 1], for anyu > 0 with probability at least + e,

cp(xp(yf(x) < 0) — exp(—N&2/2), Ba(yf(x) < 25+ exp(—N62/2))> <

< %(u+NIn(G*(2n,}[))+In(8n+4)). (4.19)

ChooseN = 25" such that exp-N&?/2) = 1. Take

U= % <u+% In(G*(2n, #)) +In(8n+4)) .

Solving the above inequality with respectiy f(x) < 0), it follows that

2
P(yf(x) < 0) < <\Fu+\/ n(yf(x)§26)+%+u> +%.
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In order to make the bound uniform with respecdta (0, 1], we apply standard union bound
techniques (Koltchinskii and Panchenko, 2004). First, we prove tifiermity for 5 A= {27 K k=
0,1,..... }+. Apply the above inequality for fixed € A by replacingu by u+ In% and hencee™
replaced by3e~. Denote

0= 1 (w2 25 G @) inen+4)).

Then

v

2
1 1
Pl {Eyfx) <0)< [ VU +/Pu f()§26)+—+U’> 4=
ez (o zan L) )

Now, in order to make the bound for adye (0,1], observe that i € (0,1] then there ik €
Zy, 27 K1<dg< 27K
Therefore, if the above bound holds for fixagle (0, 1], then
Pa(y f(x) < &) < Po (yF(x) <27)

and 5
1/83 < 2242 In 5 < In2+2,

So, changing the constants in the bound, denote

1 4 8lInn .
U= - <t+ln(—3+7In(G (2n,}[))+ln(8n+4)>.

It follows that, for anyt > 0 with probability at least & e for anyd € (0, 1], the following holds:

2
P(yf(x) <0) < (\/U+\/]P’n(yf(x) < 26)+%+U> +%

Thus, the Theorem 2 and inequality (3.6) hold.

Now, theproof of Sparsity bound of Theorem 3will be shown.

DenoteA = {27 : k> 1} andz= (x,y), Z" = ((Xl,Yl), " (Xn,Yn)>.
Let us fix f(x) = S1_; Akhk(X) € cony(H(Z")). GivenN > 1, generate an i.i.d. sequence of func-
tions&y, ..., &y according to the distributiofis (& (X) = hk(Xx)) =Akfork=1,..., T and independent
of {(X,Yi)}L,. Clearly,E¢&;(x) = 3 k_1 Mhi(X). Consider the function
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which plays the role of a random approximationfaindE;g(x) = f(x). One can write,

P <0) = EgP(yf(x) <0ygx) <3)+EeP(yf(x) <0ygx) >3) <
< EEIP(yg<x) < 6) +EP; (yg(X) > 8, Egyg(x) < 0).

In the last term for a fixedx,y) € X x 9,

P (yo0) > 8, Feyg(x) <0) < Pg(ya() —Eeya(x) > 8) =

N
= P (Z(y&i(x) —yE£&i(x)) > N6> < exp(—N&?/2).
i=
where in the last step Hoeffdingernoff inequality has been applied. Hence,

P(yf(x) <0) - e N2 < EgP(yg(x) < ). (4.20)

Similarly,

EgPn(yg(x) < 8) < Pa(yf(x) < 28) + & N/2, (4.21)

Clearly, for any random realization of the sequeége. .,&n, the functiong(x) belongs to the
class

k k
Fnk(Z") = {%_;hhi(X) : _leq =N,1<k <N,h € }[(z“)},

for somek € N, which is the number of different indicesandk; € N is the number of repeating
function h; in the representation af. Recall, #(Z") is the random-base class from the general
problem. Then, K k < min(T,N). Let pun = Pg(g € Fyx(Z")).

Then the expectatiofi; can be represented as

Eg(L(9) = kzl PnEe (L(9)lg € Fu(ZY),

wherelL is a real valued measurable function anid the random function

1 N
900 = 5 3 &)
Now consider the random collection of sets
(2" = {C:C={(xy) :yax) < 8},0 € Fui(2").8€ (0.1]},

whereN, k € N. Clearly (x k(Z") satisfies conditions (2.2) and (2.3). In order to apply the inequality
for random collection of sets (3.4), one has to estin@i{@) = EnAg, 2z (Z").
By Lemma 7, it follows that

G'(n) < (G*(n, H))*¥(N—k+1D)¥(n+1) < (G*(n, #H))*N¥(n+1).
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Now apply Inequality (3.4) for the random collection of s€tgk(Z"). Then, with probability
atleast 1-e!

(Px,y(yg(xlipS(E;)g(—XI)P’l(yég;(@ <9)* < % (t+kInG*(2n, #) +kInN +In(8n+4)).
X,y >

The functiong(a,b),a > 0 is convex, sap(Eza,E:b) < E;@(a,b) fora> 0.

Therefore,
(EgPxy(yg(x) < 8) —EePa(yg(x) < 8))* _ = (Pxy(yg¥) <8) ~Pa(yg(x) < 8))* _
EgPxy(yg(x) < ) = Py, (yo(X) < 3)
= k; PrNEe ( (Px,y(yg(x]%”i(?g(xl)?ng(ya%()() <97 lge FN,k(Zn)> <
<> pk’Ng(t +KkInG*(2n, H) +kInN+In(8n+4)).
Observe that -

z kpcn = Ecardk : k'thindex is picked at least onge=
K>1

—

.
El (kis picked at least once= 3 (1—(1—N)").
K =]

1

Denoteen(f,8) = S¢_; (1— (l—)\k)N). LetN = 2Inn, so thate N&/2 =1,

The functiong(a, b) is increasing ira and decreasing ih. Combine the last result with (4.20) and
(4.21):

9(P(yf(x) < 0)—n L Pa(yf(x) <28) +n7t) <

IS

< ﬁ(t+aq(f,6)InG*(2n,ﬂ{)+aq(f,6)ln(élnn)+In(8n+4)).

Denote

W = %(t+en(f,6)InG*(2n,}[)+en(f,6)ln(élnn)+In(8n+4)).

After solving the above inequality fd(y f(x) < 0), one can get that, for a fixelle {27%: k> 1},
for everyt > 0 with probability at least 1 et the following holds

1 2 1
P(yf(x) <0) < (\/V_V+\/Pn(yf(x) 325)+ﬁ+w) + (4.22)
It remains to make the bound uniform ov®e (0, 1], which is done again by using standard union

bound techniques shown in the proof of Theorem 2 