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Abstract

Pairwise proximity data, given as similarity or dissimilarity matrix, can violate metricity. This
occurs either due to noise, fallible estimates, or due to intrinsic non-metric features such as they
arise from human judgments. So far the problem of non-metric pairwise data has been tackled
by essentially omitting the negative eigenvalues or shifting the spectrum of the associated (pseu-
do-)covariance matrix for a subsequent embedding. However, little attention has been paid to the
negative part of the spectrum itself. In particular no answer was given to whether the directions
associated to the negative eigenvalues would at all code variance other than noise related. We show
by a simple, exploratory analysis that the negative eigenvalues can code for relevant structure in the
data, thus leading to the discovery of new features, which were lost by conventional data analysis
techniques. The information hidden in the negative eigenvalue part of the spectrum is illustrated
and discussed for three data sets, namely USPS handwritten digits, text-mining and data from cog-
nitive psychology.

Keywords: Feature discovery, exploratory data analysis, embedding, non-metric, pairwise data,
unsupervised learning

1. Introduction

A large class of data analysis algorithms is based on a vectorial representation of the data. How-
ever, for major fields such as bioinformatics (e.g. Altschul et al., 1997), image analysis (Hofmann
et al., 1998; Jacobs et al., 2000) or cognitive psychology (Gati and Tversky, 1982; Goldstone et al.,
1991), the data is not available as points lying in some vector space but solely arises as scores of
pairwise comparisons, typically measuring similarity or dissimilarity between the data points. A
global overview of pairwise proximity data can be found in Everitt and Rabe-Hesketh (1997). Ta-
ble 1 gives a simple instance of pairwise data obtained from human similarity judgments of Morse
code (Everitt and Rabe-Hesketh, 1997).

©2004 Julian Laub and Klaus-Robert Müller.
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1 2 3 4 5
1 84 63 13 8 10
2 62 89 54 20 5
3 18 64 86 31 23
4 5 26 44 89 42
5 14 10 30 69 90

Table 1: Test subjects are asked to judge the pairwise similarity of auditory Morse code (long and
short tones). Here we show the similarity matrix for the first five digits. The entries
correspond to the percentage of a large number of observers who responded ‘same’ to the
row signal followed by the column signal. (Excerpt from Table 1.3 given in Everitt and
Rabe-Hesketh (1997)). Note that this proximity matrix is asymmetric.

These pairwise proximities, or “data points”, are in no natural way related to the common view-
point of objects lying in some “well behaved” space like a vector space which always is—albeit
possibly high dimensional—a very restrictive structure.

There is a class of algorithms specifically designed for pairwise data, e.g. KNN, pairwise k-
means (Duda et al., 2001). Otherwise the pairwise data is first "embedded" into a vector space
in order to make it available for the numerous algorithms based on vectorial input (Cox and Cox,
2001). Pairwise data satisfying restrictive conditions can be embedded distortionless with respect
to metricity into a Euclidean space (Roth et al., 2003b).

Often pairwise data is non-metric and the dissimilarity matrix does not satisfy the mathematical
requirements of a metric function. Metric violations preclude the use of well established machine
learning methods, which typically have been formulated for metric data only, and more precisely,
for vectorial data, thus limiting the interest of raw pairwise data. Non-metric pairwise data can
not be embedded distortionless into a (Euclidean) vector space. So, in general, embedding into a
Euclidean space (and often subsequent dimension reduction) amounts to distorting pairwise data to
enforce Euclidean metricity. This procedure is exemplified by Multi Dimensional Scaling (Cox and
Cox, 2001). Other popular methods are e.g. Locally Linear Embedding (Roweis and Saul, 2000)
and Isomap (Tenenbaum et al., 2000).

However, little is known about the real information loss incurred by enforcing metricity, when
non-metric data is forcefully embedded into a vector space on the assumption that non-metricity be a
mere artifact of noise. This assumption certainly holds for many cases, especially when the pairwise
comparison is the output of some algorithm tuned to be metric but relying on some random initial-
ization. It does not hold for pairwise data which is inherently non-metric, e.g. for human similarity
judgments, summarizing geometrical (metric) and categorial thinking (possibly non-metric).

Technically, non-metricity translates into indefinite similarity matrices, also called “pseudo-
covariance” matrices (Torgerson, 1958), a fact, which imposes severe constraints on the data analy-
sis procedures. Typical approaches to tackle these problems involve omitting altogether the negative
eigenvalues like in classical scaling (Young and Householder, 1938) or shifting the spectrum (Roth
et al., 2003a) for subsequent (kernel-)PCA (Schölkopf et al., 1998).

The central and so far unanswered question is therefore: Does the negative part of the spectrum
of a similarity matrix code anything useful other than noise?
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FEATURE DISCOVERY IN NON-METRIC PAIRWISE DATA

This work will contribute by showing that the negative eigenvalues can code for relevant struc-
ture in the data. The exploratory technique outlined below can lead to the discovery of systemat-
ically new features, which were so far lost or have gone unnoticed by existing algorithms. This is
discussed for three illustrative examples after a brief theoretic discussion of the issue of negative
eigenvalues and a simple explanation of how negative spectra can code specific information.

2. Embedding of Non-Metric Data

In this section we will describe the issue of embedding pairwise proximity data into a vector space.
Embedding pairwise data corresponds to finding points in a vector space, such that their mutual
distance is as close as possible to the initial dissimilarity matrix with respect to some cost function.
Embedding yields points in a vector space, thus making the data available to the numerous ma-
chine learning techniques which require vectorial input. Embedding also allows visualization after
dimension reduction.

Let D = (Di j) be an n×n dissimilarity matrix. We want to find n vectors xi in a p-dimensional
vector space such that the distance between xi and x j is close to the dissimilarity Di j with respect to
some cost function measuring the distortion incurred by the embedding procedure.

Let X be the matrix whose column are given by the vectors xi. The matrix defined by 1
n XX> is

called the covariance matrix and is positive semi-definite, i.e., all its eigenvalues λi are positive or
zero (λi ≥ 0). The covariance matrix plays an important role in spectral methods like (kernel-)PCA.
The directions corresponding to the leading eigenvalues describe the directions which capture large
variance in the data. Thus we expect to find interesting features there.

2.1 Mathematical Statement of the Embedding Problem

We will briefly state the mathematical formulation of the embedding problem and give the necessary
and sufficient condition for a Euclidean embedding.

A dissimilarity matrix D will be called metric if there exists a metric function d such that Di j =
d(·, ·). In other words, D is positive and symmetric, its elements are 0 if and only if they are on the
diagonal,1 and they satisfy the triangle inequality. D = (Di j) will be called squared-Euclidean if the
metric function d derives from the Euclidean norm l2.

Let C = − 1
2 QDQ where Q = I − 1

n ee′. Q is the projection matrix onto the orthogonal comple-
ment of e = (1,1, . . . 1)>. The operation D → QDQ corresponds to the centralizing operation. The
meaning of C will become clear subsequently.

We have the following important theorem (Torgerson, 1958; Young and Householder, 1938):

Theorem 1 D is squared-Euclidean iff C is positive semi-definite.

In other words, the pairwise dissimilarities given by D can be embedded into a Euclidean vector
space if and only if the associated matrix C is positive semi-definite.

2.2 Embedding when D is Squared-Euclidean

When D is squared-Euclidean, C is semi-definite positive and can readily be interpreted as covari-
ance matrix (via simple algebra). The embedded vectors can be recovered by usual kernel-PCA
(Schölkopf et al., 1998; Cox and Cox, 2001):

1. We reasonably suppose that there are no two identical data points with different labels in the data set.
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D
C = −1/2QDQ

−−−−−−−−−−−−→C with n positive eigenvalues

C
spectral decomposition

−−−−−−−−−−−−−−−−→V ΛV>

XK = |ΛK |
1/2V>

K ,

where V = (v1, . . . ,vn) with eigenvectors vi’s and Λ = diag(λ1, . . . ,λn) with eigenvalues λ1 ≥ ·· · ≥
λn ≥ 0. K is the subspace of chosen directions vi. The columns of XK contain the vectors xi in
p-dimensional subspace K, where VK is the column-matrix of the selected eigenvectors and ΛK the
diagonal matrix of the corresponding eigenvectors.

If K = {v1 . . . vp} the distances between these vectors differ the least from the distances D with
respect to the quadratic approximation error. For p = n− 1 the mutual distances coincide with D,
i.e. Di j = ||xi − x j||

2. In other words: there is a direct algebraic transformation between D and the
set of xi’s.
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Figure 1: Examples of spectra of C for a squared-Euclidean dissimilarity (left) and non squared-
Euclidean dissimilarity matrices. The eigenvalues are plotted against rank order.

2.3 Embedding for General D’s

For non squared-Euclidean dissimilarity matrices D the associated C is not positive semi-definite
and is not a covariance matrix. In this case we will call it pseudo-covariance matrix. Figure 1 shows
an instance of a spectrum associated to a positive semi-definite C (left) and two instances of negative
spectra: in the middle, a spectrum associated to a pairwise dissimilarity which essentially is metric
but corrupted by noise which translates into a spectrum with only a few negative eigenvalues of
small magnitude. On the right, a spectrum with negative eigenvalues large in magnitude associated
to intrinsic non-metricity.

In order to study the possible loss incurred by omitting the negative part of the spectrum we
propose the following simple algorithm, which allows to specifically visualize the information coded
by the negative eigenvalues.

Algorithm. Start with some symmetric dissimilarity D or similarity S. If non-symmetric cases
the pairwise proximity matrix must first be symmetrized. Furthermore, when the proximity data
are similarities, a problem specific dissimilarity is computed. D typically is related to S via, e.g.,
Di j = 1−Si j or Di j = Sii +S j j −2Si j. Recall that Q = I− 1

n ee′ with e = (1,1, . . . 1)>. C denotes the
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pseudo-covariance matrix.

D
C = −1/2QDQ

−−−−−−−−−−−−→C with p positive and q negative eigenvalues

C
spectral decomposition

−−−−−−−−−−−−−−−−→V ΛV> = V |Λ|
1
2 M|Λ|

1
2 V>

XK = |ΛK |
1/2V>

K ,

where M is the block matrix consisting of the blocks Ip×p, −Iq×q and 0k×k (with k = n− p−q).
The columns of XK contain the vectors xi in the p-dimensional subspace K. At this point K can

be very general. However, as for PCA, we will find it sensible to choose a few leading eigendirec-
tions which can also include eigendirections associated to the negative part of the spectrum.

Visualization. Retaining only the first two coordinates (K = {v1,v2}) of the obtained vectors
corresponds to a projection onto the first two leading eigendirections. Retaining the last two (K =
{vn−1,vn}) is a projection onto the last two eigendirections: This corresponds to a projection onto
directions related to the metric violations of C

This simple algorithm2 is very akin to the well known PCA algorithm except that it does not
require the spectrum to be positive.

To finish this short overview about embedding pairwise data, it is important to stress the fact
that in general metricity is not enough for pairwise data to be loss-free embeddable into a Euclidean
vector space. Pairwise data may be metric, yet have an associated spectrum with negative eigenval-
ues. The interesting case, however, is given for the Euclidean metric since Theorem 1 establishes
a very simple relationship between the requirements on the dissimilarity matrix and its loss-free
embeddability into a Euclidean vector space.

2.4 Issue of Information Loss

Classical approaches to the embedding into a Euclidean vector space usually involve techniques
like multi-dimensional scaling (Cox and Cox, 2001). In its simplest version, classical scaling, MDS
proceeds as the algorithm in Section 2.1. However Λ1/2

K is only defined for K ⊂ {v1 . . . vp} with
p ≤ t where t is the number of positives eigenvalues. The requirement p ≤ t leads to a cut-off of
the negative eigenvalues. Another variant of MDS is called non-metric MDS and treats ordinal-
scale data, where the projections only try to preserve the rank order between the distances, not their
absolute value (Kruskal, 1964; Shepard, 1962). It is important to notice here that in our work non-
metricity refers to the violations of metric requirements and the subsequent impossibility of a loss-
free embedding into a Euclidean vector space. Non-metric MDS does not discover the information
coded specifically by metric violations.

Recently Constant Shift Embedding was introduced which guarantees distortionless embedding
of non-metric pairwise data w.r.t. cluster assignment in the case of a shift invariant cluster cost
function (Roth et al., 2003b,a). However, in practical applications, the need for dimension reduction
to speed up optimization and robustify solutions, effectively results in retaining only the leading
eigendirections and cutting off large parts of the spectrum. For other cases than noise corrupted
non-metric pairwise data (Figure 1, middle) it is an open question whether the removal of negative
eigenvalues leads to an information loss.

2. A Matlab implementation can be found under http://ida.first.fraunhofer.de/˜jlaub/.

805



LAUB AND MÜLLER

The above methods, unlike ours, do not permit to specifically study the information coded by
non-metricity.

3. Interpretation and Modeling of Negative Spectra

In this section we will discuss the issue of information loss raised by the preceding considerations.
We will first show by simple from-scratch constructions how negative spectra can occur. Further
understanding will be gained by interpretation of the negative eigenspaces. In particular, a model is
presented that can explain negative spectra in the case of human similarity judgments in cognitive
psychology. A simple toy illustration will conclude this section.

3.1 Constructing Negative Spectra

Let us first introduce two simple constructions of non-metric pairwise data sets whose non-metric
part codes for specific information. These constructions typically come about in situations involving
penalization and/or competition of dissimilarity measures by subtraction or division:

Di j = (D1 −D2)i j or Di j =
(D1)i j

(D2)i j
, (1)

with the assumption that (D2)i j 6= 0 ∀i, j = 1,2 . . . n in the latter case. See Figure 2 for a schematic
illustration. The structure of the penalized cells is reflected in non-metricity. Such similarity scores
occur in various image matching algorithms or in text mining via e.g. the min-max dis/similarity
(Banerjee and Ghosh, 2002; Dagan et al., 1995), but also in alignment algorithms from e.g. bioin-
formatics.

D1 =

























and D2 =

























D =

























snapshot
−−−−−−→

Penalized dissimilarities

Figure 2: Principle of penalization: the penalized cells can form a structure on their own, which
is reflected in non-metricity. The snapshot shows the alternate structure of the penalized
entries (small circles).

3.2 Interpreting Negative Eigenspaces

For a positive semi-definite C the projections along the leading eigendirections can readily be inter-
preted as projections along the axis of high variances of the data. For pseudo-covariance matrices
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this still holds up to a scaling factor when shifting the spectrum so as to assure positive semi-
definiteness.

For projections onto the negative eigendirections the interpretation is not so straightforward
since there is no clear intuition on what “negative variance” represents. However the above pre-
sented algorithm relies on a pseudo-Euclidean-style decomposition of the embedding space. The
pseudo-Euclidean space effectively amounts to two Euclidean spaces one of which has a positive
semi-definite inner product and the other a negative semi-definite inner product. An interesting in-
terpretation of the distances in a squared-Euclidean space is that they can be looked at as a difference
of squared-Euclidean distances from the “positive” and the “negative” space, by the decomposition
R

(p,q) = R
p + iRq, so that Di j = D(Rp)

i j −D(Rq)
i j , where the Di j are squared-Euclidean. This is the

rationale behind the first construction of a non-metric D via Di j = (D1 −D2)i j.
The power of this decomposition resides in the fact that the negative eigenvalues now admit the

natural interpretation of variances of the data projected onto directions in R
q. Thus the variance

along vn is
√

|λn|, the variance along vn−1 is
√

|λn−1|, etc. (c.f. Pȩkalska et al., 2001).

3.3 Modeling Negative Spectra

While the dissimilarity matrix constructions obtained from Equation 1 can account for a class of
non-metric pairwise data from domains such as image matching, text-mining or bioinformatics,
where penalization models underlie the computed similarities, they cannot necessarily appropriately
model the generic case where a pairwise dissimilarity matrix is given from an experiment, say in
cognitive psychology. The simple model for non-metric pairwise data introduced in the following is
inspired by approaches in cognitive psychology to explain human similarity judgments (Tenenbaum,
1996). Let { f1, f2, . . . fn} be a basis. A given data point xi can be decomposed in this basis as

xi = ∑n
k=1 α(i)

k fk. The squared l2 distance between xi and x j therefore reads: di j = ||xi − x j||
2 =

∣

∣

∣

∣∑n
k=1

(

α(i)
k −α( j)

k

)

fk
∣

∣

∣

∣

2
. However this assumes constant feature-perception, i.e. a constant mental

image with respect to different tasks. In the realm of human perception this is often not the case,
as illustrated by the following well known visual “traps” (Figure 3). Our perception has several
ways to interpret the figures which can give rise to asymmetry (Thomas and Mareschal, 1997) by
a different weighting of the perceived dissimilarities. It is important to notice here that for human
similarity judgments, one can hardly speak of artifact or erroneous judgments with respect to a
Euclidean norm. The latter seems rather exceptional in these cases.

A possible way to model different interpretations of a given geometric object is to introduce
states {ω(1),ω(2) . . . ω(d)}, ω(l) ∈ R

n for l = 1,2, . . . d, affecting the features. The similarity judg-
ment between objects then depends on the perceptual state (weight) the observer is in. Assuming
that the person is in state ω(l) the distance becomes:

di j = ||xi − x j||
2 =

∣

∣

∣

∣

∣

∣

n

∑
k=1

(

α(i)
k −α( j)

k

)

ω(l)
k fk

∣

∣

∣

∣

∣

∣

2
. (2)

With no further restriction this model yields non metric distance matrices.
In the worst case l is random, but usually perception-switches can be modeled and l becomes

some function of (i, j). For random l, non-metricity is an artifact of sample size, since when aver-
aging the d’s over p observers the mean dissimilarity is asymptotically metric in p (〈d〉→ metric as
p → ∞): the mean ω becomes constant for all i, j equal to the expectation of its distribution.
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Figure 3: Left: What do you see? A small cube in the corner of a room or a large cube with a
cubic hole or a small cube sticking with one corner on a large one? Right: What do you
see? A young lady or an old woman? If you were to compare this picture to a large set
of images of young ladies or old women, the (unwilling) perception switch could induce
large individual weights on the similarity.

On the other hand, if we suppose that the function l of (i, j) does not vary much between
observers, then the averaging does not flatten out the non-metric structure induced by the systematic
perception-switch.

3.4 Illustration (Proof of Principle)

The importance of the information coded by the negative eigenvalues is exemplified by the following
simple example: consider n objects, labeled 1,2, . . . n, presenting two salient features. Suppose that
they cluster into {1, . . . n

2} and { n
2 +1, . . . n} according to the first feature, and into {1,3,5, . . . n−1}

and {2,4,6, . . . n} according to the second. Let D1 and D2 be the dissimilarity matrices correspond-
ing to feature 1 and 2 respectively. Save very pathological cases the spectra associated to the D
obtained by subtraction or division of D1 and D2 contain steeply falling negative eigenvalues. Fur-
thermore the projection onto the first two eigenvalues exhibits a clear distinction w.r.t. feature 1
whereas the projection onto the last two eigenvalues exhibits a clear distinction w.r.t. feature 2.

Let e.g. n = 8. Two artificial dissimilarity matrices D1 and D2 were constructed to reflect the
above surmise about the underlying structure:

D1 =









0.00 2.36 2.59 1.78 4.74 4.82 4.98 4.72
2.36 0.00 2.39 1.60 4.98 5.06 5.22 4.96
2.59 2.39 0.00 2.09 5.29 5.37 5.53 5.27
1.78 1.60 2.09 0.00 5.08 5.16 5.32 5.06
4.74 4.98 5.29 5.08 0.00 1.20 1.82 1.62
4.82 5.06 5.37 5.16 1.20 0.00 2.98 1.78
4.98 5.22 5.53 5.32 1.82 2.98 0.00 2.02
4.72 4.96 5.27 5.06 1.62 1.78 2.02 0.00









and D2 =









0.00 4.15 2.03 4.14 1.26 4.33 0.690 4.85
4.15 0.00 4.70 0.570 4.37 1.82 4.24 2.02
2.03 4.70 0.00 4.69 1.85 4.88 1.68 5.40
4.14 0.570 4.69 0.00 4.36 1.83 4.23 2.67
1.26 4.37 1.85 4.36 0.00 4.55 0.730 5.07
4.33 1.82 4.88 1.83 4.55 0.00 4.42 2.14

0.690 4.24 1.68 4.23 0.730 4.42 0.00 4.94
4.85 2.02 5.40 2.67 5.07 2.14 4.94 0.00









.

Figure 4 shows the result obtained by Algorithm 2.3. The spectrum associated to D = D1 −D2

is non positive. The information contained in the positive and the negative part is recovered: We
see that the information represented in the first two eigendirections is related to the variance due
to the cluster structure {1, . . . 4} and {5, . . . 8} whereas the information represented in the last two
eigendirection relates to the cluster structure {1,3, . . . 7} and {2,4, . . . 8}. This last information
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Figure 4: Sorted spectrum associated to the non-metric E (right), Projection onto the two lead-
ing positive eigendirection and projection onto the two leading negative eigendirections
(right).

would have been lost by usual methods relying on high variance and thus neglecting the negative
eigenvalues.

4. Summary

We summarize the procedure and the rationale behind it (see schematic diagram Figure 5).
Consider the following illustrative setting: we have apples of different sizes and two colors.

There are two salient features: size (geometric) and color (categorial). These apples are pairwise
compared, either by a computer algorithm, a human test subject or any other mechanism. This
comparison yields a dissimilarity matrix D or a similarity matrix S. In the latter case a problem
specific dissimilarity matrix D is obtained from S.

From D we compute the centralized (pseudo-)covariance matrix C and its spectrum. C is positive
semi-definite if and only if D is squared-Euclidean. For generic D this is not the case and the usual
techniques fail to take this into account.

We project the data onto the first two leading eigenvectors explaining the variance associated
to the first feature (size). Second, we project the data onto the last two eigenvectors accounting
for the variance of the second feature (color). This last step is done by an embedding into the
pseudo-Euclidean space.

The second feature is lost by any method relying exclusively on high variance, that is, the
majority of machine learning techniques. We propose the exploration of the negative eigenspectrum
for feature discovery.

5. Further Illustrative Applications

To go beyond toy examples showing that non-metricity can code for interesting features, we will
now illustrate our feature discovery technique by three applications from real-world domains, namely
image matching, text mining and cognitive psychology.

5.1 USPS Handwritten Digits

A similarity matrix is computed from binary image matching on the digits 0 and 7 of the USPS data
set. Digits 0 and 7 have been chosen since they exhibit clear geometric differences. All images have
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Figure 5: Summarizing diagram.

been sorted according to decreasing sum of pixel value (1 to 256) thus separating the bold digits
from the light ones. A total of 1844 samples have been retained. The images have been normalized
and discretized to have binary pixel values 0 and 1.

Binary image matching. Let r and s denote the labels of two images and Srs the score rating
mutual similarity. In the case of binary images, Srs is a function of a, b, c and d, where a counts the
number of variables where both objects s and r score 1, b the number where r scores 1 and s scores
0, c the number of variables where r scores 0 and s scores 1 and d the number of where both objects
score 0. The counting variables a, b, c and d allow to define a variety of similarity scores Srs (see
Cox and Cox, 2001). We will be interested in the Simpson score, defined by

Srs =
a

min(a+b,a+ c)
.

It exhibits a strongly falling negative spectrum, corresponding to highly non-metric data. Projection
onto the eigenvectors associated to the first leading eigenvalues and projection onto the eigenvectors
associated to the last eigenvalues yield results different in nature.

In each case there is a clear interpretation of the variance according to salient features: (i)
Figure 6 shows that the variance in the “positive” eigenvectors corresponds to the geometrical dis-
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Figure 6: Projection onto the first two positive eigendirections. The explained variance is associated
to the geometric shape.
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Figure 7: Projection onto the last two negative eigendirections. The explained variance is associated
to the stroke weight.

tinction between the shapes of the 0’s and the 7’s; (ii) Figure 7 on the other hand shows that in
the “negative” eigenvectors the variance is associated to the feature of stroke weight. This inter-
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esting feature would have been lost if we had embedded the data by conventional methods thereby
discarding the negative part of the spectrum.

5.2 Text-Mining

We are interested in the semantic structure of nouns and adjectives from two topically unrelated
sources, namely Grimm’s Fairy Tales (Gutenberg) and popular science articles about space explo-
ration (NASA). Both sources contributed 60 documents containing roughly between 500 and 1500
words each. A subset of 120 nouns and adjectives has been selected, containing both very specific
and very general terms out of both data sources.

Similarity measure for words. From a set of p documents and a choice of n keywords we can
construct a contingency table, by simply indicating whether word i (1 ≤ i ≤ n) appears in document
k (1 ≤ k ≤ p) or not. This yields a p×n boolean matrix.

We will take the Keyword Semantic Proximity as similarity measure (Rocha, 2001; Rocha and
Bollen, 2001), which expresses that two words are similar if they often appear together in a docu-
ment. This similarity is penalized if they individually spread over a large number of documents:

si j =
#{documents where word i and word j appear}
#{documents where word i or word j appear}

.

From this similarity measure, we obtain a dissimilarity matrix via, e.g. di j = − log(si j). In Rocha
(2001) the author uses di j = 1/si j −1 which is another possible choice. In either case, the resulting
dissimilarity matrix d is not squared-Euclidean such that the associated (pseudo-)covariance matrix
exhibits strong negative eigenvalues (see inset in Figure 8).

The data is projected on the first two leading eigenvectors (Figure 8). On the far left we find
the words stemming from the popular science articles (e.g. “nuclear”, “computer”, “physics” etc.)
whereas on the far right we have those from Grimm’s Fairy Tales (e.g. “castle”, “queen”, “ravens”
etc.). The captured variance can be interpreted as the semantic context of the words.

Projection onto the last two eigendirections yields a distribution over a new interesting feature
(Figure 9). We notice that in the upper half we find words of high specificity of either of the sources
(e.g. “astronauts”, “wolf”, “witch” etc.). In the lower half we see an accumulation of words with
general, unspecific, meaning, expected to be found in a large variety of documents (e.g. “day”,
“world”, “thing” etc.). Thus to our understanding the variance associated to the last eigendirection
again corresponds to the specificity of the words (relative to the data source). This feature would
have gone unnoticed by algorithms not specifically taking into account the negative eigenvalues.

5.3 Cognitive Psychology

We finally present an example from human similarity judgments in cognitive psychology. This will
also allow us to illustrate the model presented in Section 3.3.

The pairwise dissimilarity data is obtained from Gati and Tversky (1982). The stimuli tested
consist of 16 images of flowers having leaves of varying elongation and stems of increasing size
(Figure 10). These two stimuli were presented to a group of thirty undergraduate students from the
Hebrew University who, individually, evaluated the mutual dissimilarity of the flowers on a 20-point
scale (see Gati and Tversky, 1982).

We have processed the data according to Algorithm 2.3. In the positive eigendirections we
obtain a very good reconstruction of the two geometric features, namely the elongation of the leaves
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Figure 8: Projection onto the first two eigendirections.

and the size of the stem: see Figure 11, middle. There seems to be no tendency to favor one over
the other. The first component explains the variance in leaf elongation (horizontal axis), the second
the variance of the stem size (vertical axis).

Interestingly, the projection onto the last two negative eigendirections exhibits further structure,
as shown by Figure 11, right. The interpretation, however, is not so straightforward. Two clusters
loosely form, separated by the last eigendirection (vertical axis). They are {1,2, 5,6,11,12,15,16}
and {3,4,7,8,9,10,13,14}. A possible feature could be the oddness of a plant, such that the first
cluster contains the odd plants, and the second the “normal” ones, since one could expect plants
with small leaves to be of small size and plants with large leaves to be of greater size. The odds here
are the small plants with large leaves and the large plants with small leaves. This would correspond
to categorial perception while judging similarity.

Features related to the concept of normality, or expectation, are not uncommon in cognitive
psychology. In Navarro and Lee (2002) features like the normality or usuality of faces are discussed
in the context of the Modified Contrast Model, along with certainly not easily graspable features
like relationships in parenthood. While the authors focus on common and distinctive features and
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Figure 9: Projection onto the last two negative eigendirections.

distinguish between conceptual and perceptual features, the interpretation of the discovered features
remains as a second independent step in data analysis.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Figure 10: Images of the flowerpots as presented to the test person.

We explain the flowerpot experiment according to the model presented in Section 3.3, starting
from a uniform distribution of 16 points in three dimensions and choosing the feature vectors fk,
k = 1,2,3 to be the unit vectors e1 = (1,0,0) etc.
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Figure 11: Left: Sorted eigenvalues. Middle: Projection onto the leading two positive eigenvalues.
Right: projection onto the last two eigendirections.

The states are obtained by fitting the d defined in Equation 2 heuristically to the experimental
dissimilarity by minimization of the difference of the means over all matrix elements.

We obtain a good model fit for six states {(8.3,0,0), (0,3.5,0), (4.7,4.7,4.7), (6.4,6.4,0),
(0,3.4,3.4), (3.1,0,3.1)}. See Figure 12.

In other words, following the semantics of the model presented, one can explain the results of
the obtained dissimilarities by six perceptual states of the observer; i.e. the weight vectors model the
bias in perception. These seem to outnumber the actually observed features (in the two-dimensional
representations) which are three in number (the two geometric features in the positives and the
categorial one in the negatives). However, we must keep in mind that one may reduce the number
of weights required to approximate d by a deeper knowledge of the initial feature presentation,
including its dimensionality. We have taken a uniform distribution in three dimensions for lack of
more precise knowledge.
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Figure 12: Prediction of flowerpot experiment.

6. Conclusion and Outlook

This work studies the potential of relevant information being coded specifically by the non-metric
part of the spectrum of a pseudo-covariance matrix. It has been shown that non-metricity can indeed
code for features relevant to a better understanding of the data set. The proposed algorithm effec-
tively overcomes the drawback of most variance based algorithms which take only into account the
variance of the leading eigendirections. Model.illustrations provide a simple intuition and explana-
tion of the phenomena. Note, however, that spectra like Figure 1 (right) are only potentially—not
necessarily—containing interesting information in their negative part, some fancy noise process
might also be the cause of such a structure.
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Concluding, it is an important step in unsupervised data analysis to find out whether the negative
part of the spectrum codes for interesting variance. The present technique can be employed as
a general exploratory feature discovery tool. Application fields range from cognitive psychology,
marketing, biology, engineering and bioinformatics, where in principle new structure awaits its
discovery.

A further interesting direction is to go beyond visualization toward automated structure learning.
Investigations to overcome low-dimensional feature discovery based on visualization will focus on,
e.g., stability analysis (Roth et al., 2002; Meinecke et al., 2002) of various projections onto the
possibly negative eigenspace in order to assess quantitatively relevant structure and to rule out noise
related, erroneous, feature interpretations.

A major focus will concern the automated distinction of structure induced by intrinsic non-
metricity from mere artifacts of some fancy noise process with the overall goal to provide automated
learning and procedures that can optimally make use of the information coded by intrinsic non-
metricity.
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Abstract

The advantages of discriminative learning algorithms and kernel machines are combined with gen-
erative modeling using a novel kernel between distributions. In the probability product kernel, data
points in the input space are mapped to distributions over the sample space and a general inner
product is then evaluated as the integral of the product of pairs of distributions. The kernel is
straightforward to evaluate for all exponential family models such as multinomials and Gaussians
and yields interesting nonlinear kernels. Furthermore, the kernel is computable in closed form
for latent distributions such as mixture models, hidden Markov models and linear dynamical sys-
tems. For intractable models, such as switching linear dynamical systems, structured mean-field
approximations can be brought to bear on the kernel evaluation. For general distributions, even if
an analytic expression for the kernel is not feasible, we show a straightforward sampling method
to evaluate it. Thus, the kernel permits discriminative learning methods, including support vector
machines, to exploit the properties, metrics and invariances of the generative models we infer from
each datum. Experiments are shown using multinomial models for text, hidden Markov models for
biological data sets and linear dynamical systems for time series data.

Keywords: Kernels, support vector machines, generative models, Hellinger divergence, Kullback-
Leibler divergence, Bhattacharyya affinity, expected likelihood, exponential family, graphical mod-
els, latent models, hidden Markov models, dynamical systems, mean field

1. Introduction

Recent developments in machine learning, including the emergence of support vector machines,
have rekindled interest in kernel methods (Vapnik, 1998; Hastie et al., 2001). Typically, kernels
are designed and used by the practitioner to introduce useful nonlinearities, embed prior knowledge
and handle unusual input spaces in a learning algorithm (Schölkopf and Smola, 2001). In this
article, we consider kernels between distributions. Typically, kernels compute a generalized inner
product between two input objects x and x ′ which is equivalent to apply a mapping function Φ
to each object and then computing a dot product between Φ(x ) and Φ(x ′) in a Hilbert space. We
will instead consider the case where the mapping Φ(x ) is a probability distribution p(x|x ), thus
restricting the Hilbert space since the space of distributions is trivially embedded in the Hilbert space
of functions. However, this restriction to positive normalized mappings is in fact not too limiting
since general Φ(x ) mappings and the nonlinear decision boundaries they generate can often be
mimicked by a probabilistic mapping. However, a probabilistic mapping facilitates and elucidates

c©2004 Tony Jebara, Risi Kondor and Andrew Howard.
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kernel design in general. It permits kernel design to leverage the large body of tools in statistical and
generative modeling including Bayesian networks (Pearl, 1997). For instance, maximum likelihood
or Bayesian estimates may be used to set certain aspects of the mapping to Hilbert space.

In this paper, we consider the mapping from datum x to a probability distribution p(x|x ) which
has a straightforward inner product kernel k(x ,x ′) =

∫

pρ(x|x )pρ(x|x ′)dx (for a scalar ρ which we
typically set to 1 or 1/2). This kernel is merely an inner product between two distributions and, if
these distributions are known directly, it corresponds to a linear classifier in the space of probability
distributions. If the distributions themselves are not available and only observed data is given, we
propose using either Bayesian or Frequentist estimators to map a single input datum (or multiple
inputs) into probability distributions and subsequently compute the kernel. In other words, we map
points as x → p(x|x ) and x ′→ p(x|x ′). For the setting of ρ = 1/2 the kernel is none other than the
classical Bhattacharyya similarity measure (Kondor and Jebara, 2003), the affinity corresponding to
Hellinger divergence (Jebara and Kondor, 2003).1

One goal of this article is to explore a contact point between discriminative learning (support
vector machines and kernels) and generative learning (distributions and graphical models). Dis-
criminative learning directly optimizes performance for a given classification or regression task.
Meanwhile, generative learning provides a rich palette of tools for exploring models, accommo-
dating unusual input spaces and handling priors. One approach to marrying the two is to estimate
parameters in generative models with discriminative learning algorithms and optimize performance
on a particular task. Examples of such approaches include conditional learning (Bengio and Fras-
coni, 1996) or large margin generative modeling (Jaakkola et al., 1999). Another approach is to
use kernels to integrate the generative models within a discriminative learning paradigm. The pro-
posed probability product kernel falls into this latter category. Previous efforts to build kernels
that accommodate probability distributions include the Fisher kernel (Jaakkola and Haussler, 1998),
the heat kernel (Lafferty and Lebanon, 2002) and kernels arising from exponentiating Kullback-
Leibler divergences (Moreno et al., 2004). We discuss, compare and contrast these approaches to
the probability product kernel in Section 7. One compelling feature of the new kernel is that it is
straightforward and efficient to compute over a wide range of distributions and generative mod-
els while still producing interesting nonlinear behavior in, for example, support vector machine
(SVM) classifiers. The generative models we consider include Gaussians, multinomials, the ex-
ponential family, mixture models, hidden Markov models, a wide range of graphical models and
(via sampling and mean-field methods) intractable graphical models. The flexibility in choosing a
distribution from the wide range of generative models in the field permits the kernel to readily ac-
commodate many interesting input spaces including sequences, counts, graphs, fields and so forth.
It also inherits the properties, priors and invariances that may be straightforward to design within a
generative modeling paradigm and propagates them into the kernel learning machine. This article
thus gives a generative modeling route to kernel design to complement the family of other kernel
engineering methods including super-kernels (Ong et al., 2002), convolutional kernels (Haussler,
1999; Collins and Duffy, 2002), alignment kernels (Watkins, 2000), rational kernels (Cortes et al.,
2002) and string kernels (Leslie et al., 2002; Vishawanathan and Smola, 2002).

This paper is organized as follows. In Section 2, we introduce the probability product kernel
and point out connections to other probabilistic kernels such as Fisher kernels and exponentiated
Kullback-Leibler divergences. Estimation methods for mapping points probabilistically to Hilbert

1. This has interesting connections to Kullback-Leibler divergence (Topsoe, 1999).
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space are outlined. In Section 3 we elaborate the kernel for the exponential family and show its
specific form for classical distributions such as the Gaussian and multinomial. Interestingly, the
kernel can be computed for mixture models and graphical models in general and this is elaborated
in Section 4. Intractable graphical models are then handled via structured mean-field approxima-
tions in Section 6. Alternatively, we describe sampling methods for approximately computing the
kernel. Section 7 discusses the differences and similarities between our probability product ker-
nels and previously presented probabilistic kernels. We then show experiments with text data sets
and multinomial kernels, with biological sequence data sets using hidden Markov model kernels,
and with continuous time series data sets using linear dynamical system kernels. The article then
concludes with a brief discussion.

2. A Kernel Between Distributions

Given a positive (semi-)definite kernel k : X ×X 7→R on the input space X and examples x1,x2, . . . ,xm∈
X with corresponding labels y1,y2, . . . ,ym, kernel based learning algorithms return a hypothesis of
the form h(x ) = ∑m

i=1 αi k(xi,x )+ b. The role of the kernel is to capture our prior assumptions of
similarity in X . When k(x ,x ′) is large, we expect that the corresponding labels be similar or the
same.

Classically, the inputs {xi}m
i=1 are often represented as vectors in R

n, and k is chosen to be one
of a small number of popular positive definite functions on R

n, such as the Gaussian RBF

k(x ,x ′) = e−‖x−x ′ ‖2/(2σ2). (1)

Once we have found an appropriate kernel, the problem becomes accessible to a whole array of
non-parametric discriminative kernel based learning algorithms, such as support vector machines,
Gaussian processes, etc. (Schölkopf and Smola, 2002).

In contrast, generative models fit probability distributions p(x ) to x1,x2, . . . ,xm and base their
predictions on the likelihood under different models. When faced with a discriminative task, ap-
proaching it from the generative angle is generally suboptimal. On the other hand, it is often easier
to capture the structure of complex objects with generative models than directly with kernels. Spe-
cific examples include multinomial models for text documents, hidden Markov models for speech,
Markov random fields for images and linear dynamical systems for motion. In the current paper we
aim to combine the advantages of both worlds by

1. fitting separate probabilistic models p1(x), p2(x), . . . pm(x) to x1,x2, . . . ,xm;

2. defining a novel kernel kprob(p, p′) between probability distributions on X ;

3. finally, defining the kernel between examples to equal kprob between the corresponding distri-
butions:

k(x ,x ′) = kprob(p, p′).

We then plug this kernel into any established kernel based learning algorithm and proceed as usual.
We define kprob in a rather general form and then investigate special cases.

Definition 1 Let p and p′ be probability distributions on a space X and ρ be a positive constant.
Assume that pρ, p′ρ∈L2(X ), i.e. that

∫

X p(x)2ρdx and
∫

X p′(x)2ρdx are well defined (not infinity).
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The probability product kernel between distributions p and p′ is defined

kprob(p, p′) =
∫

X
p(x)ρ p′(x)ρ dx =

〈

pρ, p′ρ
〉

L2
. (2)

It is well known that L2(X ) is a Hilbert space, hence for any set P of probability distributions
over X such that

∫

X p(x)2ρdx is finite for any p∈P , the kernel defined by (2) is positive definite. The
probability product kernel is also a simple and intuitively compelling notion of similarity between
distributions.

2.1 Special Cases and Relationship to Statistical Affinities

For ρ = 1/2

k(p, p′) =
∫

√

p(x)
√

p′(x)dx,

which we shall call the Bhattacharyya kernel, because in the statistics literature it is known as
Bhattacharyya’s affinity between distributions (Bhattacharyya, 1943), related to the better-known
Hellinger’s distance

H(p, p′) =
1
2

∫

(

√

p(x)−
√

p′(x)
)2

dx

by H(p, p′) =
√

2−2k(p, p′) . Hellinger’s distance can be seen as a symmetric approximation to
the Kullback-Leibler (KL) divergence, and in fact is a bound on KL, as shown in (Topsoe, 1999),
where relationships between several common divergences are discussed. The Bhattacharyya kernel
was first introduced in (Kondor and Jebara, 2003) and has the important special property k(x ,x ) = 1.

When ρ = 1, the kernel takes the form of the expectation of one distribution under the other:

k(x ,x ′) =
∫

p(x) p′(x)dx = Ep[p
′(x)] = Ep′ [p(x)]. (3)

We call this the expected likelihood kernel.
It is worth noting that when dealing with distributions over discrete spaces X = {x1,x2, . . .},

probability product kernels have a simple geometrical interpretation. In this case p can be repre-
sented as a vector p = (p1, p2, . . .) where pi = Pr(X = xi). The probability product kernel is then
the dot product between p̃ =

(

pρ
1, pρ

2, . . .
)

and p̃′ =
(

p′ρ1, p′ρ2, . . .
)

.
In particular, in the case of the Bhattacharyya kernel, p̃ and p̃′ are vectors on the unit sphere.

This type of similarity measure is not unknown in the literature. In text recognition, for exam-
ple, the so-called “cosine-similarity” (i.e. the dot product measure) is well entrenched, and it has
been observed that preprocessing word counts by taking square roots often improves performance
(Goldzmidt and Sahami, 1998; Cutting et al., 1992). Lafferty and Lebanon also arrive at a similar
kernel, but from a very different angle, looking at the diffusion kernel on the statistical manifold of
multinomial distributions (Lafferty and Lebanon, 2002).

2.2 Frequentist and Bayesian Methods of Estimation

Various statistical estimation methods can be used to fit the distributions p1, p2, . . . , pm to the exam-
ples x1,x2, . . . ,xm. Perhaps it is most immediate to consider a parametric family {pθ(x)}, take the
maximum likelihood estimators θ̂i = argmaxθ pθ(xi), and set pi(x) = pθ̂i

(x).
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T (x) A(x) K (θ)

Gaussian ( θ=µ, σ2 =1 ) x − 1
2 xTx− D

2 log(2π) 1
2 θTθ

Gaussian ( θ=σ2, µ=0 ) x − 1
2 log(2π) − 1

2 logθ
Exponential ( θ=−1/β ) x 0 − log(−θ)

Gamma (θ=α) logx − logx− x logΓ(θ)

Poisson (θ= log p ) x − log(x!) expθ
Multinomial ( θi = logαi ) (x1,x2, . . .) log

((

∑i xi
)

!/
(

∏i xi!
))

1

Table 1: Some well-known exponential family distributions

The alternative, Bayesian, strategy is to postulate a prior on θ, invoke Bayes’ rule

p(θ|x ) =
p(x |θ) p(θ)

∫

p(x |θ) p(θ)dθ
,

and then use either the distribution p(x|θ̂MAP) based on the maximum a posteriori estimator θ̂MAP =
argmaxθ p(θ|x ), or the true posterior

p(x|x ) =
∫

p(x|θ) p(θ|x )dθ. (4)

At this point the reader might be wondering to what extent it is justifiable to fit distributions to
single data points. It is important to bear in mind that pi(x) is but an intermediate step in forming the
kernel, and is not necessarily meant to model anything in and of itself. The motivation is to exploit
the way that probability distributions capture similarity: assuming that our model is appropriate,
if a distribution fit to one data point gives high likelihood to another data point, this indicates that
the two data points are in some sense similar. This is particularly true of intricate graphical models
commonly used to model structured data, such as times series, images, etc.. Such models can
capture relatively complicated relationships in real world data. Probability product kernels allow
kernel methods to harness the power of such models.

When x is just a point in R
n with no further structure, probability product kernels are less com-

pelling. Nevertheless, it is worth noting that even the Gaussian RBF kernel (1) can be regarded
as a probability product kernel (by setting setting ρ = 1 and choosing pi(x) to be a σ/2 variance
Gaussian fit to xi by maximum likelihood). In particular situations when the point x does not yield
a reliable estimate of p (typically because the class of generative models is too flexible relative to
the datum), we may consider regularizing the maximum likelihood estimate of each probability by
fitting it to the neighbourhood of a point or by employing other more global estimators of the den-
sities. Other related methods that use points to estimate local distributions including kernel density
estimation (KDE) where the global density is composed of local density models centered on each
datum (Silverman, 1986). We next discuss a variety of distributions (in particular, the exponential
family) where maximum likelihood estimation is well behaved and the probability product kernel is
straightforward to compute.

823



JEBARA, KONDOR AND HOWARD

3. Exponential Families

A family of distributions parameterized by θ∈R
D is said to form an exponential family if its mem-

bers are of the form

pθ(x) = exp(A(x)+θT T (x)−K (θ)).

Here A is called the measure, K is the the cumulant generating function and T are the sufficient
statistics.

Some of the most common statistical distributions, including the Gaussian, multinomial, Pois-
son and Gamma distributions, are exponential families (Table 1). Note that to ensure that pθ(x) is
normalized, A , K and θ must be related through the Laplace transform

K (θ) = log
∫

exp
(

A(x)+θT T (x)
)

dx.

The Bhattacharyya kernel (ρ=1/2) can be computed in closed form for any exponential family:

k(x ,x ′) = k(p, p′) =
∫

x
pθ(x)

1/2 pθ′(x)
1/2 dx

=
∫

x
exp
(

A(x)+
(

1
2 θ+ 1

2 θ′
)T T (x)− 1

2 K (θ)− 1
2 K (θ′)

)

dx

= exp
(

K
(

1
2 θ+ 1

2 θ′
)

− 1
2 K (θ)− 1

2 K (θ′)
)

.

For ρ 6=1/2, k(x ,x ′) can only be written in closed form when A and T obey some special properties.
Specifically, if 2ρA(x) = A(ηx) for some η and T is linear in x, then

log
∫

exp
(

2ρA(x)+ρ
(

θ+θ′
)T T (x)

)

dx =

log

[

1
η

∫

exp
(

A(ηx)+
ρ
η
(

θ+θ′
)T T (ηx)

)

d(ηx)

]

= K
( ρ

η
(

θ+θ′
))

− logη,

hence
k(p, p′) = exp

[

K
( ρ

η
(

θ+θ′
))

− logη− ρ
2 K (θ)− ρ

2 K (θ′)
]

.

In the following we look at some specific examples.

3.1 The Gaussian Distribution

The D dimensional Gaussian distribution p(x)=N (µ,Σ) is of the form

p(x) = (2π)−D/2 |Σ |−1/2 exp
(

− 1
2(x−µ)T Σ−1(x−µ)

)

where Σ is a positive definite matrix and |Σ | denotes its determinant. For a pair of Gaussians
p=N (µ,Σ) and p′=N (µ′,Σ′), completing the square in the exponent gives the general probability
product kernel

Kρ(x ,x ′) = Kρ(p, p′) =
∫

RD
p(x)ρ p′(x)ρdx =

(2π)(1−2ρ)D/2 ρ−D/2
∣

∣Σ†
∣

∣

1/2∣
∣Σ
∣

∣

−ρ/2∣
∣Σ′
∣

∣

−ρ/2
exp
(

−ρ
2

(

µT Σ−1µ+µ′T Σ′−1µ′−µ†T Σ†µ†
))

, (5)
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where Σ† =
(

Σ−1+Σ′−1)−1
and µ† = Σ−1µ + Σ′−1µ′. When the covariance is isotropic and fixed,

Σ = σ2I, this simplifies to

Kρ(p, p′) = (2ρ)−D/2 (2πσ2)(1−2ρ)D/2 e−‖µ−µ′ ‖2/(4σ2/ρ),

which, for ρ=1 (the expected likelihood kernel) simply gives

k(p, p′) = 1
(4πσ2)

D/2 e−‖µ′−µ‖2/(4σ2),

recovering, up to a constant factor, the Gaussian RBF kernel (1).

3.2 The Bernoulli Distribution

The Bernoulli distribution p(x) = γx(1− γ)1−x with parameter γ∈ (0,1), and its D dimensional
variant, sometimes referred to as Naive Bayes,

p(x) =
D

∏
d=1

γxd
d (1− γd)

1−xd

with γ∈(0,1)D, are used to model binary x∈{0,1} or multidimensional binary x∈{0,1}D observa-
tions. The probability product kernel

Kρ(x ,x ′) = Kρ(p, p′) = ∑
x∈{0,1}D

D

∏
d=1

(γdγ′d)
ρxd ((1− γd)(1− γ′d))

ρ(1−xd)

factorizes as

Kρ(p, p′) =
D

∏
d=1

[

(γdγ′d)
ρ +(1− γd)

ρ(1− γ′d)
ρ] .

3.3 The Multinomial Distribution

The multinomial model

p(x) =
s!

x1!x2! . . .xD!
αx1

1 αx2
2 . . .αxD

D

with parameter vector α = (α1,α2, . . . ,αD) subject to ∑D
d=1 αd = 1 is commonly used to model

discrete integer counts x = (x1,x2, . . . ,xD) with ∑D
i=1 xi = s fixed, such as the number of occurrences

of words in a document. The maximum likelihood estimate given observations x(1),x(2), . . . ,x(n) is

α̂d =
∑n

i=1 x(i)
d

∑n
i=1 ∑D

d=1 x(i)
d

.

For fixed s, the Bhattacharyya kernel (ρ=1/2) can be computed explicitly using the multinomial
theorem:

k(p, p′) = ∑
x=(x1,x2,...,xD)

∑i xi=s

s!
x1!x2! . . .xD!

D

∏
d=1

(αdα′d)
xd/2 =

[

D

∑
d=1

(αdα′d)
1/2

]s

(6)
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which is equivalent to the homogeneous polynomial kernel of order s between the vectors (
√

α1,
√

α2, . . . ,
√

αD)
and (

√

α′1,
√

α′2, . . . ,
√

α′D). When s is not constant, we can sum over all its possible values

k(p, p′) =
∞

∑
s=0

[

D

∑
d=1

(αdα′d)
1/2

]s

=

(

1−
D

∑
d=1

(αdα′d)
1/2

)−1

or weight each power differently, leading to a power series expansion.

3.4 The Gamma and Exponential Distributions

The gamma distribution Γ(α,β) parameterized by α>0 and β>0 is of the form

p(x) =
1

Γ(α)βα xα−1 e−x/β.

The probability product kernel between p∼ Γ(α,β) and p′ ∼ Γ(α′,β′) will then be

kρ(p, p′) =
Γ(α†)β†α†

[

Γ(α)βα Γ(α′)β′α
′
]ρ

where α† = ρ(α+α′−2) + 1 and 1/β† = ρ(1/β+1/β′). When ρ = 1/2 this simplifies to α† =
(α+α′)/2 and 1/β† = (1/β+1/β′)/2.

The exponential distribution p(x) = 1
β e−x/β can be regarded as a special case of the gamma

family with α=1. In this case

kρ(p, p′) =
ρ(1/β+1/β′)

(ββ′)ρ .

4. Latent and Graphical Models

We next upgrade beyond the exponential family of distributions and derive the probability product
kernel for more versatile generative distributions. This is done by considering latent variables and
structured graphical models. While introducing additional complexity in the generative model and
hence providing a more elaborate probability product kernel, these models do have the caveat that
estimators such as maximum likelihood are not as well-behaved as in the simple exponential family
models and may involve expectation-maximization or other only locally optimal estimates. We first
discuss the simplest latent variable models, mixture models, which correspond to a single unob-
served discrete parent of the emission and then upgrade to more general graphical models such as
hidden Markov models.

Latent variable models identify a split between the variables in x such that some are observed and
are denoted using xo (where the lower-case ’o’ is short for ’observed’) while others are hidden and
denoted using xh (where the lower-case ’h’ is short for ’hidden’). In the latent case, the probability
product kernel is computed only by the inner product between two distributions p(xo) and p′(xo)
over the observed components, in other words k(p, p′) =

∫

p(xo)p′(xo)dxo. The additional variables
xh are incomplete observations that are not part of the original sample space (where the datum or
data points to kernelize exist) but an augmentation of it. The desired p(xo) therefore, involves
marginalizing away the hidden variables:

p(xo) = ∑
xh

p(xo,xh) = ∑
xh

p(xh)p(xo|xh).
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For instance, we may consider a mixture of exponential families model (a direct generalization of the
exponential family model) where xh is a single discrete variable and where p(xo|xh) are exponential
family distributions themselves. The probability product kernel is then given as usual between two
such distributions p(xo) and p′(xo) which expand as follows:

k(p, p′) = ∑
xo

(p(x))ρ (p′(x)
)ρ

= ∑
xo

(

∑
xh

p(xh)p(xo|xh)

)ρ


∑
x′h

p′(x′h)p′(xo|x′h)





ρ

.

We next note a slight modification to the kernel which makes latent variable models tractable when
ρ 6= 1. This alternative kernel is denoted k̃(p, p′) and also satisfies Mercer’s condition using the same
line of reasoning as was employed for k(p, p′) in the previous sections. Essentially, for k̃(p, p′) we
will assume that the power operation involving ρ is performed on each entry of the joint probability
distribution p(xo,xh) instead of on the marginalized p(xo) alone as follows:

k̃(p, p′) = ∑
xo

∑
xh

(p(xh)p(xo|xh))
ρ ∑

x′h

(

p′(x′h)p′(xo|x′h)
)ρ

.

While the original kernel k(p, p′) involved the mapping to Hilbert space given by x → p(xo), the
above k̃(p, p′) corresponds to mapping each datum to an augmented distribution over a more com-
plex marginalized space where probability values are squashed (or raised) by a power of ρ. Clearly,
k(p, p′) and k̃(p, p′) are formally equivalent when ρ = 1. However, for other settings of ρ, we prefer
handling latent variables with k̃(p, p′) (and at times omit the∼ symbol when it is self-evident) since
it readily accommodates efficient marginalization and propagation algorithms (such as the junction
tree algorithm (Jordan and Bishop, 2004)).

One open issue with latent variables is that the k̃ kernels that marginalize over them may produce
different values if the underlying latent distributions have different joint distributions over hidden
and observed variables even though the marginal distribution over observed variables stays the same.
For instance, we may have a two-component mixture model for p with both components having the
same identical emission distributions yet the kernel k̃(p, p′) evaluates to a different value if we
collapse the identical components in p into one emission distribution. This is to be expected since
the different latent components imply a slightly different mapping to Hilbert space.

We next describe the kernel for various graphical models which essentially impose a factor-
ization on the joint probability distribution over the N variables xo and xh. This article focuses
on directed graphs (although undirected graphs can also be kernelized) where this factorization
implies that the joint distribution can be written as a product of conditionals over each node or vari-
able xi ∈ {xo,xh}, i = 1 . . .N given its parent nodes or set of parent variables xpa(i) as p(xo,xh) =

∏N
i=1 p(xi|xpa(i)). We now discuss particular cases of graphical models including mixture models,

hidden Markov models and linear dynamical systems.

4.1 Mixture Models

In the simplest scenario, the latent graphical model could be a mixture model, such as a mixture of
Gaussians or mixture of exponential family distributions. Here, the hidden variable xh is a single
discrete variable which is a parent of a single xo emission variable in the exponential family. To
derive the full kernel for the mixture model, we first assume it is straightforward to compute an
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(a) HMM for p. (b) HMM for p′. (c) Combined graphs.

Figure 1: Two hidden Markov models and the resulting graphical model as the kernel couples com-
mon parents for each node creating undirected edges between them.

elementary kernel between any pair of entries (indexed via xh and x′h) from each mixture model as
follows:

k̃(p(xo|xh), p′(xo|x′h)) = ∑
xo

(

p(xo|xh)p′(xo|x′h)
)ρ

.

In the above, the conditionals could be, for instance, exponential family (emission) distributions.
Then, we can easily compute the kernel for a mixture model of such distributions using these ele-
mentary kernel evaluations and a weighted summation of all possible pairings of components of the
mixtures:

k̃(p, p′) = ∑
xo

∑
xh

(p(xh)p(xo|xh))
ρ ∑

x′h

(

p′(x′h)p′(xo|x′h)
)ρ

= ∑
xh,x′h

(

p(xh)p′(x′h)
)ρ

k̃(p(xo|xh), p′(xo|x′h)).

Effectively, the mixture model kernel involves enumerating all settings of the hidden variables xh

and x′h. Taking the notation |.| to be the cardinality of a variable, we effectively need to perform
and sum a total of |xh|× |x′h| elementary kernel computations k̃xh,x′h

between the individual emission
distributions.

4.2 Hidden Markov Models

We next upgrade beyond mixtures to graphical models such as hidden Markov models (HMMs).
Considering hidden Markov models as the generative model p allows us to build a kernel over se-
quences of variable lengths. However, HMMs and many popular Bayesian networks have a large
number of (hidden and observed) variables and enumerating all possible hidden states for two dis-
tributions p and p′ quickly becomes inefficient since xh and x′h are multivariate and/or have large
cardinalities. However, unlike the plain mixture modeling case, HMMs have an efficient graphical
model structure implying a factorization of their distribution which we can leverage to compute our
kernel efficiently. A hidden Markov model over sequences of length T + 1 has observed variables
xo = {x0, . . . ,xT} and hidden states xh = {q0, . . . ,qT}. The graphical model for an HMM in Fig-
ure 1(a) reflects its Markov chain assumption and leads to the following probability density function
(note here we define q−1 = {} as a null variable for brevity or, equivalently, p(q0|q−1) = p(q0)):

p(xo) = ∑
xh

p(xo,xh) = ∑
q0

. . .∑
qT

T

∏
t=0

p(xt |qt)p(qt |qt−1).
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Figure 2: The undirected clique graph obtained from the kernel for efficiently summing over both
sets of hidden variables xh and x′h.

To compute the kernel k̃(p, p′) in a brute force manner, we need to sum over all configurations of
q0, . . . ,qT and q′0, . . . ,q

′
T while computing for each each configuration its corresponding elementary

kernel k̃(p(x0, . . . ,xT |q0, . . . ,qT ), p′(x0, . . . ,xT |q′0, . . . ,q′T )). Exploring each setting of the state space
of the HMMs (shown in Figure 1(a) and (b)) is highly inefficient requiring |qt |(T+1) × |q′t |(T+1)

elementary kernel evaluations. However, we can take advantage of the factorization of the hidden
Markov model by using graphical modeling algorithms such as the junction tree algorithm (Jordan
and Bishop, 2004) to compute the kernel efficiently. First, we use the factorization of the HMM in
the kernel as follows:

k̃(p, p′) = ∑
x0,...,xT

∑
q0...qT

T

∏
t=0

p(xt |qt)
ρ p(qt |qt−1)

ρ ∑
q′0...q

′
T

T

∏
t=0

p′(xt |q′t)ρ p(q′t |q′t−1)
ρ

= ∑
q0...qT

∑
q′0...q

′
T

T

∏
t=0

p(qt |qt−1)
ρ p(q′t |q′t−1)

ρ

(

∑
xt

p(xt |qt)
ρ p′(xt |q′t)ρ

)

= ∑
q0...qT

∑
q′0...q

′
T

T

∏
t=0

p(qt |qt−1)
ρ p(q′t |q′t−1)

ρψ(qt ,q
′
t)

= ∑
qT

∑
q′T

ψ(qT ,q′T )
T

∏
t=1

∑
qt−1

∑
q′t−1

p(qt |qt−1)
ρ p(q′t |q′t−1)

ρψ(qt−1,q
′
t−1)p(q0)

ρ p′(q′0)
ρ.

In the above we see that we only need to compute the kernel for each setting of the hidden
variable for a given time step on its own. Effectively, the kernel couples the two HMMs via their
common children as in Figure 1(c). The kernel evaluations, once solved, form non-negative clique
potential functions ψ(qt ,q′t) with a different setting for each value of qt and q′t . These couple the
hidden variable of each HMM for each time step. The elementary kernel evaluations are easily
computed (particularly if the emission distributions p(xt |qt) are in the exponential family) as:

k̃(p(xt |qt), p′(xt |q′t)) = ψ(qt ,q
′
t) = ∑

xt

p(xt |qt)
ρ p′(xt |q′t)ρ.

Only a total of (T + 1)× |qt | × |q′t | such elementary kernels need to be evaluated and form a lim-
ited number of such clique potential functions. Similarly, each conditional distribution p(qt |qt−1)

ρ

and p′(q′t |q′t−1)
ρ can also be viewed as a non-negative clique potential function, i.e. φ(qt ,qt−1) =
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p(qt |qt−1)
ρ and φ(q′t ,q

′
t−1) = p′(q′t |q′t−1)

ρ. Computing the kernel then involves marginalizing over
the hidden variables xh, which is done by running a forward-backward or junction-tree algorithm
on the resulting undirected clique tree graph shown in Figure 2. Thus, to compute the kernel for
two sequences x and x ′ of lengths Tx +1 and Tx ′ +1, we train an HMM from each sequence using
maximum likelihood and then compute the kernel using the learned HMM transition matrix and
emission models for a user-specified sequence length T + 1 (where T can be chosen according to
some heuristic, for instance, the average of all Tx in the training data set). The following is pseudo-
code illustrating how to compute the k̃(p, p′) kernel given two hidden Markov models (p, p′) and
user-specified parameters T and ρ.

Φ(q0,q
′
0) = p(q0)

ρ p′(q′0)
ρ

for t = 1 . . .T

Φ(qt ,q
′
t) = ∑

qt−1

∑
q′t−1

p(qt |qt−1)
ρ p′(q′t |q′t−1)

ρψ(qt−1,q
′
t−1)Φ(qt−1,q

′
t−1)

end

k̃(p, p′) = ∑
qT

∑
q′T

Φ(qT ,q′T )ψ(qT ,q′T ).

Note that the hidden Markov models p and p′ need not have the same number of hidden states for
the kernel computation.

4.3 Bayesian Networks

The above method can be applied to Bayesian networks in general where hidden and observed vari-
ables factorize according to p(x) = ∏N

i=1 p(xi|xpa(i)). The general recipe mirrors the above deriva-
tion for the hidden Markov model case. In fact, the two Bayesian networks need not have the same
structure as long as they share the same sample space over the emission variables xo. For instance,
consider computing the kernel between the Bayesian network in Figure 3(a) and the hidden Markov
model in Figure 1(b) over the same sample space. The graphs can be connected with their common
children as in Figure 3(b). The parents with common children are married and form cliques of hid-
den variables. We then only need to evaluate the elementary kernels over these cliques giving the
following non-negative potential functions for each observed node (for instance xi ∈ xo) under each
setting of all its parents’ nodes (from both p and p′):

ψ(xh,pa(i),x
′
h′,pa(i)) = k̃(p(xi|xh,pa(i)), p′(xi|xh′,pa(i)′))

= ∑
xi

p(xi|xh,pa(i))
ρ p′(xi|xh′,pa(i)′)

ρ.

After marrying common parents, the resulting clique graph is then built and used with a junction
tree algorithm to compute the overall kernel from the elementary kernel evaluations. Although the
resulting undirected clique graph may not always yield a dramatic improvement in efficiency as
was seen in the hidden Markov model case, we note that propagation algorithms (loopy or junction
tree algorithms) are still likely to provide a more efficient evaluation of the kernel than the brute
force enumeration of all latent configurations of both Bayesian networks in the kernel (as was de-
scribed in the generic mixture model case). While the above computations emphasized discrete
latent variables, the kernel is also computable over continuous latent configuration networks, where
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(a) Bayesian network for p. (b) Combined graphs.

Figure 3: The resulting graphical model from a Bayesian network and a hidden Markov model
as the kernel couples common parents for each node creating undirected edges between
them and a final clique graph for the junction tree algorithm.

xh contains scalars and vectors, as is the case in linear Gaussian models, which we develop in the
next subsections.

4.4 Linear Gaussian Models

A linear Gaussian model on a directed acyclic graph G with variables x1,x2, . . . ,xN associated to its
vertices is of the form

p(x1,x2, . . . ,xN) = ∏
i

N
(

xi ; βi,0 +∑ j∈pa(i)βi, jx j, Σi
)

where N (x;µ,Σ) is the multivariate Gaussian distribution, and pa(i) is the index set of parent ver-
tices associated with the ith vertex. The unconditional joint distribution can be recovered from the
conditional form and is itself a Gaussian distribution over the variables in the model p(x1,x2, . . . ,xN).
Hence, the probability product kernel between a pair of linear Gaussian models can be computed in
closed form by using the unconditional joint distribution and (5).

Latent variable models require an additional marginalization step. Variables are split into two
sets: the observed variables xo and the hidden variables xh. After the joint unconditional distribution
p(xo,xh) has been computed, the hidden variables can be trivially integrated out:

k(p, p′) =
∫

(

∫

p(xo,xh)dxh

)ρ (∫

p(xo,x
′
h)dx′h

)ρ
dxo =

∫

p(xo)
ρ p′(xo)

ρ dxo,

so that the kernel is computed between Gaussians over only the observed variables.

4.5 Linear Dynamical Systems

A commonly used linear Gaussian model with latent variables is the linear dynamical system (LDS)
(Shumway and Stoffer, 1982), also known as the state space model or Kalman filter model. The
LDS is the continuous state analog of the hidden Markov model and shares the same conditional
independence graph Figure 1(a). Thus, it is appropriate for modeling continuous time series data
and continuous dynamical systems. The LDS’s joint probability model is of the form

p(x0, . . .xT ,s0, . . .sT ) = N (s0;µ,Σ)N (x0;Cs0,R)
T

∏
t=1

N (st ;Ast−1,Q)N (xt ;Cst ,R),
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where xt is the observed variable at time t, and st is the latent state space variable at time t, obeying
the Markov property.

The probability product kernel between LDS models is

k(p, p′) =
∫

N (x;µx,Σxx)
ρ N (x;µ′x,Σ

′
xx)

ρ dx,

where µx and Σxx are the unconditional mean and covariance, which can be computed from the
recursions

µst = Aµst−1

µxt = Cµst

Σst st = AΣst−1st−1A′+Q

Σxt xt = CΣst stC
′+R.

As with the HMM, we need to set the number of time steps before computing the kernel. Note
that the most algorithmically expensive calculation when computing the probability product kernel
between Gaussians is taking the inverse of the covariance matrices. The dimensionality of the
covariance matrix will grow linearly with the number of time steps and the running time of the
matrix inverse grows cubically with the dimensionality. However, the required inverses can be
efficiently computed because Σxx is block diagonal. Each extra time step added to the kernel will
simply add another block, and the inverse of a block diagonal matrix can be computed by inverting
the blocks individually. Therefore, the running time of inverting the block diagonal covariance
matrix will only grow linearly with the number of time steps T and cubically with the (small) block
size.

5. Sampling Approximation

To capture the structure of real data, generative models often need to be quite intricate. Closed
form solutions for the probability product kernel are then unlikely to exist, forcing us to rely on
approximation methods to compute k(p, p′).

Provided that evaluating the likelihood p(x) is computationally feasible, and that we can also
efficiently sample from the model, in the ρ = 1 case (expected likelihood kernel) we may employ
the Monte Carlo estimate

k(p, p′) ≈ β
N

N

∑
i=1

p′(xi) +
(1−β)

N ′

N

∑
i=1

p(x′ i),

where x1, . . . ,xN and x′1, . . . ,x′N are i.i.d. samples from p and p′ respectively, and β∈ [0,1] is a
parameter of our choosing. By the law of large numbers, this approximation will converge to the true
kernel value in the limit N→ ∞ for any β. Other sampling techniques such as importance sampling
and a variety of flavors of Markov chain Monte Carlo (MCMC), including Gibbs sampling, can be
used to improve the rate of the sampling approximation’s convergence to the true kernel.

In some cases it may be possible to use the sampling approximation for an general ρ. This is
possible if a normalizing factor Z can be computed to renormalize p(x)ρ into a valid distribution. Z is
computable for most discrete distributions and some continuous distribution, such as the Gaussian.
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Figure 4: Graph for the Switching Linear Dynamical System.

The sampling approximation then becomes

k(p, p′) ≈ β
N

N

∑
i=1

Z p′(x̂i)ρ +
(1−β)

N ′

N

∑
i=1

Z′ p(x̂′ i)ρ,

where Z and Z′ are the normalizers of p and p′ after they are taken to the power of ρ. In this
formulation x̂1, . . . , x̂N and x̂′1, . . . , x̂′N are i.i.d. samples from p̂ and p̂′ where p̂ = pρ

Z and p̂′ = p′ρ

Z′ .
In practice, for a finite number of samples, the approximate kernel may not be a valid Mercer

kernel. The non-symmetric aspect of the approximation can be alleviated by computing only the
lower triangular entries in the kernel matrix and replicating them in the upper half. Problems as-
sociated with the approximation not being positive definite can be rectified by either using more
samples, or by using an implementation for the kernel based classifier algorithm that can converge
to a local optimum such as sequential minimal optimization (Platt, 1999).

5.1 Switching Linear Dynamical Systems

In some cases, part of the model can be evaluated by sampling, while the rest is computed in closed
form. This is true for the switching linear dynamical system (SLDS) (Pavlovic et al., 2000), which
combines the discrete hidden states of the HMM and the continuous state space of the LDS:

p(x,s,q) = p(q0) p(s0|q0) p(x0|s0)
T

∏
t=1

p(qt |qt−1) p(st |st−1,qt) p(xt |st),

where qt is the discrete hidden state at time t, st is the continuous hidden state, and xt are observed
emission variables (Figure 4). Sampling q1 . . . ,qN according to p(q) and q′1, . . . ,q′N according to
p′(q′), the remaining factors in the corresponding sampling approximation

1
N

N

∑
i=1

∫

(

∫

p(s0|qi
0) p′(s′0|q′i0)

T

∏
t=1

p(st |st−1,q
i
t) p′(s′t |s′t−1,q

′i
t )

T

∏
t=0

p(xt |st) p′(xt |s′t)dsds′
)ρ

dx

form a non-stationary linear dynamical system. Once the joint distribution is recovered, it can be
evaluated in closed form by (5) as was the case with a simple LDS. For ρ 6= 1 this is a slightly
different formulation than the sampling approximation in the previous section. This hybrid method
has the nice property that it is always a valid kernel for any number of samples since it simply
becomes a convex combination of kernels between LDSs. An SLDS model is useful for describing
input sequences that have a combination of discrete and continuous dynamics, such as a time series
of human motion containing continuous physical dynamics and kinematics variables as well as
discrete action variables (Pavlovic et al., 2000).
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6. Mean Field Approximation

Another option when the probability product kernel between graphical models cannot be computed
in closed form is to use variational bounds, such as the mean field approximation (Jaakkola, 2000).
In this method, we introduce a variational distribution Q(x), and using Jensen’s inequality, lower
bound the kernel:

k(p, p′) =
∫

p(x)ρ p′(x)ρ dx =
∫

Ψ(x)ρ dx = exp

(

log
∫

Q(x)
Q(x)

Ψ(x)ρ dx

)

≥ exp

(

∫

Q(x) log
Ψ(x)ρ

Q(x)
dx

)

= exp(ρEQ [logΨ(x)]+H(Q)) = B(Q),

where Ψ(x)= p(x) p′(x) is called the potential, EQ [ · ] denotes the expectation with respect to Q(x),
and H(Q) is the entropy. This transforms the problem from evaluating an intractable integral into
that of finding the sufficient statistics of Q(x) and computing the subsequent tractable expectations.
Note, using the mean field formulation gives a different (and arguably closer result) to the desired
intractable kernel than simply computing the probability product kernels directly between the ap-
proximate simple distributions. It is interesting to note the following form of the bound when it is
expressed in terms of the Kullback-Leibler divergence, D(Q‖p) =

∫

Q(x) log Q(x)
p(x) dx, and an entropy

term. The bound on the probability product kernel is a function of the Kullback-Leibler divergence
to p and p′:

k(p, p′) ≥ B(Q) = exp
(

−ρ D(Q‖p)−ρ D(Q‖p′)+(1−2ρ)H(Q)
)

.

The goal is to define Q(x) in a way that makes computing the sufficient statistics easy. When the
graphical structure of Q(x) has no edges, which corresponds to the case that the underlying variables
are independent, this is called the mean field method. When Q(x) is made up of a number of
more elaborate independent structures, it is called the structured mean field method. In either case,
the variational distribution factors in the form Q1(x1)Q2(x2) . . .QN(xN) with x1,x2, . . . ,xN disjoint
subsets of the original variable set x.

Once the structure of Q(x) has been set, its (locally) optimal parameterization is found by cy-
cling through the distributions Q1(x1),Q2(x2), . . . ,QN(xN) and maximizing the lower bound B(Q)
with respect to each one, holding the others fixed:

∂ logB(Q)

∂Qn(xn)
=

∂
∂Qn(xn)

[

ρ
∫

Qn(xn)EQ [logΨ(x)|xn] dxn +H(Qn)+ constant

]

= 0.

This leads to the update equations

Qn(xn) =
1
Zn

exp(ρEQ [logΨ(x)|xn]) ,

where the conditional expectation EQ [ · |xn] is computed by taking the expectation over all variables
except xn and

Zn =
∫

exp(ρEQ [logΨ(x)|xn])dx

is the normalizing factor guaranteeing that Q(x) remains a valid distribution.
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(a) FHMM P(x,q). (b) Potential Ψ(x,q,q′). (c) Variational Q(x,q,q′).

Figure 5: Graphs associated with the factorial hidden Markov model, its probability product kernel
potential, and its structured mean field distribution.

In practice this approximation may not give positive definite (PD) kernels. Much current re-
search has been focused on kernel algorithms using non-positive definite kernels. Algorithms such
as sequential minimal optimization (Platt, 1999) can converge to locally optimal solutions. The
learning theory for non-PD kernels is currently of great interest. See Ong et al. (2004) for an inter-
esting discussion and additional references.

6.1 Factorial Hidden Markov Models

One model that traditionally uses a structured mean field approximation for inference is the factorial
hidden Markov model (FHMM)(Ghahramani and Jordan, 1997). Such a model is appropriate for
modeling output sequences that are emitted by multiple independent hidden processes. The FHMM
is given by

p(x0,x1,x2, . . . ,xT ) =
C

∏
c=1

[

p(qc
0)

T

∏
t=1

p(qc
t |qc

t−1)

]

T

∏
t=0

p(xt |q1
t , . . . ,q

C
t ),

where qc
t is the factored discrete hidden state at time t for chain c and xt is the observed Gaussian

emission variable at time t. The graphs of the joint FHMM distribution, the potential Ψ(x,q,q′),
and the variational distribution Q(x,q,q′) are depicted in Figure 5. The structured mean field ap-
proximation is parameterized as

Q(qc
0 = i) ∝ exp

(

ρ logφc(i)− ρ
2

log |Σi |−
ρ
2

EQ
[

(x0−µi)
T Σ−1

i (x0−µi)
]

)

Q(qc
t = i |qc

t−1 = j ) ∝ exp
(

ρ logΦc(i, j)− ρ
2

log |Σi |−
ρ
2

EQ
[

(xt−µi)
T Σ−1

i (xt−µi)
]

)

Q(xt) = N (xt ; µ̂t , Σ̂t)

Σ̂t =
1
ρ

[

∑
i,c

EQ [sc
t (i)]Σ

−1
i +∑

i,c

EQ
[

q′ct (i)
]

Σ′−1
i

]−1

µ̂t = ρΣ̂t

[

∑
i,c

EQ [qc
t (i)]Σ

−1
i µi +∑

i,c

EQ
[

q′ct (i)
]

Σ′−1
i µ′i

]

.
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Figure 6: A statistical manifold with a geodesic path between two generative models θ and θ′ as
well as a local tangent space approximation at, for instance, the maximum likelihood
model θ∗ for the aggregated data set.

It is necessary to compute the expected sufficient statistics to both update the mean field equa-
tions and to evaluate the bound. The expectations EQ [xt ] and EQ

[

xtxT
t

]

can easily be computed
from Q(xt), whereas Q(sc

t = i) and Q(sc
t = i , sc

t−1 = j ) can be computed efficiently by means of a
junction tree algorithm on each independent chain in the approximating distribution.

7. Relationship to Other Probabilistic Kernels

While the probability product kernel is not the only kernel to leverage generative modeling, it does
have advantages in terms of computational feasibility as well as in nonlinear flexibility. For in-
stance, heat kernels or diffusion kernels on statistical manifolds (Lafferty and Lebanon, 2002) are
a more elegant way to generate a kernel in a probabilistic setting, but computations involve finding
geodesics on complicated manifolds and finding closed form expressions for the heat kernel, which
are only known for simple structures such as spheres and hyperbolic surfaces. Figure 6 depicts such
a statistical manifold. The heat kernel can sometimes be approximated via the geodesic distance
from p which is parameterized by θ to p′ parameterized by θ′. But, we rarely have compact closed-
form expressions for the heat kernel or for these geodesics for general distributions. Only Gaussians
with spherical covariance and multinomials are readily accommodated. Curiously, the probabilistic
product kernel expression for both these two distributions seems to coincide closely with the more
elaborate heat kernel form. For instance, in the multinomial case, both involve an inner product
between the square-rooted count frequencies. However, the probability product kernel is straight-
forward to compute for a much wider range of distributions providing a practical alternative to heat
kernels.

Another probabilistic approach is the Fisher kernel (Jaakkola and Haussler, 1998) which approx-
imates distances and affinities on the statistical manifold by using the local metric at the maximum
likelihood estimate θ∗ of the whole data set as shown in Figure 6. One caveat, however, is that
this approximation can produce a kernel that is quite different from the exact heat kernel above and
may not preserve the interesting nonlinearities implied by the generative model. For instance, in
the exponential family case, all distributions generate Fisher kernels that are linear in the sufficient
statistics. Consider the Fisher kernel

k(x ,x ′) = Ux I−1
θ∗ Ux ′
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where I−1
θ∗ is the inverse Fisher information matrix at the maximum likelihood estimate and where

we define

Ux = ∇θ log p(x |θ)|θ∗ .

In exponential families, pθ(x) = exp(A(x)+θT T (x)−K (θ)) producing the following Ux = T (x )−
G(θ∗) where we define G(θ∗) = ∇θK (θ))|θ∗ . The resulting Fisher kernel is then

k(x ,x ′) = (T (x )−G(θ∗))T I−1
θ∗
(

T (x ′)T −G(θ∗)
)

,

which is an only slightly modified form of the linear kernel in T (x ). Therefore, via the Fisher kernel
method, a Gaussian distribution over means generates only linear kernels. A Gaussian distribution
over means and covariances generates quadratic kernels. Furthermore, multinomials generate log-
counts unlike the square root of the counts in the probability product kernel and the heat kernel.
In practical text classification applications, it is known that square root squashing functions on fre-
quencies and count typically outperform logarithmic squashing functions (Goldzmidt and Sahami,
1998; Cutting et al., 1992). In (Tsuda et al., 2002; Kashima et al., 2003), another related probabilis-
tic kernel is put forward, the so-called marginalized kernel. This kernel is again similar to the Fisher
kernel as well as the probability product kernel. It involves marginalizing a kernel weighted by the
posterior over hidden states given the input data for two different points, in other words the out-
put kernel k(x,x′) = ∑h ∑h′ p(h|x)p(h′|x′)k((x,h),(x′,h′)). The probability product kernel is similar,
however, it involves an inner product over both hidden variables and the input space x with a joint
distribution.

A more recently introduced kernel, the exponentiated symmetrized Kullback-Leibler (KL) di-
vergence (Moreno et al., 2004) is also related to the probability product kernel. This kernel involves
exponentiating the negated symmetrized KL-divergence between two distributions

k(p, p′) = exp(−αD(p‖p′)−αD(p′‖p)+β) where D(p‖p′) =
∫

x
p(x) log

p(x)
p′(x)

dx

where α and β are user-defined scalar parameters. However, this kernel may not always satisfy
Mercer’s condition and a formal proof is not available. Another interesting connection is that this
form is very similar to our mean-field bound on the probability product kernel (7). However, unlike
the probability product kernel (and its bounds), computing the KL-divergence between complicated
distributions (mixtures, hidden Markov models, Bayesian networks, linear dynamical systems and
intractable graphical models) is intractable and must be approximated from the outset using numer-
ical or sampling procedures which further decreases the possibility of having a valid Mercer kernel
(Moreno et al., 2004).

8. Experiments

In this section we discuss three different learning problems: text classification, biological sequence
classification and time series classification. For each problem, we select a generative model that is
compatible with the domain which then leads to a specific form for the probability product kernel.
For text, multinomial models are used, for sequences hidden Markov models are natural and for
time series data we use linear dynamical systems. The subsequent kernel computations are fed to a
discriminative classifier (a support vector machine) for training and testing.
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8.1 Text Classification

For text classification, we used the standard WebKB data set which consists of HTML documents
in multiple categories. Only the text component of each web page was preserved and HTML
markup information and hyper-links were stripped away. No further stemming or elaborate text pre-
processing was performed on the text. Subsequently, a bag-of-words model was used where each
document is only represented by the frequency of words that appear within it. This corresponds
to a multinomial distribution over counts. The frequencies of words are the maximum likelihood
estimate for the multinomial generative model to a particular document which produces the vector
of parameters α̂ as in Section 3.
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Figure 7: SVM error rates (and standard deviation) for the probability product kernel (set at ρ = 1/2
as a Bhattacharyya kernel) for multinomial models as well as error rates for traditional
kernels on the WebKB data set. Performance for multiple settings of the regularization
parameter C in the support vector machine are shown. Two different sizes of training sets
are shown (77 and 622). All results are shown for 20-fold cross-validation.

A support vector machine (which is known to have strong empirical performance on such text
classification data) was then used to build a classifier. The SVM was fed our kernel’s evaluations
via a gram matrix and was trained to discriminate between faculty and student web pages in the
WebKB data set (other categories were omitted). The probability product kernel was computed for
multinomials under the parameter settings ρ = 1/2 (Bhattacharyya kernel) and s = 1 as in Section 3.
Comparisons were made with the (linear) dot product kernel as well as Gaussian RBF kernels. The
data set contains a total of 1641 student web pages and 1124 faculty web pages. The data for
each class is further split into 4 universities and 1 miscellaneous category and we performed the
usual training and testing split as described by (Lafferty and Lebanon, 2002; Joachims et al., 2001)
where testing is performed on a held out university. The average error was computed from 20-fold
cross-validation for the different kernels as a function of the support vector machine regularization
parameter C in Figure 7. The figure shows error rates for different sizes of the training set (77
and 622 training points). In addition, we show the standard deviation of the error rate for the Bhat-
tacharyya kernel. Even though we only explored a single setting of s = 1,ρ = 1/2 for the probability
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product kernel, it outperforms the linear kernel as well as the RBF kernel at multiple settings of the
RBF σ parameter (we attempted σ = {1/4,1,4}). This result confirms previous intuitions in the
text classification community which suggest using squashing functions on word frequencies such
as the logarithm or the square root (Goldzmidt and Sahami, 1998; Cutting et al., 1992). This also
related to the power-transformation used in statistics known as the Box-Cox transformation which
may help make data seem more Gaussian (Davidson and MacKinnon, 1993).

8.2 Biological Sequence Classification

For discrete sequences, natural generative models to consider are Markov models and hidden Markov
models. We obtained labeled gene sequences from the HS3D data set2 The sequences are of variable
lengths and have discrete symbol entries from the 4-letter alphabet (G,A,T,C). We built classifiers to
distinguish between gene sequences of two different types: introns and exons using raw sequences
of varying lengths (from dozens of characters to tens of thousands of characters). From the orig-
inal (unwindowed) 4450 introns and 3752 exons extracted directly from GenBank, we selected a
random subset of 500 introns and 500 exons. These 1000 sequences were then randomly split
into a 50% training and a 50% testing subset. In the first experiment we used the training data to
learn stationary hidden Markov models whose number of states M was related to the length Tn of a
given sequence n as follows: M = floor( 1

2

√

O2 +4(T ζ+O+1)− 1
2 O)+1. Here, O is the number

of possible emission symbols (for gene sequences, O = 4) and ζ is the ratio of parameters to the
number of symbols in the sequence T (we used ζ = 1/10 although higher values may help avoid
over-parameterizing the models). Each hidden Markov model was built from each sequence using
the standard Expectation-Maximization algorithm (which is iterated for 400 steps to ensure conver-
gence, this is particularly crucial for longer sequences). Gram matrices of size 1000× 1000 were
then formed by computing the probability product kernel between all the hidden Markov models.
It was noted that all Gram matrices were positive definite by a singular value decomposition. We
also used the following standard normalization of the kernel (a typical pre-processing step in the
literature):

k̃(p, p′) ← k̃(p, p′)
√

k̃(p, p)
√

k̃(p′, p′)
.

Subsequently, we trained a support vector machine classifier on 500 example sequences and
tested on the remaining 500. Figure 8(a) depicts the resulting error rate as we vary C, the regulariza-
tion parameter on the SVM as well as T the number of time steps used by the kernel. Throughout,
these experiments, we only used the setting ρ = 1. Note that these models were 1st order hidden
Markov models where each state only depends on the previous state. Varying T , the length of the
hidden Markov models used in the kernel computation has a slight effect on performance and it
seems T = 9 at an appropriate C value performed best with an error rate as low as 10-11%.

For comparison, we also computed more standard string kernels such as the k-mer counts or
spectrum kernels on the same training and testing gene sequences as shown in Figure 8(b). These
basically correspond to a fully observed (non-hidden) stationary Markov model as in Figure 9. The
zeroth order (K = 1) Markov model does poorly with its lowest error rate around 34%. The first

2. This is a collection of unprocessed intron and exon class gene sequences referred to as the homo sapiens splice sites
data set and was downloaded from www.sci.unisannio.it/docenti/rampone.
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Figure 8: SVM error rates for the probability product kernel at ρ = 1 for hidden Markov models
and Markov models (equivalent to string or spectrum kernels). In (a) test error rate under
various levels of regularization is shown for 5 different settings of T in the probability
product kernel. In (b) test error rate under various levels of regularization is shown for 5
different settings of the order K of the Markov model.
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Figure 9: A higher order (2nd order or K = 3) Markov model.
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order Markov model (K = 2) performs better with its lowest error rate at 18% yet is slightly worse
than first order hidden Markov models. This helps motivate the possibility that dependence on the
past in first order Markov models could be better modeled by a latent state as opposed to just the
previous emission. This is despite the maximum likelihood estimation issues and local minima that
we must contend with when training hidden Markov models using expectation-maximization. The
second order Markov models with K = 3 fare best with an error rate of about 7-8%. However,
higher orders (K = 4 and K = 5) seem to reduce performance. Therefore, a natural next experiment
would be to consider higher order hidden Markov models, most notably second order ones where
the emission distributions are conditioned on the past two states as opposed to the past two emitted
symbols in the sequence.

8.3 Time Series Experiments

In this experiment we compare the performance of the probability product kernel between LDSs and
the sampling approximation of the SLDS kernel with more traditional kernels and maximum likeli-
hood techniques on synthetic data. We sampled from 20 exemplar distributions to generate synthetic
time series data. The sampled distributions were 5 state, 2 dimensional SLDS models generated at
random. Each model was sampled 5 times for 25 time steps with 10 models being assigned to each
class. This gave 50 time series of length 25 per class, creating a challenging classification problem.
For comparison, maximum likelihood models for LDSs and SLDSs were fit to the data and used for
classification as well as SVMs trained using Gaussian RBF kernels. All testing was performed using
leave one out cross validation. The SLDS kernel was approximated using sampling (50 samples)
and the probability product kernels were normalized to improve performance.

The maximum likelihood LDS had an error rate of .35, the SLDS .30, and the Gaussian RBF
.34. Exploring the setting of the parameters ρ and T for the LDS and SLDS kernels, we were able
to outperform the maximum likelihood methods and the Gaussian RBF kernel with an optimal error
for the LDS and SLDS kernel of .28 and .25 respectively. Figure 10 (a) and (b) show the error
rate versus T and ρ respectively. It can be seen that increasing T generally improves performance
which is to be expected. Although it does appear that T can be chosen too large. Meanwhile, ρ,
generally appears to perform better when it is smaller (a counter example is the LDS kernel at the
setting T = 5). Overall, the kernels performed comparably to or better than standard methods for
most settings of ρ and T with the exception of extreme settings.

9. Conclusions

Discriminative learning, statistical learning theory and kernel-based algorithms have brought math-
ematical rigor and practical success to the field making it is easy to overlook the advantages of
generative probabilistic modeling. Yet generative models are intuitive and offer flexibility for insert-
ing structure, handling unusual input spaces, and accommodating prior knowledge. By proposing
a kernel between the models themselves, this paper provides a bridge between the two schools of
thought.

The form of the kernel is almost as simple as possible, yet it still gives rise to interesting nonlin-
earities and properties when applied to different generative models. It can be computed explicitly
for some of the most commonly used parametric distributions in statistics such as the exponential
family. For more elaborate models (graphical models, hidden Markov models, linear dynamical
systems, etc.), computing the kernel reduces to using standard algorithms in the field. Experiments
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Figure 10: A comparison of the choice of parameters (a) T and (b) ρ. The x-axis is the parameter
and the y-axis is the error rate.

show that probability product kernels hold promise in practical domains. Ultimately, engineering
kernels between structured, discrete or unusual objects is an area of active research and, via genera-
tive modeling, probability product kernels can bring additional flexibility, formalism and potential.
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Abstract
In this paper, we identify two issues involved in developing an automated feature subset selec-

tion algorithm for unlabeled data: the need for finding the number of clusters in conjunction with
feature selection, and the need for normalizing the bias of feature selection criteria with respect
to dimension. We explore the feature selection problem and these issues through FSSEM (Fea-
ture Subset Selection using Expectation-Maximization (EM) clustering) and through two different
performance criteria for evaluating candidate feature subsets: scatter separability and maximum
likelihood. We present proofs on the dimensionality biases of these feature criteria, and present a
cross-projection normalization scheme that can be applied to any criterion to ameliorate these bi-
ases. Our experiments show the need for feature selection, the need for addressing these two issues,
and the effectiveness of our proposed solutions.
Keywords: clustering, feature selection, unsupervised learning, expectation-maximization

1. Introduction

In this paper, we explore the issues involved in developing automated feature subset selection algo-
rithms for unsupervised learning. By unsupervised learning we mean unsupervised classification,
or clustering. Cluster analysis is the process of finding “natural” groupings by grouping “similar”
(based on some similarity measure) objects together.

For many learning domains, a human defines the features that are potentially useful. However,
not all of these features may be relevant. In such a case, choosing a subset of the original features
will often lead to better performance. Feature selection is popular in supervised learning (Fuku-
naga, 1990; Almuallim and Dietterich, 1991; Cardie, 1993; Kohavi and John, 1997). For supervised
learning, feature selection algorithms maximize some function of predictive accuracy. Because we
are given class labels, it is natural that we want to keep only the features that are related to or
lead to these classes. But in unsupervised learning, we are not given class labels. Which features
should we keep? Why not use all the information we have? The problem is that not all features
are important. Some of the features may be redundant, some may be irrelevant, and some can even
misguide clustering results. In addition, reducing the number of features increases comprehensibil-
ity and ameliorates the problem that some unsupervised learning algorithms break down with high
dimensional data.

c©2004 Jennifer G. Dy and Carla E. Brodley.
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Figure 1: In this example, features x and y are redundant, because feature x provides the same
information as feature y with regard to discriminating the two clusters.
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Figure 2: In this example, we consider feature y to be irrelevant, because if we omit x, we have only
one cluster, which is uninteresting.

Figure 1 shows an example of feature redundancy for unsupervised learning. Note that the data
can be grouped in the same way using only either feature x or feature y. Therefore, we consider
features x and y to be redundant. Figure 2 shows an example of an irrelevant feature. Observe that
feature y does not contribute to cluster discrimination. Used by itself, feature y leads to a single
cluster structure which is uninteresting. Note that irrelevant features can misguide clustering results
(especially when there are more irrelevant features than relevant ones). In addition, the situation in
unsupervised learning can be more complex than what we depict in Figures 1 and 2. For example,
in Figures 3a and b we show the clusters obtained using the feature subsets: {a,b} and {c,d}
respectively. Different feature subsets lead to varying cluster structures. Which feature set should
we pick?

Unsupervised learning is a difficult problem. It is more difficult when we have to simultaneously
find the relevant features as well. A key element to the solution of any problem is to be able to
precisely define the problem. In this paper, we define our task as:
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Figure 3: A more complex example. Figure a is the scatterplot of the data on features a and b.
Figure b is the scatterplot of the data on features c and d.

The goal of feature selection for unsupervised learning is to find the smallest feature
subset that best uncovers “interesting natural” groupings (clusters) from data accord-
ing to the chosen criterion.

There may exist multiple redundant feature subset solutions. We are satisfied in finding any one of
these solutions. Unlike supervised learning, which has class labels to guide the feature search, in
unsupervised learning we need to define what “interesting” and “natural” mean. These are usually
represented in the form of criterion functions. We present examples of different criteria in Section
2.3.

Since research in feature selection for unsupervised learning is relatively recent, we hope that
this paper will serve as a guide to future researchers. With this aim, we

1. Explore the wrapper framework for unsupervised learning,

2. Identify the issues involved in developing a feature selection algorithm for unsupervised
learning within this framework,

3. Suggest ways to tackle these issues,

4. Point out the lessons learned from this endeavor, and

5. Suggest avenues for future research.

The idea behind the wrapper approach is to cluster the data as best we can in each candidate
feature subspace according to what “natural” means, and select the most “interesting” subspace
with the minimum number of features. This framework is inspired by the supervised wrapper ap-
proach (Kohavi and John, 1997), but rather than wrap the search for the best feature subset around
a supervised induction algorithm, we wrap the search around a clustering algorithm.
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Figure 4: Wrapper approach for unsupervised learning.

In particular, this paper investigates the wrapper framework through FSSEM (feature subset se-
lection using EM clustering) introduced in (Dy and Brodley, 2000a). Here, the term “EM clustering”
refers to the expectation-maximization (EM) algorithm (Dempster et al., 1977; McLachlan and Kr-
ishnan, 1997; Moon, 1996; Wolfe, 1970; Wu, 1983) applied to estimating the maximum likelihood
parameters of a finite Gaussian mixture. Although we apply the wrapper approach to EM clustering,
the framework presented in this paper can be applied to any clustering method. FSSEM serves as
an example. We present this paper such that applying a different clustering algorithm or feature
selection criteria would only require replacing the corresponding clustering or feature criterion.

In Section 2, we describe FSSEM. In particular, we present the search method, the clustering
method, and the two different criteria we selected to guide the feature subset search: scatter separa-
bility and maximum likelihood. By exploring the problem in the wrapper framework, we encounter
and tackle two issues:

1. different feature subsets have different numbers of clusters, and

2. the feature selection criteria have biases with respect to feature subset dimensionality.

In Section 3, we discuss the complications that finding the number of clusters brings to the simulta-
neous feature selection/clustering problem and present one solution (FSSEM-k). Section 4 presents
a theoretical explanation of why the feature selection criterion biases occur, and Section 5 provides
a general normalization scheme which can ameliorate the biases of any feature criterion toward
dimension.

Section 6 presents empirical results on both synthetic and real-world data sets designed to an-
swer the following questions: (1) Is our feature selection for unsupervised learning algorithm better
than clustering on all features? (2) Is using a fixed number of clusters, k, better than using a variable
k in feature search? (3) Does our normalization scheme work? and (4) Which feature selection
criterion is better? Section 7 provides a survey of existing feature selection algorithms. Section 8
provides a summary of the lessons learned from this endeavor. Finally, in Section 9, we suggest
avenues for future research.

2. Feature Subset Selection and EM Clustering (FSSEM)

Feature selection algorithms can be categorized as either filter or wrapper (John et al., 1994) ap-
proaches. The filter approach basically pre-selects the features, and then applies the selected feature
subset to the clustering algorithm. Whereas, the wrapper approach incorporates the clustering algo-
rithm in the feature search and selection. We choose to explore the problem in the wrapper frame-
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work because we are interested in understanding the interaction between the clustering algorithm
and the feature subset search.

Figure 4 illustrates the wrapper approach. Our input is the set of all features. The output is
the selected features and the clusters found in this feature subspace. The basic idea is to search
through feature subset space, evaluating each candidate subset, Ft , by first clustering in space Ft

using the clustering algorithm and then evaluating the resulting clusters and feature subset using our
chosen feature selection criterion. We repeat this process until we find the best feature subset with
its corresponding clusters based on our feature evaluation criterion. The wrapper approach divides
the task into three components: (1) feature search, (2) clustering algorithm, and (3) feature subset
evaluation.

2.1 Feature Search

An exhaustive search of the 2d possible feature subsets (where d is the number of available features)
for the subset that maximizes our selection criterion is computationally intractable. Therefore, a
greedy search such as sequential forward or backward elimination (Fukunaga, 1990; Kohavi and
John, 1997) is typically used. Sequential searches result in an O(d2) worst case search. In the
experiments reported, we applied sequential forward search. Sequential forward search (SFS) starts
with zero features and sequentially adds one feature at a time. The feature added is the one that
provides the largest criterion value when used in combination with the features chosen. The search
stops when adding more features does not improve our chosen feature criterion. SFS is not the best
search method, nor does it guarantee an optimal solution. However, SFS is popular because it is
simple, fast and provides a reasonable solution. For the purposes of our investigation in this paper,
SFS would suffice. One may wish to explore other search methods for their wrapper approach. For
example, Kim et al. (2002) applied evolutionary methods. Kittler (1978), and Russell and Norvig
(1995) provide good overviews of different search strategies.

2.2 Clustering Algorithm

We choose EM clustering as our clustering algorithm, but other clustering methods can also be
used in this framework. Recall that to cluster data, we need to make assumptions and define what
“natural” grouping means. We apply the standard assumption that each of our “natural” groups is
Gaussian. This assumption is not too limiting because we allow the number of clusters to adjust
to our data, i.e., aside from finding the clusters we also find the number of “Gaussian” clusters. In
Section 3, we discuss and present a solution to finding the number of clusters in conjunction with
feature selection. We provide a brief description of EM clustering (the application of EM to approx-
imate the maximum likelihood estimate of a finite mixture of multivariate Gaussians) in Appendix
A. One can obtain a detailed description of EM clustering in (Fraley and Raftery, 2000; McLach-
lan and Krishnan, 1997). The Gaussian mixture assumption limits the data to continuous valued
attributes. However, the wrapper framework can be extended to other mixture probability distri-
butions (McLachlan and Basford, 1988; Titterington et al., 1985) and to other clustering methods,
including graph theoretic approaches (Duda et al., 2001; Fukunaga, 1990; Jain and Dubes, 1988).
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2.3 Feature Subset Selection Criteria

In this section, we investigate the feature subset evaluation criteria. Here, we define what “inter-
estingness” means. There are two general views on this issue. One is that the criteria defining
“interestingness” (feature subset selection criteria) should be the criteria used for clustering. The
other is that the two criteria need not be the same. Using the same criteria for both clustering and
feature selection provides a consistent theoretical optimization formulation. Using two different
criteria, on the other hand, presents a natural way of combining two criteria for checks and bal-
ances. Proof on which view is better is outside the scope of this paper and is an interesting topic for
future research. In this paper, we look at two feature selection criteria (one similar to our clustering
criterion and the other with a different bias).

Recall that our goal is to find the feature subset that best discovers “interesting” groupings
from data. To select an optimal feature subset, we need a measure to assess cluster quality. The
choice of performance criterion is best made by considering the goals of the domain. In studies of
performance criteria a common conclusion is: “Different classifications [clusterings] are right for
different purposes, so we cannot say any one classification is best.” – Hartigan, 1985 .

In this paper, we do not attempt to determine the best criterion (one can refer to Milligan (1981)
on comparative studies of different clustering criteria). We investigate two well-known measures:
scatter separability and maximum likelihood. In this section, we describe each criterion, emphasiz-
ing the assumptions made by each.

Scatter Separability Criterion: A property typically desired among groupings is cluster sepa-
ration. We investigate the scatter matrices and separability criteria used in discriminant analysis
(Fukunaga, 1990) as our feature selection criterion. We choose to explore the scatter separability
criterion, because it can be used with any clustering method.1 The criteria used in discriminant anal-
ysis assume that the features we are interested in are features that can group the data into clusters
that are unimodal and separable.

Sw is the within-class scatter matrix and Sb is the between class scatter matrix, and they are
defined as follows:

Sw =
k

∑
j=1

π jE{(X −µ j)(X −µ j)
T |ω j} =

k

∑
j=1

π jΣ j, (1)

Sb =
k

∑
j=1

π j(µ j −Mo)(µ j −Mo)
T , (2)

Mo = E{X} =
k

∑
j=1

π jµ j, (3)

where π j is the probability that an instance belongs to cluster ω j, X is a d-dimensional random
feature vector representing the data, k the number of clusters, µ j is the sample mean vector of
cluster ω j, Mo is the total sample mean, Σ j is the sample covariance matrix of cluster ω j, and E{·}
is the expected value operator.

1. One can choose to use the non-parametric version of this criterion measure (Fukunaga, 1990) for non-parametric
clustering algorithms.
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Sw measures how scattered the samples are from their cluster means. Sb measures how scat-
tered the cluster means are from the total mean. We would like the distance between each pair of
samples in a particular cluster to be as small as possible and the cluster means to be as far apart
as possible with respect to the chosen similarity metric (Euclidean, in our case). Among the many
possible separability criteria, we choose the trace(S−1

w Sb) criterion because it is invariant under any
nonsingular linear transformation (Fukunaga, 1990). Transformation invariance means that once m
features are chosen, any nonsingular linear transformation on these features does not change the
criterion value. This implies that we can apply weights to our m features or apply any nonsingular
linear transformation or projection to our features and still obtain the same criterion value. This
makes the trace(S−1

w Sb) criterion more robust than other variants. S−1
w Sb is Sb normalized by the

average cluster covariance. Hence, the larger the value of trace(S−1
w Sb) is, the larger the normalized

distance between clusters is, which results in better cluster discrimination.

Maximum Likelihood (ML) Criterion: By choosing EM clustering, we assume that each group-
ing or cluster is Gaussian. We maximize the likelihood of our data given the parameters and our
model. Thus, maximum likelihood (ML) tells us how well our model, here a Gaussian mixture,
fits the data. Because our clustering criterion is ML, a natural criterion for feature selection is also
ML. In this case, the “interesting” groupings are the “natural” groupings, i.e., groupings that are
Gaussian.

3. The Need for Finding the Number of Clusters (FSSEM-k)

When we are searching for the best subset of features, we run into a new problem: that the number
of clusters, k, depends on the feature subset. Figure 5 illustrates this point. In two dimensions
(shown on the left) there are three clusters, whereas in one-dimension (shown on the right) there are
only two clusters. Using a fixed number of clusters for all feature sets does not model the data in
the respective subspace correctly.
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Figure 5: The number of cluster components varies with dimension.

Unsupervised clustering is made more difficult when we do not know the number of clusters, k.
To search for k for a given feature subset, FSSEM-k currently applies Bouman et al.’s method (1998)
for merging clusters and adds a Bayesian Information Criterion (BIC) (Schwarz, 1978) penalty
term to the log-likelihood criterion. A penalty term is needed because the maximum likelihood
estimate increases as more clusters are used. We do not want to end up with the trivial result
wherein each data point is considered as an individual cluster. Our new objective function becomes:
F(k,Φ) = log( f (X |Φ))− 1

2 L log(N) where N is the number of data points, L is the number of free
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parameters in Φ, and log( f (X |Φ)) is the log-likelihood of our observed data X given the parameters
Φ. Note that L and Φ vary with k.

Using Bouman et al.’s method (1998), we begin our search for k with a large number of clusters,
Kmax, and then sequentially decrement this number by one until only one cluster remains (a merge
method). Other methods start from k = 1 and add more and more clusters as needed (split methods),
or perform both split and merge operations (Ueda et al., 1999). To initialize the parameters of the
(k−1)th model, two clusters from the kth model are merged. We choose the two clusters among all
pairs of clusters in k, which when merged give the minimum difference between F(k− 1,Φ) and
F(k,Φ). The parameter values that are not merged retain their value for initialization of the (k−1)th
model. The parameters for the merged cluster (l and m) are initialized as follows:

πk−1,(0)
j = πl +πm;

µk−1,(0)
j = πlµl+πmµm

πl+πm
;

Σk−1,(0)
j =

πl(Σl+(µl−µk−1,(0)
j )(µl−µk−1,(0)

j )T )+πm(Σm+(µm−µk−1,(0)
j )(µm−µk−1,(0)

j )T )

πl+πm
;

where the superscript k− 1 indicates the k− 1 cluster model and the superscript (0) indicates the
first iteration in this reduced order model. For each candidate k, we iterate EM until the change
in F(k,Φ) is less than ε (default 0.0001) or up to n (default 500) iterations. Our algorithm outputs
the number of clusters k, the parameters, and the clustering assignments that maximize the F(k,Φ)
criterion (our modified ML criterion).

There are myriad ways to find the “optimal” number of clusters k with EM clustering. These
methods can be generally grouped into three categories: hypothesis testing methods (McLachlan
and Basford, 1988), penalty methods like AIC (Akaike, 1974), BIC (Schwarz, 1978) and MDL
(Rissanen, 1983), and Bayesian methods like AutoClass (Cheeseman and Stutz, 1996). Smyth
(1996) introduced a new method called Monte Carlo cross-validation (MCCV). For each possible
k value, the average cross-validated likelihood on M runs is computed. Then, the k value with the
highest cross-validated likelihood is selected. In an experimental evaluation, Smyth showed that
MCCV and AutoClass found k values that were closer to the number of classes than the k values
found with BIC for their data sets. We chose Bouman et al.’s method with BIC, because MCCV is
more computationally expensive. MCCV has complexity O(MK2

maxd2NE), where M is the number
of cross-validation runs, Kmax is the maximum number of clusters considered, d is the number of
features, N is the number of samples and E is the average number of EM iterations. The complexity
of Bouman et al.’s approach is O(K2

maxd2NE ′). Furthermore, for k < Kmax, we do not need to re-
initialize EM (because we merged two clusters from k+1) resulting in E ′ < E. Note that in FSSEM,
we run EM for each candidate feature subset. Thus, in feature selection, the total complexity is the
complexity of each complete EM run times the feature search space. Recently, Figueiredo and Jain
(2002) presented an efficient algorithm which integrates estimation and model selection for finding
the number of clusters using minimum message length (a penalty method). It would be of interest
for future work to examine these other ways for finding k coupled with feature selection.

4. Bias of Criterion Values to Dimension

Both feature subset selection criteria have biases with respect to dimension. We need to analyze
these biases because in feature subset selection we compare the criterion values for subsets of dif-
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ferent cardinality (corresponding to different dimensionality). In Section 5, we present a solution to
this problem.

4.1 Bias of the Scatter Separability Criterion

The separability criterion prefers higher dimensionality; i.e., the criterion value monotonically in-
creases as features are added assuming identical clustering assignments (Fukunaga, 1990; Narendra
and Fukunaga, 1977). However, the separability criterion may not be monotonically increasing with
respect to dimension when the clustering assignments change.

Scatter separability or the trace criterion prefers higher dimensions, intuitively, because data
is more scattered in higher dimensions, and mathematically, because more features mean adding
more terms in the trace function. Observe that in Figure 6, feature y does not provide additional
discrimination to the two-cluster data set. Yet, the trace criterion prefers feature subset {x,y} over
feature subset {x}. Ideally, we would like the criterion value to remain the same if the discrimination
information is the same.
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Figure 6: An illustration of scatter separability’s bias with dimension.

The following simple example provides us with an intuitive understanding of this bias. Assume
that feature subset S1 and feature subset S2 produce identical clustering assignments, S1 ⊂ S2 where
S1 and S2 have d and d + 1 features respectively. Assume also that the features are uncorrelated
within each cluster. Let Swd and Sbd be the within-class scatter and between-class scatter in dimen-
sion d respectively. To compute trace(S−1

wd+1
Sbd+1) for d + 1 dimensions, we simply add a positive

term to the trace(S−1
wd

Sbd ) value for d dimensions. Swd+1 and Sbd+1 in the d + 1 dimensional space
are computed as

Swd+1 =

[

Swd 0
0 σ2

wd+1

]

and

Sbd+1 =

[

Sbd 0
0 σ2

bd+1

]

.
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Since

S−1
wd+1

=

[

S−1
wd

0
0 1

σ2
wd+1

]

,

trace(S−1
wd+1

Sbd+1) would be trace(S−1
wd

Sbd )+
σ2

bd+1
σ2

wd+1
. Since σ2

bd+1
≥ 0 and σ2

wd+1
> 0, the trace of the

d + 1 clustering will always be greater than or equal to trace of the d clustering under the stated
assumptions.

The separability criterion monotonically increases with dimension even when the features are
correlated as long as the clustering assignments remain the same. Narendra and Fukunaga (1977)
proved that a criterion of the form X T

d S−1
d Xd , where Xd is a d-column vector and Sd is a d×d positive

definite matrix, monotonically increases with dimension. They showed that

XT
d−1S−1

d−1Xd−1 = XT
d S−1

d Xd −
1
b
[(CT : b)Xd]

2, (4)

where

Xd =

[

Xd−1

xd

]

,

S−1
d =

[

A C
CT b

]

,

Xd−1 and C are d − 1 column vectors, xd and b are scalars, A is a (d − 1)× (d − 1) matrix, and
the symbol : means matrix augmentation. We can show that trace(S−1

wd
Sbd ) can be expressed as

a criterion of the form ∑k
j=1 XT

jdS−1
d X jd . Sbd can be expressed as ∑k

j=1 Z jbd ZT
jbd

where Z jbd is a d-
column vector:

trace(S−1
wd

Sbd ) = trace(S−1
wd

k

∑
j=1

Z jbd ZT
jbd

)

= trace(
k

∑
j=1

S−1
wd

Z jbd ZT
jbd

)

=
k

∑
j=1

trace(S−1
wd

Z jbd ZT
jbd

)

=
k

∑
j=1

trace(ZT
jbd

S−1
wd

Z jbd ),

since trace(Ap×qBq×p) = trace(Bq×pAp×q) for any rectangular matrices Ap×q and Bq×p.
Because ZT

jbd
S−1

wd
Z jbd is scalar,

k

∑
j=1

trace(ZT
jbd

S−1
wd

Z jbd ) =
k

∑
j=1

ZT
jbd

S−1
wd

Z jbd .

Since each term monotonically increases with dimension, the summation also monotonically in-
creases with dimension. Thus, the scatter separability criterion increases with dimension assuming
the clustering assignments remain the same. This means that even if the new feature does not facil-
itate finding new clusters, the criterion function increases.
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4.2 Bias of the Maximum Likelihood (ML) Criterion

Contrary to finding the number of clusters problem, wherein ML increases as the number of model
parameters (k) is increased, in feature subset selection, ML prefers lower dimensions. In finding the
number of clusters, we try to fit the best Gaussian mixture to the data. The data is fixed and we try
to fit our model as best as we can. In feature selection, given different feature spaces, we select the
feature subset that is best modeled by a Gaussian mixture.

This bias problem occurs because we define likelihood as the likelihood of the data correspond-
ing to the candidate feature subset (see Equation 10 in Appendix B). To avoid this bias, the com-
parison can be between two complete (relevant and irrelevant features included) models of the data.
In this case, likelihood is defined such that the candidate relevant features are modeled as depen-
dent on the clusters, and the irrelevant features are modeled as having no dependence on the cluster
variable. The problem with this approach is the need to define a model for the irrelevant features.
Vaithyanathan and Dom uses this for document clustering (Vaithyanathan and Dom, 1999). The
multinomial distribution for the relevant and irrelevant features is an appropriate model for text fea-
tures in document clustering. In other domains, defining models for the irrelevant features may be
difficult. Moreover, modeling irrelevant features means more parameters to predict. This implies
that we still work with all the features, and as we mentioned earlier, algorithms may break down
with high dimensions; we may not have enough data to predict all model parameters. One may avoid
this problem by adding the assumption of independence among irrelevant features which may not
be true. A poorly-fitting irrelevant feature distribution may cause the algorithm to select too many
features. Throughout this paper, we use the maximum likelihood definition only for the relevant
features.

For a fixed number of samples, ML prefers lower dimensions. The problem occurs when we
compare feature set A with feature set B wherein set A is a subset of set B, and the joint probability
of a single point (x,y) is less than or equal to its marginal probability (x). For sequential searches,
this can lead to the trivial result of selecting only a single feature.

ML prefers lower dimensions for discrete random features. The joint probability mass function
of discrete random vectors X and Y is p(X ,Y ) = p(Y |X)p(X). Since 0 ≤ p(Y |X) ≤ 1, p(X ,Y ) =
p(Y |X)p(X) ≤ p(X). Thus, p(X) is always greater than or equal to p(X ,Y ) for any X . When we
deal with continuous random variables, as in this paper, the definition, f (X ,Y ) = f (Y |X) f (X) still
holds, where f (·) is now the probability density function. f (Y |X) is always greater than or equal to
zero. However, f (Y |X) can be greater than one. The marginal density f (X) is greater than or equal
to the joint probability f (X ,Y ) iff f (Y |X) ≤ 1.

Theorem 4.1 For a finite multivariate Gaussian mixture, assuming identical clustering assignments
for feature subsets A and B with dimensions dB ≥ dA, ML(ΦA) ≥ ML(ΦB) iff

k

∏
j=1

(

|ΣB| j

|ΣA| j

)π j

≥
1

(2πe)(dB−dA)
,

where ΦA represents the parameters and ΣA j is the covariance matrix modelling cluster j in feature
subset A, π j is the mixture proportion of cluster j, and k is the number of clusters.
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Corollary 4.1 For a finite multivariate Gaussian mixture, assuming identical clustering assign-
ments for feature subsets X and (X ,Y ), where X and Y are disjoint, ML(ΦX) ≥ ML(ΦXY ) iff

k

∏
j=1

|ΣYY −ΣY X Σ−1
XX ΣXY |

π j
j ≥

1
(2πe)dY

,

where the covariance matrix in feature subset (X ,Y ) is

[

ΣXX ΣXY

ΣY X ΣYY

]

, and dY is the dimension in

Y .

We prove Theorem 4.1 and Corollary 4.1 in Appendix B. Theorem 4.1 and Corollary 4.1 reveal
the dependencies of comparing the ML criterion for different dimensions. Note that each jth com-
ponent of the left hand side term of Corollary 4.1 is the determinant of the conditional covariance
of f (Y |X). This covariance term is the covariance of Y eliminating the effects of the conditioning
variable X , i.e., the conditional covariance does not depend on X . The right hand side is approx-
imately equal to (0.06)dY . This means that the ML criterion increases when the feature or feature
subset to be added (Y ) has a generalized variance (determinant of the covariance matrix) smaller
than (0.06)dY . Ideally, we would like our criterion measure to remain the same when the subsets re-
veal the same clusters. Even when the feature subsets reveal the same cluster, Corollary 4.1 informs
us that ML decreases or increases depending on whether or not the generalized variance of the new
features is greater than or less than a constant respectively.

5. Normalizing the Criterion Values: Cross-Projection Method

The arguments from the previous section illustrate that to apply the ML and trace criteria to feature
selection, we need to normalize their values with respect to dimension. A typical approach to
normalization is to divide by a penalty factor. For example, for the scatter criterion, we could divide
by the dimension, d. Similarly for the ML criterion, we could divide by 1

(2πe)d . But, 1
(2πe)d would

not remove the covariance terms due to the increase in dimension. We could also divide log ML by
d, or divide only the portions of the criterion affected by d. The problem with dividing by a penalty
is that it requires specification of a different magic function for each criterion.

The approach we take is to project our clusters to the subspaces that we are comparing. Given
two feature subsets, S1 and S2, of different dimension, clustering our data using subset S1 produces
cluster C1. In the same way, we obtain the clustering C2 using the features in subset S2. Which
feature subset, S1 or S2, enables us to discover better clusters? Let CRIT (Si,C j) be the feature
selection criterion value using feature subset Si to represent the data and C j as the clustering assign-
ment. CRIT (·) represents either of the criteria presented in Section 2.3. We normalize the criterion
value for S1, C1 as

normalizedValue(S1,C1) = CRIT (S1,C1) ·CRIT (S2,C1),

and, the criterion value for S2, C2 as

normalizedValue(S2,C2) = CRIT (S2,C2) ·CRIT (S1,C2).

If normalizedValue(Si,Ci) > normalizedValue(S j,C j), we choose feature subset Si. When the nor-
malized criterion values are equal for Si and S j, we favor the lower dimensional feature subset. The
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choice of a product or sum operation is arbitrary. Taking the product will be similar to obtaining the
geometric mean, and a sum with an arithmetic mean. In general, one should perform normalization
based on the semantics of the criterion function. For example, geometric mean would be appropriate
for likelihood functions, and an arithmetic mean for the log-likelihood.

When the clustering assignments resulting from different feature subsets, S1 and S2, are identical
(i.e., C1 = C2), the normalizedValue(S1,C1) would be equal to the normalizedValue(S2,C2), which
is what we want. More formally:

Proposition 1 Given that C1 = C2, equal clustering assignments, for two different feature subsets,
S1 and S2, then normalizedValue(S1,C1) = normalizedValue(S2,C2).

Proof: From the definition of normalizedValue(·) we have

normalizedValue(S1,C1) = CRIT (S1,C1) ·CRIT (S2,C1).

Substituting C1 = C2,

normalizedValue(S1,C1) = CRIT (S1,C2) ·CRIT (S2,C2).

= normalizedValue(S2,C2).

To understand why cross-projection normalization removes some of the bias introduced by the
difference in dimension, we focus on normalizedValue(S1,C1). The common factor is C1 (the
clusters found using feature subset S1). We measure the criterion values on both feature subsets to
evaluate the clusters C1. Since the clusters are projected on both feature subsets, the bias due to
data representation and dimension is diminished. The normalized value focuses on the quality of
the clusters obtained.

For example, in Figure 7, we would like to see whether subset S1 leads to better clusters than
subset S2. CRIT (S1,C1) and CRIT (S2,C2) give the criterion values of S1 and S2 for the clusters
found in those feature subspaces (see Figures 7a and 7b). We project clustering C1 to S2 in Fig-
ure 7c and apply the criterion to obtain CRIT (S2,C1). Similarly, we project C2 to feature space S1

to obtain the result shown in Figure 7d. We measure the result as CRIT (S1,C2). For example, if
ML(S1,C1) is the maximum likelihood of the clusters found in subset S1 (using Equation 10, Ap-
pendix B),2 then to compute ML(S2,C1), we use the same cluster assignments, C1, i.e., the E[zi j]’s
(the membership probabilities) for each data point xi remain the same. To compute ML(S2,C1),
we apply the maximization-step EM clustering update equations (Equations 7-9 in Appendix A to
compute the model parameters in the increased feature space, S2 = {F2,F3}.

Since we project data in both subsets, we are essentially comparing criteria in the same number
of dimensions. We are comparing CRIT (S1,C1) (Figure 7a) with CRIT (S1,C2) (Figure 7d) and
CRIT (S2,C1) (Figure 7c) with CRIT (S2,C2) (Figure 7b). In this example, normalized trace chooses
subset S2, because there exists a better cluster separation in both subspaces using C2 rather than C1.
Normalized ML also chooses subset S2. C2 has a better Gaussian mixture fit (smaller variance
clusters) in both subspaces (Figures 7b and d) than C1 (Figures 7a and c). Note that the underlying

2. One can compute the maximum log-likelihood, log ML, efficiently as Q(Φ,Φ)+ H(Φ,Φ) by applying Lemma B.1
and Equation 16 in Appendix B. Lemma B.1 expresses the Q(·) in terms only of the parameter estimates. Equation
16, H(Φ,Φ), is the cluster entropy which requires only the E[zi j] values. In practice, we work with log ML to
avoid precision problems. The product normalizedValue(·) function then becomes log normalizedValue(Si,Ci) =
log ML(Si,Ci)+ log ML(S j,Ci).
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Figure 7: Illustration on normalizing the criterion values. To compare subsets, S1 and S2, we project
the clustering results of S1, we call C1 in (a), to feature space S2 as shown in (c). We also
project the clustering results of S2, C2 in (b), onto feature space S1 as shown in (d).
In (a), tr(S1,C1) = 6.094, ML(S1,C1) = 1.9× 10−64, and logML(S1,C1) = −146.7. In
(b), tr(S2,C2) = 9.390, ML(S2,C2) = 4.5× 10−122, and logML(S1,C2) = −279.4. In
(c), tr(S2,C1) = 6.853, ML(S2,C1) = 3.6× 10−147, and logML(S2,C1) = −337.2. In
(d), tr(S1,C2) = 7.358, ML(S1,C2) = 2.1× 10−64, and logML(S1,C2) = −146.6. We
evaluate subset S1 with normalized tr(S1,C1) = 41.76 and subset S2 with normalized
tr(S2,C2) = 69.09. In the same way, using ML, the normalized values are: 6.9×10−211

for subset S1 and 9.4× 10−186 for subset S2. With log ML, the normalized values are:
−483.9 and −426.0 for subsets S1 and S2 respectively.

assumption behind this normalization scheme is that the clusters found in the new feature space
should be consistent with the structure of the data in the previous feature subset. For the ML
criterion, this means that Ci should model S1 and S2 well. For the trace criterion, this means that
the clusters Ci should be well separated in both S1 and S2.
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6. Experimental Evaluation

In our experiments, we 1) investigate whether feature selection leads to better clusters than using all
the features, 2) examine the results of feature selection with and without criterion normalization, 3)
check whether or not finding the number of clusters helps feature selection, and 4) compare the ML
and the trace criteria. We first present experiments with synthetic data and then a detailed analysis
of the FSSEM variants using four real-world data sets. In this section, we first describe our synthetic
Gaussian data, our evaluation methods for the synthetic data, and our EM clustering implementation
details. We then present the results of our experiments on the synthetic data. Finally, in Section 6.5,
we present and discuss experiments with three benchmark machine learning data sets and one new
real world data set.

6.1 Synthetic Gaussian Mixture Data
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Figure 8: Synthetic Gaussian data.

To understand the performance of our algorithm, we experiment with five sets of synthetic Gaus-
sian mixture data. For each data set we have “relevant” and “irrelevant” features, where relevant
means that we created our k component mixture model using these features. Irrelevant features
are generated as Gaussian normal random variables. For all five synthetic data sets, we generated
N = 500 data points and generated clusters that are of equal proportions.
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2-class, 2 relevant features and 3 noise features: The first data set (shown in Figure 8a) consists
of two Gaussian clusters, both with covariance matrix, Σ1 = Σ2 = I and means µ1 = (0,0)
and µ2 = (0,3). This is similar to the two-class data set used by (Smyth, 1996). There
is considerable overlap between the two clusters, and the three additional “noise” features
increase the difficulty of the problem.

3-class, 2 relevant features and 3 noise features: The second data set consists of three Gaussian
clusters and is shown in Figure 8b. Two clusters have means at (0,0) but the covariance
matrices are orthogonal to each other. The third cluster overlaps the tails on the right side
of the other two clusters. We add three irrelevant features to the three-class data set used by
(Smyth, 1996).

4-class, 2 relevant features and 3 noise features: The third data set (Figure 8c) has four clusters
with means at (0,0), (1,4), (5,5) and (5,0) and covariances equal to I. We add three Gaussian
normal random “noise” features.

5-class, 5 relevant features and 15 noise features: For the fourth data set, there are twenty fea-
tures, but only five are relevant (features {1, 10, 18, 19, 20}). The true means µ were sampled
from a uniform distribution on [−5,5]. The elements of the diagonal covariance matrices σ
were sampled from a uniform distribution on [0.7,1.5] (Fayyad et al., 1998). Figure 8d shows
the scatter plot of the data in two of its relevant features.

5-class, 15 relevant features and 5 noise features: The fifth data set (Figure 8e shown in two of
its relevant features) has twenty features with fifteen relevant features {1, 2, 3, 5, 8, 9, 10, 11,
12, 13, 14, 16, 17, 18, 20}. The true means µ were sampled from a uniform distribution on
[−5,5]. The elements of the diagonal covariance matrices σ were sampled from a uniform
distribution on [0.7,1.5] (Fayyad et al., 1998).

6.2 Evaluation Measures

We would like to measure our algorithm’s ability to select relevant features, to correctly identify k,
and to find structure in the data (clusters). There are no standard measures for evaluating clusters in
the clustering literature (Jain and Dubes, 1988). Moreover, no single clustering assignment (or class
label) explains every application (Hartigan, 1985). Nevertheless, we need some measure of perfor-
mance. Fisher (1996) provides and discusses different internal and external criteria for measuring
clustering performance.

Since we generated the synthetic data, we know the ‘true’ cluster to which each instance be-
longs. This ‘true’ cluster is the component that generates that instance. We refer to these ‘true’
clusters as our known ‘class’ labels. Although we used the class labels to measure the performance
of FSSEM, we did not use this information during training (i.e., in selecting features and discovering
clusters).

Cross-Validated Class Error: We define class error as the number of instances misclassified di-
vided by the total number of instances. We assign each data point to its most likely cluster,
and assign each cluster to a class based on examining the class labels of the training data as-
signed to each cluster and choosing the majority class. Since we have the true cluster labels,
we can compute classification error. One should be careful when comparing clusterings with
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different number of clusters using training error. Class error based on training decreases with
an increase in the number of clusters, k, with the trivial result of 0% error when each data
point is a cluster. To ameliorate this problem, we use ten-fold cross-validation error. Ten-
fold cross-validation randomly partitions the data set into ten mutually exclusive subsets. We
consider each partition (or fold) as the test set and the rest as the training set. We perform
feature selection and clustering on the training set, and compute class error on the test set.
For each FSSEM variant, the reported error is the average and standard deviation values from
the ten-fold cross-validation runs.

Bayes Error: Since we know the true probability distributions for the synthetic data, we provide
the Bayes error (Duda et al., 2001) values to give us the lowest average class error rate achiev-
able for these data sets. Instead of a full integration of the error in possibly discontinuous
decision regions in multivariate space, we compute the Bayes error experimentally. Using the
relevant features and their true distributions, we classify the generated data with an optimal
Bayes classifier and calculate the error.

To evaluate the algorithm’s ability to select “relevant” features, we report the average number
of features selected, and the average feature recall and precision. Recall and precision are concepts
from text retrieval (Salton and McGill, 1983) and are defined here as:

Recall: the number of relevant features in the selected subset divided by the total number of relevant
features.

Precision: the number of relevant features in the selected subset divided by the total number of
features selected.

These measures give us an indication of the quality of the features selected. High values of preci-
sion and recall are desired. Feature precision also serves as a measure of how well our dimension
normalization scheme (a.k.a. our stopping criterion) works. Finally, to evaluate the clustering al-
gorithm’s ability to find the “correct” number of clusters, we report the average number of clusters
found.

6.3 Initializing EM and Other Implementation Details

In the EM algorithm, we start with an initial estimate of our parameters, Φ(0), and then iterate using
the update equations until convergence. Note that EM is initialized for each new feature subset.

The EM algorithm can get stuck at a local maximum, hence the initialization values are impor-
tant. We used the sub-sampling initialization algorithm proposed by Fayyad et al. (1998) with 10%
sub-sampling and J = 10 sub-sampling iterations. Each sub-sample, Si (i = 1, . . . ,J), is randomly
initialized. We run k-means (Duda et al., 2001) on these sub-samples not permitting empty clusters
(i.e., when an empty cluster exists at the end of k-means, we reset the empty cluster’s mean equal to
the data furthest from its cluster centroid, and re-run k-means). Each sub-sample results in a set of
cluster centroids CMi, i, . . . ,J. We then cluster the combined set, CM, of all CMi’s using k-means
initialized by CMi resulting in new centroids FMi. We select the FMi, i = 1, . . . ,J, that maximizes
the likelihood of CM as our initial clusters.

After initializing the parameters, EM clustering iterates until convergence (i.e., the likelihood
does not change by 0.0001) or up to n (default 500) iterations whichever comes first. We limit
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the number of iterations because EM converges very slowly near a maximum. We avoid problems
with handling singular matrices by adding a scalar (δ = 0.000001σ2, where σ2 is the average of the
variances of the unclustered data) multiplied to the identity matrix (δI) to each of the component
covariance matrices Σ j. This makes the final matrix positive definite (i.e., all eigenvalues are greater
than zero) and hence nonsingular. We constrain our solution away from spurious clusters by deleting
clusters with any diagonal element equal to or less than δ.

6.4 Experiments on Gaussian Mixture Data

We investigate the biases and compare the performance of the different feature selection criteria.
We refer to FSSEM using the separability criterion as FSSEM-TR and using ML as FSSEM-ML.
Aside from evaluating the performance of these algorithms, we also report the performance of EM
(clustering using all the features) to see whether or not feature selection helped in finding more
“interesting” structures (i.e., structures that reveal class labels). FSSEM and EM assume a fixed
number of clusters, k, equal to the number of classes. We refer to EM clustering and FSSEM
with finding the number of clusters as EM-k and FSSEM-k respectively. Due to clarity purposes
and space constraints, we only present the relevant tables here. We report the results for all of the
evaluation measures presented in Section 6.2 in (Dy and Brodley, 2003).

6.4.1 ML VERSUS TRACE

We compare the performance of the different feature selection criteria (FSSEM-k-TR and FSSEM-
k-ML) on our synthetic data. We use FSSEM-k rather than FSSEM, because Section 6.4.3 shows
that feature selection with finding k (FSSEM-k) is better than feature selection with fixed k (FSSEM).
Table 1 shows the cross-validated (CV) error and average number of clusters results for trace and
ML on the five data sets.

Percent CV Error
Method 2-Class 3-Class 4-Class 5-Class, 5-Feat. 5-Class, 15-Feat.

FSSEM-k-TR 4.6 ± 2.0 21.4 ± 06.0 4.2 ± 2.3 3.0 ± 1.8 0.0 ± 0.0
FSSEM-k-ML 55.6 ± 3.9 54.8 ± 17.4 79.4 ± 6.1 84.0 ± 4.1 78.2 ± 6.1

Average Number of Clusters
Method 2-Class 3-Class 4-Class 5-Class, 5-Feat. 5-Class, 15-Feat.

FSSEM-k-TR 2.0 ± 0.0 3.0 ± 0.0 4.0 ± 0.0 5.0 ± 0.0 5.0 ± 0.0
FSSEM-k-ML 1.0 ± 0.0 1.4 ± 0.8 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0

Table 1: Cross-validated error and average number of clusters for FSSEM-k-TR versus FSSEM-k-
ML applied to the simulated Gaussian mixture data.

FSSEM-k-TR performed better than FSSEM-k-ML in terms of CV error. Trace performed
better than ML, because it selected the features with high cluster separation. ML preferred features
with low variance. When the variance of each cluster is the same, ML prefers the feature subset with
fewer clusters (which happens to be our noise features). This bias is reflected by an average feature
recall of 0.04. FSSEM-k-TR, on the other hand, was biased toward separable clusters identified by
our defined relevant features, reflected by an average feature recall of 0.8.
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6.4.2 RAW DATA VERSUS STANDARDIZED DATA

In the previous subsection, ML performed worse than trace for our synthetic data, because ML
prefers features with low variance and fewer clusters (our noise features have lower variance than
the relevant features). In this subsection, we investigate whether standardizing the data in each
dimension (i.e., normalizing each dimension to yield a variance equal to one) would eliminate this
bias. Standardizing data is sometimes done as a pre-processing step in data analysis algorithms to
equalize the weight contributed by each feature. We would also like to know how standardization
affects the performance of the other FSSEM variants.

Let X be a random data vector and X f ( f = 1 . . .d) be the elements of the vector, where d is
the number of features. We standardize X by dividing each element by the corresponding feature
standard deviation (X f /σ f , where σ f is the standard deviation for feature f ).

Table 2 reports the CV error. Additional experimental results can be found in (Dy and Brodley,
2003). Aside from the FSSEM variants, we examine the effect of standardizing data on EM-k,
clustering with finding the number of clusters using all the features. We represent the corresponding
variant on standardized data with the suffix “-STD”. The results show that only FSSEM-k-ML is
affected by standardizing data. The trace criterion computes the between-class scatter normalized
by the average within-class scatter and is invariant to any linear transformation. Since standardizing
data is a linear transformation, the trace criterion results remain unchanged.

Standardizing data improves ML’s performance. It eliminates ML’s bias to lower overall vari-
ance features. Assuming equal variance clusters, ML prefers a single Gaussian cluster over two
well-separated Gaussian clusters. But, after standardization, the two Gaussian clusters become
more favorable because each of the two clusters now has lower variance (i.e., higher probabilities)
than the single cluster noise feature. Observe that when we now compare FSSEM-k-TR-STD or
FSSEM-k-TR with FSSEM-k-ML-STD, the performance is similar for all our data sets. These
results show that scale invariance is an important property for a feature evaluation criterion. If a
criterion is not scale invariant such as ML, in this case, pre-processing by standardizing the data
in each dimension is necessary. Scale invariance can be incorporated to the ML criterion by mod-
ifying the function as presented in (Dy and Brodley, 2003). Throughout the rest of the paper, we
standardize the data before feature selection and clustering.

Percent CV Error
Method 2-Class 3-Class 4-Class 5-Class, 5-Feat. 5-Class, 15-Feat.

FSSEM-k-TR 4.6 ± 2.0 21.4 ± 06.0 4.2 ± 2.3 3.0 ± 1.8 0.0 ± 0.0
FSSEM-k-TR-STD 4.6 ± 2.0 21.6 ± 05.4 4.0 ± 2.0 3.0 ± 1.8 0.0 ± 0.0
FSSEM-k-ML 55.6 ± 3.9 54.8 ± 17.4 79.4 ± 6.1 84.0 ± 4.1 78.2 ± 6.1
FSSEM-k-ML-STD 4.8 ± 1.8 21.4 ± 05.1 4.0 ± 2.2 15.2 ± 7.3 0.0 ± 0.0
EM-k 55.6 ± 3.9 63.6 ± 06.0 48.6 ± 9.5 84.0 ± 4.1 55.4 ± 5.5
EM-k-STD 55.6 ± 3.9 63.6 ± 06.0 48.6 ± 9.5 84.0 ± 4.1 56.2 ± 6.1

Table 2: Percent CV error of FSSEM variants on standardized and raw data.

6.4.3 FEATURE SEARCH WITH FIXED k VERSUS SEARCH FOR k

In Section 3, we illustrated that different feature subsets have different numbers of clusters, and that
to model the clusters during feature search correctly, we need to incorporate finding the number
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of clusters, k, in our approach. In this section, we investigate whether finding k yields better per-
formance than using a fixed number of clusters. We represent the FSSEM and EM variants using a
fixed number of clusters (equal to the known classes) as FSSEM and EM. FSSEM-k and EM-k stand
for FSSEM and EM with searching for k. Tables 3 and 4 summarize the CV error, average number
of cluster, feature precision and recall results of the different algorithms on our five synthetic data
sets.

Percent CV Error
Method 2-Class 3-Class 4-Class 5-Class, 5-Feat. 5-Class, 15-Feat.

FSSEM-TR-STD 4.4 ± 02.0 37.6 ± 05.6 7.4 ± 11.0 21.2 ± 20.7 14.4 ± 22.2
FSSEM-k-TR-STD 4.6 ± 02.0 21.6 ± 05.4 4.0 ± 02.0 3.0 ± 01.8 0.0 ± 00.0
FSSEM-ML-STD 7.8 ± 05.5 22.8 ± 06.6 3.6 ± 01.7 15.4 ± 09.5 4.8 ± 07.5
FSSEM-k-ML-STD 4.8 ± 01.8 21.4 ± 05.1 4.0 ± 02.2 15.2 ± 07.3 0.0 ± 00.0
EM-STD 22.4 ± 15.1 30.8 ± 13.1 23.2 ± 10.1 48.2 ± 07.5 10.2 ± 11.0
EM-k-STD 55.6 ± 03.9 63.6 ± 06.0 48.6 ± 09.5 84.0 ± 04.1 56.2 ± 06.1
Bayes 5.4 ± 00.0 20.4 ± 00.0 3.4 ± 00.0 0.8 ± 00.0 0.0 ± 00.0

Average Number of Clusters
Method 2-Class 3-Class 4-Class 5-Class, 5-Feat. 5-Class, 15-Feat.

FSSEM-TR-STD fixed at 2 fixed at 3 fixed at 4 fixed at 5 fixed at 5
FSSEM-k-TR-STD 2.0 ± 0.0 3.0 ± 0.0 4.0 ± 0.0 5.0 ± 0.0 5.0 ± 0.0
FSSEM-ML-STD fixed at 2 fixed at 3 fixed at 4 fixed at 5 fixed at 5
FSSEM-k-ML-STD 2.0 ± 0.0 3.0 ± 0.0 4.0 ± 0.0 4.2 ± 0.4 5.0 ± 0.0
EM-STD fixed at 2 fixed at 3 fixed at 4 fixed at 5 fixed at 5
EM-k-STD 1.0 ± 0.0 1.0 ± 0.0 2.0 ± 0.0 1.0 ± 0.0 2.1 ± 0.3

Table 3: Percent CV error and average number of cluster results on FSSEM and EM with fixed
number of clusters versus finding the number of clusters.

Looking first at FSSEM-k-TR-STD compared to FSSEM-TR-STD, we see that including order
identification (FSSEM-k-TR-STD) with feature selection results in lower CV error for the trace
criterion. For all data sets except the two-class data, FSSEM-k-TR-STD had significantly lower
CV error than FSSEM-TR-STD. Adding the search for k within the feature subset selection search
allows the algorithm to find the relevant features (an average of 0.796 feature recall for FSSEM-k-
TR-STD versus 0.656 for FSSEM-TR-STD).3 This is because the best number of clusters depends
on the chosen feature subset. For example, on closer examination, we noted that on the three-class
problem when k is fixed at three, the clusters formed by feature 1 are better separated than clusters
that are formed by features 1 and 2 together. As a consequence, FSSEM-TR-STD did not select
feature 2. When k is made variable during the feature search, FSSEM-k-TR-STD finds two clusters
in feature 1. When feature 2 is considered with feature 1, three or more clusters are found resulting
in higher separability.

In the same way, FSSEM-k-ML-STD was better than fixing k, FSSEM-ML-STD, for all data
sets in terms of CV error except for the four-class data. FSSEM-k-ML-STD performed slightly
better than FSSEM-ML-STD for all the data sets in terms of feature precision and recall. This

3. Note that the recall value is low for the five-class fifteen-features data. This is because some of the “relevant” features
are redundant as reflected by the 0.0% CV error obtained by our feature selection algorithms.
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Average Feature Precision
Method 2-Class 3-Class 4-Class 5-Class, 5-Feat. 5-Class, 15-Feat.

FSSEM-TR-STD 0.62 ± 0.26 0.56 ± 0.24 0.68 ± 0.17 0.95 ± 0.15 1.00 ± 0.00
FSSEM-k-TR-STD 0.57 ± 0.23 0.65 ± 0.05 0.53 ± 0.07 1.00 ± 0.00 1.00 ± 0.00
FSSEM-ML-STD 0.24 ± 0.05 0.52 ± 0.17 0.53 ± 0.10 0.98 ± 0.05 1.00 ± 0.00
FSSEM-k-ML-STD 0.33 ± 0.00 0.67 ± 0.13 0.50 ± 0.00 1.00 ± 0.00 1.00 ± 0.00
EM-k 0.20 ± 0.00 0.20 ± 0.00 0.20 ± 0.00 0.25 ± 0.00 0.75 ± 0.00
EM-k-STD 0.20 ± 0.00 0.20 ± 0.00 0.20 ± 0.00 0.25 ± 0.00 0.75 ± 0.00

Average Feature Recall
Method 2-Class 3-Class 4-Class 5-Class, 5-Feat. 5-Class, 15-Feat.

FSSEM-TR-STD 1.00 ± 0.00 0.55 ± 0.15 0.95 ± 0.15 0.46 ± 0.20 0.32 ± 0.19
FSSEM-k-TR-STD 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 0.62 ± 0.06 0.36 ± 0.13
FSSEM-ML-STD 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 0.74 ± 0.13 0.41 ± 0.20
FSSEM-k-ML-STD 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 0.72 ± 0.16 0.51 ± 0.14
EM-k 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00
EM-k-STD 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00

Table 4: Average feature precision and recall obtained by FSSEM with a fixed number of clusters
versus FSSEM with finding the number of clusters.

shows that incorporating finding k helps in selecting the “relevant” features. EM-STD had lower
CV error than EM-k-STD due to prior knowledge about the correct number of clusters. Both EM-
STD and EM-k-STD had poorer performance than FSSEM-k-TR/ML-STD, because of the retained
noisy features.

6.4.4 FEATURE CRITERION NORMALIZATION VERSUS WITHOUT NORMALIZATION

Percent CV Error
Method 2-Class 3-Class 4-Class 5-Class, 5-Feat. 5-Class, 15-Feat.

FSSEM-k-TR-STD-notnorm 4.6 ± 2.0 23.4 ± 6.5 4.2 ± 2.3 2.6 ± 1.3 0.0 ± 0.0
FSSEM-k-TR-STD 4.6 ± 2.0 21.6 ± 5.4 4.0 ± 2.0 3.0 ± 1.8 0.0 ± 0.0
FSSEM-k-ML-STD-notnorm 4.6 ± 2.2 36.2 ± 4.2 48.2 ± 9.4 63.6 ± 4.9 46.8 ± 6.2
FSSEM-k-ML-STD 4.8 ± 1.8 21.4 ± 5.1 4.0 ± 2.2 15.2 ± 7.3 0.0 ± 0.0
Bayes 5.4 ± 0.0 20.4 ± 0.0 3.4 ± 0.0 0.8 ± 0.0 0.0 ± 0.0

Average Number of Features Selected
Method 2-Class 3-Class 4-Class 5-Class, 5-Feat. 5-Class, 15-Feat.

FSSEM-k-TR-STD-notnorm 2.30 ± 0.46 3.00 ± 0.00 3.90 ± 0.30 3.30 ± 0.46 9.70 ± 0.46
FSSEM-k-TR-STD 2.00 ± 0.63 3.10 ± 0.30 3.80 ± 0.40 3.10 ± 0.30 5.40 ± 1.96
FSSEM-k-ML-STD-notnorm 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00
FSSEM-k-ML-STD 3.00 ± 0.00 3.10 ± 0.54 4.00 ± 0.00 3.60 ± 0.80 7.70 ± 2.10

Table 5: Percent CV error and average number of features selected by FSSEM with criterion nor-
malization versus without.
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Table 5 presents the CV error and average number of features selected by feature selection
with cross-projection criterion normalization versus without (those with suffix “notnorm”). Here
and throughout the paper, we refer to normalization as the feature normalization scheme (cross-
projection method) described in Section 5. For the trace criterion, without normalization did not
affect the CV error. However, normalization achieved similar CV error performance using fewer
features than without normalization. For the ML criterion, criterion normalization is definitely
needed. Note that without, FSSEM-k-ML-STD-notnorm selected only a single feature for each
data set resulting in worse CV error performance than with normalization (except for the two-class
data which has only one relevant feature).

6.4.5 FEATURE SELECTION VERSUS WITHOUT FEATURE SELECTION

In all cases, feature selection (FSSEM, FSSEM-k) obtained better results than without feature se-
lection (EM, EM-k) as reported in Table 3. Note that for our data sets, the noise features misled
EM-k-STD, leading to fewer clusters than the “true” k. Observe too that FSSEM-k was able to find
approximately the true number of clusters for the different data sets.

In this subsection, we experiment on the sensitivity of the FSSEM variants to the number of
noise features. Figures 9a-e plot the cross-validation error, average number of clusters, average
number of noise features, feature precision and recall respectively of feature selection (FSSEM-k-
TR-STD and FSSEM-k-ML-STD) and without feature selection (EM-k-STD) as more and more
noise features are added to the four-class data. Note that the CV error performance, average number
of clusters, average number of selected features and feature recall for the feature selection algorithms
are more or less constant throughout and are approximately equal to clustering with no noise. The
feature precision and recall plots reveal that the CV error performance of feature selection was not
affected by noise, because the FSSEM-k variants were able to select the relevant features (recall = 1)
and discard the noisy features (high precision). Figure 9 demonstrates the need for feature selection
as irrelevant features can mislead clustering results (reflected by EM-k-STD’s performance as more
and more noise features are added).

6.4.6 CONCLUSIONS ON EXPERIMENTS WITH SYNTHETIC DATA

Experiments on simulated Gaussian mixture data reveal that:

• Standardizing the data before feature subset selection in conjunction with the ML criterion is
needed to remove ML’s preference for low variance features.

• Order identification led to better results than fixing k, because different feature subsets have
different number of clusters as illustrated in Section 3.

• The criterion normalization scheme (cross-projection) introduced in Section 5 removed the
biases of trace and ML with respect to dimension. The normalization scheme enabled feature
selection with trace to remove “redundant” features and prevented feature selection with ML
from selecting only a single feature (a trivial result).

• Both ML and trace with feature selection performed equally well for our five data sets. Both
criteria were able to find the “relevant” features.

• Feature selection obtained better results than without feature selection.
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Figure 9: Feature selection versus without feature selection on the four-class data.

6.5 Experiments on Real Data

We examine the FSSEM variants on the iris, wine, and ionosphere data set from the UCI learning
repository (Blake and Merz, 1998), and on a high resolution computed tomography (HRCT) lung
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image data which we collected from IUPUI medical center (Dy et al., 2003; Dy et al., 1999). Al-
though for each data set the class information is known, we remove the class labels during training.

Unlike synthetic data, we do not know the “true” number of (Gaussian) clusters for real-world
data sets. Each class may be composed of many Gaussian clusters. Moreover, the clusters may
not even have a Gaussian distribution. To see whether the clustering algorithms found clusters that
correspond to classes (wherein a class can be multi-modal), we compute the cross-validated class
error in the same way as for the synthetic Gaussian data. On real data sets, we do not know the
“relevant” features. Hence, we cannot compute precision and recall and therefore report only the
average number of features selected and the average number of clusters found.

Although we use class error as a measure of cluster performance, we should not let it misguide
us in its interpretation. Cluster quality or interestingness is difficult to measure because it depends
on the particular application. This is a major distinction between unsupervised clustering and su-
pervised learning. Here, class error is just one interpretation of the data. We can also measure
cluster performance in terms of the trace criterion and the ML criterion. Naturally, FSSEM-k-TR
and FSSEM-TR performed best in terms of trace; and, FSSEM-k-ML and FSSEM-ML were best
in terms of maximum likelihood. Choosing either TR or ML depends on your application goals. If
you are interested in finding the features that best separate the data, use FSSEM-k-TR. If you are
interested in finding features that model Gaussian clusters best, use FSSEM-k-ML.

To illustrate the generality and ease of applying other clustering methods in the wrapper frame-
work, we also show the results for different variants of feature selection wrapped around the k-means
clustering algorithm (Forgy, 1965; Duda et al., 2001) coupled with the TR and ML criteria. We use
sequential forward search for feature search. To find the number of clusters, we apply the BIC
penalty criterion (Pelleg and Moore, 2000). We use the following acronyms throughout the rest
of the paper: Kmeans stands for the k-means algorithm, FSS-Kmeans stands for feature selection
wrapped around k-means, TR represents the trace criterion for feature evaluation, ML represents
ML criterion for evaluating features, “-k-” represents that the variant finds the number of clusters,
and “-STD” shows that the data was standardized such that each feature has variance equal to one.

Since cluster quality depends on the initialization method used for clustering, we performed EM
clustering using three different initialization methods:

1. Initialize using ten k-means starts with each k-means initialized by a random seed, then pick
the final clustering corresponding to the highest likelihood.

2. Ten random re-starts.

3. Fayyad et al.’s method as described earlier in Section 6.3 (Fayyad et al., 1998).

Items one and two are similar for the k-means clustering. Hence, for k-means, we initialize with
items two and three (with item three performed using Fayyad et al.’s method for k-means (Bradley
and Fayyad, 1998) which applies k-means to the sub-sampled data instead of EM and distortion to
pick the best clustering instead of the ML criterion). In the discussion section as follows, we show
the results for FSSEM and FSS-Kmeans variants using the initialization which provides consistently
good CV-error across all methods. We present the results using each initialization method on all the
FSSEM and FSS-Kmeans variants in (Dy and Brodley, 2003) Appendix E. On the tables, “-1”, “-2”,
and “-3” represent the initialization methods 1, 2, and 3 respectively.
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Iris Data and FSSEM Variants
Method %CV Error Ave. No. of Clusters Ave. No. of Features

FSSEM-TR-STD-1 2.7 ± 04.4 fixed at 3 3.5 ± 0.7
FSSEM-k-TR-STD-1 4.7 ± 05.2 3.1 ± 0.3 2.7 ± 0.5
FSSEM-ML-STD-1 7.3 ± 12.1 fixed at 3 3.6 ± 0.9
FSSEM-k-ML-STD-1 3.3 ± 04.5 3.0 ± 0.0 2.5 ± 0.5
EM-STD-1 3.3 ± 05.4 fixed at 3 fixed at 4
EM-k-STD-1 42.0 ± 14.3 2.2 ± 0.6 fixed at 4

Iris Data and FSS-Kmeans Variants
Method %CV Error Ave. No. of Clusters Ave. No. of Features

FSS-Kmeans-TR-STD-2 2.7 ± 03.3 fixed at 3 1.9 ± 0.3
FSS-Kmeans-k-TR-STD-2 13.3 ± 09.4 4.5 ± 0.7 2.3 ± 0.5
FSS-Kmeans-ML-STD-2 2.0 ± 03.1 fixed at 3 2.0 ± 0.0
FSS-Kmeans-k-ML-STD-2 4.7 ± 04.3 3.4 ± 0.5 2.4 ± 0.5
Kmeans-STD-2 17.3 ± 10.8 fixed at 3 fixed at 4
Kmeans-k-STD-2 44.0 ± 11.2 2.0 ± 0.0 fixed at 4

Table 6: Results for the different variants on the iris data.

6.5.1 IRIS DATA

We first look at the simplest case, the Iris data. This data has three classes, four features, and 150
instances. Fayyad et. al’s method of initialization works best for large data sets. Since the Iris data
only has a few number of instances and classes that are well-separated, ten k-means starts provided
the consistently best result for initializing EM clustering across the different methods. Table 6
summarizes the results for the different variants of FSSEM compared to EM clustering without
feature selection. For the iris data, we set Kmax in FSSEM-k equal to six, and for FSSEM we fixed k
at three (equal to the number of labeled classes). The CV error for FSSEM-k-TR-STD and FSSEM-
k-ML-STD are much better than EM-k-STD. This means that when you do not know the “true”
number of clusters, feature selection helps find good clusters. FSSEM-k even found the “correct”
number of clusters. EM clustering with the “true” number of clusters (EM-STD) gave good results.
Feature selection, in this case, did not improve the CV-error of EM-STD, however, they produced
similar error rates with fewer features. FSSEM with the different variants consistently chose feature
3 (petal-length), and feature 4 (petal-width). In fact, we learned from this experiment that only
these two features are needed to correctly cluster the iris data to three groups corresponding to
iris-setosa, iris-versicolor and iris-viginica. Figures 10 (a) and (b) show the clustering results as a
scatterplot on the first two features chosen by FSSEM-k-TR and FSSEM-k-ML respectively. The
results for feature selection wrapped around k-means are also shown in Table 6. We can infer similar
conclusions from the results on FSS-Kmeans variants as with the FSSEM variants for this data set.

6.5.2 WINE DATA

The wine data has three classes, thirteen features and 178 instances. For this data, we set Kmax

in FSSEM-k equal to six, and for FSSEM we fixed k at three (equal to the number of labeled
classes). Table 7 summarizes the results when FSSEM and the FSS-Kmeans variants are initialized
with ten k-means starts and ten random re-starts respectively. These are the initialization methods
which led to the best performance for EM and k-means without feature selection. When “k” is
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Figure 10: The scatter plots on iris data using the first two features chosen by FSSEM-k-TR (a)
and FSSEM-k-ML (b). �, × and 5 represent the different class assignments. ◦ are
the cluster means, and the ellipses are the covariances corresponding to the clusters
discovered by FSSEM-k-TR and FSSEM-k-ML.

Wine Data and FSSEM Variants
Method %CV Error Ave. No. of Clusters Ave. No. of Features

FSSEM-TR-STD-1 44.0 ± 08.1 fixed at 3 1.4 ± 0.5
FSSEM-k-TR-STD-1 12.4 ± 13.0 3.6 ± 0.8 3.8 ± 1.8
FSSEM-ML-STD-1 30.6 ± 21.8 fixed at 3 2.9 ± 0.8
FSSEM-k-ML-STD-1 23.6 ± 14.4 3.9 ± 0.8 3.0 ± 0.8
EM-STD-1 10.0 ± 17.3 fixed at 3 fixed at 13
EM-k-STD-1 37.1 ± 12.6 3.2 ± 0.4 fixed at 13

Wine Data and FSS-Kmeans Variants
Method %CV Error Ave. No. of Clusters Ave. No. of Features

FSS-Kmeans-TR-STD-2 37.3 ± 14.0 fixed at 3 1.0 ± 0.0
FSS-Kmeans-k-TR-STD-2 28.1 ± 09.6 3.6 ± 0.5 2.5 ± 0.9
FSS-Kmeans-ML-STD-2 16.1 ± 09.9 fixed at 3 3.1 ± 0.3
FSS-Kmeans-k-ML-STD-2 18.5 ± 07.2 4.2 ± 0.6 3.1 ± 0.7
Kmeans-STD-2 0.0 ± 00.0 fixed at 3 fixed at 13
Kmeans-k-STD-2 33.4 ± 21.3 2.6 ± 0.8 fixed at 13

Table 7: Results for the different variants on the wine data set.

known, k-means was able to find the clusters corresponding to the “true” classes correctly. EM
clustering also performed well when “k” is given. EM and k-means clustering performed poorly in
terms of CV error when “k” is unknown. It is in this situation where feature selection, FSSEM-k
and FSS-Kmeans-k, helped the base clustering methods find good groupings. Interestingly, for the
wine data, FSSEM-k-TR performed better than FSSEM-k-ML, and FSS-Kmeans-ML had better
CV-error than FSS-Kmeans-TR. This is an example on where using different criteria for feature
selection and clustering improved the results through their interaction. Figures 11 (a) and (b) show
the scatterplots and clusters discovered projected on the first two features chosen by FSSEM-k-
TR and FSS-Kmeans-k-ML respectively. FSSEM-k-TR picked features {12,13,7,5,10,1,4} and
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Figure 11: The scatter plots on the wine data using the first two features chosen by FSSEM-k-TR
(a) and FSSEM-k-ML (b). ?, × and 5 represent the different class assignments. ◦
are the cluster means, and the ellipses are the covariances corresponding to the clusters
discovered by FSSEM-k-TR and FSS-Kmeans-k-ML.

FSS-Kmeans-k-ML selected features {2,13,12}.4 Features 12 and 13 stand for “OD280-OD315 of
diluted wines” and “proline.”

6.5.3 IONOSPHERE DATA

The radar data is collected from a phased array of sixteen high-frequency antennas. The targets
are free electrons in the atmosphere. Classes label the data as either good (radar returns showing
structure in the ionosphere) or bad returns. There are 351 instances with 34 continuous attributes
(measuring time of pulse and pulse number). Features 1 and 2 are discarded, because their values
are constant or discrete for all instances. Constant feature values produce an infinite likelihood value
for a Gaussian mixture model. Discrete feature values with discrete levels less than or equal to the
number of clusters also produce an infinite likelihood value for a finite Gaussian mixture model.

Table 8 reports the ten-fold cross-validation error and the number of clusters found by the differ-
ent EM and FSSEM algorithms. For the ionosphere data, we set Kmax in FSSEM-k equal to ten, and
fixed k at two (equal to the number of labeled classes) in FSSEM. FSSEM-k-ML and EM clustering
with “k” known performed better in terms of CV error compared to the rest of the EM variants.
Note that FSSEM-k-ML gave comparable performance with EM using fewer features and with no
knowledge of the “true” number of clusters. Table 8 also shows the results for the different k-means
variants. FSS-Kmeans-k-ML-STD obtains the best CV error followed closely by FSS-Kmeans-ML-
STD. Interestingly, these two methods and FSSEM-k-ML all chose features 5 and 3 (based on the
original 34 features) as their first two features.

Figures 12a and b present scatterplots of the ionosphere data on the first two features chosen by
FSSEM-k-TR and FSSEM-k-ML together with their corresponding means (in ◦’s) and covariances
(in ellipses) discovered. Observe that FSSEM-k-TR favored the clusters and features in Figure 12a
because the clusters are well separated. On the other hand, FSSEM-k-ML favored the clusters in
Figure 12b, which have small generalized variances. Since the ML criterion matches the ionosphere

4. These feature subsets are the features which provided the best CV-error performance among the ten-fold runs.
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Ionosphere Data and FSSEM Variants
Method %CV Error Ave. No. of Clusters Ave. No. of Features

FSSEM-TR-STD-2 38.5 ± 06.5 fixed at 2 2.3 ± 0.9
FSSEM-k-TR-STD-2 23.1 ± 05.8 6.6 ± 1.3 1.1 ± 0.3
FSSEM-ML-STD-2 37.9 ± 07.5 fixed at 2 2.7 ± 2.1
FSSEM-k-ML-STD-2 18.8 ± 06.9 7.6 ± 1.0 2.9 ± 1.1
EM-STD-2 16.8 ± 07.3 fixed at 2 fixed at 32
EM-k-STD-2 35.3 ± 10.3 8.4 ± 1.0 fixed at 32

Ionosphere Data and FSS-Kmeans Variants
Method %CV Error Ave. No. of Clusters Ave. No. of Features

FSS-Kmeans-TR-STD-2 35.3 ± 06.5 fixed at 2 1.0 ± 0.0
FSS-Kmeans-k-TR-STD-2 22.8 ± 08.5 9.8 ± 0.4 1.0 ± 0.0
FSS-Kmeans-ML-STD-2 17.7 ± 04.9 fixed at 2 3.5 ± 0.8
FSS-Kmeans-k-ML-STD-2 16.2 ± 04.8 9.3 ± 0.8 1.7 ± 0.8
Kmeans-STD-2 23.4 ± 10.1 fixed at 2 fixed at 32
Kmeans-k-STD-2 28.8 ± 10.8 7.7 ± 0.6 fixed at 32

Table 8: Results for the different variants on the ionosphere data set.

class labels more closely, FSSEM-k-ML performed better with respect to CV error. FSSEM-k-
ML obtained better CV error than EM-k; FSS-Kmeans-ML and FSS-Kmeans-k-ML also performed
better than Kmeans and Kmeans-k in terms of CV error. The feature selection variants performed
better using fewer features compared to the 32 features used by EM-k, Kmeans, and Kmeans-k. It
is interesting to note that for this data, random re-start initialization obtained significantly better CV
error for EM clustering (16.8%) compared to the other initialization methods (20.5% and 24.8% for
ten k-means starts and Fayyad et al.’s method respectively). This is because the two “true” classes
are highly overlapped. Ten k-means starts tend to start-off with well-separated clusters.
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Figure 12: The scatter plots on the ionosphere data using the first two features chosen by FSSEM-
k-TR (a) and FSSEM-k-ML (b). × and � represent the different class assignments. ◦
are the cluster means, and the ellipses are the covariances corresponding to the clusters
discovered by FSSEM-k-TR and FSSEM-k-ML.
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6.5.4 HRCT-LUNG DATA

(a) Centrilobular Emphysema (b) Paraseptal Emphysema (c) IPF

Figure 13: HRCT-lung images.

HRCT-lung consists of 500 instances. Each of these instances are represented by 110 low-
level continuous features measuring geometric, gray level and texture features (Dy et al., 1999).
We actually used only 108 features because two of the features are constant or discrete. We also
log-transformed the data to make our features which are mostly positive real-valued numbers more
Gaussian. For features with negative values (like the feature, local mean minus global mean), we add
an offset making the minimum value equal to zero. We assign log(0) to be log(0.0000000000001).
The data is classified into five disease classes (Centrilobular Emphysema, Paraseptal Emphysema,
EG, IPF, and Panacinar). Figure 13 shows three HRCT-lung images from three of the disease
classes. The white marking is the pathology bearing region (PBR) marked by a radiologist. An
instance represents a PBR. An image may contain more than one PBR and more than one disease
classification. Note that Centrilobular Emphysema (CE) is characterized by a large number of low
intensity (darker) regions which may occupy the entire lung as in Figure 13a. Paraseptal Emphy-
sema (PE) is also characterized by low intensity regions (see Figure 13b). Unlike CE, these regions
occur near the boundaries or near fissures. The dark regions are usually separated by thin walls from
their adjacent boundary or fissure. CE and PE can be further grouped according to disease severity
characterized by the intensity of the regions. Lower intensities indicate more severe cases. The lung
image of IPF is characterized by high intensities forming a “glass-like” structure as shown in Figure
13c. Feature selection is important for this data set, because EM clustering using all the features
results in just one cluster.

Table 9 presents the results on the HRCT-lung data set. For the HRCT lung data, FSSEM-k-TR
and FSS-Kmeans-k-TR performed better than FSSEM-k-ML and FSS-Kmeans-k-ML respectively
in terms of CV error. Figures 14 (a) and (b) present scatterplots of the HRCT-lung data on the
first two features chosen by FSSEM-k-TR and FSSEM-k-ML. Observe that the clusters found by
FSSEM-k-TR are well separated and match the class labels well. FSSEM-k-ML, on the other hand,
selects features that result in high-density clusters. Figure 14 (b) demonstrates this clearly. Note
also that the “true” number of clusters for this data is more than five (the number of labeled classes).
This helped FSSEM-k-TR and FSS-Kmeans-k-TR obtained better results than their fixed-k variants.
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HRCT-Lung Data and FSSEM Variants
Method %CV Error Ave. No. of Clusters Ave. No. of Features

FSSEM-TR-STD-3 36.8 ± 6.6 fixed at 5 1.3 ± 0.5
FSSEM-k-TR-STD-3 26.6 ± 7.7 6.0 ± 2.7 1.7 ± 0.9
FSSEM-ML-STD-3 37.2 ± 5.5 fixed at 5 3.3 ± 0.6
FSSEM-k-ML-STD-3 37.0 ± 5.7 5.2 ± 1.7 6.6 ± 2.8
EM-STD-3 37.2 ± 5.5 fixed at 5 fixed at 108
EM-k-STD-3 37.2 ± 5.5 1.1 ± 0.3 fixed at 108

HRCT-Lung Data and FSS-Kmeans Variants
Method %CV Error Ave. No. of Clusters Ave. No. of Features

FSS-Kmeans-TR-STD-3 37.2 ± 05.5 fixed at 5 1.0 ± 0.0
FSS-Kmeans-k-TR-STD-3 28.0 ± 10.7 7.5 ± 1.9 2.9 ± 2.3
FSS-Kmeans-ML-STD-3 36.8 ± 05.9 fixed at 5 3.4 ± 0.7
FSS-Kmeans-k-ML-STD-3 35.6 ± 06.7 4.3 ± 0.9 5.8 ± 3.1
Kmeans-STD-3 36.6 ± 04.9 fixed at 5 fixed at 108
Kmeans-k-STD-3 37.0 ± 05.3 3.4 ± 0.5 fixed at 108

Table 9: Results on the HRCT-lung image data set for the different variants.
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Figure 14: The scatter plots on the HRCT-lung data using the first two features chosen by FSSEM-
k-TR (a) and FSSEM-k-ML (b). ×, �, , ∗, and 5 represent the different class assign-
ments. ◦ are the cluster means, and the ellipses are the covariances corresponding to the
clusters discovered by FSSEM-k-TR.

HRCT-lung is a difficult data set due to its skewed class distribution (approximately 62.8% of the
data is from the disease Centrilobular Emphysema). Because of this, even though EM-k discovered
approximately only one cluster, its class error (which is equal to the error using a majority classi-
fication rule) is close to the values obtained by the other methods. The high dimensions obscure
the HRCT-lung’s classes and result in EM-k finding only one cluster. Even with a difficult problem
such as this, feature selection obtained better CV-error than without feature selection using much
fewer features (an average of 1.7 for FSSEM-k-TR and 2.9 for FSS-Kmeans-k-TR) compared to the
original 108 features. FSSEM-k-TR picked features {7,9} and FSS-Kmeans-k-TR chose features
{8,6,59}. Features 6,7,8, and 9 are gray level histogram values of the lung region, and feature 59 is
a histogram value at a local pathology bearing region. These features make sense in discriminating
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between Centrilobular Emphysema (the largest class) from the rest, as this class is characterized by
low gray level values.

6.5.5 CONCLUSIONS ON EXPERIMENTS WITH REAL DATA

Our results on real data show that feature selection improved the performance of clustering algo-
rithms in finding “interesting” patterns. We measure “interestingness” performance here by how
well the discovered clusters match labeled classes (CV-error). FSSEM-k and FSS-Kmeans-k ob-
tained better CV-error than EM-k and k-means using fewer features. Moreover, our experiments
reveal that no one feature selection criterion (ML or TR) is better than the other. They have differ-
ent biases. ML selects features that results in high-density clusters, and performed better than TR
on the ionosphere data. Scatter separability (TR) prefers features that reveal well-separated clusters,
and performed better than ML on the HRCT-lung data. They both did well on the iris and wine data.

7. Related Work: A Review of Feature Selection Algorithms for Unsupervised
Learning

There are three different ways to select features from unsupervised data: 1) after clustering, 2)
before clustering, and 3) during clustering. An example algorithm that performs feature selection
after clustering is (Mirkin, 1999). The method first applies a new separate-and-conquer version of
k-means clustering. Then, it computes the contribution weight of each variable in proportion to the
squared deviation of each variable’s within-cluster mean from the total mean. It represents clusters
by conjunctive concepts starting from the variable with the highest weight, until adding variables
(with its conceptual description) does not improve the cluster “precision error”. Feature selection
after clustering is important for conceptual learning, for describing and summarizing structure from
data. This type of selecting features can remove redundancy but not feature irrelevance because
the initial clustering is performed using all the features. As pointed out earlier, the existence of
irrelevant features can misguide clustering results. Using all the features for clustering also assumes
that our clustering algorithm does not break down with high dimensional data. In this paper, we only
examine feature selection algorithms that affect (can change) the clustering outcomes; i.e., before
or during clustering.

A significant body of research exists on methods for feature subset selection for supervised
data. These methods can be grouped as filter (Marill and Green, 1963; Narendra and Fukunaga,
1977; Almuallim and Dietterich, 1991; Kira and Rendell, 1992; Kononenko, 1994; Liu and Setiono,
1996; Cardie, 1993; Singh and Provan, 1995) or wrapper (John et al., 1994; Doak, 1992; Caruana
and Freitag, 1994; Aha and Bankert, 1994; Langley and Sage, 1994; Pazzani, 1995) approaches. To
maintain the filter/wrapper model distinction used in supervised learning, we define filter methods
in unsupervised learning as using some intrinsic property of the data to select features without
utilizing the clustering algorithm that will ultimately be applied. Wrapper approaches, on the other
hand, apply the unsupervised learning algorithm to each candidate feature subset and then evaluate
the feature subset by criterion functions that utilize the clustering result.

When we first started this research, not much work has been done in feature subset selection
for unsupervised learning in the context of machine learning, although research in the form of prin-
cipal components analysis (PCA) (Chang, 1983), factor analysis (Johnson and Wichern, 1998) and
projection pursuit (Friedman, 1987; Huber, 1985) existed. These early works in data reduction for
unsupervised data can be thought of as filter methods, because they select the features prior to apply-
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Figure 15: Illustration on when PCA is a poor discriminator.

ing clustering. But rather than selecting a subset of the features, they involve some type of feature
transformation. PCA and factor analysis aim to reduce the dimension such that the representation is
as faithful as possible to the original data. Note that data reduction techniques based on representa-
tion (like PCA) are better suited for compression applications rather than classification (Fukunaga
(1990) provides an illustrative example on this). Figure 15 recreates this example. PCA chooses the
projection with the highest variance. Projecting two dimensions to one dimension in this example,
PCA would project the data to axis b, which is clearly inferior to axis a for discriminating the two
clusters. Contrary to PCA and factor analysis, projection pursuit aims to find “interesting” projec-
tions from multi-dimensional data for visualizing structure in the data. A recent method for finding
transformations called independent components analysis (ICA) (Hyvärinen, 1999) has gained wide-
spread attention in signal processing. ICA tries to find a transformation such that the transformed
variables are statistically independent.

The filter methods described in the previous paragraph all involve transformations of the original
variable space. In this paper, we are interested in subsets of the original space, because some do-
mains prefer the original variables in order to maintain the physical interpretation of these features.
Moreover, transformations of the variable space require computation or collection of all the features
before dimension reduction can be achieved, whereas subsets of the original space require compu-
tation or collection of only the selected feature subsets after feature selection is determined. If some
features cost more than others, one can consider these costs in selecting features. In this paper, we
assume each feature has equal cost. Other interesting and current directions in feature selection
involving feature transformations are mixtures of principal component analyzers (Kambhatla and
Leen, 1997; Tipping and Bishop, 1999) and mixtures of factor analyzers (Ghahramani and Beal,
2000; Ghahramani and Hinton, 1996; Ueda et al., 1999). We consider these mixture algorithms as
wrapper approaches.

In recent years, more attention has been paid to unsupervised feature subset selection. Most
of these methods are wrapper approaches. Gennari (1991) incorporates feature selection (they call
“attention”) to CLASSIT (an incremental concept formation hierarchical clustering algorithm in-
troduced in (Gennari et al., 1989)). The attention algorithm inspects the features starting with the
most salient (“per-attribute contribution to category utility”) attribute to the least salient attribute,
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and stop inspecting features if the remaining features do not change the current clustering decision.
The purpose of this attention mechanism is to increase efficiency without loss of prediction accu-
racy. Devaney and Ram (1997) applied sequential forward and backward search. To evaluate each
candidate subset, they measured the category utility of the clusters found by applying COBWEB
(Fisher, 1987) in conjunction with the feature subset. Talavera (1999) applied “blind” (similar to
the filter) and “feedback” (analogous to the wrapper) approaches to COBWEB, and used a feature
dependence measure to select features. Vaithyanathan and Dom (1999) formulated an objective
function for choosing the feature subset and finding the optimal number of clusters for a document
clustering problem using a Bayesian statistical estimation framework. They modeled each cluster
as a multinomial. They extended this concept to create hierarchical clusters (Vaithyanathan and
Dom, 2000). Agrawal, et al. (1998) introduced a clustering algorithm (CLIQUE) which proceeds
level-by-level from one feature to the highest dimension or until no more feature subspaces with
clusters (regions with high density points) are generated. CLIQUE is a density based clustering
algorithm which does not assume any density model. However, CLIQUE needs to specify param-
eters τ (the density threshold) and ν (the equal length interval partitioning for each dimension). In
contrast, our method makes assumptions about distributions to avoid specifying parameters. Kim,
Street and Menczer (2002) apply an evolutionary local selection algorithm (ELSA) to search the
feature subset and number of clusters on two clustering algorithms: K-means and EM clustering
(with diagonal covariances), and a Pareto front to combine multiple objective evaluation functions.
Law, Figueiredo and Jain (2002) estimate feature saliency using EM by modeling relevant features
as conditionally independent given the component label, and irrelevant features with a probability
density identical for all components. They also developed a wrapper approach that selects features
using Kullback-Leibler divergence and entropy. Friedman and Meulman (2003) designed a distance
measure for attribute-value data for clustering on subsets of attributes, and allow feature subsets for
each cluster to be different.

8. Summary

In this paper, we introduced a wrapper framework for performing feature subset selection for unsu-
pervised learning. We explored the issues involved in developing algorithms under this framework.
We identified the need for finding the number of clusters in feature search and provided proofs for
the biases of ML and scatter separability with respect to dimension. We, then, presented methods to
ameliorate these problems.

Our experimental results showed that incorporating finding the number of clusters k into the
feature subset selection process led to better results than fixing k to be the true number of classes.
There are two reasons: 1) the number of classes is not necessarily equal to the number of Gaussian
clusters, and 2) different feature subsets have different number of clusters. Supporting theory, our
experiments on simulated data showed that ML and scatter separability are in some ways biased
with respect to dimension. Thus, a normalization scheme is needed for the chosen feature selection
criterion. Our proposed cross-projection criterion normalization scheme was able to eliminate these
biases.

Although we examined the wrapper framework using FSSEM, the search method, feature se-
lection criteria (especially the trace criterion), and the feature normalization scheme can be easily
applied to any clustering method. The issues we have encountered and solutions presented are appli-
cable to any feature subset wrapper approach. FSSEM serves as an example. Depending on one’s
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application, one may choose to apply a more appropriate search method, clustering and feature
selection criteria.

9. Future Directions

Research in feature subset selection for unsupervised learning is quite young. Even though we have
addressed some issues, the paper opens up more questions that need to be answered.

Hartigan (1985) pointed out that no single criterion is best for all applications. This is reiterated
by our results on the HRCT and Ionosphere data. This led us to work in visualization and user
interaction to guide the feature search (Dy and Brodley, 2000b). Another interesting direction is
to look at feature selection with hierarchical clustering (Gennari, 1991; Fisher, 1996; Devaney and
Ram, 1997; Talavera, 1999; Vaithyanathan and Dom, 2000), since hierarchical clustering provides
groupings at various perceptual levels. In addition, a cluster may be modeled better by a different
feature subset from other clusters. One may wish to develop algorithms that select a different feature
subset for each cluster component.

We explored unsupervised feature selection through the wrapper framework. It would be in-
teresting to do a rigorous investigation of filter versus wrapper approach for unsupervised learning.
One may also wish to venture in transformations of the original variable space. In particular, in-
vestigate on mixtures of principal component analyzers (Kambhatla and Leen, 1997; Tipping and
Bishop, 1999), mixtures of factor analyzers (Ghahramani and Beal, 2000; Ghahramani and Hinton,
1996; Ueda et al., 1999) and mixtures of independent component analyzers (Hyvärinen, 1999).

The difficulty with unsupervised learning is the absence of labeled examples to guide the search.
Breiman (Breiman, 2002) suggests transforming the clustering problem into a classification problem
by assigning the unlabeled data to class one, and adding the same amount of random vectors into
another class two. The second set is generated by independent sampling from the one-dimensional
marginal distributions of class one. Understanding and developing tricks such as these to uncover
structure from unlabled data remains as topics that need further investigation. Another avenue for
future work is to explore semi-supervised (few labeled examples and large amounts of unlabeled
data) methods for feature selection.

Finally, in feature selection for unsupervised learning, several fundamental questions are still
unanswered:

1. How do you define what “interestingness” means?

2. Should the criterion for “interestingness” (feature selection criterion) be the same as the cri-
terion for “natural” grouping (clustering criterion)? Most of the literature uses the same cri-
terion for feature selection and clustering as this leads to a clean optimization formulation.
However, defining “interestingness” into a mathematical criterion is a difficult problem. Al-
lowing different criteria to interact may provide a better model. Our experimental results on
the wine data suggest this direction.

3. Our experiments on synthetic data indicate the need to standardize features. Mirkin, 1999,
also standardized his features. Should features always be standardized before feature se-
lection? If so, how do you standardize data containing different feature types (real-valued,
nominal, and discrete)?
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4. What is the best way to evaluate the results? In this paper, we evaluate performance using
an external criterion (cross-validated class error). This is a standard measure used by most
papers in the feature selection for unsupervised learning literature. Class error is task specific
and measures the performance for one labeling solution. Is this the best way to compare
different clustering algorithms?
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Appendix A. EM Clustering

Clustering using finite mixture models is a well-known method and has been used for a long time in
pattern recognition Duda and Hart (1973); Fukunaga (1990); Jain and Dubes (1988) and statistics
McLachlan and Basford (1988); Titterington et al. (1985); Fraley and Raftery (2000). In this model,
one assumes that the data is generated from a mixture of component density functions, in which
each component density function represents a cluster. The probability distribution function of the
data has the following form:

f (Xi|Φ) =
k

∑
j=1

π j f j(Xi|θ j) (5)

where f j(Xi|θ j) is the probability density function for class j, π j is the mixing proportion of class j
(prior probability of class j), k is the number of clusters, Xi is a d-dimensional random data vector,
θ j is the set of parameters for class j, Φ = (π,θ) is the set of all parameters and f (Xi|Φ) is the
probability density function of our observed data point Xi given the parameters Φ. Since the π j’s
are prior probabilities, they are subject to the following constraints: π j ≥ 0 and ∑k

j=1 π j = 1.
The Xi’s, where i = 1 . . .N, are the data vectors we are trying to cluster, and N is the number

of samples. To cluster Xi, we need to estimate the parameters, Φ. One method for estimating
Φ is to find Φ that maximizes the log-likelihood, log f (X |Φ) = ∑N

i=1 log f (Xi|Φ). To compute
f (Xi|Φ), we need to know the cluster (the missing data) to which Xi (the observed data) belongs.
We apply the EM algorithm, which provides us with “soft-clustering” information; i.e., a data point
Xi can belong to more than one cluster (weighted by its probability to belong to each cluster). The
expectation-maximization (EM) algorithm, introduced in some generality by Dempster, Laird and
Rubin in 1977, is an iterative approximation algorithm for computing the maximum likelihood (ML)
estimate of missing data problems.

Going through the derivation of applying EM on our Gaussian mixture model, we obtain the
following EM update equations (Wolfe, 1970):

E[zi j]
(t) = p(zi j = 1|X ,Φ(t)) =

f j(Xi|Φ
(t)
j )π(t)

j

∑k
s=1 fs(Xi|Φ

(t)
s )π(t)

s

; (6)
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π(t+1)
j =

1
N

N

∑
i=1

E[zi j]
(t); (7)

µ(t+1)
j =

1

Nπ(t+1)
j

N

∑
i=1

E[zi j]
(t) Xi; (8)

Σ(t+1)
j =

1

Nπ(t+1)
j

N

∑
i=1

E[zi j]
(t) (Xi −µ(t+1)

j )(Xi −µ(t+1)
j )T ; (9)

where E[zi j] is the probability that Xi belongs to cluster j given our current parameters and Xi,
∑N

i=1 E[zi j] is the estimated number of data points in class j, and the superscript t refers to the
iteration.

Appendix B. Additional Proofs on ML’s Bias with Dimension

In this appendix, we prove Theorem 4.1 and Corollary 4.1 which state the condition that needs to
be satisfied for the maximum likelihood of feature subset A, ML(ΦA), to be greater than or equal
to the maximum likelihood of feature subset B, ML(ΦB). To prove these results, we first define
the maximum likelihood criterion for a mixture of Gaussians, prove Lemma B.1 which derives a
simplified form of exp(Q(Φ,Φ)) for a finite Gaussian mixture, and Lemma B.2 which states the
condition that needs to be satisfied for the complete expected data log-likelihood Q(·) function
given the observed data and the parameter estimates in feature subset A, Q(ΦA,ΦA), to be greater
than or equal to the Q(·) function of feature subset B, Q(ΦB,ΦB).

The maximum likelihood of our data, X , is

ML = max
Φ

( f (X |Φ)) = max
Φ

N

∏
i=1

(
k

∑
j=1

π j f j(Xi|θ j)), (10)

where f j(Xi|θ j) is the probability density function for class j, π j is the mixing proportion of class
j (prior probability of class j), N is the number of data points, k is the number of clusters, Xi is a
d-dimensional random data vector, θ j is the set of parameters for class j, Φ = (π,θ) is the set of all
parameters and f (X |Φ) is the probability density function of our observed data X = X1,X2, . . .XN

given the parameters Φ. We choose the feature subset that maximizes this criterion.

Lemma B.1 For a finite mixture of Gaussians,

exp(Q(Φ,Φ)) =
K

∏
j=1

πNπ j
j

1

(2π)
dNπ j

2 |Σ j|
Nπ j

2

e−
1
2 dNπ j ,

where xi, i = 1 . . .N, are the N observed data points, zi j is the missing variable equal to one if xi

belongs to cluster j and zero otherwise, π j is the mixture proportion, µ j is the mean and Σ j is the
covariance matrix of each Gaussian cluster respectively, and Φ = (π,µ,Σ) is the set of all estimated
parameters.
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Proof:

Q(Φ,Φ)
4
= Ez|x[log f (x,z|Φ)|x,Φ]

= Ez|x[log f (x|z,Φ)|x,Φ]+Ez|x[log f (z|Φ)|x,Φ]

=
N

∑
i=1

K

∑
j=1

p(zi j = 1|x,Φ) log f j(xi|φ j)+
N

∑
i=1

K

∑
j=1

p(zi j = 1|x,Φ) logπ j

=
N

∑
i=1

K

∑
j=1

p(zi j = 1|x,Φ) log(π j f j(xi|φ j)) (11)

=
N

∑
i=1

K

∑
j=1

E[zi j] log(π j f j(xi|φ j))

exp(Q(Φ,Φ)) =
N

∏
i=1

K

∏
j=1

(π j f j(xi|φ j))
E[zi j]. (12)

Substituting our parameter estimates to Equation 12 and sample data xi’s,

exp(Q(Φ,Φ)) =
K

∏
j=1

π∑N
i=1 E[zi j]

j

N

∏
i=1

(
1

(2π)
d
2 |Σ j|

1
2

e−
1
2 (xi−µ j)

T Σ−1
j (xi−µ j))E[zi j]

=
K

∏
j=1

πNπ j
j

1

(2π)
dNπ j

2 |Σ j|
Nπ j

2

e−
1
2 ∑N

i=1 E[zi j](xi−µ j)
T Σ−1

j (xi−µ j). (13)

Simplifying the exponent of e we obtain

−
1
2

N

∑
i=1

E[zi j](xi −µ j)
T Σ−1

j (xi −µ j)

= −
1
2

N

∑
i=1

E[zi j]tr((xi −µ j)
T Σ−1

j (xi −µ j))

= −
1
2

N

∑
i=1

E[zi j]tr(Σ−1
j (xi −µ j)(xi −µ j)

T )

= −
1
2

tr(Σ−1
j (

N

∑
i=1

E[zi j](xi −µ j)(xi −µ j)
T )).

Adding and subtracting x j, where x j = 1
Nπ j

∑N
i=1 E[zi j]xi, this last expression becomes

−
1
2

tr(Σ−1
j (

N

∑
i=1

E[zi j](xi − x j + x j −µ j)(xi − x j + x j −µ j)
T )).

Cancelling cross-product terms yields

−
1
2

tr(Σ−1
j (

N

∑
i=1

E[zi j](xi − x j)(xi − x j)
T +

N

∑
i=1

E[zi j](x j −µ j)(x j −µ j)
T )),
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and finally substituting the parameter estimates (Equations 7-9) gives the expression

−
1
2

tr(Σ−1
j Σ jNπ j)

= −
1
2

dNπ j. (14)

Thus, exp(Q(Φ,Φ)) can be expressed as

exp(Q(Φ,Φ)) =
K

∏
j=1

πNπ j
j

1

(2π)
dNπ j

2 |Σ j|
Nπ j

2

e−
1
2 dNπ j

Lemma B.2 Assuming identical clustering assignments for feature subsets A and B with dimen-
sions dB ≥ dA, Q(ΦA,ΦA) ≥ Q(ΦB,ΦB) iff

k

∏
j=1

(

|ΣB| j

|ΣA| j

)π j

≥
1

(2πe)(dB−dA)
.

Proof:
Applying Lemma B.1, and assuming subsets A and B have equal clustering assignments,

exp(Q(ΦA,ΦA))

exp(Q(ΦB,ΦB))
≥ 1;

∏k
j=1 πNπ j

j
1

(2πe)
dANπ j

2

1

|ΣA|

Nπ j
2

j

∏k
j=1 πNπ j

j
1

(2πe)
(dB)Nπ j

2

1

|ΣB|

Nπ j
2

j

≥ 1. (15)

Given dB ≥ dA, without loss of generality and cancelling common terms,

k

∏
j=1

(

|ΣB| j

|ΣA| j

)

Nπ j
2

(2πe)
(dB−dA)Nπ j

2 ≥ 1;

k

∏
j=1

(

|ΣB| j

|ΣA| j

)π j

(2πe)(dB−dA)π j ≥ 1;

(2πe)(dB−dA)∑k
j=1 π j

k

∏
j=1

(

|ΣB| j

|ΣA| j

)π j

≥ 1;

k

∏
j=1

(

|ΣB| j

|ΣA| j

)π j

≥
1

(2πe)(dB−dA)
.

Theorem B.1 (Theorem 4.1 restated) For a finite multivariate Gaussian mixture, assuming identi-
cal clustering assignments for feature subsets A and B with dimensions dB ≥ dA, ML(ΦA)≥ML(ΦB)
iff

k

∏
j=1

(

|ΣB| j

|ΣA| j

)π j

≥
1

(2πe)(dB−dA)
.
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Proof:
The log-likelihood, logL(Φ′

) = log f (x|Φ′
).

logL(Φ′
) = Ez|x[log f (x,z|Φ′

)|x,Φ] − Ez|x[log f (z|x,Φ′
)|x,Φ]

4
= Q(Φ′

,Φ) + H(Φ′
,Φ).

H(Φ,Φ) = −E[log f (z|x,Φ)|x,Φ]

= −
N

∑
i=1

k

∑
j=1

p(zi j = 1|xi,φ j) log p(zi j = 1|xi,φ j)

= −
N

∑
i=1

k

∑
j=1

E[zi j] logE[zi j]. (16)

Since the identical clustering assignment assumption means that E[zi j] for feature set A is equal
to E[zi j] for feature set B,

H(ΦA,ΦA) = H(ΦB,ΦB).

Thus,
ML(ΦA)

ML(ΦB)
=

exp(Q(ΦA,ΦA))

exp(Q(ΦB,ΦB))
.

For a finite Gaussian mixture, from Lemma B.2, ML(ΦA)
ML(ΦB) ≥ 1 iff

k

∏
j=1

(

|ΣB| j

|ΣA| j

)π j

≥
1

(2πe)(dB−dA)
.

Corollary B.1 (Corollary 4.1 restated) For a finite multivariate Gaussian mixture, assuming iden-
tical clustering assignments for feature subsets X and (X ,Y ), where X and Y are disjoint, ML(ΦX)≥
ML(ΦXY ) iff

k

∏
j=1

|ΣYY −ΣY X Σ−1
XX ΣXY |

π j
j ≥

1
(2πe)dY

.

Proof:
Applying Theorem 4.1, and if we let A be the marginal feature vector X with dimension dX and

B be the joint feature vector (X ,Y ) with dimension dX + dY (where subsets X and Y are disjoint),
then the maximum likelihood of X is greater than or equal to the maximum likelihood of (X ,Y ) iff

ML(ΦX)

ML(ΦXY )
≥ 1

(2πe)dY

k

∏
j=1











∣

∣

∣

∣

ΣXX ΣXY

ΣY X ΣYY

∣

∣

∣

∣

j

|ΣXX | j











π j

≥ 1.

Exercise 4.11 of Johnson and Wichern (1998) shows that for any square matrix A,
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A =

[

A11 A12

A21 A22

]

|A| = |A22||A11 −A12A−1
22 A21| for |A22| 6= 0

= |A11||A22 −A21A−1
11 A12| for |A11| 6= 0.

Thus,

(2πe)dY

k

∏
j=1

(

1
|ΣXX | j

|ΣXX | j|ΣYY −ΣY X Σ−1
XX ΣXY | j

)π j

≥ 1

k

∏
j=1

|ΣYY −ΣY X Σ−1
XX ΣXY |

π j
j ≥

1
(2πe)dY

.

Now, what do these results mean? One can compute the maximum log-likelihood, log ML
efficiently as Q(Φ,Φ)+H(Φ,Φ) by applying Lemma B.1 and Equation 16. Lemma B.1 shows that
the ML criterion prefers low covariance clusters. Equation 16 shows that the ML criterion penalizes
increase in cluster entropy. Theorem 4.1 and Corollary 4.1 reveal the dependencies of comparing
the ML criterion for different dimensions. Note that the left hand side term of Corollary 4.1 is the
determinant of the covariance of f (Y |X). It is the covariance of Y minus the correlation of Y and X .
For a criterion measure to be unbiased with respect to dimension, the criterion value should be the
same for the different subsets when the cluster assignments are equal (and should not be dependent
on the dimension). But, in this case, ML increases when the additional feature has small variance
and decreases when the additional feature has large variance.
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Abstract
The computational complexity of learning from binary examples is investigated for linear threshold
neurons. We introduce combinatorial measures that create classes of infinitely many learning prob-
lems with sample restrictions. We analyze how the complexity of these problems depends on the
values for the measures. The results are established as dichotomy theorems showing that each prob-
lem is either NP-complete or solvable in polynomial time. In particular, we consider consistency
and maximum consistency problems for neurons with binary weights, and maximum consistency
problems for neurons with arbitrary weights. We determine for each problem class the dividing
line between the NP-complete and polynomial-time solvable problems. Moreover, all efficiently
solvable problems are shown to have constructive algorithms that require no more than linear time
on a random access machine model. Similar dichotomies are exhibited for neurons with bounded
threshold. The results demonstrate on the one hand that the consideration of sample constraints can
lead to the discovery of new efficient algorithms for non-trivial learning problems. On the other
hand, hard learning problems may remain intractable even for severely restricted samples.

Keywords: linear threshold neuron, consistency problem, computational complexity, linear-time
algorithm, NP-completeness

1. Introduction

The ability to learn is certainly one of the most challenging qualities that people have ever demanded
from computers. There is no doubt that a major advancement in the development of learning algo-
rithms has been made due to the use of neural networks. Today, they provide the basis for some of
the most successful learning techniques. This achievement, however, is compromised by the fact
that the running times required by neural learning algorithms are often immense. On the theoretical
side, investigations of the computational complexity of learning problems have supported the con-
jecture that neural learning is generally hard: Theory considers an algorithm as efficient if its run-
ning time is bounded by a polynomial in the input length. Based on the theory of NP-completeness
(see, e.g., Garey and Johnson, 1979) researchers have established numerous intractability results
for neural learning problems. Consequently, no efficient, that is, polynomial-time, algorithm for
solving these problems can exist if the complexity classes P and NP are different. (See, e.g., Šı́ma,
2002, for a comprehensive list of hardness results concerning single neurons and neural networks.)

A useful approach for studying the complexity of learning is to consider the consistency prob-
lem. Associated with a class of functions, the so-called hypothesis class, the consistency problem is
a decision problem. It poses the question whether for a given set of labeled examples, the training
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sample, there is some hypothesis in the class that is consistent with all examples, that is, assigns
the correct output values. The consistency problem is also known as loading problem (Judd, 1990),
fitting problem (Natarajan, 1991), or training problem (Blum and Rivest, 1992). A variant of the
consistency problem is the maximum consistency problem, also known as minimizing disagreement
problem. Its instances consist of a training sample and a natural number k. The question is to decide
whether there is a hypothesis consistent with some subset of at least k examples. The maximum
consistency problem is a generalization of the consistency problem in that the latter is a subproblem
of the former: The consistency problem can be obtained from the maximum consistency problem
by setting k equal to the number of examples. Consequently, if for a given hypothesis class the
consistency problem is NP-hard then the maximum consistency problem is NP-hard, too. Consis-
tency and maximum consistency problems are studied as key problems in the computational models
of learning known as probably approximately correct (PAC) learning and agnostic PAC learning.
A fundamental result states that, under the assumption that the complexity classes RP and NP are
different, PAC learning cannot be efficient for a hypothesis class if the consistency problem for this
class is NP-hard (Pitt and Valiant, 1988; Blumer et al., 1989). An analogous result links the model
of agnostic PAC learning with the maximum consistency problem (Kearns et al., 1994; Anthony and
Bartlett, 1999).

There has been perseverating interest in theoretical issues of learning using single neurons as
hypothesis class (see, e.g., Servedio, 2002, and the references there). One of the extensively studied
models is the linear threshold neuron, also known as McCulloch-Pitts neuron (McCulloch and Pitts,
1943). It serves as elementary building block for many neural network types (see, e.g., Haykin,
1999). While the linear threshold neuron has arbitrary real-valued weights, a variant that has gained
particular attention is obtained by restricting the weights to binary values (see, e.g., Golea and
Marchand, 1993; Fang and Venkatesh, 1996; Kim and Roche, 1998; Sommer and Palm, 1999). With
binary weights a linear threshold neuron is still able to compute fundamental Boolean functions
such as conjunction, disjunction, and r-of-k threshold functions1 that have been of specific interest
in questions of learning (Hampson and Volper, 1986; Littlestone, 1988; Pitt and Valiant, 1988).

In this article, we investigate the complexity of consistency and maximum consistency prob-
lems for linear threshold neurons with binary and with arbitrary weights. We do this under the
assumption that the training examples are binary, that is, have entries from {0,1}. While the con-
sistency problem for linear threshold neurons with arbitrary weights is known to be solvable in
polynomial time using methods of linear programming (see, e.g., Maass and Turán, 1994; Anthony
and Bartlett, 1999) we focus on those problems that are NP-complete: The consistency problem for
linear threshold neurons with binary weights has been proved to be NP-complete by Pitt and Valiant
(1988). Hence, also the maximum consistency problem for these neurons is NP-complete. The
maximum consistency problem for linear threshold neurons with arbitrary weights is known to be
NP-complete from the work of Höffgen et al. (1995) improving an earlier result by Amaldi (1991).

We take a closer look at these problems by introducing and analyzing subproblems. In other
words, we raise the question whether these problems become easier when the training samples are
restricted. To this end we define two combinatorial measures for characterizing the complexity of
a sample. The first quantity, called coincidence, indicates the maximum number of components
in which any two examples are both non-zero. The second measure, called sparseness, represents
the maximum number of non-zero components, or the Hamming-weight, of any example. The

1. A Boolean r-of-k threshold function outputs 1 if and only if at least r in a specified subset of k variables have the
value 1.
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choice of these measures is guided by the insight that learning for single neurons is easy when
the coincidence or the sparseness of the samples is severely limited. So, it is not hard to see that
the consistency problem is trivial when the examples are pairwise orthogonal, that is, when the
sample has coincidence zero. The same observation can be made for the case when the examples
are required to be extremely sparse. A further motivation for introducing sparseness arises from
investigations of neural associative memories. In these, sparseness has been shown to be relevant
for their storage capacities using specific learning rules (Palm, 1980).

By introducing coincidence and sparseness as sample restrictions we obtain infinite classes of
consistency and maximum consistency problems: For each pair c,d of natural numbers there is
the (maximum) consistency problem with coincidence c and sparseness d. The question arises
how the complexity of the consistency and the maximum consistency problems depends on the
values for coincidence and sparseness. As one of the main results it emerges that these problems are
already NP-complete when coincidence and sparseness are bounded, a fact that does not follow from
previous work. Moreover, we give a complete categorization of these consistency and maximum
consistency problems into NP-complete and polynomial-time solvable. In other words, we establish
so-called dichotomy theorems for these problems. Given an infinite class of problems, a dichotomy
theorem states that each problem is either NP-complete or contained in the complexity class P. Thus,
if P 6= NP, the dichotomy theorem separates the efficiently solvable problems from the intractable
ones. A dichotomy theorem is an important finding since it is known that if P and NP are different
then there are infinitely many problems in NP that are neither in P nor NP-complete (see, e.g.,
Garey and Johnson, 1979). It is therefore significant that none of these problems of intermediate
complexity is found among the (maximum) consistency problems considered here. In computational
complexity there are only a few dichotomy theorems known. The most popular one is that for k-
SAT which states that the satisfiability problem for conjunctions of Boolean clauses, where each
clause has size at most k, is NP-complete when k is at least 3 and solvable in polynomial time for
k at most 2. The dichotomy of k-SAT emerges as a special case of the renowned result of Schaefer
(1978) who established a more general dichotomy theorem for satisfiability problems. Concerning
more recent results we refer to Kirousis and Kolaitis (2003) where also a brief survey on dichotomy
theorems in computational complexity is given. The first dichotomy theorem in conjunction with
learning problems has been provided by Dalmau (1999) for learning quantified Boolean formulas
(see also Dalmau and Jeavons, 2003).

In detail, we prove the following dichotomy theorems: The consistency problem for the linear
threshold neuron with binary weights is NP-complete if the samples have coincidence at least 1
and sparseness at least 4. On the other hand, if the samples have coincidence 0 or sparseness at
most 3, the problem becomes solvable in polynomial time. Further, the maximum consistency
problem for the linear threshold neuron with binary weights is NP-complete for coincidence at least
1 and sparseness at least 2, whereas for coincidence 0 or sparseness 1 it is in P. This last dichotomy
theorem holds also for the maximum consistency problem with respect to the linear threshold neuron
with arbitrary weights. All polynomial-time results are established by showing that the problems can
be solved in linear time on a random access machine (RAM) model. Moreover, the algorithms we
present for these problems are constructive, that is, they calculate a solution if one exists. We further
obtain dichotomies for linear threshold neurons with binary weights and a bounded threshold. In
particular, the dichotomy of the consistency problems that holds for these neurons with arbitrary
threshold is also existent when the threshold is bounded by some value larger than or equal to 2.
On the other hand, if the bound on the threshold is at most 1, the consistency problem is solvable
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in linear time on a RAM. For the maximum consistency problem and linear threshold neurons with
binary weights NP-completeness is found at a value for the threshold of 1 or greater, whereas linear-
time solvability holds when the threshold is equal to 0.

The dichotomy theorems presented here extend the NP-completeness results for learning with
single neurons to an infinite class of subproblems. Therefore, they confirm that neural learning
belongs to the hardest computational problems that one needs to solve in practice. On the other
hand, those problems that we find to be solvable in polynomial time can be solved even in linear time
on a RAM. The algorithms designed for these problems give interesting new insights. Moreover,
efficiently solvable subproblems have been successfully used for the design of improved heuristics
for NP-complete problems (Zheng and Stuckey, 2002). Therefore, it is reasonable to expect that
the new linear-time algorithms presented here may lead to new and faster heuristics for learning in
single neurons and neural networks.

In Section 2 we introduce the definitions of the basic concepts. The dichotomy theorems are
stated in Section 3. The proofs are given in the following two sections: Section 4 is concerned with
the NP-completeness results while the linear-time algorithms are presented in Section 5. Section 6 is
devoted to some conclusions and open questions. In the appendix we establish the NP-completeness
of a new variant of the satisfiability problem that is used in Section 4. We assume that the reader is
familiar with the theory of NP-completeness as covered, for instance, by Garey and Johnson (1979).

Bibliographic Note. Some of the results in this article have been previously described in a
technical report (Schmitt, 1994a) and presented at the International Conference on Artificial Neural
Networks, ICANN ’95, in Paris (Schmitt, 1995). This article is a thoroughly revised and extended
version of these papers.

2. Neurons, Samples, Problems, and Algorithms

We begin by defining the neuron model and the function classes associated with it. Then we in-
troduce the notion of a sample and specify the computational problems involved with neurons and
samples. Finally, with regard to the linear-time algorithms presented in Section 5, we describe the
computer model of the random access machine (RAM) on which the time bounds rely.

2.1 Neurons

A linear threshold neuron has parameters w1, . . . ,wn, t ∈ R, where w1, . . . ,wn are the weights and
t is the threshold. The class of linearly separable Boolean functions in n variables, denoted Ln,
is the class of functions f : {0,1}n → {0,1} that can be computed by a linear threshold neuron.
Specifically, for every f ∈ Ln there are weights w1, . . . ,wn and a threshold t such that for all x ∈
{0,1}n,

f (x) =

{

1 if w1x1 + · · ·+wnxn ≥ t,
0 otherwise.

We use Bn to denote the subclass of linearly separable Boolean functions in n variables that can
be computed by a linear threshold neuron using only binary weights, that is, w1, . . . ,wn ∈ {0,1}.
Further, B`

n is the subclass of functions in Bn that can be computed with threshold t ≤ `. Clearly, a
value of ` ∈ {0, . . . ,n} is sufficient and we have Bn

n = Bn.
By omitting the subscript n we refer to the union of the respective classes such as, for instance,

L =
⋃

n≥1 Ln.
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2.2 Samples

A sample S is a finite set S ⊆ {0,1}n ×{0,1}. The elements of S are called examples. Given a
sample S, the set of positive examples Pos(S) and the set of negative examples Neg(S) of S are
defined by

Pos(S) = {x | (x,1) ∈ S},

Neg(S) = {x | (x,0) ∈ S}.

A sample may contain examples that are both positive and negative. Otherwise, that is, if Pos(S)∩
Neg(S) = /0, the sample is said to be consistent.2 The domain of a sample S, denoted Dom(S), is the
set

Dom(S) = Pos(S)∪Neg(S).

We introduce two combinatorial measures that assign natural numbers to samples: coincidence
and sparseness. The coincidence of a sample S, denoted Coin(S), is

Coin(S) =

{

max{x · y | x,y ∈ Dom(S), x 6= y} if |S| ≥ 2,

0 otherwise,

where x · y denotes the inner product. The sparseness of S, Sparse(S), is

Sparse(S) =

{

max{x · x | x ∈ Dom(S)} if S 6= /0,

0 otherwise.

Thus, Coin(S) is the maximum number of components in which two different elements in the do-
main of S have a 1 in common, and Sparse(S) is the maximum number of 1s, or the Hamming
weight, of an element. Note that Coin(S) ≤ Sparse(S). Thus, bounding the sparseness of samples
by some constant also bounds their coincidence by the same constant.

2.3 Consistency Problems

Given a sample S, a function f is said to be consistent with S if f satisfies f (x) = a for all (x,a) ∈ S.
The consistency problem for a class F of Boolean functions is the problem to decide whether for an
input sample S there exists some function f ∈ F that is consistent with S. Loading problem, fitting
problem, and training problem are synonyms for the consistency problem.

Let F be a class of Boolean functions and let c,d ∈ N. We define the following consistency
problems for F with sample restrictions:

F -CONSISTENCY WITH COINCIDENCE c
Instance: A sample S with Coin(S) ≤ c.
Question: Is there a function f ∈ F that is consistent with S?

F -CONSISTENCY WITH SPARSENESS d
Instance: A sample S with Sparse(S) ≤ d.
Question: Is there a function f ∈ F that is consistent with S?

2. The term “consistent sample” uses the word “consistent” in a somewhat different sense than the rest of the article.
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The definition of the problem F -CONSISTENCY WITH COINCIDENCE c AND SPARSENESS d is
similar.

The instances of the maximum consistency problem for a class F of functions consist of a
sample S and a number k ∈ N. The question is whether there exists a subset of S with at least k
elements and a function f ∈ F consistent with that subset. Given numbers c,d ∈ N, we define
maximum consistency problems for F with sample restrictions as follows:

MAX-F -CONSISTENCY WITH COINCIDENCE c
Instance: A sample S with Coin(S) ≤ c and a natural number k.
Question: Is there a subsample S′ ⊆ S with |S′| ≥ k and a function f ∈ F that

is consistent with S′?

MAX-F -CONSISTENCY WITH SPARSENESS d
Instance: A sample S with Sparse(S) ≤ d and a natural number k.
Question: Is there a subsample S′ ⊆ S with |S′| ≥ k and a function f ∈ F that

is consistent with S′?

Further, we consider the problem called MAX-F -CONSISTENCY WITH COINCIDENCE c AND

SPARSENESS d, which is the problem where the instances satisfy both constraints.
There are some natural relationships among the complexities of these problems. Clearly, an

algorithm that solves the consistency problem with sparseness d solves also every consistency prob-
lem with sparseness less than d for the same function class. Furthermore, if the consistency prob-
lem is shown to be NP-hard for some sparseness d then it follows that all consistency problems
with sparseness larger than d for the same function class are NP-hard as well, since the reduction
established for sparseness d is also valid for larger bounds on the sparseness.

Similar considerations can be made with regard to coincidence. Moreover, complexity results
for consistency problems with bounded coincidence have consequences for the complexity of con-
sistency problems with bounded sparseness, and vice versa. In particular, an algorithm that solves
the consistency problem for coincidence c solves also the consistency problem for sparseness c+1
since every sample with sparseness at most c + 1 has coincidence no more than c. (Note that coin-
cidence is measured using non-identical pairs only.) Correspondingly, NP-hardness for sparseness
d implies NP-hardness for coincidence d −1.

Analogous interdependences hold among the maximum consistency problems with sample re-
strictions. Additionally, maximum consistency problems are related to consistency problems in that
the consistency problem is a subproblem of the corresponding maximum consistency problem. The
former is obtained from the latter by letting the number k be equal to the cardinality of the sample.

2.4 Linear-Time Algorithms

We give linear-time algorithms for all problems not shown to be NP-complete. While the complexity
class P is known to be widely machine independent, this is not the case for the class of problems
solved in linear time on some machine. In fact, a detailed account of the computer model must be
given. We adopt the model of a random access machine (RAM) as it is the most realistic formal
computer model and frequently used when analyzing the running time of algorithms (see, e.g.,
van Emde Boas, 1990). The instruction set of the RAM model comprises the standard load and
store operations including the use of indirect addresses. Its arithmetic operations are addition and
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subtraction, whereas multiplication and division are not available. We give time bounds for RAMs in
the uniform measure, that is, the execution of an instruction counts as one unit of time. It is known
that every RAM that requires time t(n) in the uniform measure can be simulated on a multi-tape
Turing machine in time O(t3(n)) (Cook and Reckhow, 1973). In particular, a linear-time algorithm
on a RAM ensures that the problem it solves belongs to P.

3. Dichotomy Theorems

We present five dichotomy theorems about the complexity of consistency problems with sample
restrictions. They deal with the function classes B,B `, and L introduced in Section 2.1 and the
consistency problems and maximum consistency problems with sample restrictions defined in Sec-
tion 2.3. The dichotomy theorems establish that, with one exception, each of these problems is
either NP-complete or solvable in polynomial time. The latter is shown by exhibiting linear-time
algorithms in all cases. The exception is the problem class arising from L -CONSISTENCY. All
subproblems of L -CONSISTENCY can be solved in polynomial time as L -CONSISTENCY itself
is solvable in polynomial time using linear programming (see, e.g., Anthony and Bartlett, 1999;
Maass and Turán, 1994). Therefore, if P 6= NP, none of the subproblems of L -CONSISTENCY is
NP-complete.

The proofs for the statements that claim NP-completeness are presented in Section 4. The linear
time bounds are established in Section 5 by giving algorithms that solve the problems constructively,
that is, provide a solution if there exists one.

The first dichotomy theorem is concerned with the consistency problem for neurons with binary
weights and arbitrary threshold.

Theorem 1 B -CONSISTENCY WITH COINCIDENCE c AND SPARSENESS d is NP-complete when-
ever c ≥ 1 and d ≥ 4. On the other hand, B -CONSISTENCY WITH COINCIDENCE 0 and B -
CONSISTENCY WITH SPARSENESS d for d ≤ 3 is solvable in linear time.

An analogous result holds for neurons where the threshold is bounded by a constant of value at
least 2. Moreover, if the threshold is required to be at most 1, we obtain solvability in linear time
for all values of coincidence and sparseness.

Theorem 2 For every ` ≥ 2, Theorem 1 holds with B ` in place of B . On the other hand, B1-
CONSISTENCY WITH COINCIDENCE c and B1-CONSISTENCY WITH SPARSENESS d is solvable
in linear time for all c and d.

These statements are complemented by the following two theorems that consider the corre-
sponding maximum consistency problems.

Theorem 3 MAX-B -CONSISTENCY WITH COINCIDENCE c AND SPARSENESS d is NP-complete
whenever c ≥ 1 and d ≥ 2. On the other hand, MAX-B -CONSISTENCY WITH COINCIDENCE 0
and MAX-B -CONSISTENCY WITH SPARSENESS d for d ≤ 1 is solvable in linear time.

A corresponding result for neurons with bounded threshold is the following one.

Theorem 4 For every ` ≥ 1, Theorem 3 holds with B ` in place of B . On the other hand, MAX-
B0-CONSISTENCY WITH COINCIDENCE c and MAX-B0-CONSISTENCY WITH SPARSENESS d is
solvable in linear time for all c and d.
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Figure 1: The dichotomies of the consistency and maximum consistency problems with coinci-
dence c and sparseness d: (a) Consistency problems for the classes B and B `, where `≥ 2
(see Theorems 1 and 2); (b) maximum consistency problems for B,B `, where ` ≥ 1, and
L (see Theorems 3, 4, and 5). Linear time refers to the computing time required on a
RAM model with uniform measure (see Section 2.4).

Finally, we present a dichotomy theorem for maximum consistency problems regarding neurons
with arbitrary weights.

Theorem 5 MAX-L -CONSISTENCY WITH COINCIDENCE c AND SPARSENESS d is NP-complete
whenever c ≥ 1 and d ≥ 2. On the other hand, MAX-L -CONSISTENCY WITH COINCIDENCE 0
and MAX-L -CONSISTENCY WITH SPARSENESS d for d ≤ 1 is solvable in linear time.

The dichotomy theorems are illustrated in Figure 1. The dot with coordinates (c,d) represents
the consistency problem or the maximum consistency problem, respectively, with coincidence c and
sparseness d. Note that for c ≥ d the problem at coordinate (c,d) can be identified with the problem
at (d −1,d) (see the discussion at the end of Section 2.3). Problems with sparseness 0 are omitted
as they are trivial.

4. NP-Complete Problems

We establish the NP-completeness for the consistency problems of Theorems 1 and 2 in Section 4.1.
Section 4.2 deals with the maximum consistency problems of Theorems 3, 4, and 5. In all cases it
is sufficient to prove NP-hardness since membership in NP is easy to derive: Guessing the weights
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and the threshold and checking consistency or maximum consistency for the given function classes
can be done in polynomial time.3

4.1 Consistency

The problem B -CONSISTENCY without sample restrictions was shown to be NP-complete by Pitt
and Valiant (1988). They have defined a reduction from the problem ZERO-ONE INTEGER PRO-
GRAMMING that uses samples of unbounded coincidence and, hence, unbounded sparseness. To
prove the stronger result, we make a new approach and establish a reduction from a problem that is
a variant of the satisfiability problem which we call ALMOST DISJOINT POSITIVE 1-IN-3SAT.

ALMOST DISJOINT POSITIVE 1-IN-3SAT

Instance: A set U of variables, a collection C of subsets of U such that each
subset C ∈ C has exactly three elements and each pair of subsets
C,D ∈ C ,C 6= D, satisfies |C∩D| ≤ 1.

Question: Is there a truth assignment α : U →{0,1} such that each subset in C
has exactly one true variable?

The attribute “positive” refers to the fact that the variables are not negated; “almost disjoint” means
that two subsets have at most one variable in common. The problem POSITIVE 1-IN-3SAT is known
to be NP-complete (Garey and Johnson, 1979, p. 259). That the subproblem is NP-complete as well
is claimed by the following statement. Its proof is given in the appendix.

Lemma 6 ALMOST DISJOINT POSITIVE 1-IN-3SAT is NP-complete.

This fact is employed in the following result. It covers the NP-completeness part of in The-
orem 1. (Note that, as was argued in Section 2.3, NP-hardness of the consistency problem with
coincidence c and sparseness d implies NP-hardness for any coincidence c′ ≥ c and sparseness
d′ ≥ d.)

Theorem 7 B -CONSISTENCY WITH COINCIDENCE 1 AND SPARSENESS 4 is NP-complete.

Proof The proof is by reduction from the problem ALMOST DISJOINT POSITIVE 1-IN-3SAT de-
fined above. Assume that an instance of this problem is given by the set of variables U = {u1, . . . ,un}
and the collection of subsets C = {c1, . . . ,cm}. The reduction maps this instance to a sample
S⊆{0,1}4n+m+2×{0,1}. We introduce the following notation: Given a set {i1, . . . , i j}⊆ {1, . . . ,k},
let [i1, . . . , i j]k denote that element of {0,1}k which has a 1 in positions i1, . . . , i j, and 0 elsewhere.
Then S is constructed as follows: For each variable ui ∈U , we define four examples

[i,n+ i]4n+m+2 ∈ Neg(S), (1)

[2n+ i,3n+ i]4n+m+2 ∈ Neg(S), (2)

[i,3n+ i,4n+m+2]4n+m+2 ∈ Pos(S), (3)

[n+ i,2n+ i,4n+m+2]4n+m+2 ∈ Pos(S). (4)

3. For the function class L one makes use of the fact that on binary inputs a linear threshold neuron with arbitrary
weights needs no more than polynomially in n many bits to represent weights and threshold (see, e.g., Schmitt,
1994b).
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Position i Value of wi

1, . . . ,n α(ui)

n+1, . . . ,2n 1−α(ui)

2n+1, . . . ,3n α(ui)

3n+1, . . . ,4n 1−α(ui)

4n+1, . . . ,4n+m 1
4n+m+1 1
4n+m+2 1

Table 1: Definition of the weights for a given truth assignment α.

Each subset c` = {ui,u j,uk} ∈ C gives rise to three examples

[i, j,k,4n+ `]4n+m+2 ∈ Pos(S), (5)

[n+ i,n+ j,n+ k]4n+m+2 ∈ Pos(S), (6)

[4n+ `,4n+m+2]4n+m+2 ∈ Pos(S). (7)

Finally, we add the three examples

[4n+m+1]4n+m+2 ∈ Neg(S), (8)

[4n+m+2]4n+m+2 ∈ Neg(S), (9)

[4n+m+1,4n+m+2]4n+m+2 ∈ Pos(S). (10)

Obviously, S can be computed from U and C in polynomial time. Further, as can easily be checked,
we have Coin(S) ≤ 1 and Sparse(S) ≤ 4. (Note that every pair of different subsets in C has at most
one common variable. Hence, the examples in (5) and (6) that arise from different subsets have
coincidence at most 1.)

It remains to show that the reduction is correct, that is, that C has a truth assignment with exactly
one true variable in each subset if and only if there exists a function in B4n+m+2 that is consistent
with S. In order to prove the “only if” part, assume that α : U → {0,1} is a truth assignment that
satisfies the assumption. Define the weights w1, . . . ,w4n as follows: For i = 1, . . . ,n, let

wi = w2n+i = α(ui),
wn+i = w3n+i = 1−α(ui).

The remaining weights and the threshold are determined by

w4n+1 = · · · = w4n+m+2 = 1 and t = 2.

The representation of the truth assignment by the weights is shown in Table 1. Using the fact that α
assigns exactly one 1 to each subset in C , it is easy to verify that the function represented by these
parameter values is consistent with S.

For establishing the “if” part, let the weights w1, . . . ,w4n+m+2 ∈ {0,1} and the threshold t rep-
resent a function that is consistent with S. The examples in (8), (9), and (10) imply that

w4n+m+1 < t,

w4n+m+2 < t,

w4n+m+1 +w4n+m+2 ≥ t,
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from which it follows that w4n+m+1 = 1 and w4n+m+2 = 1. Hence, the threshold satisfies 1 < t ≤ 2,
and we may assume without loss of generality that t = 2. Then the examples in (7) entail that
w4n+1 = · · ·= w4n+m = 1. From the examples in (1) to (4) and the facts that w4n+m+2 = 1 and t = 2,
we derive the inequalities

wi +wn+i ≤ 1,

w2n+i +w3n+i ≤ 1,

wi +w3n+i ≥ 1,

wn+i +w2n+i ≥ 1,

for i = 1, . . . ,n. These imply the equalities

wi +wn+i = 1, (11)

for i = 1, . . . ,n. We define the truth assignment α : U →{0,1} by

α(ui) = wi,

for i = 1, . . . ,n. The examples in (5), (6) and the fact that t = 2 yield the inequalities

wi +w j +wk +w4n+` ≥ 2,

wn+i +wn+ j +wn+k ≥ 2,

for each subset c` = {ui,u j,uk} ∈ C . From these, the fact that w4n+1 = · · · = w4n+m = 1, and the
equations (11) we get that c` satisfies

α(ui)+α(u j)+α(uk) = 1.

Thus, each subset in C has exactly one 1 assigned by α. This completes the correctness proof for
the reduction.

The foregoing proof shows that the same reduction can be used whenever the threshold is al-
lowed to take on the value 2. Thus, it follows that the problems in Theorem 7 are NP-complete also
for neurons with threshold at most `, where `≥ 2. This observation establishes the NP-completeness
statement of Theorem 2.

Corollary 8 For every ` ≥ 2, B `-CONSISTENCY WITH COINCIDENCE 1 AND SPARSENESS 4 is
NP-complete.

4.2 Maximum Consistency

Now, we address the NP-completeness of the maximum consistency problems. The following result
covers the intractability part of Theorem 3.

Theorem 9 MAX-B -CONSISTENCY WITH COINCIDENCE 1 AND SPARSENESS 2 is NP-complete.
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Proof Höffgen et al. (1995) have shown that the maximum consistency problem for the class L
and for samples without restrictions is NP-complete. They constructed a reduction from VERTEX

COVER (Garey and Johnson, 1979, p. 190). This is the problem to decide, given a graph G = (V,E)
and a number k, whether there exists a set V ′ ⊆V with |V ′| ≤ k such that for each edge {u,v} ∈ E at
least one of u and v belongs to V ′. We use this problem for the reduction, too, but we take account
of the fact that the weights are from the set {0,1}.

Let (V,E) and k be an instance of VERTEX COVER, where V = {v1, . . . ,vn}. We define the
sample S ⊆ {0,1}2n ×{0,1} using the notation introduced in the proof of Theorem 7. For each
vi ∈V , there is a “vertex example”

[i,n+ i]2n ∈ Neg(S).

Each e = {vi,v j} ∈ E results in two “edge examples”

[i, j]2n ∈ Pos(S),

[n+ i,n+ j]2n ∈ Pos(S).

The cardinality of the subsample in the instance of the maximum consistency problem is set to the
value |S| − k. It is obvious that Coin(S) ≤ 1 and Sparse(S) ≤ 2 holds, and that the reduction is
computable in polynomial time.

We claim that (V,E) has a vertex cover of cardinality at most k if and only if there exists a
function in B2n that is consistent with at least |S|− k examples. Let V ′ ⊆ V be a vertex cover with
at most k elements. Define the weights w1, . . . ,w2n by

wi = wn+i =

{

1 if vi ∈V ′,

0 otherwise,

for i = 1, . . . ,n, and let the threshold be t = 1. Then, the vertex example [i,n + i]2n is classified
correctly if and only if vi ∈V \V ′. Further, since V ′ is a vertex cover, all edge examples are classified
correctly. Thus, the function computed by this neuron is consistent with at least |S|− k elements.

On the other hand, let the weights w1, . . . ,w2n and the threshold t represent a function that is
consistent with a subsample of S of cardinality at least |S|−k. Define a set V ′ of vertices as follows:
For each vertex example that is classified wrongly include the corresponding vertex in V ′; for each
edge example that is classified wrongly arbitrarily choose one of the vertices the edge is incident
with and include it in V ′. Consequently, V ′ contains at most k elements. In order to show that V ′

is a vertex cover, assume that {vi,v j} ∈ E is not covered, that is, we have {vi,v j}∩V ′ = /0. Then,
by the construction of V ′, the function is consistent with the two vertex examples that arose from vi

and v j, and it is consistent with the two edge examples due to {vi,v j}. Thus, we get

wi +wn+i +w j +wn+ j < 2t,

wi +w j +wn+i +wn+ j ≥ 2t,

a contradiction. This implies that V ′ is a vertex cover.

The reduction defined in the previous proof remains valid under the additional requirement that
the threshold satisfies t ≤ 1. As a consequence, we obtain the NP-completeness result claimed by
Theorem 4.
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Corollary 10 For every ` ≥ 1, MAX-B `-CONSISTENCY WITH COINCIDENCE 1 AND SPARSE-
NESS 2 is NP-complete.

Furthermore, we observe that the proof of Theorem 9 does not make use of the assumption
that the weights must be from the set {0,1}. Consequently, the reduction works also for uncon-
strained weights, that is, for the function class L . This establishes the NP-completeness statement
of Theorem 5.

Corollary 11 MAX-L -CONSISTENCY WITH COINCIDENCE 1 AND SPARSENESS 2 is NP-complete.

5. Problems Solvable in Linear Time

In the following, we show that all consistency problems and maximum consistency problems not
yet considered in the foregoing section have algorithms that run in linear time on a RAM as made
precise in Section 2.4. Thus, if P 6= NP holds, the values of coincidence and sparseness established
in the NP-completeness results are optimal. Moreover, as any algorithm that solves a consistency or
maximum consistency problem must pass through the entire sample, the linear-time bound cannot
be improved either. Thus, we not only obtain a complete characterization of the complexity of
consistency problems for the function classes B , B `, and L with sample restrictions, but also reveal
the striking fact that, with respect to the RAM computer model, these classes consist solely of
problems of the lowest and highest complexity in NP. All algorithms presented here are constructive,
that is, they solve the decision problem by computing a solution if one exists.

5.1 Consistency

It is convenient to begin with the consistency problem for neurons with a bounded threshold. The
case that remains to be considered is the function class B 1. The result for this class implies the
second part of Theorem 2. It is valid for samples with arbitrary coincidence and sparseness.

Theorem 12 B1-CONSISTENCY is solvable in linear time.

Proof If there are weights w1, . . . ,wn ∈ {0,1} and a threshold t ∈ {0,1} consistent with a given
sample S then we may set t = 0 if Neg(S) = /0. On the other hand, if S contains negative examples,
we must have t = 1. Then we ensure that w ·x = 0 for all x ∈ Neg(S). These are the steps performed
by Algorithm 1, which is basically the standard consistency algorithm for disjunctions. The most
time consuming part is the for-loop in lines 8–12. It is obvious that this statement can be imple-
mented such that it requires no more than linear time on a RAM.

It is easy to see that if some function in B is consistent with a sample S that has coincidence
0, the threshold can be chosen to satisfy t ≤ 1. Therefore, Algorithm 1 solves also the problem
B -CONSISTENCY WITH COINCIDENCE 0.

Corollary 13 B -CONSISTENCY WITH COINCIDENCE 0 is solvable in linear time.

Thus, the first of the two statements in Theorem 1 that claim a linear time bound is covered. The
second statement is established by the following result.
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Algorithm 1 B1-CONSISTENCY

Input: sample S ⊆ {0,1}n ×{0,1}
Output: w1, . . . ,wn, t

1: for i = 1, . . . ,n do
2: wi := 1
3: end for;
4: if Neg(S) = /0 then
5: t := 0;
6: else
7: t := 1;
8: for all x ∈ Neg(S) do
9: if there is some i ∈ {1, . . . ,n} with xi = 1 then

10: wi := 0
11: end if
12: end for
13: end if.

Theorem 14 B -CONSISTENCY WITH SPARSENESS 3 is solvable in linear time.

Proof We show that Algorithm 2 computes a solution for samples with sparseness 3 provided
that one exists. Without loss of generality we may assume that the threshold satisfies t ≤ 3. The
algorithm has three parts that correspond to the possible values for the threshold: t ≤ 1, t = 3, and
t = 2. In lines 1–2 Algorithm 1 is used to check whether there is a function in the class B 1 consistent
with S.

If this fails, the algorithm assumes in lines 3–12 that t = 3. Here, the assignment of values to
the weights is based on the fact that every positive example must reach the threshold. Hence, its
non-zero components, of which there must be exactly three, specify which weights receive the value
1.

In the last part, starting from line 13, we can only have that t = 2. We show that this case of
the consistency problem can be solved via a 2-SATISFIABILITY problem. The algorithm maps the
sample S to a set C of clauses over the variables w1, . . . ,wn. Each clause has at most two literals of
the form wi or ¬wi. For each element x ∈ Dom(S) the set C is augmented with clauses that depend
on the properties of x. Lines 17–23 deal with the case that x has a 1 in exactly three positions. If x is
a positive example then no two weights at these positions may both be equal to 0. This is expressed
by the three clauses in line 20. If x is a negative example then no two of these weights may both be
equal to 1. This is taken into account by adding the three clauses in line 22. Lines 24–30 treat the
examples with exactly two 1s. If x is positive then both weights must be equal to 1 (line 27); if x is
negative then at least one weight must be 0 (line 29). Finally, if x has at most one non-zero position
and x is positive then the consistency problem has no solution. This is taken care of in line 34 by
adding two contradictory clauses. On the other hand, if x is negative then it will be classified as such
and nothing needs to be done. In the last step an algorithm for 2-SATISFIABILITY is called with the
constructed set of clauses as input.

It remains to verify that the algorithm runs in linear time on a RAM. Using Theorem 12 we infer
that the part in lines 1–14 requires no more than linear time. The construction of the set of clauses in
lines 15–37 is performed in linear time. (Note that each example gives rise to at most three clauses.)
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Algorithms that compute satisfying assignments for 2-SATISFIABILITY problems in linear time on
a RAM with uniform measure have been designed by Even et al. (1976) and Aspvall et al. (1979).
It is obvious that the size of the constructed instance for 2-SATISFIABILITY is at most linear in the
size of the sample. Thus, line 38 can be executed in linear time. We conclude that the running time
of Algorithm 2 on a random access machine is linear.

With the previous result the proof of Theorem 1 is completed. Obviously, Algorithm 2 solves
also the consistency problems with sparseness 3 for the classes B ` where `≥ 2. (If ` = 2, the middle
part of the algorithm, which assumes t = 3, is needless.) Furthermore, if some function in B ` is
consistent with a sample having coincidence 0 then there is also some function in B 1 consistent
with that sample. Consequently, Algorithm 1 solves also the problems B `-CONSISTENCY WITH

COINCIDENCE 0 for every ` ≥ 2. Hence, Theorems and 14 and 12 yield the following statement. It
finalizes the proof of Theorem 2.

Corollary 15 For every ` ≥ 2, B `-CONSISTENCY WITH COINCIDENCE 0 and B `-CONSISTENCY

WITH SPARSENESS 3 is solvable in linear time.

5.2 Maximum Consistency

At last, we give attention to the maximum consistency problems that are claimed as linear-time
solvable in Theorems 3, 4, and 5. The main issues that have to be dealt with are contradictory pairs
and examples that are 0 in all positions. With the first result we finish the proof of Theorem 3.

Theorem 16 The problems MAX-B -CONSISTENCY WITH COINCIDENCE 0 and MAX-B -CONSISTENCY

WITH SPARSENESS 1 are solvable in linear time.

Proof If Neg(S) = /0 then by letting w1 = · · · = wn = 0 and t = 0 we obtain the function that
always outputs 1, which is consistent with all examples. Assume now that Neg(S) 6= /0. Algorithm 3
generates a function that has the following properties: For each example x ∈ Dom(S) that is part
of a contradictory pair, that is, where (x,0) ∈ S and (x,1) ∈ S, the function is consistent with the
positive example. Further, it is consistent with all examples that are not part of a contradictory
pair, except possibly for the example (0, . . . ,0) ∈ Pos(S) \Neg(S), which is classified as negative.
It is obvious that this is the maximum number of examples that can be classified correctly, unless
(0, . . . ,0) ∈ Pos(S)\Neg(S) is the only example that is not part of a contradictory pair. In this case
we can increase the number of correctly classified examples by using the function that constantly
outputs 1, which is then consistent with the positive example in each contradictory pair and with
(0, . . . ,0) ∈ Pos(S).

It is obvious that Algorithm 3 and the additional steps described above require no more than
linear time on a RAM. In particular, whether (0, . . . ,0) is the only example that is not part of a
contradictory pair can be checked in linear time using radix sort.

If Sparse(S) = 1 then we proceed in the same way. In order to see that this is correct, observe
that Coin(S) = 1 holds only if S contains examples (x,0) and (x,1). Thus, a maximum subsample
S′ that does not contain contradictory pairs satisfies Coin(S′) = 0.
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Algorithm 2 B -CONSISTENCY

Input: sample S ⊆ {0,1}n ×{0,1}
Output: w1, . . . ,wn, t

1: get w1, . . . ,wn, t from B1-CONSISTENCY(S);
2: if (w1, . . . ,wn, t) is consistent with S then stop end if;
3: t := 3;
4: for i = 1, . . . ,n do
5: wi := 0
6: end for;
7: for all x ∈ Pos(S) do
8: if there is some x ∈ Pos(S) with xi = 1 then
9: wi := 1

10: end if
11: end for;
12: if (w1, . . . ,wn, t) is consistent with S then stop end if;
13: t := 2;
14: C := /0;
15: for all x ∈ Dom(S) do {construct a set C of clauses over w1, . . . ,wn}
16: let I = {i | xi = 1};
17: if |I| = 3 then
18: let { j,k, `} = I;
19: if x ∈ Pos(S) then
20: C := C ∪

{

{w j,wk},{w j,w`},{wk,w`}
}

21: else {we have x ∈ Neg(S)}
22: C := C ∪

{

{¬w j,¬wk},{¬w j,¬w`},{¬wk,¬w`}
}

23: end if
24: else if |I| = 2 then
25: let { j,k} = I;
26: if x ∈ Pos(S) then
27: C := C ∪

{

{w j},{wk}
}

28: else {we have x ∈ Neg(S)}
29: C := C ∪

{

{¬w j,¬wk}
}

30: end if
31: else {we have |I| ≤ 1}
32: if |I| = 1 then let { j} = I else j := 1 end if;
33: if x ∈ Pos(S) then
34: C := C ∪

{

{w j},{¬w j}
}

35: end if
36: end if
37: end for;
38: get w1, . . . ,wn from 2-SATISFIABILITY({w1, . . . ,wn},C ).

The algorithm presented in the foregoing proof generates only solutions where the threshold is
at most 1. Thus, it solves also the corresponding problems for neurons with a bounded threshold as
was claimed in the first statement of Theorem 4.
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Algorithm 3 MAX-B -CONSISTENCY

Input: sample S ⊆ {0,1}n ×{0,1}
Output: w1, . . . ,wn, t

t := 1;
for i = 1, . . . ,n do

wi := 0
end for;
for all x ∈ Pos(S) do

if there is some i ∈ {1, . . . ,n} with xi = 1 then
wi := 1

end if
end for.

Corollary 17 For every ` ≥ 1, MAX-B `-CONSISTENCY WITH COINCIDENCE 0 and MAX-B `-
CONSISTENCY WITH SPARSENESS 1 is solvable in linear time.

The following result completes the proof of Theorem 4.

Lemma 18 MAX-B0-CONSISTENCY is solvable in linear time.

Proof If the threshold is equal to 0 then everything is classified as positive regardless of which
values the weights may have. Thus, outputting any weights and t = 0 provides a solution if one
exists. For solving the decision problem, observe that consistency with at least k examples in S is
equivalent to the condition |Pos(S)| ≥ k. This can clearly be checked in linear time on a RAM.

Finally, we prove the remaining part of Theorem 5 that claims linear time bounds.

Theorem 19 The problems MAX-L -CONSISTENCY WITH COINCIDENCE 0 and MAX-L -CONSISTENCY

WITH SPARSENESS 1 are solvable in linear time.

Proof Consider Algorithm 4 for inputs satisfying Coin(S) = 0. If Neg(S) = /0 then the resulting
function is consistent with all examples. In the case that Neg(S) 6= /0 holds we argue as in the proof
of Theorem 16: For every contradictory pair, the function is consistent with the positive example.
Further, it is consistent with every example that is not part of a contradictory pair. (In contrast to
the proof of Theorem 16, this holds also in all cases where (0, . . . ,0) ∈ Dom(S) due to the use of
negative weights by Algorithm 4.) Clearly, this is the maximum number of examples a function can
be consistent with.

Since any subsample S′ of S that contains no contradictory pairs must satisfy Coin(S′) = 0
if Sparse(S) = 1, Algorithm 4 solves also the maximum consistency problem for samples with
sparseness 1.

That the running time of Algorithm 4 is linear on a RAM is obvious.
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Algorithm 4 MAX-L -CONSISTENCY

Input: sample S ⊆ {0,1}n ×{0,1}
Output: w1, . . . ,wn, t

if (0, . . . ,0) ∈ Pos(S) then
t := 0

else
t := 1

end if;
for i = 1, . . . ,n do

wi := −1
end for;
for all x ∈ Pos(S) do

if there is some i ∈ {1, . . . ,n} with xi = 1 then
wi := 1

end if
end for.

6. Conclusions

With this work we aimed at providing necessary and sufficient conditions for the existence of effi-
cient learning algorithms. The approach that we have taken is to consider criteria for the complexity
of samples and to use them for the definition of subproblems. As results we obtained dichotomy
theorems that completely characterize the dividing lines between the polynomial-time solvable and
the NP-complete problems.

An NP-completeness assertion is a worst-case result stating that, if P 6= NP then there is no
algorithm that solves the problem in polynomial time for all instances. One way to cope with
intractability is therefore trying to avoid instances that make the problem hard. This gives rise to
subproblems that may be more appropriate to practical situations where one often needs not deal
with all possible instances but only a subset thereof. The results here show that such deliberations
can indeed lead to the discovery of new efficient learning algorithms. While it is not clear whether
the restrictions they suppose are always met in applications, these algorithms could be helpful in the
development of better heuristics for more general learning problems.

A number of questions arises from this work that are worth further investigation. We have con-
sidered only two types of neural “networks”: single neurons with binary and with arbitrary weights.
Whether dichotomy theorems can be established for other neuron types and for neural networks is
an interesting open problem. Further, the problems we have studied can be generalized by allow-
ing examples with integer or even rational components. While the NP-completeness results remain
valid in these cases, it is not obvious how the algorithms can be adapted to deal with non-binary
inputs. Finally, we have introduced here two specific criteria for sample restrictions. Motivated by
theoretical or practical considerations one can think of many other ways to select such conditions.
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Appendix A. An NP-Complete Satisfiability Problem

Lemma 6 in Section 4.1 claims that the problem ALMOST DISJOINT POSITIVE 1-IN-3SAT intro-
duced in that section is NP-complete. Here we give a proof of this statement.

Lemma 6 ALMOST DISJOINT POSITIVE 1-IN-3SAT is NP-complete.

Proof It is clear that the problem is in NP. To prove its NP-hardness, we construct a reduction from
POSITIVE 1-IN-3SAT. In this variant of the problem the requirement is missing that two subsets
have at most one variable in common. The idea of the reduction is to establish the property of
almost disjointness by introducing new variables as substitutes for old ones. The correctness of the
reduction is ensured by augmenting the collection with additional subsets.

Let C be the collection of subsets from the instance of POSITIVE 1-IN-3SAT. Further, let
C,D ∈ C be two subsets with two common variables, say C = {u1,u2,u3} and D = {u1,u2,u4}. We
introduce a set of new variables V = {v1, . . . ,v5}, replace in D the variable u1 by v1 and join C with
the collection D defined as

D =
{

{v1,v2,v3}, {v1,v4,v5}, {u1,v2,v4}, {u1,v3,v5}
}

.

Obviously, no pair of subsets in D has more than one common variable. Further, no subset in D
has more than one variable in common with any subset in C . Hence, going from C to C ∪D , the
number of pairs that violate the condition of almost disjointness decreases by one.

We say that a truth assignment is a 1-IN-3SAT assignment for a collection of subsets if each
subset has exactly one true variable. Let U be the set of variables in C . We claim that the following
two conditions hold:

(A.1) Every 1-IN-3SAT assignment α : U → {0,1} for C can be extended to a 1-IN-
3SAT assignment α : U ∪V →{0,1} for C ∪D satisfying α(u1) = α(v1).

(A.2) Every 1-IN-3SAT assignment α : U ∪V → {0,1} for C ∪ D satisfies α(u1) =
α(v1).

That condition (A.1) is valid can be seen as follows: Given α defined on U , we let α(v1) = α(u1)
and extend it to the remaining variables of V in the following way: In the case α(u1) = 0 we
define α(v2) = α(v5) = 0 and α(v3) = α(v4) = 1; in the case α(u1) = 1 we let α(v2) = α(v3) =
α(v4) = α(v5) = 0. For the proof of condition (A.2) we observe that if α(v1) = 1, we must have
α(v2) = α(v3) = α(v4) = α(v5) = 0 due to the first two subsets in D , and hence, because of the last
two subsets, α(u1) = 1; on the other hand, if α(u1) = 1, analogous reasoning yields that α(v1) = 1
must hold. Thus, u1 and v1 cannot have different truth values assigned by α.

Conditions (A.1) and (A.2) imply that C has a 1-IN-3SAT assignment if and only if C ∪D has
a 1-IN-3SAT assignment. Repeating the above described procedure for every pair of subsets with
two common variables we finally arrive at a collection that is almost disjoint. The correctness of
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the reduction follows inductively. It is obvious that the reduction is computable in polynomial time.
Thus, ALMOST DISJOINT POSITIVE 1-IN-3SAT is NP-hard.
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Abstract
Designing computer programs to automatically categorize images using low-level features is a chal-
lenging research topic in computer vision. In this paper, we present a new learning technique, which
extends Multiple-Instance Learning (MIL), and its application to the problem of region-based im-
age categorization. Images are viewed as bags, each of which contains a number of instances
corresponding to regions obtained from image segmentation. The standard MIL problem assumes
that a bag is labeled positive if at least one of its instances is positive; otherwise, the bag is negative.
In the proposed MIL framework, DD-SVM, a bag label is determined by some number of instances
satisfying various properties. DD-SVM first learns a collection of instance prototypes according
to a Diverse Density (DD) function. Each instance prototype represents a class of instances that is
more likely to appear in bags with the specific label than in the other bags. A nonlinear mapping
is then defined using the instance prototypes and maps every bag to a point in a new feature space,
named the bag feature space. Finally, standard support vector machines are trained in the bag fea-
ture space. We provide experimental results on an image categorization problem and a drug activity
prediction problem.

Keywords: image categorization, multiple-instance learning, support vector machines, image
classification, image segmentation

1. Introduction

The term image categorization refers to the labeling of images into one of a number of predefined
categories. Although this is usually not a very difficult task for humans, it has proved to be an
extremely difficult problem for machines (or computer programs). Major sources of difficulties
include variable and sometimes uncontrolled imaging conditions, complex and hard-to-describe
objects in an image, objects occluding other objects, and the gap between arrays of numbers repre-
senting physical images and conceptual information perceived by humans. In this paper, an object
in the physical world, which we live in, refers to anything that is visible or tangible and is rel-
atively stable in form. An object in an image is defined as a region, not necessarily connected,
which is a projection of an object in the physical world. Designing automatic image categorization
algorithms has been an important research field for decades. Potential applications include digital
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(a) (b) (c) (d) (e) (f) (g)

Figure 1: Sample images belonging to one of the categories: Mountains and glaciers, Skiing, and
Beach.

libraries, Space science, Web searching, geographic information systems, biomedicine, surveillance
and sensor systems, commerce, and education.

1.1 Overview of Our Approach

Although color and texture are fundamental aspects for visual perception, human discernment of
certain visual contents could be potentially associated with interesting classes of objects or semantic
meaning of objects in the image. For one example: if we are asked to decide which images in
Figure 1 are images about Mountains and glaciers, Skiing, and Beach, at a single glance, we may
come up with the following answers together with supporting arguments:

• Images (a) and (b) are images about mountains and glaciers since we see mountain in them;

• Images (c), (d) and (e) are skiing images since there are snow, people, and perhaps a steep
slope or mountain in them;

• Images (f) and (g) are beach images since we see either people playing in water or people on
sand;

This seems to be effortless for humans because prior knowledge of similar images and objects may
provide powerful assistance for us in recognition. Given a set of labeled images, can a computer
program learn such knowledge or semantic concepts from implicit information of objects contained
in images? This is the question we attempt to address in this work.

In terms of image representation, our approach is a region-based method. Images are segmented
into regions such that each region is roughly homogeneous in color and texture. Each region is
characterized by one feature vector describing color, texture, and shape attributes. Consequently,
an image is represented by a collection of feature vectors. If segmentation is ideal, regions will
correspond to objects. But, in general, semantically accurate image segmentation by a computer
program is still an ambitious long-term goal for computer vision researchers (see Shi and Malik,
2000; Wang et al., 2001a; Zhu and Yuille, 1996). Here, semantically accurate image segmentation
refers to building a one-to-one mapping between regions generated by an image segmentation al-
gorithm and objects in the image. Nevertheless, we argue that region-based image representation
can provide some useful information about objects even though segmentation may not be perfect.
Moreover, empirical results in Section 4.3 demonstrate that the proposed method has low sensitivity
to inaccurate image segmentation.

From the perspective of learning, our approach is a generalization of supervised learning, in
which labels are associated with images instead of individual regions. This is in essence identical to
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the Multiple-Instance Learning (MIL) setting (Dietterich et al., 1997; Blum and Kalai, 1998; Maron
and Lozano-Pérez, 1998; Zhang and Goldman, 2002) where images and regions are respectively
called bags and instances. In this paper, a “bag” refers to an “image”, and an “instance” refers to a
“region.” MIL assumes that every instance possesses an unknown label that is indirectly accessible
through labels attached to bags.

1.2 Related Work in Multiple-Instance Learning

Several researchers have applied MIL for image classification and retrieval (Andrews et al., 2003;
Maron and Ratan, 1998; Zhang et al., 2002; Yang and Lozano-Pérez, 2000). Key assumptions of
their formulation of MIL are that bags and instances share the same set of labels (or categories or
classes or topics), and a bag receives a particular label if at least one of the instances in the bag
possesses the label. For binary classification, this implies that a bag is “positive” if at least one of
its instances is a positive example; otherwise, the bag is “negative.” Therefore, learning focuses on
finding “actual” positive instances in positive bags. The formulations of MIL in image classification
and retrieval fall into two categories: the Diverse Density approach (Maron and Ratan, 1998; Zhang
et al., 2002) and the Support Vector Machine (SVM) approach (Andrews et al., 2003).

• In the Diverse Density approach, an objective function, called the Diverse Density (DD) func-
tion (Maron and Lozano-Pérez, 1998), is defined over the instance feature space, in which
instances can be viewed as points. The DD function measures a co-occurrence of similar
instances from different bags with the same label. A feature point with large Diverse Density
indicates that it is close to at least one instance from every positive bag and far away from
every negative instance. The DD approach searches the instance feature space for points with
high Diverse Density. Once a point with the maximum DD is found, a new bag is classified
according to the distances between instances in the bag and the maximum DD point: if the
smallest distance is less than certain fixed threshold, the bag is classified as positive; other-
wise, the bag is classified as negative. The major difference between Maron’s method and
Zhang’s method lies in the way to search a maximum DD point. Zhang’s method is relatively
insensitive to the dimension of instance feature space and scales up well to the average bag
size, i.e., the average number of instances in a bag (Zhang and Goldman, 2002). Empirical
studies demonstrate that DD-based MIL can learn certain simple concepts of natural scenes,
such as waterfall, sunsets, and mountains, using features of subimages or regions (Maron and
Ratan, 1998; Zhang et al., 2002).

• Andrews et al. (2003) use SVMs (Burges, 1998) to solve the MIL problem. In particular, MIL
is formulated as a mixed integer quadratic program. In their formulation, integer variables are
selector variables that select which instance in a positive bag is the positive instance. Their
algorithm, which is called MI-SVM, has an outer loop and an inner loop. The outer loop sets
the values of these selector variables. The inner loop then trains a standard SVM in which
the selected positive instances replace the positive bags. The outer loop stops if none of the
selector variables changes value in two consecutive iterations. Andrews et al. (2003) show that
MI-SVM outperforms the DD approach described in Zhang and Goldman (2002) on a set of
images belonging to three different categories (“elephant”, “fox”, and “tiger”). The difference
between MI-SVM and DD approach can also be viewed from the shape of the corresponding
classifier’s decision boundary in the instance feature space. The decision boundary of a DD
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classifier is an ellipsoidal sphere because classification is based exclusively on the distance to
the maximum DD point.1 For MI-SVM, depending on the kernel used, the decision boundary
can be a hyperplane in the instance feature space or a hyperplane in the kernel induced feature
space, which may correspond to very complex boundaries in the instance feature space.

1.3 A New Formulation of Multiple-Instance Learning

In the above MIL formulations, a bag is essentially summarized by one of its instances, i.e., an
instance with the maximal label (considering binary classification with 1 and −1 representing the
positive and negative classes, respectively). However, these formulations have a drawback for im-
age categorization tasks: in general, a concept about images may not be captured by a single region
(instance) even if image segmentation and object recognition are assumed to be ideal (inaccurate
segmentation and recognition will only worsen the situation). For one simple example, let’s con-
sider categorizing Mountains and glaciers versus Skiing images in Figure 1. To classify a scene as
involving skiing, it is helpful to identify snow, people, and perhaps mountain. If an image is viewed
as a bag of regions, then the standard MIL formulation cannot realize this, because a bag is labeled
positive if any one region in the bag is positive. In addition, a class might also be disjunctive. As
shown by Figure 1 (g) and (h), a Beach scene might involve either people playing in water or people
on sand. Thus we argue that the correct categorization of an image depends on identifying multiple
aspects of the image. This motivates our extension of MIL where a bag must contain a number of
instances satisfying various properties (e.g., people, snow, etc.).

In our approach, MIL is formulated as a maximum margin problem in a new feature space
defined by the DD function. The new approach, named DD-SVM, proceeds in two steps. First, in the
instance feature space, a collection of feature vectors, each of which is called an instance prototype,
is determined according to DD. Each instance prototype is chosen to be a local maximizer of the DD
function. Since DD measures the co-occurrence of similar instances from different bags with the
same label, loosely speaking, an instance prototype represents a class of instances (or regions) that
is more likely to appear in bags (or images) with the specific label than in the other bags (or images).
Second, a nonlinear mapping is defined using the learned instance prototypes and maps every bag
to a point in a new feature space, which is named the bag feature space. In the bag feature space,
the original MIL problem becomes an ordinary supervised learning problem. Standard SVMs are
then trained in the bag feature space.

DD-SVM is similar to MI-SVM in the sense that both approaches apply SVM to solve the MIL
problem. However, in DD-SVM, several features are defined for each bag. Each bag feature could
be defined by a separate instance within the bag (i.e., the instance that is most similar to an instance
prototype). Hence, the bag features summarize the bag along several dimensions defined by instance
prototypes. This is in stark contrast to MI-SVM, in which one instance is selected to represent the
whole positive bag.

1.4 Related Work in Image Categorization

In the areas of image processing, computer vision, and pattern recognition, there has been abundance
of prior work on detecting, recognizing, and classifying a relatively small set of objects or concepts

1. The maximum DD algorithms described in (Maron and Lozano-Pérez, 1998; Zhang and Goldman, 2002) produce a
point in the instance feature space together with scaling factors for each feature dimension. Therefore, the decision
boundary is an ellipsoidal sphere instead of a sphere.
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in specific domains of application (Forsyth and Ponce, 2002; Marr, 1983; Strat, 1992). We only
review work most relevant to what we propose, which by no means represents the comprehensive
list in the cited area.

As one of the simplest representations of digital images, histograms have been widely used
for various image categorization problems. Szummer and Picard (1998) use k-nearest neighbor
classifier on color histograms to discriminate between indoor and outdoor images. In the work
of Vailaya et al. (2001), Bayesian classifiers using color histograms and edge directions histograms
are implemented to organize sunset/forest/mountain images and city/landscape images, respectively.
Chapelle et al. (1999) apply SVMs, which are built on color histogram features, to classify images
containing a generic set of objects. Although histograms can usually be computed with little cost
and are effective for certain classification tasks, an important drawback of a global histogram rep-
resentation is that information about spatial configuration is ignored. Many approaches have been
proposed to tackle the drawback. In the method of Huang et al. (1998), a classification tree is
constructed using color correlograms. Color correlogram captures the spatial correlation of col-
ors in an image. Gdalyahu and Weinshall (1999) apply local curve matching for shape silhouette
classifications, in which objects in images are represented by their outlines.

A number of subimage-based methods have been proposed to exploit local and spatial properties
by dividing an image into rectangular blocks. In the method introduced by Gorkani and Picard
(1994), an image is first divided into 16 non-overlapping equal-sized blocks. Dominant orientations
are computed for each block. The image is then classified as city or suburb scenes as determined by
the majority orientations of blocks. Wang et al. (2001b) develop a graph/photograph classification
algorithm.2 The classifier partitions an image into blocks and classifies every block into one of
two categories based on wavelet coefficients in high frequency bands. If the percentage of blocks
classified as photograph is higher than a threshold, the image is marked as a photograph; otherwise,
the image is marked as a graph. Yu and Wolf (1995) present a one-dimensional Hidden Markov
Model (HMM) for indoor/outdoor scene classification. The model is trained on vector quantized
color histograms of image blocks. In the recent ALIP system (Li and Wang, 2003), a concept
corresponding to a particular category of images is captured by a two-dimensional multiresolution
HMM trained on color and texture features of image blocks. Murphy et al. (2004) propose four
graphical models that relate features of image blocks to objects and perform joint scene and object
recognition.

Although a rigid partition of an image into rectangular blocks preserves certain spatial infor-
mation, it often breaks an object into several blocks or puts different objects into a single block.
Thus visual information about objects, which could be beneficial to image categorization, may be
destroyed by a rigid partition. The ALIP system (Li and Wang, 2003) uses a small block size
(4× 4) for feature extraction to avoid this problem. Image segmentation is one way to extract ob-
ject information. It decomposes an image into a collection of regions, which correspond to objects
if decomposition is ideal. Segmentation-based algorithms can take into consideration the shape
information, which is in general not available without segmentation.

Image segmentation has been successfully used in content-based image and video analysis (e.g.,
Carson et al., 2002; Chen and Wang, 2002; Ma and Manjunath, 1997; Modestino and Zhang, 1992;
Smith and Li, 1999; Vasconcelos and Lippman, 1998; Wang et al., 2001b). Modestino and Zhang
(1992) apply a Markov random field model to capture spatial relationships between regions. Im-

2. As defined by Wang et al. (2001b), a graph image is an image containing mainly text, graph, and overlays; a photo-
graph is a continuous-tone image.
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age interpretation is then given by a maximum a posteriori rule. SIMPLIcity system (Wang et al.,
2001b) classifies images into textured or nontextured classes based upon how evenly a region scat-
ters in an image. Mathematically, this is described by the goodness of match, which is measured
by the χ2 statistics, between the distribution of the region and a uniform distribution. Smith and
Li (1999) propose a method for classifying images by spatial orderings of regions. Their system
decomposes an image into regions with the attribute of interest of each region represented by a
symbol that corresponds to an entry in a finite pattern library. The region string is converted to
composite region template descriptor matrix that enables classification using spatial information.
Vasconcelos and Lippman (1998) model image retrieval as a classification problem based on the
principle of Bayesian inference. The information of the regions identified as human skin is used in
the inference. Very interesting results have been achieved in associating words to images based on
regions (Barnard and Forsyth, 2001) or relating words to image regions (Barnard et al., 2003). In
their method, an image is modeled as a sequence of regions and a sequence of words generated by
a hierarchical statistic model. The method demonstrates the potential for searching images. But as
noted by Barnard and Forsyth (2001), the method relies on semantically meaningful segmentation,
which, as mentioned earlier, is still an open problem in computer vision.

1.5 Outline of the Paper

The remainder of the paper is organized as follows. Section 2 describes image segmentation and
feature representation. Section 3 presents DD-SVM, an extension of MIL. Section 4 describes
the extensive experiments we have performed and provides the results. Finally, we conclude in
Section 5, together with a discussion of future work.

2. Image Segmentation and Representation

In this section we describe a simple image segmentation procedure based on color and spatial vari-
ation features using a k-means algorithm (Hartigan and Wong, 1979). For general-purpose images
such as the images in a photo library or images on the World Wide Web, precise object segmen-
tation is nearly as difficult as natural language semantics understanding. However, semantically
precise segmentation is not crucial to our system. As we will demonstrate in Section 4, our im-
age categorization method has low sensitivity to inaccurate segmentation. Image segmentation is a
well-studied topic (e.g., Shi and Malik, 2000; Wang et al., 2001a; Zhu and Yuille, 1996). The focus
of this paper is not to achieve superior segmentation results but good categorization performance.
The major advantage of the proposed image segmentation is its low computational cost.

To segment an image, the system first partitions the image into non-overlapping blocks of size
4×4 pixels. A feature vector is then extracted for each block. The block size is chosen to compro-
mise between texture effectiveness and computation time. Smaller block size may preserve more
texture details but increase the computation time as well. Conversely, increasing the block size
can reduce the computation time but lose texture information and increase the segmentation coarse-
ness. Each feature vector consists of six features. Three of them are the average color components
in a block. We use the well-known LUV color space, where L encodes luminance and U and V
encode color information (chrominance). The other three represent square root of energy in the
high-frequency bands of the wavelet transforms (Daubechies, 1992), that is, the square root of the
second order moment of wavelet coefficients in high-frequency bands.
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Figure 2: Segmentation results by the k-means clustering algorithm. First row: original images.
Second row: regions in their representative colors.

To obtain these moments, a Daubechies-4 wavelet transform is applied to the L component of
the image. After a one-level wavelet transform, a 4× 4 block is decomposed into four frequency
bands: the LL, LH, HL, and HH bands. Each band contains 2× 2 coefficients. Without loss of
generality, we suppose the coefficients in the HL band are {ck,l , ck,l+1, ck+1,l , ck+1,l+1}. One feature
is

f =

(

1
4

1

∑
i=0

1

∑
j=1

c2
k+i,l+ j

)
1
2

.

The other two features are computed similarly to the LH and HH bands. Unser (1995) shows that
moments of wavelet coefficients in various frequency bands are effective for representing texture.
For example, the HL band shows activities in the horizontal direction. An image with vertical strips
thus has high energy in the HL band and low energy in the LH band.

The k-means algorithm is used to cluster the feature vectors into several classes with every class
corresponding to one “region” in the segmented image. No information about the spatial layout
of the image is used in defining the regions, so they are not necessarily spatially contiguous. The
algorithm does not specify the number of clusters, N, to choose. We adaptively select N by grad-
ually increasing N until a stopping criterion is met. The number of clusters in an image changes
in accordance with the adjustment of the stopping criteria. A detailed description of the stopping
criteria can be found in Wang et al. (2001b). Examples of segmentation results are shown in Fig-
ure 2. Segmented regions are shown in their representative colors. It takes less than one second on
average to segment a 384× 256 image on a Pentium III 700MHz PC running the Linux operating
system. Since it is almost impossible to find a stopping criterion that is best suited for a large col-
lection of images, images sometimes may be under-segmented or over-segmented. However, our
categorization method has low sensitivity to inaccurate segmentation.

After segmentation, the mean of the set of feature vectors corresponding to each region R j (a
subset of Z

2) is computed and denoted as f̂ j. Three extra features are also calculated for each region
to describe shape properties. They are normalized inertia (Gersho, 1979) of order 1, 2, and 3. For a
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region R j in the image plane, the normalized inertia of order γ is given as

I(R j,γ) =
∑r∈Rj

‖r− r̂‖γ

V
1+ γ

2
j

,

where r̂ is the centroid of R j, Vj is the number of pixels in region R j. The normalized inertia
is invariant to scaling and rotation. The minimum normalized inertia on a 2-dimensional plane is
achieved by circles. Denote the γ-th order normalized inertia of circles as Iγ. We define shape
features of region R j as

s j =

[

I(R j,1)

I1
,
I(R j,2)

I2
,
I(R j,3)

I3

]T

.

Finally, an image Bi, which is segmented into Ni regions {R j : j = 1, · · · ,Ni}, is represented by
a collection of feature vectors {xi j : j = 1, · · · ,Ni}. Each xi j is a 9-dimensional feature vector,
corresponding to region R j, defined as

xi j =
[

f̂T
j ,s

T
j

]T
.

3. An Extension of Multiple-Instance Learning

In this section, we first introduce DD-SVM, a maximum margin formulation of MIL in bag feature
space. We then describe one way to construct a bag feature space using Diverse Density. Finally,
we compare DD-SVM with another SVM-based MIL formulation, MI-SVM, proposed by Andrews
et al. (2003).

3.1 Maximum Margin Formulation of MIL in a Bag Feature Space

We start with some notations in MIL. Let D be the labeled data set, which consists of l bag/label
pairs, i.e., D = {(B1,y1), · · · ,(Bl,yl)}. Each bag Bi ⊂ R

m is a collection of instances with xi j ∈ R
m

denoting the j-th instance in the bag. Different bags may have different number of instances. Labels
yi take binary values 1 or −1. A bag is called a positive bag if its label is 1; otherwise, it is called a
negative bag. Note that a label is attached to each bag and not to every instance. In the context of
images, a bag is a collection of region feature vectors; an instance is a region feature vector; positive
(negative) label represents that an image belongs (does not belong) to a particular category.

The basic idea of the new MIL framework is to map every bag to a point in a new feature space,
named the bag feature space, and to train SVMs in the bag feature space. For an introduction to
SVMs, we refer interested readers to tutorials and books on this topic (Burges, 1998; Cristianini and
Shawe-Taylor, 2000). The maximum margin formulation of MIL in a bag feature space is given as
the following quadratic optimization problem:

DD−SV M α∗ = argmax
αi

l

∑
i=1

αi −
1
2

l

∑
i, j=1

yiy jαiα jK(φ(Bi),φ(B j)) (1)

sub ject to
l

∑
i=1

yiαi = 0

C ≥ αi ≥ 0, i = 1, · · · , l.
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The bag feature space is defined by φ : B →R
n where B is a subset of P (Rm) (the power set of R

m).
In practice, we can assume that the elements of B are finite sets since the number of instances in a
bag is finite. K : R

n ×R
n → R is a kernel function. The parameter C controls the trade-off between

accuracy and regularization. The bag classifier is then defined by α∗ as

label(B) = sign

(

l

∑
i=1

yiα∗
i K(φ(Bi),φ(B))+b∗

)

(2)

where b∗ is chosen so that

y j

(

l

∑
i=1

yiα∗
i K(φ(Bi),φ(B j))+b∗

)

= 1

for any j with C > α∗
j > 0. The optimization problem (1) assumes that the bag feature space (i.e.,

φ) is given. Next, we introduce a way of constructing φ from a set of labeled bags.

3.2 Constructing a Bag Feature Space

Given a set of labeled bags, finding what is in common among the positive bags and does not appear
in the negative bags may provide inductive clues for classifier design. In our approach, such clues
are captured by instance prototypes computed from the DD function. A bag feature space is then
constructed using the instance prototypes, each of which defines one dimension of the bag feature
space.

3.2.1 DIVERSE DENSITY

In the ideal scenario, the intersection of the positive bags minus the union of the negative bags
gives the instances that appear in all the positive bags but none of the negative bags. However,
in practice strict set operations of intersection, union, and difference may not be useful because
most real world problems involve noisy information. Features of instances might be corrupted by
noise. Some bags might be mistakenly labeled. Strict intersection of positive bags might generate
the empty set. Diverse Density implements soft versions of the intersection, union, and difference
operations by thinking of the instances and bags as generated by some probability distribution. It
is a function defined over the instance feature space. The DD value at a point in the feature space
is indicative of the probability that the point agrees with the underlying distribution of positive and
negative bags.

Next, we introduce one definition of DD from Maron and Lozano-Pérez (1998). Interested read-
ers are referred to Maron and Lozano-Pérez (1998) for detailed derivations based on a probabilistic
framework. Given a labeled data set D , the DD function is defined as

DDD(x,w) =
l

∏
i=1

[

1+ yi

2
− yi

Ni

∏
j=1

(

1− e−‖xi j−x‖2
w

)

]

. (3)

Here, x is a point in the instance feature space; w is a weight vector defining which features are
considered important and which are considered unimportant; Ni is the number of instances in the
i-th bag; and ‖ · ‖w denotes a weighted norm defined by

‖x‖w =
[

xT Diag(w)2x
]

1
2 (4)
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where Diag(w) is a diagonal matrix whose (i, i)-th entry is the i-th component of w.
It is not difficult to observe that values of DD are always between 0 and 1. For fixed weights w,

if a point x is close to an instance from a positive bag Bi, then

1+ yi

2
− yi

Ni

∏
j=1

(

1− e−‖xi j−x‖2
w

)

(5)

will be close to 1; if x is close to an instance from a negative bag Bi, then (5) will be close to 0. The
above definition indicates that DD(x,w) will be close to 1 if x is close to instances from different
positive bags and, at the same time, far away from instances in all negative bags. Thus it measures
a co-occurrence of instances from different (diverse) positive bags.

3.2.2 LEARNING INSTANCE PROTOTYPES

The DD function defined in (3) is a continuous and highly nonlinear function with multiple peaks
and valleys (or local maximums and minimums). A larger value of DD at a point indicates a higher
probability that the point fits better with the instances from positive bags than with those from neg-
ative bags. This motivates us to choose local maximizers of DD as instance prototypes. Loosely
speaking, an instance prototype represents a class of instances that is more likely to appear in posi-
tive bags than in negative bags. Note that, the MIL formulation in Maron and Lozano-Pérez (1998)
computes the global maximizer of DD, which corresponds to one instance prototype in our notation.

Learning instance prototypes then becomes an optimization problem: finding local maximizers
of the DD function in a high-dimensional space. For our application the dimension of the optimiza-
tion problem is 18 because the dimension of the region features is 9 and the dimension of weights is
also 9. Since the DD functions are smooth, we apply gradient based methods to find local maximiz-
ers. Now the question is: how do we find all the local maximizers? In general, we do not know the
number of local maximizers a DD function has. However, according to the definition of DD, a local
maximizer is close to instances from positive bags (Maron and Lozano-Pérez, 1998). Thus start-
ing a gradient based optimization from one of those instances will likely lead to a local maximum.
Therefore, a simple heuristic is applied to search for multiple maximizers: we start an optimization
at every instance in every positive bag with uniform weights, and record all the resulting distinct
maximizers (feature vector and corresponding weights).

Instance prototypes are selected from those maximizers with two additional constraints: (a)
they need to be distinct from each other; and (b) they need to have large DD values. The first
constraint addresses the precision issue of numerical optimization. Due to numerical precision,
different starting points may lead to different versions of the same maximizer. Hence we need to
remove some of the maximizers that are essentially repetitions of each other. The second constraint
limits instance prototypes to those that are most informative in terms of co-occurrence in different
positive bags. In our algorithm, this is achieved by picking maximizers with DD values greater than
certain threshold.

Following the above descriptions, one can find instance prototypes representing classes of in-
stances that are more likely to appear in positive bags than in negative bags. One could argue that
instance prototypes with the exactly reversed property (more likely to appear in negative bags than
in positive bags) may be of equal importance. Such instance prototypes can be computed in exactly
the same fashion after negating the labels of positive and negative bags. Our empirical study shows
that including such instance prototypes (for negative bags) improves classification accuracy by an
average amount of 2.2% for the 10-class image categorization experiment described in Section 4.2.
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3.2.3 AN ALGORITHMIC VIEW

Next, we summarize the above discussion in pseudo code. The input is a set of labeled bags D .
The following pseudo code learns a collection of instance prototypes each of which is represented
as a pair of vectors (x∗i ,w

∗
i ). The optimization problem involved is solved by Quasi-Newton search

dfpmin in Press et al. (1992).

Algorithm 3.1 Learning Instance Prototypes

MainLearnIPs(D)
1 Ip = LearnIPs(D) [Learn Instance Prototypes for positive bags]
2 negate labels of all bags in D
3 In = LearnIPs(D) [Learn Instance Prototypes for negative bags]
4 OUTPUT (the set union of Ip and In)

LearnIPs(D)
1 set P be the set of instances from all positive bags in D
2 initialize M to be the empty set
3 FOR (every instance in P as starting point for x)
4 set the starting point for w to be all 1’s
5 find a maximizer (p,q) of the log(DD) function by quasi-Newton search
6 add (p,q) to M
7 END

8 set i = 1, T =
max(p,q)∈M log(DDD (p,q))+min(p,q)∈M log(DDD (p,q))

2
9 REPEAT
10 set (x∗i ,w

∗
i ) = argmax(p,q)∈M log(DDD(p,q))

11 remove from M all elements (p,q) satisfying
‖p⊗ abs(q)−x∗i ⊗ abs(w∗

i )‖ < β‖x∗i ⊗ abs(w∗
i )‖ OR log(DDD(p,q)) < T

12 set i = i+1
13 WHILE (M is not empty)
14 OUTPUT ({(x∗1,w

∗
1), · · · ,(x

∗
i−1,w

∗
i−1)})

In the above pseudo code for LearnIPs, lines 1–7 find a collection of local maximizers for the
DD function by starting optimization at every instance in every positive bag with uniform weights.
For better numerical stability, the optimization is performed on the log(DD) function, instead of the
DD function itself. In line 5, we implement the EM-DD algorithm (Zhang and Goldman, 2002),
which scales up well to large bag sizes in running time. Lines 8–13 describe an iterative process to
pick a collection of “distinct” local maximizers as instance prototypes. In each iteration, an element
of M, which is a local maximizer, with the maximal log(DD) value (or, equivalently, the DD value)
is selected as an instance prototype (line 10). Then elements of M that are close to the selected
instance prototype or that have DD values lower than a threshold are removed from M (line 11). A
new iteration starts if M is not empty. The abs(w) in line 11 computes component-wise absolute
values of w. This is because the signs in w have no effect on the definition (4) of weighted norm.
The ⊗ in line 11 denotes component-wise product.

The number of instance prototypes selected from M is determined by two parameters β and T .
In our implementation, β is set to be 0.05, and T is the average of the maximal and minimal log(DD)
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values for all local maximizers found (line 8). These two parameters may need to be adjusted for
other applications. However, empirical study shows that the performance of the classifier is not
sensitive to β and T . Experimental analysis of the conditions under which the algorithm will find
good instance prototypes is given in Section 4.5.

3.2.4 COMPUTING BAG FEATURES

Let {(x∗k ,w
∗
k) : k = 1, · · · ,n} be the collection of instance prototypes given by Algorithm 3.1. We

define bag features, φ(Bi), for a bag Bi = {xi j : j = 1, · · · ,Ni}, as

φ(Bi) =











min j=1,···,Ni ‖xi j −x∗1‖w∗
1

min j=1,···,Ni ‖xi j −x∗2‖w∗
2

...
min j=1,···,Ni ‖xi j −x∗n‖w∗

n











. (6)

In the definition (6), each bag feature is defined by one instance prototype and one instance from
the bag, i.e., the instance that is “closest” to the instance prototype. A bag feature gives the smallest
distance (or highest similarity score) between any instance in the bag and the corresponding instance
prototype. Hence, it can also be viewed as a measure of the degree that an instance prototype shows
up in the bag.

3.3 Comparing DD-SVM with MI-SVM

The following pseudo code summarizes the learning process of DD-SVM. The input is D , a collec-
tion of bags with binary labels. The output is an SVM classifier defined by (2).

Algorithm 3.2 Learning DD-SVM

DD-SVM(D)
1 let S be the empty set
2 I P = MainLearnIPs(D)
3 FOR (every bag B in D)
4 define bag features φ(B) according to (6)
5 add (φ(B),y) to S where y is the label of B
6 END
7 train a standard SVM using S
8 OUTPUT (the SVM)

MI-SVM, proposed by Andrews et al. (2003), is also an SVM-based MIL method. In Section 4,
we experimentally compare DD-SVM against MI-SVM. An algorithmic description of MI-SVM is
given below. The input is a collection of labeled bags D . The output is a classifier of the form

label(Bi) = sign(max j=1,···,Ni f (xi j)) (7)

where xi j, j = 1, · · · ,Ni, are instances of Bi, f is a function given by SVM learning.
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Algorithm 3.3 Learning MI-SVM

MI-SVM(D)
1 let P be the empty set
2 FOR (every positive bag B in D)
3 set x∗ be the average of instances in B
4 add (x∗,1) to P
5 END
6 let N be the empty set
7 FOR (every negative bag B in D)
8 FOR (every instance x in B)
9 add (x,−1) to N
10 END
11 END
12 REPEAT
13 set P′ = P
14 set S = P′∪N
15 train a standard SVM, label(x) = sign( f (x)), using S
16 let P be the empty set
17 FOR (every positive bag B in D)
18 set x∗ = argmaxx∈B f (x)
19 add (x∗,1) to P
20 END
21 WHILE (P 6= P′)
22 OUTPUT (the classifier defined by (7))

In the above pseudo code for MI-SVM, the key steps are the loop given by lines 12–21. During
each iteration, a standard SVM classifier, label(x) = sign( f (x)), is trained in the instance space.
The training set is the union of negative instances and positive instances. Negative instances are
those from every negative bag. Each positive instance represents a positive bag. It is chosen to be
the instance, in a positive bag, with the maximum f value from the previous iteration. In the first
iteration, each positive instance is initialized to be the average of the feature vectors in the bag. The
loop terminates if the set of positive instances selected for the next iteration is identical to that of
the current iteration.

The crucial difference between DD-SVM and MI-SVM lies in the underlying assumption. MI-
SVM method, as well as other standard MIL methods (such as the DD approach proposed by Maron
and Lozano-Pérez, 1998), assumes that if a bag is labeled negative then all instances in that bag is
negative, and if a bag is labeled positive, then as least one of the instances in that bag is a positive
instance. In MI-SVM, one instance is selected to represent the whole positive bag. An SVM is
trained in the instance feature space using all negative instances and the selected positive instances.
Our DD-SVM method assumes that a positive bag must contain some number of instances satisfying
various properties, which are captured by bag features. Each bag feature is defined by an instance in
the bag and an instance prototype derived from the DD function. Hence, the bag features summarize
the bag along several dimensions. An SVM is then trained in the bag feature space.
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4. Experiments

We present systematic evaluations of DD-SVM based on a collection of images from the COREL
and the MUSK data sets. The data sets and the source code of DD-SVM can be downloaded at
http://www.cs.uno.edu/∼yixin/ddsvm.html. Section 4.1 describes the experimental setup
for image categorization, including the image data set, the implementation details, and the selection
of parameters. Section 4.2 compares DD-SVM with MI-SVM and color histogram-based SVM
using COREL data. The effect of inaccurate image segmentation on classification accuracies is
demonstrated in Section 4.3. Section 4.4 illustrates the performance variations when the number of
image categories increases. Analysis of the effects of training sample size and diversity of images
is given in Section 4.5. Results on the MUSK data sets are presented in Section 4.6. Computational
issues are discussed in Section 4.7.

4.1 Experimental Setup for Image Categorization

The image data set employed in our empirical study consists of 2,000 images taken from 20 CD-
ROMs published by COREL Corporation. Each COREL CD-ROM of 100 images represents one
distinct topic of interest. Therefore, the data set has 20 thematically diverse image categories, each
containing 100 images. All the images are in JPEG format with size 384× 256 or 256× 384. We
assigned a keyword (or keywords) to describe each image category. The category names and some
randomly selected sample images from each category are shown in Figure 3.

Images within each category are randomly divided into a training set and a test set each with 50
images. We repeat each experiment for 5 random splits, and report the average of the results ob-
tained over 5 different test sets together with the 95% confidence interval. The SVMLight (Joachims,
1999) software is used to train the SVMs. The classification problem here is clearly a multi-class
problem. We use the one-against-the-rest approach: (a) for each category, an SVM is trained to
separate that category from all the other categories; (b) the final predicted class label is decided by
the winner of all SVMs, i.e., one with the maximum value inside the sign(·) function in (2).

Two other image classification methods are implemented for comparison. One is a histogram-
based SVM classification approach proposed by Chapelle et al. (1999). We denote it by Hist-SVM.
Each image is represented by a color histogram in the LUV color space. The dimension of each
histogram is 125. The other is MI-SVM (Andrews et al., 2003). MI-SVM uses the same set of
region features as our approach (it is implemented according to the pseudo code in Algorithm 3.3).
The learning problems in Hist-SVM and MI-SVM are solved by SVMLight . The Gaussian kernel,
K(x,z) = e−s‖x−z‖2

, is used in all three methods.
Several parameters need to be specified for SVMLight .3 The most significant ones are s and C

(the constant in (1) controlling the trade-off between training error and regularization). We apply
the following strategy to select these two parameters: We allow each one of the two parameters
be respectively chosen from two sets each containing 10 predetermined numbers. For every pair
of values of the two parameters (there are 100 pairs in total), a twofold cross-validation error on
the training set is recorded. The pair that gives the minimum twofold cross-validation error is
selected to be the “optimal” parameters. Note that the above procedure is applied only once for each
method. Once the parameters are determined, they are used in all subsequent image categorization
experiments.

3. SVMLight software and detailed descriptions of all its parameters are available at http://svmlight.joachims.org.
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Category 0: African people and villages Category 1: Beach

Category 2: Historical buildings Category 3: Buses

Category 4: Dinosaurs Category 5: Elephants

Category 6: Flowers Category 7: Horses

Category 8: Mountains and glaciers Category 9: Food

Category 10: Dogs Category 11: Lizards

Category 12: Fashion Category 13: Sunsets

Category 14: Cars Category 15: Waterfalls

Category 16: Antiques Category 17: Battle ships

Category 18: Skiing Category 19: Desserts

Figure 3: Sample images taken from 20 image categories.

4.2 Categorization Results

The classification results provided in Table 1 are based on images in Category 0 to Category 9,
i.e., 1,000 images. Results for the whole data set will be given in Section 4.4. DD-SVM performs
much better than Hist-SVM with a 14.8% difference in average classification accuracy. Compared
with MI-SVM, the average accuracy of DD-SVM is 6.8% higher. As we will see in Section 4.4,
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Average Accuracy :
[95% confidence interval]

DD-SVM 81.5% : [78.5%,84.5%]
Hist-SVM 66.7% : [64.5%,68.9%]
MI-SVM 74.7% : [74.1%,75.3%]

Table 1: Image categorization performance of DD-SVM, Hist-SVM, and MI-SVM. The numbers
listed are the average classification accuracies over 5 random test sets and the correspond-
ing 95% confidence intervals. The images belong to Category 0 to Category 9. Training
and test sets are of equal size.

Cat. 0 Cat. 1 Cat. 2 Cat. 3 Cat. 4 Cat. 5 Cat. 6 Cat. 7 Cat. 8 Cat. 9

Cat. 0 67.7% 3.7% 5.7% 0.0% 0.3% 8.7% 5.0% 1.3% 0.3% 7.3%
Cat. 1 1.0% 68.4% 4.3% 4.3% 0.0% 3.0% 1.3% 1.0% 15.0% 1.7%
Cat. 2 5.7% 5.0% 74.3% 2.0% 0.0% 3.3% 0.7% 0.0% 6.7% 2.3%
Cat. 3 0.3% 3.7% 1.7% 90.3% 0.0% 0.0% 0.0% 0.0% 1.3% 2.7%
Cat. 4 0.0% 0.0% 0.0% 0.0% 99.7% 0.0% 0.0% 0.0% 0.0% 0.3%
Cat. 5 5.7% 3.3% 6.3% 0.3% 0.0% 76.0% 0.7% 4.7% 2.3% 0.7%
Cat. 6 3.3% 0.0% 0.0% 0.0% 0.0% 1.7% 88.3% 2.3% 0.7% 3.7%
Cat. 7 2.3% 0.3% 0.0% 0.0% 0.0% 2.0% 1.0% 93.4% 0.7% 0.3%
Cat. 8 0.3% 15.7% 5.0% 1.0% 0.0% 4.3% 1.0% 0.7% 70.3% 1.7%
Cat. 9 3.3% 1.0% 0.0% 3.0% 0.7% 1.3% 1.0% 2.7% 0.0% 87.0%

Table 2: The confusion matrix of image categorization experiments (over 5 randomly generated
test sets). Each row lists the average percentage of images (test images) in one category
classified to each of the 10 categories by DD-SVM. Numbers on the diagonal show the
classification accuracy for each category.

the difference becomes even greater as the number of categories increases. This suggests that the
proposed method is more effective than MI-SVM in learning concepts of image categories under
the same image representation. The MIL formulation of our method may be better suited for region-
based image classification than that of MI-SVM.

Next, we make a closer analysis of the performance by looking at classification results on every
category in terms of the confusion matrix. The results are listed in Table 2. Each row lists the
average percentage of images in one category classified to each of the 10 categories by DD-SVM.
The numbers on the diagonal show the classification accuracy for each category, and off-diagonal
entries indicate classification errors. Ideally, one would expect the diagonal terms be all 1’s, and
the off-diagonal terms be all 0’s. A detailed examination of the confusion matrix shows that two of
the largest errors (the underlined numbers in Table 2) are errors between Category 1 (Beach) and
Category 8 (Mountains and glaciers): 15.0% of “Beach” images are misclassified as “Mountains and
glaciers;” 15.7% of “Mountains and glaciers” images are misclassified as “Beach.” Figure 4 presents
12 misclassified images (in at least one experiment) from both categories. All “Beach” images in
Figure 4 contain mountains or mountain-like regions, while all the “Mountains and glaciers” images
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Beach 1 Beach 2 Beach 3 Beach 4 Beach 5 Beach 6

Mountains 1 Mountains 2 Mountains 3 Mountains 4 Mountains 5 Mountains 6

Figure 4: Some sample images taken from two categories: “Beach” and “Mountains and glaciers.”
All the listed “Beach” images are misclassified as “Mountains and glaciers,” while the
listed “Mountains and glaciers” images are misclassified as “Beach.”

have regions corresponding to river, lake, or even ocean. In other words, although these two image
categories do not share annotation words, they are semantically related and visually similar. This
may be the reason for the classification errors.

4.3 Sensitivity to Image Segmentation

Because image segmentation cannot be perfect, being robust to segmentation-related uncertain-
ties becomes a critical performance index for a region-based image classification method. Figure 5
shows two images, “African people” and “Horses,” and the segmentation results with different num-
bers of regions (the results are obtained by varying the stopping criteria of the k-mean segmentation
algorithm presented in Section 2). Regions are shown in their representative colors. We can see
from Figure 5 that, under some stopping criteria, objects totally different in semantics may be clus-
tered into the same region (under-segmented). While under some other stopping criteria, one object
may be divided into several regions (over-segmented).

In this section, we compare the performance of DD-SVM with MI-SVM when the coarseness
of image segmentation varies. To give a fair comparison, we control the coarseness of image seg-
mentation by adjusting the stopping criteria of the k-means segmentation algorithm. We pick 5
different stopping criteria. The corresponding average numbers of regions per image (computed
over 1,000 images from Category 0 to Category 9) are 4.31, 6.32, 8.64, 11.62, and 12.25. The
average classification accuracies (over 5 randomly generated test sets) under each coarseness level
and the corresponding 95% confidence intervals are presented in Figure 6.

The results in Figure 6 indicate that DD-SVM outperforms MI-SVM on all 5 coarseness levels.
In addition, for DD-SVM, there are no significant changes in the average classification accuracy
for different coarseness levels. While the performance of MI-SVM degrades as the average number
of regions per image increases. The difference in average classification accuracies between the
two methods are 6.8%, 9.5%, 11.7%, 13.8%, and 27.4% as the average number of regions per
image increases. This appears to support the claim that DD-SVM has low sensitivity to image
segmentation.
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Original Image 3 regions 5 regions 7 regions 9 regions 11 regions

Original Image 3 regions 5 regions 7 regions 9 regions 11 regions

Figure 5: Segmentation results given by the k-means clustering algorithm with 5 different stopping
criteria. Original images, which are taken from “African people” and “Horses” categories,
are in the first column. Segmented regions are shown in their representative colors.
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Figure 6: Comparing DD-SVM with MI-SVM on the robustness to image segmentation. The ex-
periment is performed on 1,000 images in Category 0 to Category 9 (training and test sets
are of equal size). The average classification accuracies and the corresponding 95% con-
fidence intervals are computed over 5 randomly generated test sets. The average numbers
of regions per image are 4.31, 6.32, 8.64, 11.62, and 12.25.

4.4 Sensitivity to the Number of Categories in a Data Set

Although the experimental results in Section 4.2 and 4.3 demonstrate the good performance of DD-
SVM using 1,000 images in Category 0 to Category 9, the scalability of the method remains a
question: how does the performance scale as the number of categories in a data set increases? We
attempt to empirically answer this question by performing image categorization experiments over
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Figure 7: Comparing DD-SVM with MI-SVM on the robustness to the number of categories in a
data set. The experiment is performed on 11 different data sets. The number of categories
in a data set varies from 10 to 20. A data set with i categories contains 100× i images
from Category 0 to Category i− 1 (training and test sets are of equal size). The average
classification accuracies and the corresponding 95% confidence intervals are computed
over 5 randomly generated test sets.

data sets with different numbers of categories. A total of 11 data sets are used in the experiments.
The number of categories in a data set varies from 10 to 20. A data set with i categories contains
100× i images from Category 0 to Category i−1. The average classification accuracies over 5 ran-
domly generated test sets and the corresponding 95% confidence intervals are presented in Figure 7.
We also include the results of MI-SVM for comparison.

We observe a decrease in average classification accuracy as the number of categories increases.
When the number of categories becomes doubled (increasing from 10 to 20 categories), the average
classification accuracy of DD-SVM drops from 81.5% to 67.5%. However, DD-SVM seems to be
less sensitive to the number of categories in a data set than MI-SVM. This is indicated, in Figure 8,
by the difference in average classification accuracies between the two methods as the number of cat-
egories in a data set increases. It should be clear that our method outperforms MI-SVM consistently.
And the performance discrepancy increases with the number of categories. For the 1000-image data
set with 10 categories, the difference is 6.8%. This number is nearly doubled (12.9%) when the
number of categories becomes 20. In other words, the performance degradation of DD-SVM is
slower than that of MI-SVM as the number of categories increases.

4.5 Sensitivity to the Size and Diversity of Training Images

We test the sensitivity of DD-SVM to the size of training set using 1,000 images from Category 0
to Category 9 with the size of the training sets being 100, 200, 300, 400, and 500 (the number of
images from each category is size o f the training set

10 ). The corresponding numbers of test images are 900,
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Figure 8: Difference in average classification accuracies between DD-SVM and MI-SVM as the
number of categories varies. A positive number indicates that DD-SVM has higher aver-
age classification accuracy.
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Figure 9: Comparing DD-SVM with MI-SVM as the number of training images varies from 100
to 500. The experiment is performed on 1,000 images in Category 0 to Category 9.
The average classification accuracies and the corresponding 95% confidence intervals are
computed over 5 randomly generated test sets.

800, 700, 600, and 500. As indicated in Figure 9, when the number of training images decreases,
the average classification accuracy of DD-SVM degrades as expected. Figure 9 also shows that the
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Figure 10: Comparing DD-SVM with MI-SVM as the diversity of training images varies. The ex-
periment is performed on 200 images in Category 2 (Historical buildings) and Category
7 (Horses). The average classification accuracies and the corresponding 95% confidence
intervals are computed over 5 randomly generated test sets. Training and test sets have
equal size.

performance of DD-SVM degrades in roughly the same speed as that of MI-SVM: the differences
in average classification accuracies between DD-SVM and MI-SVM are 8.7%, 7.9%, 8.0%, 7.1%,
and 6.8% when the training sample size varies from 100 to 500.

To test the performance of DD-SVM as the diversity of training images varies, we need to define
a measure of the diversity. In terms of binary classification, we define the diversity of images as a
measure of the number of positive images that are “similar” to negative images and the number of
negative images that are “similar” to positive images. In this experiment, training sets with different
diversities are generated as follows. We first randomly pick d% of positive images and d% of
negative images from a training set. Then, we modify the labels of the selected images by negating
their labels, i.e., positive (negative) images become negative (positive) images. Finally, we put these
images with new labels back to the training set. The new training set has d% of images with negated
labels. It should be clear that d = 0 and d = 50 correspond to the lowest and highest diversities,
respectively.

We compare DD-SVM with MI-SVM for d = 0, 2, 4, 6, 8, and 10 based on 200 images from
Category 2 (Historical buildings) and Category 7 (Horses). The training and test sets have equal size.
The average classification accuracies (over 5 randomly generated test sets) and the corresponding
95% confidence intervals are presented in Figure 10. We observe that the average classification
accuracy of DD-SVM is about 4% higher than that of MI-SVM when d = 0. And this difference
is statistically significant. However, if we randomly negate the labels of one positive image and
one negative image in the training set (i.e., d = 2 in this experimental setup), the performance of
DD-SVM is roughly the same as that of MI-SVM: although DD-SVM still leads MI-SVM by 2% of
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Figure 11: Average accuracy of 10-fold cross-validation on MUSK data sets using DD-SVM. The
parameters are C = 1,000 and s taking 19 values evenly distributed in [0.001,0.01].

average classification accuracy, the difference is statistically-indistinguishable. As d increases, DD-
SVM and MI-SVM generate roughly the same performance. This suggests that DD-SVM is more
sensitive to the diversity of training images than MI-SVM. We attempt to explain this observation as
follows. The DD function (3) used in Algorithm 3.1 is very sensitive to instances in negative bags.
It is not difficult to derive from (3) that the DD value at a point is substantially reduced is there is
a single instance from negative bags close to the point. Therefore, negating labels of one positive
and one negative image could significantly modify the DD function, and consequently, the instance
prototypes learned by Algorithm 3.1.

4.6 MUSK Data Sets

The MUSK data sets, MUSK1 and MUSK2 (Blake and Merz, 1998), are benchmark data sets for
MIL. Both data sets consist of descriptions of molecules. Specifically, a bag represents a molecule.
Instances in a bag represent low-energy conformations of the molecule. Each instance (or con-
formation) is defined by a 166-dimensional feature vector describing the surface of a low-energy
conformation. The data were preprocessed by dividing each feature value by 100. This was done
so that learning of instance prototypes would not begin at a flat area of the instance space. MUSK1
has 92 molecules (bags), of which 47 are labeled positive, with an average of 5.17 conformations
(instances) per molecule. MUSK2 has 102 molecules, of which 39 are positive, with an average of
64.69 conformations per molecule.

Figure 11 shows the average accuracy of 10-fold cross-validation using DD-SVM with C =
1,000 and the s parameter of the Gaussian kernel taking the following values: 0.001, 0.0015, 0.002,
0.0025, 0.003, 0.0035, 0.004, 0.0045, 0.005 0.0055, 0.006, 0.0065, 0.007, 0.0075, 0.008, 0.0085,
0.009, 0.0095, 0.01. As a function of s, the average 10-fold cross-validation accuracy of DD-SVM
varies within [84.9%,86.9%] (MUSK1) or [90.2%,92.2%] (MUSK2). For both data sets, the me-
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Average Accuracy
MUSK1 MUSK2

DD-SVM 85.8% 91.3%
IAPR 92.4% 89.2%
DD 88.9% 82.5%
EM-DD 84.8% 84.9%
MI-SVM 77.9% 84.3%
mi-SVM 87.4% 83.6%
MI-NN 88.0% 82.0%
Multinst 76.7% 84.0%

Table 3: Comparison of averaged 10-fold cross-validation accuracies on MUSK data sets.

dian of the average accuracy, which is robust over a range of parameter values, is reported in Table 3.
Table 3 also summarizes the performance of seven MIL algorithms in the literature: IAPR (Diet-
terich et al., 1997), DD (Maron and Lozano-Pérez, 1998), EM-DD (Zhang and Goldman, 2002),4

MI-SVM and mi-SVM (Andrews et al., 2003), MI-NN (Ramon and De Raedt, 2000), and Multi-
nst (Auer, 1997). Although DD-SVM is outperformed by IAPR, DD, MI-NN, and mi-SVM on
MUSK1, it generates the best performance on MUSK2. Overall, DD-SVM achieves very competi-
tive accuracy values.

4.7 Speed

On average, the learning of each binary classifier using a training set of 500 images (4.31 regions
per image) takes around 40 minutes of CPU time on a Pentium III 700MHz PC running the Linux
operating system. Algorithm 3.1 is implemented in Matlab with the quasi-Newton search procedure
written in the C programming language. Among this amount of time, the majority is spent on
learning instance prototypes, in particular, the FOR loop of LearnIPs(D) in Algorithm 3.1. This is
because the quasi-Newton search needs to be applied with every instance in every positive bag as
starting points (each optimization only takes a few seconds). However, since these optimizations
are independent of each other, they can be fully parallelized. Thus the training time may be reduced
significantly.

5. Conclusions and Future Work

In this paper, we proposed a region-based image categorization method using an extension of
Multiple-Instance Learning, DD-SVM. Each image is represented as a collection of regions ob-
tained from image segmentation using the k-means algorithm. In DD-SVM, each image is mapped
to a point in a bag feature space, which is defined by a set of instance prototypes learned with the
Diverse Density function. SVM-based image classifiers are then trained in the bag feature space.
We demonstrate that DD-SVM outperforms two other methods in classifying images from 20 dis-
tinct semantic classes. In addition, DD-SVM generates highly competitive results on the MUSK
data sets, which are benchmark data sets for MIL.

4. The EM-DD results reported in Zhang and Goldman (2002) were obtained by selecting the optimal solution using
the test data. The EM-DD result cited in this paper is provide by Andrews et al. (2003) using the correct algorithm.

935



CHEN AND WANG

The proposed image categorization method has several limitations:

• The semantic meaning of an instance prototype is usually unknown because the learning
algorithm in Section 3 does not associate a linguistic label with each instance prototype. As
a result, “region naming” (Barnard et al., 2003) is not supported by DD-SVM.

• It may not be possible to learn certain concepts through the method. For example, texture
images can be designed using a simple object (or region), such as a T-shaped object. By
varying orientation, frequency of appearance, and alignment of the object, one can get texture
images that are visually different. In other words, the concept of texture depends on not
only the individual object but also the spatial relationship of objects (or instances). But this
spatial information is not exploited by the current work. As pointed out by one reviewer of
the initial draft, a possible way to tackle this problem is to use Markov random field type of
models (Modestino and Zhang, 1992).

The performance of image categorization may be improved in the following ways:

• The image segmentation algorithm may be improved. The current k-means algorithm is rel-
atively simple and efficient. But over-segmentation and under-segmentation may happen fre-
quently for a fixed stopping criterion. Although the empirical results in Section 4.3 show that
the proposed method has low sensitivity to image segmentation, a semantically more accurate
segmentation algorithm may improve the overall classification accuracy.

• The definition of the DD function may be improved. The current DD function, which is a
multiplicative model, is very sensitive to instances in negative bags. It can be easily observed
from (3) that the DD value at a point is significantly reduced if there is a single instance from
a negative bag close to the point. This property may be desirable for some applications, such
as drug discovery (Maron and Lozano-Pérez, 1998), where the goal is to learn a single point
in the instance feature space with the maximum DD value from an almost “noise free” data
set. But this is not a typical problem setting for region-based image categorization where data
usually contain noise. Thus a more robust definition of DD, such as an additive model, may
enhance the performance.

As pointed out by a reviewer of the initial draft, scene category can be a vector. For example, a
scene can be {mountain, beach} in one dimension, but also {winter, summer} in the other dimen-
sion. Under this scenario, our current work can be applied in two ways: (a) design a multi-class
classifier for each dimension, i.e., mountain/beach classifier for one dimension and winter/summer
classifier for the other dimension; or (b) design one multi-class classifier taking all scene categories
into consideration, i.e., mountain-winter, mountain-summer, beach-winter, and beach-summer cat-
egories.

In our experimental evaluations, image semantic categories are assumed to be well-defined. As
pointed out by one of the reviewers, image semantics is inherently linguistic, therefore, can only
be defined loosely. Thus a methodologically well-defined evaluation technique should take into
account scenarios with differing amounts of knowledge about the image semantics. Unless this
issue can be fully investigated, our image categorization results should be interpreted cautiously.

As continuations of this work, several directions may be pursued. The proposed method can
potentially be applied to automatically index images using linguistic descriptions. It can also be
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integrated to content-based image retrieval systems to group images into semantically meaningful
categories so that semantically-adaptive searching methods applicable to each category can be ap-
plied. The current instance prototype learning scheme may be improved by boosting techniques.
Art and biomedical images would be interesting applications.
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Abstract
In this paper we study boosting methods from a new perspective. We build on recent work by Efron
et al. to show that boosting approximately (and in some cases exactly) minimizes its loss criterion
with an l1 constraint on the coefficient vector. This helps understand the success of boosting with
early stopping as regularized fitting of the loss criterion. For the two most commonly used crite-
ria (exponential and binomial log-likelihood), we further show that as the constraint is relaxed—or
equivalently as the boosting iterations proceed—the solution converges (in the separable case) to an
“l1-optimal” separating hyper-plane. We prove that this l1-optimal separating hyper-plane has the
property of maximizing the minimal l1-margin of the training data, as defined in the boosting liter-
ature. An interesting fundamental similarity between boosting and kernel support vector machines
emerges, as both can be described as methods for regularized optimization in high-dimensional
predictor space, using a computational trick to make the calculation practical, and converging to
margin-maximizing solutions. While this statement describes SVMs exactly, it applies to boosting
only approximately.
Keywords: boosting, regularized optimization, support vector machines, margin maximization

1. Introduction and Outline

Boosting is a method for iteratively building an additive model

FT (x) =
T

∑
t=1

αth jt (x), (1)

where h jt ∈ H —a large (but we will assume finite) dictionary of candidate predictors or “weak
learners”; and h jt is the basis function selected as the “best candidate” to modify the function at
stage t. The model FT can equivalently be represented by assigning a coefficient to each dictionary
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function h ∈H rather than to the selected h jt ’s only:

FT (x) =
J

∑
j=1

h j(x) ·β(T )
j , (2)

where J = |H | and β(T )
j = ∑ jt= j αt . The “β” representation allows us to interpret the coefficient

vector β(T ) as a vector in R J or, equivalently, as the hyper-plane which has β(T ) as its normal. This
interpretation will play a key role in our exposition.

Some examples of common dictionaries are:

• The training variables themselves, in which case h j(x) = x j. This leads to our “additive”
model FT being just a linear model in the original data. The number of dictionary functions
will be J = d, the dimension of x.

• Polynomial dictionary of degree p, in which case the number of dictionary functions will be

J =

(

p+d
d

)

.

• Decision trees with up to k terminal nodes, if we limit the split points to data points (or mid-
way between data points as CART does). The number of possible trees is bounded from
above (trivially) by J ≤ (np)k · 2k2

. Note that regression trees do not fit into our framework,
since they will give J = ∞.

The boosting idea was first introduced by Freund and Schapire (1995), with their AdaBoost
algorithm. AdaBoost and other boosting algorithms have attracted a lot of attention due to their great
success in data modeling tasks, and the “mechanism” which makes them work has been presented
and analyzed from several perspectives. Friedman et al. (2000) develop a statistical perspective,
which ultimately leads to viewing AdaBoost as a gradient-based incremental search for a good
additive model (more specifically, it is a “coordinate descent” algorithm), using the exponential loss
function C(y,F) = exp(−yF), where y ∈ {−1,1}. The gradient boosting (Friedman, 2001) and
anyboost (Mason et al., 1999) generic algorithms have used this approach to generalize the boosting
idea to wider families of problems and loss functions. In particular, Friedman et al. (2000) have
pointed out that the binomial log-likelihood loss C(y,F) = log(1 + exp(−yF)) is a more natural
loss for classification, and is more robust to outliers and misspecified data.

A different analysis of boosting, originating in the machine learning community, concentrates on
the effect of boosting on the margins yiF(xi). For example, Schapire et al. (1998) use margin-based
arguments to prove convergence of boosting to perfect classification performance on the training
data under general conditions, and to derive bounds on the generalization error (on future, unseen
data).

In this paper we combine the two approaches, to conclude that gradient-based boosting can be
described, in the separable case, as an approximate margin maximizing process. The view we de-
velop of boosting as an approximate path of optimal solutions to regularized problems also justifies
early stopping in boosting as specifying a value for “regularization parameter”.

We consider the problem of minimizing non-negative convex loss functions (in particular the
exponential and binomial log-likelihood loss functions) over the training data, with an l1 bound on
the model coefficients:

β̂(c) = arg min
‖β‖1≤c

∑
i

C(yi,h(xi)
′β). (3)
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Where h(xi) = [h1(xi),h2(xi), . . . ,hJ(xi)]
′ and J = |H |.1

Hastie et al. (2001, Chapter 10) have observed that “slow” gradient-based boosting (i.e., we set
αt = ε ,∀t in (1), with ε small) tends to follow the penalized path β̂(c) as a function of c, under
some mild conditions on this path. In other words, using the notation of (2), (3), this implies that
‖β(c/ε)− β̂(c)‖ vanishes with ε, for all (or a wide range of) values of c. Figure 1 illustrates this
equivalence between ε-boosting and the optimal solution of (3) on a real-life data set, using squared
error loss as the loss function. In this paper we demonstrate this equivalence further and formally
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Figure 1: Exact coefficient paths(left) for l1-constrained squared error regression and “boosting”
coefficient paths (right) on the data from a prostate cancer study

state it as a conjecture. Some progress towards proving this conjecture has been made by Efron et al.
(2004), who prove a weaker “local” result for the case where C is squared error loss, under some
mild conditions on the optimal path. We generalize their result to general convex loss functions.

Combining the empirical and theoretical evidence, we conclude that boosting can be viewed as
an approximate incremental method for following the l1-regularized path.

We then prove that in the separable case, for both the exponential and logistic log-likelihood
loss functions, β̂(c)/c converges as c→ ∞ to an “optimal” separating hyper-plane β̂ described by

β̂ = arg max
‖β‖1=1

min
i

yiβ′h(xi). (4)

In other words, β̂ maximizes the minimal margin among all vectors with l1-norm equal to 1.2 This
result generalizes easily to other lp-norm constraints. For example, if p = 2, then β̂ describes the
optimal separating hyper-plane in the Euclidean sense, i.e., the same one that a non-regularized
support vector machine would find.

Combining our two main results, we get the following characterization of boosting:

1. Our notation assumes that the minimum in (3) is unique, which requires some mild assumptions. To avoid notational
complications we use this slightly abusive notation throughout this paper. In Appendix B we give explicit conditions
for uniqueness of this minimum.

2. The margin maximizing hyper-plane in (4) may not be unique, and we show that in that case the limit β̂ is still defined
and it also maximizes the second minimal margin. See Appendix B.2 for details.

943



ROSSET, ZHU AND HASTIE

ε-Boosting can be described as a gradient-descent search, approximately following the
path of l1-constrained optimal solutions to its loss criterion, and converging, in the
separable case, to a “margin maximizer” in the l1 sense.

Note that boosting with a large dictionary H (in particular if n < J = |H |) guarantees that the data
will be separable (except for pathologies), hence separability is a very mild assumption here.

As in the case of support vector machines in high dimensional feature spaces, the non-regularized
“optimal” separating hyper-plane is usually of theoretical interest only, since it typically represents
an over-fitted model. Thus, we would want to choose a good regularized model. Our results indicate
that Boosting gives a natural method for doing that, by “stopping early” in the boosting process. Fur-
thermore, they point out the fundamental similarity between Boosting and SVMs: both approaches
allow us to fit regularized models in high-dimensional predictor space, using a computational trick.
They differ in the regularization approach they take—exact l2 regularization for SVMs, approximate
l1 regularization for Boosting—-and in the computational trick that facilitates fitting—the “kernel”
trick for SVMs, coordinate descent for Boosting.

1.1 Related Work

Schapire et al. (1998) have identified the normalized margins as distance from an l1-normed sep-
arating hyper-plane. Their results relate the boosting iterations’ success to the minimal margin of
the combined model. Rätsch et al. (2001b) take this further using an asymptotic analysis of Ad-
aBoost. They prove that the “normalized” minimal margin, mini yi ∑t αtht(xi)/∑t |αt |, is asymptoti-
cally equal for both classes. In other words, they prove that the asymptotic separating hyper-plane is
equally far away from the closest points on either side. This is a property of the margin maximizing
separating hyper-plane as we define it. Both papers also illustrate the margin maximizing effects of
AdaBoost through experimentation. However, they both stop short of proving the convergence to
optimal (margin maximizing) solutions.

Motivated by our result, Rätsch and Warmuth (2002) have recently asserted the margin-maximizing
properties of ε-AdaBoost, using a different approach than the one used in this paper. Their results
relate only to the asymptotic convergence of infinitesimal AdaBoost, compared to our analysis of
the “regularized path” traced along the way and of a variety of boosting loss functions, which also
leads to a convergence result on binomial log-likelihood loss.

The convergence of boosting to an “optimal” solution from a loss function perspective has been
analyzed in several papers. Rätsch et al. (2001a) and Collins et al. (2000) give results and bounds on
the convergence of training-set loss, ∑iC(yi,∑t αtht(xi)), to its minimum. However, in the separable
case convergence of the loss to 0 is inherently different from convergence of the linear separator to
the optimal separator. Any solution which separates the two classes perfectly can drive the expo-
nential (or log-likelihood) loss to 0, simply by scaling coefficients up linearly.

Two recent papers have made the connection between boosting and l1 regularization in a slightly
different context than this paper. Zhang (2003) suggests a “shrinkage” version of boosting which
converges to l1 regularized solutions, while Zhang and Yu (2003) illustrate the quantitative relation-
ship between early stopping in boosting and l1 constraints.
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2. Boosting as Gradient Descent

Generic gradient-based boosting algorithms (Friedman, 2001; Mason et al., 1999) attempt to find a
good linear combination of the members of some dictionary of basis functions to optimize a given
loss function over a sample. This is done by searching, at each iteration, for the basis function which
gives the “steepest descent” in the loss, and changing its coefficient accordingly. In other words,
this is a “coordinate descent” algorithm in R

J , where we assign one dimension (or coordinate) for
the coefficient of each dictionary function.

Assume we have data {xi,yi}
n
i=1 with xi ∈ R

d , a loss (or cost) function C(y,F), and a set of
dictionary functions {h j(x)} : R

d → R. Then all of these algorithms follow the same essential
steps:

Algorithm 1 Generic gradient-based boosting algorithm

1. Set β(0) = 0.

2. For t = 1 : T ,

(a) Let Fi = β(t−1)′h(xi), i = 1, . . . ,n (the current fit).

(b) Set wi = ∂C(yi,Fi)
∂Fi

, i = 1, . . . ,n.

(c) Identify jt = argmax j |∑i wih j(xi)|.

(d) Set β(t)
jt = β(t−1)

jt −αtsign(∑i wih jt (xi)) and β(t)
k = β(t−1)

k ,k 6= jt .

Here β(t) is the “current” coefficient vector and αt > 0 is the current step size. Notice that ∑i wih jt (xi) =
∂∑i C(yi,Fi)

∂β jt
.

As we mentioned, Algorithm 1 can be interpreted simply as a coordinate descent algorithm in
“weak learner” space. Implementation details include the dictionary H of “weak learners”, the loss
function C(y,F), the method of searching for the optimal jt and the way in which αt is determined.3

For example, the original AdaBoost algorithm uses this scheme with the exponential loss C(y,F) =
exp(−yF), and an implicit line search to find the best αt once a “direction” jt has been chosen (see
Hastie et al., 2001; Mason et al., 1999). The dictionary used by AdaBoost in this formulation would
be a set of candidate classifiers, i.e., h j(xi) ∈ {−1,+1}—usually decision trees are used in practice.

2.1 Practical Implementation of Boosting

The dictionaries used for boosting are typically very large—practically infinite—and therefore the
generic boosting algorithm we have presented cannot be implemented verbatim. In particular, it is
not practical to exhaustively search for the maximizer in step 2(c). Instead, an approximate, usually
greedy search is conducted to find a “good” candidate weak learner h jt which makes the first order
decline in the loss large (even if not maximal among all possible models).

In the common case that the dictionary of weak learners is comprised of decision trees with
up to k nodes, the way AdaBoost and other boosting algorithms solve stage 2(c) is by building a

3. The sign of αt will always be−sign(∑i wih jt (xi)), since we want the loss to be reduced. In most cases, the dictionary
H is negation closed, and so it can be assumed WLOG that the coefficients are always positive and increasing
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decision tree to a re-weighted version of the data, with the weights |wi|. Thus they first replace step
2(c) with minimization of

∑
i

|wi|1{yi 6= h jt (xi)},

which is easily shown to be equivalent to the original step 2(c). They then use a greedy decision-
tree building algorithm such as CART or C5 to build a k-node decision tree which minimizes this
quantity, i.e., achieves low “weighted misclassification error” on the weighted data. Since the tree is
built greedily—one split at a time—it will not be the global minimizer of weighted misclassification
error among all k-node decision trees. However, it will be a good fit for the re-weighted data, and
can be considered an approximation to the optimal tree.

This use of approximate optimization techniques is critical, since much of the strength of the
boosting approach comes from its ability to build additive models in very high-dimensional predic-
tor spaces. In such spaces, standard exact optimization techniques are impractical: any approach
which requires calculation and inversion of Hessian matrices is completely out of the question,
and even approaches which require only first derivatives, such as coordinate descent, can only be
implemented approximately.

2.2 Gradient-Based Boosting as a Generic Modeling Tool

As Friedman (2001); Mason et al. (1999) mention, this view of boosting as gradient descent allows
us to devise boosting algorithms for any function estimation problem—all we need is an appro-
priate loss and an appropriate dictionary of “weak learners”. For example, Friedman et al. (2000)
suggested using the binomial log-likelihood loss instead of the exponential loss of AdaBoost for
binary classification, resulting in the LogitBoost algorithm. However, there is no need to limit
boosting algorithms to classification—Friedman (2001) applied this methodology to regression es-
timation, using squared error loss and regression trees, and Rosset and Segal (2003) applied it to
density estimation, using the log-likelihood criterion and Bayesian networks as weak learners. Their
experiments and those of others illustrate that the practical usefulness of this approach—coordinate
descent in high dimensional predictor space—carries beyond classification, and even beyond super-
vised learning.

The view we present in this paper, of coordinate-descent boosting as approximate l1-regularized
fitting, offers some insight into why this approach would be good in general: it allows us to fit regu-
larized models directly in high dimensional predictor space. In this it bears a conceptual similarity
to support vector machines, which exactly fit an l2 regularized model in high dimensional (RKH)
predictor space.

2.3 Loss Functions

The two most commonly used loss functions for boosting classification models are the exponential
and the (minus) binomial log-likelihood:

Exponential : Ce(y,F) = exp(−yF);

Loglikelihood : Cl(y,F) = log(1+ exp(−yF)).

These two loss functions bear some important similarities to each other. As Friedman et al. (2000)
show, the population minimizer of expected loss at point x is similar for both loss functions and is
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Figure 2: The two classification loss functions

given by

F̂(x) = c · log

[

P(y = 1|x)

P(y =−1|x)

]

,

where ce = 1/2 for exponential loss and cl = 1 for binomial loss.
More importantly for our purpose, we have the following simple proposition, which illustrates

the strong similarity between the two loss functions for positive margins (i.e., correct classifica-
tions):

Proposition 1

yF ≥ 0⇒ 0.5Ce(y,F)≤Cl(y,F)≤Ce(y,F). (5)

In other words, the two losses become similar if the margins are positive, and both behave like
exponentials.

Proof Consider the functions f1(z) = z and f2(z) = log(1+z) for z∈ [0,1]. Then f1(0) = f2(0) = 0,
and

∂ f1(z)
∂z

≡ 1

1
2
≤

∂ f2(z)
∂z

=
1

1+ z
≤ 1.

Thus we can conclude 0.5 f1(z) ≤ f2(z) ≤ f1(z). Now set z = exp(−y f ) and we get the desired
result.

For negative margins the behaviors of Ce and Cl are very different, as Friedman et al. (2000)
have noted. In particular, Cl is more robust against outliers and misspecified data.

2.4 Line-Search Boosting vs. ε-Boosting

As mentioned above, AdaBoost determines αt using a line search. In our notation for Algorithm 1
this would be

αt = argmin
α ∑

i

C(yi,Fi +αh jt (xi)).
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The alternative approach, suggested by Friedman (2001); Hastie et al. (2001), is to “shrink” all αt

to a single small value ε. This may slow down learning considerably (depending on how small ε
is), but is attractive theoretically: the first-order theory underlying gradient boosting implies that
the weak learner chosen is the best increment only “locally”. It can also be argued that this ap-
proach is “stronger” than line search, as we can keep selecting the same h jt repeatedly if it remains
optimal and so ε-boosting dominates line-search boosting in terms of training error. In practice,
this approach of “slowing the learning rate” usually performs better than line-search in terms of
prediction error as well (see Friedman, 2001). For our purposes, we will mostly assume ε is in-
finitesimally small, so the theoretical boosting algorithm which results is the “limit” of a series of
boosting algorithms with shrinking ε.

In regression terminology, the line-search version is equivalent to forward stage-wise modeling,
infamous in the statistics literature for being too greedy and highly unstable (see Friedman, 2001).
This is intuitively obvious, since by increasing the coefficient until it saturates we are destroying
“signal” which may help us select other good predictors.

3. lp Margins, Support Vector Machines and Boosting

We now introduce the concept of margins as a geometric interpretation of a binary classification
model. In the context of boosting, this view offers a different understanding of AdaBoost from the
gradient descent view presented above. In the following sections we connect the two views.

3.1 The Euclidean Margin and the Support Vector Machine

Consider a classification model in high dimensional predictor space: F(x) = ∑ j h j(x)β j. We say
that the model separates the training data {xi,yi}

n
i=1 if sign(F(xi)) = yi, ∀i. From a geometrical

perspective this means that the hyper-plane defined by F(x) = 0 is a separating hyper-plane for this
data, and we define its (Euclidean) margin as

m2(β) = min
i

yiF(xi)

‖β‖2
. (6)

The margin-maximizing separating hyper-plane for this data would be defined by β which max-
imizes m2(β). Figure 3 shows a simple example of separable data in two dimensions, with its
margin-maximizing separating hyper-plane. The Euclidean margin-maximizing separating hyper-
plane is the (non regularized) support vector machine solution. Its margin maximizing properties
play a central role in deriving generalization error bounds for these models, and form the basis for
a rich literature.

3.2 The l1 Margin and Its Relation to Boosting

Instead of considering the Euclidean margin as in (6) we can define an “lp margin” concept as

mp(β) = min
i

yiF(xi)

‖β‖p
. (7)

Of particular interest to us is the case p = 1. Figure 4 shows the l1 margin maximizing separating
hyper-plane for the same simple example as Figure 3. Note the fundamental difference between
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Figure 3: A simple data example, with two observations from class “O” and two observations from
class “X”. The full line is the Euclidean margin-maximizing separating hyper-plane.
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Figure 4: l1 margin maximizing separating hyper-plane for the same data set as Figure 3. The
difference between the diagonal Euclidean optimal separator and the vertical l1 optimal
separator illustrates the “sparsity” effect of optimal l1 separation
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the two solutions: the l2-optimal separator is diagonal, while the l1-optimal one is vertical. To
understand why this is so we can relate the two margin definitions to each other as

yF(x)

‖β‖1
=

yF(x)

‖β‖2
·
‖β‖2

‖β‖1
. (8)

From this representation we can observe that the l1 margin will tend to be big if the ratio ‖β‖2
‖β‖1

is
big. This ratio will generally be big if β is sparse. To see this, consider fixing the l1 norm of the
vector and then comparing the l2 norm of two candidates: one with many small components and the
other—a sparse one—with a few large components and many zero components. It is easy to see that
the second vector will have bigger l2 norm, and hence (if the l2 margin for both vectors is equal) a
bigger l1 margin.

A different perspective on the difference between the optimal solutions is given by a theorem
due to Mangasarian (1999), which states that the lp margin maximizing separating hyper plane
maximizes the lq distance from the closest points to the separating hyper-plane, with 1

p + 1
q = 1.

Thus the Euclidean optimal separator (p = 2) also maximizes Euclidean distance between the points
and the hyper-plane, while the l1 optimal separator maximizes l∞ distance. This interesting result
gives another intuition why l1 optimal separating hyper-planes tend to be coordinate-oriented (i.e.,
have sparse representations): since l∞ projection considers only the largest coordinate distance,
some coordinate distances may be 0 at no cost of decreased l∞ distance.

Schapire et al. (1998) have pointed out the relation between AdaBoost and the l1 margin. They
prove that, in the case of separable data, the boosting iterations increase the “boosting” margin of
the model, defined as

min
i

yiF(xi)

‖α‖1
. (9)

In other words, this is the l1 margin of the model, except that it uses the α incremental representation
rather than the β “geometric” representation for the model. The two representations give the same
l1 norm if there is sign consistency, or “monotonicity” in the coefficient paths traced by the model,
i.e., if at every iteration t of the boosting algorithm

β jt 6= 0⇒ sign(αt) = sign(β jt ). (10)

As we will see later, this monotonicity condition will play an important role in the equivalence
between boosting and l1 regularization.

The l1-margin maximization view of AdaBoost presented by Schapire et al. (1998)—and a
whole plethora of papers that followed—is important for the analysis of boosting algorithms for
two distinct reasons:

• It gives an intuitive, geometric interpretation of the model that AdaBoost is looking for—a
model which separates the data well in this l1-margin sense. Note that the view of boosting as
gradient descent in a loss criterion doesn’t really give the same kind of intuition: if the data
is separable, then any model which separates the training data will drive the exponential or
binomial loss to 0 when scaled up:

m1(β) > 0 =⇒ ∑
i

C(yi,dβ′xi)→ 0 as d→ ∞.
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• The l1-margin behavior of a classification model on its training data facilitates generation
of generalization (or prediction) error bounds, similar to those that exist for support vector
machines (Schapire et al., 1998). The important quantity in this context is not the margin but
the “normalized” margin, which considers the “conjugate norm” of the predictor vectors:

yiβ′h(xi)

‖β‖1‖h(xi)‖∞
.

When the dictionary we are using is comprised of classifiers then ‖h(xi)‖∞ ≡ 1 always and
thus the l1 margin is exactly the relevant quantity. The error bounds described by Schapire
et al. (1998) allow using the whole l1 margin distribution, not just the minimal margin. How-
ever, boosting’s tendency to separate well in the l1 sense is a central motivation behind their
results.

From a statistical perspective, however, we should be suspicious of margin-maximization as a
method for building good prediction models in high dimensional predictor space. Margin maxi-
mization in high dimensional space is likely to lead to over-fitting and bad prediction performance.
This has been observed in practice by many authors, in particular Breiman (1999). Our results in
the next two sections suggest an explanation based on model complexity: margin maximization is
the limit of parametric regularized optimization models, as the regularization vanishes, and the reg-
ularized models along the path may well be superior to the margin maximizing “limiting” model, in
terms of prediction performance. In Section 7 we return to discuss these issues in more detail.

4. Boosting as Approximate Incremental l1 Constrained Fitting

In this section we introduce an interpretation of the generic coordinate-descent boosting algorithm
as tracking a path of approximate solutions to l1-constrained (or equivalently, regularized) versions
of its loss criterion. This view serves our understanding of what boosting does, in particular the
connection between early stopping in boosting and regularization. We will also use this view to
get a result about the asymptotic margin-maximization of regularized classification models, and
by analogy of classification boosting. We build on ideas first presented by Hastie et al. (2001,
Chapter 10) and Efron et al. (2004).

Given a convex non-negative loss criterion C(·, ·), consider the 1-dimensional path of optimal
solutions to l1 constrained optimization problems over the training data:

β̂(c) = arg min
‖β‖1≤c

∑
i

C(yi,h(xi)
′β). (11)

As c varies, we get that β̂(c) traces a 1-dimensional “optimal curve” through R
J . If an optimal

solution for the non-constrained problem exists and has finite l1 norm c0, then obviously β̂(c) =
β̂(c0) = β̂ , ∀c > c0. in the case of separable 2-class data, using either Ce or Cl , there is no finite-
norm optimal solution. Rather, the constrained solution will always have ‖β̂(c)‖1 = c.

A different way of building a solution which has l1 norm c, is to run our ε-boosting algorithm
for c/ε iterations. This will give an α(c/ε) vector which has l1 norm exactly c. For the norm of the
geometric representation β(c/ε) to also be equal to c, we need the monotonicity condition (10) to
hold as well. This condition will play a key role in our exposition.

We are going to argue that the two solution paths β̂(c) and β(c/ε) are very similar for ε “small”.
Let us start by observing this similarity in practice. Figure 1 in the introduction shows an example of
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Figure 5: Another example of the equivalence between the Lasso optimal solution path (left) and
ε-boosting with squared error loss. Note that the equivalence breaks down when the path
of variable 7 becomes non-monotone

this similarity for squared error loss fitting with l1 (lasso) penalty. Figure 5 shows another example
in the same mold, taken from Efron et al. (2004). The data is a diabetes study and the “dictionary”
used is just the original 10 variables. The panel on the left shows the path of optimal l1-constrained
solutions β̂(c) and the panel on the right shows the ε-boosting path with the 10-dimensional dictio-
nary (the total number of boosting iterations is about 6000). The 1-dimensional path through R

10

is described by 10 coordinate curves, corresponding to each one of the variables. The interesting
phenomenon we observe is that the two coefficient traces are not completely identical. Rather, they
agree up to the point where variable 7 coefficient path becomes non monotone, i.e., it violates (10)
(this point is where variable 8 comes into the model, see the arrow on the right panel). This example
illustrates that the monotonicity condition—and its implication that ‖α‖1 = ‖β‖1—is critical for the
equivalence between ε-boosting and l1-constrained optimization.

The two examples we have seen so far have used squared error loss, and we should ask ourselves
whether this equivalence stretches beyond this loss. Figure 6 shows a similar result, but this time for
the binomial log-likelihood loss, Cl . We used the “spam” data set, taken from the UCI repository
(Blake and Merz, 1998). We chose only 5 predictors of the 57 to make the plots more interpretable
and the computations more accommodating. We see that there is a perfect equivalence between the
exact constrained solution (i.e., regularized logistic regression) and ε-boosting in this case, since the
paths are fully monotone.

To justify why this observed equivalence is not surprising, let us consider the following “l1-
locally optimal monotone direction” problem of finding the best monotone ε increment to a given
model β0:

min C(β) (12)

s.t. ‖β‖1−‖β0‖1 ≤ ε,
|β| � |β0| (component-wise).
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Figure 6: Exact coefficient paths (left) for l1-constrained logistic regression and boosting coefficient
paths (right) with binomial log-likelihood loss on five variables from the “spam” data set.
The boosting path was generated using ε = 0.003 and 7000 iterations.

Here we use C(β) as shorthand for ∑iC(yi,h(xi)
′β). A first order Taylor expansion gives us

C(β) = C(β0)+∇C(β0)
′(β−β0)+O(ε2).

And given the l1 constraint on the increase in ‖β‖1, it is easy to see that a first-order optimal solution
(and therefore an optimal solution as ε→ 0) will make a “coordinate descent” step, i.e.

β j 6= β0, j ⇒ |∇C(β0) j|= max
k
|∇C(β0)k|,

assuming the signs match, i.e., sign(β0 j) =−sign(∇C(β0) j).
So we get that if the optimal solution to (12) without the monotonicity constraint happens to be

monotone, then it is equivalent to a coordinate descent step. And so it is reasonable to expect that if
the optimal l1 regularized path is monotone (as it indeed is in Figures 1,6), then an “infinitesimal”
ε-boosting algorithm would follow the same path of solutions. Furthermore, even if the optimal
path is not monotone, we can still use the formulation (12) to argue that ε-boosting would tend to
follow an approximate l1-regularized path. The main difference between the ε-boosting path and
the true optimal path is that it will tend to “delay” becoming non-monotone, as we observe for
variable 7 in Figure 5. To understand this specific phenomenon would require analysis of the true
optimal path, which falls outside the scope of our discussion—Efron et al. (2004) cover the subject
for squared error loss, and their discussion applies to any continuously differentiable convex loss,
using second-order approximations.

We can employ this understanding of the relationship between boosting and l1 regularization
to construct lp boosting algorithms by changing the coordinate-selection criterion in the coordinate
descent algorithm. We will get back to this point in Section 7, where we design an “l2 boosting”
algorithm.

The experimental evidence and heuristic discussion we have presented lead us to the following
conjecture which connects slow boosting and l1-regularized optimization:
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Conjecture 2 Consider applying the ε-boosting algorithm to any convex loss function, generating
a path of solutions β(ε)(t). Then if the optimal coefficient paths are monotone ∀c < c0, i.e., if
∀ j, |β̂(c) j| is non-decreasing in the range c < c0, then

lim
ε→0

β(ε)(c0/ε) = β̂(c0).

Efron et al. (2004, Theorem 2) prove a weaker “local” result for the case of squared error loss
only. We generalize their result to any convex loss. However this result still does not prove the
“global” convergence which the conjecture claims, and the empirical evidence implies. For the sake
of brevity and readability, we defer this proof, together with concise mathematical definition of the
different types of convergence, to appendix A.

In the context of “real-life” boosting, where the number of basis functions is usually very large,
and making ε small enough for the theory to apply would require running the algorithm forever,
these results should not be considered directly applicable. Instead, they should be taken as an intu-
itive indication that boosting—especially the ε version—is, indeed, approximating optimal solutions
to the constrained problems it encounters along the way.

5. lp-Constrained Classification Loss Functions

Having established the relation between boosting and l1 regularization, we are going to turn our
attention to the regularized optimization problem. By analogy, our results will apply to boosting
as well. We concentrate on Ce and Cl , the two classification losses defined above, and the solution
paths of their lp constrained versions:

β̂(p)(c) = arg min
‖β‖p≤c

∑
i

C(yi,β′h(xi)). (13)

where C is either Ce or Cl . As we discussed below Equation (11), if the training data is separable in
span(H ), then we have ‖β̂(p)(c)‖p = c for all values of c. Consequently

‖
β̂(p)(c)

c
‖p = 1.

We may ask what are the convergence points of this sequence as c→ ∞. The following theorem
shows that these convergence points describe “lp-margin maximizing” separating hyper-planes.

Theorem 3 Assume the data is separable, i.e., ∃β s.t.∀i, yiβ′h(xi) > 0.

Then for both Ce and Cl , every convergence point of β̂(c)
c corresponds to an lp-margin-maximizing

separating hyper-plane.
If the lp-margin-maximizing separating hyper-plane is unique, then it is the unique convergence
points, i.e.

β̂(p) = lim
c→∞

β̂(p)(c)
c

= arg max
‖β‖p=1

min
i

yiβ′h(xi). (14)

Proof This proof applies to both Ce and Cl , given the property in (5). Consider two separating
candidates β1 and β2 such that ‖β1‖p = ‖β2‖p = 1. Assume that β1 separates better, i.e.

m1 := min
i

yiβ′1h(xi) > m2 := min
i

yiβ′2h(xi) > 0.

Then we have the following simple lemma:
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Lemma 4 There exists some D = D(m1,m2) such that ∀d > D, dβ1 incurs smaller loss than dβ2,
in other words:

∑
i

C(yi,dβ′1h(xi)) < ∑
i

C(yi,dβ′2h(xi)).

Given this lemma, we can now prove that any convergence point of β̂(p)(c)
c must be an lp-margin

maximizing separator. Assume β∗ is a convergence point of β̂(p)(c)
c . Denote its minimal margin on

the data by m∗. If the data is separable, clearly m∗ > 0 (since otherwise the loss of dβ∗ does not
even converge to 0 as d→ ∞).

Now, assume some β̃ with ‖β̃‖p = 1 has bigger minimal margin m̃ > m∗. By continuity of the
minimal margin in β, there exists some open neighborhood of β∗

Nβ∗ = {β : ‖β−β∗‖2 < δ}

and an ε > 0, such that
min

i
yiβ′h(xi) < m̃− ε, ∀β ∈ Nβ∗ .

Now by the lemma we get that there exists some D = D(m̃, m̃− ε) such that d β̃ incurs smaller

loss than dβ for any d > D, β ∈ Nβ∗ . Therefore β∗ cannot be a convergence point of β̂(p)(c)
c .

We conclude that any convergence point of the sequence β̂(p)(c)
c must be an lp-margin maximiz-

ing separator. If the margin maximizing separator is unique then it is the only possible convergence
point, and therefore

β̂(p) = lim
c→∞

β̂(p)(c)
c

= arg max
‖β‖p=1

min
i

yiβ′h(xi).

Proof of Lemma Using (5) and the definition of Ce, we get for both loss functions:

∑
i

C(yi,dβ′1h(xi))≤ nexp(−d ·m1).

Now, since β1 separates better, we can find our desired

D = D(m1,m2) =
logn+ log2

m1−m2

such that
∀d > D, nexp(−d ·m1) < 0.5exp(−d ·m2).

And using (5) and the definition of Ce again we can write

0.5exp(−d ·m2)≤∑
i

C(yi,dβ′2h(xi)).

Combining these three inequalities we get our desired result:

∀d > D, ∑
i

C(yi,dβ′1h(xi))≤∑
i

C(yi,dβ′2h(xi)).
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We thus conclude that if the lp-margin maximizing separating hyper-plane is unique, the nor-
malized constrained solution converges to it. In the case that the margin maximizing separating
hyper-plane is not unique, we can in fact prove a stronger result, which indicates that the limit of
the regularized solutions would then be determined by the second smallest margin, then by the third
and so on. This result is mainly of technical interest and we prove it in Appendix B, Section 2.

5.1 Implications of Theorem 3

We now briefly discuss the implications of this theorem for boosting and logistic regression.

5.1.1 BOOSTING IMPLICATIONS

Combined with our results from Section 4, Theorem 3 indicates that the normalized boosting path
β(t)

∑u≤t αu
—with either Ce or Cl used as loss—“approximately” converges to a separating hyper-plane

β̂, which attains

max
‖β‖1=1

min
i

yiβ′h(xi) = max
‖β‖1=1

‖β‖2 min
i

yidi, (15)

where di is the (signed) Euclidean distance from the training point i to the separating hyper-plane. In
other words, it maximizes Euclidean distance scaled by an l2 norm. As we have mentioned already,
this implies that the asymptotic boosting solution will tend to be sparse in representation, due to the
fact that for fixed l1 norm, the l2 norm of vectors that have many 0 entries will generally be larger.
In fact, under rather mild conditions, the asymptotic solution β̂ = limc→∞ β̂(1)(c)/c, will have at
most n (the number of observations) non-zero coefficients, if we use either Cl or Ce as the loss. See
Appendix B, Section 1 for proof.

5.1.2 LOGISTIC REGRESSION IMPLICATIONS

Recall, that the logistic regression (maximum likelihood) solution is undefined if the data is sepa-
rable in the Euclidean space spanned by the predictors. Theorem 3 allows us to define a logistic
regression solution for separable data, as follows:

1. Set a high constraint value cmax

2. Find β̂(p)(cmax), the solution to the logistic regression problem subject to the constraint ‖β‖p≤
cmax. The problem is convex for any p≥ 1 and differentiable for any p > 1, so interior point
methods can be used to solve this problem.

3. Now you have (approximately) the lp-margin maximizing solution for this data, described by

β̂(p)(cmax)

cmax
.

This is a solution to the original problem in the sense that it is, approximately, the convergence
point of the normalized lp-constrained solutions, as the constraint is relaxed.
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Of course, with our result from Theorem 3 it would probably make more sense to simply find the
optimal separating hyper-plane directly—this is a linear programming problem for l1 separation and
a quadratic programming problem for l2 separation. We can then consider this optimal separator as
a logistic regression solution for the separable data.

6. Examples

We now apply boosting to several data sets and interpret the results in light of our regularization and
margin-maximization view.

6.1 Spam Data Set

We now know if the data are separable and we let boosting run forever, we will approach the same
“optimal” separator for both Ce and Cl . However if we stop early—or if the data is not separable—
the behavior of the two loss functions may differ significantly, since Ce weighs negative margins
exponentially, while Cl is approximately linear in the margin for large negative margins (see Fried-
man et al., 2000). Consequently, we can expect Ce to concentrate more on the “hard” training data,
in particular in the non-separable case. Figure 7 illustrates the behavior of ε-boosting with both
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Figure 7: Behavior of boosting with the two loss functions on spam data set

loss functions, as well as that of AdaBoost, on the spam data set (57 predictors, binary response).
We used 10 node trees and ε = 0.1. The left plot shows the minimal margin as a function of the
l1 norm of the coefficient vector ‖β‖1. Binomial loss creates a bigger minimal margin initially,
but the minimal margins for both loss functions are converging asymptotically. AdaBoost initially
lags behind but catches up nicely and reaches the same minimal margin asymptotically. The right
plot shows the test error as the iterations proceed, illustrating that both ε-methods indeed seem to
over-fit eventually, even as their “separation” (minimal margin) is still improving. AdaBoost did not
significantly over-fit in the 1000 iterations it was allowed to run, but it obviously would have if it
were allowed to run on.

We should emphasize that the comparison between AdaBoost and ε-boosting presented consid-
ers as a basis for comparison the l1 norm, not the number of iterations. In terms of computational
complexity, as represented by the number of iterations, AdaBoost reaches both a large minimal mar-
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gin and good prediction performance much more quickly than the “slow boosting” approaches, as
AdaBoost tends to take larger steps.

6.2 Simulated Data

To make a more educated comparison and more compelling visualization, we have constructed an
example of separation of 2-dimensional data using a 8-th degree polynomial dictionary (45 func-
tions). The data consists of 50 observations of each class, drawn from a mixture of Gaussians, and
presented in Figure 8. Also presented, in the solid line, is the optimal l1 separator for this data in
this dictionary (easily calculated as a linear programming problem - note the difference from the l2

optimal decision boundary, presented in Section 7.1, Figure 11 ). The optimal l1 separator has only
12 non-zero coefficients out of 45.
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Figure 8: Artificial data set with l1-margin maximizing separator (solid), and boosting models af-
ter 105 iterations (dashed) and 106 iterations (dotted) using ε = 0.001. We observe the
convergence of the boosting separator to the optimal separator

We ran an ε-boosting algorithm on this data set, using the logistic log-likelihood loss Cl , with
ε = 0.001, and Figure 8 shows two of the models generated after 105 and 3 ·106 iterations. We see
that the models seem to converge to the optimal separator. A different view of this convergence is
given in Figure 9, where we see two measures of convergence: the minimal margin (left, maximum
value obtainable is the horizontal line) and the l1-norm distance between the normalized models
(right), given by

∑
j

∣

∣

∣

∣

∣

β̂ j−
β(t)

j

‖β(t)‖1

∣

∣

∣

∣

∣

,

where β̂ is the optimal separator with l1 norm 1 and β(t) is the boosting model after t iterations.
We can conclude that on this simple artificial example we get nice convergence of the logistic-

boosting model path to the l1-margin maximizing separating hyper-plane.
We can also use this example to illustrate the similarity between the boosted path and the path

of l1 optimal solutions, as we have discussed in Section 4.
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Figure 9: Two measures of convergence of boosting model path to optimal l1 separator: minimal
margin (left) and l1 distance between the normalized boosting coefficient vector and the
optimal model (right)
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Figure 10: Comparison of decision boundary of boosting models (broken) and of optimal con-
strained solutions with same norm (full)

Figure 10 shows the class decision boundaries for 4 models generated along the boosting path,
compared to the optimal solutions to the constrained “logistic regression” problem with the same
bound on the l1 norm of the coefficient vector. We observe the clear similarities in the way the
solutions evolve and converge to the optimal l1 separator. The fact that they differ (in some cases
significantly) is not surprising if we recall the monotonicity condition presented in Section 4 for
exact correspondence between the two model paths. In this case if we look at the coefficient paths
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(not shown), we observe that the monotonicity condition is consistently violated in the low norm
ranges, and hence we can expect the paths to be similar in spirit but not identical.

7. Discussion

We can now summarize what we have learned about boosting from the previous sections:

• Boosting approximately follows the path of l1-regularized models for its loss criterion

• If the loss criterion is the exponential loss of AdaBoost or the binomial log-likelihood loss
of logistic regression, then the l1 regularized model converges to an l1-margin maximizing
separating hyper-plane, if the data are separable in the span of the weak learners

We may ask, which of these two points is the key to the success of boosting approaches. One
empirical clue to answering this question, can be found in Breiman (1999), who programmed an
algorithm to directly maximize the margins. His results were that his algorithm consistently got
significantly higher minimal margins than AdaBoost on many data sets (and, in fact, a “higher”
margin distribution beyond the minimal margin), but had slightly worse prediction performance. His
conclusion was that margin maximization is not the key to AdaBoost’s success. From a statistical
perspective we can embrace this conclusion, as reflecting the importance of regularization in high-
dimensional predictor space. By our results from the previous sections, “margin maximization”
can be viewed as the limit of parametric regularized models, as the regularization vanishes.4 Thus
we would generally expect the margin maximizing solutions to perform worse than regularized
models. In the case of boosting, regularization would correspond to “early stopping” of the boosting
algorithm.

7.1 Boosting and SVMs as Regularized Optimization in High-dimensional Predictor Spaces

Our exposition has led us to view boosting as an approximate way to solve the regularized optimiza-
tion problem

min
β

∑
i

C(yi,β′h(xi))+λ‖β‖1 (16)

which converges as λ→ 0 to β̂(1), if our loss is Ce or Cl . In general, the loss C can be any convex
differentiable loss and should be defined to match the problem domain.

Support vector machines can be described as solving the regularized optimization problem (see
Friedman et al., 2000, Chapter 12)

min
β

∑
i

(1− yiβ′h(xi))+ +λ‖β‖2
2 (17)

which “converges” as λ→ 0 to the non-regularized support vector machine solution, i.e., the optimal
Euclidean separator, which we denoted by β̂(2).

An interesting connection exists between these two approaches, in that they allow us to solve
the regularized optimization problem in high dimensional predictor space:

4. It can be argued that margin-maximizing models are still “regularized” in some sense, as they minimize a norm
criterion among all separating models. This is arguably the property which still allows them to generalize reasonably
well in many cases.
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• We are able to solve the l1- regularized problem approximately in very high dimension via
boosting by applying the “approximate coordinate descent” trick of building a decision tree
(or otherwise greedily selecting a weak learner) based on re-weighted versions of the data.

• Support vector machines facilitate a different trick for solving the regularized optimization
problem in high dimensional predictor space: the “kernel trick”. If our dictionary H spans
a Reproducing Kernel Hilbert Space, then RKHS theory tells us we can find the regularized
solutions by solving an n-dimensional problem, in the space spanned by the kernel represen-
ters {K(xi,x)}. This fact is by no means limited to the hinge loss of (17), and applies to any
convex loss. We concentrate our discussion on SVM (and hence hinge loss) only since it is
by far the most common and well-known application of this result.

So we can view both boosting and SVM as methods that allow us to fit regularized models in
high dimensional predictor space using a computational “shortcut”. The complexity of the model
built is controlled by regularization. These methods are distinctly different than traditional statistical
approaches for building models in high dimension, which start by reducing the dimensionality of
the problem so that standard tools (e.g., Newton’s method) can be applied to it, and also to make
over-fitting less of a concern. While the merits of regularization without dimensionality reduction—
like Ridge regression or the Lasso—are well documented in statistics, computational issues make it
impractical for the size of problems typically solved via boosting or SVM, without computational
tricks.

We believe that this difference may be a significant reason for the enduring success of boosting
and SVM in data modeling, i.e.:

Working in high dimension and regularizing is statistically preferable to a two-step
procedure of first reducing the dimension, then fitting a model in the reduced space.

It is also interesting to consider the differences between the two approaches, in the loss (flexible
vs. hinge loss), the penalty (l1 vs. l2), and the type of dictionary used (usually trees vs. RKHS).
These differences indicate that the two approaches will be useful for different situations. For ex-
ample, if the true model has a sparse representation in the chosen dictionary, then l1 regularization
may be warranted; if the form of the true model facilitates description of the class probabilities via
a logistic-linear model, then the logistic loss Cl is the best loss to use, and so on.

The computational tricks for both SVM and boosting limit the kind of regularization that can
be used for fitting in high dimensional space. However, the problems can still be formulated and
solved for different regularization approaches, as long as the dimensionality is low enough:

• Support vector machines can be fitted with an l1 penalty, by solving the 1-norm version of the
SVM problem, equivalent to replacing the l2 penalty in (17) with an l1 penalty. In fact, the 1-
norm SVM is used quite widely, because it is more easily solved in the “linear”, non-RKHS,
situation (as a linear program, compared to the standard SVM which is a quadratic program)
and tends to give sparser solutions in the primal domain.

• Similarly, we describe below an approach for developing a “boosting” algorithm for fitting
approximate l2 regularized models.

Both of these methods are interesting and potentially useful. However they lack what is arguably
the most attractive property of the “standard” boosting and SVM algorithms: a computational trick
to allow fitting in high dimensions.
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7.1.1 AN l2 BOOSTING ALGORITHM

We can use our understanding of the relation of boosting to regularization and Theorem 3 to for-
mulate lp-boosting algorithms, which will approximately follow the path of lp-regularized solutions
and converge to the corresponding lp-margin maximizing separating hyper-planes. Of particular
interest is the l2 case, since Theorem 3 implies that l2-constrained fitting using Cl or Ce will build a
regularized path to the optimal separating hyper-plane in the Euclidean (or SVM) sense.

To construct an l2 boosting algorithm, consider the “equivalent” optimization problem (12), and
change the step-size constraint to an l2 constraint:

‖β‖2−‖β0‖2 ≤ ε.

It is easy to see that the first order solution to this problem entails selecting for modification the
coordinate which maximizes

∇C(β0)k

β0,k

and that subject to monotonicity, this will lead to a correspondence to the locally l2-optimal direc-
tion.

Following this intuition, we can construct an l2 boosting algorithm by changing only step 2(c)
of our generic boosting algorithm of Section 2 to

2(c)* Identify jt which maximizes |∑i wih jt (xi)|
|β jt |

.

Note that the need to consider the current coefficient (in the denominator) makes the l2 algorithm
appropriate for toy examples only. In situations where the dictionary of weak learner is prohibitively
large, we will need to figure out a trick like the one we presented in Section 2.1, to allow us to make
an approximate search for the optimizer of step 2(c)*.

Another problem in applying this algorithm to large problems is that we never choose the same
dictionary function twice, until all have non-0 coefficients. This is due to the use of the l2 penalty,
where the current coefficient value affects the rate at which the penalty term is increasing. In par-
ticular, if β j = 0 then increasing it causes the penalty term ‖β‖2 to increase at rate 0, to first order
(which is all the algorithm is considering).

The convergence of our l2 boosting algorithm on the artificial data set of Section 6.2 is illustrated
in Figure 11. We observe that the l2 boosting models do indeed approach the optimal l2 separator.
It is interesting to note the significant difference between the optimal l2 separator as presented in
Figure 11 and the optimal l1 separator presented in Section 6.2 (Figure 8).

8. Summary and Future Work

In this paper we have introduced a new view of boosting in general, and two-class boosting in
particular, comprised of two main points:

• We have generalized results from Efron et al. (2004) and Hastie et al. (2001), to describe
boosting as approximate l1-regularized optimization.

• We have shown that the exact l1-regularized solutions converge to an l1-margin maximizing
separating hyper-plane.
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Figure 11: Artificial data set with l2-margin maximizing separator (solid), and l2-boosting models
after 5∗106 iterations (dashed) and 108 iterations (dotted) using ε = 0.0001. We observe
the convergence of the boosting separator to the optimal separator

We hope our results will help in better understanding how and why boosting works. It is an interest-
ing and challenging task to separate the effects of the different components of a boosting algorithm:

• Loss criterion

• Dictionary and greedy learning method

• Line search / slow learning

and relate them to its success in different scenarios. The implicit l1 regularization in boosting
may also contribute to its success, as it has been shown that in some situations l1 regularization is
inherently superior to others (see Donoho et al., 1995).

An important issue when analyzing boosting is over-fitting in the noisy data case. To deal with
over-fitting, Rätsch et al. (2001b) propose several regularization methods and generalizations of the
original AdaBoost algorithm to achieve a soft margin by introducing slack variables. Our results
indicate that the models along the boosting path can be regarded as l1 regularized versions of the
optimal separator, hence regularization can be done more directly and naturally by stopping the
boosting iterations early. It is essentially a choice of the l1 constraint parameter c.

Many other questions arise from our view of boosting. Among the issues to be considered:

• Is there a similar “separator” view of multi-class boosting? We have some tentative results to
indicate that this might be the case if the boosting problem is formulated properly.

• Can the constrained optimization view of boosting help in producing generalization error
bounds for boosting that would be more tight than the current existing ones?
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Appendix A. Local Equivalence of Infinitesimal ε-Boosting and l1-Constrained
Optimization

As before, we assume we have a set of training data (x1,y1),(x2,y2), . . .(xn,yn), a smooth cost
function C(y,F), and a set of basis functions (h1(x),h2(x), . . .hJ(x)).

We denote by β̂(s) be the optimal solution of the l1-constrained optimization problem:

min
β

n

∑
i=1

C(yi,h(xi)
′β) (18)

subject to ‖β‖1 ≤ s. (19)

Suppose we initialize the ε-boosting version of Algorithm 1, as described in Section 2, at β̂(s) and
run the algorithm for T steps. Let β(T ) denote the coefficients after T steps.

The “global convergence” Conjecture 2 in Section 4 implies that ∀∆s > 0:

β(∆s/ε)→ β̂(s+∆s) as ε→ 0

under some mild assumptions. Instead of proving this “global” result, we show here a “local” result
by looking at the derivative of β̂(s). Our proof builds on the proof by Efron et al. (2004, Theorem 2)
of a similar result for the case that the cost is squared error loss C(y,F) = (y−F)2. Theorem 1 below
shows that if we start the ε-boosting algorithm at a solution β̂(s) of the l1-constrained optimization
problem (18)–(19), the “direction of change” of the ε-boosting solution will agree with that of the
l1-constrained optimization problem.

Theorem 1 Assume the optimal coefficient paths β̂ j(s) ∀ j are monotone in s and the coefficient
paths β j(T ) ∀ j are also monotone as ε-boosting proceeds, then

β(T )− β̂(s)
T · ε

→ ∇β̂(s) as ε→ 0,T → ∞,T · ε→ 0.

Proof First we introduce some notations. Let

h j = (h j(x1), . . .h j(xn))
′

be the jth basis function evaluated at the n training data.
Let

F = (F(x1), . . .F(xn))
′

be the vector of current fit.
Let

r =

(

−
∂C(y1,F1)

∂F1
, . . .−

∂C(yn,Fn)

∂Fn

)′
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be the current “generalized residual” vector as defined in Friedman (2001).
Let

c j = h′jr, j = 1, . . .J

be the current “correlation” between h j and r.
Let

A = { j : |c j|= max
j
|c j|}

be the set of indices for the maximum absolute correlation.
For clarity, we re-write this ε-boosting algorithm, starting from β̂(s), as a special case of Algo-

rithm 1, as follows:

(1) Initialize β(0) = β̂(s),F0 = F,r0 = r.

(2) For t = 1 : T

(a) Find jt = argmax j |h′jrt−1|.

(b) Update
βt, jt ← βt−1, jt + ε · sign(c jt )

(c) Update Ft and rt .

Notice in the above algorithm, we start from β̂(s), rather than 0. As proposed in Efron et al. (2004),
we consider an idealized ε-boosting case: ε→ 0. As ε→ 0, T → ∞ and T · ε→ 0, under the
monotone paths condition, Section 3.2 and Section 6 of Efron et al. (2004) showed

FT −F0

T · ε
→ u, (20)

rT − r0

T · ε
→ v, (21)

where u and v satisfy two constraints:

(Constraint 1) u is in the convex cone generated by {sign(c j)h j : j ∈ A}, i.e.:

u = ∑
j∈A

Pjsign(c j)h j,Pj ≥ 0.

(Constraint 2) v has equal “correlation” with sign(c j)h j, j ∈ A :

sign(c j)h′jv = λA for j ∈ A .

The first constraint is true because the basis functions in AC will not be able to catch up in terms
of |c j| for sufficiently small T · ε; the Pj’s are non-negative because the coefficient paths β j(T ) are
monotone. The second constraint can be seen by taking a Taylor expansion of C(y,F) around F0

to the quadratic term, letting T · ε go to zero and applying the result for the squared error loss from
Efron et al. (2004). Once the two constraints are established, we notice that

vi = −
∂2C(yi,F)

∂F2

∣

∣

∣

∣

F0(xi)

ui.
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Hence we can plug the constraint 1 into the constraint 2 and get the following set of equations:

H̃T
AWH̃A P = λA 1,

where

H̃A = (· · ·sign(c j)h j · · ·) , j ∈ A ,

W = diag

(

−
∂2C(yi,F)

∂F2

∣

∣

∣

∣

F0(xi)

)

,

P = (· · ·Pj · · ·)
′ , j ∈ A .

If H̃ is of rank |A | (we will get back to this issue in details in Appendix B), then P, or equivalently
u and v, are uniquely determined up to a scale number.

Now we consider the l1-constrained optimization problem (18)–(19). Let F̂(s) be the fitted
vector and r̂(s) be the corresponding residual vector. Since F̂(s) and r̂(s) are smooth, define

u∗ ≡ lim
∆s→0

F̂(s+∆s)− F̂(s)
∆s

, (22)

v∗ ≡ lim
∆s→0

r̂(s+∆s)− r̂(s)
∆s

. (23)

Lemma 2 Under the monotone coefficient paths assumption, u∗ and v∗ also satisfy constraints 1–2.

Proof Write the coefficient β j as β+
j −β−j , where

{

β+
j = β j,β−j = 0 if β j > 0,

β+
j = 0,β−j =−β j if β j < 0.

The l1-constrained optimization problem (18)–(19) is then equivalent to

min
β+,β−

n

∑
i=1

C
(

yi,h(xi)
′(β+−β−)

)

, (24)

subject to ‖β+‖1 +‖β−‖1 ≤ s,β+ ≥ 0,β− ≥ 0. (25)

The corresponding Lagrangian dual is

L =
n

∑
i=1

C
(

yi,h(xi)
′(β+−β−)

)

+λ
J

∑
j=1

(β+
j +β−j ) (26)

−λ · s−
J

∑
j=1

λ+
j β+

j −
J

∑
j=1

λ−j β−j , (27)

where λ≥ 0,λ+
j ≥ 0,λ−j ≥ 0 are Lagrange multipliers.

By differentiating the Lagrangian dual, we get the solution of (24)–(25) needed to satisfy the
following Karush-Kuhn-Tucker conditions:

∂L

∂β+
j

= −h′jr̂+λ−λ+
j = 0, (28)
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∂L

∂β−j
= h′jr̂+λ−λ−j = 0, (29)

λ+
j β̂+

j = 0, (30)

λ−j β̂−j = 0. (31)

Let c j = h′jr̂ and A = { j : |c j|= max j |c j|}. We can see the following facts from the Karush-Kuhn-
Tucker conditions:

(Fact 1) Use (28), (29) and λ≥ 0,λ+
j ,λ−j ≥ 0, we have |c j| ≤ λ.

(Fact 2) If β̂ j 6= 0, then |c j| = λ and j ∈ A . For example, suppose β̂+
j 6= 0, then λ+

j = 0 and
(28) implies c j = λ.

(Fact 3) If β̂ j 6= 0, sign(β̂ j) = sign(c j).

We also note that:

• β̂+
j and β̂−j can not both be non-zero, otherwise λ+

j = λ−j = 0, (28) and (29) can not hold at
the same time.

• It is possible that β̂ j = 0 and j ∈ A . This only happens for a finite number of s values, where
basis h j is about to enter the model.

For sufficiently small ∆s, since the second derivative of the cost function C(y,F) is finite, A will
stay the same. Since j ∈ A if β̂ j 6= 0, the change in the fitted vector is

F̂(s+∆s)− F̂(s) = ∑
j∈A

Q jh j.

Since sign(β̂ j) = sign(c j) and the coefficients β̂ j change monotonically, sign(Q j) will agree with
sign(c j). Hence we have

F̂(s+∆s)− F̂(s)
∆s

= ∑
j∈A

Pjsign(c j)h j. (32)

This implies u∗ satisfies constraint 1. The claim v∗ satisfies constraint 2 follows directly from fact
2, since both r̂(s+∆s) and r̂(s) satisfy constraint 2.

Completion of proof of Theorem (1): We further notice that in both the ε-boosting case and the
constrained optimization case, we have ∑ j∈A Pj = 1 by definition and the monotone coefficient
paths condition, hence u and v are uniquely determined, i.e.:

u = u∗ and v = v∗.

To translate the result into β̂(s) and β(T ), we notice F(x) = h(x)′β. Efron et al. (2004) showed
that for ∇β̂(s) to be well defined, A can have at most n elements, i.e., |A | ≤ n. We give sufficient
conditions for when this is true in Appendix B.

Now Let
HA = (· · ·h j(xi) · · ·) , i = 1, . . .n; j ∈ A
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be a n×|A | matrix, which we assume is of rank |A |. Then ∇β̂(s) is given by

∇β̂(s) =
(

H ′AWHA
)−1

H ′AWu∗,

and
β(T )− β̂(s)

T · ε
→
(

H ′AWHA
)−1

H ′AWu.

Hence the theorem is proved.

Appendix B. Uniqueness and Existence Results

In this appendix, we give some details on the properties of regularized solution paths. In section B.1
we formulate and prove sparseness and uniqueness results on l1-regularized solutions for any convex
loss. In section B.2 we extend Theorem 3 of Section 5—which proved the margin maximizing
property of the limit of lp-regularized solutions, as regularization varies—to the case that the margin
maximizing solution is not unique.

B.1 Sparseness and Uniqueness of l1-Regularized Solutions and Their Limits

Consider the l1-constrained optimization problem:

min
‖β‖1≤c

n

∑
i=1

C(yi,β′h(xi)). (33)

In this section we give sufficient conditions for the following properties of the solutions of (33):

1. Existence of a sparse solution (with at most n non-zero coefficients),

2. Non-existence of non-sparse solutions with more than n non-zero coefficients,

3. Uniqueness of the solution,

4. Convergence of the solutions to sparse solution, as c increases.

Theorem 3 Assume that the unconstrained solution for problem (33) has l1 norm bigger than c.
Then there exists a solution of (33) which has at most n non-zero coefficients.

Proof As Lemma 2 in the Appendix A, we will prove the theorem using the Karush-Kuhn-Tucker
(KKT) formulation of the optimization problem.

The chain rule for differentiation gives us that

∂∑iC(yi,β′h(xi))

∂β j
=−h′jr(β), (34)

where h j and r(β) are defined in the Appendix A; r(β) is the “generalized residual” vector. Using
this simple relationship and fact 2 of Lemma 2 we can write a system of equations for all non-
zero coefficients at the optimal constrained solution as follows (denote by A the set of indices for
non-zero coefficients):

H ′A r(β) = λ · signβA . (35)
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In other words, we get |A | equations in |A | variables, corresponding to the non-zero β j’s.
However, each column of the matrix HA is of length n, and so HA can have at most n linearly

independent columns, rank(HA) ≤ n. Assume now that we have an optimal solution for (33) with
|A |> n. Then there exists l ∈ A such that

hl = ∑
j∈A , j 6=l

α jh j. (36)

Substituting (36) into the l’th row in (35) we get

( ∑
j∈A , j 6=l

α jh j)
′r(β) = λ · signβl . (37)

But from (35) we know that h′jr(β) = λ · signβ j , ∀ j ∈ A , meaning we can re-phrase (37) as

∑
j∈A , j 6=l

α j · signβ j · signβl = 1. (38)

In other words, we get that hl is a linear combination of the columns of HA−{l} which must obey
the specific numeric relation in (38).

Now we can construct an alternative optimal solution for (33) with one less non-zero coefficient,
as follows:

1. Start from β

2. Define the direction γ in coefficient space implied by (36), that is:
γl =−signβl , γ j = α j · signβl , ∀ j ∈ A−{l}

3. Move in direction γ until some coefficient in A hits zero, i.e., define:

δ∗ = min
{

δ > 0 : ∃ j ∈ A s.t. β j + γ jδ = 0
}

(we know that δ∗ ≤ |βl|)

4. Set β̃ = β+δ∗γ

Then from (36) we get that β̃′h(xi) = β′h(xi) , ∀i and from (38) we get that

‖β̃‖1 = ‖β‖1− ∑
j∈A

[|β j + γ jδ∗|− |β j|] = (39)

= ‖β‖1−δ∗ ·

(

1− ∑
j∈A−l

α j · signβ jsignβl

)

= ‖β‖1.

So β̃ generates the same fit as β and has the same l1 norm, therefore it is also an optimal solution,
with at least one less non-zero coefficient (from the definition of δ∗).

We can obviously apply this process repeatedly until we get a solution with at most n non-zero
coefficients.

This theorem has the following immediate implication:
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Corollary 4 If there is no set of more than n dictionary functions which obeys the equalities (36,38)
on the training data, then any solution of (33) has at most n non-zero coefficients.

This corollary implies, for example, that if the basis functions come from a “continuous non-
redundant” distribution (which means that any equality would hold with probability 0) then with
probability 1 any solution of (33) has at most n non-zero coefficients.

Theorem 5 Assume that there is no set of more than n dictionary functions which obeys the equal-
ities (36,38) on the training data. In addition assume:

1. The loss function C is strictly convex (squared error loss, Cl and Ce obviously qualify),

2. No set of dictionary functions of size ≤ n is linearly dependent on the training data.

Then the problem (33) has a unique solution.

Proof The previous corollary tells us that any solution has at most n non-zero coefficients. Now
assume β1, β2 are both solutions of (33). From strict convexity of the loss we get that

h(X)′β1 = h(X)′β2 = h(X)′(αβ1 +(1−α)β2) , ∀0≤ α≤ 1; (40)

and from convexity of the l1 norm we get

‖αβ1 +(1−α)β2‖1 ≤ ‖β1‖1 = ‖β2‖1 = c. (41)

So (αβ1 +(1−α)β2) must also be a solution. Thus, the total number of variables with non-zero
coefficients in either β1 or β2 cannot be bigger than n, since then (αβ1 +(1−α)β2), would have
> n non-zero coefficients for almost all values of α, contradicting Corollary 4. Thus, by ignoring
all coefficients which are 0 in both β1 and β2 we get that both β1 and β2 can be represented in the
same n− dimensional (maximum) sub-space of R

J . Which leads to a contradiction between (40)
and assumption 2.

Corollary 6 Consider a sequence { β̂(c)
c : 0 ≤ c ≤ ∞} of normalized solutions to the problem (33).

Assume that all these solutions have at most n non-zero coefficients. Then any limit point of the
sequence has at most n non-zero coefficients.

Proof This is a trivial consequence of convergence. Assume by contradiction β∗ is a convergence
point with more than n non-zero coefficients. Let k = argmin j{|β∗j | : β∗j 6= 0}. Then for any vector

β̃ with at most n non-zero coefficients we know that ‖β̃−β∗‖ ≥ |β∗j |> 0 so we get a contradiction
to convergence.
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B.2 Uniqueness of Limiting Solution in Theorem 3 when Margin Maximizing Separator is
not Unique

Recall, that we are interested in convergence points of the normalized regularized solutions β̂(p)(c)
c .

Theorem 3 proves that any such convergence point corresponds to an lp-margin maximizing sep-
arating hyper-plane. We now extend it to the case that this first-order separator is not unique, by
extending the result to consider the second smallest margin as a “tie breaker”. We show that any
convergence point maximizes the second smallest margin among all models with maximal minimal
margin. If there are also ties in the second smallest margin, then any limit point maximizes the third
smallest margin among all models which still remain, and so on. It should be noted that the minimal
margin is typically not attained by one observation only in margin maximizing models. In case of
ties in the smallest margins our reference to “smallest”, “second smallest” etc. implies arbitrary
tie-breaking (i.e., our decision on which one of the tied margins is considered smallest, and which
one second smallest is of no consequence).

Theorem 7 Assume that the data is separable and that the margin-maximizing separating hyper-

plane, as defined in (4) is not unique. Then any convergence point of β̂(p)(c)
c will correspond to a

margin-maximizing separating hyper-plane which also maximizes the second smallest margin.

Proof The proof is essentially the same as that of Theorem 3. We outline it below.

From Theorem 3 we know that we only need to consider margin-maximizing models as limit
points. Thus let β1, β2 be two margin maximizing models with lp norm 1, but let β1 have a bigger
second smallest margin. Assume that β1 attains its smallest margin on observation i1 and β2 attains
the same smallest margin on observation i2. Now define

m1 = min
i6=i1

yih(xi)
′β1 > min

i6=i2
yih(xi)

′β2 = m2.

Then we have that Lemma 4 of Theorem 3 holds for β1 and β2 (the proof is exactly the same, except
that we ignore the smallest margin observation for each model, since these always contribute the
same amount to the combined loss).

Let β∗ be a convergence point. We know β∗ maximizes the margin from Theorem 3. Now
assume β̃ also maximizes the margin but has bigger second-smallest margin than β∗. Then we can
proceed exactly as the proof of Theorem 3, considering only n−1 observations for each model and
using our modified Lemma 4, to conclude that β∗ cannot be a convergence point (again note that the
smallest margin observation always contributes the same to the loss of both models).

In the case that the two smallest margins still do not define a unique solution, we can continue
up the list of margins, applying this result recursively. The conclusion is that the limit of the normal-
ized, lp -regularized models “maximizes the margins”, and not just the minimal margin. The only
case when this convergence point is not unique is, therefore, the case that the whole order statistic of
the optimal separator is not unique. It is an interesting research question to investigate under which
conditions this scenario is possible.
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G. Rätsch, T. Onoda, and K.-R. Müller. Soft margins for AdaBoost. Machine Learning, 42(3):
287–320, March 2001b.
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Abstract

Pairwise coupling is a popular multi-class classification method that combines all com-
parisons for each pair of classes. This paper presents two approaches for obtaining class
probabilities. Both methods can be reduced to linear systems and are easy to implement.
We show conceptually and experimentally that the proposed approaches are more stable
than the two existing popular methods: voting and the method by Hastie and Tibshirani
(1998).
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1. Introduction

The multi-class classification problem refers to assigning each of the observations into one
of k classes. As two-class problems are much easier to solve, many authors propose to use
two-class classifiers for multi-class classification. In this paper we focus on techniques that
provide a multi-class probability estimate by combining all pairwise comparisons.

A common way to combine pairwise comparisons is by voting (Knerr et al., 1990; Fried-
man, 1996). It constructs a rule for discriminating between every pair of classes and then
selecting the class with the most winning two-class decisions. Though the voting procedure
requires just pairwise decisions, it only predicts a class label. In many scenarios, however,
probability estimates are desired. As numerous (pairwise) classifiers do provide class proba-
bilities, several authors (Refregier and Vallet, 1991; Price et al., 1995; Hastie and Tibshirani,
1998) have proposed probability estimates by combining the pairwise class probabilities.

Given the observation x and the class label y, we assume that the estimated pairwise
class probabilities rij of µij = P (y = i | y = i or j,x) are available. From the ith and jth
classes of a training set, we obtain a model which, for any new x, calculates rij as an approx-
imation of µij . Then, using all rij , the goal is to estimate pi = P (y = i | x), i = 1, . . . , k. In
this paper, we first propose a method for obtaining probability estimates via an approxima-
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tion solution to an identity. The existence of the solution is guaranteed by theory in finite
Markov Chains. Motivated by the optimization formulation of this method, we propose a
second approach. Interestingly, it can also be regarded as an improved version of the cou-
pling approach given by Refregier and Vallet (1991). Both of the proposed methods can be
reduced to solving linear systems and are simple in practical implementation. Furthermore,
from conceptual and experimental points of view, we show that the two proposed methods
are more stable than voting and the method by Hastie and Tibshirani (1998).

We organize the paper as follows. In Section 2, we review several existing methods.
Sections 3 and 4 detail the two proposed approaches. Section 5 presents the relationship
between different methods through their corresponding optimization formulas. In Section
6, we compare these methods using simulated data. In Section 7, we conduct experiments
using real data. The classifiers considered are support vector machines and random forest.
A preliminary version of this paper was presented previously (Wu et al., 2004).

2. Survey of Existing Methods

For methods surveyed in this section and those proposed later, each provides a vector of
multi-class probability estimates. We denote it as p∗ according to method ∗. Similarly,
there is an associated rule arg maxi[p

∗
i ] for prediction and we denote the rule as δ∗.

2.1 Voting

Let rij be the estimates of µij ≡ P (y = i | y = i or j,x) and assume rij + rji = 1. The
voting rule (Knerr et al., 1990; Friedman, 1996) is

δV = arg max
i

[
∑

j:j 6=i

I{rij>rji}], (1)

where I is the indicator function: I{x} = 1 if x is true, and 0 otherwise. A simple estimate
of probabilities can be derived as

pv
i = 2

∑

j:j 6=i

I{rij>rji}/(k(k − 1)).

2.2 Method by Refregier and Vallet

With µij = pi/(pi + pj), Refregier and Vallet (1991) consider that

rij

rji
≈ µij

µji
=

pi

pj
. (2)

Thus, making (2) an equality may be a way to solve pi. However, the number of equations,
k(k− 1)/2, is more than the number of unknowns k, so Refregier and Vallet (1991) propose
to choose any k − 1 rij . Then, with the condition

∑k
i=1 pi = 1, pRV can be obtained by

solving a linear system. However, as pointed out previously by Price et al. (1995), the
results depend strongly on the selection of k − 1 rij .

In Section 4, by considering (2) as well, we propose a method which remedies this
problem.
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2.3 Method by Price, Knerr, Personnaz, and Dreyfus

Price et al. (1995) consider that





∑

j:j 6=i

P (y = i or j | x)



− (k − 2)P (y = i | x) =
k

∑

j=1

P (y = j | x) = 1.

Using

rij ≈ µij =
P (y = i | x)

P (y = i or j | x)
,

one obtains

pPKPD
i =

1
∑

j:j 6=i
1

rij
− (k − 2)

. (3)

As
∑k

i=1 pi = 1 does not hold, we must normalize pPKPD. This approach is very simple
and easy to implement. In the rest of this paper, we refer to this method as PKPD.

2.4 Method by Hastie and Tibshirani

Hastie and Tibshirani (1998) propose to minimize the Kullback-Leibler (KL) distance be-
tween rij and µij :

l(p) =
∑

i6=j

nijrij log
rij

µij
, (4)

=
∑

i<j

nij

(

rij log
rij

µij
+ (1− rij) log

1− rij

1− µij

)

,

where µij = pi/(pi + pj), rji = 1− rij , and nij is the number of training data in the ith and
jth classes.

To minimize (4), they first calculate

∂l(p)

∂pi
=

∑

j:j 6=i

nij

(

−rij

pi
+

1

pi + pj

)

.

Thus, letting ∂l(p)/∂pi = 0, i = 1, . . . , k and multiplying pi on each term, Hastie and
Tibshirani (1998) propose finding a point that satisfies

∑

j:j 6=i

nijµij =
∑

j:j 6=i

nijrij ,
k

∑

i=1

pi = 1, and pi > 0, i = 1, . . . , k. (6)

Such a point is obtained by the following algorithm:

Algorithm 1
1. Start with some initial pj > 0, ∀j and corresponding µij = pi/(pi + pj).
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2. Repeat (i = 1, . . . , k, 1, . . .)

α =

∑

j:j 6=i nijrij
∑

j:j 6=i nijµij
(7)

µij ←
αµij

αµij + µji
, µji ← 1− µij , for all j 6= i (8)

pi ← αpi (9)

normalize p (optional) (10)

until k consecutive α are all close to ones.

3. p← p/
∑k

i=1 pi

(9) implies that in each iteration, only the ith component is updated and all others remain
the same. There are several remarks about this algorithm. First, the initial p must be
positive so that all later p are positive and α is well defined (i.e., no zero denominator in
(7)). Second, (10) is an optional operation because whether we normalize p or not does not
affect the values of µij and α in (7) and (8).

Hastie and Tibshirani (1998) prove that Algorithm 1 generates a sequence of points
at which the KL distance is strictly decreasing. However, Hunter (2004) indicates that
the strict decrease in l(p) does not guarantee that any limit point satisfies (6). Hunter
(2004) discusses the convergence of algorithms for generalized Bradley-Terry models where
Algorithm 1 is a special case. It points out that Zermelo (1929) has proved that, if rij >
0, ∀i 6= j, for any initial point, the whole sequence generated by Algorithm 1 converges to
a point satisfying (6). Furthermore, this point is the unique global minimum of l(p) under
the constraints

∑k
i=1 pi = 1 and 0 ≤ pi ≤ 1, i = 1, . . . , k.

Let pHT denote the global minimum of l(p). It is shown in Zermelo (1929) and Theorem
1 of (Hastie and Tibshirani, 1998) that if weights nij in (4) are considered equal, then pHT

satisfies

pHT
i > pHT

j if and only if p̃HT
i ≡

2
∑

s:i6=s ris

k(k − 1)
> p̃HT

j ≡
2

∑

s:j 6=s rjs

k(k − 1)
. (11)

Therefore, p̃HT is sufficient if one only requires the classification rule. In fact, p̃HT can be
derived as an approximation to the identity

pi =
∑

j:j 6=i

(

pi + pj

k − 1

) (

pi

pi + pj

)

=
∑

j:j 6=i

(

pi + pj

k − 1

)

µij (12)

by replacing pi + pj with 2/k, and µij with rij in (12). We refer to the decision rule as δHT ,
which is essentially

arg max
i

[p̃HT
i ]. (13)

In the next two sections, we propose two methods which are simpler in both practical
implementation and algorithmic analysis.

If the multi-class data are balanced, it is reasonable to assume equal weighting (i.e.,
nij = 1) as the above. In the rest of this paper, we restrict our discussion under such an
assumption.
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3. Our First Approach

As δHT relies on pi + pj ≈ 2/k, in Section 6 we use two examples to illustrate possible
problems with this rule. In this section, instead of replacing pi + pj by 2/k in (12), we
propose to solve the system:

pi =
∑

j:j 6=i

(
pi + pj

k − 1
)rij , ∀i, subject to

k
∑

i=1

pi = 1, pi ≥ 0, ∀i. (14)

Let p1 denote the solution to (14). Then the resulting decision rule is

δ1 = arg max
i

[p1
i ].

3.1 Solving (14)

To solve (14), we rewrite it as

Qp = p,
k

∑

i=1

pi = 1, pi ≥ 0, ∀i, where Qij ≡
{

rij/(k − 1) if i 6= j,
∑

s:s6=i ris/(k − 1) if i = j.
(15)

Observe that
∑k

i=1 Qij = 1 for j = 1, . . . , k and 0 ≤ Qij ≤ 1 for i, j = 1, . . . , k, so there
exists a finite Markov Chain whose transition matrix is Q. Moreover, if rij > 0 for all
i 6= j, then Qij > 0, which implies that this Markov Chain is irreducible and aperiodic.
From Theorem 4.3.3 of Ross (1996), these conditions guarantee the existence of a unique
stationary probability and all states being positive recurrent. Hence, we have the following
theorem:

Theorem 1 If rij > 0, i 6= j, then (15) has a unique solution p with 0 < pi < 1 ∀i.

Assume the solution from Theorem 1 is p∗. We claim that without the constraints
pi ≥ 0, ∀i, the linear system

Qp = p,
k

∑

i=1

pi = 1 (16)

still has the same unique solution p∗. Otherwise, there is another solution p̄∗(6= p∗). Then
for any 0 ≤ λ ≤ 1, λp∗ +(1−λ)p̄∗ satisfies (16) as well. As p∗i > 0, ∀i, when λ is sufficiently
close to 1, λp∗i +(1−λ)p̄∗i > 0, i = 1, . . . , k. This violates the uniqueness property in Theorem
1.

Therefore, unlike the method in Section 2.4 where a special iterative procedure has to
be implemented, here we only solve a simple linear system. As (16) has k + 1 equalities
but only k variables, practically we remove any one equality from Qp = p and obtain a
square system. Since the column sum of Q is the vector of all ones, the removed equality
is a linear combination of all remaining equalities. Thus, any solution of the square system
satisfies (16) and vice versa. Therefore, this square system has the same unique solution as
(16) and hence can be solved by standard Gaussian elimination.

Instead of Gaussian elimination, as the stationary solution of a Markov Chain can be
derived by the limit of the n-step transition probability matrix Qn, we can solve (14) by
repeatedly multiplying Q with any initial probability vector.
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3.2 Another Look at (14)

The following arguments show that the solution to (14) is a global minimum of a meaningful
optimization problem. To begin, using the property that rij + rji = 1, ∀i 6= j, we re-express

pi =
∑

j:j 6=i(
pi+pj

k−1 )rij of (15) (i.e., Qp = p of (16)) as

∑

j:j 6=i

rjipi −
∑

j:j 6=i

rijpj = 0, i = 1, . . . , k.

Therefore, a solution of (15) is in fact the unique global minimum of the following convex
problem:

min
p

k
∑

i=1

(
∑

j:j 6=i

rjipi −
∑

j:j 6=i

rijpj)
2

subject to
k

∑

i=1

pi = 1, pi ≥ 0, i = 1, . . . , k. (18)

The reason is that the object function is always nonnegative, and it attains zero under
(15). Note that the constraints pi ≥ 0 ∀i are not redundant following the discussion around
Equation (16).

4. Our Second Approach

Note that both approaches in Sections 2.4 and 3 involve solving optimization problems using
relations like pi/(pi +pj) ≈ rij or

∑

j:j 6=i rjipi ≈
∑

j:j 6=i rijpj . Motivated by (18), we suggest
another optimization formulation as follows:

min
p

k
∑

i=1

∑

j:j 6=i

(rjipi − rijpj)
2 subject to

k
∑

i=1

pi = 1, pi ≥ 0, ∀i. (19)

Note that the method (Refregier and Vallet, 1991) described in Section 2.2 considers a
random selection of k − 1 equations of the form rjipi = rijpj . As (19) considers all rijpj −
rjipi, not just k − 1 of them, it can be viewed as an improved version of the coupling
approach by Refregier and Vallet (1991).

Let p2 denote the corresponding solution. We then define the classification rule as

δ2 = arg max
i

[p2
i ].

4.1 A Linear System from (19)

Since (18) has a unique solution, which can be obtained by solving a simple linear system,
it is desirable to see whether the minimization problem (19) has these nice properties. In
this subsection, we show that (19) has a unique solution and can be solved by a simple
linear system.

First, the following theorem shows that the nonnegative constraints in (19) are redun-
dant.
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Theorem 2 Problem (19) is equivalent to

min
p

k
∑

i=1

∑

j:j 6=i

(rjipi − rijpj)
2 subject to

k
∑

i=1

pi = 1. (20)

The proof is in Appendix A. Note that we can rewrite the objective function of (20) as

min
p

2pT Qp ≡ min
p

1

2
pT Qp, (21)

where

Qij =

{

∑

s:s6=i r2
si if i = j,

−rjirij if i 6= j.
(22)

We divide the objective function by a positive factor of four so its derivative is a simple form
Qp. From (22), Q is positive semi-definite as for any v 6= 0,vT Qv = 1/2

∑k
i=1

∑k
j=1(rjivi−

rijvj)
2 ≥ 0. Therefore, without constraints pi ≥ 0, ∀i, (21) is a linear-equality-constrained

convex quadratic programming problem. Consequently, a point p is a global minimum if
and only if it satisfies the optimality condition: There is a scalar b such that

[

Q e
eT 0

] [

p
b

]

=

[

0
1

]

. (23)

Here Qp is the derivative of (21), b is the Lagrangian multiplier of the equality constraint
∑k

i=1 pi = 1, e is the k × 1 vector of all ones, and 0 is the k × 1 vector of all zeros. Thus,
the solution to (19) can be obtained by solving the simple linear system (23).

4.2 Solving (23)

Equation (23) can be solved by some direct methods in numerical linear algebra. Theorem
3(i) below shows that the matrix in (23) is invertible; therefore, Gaussian elimination can
be easily applied.

For symmetric positive definite systems, Cholesky factorization reduces the time for
Gaussian elimination by half. Though (23) is symmetric but not positive definite, if Q is
positive definite, Cholesky factorization can be used to obtain b = −1/(eT Q−1e) first and
then p = −bQ−1e. Theorem 3(ii) shows that Q is positive definite under quite general
conditions. Moreover, even if Q is only positive semi-definite, Theorem 3(i) proves that
Q + ∆eeT is positive definite for any constant ∆ > 0. Along with the fact that (23) is
equivalent to

[

Q + ∆eeT e
eT 0

] [

p
b

]

=

[

∆e
1

]

,

we can do Cholesky factorization on Q + ∆eeT and solve b and p similarly, regardless
whether Q is positive definite or not.

Theorem 3 If rtu > 0 ∀t 6= u, we have
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(i) For any ∆ > 0, Q + ∆eeT is positive definite. In addition,
[

Q e

e
T 0

]

is invertible, and

hence (19) has a unique global minimum.

(ii) If for any i = 1, . . . , k, there are s 6= j for which s 6= i, j 6= i, and

rsirsj

ris
6= rjirjs

rij
, (25)

then Q is positive definite.

We leave the proof in Appendix B.

In addition to direct methods, next we propose a simple iterative method for solving
(23):

Algorithm 2
1. Start with some initial pi ≥ 0, ∀i and

∑k
i=1 pi = 1.

2. Repeat (t = 1, . . . , k, 1, . . .)

pt ←
1

Qtt
[−

∑

j:j 6=t

Qtjpj + pT Qp] (26)

normalize p (27)

until (23) is satisfied.

Equation (22) and the assumption rij > 0, ∀i 6= j, ensure that the right-hand side of (26) is

always nonnegative. For (27) to be well defined, we must ensure that
∑k

i=1 pi > 0 after the
operation in (26). This property holds (see (43) for more explanation). With b = −pT Qp
obtained from (23), (26) is motivated from the tth equality in (23) with b replaced by
−pT Qp. The convergence of Algorithm 2 is established in the following theorem:

Theorem 4 If rsj > 0, ∀s 6= j, then {pi}∞i=1, the sequence generated by Algorithm 2,
converges globally to the unique minimum of (19).

The proof is in Appendix C. Algorithm 2 is implemented in the software LIBSVM

developed by Chang and Lin (2001) for multi-class probability estimates. We discuss some
implementation issues of Algorithm 2 in Appendix D.

5. Relations Between Different Methods

Among the methods discussed in this paper, the four decision rules δHT , δ1, δ2, and δV can
be written as arg maxi[pi], where p is derived by the following four optimization formulations
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under the constraints
∑k

i=1 pi = 1 and pi ≥ 0, ∀i:

δHT : min
p

k
∑

i=1

[
∑

j:j 6=i

(rij
1

k
− 1

2
pi)]

2, (28)

δ1 : min
p

k
∑

i=1

[
∑

j:j 6=i

(rijpj − rjipi)]
2, (29)

δ2 : min
p

k
∑

i=1

∑

j:j 6=i

(rijpj − rjipi)
2, (30)

δV : min
p

k
∑

i=1

∑

j:j 6=i

(I{rij>rji}pj − I{rji>rij}pi)
2. (31)

Note that (28) can be easily verified from (11), and that (29) and (30) have been explained
in Sections 3 and 4. For (31), its solution is

pi =
c

∑

j:j 6=i I{rji>rij}
, (32)

where c is the normalizing constant; and therefore, arg maxi[pi] is the same as (1).1 Detailed
derivation of (32) is in Appendix E.

Clearly, (28) can be obtained from (29) by letting pj = 1/k and rji = 1/2. Such
approximations ignore the differences between pi. Next, (31) is from (30) with rij replaced
by I{rij>rji}, and hence, (31) may enlarge the differences between pi. Moreover, compared
with (30), (29) allows the difference between rijpj and rjipi to be canceled first, so (29) may
tend to underestimate the differences between pi. In conclusion, conceptually, (28) and (31)
are more extreme – the former tends to underestimate the differences between pi, while the
latter overestimates them. These arguments will be supported by simulated and real data
in the next two sections.

For PKPD approach (3), the decision rule can be written as:

δPKPD = arg min
i

[
∑

j:j 6=i

1

rij
].

This form looks similar to δHT = arg maxi[
∑

j:j 6=i rij ], which can be obtained from (11)
and (13). Notice that the differences among

∑

j:j 6=i rij tend to be larger than those among
∑

j:j 6=i
1

rij
, because 1/rij > 1 > rij . More discussion on these two rules will be given in

Section 6.

6. Experiments on Synthetic Data

In this section, we use synthetic data to compare the performance of existing methods
described in Section 2 as well as two new approaches proposed in Sections 3 and 4. Here we

1. For I{rij>rji} to be well defined, we consider rij 6= rji, which is generally true. In addition, if there is an
i for which

∑

j:j 6=i
I{rji>rij} = 0, an optimal solution of (31) is pi = 1, and pj = 0, ∀j 6= i. The resulting

decision is the same as that of (1).
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do not include the method in Section 2.2 because its results depend strongly on the choice
of k − 1 rij and our second method is an improved version of it.

Hastie and Tibshirani (1998) design a simple experiment in which all pi are fairly close
and their method δHT outperforms the voting strategy δV . We conduct this experiment
first to assess the performance of our proposed methods. Following their settings, we define
class probabilities

(a) p1 = 1.5/k, pj = (1− p1)/(k − 1), j = 2, . . . , k,

and then set

rij =
pi

pi + pj
+ 0.1zij if i > j, (33)

rji =
pj

pi + pj
+ 0.1zji = 1− rij if j > i, (34)

where zij are standard normal variates and zji = −zij . Since rij are required to be within
(0,1), we truncate rij at ε below and 1 − ε above, with ε = 10−7. In this example, class 1
has the highest probability and hence is the correct class.

Figure 2(a) shows accuracy rates for each of the five methods when k = 22, d22.5e,
23, . . . , 27, where dxe denotes the largest integer not exceeding x. The accuracy rates are
averaged over 1,000 replicates. Note that in this experiment all classes are quite competitive,
so, when using δV , sometimes the highest vote occurs at two or more different classes. We
handle this problem by randomly selecting one class from the ties. This partly explains the
poor performance of δV . Another explanation is that the rij here are all close to 1/2, but
(31) uses 1 or 0 instead, as stated in the previous section; therefore, the solution may be
severely biased. Besides δV , the other four rules have good performance in this example.

Since δHT relies on the approximation pi + pj ≈ k/2, this rule may suffer some losses
if the class probabilities are not highly balanced. To examine this point, we consider the
following two sets of class probabilities:

(b) We let k1 = k/2 if k is even, and (k+1)/2 if k is odd; then we define p1 = 0.95×1.5/k1,
pi = (0.95− p1)/(k1− 1) for i = 2, . . . , k1, and pi = 0.05/(k− k1) for i = k1 +1, . . . , k.

(c) We define p1 = 0.95× 1.5/2, p2 = 0.95− p1, and pi = 0.05/(k − 2), i = 3, . . . , k.

An illustration of these three sets of class probabilities is in Figure 1.

p1

p2p3

p4

p5

p6

p7 p8
p9

p10

p1p2

p3

p4
p5

p6 · · · p10

p1

p2

p3 · · · p10

(a) (b) (c)

Figure 1: Three sets of class probabilities
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After setting pi, we define the pairwise comparisons rij as in (33)-(34). Both experiments
are repeated for 1,000 times. The accuracy rates are shown in Figures 2(b) and 2(c). In
both scenarios, pi are not balanced. As expected, δHT is quite sensitive to the imbalance of
pi. The situation is much worse in Figure 2(c) because the approximation pi + pj ≈ k/2 is
more seriously violated, especially when k is large.

A further analysis of Figure 2(c) shows that when k is large,

r12 =
3

4
+ 0.1z12, r1j ≈ 1 + 0.1z1j , j ≥ 3,

r21 =
1

4
+ 0.1z21, r2j ≈ 1 + 0.1z2j , j ≥ 3,

rij ≈ 0 + 0.1zij , i 6= j, i ≥ 3,

where zji = −zij are standard normal variates. From (11), the decision rule δHT in this case
is mainly on comparing

∑

j:j 6=1 r1j and
∑

j:j 6=2 r2j . The difference between these two sums

is 1
2 + 0.1(

∑

j:j 6=1 z1j −
∑

j:j 6=2 z2j), where the second term has zero mean and, when k is
large, high variance. Therefore, for large k, the decision depends strongly on these normal
variates, and the probability of choosing the first class is approaching half. On the other
hand, δPKPD relies on comparing

∑

j:j 6=1 1/r1j and
∑

j:j 6=2 1/r2j . As the difference between
1/r12 and 1/r21 is larger than that between r12 and r21, though the accuracy rates decline
when k increases, the situation is less serious.

We also analyze the mean square error (MSE) in Figure 3:

MSE =
1

1000

1000
∑

j=1

1

k

k
∑

i=1

(p̂j
i − pi)

2, (35)

where p̂j is the probability estimate obtained in the jth of the 1,000 replicates. Overall, δHT

and δV have higher MSE, confirming again that they are less stable. Note that Algorithm
1 and (11) give the same prediction for δHT , but their MSE are different. Here we consider
(11) as it is the one analyzed and compared in Section 5.

In summary, δ1 and δ2 are less sensitive to pi, and their overall performance are fairly
stable. All observations about δHT , δ1, δ2, and δV here agree with our analysis in Section
5. Despite some similarity to δHT , δPKPD outperforms δHT in general. Experiments in this
study are conducted using MATLAB.

7. Experiments on Real Data

In this section we present experimental results on several multi-class problems: dna, satim-

age, segment, and letter from the Statlog collection (Michie et al., 1994), waveform from
UCI Machine Learning Repository (Blake and Merz, 1998), USPS (Hull, 1994), and MNIST

(LeCun et al., 1998). The numbers of classes and features are reported in Table 7. Ex-
cept dna, which takes two possible values 0 and 1, each attribute of all other data is
linearly scaled to [−1, 1]. In each scaled data, we randomly select 300 training and 500
testing instances from thousands of data points. 20 such selections are generated and
the testing error rates are averaged. Similarly, we do experiments on larger sets (800
training and 1,000 testing). All training and testing sets used are available at http://
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Figure 2: Accuracy of predicting the true class by the methods: δHT (solid line, cross
marked), δV (dashed line, square marked), δ1 (dotted line, circle marked), δ2

(dashed line, asterisk marked), and δPKPD (dashdot line, diamond marked).
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Figure 3: MSE by the methods: δHT via (11) (solid line, cross marked), δV (dashed line,
square marked), δ1 (dotted line, circle marked), δ2 (dashed line, asterisk marked),
and δPKPD (dashdot line, diamond marked).

www.csie.ntu.edu.tw/~cjlin/papers/svmprob/data and the code is available at http:

//www.csie.ntu.edu.tw/~cjlin/libsvmtools/svmprob/svmprob-1.0.tgz.
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For the implementation of the four probability estimates, δ1 and δ2 are via solving linear
systems. For δHT , we implement Algorithm 1 with the following stopping condition

k
∑

i=1

∣

∣

∣

∣

∣

∑

j:j 6=i rij
∑

j:j 6=i µij
− 1

∣

∣

∣

∣

∣

≤ 10−3.

We observe that the performance of δHT may downgrade if the stopping condition is too
loose.

dataset dna waveform satimage segment USPS MNIST letter

#class 3 3 6 7 10 10 26
#attribute 180 21 36 19 256 784 16

Table 1: Data set Statistics

7.1 SVM as the Binary Classifier

We first consider support vector machines (SVM) (Boser et al., 1992; Cortes and Vapnik,
1995) with the RBF kernel e−γ‖xi−xj‖

2

as the binary classifier. The regularization param-
eter C and the kernel parameter γ are selected by cross-validation (CV). To begin, for
each training set, a five-fold cross-validation is conducted on the following points of (C, γ):
[2−5, 2−3, . . . , 215]× [2−5, 2−3, . . . , 215]. This is done by modifying LIBSVM (Chang and Lin,
2001), a library for SVM. At each (C, γ), sequentially four folds are used as the training set
while one fold as the validation set. The training of the four folds consists of k(k − 1)/2
binary SVMs. For the binary SVM of the ith and jth classes, we employ an improved
implementation (Lin et al., 2003) of Platt’s posterior probabilities (Platt, 2000) to estimate
rij :

rij = P (i | i or j,x) =
1

1 + eAf̂+B
, (36)

where A and B are estimated by minimizing the negative log-likelihood function, and f̂
are the decision values of training data. Platt (2000) and Zhang (2004) observe that SVM
decision values are easily clustered at±1, so the probability estimate (36) may be inaccurate.
Thus, it is better to use CV decision values as we less overfit the model and values are not
so close to ±1. In our experiments here, this requires a further CV on the four-fold data
(i.e., a second level CV).

Next, for each instance in the validation set, we apply the pairwise coupling methods
to obtain classification decisions. The error of the five validation sets is thus the cross-
validation error at (C, γ). From this, each rule obtains its best (C, γ).2 Then, the decision
values from the five-fold cross-validation at the best (C, γ) are employed in (36) to find the
final A and B for future use. These two values and the model via applying the best param-
eters on the whole training set are then used to predict testing data. Figure 4 summarizes
the procedure of getting validation accuracy at each given (C, γ).

2. If more than one parameter sets return the smallest cross-validation error, we simply choose the one
with the smallest C.
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Given (C, γ)

1 fold 4 folds

5-fold CV
decision values

rij

validation accuracy

Figure 4: Parameter selection when using SVM as the binary classifier

The average of 20 MSEs are presented on the left panel of Figure 5, where the solid line
represents results of small sets (300 training/500 testing), and the dashed line of large sets
(800 training/1,000 testing). The definition of MSE here is similar to (35), but as there is
no correct pi for these problems, we let pi = 1 if the data is in the ith class, and 0 otherwise.
This measurement is called Brier Score (Brier, 1950), which is popular in meteorology. The
figures show that for smaller k, δHT , δ1, δ2 and δPKPD have similar MSEs, but for larger k,
δHT has the largest MSE. The MSEs of δV are much larger than those by all other methods,
so they are not included in the figures. In summary, the two proposed approaches, δ1 and δ2,
are fairly insensitive to the values of k, and all above observations agree well with previous
findings in Sections 5 and 6.

Next, left panels of Figures 6 and 7 present the average of 20 test errors for problems with
small size (300 training/500 testing) and large size (800 training/1,000 testing), respectively.
The caption of each sub-figure also shows the average of 20 test errors of the multi-class
implementation in LIBSVM. This rule is voting using merely pairwise SVM decision values,
and is denoted as δDV for later discussion. The figures show that the errors of the five
methods are fairly close for smaller k, but quite different for larger k. Notice that for smaller
k (Figures 6 and 7 (a), (c), (e), and (g)) the differences of the averaged errors among the five
methods are small, and there is no particular trend in these figures. However, for problems
with larger k (Figures 6 and 7 (i), (k), and (m)), the differences are bigger and δHT is less
competitive. In particular, for letter problem (Figure 6 (m), k =26), δ2 and δV outperform
δHT by more than 4%. The test errors along with MSE seems to indicate that, for problems
with larger k, the posterior probabilities pi are closer to the setting of Figure 2(c), rather
than that of Figure 2(a). Another feature consistent with earlier findings is that when k is
larger the results of δ2 are closer to those of δV , and δ1 closer to δHT , for both small and
large training/testing sets. As for δPKPD, its overall performance is competitive, but we
are not clear about its relationships to the other methods.

Finally, we consider another criterion on evaluating the probability estimates: the like-
lihood.

l
∏

j=1

pj
yj
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In practice, we use its log likelihood and divide the value by a scaling factor l:

1

l

l
∑

j=1

log pj
yj

, (37)

where l is the number of test data, pj is the probability estimates for the jth data, and yj

is its actual class label.

A larger value implies a possibly better estimate. The left panel of Figure 8 presents
the results of using SVM as the binary classifier. Clearly the trend is the same as MSE and
accuracy. When k is larger, δ2 and δV have larger values and hence better performance.
Similar to MSE, values of δV are not presented as they are too small.

7.2 Random Forest as the Binary Classifier

In this subsection we consider random forest (Breiman, 2001) as the binary classifier and
conduct experiments on the same data sets. As random forest itself can provide multi-class
probability estimates, we denote the corresponding rule as δRF and also compare it with
the coupling methods.

For each two classes of data, we construct 500 trees as the random forest classifiers.
Using mtry randomly selected features, a bootstrap sample (around two thirds) of training
data are employed to generate a full tree without pruning. For each test instance, rij is
simply the proportion out of the 500 trees that class i wins over class j. As we set the number
of trees to be fixed at 500, the only parameter left for tuning is mtry. Similar to (Sventnik

et al., 2003), we select mtry from {1,√m, m/3, m/2, m} by five-fold cross validation, where
m is the number of attributes. The cross validation procedure first sequentially uses four
folds as the training set to construct k(k − 1)/2 pairwise random forests, next obtains the
decision for each instance in the validation set by the pairwise coupling methods, and then
calculates the cross validation error at the given mtry by the error of five validation sets.
This is similar to the procedure in Section 7.1, but we do not need a second-level CV
for obtaining accurate two-class probabilistic estimates (i.e., rij). Instead of CV, a more
efficient “out of bag” validation can be used for random forest, but here we keep using CV
for consistency. Experiments are conducted using an R-interface (Liaw and Wiener, 2002)
to the code from (Breiman, 2001).

The MSE presented in the right panel of Figure 5 shows that δ1 and δ2 yield more stable
results than δHT and δV for both small and large sets. The right panels of Figures 6 and 7
give the average of 20 test errors. The caption of each sub-figure also shows the averaged
error when using random forest as a multi-class classifier (δRF ). Notice that random forest
bears a resemblance to SVM: the errors are only slightly different among the five methods
for smaller k, but δV and δ2 tend to outperform δHT and δ1 for larger k. The right panel of
Figure 8 presents the log likelihood value (37). The trend is again the same. In summary,
the results by using random forest as the binary classifier strongly support previous findings
regarding the four methods.
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7.3 Miscellaneous Observations and Discussion

Recall that in Section 7.1 we consider δDV , which does not use Platt’s posterior probabilities.
Experimental results in Figure 6 show that δDV is quite competitive (in particular, 3%
better for letter), but is about 2% worse than all probability-based methods for waveform.
Similar observations on waveform are also reported in (Duan and Keerthi, 2003), where
the comparison is between δDV and δHT . We explain why the results by probability-based
and decision-value-based methods can be so distinct. For some problems, the parameters
selected by δDV are quite different from those by the other five rules. In waveform, at some
parameters all probability-based methods gives much higher cross validation accuracy than
δDV . We observe, for example, the decision values of validation sets are in [0.73, 0.97] and
[0.93, 1.02] for data in two classes; hence, all data in the validation sets are classified as
in one class and the error is high. On the contrary, the probability-based methods fit the
decision values by a sigmoid function, which can better separate the two classes by cutting
at a decision value around 0.95. This observation shed some light on the difference between
probability-based and decision-value based methods.

Though the main purpose of this section is to compare different probability estimates,
here we check the accuracy of another multi-class classification method: exponential loss-
based decoding by Allwein et al. (2001). In the pairwise setting, if f̂ij ∈ R is the two-class

hypothesis so that f̂ij > 0 (< 0) predicts the data to be in the ith (jth) class, then

predicted label = arg min
i





∑

j:j<i

ef̂ji +
∑

j:j>i

e−f̂ij



 . (38)

For SVM, we can simply use decision values as f̂ij . On the other hand, rij − 1/2 is another
choice. Table 2 presents the error of the seven problem using these two options. Results
indicate that using decision values is worse than rij − 1/2 when k is large (USPS,MNIST,

and letter). This observation seems to indicate that large numerical ranges of f̂ij may cause
(38) to have more erroneous results (rij−1/2 is always in [−1/2, 1/2]). The results of using
rij−1/2 is competitive with those in Figures 6 and 7 when k is small. However, for larger k
(e.g., letter), it is slightly worse than δ2 and δV . We think this result is due to the similarity

between (38) and δHT . When f̂ij is close to zero, ef̂ij ≈ 1 + f̂ij , so (38) reduces to a “linear

loss-based encoding.” When rij − 1/2 is used, f̂ji = rji − 1/2 = 1/2− rij . Thus, the linear
encoding is arg mini[

∑

j:j 6=i−rij ] ≡ arg maxi[
∑

j:j 6=i rij ], exactly the same as (11) of δHT .

training/testing (f̂ij) dna waveform satimage segment USPS MNIST letter

300/500 (dec. values) 10.47 16.23 14.12 6.21 11.57 14.99 38.59
300/500 (rij − 1/2) 10.47 15.11 14.45 6.03 11.08 13.58 38.27
800/1000 (dec. values) 6.36 14.20 11.55 3.35 8.47 8.97 22.54
800/1000 (rij − 1/2) 6.22 13.45 11.6 3.19 7.71 7.95 20.29

Table 2: Average of 20 test errors using exponential loss-based decoding (in percentage)

Regarding the accuracy of pairwise (i.e., δDV ) and non-pairwise (e.g., “one-against-the-
rest”) multi-class classification methods, there are already excellent comparisons. As δV
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and δ2 have similar accuracy to δDV , roughly how non-pairwise methods compared to δDV

is the same as compared to δV and δ2.
The results of random forest as a multi-class classifier (i.e., δRF ) are reported in the

caption of each sub-figure in Figures 6 and 7. We observe from the figures that, when the
number of classes is larger, using random forest as a multi-class classifier is better than
coupling binary random forests. However, for dna (k = 3) the result is the other way
around. This observation for random forest is left as a future research issue.
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Appendix A. Proof of Theorem 2

It suffices to prove that any optimal solution p of (20) satisfies pi ≥ 0, i = 1, . . . , k. If this
is not true, without loss of generality, we assume

p1 < 0, . . . , pr < 0, pr+1 ≥ 0, . . . , pk ≥ 0,

where r < k because
∑k

i=1 pi = 1. We can then define a new feasible solution of (20):

p′1 = 0, . . . , p′r = 0, p′r+1 = pr+1/α, . . . , p′k = pk/α,

where α = 1−∑r
i=1 pi > 1.

With rij > 0 and rji > 0, we obtain

(rjipi − rijpj)
2 ≥ 0 = (rjip

′
i − rijp

′
j)

2, if 1 ≤ i, j ≤ r,

(rjipi − rijpj)
2 >

(rijpj)
2

α2
= (rjip

′
i − rijp

′
j)

2, if 1 ≤ i ≤ r, r + 1 ≤ j ≤ k,

(rjipi − rijpj)
2 ≥ (rjipi − rijpj)

2

α2
= (rjip

′
i − rijp

′
j)

2, if r + 1 ≤ i, j ≤ k.

Therefore,
k

∑

i=1

∑

j:j 6=i

(rijpi − rjipj)
2 >

k
∑

i=1

∑

j:j 6=i

(rijp
′
i − rjip

′
j)

2.

This contradicts the assumption that p is an optimal solution of (20).

Appendix B. Proof of Theorem 3

(i) If Q + ∆eeT is not positive definite, there is a vector v with vi 6= 0 such that

vT (Q + ∆eeT )v =
1

2

k
∑

t=1

∑

u:u6=t

(rutvt − rtuvu)2 + ∆(
k

∑

t=1

vt)
2 = 0. (39)
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For all t 6= i, ritvt − rtivi = 0, so

vt =
rti

rit
vi 6= 0.

Thus,
k

∑

t=1

vt = (1 +
∑

t:t6=i

rti

rit
)vi 6= 0,

which contradicts (39).

The positive definiteness of Q + ∆eeT implies that
[

Q+∆ee
T

e

e
T 0

]

is invertible. As
[

Q+∆ee
T

e

e
T 0

]

is from adding the last row of
[

Q e

e
T 0

]

to its first k rows (with a scaling

factor ∆), the two matrices have the same rank. Thus,
[

Q e

e
T 0

]

is invertible as well.

Then (23) has a unique solution, and so does (19).

(ii) If Q is not positive definite, there is a vector v with vi 6= 0 such that

vT Qv =
1

2

k
∑

t=1

∑

u:u6=t

(rutvt − rtuvu)2 = 0.

Therefore,
(rutvt − rtuvu)2 = 0, ∀t 6= u.

As rtu > 0, ∀t 6= u, for any s 6= j for which s 6= i and j 6= i, we have

vs =
rsi

ris
vi, vj =

rji

rij
vi, vs =

rsj

rjs
vj . (40)

As vi 6= 0, (40) implies
rsirsj

ris
=

rjirjs

rij
,

which contradicts (25).

Appendix C. Proof of Theorem 4

First we need a lemma to show the strict decrease of the objective function:

Lemma 5 If rij > 0, ∀i 6= j, p and pn are from two consecutive iterations of Algorithm 2,
and pn 6= p, then

1

2
(pn)T Qpn <

1

2
pT Qp. (41)

Proof. Assume that pt is the component to be updated. Then, pn is obtained through the
following calculation:

p̄i =

{

pi if i 6= t,
1

Qtt
(−∑

j:j 6=t Qtjpj + pT Qp) if i = t,
(42)
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and

pn =
p̄

∑k
i=1 p̄i

. (43)

For (43) to be a valid operation,
∑k

i=1 p̄i must be strictly positive. To show this, we first
suppose that the current solution p satisfies pi ≥ 0, i = 1, . . . , l, but the next solution p̄
has

∑k
i=1 p̄i = 0. In Section 4.2, we have shown that p̄t ≥ 0, so with p̄i = pi ≥ 0, ∀i 6= t,

p̄i = 0 for all i. Next, from (42), pi = p̄i = 0 for i 6= t, which, together with the equality
∑k

i=1 pi = 1 implies that pt = 1. However, if pt = 1 and pi = 0 for i 6= t, then p̄t = 1 from
(42). This contradicts the situation that p̄i = 0 for all i. Therefore, by induction, the only
requirement is to have nonnegative initial p.

To prove (41), first we rewrite the update rule (42) as

p̄t = pt +
1

Qtt
(−(Qp)t + pT Qp) (44)

= pt + ∆.

Since we keep
∑k

i=1 pi = 1,
∑k

i=1 p̄i = 1 + ∆. Then

p̄T Qp̄− (
k

∑

i=1

p̄i)
2pT Qp

= pT Qp + 2∆(Qp)t + Qtt∆
2 − (1 + ∆)2pT Qp

= 2∆(Qp)t + Qtt∆
2 − (2∆ + ∆2)pT Qp

= ∆
(

2(Qp)t − 2pT Qp + Qtt∆−∆pT Qp
)

= ∆(−Qtt∆−∆pT Qp) (45)

= −∆2(Qtt + pT Qp) < 0. (46)

(45) follows from the definition of ∆ in (44). For (46), it uses Qtt =
∑

j:j 6=t r2
jt > 0 and

∆ 6= 0, which comes from the assumption pn 6= p. 2

Now we are ready to prove the theorem. If this result does not hold, there is a convergent
sub-sequence {pi}i∈K such that p∗ = limi∈K,i→∞pi is not optimal for (19). Note that there
is at least one index of {1, . . . , k} which is considered in infinitely many iterations. Without
loss of generality, we assume that for all pi, i ∈ K, pi

t is updated to generate the next
iteration pi+1. As p∗ is not optimal for (19), starting from t, t + 1, . . . , k, 1, . . . , t− 1, there
is a first component t̄ for which

k
∑

j=1

Qt̄jp
∗
j − (p∗)T Qp∗ 6= 0.

By applying one iteration of Algorithm 2 on p∗
t̄
, from an explanation similar to the proof of

Lemma 5, we obtain p∗,n satisfying p∗,n
t̄
6= p∗

t̄
. Then by Lemma 5,

1

2
(p∗,n)T Qp∗,n <

1

2
(p∗)T Qp∗.
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Assume it takes ī steps from t to t̄ and ī > 1,

lim
i∈K,i→∞

pi+1
t = lim

i∈K,i→∞

1
Qtt

(−∑

j:j 6=t Qtjp
i
t + (pi)T Qpi)

1
Qtt

(−∑

j:j 6=t Qtjpi
t + (pi)T Qpi) +

∑

j:j 6=t pi
j

=

1
Qtt

(−∑

j:j 6=t Qtjp
∗
t + (p∗)T Qp∗)

1
Qtt

(−∑

j:j 6=t Qtjp∗t + (p∗)T Qp∗) +
∑

j:j 6=t p∗j

=
p∗t

∑k
j=1 p∗j

= p∗t ,

we have

lim
i∈K,i→∞

pi = lim
i∈K,i→∞

pi+1 = · · · = lim
i∈K,i→∞

pi+ī−1 = p∗.

Moreover,

lim
i∈K,i→∞

pi+ī = p∗,n

and

lim
i∈K,i→∞

1

2
(pi+ī)T Qpi+ī =

1

2
(p∗,n)T Qp∗,n

<
1

2
(p∗)T Qp∗

= lim
i∈K,i→∞

1

2
(pi)T Qpi.

This contradicts the fact from Lemma 5:

1

2
(p1)T Qp1 ≥ 1

2
(p2)T Qp2 ≥ · · · ≥ 1

2
(p∗)T Qp∗.

Therefore, p∗ must be optimal for (19).

Appendix D. Implementation Notes of Algorithm 2

From Algorithm 2, the main operation of each iteration is on calculating −∑

j:j 6=t Qtjpj

and pT Qp, both O(k2) procedures. In the following, we show how to easily reduce the cost
per iteration to O(k).

Following the notation in Lemma 5 of Appendix D, we consider p the current solution.
Assume pt is the component to be updated, we generate p̄ according to (42) and normalize
p̄ to the next iterate pn. Note that p̄ is the same as p except the tth component and we
consider the form (44). Since

∑k
i=1 pi = 1, (43) is pn = p̄/(1 + ∆). Throughout iterations,

we keep the current Qp and pT Qp, so ∆ can be easily calculated. To obtain Qpn and
(pn)T Qpn, we use

(Qpn)j =
(Qp̄)j

1 + ∆

=
(Qp)j + Qjt∆

1 + ∆
, j = 1, . . . , k, (47)
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and

(pn)T Q(pn) =
p̄T Qp̄

(1 + ∆)2
(48)

=
pT Qp + 2∆

∑k
j=1(Qp)j + Qtt∆

2

(1 + ∆)2
.

Both (and hence the whole iteration) takes O(k) operations.

Numerical inaccuracy may accumulate through iterations, so gradually (47) and (48)
may be away from values directly calculated using p. An easy prevention of this problem
is to recalculate Qp and pT Qp directly using p after several iterations (e.g., k iterations).
Then, the average cost per iteration is still O(k) + O(k2)/k = O(k).

Appendix E. Derivation of (32)

k
∑

i=1

∑

j:j 6=i

(I{rij>rji}pj − I{rji>rij}pi)
2

=
k

∑

i=1

∑

j:j 6=i

(I{rij>rji}p
2
j + I{rji>rij}p

2
i )

= 2
k

∑

i=1

(
∑

j:j 6=i

I{rji>rij})p
2
i .

If
∑

j:j 6=i I{rji>rij} 6= 0, ∀i, then, under the constraint
∑k

i=1 pi = 1, the optimal solution
satisfies

p1
∑

j:j 6=1 I{rj1>r1j}
= · · · = pk

∑

j:j 6=k I{rjk>rkj}
.

Thus, (32) is the optimal solution of (31).
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Figure 5: MSE by using four probability estimates methods based on binary SVMs (left)
and binary random forests (right). MSE of δV is too large and is not presented.
solid line: 300 training/500 testing points; dotted line: 800 training/1,000 testing
points.
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Figure 6: Average of 20 test errors by five probability estimates methods based on binary
SVMs (left) and binary random forests (right). Each of the 20 test errors is by 300
training/500 testing points. Caption of each sub-figure shows the averaged error
by voting using pairwise SVM decision values (δDV ) and the multi-class random
forest (δRF ).
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Figure 7: Average of 20 test errors by five probability estimates methods based on binary
SVMs (left) and binary random forests (right). Each of the 20 test errors is by
800 training/1,000 testing points. Caption of each sub-figure shows the averaged
error by voting using pairwise SVM decision values (δDV ) and the multi-class
random forest (δRF ).
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Figure 8: Log likelihood (37) by using four probability estimates methods based on binary
SVMs (left) and binary random forests (right). MSE of δV is too small and is
not presented. solid line: 300 training/500 testing points; dotted line: 800 train-
ing/1,000 testing points.
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Abstract
The paper brings together methods from two disciplines: machine learning theory and robust statis-
tics. We argue that robustness is an important aspect and we show that many existing machine
learning methods based on the convex risk minimization principle have − besides other good prop-
erties − also the advantage of being robust. Robustness properties of machine learning methods
based on convex risk minimization are investigated for the problem of pattern recognition. As-
sumptions are given for the existence of the influence function of the classifiers and for bounds on
the influence function. Kernel logistic regression, support vector machines, least squares and the
AdaBoost loss function are treated as special cases. Some results on the robustness of such methods
are also obtained for the sensitivity curve and the maxbias, which are two other robustness criteria.
A sensitivity analysis of the support vector machine is given.
Keywords: AdaBoost loss function, influence function, kernel logistic regression, robustness,
sensitivity curve, statistical learning, support vector machine, total variation

1. Introduction

In statistical learning theory the principle of regularized empirical risk minimization based on con-
vex loss functions plays an important role, see Vapnik (1998). One strong argument in favor of such
methods is that many classifiers based on convex loss functions are universally consistent under
weak conditions. Nevertheless, it is important to investigate robustness properties for such statis-
tical learning methods for the following reasons. In almost all cases statistical models are only
approximations to the true random process which generated a given data set and for which a method
for analyzing the data is designed. Hence the natural question arises what impact such deviations
may have on the results. J.W. Tukey, one of the pioneers of robust statistics, mentioned already in
1960 (Hampel et al., 1986, p. 21):

A tacit hope in ignoring deviations from ideal models was that they would not matter;
that statistical procedures which were optimal under the strict model would still be
approximately optimal under the approximate model. Unfortunately, it turned out that

c©2004 Andreas Christmann and Ingo Steinwart.
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this hope was often drastically wrong; even mild deviations often have much larger
effects than were anticipated by most statisticians.

The main aims of robust statistics are the description of the structure best fitting the bulk of the data
and the identification of points deviating from this structure or deviating substructures for further
treatment, cf. Hampel et al. (1986). Very briefly, a good robust method can be described as follows.

• If the strict model assumptions are violated, than the results of a robust method are only
influenced in a moderate way by a few data points, which deviate grossly from the structure of
the bulk of the data set, or by many data points, which deviate only mildly from the structure
of the bulk of the data set.

• A robust method should have a reasonable high efficiency when the data set was in fact
generated by the assumed model.

In practice one has to apply machine learning methods to a data set with a finite sample size. Ma-
chine learning methods are nonparametric tools. Nevertheless, the robustness issue is important,
because the classical assumption that all data points were independently generated by the same dis-
tribution can be violated in practice. One reason is that outliers often occur in real data sets. Outliers
can be described as data points which “are far away . . . from the pattern set by the majority of the
data”, see Hampel et al. (1986, p. 25). Sometimes outliers are even correlated, which contradicts the
classical assumption that the observations in the data set were generated in an independent manner.
There are many reasons for the occurrence of outliers, e.g. typing errors and gross errors, which
are errors due to a source of deviations which acts only occasionally but is quite powerful. E.g.
undetected outliers may have an extreme impact on the estimation of insurance tariffs computed by
motor vehicle insurance companies. From a robustness point of view the occurrence of outliers is
only one of several possible deviations from the assumed model. There are often no or virtually no
gross errors in high-quality data, but 1% to 10% of gross errors in routine data seem to be more the
rule than the exception, cf. Hampel et al. (1986, p. 27f). Especially in large data mining problems
the data quality is sometimes far from being optimal, cf. Hand et al. (2001) or Hipp et al. (2001).
Obviously, it is not the goal to model the occurrence of typing errors or gross errors, because it is
unlikely that they will occur in the same manner for other data sets which will be collected in the
future. Goals of robust statistics are to investigate the impact such data points can have on the results
of estimation, testing or prediction methods and the development of methods such that the impact
of such data points is bounded.

We like to give an example showing that robustness properties of statistical methods can be very
important in practice. A data set from 15 German motor vehicle insurance companies from the
Verband öffentlicher Versicherer in Düsseldorf, Germany, is investigated by Christmann (2004).
The main goals are the estimation of the expected claim amount, which is the primary response
variable, and the probability that a customer has at least one claim within one year, which is the
secondary response variable. It is well-known that even the very weak assumptions typically made
by machine learning methods, see Section 2, may be violated for such data sets for the following
reasons. The true values of the claim amount, i.e. the primary response variable, is not known
exactly for all customers. E.g. if a major accident occurs in November, the exact claim size will
often not be known at the end of the year and perhaps not even at the end of the following year.
Possible reasons are law-suits or the case of physical injuries. In this case, a statistician will have to
use more or less appropriate estimations of the exact claim size to construct a new insurance tariff
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for the next year. Hence, the empirical distribution of the claim amount is in general a mixture of
really observed values and of estimated claim amounts. Further, some explanatory variables may
have imprecise values. E.g. there is a variable describing how many kilometers a customer is driving
with the car within one year. The customer has to choose between some categories, e.g. below 9000
kilometers, between 9000 and 12000 kilometers, between 12000 and 15000 kilometers, and so on.
There are reasons making it plausible, that a percentage of these values in the data set are too small,
e.g. it is well-known to the customers that the premium of an insurance tariff increases for increasing
values of this variable. The data set contains data from more than four million customers with more
than 70 variables. Hence there is a high probability that some data points are typing errors, although
the data set is of high quality.

There are different approaches to robustness in the statistical literature. For statistics repre-
sentable as a functional of the empirical distribution, qualitative robustness, which is defined as
equicontinuity of the distributions of the statistic as the sample size changes, is closely related to
continuity of the statistic viewed as a functional in the weak(-star) topology, cf. Huber (1981, p. 7f)
or Hampel et al. (1986, p. 41). The concept of qualitative robustness is a rather weak robustness
criterion. It has the disadvantage that it does not offer arguments how to choose among different
qualitative robust procedures. Huber’s minimax approach of robust statistics (Huber, 1964, 1981)
is to minimize the maximum asymptotic variance of the estimator within a neighborhood of the
model. Other strategies of robust statistics are Hampel’s influence function (Hampel, 1974; Hampel
et al., 1986), the finite sample breakdown point proposed by Donoho and Huber (1983), the ap-
proach based on least favourable local alternatives (Rieder, 1994), and the regression depth method
proposed by Rousseeuw and Hubert (1999).

Here, we will mainly use the approach based on the influence function. This approach can be
applied to quite general models and the influence function has a nice interpretation, because it is a
special Gâteaux derivative, see Section 3. A map T is called robust in the theory of robust statistics
based on influence functions, if T has as a bounded influence function. From the viewpoint of
robust statistics it is important to investigate the impact a small amount of contamination of the
‘true’ probability measure P can have on the statistical learning process which is specified via the
regularized theoretical risk, i.e. the objective functions Rreg

L,P,λ(.) and Rreg
L,P,λ(., .) given in (6) and (7).

This paper investigates robustness properties of statistical learning methods based on convex risk
minimization and is organized as follows. Section 2 gives some notions on convex risk minimization
methods. Section 3 gives the definitions of the influence function, the sensitivity curve, and the
maxbias, which are the robustness concepts we are dealing with. Section 4 and Section 5 contain
the main results. For practical applications Theorem 12 is our most important result and it covers a
broad class of loss functions including the ones used by SVM, kernel logistic regression, AdaBoost
and least squares. In Section 4 sufficient conditions are given for the existence of the influence
function for classifiers based on (6) and (7). In Section 5 it is shown that the influence function of
the solution of (7) and the difference quotient used in the definition of the influence function for (6)
can be bounded independently of z and P. Bounds for the sensitivity curve and for the maxbias are
also given. Section 6 describes the results of some simulation experiments to gain insight into the
robustness properties of the SVM for finite sample sizes and investigates the impact a single data
point can have if a radial basis function kernel or a linear kernel is used. Section 7 contains the
conclusion. Finally, the Appendix gives the proofs of the main theorems discussed in this paper and
lists some mathematical facts which are used in our proofs.
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2. Convex Risk Minimization in Machine Learning

In pattern recognition and statistical machine learning the major goal is the estimation of a func-
tional relationship yi ≈ f (xi) between an outcome yi and a vector of explanatory variables xi =
(xi,1, . . . ,xi,k)

′ ∈ R
d . The function f is unknown. The estimate for f is used to get predictions of

an unobserved outcome ynew based on an observed value xnew. One needs the implicit assumption
that the relationship between xnew and ynew is—at least almost—the same as in the training data
set (xi,yi), i = 1, . . . ,n. Otherwise, it is useless to extract knowledge on f from the training data
set. The classical assumption in machine learning is that the training data (xi,yi) are independent
and identically generated from an underlying unknown distribution P for a pair of random variables
(Xi,Yi). In practical applications the training data set is often quite large, high dimensional and
complex. The quality of the predictor f (xi) is measured by some loss function L(yi, f (xi)). The
goal is to find a predictor fP(xi) that minimizes the expected loss, i.e.

EP L(Y, fP(X)) = min
f

EP L(Y, f (X)), (1)

where EP L(Y, f (X)) =
∫

L(y, f (x))dP(x,y) denotes the expectation of L with respect to P. We
sometimes write L( f ) instead of L(y, f (x)) and L( f + b) instead of L(y, f (x) + b) to shorten the
notation, if misunderstandings are unlikely. We use this kind of notation also for derivatives of L.

In this paper we are interested in binary classification, where yi ∈ Y := {−1,+1}. The straight-
forward prediction rule is: predict yi = +1 if f (xi) ≥ 0, and predict yi = −1 otherwise. The loss
function for the classification error is given by I(yi, f (xi)) = I(yi f (xi) < 0)+I( f (xi) = 0)I(yi =−1),
where I denotes the indicator function. Inspired by the law of large numbers one might estimate fP

with the minimizer femp of the empirical classification error, that is

femp = argmin
f

1
n

n

∑
i=1

I(yi, f (xi)) . (2)

To avoid over-fitting one usually has to restrict the class of functions f considered in (2). Unfortu-
nately, the classification function I is not convex and the minimization of (2) is often NP-hard, cf.
Höffgen et al. (1995). To circumvent this problem, one can replace the classification error function
I(yi, f (xi)) in (2) by a convex upper bound L : Y ×R → R cf. Vapnik (1998) and Schölkopf and
Smola (2002). Furthermore, using reproducing kernel Hilbert spaces and an additional regulariza-
tion term have some algorithmic advantages. These modifications lead to the following empirical
regularized risks:

f̂n,λ = argmin
f∈H

λ‖ f‖2
H +

1
n

n

∑
i=1

L(yi, f (xi)), (3)

( f̂n,λ, b̂n,λ) = arg min
f∈H,b∈R

λ‖ f‖2
H +

1
n

n

∑
i=1

L(yi, f (xi)+b), (4)

where λ > 0 is a small regularization parameter, H is a reproducing kernel Hilbert space (RKHS) of
a kernel k, and b is called offset. The decision functions are sign( f̂n,λ) or sign( f̂n,λ + b̂n,λ). Note that
in practice usually (4) is solved while many theoretical papers deal with (3) since the unregularized
offset b often causes technical difficulties in the analysis.

In practice the dual problems of (3) and (4) are solved. In these problems the RKHS does not
occur explicitly, instead the corresponding kernel is involved. The choice of the kernel k enables
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Method L L′

Support Vector Machine max(1− v,0) −1, if v < 1
0, if v > 1

Kernel Logistic Regression ln(1+ exp(−v)) −1/(1+ exp(v))
AdaBoost exp(−v) −exp(−v)
Least Squares (1− v)2 2(v−1)
Modified Least Squares max(1− v,0)2 −2max(0,1− v)
Modified Huber −4v, if v < −1 −4, if v < −1

max(1− v,0)2, else −2max(0,1− v), otherwise

Table 1: Loss functions, where v = y f (x) or v = y[ f (x)+b], respectively.

the above methods to efficiently estimate not only linear, but also non-linear functions. Of special
importance is the Gaussian radial basis function (RBF) kernel

k(x,x′) = exp(−γ‖x− x′‖2) , γ > 0, (5)

which is a universal kernel on every compact subset of R
d in the sense of Steinwart (2001). Fur-

thermore, this kernel is a bounded kernel, as |k(x,x′)| ≤ 1 for all x,x′ ∈ R
d . Polynomial kernels

k(x,x′) = (c+ 〈x,x′〉)m are also popular in practice, but are unbounded for m ≥ 1 and X = R
d .

Popular loss functions depend on y and f via v = y f (x) or v = y( f (x)+b). Some important spec-
ifications of L are given in Table 1. The support vector machine (SVM) penalizes points linearly if
v < 1. Kernel logistic regression and AdaBoost use twice continuously differentiable loss functions.
The loss function used by kernel logistic regression (Wahba, 1999) penalizes misclassifications in a
similar way to the SVM, i.e. approximately linearly if v→−∞. The loss function used by AdaBoost
increases exponentially for v → −∞, cf. Freund and Schapire (1996), Friedman et al. (2000), and
Hastie et al. (2001). The modified Huber’s loss function, cf. Zhang (2004), changes the modified
least squares loss such that misclassified points with v < −1 are penalized only linearly.

Two major benefits of using a convex loss function are known:

• For convex loss functions the resulting problems (3) and (4) are computationally tractable in
the sense that they can be approximately solved in polynomial time. In fact, for many loss
functions fast algorithms do exist. For bounded loss functions the convexity is lost and to our
best knowledge almost nothing is known whether the problems are computational tractable.
For applications of non-convex loss functions in the context of weighted least squares support
vector machines for regression problems see Suykens et al. (2002).

• In the last two years an exciting observation almost revolutionized considerations on the learn-
ing performance of classification algorithms. The standard approach for bounding the estima-
tion error of (regularized) empirical risk minimization (ERM) algorithms is to apply a uniform
deviation bound. With this technique no learning rates faster than n− 1

2 , where n is the sample
size, can be obtained for nontrivial function classes and noisy distributions. However, if one
“quantifies” the amount of noise (Tsybakov, 2004) and considers ERM-type algorithms with
convex loss functions then learning rates up to n−1 are possible! For more information of
this recent development we refer to Bartlett et al. (2002), Bartlett et al. (2003) and Bartlett
and Mendelson (2002). In particular, this program has been successively applied to support
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vector machines by Scovel and Steinwart (2003). Learning rates for boosting methods are
investigated by Blanchard et al. (2003).

These two benefits of convex loss functions are the major reasons why the convexity plays a very
important role in recent machine learning algorithms. This is in contrast to robust statistics, where
often non-convex loss functions are used, although such robust statistics are based on objective
functions with more than one local optimum, c.f. Hampel et al. (1986) and Christmann (1994,
1998).

Problems (3) and (4) can be interpreted as a stochastic approximation of the minimization of the
theoretical regularized risk given in (6) or (7), respectively (Vapnik, 1998; Zhang, 2004; Steinwart,
2002a):

fP,λ = argmin
f∈H

λ‖ f‖2
H +EP L(Y, f (X)) , (6)

( fP,λ,bP,λ) = arg min
f∈H,b∈R

λ‖ f‖2
H +EP L(Y, f (X)+b) . (7)

The objective functions in (6) and (7) are denoted by Rreg
L,P,λ(.) and Rreg

L,P,λ(., .) in the sequel.
Steinwart (2002b) shows that SVM’s are universally consistent, i.e. the classification error of

f̂n,λ(.) converges to the optimal Bayes error EP I(Y, fP(X)) in probability, provided that the repro-
ducing kernel Hilbert space is dense in the space C(X), X ⊂R

d compact, and λ = λn tends “slowly”
to 0 for n → ∞. Zhang (2004) improves this result by showing that for many convex loss functions
the classifiers based on (3) are universally consistent if λn → 0 and λnn → ∞. Steinwart (2002a)
characterizes the loss functions which lead to universally consistent classifiers and establishes uni-
versal consistency for classifiers based on (3) and (4). Furthermore, he shows that there exist so-
lutions of both the theoretical and the empirical problems. Under certain assumptions on the data
generating distribution one can even establish rates on the learning speed of SVM’s. Such results
can be found in Steinwart (2001), Chen et al. (2003), and Scovel and Steinwart (2003). Moreover,
Steinwart (2003) gives lower asymptotical bounds on the number of support vectors, i.e. on the data
points with non-vanishing coefficients, and investigates the asymptotic behavior of f̂n,λ(.) in terms
of the loss function L. As a by-product it also turns out that the solutions of (3) and (6) are unique.
The same holds for the RKHS part of the solutions of (4) and (7). Upper bounds on the number
of support vectors can be found in Steinwart (2004). Schölkopf and Smola (2002) describe other
support vector machines and give an overview on algorithms to solve the minimization problems
corresponding to SVMs.

3. Robustness

In the statistical literature different criteria have been proposed to define the notion of robustness in
a mathematical way, e.g. the minimax approach (Huber, 1964), the sensitivity curve (Tukey, 1977),
the approach based on influence functions (Hampel, 1974; Hampel et al., 1986), the maxbias curve
(Huber, 1964; Hampel et al., 1986), and the finite sample breakdown point (Donoho and Huber,
1983).

In this paper, we mainly use the approach based on the influence function proposed by Hampel
(1974) and Hampel et al. (1986). We will consider a map T which assigns to every distribution P

on a given set Z an element T (P) of a given Banach space E. In the case of the convex risk mini-
mization methods given in (6) and (7) E equals the RKHS and T (P) = fP,λ or T (P) = ( fP,λ,bP,λ),
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respectively. The book by Huber (1981, p. 34ff) is a standard reference for Gâteaux and Fréchet
derivatives in the context of robust statistics.

Definition 1 (Influence function) The influence function of T at a point z for a distribution P is the
special Gâteaux derivative (if it exists)

IF(z;T,P) = lim
ε↓0

T
(

(1− ε)P+ ε∆z
)

−T (P)

ε
, (8)

where ∆z is the Dirac distribution at the point z such that ∆z({z}) = 1.

The influence function has the interpretation, that it measures the impact of an (infinitesimal)
small amount of contamination of the original distribution P in direction of a Dirac distribution
located in the point z on the theoretical quantity of interest T (P). Therefore, in the robustness
approach based on influence functions it is desirable that a statistical method which can be written as
T (P) has a bounded influence function. If T fulfills some regularity conditions, it can be linearized
near P in terms of the influence function via

T (P∗) = T (P)+
∫

IF(z;T,P) [P∗(dz)−P(dz)]+ . . . ,

where P
∗ is a probability distribution near P, cf. Huber (1981, p. 14). If different methods have a

bounded influence function, the one with a lower bound is the more robust one.
The sensitivity curve SCn proposed by J.W. Tukey and discussed in detail by Hampel et al. (1986,

p. 93) can be interpreted as a finite sample version of the influence function, see (10). The sensitivity
curve measures the impact of just one additional data point z on the empirical quantity of interest,
i.e. on the estimate Tn.

Definition 2 (Sensitivity curve) The sensitivity curve of an estimator Tn at a point z given a data
set z1, . . . ,zn−1 is defined by

SCn(z;Tn) = n
(

Tn(z1, . . . ,zn−1,z)−Tn−1(z1, . . . ,zn−1)
)

. (9)

If the estimator Tn is defined via T (Pn), where Pn denotes the empirical distribution of the data
points z1, . . . ,zn, then we have for εn = 1/n:

SCn(z;Tn) =
T
(

(1− εn)Pn−1 + εn∆z
)

−T (Pn−1)

εn
. (10)

Of theoretical as well as of practical importance is also the notion of maxbias, which measures
the maximum bias T (Q)−T (P) within a neighborhood of probability distributions Q near P. In ro-
bust statistics the so-called contamination (or gross-error) neighborhood (defined below), cf. Huber
(1981), is quite common for the following three reasons. It allows a good interpretation because it
contains mixture distributions with respect to the ’true’ distribution P and some other distribution.
The contamination neighborhood has some relationship to the influence function and to breakdown
points, and finally it is often easier to deal with this set of distributions than with other neighbor-
hoods. Note that the contamination neighborhood is not a neighborhood in the topological sense.
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Definition 3 (Maxbias) Let P be a fixed probability distribution on X ×Y . A contamination neigh-
borhood of P is given by

Nε(P) =

{

Q = (1− ε)P+ εP̃; P̃ is any distribution on X ×Y, 0 ≤ ε <
1
2

}

.

The maxbias (or supremum bias) of T at the distribution P with respect to the contamination neigh-
borhood Nε(P) is defined by

maxbias(ε;T,P) = sup
Q∈Nε(P)

‖T (Q)−T (P)‖ .

4. Existence of the Influence Function

In this section we give sufficient conditions for the existence of the influence function for classifiers
based on (6) and (7), whereas the next section will show that the influence function is bounded under
weak conditions. Most of our results are valid for any distribution P on X ×Y . Therefore, they are
also valid for the special case of the empirical distribution Pn = 1

n ∑n
i=1 ∆(xi,yi), i.e. for a given data

set, and for the empirical regularized risks defined in (3) and (4).
Since our robustness results in this section are based on the calculus in (infinite dimensional)

Banach spaces we first recall some basic notions; more details are given in the appendix. To this
end let G : E → F be a map between two Banach spaces E and F . We say that G is (Fréchet)-
differentiable in x0 ∈ E if there exists a bounded linear operator A : E → F and a function ϕ : E → F
with ϕ(x)

‖x‖ → 0 for x → 0 such that

G(x0 + x)−G(x0) = Ax+ϕ(x) (11)

for all x∈E. It turns out that A is uniquely determined by (11). We hence write G′(x) := ∂G
∂E (x) := A.

The map G is called continuously differentiable if the map x 7→ G′(x) exists on E and is continuous.
Analogously we define continuous differentiability on open subsets of E.

We also have to introduce the notion of Bochner-integrals. For simplicity we restrict ourselves
to the RKHS case, since this is the only one we actually need. To this end let H be a RKHS of a
bounded, continuous kernel k on X with feature map Φ : X → H, i.e. Φ(x) = k(x, .). Furthermore,
let P be a probability measure on X ×Y and h : Y ×X → R be a function which is continuous in
its second variable x ∈ X . Then the Bochner-integral EPh(Y,X)Φ(X) is an element of H which in
our case can be computed by a simple Riemann approach, i.e. by partitioning the underlying space
X ×Y . For a precise definition of Bochner-integrals we refer to Diestel and Uhl (1977). Note that in
our special situation we can also interpret EPh(Y,X)Φ(X) as an element of the dual space H ′ by the
Fréchet-Riesz theorem, i.e. EPh(Y,X)Φ(X) acts as a functional on H via w 7→ 〈EPh(Y,X)Φ(X),w〉.
Finally, we have to consider Bochner-integrals of the form EPh(Y,X)〈Φ(X), .〉Φ(X) which define
bounded linear operators on H by the map w 7→ EPh(Y,X)〈Φ(X),w〉Φ(X).

We can now establish our first two results which treat classifiers based on (6) with a smooth loss
function and a bounded continuous kernel. The first theorem covers e.g. the Gaussian RBF kernel.
The Dirac distribution in the point z is denoted by ∆z.

Theorem 4 Let L : Y ×R → [0,∞) be a convex and twice continuously differentiable loss function.
Furthermore, let X ⊂ R

d be a closed or open subset, H be a RKHS of a bounded continuous kernel
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on X and P be a distribution on X ×Y . We define G : R×H → H by

G(ε, f ) := 2λ f +E(1−ε)P+ε∆z
L′(Y, f (X))Φ(X)

which implies

∂G
∂ε

(0, fP,λ) = −EP[L′(Y, fP,λ(X))Φ(X)]+L′(zy, fP,λ(zx))Φ(zx).

Furthermore, we define S : H → H by

S :=
∂G
∂H

(0, fP,λ) = 2λ idH +EPL′′(Y, fP,λ(X))〈Φ(X), .〉Φ(X) .

Then the influence function of the classifiers based on (6) exists for all z = (zx,zy) ∈ X ×Y and is
given by

IF(z;T,P) = −S−1 ◦ ∂G
∂ε

(0, fP,λ) . (12)

Remark 5 The influence function derived in Theorem 4 depends on the point z = (zx,zy), where the
point mass contamination takes place, only by the term L′(zy, fP,λ(zx))Φ(zx).

In practice the set X is usually a bounded and closed subset of R
d and hence compact. In this case

existence of the influence function can be shown without the assumption that the kernel is bounded,
and hence the following theorem covers also polynomial kernels.

Theorem 6 Let L : Y ×R → [0,∞) be a convex and twice continuously differentiable loss function.
Furthermore, let X ⊂ R

d be compact, H be a RKHS of a continuous kernel on X and P be a
distribution on X ×Y . Then the influence function of the classifiers based on (6) exists for all
z ∈ X ×Y .

Remark 7 By a simple modification of the proof of the above theorem we actually find that the
special Gâteaux derivative of T : P 7→ fP,λ exists for every direction, i.e.

lim
ε↓0

f(1−ε)P+εP̃,λ − fP,λ

ε

exists for all distributions P and P̃ on X ×Y provided that the assumptions of Theorem 4 hold. This
is an interesting result from the viewpoint of applied statistics, because a point mass contamination
is just one possible kind of contamination which can occur in practice.

The following theorem shows the existence of the influence function for classifiers based on (7).
Since the offset bP,λ can be infinite for certain loss functions if P is degenerate, i.e P({(y,x) : x ∈
X}) = 1 for y = +1 or y =−1, we have to exclude these probability measures. Note that these mea-
sures almost surely produce training sets of the form ((1,x1), . . . ,(1,xn)), or ((−1,x1), . . . ,(−1,xn)),
respectively.
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Theorem 8 Let L : Y ×R → [0,∞) be a convex and twice continuously differentiable loss function
with L′′ > 0. Furthermore, let X ⊂ R

d be open or closed, H be a RKHS of a continuous kernel on X
and P be a non-degenerate distribution on X ×Y . We define G : R×H ×R → H ×R by

G(ε, f ,b) :=
(

2λ f +E(1−ε)P+ε∆z
L′(Y, f (X)+b)Φ(X), E(1−ε)P+ε∆z

L′(Y, f (X)+b)
)

which implies

∂G
∂ε

(0, fP,λ,bP,λ) = −EP[L′(Y, fP,λ(X)+bP,λ)Φ(X)]+L′(zy, fP,λ(zx)+bP,λ)Φ(zx) .

Furthermore, for S := ∂G
∂(H×R)(0, fP,λ,bP,λ) we have

S =

(

2λ idH +EPL′′(Y, fP,λ(X)+bP,λ)〈Φ(X), .〉Φ(X) EPL′′(Y, fP,λ(X)+bP,λ)Φ(X)
EPL′′(Y, fP,λ(X)+bP,λ)Φ(X) EPL′′(Y, fP,λ(X)+bP,λ)

)

.

Then the influence function of the classifiers based on (7) exists for all z = (zx,zy) ∈ X ×Y and is
given by

IF(z;T,P) = −S−1 ◦ ∂G
∂ε

(0, fP,λ,bP,λ) . (13)

Remark 9 The influence function derived in Theorem 8 depends on the point z = (zx,zy), where
the point mass contamination takes place, only by the term L′(zy, fP,λ(zx)+bP,λ)Φ(zx). Hence loss
functions L and kernels k such that L′ and the feature map Φ are bounded are of special interest
from the view point of robust statistics.

Remark 10 As in the case of problem (6) a slight modification of the proof gives that T : P 7→
( fP,λ,bP,λ) is special Gâteaux differentiable.

Remark 11 Considering the loss functions in Table 1 we immediately see that the above theorems
apply to the kernel logistic regression, the least squares and the AdaBoost loss function. The second
derivatives of the modified least squares and the modified Huber loss function fail to exists in only
one point. For the loss function of the standard SVM, even the first derivative does not exist in one
point.

5. Bounds on the Influence Function, Sensitivity Curve and Maxbias

As mentioned in Section 1, a desirable property of a robust statistical method is that T has a bounded
influence function. In this section we show that for certain loss functions the influence function can
be bounded independently of z and P for classifiers based on (6) and (7). For the formulation of
our results we need to recall that the norm of total variation of a signed measure µ on a space X is
defined by

‖µ‖M := |µ|(X) := sup
{ n

∑
i=1

|µ(Ai)| : A1, . . . ,An is a partition of X
}

.

For more information on this norm we refer to Brown and Pearcy (1977).
Our first result bounds the difference quotient in the definition of the influence function for classi-

fiers based on (6). For practical applications Theorem 12 is our most important result. In particular,
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it states that the influence function of these classifiers is uniformly bounded whenever it exists, and
that the sensitivity curve is uniformly bounded too. Please note that the following theorem based
on Steinwart (2003) applies to all six loss functions given in Table 1 because differentiability of L
is not assumed.

Theorem 12 Let L : Y ×R → [0,∞) be a continuous and convex loss function. Furthermore, let
X ⊂ R

d and H be a RKHS of a bounded, continuous kernel on X. Then for all λ > 0 there exists a
constant cL(λ) > 0 explicitly given in (27) such that for all distributions P and P̃ on X ×Y we have

∥

∥

∥

∥

f(1−ε)P+εP̃,λ − fP,λ

ε

∥

∥

∥

∥

H
≤ cL(λ) ‖P− P̃‖M , ε > 0 .

Remark 13 The above theorem also gives uniform bounds for Tukey’s sensitivity curve of f . Con-
sider the special case that P is equal to the empirical probability measure of (n−1) data points, i.e.
Pn−1 = 1

n−1 ∑n−1
i=1 ∆(xi,yi), and that P̃ is equal to the Dirac measure ∆(x,y) in some point (x,y)∈ X ×Y .

Let ε = 1
n . Under the assumptions of Theorem 12 it follows from (10), that

n‖ f(1−ε)Pn−1+ε∆(x,y),λ − fPn−1,λ‖H ≤ cL(λ) ‖Pn−1 −∆(x,y)‖M , ε > 0 .

Essentially, this result has already been established by Bousquet and Elisseeff (2002).

Remark 14 Because no assumptions on P̃ are made in Theorem 12, an upper bound for the maxbias
of fP,λ (see Definition 3) for such machine learning methods is given by

maxbias(ε; f ,P) = sup
Q∈Nε

‖ fQ,λ − fP,λ‖ ≤ εcL(λ) sup
P̃∈P

‖P− P̃‖M ≤ 2cL(λ)ε ,

where ε ∈ (0,1/2), and P denotes the set of all probability measures on X ×Y . As no assumptions
are made for P, this result is valid for empirical distributions too. Consider the empirical distribu-
tion Pn defined by given data set (xi,yi) ∈ X ×Y with n data points. Then the maxbias of fPn,λ in a
contamination neighborhood Nε(Pn) is at most 2cL(λ)ε, where ε ∈ (0,1/2).

Unfortunately, using the estimate of Steinwart (2003) does not give any meaningful result for
classifiers based on (7). However, under some additional assumptions on L we can still bound the
influence function.

Theorem 15 Let L : Y ×R → [0,∞) be a convex and twice continuously differentiable loss function
with a ≤ L′′ ≤ b for some a,b > 0. Furthermore, let X ⊂ R

d be open or closed, H be a RKHS of a
continuous kernel on X, and Tλ(P) = ( fP,λ,bP,λ) be given by (7). Then for all λ > 0 there exists a
constant cL(λ) > 0 such that for all non-degenerated distributions P on X ×Y and all z ∈ X ×Y we
have

‖IF(z;T,P)‖H×R ≤ cL(λ) ‖P−∆z‖M .

Remark 16 Theorem 15 applies to (7) with the least squares loss function. However, Theorem 15
covers neither the logistic regression loss function as we only have L′′ ≥ 0 nor the AdaBoost loss
function which satisfies L′′ = L = exp(− .) However, we get the same bound of the influence function
if we restrict our considerations to distributions P with

a ≤
∫

L′′(Y, fP,λ(X)+bP,λ)dP ≤ b (14)
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for some b ≥ a > 0. A simple sufficient condition for the latter can be derived by the proof of
Steinwart (2002a, Lemma II.6): let Aρ

y := {x ∈ X : P(y|x) > ρ}, y ∈ Y , ρ > 0, and αP(ρ) :=
ρmin{PX(Aρ

1),PX(Aρ
−1)}. Then fixing λ > 0, a twice continuously differentiable L and a thresh-

old α > 0 there exist b ≥ a > 0 such that every P with αP(ρ)≥ α for some ρ > 0 satisfies (14). Note
that the assumption αP(ρ) ≥ α guarantees that the two classes of P are “balanced”.

Remark 17 As mentioned in Remark 10 the map T : P 7→ ( fP,λ,bP,λ) is special Gâteaux differen-
tiable. A simple modification of the proof of Theorem 15 shows that the special Gâteaux derivative
of T can be uniformly bounded.

Remark 18 Consider the case that P and P̃ are probability measures with densities p and p̃ with
respect to some dominating measure ν. Then, the last two theorems also give bounds of the influence
functions and the sensitivity curve in terms of the Hellinger metric H(P, P̃) = [

∫

(
√

p−√
p̃)2 dν]1/2.

This follows from a relationship between the norm of total variation and the Hellinger metric:

‖P− P̃‖M ≤ 2H(P, P̃) ≤ 2‖P− P̃‖1/2
M .

Note that the bounds for the difference quotient in Theorem 12 and for the influence function in
Theorem 15 converge to infinity, if λ converges to 0 and ‖P− P̃‖M > 0 or ‖P−∆z‖M > 0. However,
λ converging to 0 has the interpretation that misclassifications are penalized by constants C tending
to ∞. Therefore, decreasing values of λ correspond to a decreasing amount of robustness, which was
to be expected. The quantity λ can be interpreted as a tuning constant controlling the robustness
properties of the method in a similar way than it is well-known for many robust methods, e.g. Huber-
type M-estimators in location or regression models. Consider the Huber-type M-estimator (Huber,
1964) in a univariate location model, where all data points are realizations from n independent and
identically distributed random variables with some distribution function F(· − θ), where θ ∈ R is
unknown. Huber’s robust M-estimator with tuning constant b ∈ (0,∞) has an influence function
proportional to ψb(z) = min{b,max{z−b}}, cf. Hampel et al. (1986, p. 104f). For all b ∈ (0,∞)
the influence function is bounded by ±b. However, the bounds tend to ±∞ if b → ∞, and Huber’s
M-estimator with b = ∞ is equal to the non-robust maximum likelihood estimator which has an
unbounded influence function. Therefore, the quantity 1/λ (or the cost C) in the machine learning
methods we are dealing with has a similar role to the tuning constant b in Huber-type M-estimators.

6. Empirical Results for the SVM

In this section we study the impact an additional data point can have on the SVM with offset b for
pattern recognition. An analogous investigation for the case without offset gave similar results to
those described in this section. We generated a training data set with n = 500 data points xi from a bi-
variate normal distribution with expectation µ = (0,0) and covariance matrix Σ. The variances were
set to 1, whereas the covariance was set to 0.5. The responses yi were generated from a classical lo-
gistic regression model with θ = (−1,1)′, b = 0.5, such that P(Yi = +1) = [1+exp(−(x′iθ+b))]−1

and P(Yi =−1) = 1−P(Yi = +1). The computations were done using the software SVMlight devel-
oped by Joachims (1999). SVMlight solves the dual program corresponding to the primal optimiza-
tion problem

argmin f∈H,b∈R
1

2Cn || f ||2H + 1
n

n
∑

i=1
ξi

such that yi( f (xi)+b) ≥ 1−ξi

ξi ≥ 0 .

(15)
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We consider two popular kernels: a Gaussian radial basis function kernel with parameter γ, see
(5) and a linear kernel. Appropriate values for γ and for the constant C (or λ) are important for
the SVM and are often determined by cross validation, cf. Schölkopf and Smola (2002, p. 217).
A cross validation based on the leave-one-out error for the training data set was carried out by a
two-dimensional grid search on

γ ∈ {0.05,0.1,0.25,0.5,0.75,1,1.5,2,3,4,5,10,20}

and
C ∈ {0.5,0.75,1,1.25,1.5,1.75,2,5,10,20}.

As a result of the cross validation, the tuning parameters for the SVM with RBF kernel were set to
γ = 0.25 and C = 2. The leave-one-out error for the SVM with a linear kernel turned out to be stable
over a broad range of values for C. We used C = 1 in the computations for the linear kernel. For
n = 500 this results in λ = (2Cn)−1 = 5× 10−4 for the RFB kernel and λ = (2Cn)−1 = 0.001 for
the linear kernel. Please note that such small values of λ will result in relatively large bounds.

Figure 1 shows the sensitivity curves of f̂ + b̂ := f̂n,λ + b̂n,λ, if we add a single point z = (x,y) to
the original data set, where x1 = 6, x2 = 6, and y = +1. The additional data point has a local and
smooth impact on f̂ + b̂ with a peak in a neighborhood of (x1,x2), if one uses the RBF kernel. For a
linear kernel, the impact is approximately linear. The reason for this different behavior of the SVM
with different kernels becomes clear from Figure 2 where plots of f̂ + b̂ are given for the original
data set and for the modified data set, which contains the additional data point z. Please note that
the RBF kernel yields f̂ + b̂ approximately equal to zero outside a central region, as almost all data
points are lying inside the central region. Comparing the plots of f̂ + b̂ based on the RBF kernel
for the modified data set with the corresponding plot for the original data set, it is obvious that the
additional smooth peak is due to the new data point located at x = (6,6) with y = +1. It is interesting
to note that although the estimated functions f̂ + b̂ for the original data set and for the modified data
set based on the SVM with the linear kernel are looking quite similar, the sensitivity curve is similar
to an affine hyperplane which is affected by the value of z. This allows the interpretation, that just
a single data point can have an impact on f̂ + b̂ estimated by a SVM with a linear kernel over a
broader region than for an SVM with an RBF kernel.

Now, we study the impact of an additional data point z = (x,y), where y = +1, on the percent
of classification errors and on the fitted y−value for z. We vary z over a grid in the x−coordinates.
Figure 3 shows that the percentage of classification errors is approximately constant outside the
central region that contains almost all data points if a Gaussian RBF kernel was used. For the
SVM with a linear kernel, the percentage of classification errors tends to be approximately constant
in one half-space but changes in the other half-space. The response of the additional data point
was correctly estimated by ŷ = +1 outside the central region, if a RBF kernel is used, see Figure
4. In contrast to that, using a linear kernel results in estimated responses ŷ = +1 or ŷ = −1 of
the additional data point depending on the affine half-space in which the x−value of z is lying.
Finally, let us study the impact of an additional data point located at z = (x,y), where y = +1, on the
estimated parameters b̂ and θ̂, see Figure 5. We vary z over a grid in the x−coordinates in the same
manner as before. As the plots for θ̂1 and θ̂2 are looking very similar, we only show the latter. Note
that the axes are not identical in Figure 5 due to the kernels. The sensitivity curves for the slopes
estimated by the SVM with an RBF kernel are similar to a hyperplane outside the central region,
which contains almost all data points. In the central region, there is a smooth transition between
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Figure 1: Sensitivity function of f̂ + b̂, if the additional data point z is located at z = (x,y), where
x = (6,6) and y = +1. Left: RBF kernel. Right: linear kernel.

regions with higher sensitivity values and regions with lower sensitivity values. The sensitivity
curves for the slopes of the SVM with a linear kernel are flat in one affine half-space, but change
approximately linearly in the other affine half-space. This behavior also occurs for the sensitivity
curve of the offset by using a linear kernel. In contrast to that, the sensitivity curve of the offset
based on a SVM with a RBF kernel shows a smooth but curved shape outside the region containing
the majority of the data points.

7. Concluding Remarks

In this paper, we used the influence function approach of robust statistics (Hampel et al., 1986) for
recent statistical learning methods based on convex risk minimization methods for the problem of
pattern recognition. The influence function has the interpretation that it measures the impact of an
infinitesimal amount of contamination of the original distribution P in direction of a Dirac distribu-
tion located in the point z on the theoretical quantity of interest T (P). Special cases of such convex
risk minimization methods are the support vector machine, kernel logistic regression, AdaBoost,
and least squares. Assumptions were derived for the existence of the influence function of f or
( f ,b) used by the classifiers and also for uniform bounds on the influence function which hold with
respect to the distribution P and the point z of the Dirac distribution ∆z describing the contamination.
For the case without offset b one can uniformly bound the difference quotient considered by the in-
fluence function under weak conditions which also yields uniform bounds for Tukey’s sensitivity
curve and uniform upper bounds for the maxbias. In particular, the influence function for these clas-
sifiers is uniformly bounded if it exists. Some of the results are not limited to the special Gâteaux
derivative used in the definition of the influence function. The assumptions of some of our results
exclude the support vector machine because the SVM uses a loss function which is not differentiable
in one point, but Theorem 12 covers the SVM as a special case. We gave some numerical results for
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Figure 2: Plot of f̂ + b̂. Upper left: RBF kernel, original data set. Upper right: linear kernel,
original data set. Lower left: RFB kernel, modified data set. Lower right: linear kernel,
modified data set. The modified data set contains the additional data point z = (x,y),
where x = (6,6) and y = +1.

the sensitivity curve, which can be interpreted as a finite sample version of the influence function, of
the SVM classifier. It turned out, that the popular exponential radial basis function kernel resulted
in smooth sensitivity curves for f̂ + b̂ and for the estimated coefficients (θ̂, b̂). Varying the position
of one additional data point had a smooth and local impact on f̂ + b̂, if one uses an RBF kernel. For
the linear kernel the impact of varying one additional data point behaves also in a relatively smooth
manner, but the impact seems to be more globally than locally.

For a numerical comparison between the support vector machine and the regression depth method
recently proposed by Rousseeuw and Hubert (1999) see Christmann and Rousseeuw (2001) and
Christmann et al. (2002).
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Figure 3: Percent of classification errors if one data point z = (x,1) is added to the original data set,
where x varies over the grid. Left: RBF kernel. Right: linear kernel.
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Figure 4: Fitted y−value for new observation if one data point z = (x,1) is added to the original
data set, where x varies over the grid. Left: RBF kernel. Right: linear kernel.

It would be interesting to study the influence function of convex risk minimization methods for
other problems, e.g. ε−regression or kernel principal component analysis, or to consider other
robustness concepts, but this is beyond the scope of this paper.

Acknowledgments

The financial support of the Deutsche Forschungsgemeinschaft (SFB 475, ”Reduction of complexity
in multivariate data structures”) and of DoMuS (University of Dortmund, ”Model building and

1022



ROBUSTNESS OF CONVEX RISK MINIMIZATION METHODS

x1

−10

−5

0

5

10
x2

−10

−5

0

5

10
−4000

−2000

0

2000

x1

−10

−5

0

5

10

x2

−10

−5

0

5

10
−60

−40

−20

0

20

x1

−10

−5

0

5

10

x2

−10

−5

0

5

10

−10000

−5000

0

x1

−10

−5

0

5

10

x2

−10

−5

0

5

10

0

5

10

Figure 5: Sensitivity function for θ̂ and b̂, respectively. Upper left: Sensitivity function for θ̂2, RBF
kernel. Upper right: Sensitivity function for θ̂2, linear kernel. Lower left: Sensitivity
function for b̂, RBF kernel. Lower right: Sensitivity function for b̂, linear kernel.

simulation”) are gratefully acknowledged. We thank three anonymous referees and the editor for
helpful remarks on an earlier version of the paper.

Appendix A. Mathematical Background

In Appendix A we list some facts from functional analysis, which are used in Appendix B to prove
our theorems.

Since our proofs are heavily based on the calculus in (infinite dimensional) Banach spaces we
first recall the basic facts, see e.g. Akerkar (1999), Brown and Pearcy (1977), and Yosida (1974).
To this end let G : E → F be a map between two Banach spaces E and F . Recall, that we say that
G is (Fréchet)-differentiable in x0 ∈ E if there exists a bounded linear operator A : E → F and a
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function ϕ : E → F with ϕ(x)
‖x‖ → 0 for x → 0 such that

G(x0 + x)−G(x0) = Ax+ϕ(x) (16)

for all x ∈ E. It turns out that A is uniquely determined by (16). As in Section 4 we hence write
G′(x) := ∂G

∂E (x) := A. Again, the map G is called continuously differentiable if the map x 7→ G′(x)
exists on E and is continuous. Analogously we define continuous differentiability on open subsets
of E.

Unlike 1-dimensional derivates general Fréchet derivates suffer from some notational difficulties.
For example, the derivate G′(x) itself is a map for every x and thus G′(x) is described by y 7→ G′(x)y.
Furthermore, considering partial derivates can cause notational problems too. Indeed, if e.g. idE is
the identity of E we have

x = id′(x)x =
∂id
∂E

(x)x =
∂id(x)

∂x
x

where the right expression uses standard notation. We feel that the latter can cause problems for the
unexperienced reader.

As in the finite dimensional case the differential operator satisfies basic calculus, that is linearity
and a chain rule

(

G2 ◦G1
)′

(x) = G′
2(G1(x))◦G′

1(x)

for G1 : E1 → E2, G2 : E2 → E3 whenever all derivates exist in the above equation. Furthermore, for
a bounded linear map A : E → F we have A′(x) = A for all x ∈ E. If G( f ) := ‖ f‖2

H for all elements
f of a Hilbert space H we find G′ = 2idH , where idH denotes the identity on H.

Let us consider an example that helps to understand the differentiation steps in the following
proofs. To this end let P be a probability measure on a subset X ⊂R

d and H be a RKHS of bounded
continuous functions over X with feature map Φ : X → H, i.e. Φ(x) := k(x, .), where k is the kernel
of H. We consider the map G : H → R which is defined by G f := EPL◦ f for all f ∈ H and a twice
continuously differentiable function L : R → R. In order to compute the derivate of this map we
decompose G into G = B ◦A ◦ I, where I : H → Cb(X) is the canonical embbeding w 7→ 〈w,Φ(.)〉
of H into the space of all bounded continuous functions Cb(X), A : Cb(X) → Cb(X) is defined by
f 7→ L◦ f and B : Cb(X)→ R is the functional f 7→ EP f . For the chain rule we need to compute the
derivatives of these factors. Since I is linear we have I ′(v)w = Iw for all v,w ∈ H. Analogously, the
linearity of B gives B′( f )g = EPg for all f ,g ∈Cb(X). As shown in the book of Akerkar (1999), we
also have A′( f )g = g · (L′ ◦ f ) for all f ,g ∈Cb(X), i.e. A′ is the multiplication operator with respect
to L′ ◦ f . Applying the chain rule to A◦ I we hence find

(A◦ I)′(v)w = (A′(I(v))◦ I′(v))w = L′ ◦ (Iv) · (Iw)

for all v,w ∈ H. As we see the brackets play an important role for the mechanic evaluation of these
derivatives. Another application of the chain rule gives

G′(v)w =
(

B′(A◦ I(v))◦ (A◦ I)′(v)
)

w = B′(A◦ I(v))
(

(A◦ I)′(v)w
)

= EP(A◦ I)′(v)w

= EPL′ ◦ (Iv) · (Iw)

for all v,w ∈ H. Note that by definition G′(v) : H → R is a bounded functional. By the theorem of
Fréchet-Riesz such functionals can be represented by elements of H via the mapping v 7→ 〈v, .〉. In
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our situation we can directly compute this representation: for v,w ∈ H we have

〈EPL′ ◦ (Iv)Φ,w〉 = EPL′ ◦ (Iv)〈Iv,w〉 = EPL′ ◦ (Iv) · (Iw) ,

i.e. EPL′ ◦(Iv)Φ is a representation of G′(v). Note that EPL′ ◦(Iv)Φ is a H-valued Bochner-integral.
For finite dimensional spaces R

n the R
n-valued Bochner-integral can be computed by the integrals

of the n components. In general Banach spaces some problems can occur by different notions of
measurability. Since in our case H is separable by the continuity of Φ and all our functions are
continuous we do not have these difficulties. In fact for compact X our Bochner-integrals can be
even computed using a simple Riemann approach. For more information about Bochner-integrals
we refer to Diestel and Uhl (1977) or Yosida (1974).

Since in our proofs we also have to compute the second derivate of maps of the form of G, let
us now treat G′′. For convenience we use the Fréchet-Riesz representation of G′. Analogously
to the above considerations we decompose G′. To this end B : Cb(X) → H denotes the operator
defined by B f := EP f Φ for all f ∈Cb(X). Furthermore, A : Cb(X) →Cb(X) is the operator A f :=
L′ ◦ f , f ∈ Cb(X). Using the Fréchet-Riesz representation of G′ we then find G′ = B ◦A ◦ I. Now
observe that B is linear. Therefore we have B′( f )g = EPgΦ for all g ∈ Cb(X). Moreover, we find
(A◦ I)′(v)w = L′′ ◦ (Iv)Iw for all v,w ∈ H as above. Using the chain rule this gives

G′′(v)w = B′′(A◦ I(v))
(

(A◦ I)′(v)w
)

= EP(A◦ I)′(v)wΦ = EPL′′ ◦ (Iv)IwΦ

for all v,w ∈ H.
Our proofs also heavily rely on the implicit function theorem in Banach spaces. Therefore, we

recall a simplified version of this theorem (Akerkar, 1999; Zeidler, 1986). Here and throughout this
appendix BE denotes the open unit ball of a Banach space E.

Theorem 19 (Implicit function theorem) Let E,F be Banach spaces and G : E × F → F be a
continuously differentiable map. Suppose that we have (x0,y0) ∈ E ×F such that G(x0,y0) = 0
and ∂G

∂F (x0,y0) is invertible. Then there exists a δ > 0 and a continuously differentiable map f :
x0 +δBE → y0 +δBF such that for all x ∈ x0 +δBE , y ∈ y0 +δBF we have

G(x,y) = 0 if and only if y = f (x) .

Moreover, the derivative of f is given by

f ′(x) = −
(

∂G
∂F

(

x, f (x)
)

)−1 ∂G
∂E

(

x, f (x)
)

.

For the application of the implicit function theorem we have to show that certain operators are
invertible. For this the following theorem which is known as the Fredholm Alternative, (Cheney,
2001) turns out to be very helpful:

Theorem 20 (Fredholm Alternative) Let E be a Banach space and S : E → E be a compact oper-
ator. Then idE +S is surjective if and only if it is injective.

We also need the Krein-Milman theorem, see Yosida (1974, p. 363) or Brown and Pearcy (1977,
p. 309).

Theorem 21 (Krein-Milman theorem) Let K be a non-void compact convex subset of a locally
convex real linear topological space. Then K is equal to the closure of the convex hull of the set of
all extreme points of K.
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Appendix B. Proofs of the Theorems

In this appendix we prove the theorems from Section 4 and Section 5. We sometimes write L( f )
instead of L(y, f (x)) and L( f +b) instead of L(y, f (x)+b) to shorten the notation, if misunderstand-
ings are unlikely. We use this kind of notation also for derivatives of L.

PROOF OF THEOREM 4. Let us first check that the solution fP,λ exists in our situation.
Indeed, in the proof of the existence statement by Steinwart (2002a) the compactness of X is only
used to ensure K := ‖I : H → `∞(X)‖ < ∞, where `∞(X) denotes the space of all bounded functions
f : X → R equipped with the supremum norm and I is the canonical embbeding. The finiteness of
this norm, however, characterizes bounded kernels. Therefore, the existence statement by Steinwart
(2002a) is true in our case too.

Now, let Φ : X → H be the feature map of H as in the above example. Our analysis heavily rely
on the map G : R×H → H that is defined by

G(ε, f ) := 2λ f +E(1−ε)P+ε∆z
L′(Y, f (X))Φ(X) .

Note that for ε 6∈ [0,1] the H-valued expectation is with respect to a signed measure. For these
measures we refer to Dudley (2002). Now as in the above example, for ε ∈ [0,1] we obtain

G(ε, f ) =
∂Rreg

L,(1−ε)P+ε∆z,λ

∂H
( f ) . (17)

Since f 7→Rreg
L,(1−ε)P+ε∆z,λ( f ) is convex for all ε∈ [0,1] Equation (17) shows that we have G(ε, f ) = 0

if and only if f = f(1−ε)P+ε∆z,λ for such ε. Our aim is to show the existence of a differentiable
function ε 7→ fε defined on a small interval [−δ,δ] for some δ > 0 that satisfies G(ε, fε) = 0 for all
ε ∈ [−δ,δ]. Once we have shown the existence of this function we immediately obtain

IF(z;T,P) =
∂ fε

∂ε
(0) .

For the existence of ε 7→ fε we only have to check by Theorem 19 that G is continuously differen-
tiable and that ∂G

∂H (0, fP,λ) is invertible. Let us start with the first: an easy computation shows

∂G
∂ε

(ε, f ) = −EPL′(Y, f (X))Φ(X)+E∆zL
′(Y, f (X))Φ(X) . (18)

Moreover, as in the above example we find

∂G
∂H

(ε, f ) = 2λ idH +E(1−ε)P+ε∆z
L′′(Y, f (X))〈Φ(X), .〉Φ(X) . (19)

Since H has a bounded kernel it is a simple routine to check that both partial derivatives are continu-
ous. This together with the continuity of G ensures that G is continuously differentiable, cf. Akerkar
(1999).
In order to show that ∂G

∂H (0, fP,λ) is invertible it suffices to show by the Fredholm Alternative that
∂G
∂H (0, fP,λ) is injective and that

Ag := EPL′′(Y, fP,λ(X))g(X)Φ(X) , g ∈ H,
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defines a compact operator on H. To show the compactness we have to recall some measure theory,
see Dudley (2002). Since X is assumed to be open or closed, it is a Polish space. Furthermore, Borel
probability measures on Polish spaces are regular by Ulam’s theorem, i.e. they can be approximated
from inside by compact sets, cf. Bauer (1990, p. 180). In our situation, this means that for all
n ≥ 1 there exists a compact subset Xn ⊂ X with PX(Xn) ≥ 1−1/n, where PX denotes the marginal
distribution of P with respect to X . We define a sequence of operators An : H → H by

Ang :=
∫

Xn×Y
L′′(y, fP,λ(x))g(x)Φ(x)dP(x,y)

for all g∈H. Let us now show that all An are compact. By the definition of An there exists a constant
c > 0 depending on λ, L′′ and K such that for all g ∈ BH we have

Ang ∈ c · acoΦ(Xn) , (20)

where acoΦ(Xn) denotes the absolute convex hull of Φ(Xn). Indeed, for discrete probability mea-
sures P relation (20) follows directly from the definition using the fact ‖g‖∞ ≤ K for g ∈ BH . To see
the general case recall that by Krein-Milman’s theorem the set of discrete probability measures is
weak∗-dense in the set of probability measures. Then (20) follows since H has the approximation
property (Lindenstrauss and Tzafriri, 1977). Furthermore, since Φ is continuous Φ(Xn) is compact
and hence so is acoΦ(Xn). This shows that An is compact. In order to see that A is compact, it
therefore suffices to show ‖An −A‖ → 0 for n → ∞. The latter convergence can be easily checked
using PX(Xn) ≥ 1−1/n.

It remains to prove that A is injective. To this end for g 6= 0 we find
〈

(2λ idH +A)g,(2λ idH +A)g
〉

= 4λ2〈g,g〉+4λ〈g,Ag〉+ 〈Ag,Ag〉
> 4λ〈g,Ag〉
= 4λ

〈

g,EPL′′(Y, fP,λ(X))g(X)Φ(X)
〉

= 4λEPL′′(Y, fP,λ(X))g2(X)

≥ 0

Here, the last equation is due to the fact that BEPh = EPBh for all E-valued functions h and all
bounded linear operators B : E → F between Banach spaces E and F . A much stronger result is
given in Diestel and Uhl (1977, p. 47). The last inequality is true since the second derivative of
a convex function is always nonnegative. Obviously, the above estimate shows that ∂G

∂H (0, fP,λ) =
2λ idH +A is injective.

We use IF(z;T,P) = ∂ fε
∂ε (0) to derive a formula for the influence function, where ε 7→ fε is the

function implicitly defined by G(ε, f ) = 0. The implicit function theorem hence gives

IF(z;T,P) = −S−1 ◦ ∂G
∂ε

(0, fP,λ) , (21)

where S := ∂G
∂H (0, fP,λ).

PROOF OF THEOREM 6. Since every compact subset of R
d is closed and continuous kernels on

compact subsets are bounded the assertion directly follows from Theorem 4.
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PROOF OF THEOREM 8. The proof is similar to that of Theorem 4. However, due to the extra
variable b we have to adapt our approach. As in the proof of Theorem 4 we first point out that the
solutions ( fP,λ,bP,λ)∈ H×R exist. Again, this can be seen by a slight modification of the argument
used by Steinwart (2002a). Now, let us define the map G : R×H ×R → H ×R by

G(ε, f ,b) :=
(

2λ f +E(1−ε)P+ε∆z
L′( f +b)Φ, E(1−ε)P+ε∆z

L′( f +b)
)

.

Again, for ε ∈ [0,1] the definition of G ensures

G(ε, f ,b) =
∂Rreg

L,(1−ε)P+ε∆z,λ

∂(H ×R)
( f ) ,

if we apply the Fréchet-Riesz identification (H×R)′ = H×R. Since Rreg
L,(1−ε)P+ε∆z,λ is convex for all

ε ∈ [0,1] we have G(ε, f ,b) = 0 if and only if ( f ,b) minimizes Rreg
L,(1−ε)P+ε∆z,λ for such ε. Our aim is

to apply the implicit function theorem in the way we did it in the proof of Theorem 4. However, this
time the implicit function theorem will also ensure the uniqueness of the solution of (7). Obviously,
this is necessary for the existence of the influence function. In order to apply Theorem 19 we need
the partial derivatives of G. By an easy computation we find

∂G
∂ε

(ε, f ,b) = −EPL′( f +b)Φ(X)+E∆zL
′( f +b)Φ(X)

and
∂G

∂(H ×R)
(ε, f ,b) =

(

2λ idH +EεL′′( f +b)〈Φ, .〉Φ EεL′′( f +b)Φ
EεL′′( f +b)Φ EεL′′( f +b)

)

,

where we use the abbreviation E ε := E(1−ε)P+ε∆z
. A routine check shows that both G and the partial

derivatives are continuous and hence G is continuously differentiable.
Now, let us fix a solution ( fP,λ,bP,λ) of (7). In order to show that the operator ∂G

∂(H×R)(0, fP,λ,bP,λ)
is invertible it suffices to show by the Fredholm Alternative that it is injective and that

A :=

(

EPL′′( fP,λ +bP,λ)〈Φ, .〉Φ EPL′′( fP,λ +bP,λ)Φ
EPL′′( fP,λ +bP,λ)Φ EPL′′( fP,λ +bP,λ)−2λ

)

is a compact operator on H ×R. The latter can be seen using the argument of the proof of Theorem
4. For the former let us suppose that we have an element (g, t)∈H×R with (2λidH×R+A)(g, t) = 0.
This is equivalent to the following linear system of equations

2λg+EPL′′( fP,λ +bP,λ)gΦ+ t EPL′′( fP,λ +bP,λ)Φ = 0 (22)

EPL′′( fP,λ +bP,λ)g+ t EPL′′( fP,λ +bP,λ) = 0 . (23)

Let us first assume that t = 0. Then the above system yields

2λg+EPL′′( fP,λ +bP,λ)gΦ = 0 .

Using the techniques of the proof of Theorem 4 we easily find that this implies g = 0. Therefore,
we may assume without loss of generality that t = 1. In order to avoid long notations we introduce
the measure dµ := L′′( fP,λ +bP,λ)dP. Note that L′′ > 0 implies µ 6= 0. Now, (23) yields

µ(g) = −µ(1) , (24)
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where 1 denotes the constant function with value 1. Hence, by (22) we find

0 = 2λ〈g,g〉+µ(g2)+µ(g) = 2λ〈g,g〉+µ(g2)−µ(1) . (25)

Furthermore, (24) implies

0 ≤ µ((g+1)2) = µ(g2)+2µ(g)+µ(1) = µ(g2)−µ(1) .

This together with (25) yields 2λ〈g,g〉 ≤ 0 and hence g = 0. However, the latter contradicts (24)
and hence there is no non-trivial solution of the system (22), (23).
Now, the implicit function theorem states in particular, that the solution ( fP,λ,bP,λ) is unique in a
small neighborhood of ( fP,λ,bP,λ). Hence it is globally unique since the set of solutions of (7) is
convex. The rest of the proof follows the ideas of the proof of Theorem 4.

We use IF(z;T,P) = ∂( fε,bε)
∂ε (0) to derive a formula for the influence function, where ε 7→ ( fε,bε)

is the function implicitly defined by G(ε, f ,b) = 0. The implicit function theorem hence gives

IF(z;T,P) = −S−1 ◦ ∂G
∂ε

(0, fP,λ,bP,λ) , (26)

where S := ∂G
∂(H×R)(0, fP,λ,bP,λ).

PROOF OF THEOREM 12. Recall that every convex function on R is locally Lipschitz con-
tinuous. Let |L|Y×[−c,c]|1 denote the Lipschitz constant of L restricted to Y × [−c,c], c > 0. We

define δλ :=
√

(L(−1,0)+L(1,0))/λ and K := supx∈X

√

k(x,x). We fix a distribution P. An easy
estimate (Steinwart, 2002a) shows

∥

∥ fP,λ
∥

∥

∞ ≤ δλK. We will apply Theorem 28 in Steinwart (2003).
Since this result is only formulated for compact subsets X we first have to check that it is also true
in our situation. Indeed Propositions 26 and 27 in Steinwart (2003) only uses the boundedness of
the kernel. Furthermore, the proof of Theorem 28 itself only uses the boundedness, too. Hence this
theorem actually holds in our case! Thus, there exists a measurable function h : X ×Y → R with
‖h‖∞ ≤

∣

∣L|Y×[−δλK,δλK]

∣

∣

1 such that for all distributions P̂ we have

‖ fP,λ − f
P̂,λ‖H ≤ 1

λ
∥

∥EPhΦ−E
P̂
hΦ
∥

∥

H ,

where Φ : X → H is the feature map of H. Let P̂ := (1−ε)P+εP̃. Then the above inequality yields

ε−1 ‖ f(1−ε)P+εP̃,λ − fP,λ‖H ≤ (ελ)−1 ‖EPhΦ−E(1−ε)P+εP̃
hΦ‖

H

= λ−1 ‖EPhΦ−E
P̃
hΦ‖H

≤ cL(λ)‖P− P̃‖M ,

where
cL(λ) = λ−1 K

∣

∣L|Y×[−δλK,δλK]

∣

∣

1 . (27)

This shows the assertion.

For the proof of Theorem 15 we need the following result.
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Lemma 22 Let λ,µ ∈ (0,∞) be fixed constants. Then the function g : (0,1) → R, g(s) = 2λs2 −
2µs[1− s2]1/2 +µ has a global minimum in the point

smin = 2−1/2
(

1− λ
(µ2 +λ2)1/2

)1/2

and

g(smin) = λ
(

1− λ
(µ2 +λ2)1/2

)

+µ

(

1−
(

1− λ2

µ2 +λ2

)1/2
)

> 0 .

PROOF OF LEMMA 22. Let s ∈ (0,1). We have g′(s) = 4λs−2µ(1−2s2)[1− s2]−1/2 and

g′′(s) = 4λ+

(

4s− s(1−2s2)

1− s2

)

2µ√
1− s2

≥ 4λ+3s
2µ√

1− s2
> 0

for all s ∈ (0,1). Define a := λ/
[

µ2 +λ2
]1/2

. We have 4λsmin > 0 and

2µ(1−2s2
min)[1− s2

min]
−1/2

4λsmin
=

µ
λ

a

[(1+a)(1−a)]1/2

=
µ
λ
[

a−2 −1
]−1/2

=
µ
λ

[

µ2 +λ2

λ2 −1

]−1/2

= 1 .

This yields g′(smin) = 0 and we obtain the expression g(smin) = λ
[

1− λ
(µ2+λ2)1/2

]

+µ
[

1− (1− λ2

µ2+λ2 )
1/2
]

.

PROOF OF THEOREM 15. By rescaling problem (7) we may assume without loss of generality
that K := supx∈X

√

k(x,x) ≤ 1. Recall, that in the proof of Theorem 8 we used

IF(z;T,P) =
∂( fε,bε)

∂ε
(0) ,

where ε 7→ ( fε,bε) was the function implicitly defined by G(ε, f ,b) = 0. The implicit function
theorem hence gives

IF(z;T,P) = −S−1 ◦ ∂G
∂ε

(0, fP,λ,bP,λ) , (28)

where S := ∂G
∂(H×R)(0, fP,λ,bP,λ). Therefore, it suffices to bound the norms of the operators on the

right side of (28). We begin with
∥

∥

∥

∥

∂G
∂ε

(0, fP,λ,bP,λ)

∥

∥

∥

∥

= ‖EPL′( fP,λ +bP,λ)Φ−E∆zL
′( fP,λ +bP,λ)Φ‖

≤ bP,λ ‖P−∆z‖M .

Furthermore, for (g, t) ∈ H ×R we have

S(g, t) =

(

2λ idH +EPL′′( fP,λ +bP,λ)〈Φ, .〉Φ EPL′′( fP,λ +bP,λ)Φ
EPL′′( fP,λ +bP,λ)Φ EPL′′( fP,λ +bP,λ)

)(

g
t

)

=

(

2λg+EPL′′( fP,λ +bP,λ)gΦ+ tEPL′′( fP,λ +bP,λ)Φ
EPL′′( fP,λ +bP,λ)g+ tEPL′′( fP,λ +bP,λ)

)

.
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As in the proof of Theorem 8 we write dµ := L′′( fP,λ +bP,λ)dP. Then we find

〈S(g, t),(g, t)〉 = 2λ〈g,g〉+µ(g2)+2tµ(g)+ t2µ(1) . (29)

Let us suppose that ‖(g, t)‖= 1. Then there exist w ∈ H with ‖w‖= 1 and s ∈ [0,1] such that g = sw
and t = ±

√
1− s2. If µ(w) ≥ 0 Equation (29) then yields

〈S(g, t),(g, t)〉 ≥ 2λs2 +
s2µ2(w)

µ(1)
−2s

√

1− s2µ(w)+(1− s2)µ(1) . (30)

Here, we used µ(w) ≤
√

µ(1)
√

µ(w). It is easy to check that (30) also holds if µ(w) ≤ 0. Now,
recall that by the assumption of the theorem we have L′′ ≥ a. This implies µ(1) ≥ a > 0. For the
special case s = 0 it follows from (30), that

〈S(g, t),(g, t)〉 ≥ µ(1) > a > 0. (31)

For the special case s = 1 it follows from (30), that

〈S(g, t),(g, t)〉 ≥ 2λ+
µ2(w)

µ(1)
≥ 2λ > 0 . (32)

Now, we will consider the case s ∈ (0,1). We first minimize the right hand side of (30) with
respect to µ(w). To this end recall that K ≤ 1 implies |µ(w)| ≤ µ(1). Therefore, the function

µ(w) 7→ s2µ2(w)
µ(1) −2s

√
1− s2µ(w) is minimal if

µ(w) = min{µ(1),µ(1)s−1
√

1− s2} . (33)

Using (30) it follows for µ(w) = µ(1) that

〈S(g, t),(g, t)〉 ≥ 2λs2 +µ(1)
(

1−2s
√

1− s2
)

= 2λs2 −2µ(1)s
√

1− s2 +µ(1) . (34)

Hence, Lemma 22 and (34) yield for the case s ∈ (0,1) and µ(w) = µ(1) that

〈S(g, t),(g, t)〉 ≥ clow ∈ (0,∞) , (35)

where

clow = λ
(

1− λ
(µ2(1)+λ2)1/2

)

+µ(1)

(

1−
(

1− λ2

µ2(1)+λ2

)1/2
)

.

By (33) we finally have to treat the case s ∈ (0,1) and µ(w) = µ(1)s−1
√

1− s2. In this case we have
s2 ≥ 1

2 by µ(w) ≤ µ(1). Hence we obtain from (30) that

〈S(g, t),(g, t)〉 ≥ 2λs2 +(1− s2)µ(1)−2(1− s2)µ(1)+(1− s2)µ(1) = 2λs2 ≥ λ . (36)

Combining (31), (32), (35), and (36) we obtain

〈S(g, t),(g, t)〉 ≥ min{a,2λ,clow,λ} > 0 . (37)

Therefore, by the proof of Pedersen (1989, Prop. 3.2.12) it follows

‖S(g, t)‖ ≥ min{a,λ,clow}‖(g, t)‖
for all (g, t) ∈ H ×R, and

‖S−1‖ ≤ 1
min{a,λ,clow}

∈ (0,∞) .

This shows the assertion.
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Abstract
Many classification algorithms were originally designed for fixed-size vectors. Recent applications
in text and speech processing and computational biology require however the analysis of variable-
length sequences and more generally weighted automata. An approach widely used in statistical
learning techniques such as Support Vector Machines (SVMs) is that of kernel methods, due to
their computational efficiency in high-dimensional feature spaces. We introduce a general family
of kernels based on weighted transducers or rational relations, rational kernels, that extend kernel
methods to the analysis of variable-length sequences or more generally weighted automata. We
show that rational kernels can be computed efficiently using a general algorithm of composition of
weighted transducers and a general single-source shortest-distance algorithm.

Not all rational kernels are positive definite and symmetric (PDS), or equivalently verify the
Mercer condition, a condition that guarantees the convergence of training for discriminant classi-
fication algorithms such as SVMs. We present several theoretical results related to PDS rational
kernels. We show that under some general conditions these kernels are closed under sum, prod-
uct, or Kleene-closure and give a general method for constructing a PDS rational kernel from an
arbitrary transducer defined on some non-idempotent semirings. We give the proof of several char-
acterization results that can be used to guide the design of PDS rational kernels. We also show
that some commonly used string kernels or similarity measures such as the edit-distance, the con-
volution kernels of Haussler, and some string kernels used in the context of computational biology
are specific instances of rational kernels. Our results include the proof that the edit-distance over a
non-trivial alphabet is not negative definite, which, to the best of our knowledge, was never stated
or proved before.

Rational kernels can be combined with SVMs to form efficient and powerful techniques for a
variety of classification tasks in text and speech processing, or computational biology. We describe
examples of general families of PDS rational kernels that are useful in many of these applications
and report the result of our experiments illustrating the use of rational kernels in several difficult
large-vocabulary spoken-dialog classification tasks based on deployed spoken-dialog systems. Our
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results show that rational kernels are easy to design and implement and lead to substantial improve-
ments of the classification accuracy.

1. Introduction

Many classification algorithms were originally designed for fixed-length vectors. Recent appli-
cations in text and speech processing and computational biology require however the analysis of
variable-length sequences and more generally weighted automata. Indeed, the output of a large-
vocabulary speech recognizer for a particular input speech utterance, or that of a complex informa-
tion extraction system combining several knowledge sources for a specific input query, is typically
a weighted automaton compactly representing a large set of alternative sequences. The weights as-
signed by the system to each sequence are used to rank different alternatives according to the models
the system is based on. The error rate of such complex systems is still too high in many tasks to rely
only on their one-best output, thus it is preferable instead to use the full weighted automata which
contain the correct result in most cases.

An approach widely used in statistical learning techniques such as Support Vector Machines
(SVMs) (Boser et al., 1992; Cortes and Vapnik, 1995; Vapnik, 1998) is that of kernel methods, due
to their computational efficiency in high-dimensional feature spaces. We introduce a general family
of kernels based on weighted transducers or rational relations, rational kernels, that extend kernel
methods to the analysis of variable-length sequences or more generally weighted automata.1 We
show that rational kernels can be computed efficiently using a general algorithm of composition of
weighted transducers and a general single-source shortest-distance algorithm.

Not all rational kernels are positive definite and symmetric (PDS), or equivalently verify the
Mercer condition (Berg et al., 1984), a condition that guarantees the convergence of training for
discriminant classification algorithms such as SVMs. We present several theoretical results related
to PDS rational kernels. We show that under some general conditions these kernels are closed
under sum, product, or Kleene-closure and give a general method for constructing a PDS rational
kernel from an arbitrary transducer defined on some non-idempotent semirings. We give the proof
of several characterization results that can be used to guide the design of PDS rational kernels.

We also study the relationship between rational kernels and some commonly used string kernels
or similarity measures such as the edit-distance, the convolution kernels of Haussler (Haussler,
1999), and some string kernels used in the context of computational biology (Leslie et al., 2003).
We show that these kernels are all specific instances of rational kernels. In each case, we explicitly
describe the corresponding weighted transducer. These transducers are often simple and efficient
for computing kernels. Their diagram provides more insight into the definition of kernels and can
guide the design of new kernels. Our results also include the proof of the fact that the edit-distance
over a non-trivial alphabet is not negative definite, which, to the best of our knowledge, was never
stated or proved before.

Rational kernels can be combined with SVMs to form efficient and powerful techniques for a
variety of applications to text and speech processing, or to computational biology. We describe ex-
amples of general families of PDS rational kernels that are useful in many of these applications. We
report the result of our experiments illustrating the use of rational kernels in several difficult large-
vocabulary spoken-dialog classification tasks based on deployed spoken-dialog systems. Our results

1. We have described in shorter publications part of the material presented here (Cortes et al., 2003a,b,c,d).
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SEMIRING SET ⊕ ⊗ 0 1

Boolean {0,1} ∨ ∧ 0 1
Probability R+ + × 0 1
Log R∪{−∞,+∞} ⊕log + +∞ 0
Tropical R∪{−∞,+∞} min + +∞ 0

Table 1: Semiring examples. ⊕log is defined by x⊕log y = − log(e−x + e−y).

show that rational kernels are easy to design and implement and lead to substantial improvements
of the classification accuracy.

The paper is organized as follows. In the following section, we introduce the notation and some
preliminary algebraic and automata-theoretic definitions used in the remaining sections. Section 3
introduces the definition of rational kernels. In Section 4, we present general algorithms that can be
used to compute rational kernels efficiently. Section 5 introduces the classical definitions of positive
definite and negative definite kernels and gives a number of novel theoretical results, including the
proof of some general closure properties of PDS rational kernels, a general construction of PDS
rational kernels starting from an arbitrary weighted transducer, a characterization of acyclic PDS
rational kernels, and the proof of the closure properties of a very general class of PDS rational ker-
nels. Section 6 studies the relationship between some commonly used kernels and rational kernels.
Finally, the results of our experiments in several spoken-dialog classification tasks are reported in
Section 7.

2. Preliminaries

In this section, we present the algebraic definitions and notation needed to introduce rational kernels.
A system (K,�,e) is a monoid if it is closed under �: a�b∈K for all a,b∈K; � is associative:

(a� b)� c = a� (b� c) for all a,b,c ∈ K; and e is an identity for �: a� e = e� a = a, for all
a ∈ K. When additionally � is commutative: a�b = b�a for all a,b ∈ K, then (K,�,e) is said to
be a commutative monoid.

Definition 1 (Kuich and Salomaa (1986)) A system (K,⊕,⊗,0,1) is a semiring if: (K,⊕,0) is
a commutative monoid with identity element 0; (K,⊗,1) is a monoid with identity element 1; ⊗
distributes over ⊕; and 0 is an annihilator for ⊗: for all a ∈ K,a⊗0 = 0⊗a = 0.

Thus, a semiring is a ring that may lack negation. Table 1 lists some familiar semirings. In addition
to the Boolean semiring and the probability semiring, two semirings often used in applications
are the log semiring which is isomorphic to the probability semiring via a log morphism, and the
tropical semiring which is derived from the log semiring using the Viterbi approximation.

Definition 2 A weighted finite-state transducer T over a semiring K is an 8-tuple T = (Σ,∆,Q, I,F,E,λ,ρ)
where Σ is the finite input alphabet of the transducer; ∆ is the finite output alphabet; Q is a finite
set of states; I ⊆ Q the set of initial states; F ⊆ Q the set of final states; E ⊆ Q× (Σ∪{ε})× (∆∪
{ε})×K×Q a finite set of transitions; λ : I → K the initial weight function; and ρ : F → K the
final weight function mapping F to K.
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Weighted automata can be formally defined in a similar way by simply omitting the input or output
labels.

Given a transition e ∈ E, we denote by p[e] its origin or previous state and n[e] its destination
state or next state, and w[e] its weight. A path π = e1 · · ·ek is an element of E∗ with consecutive
transitions: n[ei−1] = p[ei], i = 2, . . . ,k. We extend n and p to paths by setting n[π] = n[ek] and
p[π] = p[e1]. A cycle π is a path whose origin and destination coincide: p[π] = n[π]. A weighted
automaton or transducer is said to be acyclic if it admits no cycle. A successful path in a weighted
automaton or transducer M is a path from an initial state to a final state. The weight function w can
also be extended to paths by defining the weight of a path as the ⊗-product of the weights of its
constituent transitions: w[π] = w[e1]⊗·· ·⊗w[ek]. We denote by P(q,q′) the set of paths from q to
q′ and by P(q,x,y,q′) the set of paths from q to q′ with input label x ∈ Σ∗ and output label y ∈ ∆∗.
These definitions can be extended to subsets R,R′ ⊆Q, by P(R,x,y,R′) =∪q∈R,q′∈R′P(q,x,y,q′). We
denote by w[M] the ⊕-sum of the weights of all the successful paths of the automaton or transducer
M, when that sum is well-defined and in K. A transducer T is regulated if the output weight
associated by T to any pair of input-output string (x,y) by

[[T ]](x,y) =
⊕

π∈P(I,x,y,F)

λ(p[π])⊗w[π]⊗ρ[n[π]]

is well-defined and in K. [[T ]](x,y) = 0 when P(I,x,y,F) = /0. If for all q∈Q, the sum
⊕

π∈P(q,ε,ε,q) w[π]
is in K, then T is regulated. In particular, when T does not have any ε-cycle, that is a cycle labeled
with ε (both input and output labels), it is regulated. In the following, we will assume that all the
transducers considered are regulated. Regulated weighted transducers are closed under the rational
operations: ⊕-sum, ⊗-product and Kleene-closure which are defined as follows for all transducers
T1 and T2 and (x,y) ∈ Σ∗×∆∗:

[[T1 ⊕T2]](x,y) = [[T1]](x,y)⊕ [[T2]](x,y),

[[T1 ⊗T2]](x,y) =
⊕

x=x1x2,y=y1y2

[[T1]](x1,y1)⊗ [[T2]](x2,y2),

[[T ∗]](x,y) =
∞
⊕

n=0

T n(x,y),

where T n stands for the (n−1)-⊗-product of T with itself.
For any transducer T , we denote by T−1 its inverse, that is the transducer obtained from T by

transposing the input and output labels of each transition and the input and output alphabets.
Composition is a fundamental operation on weighted transducers that can be used in many appli-

cations to create complex weighted transducers from simpler ones. Let T1 = (Σ,∆,Q1, I1,F1,E1,λ1,ρ1)
and T2 = (∆,Ω,Q2, I2,F2,E2,λ2,ρ2) be two weighted transducers defined over a commutative semir-
ing K such that ∆, the output alphabet of T1, coincides with the input alphabet of T2. Then, the result
of the composition of T1 and T2 is a weighted transducer T1 ◦T2 which, when it is regulated, is de-
fined for all x,y by (Berstel, 1979; Eilenberg, 1974; Salomaa and Soittola, 1978; Kuich and Salomaa,
1986)2

[[T1 ◦T2]](x,y) =
⊕

z∈∆∗

[[T1]](x,z)⊗ [[T2]](z,y).

2. We use a matrix notation for the definition of composition as opposed to a functional notation.
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Note that a transducer can be viewed as a matrix over a countable set Σ∗×∆∗ and composition as
the corresponding matrix-multiplication.

The definition of composition extends naturally to weighted automata since a weighted automa-
ton can be viewed as a weighted transducer with identical input and output labels for each transi-
tion. The corresponding transducer associates [[A]](x) to a pair (x,x), and 0 to all other pairs. Thus,
the composition of a weighted automaton A1 = (∆,Q1, I1,F1,E1,λ1,ρ1) and a weighted transducer
T2 = (∆,Ω,Q2, I2,F2,E2,λ2,ρ2) is simply defined for all x,y in ∆∗×Ω∗ by

[[A1 ◦T2]](x,y) =
⊕

x∈∆∗

[[A1]](x)⊗ [[T2]](x,y)

when these sums are well-defined and in K. Intersection of two weighted automata is the special
case of composition where both operands are weighted automata, or equivalently weighted trans-
ducers with identical input and output labels for each transition.

3. Definitions

Let X and Y be non-empty sets. A function K : X ×Y → R is said to be a kernel over X ×Y .
This section introduces rational kernels, which are kernels defined over sets of strings or weighted
automata.

Definition 3 A kernel K over Σ∗ ×∆∗ is said to be rational if there exist a weighted transducer
T = (Σ,∆,Q, I,F,E,λ,ρ) over the semiring K and a function ψ : K → R such that for all x ∈ Σ∗ and
y ∈ ∆∗:3

K(x,y) = ψ([[T ]](x,y)).

K is then said to be defined by the pair (ψ,T ).

This definition and many of the results presented in this paper can be generalized by replacing the
free monoids Σ∗ and ∆∗ with arbitrary monoids M1 and M2. Also, note that we are not making any
particular assumption about the function ψ in this definition. In general, it is an arbitrary function
mapping K to R.

Figure 1 shows an example of a weighted transducer over the probability semiring correspond-
ing to the gappy n-gram kernel with decay factor λ as defined by (Lodhi et al., 2001). Such gappy
n-gram kernels are rational kernels (Cortes et al., 2003c).

Rational kernels can be naturally extended to kernels over weighted automata. Let A be a
weighted automaton defined over the semiring K and the alphabet Σ and B a weighted automaton
defined over the semiring K and the alphabet ∆, K(A,B) is defined by

K(A,B) = ψ





⊕

(x,y)∈Σ∗×∆∗

[[A]](x)⊗ [[T ]](x,y)⊗ [[B]](y)



 (1)

3. We chose to call these kernels “rational” because their definition is based on rational relations or rational transduc-
tions (Salomaa and Soittola, 1978; Kuich and Salomaa, 1986) represented by a weighted transducer. The mathemat-
ical counterpart of weighted automata and transducers are also called rational power series Berstel and Reutenauer
(1988) which further justifies our terminology.
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a:ε/1
b:ε/1 1ε:a/1

ε:b/1

2a:a/0.01
b:b/0.01

ε:a/1
ε:b/1

a:a/0.01

b:b/0.01
a:ε/0.1
b:ε/0.1 3

ε:a/0.1

ε:b/0.1

4/1a:a/0.01
b:b/0.01

ε:a/0.1
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a:a/0.01

b:b/0.01
a: ε/1
b:ε/1

5/1ε:a/1
ε:b/1

ε:a/1
ε:b/1

Figure 1: Gappy bigram rational kernel with decay factor λ = .1. Bold face circles represent initial
states and double circles indicate final states. Inside each circle, the first number indicates
the state number, the second, at final states only, the value of the final weight function ρ
at that state. Arrows represent transitions. They are labeled with an input and an output
symbol separated by a colon and followed by their corresponding weight after the slash
symbol.

for all weighted automata A and B such that the ⊕-sum

⊕

(x,y)∈Σ∗×∆∗

[[A]](x)⊗ [[T ]](x,y)⊗ [[B]](y)

is well-defined and in K. This sum is always defined and in K when A and B are acyclic weighted
automata since the sum then runs over a finite set. It is defined for all weighted automata in all closed
semirings (Kuich and Salomaa, 1986) such as the tropical semiring. In the probability semiring, the
sum is well-defined for all A, B, and T representing probability distributions. When K(A,B) is
defined, Equation 1 can be equivalently written as

K(A,B) = ψ





⊕

(x,y)∈Σ∗×∆∗

[[A◦T ◦B]](x,y)



= ψ(w[A◦T ◦B]). (2)

The next section presents a general algorithm for computing rational kernels.

4. Algorithms

The algorithm for computing K(x,y), or K(A,B), for any two acyclic weighted automata, or for any
two weighted automata such that the sum above is well-defined, is based on two general algorithms
that we briefly present: composition of weighted transducers to combine A, T , and B, and a general
shortest-distance algorithm in a semiring K to compute the ⊕-sum of the weights of all successful
paths of the composed transducer.

4.1 Composition of weighted transducers

There exists a general and efficient composition algorithm for weighted transducers which takes
advantage of the sparseness of the input transducers (Pereira and Riley, 1997; Mohri et al., 1996).
States in the composition T1 ◦T2 of two weighted transducers T1 and T2 are identified with pairs of
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0

1a:a/1.61

2b:b/0.22

a:b/0
b:a/0.69

3/0b:a/0.69 0

a:a/1.2

1a:b/2.3
b:a/0.51

b:b/0.92

2/0a:a/0.51

(a) (b)

0

1a:a/2.81

4a:b/3.91 2

b:a/0.73

a:a/0.51

a:b/0.92 3/0b:a/1.2

(c)

Figure 2: (a) Weighted transducer T1 over the log semiring. (b) Weighted transducer T2 over the log
semiring. (c) T1 ◦T2, result of the composition of T1 and T2.

a state of T1 and a state of T2. Leaving aside transitions with ε inputs or outputs, the following rule
specifies how to compute a transition of T1 ◦T2 from appropriate transitions of T1 and T2:4

(q1,a,b,w1,q2) and (q′1,b,c,w2,q
′
2) =⇒ ((q1,q

′
1),a,c,w1 ⊗w2,(q2,q

′
2)).

In the worst case, all transitions of T1 leaving a state q1 match all those of T2 leaving state q′1, thus
the space and time complexity of composition is quadratic: O((|Q1|+ |E1|)(|Q2|+ |E2|)). Figure
2 illustrates the algorithm when applied to the transducers of Figure 2 (a)-(b) defined over the log
semiring.

4.2 Single-source shortest distance algorithm over a semiring

Given a weighted automaton or transducer M, the shortest-distance from state q to the set of final
states F is defined as the ⊕-sum of all the paths from q to F ,

d[q] =
⊕

π∈P(q,F)

w[π]⊗ρ[n[π]], (3)

when this sum is well-defined and in K. This is always the case when the semiring is k-closed
or when M is acyclic (Mohri, 2002), the case of interest in our experiments. There exists a gen-
eral algorithm for computing the shortest-distance d[q] (Mohri, 2002). The algorithm is based on
a generalization to k-closed semirings of the relaxation technique used in classical single-source
shortest-paths algorithms. When M is acyclic, the complexity of the algorithm is linear: O(|Q|+
(T⊕ + T⊗)|E|), where T⊕ denotes the maximum time to compute ⊕ and T⊗ the time to compute
⊗ (Mohri, 2002). The algorithm can then be viewed as a generalization of Lawler’s algorithm
(Lawler, 1976) to the case of an arbitrary semiring K. It is then based on a generalized relaxation
of the outgoing transitions of each state of M visited in reverse topological order (Mohri, 2002).

4. See Pereira and Riley (1997) and Mohri et al. (1996) for a detailed presentation of the algorithm including the use of
a transducer filter for dealing with ε-multiplicity in the case of non-idempotent semirings.
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Let K be a rational kernel and let T be the associated weighted transducer. Let A and B be
two acyclic weighted automata or, more generally, two weighted automata such that the sum in
Equation 2 is well-defined and in K. A and B may represent just two strings x,y ∈ Σ∗ or may be any
complex weighted automata. By definition of rational kernels (Equation 2) and the shortest-distance
(Equation 3), K(A,B) can be computed by:

1. Constructing the composed transducer N = A◦T ◦B.

2. Computing w[N], by determining the shortest-distance from the initial states of N to its final
states using the shortest-distance algorithm just described.

3. Computing ψ(w[N]).

When A and B are acyclic, the shortest-distance algorithm is linear and the total complexity of
the algorithm is O(|T ||A||B|+Φ), where |T |, |A|, and |B| denote respectively the size of T , A and B
and Φ the worst case complexity of computing ψ(x), x ∈ K. If we assume that Φ can be computed
in constant time as in many applications, then the complexity of the computation of K(A,B) is
quadratic with respect to A and B: O(|T ||A||B|).

5. Theory of PDS and NDS Rational Kernels

In learning techniques such as those based on SVMs, we are particularly interested in kernels that
are positive definite symmetric (PDS), or, equivalently, kernels verifying Mercer’s condition, which
guarantee the existence of a Hilbert space and a dot product associated to the kernel considered.
This ensures the convergence of the training algorithm to a unique optimum. Thus, in what follows,
we will focus on theoretical results related to the construction of rational kernels that are PDS. Due
to the symmetry condition, the input and output alphabets Σ and ∆ will coincide for the underlying
transducers associated to the kernels.

This section reviews a number of results related to general PDS kernels, that is the class of all
kernels that have the Mercer property (Berg et al., 1984). It also gives novel proofs and results in the
specific case of PDS rational kernels. These results can be used to combine PDS rational kernels
to design new PDS rational kernels or to construct a PDS rational kernel. Our proofs and results
are original and are not just straightforward extensions of those existing in the case of general PDS
kernels. This is because, for example, a closure property for PDS rational kernels must guarantee
not just that the PDS property is preserved but also that the rational property is retained. Our original
results include a general construction of PDS rational kernels from arbitrary weighted transducers, a
number of theorems related to the converse, and a study of the negative definiteness of some rational
kernels.

Definition 4 Let X be a non-empty set. A function K : X ×X → R is said to be a PDS kernel if it is
symmetric (K(x,y) = K(y,x) for all x,y ∈ X) and

n

∑
i, j=1

cic jK(xi,x j) ≥ 0

for all n ≥ 1, {x1, . . . ,xn} ⊆ X and {c1, . . . ,cn} ⊆ R.
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It is clear from classical results of linear algebra that K is a PDS kernel iff the matrix K(xi,x j)i, j≤n

for all n ≥ 1 and all {x1, . . . ,xn} ⊆ X is symmetric and all its eigenvalues are non-negative.
PDS kernels can be used to construct other families of kernels that also meet these conditions

(Schölkopf and Smola, 2002). Polynomial kernels of degree p are formed from the expression
(K +a)p, and Gaussian kernels can be formed as exp(−d2/σ2) with d2(x,y) = K(x,x)+K(y,y)−
2K(x,y). The following sections will provide other ways of constructing PDS rational kernels.

5.1 General Closure Properties of PDS Kernels

The following theorem summarizes general closure properties of PDS kernels (Berg et al., 1984).

Theorem 5 Let X and Y be two non-empty sets.

1. Closure under sum: Let K1,K2 : X ×X → R be PDS kernels, then K1 + K2 : X ×X → R is a
PDS kernel.

2. Closure under product: Let K1,K2 : X ×X → R be PDS kernels, then K1 ·K2 : X ×X → R is
a PDS kernel.

3. Closure under tensor product: Let K1 : X ×X → R and K2 : Y ×Y → R be PDS kernels, then
their tensor product K1 �K2 : (X ×Y )× (X ×Y ) → R, where K1 �K2((x1,y1),(x2,y2)) =
K1(x1,x2) ·K2(y1,y2) is a PDS kernel.

4. Closure under pointwise limit: Let Kn : X ×X → R be a PDS kernel for all n ∈ N and assume
that limn→∞ Kn(x,y) exists for all x,y ∈ X, then K defined by K(x,y) = limn→∞ Kn(x,y) is a
PDS kernel.

5. Closure under composition with a power series: Let K : X ×X → R be a PDS kernel such
that |K(x,y)| < ρ for all (x,y) ∈ X ×X. Then if the radius of convergence of the power series
S = ∑∞

n=0 anxn is ρ and an ≥ 0 for all n ≥ 0, the composed kernel S ◦K is a PDS kernel. In
particular, if K : X ×X → R is a PDS kernel, then so is exp(K).

In particular, these closure properties all apply to PDS kernels that are rational, e.g., the sum or
product of two PDS rational kernels is a PDS kernel. However, Theorem 5 does not guarantee the
result to be a rational kernel. In the next section, we examine precisely the question of the closure
properties of PDS rational kernels (under rational operations).

5.2 Closure Properties of PDS Rational Kernels

In this section, we assume that a fixed function ψ is used in the definition of all the rational kernels
mentioned. We denote by KT the rational kernel corresponding to the transducer T and defined for
all x,y ∈ Σ∗ by KT (x,y) = ψ([[T ]](x,y)).

Theorem 6 Let Σ be a non-empty alphabet. The following closure properties hold for PDS rational
kernels.
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1. Closure under ⊕-sum: Assume that ψ : (K,⊕,0) → (R,+,0) is a monoid morphism.5 Let
KT1 ,KT2 : Σ∗×Σ∗ → R be PDS rational kernels, then KT1⊕T2 : Σ∗×Σ∗ → R is a PDS rational
kernel and KT1⊕T2 = KT1 +KT2 .

2. Closure under ⊗-product: Assume that ψ : (K,⊕,⊗,0,1)→ (R,+,×,0,1) is a semiring mor-
phism. Let KT1 ,KT2 : Σ∗×Σ∗ → R be PDS rational kernels, then KT1⊗T2 : Σ∗×Σ∗ → R is a
PDS rational kernel.

3. Closure under Kleene-closure: Assume that ψ : (K,⊕,⊗,0,1) → (R,+,×,0,1) is a continu-
ous semiring morphism. Let KT : Σ∗×Σ∗ →R be a PDS rational kernel, then KT ∗ : Σ∗×Σ∗ →
R is a PDS rational kernel.

Proof The closure under ⊕-sum follows directly from Theorem 5 and the fact that for all x,y ∈ Σ∗:

ψ([[T1]](x,y)⊕ [[T2]](x,y)) = ψ([[T1]](x,y))+ψ([[T2]](x,y))

when ψ : (K,⊕,0) → (R,+,0) is a monoid morphism. For the closure under ⊗-product, when ψ is
a semiring morphism, for all x,y ∈ Σ∗:

ψ([[T1 ⊗T2]](x,y)) = ∑
x1x2=x,y1y2=y

ψ([[T1]](x1,y1)) ·ψ([[T2]](x2,y2))

= ∑
x1x2=x,y1y2=y

KT1 �KT2((x1,x2),(y1,y2)).

By Theorem 5, since KT1 and KT2 are PDS kernels, their tensor product KT1 �KT2 is a PDS kernel
and there exists a Hilbert space H ⊆ R

Σ∗
and a mapping u → φu such that KT1 �KT2(u,v) = 〈φu,φv〉

(Berg et al., 1984). Thus

ψ([[T1 ⊗T2]](x,y)) = ∑
x1x2=x,y1y2=y

〈φ(x1,x2),φ(y1,y2)〉

=

〈

∑
x1x2=x

φ(x1,x2), ∑
y1y2=y

φ(y1,y2)

〉

.

Since a dot product is positive definite, this equality implies that KT1⊗T2 is a PDS kernel. A similar
proof is given by Haussler (1999). The closure under Kleene-closure is a direct consequence of the
closure under ⊕-sum and ⊗-product of PDS rational kernels and the closure under pointwise limit
of PDS kernels (Theorem 5).

Theorem 6 provides a general method for constructing complex PDS rational kernels from simpler
ones. PDS rational kernels defined to model specific prior knowledge sources can be combined
using rational operations to create a more general PDS kernel.

In contrast to Theorem 6, PDS rational kernels are not closed under composition. This is clear
since the ordinary matrix multiplication does not preserve positive definiteness in general.

The next section studies a general construction of PDS rational kernels using composition.

5. A monoid morphism ψ : (K,⊕,0) → (R,+,0) is a function verifying ψ(x⊕ y) = ψ(x)+ ψ(y) for all x,y ∈ K, and
ψ(0) = 0. A semiring morphism ψ is a function ψ : (K,⊕,⊗,0,1) → (R,+,×,0,1) further verifying ψ(x⊗ y) =
ψ(x) ·ψ(y) for all x,y ∈ K, and ψ(1) = 1.
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5.3 A General Construction of PDS Rational Kernels

In this section, we assume that ψ : (K,⊕,⊗,0,1) → (R,+,×,0,1) is a continuous semiring mor-
phism. This limits the choice of the semiring associated to the weighted transducer defining a
rational kernel, since it needs in particular to be commutative and non-idempotent.6 Our study of
PDS rational kernels in this section is thereby limited to such semirings. This should not leave the
reader with the incorrect perception that all PDS rational kernels are defined over non-idempotent
semirings though. As already mentioned before, in general, the function ψ can be chosen arbitrarily
and needs not impose any algebraic property on the semiring used.

We show that there exists a general way of constructing a PDS rational kernel from any weighted
transducer T . The construction is based on composing T with its inverse T −1.

Proposition 7 Let T = (Σ,∆,Q, I,F,E,λ,ρ) be a weighted finite-state transducer defined over the
semiring (K,⊕,⊗,0,1). Assume that the weighted transducer T ◦ T −1 is regulated, then (ψ,T ◦
T−1) defines a PDS rational kernel over Σ∗×Σ∗.

Proof Denote by S the composed transducer T ◦T −1. Let K be the rational kernel defined by S. By
definition of composition,

K(x,y) = ψ([[S]](x,y)) = ψ

(

⊕

z∈∆∗

[[T ]](x,z)⊗ [[T ]](y,z)

)

,

for all x,y ∈ Σ∗. Since ψ is a continuous semiring morphism, for all x,y ∈ Σ∗,

K(x,y) = ψ([[S]](x,y)) = ∑
z∈∆∗

ψ([[T ]](x,z)) ·ψ([[T ]](y,z)).

For all n ∈ N and x,y ∈ Σ∗, define Kn(x,y) by

Kn(x,y) = ∑
|z|≤n

ψ([[T ]](x,z)) ·ψ([[T ]](y,z)),

where the sum runs over all strings z∈∆∗ of length less than or equal to n. Clearly, Kn defines a sym-
metric kernel. For any l ≥ 1 and any x1, . . . ,xl ∈ Σ∗, define the matrix Mn by Mn = (Kn(xi,x j))i≤l, j≤l .
Let z1,z2, . . . ,zm be an arbitrary ordering of the strings of length less than or equal to n. Define the
matrix A by

A = (ψ([[T ]](xi,z j)))i≤l; j≤m.

By definition of Kn, Mn = AAt . The eigenvalues of AAt are non-negative for any rectangular matrix
A, thus Kn is a PDS kernel. Since K is a pointwise limit of Kn, K(x,y) = limn→∞ Kn(x,y), by
Theorem 5, K is a PDS kernel. This ends the proof of the proposition.

The next propositions provide results related to the converse of Proposition 7. We denote by IdR the
identity function over R.

Proposition 8 Let S = (Σ,Σ,Q, I,F,E,λ,ρ) be an acyclic weighted finite-state transducer over
(K,⊕,⊗,0,1) such that (ψ,S) defines a PDS rational kernel on Σ∗×Σ∗, then there exists a weighted
transducer T over the probability semiring such that (IdR,T ◦T−1) defines the same rational kernel.

6. If K is idempotent, for any x ∈ K, ψ(x) = ψ(x⊕ x) = ψ(x)+ψ(x) = 2ψ(x), which implies that ψ(x) = 0 for all x.
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Proof Let S be an acyclic weighted transducer verifying the hypotheses of the proposition. Let
X ⊂ Σ∗ be the finite set of strings accepted by S. Since S is symmetric, X ×X is the set of pairs
of strings (x,y) defining the rational relation associated with S. Let x1,x2, . . . ,xn be an arbitrary
numbering of the elements of X . Define the matrix M by

M = (ψ([[S]](xi,x j)))1≤i≤n,1≤ j≤n.

Since S defines a PDS rational kernel, M is a symmetric matrix with non-negative eigenvalues, i.e.,
M is symmetric positive semi-definite. The Cholesky decomposition extends to the case of semi-
definite matrices (Dongarra et al., 1979): there exists an upper triangular matrix R = (Ri j) with
non-negative diagonal elements such that M = RRt . Let Y = {y1, . . . ,yn} be an arbitrary subset of n
distinct strings of Σ∗. Define the weighted transducer T over the X ×Y by

[[T ]](xi,y j) = Ri j

for all i, j, 1 ≤ i, j ≤ n. By definition of composition, [[T ◦T−1]](xi,x j) = ψ([[S]](xi,x j)) for all i, j,
1 ≤ i, j ≤ n. Thus, T ◦T−1 = ψ(S), which proves the claim of the proposition.

Note that when the matrix M introduced in the proof is positive definite, that is when the eigenvalues
of the matrix associated with S are all positive, then Cholesky’s decomposition and thus the weights
associated to the input strings of T are unique.

Assume that the same continuous semiring morphism ψ is used in the definition of all the ratio-
nal kernels.

Proposition 9 Let Θ be the subset of the weighted transducers over (K,⊕,⊗,0,1) such that for any
S∈Θ, (ψ,S) defines a PDS rational kernel and there exists a weighted transducer T = (Σ,∆,Q, I,F,E,λ,ρ)
over the probability semiring such that (IdR,T ◦ T−1) defines the same rational kernel as (ψ,S).
Then Θ is closed under ⊕-sum, ⊗-product, and Kleene-closure.

Proof Let S1,S2 ∈ Θ, we will show that S1 ⊕S2 ∈ Θ, S1 ⊗S2 ∈ Θ, and S∗1 ∈ Θ. By definition, there
exist T1 = (Σ,∆1,Q1, I1,F1,E1,λ1,ρ1) and T2 = (Σ,∆2,Q2, I2,F2,E2,λ2,ρ2) such that

K1 = T1 ◦T−1
1 and K2 = T2 ◦T−1

2 ,

where K1 (K2) is the PDS rational kernel defined by (ψ,S1) (resp. (ψ,S2)). Let u be an alphabetic
morphism mapping ∆2 to a new alphabet ∆′

2 such that ∆1∩∆′
2 = /0. u is clearly a rational transduction

(Berstel, 1979) and can be represented by a finite-state transducer U . Thus, we can define a new
weighted transducer T ′

2 by T ′
2 = T2 ◦U = (Σ,∆′

2,Q2, I2,F2,E ′
2,λ2,ρ2), which only differs from T2

by some renaming of its output labels. This does not affect the result of the composition with the
inverse transducer since U ◦U−1 is the identity mapping over ∆∗

2:

T ′
2 ◦T ′−1

2 = T2 ◦U ◦ (U−1 ◦T−1
2 ) = T2 ◦T−1

2 = K2. (4)

Since, T1 and T2 have distinct output alphabets, their output labels cannot match; thus

T1 ◦T ′−1
2 = /0 and T ′

2 ◦T−1
1 = /0. (5)

Let T = T1 +T ′
2 , in view of Equation 4 and Equation 5:

T ◦T−1 = (T1 +T ′
2)◦ (T1 +T ′

2)
−1 = (T1 ◦T−1

1 )+(T ′
2 ◦T ′−1

2 ) = K1 +K2.
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Since the same continuous semiring morphism ψ is used for the definition of all the rational kernels
in Θ, by Theorem 6, K1 + K2 is a PDS rational kernel defined by (ψ,S1 ⊕ S2) and S1 ⊕ S2 is in Θ.
Similarly, define T ′ as T ′ = T1 ·T ′

2:

T ′ ◦T ′−1 = (T1 ·T
′

2)◦ (T1 ·T
′

2)
−1 = (T1 ◦T−1

1 ) · (T2 ◦T ′−1
2 ).

Thus, S1 ⊗ S2 is in Θ. Let x be a symbol not in ∆1 and let ∆′
1 = ∆1 ∪{x}. Let V be the finite-state

transducer accepting as input only ε and mapping ε to x and define T ′
1 by T ′

1 = V ·T1. Since x does
not match any of the output labels of T1, T ′

1 ◦T ′
1
−1 = T1 ◦T1

−1 and (T ′
1 ◦T ′

1
−1)∗ = T ′

1
∗ ◦ (T ′

1
−1)∗:

(T1 ◦T1
−1)∗ = (T ′

1 ◦T ′
1
−1

)∗ = T ′
1
∗
◦ (T ′

1
−1

)∗.

Thus, by Theorem 6, S∗
1 is a PDS rational kernel that is in Θ.

Proposition 9 raises the following question: under the same assumptions, are all PDS rational ker-
nels defined by a pair of the form (ψ,T ◦T−1)? A natural conjecture is that this is the case and that
this property provides a characterization of the weighted transducers defining PDS rational kernels.
Propositions 8 and 9 both favor that conjecture. Proposition 8 shows that this holds in the acyclic
case. Proposition 9 might be useful to extend this to the general case.

In the case of PDS rational kernels defined by (IdR,S) with S a weighted transducer over the
probability semiring, the conjecture could be reformulated as: is S of the form S = T ◦T −1? If true,
this could be viewed as a generalization of Cholesky’s decomposition theorem to the case of infinite
matrices given by weighted transducers over the probability semiring.

This ends our discussion of PDS rational kernels. In the next section, we will examine negative
definite kernels and their relationship with PDS rational kernels.

5.4 Negative Definite Kernels

As mentioned before, given a set X and a distance or dissimilarity measure d : X ×X → R+, a
common method used to define a kernel K is the following. For all x,y ∈ X ,

K(x,y) = exp(−td2(x,y)),

where t > 0 is some constant typically used for normalization. Gaussian kernels are defined in this
way. However, such kernels K are not necessarily positive definite, e.g., for X = R, d(x,y) = |x−y|p,
p > 1 and t = 1, K is not positive definite. The positive definiteness of K depends on t and the
properties of the function d. The classical results presented in this section exactly address such
questions (Berg et al., 1984). They include a characterization of PDS kernels based on negative
definite kernels which may be viewed as distances with some specific properties.7

The results we are presenting are general, but we are particularly interested in the case where d
can be represented by a rational kernel. We will use these results later when dealing with the case
of the edit-distance.

7. Many of the results given by Berg et al. (1984) are re-presented in (Schölkopf, 2001) with the terminology of condi-
tionally positive definite instead of negative definite kernels. We adopt the original terminology used by Berg et al.
(1984).
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Definition 10 Let X be a non-empty set. A function K : X ×X → R is said to be a negative definite
symmetric kernel (NDS kernel) if it is symmetric (K(x,y) = K(y,x) for all x,y ∈ X) and

n

∑
i, j=1

cic jK(xi,x j) ≤ 0

for all n ≥ 1, {x1, . . . ,xn} ⊆ X and {c1, . . . ,cn} ⊆ R with ∑n
i=1 ci = 0.

Clearly, if K is a PDS kernel then −K is a NDS kernel, however the converse does not hold in
general. Negative definite kernels often correspond to distances, e.g., K(x,y) = (x− y)α, x,y ∈ R,
with 0 < α ≤ 2 is a negative definite kernel.

The next theorem summarizes general closure properties of NDS kernels (Berg et al., 1984).

Theorem 11 Let X be a non-empty set.

1. Closure under sum: Let K1,K2 : X ×X → R be NDS kernels, then K1 + K2 : X ×X → R is a
NDS kernel.

2. Closure under log and exponentiation: Let K : X ×X → R be a NDS kernel with K ≥ 0, and
α a real number with 0 < α < 1, then log(1+K),Kα : X ×X → R are NDS kernels.

3. Closure under pointwise limit: Let Kn : X ×X → R be a NDS kernel for all n ∈ N, then K
defined by K(x,y) = limn→∞ Kn(x,y) is a NDS kernel.

The following theorem clarifies the relation between NDS and PDS kernels and provides in partic-
ular a way of constructing PDS kernels from NDS ones (Berg et al., 1984).

Theorem 12 Let X be a non-empty set, xo ∈ X, and let K : X ×X → R be a symmetric kernel.

1. K is negative definite iff exp(−tK) is positive definite for all t > 0.

2. Let K′ be the function defined by

K′(x,y) = K(x,x0)+K(y,x0)−K(x,y)−K(x0,x0).

Then K is negative definite iff K ′ is positive definite.

The theorem gives two ways of constructing a positive definite kernel using a negative definite
kernel. The first construction is similar to the way Gaussian kernels are defined. The second con-
struction has been put forward by (Schölkopf, 2001).

6. Relationship with some commonly used kernels or similarity measures

This section studies the relationships between several families of kernels or similarities measures
and rational kernels.
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Figure 3: (a) Weighted transducer over the tropical semiring representing the edit-distance over the
alphabet Σ = {a,b}. (b) Weighted transducer over the probability semiring computing
the cost of alignments over the alphabet Σ = {a,b}.

6.1 Edit-Distance

A common similarity measure in many applications is that of the edit-distance, that is the minimal
cost of a series of edit operations (symbol insertions, deletions, or substitutions) transforming one
string into the other (Levenshtein, 1966). We denote by de(x,y) the edit-distance between two
strings x and y over the alphabet Σ with cost 1 assigned to all edit operations.

Proposition 13 Let Σ be a non-empty finite alphabet and let de be the edit-distance over Σ, then
de is a symmetric rational kernel. Furthermore, (1): de is not a PDS kernel, and (2): de is a NDS
kernel iff |Σ| = 1.

Proof The edit-distance between two strings, or weighted automata, can be represented by a simple
weighted transducer over the tropical semiring (Mohri, 2003). Since the edit-distance is symmetric,
de is a symmetric rational kernel. Figure 3(a) shows the corresponding transducer when the alphabet
is Σ = {a,b}. The cost of the alignment between two sequences can also be computed by a weighted
transducer over the probability semiring (Mohri, 2003), see Figure 3(b).

Let a ∈ Σ, then the matrix (de(xi,x j))1≤i, j≤2 with x1 = ε and x2 = a has a negative eigenvalue
(−1), thus de is not a PDS kernel.

When |Σ| = 1, the edit-distance simply measures the absolute value of the difference of length
between two strings. A string x ∈ Σ∗ can then be viewed as a vector of the Hilbert space R

∞. Denote
by ‖ · ‖ the corresponding norm. For all x,y ∈ Σ∗,

de(x,y) = ‖x− y‖.
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Figure 4: (a) Smallest eigenvalue of the matrix Mn = (exp(−de(xi,x j)))1≤i, j,≤2n as a function of n.
(b) Example demonstrating that the edit-distance is not negative definite.

The square distance ‖ · ‖2 is negative definite, thus by Theorem 11, de = (‖ · ‖2)1/2 is also negative
definite.

Assume now that |Σ|> 1. We show that exp(−de) is not PDS. By Theorem 12, this implies that
de is not negative definite. Let x1, · · · ,x2n be any ordering of the strings of length n over the alphabet
{a,b}. Define the matrix Mn by

Mn = (exp(−de(xi,x j)))1≤i, j,≤2n .

Figure 4(a) shows the smallest eigenvalue αn of Mn as a function of n. Clearly, there are values
of n for which αn < 0, thus the edit-distance is not negative definite. Table 4(b) provides a simple
example with five strings of length 3 over the alphabet Σ = {a,b,c,d} showing directly that the edit-
distance is not negative definite. Indeed, it is easy to verify that ∑5

i=1 ∑5
j=1 cic jK(xi,x j) = 2

3 > 0.

To our knowledge, this is the first statement and proof of the fact that de is not NDS for |Σ| >
1. This result has a direct consequence on the design of kernels in computational biology, often
based on the edit-distance or other related similarity measures. The edit-distance and other related
similarity measures are often used in computational biology. When |Σ| > 1, Proposition 13 shows
that de is not NDS. Thus, there exists t > 0 for which exp(−tde) is not PDS. Similarly, d2

e is not
NDS since otherwise by Theorem 11, de = (d2

e )1/2 would be NDS.

6.2 Haussler’s Convolution Kernels for Strings

D. Haussler describes a class of kernels for strings built by applying iteratively convolution kernels
(Haussler, 1999). We show that these convolution kernels for strings are specific instances of ra-
tional kernels. Haussler (1999) defines the convolution of two string kernels K1 and K2 over the
alphabet Σ as the kernel denoted by K1 ?K2 and defined for all x,y ∈ Σ∗ by

K1 ?K2(x,y) = ∑
x1x2=x,y1y2=y

K1(x1,y1) ·K2(x2,y2).

Clearly, when K1 and K2 are given by weighted transducers over the probability semiring, this
definition coincides with that of the product (or concatenation) of transducers (Equation 1). Haussler
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(1999) also introduces for 0 ≤ γ < 1 the γ-infinite iteration of a mapping H : Σ∗×Σ∗ → R by

H∗
γ = (1− γ)

∞

∑
n=1

γn−1H(n),

where H(n) = H ? H(n−1) is the result of the convolution of H with itself n− 1 times. Note that
H∗

γ = 0 for γ = 0.

Lemma 14 For 0 < γ < 1, the γ-infinite iteration of a rational transduction H : Σ∗×Σ∗ → R can
be defined in the following way with respect to the Kleene †-operator:

H∗
γ =

1− γ
γ

(γH)†.

Proof Haussler’s convolution simply corresponds to the product (or concatenation) in the case of
rational transductions. Thus, for 0 < γ < 1, by definition of the †-operator,

(γH)† =
∞

∑
n=1

(γH)n =
∞

∑
n=1

γnHn =
γ

1− γ

∞

∑
n=1

(1− γ)γn−1Hn =
γ

1− γ
H∗

γ .

Given a probability distribution p over all symbols of Σ, Haussler’s convolution kernels for strings
are defined by

KH(x,y) = γK2 ? (K1 ?K2)
?
γ +(1− γ)K2,

where K1 is the specific polynomial PDS rational transduction over the probability semiring defined
by K1(x,y) = ∑a∈Σ p(x|a)p(y|a)p(a) and models substitutions, and K2 another specific PDS rational
transduction over the probability semiring modeling insertions.

Proposition 15 For any 0 ≤ γ < 1, Haussler’s convolution kernels KH coincide with the following
special cases of rational kernels:

KH = (1− γ)[K2(γK1K2)
∗].

Proof As mentioned above, Haussler’s convolution simply corresponds to concatenation in this
context. When γ = 0, by definition, KH is reduced to K2 which is a rational transducer and the
proposition’s formula above is satisfied. Assume now that γ 6= 0. By lemma 14, KH can be re-
written as

KH = γK2(K1K2)
?
γ +(1− γ)K2 = γK2

1− γ
γ

(γK1K2)
† +(1− γ)K2

= (1− γ)[K2(γK1K2)
† +K2] = (1− γ)[K2(γK1K2)

∗].

Since rational transductions are closed under rational operations, KH also defines a rational trans-
duction. Since K1 and K2 are PDS kernels, by Theorem 6, KH defines a PDS kernel.

The transducer of Figure 5 illustrates the convolution kernels for strings proposed by Haussler.
They correspond to special cases of rational kernels whose mechanism is clarified by the figure:
the kernel corresponds to an insertion with weight (1− γ) modeled by K2 followed by any number
of sequences of substitutions modeled by K1 and insertions modeled by K2 with weight γ. Clearly,
there are many other ways of defining kernels based on weighted transducers with more complex
definitions and perhaps more data-driven definitions.
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0 1
K2(1 − γ)

2
K1γ

K2

Figure 5: Haussler’s convolution kernels KH for strings: specific instances of rational kernels. K1,
(K2), corresponds to a specific weighted transducer over the probability semiring and
modeling substitutions (resp. insertions).

6.3 Other Kernels Used in Computational Biology

In this section we show the relationship between rational kernels and another class of kernels used
in computational biology.

A family of kernels, mismatch string kernels, was introduced by (Leslie et al., 2003) for protein
classification using SVMs. Let Σ be a finite alphabet, typically that of amino acids for protein
sequences. For any two sequences z1,z2 ∈ Σ∗ of same length (|z1| = |z2|), we denote by d(z1,z2)
the total number of mismatching symbols between these sequences. For all m ∈ N, we define the
bounded distance dm between two sequences of same length by

dm(z1,z2) =

{

1 if (d(z1,z2) ≤ m)
0 otherwise.

and for all k ∈ N, we denote by Fk(x) the set of all factors of x of length k:

Fk(x) = {z : x ∈ Σ∗zΣ∗, |z| = k} .

For any k,m ∈ N with m ≤ k, a (k,m)-mismatch kernel K(k,m) : Σ∗×Σ∗ → R is the kernel defined
over protein sequences x,y ∈ Σ∗ by

K(k,m)(x,y) = ∑
z1∈Fk(x),z2∈Fk(y),z∈Σk

dm(z1,z) dm(z,z2).

Proposition 16 For any k,m ∈ N with m ≤ k, the (k,m)-mismatch kernel K(k,m) : Σ∗×Σ∗ → R is a
PDS rational kernel.

Proof Let M, S, and D be the weighted transducers over the probability semiring defined by

M = ∑
a∈Σ

(a,a) S = ∑
a6=b

(a,b) D = ∑
a∈Σ

(a,ε).

M associates weight 1 to each pair of identical symbols of the alphabet Σ, S associates 1 to each pair
of distinct or mismatching symbols, and D associates 1 to all pairs with second element ε.

For i,k ∈ N with 0 ≤ i ≤ k, Define the shuffle of Si and Mk−i, denoted by Si ttMk−i, as the the
sum over all products made of factors S and M with exactly i factors S and k− i factors M. As a finite
sum of products of S and M, Si ttMk−i is rational. Since weighted transducers are closed under
rational operations the following defines a weighted transducer T over the probability semiring for
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Figure 6: Mismatch kernel K(k,m) = Tk,m ◦T−1
k,m (Leslie et al., 2003) with k = 3 and m = 2 and with

Σ = {a,b}. The transducer T3,2 defined over the probability semiring is shown. All
transition weights and final weights are equal to one. Note that states 3, 6, and 8 of the
transducer are equivalent and thus can be merged and similarly that states 2 and 5 can
then be merged as well.

any k,m ∈ N with m ≤ k: Tk,m = D∗RD∗ with R = ∑m
i=0 Si ttMk−i. Consider two sequences z1,z2

such that |z1|= |z2|= k. By definition of M and S and the shuffle product, for any i, with 0 ≤ i ≤ m,

[[Si ttMk−i]](z1,z2) =

{

1 if (d(z1,z2) = i)
0 otherwise.

Thus, [[R]](z1,z2) =
m

∑
i=0

Si ttMk−i(z1,z2) =

{

1 if (d(z1,z2) ≤ m)
0 otherwise

= dm(z1,z2).

By definition of the product of weighted transducers, for any x ∈ Σ∗ and z ∈ Σk,

Tk,m(x,z) = ∑
x=uvw,z=u′v′w′

[[D∗]](u,u′) [[R]](v,v′) [[D∗]](w,w′)

= ∑
v∈Fk(x),z=v′

[[R]](v,v′) = ∑
v∈Fk(x)

dm(v,z).

It is clear from the definition of Tk,m that Tk,m(x,z) = 0 for all x,z ∈ Σ∗ with |z| > k. Thus, by
definition of the composition of weighted transducer, for all x,y ∈ Σ∗

[[Tk,m ◦Tk,m
−1]](x,y) = ∑

z1∈Fk(x),z2∈Fk(y),z∈Σ∗

dm(z1,z) dm(z,z2)

= ∑
z1∈Fk(x),z2∈Fk(y),z∈Σk

dm(z1,z) dm(z,z2) = K(k,m)(x,y).

By proposition 7, this proves that K(k,m) is a PDS rational kernel.
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Figure 6 shows T3,2, a simple weighted transducer over the probability semiring that can be
used to compute the mismatch kernel K(3,2) = T3,2 ◦ T3,2

−1. Such transducers provide a compact
representation of the kernel and are very efficient to use with the composition algorithm already
described in (Cortes et al., 2003c). The transitions of these transducers can be defined implicitly
and expanded on-demand as needed for the particular input strings or weighted automata. This
substantially reduces the space needed for their representation, e.g., a single transition with labels
x : y, x 6= y can be used to represent all transitions with similar labels ((a : b), a,b ∈ Σ, with a 6= b).
Similarly, composition can also be performed on-the-fly. Furthermore, the transducer of Figure 6
can be made more compact since it admits several states that are equivalent.

7. Applications and Experiments

Rational kernels can be used in a variety of applications ranging from computational biology to
optical character recognition. We have applied them successfully to a number of speech process-
ing tasks including the identification from speech of traits, or voice signatures, such as emotion
(Shafran et al., 2003). This section describes some of our most recent applications to spoken-dialog
classification.

We first introduce a general family of PDS rational kernels relevant to spoken-dialog classifi-
cation tasks that we used in our experiments, then discuss the spoken-dialog classification problem
and report our experimental results.

7.1 A General Family of PDS Kernels: n-gram Kernels

A rational kernel can be viewed as a similarity measure between two sequences or weighted au-
tomata. One may for example consider two utterances to be similar when they share many common
n-gram subsequences. The exact transcriptions of the utterances are not available but we can use
the word lattices output by the recognizer instead.

A word lattice is a weighted automaton over the log semiring that compactly represents the most
likely transcriptions of a speech utterance. Each path of the automaton is labeled with a sequence
of words whose weight is obtained by adding the weights of the constituent transitions. The weight
assigned by the lattice to a sequence of words can often be interpreted as the log-likelihood of
that transcription based on the models used by the recognizer. More generally, the weights are
used to rank possible transcriptions, the sequence with the lowest weight being the most favored
transcription.

A word lattice A can be viewed as a probability distribution PA over all strings s ∈ Σ∗. Modulo
a normalization constant, the weight assigned by A to a string x is [[A]](x) = − logPA(x). Denote
by |s|x the number of occurrences of a sequence x in the string s. The expected count or number of
occurrences of an n-gram sequence x in s for the probability distribution PA is

c(A,x) = ∑
s

PA(s)|s|x.

Two lattices output by a speech recognizer can be viewed as similar when the sum of the product of
the expected counts they assign to their common n-gram sequences is sufficiently high. Thus, we
define an n-gram kernel kn for two lattices A1 and A2 by

kn(A1,A2) = ∑
|x|=n

c(A1,x)c(A2,x).
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0

a:ε/1
b:ε/1

1a:a/1
b:b/1

2/1a:a/1
b:b/1

a:ε/1
b:ε/1

Figure 7: Weighted transducer T computing expected counts of bigram sequences of a word lattice
with Σ = {a,b}.

The kernel kn is a PDS rational kernel of type T ◦T−1 and it can be computed efficiently.
Indeed, there exists a simple weighted transducer T that can be used to computed c(A1,x) for all

n-gram sequences x ∈ Σ∗. Figure 7 shows that transducer in the case of bigram sequences (n = 2)
and for the alphabet Σ = {a,b}. The general definition of T is

T = (Σ×{ε})∗ (∑
x∈Σ

{x}×{x})n (Σ×{ε})∗.

kn can be written in terms of the weighted transducer T as

kn(A1,A2) = w[(A1 ◦T )◦ (T−1 ◦A2)]

= w[(A1 ◦ (T ◦T−1)◦A2)],

which shows that it is a rational kernel whose associated weighted transducer is T ◦T −1. In view
of Proposition 7, kn is a PDS rational kernel. Furthermore, the general composition algorithm and
shortest-distance algorithm described in Section 4 can be used to compute kn efficiently. The size
of the transducer T is O(n|Σ|) but in practice, a lazy implementation can be used to simulate the
presence of the transitions of T labeled with all elements of Σ. This reduces the size of the machine
used to O(n). Thus, since the complexity of composition is quadratic (Mohri et al., 1996; Pereira and
Riley, 1997) and since the general shortest distance algorithm just mentioned is linear for acyclic
graphs such as the lattices output by speech recognizers (Mohri, 2002), the worst case complexity
of the algorithm is O(n2 |A1| |A2|).

By Theorem 6, the sum of two kernels kn and km is also a PDS rational kernel. We define an
n-gram rational kernel Kn as the PDS rational kernel obtained by taking the sum of all km, with
1 ≤ m ≤ n:

Kn =
n

∑
m=1

km.

Thus, the feature space associated with Kn is the set of all m-gram sequences with m ≤ n. n-gram
kernels are used in our experiments in spoken-dialog classification.

7.2 Spoken-Dialog Classification

7.2.1 DEFINITION

One of the key tasks of spoken-dialog systems is classification. This consists of assigning, out of a
finite set, a specific category to each speech utterance based on the transcription of that utterance by
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Dataset Number of Training Testing Number of ASR word
classes size size n-grams accuracy

HMIHY 0300 64 35551 5000 24177 72.5%
VoiceTone1 97 29561 5537 22007 70.5%
VoiceTone2 82 9093 5172 8689 68.8%

Table 2: Key characteristics of the three datasets used in the experiments. The fifth column displays
the total number of unigrams, bigrams, and trigrams found in the one-best output of the
ASR for the utterances of the training set, that is the number of features used by BoosTexter
or SVMs used with the one-best outputs.

a speech recognizer. The choice of possible categories depends on the dialog context considered. A
category may correspond to the type of billing problem in the context of a dialog related to billing, or
to the type of problem raised by the speaker in the context of a hot-line service. Categories are used
to direct the dialog manager in formulating a response to the speaker’s utterance. Classification is
typically based on features such as relevant key words or key sequences used by a machine learning
algorithm.

The word error rate of conversational speech recognition systems is still too high in many tasks
to rely only on the one-best output of the recognizer (the word error rate in the deployed services we
have experimented with is about 70%, as we will see later). However, the word lattices output by
speech recognition systems may contain the correct transcription in most cases. Thus, it is preferable
to use instead the full word lattices for classification.

The application of classification algorithms to word lattices raises several issues. Even small
word lattices may contain billions of paths, thus the algorithms cannot be generalized by simply
applying them to each path of the lattice. Additionally, the paths are weighted and these weights
must be used to guide appropriately the classification task. The use of rational kernels solves both
of these problems since they define kernels between weighted automata and since they can be com-
puted efficiently (Section 4).

7.2.2 DESCRIPTION OF TASKS AND DATASETS

We did a series of experiments in several large-vocabulary spoken-dialog tasks using rational kernels
with a twofold objective: to improve classification accuracy in those tasks, and to evaluate the
impact on classification accuracy of the use a word lattice rather than the one-best output of the
automatic speech recognition (ASR) system.

The first task we considered is that of a deployed customer-care application (HMIHY 0300).
In this task, users interact with a spoken-dialog system via the telephone, speaking naturally, to
ask about their bills, their calling plans, or other similar topics. Their responses to the open-ended
prompts of the system are not constrained by the system, they may be any natural language se-
quence. The objective of the spoken-dialog classification is to assign one or several categories or
call-types, e.g., Billing Credit, or Calling Plans, to the users’ speech utterances. The set of cate-
gories is finite and is limited to 64 classes. The calls are classified based on the user’s response to
the first greeting prompt: “Hello, this is AT&T. How may I help you?”.
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Figure 8: Classification error rate as a function of rejection rate in HMIHY 0300.

Table 7.2.2 indicates the size of the HMIHY 0300 datasets we used for training and testing.
The training set is relatively large with more than 35,000 utterances, this is an extension of the one
we used in our previous classification experiments with HMIHY 0300 (Cortes et al., 2003c). In our
experiments, we used the n-gram rational kernels described in the previous section with n = 3. Thus,
the feature set we used was that of all n-grams with n ≤ 3. Table 7.2.2 indicates the total number
of distinct features of this type found in the datasets. The word accuracy of the system based on
the best hypothesis of the speech recognizer is 72.5%. This motivated our use of the word lattices,
which may contain the correct transcription in most cases. The average number of transitions of a
word lattice in this task was about 260.

Table 7.2.2 reports similar information for two other datasets, VoiceTone1, and VoiceTone2.
These are more recently deployed spoken-dialog systems in different areas, e.g., VoiceTone1 is a
task where users interact with a system related to health-care with a larger set of categories (97).
The size of the VoiceTone1 datasets we used and the word accuracy of the recognizer (70.5%) make
this task otherwise similar to HMIHY 0300. The datasets provided for VoiceTone2 are significantly
smaller with a higher word error rate. The word error rate is indicative of the difficulty of classifi-
cation task since a higher error rate implies a more noisy input. The average number of transitions
of a word lattice in VoiceTone1 was about 210 and in VoiceTone2 about 360.

Each utterance of the dataset may be labeled with several classes. The evaluation is based on
the following criterion: it is considered an error if the highest scoring class given by the classifier is
none of these labels.

7.2.3 IMPLEMENTATION AND RESULTS

We used the AT&T FSM Library (Mohri et al., 2000) and the GRM Library (Allauzen et al., 2004)
for the implementation of the n-gram rational kernels Kn used. We used these kernels with SVMs,
using a general learning library for large-margin classification (LLAMA), which offers an optimized
multi-class recombination of binary SVMs (Haffner et al., 2003). Training time took a few hours
on a single processor of a 2.4GHz Intel Pentium processor Linux cluster with 2GB of memory and
512 KB cache.
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Figure 9: Classification error rate as a function of rejection rate in (a) VoiceTone1 and (b) Voice-
Tone2 .

In our experiments, we used the trigram kernel K3 with a second-degree polynomial. Prelimi-
nary experiments showed that the top performance was reached for trigram kernels and that 4-gram
kernels, K4, did not significantly improve the performance. We also found that the combination of a
second-degree polynomial kernel with the trigram kernel significantly improves performance over a
linear classifier, but that no further improvement could be obtained with a third-degree polynomial.

We used the same kernels in the three datasets previously described and applied them to both the
speech recognizer’s single best hypothesis (one-best results), and to the full word lattices output by
the speech recognizer. We also ran, for the sake of comparison, the BoosTexter algorithm (Schapire
and Singer, 2000) on the same datasets by applying it to the one-best hypothesis. This served as a
baseline for our experiments.

Figure 7.2.3 shows the result of our experiments in the HMIHY 0300 task. It gives classification
error rate as a function of rejection rate (utterances for which the top score is lower than a given
threshold are rejected) in HMIHY 0300 for: BoosTexter, SVM combined with our kernels when
applied to the one-best hypothesis, and SVM combined with kernels applied to the full lattices.

SVM with trigram kernels applied to the one-best hypothesis leads to better classification than
BoosTexter everywhere in the range of 0-40% rejection rate. The accuracy is about 2-3% absolute
value better than that of BoosTexter in the range of interest for this task, which is roughly between
20% and 40% rejection rate. The results also show that the classification accuracy of SVMs com-
bined with trigram kernels applied to word lattices is consistently better than that of SVMs applied
to the one-best alone by about 1% absolute value.

Figure 7.2.3 shows the results of our experiments in the VoiceTone1 and VoiceTone2 tasks
using the same techniques and comparisons. As observed previously, in many regards, VoiceTone1
is similar to the HMIHY 0300 task, and our results for VoiceTone1 are comparable to those for
HMIHY 0300. The results show that the classification accuracy of SVMs combined with trigram
kernels applied to word lattices is consistently better than that of BoosTexter, by more than 4%
absolute value at about 20% rejection rate. They also demonstrate more clearly the benefits of the
use of the word lattices for classification in this task. This advantage is even more manifest for the
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VoiceTone2 task for which the speech recognition accuracy is lower. VoiceTone2 is also a harder
classification task as can be seen by the comparison of the plots of Figure 7.2.3. The classification
accuracy of SVMs with kernels applied to lattices is more than 6% absolute value better than that
of BoosTexter near 40% rejection rate, and about 3% better than SVMs applied to the one-best
hypothesis.

Thus, our experiments in spoken-dialog classification in three distinct large-vocabulary tasks
demonstrates that using rational kernels with SVMs consistently leads to very competitive clas-
sifiers. They also show that their application to the full word lattices instead of the single best
hypothesis output by the recognizer systematically improves classification accuracy.

8. Conclusion

We presented a general framework based on weighted transducers, rational kernels, to extend kernel
methods to the analysis of variable-length sequences or more generally weighted automata. The
transducer representation provides a very compact representation benefiting from existing and well-
studied optimizations. It further avoids the design of special-purpose algorithms for the computation
of the kernels covered by the framework of rational kernels. A single general and efficient algorithm
was presented to compute effectively all rational kernels. Thus, it is sufficient to implement that
algorithm and let different instances of rational kernels be given by the weighted transducers that
define them. A general framework is also likely to help understand better kernels over strings or
automata and their relation.

We gave the proof of several characterization results and closure properties for PDS rational
kernels. These results can be used to design a complex PDS rational kernel from simpler ones
or from an arbitrary weighted transducer over an appropriate semiring, or from negative definite
kernels.

We also gave a study of the relation between rational kernels and several kernels or similarity
measures introduced by others. Rational kernels provide a unified framework for the design of
computationally efficient kernels for strings or weighted automata. The framework includes in
particular pair-HMM string kernels (Durbin et al., 1998; Watkins, 1999), Haussler’s convolution
kernels for strings, the path kernels of Takimoto and Warmuth (2003), and other classes of string
kernels introduced for computational biology. We also showed that the classical edit-distance does
not define a negative definite kernel when the alphabet contains more than one symbol, a result that
to our knowledge had never been stated or proved and that can guide the study of kernels for strings
in computational biology and other similar applications.

Our experiments in several different large-vocabulary spoken-dialog tasks show that rational
kernels can be combined with SVMs to form powerful classifiers and demonstrate the benefits of the
use of kernels applied to weighted automata. There are many other rational kernels such as complex
gappy n-gram kernels that could be explored and that perhaps could further improve classification
accuracy in such experiments. We present elsewhere new rational kernels exploiting higher-order
moments of the distribution of the counts of sequences, moment kernels, and report the results of
our experiments on the same tasks which demonstrate a consistent gain in classification accuracy
(Cortes and Mohri, 2004). Rational kernels can be used in a similar way in many other natural
language processing, speech processing, and bioinformatics tasks.
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Abstract

A novel approximation method is presented for approximating the value function and selecting
good actions for Markov decision processes with large stateand action spaces. The method ap-
proximates state-action values as negative free energies in an undirected graphical model called a
product of experts. The model parameters can be learned efficiently because values and derivatives
can be efficiently computed for a product of experts. Actionscan be found even in large factored
action spaces by the use of Markov chain Monte Carlo sampling. Simulation results show that the
product of experts approximation can be used to solve large problems. In one simulation it is used
to find actions in action spaces of size 240.

Keywords: product of experts, Boltzmann machine, reinforcement learning, factored actions

1. Introduction

An agent must be able to deal with high-dimensional and uncertain states andactions in order to
operate in a complex environment. In this paper we focus on two related problems: estimating the
value of a state-action pair in large state and action spaces; and selecting good actions given these
estimates. Our approach is to borrow techniques from the graphical modeling literature and apply
them to the problems of value estimation and action selection.

Inferring the state of the agent’s environment from noisy observations has been a popular subject
of study in the engineering, artificial intelligence and machine learning communities. One formal-
ism is the graphical model (Cowell et al., 1999). A graphical model represents the distribution of
observed data with a probabilistic model. The graphical representation of the model indicates which
variables can be assumed to be conditionally independent. Given observations of some variables,
inferring the distribution over unobserved (or hidden) variables is of paramount importance in using
and learning the parameters of these models. Exact and approximate inference algorithms have been
and still are intensely studied in the graphical models and engineering literatures (Kalman, 1960;
Neal, 1993; Jordan et al., 1999; Cowell et al., 1999).

Acting on certain or uncertain information has been studied in a different body of literature. Re-
inforcement learning involves learning how to act so as to maximize a reward signal given samples
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of sequences of state-action pairs and rewards from the environment (Sutton and Barto, 1998). It
has been closely linked to Markov decision processes and stochastic dynamic programming (see
for example Sutton, 1988; Bertsekas and Tsitsiklis, 1996). There has been work on reinforcement
learning with large state spaces, state uncertainty and partial observability (see for example Bert-
sekas and Tsitsiklis, 1996; Jaakkola et al., 1995). In particular there are exact dynamic programming
methods for solving fully and partially observable Markov decision processes (see Lovejoy, 1991,
for an overview). There are also approximate methods for dealing with real-valued state and action
variables (see for example Baird and Klopf, 1993; Sutton, 1996; Santamaria et al., 1998).

Recently, techniques from the graphical models literature have started to come together with
those from the planning and reinforcement-learning community. The result has been new algo-
rithms and methods for learning about decision processes and making decisions under uncertainty
in complex and noisy environments (see for example Boutilier and Poole, 1996; McAllester and
Singh, 1999; Thrun, 2000; Sallans, 2000; Rodriguez et al., 2000; Poupart and Boutilier, 2001).

In this article, we propose to make use of techniques from graphical modelsand approximate
inference to approximate the values of and select actions for large Markov decision processes. The
value function approximator is based on an undirected graphical model called a product of experts
(PoE). The value of a state-action pair is modeled as the negative free energy of the state-action
under the product model.

Computing the free energy is tractable for a product of experts model. However, computing
the resulting distribution over actions is not. Given a value function expressed as a product of
experts, actions can be found by Markov chain Monte Carlo (MCMC) sampling. As with any
sampling scheme, it is possible that action sampling will perform poorly, especially as the action
space becomes large. There are no theoretical guarantees as to the effectiveness of sampling for
short periods of time.

The advantage of using MCMC sampling for action selection is that there has been a concerted
effort put into making sampling methods work well in large state (or in our case, action) spaces. It is
also possible to use this technique to approximate value functions over real-valued state and action
spaces, or mixtures of discrete and real-valued variables, and to make use of MCMC sampling
methods designed for continuous spaces to do action selection. It is an empirical question whether
or not action sampling works well for specific problems.

Our technique uses methods from reinforcement learning and from products of experts model-
ing. We therefore include a short review of the Markov decision process formalism, reinforcement
learning, and products of experts. For clarity, we will focus on one particular kind of product of
experts model: the restricted Boltzmann machine.

We then describe the method, which uses a product of experts network asa novel value function
approximator. We demonstrate the properties of the PoE approximation on two tasks, including an
action-selection task with a 40-bit action space. We conclude with some discussion of the approxi-
mation method and possible future research.

2. Markov Decision Processes

An agent interacting with the environment can be modeled as a Markov decision process (MDP)
(Bellman, 1957b). The task of learning which action to perform based on reward is formalized
by reinforcement learning. Reinforcement learning in MDPs is a much studied problem. See for
example Sutton and Barto (1998).
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reward

action

state

Figure 1: A Markov decision process. Circles indicate visible variables, and squares indicate ac-
tions. The state is dependent on the previous state and action, and the reward depends on
the current state and action.

If the sets of states and actions are finite, then the problem is called a finite MDP. Much of the
theoretical work done in reinforcement learning has focused on the finitecase, and we focus on
finite MDPs in this article.

Formally, an MDP consists of

• A set of statesS , and actionsA ,

• An initial states0 or distributionP(s0),

• A transition distributionP(st+1|st ,at), st ,st+1 ∈ S , at ∈ A , and

• A reward distributionP(r t |st ,at), st ∈ S , r t ∈ R, at ∈ A .

In the above,t indexes the time step, which ranges over a discrete set of points in time. We will
denote the transition probabilityPr(st+1 = j |st = i,at = a) by Pi j (a). We will also denote the
expected immediate reward received by executing actiona in statei by

r i(a) =
〈
r t
∣∣st = i,at = a

〉
P(rt |st ,at)

,

where〈·〉P denotes expectation with respect to distributionP. Bold-face text denotes vectors or
matrices.

The goal of solving an MDP is to find apolicy which maximizes the total expected reward
received over the course of the task. A policy tells the learning agent what action to take for each
possible state. It is a mappingπ from states to actions or distributions over actions. We will focus
onstationarypolicies, in which the same mapping is used at every point in time.

The expected discountedreturn for a policyπ is defined as the sum of discounted rewards that
is expected when following policyπ:

〈
Rt〉

π =
〈
r t + γr t+1 + γ2r t+2 + ...

〉
π =

〈
∞

∑
k=0

γkr t+k

〉

π

,

wheret is the current time, andπ(s,a) is the probability of selecting actiona in states. Note that
the discounting is required to ensure that the sum of infinite (discounted) rewards is finite, so that

1065



SALLANS AND HINTON

the quantity to be optimized is well-defined; the discount factorγ ∈ [0,1). The expectation is taken
with respect to the policyπ, the initial state distributionP(s0), the transition distributionPi j (a), and
the reward distributionP(r|s,a).

To solve an MDP, we must find a policy that produces the greatest expected return. With knowl-
edge of transition probabilitiesPi j (a) and expected immediate rewardsr i(a), and given a stochastic
policy π, we can calculate the expected discounted return after taking the actiona from the current
statesand following policyπ thereafter:

Qπ(s,a) =

〈
∞

∑
k=0

γkr t+k
∣∣st = s,at = a

〉

π

=

〈
r t + γ

∞

∑
k=0

γkr t+k+1
∣∣st = s,at = a

〉

π

= ∑
j

Ps j(a)

[
rs(a)+∑

b

π( j,b)γQπ( j,b)

]
. (1)

Heret denotes the current time. The functionQπ is called theaction-value functionfor policy π.
The action-value function tells the agent the expected return that can be achieved by starting from
any state, executing an action, and then following policyπ.

Equation 1 is often called the Bellman equations forQπ. It is a set of|S | × |A | linear equa-
tions (one for each states∈ S and actiona∈ A). The set of coupled equations can be solved for
the unknown valuesQπ(s,a). In particular, given some arbitrary initializationQπ

0, we can use the
following iterative update:

Qπ
k+1(s,a) = ∑

j

Ps j(a)

[
rs(a)+∑

b

π( j,b)γQπ
k( j,b)

]
(2)

for all s∈ S and a ∈ A . The iteration converges to the unique fixed-pointQπ as k→ ∞. This
technique is called iterative policy evaluation.

The class of MDPs is a restricted but important class of problems. By assuming that a prob-
lem is Markov, we can ignore the history of the process, and thereby prevent an exponential in-
crease in the size of the domain of the policy (Howard, 1960). The Markovassumption underlies
a large proportion of control theory, machine learning and signal processing including Kalman fil-
ters (Kalman, 1960), hidden Markov models (HMMs) (Rabiner and Juang, 1986), two-time-slice
dynamic Bayesian networks (Dean and Kanazawa, 1989), dynamic programming (DP) (Bellman,
1957a) and temporal difference learning (TD) (Sutton, 1988).

When the states or actions are composed of sets of variables, we will referto them as “factored”
states or actions. It is common for problems with large state or action spaces to have states and
actions expressed in a “factored” form. There has been a lot of research and discussion about the
problems of dealing with large state spaces represented in factored form (see for example Bertsekas
and Tsitsiklis, 1996). There has been comparatively little on dealing with largeaction spaces or
factored actions (Dean et al., 1998; Meuleau et al., 1998; Peshkin et al.,1999; Guestrin et al., 2002).
In practice action spaces tend to be very large. For example consider the activation of large numbers
of muscles, or the simultaneous actions of all of the players on a football field. The state or action
space could also be continuous (Baird and Klopf, 1993; Santamaria et al.,1998).
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3. Temporal Difference Learning

Temporal difference (TD) learning (Sutton, 1988) addresses the problem of predicting time-delayed
rewards. We can view TD as performing approximate dynamic programming to compute future
reward. Because they use a value function as an estimate of future performance instead of sampled
rewards, TD algorithms trade off bias against variance in estimates of future reward. The nature of
the approximation, this tradeoff, and the convergence of TD algorithms have been the subjects of
much study.

Temporal difference algorithms can be used to estimate the value of states andactions. TD
techniques update the value estimate for states and actions as they are visited and executed. Backing
up the values of states only as they are visited gives rise to a number of TD update rules. The SARSA
algorithm computes the action-value function of the current policy (Rummery and Niranjan, 1994;
Sutton, 1996):

Q(st ,at)← (1−κ)Q(st ,at)+κ
[
r t + γQ(st+1,at+1)

]
, (3)

whereκ is a learning rate.
This update can be viewed as a Monte Carlo approximation to the update from Eq.(2). The name

derives from the fact that the update depends on the set of values{st , at , r t , st+1, at+1}. SARSA
computes the expected return conditioned on a state-action pair. The updateis designed to move the
estimated value function closer to a “bootstrapped” Monte Carlo estimate. Ifκ is reduced over time
in the appropriate manner, and all states continue to be visited an infinite numberof times, then this
algorithm will converge to the value function of the current policy (Singh etal., 2000).

Given the state-action value function, a greedy policy with respect to the value function can be
found by maximizing over possible actions in each state:

π(s) = argmax
a

Qπ(s,a).

Note that this involves an explicit maximization over actions. When the action space is large or
continuous, this maximization will become difficult.

The optimal value function and policy can be found using SARSA, by combining value function
estimation (Eq.3) with policies which become greedy with respect to the value function, in the
limit of infinite time (i.e. an infinite number of value function updates, with all states and actions
continuing to be visited/executed). See Singh et al. (2000) for a proof ofconvergence and conditions
on the policies.

4. Function Approximation

In many problems there are too many states and actions to represent the action-value function as
a state-action table. One alternative is to use function approximation. If the approximation is
differentiable with respect to its parameters, the parameters can be learnedby trying to minimize
the TD error. The TD error is defined as

ETD(st ,at) =
[
r t + γQ(st+1,at+1)

]
−Q(st ,at). (4)

Consider an approximate value functionQ(s,a;θ) parameterized by parameterθ. The update
rule for the parameterθ is given by

∆θ = λETD(s,a)∇θQ(s,a;θ), (5)
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whereλ is a learning rate. This is the approach taken by Bertsekas and Tsitsiklis (1996) among
others. Although this approach can work in some cases, there are in general no guarantees of
convergence to a specific approximation, or guarantees of the accuracy of the approximation if it
does converge.

5. Boltzmann Machines and Products of Experts

We will use a product of experts model to approximate the values of states and actions in a Markov
decision process (Hinton, 1999, 2002). Products of experts are probabilistic models that combine
simpler models by multiplying their distributions together.

In this section we will focus on a particular kind of product of experts, called a restricted Boltz-
mann machine (Smolensky, 1986; Freund and Haussler, 1992; Hinton, 2002). This case is interest-
ing because inference and learning in this model has been intensely studied(Ackley et al., 1985;
Hinton and Sejnowski, 1986; Smolensky, 1986; Freund and Haussler, 1992; Hinton, 2002), and the
binary values are relatively easy to interpret.

Boltzmann machines are undirected models. That means that the model specifies joint proba-
bilities, rather than conditional probabilities. Directed graphical models, forexample Bayesian net-
works, have also been used in conjunction with value function approximation, where the Bayesian
network encodes a compact model of the environment (see for example Boutilier and Poole, 1996;
Boutilier et al., 2000; Rodriguez et al., 2000; Sallans, 2000; Thrun, 2000). They have also been used
to directly encode utilities (Boutilier et al., 1999, 2001).

The free energy of a directed model could also be used to encode an approximate value function.
However, unlike with product models, the computation of the free energy and its derivatives is
generally intractable for directed models. This is because inference in the model is not tractable.
Research in approximate inference techniques for directed models is an important area of current
research.

In a directed model, it is also intractable to compute the conditional distribution over actions
given states, as with the product of experts models. It would be possible tocombine an approximate
inference technique with a directed model to approximate the value, and also use the approximate
inference technique to sample actions from the network. The result would have the flavor of an
actor-critic network, where the free energy of the directed model plays the role of the critic, and
the approximate inference technique plays the role of the actor. The advantage would be that the
distribution over actions could be evaluated, rather than just sampled from as with the product of
experts. The disadvantage is that we would use an approximation not just for action selection, but
also to compute the free energy and its derivatives.

We begin the next section with a discussion of the general Boltzmann machine (Ackley et al.,
1985) and review some necessary concepts such as energy and freeenergy, the Boltzmann distribu-
tion, and Markov chain Monte Carlo sampling. We then discuss the restricted Boltzmann machine.
For completeness, we include some derivations, but defer them to Appendix A. The reader is di-
rected to Hertz et al. (1991), chapter 7, for a more in-depth introduction tothe Boltzmann machine.
Finally, we discuss more general products of experts.

5.1 Boltzmann Machines

A Boltzmann machine is an undirected graphical model. The nodes represent binary random vari-
ables that have values of 1 or 0 and the weighted edges represent pairwise symmetric interactions
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between the variables.1 The nodes are usually divided into two disjoint subsets, the “visible” vari-
ables,V and the “hidden” variables,H. An assignment of binary values to the visible or hidden
variables will be denoted byv or h and the binary value of an individual visible or hidden variable,
Vi or Hk, will be denoted byvi or hk. The symmetric weight between nodei and nodek is wik. In a
general Boltzmann machine, weights can occur between any pair of nodes.

The weights determine the “energy” of every possible joint configuration ofthe visible and
hidden variables:

E(v,h) =−∑
i,k

wikvihk−∑
i< j

wi j viv j − ∑
k<m

wkmhkhm,

where i and j are indices over visible variables andk and m are indices over hidden variables.
The energies of the joint configurations determine their equilibrium probabilities via the Boltzmann
distribution:

P(v,h) =
exp(−E(v,h))

∑v̂,ĥ exp(−E(v̂, ĥ))
,

wherev̂, ĥ indexes all joint configurations of the visible and hidden variables.
The probability distribution over the visible variables can be obtained by summingover all

possible configurations of the hidden variables:

exp(−F(v)) = ∑
h

exp(−E(v,h)), (6)

P(v) =
exp(−F(v))

∑v̂ exp(−F(v̂))
.

F(v) is called the “equilibrium free energy” ofv. It is the minimum of the “variational free
energy” ofv which can be expressed as an expected energy minus an entropy:

Fq(v) = ∑
h

q(h)E(v,h)+∑
h

q(h) logq(h), (7)

whereq is any distribution over all possible configurations of the hidden units. To make the first term
in Eq.(7) low, the distributionq should put a lot of mass on hidden configurations for whichE(v,h)
is low, but to make the second term low, theq distribution should have high entropy. The optimal
trade-off between these two terms is the Boltzmann distribution in whichP(h|v) ∝ exp(−E(v,h)):

P(h|v) =
exp(−E(v,h))

∑ĥ exp(−E(v, ĥ))
. (8)

This is the posterior distribution over the hidden variables, given the visible variables. Using this
distribution, the variational free energy defined by Eq.(7) is equal to the equilibrium free energy in
Eq.(6):

F(v) = ∑
h

P(h|v)E(v,h)+∑
h

P(h|v) logP(h|v). (9)

1. We will assume that the variables can take on values of 1 or 0. Alternatively, the Boltzmann machine can be formu-
lated with values of±1. We also omit biases on variables, which can be incorporated into the weights by adding a
visible variable which always has a value of one. Weights from this “always on” variable act as biases to the other
variables.
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In Appendix A, we show that the equilibrium free energy can be written either as in Eq.(6) or as in
Eq.(9) (see Appendix A, Eq.11).

One important property of Boltzmann machines is that, with enough hidden variables, a Boltz-
mann machine with finite weights is capable of representing any “soft” distribution over the visible
variables, where “soft” means that the distribution does not contain any probabilities of 1 or 0. An-
other important property is that there is a simple, linear relationship betweenF(v) and each of the
weights in the network (Ackley et al., 1985). For a weight between a visible and a hidden unit this
relationship is

∂F(v)

∂wik
=−vi 〈hk〉P(hk|v) ,

where the angle brackets denote the expectation ofhk under the distributionP(hk|v). At first sight,
it is surprising that this derivative is so simple because changingwik will clearly change the equi-
librium distribution over the hidden configurations. However, to first order, the changes in this
equilibrium distribution have no effect onF(v) because the equilibrium distributionP(h|v) is the
distribution for whichF(v) is minimal, so the derivatives ofF(v) w.r.t. the probabilities in the
distribution are all zero (see Appendix A).

For a general Boltzmann machine, it is computationally intractable to compute the equilibrium
distribution over the hidden variables given a particular configuration,v, of the visible variables.
(Cooper, 1990). However, values can be sampled from the equilibrium distribution by using a
Markov chain Monte Carlo method. Once the Markov chain reaches equilibrium (in other words,
all information about the initialization has been lost), hidden configurations aresampled according
to the Boltzmann distribution (Eq.8).

One sampling method is called the Gibbs sampler (Geman and Geman, 1984). Given a fixed
configurationv of the visible variables, the Gibbs sampler proceeds as follows.

1. Initialize all the hidden variables with arbitrary binary values:
h0

1, ...h
0
k, ...,h

0
K.

2. Repeat the following until convergence:
In each iterationt = 1,2, ..., and for each random variablehk:

(a) Compute the energyE1 = E(v,hk = 1,{hm = ht−1
m : m 6= k}).

(b) Compute the energyE0 = E(v,hk = 0,{hm = ht−1
m : m 6= k}).

(c) Sethk = 1 with probability exp(−E1)/(exp(−E0)+exp(−E1))
and sethk = 0 with probability exp(−E0)/(exp(−E0)+exp(−E1)).

This procedure should be repeated until the Markov chain converges toits stationary distribution
which is given by Eq.(8). Assessing whether or not convergence hasoccurred is not trivial, and will
not be discussed here.

The Gibbs sampler is only one possible sampling technique. There are many others, including
the Metropolis-Hastings algorithm (Metropolis et al., 1953), and hybrid Monte Carlo algorithms
(Duane et al., 1987). The reader is directed to Neal (1993) for a review of Markov chain Monte
Carlo methods.

The difficulty of computing the posterior over the hidden variables in a general Boltzmann ma-
chine makes it unsuitable for our purposes, because it means that the free energy of a visible vector
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can not be easily evaluated. However, a restricted class of Boltzmann machines (Smolensky, 1986;
Freund and Haussler, 1992; Hinton, 1999, 2002) is more useful to us.In a restricted Boltzmann ma-
chine there are no hidden-hidden or visible-visible connections but any hidden-visible connection
is allowed. The connectivity of a restricted Boltzmann machine therefore forms a bipartite graph.

In a restricted Boltzmann machine the posterior distribution over the hidden variables factors
into the product of the posteriors over each of the individual hidden units(Freund and Haussler,
1992) (see Appendix A for a derivation):

P(h|v) = ∏
k

P(hk|v).

The posterior over hidden variables can therefore be computed efficiently, because each individ-
ual hidden-unit posterior is tractable:

P(hk = 1|v) =
1

1+exp(−∑i viwik)
.

This is crucial, because it allows for efficient computation of the equilibrium free energyF(v) and
of its derivatives with respect to the weights.

After a Boltzmann machine has learned to model a distribution over the visible variables, it can
be used to complete a visible vector that is only partially specified. If, for example, one half of
the visible vector represents a state and the other half represents an action, the Boltzmann machine
defines a probability distribution over actions for each given state. Moreover, Gibbs sampling in the
space of actions can be used to pick actions according to this distribution (see below).

In summary, restricted Boltzmann machines have the properties that we require for using neg-
ative free energies to approximate Q-values: The free energy and its derivatives can be efficiently
computed; and, given a state, Gibbs sampling can be used to sample actions according a Boltzmann
distribution in the free energy.

5.2 Products of Experts

Restricted Boltzmann machines are only one example of a class of models called products of ex-
perts (Hinton, 2002). Products of experts combine simple probabilistic modelsby multiplying their
probability distributions. In the case of restricted Boltzmann machines, the individual “experts” are
stochastic binary hidden variables. Products of experts share the useful properties discussed above
for restricted Boltzmann machines. A product of experts model defines a free energy whose value
and its derivative can be efficiently computed; and instantiations of the random variables can be
sampled according to the Boltzmann distribution. Products of experts can include more complex
individual experts than binary variables. Examples of product models include products of hidden
Markov models (Brown and Hinton, 2001) and products of Gaussian mixtures (Hinton, 2002). No-
tice that in each case the individual experts (hidden Markov models and Gaussian mixtures) are
themselves tractable, meaning that the posterior distribution over an individual expert’s hidden vari-
ables, and derivatives of the free energy with respect to the parameters, can be computed tractably.
This is all that is required for the entire product model to be tractable. Although we focus on re-
stricted Boltzmann machines in this work, other products of experts models could also be used, for
example, to model real-valued variables.
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6. The Product of Experts as Function Approximator

Consider a product of experts model, where the visible variables are stateand action variables. The
free energy allows a PoE to act as a function approximator, in the following sense. For any input
(instantiation of the visible variables), the output of the function approximatoris taken to be the free
energy. With no hidden variables, the output is simply the energy. For a Boltzmann machine, this is
similar to a linear neural network with no hidden units. With hidden variables, theBoltzmann ma-
chine is similar to a neural network with hidden units. However, unlike traditional neural networks,
having probabilistic semantics attached to the model allows us to (at least approximately) sample
variables according to the Boltzmann distribution. This is ideal for value function approximation,
because we can sample actions according to a Boltzmann exploration policy, conditioned on set-
tings of the state variables, even in large action spaces for which actually computing the Boltzmann
distribution would be intractable. To do this, we have to create a correspondence between the value
of a state-action pair, and its negative free energy under the Boltzmann machine model.

We create this correspondence using the parameter update rule for reinforcement learning with
function approximation (Eq.5). The parameters of the PoE model are updated to try to reduce the
temporal-difference error (Eq.4). By reducing the temporal-difference error, we make the value
approximated by the product of experts closer to the correct value.

Once the negative free energy under the PoE model approximates the value, we use MCMC
sampling to select actions. After training, the probability of sampling an action from the product of
experts while holding the state fixed is given by the Boltzmann distribution:

P(a|s) =
e−F(s,a)/T

Z
≈

eQ(s,a)/T

Z
,

whereZ is a normalizing constant, andT is the exploration temperature. Samples can be selected
at a particular exploration temperature by dividing the free energy by this temperature.

Intuitively, good actions will become more probable under the model, and badactions will
become less probable under the model. Although finding optimal actions would still be difficult for
large problems, selecting an action with a probability that is approximately the probability under the
Boltzmann distribution can normally be done with a small number of iterations of MCMC sampling
(and could include simulated annealing). In principle, if we let the MCMC sampling converge to the
equilibrium distribution, we could draw unbiased samples from the Boltzmann exploration policy at
a given temperature. In particular we can select actions according to a Boltzmann exploration policy
that may be intractable to compute explicitly, because normalization would requiresumming over
an exponential number of actions. In practice, we only sample for a shortperiod of time. It should
be noted that this “brief” sampling comes with no performance guarantees, and may be problematic
in large action spaces. However, we can easily incorporate improvements insampling techniques to
improve performance in large discrete and real-valued action spaces.

6.1 Restricted Boltzmann Machines

Here we detail the approximation architecture for the specific example of a restricted Boltzmann
machine. We approximate the value function of an MDP with the negative free energy of the re-
stricted Boltzmann machine (Eq.6). The state and action variables will be assumed to be discrete,
and will be represented by the visible binary variables of the restricted Boltzmann machine.
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In the following section, the number of binary state variables will be denoted by N; the number
of binary action variables byM; and the number of hidden variables byK. We will represent a
discrete multinomial state or action variable of arityJ by using a “one-of-J” set of binary variables
which are constrained so that exactly one of them is unity, and the rest arezero.

We will use Gibbs sampling to select actions. To take the multinomial restriction into account,
the sampling method must be modified. Specifically, instead of sampling each variable in sequence,
we will sample simultaneously over a group ofJ variables that represents a multinomial variable
of arity J. This is done by first computing the energy of each instantiation where one of the group
takes on a value of unity, and the others are zero. LetFi be the free energy of the instantiation where
si = 1. This instantiation is selected as the new sample with probabilitye−Fi /[∑ j e

−Fj ].
The restricted Boltzmann machine is shown in Figure 2(a). We usesi to denote theith state

variable anda j to denote thej th action variable. We will denote the binary hidden variables byhk.
Weights between hidden and state variables will be denotedwik, and weights between hidden and
action variables will be denotedu jk (Figure 2 (b)).

kh
b)a)

ik
jk

s ai j

w
u

state variables

hidden variables

action variables

Figure 2: a) The restricted Boltzmann machine. The estimated action-value of asetting of the state
and action variables is found by holding these variables fixed and computingthe negative
free energy of the model. Actions are selected by holding the state variablesfixed and
sampling from the action variables.
b) The state variables are denotedsi , the actionsa j and the hidden variableshk. A hidden-
state weight is denoted bywik and a hidden-action weight byu jk.

In the following, keep in mind that state variables are always held fixed, andthe actions are
always sampled such that any one-of-J multinomial restrictions are respected. Given these restric-
tions, we can ignore the fact that the binary vector may represent the values of a set of multinomial
variables. The representation of the free energy is the same as in the binary case.2

For a states = {si : i ∈ {1, ...,N}} and an actiona = {a j : j ∈ {1, ...,M}}, the free energy is
given by Eq.(6), restated here in terms of state, action, and hidden variables:

F(s,a) = −
K

∑
k=1

(
N

∑
i=1

(wiksi 〈hk〉)+
M

∑
j=1

(u jka j 〈hk〉)

)

+
K

∑
k=1

〈hk〉 log〈hk〉+(1−〈hk〉) log(1−〈hk〉). (10)

2. This is equivalent to the Potts multinomial model formulation (Potts, 1952).
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The expected value of the hidden variable〈hk〉 is given by

〈hk〉= σ

(
N

∑
i=1

wiksi +
M

∑
j=1

u jka j

)
,

whereσ(x) = 1/(1+e−x) denotes the logistic function. The first line of Eq.(10) correspond to an
expected energy, and the second to the negative entropy of the distribution over the hidden variables
given the data. The value of a state-action pair is approximated by the negative free energy

Q̂(s,a) =−F(s,a).

6.2 Learning Model Parameters

The model parameters are adjusted so that the negative free energy of astate-action pair under
the product model approximates its action-value. We will use the temporal difference update rule
SARSA (Eq.3). The temporal-difference error quantifies the inconsistency between the value of a
state-action pair and the discounted value of the next state-action pair, taking the immediate rein-
forcement into account.

The SARSA update is a parameter update rule where the target for input(st ,at) is r t +γQ̂(st+1,at+1).
The update forwik is given by

∆ wik ∝
(

r t + γQ̂(st+1,at+1)− Q̂(st ,at)
)

st
i

〈
ht

k

〉
.

The other weights are updated similarly:

∆ u jk ∝
(

r t + γQ̂(st+1,at+1)− Q̂(st ,at)
)

at
j

〈
ht

k

〉
.

This is found by plugging the derivative of the free energy with respectto a parameter into the
update rule (Eq.5). Although there is no proof of convergence in general for this learning rule, it
can work well in practice even though it ignores the effect of changes inparameters on̂Q(st+1,at+1).
It is possible to derive update rules that use the actual gradient. See forexample Baird and Moore
(1999).

6.3 Exploration

Given that we can select actions according to their value, we still have to decide on an exploration
strategy. One common action selection scheme is Boltzmann exploration. The probability of select-
ing an action is proportional toeQ̂(s,a)/T . It can move from exploration to exploitation by adjusting
the “temperature” parameterT. This is ideal for our product of experts representation, because it is
natural to sample actions according to this distribution.

Another possible selection scheme isε-greedy, where the optimal action is selected with proba-
bility (1− ε) and a random action is selected with probabilityε. The exploration probabilityε can
be reduced over time, to move the learner from exploration to exploitation.

If the SARSA update rule is used with Boltzmann exploration then samples from the Boltzmann
distribution at the current temperature are sufficient. This is what we do in our experimental section.
If ε-greedy is used we must also evaluate maxa Q̂(s,a). This can be approximated by sampling at a
low temperature. To improve the approximation, the temperature can be initialized toa high value
and lowered during the course of sampling.
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7. Simulation Results

To test the approximation we introduce two tasks: the large-action task and theblockers task. The
former involves no delayed rewards, and is designed to test action samplingin a large action space.
The latter is smaller, but tests learning with delayed reward. We compare performance against two
competing algorithms: a direct policy algorithm and a feed-forward neuralnetwork with simulated
annealing action optimization.

First, we implemented the direct policy algorithm of Peshkin et al. (2000). Thisalgorithm is
designed to learn policies for MDPs on factored state and action spaces. To parameterize the policy,
we used a feed-forward neural network with one hidden layer. The number of hidden units was cho-
sen to match the number of hidden variables in the competing restricted Boltzmann machine. The
output layer of the neural network consisted of a softmax unit for each action variable, which gave
the probability of executing each value for that action variable. For example, if an action variable
has four possible values, then there are separate inputs (weights and activations) entering the output
unit for each of the four possible values. The output unit produces four normalized probabilities by
first exponentiating the values, and then normalizing by the sum of the four exponentiated values.

The parameterized policy is therefore factored. In other words, each action variable in the col-
lective action is selected independently, given the probabilities expressedby the softmax output
units. However, the hidden layer of the network allows the policy to ”co-ordinate” these probabili-
ties conditioned on the state.

Second, we implemented an action-value function approximation using a feed-forward neural
network with one hidden layer (Bertsekas and Tsitsiklis, 1996). The output of this network was
a linear unit which gave the estimated value for the state and action presented on the input units.
We used the SARSA algorithm to modify the parameters of the network (Eq.5). The gradient was
computed using error backpropagation (Rumelhart et al., 1986). We used a greedy-epsilon explo-
ration strategy, where the optimal action was approximated by simulated annealing. The number of
iterations of simulated annealing was matched to the number of iterations of samplingused to select
actions from the restricted Boltzmann machine, and the number of hidden units was matched to the
number of hidden variables in the corresponding restricted Boltzmann machine.

7.1 The Large-Action Task

This task is designed to test value representation and action selection in a large action space, and is
not designed to test temporal credit assignment. The large-action task hasonly immediate rewards.
The state at each point in time is selected independent of previous states. The update rules were
therefore used with the discount factorγ set to zero.

Consider a version of the task with anN-bit action. The task is generated as follows: Some
small number of state-action pairs are randomly selected. We will call these “key” pairs. During
execution, a state is chosen at random, and an action is selected by the learner. A reward is then
generated by finding the key state closest to the current state (in Hamming distance). The reward
received by the learner is equal to the number of bits that match between the key-action for this key
state and the current action. So if the agent selects the key action it receives the maximum reward
of N. The reward for any other action is found by subtracting the number of incorrect bits fromN.
The task (forN = 5) is illustrated in Figure 3.

A restricted Boltzmann machine with 13 hidden variables was trained on an instantiation of
the large action task with an 12-bit state space and a 40-bit action space. Thirteen key states were
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Key state

Current
state

Current action: 10010
Key action:     11011

Reward:         3

Figure 3: The large action task. The space of state bit vectors is divided into clusters of those which
are nearest to each “key” state. Each key state is associated with a key action. The reward
received by the learner is the number of bits shared by the selected action and the key
action for the current state.

randomly selected. The network was run for 12 000 actions with a learning rate going from 0.1
to 0.01 and temperature going from 1.0 to 0.1 exponentially over the course of training. Each
iteration was initialized with a random state. Each action selection consisted of 100 iterations of
Gibbs sampling. The task was repeated 10 times for each method. The competingmethods also
had learning rates and (in the case of the backprop network) explorationschedules. The backprop
network used a learning rate going from 0.005 to 0.004, and anε-greedy exploration strategy going
from 1 to 0 linearly over the course of the task. The direct policy method used a learning rate going
from 0.1 to 0.01 over the course of the task. All learning parameters were selected by trial and error
during preliminary experiments, with the best-performing parameters reported here.

Because the optimal action is known for each state we can compare the resultsto the optimal
policy. We also compare to the two competing methods: the direct-policy method of Peshkin et al.
(2000), and the feedforward neural network. The results are shown in Figure 4.

The learner must overcome two difficulties. First, it must find actions that receive rewards for
a given state. Then, it must cluster the states which share commonly rewarded actions to infer
the underlying key states. As the state space contains 212 entries and the action space contains
240 entries, this is not a trivial task. Yet the PoE achieves almost perfect performance after 12 000
actions. In comparison, the two other algorithms achieve suboptimal performance. The direct policy
method seems to be particularly susceptible to local optima, yielding a large variance in solution
quality. The backpropagation network may have continued to improve, given more training time.

7.2 The Blockers Task

The blockers task is a co-operative multi-agent task in which there are offensive players trying to
reach an end zone, and defensive players trying to block them (see Figure 5).

The task is co-operative: As long as one agent reaches the end-zone, the “team” is rewarded. The
team receives a reward of+1 when an agent reaches the end-zone, and a reward of−1 otherwise.
The blockers are pre-programmed with a fixed blocking strategy. Each agent occupies one square
on the grid, and each blocker occupies three horizontally adjacent squares. An agent cannot move
into a square occupied by a blocker or another agent. The task has non-wrap-around edge conditions
on the bottom, left and right sides of the field, and the blockers and agents can move up, down, left
or right. Agents are ordered. If two agents want to move in to the same square, the first agent in
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Figure 4: Results for the large action task. The graphs shows average reward versus iteration of
training for three algorithms. The optimal policy gives an average reward of 40 (upper
line). A random policy gives gives an average return of 20 (lower line). The solid line
shows the PoE network, the dashed line shows the backprop network performance, and
the dash-dotted line shows the direct policy method. Errorbars indicate 95%confidence
intervals, computed across 10 repetitions of the task.

end-zone

blockers

agents

Figure 5: An example of the “blocker” task. Agents must get past the blockers to the end-zone. The
blockers are pre-programmed with a strategy to stop them, but if the agents co-operate
the blockers cannot stop them all simultaneously.

the ordering will succeed, and any others trying to move into that square willbe unsuccessful. Note
that later agents can not see the moves of earlier agents when making decisions. The ordering is just
used to resolve collisions. If a move is unsuccessful, then the agent remains in its current square.

The blockers’ moves are also ordered, but subsequent blockers domake decisions based on
the moves of earlier blockers. The blockers operate a zone-based defense. Each blocker takes
responsibility for a group of four columns. For example, blocker 1 is responsible for columns 1
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through 4, blocker 2 is responsible for columns 4 through 7, and so on. If an agent moves into
one of its columns and is in front of the end-zone, a blocker will move to blockit. Because of the
ordering, blockers will not move to stop agents that have already been stopped by other blockers.

A restricted Boltzmann machine with 4 hidden variables was trained using the SARSA learning
rule on a 5×4 blocker task with two agents and one blocker. The collective state consisted of three
position variables (two agents and one blocker) which could take on integervalues{1, ...,20}. The
collective action consisted of two action variables taking on values from{1, ...,4}. The PoE was
compared to the backpropagation network and the direct policy method.

Each test was replicated 10 times. Each test run lasted for 300 000 collective actions, with a
learning rate going from 0.1 to 0.01 linearly and temperature going from 1.0 to 0.01 exponentially
over the course of training. Gibbs sampling and simulated annealing lasted for10 iterations. The
learning rates of the competing methods were the same as for the PoE network.The backpropaga-
tion network used anε-greedy policy going linearly from 1 to 0 over the course of the task. The
parameters for all of the methods were selected by trial and error using initial experiments, and the
best performing values are reported here.

Each trial was terminated after either the end-zone was reached, or 20 collective actions were
taken, whichever occurred first. Each trial was initialized with the blocker placed randomly in the
top row and the agents placed randomly in the bottom row. The results are shown in Figure 6.
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Figure 6: Results for the 2-agent blocker task. The graph shows average reward versus iteration
of training for three algorithms. The solid line shows the PoE approximation; thedot-
dashed line shows the direct policy method; and the dashed line shows the backprop
network. The error bars show 95% confidence intervals.

Overall, the PoE network performs better than the two other algorithms. All three algorithms
have the potential to find suboptimal local optima. Again, the direct policy algorithm seems to be
particularly susceptible to this. The backprop network might have done better if it was allowed to
continue training. The direct policy method finds a solution noticeably faster than the other two
algorithms.

A restricted Boltzmann machine with 16 hidden variables was trained on a 4×7 blockers task
with three agents and two blockers. Again, the input consisted of position variables for each blocker
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and agent, and action variables for each agent. The network was trainedfor 300 000 collective
actions, with a learning rate going from 0.1 to 0.05 linearly and temperature from 1 to 0.06 expo-
nentially over the course of the task. Each trial was terminated after either theend-zone was reached,
or 40 steps were taken, whichever occurred first. Again, the two competitor algorithms were also
used. Each competitor had 16 hidden units, and simulated annealing and Gibbssampling lasted for
10 iterations. The competing methods used the same learning rates and exploration strategy as in
the previous experiment. Again, the task was replicated 10 times for each algorithm. The results
are shown in Figure 7.
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Figure 7: Results for the 3-agent blocker task. The graph shows average reward versus iteration
of training for three algorithms. The solid line shows the PoE approximation; thedot-
dashed line shows the direct policy method; and the dashed line shows the backprop
network. The error bars show 95% confidence intervals.

In this larger version of the task, the backprop network does extremely poorly. The direct policy
method does significantly worse than the PoE method. Of the three methods, the PoE method was
able to find the best solution, although a suboptimal one. An example of a typical run for the 4×7
task is shown in Figure 8. The strategy discovered by the learner is to force the blockers apart with
two agents, and move up the middle with the third. In the example, notice that Agent1 seems to
distract the “wrong” blocker given its earlier position. The agents in this example have learned a
sub-optimal policy, where Agent 1 moves up as far as possible, and then left as far as possible,
irrespective of its initial position.

Examples of features learned by the experts are shown in Figure 9. The hidden variables be-
come active for a specific configuration in state space, and recommend a specific set of actions.
Histograms below each feature indicate when that feature tends to be activeduring a trial. The his-
tograms show that feature activity is localized in time. Features can be thoughtof as macro-actions
or short-term policy segments. Each hidden variable becomes active during a particular “phase” of
a trial, recommends the actions appropriate to that phase, and then ceases tobe active.
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Figure 8: Example agent strategy after learning the 4× 7 blocker task. a) The three agents are
initialized to random locations along the bottom of the field. b) Two of the agents run to
the top of the playing field. c) These two agents split and run to the sides. d) The third
agent moves up the middle to the end-zone.

8. Discussion

The action sampling method is closely related to actor-critic methods (Sutton, 1984; Barto et al.,
1983). An actor-critic method can be viewed as a biased scheme for selecting actions according
to the value assigned to them by the critic. The selection is biased by the choice of actor param-
eterization. The sampling method of action selection is unbiased if the Markov chain is allowed
to converge, but requires more computation. This is exactly the trade-off explored in the graphical
models literature between the use of Monte Carlo inference (Neal, 1992) and variational approxi-
mations (Neal and Hinton, 1998; Jaakkola, 1997). Further, the resultant policy can potentially be
more complicated than a typical parameterized actor would allow. This is because a parameterized
distribution over actions has to be explicitly normalized. For example, an actor network might pa-
rameterize all policies in which the probability over each action variable is independent. This is the
restriction implemented by Peshkin et al. (2000), and is also used for the direct policy method in
our experimental section.

The sampling algorithm is also related to probability matching (Sabes and Jordan,1996), in
which good actions are made more probable under a model, and the temperature at which the prob-
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Figure 9: Features of the learned value function approximator for the 3-agent blocker task. The
four features (a,b,c and d) correspond to the four stages shown in Figure 8. Each feature
corresponds to a hidden variable in the RBM. The Hinton diagram shows where each
of the three agents must be in order to “activate” the hidden variable (cause it to have
a value of unity with high probability). The vector diagram indicates what actions are
recommended by the hidden variable. The histogram is a plot of frequencyof activation
of the hidden variable versus time in a trial. It shows when during a run this feature tends
to be active. The learned features are localized in state space and action space. Feature
activity is localized in time.

ability is computed is slowly reduced over time in order to move from exploration to exploitation
and avoid local minima. Unlike the sampling algorithm, the probability matching algorithmused
a parameterized distribution which was maximized using gradient descent, andit did not address
temporal credit assignment.
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The PoE approximator could also be used in direct policy method. The networkwould directly
encode the probabilities of selecting actions given states, rather than encoding the values of states
and actions. Given a state, an action could be found using a sampling method.The sampling method
would select actions approximately according to the policy encoded by the PoE.

Direct policy methods can be advantageous, because encoding the relative goodness of actions
or a ranking of actions might be simpler than encoding actual values. That is, the optimal policy
might be easier to learn than the value function. A PoE could be used with any direct policy method
that only requires samples from the policy. This is because it is in general intractable to evaluate the
probabilities of actions encoded in the PoE network, but possible to approximately sample actions
using an MCMC method.

It is possible that the Gibbs sampling method which we use might not work well for some
problems. In this case, other sampling methods could be used, which are better suited to avoiding
local minima. While the need to sample actions using MCMC can be viewed as a disadvantage of
our technique, an advantage is that improvements in sampling methods can be easily incorporated
as they are developed.

8.1 Macro Actions

One way to interpret the individual experts in the product model is that theyare learning “macro”
or “basis” actions. As we have seen with the Blockers task, the hidden variables come to represent
sets of actions that are spatially and temporally localized. We can think of the hidden variables
as representing “basis” actions that can be combined to form a wide arrayof possible actions.
The benefit of having basis actions is that it reduces the number of possible actions, thus making
exploration more efficient. The drawback is that if the set of basis actions do not span the space
of all possible actions, some actions become impossible to execute. By optimizing the set of basis
actions during reinforcement learning, we find a set that can form useful actions, while excluding
action combinations that are either not seen or not useful.

The “macro” actions learned by the PoE should not be confused with “temporally abstract ac-
tions”. The learning and use of temporally abstract actions is an important area of current research
in reinforcement learning (Parr and Russell, 1998; Precup et al., 1998; McGovern, 1998; Dietterich,
2000). The “macro” actions learned by the PoE have some features in commonwith these tempo-
rally abstract actions. In particular, the PoE macro actions tend to remain active for temporally pro-
longed periods. However, that does not make them temporally abstract actions. They do not come
with the formal machinery of most temporally abstract actions (such as termination conditions), and
it would be difficult to fit them in to one of the existing frameworks for temporalabstraction. The
PoE “basis” actions should be thought of as finding a smaller subset of “good” actions within a large
space of possible actions.

This suggests one way to improve the performance of an existing PoE solution. If the solution
is performing poorly, it could be because some of the action space is not spanned by basis actions.
Adding and learning parameters for additional hidden variables, while holding the parameters of
the pre-existing variables constant, would allow the policy to improve without having to re-learn the
entire solution. Similarly, if some useful collective actions are known a priori,they can be “hard-
coded” into the PoE by fixing the hidden-action weights, and allowing the PoE tolearn when (in
which collective states) to use them.
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8.2 Conditional Completion

If the action allowed at a particular time step is constrained, it is natural to wantto know what is
the best action consistent with the constraints. For example, if one of the agents in the blocker task
becomes unable to move in directions other than up, we would like to ask for actions for the other
agents that are consistent with this restriction. Sampling allows us to do this easilyby fixing a subset
of action variables to their required values, and sampling the rest. The result is a set of good values
for some action variables conditioned on the fixed values of the others.

Similarly, we can fix only some of the state variables, and sample others. No doubt this would
be most useful for data completion: If a state variable is missing, it would be nice to fill it in with
its most probable value, conditioned on the others. Unfortunately we can not do this with a single
PoE model. Instead of filling in values according to how probable they are under the dynamics of
the environment, it will fill in values that yield high expected returns. In otherwords, the values
that will be filled in for state variables will be those that are most desirable, not most probable. This
could be used for an optimistic form of state completion, giving an upper bound on what reward we
expect to see given that we do not really know what values those state variables take on. This could
also be used to identify valuable “target” states that should be achieved if possible.

9. Summary

In this article we have shown that a combination of probabilistic inference, model learning and value
function approximation allows for the solution of large Markov decision processes with factored
states and actions. We have shown that the sampling technique can select actions in large action
spaces (40 bit actions). We have drawn links between approximate inference, state representation
and action selection. Future research on hierarchical value functions and directly learning stochastic
policies represented as PoE models might be particularly fruitful.
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Appendix A.

In this appendix we give some derivations related to restricted Boltzmann machines. First, we
show that, for a restricted Boltzmann machine, the posterior distribution over hidden variables given
visible variables factors into the product of the posterior distributions overeach individual hidden
variable. Second, we show that the two expressions for the equilibrium free energy are equivalent,
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and compute the derivative of the equilibrium free energy of a restricted Boltzmann machine with
respect to a parameter.

Given a set of binary random variablesV with valuesv, binary hidden variablesH with valuesh,
and symmetric weighted edgewik connecting visible variablei to hidden variablek, the equilibrium
free energy is given by

F(v) = 〈E(v,h)〉P(h|v) + 〈logP(h|v)〉P(h|v) .

In the above,E(v,h) denotes the energy,P(h|v) denotes the posterior distribution of the hidden
variables given the visible variables, and〈·〉P denotes an expectation with respect to distributionP
(see Section 5.1).

Consider the posterior distribution over the hidden variables. In the following, vi denotes the
value of visible variablei, andhk denotes the value of hidden variablek. The notation∑ĥ denotes a
summation over all possible assignments to the binary variables in the setH.

P(h|v) =
exp{∑i,k wikvihk}

∑ĥ exp{∑i,k wikvi ĥk}

=
∏k exp{∑i wikvihk}

∑ĥ ∏k exp{∑i wikvi ĥk}

=
∏k exp{∑i wikvihk}

∏k ∑1
ĥk=0

exp{∑i wikvi ĥk}

= ∏
k

exp{∑i wikvihk}

∑1
ĥk=0

exp{∑i wikvi ĥk}

= ∏
k

P(hk|v).

The posterior factors into the product of the posterior distributions over each separate hidden
variable, given the values of the visible variables. The posterior over hidden variables can be com-
puted efficiently, because each individual hidden-unit posterior is tractable:

P(hk = 1|v) = σ(E(v,hk = 1)) ,

whereσ(·) denotes the logistic function:σ(x) = 1/(1+e−x).
We will now compute the derivative of the equilibrium free energy with respect to a weight. We

follow the technique of (Hertz et al., 1991). First, we prove the correspondence between the negative
equilibrium free energy and the log of the normalizing constant of the posterior distribution (see Eqs.
6 and 9) :

F(v) = 〈E(v,h)〉P(h|v) + 〈logP(h|v)〉P(h|v)

= 〈E(v,h)〉P(h|v) + 〈logP(h|v)〉P(h|v)

+ log∑̂
h

exp{−E(v, ĥ)}− log∑̂
h

exp{−E(v, ĥ)}

= −〈logexp{−E(v,h)}〉P(h|v) + 〈logP(h|v)〉P(h|v)

+ log∑̂
h

exp{−E(v, ĥ)}− log∑̂
h

exp{−E(v, ĥ)}
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= −

〈
log

exp{−E(v,h)}

∑ĥ exp{−E(v, ĥ)}

〉

P(h|v)

+〈logP(h|v)〉P(h|v)− log∑̂
h

exp{−E(v, ĥ)}

= −〈logP(h|v)〉P(h|v) + 〈logP(h|v)〉P(h|v)− log∑̂
h

exp{−E(v, ĥ)}

= − log∑̂
h

exp{−E(v, ĥ)}

= − logZh, (11)

whereZh denotes the normalizing constant of the posterior distribution over the hiddenvariables
given the visible variables.

Next, we can take the derivative of− logZh with respect to a weightwik.

−
∂ logZh

∂wik
= −

1
Zh

∂Zh

∂wik

=
−1
Zh

∂
∂wik

[

∑̂
h

exp{−E(v, ĥ)}

]

=
−1
Zh

∂
∂wik

[

∑̂
h

exp{∑
i,k

wikvi ĥk}

]

= ∑̂
h

−1
Zh

[
vi ĥk exp{∑

i,k

wikvi ĥk}

]

= −∑̂
h

exp{∑i,k wikvi ĥk}

Zh
vi ĥk

= −∑̂
h

P(ĥ|v)vi ĥk

= −vi 〈hk〉P(h|v) .

Thus, the derivative of the equilibrium free energy with respect to a weight is simply the ex-
pected value of the hidden variable, times the value of the visible variable.
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Abstract

Most machine learning researchers perform quantitative experiments to estimate generalization
error and compare the performance of different algorithms (in particular, their proposed algorithm).
In order to be able to draw statistically convincing conclusions, it is important to estimate the
uncertainty of such estimates. This paper studies the very commonly used K-fold cross-validation
estimator of generalization performance. The main theoremshows that there exists no universal
(valid under all distributions) unbiased estimator of the variance of K-fold cross-validation. The
analysis that accompanies this result is based on the eigen-decomposition of the covariance matrix
of errors, which has only three different eigenvalues corresponding to three degrees of freedom of
the matrix and three components of the total variance. This analysis helps to better understand the
nature of the problem and how it can make naive estimators (that don’t take into account the error
correlations due to the overlap between training and test sets) grossly underestimate variance. This
is confirmed by numerical experiments in which the three components of the variance are compared
when the difficulty of the learning problem and the number of folds are varied.

Keywords: cross-validation, variance estimators, k-fold cross-validation, statistical comparisons
of algorithms

1. Introduction

In machine learning, the standard measure of accuracy for trained modelsis the prediction error
(PE), i.e. the expected loss on future examples. Learning algorithms themselves are often com-
pared according to their average performance, which is formally definedas the expected value of
prediction error (EPE) over training sets.

When the data distribution is unknown, PE and EPE cannot be computed. If the amount of
data is large enough, PE can be estimated by the mean error over a hold-outtest set. The usual
variance estimates for means of independent samples can then be computed toderive error bars
on the estimated prediction error, and to assess the statistical significance ofdifferences between
models.

The hold-out technique does not account for the variance with respect to the training set, and
may thus be considered inappropriate for the purpose of algorithm comparison (Dietterich, 1999).
Moreover, it makes an inefficient use of data which forbids its application tosmall sample sizes. In
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this situation, one rather uses computer intensive resampling methods such ascross-validation or
bootstrap to estimate PE or EPE.

We focus here on K-fold cross-validation. While it is known that cross-validation provides an
unbiased estimate of EPE, it is also known that its variance may be very large (Breiman, 1996). This
variance should be estimated to provide faithful confidence intervals on PEor EPE, and to test the
significance of observed differences between algorithms. This paper provides theoretical arguments
showing the difficulty of this estimation.

The difficulties of the variance estimation have already been addressed (Dietterich, 1999; Ko-
havi, 1995; Nadeau and Bengio, 2003). Some distribution-free boundson the deviations of cross-
validation are available, but they are specific to some locally defined decisionrules, such as nearest
neighbors (Devroye et al., 1996). This paper builds upon the work of Nadeau and Bengio (2003),
which investigated in detail the theoretical and practical merits of several estimators of the variance
of cross-validation. Our analysis departs from this work in the sampling procedure defining the
cross-validation estimate. While Nadeau and Bengio (2003) consider K independent training and
test splits, we focus on the standard K-fold cross-validation procedure, where there is no overlap
between test sets: each example of the original data set is used once and only once as a test example.

This paper is organized as follows. Section 2 defines the measures of performance for algo-
rithms, their estimation by K-fold cross-validation and similar procedures suchas delete-m jack-
knife. Our theoretical findings are summarized in Sections 3–6. They are followed in Section 7 by
experiments illustrating the effect of experimental conditions on the total variance and its decom-
position in three components, and confirming the underestimation of variance obtained by the naive
estimator commonly used by researchers.

2. General Framework

In machine learning, the performance measure differs according to the experimenter’s viewpoint. In
applications, we are interested in finding the best algorithm for solving the particular task at hand,
specified by one particular training set and some information about the data generating process. In
algorithm evaluation, we want to compare several learning algorithms for different learning tasks,
and we care about the sensitivity of the learning algorithm to the choice of training examples.

2.1 Measures of Performance

Formally, we have a training setD = {z1, . . . ,zn}, with zi ∈ Z, independently sampled from an
unknown distributionP. We also have a learning algorithmA, which maps a data set of (almost)
arbitrary size to a functionA : Z∗ → F . Throughout this paper, we consider symmetric algorithms,
i.e. A is insensitive to the ordering of examples in the training setD. The discrepancy between the
prediction and the observationz is measured by a loss functionalL : F ×Z → R. Typically, L is
the quadratic loss in regression (L( f ,(x,y)) = ( f (x)− y)2) and the misclassification{0,1}-loss in
classification ((L( f ,(x,y)) = 1f (x)6=y).

Let f = A(D) be the function returned by algorithmA on the training setD. In application based
evaluation, the goal of learning is usually stated as the minimization of the prediction error, i.e. the
expected loss on future test examples

PE(D) = E[L( f ,z)], (1)
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where the expectation is taken with respect toz sampled fromP.1

In algorithm based evaluation, we are not really interested in performances on a specific training
set; we would like comparisons on a more general basis. In this context, the lowest level of gen-
erality can be stated as “training sets of sizen sampled fromP”, and the performance of learning
algorithmA can be measured by the expected performance of the functions returnedin this situation

EPE(n) = E[L(A(D),z)], (2)

where the expectation is taken with respect toD sampled fromPn andz independently sampled
from P.

Note that other types of performances measure can be proposed, based for example on parame-
ters, or defined by the predictability in other frameworks, such as the prequential analysis (Dawid,
1997).

When the data distribution is unknown, PE and EPE cannot be computed. They have to be
estimated, and it is often crucial to assess the uncertainty attached to this estimation:

• in application-oriented experiments, to give a confidence interval on PE;

• in algorithm-oriented experiments, to take into account the stability of a given algorithm.
For comparisons between algorithms, it is essential to assess the statistical significance of
observed differences in the estimatêEPE.

Although this point is often overlooked, estimating the variance of the estimatesP̂E andÊPE re-
quires caution.

2.2 Hold-Out Estimates of Performance

If the amount of data is large enough, PE can be estimated by the mean error over a hold-out test set,
and the usual variance estimate for means of independent variables can then be computed. However,
even in the ideal situation where several independent training and test sets would be available, this
estimate should not be applied to compute the variance ofÊPE: even though training and test
examples are independent, the test errors are correlated, since many test errors are computed for
each training set, now considered as a random variable.

Figure 1 illustrates how crucial it is to take these correlations into account. The mean of two
variance estimators is reportedvs. the empirical variance of the hold-out estimate, in an ideal situ-
ation where 10 independent training and test sets are available. The variance ofÊPE(n) (estimated
on 100,000 independent experiments) is displayed for reference by thedotted line. The average of
θ̂1, the variance estimator ignoring correlations, shows that this estimate is highly biased, even for
large sample sizes, whereas the variance estimatorθ̂2, taking into account correlations, is unbiased.
The details of this experiment are given below.

Experiment 1 Ideal hold-out estimate ofEPE.
We have K= 10 independent training sets D1, . . . ,DK of n independent exampleszi = (xi ,yi),

wherexi = (xi1, . . . ,xid)′ is a d-dimensional centered, unit covariance Gaussian variable (d= 30),

1. Note that we are using the same notation for random variables and their realization. The intended meaning will be
specified when not clear from the context.
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Figure 1: Estimates of the variance of̂EPE(n) vs. empirical variance of̂EPE(n) (shown by bold
curve) on 100,000 experiments. The average of the variance estimatorsθ̂1 (ignoring
correlations, dashed curve) and̂θ2 (taking into account correlations, dotted curve) are
displayed for different training sample sizen.

yi =
√

3/d∑d
k=1xik +εi with εi being independent, centered, unit variance Gaussian variables.2 We

also have K independent test sets T1, . . . ,TK of size n sampled from the same distribution.
The learning algorithm consists in fitting a line by ordinary least squares, and the estimate of

EPE is the average quadratic loss on test exampleŝEPE = L̄ = 1
K ∑K

k=1
1
n ∑zi∈Tk

Lki, where Lki =
L(A(Dk),zi).

The first estimate of variance of̂EPE is θ̂1 = 1
Kn(Kn−1) ∑K

k=1 ∑i(Lki − L̄)2, which is un-

biased provided there is no correlation between test errors. The second estimate isθ̂2 =
1

K(K−1)n2 ∑K
k=1 ∑i, j(Lki − L̄)(Lk j − L̄), which takes into account correlations between test errors.

Looking at Figure 1 suggests that asymptotically the naive estimator of variance converges to
the true variance. This can be shown formally by taking advantage of the results in this paper,
as long as the learning algorithm converges as the amount of training data goes to infinity (i.e. as
n→∞ the functionA(D) obtained does not depend on the particular training setD). In that limit, the
correlations between test errors converge to 0. The rate of convergence will depend on the stability
of the learning algorithm as well as on the nature of the data distribution (e.g., the presence of thick
tails and outliers will slow down convergence).

The hold-out technique makes an inefficient use of data which forbids its application in most
real-life applications with small samples. Then, K-fold cross-validation can provide estimates of PE
or EPE.

2.3 K-Fold Cross-Validation Estimates of Performance

Cross-validation is a computer intensive technique, using all available examples as training and test
examples. It mimics the use of training and test sets by repeatedly training the algorithm K times
with a fraction 1/K of training examples left out for testing purposes. This kind of hold-out estimate
of performance lacks computational efficiency due to the repeated training, but the latter are meant
to lower the variance of the estimate (Stone, 1974).

2. The
√

3/d factor provides anR2 of approximately 3/4.
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In practice, the data setD is first chunked intoK disjoint subsets (orblocks) of the same size3

m
∆
= n/K. Let us writeTk for thek-th such block, andDk the training set obtained by removing the

elements inTk from D. The cross-validation estimator is defined as the average of the errors ontest
blockTk obtained when the training set is deprived fromTk:

CV(D) =
1
K

K

∑
k=1

1
m ∑

zi∈Tk

L(A(Dk),zi). (3)

Does CV estimate PE or EPE? Such a question may seem pointless considering that PE(D) is
an estimate of EPE(n), but it becomes relevant when considering the variance of CV: does it inform
us of the uncertainty about PE or EPE?

On the one hand, only one training set,D, enters the definition of CV, which can be, up to an
approximation, an unbiased estimate of PE(D) (Hastie and Tibshirani, 1990).4 Some distribution-
free bounds on the expected deviations of|CV(D)−PE(D)| are available for leave-one-out cross-
validation applied to specific algorithmsA such as nearest neighbors (Devroye et al., 1996). In
a more general context, it has also been proved that, under suitable stabilityassumptions on the
algorithmA, CV(D) estimates PE(D) at least as accurately as the training error (Kearns and Ron,
1996; Anthony and Holden, 1998). A more appealing result states that CVis a more accurate
estimate of PE than hold-out testing (Blum et al., 1999). However, this statement does not apply
to PE(D), but to the prediction error of a randomized algorithm picking solutions uniformly within
{A(Dk)}

K
k=1.

On the other hand, CV is explicitly defined from the learning algorithmA, and not from the
function f = A(D). The inner average in the definition of CV (3) is an average test loss forA(Dk)
which thus estimates unbiasedly PE(Dk). The training setsD1, . . . ,DK are clearly not independent,
but they are sampled fromPn−m. Hence, the outer average of (3) estimates unbiasedly EPE(n−m).5

Here, following Dietterich (1999) and Nadeau and Bengio (2003), we willadopt this latter point of
view.

The variance estimate of̂EPE provided by the hold-out estimate has to account for test error
dependencies due to the choice of training set, which cannot be estimated using a single training/test
experiment. Here, the situation is more complex, since there are additional dependencies due to the
overlapping training setsD1, . . . ,DK . Before describing this situation in detail and summarizing
the results of our theoretical analysis in Sections 3–6, we detail some procedures similar to K-fold
cross-validation, for which the forthcoming analysis will also hold.

2.4 Other Estimates of the K-Fold Cross-Validation Type

One of the main use of variance estimates of̂EPE is to compare learning algorithms. The analysis
presented in this paper also applies to the version of cross-validation dedicated to this purpose: if
we want to compare the performances of algorithmsA1 andA2, cross-validation with matched pairs

3. To simplify the analysis below we assume thatn is a multiple ofK.
4. More precisely, following Hastie and Tibshirani (1990), whenL is the quadratic loss, and writingf = A(D), f−k =

A(Dk), assuming that for(xi ,yi) = zi ∈ Tk, 1
K ∑K

k=1 f−k(xi) ≈ f (xi) (which is weaker thanf−k ≈ f ) yieldsE[CV] ≈

E[ 1
n ∑n

i=1( f (xi)−yi)
2], where the expectation is taken with respect toy1, . . . ,yn.

5. Note that leave-one-out cross-validation is known to fail to estimate EPEfor unsmooth statistics (e.g. Breiman, 1996;
Efron and Tibshirani, 1993). This failure is due to the similarity of the trainingsetsD1, . . . ,DK which are far from
being representative samples drawn fromPn−m.
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should be the method of choice

∆CV(D) =
1
K

K

∑
k=1

1
m ∑

zi∈Tk

L(A1(Dk),zi)−L(A2(Dk),zi). (4)

Compared to the difference of two independent cross-validation estimates,∆CV avoids the addi-
tional variability due to train/test splits.

In application oriented experiments, we would like to estimate PE(D), the expected error when
training with the givenD. We have seen in Section 2.3 that under stability assumptions, CV can be
used to estimate PE. Alternatively, we may resort to the jackknife or the delete-m jackknife (see e.g.
Efron and Tibshirani (1993)) to estimate the optimism (i.e. the bias of the mean error on training
examples, when the latter is used to estimate PE(D)). Ideally, the estimate of optimism should be
an average over all subsets of sizen−m, but a less computationally intensive alternative is

(K−1)

(
1

K(n−m)

K

∑
k=1

∑
zi∈Dk

L(A(Dk),zi)−
1
n

n

∑
i=1

L(A(D),zi)

)
. (5)

The link with cross-validation is exhibited more clearly by the following expression of the (de-
biased) jackknife estimate of PE

JK = CV+
1
n

K

∑
k=1

n

∑
i=1

(L(A(D),zi)−L(A(Dk),zi)) . (6)

For additional information about jackknife estimates and clues on the derivation of (5) and (6), the
reader is referred to Efron and Tibshirani (1993).

2.5 Generic Notations

This paper studies the variance of statistics such as CV,∆CV or JK. In what follows, these statistics
will be denoted by ˆµ, a generic notation for means of observationsei split in K groups.

µ̂ =
1
n

n

∑
i=1

ei

=
1
K

K

∑
k=1

1
m ∑

i∈Tk

ei ,

where, slightly abusing notation,i ∈ Tk meanszi ∈ Tk and

∀i ∈ Tk, ei =





L(A(Dk),zi) for µ̂= CV,
L(A1(Dk),zi)−L(A2(Dk),zi) for µ̂= ∆CV,
KL(A(D),zi)−∑`6=k L(A(D`),zi) for µ̂= JK.

Note thatµ̂ is the average of identically distributed (dependent) variables. Thus, it asymptoti-
cally converges to a normally distributed variable, which is completely characterized by its expec-
tationE[µ̂] and its variance Var[µ̂] = E[µ̂2]−E[µ̂]2.
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3. Structure of the Covariance Matrix

The variance of ˆµ is defined as follows

θ =
1
n2 ∑

i, j

Cov(ei ,ej),

where Cov(ei ,ej) = E[eiej ]−E[ei ]E[ej ] is the covariance between variablesei andej .
By using symmetry arguments over permutations of the examples inD, we show that many

distributions onei and pairwise joint distributions on(ei ,ej) are identical. As a result, the covariance
matrix Σ has a very particular block structure, with only three possible values forΣi j = Cov(ei ,ej),
and the expression ofθ is thus a linear combination of these three values.

Lemma 1 Using the notation introduced in section 2.5,

1. all ei are identically distributed:

there exists f such that,∀i, P(ei = u) = f (u).

2. all pairs(ei ,ej) belonging to the same test block are jointly identically distributed:

there exists g such that,∀(i, j) ∈ T2
k : j 6= i, P(ei = u,ej = v) = g(u,v).

3. all pairs(ei ,ej) belonging to different test blocks are jointly identically distributed:

there exists h such that,∀i ∈ Tk, ∀ j ∈ T̀ : ` 6= k, P(ei = u,ej = v) = h(u,v).

Proof
These results are derived immediately from the permutation-invariance of P(D) and the symmetry
of A.

• invariance with respect to permutations within test blocks:

1. ∀(i, i′) ∈ T2
k , P(ei = u) = P(ei′ = u) = fk(u);

∀(i, i′) ∈ T2
k , ∀ j ∈ T̀ :

P(ei = u,ej = v) = P(ei′ = u,ej = v)

hence:

2. ∀(i, j) ∈ T2
k : j 6= i, P(ei = u,ej = v) = gk(u,v).

3. ∀i ∈ Tk, ∀ j ∈ T̀ : ` 6= k, P(ei = u,ej = v) = hk`(u,v).

• invariance with respect to permutations between test blocks.

1. ∀(k,k′), fk(u) = fk′(u) = f (u);

2. ∀(k,k′), gk(u,v) = gk′(u,v) = g(u,v);

3. ∀(k,k′), ∀(`,`′) : ` 6= k, ` 6= k′, `′ 6= k, `′ 6= k′, hk`(u,v) = hk`′(u,v) = hk′`′(u,v) =
hk′`(u,v) = h(u,v).

Q.E.D.
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Corollary 2 The covariance matrixΣ of cross-validation errorse = (e1, . . . ,en)
′ has the simple

block structure depicted in Figure 2:

1. all diagonal elements are identical

∀i, Cov(ei ,ei) = Var[ei ] = σ2;

2. all the off-diagonal entries of the K m×m diagonal blocks are identical

∀(i, j) ∈ T2
k : j 6= i, Cov(ei ,ej) = ω;

3. all the remaining entries are identical

∀i ∈ Tk, ∀ j ∈ T̀ : ` 6= k, Cov(ei ,ej) = γ.
n︷ ︸︸ ︷

︸ ︷︷ ︸
m

Figure 2: Structure of the covariance matrix.

Corollary 3 The variance of the cross-validation estimator is a linear combination of three mo-
ments:

θ =
1
n2 ∑

i, j

Cov(ei ,ej)

=
1
n

σ2 +
m−1

n
ω+

n−m
n

γ (7)

Hence, the problem of estimatingθ does not involve estimatingn(n+ 1)/2 covariances, but it
cannot be reduced to that of estimating a single variance parameter. Threecomponents intervene,
which may be interpreted as follows when ˆµ is the K-fold cross-validation estimate of EPE:

1. The varianceσ2 is the average (taken over training sets) variance of errors for “true”test
examples when algorithmA is fed with training sets of sizem(K−1).

2. The within-block covarianceω would also apply to “true” test examples; it arises from the
dependence of test errors stemming from the common training set.

3. The between-blocks covarianceγ is due to the dependence of training sets (which sharen(K−
2)/K examples) and the fact that test blockTk appears in all the training setsD` for ` 6= k.

The forthcoming section makes use of this structure to show that there is no universal unbiased
estimator ofθ.
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4. No Unbiased Estimator of Var[µ̂] Exists

Consider a generic estimatorθ̂ that depends on the sequence of cross-validation errorse =
(e1,e2, . . . ,en)

′. Let us assume that̂θ is an analytic function of the errors, so that we can write
its Taylor expansion

θ̂ = α0 +∑
i

α1(i)ei +∑
i, j

α2(i, j)eiej + ∑
i, j,k

α3(i, j,k)eiejek + . . . . (8)

We first show that for unbiased variance estimates (i.e.E[θ̂] = Var[µ̂]), all theαi coefficients must
vanish except for the second order coefficientsα2,i, j .

Lemma 4 There is no universal unbiased estimator ofVar[µ̂] that involves the ei in a non-quadratic
way.
Proof
Take the expected value ofθ̂ expressed as in (8), and equate it withVar[µ̂] (7):





E[θ̂] =α0 +∑
i

α1(i)E[ei ]+∑
i, j

α2(i, j)E[eiej ]+ ∑
i, j,k

α3(i, j,k)E[eiejek]+ . . .

θ = 1
nσ2 + m−1

n ω+ n−m
n γ.

For having E[θ̂] = θ for all possible values of the moments ofe, one must haveα0 = 0 becauseθ
has no such constant term, not depending on any of the moments ofe. Similarly,α1(·) must be zero
becauseθ has no term in E[ei ] = µ. Finally, the third and higher order coefficientsα`(. . .), ` > 2
must also be zero becauseθ has only quantities depending on the second order momentsσ2, ω and
γ.

Q.E.D.

Since estimators that include moments other than the second moments in their expectation are
biased, we now focus on the class of estimators which are quadratic forms of the errors, i.e.

θ̂ = e′We = ∑
i, j

Wi j eiej . (9)

Lemma 5 The expectation of quadratic estimatorsθ̂ defined as in (9) is a linear combination of
only three terms

E[θ̂] = a(σ2 +µ2)+b(ω+µ2)+c(γ+µ2), (10)

where(a,b,c) are defined as follows:





a
∆
= ∑n

i=1Wii ,

b
∆
= ∑K

k=1 ∑i∈Tk ∑ j∈Tk: j 6=i Wi j ,

c
∆
= ∑K

k=1 ∑`6=k ∑i∈Tk ∑ j∈T̀ Wi j .

A “trivial” representer of estimators with this expected value is

θ̂ = as1 +bs2 +cs3, (11)
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where(s1,s2,s3) are the only quadratic statistics ofe that are invariants to the within blocks and
between blocks permutations described in Lemma 1:





s1
∆
=

1
n

n

∑
i=1

e2
i ,

s2
∆
=

1
n(m−1)

K

∑
k=1

∑
i∈Tk

∑
j∈Tk: j 6=i

eiej ,

s3
∆
=

1
n(n−m)

K

∑
k=1

∑̀
6=k

∑
i∈Tk

∑
j∈T̀

eiej .

(12)

Proof
This result is obtained exploiting Corollary 2 and grouping the terms ofθ̂ in Equation (9) that have
the same expected values.

E[θ̂] =
K

∑
k=1

∑
i∈Tk

(
Wii E[e2

i ]+ ∑
j∈Tk: j 6=i

Wi j E[eiej ]+ ∑̀
6=k

∑
j∈T̀

Wi j E[eiej ]

)

= (σ2 +µ2)
n

∑
i=1

Wii +(ω+µ2)
K

∑
k=1

∑
i∈Tk

∑
j∈Tk: j 6=i

Wi j +

(γ+µ2)
K

∑
k=1

∑̀
6=k

∑
i∈Tk

∑
j∈T̀

Wi j

= a(σ2 +µ2)+b(ω+µ2)+c(γ+µ2)

= aE[s1]+bE[s2]+cE[s3],

which is recognized as the expectation of the estimator defined in Equation (11).

Q.E.D.

We now use Lemma 5 to prove that there is nouniversallyunbiased estimator of Var[µ̂], i.e.
there is no estimator̂θ such thatE[θ̂] = Var[µ̂] for all possible distributions ofe.

Theorem 6 There exists no universally unbiased estimator ofVar[µ̂].
Proof
Because of Lemma 4 and 5, it is enough to prove the result for estimators that are quadratic forms
expressed as in Equation (11). To obtain unbiasedness, the expected value of that estimator must be
equated withVar[µ̂] (7):

a(σ2 +µ2)+b(ω+µ2)+c(γ+µ2) =
1
n

σ2 +
m−1

n
ω+

n−m
n

γ. (13)

For this equality to be satisfied for all distributions of cross-validation errors, it must be satisfied
for all admissible values of µ,σ2, ω, andγ. This imposes the following unsatisfiable constraints on
(a,b,c): 




a = 1
n,

b = m−1
n ,

c = n−m
n ,

a+b+c = 0.

(14)

Q.E.D.
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5. Eigenanalysis of the Covariance Matrix

One way to gain insight on the origin of the negative statement of Theorem 6 isvia the eigenanalysis
of Σ, the covariance ofe. This decomposition can be performed analytically thanks to the very
particular block structure displayed in Figure 2.

Lemma 7 Let vk be the binary vector indicating the membership of each example to test blockk.
The eigensystem ofΣ is as follows:

• λ1 = σ2 − ω with multiplicity n− K and eigenspace defined by the orthogonal of basis
{vk}

K
k=1;

• λ2 = σ2 +(m−1)ω−mγ with multiplicity K−1 and eigenspace defined in the orthogonal of
1 by the basis{vk}

K
k=1;

• λ3 = σ2 +(m−1)ω+(n−m)γ with eigenvector1.

Proof
From Corollary 2, the covariance matrixΣ = E[ee′]−E[e]E[e]′ can be decomposed as

Σ = (σ2−ω)Σ1 +m(ω− γ)Σ2 +nγΣ3,

whereΣ1 = I, Σ2 = 1
m (v1 . . .vK)(v1 . . .vK)′ andΣ3 = 1

n11′.
Σ1, Σ2 andΣ3 share the same eigenvectors, with eigenvalues being equal either to zero or one:

• the eigenvector1 has eigenvalue1 for Σ1, Σ2 andΣ3;

• the eigenspace defined in the orthogonal of1 by the basis{vk}
K
k=1 defines K−1 eigenvectors

with eigenvalues1 for Σ1 andΣ2 and0 for Σ3;

• all remaining eigenvectors have eigenvalues1 for Σ1 and0 for Σ2 andΣ3.

Q.E.D.

Lemma 7 states that the vectore can be decomposed into three uncorrelated parts:n−K projec-
tions to the subspace orthogonal to{vk}

K
k=1, K−1 projections to the subspace spanned by{vk}

K
k=1 in

the orthogonal of1, and one projection on1. A single vector example withn independent elements
can be seen asn independent examples. Similarly, these projections ofe can be equivalently repre-
sented by respectivelyn−K, K−1 and one uncorrelated one-dimensional examples, corresponding
to the coordinates ofe in these subspaces.

In particular, for the projection on1, with only a single one-dimensional point, the sample
variance is null, resulting in the absence of an unbiased variance estimator of λ3. The projection
of e on the eigenvector1n1 is preciselyµ̂. Hence there is no unbiased estimate of Var[µ̂] = λ3

n when
we have only one realization of the vectore. For the same reason, even with simple parametric
assumptions one (such ase Gaussian), the maximum likelihood estimate ofθ is not defined. Only
λ1 andλ2 can be estimated unbiasedly. Note that this problem cannot be addressed by performing
multiple K-fold splits of the data set. Such a procedure would not provide independent realizations
of e.
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6. Possible Values for ω and γ

Theorem 6 states that no estimator is unbiased, and in its demonstration, it is shown that the bias of
any quadratic estimator is a linear combination ofµ2, σ2, ω andγ. Regarding estimation, it is thus
interesting to see what constraints restrict the possible range of these quantities.

Lemma 8 For µ̂= CV andµ̂= ∆CV, the following inequalities hold:

{
0 ≤ ω ≤ σ2

− 1
n−m(σ2 +(m−1)ω) ≤ γ ≤ 1

m(σ2 +(m−1)ω)

⇒

{
0 ≤ ω ≤ σ2

− m
n−mσ2 ≤ γ ≤ σ2.

The shape of the admissible(ω,γ) region corresponding to the first set of (tighter) inequalities is
displayed in Figure 3.

K = 2

−σ2 0 σ2
ω

−σ2

0

σ2

γ

K = 5

−σ2 0 σ2
ω

−σ2

0

σ2
γ

K = 10

−σ2 0 σ2
ω

−σ2

0

σ2

γ

K = 100

−σ2 0 σ2
ω

−σ2

0

σ2

γ

Figure 3: Possible values of(ω,γ) according toσ2 for n = 200 andK = {2,5,10,100}.

Proof
The constraints onω result from the Cauchy-Schwartz inequality which providesCov(u,v)2 ≤
Var[u]Var[v], hence

−σ2 ≤ ω ≤ σ2.

Moreover, the following reasoning shows that, forµ̂ = CV and µ̂ = ∆CV, ω is non-negative:ω is
the covariance of (differences in) test errors for training sets of size n−m and test sets of size` = m.
The variance of the average test error is given by the mean of covariances 1

` (σ
2 +(`−1)ω). The

varianceσ2 and covarianceω of test errors are not affected bỳ, and the variance of the average
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test error should be non-negative for any test set size`. Henceω is bound to be non-negative.
When this type of reasoning cannot be used, as forµ̂= JK, ω can only be proved to be greater than
−σ2/(m−1).

The constraints onγ simply rephrase that the eigenvaluesλ2 andλ3 of the covariance matrixΣ
should be non-negative. The simpler (and looser) form is obtained by using ω ≤ σ2.

Q.E.D.

The admissible(ω,γ) region obtained in Lemma 8 is very large. Furthermore, there is no con-
straint linkingµ andσ2, the mean and variance ofei . Hence we cannot propose a variance estimate
with universally small bias.

7. Experiments

We already mentioned that the bias of any quadratic estimator is a linear combination of µ2, σ2,
ω andγ. The admissible values provided in the preceding section suggest thatω andγ cannot be
proved to be negligible compared toσ2. This section illustrates that in practice, the contribution to
the variance of ˆµ due toω andγ (see Equation (7)) can be of same order than the one dueσ2. It
therefore suggests that the estimators ofθ should indeed take into account the correlations ofei .

Experiment 2 True variance of K-fold cross-validation.
We repeat the experimental setup of Experiment 1, except that now, we are in the more realistic

situation where only one sample of size n is available. Since cross-validationis known to be sensitive
to the instability of algorithms, in addition to this standard setup, we also consideranother one with
outliers:

The inputxi = (xi1, . . . ,xid)′ is still 30-dimensional, but it is now a mixture of two centered
Gaussian variables: let ti be a binary variable, with P(ti = 1) = p= 0.95; when ti = 1, xi ∼N (0,I);
when ti = 0, xi ∼ N (0,100I); yi =

√
3/(d(p+100(1− p)))∑d

k=1xik + εi with εi ∼ N (0,1/(p+
100(1− p))) when ti = 1 andεi ∼ N (0,100/(p+100(1− p))) when ti = 0.

We now look at the variance of K-fold cross-validation (K = 10), and decompose in the three
orthogonal componentsσ2, ω andγ. The results are shown in Figure 4.

When there are no outliers, the contribution ofγ is very important for small sample sizes. For
large sample sizes, the overall variance is considerably reduced and is mainly caused byσ2. In these
situations, the learning algorithm returns very similar answers for all training sets. When there are
outliers,ω has little effect, but the contribution ofγ is of same order as the one ofσ2, even when
the ratio of examples to free parameters is large (here up to 20). Thus, in difficult situations, where
A(D) varies according to the realization ofD, neglecting the effect ofω andγ can be expected to
introduce a bias of the order of the true variance.

It is also interesting to see how these quantities are affected by the number offolds K. The
decomposition ofθ in σ2, ω and γ (7) does not imply thatK should be set either ton or to 2
(according to the sign ofω− γ) in order to minimize the variance of ˆµ. Modifying K affectsσ2, ω
andγ through the size and overlaps of the training setsD1, . . . ,DK , as illustrated in Figure 5. For
a fixed sample size, the variance of ˆµ and the contribution ofσ2, ω andγ effects varies smoothly
with K.6 The experiments with and without outliers illustrate that there is no general trend either in

6. Of course, the mean of ˆµ is also affected in the process.
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no outliers outliers

Figure 4: Bar plots of the contributions to total variance Var[CV] due toσ2, ω andγ vs. the number
of training examplesn−m for Experiment 2.

variance or decomposition of the variance in itsσ2, ω andγ components. The minimum variance
can be reached forK = n or for an intermediate value ofK.

no outliers outliers

Figure 5: Bar plots of contributions ofσ2, ω andγ to θ vs. K for n = 120 for Experiment 2.

We also report an experiment illustrating that the previous observations also apply to classi-
fication on real data. The variance of K-fold cross-validation (K = 10), decomposed in the three
orthogonal componentsσ2, ω andγ is displayed in Figure 6.

Experiment 3 Classification with trees on the Letter data set.
The Letter data set comprises 20,000 examples described by 16 numericfeatures. The original

setup considers 26 categories reprensenting the letters of the roman alphabet. Here, we used a
simplified setup with 2 classes (A to M)vs. (N to Z) in order to obtain sensible results for small
sample sizes.

Accurate estimates ofσ2, ω and γ require many independent training samples. This was
achieved by considering the set of 20,000 examples to be the population, from which independent
training samples were drawn by uniform sampling with replacement.

Here again, the variance of CV is mainly due toσ2 andγ. According to the number of training
examples,σ2 is only responsible for 50 to 70 % of the total variance, so that a variance estimate
based solely onσ2 has a negative bias of the order of magnitude of the variance itself.

1102



VARIANCE OF K-FOLD CROSS-VALIDATION

Figure 6: Bar plots of the contributions to total variance Var[CV] due toσ2, ω andγ vs. the number
of training examplesn for Experiment 3.

8. Special Cases

This section addresses how our main result can be transposed to hold-out estimates of generalization
error. We also detail how it applies to two specific instances of the generalK-fold cross-validation
scheme: two-fold and leave-one-out cross validation.

8.1 Hold-Out Estimate of EPE

When havingK independent training and test sets, the structure of hold-out errors resemble the one
of cross-validation errors, except that we know (from the independence of training and test sets) that
γ = 0. This knowledge allows to build the unbiased variance estimateθ̂2 described in 2.2. This can
be seen directly in the proof of Theorem 6: knowing thatγ = 0 removes the third equation in the
linear system (14). In practice, one is often restricted toK = 1 (ordinary hold-out test), which allows
to estimate the variance due to the finite test set but not due to the particular choice of training set.

8.2 Two-Fold Cross-Validation

Two-fold cross-validation has been advocated to perform hypothesis testing (Dietterich, 1999; Al-
paydin, 1999). It is a special case of K-fold cross-validation since thetraining blocks are mutually
independent since they do not overlap. However, this independence does not modify the structure of
e in the sense thatγ is not null. The between-block correlation stems from the fact that the training
blockD1 is the test blockT2 and vice-versa.

8.3 Leave-One-Out Cross-Validation

Leave-one-out cross-validation is a particular case of K-fold cross-validation, whereK = n. The
structure of the covariance matrix is simplified, without diagonal blocks:Σ = (σ2−γ)Σ1+nγΣ3. The
estimation difficulties however remain: even in this particular case, there is no unbiased estimate of
variance. From the definition ofb (Lemma 5), we haveb= 0, and withm= 1 the linear system (14)
reads 




a = 1
n,

c = n−1
n ,

a+c = 0,
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which still admits no solution.

9. Conclusions

It is known that K-fold cross-validation may suffer from high variability, which can be responsible
for bad choices in model selection and erratic behavior in the estimated expected prediction error.

In this paper, we show that estimating the variance of K-fold cross-validation is difficult. Esti-
mating a variance can be done from independent realizations or from dependent realizations whose
correlation is known. K-fold cross-validation produces dependent test errors. Our analysis shows
that although the correlations are structured in a very simple manner, their values cannot be esti-
mated unbiasedly. Consequently, there is no unbiased estimator of the variance of K-fold cross-
validation.

Our experimental section shows that in very simple cases, the bias incurredby ignoring the
dependencies between test errors will be of the order of the variance itself. These experiments
illustrate thus that the assessment of the significance of observed differences in cross-validation
scores should be treated with much caution. The problem being unveiled, thenext step of this study
consists in building and comparing variance estimators dedicated to the very specific structure of
the test error dependencies.
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L. Devroye, L. Gÿorfi, and G. Lugosi.A Probabilistic Theory of Pattern Recognition. Springer,
1996.

T. G. Dietterich. Approximate statistical tests for comparing supervised classification learning al-
gorithms.Neural Computation, 10(7):1895–1924, 1999.

B. Efron and R. J. Tibshirani.An Introduction to the Bootstrap, volume 57 ofMonographs on
Statistics and Applied Probability. Chapman & Hall, 1993.

T. J. Hastie and R. J. Tibshirani.Generalized Additive Models, volume 43 ofMonographs on
Statistics and Applied Probability. Chapman & Hall, 1990.

1104



VARIANCE OF K-FOLD CROSS-VALIDATION

M. Kearns and D. Ron. Algorithmic stability and sanity-check bounds for leave-one-out cross-
validation.Neural Computation, 11(6):1427–1453, 1996.

R. Kohavi. A study of cross-validation and bootstrap for accuracy estimation and model selection.
In Proceedings of the Fourteenth International Joint Conference on Artificial Intelligence, pages
1137–1143, 1995.

C. Nadeau and Y. Bengio. Inference for the generalization error.Machine Learning, 52(3):239–281,
2003.

M. Stone. Cross-validatory choice and assessment of statistical predictions. Journal of the Royal
Statistical Society, B, 36(1):111–147, 1974.

1105





Journal of Machine Learning Research 5 (2004) 1107–1126 Submitted 12/03, Revised 4/04; Published 9/04

Selective Rademacher Penalization and
Reduced Error Pruning of Decision Trees∗
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Abstract
Rademacher penalization is a modern technique for obtaining data-dependent bounds on the gener-
alization error of classifiers. It appears to be limited to relatively simple hypothesis classes because
of computational complexity issues. In this paper we, nevertheless, apply Rademacher penaliza-
tion to the in practice important hypothesis class of unrestricted decision trees by considering the
prunings of a given decision tree rather than the tree growing phase. This study constitutes the
first application of Rademacher penalization to hypothesisclasses that have practical significance.
We present two variations of the approach, one in which the hypothesis class consists of all prun-
ings of the initial tree and another in which only the prunings that are accurate on growing data
are taken into account. Moreover, we generalize the error-bounding approach from binary classifi-
cation to multi-class situations. Our empirical experiments indicate that the proposed new bounds
outperform distribution-independent bounds for decisiontree prunings and provide non-trivial error
estimates on real-world data sets.

Keywords: generalization error analysis, data-dependent generalization error bounds, Rademacher
complexity, decision trees, reduced error pruning

1. Introduction

Data-dependent bounds on generalization error of classifiers are bridging the gap that has existed
between theoretical and empirical results since the introduction of computational learning theory.
They allow to take situation specific information into account, whereas distribution-independent
results need to hold in all imaginable situations. UsingRademacher complexity(Koltchinskii, 2001;
Bartlett and Mendelson, 2002) to bound the generalization error of a training error minimizing
classifier is a fairly new approach that has not yet been tested in practiceextensively.

Rademacher penalization is in principle a general method applicable to any hypothesis class.
However, in practice it does not seem amenable to complex hypothesis classes because the standard

∗. This article is dedicated to the memory of the second author who unexpectedly passed away on June 6, 2004 at the
age of twenty-seven.

c©2004 Matti K̈aäriäinen, Tuomo Malinen, and Tapio Elomaa.
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method for computing Rademacher penalties relies on the existence of an empirical risk minimiza-
tion algorithm for the hypothesis class in question. The first practical experiments with Rademacher
penalization used real intervals as the hypothesis class (Lozano, 2000). Elomaa and K̈aäriäinen
(2002) have applied Rademacher penalization to two-level decision trees,which can be learned
efficiently in the agnostic PAC model (Auer et al., 1995).

General decision tree growing algorithms are necessarily heuristic because of the computational
complexity of finding optimal decision trees (Grigni et al., 2000). Moreover, the hypothesis class
consisting of unrestricted decision trees is so vast that traditional generalization error analysis tech-
niques cannot provide non-trivial bounds for it. Nevertheless, top-down induction of decision trees
by, e.g., C4.5 (Quinlan, 1993) produces results that are very competitivein prediction accuracy with
better motivated approaches. We consider the usual two-phase process of decision tree learning;
after growing a tree, it is pruned in order to reduce its dependency on thegrowing data and to bet-
ter reflect characteristics of future data. Because of the practical success of decision tree learning,
prunings of an induced decision tree can be considered an expressive class of hypotheses.

We apply Rademacher penalization to general decision trees by considering, not the tree grow-
ing phase, but rather the pruning phase. The idea is to view decision tree pruning as empirical risk
minimization in the hypothesis class consisting of all prunings of an induced decision tree. First
a heuristic tree growing procedure is applied to growing data to produce a decision tree. Then a
pruning algorithm, for example thereduced error pruning(REP) algorithm of Quinlan (1987), is
applied to the grown tree and a set of pruning data. As REP is known to be an efficient empirical
risk minimization algorithm for the class of prunings of a decision tree (Elomaa and Kääriäinen,
2001), it can be used to compute the Rademacher penalty for this hypothesisclass. Thus, by view-
ing decision tree pruning as empirical risk minimization in a data-dependent hypothesis class, we
can bound the generalization error of prunings by Rademacher penalization. We also extend this
generalization error analysis framework to the multi-class setting.

Standard Rademacher penalization still requires to take the whole hypothesisclass into account.
All possible prunings of the decision tree have to be evaluated. The prunings that evaluate best on
randomly relabeled data—and, therefore, badly on the original data—essentially determine the error
bound. However, in practice only prunings that have relatively small empirical error on the set of
growing data are viable candidates for the final hypothesis. For this reason we restrict the pruning
algorithm to operate on the much smaller class of hypotheses that consists of those prunings that
make few mistakes on the set of growing data. To apply Rademacher penalization to this restricted
class of hypotheses, we devise an empirical risk minimization algorithm for it. The new pruning
algorithm, calledk-REP, finds the most accurate pruning with respect to a set of pruning data among
those prunings that make at mostk mistakes on the set of growing data. The algorithm is based on
dynamic programming and works in time cubic in the number of growing examples and linear in
the number of pruning examples and the size of the decision tree to be pruned.

We evaluate the practical application potential of data-dependent error bounds empirically. Our
experiments show that Rademacher penalization applied to prunings found byREP provides rea-
sonable generalization error bounds on real-world data sets. The results for k-REP are even better.
Although the bounds still overestimate the test set error, they are much tighterthan distribution-
independent bounds for prunings when the data sets are large.

This paper is organized as follows. In Section 2 we recapitulate the main idea of data-dependent
generalization error analysis. We concentrate on Rademacher penalization, which we also extend
to cover the multi-class case. Section 3 concerns pruning of decision trees, reduced error pruning
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of decision trees being the main focus. Thek-REP algorithm together with a correctness proof and
time complexity analysis is presented in Section 4. Combining Rademacher complexitycalculation
and decision tree pruning is the topic of Section 5. Empirical evaluation of the proposed approach
is presented in Section 6 and, finally, Section 7 presents the concluding remarks of this study.

2. Rademacher Penalties

Let S= {(xi ,yi) | i = 1, . . . ,n} be a sample ofn examples(xi ,yi) ∈ X ×Y each of which is drawn
independently from some unknown probability distribution onX ×Y . In the PAC and statistical
learning settings one usually assumes that the learning algorithm chooses its hypothesish: X → Y

from some fixed hypothesis classH . Under this assumption generalization error analysis provides
theoretical results bounding the generalization error of hypothesesh∈H which is allowed to depend
on the sample, the learning algorithm, and the properties of the hypothesis class. We consider the
multi-class setting, whereY may contain more than two labels.

Let P be the unknown probability distribution according to which the examples are drawn. The
generalization errorof a hypothesish is the probability that a randomly drawn example(x,y) is
misclassified:

εP(h) = P(h(x) 6= y).

The general goal of learning, of course, is to find a hypothesis with a small generalization error.
However, since the generalization error depends onP, it cannot be computed directly based on the
sample alone. We can try to approximate the generalization error ofh by its training error on n
examples:

ε̂n(h) =
1
n

n

∑
i=1

`(h(xi),yi),

where` is the 0/1 loss function

`(y,y′) =

{

1, if y 6= y′;

0, otherwise.

Empirical Risk Minimization(ERM) (Vapnik, 1982) is a principle that suggest choosing the
hypothesish ∈ H with minimal training error. In relatively small and simple hypothesis classes
finding a minimum training error hypothesis is computationally feasible. To guarantee that ERM
yields hypotheses with small generalization error, one can try to bound suph∈H |εP(h)− ε̂n(h)|. Un-
der the assumption that the examples are independent and identically distributed (i.i.d.), whenever
H is not too complex, the difference of the training error of the hypothesish on n examples and its
true generalization error converges to 0 in probability asn tends to infinity.

The most common approach to deriving generalization error bounds is based on the VC dimen-
sion of the hypothesis class (Vapnik and Chervonenkis, 1971; Blumer etal., 1989). The problem
with this approach is that it provides optimal results only in the worst case—when the underlying
probability distribution is as bad as it can be. Thus, the generalization errorbounds based on VC
dimension tend to be overly pessimistic. Moreover, the VC dimension bounds are hard to extend
to the multi-class setting. Data-dependent generalization error bounds, onthe other hand, can be
provably almost optimal for any given domain (Koltchinskii, 2001). In the following we review the
foundations of a recent promising approach to bounding the generalization error.
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A Rademacher random variabletakes values+1 and−1 with probability 1/2 each. Letr1, r2, . . . , rn

be a sequence of Rademacher random variables independent of eachother and the data(x1,y1), . . . ,(xn,yn).
TheRademacher penaltyof the hypothesis classH is defined as

Rn(H ) = sup
h∈H

∣

∣

∣

∣

∣

1
n

n

∑
i=1

r i`(h(xi),yi)

∣

∣

∣

∣

∣

.

Rademacher penalty is, thus, a random variable depending both on the random choice of the learning
sample(x1,y1), . . . ,(xn,yn) and on the randomness injected through the random variablesr1, . . . , rn.
The following symmetrization inequality (Van der Vaart and Wellner, 2000), which also covers the
multi-class setting, connects Rademacher penalties to generalization error analysis.

Theorem 1 The inequality

E

[

sup
h∈H

|εP(h)− ε̂n(h)|

]

≤ 2E[Rn(H )]

holds for any distribution P, number of examples n, and hypothesis classH .

The random variables suph∈H |εP(h)− ε̂n(h)| andRn(H ) are sharply concentrated around their
expectations (Koltchinskii, 2001). The concentration results are based on the following McDi-
armid’s (1989) bounded difference inequality.

Lemma 2 (McDiarmid’s inequality) Let Z1, . . . ,Zn be independent random variables taking their
values in a set A. Let f: An→ R be a function such that over all z1, . . . ,zn,z′i ∈ A

sup| f (z1, . . . ,zi , . . . ,zn)− f (z1, . . . ,z
′
i , . . . ,zn)| ≤ ci

for some constants c1, . . . ,cn ∈ R. Then for allε > 0

P( f (Z1, . . . ,Zn)−E[ f (Z1, . . . ,Zn)]≥ ε) and

P(E[ f (Z1, . . . ,Zn)]− f (Z1, . . . ,Zn)≥ ε)

are upper bounded by

exp

(

−2ε2
/ n

∑
i=1

c2
i

)

.

Using McDiarmid’s inequality one can bound the generalization error of hypotheses using their
training error and Rademacher penalty as follows.

Lemma 3 Let h∈H be arbitrary. Then with probability at least1−δ

εP(h)≤ ε̂n(h)+2Rn(H )+5η(δ,n), (1)

whereη(δ,n) =
√

ln(2/δ)/(2n) is a hypothesis class independent error term that goes to zero as
the number of examples increases.
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Proof Observe that replacing a pair((xi ,yi), r i) consisting of an example(xi ,yi) and a Rademacher
random variabler i by any other pair((x′i ,y

′
i), r
′
i) may change the value ofRn(H ) by at most 2/n.

Lemma 2 applied to the i.i.d. random variables((x1,y1), r1), . . . , ((xn,yn), rn) and the function
Rn(H ) yields

P(Rn(H )≤ E[Rn(H )]−2η(δ,n))≤
δ
2
. (2)

Similarly, changing the value of any example(xi ,yi) can change the value of suph∈H |εP(h)− ε̂n(h)|
by no more than 1/n. Thus, applying Lemma 2 again to(x1,y1), . . . ,(xn,yn) and suph∈H |εP(h)−
ε̂n(h)| gives

P

(

sup
h∈H

|εP(h)− ε̂n(h)| ≥ E

[

sup
h∈H

|εP(h)− ε̂n(h)|

]

+η(δ,n)

)

≤
δ
2
. (3)

To bound the generalization error of a hypothesisg∈H observe that

εP(g)≤ ε̂n(g)+ sup
h∈H

|εP(h)− ε̂n(h)|.

Hence, by inequality (3), with probability at least 1−δ/2

εP(g) ≤ ε̂n(g)+E

[

sup
h∈H

|εP(h)− ε̂n(h)|

]

+η(δ,n)

≤ ε̂n(g)+2E[Rn(H )]+η(δ,n),

where the second inequality follows from Theorem 1. Finally, applying inequality (2) yields that
with probability at least 1−δ

εP(g)≤ ε̂n(g)+2Rn(H )+5η(δ,n).

The usefulness of inequality (1) stems from the fact that its right-hand sidedepends only on
the training sample and the Rademacher random variables, but not onP directly. Hence, all the
data that is needed to evaluate the generalization error bound is available to the learning algorithm.
Furthermore, Koltchinskii (2001) has shown that in the two-class situation the Rademacher penalty
can be computed by an empirical risk minimization algorithm applied to relabeled training data. We
now extend this method to the multi-class setting.

The expression forRn(H ) is first written as the maximum of two suprema in order to remove
the absolute value inside the original supremum:

Rn(H ) = max

(

sup
h∈H

{

±
1
n

n

∑
i=1

r i`(h(xi),yi)

})

.

The sum inside the supremum with positive sign is maximized by the hypothesish1 that tries to
correctly classify those and only those training examples(xi ,yi) for which r i = −1. To formalize
this, we associate each classy ∈ Y with a complement class label ¯y that represents the set of all

1111
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classes buty. We denote the set of these complement classes byY and extend the domain of the
loss functioǹ to cover pairs(y,z) ∈ Y ×Y by setting`(y,z) = 1 if z= ȳ and 0 otherwise. Using
this notation,h1 is the hypothesis that minimizes the empirical error with respect to a newly labeled
training set{(xi ,zi)}

n
i=1, where

zi =

{

yi , if r i =−1;

ȳi , otherwise.

The case for the supremum with negative sign is similar.
Altogether, the computation of the Rademacher penalty entails the following steps.

• Toss a fair coinn times to obtain a realization of the Rademacher random variable sequence
r1, . . . , rn.

• Change the labelyi to ȳi if and only if r i = +1 to obtain a new sequence of labelsz1, . . . ,zn.

• Find functionsh1,h2 ∈H that minimize the empirical error with respect to the set of labelszi

andz̄i , respectively. Here, we follow the convention that¯̄z= z for all z∈ Y ∪Y .

• Evaluate the Rademacher penalty given by the maximum of|{ i : r i = +1}|/n− ε̂(h1) and
|{ i : r i =−1}|/n− ε̂(h2), where the empirical errorŝε(h1) andε̂(h2) are with respect to the
labelszi andz̄i , respectively.

In the two-class setting, the set ¯y of all classes buty, Y \ {y}, is a singleton. Thus, changing
classy to ȳ amounts to flipping the class label. It follows that a normal ERM algorithm can beused
to find the hypothesesh1 andh2 and hence the Rademacher penalty can be computed efficiently
provided that there exists an efficient ERM algorithm for the hypothesis class in question.

In the multi-class setting, however, a little more is required, since the sample on which the
empirical risk minimization is performed may contain labels fromY and the loss function differs
from the standard 0/1-loss. This, however, is not a problem with the variants of REP covered in
this paper nor with T2, a decision tree learning algorithm used in our earlier study, since all the
algorithms can be easily adapted to handle this more general setting. The casefor REP is covered
in the next sections and for T2 in the paper by Auer et al. (1995).

3. Growing and Pruning Decision Trees

A decision tree (Breiman et al., 1984) is a rooted tree in which the inner nodesare equipped with
branching functionsand the leaves are labeled with classes. A branching function routes exam-
ples reaching a node to its children, thus defining for each example a uniqueroot-leaf path. The
classification of an example is determined by the label of the leaf to which the example is routed.

A common approach in top-down induction of decision trees is to first grow a tree that fits the
training data well and, then, prune it to reflect less the peculiarities of the training data; i.e., to gen-
eralize better. Here, pruning means replacing some inner nodes of the treewith leaves and removing
the parts of the tree that become unreachable from the root. Many heuristicapproaches (Quinlan,
1987; Mingers, 1989; Esposito et al., 1997) as well as more analytical ones (Mansour, 1997; Kearns
and Mansour, 1998) to pruning have been proposed. A special classof pruning algorithms are the
on-line ones (Helmbold and Schapire, 1997; Pereira and Singer, 1999). Even these algorithms work
by the two-phase approach: An initial decision tree is fitted to the data and its prunings are then
used as experts that collectively predict the class of observed instances.
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Reduced error pruning was originally proposed by Quinlan (1987). Itproduces an optimal
pruning of a given tree—the smallest tree among those with minimal error with respect to a given
set ofpruning examples(Esposito et al., 1997; Elomaa and Kääriäinen, 2001). The REP algorithm
works in two phases: First the set of pruning examplesS is classified using the given treeT to be
pruned. Counters that keep track of the number of examples of each class passing through each node
are updated simultaneously. In the second phase—a bottom-up pruning phase—those parts of the
tree that can be removed without increasing the error of the remaining hypothesis are pruned away.
The pruning decisions are based on the node statistics calculated in the top-down classification
phase.

REP can be viewed as an ERM algorithm for the hypothesis class consisting of allprunings of
a given decision tree. Thus, it can be used to efficiently compute Rademacher penalties and, hence,
also generalization error bounds for the class of prunings of a decisiontree. This leads us to the
following strategy. First, we use a standard heuristic decision tree inductionalgorithm to grow a
C4.5-type decision tree based on a set of growing examples. The tree serves as a representation of
the data-dependent hypothesis class that consists of its prunings. As C4.5 usually performs quite
well on real-world domains, it is reasonable to assume—even though it cannot be proved—that the
class of prunings contains some good hypotheses.

Having grown a decision tree, we use a separate pruning data set to select one of the prunings
of the grown tree as our final hypothesis. In this paper, we use REP as our pruning algorithm, but in
principle any other pruning algorithm using the same basic pruning operationcould be used instead.
However, since REP is an empirical risk minimization algorithm, the derived error bounds will be
the tightest when combined with the prunings produced by REP.

3.1 Reducing the Number of Prunings

As argued above, the set of prunings of a decision tree is likely to contain accurate hypotheses.
Still, most of the prunings—the ones performing badly on the growing set—arelikely to be very
inaccurate on the pruning data. If the growing and the pruning data sets resemble each other to any
extent, which is a necessary condition for the two-phase learning paradigm to make sense in the
first place, the pruning algorithm will not select any of these hypotheseswith very bad performance
on the set of growing data. Keeping these inaccurate prunings as part of the hypothesis class only
makes the hypothesis class more complex and, hence, increases the Rademacher penalty associated
with it.

Following the line of thought above, it would seem reasonable to restrict thepruning algorithm
to select the final pruning from among those hypotheses that are relatively accurate on the set of
growing data. In Section 4 we present in detail thek-REP pruning algorithm, which does exactly
this by solving the following problem: given a decision tree and sets of growing and pruning data,
find the most accurate pruning (w.r.t. the pruning data) of the tree among those prunings that make
at mostk mistakes on the growing data. The restriction to prunings that are accurate on the growing
data adds to the combinatorial complexity of the search problem, but we are stillable to solve the
problem in cubic time by using dynamic programming.k-REP is an efficient ERM algorithm for
the restricted class of prunings. Thus, it can be used to evaluate generalization error bounds based
on Rademacher penalties in the same way as REP can be used in connection with the class of all
prunings (K̈aäriäinen and Elomaa, 2003). Sincek-REP operates on a subclass of the class of all
prunings, the Rademacher penalties are in this case smaller.
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In order to usek-REPone has to devise some strategy of choosing a value fork, that is, to define
exactly what it means for a hypothesis to be accurate on a set of growing data. If k is very large,
k-REPboils down to standard REPsince a loose bound on mistakes does not rule any of the prunings
out. On the other hand, too small ak may shrink the hypothesis class too small or even empty if
none of the prunings meets the strict accuracy requirement. A theoretically well-motivated solution
would be to consider all values ofk and employ standard model selection techniques to pick the one
that gives the best error bounds. However, the model selection phasewould loosen the bounds as
the confidence parameterδ would have to be split among the different values ofk. Hence, the best
bound obtainable using model selection would unavoidably be larger than thebest bound achievable
if one could somehow pick a single fortunate choice fork.

In practice, the number of errors the original decision tree makes on the set of growing data
is a good baseline to which the accuracy of the prunings can be related—wewant the prunings
considered byk-REP to be almost as accurate on the growing data as the original decision tree.
Thus, we will selectk to be some constant factorc > 1 times the number of errors the original tree
makes on the growing data. This way of choosing the value ofk is, of course, just an intuitively
motivated heuristic, but so is the whole decision tree growing procedure that determines the original
class of prunings in the first place. Our empirical experiments show this strategy works well on real
world data sets.

A similar idea to the one behindk-REP is employed in theshell decomposition boundsof Lang-
ford and McAllester (2000), who show that the effective complexity of a hypothesis class can be
measured by the complexity of the sub-class (or shell of hypothesis) that consists of only the almost
most accurate hypotheses of the original class. The shells, however, are defined based on the same
data that is used for selecting the final hypothesis, whereas in the case ofk-REP the sub-class of
accurate hypotheses is selected based on the growing data and the final hypothesis is chosen based
on the pruning data. Also local Rademacher complexities (Bartlett et al., 2002, 2004; Lugosi and
Wegkamp, 2004) and other local complexity measures (Koltchinskii and Panchenko, 2000; Massart,
2000; Mendelson and Philips, 2003) aim at taking into account only those parts of the model that
are relevant for the given learning task. However, these methods havenot been tested in practice as
evaluating the local complexity measures involves some computational and otherpractical problems
that have not been attacked yet.

3.2 Related Pruning Algorithms

REP produces the smallest of the most accurate prunings of a given decision tree, where accuracy
is measured with respect to the pruning set. Other approaches for producing optimal prunings for
different optimality criteria have also been proposed (Breiman et al., 1984;Bohanec and Bratko,
1994; Oliver and Hand, 1995; Almuallim, 1996). These criteria typically takeboth the size of
the resulting pruning and its accuracy on growing data into account. As pruning tends to reduce
growing set accuracy, one typically has to make a compromise between maintaining the initial
growing set accuracy and finding a small pruning. For example, Bohanec and Bratko (1994) as well
as Almuallim (1996) have studied how to efficiently find the smallest pruning that satisfies a given
minimum accuracy requirement.

The strategy of using one data set for growing a decision tree and another for pruning it closely
resembles the on-line pruning setting (Helmbold and Schapire, 1997; Pereira and Singer, 1999).
In it the prunings of the initial decision tree are viewed as a pool of experts. Thus, pruning is
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performed on-line, while giving predictions to new examples, rather than in aseparate pruning
phase. The main advantage of these on-line methods is that no statistical assumptions about the data
generating process are needed and still the combined prediction and pruning strategy can be proved
to be competitive with the best possible pruning of the initial tree. However, these approaches do
not choose or maintain one pruning of the given decision tree, but rathera weighted combination
of prunings, which may be impossible to interpret by human experts. Also, theloss bounds are
meaningful only for very large data sets and there exists no empirical evaluation of the performance
of the on-line pruning methods.

The pruning algorithms of Mansour (1997) and Kearns and Mansour (1998) are very similar
to REP in spirit. The main difference with these algorithms and REP is the fact that they do not
require the sampleS on which pruning is based to be independent of the treeT; i.e., T may well
have been grown based onS. Moreover, the pruning criterion in both methods is a kind of acost-
complexitycondition (Breiman et al., 1984) that takes both the observed classification error and
(sub)tree complexity into account. Both algorithms arepessimistic: They try to bound the true
error of a (sub)tree by its training error. Since the training error is by nature optimistic, the pruning
criterion has to compensate it by being pessimistic about the error approximation.

Both Mansour (1997) and Kearns and Mansour (1998) provide generalization error analyses for
their algorithms. The bound presented in (Mansour, 1997) measures the complexity of the class of
prunings by the size of the tree to be pruned. If this size or an upper bound for it is known in advance,
the bound applies also when the pruning data is not independent of the treeto be pruned. Kearns
and Mansour (1998) prove that the generalization error of the pruningproduced by their algorithm
is bounded by that of the best pruning of the given tree plus a complexity penalty. However, the
penalty term can grow intolerably large and cannot be evaluated becauseof its dependence on the
unknown optimal pruning and hidden constants.

One shortcoming of the two-phase decision tree induction approach is that there does not exist
any well-founded approach for deciding how much data to use for the training and pruning phases.
Only heuristic data set partitioning schemes are available. However, the simplerule of using, e.g.,
two thirds of the data for growing and the rest for pruning has been observed to work well in
practice (Esposito et al., 1997). If the initial data set is very large, it may becomputationally
infeasible to use all the data for growing or pruning. In that case one canuse heuristic sequential
sampling methods for selecting the size of the growing set and determine the sizeof the pruning set,
e.g., by using progressive Rademacher sampling (Elomaa and Kääriäinen, 2002). Because REP is
an efficient linear-time algorithm, it is not hit hard by overestimated pruning sample size.

4. k-Optimal REP Prunings

Given a decision tree to be pruned and a set of pruning examples, REP finds the pruning that min-
imizes error on the pruning set; no consideration is given to the growing seterror of the resulting
hypothesis. In Section 3.1, we motivated the idea of imposing a restriction also on the growing set
error of REP prunings. Clearly, in order to be able to prune at all, one has to give up some accuracy
on the data that was used to grow the tree. This naturally leads to the idea of finding REP prunings
with growing set error at most some threshold valuek.

Let T be a (subtree of a) decision tree,ε̂g(T) its growing set error,̂εp(T) its pruning set error,
and|T| its size. LetP (T) be the set of all the prunings ofT.
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Definition 4 A k-optimal REP pruningof a decision tree T is a T′ ∈ P (T) that hasε̂g(T ′) ≤ k, if
one exists, and for which

• ε̂p(T ′) = min{ ε̂p(T ′′) | T ′′ ∈ P (T), ε̂g(T ′′)≤ k}, and

• |T ′|= min{|T ′′| | T ′′ ∈ P (T), ε̂p(T ′′) = ε̂p(T ′)},

If there is no T′ ∈ P (T) satisfying the criteria, k-optimalREP pruning of T is undefined.

For clarity, we consider only binary trees at first. LetT be a decision tree with root nodeN.
Assume that, for eachi, 0≤ i ≤ k, we knowi-optimal REP prunings of the childrenT1 andT2 of
the root nodeN of T. Denote these byT0

1 , . . . ,Tk
1 andT0

2 , . . . ,Tk
2 , respectively. Choosing any pair

(Tu
1 ,Tv

2 ) of these prunings defines a pruning ofT in the obvious way; let〈N,Tu
1 ,Tv

2 〉 denote this
pruning.

In this paper we assume that leaf labels for decision tree prunings are determined by the growing
data. Alternative leaf labeling strategies are discussed by Elomaa and Kääriäinen (2001) and a
k-REP pruning algorithm resembling the one presented next could be derived for these labeling
strategies as well. LetNg denote the single-leaf pruning ofT, i.e., a leaf labeled with the majority
class of growing examples reachingT. The following result suggests a dynamic programming
technique for findingk-optimal REP prunings, which is described subsequently.

Theorem 5 If the k-optimalREP pruning of a decision tree T is defined, it is either the leaf Ng or
of the form〈N,Tu

1 ,Tv
2 〉, where u+ v = k and Tu

1 and Tv
2 are u- and v-optimalREP prunings of the

left and the right subtree of T , respectively.

Proof Let T ′ be thek-optimal REPpruning of a decision treeT. If T ′ is Ng, then we have the claim.
Otherwise,T ′ consists of a root nodeN and two subtreesT ′1 andT ′2, which respectively are prunings
of the subtreesT1 andT2 of T. Now, ε̂g(T ′) = ε̂g(T ′1)+ ε̂g(T ′2) ≤ k, which means that there must
existu andv such thatu+v = k, ε̂g(T ′1)≤ u andε̂g(T ′2)≤ v.

Let Tu
1 be au-optimal REP pruning ofT1 and assume thatT ′1 is not. By Definition 4 either

ε̂p(T ′1) > ε̂p(Tu
1 ) or |T ′1| > |T

u
1 |. Both cases contradict thek-optimality of pruningT ′, because the

tree〈N,Tu
1 ,T ′2〉 would be better than it. If̂εp(T ′1) > ε̂p(Tu

1 ), then

ε̂p(T
′) = ε̂p(T

′
1)+ ε̂p(T

′
2) > ε̂p(T

u
1 )+ ε̂p(T

′
2) = ε̂p(

〈

N,Tu
1 ,T ′2

〉

).

If, on the other hand,|T ′1|> |T
u
1 |, then

|T ′|= |T ′1|+ |T
′
2|+1 > |Tu

1 |+ |T
′
2|+1 = |

〈

N,Tu
1 ,T ′2

〉

|.

Therefore,T ′1 has to be au-optimal REP pruning ofT1. Similar argumentation also proves thev-
optimality ofT ′2.

What Theorem 5 effectively says is that thek-optimal REP pruning of a treeT is eitherNg or
a combination ofu- andv-optimal REP prunings of the children of its root node for someu andv
summing up tok. Therefore, by going through each of the mentioned prunings, and minimizing over
them first by pruning error, then by size, we can findk-optimal REP prunings ofT. Thek-optimal
REP prunings are easy to find for trees consisting of single leafs. Combining thiswith a bottom
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Algorithm 6 Find k-optimalREP prunings.

1 for each i ∈ {0, . . . ,min(n,k)} do
2 ε̂p(T i)← ∞;
3 |T i | ← ∞
4 od;
5 if N is not a leafthen
6 for each i ∈ {0, . . . ,min(n,k)} do
7 for each (u,v) such that u+v = i do
8 T ′← 〈N,Tu

1 ,Tv
2 〉;

9 if ε̂p(T ′) < ε̂p(T i) then T i ← T ′ fi ;
10 else if ε̂p(T ′) = ε̂p(T i) and |T ′|< |T i | then T i ← T ′ fi
11 od
12 od
13 fi ;
14 for each i, i ∈ { ε̂g(Ng), . . . ,min(n,k)} do
15 if ε̂p(Ng)≤ ε̂p(T i) then T i ← Ng fi
16 od;

up sweep ofT yields a dynamic programming technique for the task at hand. The step of dynamic
programming is given as Algorithm 6, which findsT i for eachi, 0≤ i ≤min(n,k), wheren is the
number of growing examples that reach the node.T i is undefined for anyi for which |T i |= ∞ after
running the algorithm.

The generalization of Theorem 5 (and Algorithm 6) to non-binary trees is straightforward. For
a t-way split, one has to go through all the partitions of eachi, 0≤ i ≤ min(n,k), into t addends.
This makes the time complexity exponential in the number of branches in the split, asthe number
of such partitions grows exponentially int.

Let us consider the time complexity of Algorithm 6. Clearly, the loop on lines 14–16 works
in time linear in min(n,k). In the loop on lines 6–12, one has to checki partitions for eachi,
0≤ i ≤min(n,k). This makes the time complexity of processing a single node with a binary split
O(min(n,k)2), wheren is the number of growing examples that reach the node.

Now consider a binary tree grown onn examples. First note that at mostn growing examples
reach the nodes of any particular level of the tree. Consider an arbitrary level withw≤ n nodes, with
n1, . . . ,nw growing examples reaching them. By the above bound for a single node, thecomputation
on the level takesO(∑w

i=1min(ni ,k)2) steps. Now, it is clear that∑w
i=1min(ni ,k)≤ n holds, and this

implies ∑w
i=1min(ni ,k)2 ≤ n2, soO(n2) is an upper bound for the time complexity on any single

level of the tree. A tree grown onn examples has at mostn levels, which makes the worst case
complexityO(n3).

The above result assumes that the pruning errors on lines 9, 10, and 15 can be evaluated in
constant time. This can be achieved by equipping the nodes of the original tree with counters telling
the class frequencies of pruning examples going through them. Initializing such counters can be
done in time linear in the number of pruning examples and the size of the tree to be pruned. As the
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algorithm does not need to access the pruning data after this preprocessing step, the time complexity
with respect to the amount of pruning data is linear.

The O(n3) time complexity result can be strengthened if we make more assumptions on the
decision tree to be pruned or the distribution of the growing examples to the tree. For example, if
the depth of the tree can be assumed to beO(logn), the upper bound on the time complexity of
k-REP is reduced toO(n2 logn). As another special case, assume that the set of growing examples
is halved in each node of a tree withn leaves. Then, the time complexity reduces to

c
logn

∑
i=0

2i ·
(

min
( n

2i ,k
))2

= O(n2),

where each addend corresponds to a single level of the tree.

5. Combining Rademacher Penalization and Decision Tree Pruning

When using REP or k-REP, the data sets used in growing the tree and pruning it are independent
of each other. Therefore, any standard generalization error analysis technique can be applied to
the resulting pruning as if the hypothesis class from which the pruning was selected was fixed in
advance. A formal argument justifying this would be to carry out the generalization error analysis
conditioned on the training data and then to argue that the bounds hold unconditionally by taking
expectations over the selection of the training data set.

By the above argument, the theory of Rademacher penalization can be applied to the data-
dependent class of prunings. Therefore, we can use the results presented in Section 2 to provide
generalization error bounds for prunings found by REP, k-REP, or any other pruning algorithm.
Moreover, since both REP and k-REP are efficient ERM algorithms (linear and cubic time, re-
spectively) for the related classes of prunings, the generalization error bounds can be evaluated
efficiently.

To summarize, we propose the following decision tree learning strategy that provides a general-
ization error bound for the hypothesis it produces:

1. Split the available data into a growing set and a pruning set.

2. Use, e.g., C4.5 (without pruning) on the growing set to induce a decisiontree.

3. Find the smallest most accurate pruning of the tree built in the previous stepusing REP (or
any other pruning algorithm) on the pruning set. This is the final hypothesis.Alternatively,
choose a suitablek and usek-REP to find the most accurate pruning from the class of prunings
making at mostk errors on the set of growing data.

4. Evaluate the error bound as explained in Section 2 by running REP two more times. In case
k-REP was used in step 3, usek-REP in place of REP here, too.

Even though the tree growing process is heuristic, the generalization error bounds for the prun-
ings are provably true under the i.i.d. assumption. They are valid even if the tree growing heuristic
fails, that is, when none of the prunings of the grown tree generalize well.In that case the bounds
are, of course, unavoidably large. The situation is similar to, e.g., margin-based generalization error
analysis (Cristianini and Shawe-Taylor, 2000), where the error bounds are good provided that the
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training data generating distribution is such that a hypothesis with a good margindistribution can
be found. In our case the error bounds are tight provided that C4.5 produces a decision tree that
has good prunings and is still relatively small so that the Rademacher penaltyfor the class of its
prunings does not blow up. A good choice ofk may help in keeping the penalty term in control,
a situation resembling choosing the marginal parameter in margin-based generalization error anal-
ysis. The existing empirical evidence overwhelmingly demonstrates that C4.5 usually fares quite
well, and our experiments presented in Section 6 indicate that a good choice of k really results in a
notable decrease in the complexity term on real world data sets.

The value ofk should ideally be so large that the hypothesis class associated with it includes
the most accurate pruning w.r.t. pruning data and, at the same time, as small as possible to limit
the complexity of the remaining hypothesis class to a minimum. This trade-off is hardto solve in
general, since the decision on whichk to choose has to be done prior to seeing the set of pruning data.
In the following we will choosek to be somec > 1 times the number of errors the original decision
tree makes on the set of growing data. This way we take into account the fact that the original tree
most likely overfits the growing data set and thus has a smaller error than canbe expected from
prunings with good generalization. The empirical experiments indicate thatc = 1.1 is a reasonable
choice for all data sets we experimented with.

Generalization error bounds can be roughly divided into two categories:Those based on a
training set only and those requiring a separate test set (Langford, 2002). Our generalization error
bounds for prunings may be seen to lie somewhere between these two extremes, the bound fork-
REP being the one closer to test set bounds. We use only part of the data in the tree growing phase
that determines our hypothesis class. The rest—the set of pruning data—isused only for selecting a
pruning and evaluating the generalization error bound. Thus, some of theinformation contained in
the pruning set may be lost as it cannot be used in the tree induction phase.However, the pruning
set is still used for the non-trivial task of selecting a good pruning, so that some of the information
contained in it can be exploited in the final hypothesis. The pruning set is thus used as a test set for
the outcome of the tree growing phase and also as a proper learning set in the pruning phase.

6. Empirical Evaluation

Before reporting and discussing the results obtained in our tests, we describe the distribution-
independent bound used as comparison point to Rademacher penalizationand briefly outline other
aspects of the test setting.

6.1 Test Setting for Performance Comparison

The obvious performance reference for Rademacher penalization over decision tree prunings is to
compare it to existing generalization error bounds. The bound of Kearns and Mansour (1998) is
impossible to evaluate in practice because it requires knowing the depth and size of the pruning
with the best generalization error. The bound presented by Mansour (1997) only requires knowing
the maximum size of prunings in advance and would, thus, be applicable in oursetting. However,
Mansour’s bound is clearly inferior to the simpler Occam’s Razor type of bound to be introduced
next and will, hence, be excluded from the empirical comparison. Boundsdeveloped in the on-line
pruning setting (Helmbold and Schapire, 1997) are incomparable with the onepresented in this
paper because of the different learning model. Thus, they will not be considered here.
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The simplest—and as it turned out in our experiments, the tightest—existing generalization
error bound which the Rademacher bound can be compared to is to our knowledge an Occam’s
Razor bound (Blumer et al., 1987; Langford, 2003) that is obtained by assigning equal-length codes
to all prunings of the original decision tree. Equivalently, we assign equal prior probability to all
prunings of the original tree. Since the leaf labels of the prunings are determined by the growing
data, all that needs to be encoded is the set of those inner nodes that areto be replaced by leaves. A
simple way to do so is to assign a bit for each of the(d−1)/2 inner nodes of ad node tree telling
whether the node is pruned or not.

The simplistic code outlined above contains some redundancy as, e.g., the pruning consisting
of a single leaf is represented by 2(d−1)/2−1 different codewords. However, it is easy to see that
a binary tree withd nodes can have at least 2d/4 prunings; consider, e.g., the prunings obtainable
from a balanced tree by pruning a subset of inner nodes next to the leaves. Thus, no less than
d/4 bits will suffice if nothing but the size of the tree to be pruned is taken into account. To find
out the optimal uniform code length given the whole tree to be pruned as a parameter, one would
essentially have to count the number of prunings of the tree. We are not aware of an efficient
algorithm for this task. On the other hand, using a non-uniform code lengthwould introduce a bias
to the bound that is not present in our proposed bounds. Thus, in our experiments we will use the
code length approximationd/4, giving worst-case optimistic error bounds. Plugging this into the
Chernoff Occam’s Razor bound (Langford, 2003) we get that with probability at least 1−δ,

εP(h) < ε̂n(h)+

√

ln2·d/4+ ln(1/δ)

2n
,

whered is the number of the nodes of the tree andn is the size of the pruning set. This bound could
be further improved by using the exact Occam’s razor bound (Langford, 2003) instead, but we have
not tried how significant the improvement would be. Note that this bound is dataindependent in the
sense that the pruning data is taken into account only through the pruning error ε̂n(h).

The error bounds based on Rademacher penalization depend on the datadistribution so that their
true performance can be evaluated only empirically. In our experiments we grow binary decision
trees using a C4.5-type decision tree algorithm distributed in the Weka package (Witten and Frank,
1999). As a benchmark we use 15 data sets from the UCI Machine Learning Repository (Blake and
Merz, 1998). In each experiment we allocate 10 percent of the data fortesting and split the rest to
growing and pruning sets. As the split ratio we chose 2:1 as suggested by Esposito et al. (1997). For
the generated data set LED, we use 300,000 instances with 10 percent attribute noise. Fork-REPwe
choosec = 1.1, i.e.,k is 1.1 times the training error of the unpruned tree.

6.2 Empirical Observations

Table 1 and Figure 1 summarize the results over 10 random splits of the data sets. In Table 1 we
present the decision tree sizes before and after pruning withk-REP and REP. Observe that the
unpruned decision trees are very large, which means that the class of prunings may potentially be
very complex. The results indicate that REP manages to decrease the tree sizes considerably. The
sizes ofk-REP prunings fall in many cases roughly halfway between the unpruned tree size and the
size of the REP pruned tree.

Figure 1 presents the test set accuracies and error bounds based onRademacher penalization and
Occam’s Razor. In all bounds, we setδ = 0.01. Even though both bounds based on Rademacher
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Figure 1: Averages of error bounds over 10 random splits of the data sets.
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DATA SET UNPRUNED k-REP REP

ADULT 7,507.6 3,898.6 1,600.6
ANNEAL 32.0 24.8 20.8
CENSUS 20,513.4 12,378.6 4,819.4
CONNECT 13,953.8 8,583.8 4,289.0
COVER 31,483.6 25,374.0 18,396.4
ISOLET 664.8 517.6 272.0
KROPT 7,317.4 5,328.8 3,572.4
LED24-10 90,564.8 43,689.4 9,041.6
LETTER 2,543.8 1,907.0 1,292.4
MUSHROOM 22.8 22.8 22.0
MUSK 224.8 186.0 120.0
NURSERY 392.0 349.4 306.8
OPTDIGITS 410.4 319.8 222.2
PAGE-BLOCKS 123.2 85.6 42.6
PEN-DIGITS 411.0 324.0 245.8

Table 1: Average sizes of trees over 10 random splits of the data sets.

penalization clearly overshoot the test set accuracies, they still providereasonable estimates in many
cases. Note that in the multi-class settings even error bounds above 50 percent are non-trivial.

Both bounding methods, the one based on Rademacher penalties and the onebased on Occam’s
Razor, outperform the other on a number of data sets; there seems to be noclear overall winner.
Notably, in many cases the difference between the better and worse method isquite large. On large
data sets, the Rademacher bounds are consistently better; the converse holds for the small sets. The
small amount of data blows up the hypothesis class independent termη(δ,n) to the extent that it
starts to dominate the actual Rademacher penalty. The Occam’s Razor boundis clearly better when
the unpruned tree is small, since this situation keeps the penalty term related to it under control.

Rademacher bounds fork-REP turn out to be better than the REPbound in most cases. The only
notable exception is the LED domain, where the pruning error of the best pruning is significantly
lower than that of the best restricted pruning, while the Rademacher penalties for both classes are
almost the same. In CENSUS INCOMEthe decrease of pruning error and growth of the Rademacher
penalty cancel each other out so that the bounds for REP andk-REP are nearly equal.

We also conducted a set of experiments in order to see how the bound behaves as a function ofc.
The results indicate that decreasingc typically yields tighter bounds, but at the same time the actual
quality of the prunings obtained deteriorates asc gets closer to 1. In the limiting casec = 1 there
is no room left for pruning, so this extreme case effectively coincides withusing the pruning set as
a set of test data. Increasingc relaxes the restrictions on the pruning decisions and enablesk-REP

to find prunings with better empirical performance. The trade-off here is aspecial case of the fact
that test error bounds are typically the tightest in practice even though using all the data in learning
might yield a hypothesis with better generalization error. Our choice ofc = 1.1 seems to be a good
compromise between the tightness of the bound and the actual generalization performance of the
obtained pruning.

The relative test performance ofk-REPand REP is varied and neither method seems to be a clear
winner. Ask-REPproduces larger prunings and is computationally more demanding than REP, there
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seems to be little motivation for usingk-REP independently as a pruning method if error guarantees
are not called for.

Our intention has been to carry out a feasibility study of the new technique ofRademacher
penalization, rather than to aim at generalization error bounds directly applicable in the real world.
However, the bounds that were obtained on larger data sets are sometimes tighter than one could
have expected in advance. In the best cases the theoretical bounds already approach usability as
performance guarantees of practical algorithms. Even though even the best of the proposed bounds
always overestimates the test error, it is never totally unrealistic. Thus, wehave demonstrated that
Rademacher penalization represents a step toward the use of well-foundedtraining set bounds in
practical applications. Though, at the same time it is, unfortunately, not possible to draw too far-
reaching positive conclusions from this study, because in the worst cases Rademacher penalization
fails to deliver usable bounds and does not fare as well as the Occam’s Razor bound on smaller data
sets.

7. Conclusion

Modern generalization error bounding techniques that take the observed data distribution into ac-
count give far more realistic sample complexities and generalization error approximations than the
distribution-independent methods. We have shown how one of these techniques, namely Rademacher
penalization, can be applied to bound the generalization error of decision tree prunings, also in the
multi-class setting. According to our empirical experiments the proposed theoretical bounds are
often tighter than distribution-independent generalization error bounds for decision tree prunings.
However, the new bounds still appear unable to faithfully describe the performance attained in prac-
tice.

As future work, we intend to carry out more thorough empirical experimentson the proposed
methods. Also, we will look for better motivated ways of tuning the value ofc and of determining
the proportion of learning data allocated for pruning purposes. It wouldalso be interesting to extend
the two-phase generalization error analysis approach introduced hereto other hypothesis classes,
too.
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fred K. Warmuth, editors,Learning Theory and Kernel Machines, Proceedings of the Sixteenth
Annual Conference on Learning Theory and Seventh Kernel Workshop, COLT/Kernel 2003, vol-
ume 2777 ofLecture Notes in Artificial Intelligence, pages 329–343, Berlin Heidelberg New
York, 2003. Springer.

John Mingers. An empirical comparison of pruning methods for decision tree induction.Machine
Learning, 4(2):227–243, 1989.

1125
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Abstract

Prior knowledge, in the form of linear inequalities that need to be satisfied over multiple polyhedral
sets, is incorporated into a function approximation generated by a linear combination of linear or
nonlinear kernels. In addition, the approximation needs tosatisfy conventional conditions such as
having given exact or inexact function values at certain points. Determining such an approximation
leads to a linear programming formulation. By using nonlinear kernels and mapping the prior poly-
hedral knowledge in the input space to one defined by the kernels, the prior knowledge translates
into nonlinear inequalities in the original input space. Through a number of computational exam-
ples, including a real world breast cancer prognosis dataset, it is shown that prior knowledge can
significantly improve function approximation.

Keywords: function approximation, regression, prior knowledge, support vector machines, linear
programming

1. Introduction

Support vector machines (SVMs) play a major role in classification problems (Vapnik, 2000, Cherkassky
and Mulier, 1998, Mangasarian, 2000). More recently, prior knowledge has been incorporated into
SVM classifiers, both to improve the classification task and to handle problems where conventional
data may be few or not available (Schölkopf et al., 1998, Fung et al., 2003b,a). Although SVMs
have also been extensively used for regression (Drucker et al., 1997, Smola and Scḧolkopf, 1998,
Evgeniou et al., 2000, Mangasarian and Musicant, 2002), prior knowledge on properties of the func-
tion to be approximated has not been incorporated into the SVM function approximation as has been
done for an SVM classifier (Fung et al., 2003b,a). In this work, we introduce prior knowledge in the
form of linear inequalities to be satisfied by the function on polyhedral regions of the input space
for linear kernels, and on similar regions of the feature space for nonlinear kernels. These inequal-
ities, unlike point-wise inequalities or general convex constraints that havealready been treated
in approximation theory (Mangasarian and Schumaker, 1969, 1971, Micchelli and Utreras, 1988,
Deutsch, 2001), are inequalities that need to be satisfied over specific polyhedral sets. Such “prior
knowledge” does not seem to have been treated in the extensive approximation theory literature.

We outline the contents of the paper now. In Section 2 we define the prior knowledge formu-
lation for a linear kernel approximation in the input space of the problem which leads to a linear

c©2004 Olvi L. Mangasarian, Jude W. Shavlik and Edward W. Wild.
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programming formulation in that space. In Section 3 we approximate the functionby a linear com-
bination of nonlinear kernel functions and explicitly map the polyhedral prior knowledge in the
input space to one defined by the kernel functions. This leads to a linear programming formulation
in that space. In Section 4 we demonstrate the utility of our results on a number of synthetic approx-
imation problems as well as a real world breast cancer prognosis datasetwhere we show that prior
knowledge can improve the approximation. Section 5 concludes the paper witha brief summary
and some possible extensions and applications of the present work.

We describe our notation now. All vectors will be column vectors unless transposed to a row
vector by a prime′. The scalar (inner) product of two vectorsx andy in then-dimensional real space

Rn will be denoted byx′y. Forx∈ Rn, ‖x‖1 denotes the 1-norm:
n

∑
i=1

|xi |. The notationA∈ Rm×n will

signify a realm×n matrix. For such a matrix,A′ will denote the transpose ofA, Ai will denote thei-
th row ofA andA· j the j-th column ofA. A vector of ones in a real space of arbitrary dimension will
be denoted bye. Thus fore∈ Rm andy∈ Rm the notatione′y will denote the sum of the components
of y. A vector of zeros in a real space of arbitrary dimension will be denoted by 0. ForA∈Rm×n and
B∈ Rn×k, akernel K(A,B) mapsRm×n×Rn×k into Rm×k. In particular, ifx andy are column vectors
in Rn then,K(x′,y) is a real number,K(x′,A′) is a row vector inRm andK(A,A′) is anm×mmatrix.
We shall make no assumptions on our kernels other than symmetry, that isK(x′,y)′ = K(y′,x),
and in particular we shall not assume or make use of Mercer’s positive semidefiniteness condition
(Vapnik, 2000, Scḧolkopf and Smola, 2002). The base of the natural logarithm will be denoted
by ε. A frequently used kernel in nonlinear classification is the Gaussian kernel (Vapnik, 2000,
Cherkassky and Mulier, 1998, Mangasarian, 2000) whosei j th element,i = 1. . . ,m, j = 1. . . ,k,
is given by: (K(A,B))i j = ε−µ‖Ai

′−B· j‖
2
, whereA ∈ Rm×n, B ∈ Rn×k andµ is a positive constant.

Approximate equality is denoted by≈, while the abbreviation “s.t.” stands for “subject to”. The
symbol∧ denotes the logical “and” while∨ denotes the logical “or”.

2. Prior Knowledge for a Linear Kernel Approximation

We begin with a linear kernel model and show how to introduce prior knowledge into such an
approximation. We consider an unknown functionf from Rn to R for which approximate or exact
function values are given on a dataset ofm points inRn denoted by the matrixA ∈ Rm×n. Thus,
corresponding to each pointAi we are given an exact or inexact value off , denoted by a real number
yi , i = 1, . . . ,m. We wish to approximatef by some linear or nonlinear function of the matrixA with
unknown linear parameters. We first consider the simple linear approximation

f (x) ≈ w′x+b, (1)

for some unknown weight vectorw ∈ Rn and constantb ∈ R which is determined by minimizing
some error criterion that leads to

Aw+be−y≈ 0. (2)

If we considerw to be a linear combination of the rows of A, i.e.w = A′α, α ∈ Rm, which is similar
to the dual representation in a linear support vector machine for the weightw (Mangasarian, 2000,
Scḧolkopf and Smola, 2002), we then have

AA′α+be−y≈ 0. (3)
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This immediately suggests the much more general idea of replacing the linear kernel AA′ by some
arbitrary nonlinear kernelK(A,A′) : Rm×n×Rn×m −→ Rm×m that leads to the following approxima-
tion, which is nonlinear inA but linear inα:

K(A,A′)α+be−y≈ 0. (4)

We will measure the error in (4) componentwise by a vectors∈ Rm defined by

−s≤ K(A,A′)α+be−y≤ s. (5)

We now drive this error down by minimizing the 1-norm of the errors together with the 1-norm ofα
for complexity reduction or stabilization. This leads to the following constrainedoptimization prob-
lem with positive parameterC that determines the relative weight of exact data fitting to complexity
reduction:

min
(α,b,s)

‖α‖1 +C‖s‖1

s.t. −s ≤ K(A,A′)α+be−y ≤ s,
(6)

which can be represented as the following linear program:

min
(α,b,s,a)

e′a+Ce′s

s.t. −s ≤ K(A,A′)α+be−y ≤ s,
−a ≤ α ≤ a.

(7)

We note that the 1-norm formulation employed here leads to a linear programmingformulation
without regard to whether the kernelK(A,A′) is positive semidefinite or not. This would not be
the case if we used a kernel-induced norm onα that would lead to a quadratic program. This
quadratic program would be more difficult to solve than our linear program especially when it is
nonconvex, which would be an NP-hard problem, as is the case when the kernel employed is not
positive semidefinite.

We now introduce prior knowledge for a linear kernel as follows. Suppose that it is known
that the functionf represented by (1) satisfies the following condition. For all pointsx ∈ Rn, not
necessarily in the training set but lying in the nonempty polyhedral set determined by the linear
inequalities

Bx≤ d, (8)

for someB ∈ Rk×n, the function f , and hence its linear approximationw′x+ b, must dominate a
given linear functionh′x+ β, for some user-provided(h,β) ∈ Rn+1. That is, for afixed(w,b) we
have the implication

Bx≤ d =⇒ w′x+b≥ h′x+β, (9)

or equivalently in terms ofα, wherew = A′α:

Bx≤ d =⇒ α′Ax+b≥ h′x+β. (10)

Thus, the implication (10) needs to be added to the constraints of the linear program (7). To do that
we make use of the following equivalence relationship that converts the implication (10) to a set of
linear constraints that can be appended to the linear program (7). A similar technique was used in
(Fung et al., 2003b, Proposition 2.1) to incorporate prior knowledge into linear classifiers.
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Proposition 2.1 Prior Knowledge Equivalence. Let the set{x | Bx≤ d} be nonempty. Then for
a fixed(α,b,h,β), the implication (10) is equivalent to the following system of linear inequalities
having a solution u∈ Rk:

B′u+A′α−h = 0, −d′u+b−β ≥ 0,u≥ 0. (11)

Proof The implication (10) is equivalent to the following system having no solution(x,ζ) ∈ Rn+1:

Bx−dζ ≤ 0, (α′A−h′)x+(b−β)ζ < 0, −ζ < 0. (12)

By the Motzkin theorem of the alternative (Mangasarian, 1994, Theorem2.4.2) we have that (12) is
equivalent to the following system of inequalities having a solution(u,η,τ):

B′u+(A′α−h)η = 0, −d′u+(b−β)η− τ = 0, u≥ 0, 0 6= (η,τ) ≥ 0. (13)

If η = 0 in (13), then we contradict the nonemptiness of the knowledge set{x | Bx≤ d}. Because,
for x∈ {x | Bx≤ d} and(u,τ) that solve (13) withη = 0, we obtain the contradiction

0≥ u′(Bx−d) = x′B′u−d′u = −d′u = τ > 0. (14)

Henceη > 0 in (13). Dividing (13) byη and redefining(u,α,τ) as( u
η , α

η , τ
η) we obtain (11).�

Adding the constraints (11) to the linear programming formulation (7) with a linearkernel
K(A,A′) = AA′, we obtain our desired linear program that incorporates the prior knowledge im-
plication (10) into our approximation problem:

min
(α,b,s,a,u≥0)

e′a+Ce′s

s.t. −s ≤ AA′α+be−y ≤ s,
−a ≤ α ≤ a,

A′α+B′u = h,
−d′u ≥ β−b.

(15)

Note that in this linear programming formulation with a linear kernel approximation,both the
approximationw′x+ b = α′Ax+ b to the unknown functionf as well as the prior knowledge are
linear in the input dataA of the problem. This is somewhat restrictive, and therefore we turn now to
our principal concern in this work, which is the incorporation of prior knowledge into anonlinear
kernel approximation.

3. Knowledge-Based Nonlinear Kernel Approximation

In this part of the paper we will incorporate prior knowledge by using a nonlinear kernel inboth
the linear programming formulation (7) as well as in the prior knowledge implication(10). We
begin with the latter, the linear prior knowledge implication (10). If we again considerx as a linear
combination of the rows ofA, that is

x = A′t, (16)

then the implication (10) becomes

BA′t ≤ d =⇒ α′AA′t +b≥ h′A′t +β, (17)
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for a given fixed(α,b). The assumption (16) is not restrictive for the many problems where a
sufficiently large number of training data points are available so that any vector in input space can
be represented as a linear combination of the training data points.

If we now ”kernelize” the various matrix products in the above implication, we have the impli-
cation

K(B,A′)t ≤ d =⇒ α′K(A,A′)t +b≥ h′A′t +β. (18)

We note that the two kernels appearing in (18) need not be the same and neither needs to satisfy
Mercer’s positive semidefiniteness condition. In particular, the first kernel of (18) could be a linear
kernel which renders the left side of the implication of (18) the same as that of (17). We note
that for a nonlinear kernel, implication (18) is nonlinear in the input space data, but is linear in
the implication variablet. We have thus mapped the polyhedral implication (9) into a nonlinear
one (18) in the input space data. Assuming for simplicity that the kernelK is symmetric, that is
K(B,A′)′ = K(A,B′), it follows directly by Proposition 2.1 that the following equivalence relation
holds for implication (18).

Proposition 3.1 Nonlinear Kernel Prior Knowledge Equivalence. Let the set
{t | K(B,A′)t ≤ d} be nonempty. Then for a given(α,b,h,β), the implication (18) is equivalent to
the following system of linear inequalities having a solution u∈ Rk:

K(A,B′)u+K(A,A′)α−Ah= 0, −d′u+b−β ≥ 0,u≥ 0. (19)

We now append the constraints (19), which are equivalent to the nonlinear kernel implication (18), to
the linear programming formulation (7). This gives the following linear program for approximating
a given function with prior knowledge using a nonlinear kernel:

min
(α,b,s,a,u≥0)

e′a+Ce′s

s.t. −s ≤ K(A,A′)α+be−y ≤ s,
−a ≤ α ≤ a,

K(A,B′)u+K(A,A′)α = Ah,
−d′u ≥ β−b.

(20)

Since we are not certain that the prior knowledge implication (18) is satisfiable, and since we wish
to balance the influence of prior knowledge with that of fitting conventional data points, we need to
introduce error variablesz andζ associated with the last two constraints of the linear program (20).
These error variables are then driven down by a modified objective function as follows:

min
(α,b,s,a,z,(u,ζ)≥0)

e′a+Ce′s+µ1e′z+µ2ζ

s.t. −s ≤ K(A,A′)α+be−y ≤ s,
−a ≤ α ≤ a,
−z ≤ K(A,B′)u+K(A,A′)α−Ah ≤ z,

−d′u+ζ ≥ β−b,

(21)

where(µ1,µ2) are some positive parameters. This is our final linear program for a singleprior
knowledge implication. If we have more than one such implication, then the last twosets of con-
straints are repeated for each implication. For the sake of simplicity we omit thesedetails. The
values of the parametersC, µ1, andµ2 are chosen so as to balance fitting conventional numerical
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data versus the given prior knowledge. One way to choose these parameters is to set aside a “tuning
set” of data points and then choose the parameters so as to give a best fit of the tuning set. We also
note that all three kernels appearing in (21) could possibly be distinct kernels from each other and
none needs to be positive semidefinite. In fact, the kernelK(A,B′) could be the linear kernelAB′

which was was actually tried in some of our numerical experiments without a noticeable change
from using a Gaussian kernel.

We now turn to our numerical experiments.

4. Numerical Experiments

The focus of this paper is mainly theoretical. However, in order to illustrate thepower of the
proposed formulation, we tested our algorithm on three synthetic examples and one real world
example with and without prior knowledge. Two of the synthetic examples are based on the “sinc”
function which has been extensively used for kernel approximation testing (Vapnik et al., 1997,
Baudat and Anouar, 2001), while the third synthetic example is a two-dimensional hyperboloid.
All our results indicate significant improvement due to prior knowledge. Theparameters for the
synthetic examples were selected using a combination of exhaustive searchand a simple variation
on the Nelder-Mead simplex algorithm (Nelder and Mead, 1965) that uses only reflection, with
average error as the criterion. The chosen parameter values are given in the captions of relevant
figures.

4.1 One-Dimensional Sinc Function

We consider the one-dimensional sinc function

f (x) = sinc(x) =
sinπx

πx
. (22)

Given data for the sinc function includes approximate function values for 52 points on the intervals
−3≤ x≤ −1.4303 and 1.4303≤ x≤ 3. The endpoints±1.4303 are approximate local minima of
the sinc function. The given approximate function values forsinc(x) are normally perturbed around
the true values, with mean 0 and standard deviation 0.5. In addition, there arealso three given values
atx = 0. One of these values is 1, which is the
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Figure 1: The one-dimensional sinc functionsinc(x) = sinπx
πx (dashed curve) and its Gaussian kernel

approximationwithoutprior knowledge based on the 55 points shown by diamonds. The
nine solid diamonds depict the “support” points used by the nonlinear Gaussian kernel
in generating the approximation ofsinc(x). That is, they are the rowsAi of A for which
αi 6= 0 in the solution of the nonlinear Gaussian kernel approximation of (7) forf (x):
f (x) ≈ K(x′,A′)α +b. The approximation has an average error of 0.3113 over a grid of
100 points in the interval[−3,3]. Parameter values used:µ= 7,C = 5.
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Figure 2: The one-dimensional sinc functionsinc(x) = sinπx
πx (dashed curve) and its Gaussian ker-

nel approximationwith prior knowledge based on 55 points, shown by diamonds, which
are the same as those of Figure 1. The seven solid diamonds depict the “support” points
used by the nonlinear Gaussian kernel in generating the approximation ofsinc(x). The
prior knowledge consists of the implication−1

4 ≤ x ≤ 1
4 ⇒ f (x) ≥ sin(π/4)

π/4 , which is
implemented by replacingf (x) by its nonlinear kernel approximation (23). The ap-
proximation has an average error of 0.0901 over a grid of 100 points in the interval
[−3,3], which is less than 1

3.4 times the error of Figure 1. Parameter values used:
µ= 1,C = 13,µ1 = 5,µ2 = 450.
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Figure 3: The exact product sinc functionf (x1,x2) = sinπx1
πx1

sinπx2
πx2
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Figure 4: Gaussian kernel approximation of the product sinc functionf (x1,x2) = sinπx1
πx1

sinπx2
πx2

based
on 211 exact function values plus 2 incorrect function values, butwithout prior knowl-
edge. The approximation has an average error of 0.0501 over a grid of 2500 points in the
set{[−3,3]× [−3,3]}. Parameter values used:µ= 0.2,C = 106.
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Figure 5: Gaussian kernel approximation of the product sinc function based on the same 213
function values as Figure 4plusprior knowledge consisting of(x1,x2) ∈ {[−0.1,0.1]×

[−0.1,0.1]}} ⇒ f (x1,x2) ≥ (sin(π/10)
π/10 )2. The approximation has an average error of

0.0045 over a grid of 2500 points in the set{[−3,3]× [−3,3]}, which is less than 1
11.1

times the error of Figure 4. Parameters areµ= 1,C = 16000,µ1 = 15000,µ2 = 5·106.
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actual limit of the sinc function at 0. The other values atx = 0 are 0 and−1 which are intended to
be misleading to the approximation.

Figure 1 depictssinc(x) by a dashed curve and its approximationwithout prior knowledge by
a solid curve based on the 55 points shown by diamonds. The nine solid diamonds depict “sup-
port” points, that is rowsAi of A for which αi 6= 0 in the solution of the nonlinear Gaussian kernel
approximation of (7) forf (x):

f (x) ≈ K(x′,A′)α+b. (23)

The approximation in Figure 1 has an average error of 0.3113. This error is computed by averaging
over a grid of 100 equally spaced points in the interval[−3,3].

Figure 2 depictssinc(x) by a dashed curve and its much better approximationwith prior knowl-
edge by a solid curve based on the 55 points shown, which are the same as those of Figure 1.
The seven solid diamond points are “support” points, that is rowsAi of A for which αi 6= 0 in
the solution of the nonlinear Gaussian kernel approximation (23) of (21) for f (x). The approx-
imation in Figure 2 has an average error of 0.0901 computed over a grid of 100 equally spaced
points on[−3,3]. The prior knowledge used to approximate the one-dimensional sinc function is
−1

4 ≤ x ≤ 1
4 ⇒ f (x) ≥ sin(π/4)

π/4 . The valuesin(π/4)
π/4 is the minimum ofsinc(x) on the knowledge

interval [−1
4, 1

4]. This prior knowledge is implemented by replacingf (x) by its nonlinear kernel
approximation (23) and then using the implication (18) as follows:

K(I ,A′)t ≤
1
4
∧ K(−I ,A′)t ≤

1
4

=⇒ α′K(A,A′)t +b≥
sin(π/4)

π/4
. (24)

4.2 Two-Dimensional Sinc Function

Our second example is the two-dimensionalsinc(x) function forx∈ R2:

f (x1,x2) = sinc(x1)sinc(x2) =
sinπx1

πx1

sinπx2

πx2
. (25)

The given data for the two-dimensional sinc function includes 210 points in the region{(x1,x2)|(−3≤
x1 ≤−1.4303∨1.4303≤ x1 ≤ 3)∧ (−3≤ x2 ≤−1∨1≤ x2 ≤ 3)}. This region excludes the largest
bump in the function centered at(x1,x2) = (0,0). The given values are exact function values. There
are also three values given at(x1,x2) = (0,0), similar to the previous example with the one dimen-
sional sinc. The first value is the actual limit of the function at(0,0), which is 1. The other two
values are 0 and−1. These last two values are intended to mislead the approximation.

Figure 3 depicts the two-dimensional sinc function of (25). Figure 4 depictsan approximation
of sinc(x1)sinc(x2) withoutprior knowledge by a surface based on the 213 points described above.
The approximation in Figure 4 has an average error of 0.0501. This value is computed by averaging
over a grid of 2500 equally spaced points in{[−3,3]× [−3,3]}.

Figure 5 depicts a much better approximation ofsinc(x1)sinc(x2) with prior knowledge by a
surface based on the same 213 points. The approximation in Figure 5 has anaverage error of
0.0045. This value is computed by averaging over 2500 equally spaced points in
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Figure 6: The exact hyperboloid functionf (x1,x2) = x1x2.

−5

0

5

−5

0

5
−25

−20

−15

−10

−5

0

5

10

15

20

25

Figure 7: Gaussian kernel approximation of the hyperboloid functionf (x1,x2) = x1x2 based on 11
exact function values along the linex2 = x1,x1 ∈ {−5,−4, . . . ,4,5}, but without prior
knowledge. The approximation has an average error of 4.8351 over 2500 points in the set
{[−5,5]× [−5,5]}. Parameter values used:µ= 0.361,C = 145110.
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Figure 8: Gaussian kernel approximation of the hyperboloid functionf (x1,x2) = x1x2 based on the
same 11 function values as of Figure 7plusprior knowledge consisting of the implications
(27) and (28). The approximation has an average error of 0.2023 over 2500 points in the
set{[−5,5]× [−5,5]}, which is less than 1

23.9 times the error of Figure 7. Parameter
values used:µ= 0.0052,C = 5356,µ1 = 685,µ2 = 670613.
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{[−3,3]× [−3,3]}. The prior knowledge consists of the implication

(x1,x2) ∈ {[−0.1,0.1]× [−0.1,0.1]}⇒ f (x1,x2) ≥ (
sin(π/10)

π/10
)2.

The value(sin(π/10)
π/10 )2 is equal to the minimum value ofsinc(x1)sinc(x2) on the knowledge set

{[−0.1,0.1]× [−0.1,0.1]}. This prior knowledge is implemented by replacingf (x1,x2) by its non-
linear kernel approximation (23) and then using the implication (18).

4.3 Two-Dimensional Hyperboloid Function

Our third example is the two-dimensional hyperboloid function

f (x1,x2) = x1x2. (26)

For the two-dimensional hyperboloid function, the given data consists of 11 points along the
line x2 = x1,x1 ∈ {−5,−4, . . . ,4,5}. The given values at these points are the actual function values.

Figure 6 depicts the two-dimensional hyperboloid function of (26). Figure7 depicts an approx-
imation of the hyperboloid function,withoutprior knowledge, by a surface based on the 11 points
described above. The approximation in Figure 7 has an average error of 4.8351 computed over a
grid of 2500 equally spaced points in{[−5,5]× [−5,5]}.

Figure 8 depicts a much better approximation of the hyperboloid function by a nonlinear surface
based on the same 11 points aboveplus prior knowledge. The approximation in Figure 8 has an
average error of 0.2023 computed over a grid of 2500 equally spaced points in{[−5,5]× [−5,5]}.
The prior knowledge consists of the following two implications:

(x1,x2) ∈ {(x1,x2)|−
1
3

x1 ≤ x2 ≤−
2
3

x1}⇒ f (x1,x2) ≤ 10x1 (27)

and

(x1,x2) ∈ {(x1,x2)|−
2
3

x1 ≤ x2 ≤−
1
3

x1}⇒ f (x1,x2) ≤ 10x2. (28)

These implications are implemented by replacingf (x1,x2) by its nonlinear kernel approximation
(23) and then using the implication (18). The regions on which the knowledgeis given are cones
on whichx1x2 is negative. Since the two implications are analogous, we explain (27) only. This
implication is justified on the basis thatx1x2 ≤ 10x1 over the knowledge cone{(x1,x2)|−

1
3x1 ≤ x2 ≤

−2
3x1} for sufficiently largex2, that isx2 ≥ 10. This is intended to capture coarsely the global shape

of f (x1,x2) and succeeds in generating a more accurate overall approximation of the function.

4.4 Predicting Lymph Node Metastasis

We conclude our numerical results with a potentially useful application of knowledge-based ap-
proximation to breast cancer prognosis (Mangasarian et al., 1995, Wolberg et al., 1995, Lee et al.,
2001). An important prognostic indicator for breast cancer recurrence is the number of metastasized
lymph nodes under a patient’s armpit, which could be as many as 30. To determine this number, a
patient must undergo optional surgery in addition to the removal of the breast tumor. If the predicted
number of metastasized lymph nodes is sufficiently small, then the oncological surgeon may decide
not to perform the additional surgery. Thus, it is useful to approximate the number of metastasized
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lymph nodes as a function of thirty available cytological features and one histological feature. The
cytological features are obtained from a fine needle aspirate during the diagnostic procedure while
the histological feature is obtained during surgery. Our proposed knowledge-based approximation
can be used to improve the determination of such a function,f : R31 −→ R, that predicts the num-
ber of metastasized lymph nodes. For example, in certain polyhedral regions of R31, past training
data indicate the existence of a substantial number of metastasized lymph nodes, whereas certain
other regions indicate the unlikely presence of any metastasis. This knowledge can be applied to
obtain a hopefully more accurate lymph node functionf than that based on numerical function
approximation alone.

We have performed preliminary experiments with the Wisconsin Prognostic Breast Cancer
(WPBC) data available from (Murphy and Aha, 1992). In our experiments we reducedR31 to R4

and predicted the number of metastasized lymph nodes based on three cytological features: mean
cell texture, worst cell smoothness, and worst cell area, as well as thehistological feature tumor
size. The tumor size is an obvious histological feature to include, while the three other cytological
features were the same as those selected for breast cancer diagnosis in(Mangasarian, 2001). Thus,
we are approximating a functionf : R4 −→ R. Note that the online version of the WPBC data con-
tains four entries with no lymph node information which were removed for our experiments. After
removing these entries, we were left with 194 examples in our dataset.

To simulate the procedure of an expert obtaining prior knowledge from past data we used the
following procedure. First we took a random 20% of the dataset to analyze as “past data”. Inspecting
this past data, we choose the following background knowledge:

x1 ≥ 22.4 ∧ x2 ≥ 0.1 ∧ x3 ≥ 1458.9 ∧ x4 ≥ 3.1 =⇒ f (x1,x2,x3,x4) ≥ 1, (29)

wherex1,x2,x3, andx4 denote mean texture, worst smoothness, worst area, and tumor size respec-
tively. This prior knowledge is based on a typical oncological surgeon’s advice that larger values
of the variables are likely to result in more metastasized lymph nodes. The constants in (29) were
chosen by taking the average values ofx1, . . . ,x4 for the entries in the past data with at least one
metastasized lymph node.

We used ten-fold cross validation to compare the average absolute error between an approxima-
tion without prior knowledge and an approximation with the prior knowledge ofEquation (29) on
the 80% of the data that was not used as “past data” to generate the constants in (29). Parameters
in (21) using a Gaussian kernel were chosen using the Nelder-Mead algorithm on a tuning set taken
from the training data for each fold. The average absolute error of the function approximation with
no prior knowledge was 3.75 while the average absolute error with prior knowledge was 3.35, a
10.5% reduction. The mean function value of the data used in the ten-fold crossvalidation exper-
iments is 3.30, so neither approximation is accurate. However, these results indicate that adding
prior knowledge does indeed improve the function approximation substantially. Hopefully more
sophisticated prior knowledge, based on a more detailed analysis of the dataand consultation with
domain experts, will further reduce the error.

We close this section with a potential application to a reinforcement learning task(Sutton and
Barto, 1998), where the goal is to predict the value of taking an action at agiven state. Thus, the
domain of the function to be approximated is the Cartesian product of the set of states and the set of
actions. In particular, we plan to use theKeep-Awaysubtask of the soccer game developed in (Stone
and Sutton, 2001). The state description includes measurements such as distance to each of the
opposing players, distance to the soccer ball, distances to the edges of thefield, etc. Actions include
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holding the ball and attempting a pass to a teammate. It has been demonstrated thatproviding
prior knowledge can improve the choice of actions significantly (Kuhlmann etal., 2004, Maclin and
Shavlik, 1996). One example of advice (that is, prior knowledge) that has been successfully used in
this domain is the simple advice that “if no opponent is within 8 meters, holding the ball is a good
idea.” In our approach we approximate a value functionv as a function of states and actions. Advice
can be stated as the following implication, assuming two opponents:

d1 ≥ 8 ∧ d2 ≥ 8 ∧ a = h =⇒ v≥ c, (30)

whered1 denotes the distance to Opponent 1,d2 the distance to Opponent 2,a = h the action of
holding the ball,v the predicted value, andc is some constant. It is hoped that this “advice” can
help in generating an improved value functionv based on the current description of the state of the
soccer game.

5. Conclusion and Outlook

We have presented a knowledge-based formulation of a nonlinear kernel SVM approximation. The
approximation is obtained using a linear programming formulation with any nonlinear symmetric
kernel and with no positive semidefiniteness (Mercer) condition assumed.The issues associated
with sampling the knowledge sets in order to generate function values (that is,a matrix A and
a corresponding vectory) in situations where there are no conventional data points constitute an
interesting topic for future research. Additional future work includes refinement of prior knowledge
and applications to medical problems, computer vision, microarray gene classification, and efficacy
of drug treatment, all of which have prior knowledge available.
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Abstract
The purpose of this paper is to provide a PAC error analysis for theq-norm soft margin classifier,
a support vector machine classification algorithm. It consists of two parts: regularization error
and sample error. While many techniques are available for treating the sample error, much less
is known for the regularization error and the correspondingapproximation error for reproducing
kernel Hilbert spaces. We are mainly concerned about the regularization error. It is estimated for
general distributions by aK-functional in weightedLq spaces. For weakly separable distributions
(i.e., the margin may be zero) satisfactory convergence rates are provided by means of separating
functions. A projection operator is introduced, which leads to better sample error estimates espe-
cially for small complexity kernels. The misclassificationerror is bounded by theV-risk associated
with a general class of loss functionsV. The difficulty of bounding the offset is overcome. Poly-
nomial kernels and Gaussian kernels are used to demonstratethe main results. The choice of the
regularization parameter plays an important role in our analysis.

Keywords: support vector machine classification, misclassification error, q-norm soft margin
classifier, regularization error, approximation error

1. Introduction

In this paper we study support vector machine (SVM) classification algorithms and investigate the
SVM q-norm soft margin classifier with 1< q < ∞. Our purpose is to provide an error analysis for
this algorithm in the PAC framework.

Let (X,d) be a compact metric space andY = {1,−1}. A binary classifierf : X →{1,−1} is a
function fromX to Y which divides the input spaceX into two classes.

Let ρ be a probability distribution onZ := X ×Y and (X ,Y ) be the corresponding random
variable. Themisclassification errorfor a classifierf : X →Y is defined to be the probability of the
event{ f (X ) 6= Y }:

R ( f ) := Prob{ f (X ) 6= Y } =
Z

X
P(Y 6= f (x)|x)dρX(x). (1)

c©2004 Di-Rong Chen, Qiang Wu, Yiming Ying, and Ding-Xuan Zhou.
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HereρX is the marginal distribution onX andP(·|x) is the conditional probability measure given
X = x.

The SVMq-norm soft margin classifier (Cortes and Vapnik, 1995; Vapnik, 1998) isconstructed
from samples and depends on a reproducing kernel Hilbert space associated with a Mercer kernel.

Let K : X×X → R be continuous, symmetric and positive semidefinite, i.e., for any finite set of
distinct points{x1, · · · ,x`} ⊂ X, the matrix(K(xi ,x j))

`
i, j=1 is positive semidefinite. Such a kernel is

called aMercer kernel.
The Reproducing Kernel Hilbert Space(RKHS) HK associated with the kernelK is defined

(Aronszajn, 1950) to be the closure of the linear span of the set of functions{Kx := K(x, ·) : x∈ X}
with the inner product〈·, ·〉HK

= 〈·, ·〉K satisfying〈Kx,Ky〉K = K(x,y) and

〈Kx,g〉K = g(x), ∀x∈ X,g∈ HK .

DenoteC(X) as the space of continuous functions onX with the norm‖ · ‖∞. Let κ :=
√
‖K‖∞.

Then the above reproducing property tells us that

‖g‖∞ ≤ κ‖g‖K , ∀g∈ HK . (2)

DefineH K := HK +R. For a functionf = f1 +b with f1 ∈ HK andb∈ R, we denotef ∗ = f1
andbf = b∈ R. The constant termb is called theoffset. For a functionf : X → R, the sign function
is defined as sgn( f )(x) = 1 if f (x) ≥ 0 and sgn( f )(x) = −1 if f (x) < 0.

Now theSVM q-norm soft margin classifier(SVM q-classifier) associated with the Mercer ker-
nelK is defined as sgn( fz), wherefz is a minimizer of the following optimization problem involving
a set of random samplesz = (xi ,yi)

m
i=1 ∈ Zm independently drawn according toρ:

fz := arg min
f∈H K

1
2
‖ f ∗‖2

K +
C
m

m

∑
i=1

ξq
i ,

subject to yi f (xi) ≥ 1−ξi , andξi ≥ 0 for i = 1, . . . ,m.

(3)

HereC is a constant which depends onm: C = C(m), and often lim
m→∞

C(m) = ∞.

Throughout the paper, we assume 1< q < ∞, m∈ N, C > 0, andz = (xi ,yi)
m
i=1 are random

samples independently drawn according toρ. Our target is to understand how sgn( fz) converges
(with respect to the misclassification error) to the best classifier, the Bayesrule, asm and hence
C(m) tend to infinity. Recall the regression function ofρ:

fρ(x) =
Z

Y
ydρ(y|x) = P(Y = 1|x)−P(Y = −1|x), x∈ X. (4)

Then theBayes ruleis given (e.g. Devroye, L. Gÿorfi and G. Lugosi, 1997) by the sign of the
regression functionfc := sgn( fρ). Estimating the excess misclassification error

R (sgn( fz))−R ( fc) (5)

for the classification algorithm (3) is our goal. In particular, we try to understand how the choice of
the regularization parameterC affects the error.

To investigate the error bounds for general kernels, we rewrite (3) asa regularization scheme.
Define the loss functionV = Vq as

V(y, f (x)) := (1−y f(x))q
+ = |y− f (x)|qχ{y f(x)≤1}, (6)
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where(t)+ = max{0, t}. The correspondingV-risk is

E( f ) := E(V(y, f (x))) =
Z

Z
V(y, f (x))dρ(x,y). (7)

If we set the empirical error as

Ez( f ) :=
1
m

m

∑
i=1

V(yi , f (xi)) =
1
m

m

∑
i=1

(1−yi f (xi))
q
+ , (8)

then the scheme (3) can be written as (see Evgeniou, Pontil and Poggio, 2000)

fz = arg min
f∈H K

{
Ez( f )+

1
2C

‖ f ∗‖2
K

}
. (9)

Notice that whenH K is replaced byHK , the scheme (9) is exactly the Tikhonov regularization
scheme (Tikhonov and Arsenin, 1977) associated with the loss functionV. So one may hope that
the method for analyzing regularization schemes can be applied.

The definitions of theV-risk (7) and the empirical error (8) tell us that for a functionf = f ∗+b∈
H K , the random variableξ = V(y, f (x)) on Z has the meanE( f ) and 1

m ∑m
i=1 ξ(zi) = Ez( f ). Thus

we may expect by some standard empirical risk minimization (ERM) argument (e.g. Cucker and
Smale, 2001; Evgeniou, Pontil and Poggio, 2000; Shawe-Taylor et al., 1998; Vapnik, 1998; Wahba,
1990) to derive bounds forE( fz)−E( fq), where fq is a minimizer of theV-risk (7). It was shown
in Lin (2002) that forq > 1 such a minimizer is given by

fq(x) =
(1+ fρ(x))1/(q−1)− (1− fρ(x))1/(q−1)

(1+ fρ(x))1/(q−1) +(1− fρ(x))1/(q−1)
, x∈ X. (10)

Forq = 1 a minimizer isfc, see Wahba (1999). Note that sgn( fq) = fc.
Recall that for the classification algorithm (3), we are interested in the excess misclassification

error (5), not the excessV-risk E( fz)−E( fq). But we shall see in Section 3 thatR (sgn( f ))−
R ( fc) ≤

√
2(E( f )−E( fq)). One might apply this to the functionfz and get estimates for (5).

However, special features of the loss function (6) enable us to do better: by restricting fz onto
[−1,1], we can improve the sample error estimates. The idea of the following projectionoperator
was introduced for this purpose in Bartlett (1998).

Definition 1 Theprojection operatorπ is defined on the space of measurable functions f: X → R

as

π( f )(x) =





1, if f (x) ≥ 1,
−1, if f (x) ≤−1,
f (x), if −1 < f (x) < 1.

(11)

It is trivial that sgn(π( f )) = sgn( f ). Hence

R (sgn( fz))−R ( fc) ≤
√

2(E(π( fz))−E( fq)). (12)

The definition of the loss function (6) also tells us thatV(y,π( f )(x)) ≤V(y, f (x)), so

E(π( f )) ≤ E( f ) and Ez(π( f )) ≤ Ez( f ). (13)

According to (12), we need to estimateE(π( fz))−E( fq) in order to bound (5). To this end, we

introduce aregularizing function fK,C ∈ H K . It is arbitrarily chosen and depends onC.
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Proposition 2 Let fK,C ∈ H K , and fz be defined by (9). ThenE(π( fz))−E( fq) can be bounded by
{

E( fK,C)−E( fq)+
1

2C
‖ f ∗K,C‖2

K

}
+

{
E(π( fz))−Ez(π( fz))+Ez( fK,C)−E( fK,C)

}
. (14)

Proof Decompose the differenceE(π( fz))−E( fq) as

{
E(π( fz))−Ez(π( fz))

}
+

{(
Ez(π( fz))+

1
2C

‖ f ∗z ‖2
K

)
−
(

Ez( fK,C)+
1

2C
‖ f ∗K,C‖2

K

)}

+
{

Ez( fK,C)−E( fK,C)
}

+

{
E( fK,C)−E( fq)+

1
2C

‖ f ∗K,C‖2
K

}
− 1

2C
‖ f ∗z ‖2

K .

By the definition offz and (13), the second term is≤ 0. Then the statement follows.

The first term in (14) is called the regularization error (Smale and Zhou, 2004). It can be
expressed as a generalizedK-functional inf

f∈H K

{
E( f )−E( fq)+ 1

2C‖ f ∗‖2
K

}
when fK,C takes a special

choice f̃K,C (a standard choice in the literature, e.g. Steinwart 2001) defined as

f̃K,C := arg min
f∈H K

{
E( f )+

1
2C

‖ f ∗‖2
K

}
. (15)

Definition 3 Let V be a general loss function and fV
ρ be a minimizer of the V-risk (7). Theregular-

ization errorfor the regularizing function fK,C ∈ H K is defined as

D(C) := E( fK,C)−E( fV
ρ )+

1
2C

‖ f ∗K,C‖2
K . (16)

It is called theregularization error of the scheme(9) when fK,C = f̃K,C:

D̃(C) := inf
f∈H K

{
E( f )−E( fV

ρ )+
1

2C
‖ f ∗‖2

K

}
.

The main concern of this paper is the regularization error. We shall investigate its asymptotic
behavior. This investigation is not only important for bounding the first termin (14), but also
crucial for bounding the second term (sample error): it is well known in structural risk minimization
(Shawe-Taylor et al., 1998) that the size of the hypothesis space is essential. This is determined by
D(C) in our setting. OnceC is fixed, the sample error estimate becomes routine. Therefore, we
need to understand the choice of the parameterC from the bound forD(C).

Proposition 4 For any C≥ 1/2 and any fK,C ∈ H K , there holds

D(C) ≥ D̃(C) ≥ κ̃2

2C
(17)

where
κ̃ := E0/(1+κq4q−1), E0 := inf

b∈R

{E(b)−E( fq)}. (18)

Moreover,̃κ = 0 if and only if for some p0 ∈ [0,1], P(Y = 1|x) = p0 in probability.
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This proposition will be proved in Section 5.
According to Proposition 4, the decay ofD(C) cannot be faster thanO(1/C) except for some

very special distributions. This special case is caused by the offset in (9), for which D̃(C) ≡ 0.
Throughout this paper we shall ignore this trivial case and assumeκ̃ > 0.

Whenρ is strictly separable,D(C)= O(1/C). But this is a very special phenomenon. In general,
one should not expectE( f ) = E( fq) for some f ∈ H K . Even for (weakly) separable distributions
with zero margin,D(C) decays asO(C−p) for some 0< p < 1. To realize such a decay for these
separable distributions, the regularizing function will be multiples of a separating function. For
details and the concepts of strictly or weakly separable distributions, see Section 2.

For general distributions, we shall choosefK,C = f̃K,C in Sections 6 and 7 and estimate the
regularization error of the scheme (9) associated with the loss function (6)by means of the approxi-
mation in the function spaceLq

ρX . In particular,D̃(C)≤ K ( fq, 1
2C), whereK ( fq, t) is aK-functional

defined as

K ( fq, t) :=





inf
f∈H K

{
‖ f − fq‖q

Lq
ρX

+ t‖ f ∗‖2
K

}
, if 1 < q≤ 2,

inf
f∈H K

{
q2q−1(2q−1 +1)‖ f − fq‖Lq

ρX
+ t‖ f ∗‖2

K

}
, if q > 2.

(19)

In the caseq = 1, the regularization error (Wu and Zhou, 2004) depends on the approximation
in L1

ρX
of the function fc which is not continuous in general. Forq > 1, the regularization error

depends on the approximation inLq
ρX of the function fq. When the regression function has good

smoothness,fq has much higher regularity thanfc. Hence the convergence forq > 1 may be faster
than that forq = 1, which improves the regularization error.

The second term in (14) is called thesample error. WhenC is fixed, the sample errorE( fz)−
Ez( fz) is well understood (except for the offset term). In (14), the sample error is for the function
π( fz) instead offz while the misclassification error (5) is kept:R (sgn(π( fz))) = R (sgn( fz)). Since
the bound forV(y,π( f )(x)) is much smaller than that forV(y, f (x)), the projection improves the
sample error estimate.

Based on estimates for the regularization error and sample error above, our error analysis will
provideε(δ,m,C,β) > 0 for any 0< δ < 1 such that with confidence 1−δ,

E(π( fz))−E( fq) ≤ (1+β){D(C)+ ε(δ,m,C,β)}. (20)

Here 0< β ≤ 1 is an arbitrarily fixed number. Moreover, lim
m→∞

ε(δ,m,C,β) = 0.

If fq lies in theLq
ρX -closure ofH K , then lim

t→0
K ( fq, t) = 0 by (19). HenceE(π( fz))−E( fq)→ 0

with confidence asm (and henceC = C(m)) becomes large. This is the case whenK is a universal
kernel, i.e.,HK is dense inC(X), or when a sequence of kernels whose RKHS tends to be dense
(e.g. polynomial kernels with increasing degrees) is used.

In summary, estimating the excess misclassification errorR (sgn( fz))−R ( fc) consists of three
parts: the comparison (12), the regularization errorD(C) and the sample errorε(δ,m,C,β) in (20).
As functions of the variableC, D(C) decreases whileε(δ,m,C,β) usually increases. Choosing
suitable values for the regularization parameterC will give the optimal convergence rate. To this
end, we need to consider the tradeoff between these two errors. This can be done by minimizing the
right side of (20), as shown in the following form.

1147



CHEN, WU, Y ING, AND ZHOU

Lemma 5 Let p,α,τ > 0. Denote cp,α,τ := (p/τ)
τ

τ+p +(τ/p)
p

τ+p . Then for any C> 0,

C−p +
Cτ

mα ≥ cp,α,τ

(
1
m

) αp
τ+p

. (21)

The equality holds if and only if C= (p/τ)
1

τ+p m
α

τ+p . This yields the optimal powerαp
τ+p.

The goal of the regularization error estimates is to havep in D(C) = O(C−p), as large as possi-
ble. But p≤ 1 according to Proposition 4. Good methods for sample error estimates provide large
α and smallτ such thatε(δ,m,C,β) = O( Cτ

mα ). Notice that, as always, both the approximation prop-
erties (represented by the exponentp) and the estimation properties (represented by the exponents
τ andα) are important to get good estimates for the learning rates (with the optimal rateαp

τ+p).

2. Demonstrating with Weakly Separable Distributions

With some special cases let us demonstrate how our error analysis yields some guidelines for choos-
ing the regularization parameterC. For weakly separable distributions, we also compare our re-
sults with bounds in the literature. To this end, we need the covering number ofthe unit ball
B := { f ∈ HK : ‖ f‖K ≤ 1} of HK (considered as a subset ofC(X)).

Definition 6 For a subsetF of a metric space andη > 0, thecovering numberN (F ,η) is defined
to be the minimal integer̀∈ N such that there exist̀disks with radiusη coveringF .

Denote the covering number ofB in C(X) by N (B,η). Recall the constant̃κ defined in (18).
Since the algorithm involves an offset term, we also need its covering numberand set

N (η) :=
{
(κ+

1
κ̃
)
1
η

+1
}

N (B,η). (22)

Definition 7 We say that the Mercer kernel K haslogarithmic complexity exponents≥ 1 if for
some c> 0, there holds

logN (η) ≤ c(log(1/η))s, ∀η > 0. (23)

The kernel K haspolynomial complexity exponents> 0 if

logN (η) ≤ c(1/η)s, ∀η > 0. (24)

The covering numberN (B,η) has been extensively studied (see e.g. Bartlett, 1998; Williamson,
Smola and Scḧolkopf, 2001; Zhou, 2002; Zhou, 2003a). In particular, for convolution type kernels
K(x,y) = k(x−y) with k̂≥ 0 decaying exponentially fast, (23) holds (Zhou, 2002, Theorem 3). As
an example, consider the Gaussian kernelK(x,y) = exp{−|x− y|2/σ2} with σ > 0. If X ⊂ [0,1]n

and 0< η ≤ exp{90n2/σ2 − 11n− 3}, then (23) is valid (Zhou, 2002) withs = n+ 1. A lower
bound (Zhou, 2003a) holds withs= n

2, which shows the upper bound is almost sharp. It was also
shown in (Zhou, 2003a) thatK has polynomial complexity exponent 2n/p if K is Cp.

To demonstrate our main results concerning the regularization parameterC, we shall only choose
kernels having logarithmic complexity exponents or having polynomial complexity exponents with
s small. This means,H K has small complexity.
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The special case we consider here is the deterministic case:R ( fc) = 0. Understanding how to
find D(C) andε(δ,m,C,β) in (20) and then how to choose the parameterC is our target. ForM ≥ 0,
denote

θM =

{
0, if M = 0,
1, if M > 0.

(25)

Proposition 8 SupposeR ( fc) = 0. If fK,C ∈ H K satisfies‖V(y, fK,C(x))‖∞ ≤ M, then for every
0 < δ < 1, with confidence at least1−δ, we have

R (sgn( fz)) ≤ 2max

{
ε∗,

4M log(2/δ)

m

}
+4D(C), (26)

where withM :=
√

2CD(C)+2CεθM, ε∗ > 0 is the unique solution to the equation

logN

(
ε

q2q+3M

)
− 3mε

2q+9 = log(δ/2). (27)

(a) If (23) is valid, then with̃c = 2q+9{1+c((q+4) log8)s},

ε∗ ≤ c̃

(
(logm+ log(CD(C))+ log(CθM))s+ log(2/δ)

m

)
.

(b) If (24) is valid and C≥ 1, then with a constant̃c (given explicitly in the proof),

ε∗ ≤ c̃log(2/δ)

{
(2CD(C))s/(2s+2)

m1/(s+1)
+

(2C)s/(s+2)

m1/( s
2+1)

}
. (28)

Note that the above constantc̃ depends onc,q, and κ, but not onC, m or δ. The proof of
Proposition 8 will be given in Section 5.

We can now derive our error bound for weakly separable distributions.

Definition 9 We say thatρ is (weakly) separableby H K if there is a function fsp∈ H K , called a
separating function, satisfying‖ f ∗sp‖K = 1 and y fsp(x) > 0 almost everywhere. It hasseparation
exponentθ ∈ (0,+∞] if there are positive constantsγ,c′ such that

ρX{x∈ X : | fsp(x)| < γt} ≤ c′tθ, ∀ t > 0. (29)

Observe that condition (29) withθ = +∞ is equivalent to

ρX{x∈ X : | fsp(x)| < γt} = 0, ∀ 0 < t < 1.

That is,| fsp(x)| ≥ γ almost everywhere. Thus, weakly separable distributions with separationexpo-
nentθ = +∞ are exactly strictly separable distributions. Recall (e.g. Vapnik, 1998; Shawe-Taylor et
al., 1998) thatρ is said to bestrictly separableby H K with marginγ > 0 if ρ is (weakly) separable
together with the requirementy fsp(x) ≥ γ almost everywhere.

¿From the first part of Definition 9, we know that for a separable distribution ρ, the set{x :
fsp(x) = 0} hasρX-measure zero, hence

lim
t→0

ρX{x∈ X : | fsp(x)| < t} = 0.

The separation exponentθ measures the asymptotic behavior ofρ near the boundary of two classes.
It gives the convergence with a polynomial decay.
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Theorem 10 If ρ is separable and has separation exponentθ ∈ (0,+∞] with (29) valid, then for
every0 < δ < 1, with confidence at least1−δ, we have

R (sgn( fz)) ≤ 2ε∗ +
8log(2/δ)

m
+4(2c′)

2
θ+2 (Cγ2)−

θ
θ+2 , (30)

whereε∗ is solved by

logN

(
ε

q2q+3

√
2(2c′)

2
θ+2 γ−

2θ
θ+2C

2
θ+2 +2Cε

)
− 3mε

2q+9 = log(δ/2). (31)

(a) If (23) is satisfied, with a constant̃c depending onγ we have

R (sgn( fz)) ≤ c̃

(
log(2/δ)+(logm+ logC)s

m
+C− θ

θ+2

)
. (32)

(b) If (24) is satisfied, there holds

R (sgn( fz)) ≤ c̃

{
log

2
δ

(
C

s
(s+1)(θ+2) m− 1

s+1 +C
s

s+2 m− 1
s/2+1

)
+C− θ

θ+2

}
. (33)

Proof Chooset = ( γθ

2c′C)1/(θ+2) > 0 and the functionfK,C = 1
t fsp∈H K . Then we have1

2C‖ f ∗K,C‖2
K =

1
2Ct2 .

Sincey fsp(x) > 0 almost everywhere, we know that for almost everyx ∈ X, y = sgn( fsp)(x).
This meansfρ = sgn( fsp) and thenfq = sgn( fsp). It follows thatR ( fc) = 0 andV(y, fK,C(x)) =

(1− | fsp(x)|
t )q

+ ∈ [0,1] almost everywhere. Therefore, we may takeM = 1 in Proposition 8. More-
over,

E( fK,C) =
Z

Z

(
1−

y fsp(x)

t

)q

+
dρ =

Z

X

(
1−

| fsp(x)|
t

)q

+
dρX.

This can be bounded by (29) as
Z

{x:| fsp(x)|<t}

(
1−

| fsp(x)|
t

)q

+
dρX ≤ ρX{x∈ X : | fsp(x)| < t} ≤ c′

( t
γ

)θ
.

It follows from the choice oft that

D(C) ≤ c′
( t

γ

)θ
+

1
2Ct2

= (2c′)
2

θ+2 (Cγ2)−
θ

θ+2 . (34)

Then our conclusion follows from Proposition 8.

In case (a), the bound (32) tells us to chooseC such that(logC)s/m → 0 andC → ∞ as
m→ ∞. By (32) a reasonable choice of the regularization parameterC is C = m

θ+2
θ , which yields

R (sgn( fz)) = O( (logm)s

m ). In case (b),

when(24) is valid, C = m
θ+2

θ+s+θs =⇒ R (sgn( fz)) = O(m− θ
θ+s+θs). (35)

The following is a typical example of separable distribution which is not strictly separable. In
this example, the separation exponent isθ = 1.
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Example 1 Let X = [−1/2,1/2] andρ be the Borel probability measure on Z such thatρX is the
Lebesgue measure on X and

fρ(x) =

{
1, for −1/2≤ x≤−1/4 and1/4≤ x≤ 1/2,
−1, for −1/4≤ x < 1/4.

(a) If K is the linear polynomial kernel K(x,y) = x ·y, thenR (sgn( fz))−R ( fc) ≥ 1/4.

(b) If K is the quadratic polynomial kernel K(x,y) = (x ·y)2, then with confidence1−δ,

R (sgn( fz)) ≤
q(q+4)2q+11(logm+ logC+2log(2/δ))

m
+

16

C1/3
.

Hence one should take C such thatlogC/m→ 0 and C→ ∞ as m→ ∞.

Proof The first statement is trivial.
To see (b), we note that dimHK = 1 andκ = 1/4. Also, E0 = inf

b∈R

E(b) = 1. Henceκ̃ =

1/(1+q4q−2). SinceHK = {ax2 : a∈ R} and‖ax2‖K = |a|, N (B,η) ≤ 1/(2η). Then (23) holds

with s= 1 andc = 4q. By Proposition 8, we see thatε∗ ≤ q(q+4)2q+11(log(Cm)+log(2/δ))
m .

Take the functionfsp(x) = x2−1/16∈ H K with ‖ f ∗sp‖K = 1. We see thaty fsp(x) > 0 almost
everywhere. Moreover,

{x∈ X : | fsp(x)| < t} ⊆
[√

1−16t
4

,

√
1+16t

4

]
[

[
−
√

1+16t
4

,−
√

1−16t
4

]
.

The measure of this set is bounded by 8
√

2t. Hence (29) holds withθ = 1, γ = 1 andc′ = 8
√

2.
Then Theorem 10 gives the stated bound forR (sgn( fz)).

In this paper, for the sample error estimates we only use the (uniform) covering numbers in
C(X). Within the last a few years, the empirical covering numbers (in`∞ or `2), the leave-one-out
error or stability analysis (e.g. Vapnik, 1998; Bousquet and Ellisseeff,2002; Zhang, 2004), and
some other advanced empirical process techniques such as the local Rademacher averages (van der
Vaart and Wellner, 1996; Bartlett, Bousquet and Mendelson, 2004; and references therein) and the
entropy integrals (van der Vaart and Wellner, 1996) have been developed to get better sample error
estimates. These techniques can be applied to various learning algorithms. They are powerful to
handle general hypothesis spaces even with large capacity.

In Zhang (2004) the leave-one-out technique was applied to improve the sample error estimates
given in Bousquet and Ellisseeff (2002): the sample error has a kernel-independent boundO(C

m),

improving the boundO( C√
m) in Bousquet and Ellisseeff (2002); while the regularization errorD̃(C)

depends onK andρ. In particular, forq = 2 the bound (Zhang, 2004, Corollary 4.2) takes the form:

E(E( fz)) ≤
(

1+
4κ2C

m

)2
inf

f∈HK

{
E( f )+

1
2C

‖ f‖2
K

}
=
(

1+
4κ2C

m

)2{
D̃(C)+E( fq)

}
. (36)

In Bartlett, Jordan and McAuliffe (2003) the empirical process techniques are used to improve
the sample error estimates for ERM. In particular, Theorem 12 there states that for a convex setF
of functions onX, the minimizerf̂ of the empirical error overF satisfies

E( f̂ ) ≤ inf
f∈F

E( f )+K max

{
ε∗,
(crL2 log(1/δ)

m

)1/(2−β)
,
BLlog(1/δ)

m

}
. (37)
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HereK,cr ,β are constants, andε∗ is solved by an inequality. The constantB is a bound for differ-
ences, andL is the Lipschitz constant for the lossφ with respect to a pseudometric onR. For more
details, see Bartlett, Jordan and McAuliffe (2003). The definitions ofB andL together tell us that

|φ(y1 f (x1))−φ(y2 f (x2))| ≤ LB, ∀ (x1,y1) ∈ Z,(x2,y2) ∈ Z, f ∈ F . (38)

Because of our improvement for the bound of the random variablesV(y, f (x)) given by the pro-
jection operator, for the algorithm (3) the error bounds we derive hereare better than existing results
when the kernel has small complexity. Let us confirm this for separable distributions with separa-
tion exponent 0< θ < ∞ and for kernels with polynomial complexity exponents> 0 satisfying (24).
Recall thatD(C) = O(C− θ

θ+2 ). Takeq = 2.
Consider the estimate (36). This together with (34) tells us that the derived bound forE(E( fz)−

E( fq)) is at least of the order̃D(C)+ C
mD̃(C) = O(C− θ

θ+2 + C
2

θ+2

m ). By Lemma 5, the optimal bound

derived from (36) isO(m− θ
θ+2 ). Thus, our bound (35) is better than (36) when 0< s< 2

θ+1.

Turn to the estimate (37). TakeF to be the ball of radius
√

2CD̃(C) of HK (the expected

smallest ball wheref ∗z lies), we find that the constantLB in (38) should be at leastκ
√

2CD̃(C).

This tells us that one term in the bound (37) for the sample error is at leastO
(√

2CD̃(C)
m

)
= O(C

1
θ+2

m ),

while the other two terms are more involved. Applying Lemma 5 again, we find that the bound
derived from (37) is at leastO(m− θ

θ+1 ). So our bound (35) is better than (37) at least for 0< s< 1
θ+1.

Thus, our analysis with the help of the projection operator improves existing error bounds when
the kernel has small complexity. Note that in (35), the values ofs for which the projection operator
gives an improvement are values corresponding to rapidly diminishing regularization (C = mβ with
β > 1 being large).

For kernels with large complexity, refined empirical process techniques (e.g. van der Vaart and
Wellner, 1996; Mendelson, 2002; Zhang, 2004; Bartlett, Jordan and McAuliffe, 2003) should give
better bounds: the capacity of the hypothesis space may have more influence on the sample error
than the bound of the random variableV(y, f (x)), and the entropy integral is powerful to reduce this
influence. To find the range of this large complexity, one needs explicit rateanalysis for both the
sample error and regularization error. This is out of our scope. It would be interesting to get better
error bounds by combining the ideas of empirical process techniques andthe projection operator.

Problem 11 How much improvement can we get for the total error when we apply the projection
operator to empirical process techniques?

Problem 12 Given θ > 0,s > 0,q ≥ 1, and 0 < δ < 1, what is the largest numberα > 0 such
that R (sgn( fz)) = O(m−α) with confidence1− δ whenever the distributionρ is separable with
separation exponentθ and the kernel K satisfies (24)? What is the corresponding optimal choiceof
the regularization parameter C?

In particular, for Example 1 we have the following.

Conjecture 13 In Example 1, with confidence1−δ there holdsR (sgn( fz)) = O( log(2/δ)
m ) by choos-

ing C= m3.
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Consider the well known setting (Vapnik, 1998; Shawe-Taylor et al., 1998; Steinwart, 2001;
Cristianini and Shawe-Taylor, 2000) of strictly separable distributions withmarginγ > 0. In this
case, Shawe-Taylor et al. (1998) shows that

R (sgn( f )) ≤ 2
m

(logN (F ,2m,γ/2)+ log(2/δ)) (39)

with confidence 1− δ for m > 2/γ wheneverf ∈ F satisfiesyi f (xi) ≥ γ. HereF is a function
set,N (F ,2m,γ/2) = sup

~t∈X2m

N (F ,~t,γ/2) andN (F ,~t,γ/2) denotes the covering number of the set

{( f (ti))2m
i=1 : f ∈ F } in R

2m with the`∞ metric. For a comparison of this covering number with that
in C(X), see Pontil (2003).

In our analysis, we can takefK,C = 1
γ fsp∈ H K . ThenM = ‖V(y, fK,C(x))‖∞ = 0, andD(C) =

1
2Cγ2 . We see from Proposition 8 (a) that when (23) is satisfied, there holdsR ( fz)≤ c̃( (log(1/γ)+logm)s+log(1/δ)

m ).

But the optimal boundO( 1
m) is also valid for spaces with larger complexity, which can be seen from

(39) by the relation of the covering numbers:N (F ,2m,γ/2) ≤ N (F ,γ/2). See also Steinwart
(2001). We see the shortcoming of our approach for kernels with large complexity. This convinces
the interest of Problem 11 raised above.

3. Comparison of Errors

In this section we consider how to bound the misclassification error by theV-risk. A systematic
study of this problem was done for convex loss functions by Zhang (2004), and for more general
loss functions by Bartlett, Jordan, and McAuliffe (2003). Using these results, it can be shown that
for the loss functionVq, there holds

ψ
(

R (sgn( f ))−R ( fc)
)
≤ E( f )−E( fq),

whereψ : [0,1] → R+ is a function defined in Bartlett, Jordan, and McAuliffe (2003) and can be
explicitly computed.

In fact, we have

R (sgn( f ))−R ( fc) ≤ c
√

E( f )−E( fq). (40)

Such a comparison of errors holds true even for a general convex loss function, see Theorem 34 in
Appendix. The derived bound for the constantc in (40) need not be optimal. In the following we
shall give an optimal estimate in a simpler form.

The constant we derive depends onq and is given by

Cq =

{
1, if 1 ≤ q≤ 2,
2(q−1)/q, if q > 2.

(41)

We can see thatCq ≤ 2.

Theorem 14 Let f : X → R be measurable. Then

R (sgn( f ))−R ( fc) ≤
√

Cq(E( f )−E( fq)) ≤
√

2(E( f )−E( fq)).
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Proof By the definition, only points with sgn( f )(x) 6= fc(x) are involved for the misclassification
error. Hence

R (sgn( f ))−R ( fc) =
Z

X
| fρ(x)|χ{sgn( f )(x)6=sgn( fq)(x)}dρX. (42)

This in connection with the Schwartz inequality implies that

R (sgn( f ))−R ( fc) ≤
{

Z

X
| fρ(x)|2χ{sgn( f )(x)6=sgn( fq)(x)}dρX

}1/2

.

Thus it is sufficient to show for thosex∈ X with sgn( f )(x) 6= sgn( fq)(x),

| fρ(x)|2 ≤Cq (E( f |x)−E( fq|x)) , (43)

where forx∈ X, we have denoted

E( f |x) :=
Z

Y
Vq(y, f (x))dρ(y|x). (44)

By the definition of the loss functionVq, we have

E( f |x) = (1− f (x))q
+

1+ fρ(x)

2
+(1+ f (x))q

+

1− fρ(x)

2
. (45)

It follows that

E( f |x)−E( fq|x) =
Z f (x)− fq(x)

0
F(u)du, (46)

whereF(u) is the function (depending on the parameterfρ(x)):

F(u) =
1− fρ(x)

2
q(1+ fq(x)+u)

q−1
+ − 1+ fρ(x)

2
q(1− fq(x)−u)

q−1
+ , u∈ R.

SinceF(u) is nondecreasing andF(0) = 0, we see from (46) that when sgn( f )(x) 6= sgn( fq)(x),
there holds

E( f |x)−E( fq|x) ≥
Z − fq(x)

0
F(u)du= E(0|x)−E( fq|x) = 1−E( fq|x). (47)

But

E( fq|x) =
2q−1

(
1−| fρ(x)|2

)
{
(1+ fρ(x))1/(q−1) +(1− fρ(x))1/(q−1)

}q−1 . (48)

Therefore, (43) is valid (witht = fρ(x)) once the following inequality is verified:

t2

Cq
≤ 1− 2q−1

(
1− t2

)
{
(1+ t)1/(q−1) +(1− t)1/(q−1)

}q−1 , t ∈ [−1,1].

This is the same as the inequality

(
1− t2

Cq

)−1/(q−1)

≤ (1+ t)−1/(q−1) +(1− t)−1/(q−1)

2
, t ∈ [−1,1]. (49)
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To prove (49), we use the Taylor expansion

(1+u)α =
∞

∑
k=0

(
α
k

)
uk =

∞

∑
k=0

∏k−1
`=0(α− `)

k!
uk, u∈ (−1,1).

With α = −1/(q−1), we have

(
1− t2

Cq

)−1/(q−1)

=
∞

∑
k=0

∏k−1
`=0

(
1

q−1 + `
)

k!
1

Ck
q

t2k

and (all the odd power terms vanish)

(1+ t)−1/(q−1) +(1− t)−1/(q−1)

2
=

∞

∑
k=0

∏k−1
`=0

(
1

q−1 + `
)

k!

(
k−1

∏̀
=0

1
q−1 + `+k

1+ `+k

)
t2k.

Note that
k−1

∏̀
=0

1
q−1 + `+k

1+ `+k
≥ 1

Ck
q
.

This proves (49) and hence our conclusion.

WhenR ( fc) = 0, the estimate in Theorem 14 can be improved (Zhang 2004, Bartlett, Jordan
and McAuliffe 2003) to

R (sgn( f )) ≤ E( f ). (50)

In fact,R ( fc) = 0 implies| fρ(x)|= 1 almost everywhere. This in connection with (48) and (47)
givesE( fq|x) = 0 andE( f |x) ≥ 1 when sgn( f )(x) 6= fc(x). Then (43) can be improved to the form
| fρ(x)| ≤ E( f |x). Hence (50) follows from (42).

Theorem 14 tells us that the misclassification error can be bounded by theV-risk associated with
the loss functionV. So our next step is to study the convergence of theq-classifier with respect to
theV-risk E .

4. Bounding the Offset

If the offsetb is fixed in the scheme (3), the sample error can be bounded by standard argument using
some measurements of the capacity of the RKHS. However, the offset is part of the optimization
problem and even its boundedness can not be seen from the definition. This makes our setting here
essentially different from the standard Tikhonov regularization scheme.The difficulty of bounding
the offsetb has been realized in the literature (e.g. Steinwart, 2002; Bousquet and Ellisseeff, 2002).
In this paper we shall overcome this difficulty by means of special featuresof the loss functionV.

The difficulty raised by the offset can also be seen from the stability analysis (Bousquet and
Ellisseeff, 2002). As shown in Bousquet and Ellisseeff (2002), the SVM 1-norm classifier without
the offset is uniformly stable, meaning that sup

z∈Zm,z′0∈Z
‖V(y, fz(x))−V(y, fz′(x))‖L∞ ≤ βm with βm→ 0

asm→ ∞, andz′ is the same asz except that one element ofz is replaced byz′0.
The SVM 1-norm classifier with the offset is not uniformly stable. To see this, we choosex0 ∈X

and samplesz= {(x0,yi)}2n+1
i=1 with yi = 1 for i = 1, . . . ,n+1, andyi =−1 for i = n+2, . . . ,2n+1.
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Take z′0 = (x0,−1). As xi are identical, one can see from the definition (9) thatf ∗z = 0 (since
Ez( fz) = Ez(bz + fz(x0))). It follows that fz = 1 while fz′ = −1. Thus,| fz− fz′ | = 2 which does
not converge to zero asm= 2n+1 tends to infinity. It is unknown whether theq-norm classifier is
uniformly stable forq > 1.

How to bound the offset is the main goal of this section. In Wu and Zhou (2004) a direct
computation is used to realize this point forq= 1. Here the indexq> 1 makes a direct computation
very difficult, and we shall use two bounds to overcome this difficulty. Byx∈ (X,ρX) we mean that
x lies in the support of the measureρX onX.

Lemma 15 For any C> 0,m∈ N andz∈ Zm, a minimizer of (9) satisfies

min
1≤i≤m

fz(xi) ≤ 1 and max
1≤i≤m

fz(xi) ≥−1 (51)

and a minimizer of (15) satisfies

inf
x∈(X,ρX)

f̃K,C(x) ≤ 1 and sup
x∈(X,ρX)

f̃K,C(x) ≥−1. (52)

Proof Suppose a minimizer of (9)fz satisfiesr := min
1≤i≤m

fz(xi) > 1. Then fz(xi)− (r −1) ≥ 1 for

eachi. We claim that
yi = 1, ∀i = 1, . . . ,m.

In fact, if the setI := {i ∈ {1, . . . ,m} : yi = −1} is not empty, we have

Ez( fz− (r −1)) =
1
m∑

i∈I

(1+ fz(xi)− (r −1))q <
1
m∑

i∈I

(1+ fz(xi))
q = Ez( fz),

which is a contradiction to the definition offz. Hence our claim is verified. From the claim we
see thatEz( fz− (r −1)) = 0 = Ez( fz). This tells us that̃fz := fz− (r −1) is a minimizer of (9)
satisfying the first inequality, hence both inequalities of (51).

In the same way, if a minimizer of (9)fz satisfiesr := max
1≤i≤m

fz(xi) < −1. Then we can see

thatyi = −1 for eachi. HenceEz( fz− r −1) = Ez( fz) and f̃z := fz− r −1 is a minimizer of (9)
satisfying the second inequality and hence both inequalities of (51).

Therefore, we can always find a minimizer of (9) satisfying (51).
We prove the second statement in the same way. Supposer := inf

x∈(X,ρX)
f̃K,C(x) > 1 for a mini-

mizer f̃K,C of (15). Thenf̃K,C(x)− (r −1) ≥ 1 for almost everyx∈ (X,ρX). Hence

E
(

f̃K,C− (r −1)
)

=
Z

X

(
1+ f̃K,C(x)− (r −1)

)q
P(Y = −1|x)dρX ≤ E( f̃K,C).

As fK,C is a minimizer of (15), the above equality must hold. It follows thatP(Y = −1|x) = 0 for
almost everyx ∈ (X,ρX). HenceF̃K,C := f̃K,C − (r −1) is a minimizer of (15) satisfying the first
inequality and thereby both inequalities of (52).

Similarly, whenr := sup
x∈(X,ρX)

f̃K,C(x) < −1 for a minimizer f̃K,C of (15). ThenP(Y = 1|x) = 0

for almost everyx∈ (X,ρX). HenceF̃K,C := fK,C− r−1 is a minimizer of (15) satisfying the second
inequality and thereby both inequalities of (52).
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Thus, (52) can always be realized by a minimizer of (15).

In what follows we always choosefz and f̃K,C to satisfy (51) and (52), respectively.
Lemma 15 yields bounds for theHK-norm and offset forfz and f̃K,C. Denoteb f̃K,C

asb̃K,C.

Lemma 16 For any C> 0,m∈ N, fK,C ∈ H K , andz∈ Zm, there hold

(a) ‖ f̃ ∗K,C‖K ≤
√

2CD̃(C) ≤
√

2C, |b̃K,C| ≤ 1+‖ f̃ ∗K,C‖∞.

(b) ‖ f̃K,C‖∞ ≤ 1+2κ
√

2CD̃(C) ≤ 1+2κ
√

2C, E( f̃K,C) ≤ E( fq)+ D̃(C) ≤ 1.

(c) |bz| ≤ 1+κ‖ f ∗z ‖K .

Proof By the definition (15), we see from the choicef = 0+0 that

D̃(C) = E( f̃K,C)−E( fq)+
1

2C
‖ f̃ ∗K,C‖2

K ≤ 1−E( fq). (53)

Then the first inequality in (a) follows.
Note that (52) gives

−1≤ sup
x∈(X,ρX)

f̃K,C ≤ b̃K,C +‖ f̃ ∗K,C‖∞

and
b̃K,C−‖ f̃ ∗K,C‖∞ ≤ inf

x∈(X,ρX)
f̃K,C ≤ 1.

Thus,|b̃K,C| ≤ 1+‖ f̃ ∗K,C‖∞. This proves the second inequality in (a).

Since the first inequality in (a) and (2) lead to‖ f̃ ∗K,C‖∞ ≤ κ
√

2CD̃(C), we obtain‖ f̃K,C‖∞ ≤

1+2‖ f̃ ∗K,C‖∞ ≤ 1+2κ
√

2CD̃(C). Hence the first inequality in (b) holds.
The second inequality in (b) is an easy consequence of (53).
The inequality in (c) follows from (51) in the same way as the proof of the second inequality in

(a).

5. Convergence of theq-Norm Soft Margin Classifier

In this section, we apply the ERM technique to analyze the convergence of theq-classifier forq> 1.
The situation here is more complicated than that forq= 1. We need the following lemma concerning
q > 1.

Lemma 17 For q > 1, there holds
∣∣(x)q

+− (y)q
+

∣∣≤ q(max{x,y})q−1
+ |x−y|, ∀x,y∈ R.

If y ∈ [−1,1], then
∣∣(1−x)q

+− (1−y)q
+

∣∣≤ q4q−1|x−y|+q2q−1|x−y|q, ∀x∈ R.
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Proof We only need to prove the first inequality forx > y. This is trivial:

(x)q
+− (y)q

+ =
Z x

y
q(u)

q−1
+ du≤ q(x)q−1

+ (x−y).

If y∈ [−1,1], then 1−y≥ 0 and the first inequality yields
∣∣(1−x)q

+− (1−y)q
+

∣∣≤ q(max{1−x,1−y})q−1
+ |x−y|. (54)

Whenx≥ 2y−1, we have
∣∣(1−x)q

+− (1−y)q
+

∣∣≤ q2q−1(1−y)q−1|x−y| ≤ q4q−1|x−y|.

Whenx< 2y−1, we have 1−x< 2(y−x) andx< 1. This in combination with max{1−x,1−y} ≤
max{1−x,2} and (54) implies

∣∣(1−x)q
+− (1−y)q

+

∣∣≤ q{(1−x)q−1 +2q−1}|x−y| ≤ q2q−1|x−y|q +q2q−1|x−y|.

This proves Lemma 17.

The second part of Lemma 17 will be used in Section 6. The first part can be used to verify
Proposition 4.

Proof of Proposition 4. It is trivial that D(C) ≥ D̃(C). To show the second inequality, apply the
first inequality of Lemma 17 to the two numbers 1−yf̃K,C(x) and 1− ỹbK,C. We see that

(1−yf̃K,C(x))q
+ ≥ (1− ỹbK,C)q

+−q(1+ | f̃K,C(x)|+ |b̃K,C|)q−1| f̃ ∗K,C(x)|.

Notice that| f̃ ∗K,C(x)| ≤ κ‖ f̃ ∗K,C‖K and by Lemma 16,|b̃K,C| ≤ 1+κ‖ f̃ ∗K,C‖K . Hence

E( f̃K,C) ≥ E(b̃K,C)−κq2q−1(1+κ‖ f̃ ∗K,C‖K)q−1‖ f̃ ∗K,C‖K .

It follows that when‖ f̃ ∗K,C‖K ≤ κ̃, we have

E( f̃K,C)−E( fq) ≥ E0−κq2q−1(1+κκ̃)q−1κ̃.

SinceE0 ≤ 1, the definition (18) of̃κ yields κ̃ ≤ 1/(1+κ) ≤ min{1,1/κ}. Hence

D̃(C) ≥ E( f̃K,C)−E( fq) ≥ E0−κq4q−1κ̃ = κ̃ ≥ κ̃2.

As C≥ 1/2, we conclude (17) in this case.
When‖ f̃ ∗K,C‖K > κ̃, we also have

D̃(C) ≥ 1
2C

‖ f̃ ∗K,C‖2
K ≥ κ̃2

2C
.

Thus in both case we have verified (17).
Note that̃κ = 0 if and only ifE0 = 0. This means for someb′0 ∈ [−1,1], fq(x) = b′0 in probability.

By the definition offq, the last assertion of Proposition 4 follows.
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The loss functionV is not Lipschitz, but Lemma 17 enables us to derive a bound forE(π( fz))−
Ez(π( fz)) with confidence, as done for Lipschitz loss functions in Mukherjee, Rifkinand Poggio
(2002). Since the functionπ( fz) changes and lies in a set of functions, we shall compare the error
with the empirical error for functions from a set

F := {π( f ) : f ∈ BR+[−B,B]} . (55)

HereBR = { f ∗ ∈ HK : ‖ f ∗‖K ≤ R} and the constantB is a bound for the offset.
The following probability inequality was motivated by sample error estimates for the square

loss (Barron 1990, Bartlett 1998, Cucker and Smale 2001, Lee, Bartlettand Williamson 1998) and
will be used in our estimates.

Lemma 18 Suppose a random variableξ satisfies0 ≤ ξ ≤ M, and z = (zi)
m
i=1 are independent

samples. Let µ= E(ξ). Then for everyε > 0 and0 < α ≤ 1, there holds

Probz∈Zm

{
µ− 1

m ∑m
i=1 ξ(zi)√

µ+ ε
≥ α

√
ε

}
≤ exp

{
−3α2mε

8M

}
.

Proof As ξ satisfies|ξ−µ| ≤ M, the one-side Bernstein inequality tells us that

Probz∈Zm

{
µ− 1

m ∑m
i=1 ξ(zi)√

µ+ ε
≥ α

√
ε

}
≤ exp

{
− α2m(µ+ ε)ε

2
(
σ2 + 1

3Mα
√

µ+ ε
√

ε
)
}

.

Hereσ2 ≤ E(ξ2) ≤ ME(ξ) = Mµ since 0≤ ξ ≤ M. Then we find that

σ2 +
1
3

Mα
√

µ+ ε
√

ε ≤ Mµ+
1
3

M(µ+ ε) ≤ 4
3

M(µ+ ε).

This yields the desired inequality.

Now we can turn to the error bound involving a function set. Lemma 17 yields thefollowing
bounds concerning the loss functionV:

|Ez( f )−Ez(g)| ≤ qmax
{
(1+‖ f‖∞)q−1 ,(1+‖g‖∞)q−1

}
‖ f −g‖∞ (56)

and

|E( f )−E(g)| ≤ qmax
{

(1+‖ f‖∞)q−1 ,(1+‖g‖∞)q−1
}
‖ f −g‖∞. (57)

Lemma 19 Let F be a subset of C(X) such that‖ f‖∞ ≤ 1 for each f∈ F . Then for everyε > 0
and0 < α ≤ 1, we have

Probz∈Zm

{
sup
f∈F

E( f )−Ez( f )√
E( f )+ ε

≥ 4α
√

ε

}
≤ N

(
F ,

αε
q2q−1

)
exp

{
−3α2mε

2q+3

}
.
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Proof Let { f j}J
j=1 ⊂ F with J = N

(
F , αε

q2q−1

)
such thatF is covered by balls centered atf j with

radius αε
q2q−1 . Note thatξ = V(y, f (x)) satisfies 0≤ ξ ≤ (1+‖ f‖∞)q ≤ 2q for f ∈ F . Then for each

j, Lemma 18 tells

Probz∈Zm

{
E( f j)−Ez( f j)√

E( f j)+ ε
≥ α

√
ε

}
≤ exp

{
−3α2mε

8·2q

}
.

For eachf ∈ F , there is somej such that‖ f − f j‖∞ ≤ αε
q2q−1 . This in connection with (56) and

(57) tells us that|Ez( f )−Ez( f j)| and|E( f )−E( f j)| are both bounded byαε. Hence

|Ez( f )−Ez( f j)|√
E( f )+ ε

≤ α
√

ε and
|E( f )−E( f j)|√

E( f )+ ε
≤ α

√
ε.

The latter implies that
√

E( f j)+ ε ≤ 2
√

E( f )+ ε. Therefore,

Probz∈Zm

{
sup
f∈F

E( f )−Ez( f )√
E( f )+ ε

≥ 4α
√

ε

}
≤

J

∑
j=1

Prob

{
E( f j)−Ez( f j)√

E( f j)+ ε
≥ α

√
ε

}

which is bounded byJ ·exp
{
−3α2mε

2q+3

}
.

TakeF to be the set (55). The following covering number estimate will be used.

Lemma 20 Let F be given by (55) with R≥ κ̃ and B= 1+ κR. Its covering number in C(X) can
be bounded as follows:

N (F ,η) ≤ N
( η

2R

)
, ∀η > 0.

Proof It follows from the fact‖π( f )−π(g)‖∞ ≤ ‖ f −g‖∞ that

N (F ,η) ≤ N (BR+[−B,B],η) .

The latter is bounded by{(κ+ 1
κ̃)2R

η +1}N
(
BR, η

2

)
since2B

η ≤ (κ+ 1
κ̃)2R

η and

‖( f ∗ +bf )− (g∗ +bg)‖∞ ≤ ‖ f ∗−g∗‖∞ + |bf −bg|.

Note that anη
2R-covering ofB is the same as anη2 -covering ofBR. Then our conclusion follows

from Definition 6.

We are in a position to state our main result on the error analysis. RecallθM in (25).

Theorem 21 Let fK,C ∈ H K , M ≥ ‖V(y, fK,C(x))‖∞, and0 < β ≤ 1. For everyε > 0, we have

E(π( fz))−E( fq) ≤ (1+β)(ε+D(C))

with confidence at least1−F(ε) where F: R+ → R+ is defined by

F(ε) := exp

{
− mε2

2M(∆+ ε)

}
+N

(
β(ε+D(C))3/2

q2q+3Σ

)
exp

{
−3mβ2(D(C)+ ε)2

2q+9(∆+ ε)

}
(58)

with ∆ := D(C)+E( fq) andΣ :=
√

2C(∆+ ε)(∆+θMε).
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Proof Let ε > 0. We prove our conclusion in three steps.

Step 1:EstimateEz( fK,C)−E( fK,C).
Consider the random variableξ = V(y, fK,C(x)) with 0 ≤ ξ ≤ M. If M > 0, sinceσ2(ξ) ≤

ME( fK,C)≤M(D(C)+E( fq)), by the one-side Bernstein inequality we obtainEz( fK,C)−E( fK,C)≤
ε with confidence at least

1−exp

{
− mε2

2(σ2(ξ)+ 1
3Mε)

}
≥ 1−exp

{
− mε2

2M(∆+ ε)

}
.

If M = 0, thenξ = 0 almost everywhere. HenceEz( fK,C)−E( fK,C) = 0 with probability 1. Thus,

in both cases, there existsU1 ∈ Zm with measure at least 1−exp
{
− mε2

2M(ε+∆)

}
such thatEz( fK,C)−

E( fK,C) ≤ θMε wheneverz∈U1.

Step 2:EstimateE(π( fz))−Ez(π( fz)).
Let F be given by (55) withR =

√
2C(∆+θMε) and B = 1+ κR. By Proposition 4,R≥√

2CD(C) ≥ κ̃. Applying Lemma 19 toF with ε̃ := D(C)+ ε > 0 andα = β
8

√
ε̃/(ε̃+E( fq)) ∈

(0,1/8], we have

E( f )−Ez( f ) ≤ 4α
√

ε̃
√

E( f )−E( fq)+ ε̃+E( fq), ∀ f ∈ F (59)

for z∈U2 whereU2 is a subset ofZm with measure at least

1−N
(

F ,
αε̃

q2q−1

)
exp

{
− 3mα2ε̃

2q+3

}
≥ 1−N

(β(ε+D(C))3/2

q2q+3Σ

)
exp

{
− 3mβ2(D(C)+ ε)2

2q+9(∆+ ε)

}
.

In the above inequality we have used Lemma 20 to bound the covering number.
Forz∈U1∩U2, we have

1
2C

‖ f ∗z ‖2
K ≤ Ez( fK,C)+

1
2C

‖ f ∗K,C‖2
K ≤ E( fK,C)+θMε+

1
2C

‖ f ∗K,C‖2
K

which equals toD(C)+θMε+E( fq) = ∆+θMε. It follows that‖ f ∗z ‖K ≤R. By Lemma 16,|bz| ≤B.
This means,π( fz) ∈ F and (59) is valid forf = π( fz).

Step 3:BoundE(π( fz))−E( fq) using (14).
Let α andε̃ be the same as in Step 2. Forz∈U1

T

U2, bothEz( fK,C)−E( fK,C) ≤ θMε ≤ ε and
(59) with f = π( fz) hold true. Then (14) tells us that

E(π( fz))−E( fq) ≤ 4α
√

ε̃
√

(E(π( fz))−E( fq))+ ε̃+E( fq)+ ε̃.

Denoter := E(π( fz))−E( fq)+ ε̃+E( fq) > 0, we see that

r ≤ ε̃+E( fq)+4α
√

ε̃
√

r + ε̃.

It follows that √
r ≤ 2α

√
ε̃+
√

4α2ε̃+2ε̃+E( fq).

Hence

E(π( fz))−E( fq) = r − (ε̃+E( fq)) ≤ ε̃+8α2ε̃+4αε̃
√

4α2 +2+E( fq)/ε̃.
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Putting the choice ofα into above, we find that

E(π( fz))−E( fq) ≤ ε̃+
β2ε̃2

8(ε̃+E( fq))
+

βε̃
2

√
ε̃

ε̃+E( fq)

√
β2ε̃

16(ε̃+E( fq))
+2+

E( fq)

ε̃

which is bounded by(1+β)ε̃ = (1+β)(ε+D(C)).
Finally, noting that the measure ofU1

T

U2 is at least 1−F(ε), the proof is finished.

Observe that the functionF is strictly decreasing andF(0) > 1, lim
ε→∞

F(ε) = 0. Hence for every

0 < δ < 1 there exists a unique numberε > 0 satisfyingF(ε) = δ. Also, for a fixedε > 0, F(ε) < δ
for sufficiently largem, sinceF(ε) can be written asam+cbm with 0< a,b< 1. Therefore, Theorem
21 can be restated in the following form.

Corollary 22 Let F be given in Theorem 21. For every0 < δ < 1, defineε(δ,m,C,β) > 0 to be the
unique solution to the equation F(ε) = δ. Then with confidence at least1−δ, (20) holds. Moreover,
lim

m→∞
ε(δ,m,C,β) = 0.

Now we can prove the statements we made in Section 2 for the deterministic case.

Proof of Proposition 8. Take β = 1. SinceR ( fc) = 0, we know thatfq = fc, E( fq) = 0 and
∆ = D(C). ThenΣ ≤

√
2C(D(C)+θMε)

√
D(C)+ ε and

N

(
β(ε+D(C))3/2

q2q+3Σ

)
≤ N

(
ε

q2q+3M

)
.

The function valueF(ε) can be bounded by

exp

{
− mε2

2M(D(C)+ ε)

}
+N

(
ε

q2q+3M

)
exp

{
− 3mε

2q+9

}
.

The first term above is bounded byδ/2 whenε ≥ 4M log(2/δ)
m + D(C). The second term is at most

δ/2 if ε ≥ ε∗. Therefore

ε(δ,m,C,β) ≤ max

{
4M log(2/δ)

m
+D(C),ε∗

}
,

and (26) follows from Theorem 21.
(a) When (23) holds, noting that the left side of (27) is strictly decreasing, it is easy to check

that

ε∗ ≤ 2q+9
{

1+c((q+4) log8)s
}

(logm+ log(CD(C))+ log(CθM))s+ log(2/δ)

m
.

This yields the stated bound forε∗ in the case (a).
(b) If (24) is true, then the function defined by

F̃(ε) := c
(q2q+4)s{(2CD(C))s/2 +(2Cε)s/2}

εs − 3mε
2q+9
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satisfiesF̃(ε∗) ≥ log(δ/2). SinceF̃ is a decreasing function,ε∗ ≤ ε̃∗ whenever̃F(ε̃∗) ≤ log(δ/2).
If ε̃∗ ≥ rm−1/(s+1)(2CD(C))s/(2s+2) log 2

δ with

r ≥ 2q+8κ̃−s/(s+1) +q2q+10c1/(s+1)/ log2, (60)

then

c(q2q+4)s(2CD(C))s/2

(ε̃∗)s − m̃ε∗

2q+8 ≤ rms/(s+1)

2q+8 (2CD(C))
s

2s+2 log
2
δ

{
c(q2q+4)s2q+8

(r log(2/δ))s+1 −1

}
.

Sincer ≥ q2q+10c1/(s+1)/ log2, according to Proposition 4, this can be bounded by

r
2q+8ms/(s+1)(2CD(C))s/(2s+2) log

2
δ

{
−1

2

}
≤ r

2q+9 κ̃s/(s+1) log
δ
2
≤ 1

2
log

δ
2
.

Here we have used the conditionr ≥ 2q+8κ̃−s/(s+1).
In the same way, if̃ε∗ ≥ rm−2/(s+2)(2C)s/(s+2) log 2

δ with

r ≥ 2q+9 +q24q+5c2/(s+2)/ log2, (61)

we have forC≥ 1/2,

c(q2q+4)s
(

2C
ε̃∗

)s/2

− m̃ε∗

2q+9 ≤ 1
2

log
δ
2
.

Combining the above two bounds, we obtain the desired estimate (28) withc̃ determined by the
two conditions (60) and (61). The proof of Proposition 8 is complete.

In the general case, the following bounds hold.

Corollary 23 For every0 < δ ≤ 1, with confidence at least1−δ there holds

E(π( fz))−E( fq) ≤ 2max

{2q+1

(
1+κ

√
2CD̃(C)

)q/2√
log(2/δ)

√
m

,ε∗
}

+2D̃(C),

whereε∗ is the solution to the equation

logN

(
ε3/2

q4q+2
√

2C

)
− 3mε2

4q+5 = log
δ
2
. (62)

Proof Takeβ = 1 and fK,C = f̃K,C. By Lemma 16,‖ f̃K,C‖∞ ≤ 1+ 2κ
√

2CD̃(C) and we can take

M = 2q(1+ κ
√

2CD̃(C))q. Also, ∆ = D̃(C) + E( fq) ≤ 1. It follows that Σ ≤
√

2C(∆ + ε) ≤√
2C(1+ ε).

SinceE(π( fz)) ≤ 2q, we only need to consider the rangeε ≤ 2q to boundε(δ,m,C,β). In this
range,

N

(
β(ε+ D̃(C))3/2

q2q+3Σ

)
≤ N

(
ε3/2

q4q+2
√

2C

)
.
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ThenF(ε) can be bounded by

exp

{
− mε2

4q+1(1+κ
√

2CD̃(C))q

}
+N

(
ε3/2

q4q+2
√

2C

)
exp

{
−3mε2

4q+5

}
.

ThusF(ε) ≤ δ if

ε ≥ max

{2q+1(1+κ
√

2CD̃(C))q/2
√

log(2/δ)
√

m
,ε∗
}

whereε∗ is the solution to the equation (62). This together with Theorem 21 yields the desired
estimate.

The bound for the sample error derived in Corollary 23 may be further improved by the well
developed empirical process techniques in the literature. We shall discussthis elsewhere.

The total error (14) consists of two parts. We shall not discuss the possibility of further improv-
ing the sample error bound here, because it is of the same importance to understand the regulariza-
tion error. This becomes more important when not much estimate is available for the regularization
error. In the previous sections, we could computeD(C) explicitly only for special cases. Most of
the time,ρ is not strictly separable, even not weakly separable. Hence it is desirable to estimate
D(C) explicitly for general distributions. In the following we shall choosefK,C = f̃K,C and estimate

D̃(C).

6. Error Analysis by Approximation in Lq Spaces

The main result on the convergence analysis given in Section 5 enables usto have some nice obser-
vations. These follow from facts on approximation inLq spaces.

Lemma 24 If 1 < q≤ 2, then

(1+u)
q
+ ≤ 1+ |u|q +qu, ∀u∈ R.

Proof Set the continuous functionf (u) := 1+ |u|q +qu− (1+u)
q
+. Then f (0) = 0.

Since 0< q−1≤ 1, for u > 0 we have

f ′(u) = q
(
1+uq−1− (1+u)q−1)≥ 0.

Hencef (u) ≥ 0 for u≥ 0.
For−1 < u < 0, we see that

f ′(u) = q
(
1− (−u)q−1− (1+u)q−1)= q

(
1−|u|q−1− (1−|u|)q−1)≤ 0.

Hencef (u) ≥ 0 for−1 < u < 0.
Finally, whenu < −1, there holds

f ′(u) = q
(
1− (−u)q−1)≤ 0.

Therefore, we also havef (u) ≥ f (−1) ≥ 0 for u≤−1.
Thus f (u) ≥ 0 on the whole real line and Lemma 24 is proved.
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Theorem 25 Let f : X → R be measurable. Then

E( f )−E( fq) ≤





‖ f − fq‖q
Lq

ρX
, if 1 < q≤ 2,

q2q−1‖ f − fq‖Lq
ρX

(
2q−1 +‖ f − fq‖q−1

Lq
ρX

)
, if q > 2.

Proof Since| fq(x)| ≤ 1, by the second inequality of Lemma 17, for eachx∈ X we have

E( f |x)−E( fq|x) =
Z

Y
(1−y f(x))q

+− (1−y fq(x))
q
+dρ(y|x)

≤ q4q−1| f (x)− fq(x)|+q2q−1| f (x)− fq(x)|q.

It follows that

E( f )−E( fq) =
Z

X
E( f |x)−E( fq|x)dρX ≤ q4q−1‖ f − fq‖L1

ρX
+q2q−1‖ f − fq‖q

Lq
ρX

.

Then the inequality for the caseq > 2 follows from the Ḧolder inequality.
Turn to the case 1< q≤ 2. It is sufficient to show that for eachx∈ X,

E( f |x)−E( fq|x) ≤ | f (x)− fq(x)|q. (63)

The definition (10) offq tells us that

(1+ fq(x))
q−1 =

2q−1(1+ fρ(x))

{(1+ fρ(x))1/(q−1) +(1− fρ(x))1/(q−1)}q−1

and

(1− fq(x))
q−1 =

2q−1(1− fρ(x))

{(1+ fρ(x))1/(q−1) +(1− fρ(x))1/(q−1)}q−1
.

These expressions in connection with (45) imply

E( f |x) =
(1+ f (x))q

+(1− fq(x))q−1

(1+ fq(x))q−1 +(1− fq(x))q−1 +
(1− f (x))q

+(1+ fq(x))q−1

(1+ fq(x))q−1 +(1− fq(x))q−1

and together with (48)

E( fq|x) =
2(1− fq(x))q−1(1+ fq(x))q−1

(1+ fq(x))q−1 +(1− fq(x))q−1 .

Thus (63) follows from the following inequality (by takingt = f (x) andθ = fq(x)):

(1+ t)q
+(1−θ)q−1

(1+θ)q−1 +(1−θ)q−1 +
(1− t)q

+(1+θ)q−1

(1+θ)q−1 +(1−θ)q−1

−2
(1−θ)q−1(1+θ)q−1

(1+θ)q−1 +(1−θ)q−1 ≤ |t −θ|q, ∀t ∈ R,θ ∈ (−1,1).

(64)

What is left is to verify the inequality (64). Since−1 < θ < 1, we have

(1+ t)q
+(1−θ)q−1 = (1−θ2)q−1(1+θ)

(
1+ t
1+θ

)q

+

= (1−θ2)q−1(1+θ)

(
1+

t −θ
1+θ

)q

+

.
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By Lemma 24 withu = (t −θ)/(1+θ), we see that

(1+ t)q
+(1−θ)q−1 ≤ (1−θ2)q−1(1+θ)

(
1+

∣∣∣∣
t −θ
1+θ

∣∣∣∣
q

+q
t −θ
1+θ

)
.

In the same way, by Lemma 24 withu = −(t −θ)/(1−θ), we have

(1− t)q
+(1+θ)q−1 ≤ (1−θ2)q−1(1−θ)

(
1+

∣∣∣∣
t −θ
1−θ

∣∣∣∣
q

−q
t −θ
1−θ

)
.

Combining the above two estimates, we obtain

(1+ t)q
+(1−θ)q−1 +(1− t)q

+(1+θ)q−1 ≤ 2(1−θ2)q−1 + |t −θ|q
{
(1−θ)q−1 +(1+θ)q−1} .

This proves our claim (64), thereby Theorem 25.

Recall theK-functional given by (19).

Theorem 26 For each C> 0, there holds

D̃(C) ≤ K ( fq,
1

2C
).

Proof The case 1< q≤ 2 is an easy consequence of Theorem 25.
Turn to the caseq > 2. The special choicef = 0+0∈ H K and the fact‖ fq‖Lq

ρX
≤ 1 tell us that

for anyt > 0,

K ( fq, t) = inf
f∈H K

‖ f− fq‖L
q
ρX

≤1

{
q2q−1(2q−1 +1)‖ f − fq‖Lq

ρX
+ t‖ f ∗‖2

K

}
.

According to Theorem 25, forf ∈ H K with ‖ f − fq‖Lq
ρX

≤ 1, we have

E( f )−E( fq) ≤ q2q−1(2q−1 +1)‖ f − fq‖Lq
ρX

.

Thus,

D̃(C) = inf
f∈H K

{
E( f )−E( fq)+

1
2C

‖ f ∗‖2
K

}
≤ K ( fq,

1
2C

)

and the proof of Theorem 26 is complete.

We can now derive several observations from Theorem 26.
The first observation says that the SVMq-classifier converges whenfq lies in the closure ofH K

in Lq
ρX . In particular, for any Borel probability measureρ, this is always the case ifK is a universal

kernel sinceC(X) is dense inLq
ρX .

Corollary 27 If fq lies in the closure ofH K in Lq
ρX , then for everyε > 0 and0 < δ < 1, there exist

Cε > 0, m0 ∈ N and a sequence Cm with lim
m→∞

Cm = ∞ such that

Probz∈Zm{R (sgn( fz))−R ( fc) ≤ ε} ≥ 1−δ, ∀m≥ m0, Cε ≤C≤Cm.
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Proof Since fq lies in the closure ofH K in Lq
ρX , for everyε > 0 there is somefε = f ∗ε +bε ∈ H K

such thatq2q(2q−1+1)‖ fε − fq‖Lq
ρX

≤ ε2/16. TakeCε = 8‖ f ∗ε ‖2
K/ε2. Then for anyC≥Cε, we have

1
2C‖ f ∗ε ‖2

K ≤ ε2/16. Theorem 26 tells us that̃D(C) ≤ ε2/8.
Takem0 such that

2q+1(1+κ
√

2Cε)
q/2
√

log(2/δ)√
m0

≤ ε2

8

and

logN

(
ε3

q4q+4
√

2Cε

)
− 3m0ε4

4q+8 ≤ log
δ
2
.

Also, we chooseCm such that

2q+1(1+κ
√

2Cm)q/2
√

log(2/δ)√
m

<
ε2

8

and

logN

(
ε3

q4q+4
√

2Cm

)
− 3mε4

4q+8 ≤ log
δ
2
.

Then by Corollary 5.2,ε(δ,m,C,β) ≤ ε2

8 whenm≥ m0 andCε ≤C ≤Cm. Together with Theorem
14, our conclusion is proved.

Our second observation from Theorem 26 concerns nonuniversalkernels which nonetheless
ensures the convergence of the SVMq-classifier. The point here is thatHK is not dense inC(X),
but after adding the offset the spaceH K becomes dense.

Example 2 Let K be a Mercer kernel on X= [0,1]:

K(x,y) = ∑
j∈J

a j(x ·y) j ,

where J is a subset ofN, aj > 0 for each j∈ J, and ∑
j∈J

a j < ∞. Note that this kernel satisfies

K0(y) ≡ 0, hence f(0) = 0 for all f ∈ HK . Hence the spaceHK is not dense in C(X) and K is not
an universal kernel. But if∑

j∈J

1
j = ∞, thenH K is dense in C(X) (Zhou 2003a) and hence in Lq

ρX .

Therefore, the SVM q-classifier associated with the (identical) kernel K converges.

Remark 28 In Section 4 and the proof of Theorem 21, we have shown how the offsetinfluences the
sample error. Proposition 4 and Example 2 tell that it may also influence theapproximation error.
However, our analysis in the following two sections will not focus on this point and it may be an
interesting topic.

In practical applications, one can use varying kernels for (3).

Definition 29 Let{Kd}d∈N be a sequence of Mercer kernels on X. We say that the SVM q-classifier
associated with the kernels{Kd} converges if for a sequence{Cm}m∈N of positive numbers, fz

defined by (3) with K= Kd and C= Cm satisfies the following:
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For every Borel probability measureρ on Z, and0 < δ < 1, ε > 0, for sufficiently larged there
is somemd ∈ N such that

Probz∈Zm{R (sgn( fz))−R ( fc) ≤ ε} ≥ 1−δ, ∀m≥ md.

For a universal kernelK, one may takeKd to be identicallyK and the convergence holds. But
the kernels could change such as the polynomial kernels (Boser, Guyonand Vapnik, 1992). Our
third observation from Theorem 26 is to confirm the convergence of the SVM q-classifiers with
these kernels.

Proposition 30 For any 1 < q < ∞,n ∈ N and X ⊂ R
n, the SVM q-classifier associated with

{Kd}∞
d=1, the polynomial kernels Kd(x,y) = (1+x ·y)d, converges.

Proposition 30 is a consequence of a quantitative result below.
Let Pd be the space of all polynomials of degree at mostd. It is a RKHSHKd with the Mercer

kernelKd(x,y) = (1+ x · y)d. The rich knowledge from approximation theory tells us that for an
arbitrary Borel probability measure onZ, there is a sequence of polynomials{pd ∈ Pd}∞

d=1 such
that lim

d→∞
‖ fq− pd‖Lq

ρX
= 0. The rate of this convergence depends on the regularity of the function

fq (hence the functionfρ) and the marginal distributionρX. With this in hand, we can now state the
result on the convergence of theq-classifier with polynomial kernelsKd.

Corollary 31 Let X⊂ R
n, andρ be an arbitrary Borel probability measure on Z. Let d∈ N and

Kd(x,y) = (1+x ·y)d be the polynomial kernel. Set‖X‖ := sup
x∈X

|x|. Let{pd ∈ Pd}∞
d=1 satisfy Ed :=

‖ fq − pd‖Lq
ρX

→ 0 (as d→ ∞). Set N:= (n+ d)!/(n!d!) + 1 and 0 < σ < 2
q. Then there exists

mq,σ ∈ N such that for m≥ mq,σ and C= mσ, for every0 < δ < 1, with confidence1−δ there holds

R (sgn( fz))−R ( fc) ≤
√

q2q+1
√

Ed +
‖pd‖Kd

mσ/2
+

2q+5(N log(2
δ))1/4(1+‖X‖2)qd/8

m
1
4−

qσ
8

.

Proof Takep∗d = pd with zero offset in theK-functional. Then by Theorem 26,

D̃(C) ≤ K ( fq,
1

2C
) ≤ q2q−1(2q−1 +1)Ed +

1
2C

‖pd‖2
Kd

.

The covering numbers of the finite dimensional spacePd (e.g. Cucker and Zhou, 2004) and (22)
give us the estimate:

N (η) ≤ (κ+
1
κ̃
)

(
2
η

+1

)N

,

whereN−1 = (n+ d)!/(n!d!) is the dimension of the spacePd(R
n). Also, κ =

√
‖Kd‖∞ ≤ (1+

‖X‖2)d/2.
TakeC = mσ. By Corollary 23, solving the equation (62) yields

ε(δ,m,C,β) ≤
(2q+5

√
N+

√
log(κ+ 1

κ̃)(logm+ log(2/δ))1/2

√
m

+
4q+2κ

q
2

√
log(2

δ)

m
1
2−

qσ
4
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which is bounded by 45+q
√

N log(2
δ)κq/2m

qσ
4 − 1

2 for m≥ mq,σ. Heremq,σ is an integer depending

on q,σ (but not onm, d or δ). Then for eachm≥ mq,σ, with confidence 1− δ the desired estimate
holds true.

Remark 32 Note that Pd is a finite dimension space. Thus the norms‖ · ‖Kd and‖ · ‖Lq
ρX

are equiv-

alent for a fixed d whenρX is non-degenerate. It would be interesting to compare the norm‖p‖Kd

with ‖p‖Lq
ρX

for p∈ Pd as d tends to infinity.

Proof of Proposition 30.For everyε > 0, there exists somed0 ∈N such that
√

q2q−1√Ed ≤ ε/2 for

everyd ≥ d0. Then by Corollary 31 we can find somemq,σ ≤ md ∈ N such thatm−σ/2
d ‖pd‖Kd ≤ ε/4

and 2q+5(N log(2/δ))1/4(1+‖X‖2)dq/8m
qσ
8 − 1

4
d ≤ ε/4. Then for anym≥ md we haveR (sgn( fz))−

R ( fc) ≤ ε with confidence 1−δ. This proves Proposition 30.

7. Rate of Convergence for theq-Norm Soft Margin Classifier

Corollary 23 and Theorem 26 enable us to get the convergence rate forthe SVMq-classifier. The
rate depends on theK-functionalK ( fq, t). It can be characterized by the quantity (Smale and Zhou
2003; Zhou 2003b)

Iq(g,R) := inf
f∈H K

‖ f∗‖K≤R

{
‖g− f‖Lq

ρX

}
. (65)

Define

Jq( fq,R) :=

{
(Iq( fq,R))q , if 1 < q≤ 2,
q2q−1(2q−1 +1)Iq( fq,R), if q > 2.

Then the following corollary holds true.

Corollary 33 For any t> 0 there holds

K ( fq, t) ≤ inf
R>0

{Jq( fq,R)+ tR2}.

One may choose appropriateR to estimate the convergence rate ofK ( fq, t), which together with
Corollary 23 gives the convergence rate of theV-risk and a strategy of choosing the regularization
parameterC. In general, the choice ofR depends on the regularity offq and the kernelK. Let us
demonstrate this by examples.

In what follows letX ⊂ R
n have Lipschitz boundary andρ be a probability measure such that

dρX = dx is the Lebesgue measure. Considerq = 2 and thusfq = fρ. We use the approximation
error studied in Smale and Zhou (2003) (see also Niyogi and Girosi (1996) for related discussion):

I∗2(g,R) := inf
f∗∈HK

‖ f∗‖K≤R

{‖g− f ∗‖L2}

to bound the termI2( fρ,R). With the choicebf = 0 we obtain

I2( fρ,R) ≤ I∗2( fρ,R).

Note that we disregard the influence of the offset here and thus the rate need not be optimal.
The first example includes spline kernels (Wahba 1990).
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Example 3 Let X⊂ R
n and K be a Mercer kernel such thatHK is the Sobolev space Hr(X) with

r > n/2. If fρ lies in the Sobolev space Hs(X) with 0 < s< r, then

E(π( fz))−E( fρ) = O

(√
logm+C√

m
+

Cn/(4r+3n)

m2r/(4r+3n)

)
+O

(
C−s/r

)
.

Thus, C should be chosen such that C→ ∞, C/m→ 0 as m→ ∞.

Proof It was shown in Smale and Zhou (2003, Theorem 3.1) that for 0< θ < 1, I∗2( fρ,R) =
O(R−θ/(1−θ)) if and only if fρ lies in the interpolation space(L2

ρX
,HK)θ,∞. It is well known that

Hs(X) ⊂ (L2,Hr(X))s/r,∞ for 0 < s< r. HereHK = Hr(X) anddρX = dx. Therefore, the assump-
tion fρ ∈ Hs(X) tells us thatfρ ∈ (L2

ρX
,HK)s/r,∞. Hence there holds

I2( fρ,R) ≤ I∗2( fρ,R) ≤CρR−s/(r−s)

for some constantCρ. ChooseR= C(r−s)/r
ρ C(r−s)/2r to obtain

K ( fρ,
1

2C
) ≤ (I2( fρ,R))2 +

R2

2C
≤ 3

2
C2(r−s)/r

ρ C−s/r .

Using the well known covering number estimates for Sobolev spaces

logN (BR,η) ≤Cr

(
1
η

)n/r

and solving the equation (62), we see that

ε∗ ≤ 26

√
logκ+ logm+ logC+ log(2/δ)

m
+26+3n/(4r)

√
Cr

Cn/(4r+3n)

m2r/(4r+3n)
.

This proves the conclusion.

Example 4 Let σ > 0,s> 0 and K be the Gaussian kernel K(x,y) = exp
{
− |x−y|2

σ2

}
.

(a) If fρ lies in the interpolation space(L2
ρX

,HK)θ,∞ for some0 < θ < 1, that is,K ( fρ, t) ≤Cθtθ

for some constant Cθ, then for any0 < δ < 1, with confidence1−δ, there holds

E(π( fz))−E( fρ) = O

(√
C+(logm)n+1

√
m

)
+O

(
C−θ

)
.

This implies the parameter C should be taken to satisfy C→ ∞ and C/m→ 0 as m→ ∞.
An asymptotic optimal choice is C= O(m1/(1+2θ)). With this choice, the convergence rate is
O(m−θ/(1+2θ)).

(b) If fρ ∈ Hs(X) with s> 0, then for any0 < δ < 1, with confidence1−δ, we have

E(π( fz))−E( fρ) = O

(√
C+(logm)n+1

√
m

)
+O

(
(logC)−s/2

)
.

An asymptotically optimal choice is C= O
(

m
(logm)s

)
which gives the convergence rate O((logm)−s/2).
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Proof Solving the equation (62) with the covering number estimate (23) yields

ε∗ = O

(√
(1+c)(logC+ logm)n+1

√
m

)
.

Then the statement in (a) follows easily from Corollary 23, Theorem 21 andCorollary 33.
To see the conclusion in (b), we notice that the assumptionfρ ∈ Hs(X) provides the approxima-

tion error estimates (Smale and Zhou, 2003; Zhou, 2003b)

I2( fρ,R) ≤ I∗2( fρ,R) ≤Cs(logR)−s/4

for everyR> Cs, whereCs is a constant depending ons,σ,n and the Sobolev norm offρ. Choose

R=
√

2C(logC)−s/4 to obtain

K ( fρ,
1

2C
) ≤ (I2( fρ,R))2 +

R2

2C
≤ (2sC2

s +1)(logC)−s/2.

Then the desired bound follows from Theorem 26 and the above established bound forε∗.

It was shown in Smale and Zhou (2003) that for the Gaussian kernel in Example 4,I∗2(g,R) =
O(R−ε) with ε > 0 only if g is C∞. Hence logarithmic convergence rate is expected for a Sobolev
function fρ. However, in practice, one often chooses the different variancesσ of the Gaussian
kernel according to the different sample sizem. With this flexibility, the regularization error can be
improved greatly and polynomial convergence rates are possible.
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Appendix A. Error Comparison for a General Loss Function

In this appendix for a general convex loss function we bound the excess misclassification error by
the excessV-risk. Here the loss function takes the form

V(y, f (x)) = φ(y f(x))

for a univariate functionφ : R → R+.
For eachx∈ X, we denote

E( f |x) :=
Z

Y
V(y, f (x))dρ(y|x), (66)
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thenE( f |x) = Q(η(x), f (x)). HereQ : [0,1]× (R∪{±∞}) → R+ is given by

Q(η, f ) = ηφ( f )+(1−η)φ(− f ),

andη : X → R is defined byη(x) := P(Y = 1|x). Set

f ∗φ (η) := arg min
f∈R∪{±∞}

Q(η, f ).

Then fV
ρ (x) = f ∗φ (η(x)). The main result of Zhang (2004) can be stated as follows.

Theorem A Letφ be convex. Assume f∗
φ (η) > 0 whenη > 0.5. Assume there exists c> 0 and s≥ 1

such that for allη ∈ [0,1],

|0.5−η|s ≤ cs(Q(η,0)−Q(η, f ∗φ (η))
)
, (67)

then for any measurable function f(x):

R (sgn( f ))−R ( fc) ≤ 2c
(

E( f )−E( fV
ρ )
)1/s

.

Further analysis was made by Bartlett, Jordan and McAuliffe (2003). Forexample, it was proved
in Bartlett, Jordan and McAuliffe (2003, Theorem 6) that for a convex functionφ, f ∗φ (η) > 0 for any
η > 0.5 if and only if φ is differentiable at 0 andφ′(0) < 0. Borrowing some ideas from Bartlett,
Jordan and McAuliffe (2003), we can derive a simple criterion for the condition (67) withs= 2.
The existence ofφ′′(0) means that the functionφ′(x) is well defined in a neighborhood of 0 and is
differentiable at 0. Note that the convexity ofφ impliesφ′′(0) ≥ 0.

Theorem 34 Letφ : R→R+ be a convex function such thatφ′′(0) exists. Ifφ′(0) < 0 andφ′′(0) > 0,
then (67) holds for s= 2. Hence for any measurable function f :

R (sgn( f ))−R ( fc) ≤ 2c
√

E( f )−E( fV
ρ ).

Proof By the definition ofφ′′(0), there exists some 1/2≥ c0 > 0 such that
∣∣∣∣
φ′( f )−φ′(0)

f
−φ′′(0)

∣∣∣∣≤
φ′′(0)

2
, ∀ f ∈ [−c0,c0].

This implies

φ′(0)+φ′′(0) f − φ′′(0)

2
| f | ≤ φ′( f ) ≤ φ′(0)+φ′′(0) f +

φ′′(0)

2
| f |.

If η > 1/2, then for 0≤ f ≤ c0,

∂Q
∂ f

(η, f ) = ηφ′( f )− (1−η)φ′(− f ) ≤ (2η−1)φ′(0)+φ′′(0) f +
φ′′(0)

2
f .

Thus for 0≤ f ≤ ∆η := min{−φ′(0)
φ′′(0) (η− 1

2),c0}, we have

∂Q
∂ f

(η, f ) ≤ (2η−1)φ′(0)+
3
2

φ′′(0)
−φ′(0)

φ′′(0)
(η− 1

2
) ≤ φ′(0)

2
(η− 1

2
) < 0.
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Therefore as a function of the variablef , Q(η, f ) is strictly decreasing on the interval[0,∆η]. But
f ∗φ (η) > 0 is its minimal point, hence

Q(η,0)−Q(η, f ∗φ (η)) ≥ Q(η,0)−Q(η,∆η) ≥−φ′(0)

2
(η− 1

2
)∆η.

When−φ′(0)
φ′′(0) (η− 1

2) > c0, we have∆η = c0 ≥ 2c0(η− 1
2). Hence

Q(η,0)−Q(η, f ∗φ (η)) ≥ −φ′(0)

2
min

{
2c0,

−φ′(0)

φ′′(0)

}
(η− 1

2
)2.

That is, (67) holds withs= 2 and

c = max

{√
2φ′′(0)

−φ′(0)
,

√
1

−φ′(0)c0

}
.

The proof forη < 1/2 is the same by estimating the upper bound of∂Q
∂ f (η, f ) for f < 0.

Turn to the special loss functionV = Vq given in (6) byφ(t) = (1− t)q
+. Applying Theorem 34,

we see that the functionφ satisfiesφ′(0) = −q < 0 andφ′′(0) = q(q−1) > 0. This verifies (40) and
the constantc can be obtained from the proof of Theorem 34.
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Abstract
In this paper1 we consider the problem of performing Bayesian model-averaging over a class of

discrete Bayesian network structures consistent with a partial ordering and with bounded in-degree

k. We show that forN nodes this class contains in the worst-case at leastΩ(
(N/2

k

)N/2
) distinct net-

work structures, and yet model averaging over these structures can be performed usingO(
(N

k

)

·N)
operations. Furthermore we show that there exists a single Bayesian network that defines a joint
distribution over the variables that is equivalent to modelaveraging over these structures. Although
constructing this network is computationally prohibitive, we show that it can be approximated by a
tractable network, allowing approximate model-averaged probability calculations to be performed
in O(N) time. Our result also leads to an exact and linear-time solution to the problem of averaging
over the 2N possible feature sets in a naïve Bayes model, providing an exact Bayesian solution to
the troublesome feature-selection problem for naïve Bayesclassifiers. We demonstrate the utility of
these techniques in the context of supervised classification, showing empirically that model averag-
ing consistently beats other generative Bayesian-network-based models, even when the generating
model is not guaranteed to be a member of the class being averaged over. We characterize the
performance over several parameters on simulated and real-world data.

Keywords: Bayesian networks, Bayesian model averaging, classification, naïve Bayes classifiers,
feature selection

1. Introduction

A probabilistic modelM over a set of variablesX, is a parameterization of the joint distribution
P(X) overX. There are many practical uses forP(X), including the ability to calculate expectations,
E(X), of configurations of variables, the ability to calculate themost likely explanationof some
observed evidence, the ability toupdate beliefsabout some variables given some other variables,
P(Xi ,Xj | X′), etc. In short virtually any probabilistic quantity of interest involvoing the variables
X can be calculated onceP(X) is known. Bayesian networks (BNs) (cf., Pearl, 1988) are a popular

1. This is a combined and expanded version of previous conference and workshop papers (Dash and Cooper, 2002,
2003).
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class of graphical probabilistic models that allowP(X) to be specified in practice even when|X| is
very large, by explicating independence between the variablesX.

Many algorithms for learning BNs from data (Verma and Pearl, 1991; Cooper and Herskovits,
1992; Spirtes, Glymour, and Scheines, 1993; Heckerman, Geiger, andChickering, 1995; Friedman,
Geiger, and Goldszmidt, 1997) have been used effectively to learn the structure of a BN model from
data, typically by performing a search over structures using the posteriorprobability,P(S | D), of the
structure given the data as a measure of quality. While learning a particular BN structure has shown
to be useful, it suffers from the fact that a single model makes strong independence assumptions
among the variables of interest that may not be true, or may only be approximately true in reality.
That is, the process of learning a single network affords no way of capturing the uncertainty in the
model structure. The most principled alternative to selecting a particular network structure, is to cal-
culate the full joint posteriorP(X | D) by averaging over all possible BN structures. Unfortunately,
the space of network structures is super-exponential in the number of model variables, and thus an
exact method for full model-averaging is likely to be intractable.

One especially common use for learning the joint distribution from data issupervised classifica-
tion. The general supervised classification problem seeks to create a model based on labelled data
D, which can be used to classify future vectors of featuresF = {F1,F2, . . . ,FN} into one of various
classes of interest. A probabilistic model accomplishes this goal by calculatingthe posterior proba-
bility, P(C | F), of the class given the features. One of the simplest probabilistic classifiers for this
task is the naïve classifier (cf., Duda and Hart, 1973), which, without inferring any structural infor-
mation from the database, can still perform surprisingly well at the classification task (Domingos
and Pazzani, 1997; Friedman, 1997; Ng and Jordan, 2002). Classification using a single Bayesian
network model and no missing feature-vector data can be performed inO(N) time. When the feature
vector is incomplete then standard algorithms (e.g., Lauritzen and Spiegelhalter, 1988) for Bayesian
network inference can be used for classification. The drawbacks of selecting a single model for clas-
sification manifests themselves as over-fitting of the data, leading to poor classification accuracy on
future data sets; however, model averaging has been shown to reduceover-fitting and provide better
generalization (Madigan and Raftery, 1994).

In this paper we consider the possibility of performing exact and approximate model-averaging
(MA) over a particular class of structures rather than over the generalspace of directed acyclic
graphs (DAGs). We show that exact model averaging over the class ofBN structures consistent
with a partial orderingπ and with bounded in-degreek, despite its super-exponential size, can be
performed with relatively small time and space restrictions.

There has been other work on making model averaging over Bayesian network structures ef-
ficient: Methods for approximate MA classification using both selective pruning (Madigan and
Raftery, 1994; Volinsky, 1997) and Monte-Carlo techniques (Madiganand York, 1995) exist and
have been shown to improve performance in prediction tasks; however these methods are approxi-
mate, and do not have the complexity guarantees that our method possesses. Friedman and Koller
(2003) studied the ability to estimate structural features of a network (for example the probability
of an arc fromXi to Xj ) by performing a MCMC search over orderings of nodes. Their method
relied on a decomposition, which they credit to Buntine (1991), that we extend in order to prove our
key theoretical result. We discuss this issue in detail in Section 3. Their workdiffers from ours in
two key respects: (1) Their approach does not capture the single-network (and thus the efficiency
of calculation) approximation to the MA problem, and (2) They perform modelaveraging only to
calculate the probabilities of structural features, explicitly not for prediction. Other work has been
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done (Meila and Jaakkola, 2000; Cerquides and de Màntaras, 2003) on performing exact model
averaging for prediction over all tree-structures inO(N3) time. This research also uses similar as-
sumptions and similar decompositions used by Friedman and Koller (2003) and inthis paper. Our
calculation is more general in allowing nodes to have more than one parent, but it is less general in
that it assumes a partial-ordering of the nodes.

The primary contributions in this paper are as follows: (1) we extend the decomposition of Bun-
tine (1991) to apply to the task of prediction, (2) we show that MA calculationsover this class can
be reproduced by a single network structureS∗ which, if it can be constructed tractably, thereafter
allows approximate MA predictions to be performed using standard Bayesiannetwork inference,
(3) we show that, for the class of naïve models, calculation ofS∗ (including parameters) can be
performed in linear time in the number of variables, and we demonstrate empiricallythat model av-
eraging over naïve classifiers improves performance, and (4) we develop a technique to make model
averaging practical for arbitrary orderings, and we demonstrate empirically that this technique can
result in improved classification (compared to other Bayesian network classifiers) even when no
ordering information is knowna priori.

Aside from the practical issue of achieving accurate predictions, our technique is interesting
from an analytical perspective. As an example, recently, Domingos (2000) made an argument based
on empirical and theoretical grounds that Bayesian model averaging canactually exacerbate the
over-fitting problem in machine learning. Empirically, he shows that rule-learners that approxi-
mate pure Bayesian model averaging closer and closer achieve successively higher error rates than
a rule-learner that uses the moread hoctechnique of bagging. He explains this observation as a con-
sequence of the likelihood’s exponential sensitivity to random fluctuationsin the data, and surmises
that the effect will be significant even for small data sets and will be amplifiedas the number of
models being averaged over increases. Our experiments here presenta direct test of this assertion,
obtaining results that conflict with the conclusions of Domingos.

In Section 2 we formally frame the problem and state our assumptions and notation, and re-
derive previous results. In Section 3 we derive the MA solution and showthat the MA predictions
are approximated by those of a single structure bearing a particular set ofparameters. In Section 4
we present the experimental comparisons, and in Section 5 we discuss ourconclusions and future
directions.

2. Previous Results

In this section we frame the problem, introduce our notation and review relevant previous research,
re-deriving the results of Friedman and Koller (2003) and Buntine (1991) and casting them into
notation that will allow us to extend them for prediction in Section 3.

2.1 Assumptions and Notation

The general supervised classification problem can be framed as follows: Given a set of features
F = {F1,F2, . . . ,FN}, a set of classesC = {C1,C2, . . .CNc}, and a labelled training data setD =
{D1,D2, . . . ,DND} generated from some distributionP, construct a model to predict into which
class future feature vectors sampled fromP are most likely to reside. We use the notationXi to
refer to the nodes when we need to have a uniform notation; we use the convention thatXi ≡ Fi and
X0 ≡C, and we useX to denote the collective set of nodes in the network. A directed graphG(X)
is defined as a pair〈X,E〉, whereE is a set of directed edgesXi → Xj , such thatXi ,Xj ∈ X. If X is a
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random variable, we letRng(X) denote the range ofX. We typically use boldface symbols to denote
sets and non-boldface type to denote elements of sets, when possible.

We are considering the problem of averaging over the space ofBayesian networkstructures.
For a set of variablesX, a Bayesian network onX is a graphical model which factorizes the joint
distributionP(X) overX. In particular:

Definition 1 (Bayesian network) Given a set X of N variables, a Bayesian network B on X is a
pair B = 〈S,θ〉, where S= 〈X,E〉 is a directed acyclic graph over X, andθ = {θ0,θ1, . . . ,θN} are
the parameters of the network that represent the set of conditional probability distributions for each
variable in X given its parents in S.

We make the following assumptions:

Assumption 1 (Multinomial variables) Each node Xi represents a discrete random variable with
r i possible states: Rng(Xi) = {x1

i ,x
2
i , . . . ,x

r i
i }.

We usePai to denote the parent set ofXi , and we letqi denote the number of possible joint con-
figurations of parents for nodeXi (definingqi=1 if Pai = /0), which we enumerate as:Rng(Pai) =
{p1

i , p2
i , . . . , pqi

i }; for example, ifXi has 3 binary parents thenqi = 8.
Under the assumption of multinomial variables, a conditional probability distributionθi for

variableXi will take the form of a conditional probability table (CPT) with componentsθi jk =

P(Xi = xk
i | Pai = p j

i ), and for a fixed network structureS, the componentsθi jk form the parame-
ters of the Bayesian network model and define the joint distribution over all variables assuming the
Markov condition holds. We use the symbolθi j to denote the entire conditional probability distri-
bution function for thei-th node and thej-th parent configuration, and the symbolθ to denote the
collective parameters of the network. In general we use the common(i jk) coordinates notation to
identify thek-th state and thej-th parent configuration of thei-th node in the network. We use the
shorthand that ifQi jk is some quantity associated with coordinates(i jk), thenQi j ≡ ∑k Qi jk .

Assumption 2 (Complete labelled training data) The training data set D contains no record Dl ∈
D such that Dl has a non-observed component.

We will discuss ways to relax this assumption in Section 5. We letNi jk denote the sufficient statistics
of the data set (i.e., the number of times that nodeXi achieved statek when parent setPai was in the
j-th configuration).

Assumption 3 (Dirichlet priors) The prior beliefs over parameter values are given by a Dirichlet
distribution.

We letαi jk denote the Dirichlet hyperparameter corresponding to the network parameter θi jk . For
simplicity, we assumeαi jk can be calculated inO(1) time and space; this is the case, for exam-
ple, with two popular metrics, the K2 metric (Cooper and Herskovits, 1992) and the BDeu metric
(Heckerman, Geiger, and Chickering, 1995).

Assumption 4 (Parameter independence)For any given network structure S, each probability
distributionθi j is independent of any other probability distributionθi′ j ′ :

P(θ | S) =
N

∏
i=0

qi

∏
j=1

P(θi j | S). (1)
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Finally, we take the assumption that the priors on parametersθi jk for a nodeXi depend only on
the local structure. This assumption is known asparameter modularity(Heckerman, Geiger, and
Chickering, 1995):

Definition 2 (Parameter modularity) Let X be a set of variables with Xi ∈X. For any two network
structures S1 and S2 over X, if Pai |S1 = Pai |S2 then P(θi jk | S1) = P(θi jk | S2).

2.2 Averaging Over Parameters with a Fixed Network Structure

One common goal in machine learning with Bayesian networks is to calculate the probability of a
configurationX = x of a set of variablesX. This can be used for predicting likely configurations of
variables, or it can be queried for any conditional probability of interestover the variables inX (e.g.,
P(X1,X2 | X3)) which could be useful for prediction. For a fixed network structureSand a fixed set
of network parametersθ, P(X = x | S,θ) can be calculated inO(N) time:

P(X = x | S,θ) =
N

∏
i=0

θiJK , (2)

where all( j,k) coordinates are fixed by the configuration ofX to the value( j,k) = (J,K).
When, rather than a fixed set of parameters, a databaseD is given, it is necessary to average

over all possible configurations of the parametersθ:

P(X = x | S,D) =
Z

P(X = x | S,θ) ·P(θ | S,D) ·dθ

=
Z N

∏
i=0

θiJK ·P(θ | S,D) ·dθ,

where the second line follows from Equation 2. Given the assumption of parameter independence
and Dirichlet priors, this quantity can be written just in terms of sufficient statistics and Dirichlet
hyperparameters (Cooper and Herskovits, 1992; Heckerman, Geiger, and Chickering, 1995):

P(X = x | S,D) =
N

∏
i=0

αiJK +NiJK

αiJ +NiJ
, (3)

where we have used the notation:αi j = ∑k αi jk . Comparing this result to Equation 2 illustrates the
well-known result that a single network with a fixed set of parametersθ̃ given by

θ̃i jk =
αi jk +Ni jk

αi j +Ni j
(4)

will produce predictions equivalent to those obtained by averaging overall parameter configurations.
We refer to Equation 4 as thestandard parameterization.

2.3 Averaging Structural Features with a Fixed Ordering

The decomposition by Buntine used by Friedman and Koller was a dynamic programming solution
which calculated, with relative efficiency, for example, the posterior probability P(XL→ XM | D)
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of a particular arcXL→ XM averaged over all in-degree-bounded networks consistent with a fixed
ordering. Friedman and Koller then showed how this quantity could be used ina MCMC search
for the most likely structural feature, where the search went over orderings instead of DAGs. One
might be interested in this quantity, for example, if you were interested in a Bayesian estimate for
the structural dependency relations of the system given the data; see Friedman and Koller (2003)
for more motivation for why this quantity would be useful. In this section we re-derive the result of
Buntine.

The derivation required the ability to calculate efficiently the prior probabilityP(S) that a given
structureSgenerated the databaseD. An additional assumption was introduced, labelledstructure
modularityby Friedman and Koller:

Assumption 5 (Structure modularity) The prior of a structure S, P(S), can be factored according
to the network

P(S) ∝
N

∏
i=0

ps(Xi ,Pai), (5)

where ps(Xi ,Pai) is some function that depends only on the local structure (Xi and Pai).

Any metric that assesses the structure priorP(S) based on a difference in arcs betweenSand some
prior network structureS′ (as suggested by Heckerman, Geiger, and Chickering (1995)) will satisfy
this condition. Also the uniform distribution will obviously satisfy this assumption,and requires
O(1) time to assess. Obviously, we restrict ourselves to structures that give probability zero to a
non-acyclic DAG.

The posterior probabilityP(XL→ XM | D) can be written as

P(XL→ XM | D) =

c∑
S

δK(XL→ XM ∈ S) ·P(D | S) ·P(S), (6)

wherec= 1/P(D) is a constant that depends only on the database, andδK(Z) is the Kronecker delta
function:

δK(Z) =

{

1 if Z = true
0 otherwise.

The summation in Equation 6 includes a super-exponential number of networkstructures, and
therefore appears to be intractable. Buntine handled this problem by imposinga total ordering on
the nodes and restricting the maximum number of parents,k, that each node can have. Generalizing
his results to a partial orderingπ instead of a total ordering is straightforward, and we do that here.
For a given partial orderingπ and a particular nodeXi , it is required to enumerate all ofXi ’s possible
parent sets up to a maximum sizek. To this end, we will typically use the superscriptν to index
the different parent sets. For example, four nodes partitioned asπ = 〈{X1,X3},{X2,X4}〉 and a
maximum in-degreek = 2 would yield the following enumeration of parent sets forX2: {Pa0

2 =
/0,Pa1

2 = {X1},Pa2
2 = {X3},Pa3

2 = {X1,X3}}.
The class of models consistent withπ with bounded in-degree ofk we denote asLπ

k :

Definition 3 (Lπ
k ) For a given integer k≤ N and a given partial orderingπ of X, a DAG G=

〈X,E〉 ∈ Lπ
k iff arcs are directed from higher to lower levels and no variable has more than k

parents: Xi → Xj ∈ E⇒ π(Xi) > π(Xj ), and Xi ∈ X⇒ |Pai | ≤ k.
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Note that ifD1,D2∈Lπ
k andD1 6= D2 thenD1 is statistically distinguishable fromD2 because it will

include a different set of adjacencies (Verma and Pearl, 1991); so when averaging over the classLπ
k ,

we are never averaging over equivalent DAGs.

The number of structures inLπ
k is still exponentially large in the worst-case; each node at level

l can choose up tok parents from among all the nodes in levelsl ′ > l . For k ≤ N/2, Lπ
k in the

worst-case includes at leastΩ
[

(N/2
k

)N/2
]

network structures. This result corresponds to the case

whereπ consists of two levels, each withN/2 nodes; each of theN/2 nodes in the bottom level can
therefore choose up to

(N/2
k

)

possible parents.2

Given the assumptions of this paper,P(D | S), can be written just in terms of hyperparameters
and sufficient statistics (Cooper and Herskovits, 1992; Heckerman, Geiger, and Chickering, 1995):

P(D | S) =
N

∏
i=0

qi

∏
j=1

Γ(αi j )
Γ(αi j +Ni j )

·
r i

∏
k=1

Γ(αi jk +Ni jk)
Γ(αi jk)

. (7)

Given structure modularity (Assumption 5) and Equation 7, Equation 6 can bewritten as

P(XL→ XM | D) = c∑
S

N

∏
i=0

ρS
iLM . (8)

TheρS
iLM functions are given by

ρS
iLM = δK [M 6= i∨XL ∈ Pai ] · ps(Xi ,Pai) ·

qi

∏
j=1

Γ(αi j )
Γ(αi j +Ni j )

·
r i

∏
k=1

Γ(αi jk +Ni jk)
Γ(αi jk)

, (9)

and can be calculated using information that depends only on nodesXi andPai .

Even restricting structures to those in a particularLπ
k class, as already mentioned, the summation

in Equation 8 still contains an exponential number of structures in the worst-case. However, the
following theorem (similar to one from Buntine (1991)) shows thatP(XL→ XM | D,Lπ

k ) can be
calculated with relative efficiency:

Theorem 1 Assuming S∈Lπ
k , equation 8 can be written as P(XL→ XM | D,Lπ

k ) = c∏N
i=0 ∑µi

ν=0 ρν
iLM ,

whereρν
iLM denotesρS

iLM for the νth parent set Paνi of Xi and the summation goes over all parent
sets available to node Xi under the restrictions ofLπ

k .

Proof: For notational simplicity, we will drop theLM subscripts on theρ functions:ρν
i ≡ ρν

iLM .
Expanding the sum in Equation 8 yields

2. We are not asserting that this two-level ordering is the absolute worst-case, only that the worst-case must have at least
this many network structures.
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P(XL→ XM | D,Lπ
k ) ∝

ρ0
0 ·ρ

0
1 · . . . ·ρ

0
N

+ ρ1
0 ·ρ0

1 · . . . ·ρ
0
N

...
...

+ ρµ0
0 ·ρ

0
1 · . . . ·ρ

0
N

+ ρ0
0 ·ρ

1
1 · . . . ·ρ0

N
+ ρ1

0 ·ρ1
1 · . . . ·ρ0

N
...

...
+ ρµ0

0 ·ρ
1
1 · . . . ·ρ0

N
...

...
+ ρ0

0 ·ρ
0
1 · . . . ·ρ

1
N

+ ρ1
0 ·ρ0

1 · . . . ·ρ
1
N

...
...

+ ρµ0
0 ·ρ

0
1 · . . . ·ρ

1
N

...
...

+ ρµ0
0 ·ρ

µ1
1 · . . . ·ρ

µN
N



































































































































Ω

[

(

N/2
k

)N/2
]

terms, worst-case.

We define the symbolΣm to denote the structure sum of the product up to and including them-th
node:

Σm ≡ ρ0
0 ·ρ

0
1 · . . . ·ρ

0
m

+ ρ1
0 ·ρ0

1 · . . . ·ρ
0
m

...
...

+ ρµ0
0 ·ρ

µ1
1 · . . . ·ρ

µm
m .

Using this notation, the following recursion relation can be derived:

Σi = Σi−1 ·
µi

∑
ν=1

ρν
i , Σ−1 = 1.

Finally, expanding the recurrence relation yields the expression forP(XL→ XM | D,Lπ
k ):

P(XL→ XM | D,Lπ
k ) = c

N

∏
i=0

µi

∑
ν=1

ρν
i . (10)

2

Thus, a summation ofΩ
[

(N/2
k

)N/2
]

terms can be performed inO
[

(N
k

)

·N
]

operations.

3. Model Averaging for Prediction

In this section we show how to extend the results of Section 2 to efficiently calculate the quantity
P(X = x | D,Lπ

k ) averaged over the classLπ
k .
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This quantity can be written as

P(X = x | D,Lπ
k ) =

1
P(D) ∑

S∈Lπ
k

N

∏
i=0

θ̃iJK ·P(D | S) ·P(S), (11)

whereθ̃iJK are the standard parameters given in Equation 4. Given structure modularity and Equa-
tion 7, Equation 11 can be written in a form very similar to Equation 8:

P(X = x | D,Lπ
k ) = c ∑

S∈Lπ
k

N

∏
i=0

ρ̃iJS
x Kx

, (12)

where here thẽρiJS
x Kx

functions are given by

ρ̃iJS
x Kx

= θ̃iJS
x Kx
·

qi

∏
j=1

Γ(αi j )
Γ(αi j +Ni j )

·
r i

∏
k=1

Γ(αi jk +Ni jk)
Γ(αi jk)

· ps(Xi ,Pai), (13)

andc is a constant (not dependent onS) equal to 1/P(D). We subscript the indicesJ andK from
Equation 2 with anx to indicate that they are fixed by a particular configuration ofX, andJ is indexed
by Sto emphasize that the value of the parent configuration index depends on the number of parents
and therefore the structureS of the network. Although this notation may seem cumbersome, we
believe it clarifies the analysis later.

As in Section 2.3, the worst-case number of terms in the summation of Equation 12 isexponen-
tial in the number of featuresN. Theρ̃iJS

x Kx
functions again can be calculated using only information

local to nodeXi andPai . Following a derivation identical to that for averagingP(XL→ XM | D,Lπ
k )

in Section 2.3, yields the following :

P(X = x | D,Lπ
k ) = c

N

∏
i=0

µi

∑
ν=1

ρ̃ν
iJν

x Kx
. (14)

Here theS index has been replaced with aν indicating which parent set for nodeXi is being consid-
ered. The following theorem shows that this summation can be performed inO(

(N
k

)

·N · k ·ND ·R)
time andO(k ·ND) space.

Theorem 2 For N variables with a maximum number of states per variable given by R anda
database of ND records, Equation 14 can be calculated in O(

(N
k

)

·N · k ·ND ·R) time and using
O(k ·ND) space.

Proof: The right-hand-side of Equation 14 includesN products and
(N

k

)

sums. Eachρν
iLM term can

be calculated inO(k ·ND ·R) time andO(k ·ND) space. This result follows because all sufficient
statistics for a given nodeXi can be stored in a tree of depthO(k) and widthO(ND), with the leaves
of the tree holding the sufficient statistic for the given configuration ofXi andPa(Xi). To fill the tree
requiresND passes of the tree, thus takingO(k ·ND) time. Once the tree is constructed, it can be
queried for any statistic inO(k) time.

The number of possible parent configurations present in the data are bound by the number of
recordsND; thus the number of(i, j) configurations for whichNi j 6= 0 is O(ND). Furthermore, all
terms in the product of Equation 14 for whichNi j = 0 will equal 1 so will not contribute to the
product. Thus, the calculation of products in Equation 13 requireO(k ·ND ·R) time.

Putting all the steps together yields the claim of the theorem. 2
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Although this result is relatively efficient, for classification purposes it maystill be too complex
of a calculation. The functional form of the above solution allows us to prove that exact model
averaging overLπ

k can actually be performed with a single Bayesian network structure:

Theorem 3 There exists a single Bayesian network model M∗ = 〈S∗,θ∗〉 that will define a joint
distribution P(X = x | S∗,θ∗) that is equivalent to that produced by model averaging over all
models inLπ

k .

Proof: Let S∗ be defined so that each nodeXi has the parent setPa∗i =
Sµi

ν=1Paν
i , and letθ∗ be

defined by

θ∗i jk = c1/N
µi

∑
ν=1

ρ̃ν
iJν

j k, (15)

where thex subscript forJν
x has now been replaced with aj and Kx has been replaced with a

k subscript, because we are considering a particular coordinate(i jk). It can be seen by direct
comparison that substitutingθ∗i jk into Equation 2 will yield Equation 14. 2

If we define functionsf (Xi ,Paν
i | D) such thatf (Xi ,Paν

i | D) = ρ̃ν
iJν

j k/θ̃ν
iJν

j k, then Equation 15 can

be written as

θ∗i jk = c1/N
µi

∑
ν=1

θ̃ν
iJν

j k · f (Xi ,Paν
i | D). (16)

The functionsf (Xi ,Paν
i | D) do not depend on the indicesJν

j andk, and they can be interpreted as
the local posterior probability that the parent set ofXi is in factPaν

i . Equation 16 thus provides the
interpretation thatM∗ represents a structure-based smoothing where each standard parameter θ̃ν

i jk
is weighted based on the likelihood thatPaν

i is the parent set ofXi . Sinceθ∗i jk is interpretable as a

probability, the constantc1/N serves as a normalization constant and need not be calculated directly.
There are some numerical complexities with calculating the parameters using Equation 16. One

must essentially calculate quantities of the form

θ∗i = c1/N ∑
ν

θ̃ν
i ·explf ν

i , (17)

wherel f ν
i = log f ν

i is a negative number with large absolute value. Exponentiating this value will
usually be truncated to zero using floating-point arithmetic. In reality however, the normalization
constantc1/N is also very small and in fact makesθ∗i nonzero in many cases. To get around this
problem, we use a known trick of shifting the exponentials so the largest termis equal to 1. The net
result of this is to change the normalization constant, which is never calculatedexplicitly, i.e.

c1/N ∑
ν

θ̃ν
i ·explf ν

i =
c1/N

exp(−lf max)
∑
ν

θ̃ν
i ·exp(lf ν

i − lf max), (18)

Theorem 3 implies that, rather than performing theO(
(N

k

)

·N) summation in Equation 14 for
each case to be classified, in principle we need only construct a single model M∗ and use standard
Bayesian network inference for each case. In the case of a completely instantiated feature vector,
this inference can be completed inO(N) time; otherwise BN inference can be used. Unfortunately
for almost all realistic partial orderingsM∗ will be a highly dense network and memory requirements
will be prohibitive. Furthermore, the network structureS∗ would be non-interpretable by a human.
The intractability ofM∗ is a central problem with applying this method in practice, and we devote
most of the remainder of this paper to presenting ways to remedy this problem.
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3.1 Model Averaging over Naïve structures

One popular class of models that fits into theLπ
k schema is the class of naïve (simple) Bayes models.

The naïve classifier is a probabilistic model that accomplishes classification by making the assump-
tion that any featureFi ∈ F is conditionally independent of any other featureFj ∈ F given the value
of the class variableC. The naïve model can be represented by the Bayesian network shown in
Figure 1.

C

F1 F2 F3 … FN

…

Figure 1: A naïve network:C is the class node which can take on one value for each possible class,
and theFi denote features of interest.

Naïve classifiers have several desirable features: First, they are simpleto construct, requiring
very little domain background knowledge, as opposed to general Bayesian networks which can
require numerous intensive sessions with experts, or a large real-worlddatabase to learn the de-
pendence structure between features. Second, naïve networks can be built with very constrained
space and time complexity: constructing a network requires the estimation of a set of O(N ·R·Nc)
parameters, whereR is the maximum number of feature states andNc is the number of class states.
Each of which can be estimated from data in timeO(ND), whereND is the number of records in the
database. Inference with naïve networks is also efficient; classification of a new feature vectorF ′

can be performed in timeO(|F ′|), even ifF ′ is an incomplete instantiation of features.
Despite their simplicity, these classifiers have been shown to perform surprisingly well in prac-

tice. Domingos and Pazzani (1997) have shown that naïve classifiers can be optimal (in terms of
classifcation accuracy) even when the underlying distribution does not satisfy the naïve assump-
tions. Friedman (1997) argues that the low variance of the naïve classifiercan mitigate the bias,
resulting in overall accurate predictions. Finally, Ng and Jordan (2002)show both theoretically and
empirically that the naïve classifier converges quickly to its asymptotic error-level. These studies
explain why the naïve model has continued to compare favorably to state-of-the-art classification
algorithms.

The construction of a naïve classifier given a setF of potential attributes requires only two gen-
eral steps: (1) Select the subset of featuresF ′ ⊆ F judged to be relevant to classification, and (2)
Calculate the set̃θ of parameters using Equation 4. The feature selection problem (1) is a difficult
and central problem in machine learning in general. In terms of naïve classifiers, the selection of
the appropriate subsetF ′ has been shown to be both important to classification and non-trivial to
perform in practice (Langley and Sage, 1994; Kohavi and John, 1997; Friedman, Geiger, and Gold-
szmidt, 1997). Obviously eliminating features that do not bear on the classification is important, but
also important is the ability to minimize redundant features.

Our method allows us to take a strict Bayesian approach to feature selection;rather than finding
a single “good” setF ′, we can efficiently address the problem of model averaging predictions over
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all 2N possible feature-set structures. An enumeration of these different structures is illustrated in
Figure 2.

C

F1 F2 F3 … FN

…

C

F1 F2 F3 … FN

…

C

F1 F2 F3 … FN

…

C

F1 F2 F3 … FN

…

C

F1 F2 F3 … FN

……

Figure 2: Enumerating all the 2N possible naïve Bayes net structures.

The summary modelM∗, defined in Theorem 3, for the naïve class is especially simple, itself
being a naïve network overall features. Equation 16 for a naïve Bayes net reduces to

θ∗i jk ∝ θ̃ /0
i jk · fi( /0 | D) + θ̃C

i jk · fi({C} | D), (19)

where fi( /0 | D) and fi({C} | D) are proportional to the local posterior probability ofPai = /0 and
Pai = {C}, respectively. The sufficient statistics and Dirichlet priors required for this calculation
are the same as those needed for calculating the parameters of (a) a single network with no arcs
present, and (b) a single naïve network with all arcs present. This reparameterization requires order
O(N ·ND) time and space requirements, which are the same that are needed to calculatethe standard
parameters of a single naïve network over allN features. We call a naive structure so parameterized
a Naïve model averaging(NMA) classifier. In Section 4 we present empirical results showing that
this reparameterization, over a wide range of experimental parameters, almost always produced
better classification results than a standard naïve model.

3.2 Approximate Model Averaging

As noted in Section 3, a serious practical difficulty with constructingM∗ according to Theorem 3
when no ordering is known, is that it requires in the worst case the construction of a completely-
connected Bayesian network and inference can thus be intractable for all but smallN. An obvious
pruning strategy, however, is to truncate the sum in Equation 15 to include nomore thann parents.
Here we present one possible method for selecting then most important parents for each node.

If we reorder the possible parent sets for nodeXi asOP≡{Pa1
i , . . . ,Paµi

i } such thatf (Xi ,Paν
i | D) >

f (Xi ,Paλ
i | D) if and only if ν < λ, then an approximation forPa∗i can be constructed by the following

procedure:

Procedure 1 (ApproximateP∗i construction)
Given: n andOP.

1. Let Pa∗i = /0

2. For ν = 1 to µi ,
if |Pa∗i ∪Paν

i | ≤ n, let Pa∗i = Pa∗i ∪Paν
i , else continue.
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We denote the class of structures being averaged over using this procedure asLπ
kn(D), and we call

the methodApproximate Model Averaging(AMA). Obviously Lπ
kN(D) = Lπ

k . Furthermore, we
empirically show in Section 4 that the loss in ROC area,ε, due to this approximation forn≥ 10
lies around−0.6%≤ ε ≤ 0.6% with 99% confidence forN ≤ 100 and for a wide range of other
parameters. We also show empirically that classifications are not typically sensitive to the value of
n, so oftenn can be made relatively small without degrading classification results.

4. Experimental Tests

In this section we describe several experimental investigations that were designed to test the perfor-
mance of NMA and AMA on arbitrary distributions. We first generate synthetic data to allow us
to more extensively vary parameters, then we perform tests on several real-world machine learning
data sets. All experiments were implemented in C++ using code that was based on theStructural
Modelling, Inference and Learning Engine(SMILE) (Druzdzel, 1999), a library for constructing
probabilistic decision support models.3 Experiments were run on an 1.6 GHz Pentium PC with 1
GB of RAM running Windows XP.

4.1 Experimental Setup

There are at least five parameters for which we sought to characterizethe performance of classifier
predictions: the number of nodesN, the approximation limitn on the size of the maximum in-degree
in the summary network, the maximum in-degree (“density")K of the generatingnetwork, the
maximum in-degreek (k≤ n) allowed in models inLπ

k , and the number of recordsND. It is beyond
the scope of this paper to present a comprehensive comparison over thisfull five-dimensional space;
however, here we sample their settings to provide insight into the dependence of the results on these
parameters.

In our experiments, four classifiers were compared: AMA using a fixed partial ordering, a
NMA classifier, a single naïve network (SNN) with the standard parameterization (Domingos and
Pazzani, 1997), and a non-restricted two-stage greedy thick-thin (GTT) model selection over the
space of DAGs, which is described below.

The algorithm used to generate the GTT model, which assumes no ordering onthe nodes, is as
follows:

Procedure 2 (Greedy thick-thin search)
Given: a networkSwith no arcs.
Do:

1. Repeatedly add the arc whose addition maximally increases the marginallikelihood P(D | S)
without creating a cycle until no increase is possible.

2. Repeatedly delete the arc whose deletion maximally increases P(D | S) until no increase is
possible.

The inner-loop of each test performed the same procedure: Given the six parameters{N,ND,Ntest,K,n,k},
we did the following:

3. SMILE can be downloaded from http://www.sis.pitt.edu/˜genie; however the learning functionality required for our
experiments is not yet available for public release.
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Procedure 3 (Basic testing loop)
Given: N, ND, Ntest, K, n, k.
Do:

1. Generate a random Bayesian network B= G(N,K).

2. Sample ND training records and Ntest test records from the distribution defined by B.

3. Train two classifiers to be compared, M1 (typically the AMA classifier) and M2 (the classifier
to be compared), on the training records.

4. Test M1 and M2 on the test data, measuring the ROC areas R1 and R2, respectively, of each.

5. Calculate the quantityδ = R1−R2
1−R2

.

TheROC Areaof a classifier (cf., Egan, 1975), is the area of the curve showing the true-positives
of the classifier versus the false-positives as the sensitivity of the classifier is swept out from 0 to
1. It has been used with increasing frequency in machine learning because it provides an objective
evaluation of a classifier without requiring the specification of a particular utility function (e.g.
zero-one loss).

The performance metricδ indicates what percentage ofM2’s missing ROC area (1−R2) is
covered byM1: If M1 is perfect thenδ will be 1, if M1 is equivalent toM2 thenδ will be 0, and if
M1 is worse thanM2 thenδ will be negative (see Figure 3). For each configuration of experimental

1

1

0

0

R
1
-R

2

R
2

R
1

Figure 3: The performance metricδ used in our experiments measures the fraction of ROC area
captured by our classifier (with ROC areaR1) versus some other classifier (with ROC
areaR2).

parameters, this procedure was repeatedNtrials times andδ was averaged over these trials.
For some experiments it was necessary to generate networks randomly. Weemployed a lazy

data generation procedure whereby node conditional probability distributions were generated only
when they were required by the sampling, a technique which allows generation of data for arbitrarily
dense networks. The algorithm for selecting network structures at random is as follows:

Procedure 4 (random structure generation)
Given: a set of nodesV; number of records,ND; and maximum in-degree,K.
Do:

1190



MODEL AVERAGING WITH DISCRETEBNS

1. Construct a total ordering o(V) over the variables.

2. For each node Vi do:

(a) Choose a number of parents, np, uniformly at random from{1, . . . ,K}.

(b) Select, uniformly at random,min(np,o(Vi)) parents P such that o(P) < o(Vi).

The choice of the proper set of noninformative structure priors is non-trivial, and in these ex-
periments we do not attempt to address the subtle complexities inherent in this process. In all cases
we assume a uniform prior over non-forbidden structures and thus allowps(Xi ,Pai) = 1/µi for all
i. These priors will put overwhelming mass on networks with a “medium" number of arcs be-
cause there exist many more of these DAGs. We also adopted the K2 parameter prior which sets
αi jk = 1 for all (i, j,k). This criterion has the property of weighting all local distributions of param-
eters uniformly, and has been shown empirically to be an effective non-informative prior (Cooper
and Herskovits, 1992; Heckerman et al., 1995). All variables in our synthetic tests were binary,
Nc = R= 2, andNtest = 1000, and we typically chose an exponentially increasing sequence of val-
ues forN to test the benefits of the algorithms on a wide-range of scenarios. In many experiments
we sampled the in-degree of generating graphsK uniformly from the set{1,2, . . . ,N}; we use the
notationK←↩ {1, . . . ,N} to denote this procedure.

In all experiments,π for AMA was chosen to be a fixed total ordering of the variables. At
least three heuristics were used to generateπ: (1) generate a random ordering, (2) generate two
opposite random orderings and average predictions of each, and (3)use a topological sort of the
graph obtained by GTT. In preliminary experiments, these methods producedcomparable results,
but (2) and (3) performed a few percent better. In all results presented below, method (3) was used
to generateπ.

All abbreviations and symbols are summarized in Table 1 as a reference forthe reader.

Symbol Description
N Number of nodes
ND Number of training records
Ntest Number of testing records
Ntrials Number of times Procedure 3 was repeated

K Maximum in-degree of generating graphs
k Maximum in-degree inLπ

k
n Maximum in-degree in summary MA network (Section 3.2)

SNN Single naïve network (with feature selection)
NMA Naïve model averaging
GTT Greedy thick-thin
AMA Approximate model averaging

Table 1: Table of symbols relevant to experiments.
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4.2 Experimental Results

In this section we present a range of experimental tests we performed using data generated from
random graphs, data generated from the standard benchmark ALARM network, and data from real-
world data sets from the UCI database.

4.2.1 NAÏVE MODEL AVERAGING VERSUS ASINGLE NAIVE NETWORK

It has been shown (Domingos and Pazzani, 1997) that the naïve classifier with the standard parame-
terization can be optimal under zero-one loss even when the underlying independence assumptions
are incorrect. That, together with the fact that calculating parameters for this model can be done
with a single pass through the data, make it a useful and widely used model for classification, and it
would be interesting if we find a model that has the same ease of calculation butperformed signif-
icantly better. There are, of course, many other classifiers that we couldcompare to, in particular,
optimizing the conditional likelihood under the naïve network assumptions corresponds to a logistic
regression model which has also shown to do well for classification. We defer comparisons of our
method to logistic regression and other models for future work.

As Section 3.1 shows, using NMA it is possible to model average over all features sets for a naïve
model simply by reparametrizing a single naïve network according to Equation 19. Because of the
simplicity of this technique (an existing naïve classifier could trivially be replaced with a model-
averaging version just by a change in parameters), we performed an extensive set of comparisons
of NMA versus a SNN using synthetic data generated from randomly-constructed (not necessarily
naïve ) Bayesian networks.

Feature selection for the SNN was performed by successively adding thearc that maximized
the posterior probability of the network structureS until no arc resulted in an increase. Although
this is a greedy strategy, for SNN under the assumptions taken in this paper,it results in a structure
that globally maximizes the posterior probability given the data. This can be seen because, given
structure modularity, the marginal likelihood for a given arc is independentof all other arcs in the
network.

We tested the relative performance of SNN versus a single naïve model (SNNall ) overall fea-
tures (i.e., without any feature selection) by performing Procedure 3 withN varied over the set{10,
20, 40, 80, 100, 320}, with ND varied over the set{100, 200, 400, 800, 1600, 3200, 6400} and with
K ←↩ [1, . . . ,N]. We found that for all configurations of experimental parameters, SNN dominated
SNNall , with averageδ = 29%± 1%. Because of this, we do not include SNNall in any of our
comparisons to AMA, NMA or GTT.

In the evaluation of NMA performance over SNN performance, we simultaneously variedN
from the set{10, 20, 40, 80, 160}, ND from the set{50, 100, 200, 400, 800, 1600, 3200, 6400},
andK from the set{5, 10,20, 40,80, 160} (obviously howeverK ≤ N). We usedNtrials = 1000
in order to establish clear statistical significance. The results are shown in Table 2. The remaining
area covered by NMA ranged from a fraction of one percent to 17%, but in all save one of the 160
configurations measured, the improvement of NMA was significant at the 99% level, the general
trend being that NMA performed better for smaller values ofN and ND. The lower and upper
quartiles (i.e., the 25% and 75% quantiles: the values ofδ that confine the middle 50% of the values
of δ that we observed in our tests) show the true spread of the data, i.e., because of the large number
of trials, the confidence intervals in the mean are not indicative of the widths of the distributions.
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4.2.2 MODEL AVERAGING OVER Lπ
kn(D) VERSUSLπ

k

Since, as we have already mentioned, averaging over the full classLπ
k requires considerable calcula-

tion using Equation 14, we must resort in general to using the single summary network and instead
only averaging over the classLπ

kn(D). We were interested in testing what price we pay in terms of
classification for reducing the size of the space of models. The first set of experiments we performed
tested the degree of error incurred by model averaging overLπ

kn(D) instead of the full classLπ
k .

ND→ 50 100 200 400
N K δ (%) Ql Qu δ (%) Ql Qu δ (%) Ql Qu δ (%) Ql Qu

10 5 17.2±1.6 8.4 24.0 17.0±1.4 9.5 22.8 16.5±1.4 8.7 21.7 14.0±1.2 7.3 19.4
10 10 17.1±1.6 7.7 23.6 16.9±1.4 9.2 23.9 16.2±1.4 7.9 23.5 15.5±1.3 7.8 21.2
20 5 8.7±1.1 3.1 12.1 8.7±1.0 3.7 12.2 8.4±0.9 4.1 11.3 9.0±1.0 3.9 13.3
20 10 8.1±1.0 3.2 12.4 10.0±1.3 3.5 13.5 9.6±1.0 4.7 12.5 8.9±1.1 3.3 11.9
20 20 8.5±1.0 3.7 11.9 9.6±1.1 3.8 13.9 10.1±1.1 4.4 13.7 9.8±1.1 4.2 13.4
40 5 3.8±0.8 0.3 7.3 3.5±0.6 0.8 6.2 4.5±0.6 1.7 6.9 4.6±0.6 1.5 5.7
40 10 3.0±0.6 0.2 5.5 4.2±0.6 1.3 6.6 3.8±0.6 0.8 5.7 4.6±0.7 1.5 6.2
40 20 3.0±0.6 0.2 4.8 4.6±0.7 1.5 6.9 4.4±0.9 1.1 6.7 6.1±1.0 2.1 7.9
40 40 2.2±0.5 −0.2 4.2 3.5±0.7 0.6 5.7 4.6±0.7 1.4 6.8 5.9±0.8 2.0 8.1
80 5 2.8±0.7 −0.4 4.9 2.7±0.6 −0.2 5.0 2.4±0.5 0.1 4.3 2.1±0.4 0.3 3.8
80 10 1.6±0.5 −0.6 2.9 1.5±0.5 −0.8 3.7 2.1±0.4 0.0 3.7 2.6±0.4 0.6 4.4
80 20 1.2±0.5 −0.7 2.6 1.3±0.5 −0.7 2.9 1.9±0.4 −0.1 3.6 2.4±0.5 0.2 4.0
80 40 0.7±0.5 −1.1 2.1 1.0±0.4 −1.1 2.8 1.4±0.5 −0.5 3.1 2.3±0.5 0.1 3.9
80 80 0.7±0.5 −1.0 1.9 1.0±0.4 −0.8 2.6 1.8±0.4 −0.1 3.1 2.4±0.5 0.1 4.4

160 5 2.0±0.6 −0.9 3.6 2.2±0.6 −0.9 4.5 2.2±0.5 −0.1 4.1 1.6±0.4 −0.3 3.2
160 10 1.2±0.5 −1.0 2.8 1.8±0.5 −0.5 3.8 1.6±0.4 −0.6 3.8 1.2±0.4 −0.6 2.9
160 20 1.1±0.5 −0.5 2.2 0.9±0.4 −1.0 2.6 1.0±0.4 −0.7 2.9 0.9±0.4 −1.0 2.6
160 40 0.6±0.4 −1.0 1.7 0.5±0.4 −1.3 2.0 0.5±0.4 −1.0 1.9 0.8±0.4 −1.1 2.4
160 80 0.6±0.4 −1.1 1.6 0.5±0.4 −1.3 2.0 0.5±0.3 −1.2 1.9 0.7±0.4 −1.1 2.4
160 160 0.1±0.3 −1.4 1.5 0.7±0.4 −1.1 2.0 0.7±0.3 −0.9 2.3 0.5±0.4 −1.2 2.1

ND→ 800 1600 3200 6400
N K δ (%) Ql Qu δ (%) Ql Qu δ (%) Ql Qu δ (%) Ql Qu

10 5 13.8±1.3 6.7 19.2 11.5±1.0 5.2 15.8 11.5±1.2 4.3 17.1 10.0±1.3 2.9 14.5
10 10 12.3±1.2 5.5 18.1 10.5±1.2 3.9 14.3 8.4±1.1 2.9 11.3 8.4±1.1 2.4 11.9
20 5 7.7±0.9 2.6 11.7 7.7±1.0 1.8 11.8 5.9±0.9 1.2 8.2 5.7±1.0 0.9 7.8
20 10 8.2±1.0 2.8 12.6 6.0±0.9 1.6 8.5 3.4±0.7 0.7 4.0 3.1±0.6 0.4 3.7
20 20 8.7±1.1 2.8 12.6 7.4±1.0 2.0 11.2 5.8±0.9 1.1 7.5 5.0±0.9 0.6 6.7
40 5 4.6±0.7 1.3 6.3 3.1±0.6 0.7 3.9 3.7±0.7 0.5 4.3 3.4±0.8 0.2 3.6
40 10 4.8±0.7 1.6 6.5 3.5±0.6 1.0 4.4 3.1±0.7 0.5 3.3 2.3±0.6 0.2 2.2
40 20 6.0±0.8 1.8 8.2 6.1±0.9 1.6 8.8 5.4±0.9 0.8 8.0 5.0±1.0 0.5 7.7
40 40 7.5±1.0 2.7 10.0 6.6±1.0 1.7 10.0 7.3±1.0 1.1 11.0 5.9±1.0 0.6 9.6
80 5 2.3±0.4 0.5 3.4 2.0±0.5 0.3 2.7 2.2±0.5 0.2 2.7 1.8±0.5 0.1 1.8
80 10 2.3±0.4 0.6 3.6 2.3±0.4 0.5 3.2 1.9±0.4 0.4 2.4 1.3±0.3 0.1 1.4
80 20 2.7±0.5 0.7 4.5 3.0±0.5 0.8 4.4 3.9±0.6 0.8 5.1 3.6±0.6 0.6 5.1
80 40 2.9±0.5 0.6 4.4 3.9±0.6 0.9 5.6 5.4±0.8 1.3 8.0 5.2±0.7 1.0 7.6
80 80 3.3±0.5 0.9 5.3 4.0±0.6 1.0 6.3 4.9±0.8 1.0 7.5 5.2±0.7 0.7 7.9

160 5 1.3±0.4 −0.1 2.8 0.8±0.3 −0.5 1.9 0.9±0.3 −0.1 1.4 0.9±0.3 0.0 1.2
160 10 1.2±0.3 −0.6 2.7 1.2±0.3 0.0 2.6 0.8±0.3 −0.2 1.7 0.9±0.2 −0.1 1.3
160 20 1.2±0.4 −0.7 3.0 1.2±0.3 −0.4 2.6 1.7±0.4 0.1 2.4 2.1±0.4 0.1 3.3
160 40 1.1±0.3 −0.6 2.7 1.6±0.4 −0.4 2.8 2.6±0.5 0.3 3.9 2.6±0.5 0.3 3.9
160 80 0.7±0.4 −1.2 2.3 1.6±0.4 −0.4 3.2 2.2±0.5 −0.2 4.0 3.0±0.5 0.5 4.7
160 160 1.0±0.4 −0.8 2.5 1.7±0.4 0.0 3.1 2.6±0.5 0.4 4.0 3.4±0.5 0.6 5.5

Table 2: Exploration of NMA performance versus SNN performance asND, N andK are varied.
The error ranges are 99% confidence intervals in the mean.Ql andQu denote the lower and upper
quartiles, respectively.
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These experiments tested the sensitivity on the approximation parametern and the number of
nodesN. SettingND = 100, Ntrials = 40, varyingN over the values{20,40,80,160}, varying n
over the values{1,5,7,10,12,14}, varyingk over the values{1,2,3,4}, andK ←↩ [1, . . . ,N]. The
compiled results are shown in Table 3. The ranges denote the 99% confidence interval of the mean.
Table 3 shows that for a wide range of sensible values for these three parameters, we pay little

N k n δ (%)

20 1 7 −0.1±0.4
40 1 7 0.0±0.5
80 1 7 1±1

160 1 7 −2±2

40 1 1 2±2
40 1 5 0.3±0.8
40 1 7 0.0±0.5
40 1 10 0.1±0.6
40 1 12 −0.1±0.4
40 1 14 −0.5±0.3

20 1 7 −0.1±0.4
20 2 7 0.2±0.9
20 3 7 1±1
20 4 7 0±1

Table 3: The values ofδ between model averaging overLπ
k and model averaging overLπ

kn(D) as
various parameters are varied.

classification cost by averaging overLπ
kn(D) versusLπ

k . Especially interesting is that the difference is
small even for quite small values of the approximation leveln. Even forn >

∼ 5 the percent remaining
area captured by averaging over the full class is less than 1.1% (i.e., 0.3%+0.80%) with probability
P> 0.99. Also, one might expect the approximation error to increase ask was increased, since for a
fixedn, Lπ

k includes increasingly more structures thanLπ
kn(D) ask increases. Table 3 shows that over

the range ofk considered, there is not much sensitivity in the results tok. These results, although
not comprehensive in scope, support that averaging overLπ

kn(D) does not severely degrade the ROC
area relative to model averaging overLπ

k . This result is important because only overLπ
kn(D) can we

select a single tractable model to do model averaging via standard Bayesiannetwork inference.

4.2.3 AMA VERSUSGTT, NMA AND SNN

In terms of classification accuracy, a more practical test of the benefits ofAMA is to contrast its
performance directly with other algorithms. In our first set of measurementsto test this, we gen-
erated synthetic data and measured the performance of AMA relative to GTT, NMA and SNN. We
variedN over the set{20,40} (much higher was too time-consuming for the complete range of
k andn below), and simultaneously variedND from {100,1000}, k from 2–5,n from 4–14 and
K ←↩ {1, . . . ,N}. In these experiments,Ntrials varied from 50 to∼ 100, depending on the speed
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at which the AMA model could be learned. The results forN = 20 and 40 are shown in Table 4
and 5, respectively. In these and all subsequent tables (except where explicitly stated), the error
ranges represent 99% confidence intervals, andQl andQu denote the lower and upper quartiles,
respectively.

These results illustrate several points. First is that AMA performance is relatively insensitive
to the value ofn. This is an encouraging result, because an approximation network with a large
maximum in-degree can result in slow inference when the feature vector to be classified is not com-
plete andN is large. Next we note the evident complementarity between the naïve classifiers (both
NMA and SNN) versus GTT. The naïve classifiers perform consistently better at lowND; whereas
GTT does better at high values ofND. This effect may be due to the difficulty of reliably extracting
structural information from very small databases; in which case GTT is notable to generalize well.
A final observation about these tables is that for highND, GTT can achieve statistically significant
and large gains compared to AMA whenk is sufficiently small. This effect is more important asN
increases because it becomes more difficult to average overLπ

kn(D) for a fixedk asN is increased.
For example, in our experiments it was too computationally costly for us to repeatedly apply AMA
enough to get statistically significant measurements for (N = 40, k = 5). A similar but weaker ef-
fect is seen for the naïve classifiers. AsN gets large the benefits of AMA appear to lose statistical
significance at lowND; however rarely did the naïve classifiers outperform AMA in a statistically
significant sense.

Figure 4 summarizes the results of Tables 4–5 by showing the qualitative rankings of each
algorithm as various parameters are varied. These rankings were derived by examining the results
in Tables 4–5 and for each classifierCi ∈ {NMA, GTT, SNN }, calculatingδ̄i which is the average
over all values ofn for the particular configuration being considered in Figure 4. The following
rules were applied to determine the rankings:

1. If AMA scored significantly better thanCi for a majority of runs, then AMA is ranked higher
thanCi , and visa-versa.

2. If δ̄i < δ̄ j thenCi is ranked aboveCj .

It is clear from this figure that the quality of AMA classifications depends strongly on bothk and
ND.

While synthetic experiments are attractive because they allow us to systematicallyvary param-
eters and generate enough samples to achieve statistical significance, theydo not necessary reflect
performance in the real world. Also, our synthetic data generation process assumed no hidden vari-
ables, a fact which might bias our results. To this end we tested the four classifiers on 34 data sets
taken from the UCI online database (Blake and Merz, 1998). These results are shown in Table 6.

Here the scoreδi
d for classifierCi was calculated according to Procedure 3, whereM2 = Ci and

M1 was taken to be the maximum scoring classifier for the data setd. For example, in the monks-2
database, AMA was the highest scoring classifier and covered 48% of the remaining area for SNN
and GTT and 21% of the remaining area for NMA. The ROC area will in general depend on which
state of the classification variable is considered to be the “positive" state. The scores in Table 6 are
average scores for all ROC curves associated with a particular classification variable; therefore some
data sets (e.g., wine) have no zero entries when two or more classifiers score highest on different
curves.
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Configuration vs. NMA vs. GTT vs. SNN
ND k n δ (%) Ql Qu δ (%) Ql Qu δ (%) Ql Qu

100 2 4 3±3 -4 7 9±3 0 18 13±3 5 19
100 2 6 6±3 -2 10 9±4 2 16 16±4 5 26
100 2 8 5±3 -2 8 8±3 2 16 14±3 5 20
100 2 10 7±3 -1 13 10±3 2 18 15±4 4 24
100 2 12 5±2 -2 9 11±3 4 18 13±3 6 20
100 2 14 7±3 -1 9 11±4 4 18 16±3 6 24
100 3 4 4±4 -4 10 8±3 2 12 13±4 2 21
100 3 6 6±4 -2 13 12±3 4 17 14±4 6 23
100 3 8 9±4 -2 16 13±3 5 18 19±4 7 27
100 3 10 8±4 -2 17 11±3 3 16 17±4 6 24
100 3 12 7±3 -1 9 10±2 3 14 17±3 6 28
100 3 14 6±4 -3 12 12±3 5 18 15±4 3 22
100 4 4 5±4 -4 14 8±3 2 12 15±4 4 22
100 4 6 5±3 -2 12 9±2 3 15 15±3 6 24
100 4 8 5±4 -2 11 10±3 3 14 13±4 3 23
100 4 10 7±3 -2 13 12±3 3 17 16±3 6 23
100 4 12 4±3 -3 8 9±2 3 14 13±3 4 21
100 4 14 8±4 -1 15 12±3 4 18 17±3 8 27
100 5 6 7±4 -3 16 10±3 3 13 15±4 4 23
100 5 8 5±3 -3 10 10±2 5 13 13±3 3 21
100 5 10 4±4 -2 11 9±3 3 14 12±4 4 20
100 5 12 6±3 -2 10 12±3 4 17 16±3 7 24
100 5 14 6±3 -2 9 10±2 4 15 15±3 6 19

1000 2 4 10±4 -2 18 −8±5 -21 10 17±3 6 26
1000 2 6 11±3 1 19 −12±7 -26 11 19±3 11 27
1000 2 8 10±3 1 17 −15±7 -33 7 17±3 7 24
1000 2 10 12±4 2 23 −8±8 -17 13 20±4 13 30
1000 2 12 10±3 2 18 −10±7 -23 10 16±3 9 23
1000 2 14 10±3 2 18 −7±5 -21 10 18±3 11 23
1000 3 4 14±4 2 23 1±4 -8 9 23±4 11 34
1000 3 6 15±4 2 26 −2±5 -7 9 21±3 11 31
1000 3 8 20±4 6 31 2±4 -6 14 27±4 16 35
1000 3 10 15±3 3 23 0±5 -9 13 21±3 13 28
1000 3 12 18±4 5 29 4±4 -3 14 24±4 13 33
1000 3 14 18±4 4 28 1±4 -3 12 24±3 13 33
1000 4 4 23±5 5 37 6±3 1 12 29±4 15 42
1000 4 6 20±5 2 34 8±3 2 13 29±4 14 41
1000 4 8 24±5 5 40 8±3 2 12 31±4 15 45
1000 4 10 21±4 8 32 6±3 1 15 28±3 18 37
1000 4 12 20±4 8 32 7±2 1 14 27±3 18 37
1000 4 14 25±4 7 37 8±3 1 14 31±4 17 45
1000 5 6 23±4 6 38 9±3 3 15 28±4 16 39
1000 5 8 23±5 6 37 10±3 3 14 29±4 15 42
1000 5 10 26±5 9 40 9±2 3 12 32±4 18 45
1000 5 12 25±4 12 38 10±3 2 16 31±4 20 42
1000 5 14 23±4 8 38 9±3 2 16 28±4 15 42

Table 4: Exploration of AMA performance forN = 20 asND, k andn are varied. Error ranges
denote the 99% confidence intervals;Ql andQu denote the lower and upper quartiles, respectively.
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Configuration vs. NMA vs. GTT vs. SNN
ND k n δ (%) Ql Qu δ (%) Ql Qu δ (%) Ql Qu

100 2 4 1±3 -5 5 6±4 -1 9 5±3 -2 9
100 2 6 3±3 -2 8 5±4 -2 13 6±4 0 13
100 2 8 3±4 -5 10 7±4 -1 10 6±4 -2 15
100 2 10 3±5 -4 4 7±4 1 10 8±5 1 11
100 3 4 1±5 -7 4 6±3 0 6 5±5 -4 8
100 3 6 1±4 -5 5 5±3 -2 9 5±4 -3 10
100 3 8 1±4 -6 4 4±3 -1 9 4±4 -3 9
100 3 10 3±4 -4 7 8±3 1 15 6±4 1 9
100 4 4 −5±5 -10 1 2±4 -3 8 −1±5 -7 5
100 4 6 0±5 -7 7 4±4 -1 6 3±5 -3 6
100 4 8 0±3 -6 5 5±3 0 11 5±4 -1 9
100 4 10 2±5 -4 3 4±2 0 7 6±5 -2 10

1000 2 4 7±4 0 12 −10±8 -21 6 11±4 3 16
1000 2 6 8±4 -1 12 −8±9 -22 7 14±4 5 19
1000 2 8 11±5 1 19 −10±11 -38 13 17±5 8 27
1000 2 10 5±4 -2 11 −15±14 -29 8 11±5 3 20
1000 3 4 14±5 2 26 −3±6 -9 7 19±5 6 29
1000 3 6 19±6 6 30 0±5 -6 7 23±6 11 32
1000 3 8 18±5 7 27 3±6 -4 14 23±4 12 31
1000 3 10 12±5 1 18 0±7 -1 11 18±4 8 25
1000 4 4 19±6 2 29 10±4 2 17 25±5 12 35
1000 4 6 20±5 6 33 6±4 -1 11 25±5 18 35
1000 4 8 18±6 1 28 9±4 3 12 23±5 9 29
1000 4 10 22±6 1 37 8±4 1 12 28±5 13 42

Table 5: Exploration of AMA performance over parameter space forN = 40.
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Figure 4: Qualitative comparison showing the ranking of the four algorithms as the number of
nodes, the number of records andk are varied.
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Data set δSNN δGTT δNMA δAMA N k ND method
haberman 0.35 0.35 0.00 0.00 4 4 306 LOO
servo 0.56 0.66 0.15 0.00 5 5 167 LOO
lenses 0.37 0.45 0.00 0.03 6 6 24 LOO
hayes-roth 0.32 0.32 0.00 0.01 6 6 132 LOO
liver-disorders 0.14 0.07 0.00 0.03 7 7 345 LOO
monks-3 0.83 0.24 0.82 0.00 7 7 552 T&T
monks-1 0.98 0.00 0.98 0.00 7 7 554 T&T
monks-2 0.48 0.48 0.21 0.00 7 7 600 T&T
chess krkopt 0.54 0.00 0.54 0.32 7 7 28055 CV2
ecoli 0.03 0.01 0.02 0.00 8 8 336 LOO
yeast 0.04 0.11 0.04 0.07 8 8 1484 CV2
post-operative 0.08 0.46 0.01 0.09 9 9 90 LOO
prima-indian diab 0.01 0.01 0.01 0.02 9 9 768 CV2
abalone 0.12 0.08 0.05 0.00 9 9 4176 CV2
cpu-performance 0.13 0.31 0.01 0.11 10 10 209 CV2
glass 0.10 0.04 0.15 0.13 10 10 214 CV2
cmc 0.01 0.07 0.01 0.04 10 10 1473 CV2
sol-flare-C 0.03 0.09 0.02 0.01 11 11 322 CV2
sol-flare-M 0.00 0.44 0.17 0.20 11 11 322 CV2
sol-flare-X 0.06 0.01 0.18 0.33 11 11 322 CV2
page-blocks 0.30 0.12 0.23 0.02 11 11 5473 CV2
wine 0.14 0.01 0.16 0.06 14 7 177 CV2
heart-disease 0.00 0.07 0.11 0.19 14 6 294 CV2
housing 0.20 0.06 0.22 0.00 14 5 506 CV2
credit-screening 0.00 0.12 0.09 0.02 16 5 652 CV2
pendigits 0.58 0.00 0.58 0.00 17 6 7495 T&T
letter-recognit 0.38 0.00 0.38 0.01 17 5 20000 T&T
thyroid-disease 0.17 0.28 0.00 0.11 21 5 7200 T&T
soybean-small 0.00 0.00 0.00 0.00 22 4 47 CV4
mushroom 0.86 0.00 0.89 0.03 22 4 8124 CV2
spect 0.18 0.38 0.16 0.00 23 4 267 T&T
brst-canc-wisc 0.28 0.00 0.29 0.23 32 3 569 CV2
connect-4 0.49 0.00 0.49 0.52 43 2 67557 CV2
spambase 0.24 0.25 0.00 0.10 58 2 4600 CV2

Table 6: Experimental results for 34 UCI data sets. The top scoring classifier for each data set is
underlined, the top two are shown in bold. AMA scored in the top one 13 of 34times compared to
7, 12 and 12 for SNN, GTT and NMA, respectively. It scored in the top two 25 times compared to
11, 17, and 19 for NMA, GTT and SNN, respectively.
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The average difference∆i between classifieri and AMA: ∆i ≡ 1
34 ∑d(δAMA

d −δi
d), was calculated

to gauge the statistical significance of these experiments. The results are shown in Table 7. AMA
benefits over the naïve models were significant at the 99% level, but only atthe 95% level for GTT.

i ∆i (%) Ql Qu

SNN 19±5 0 33
NMA 13±5 0 23
GTT 8±4 0 20

Table 7: Compiled UCI results. The error ranges denote the error of the mean.

Finally, the performance of AMA was also tested by generating training and test data with the
benchmark ALARM network. In this case,N = 36 andK = 4 were fixed by the network, and a test
was performed withk= 3,n= 10, andND systematically varied. The results in Table 8 are shown for
classification on thekinked tube (kt)andanaphylaxis (an)diagnostic nodes. Here, for small number

ND δkt (%) Qkt
l Qkt

u δan (%) Qan
l Qan

u

50 32±13 24 55 3±3 -9 17
100 23±11 9 53 1±3 -11 16
200 13±9 -1 32 −3±4 -17 16
400 12±7 -1 34 −3±5 -21 18
800 4±7 -9 23 2±5 -11 21

3200 0±14 -19 15 6±7 -8 19

Table 8: AMA performance v.s. GTT on synthetic data generated using the ALARM network and
classifying onkinked tube(kt) andanaphylaxis(an).

of records, AMA outperformed GTT at the 99% significance level classifying on thekinked tube
node; however, it showed no improvement when classifying on theanaphylaxisnode. These results
are notable because they demonstrate that the qualitative performance of the AMA classifier depends
not just on global network features but also on features specific to the classification node. Precisely
what features of the classification node are important is an open question for future research. The
prior probability ofanaphylaxiswas about 4 times smaller than that ofkinked tube; however, the
local topology of the network may play a factor as well.

Obviously, using AMA was not without cost. The time to construct the models (and memory
requirements) appeared to grow exponentially withk, as shown in Table 9 forN = 40.

5. Discussion

We have shown that, under certain assumptions, it is possible to construct asingle Bayesian network
model,M, whose joint distribution will be identical to exact model averaging over the class,Lπ

k ,
of models consistent with a partial orderingπ and having in-degree bounded byk. Although for
most partial orderings,M will be intractable to build and use for inference, we have demonstrated
two ways of putting this technique to practical use: first, by constructing a single network with a
particular parameterization that produces approximate model averaged predictions, and second by
applying the method to the class of naïve Bayes models, leading to a simple re-parameterization
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ND Algorithm train time test time
AMA-4 330 0.101
AMA-3 27 0.038

100 AMA-2 2.6 0.033
GTT 0.3 0.025
NMA 0.2 0.021
SNN 0.02 0.017

AMA-4 1000 0.113
AMA-3 96 0.035

1000 AMA-2 8.9 0.033
GTT 1.2 0.024
NMA 0.2 0.022
SNN 0.04 0.017

Table 9: Average training and testing times in seconds for the different algorithms with N = 40.
“AMA- m" refers to the average over all runs withk = m.

that produces predictions equivalent to model averaging over all feature sets, effectively solving the
feature selection problem for naïve models in a Bayesian framework.

As an example of the utility of this method, we performed some empirical studies in a classifica-
tion context, and showed that on both synthetic and UCI datasets, even with relatively little effort in
choosing a good value forπ and with simple noninformative priors, classifications can be beneficial
compared to other common BN classifiers. We have also demonstrated empiricallythat classifica-
tions obtained by model averaging over all naïve features sets is very likelyto be beneficial over a
single naïve model chosen by selecting the MAP feature set. It can be expected that these results
would improve in real-world situations when expert knowledge about realistic node-orderings and
structure and parameter priors can be brought to bear.

Our empirical results provide evidence that Bayesian model averaging can improve prediction
over model selection, in contrast to the conclusions drawn by Domingos (2000) that Bayesian learn-
ing exacerbates the over-fitting problem. First, in our experiments with naïve classifiers, model av-
eraging clearly produced better predictions compared to model selection in terms of the ROC area.
Second, in our experiments with approximate model-averaged (AMA) classifiers, we observed the
trend that AMA classifications performed successively better as more andmore structures were in-
cluded in the model averaging (i.e., ask was increased). This conflicts with the assertion that model
generalization suffers when more models are considered in the averagingprocess.

In general, the benefits of AMA were not without cost. Construction times for AMA models
were higher than other model types, and were observed empirically to growexponentially as the
maximum in-degreek increased. Furthermore, when the approximation parametern is large, infer-
ence with incomplete feature vectors can become prohibitive. The latter observation is mitigated
by the fact that the AMA classifier is generally insensitive to the value ofn, allowingn to be mini-
mized without sacrificing classification accuracy. However, in cases where the number of nodes,N,
is very large, the cost of building the AMA classifier might outweigh the benefits: in this case, if the
number of records,ND, is small then a naïve model-averaged (NMA) classifier would probably be
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the most attractive since it performed comparably to AMA with orders of magnitude faster training
time.

Once the model-averaging model is built, however, the technique has an advantage because of
its simplicity of implementation. Existing systems that use Bayesian network classifiers can trivially
be adapted to use model averaging by replacing their existing model with a single summary model.
This is especially relevant in cases where a naïve classifier is currently being employed, as building
a NMA classifier retains the same linear time and space complexity required for building a naïve
model.

As already stated, whenn is large enough the approximation network can be extremely dense,
thus making inference difficult when the feature-vector is incomplete. One way to get around this
issue, when the incompleteness of the feature-vector is regular, is to learnseparate model-averaging
models on subsets of data in which the same set of features is missing. Thus a one-time investment
of building several feature-vector-specific models would allow us to doO(N) inference even for
largen-values.

Future work includes finding a better method for optimizing the orderingπ, possibly by doing
a search over orderings as in (Friedman and Koller, 2003), and perhaps using cached sufficient
statistics with advanced data structures such as ADTrees (Moore and Lee, 1998) to increase the
practical limits ofk. There are a wealth of other classifiers that it would be interesting to compare
with our approach: both non-probabilistic based models such as C4.5, neural networks, support-
vector machines, etc., and other model-averaging techniques such as those presented in Madigan
and Raftery (1994) and Cerquides (2003)

It should also be possible to relax the assumption of complete training data by using the EM
algorithm or MCMC sampling to estimate parameters from data. Finally, the identification of other
classes of BN models that easily fit within theLπ

k class could lead to other especially efficient
solutions such as that obtained with the naïve Bayes model.
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Abstract
Feature selection is applied to reduce the number of features in many applications where data has
hundreds or thousands of features. Existing feature selection methods mainly focus on finding rele-
vant features. In this paper, we show that feature relevancealone is insufficient for efficient feature
selection of high-dimensional data. We define feature redundancy and propose to perform explicit
redundancy analysis in feature selection. A new framework is introduced that decouples relevance
analysis and redundancy analysis. We develop a correlation-based method for relevance and redun-
dancy analysis, and conduct an empirical study of its efficiency and effectiveness comparing with
representative methods.

Keywords: supervised learning, feature selection, relevance, redundancy, high dimensionality

1. Introduction

In classic supervised learning, one is given a training set of labeled fixed-length feature vectors
(instances). An instance is typically described as an assignment of valuesf = ( f1, ..., fN) to a set
of featuresF = (F1, ...,FN) and one ofl possible classesc1, ...,cl to the class labelC. The task is to
induce a hypothesis (classifier) that accurately predicts the labels of novel instances. The learning of
the classifier is inherently determined by the feature-values. In theory, more features should provide
more discriminating power, but in practice, with a limited amount of training data, excessive features
will not only significantly slow down the learning process, but also cause the classifier to over-fit
the training data as irrelevant or redundant features may confuse the learning algorithm.

Feature selection has been an active and fruitful field of research anddevelopment for decades
in statistical pattern recognition (Mitra et al., 2002), machine learning (Liu et al., 2002b; Robnik-
Sikonja and Kononenko, 2003), data mining (Kim et al., 2000; Dash et al., 2002) and statistics (Hastie
et al., 2001; Miller, 2002). It has proven in both theory and practice effective in enhancing learning
efficiency, increasing predictive accuracy, and reducing complexity of learned results (Almuallim
and Dietterich, 1994; Koller and Sahami, 1996; Blum and Langley, 1997).Let G be some subset of
F and fG be the value vector ofG. In general, the goal of feature selection can be formalized as se-
lecting a minimum subsetG such thatP(C | G= fG) is equal or as close as possible toP(C | F = f ),
whereP(C | G = fG) is the probability distribution of different classes given the feature valuesin
G andP(C | F = f ) is the original distribution given the feature values inF (Koller and Sahami,
1996). We call such a minimum subset anoptimalsubset, illustrated by the example below.

c©2004 Lei Yu and Huan Liu.
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Example 1 (Optimal subset)Let features F1, ...,F5 be Boolean. The target concept is C= g(F1, F2)
where g is a Boolean function. With F2 = F3 and F4 = F5, there are only eight possible instances.
In order to determine the target concept, F1 is indispensable; one of F2 and F3 can be disposed of
(note that C can also be determined by g(F1, F3)), but we must have one of them; both F4 and F5

can be discarded. Either{F1, F2} or {F1, F3} is an optimal subset. The goal of feature selection is
to find either of them.

In the presence of hundreds or thousands of features, researchers notice (Yang and Pederson, 1997;
Xing et al., 2001) that it is common that a large number of features are not informative because they
are either irrelevant or redundant with respect to the class concept. Inother words, learning can be
achieved more efficiently and effectively with just relevant and non-redundant features. However,
the number of possible feature subsets grows exponentially with the increase of dimensionality.
Finding an optimal subset is usually intractable (Kohavi and John, 1997) and many problems related
to feature selection have been shown to be NP-hard (Blum and Rivest, 1992).

Researchers have studied various aspects of feature selection. One of the key aspects is to
measure thegoodnessof a feature subset in determining an optimal one (Liu and Motoda, 1998).
Different feature selection methods can be broadly categorized into thewrapper model (Kohavi
and John, 1997; Kim et al., 2000) and thefilter model (Liu and Setiono, 1996; Liu et al., 2002b;
Hall, 2000; Yu and Liu, 2003). The wrapper model uses the predictive accuracy of a predetermined
learning algorithm to determine the goodness of the selected subsets. These methods are compu-
tationally expensive for data with a large number of features (Kohavi and John, 1997). The filter
model separates feature selection from classifier learning and selects feature subsets that are inde-
pendent of any learning algorithm. It relies on various measures of the general characteristics of the
training data such as distance, information, dependency, and consistency (Liu and Motoda, 1998).
Searchis another key problem in feature selection. To balance the tradeoff of result optimality and
computational efficiency, different search strategies such as complete,heuristic, and random search
have been studied to generate candidate feature subsets for evaluation (Blum and Langley, 1997;
Dash and Liu, 2003). According to the availability of class labels, there arefeature selection meth-
ods forsupervised learning(Dash and Liu, 1997; Yu and Liu, 2003) as well as forunsupervised
learning(Kim et al., 2000; Dash et al., 2002). Feature selection has found success in many applica-
tions like text categorization (Yang and Pederson, 1997; Forman, 2003), image retrieval (Swets and
Weng, 1995; Dy et al., 2003), genomic microarray analysis (Xing et al., 2001; Yu and Liu, 2004),
customer relationship management (Ng and Liu, 2000), and intrusion detection (Lee et al., 2000).

Despite the impressive achievements in the current field of feature selection, we observe great
challenges arising from domains such as genomic microarray analysis and text categorization where
data may contain tens of thousands of features (Yu and Liu, 2004; Forman, 2003). First of all, the
nature of high dimensionality of data can cause the so-called problem of “curse of dimensional-
ity” (Hastie et al., 2001). Secondly, high-dimensional data often contains many redundant features.
Both theoretical analysis and empirical evidence show that along with irrelevant features, redundant
features also affect the speed and accuracy of learning algorithms andthus should be eliminated
as well (Koller and Sahami, 1996; Kohavi and John, 1997; Hall, 2000).Existing feature selection
methods mainly exploit two approaches: individual (feature) evaluation and subset evaluation (Blum
and Langley, 1997; Guyon and Elisseeff, 2003). Methods of individual evaluation rank features ac-
cording to their importance in differentiating instances of different classesand can only remove
irrelevant features as redundant features likely have similar rankings.Methods of subset evalua-
tion search for a minimum subset of features that satisfies some goodness measure and can remove
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irrelevant features as well as redundant ones. However, among existing heuristic search strategies
for subset evaluation, even greedy sequential search which reduces the search space fromO(2N) to
O(N2) can become very inefficient for high-dimensional data. The limitations of existing research
clearly suggest that we should pursue a different framework of feature selection that allows efficient
analysis of both feature relevance and redundancy for high-dimensional data.

The remainder of this paper is organized as follows. In Section 2, we review notions of feature
relevance, identify the need for redundancy analysis, and provide a formal definition of feature
redundancy. In Section 3, we analyze in detail the limitations of current approaches and propose
a new framework of efficient feature selection. In Section 4, we describe correlation measures,
and present a correlation-based method for efficient relevance and redundancy analysis under the
new framework. Section 5 contains an empirical study of our method in terms ofefficiency and
effectiveness comparing with representative methods. Section 6 concludes this work and points out
some future directions.

2. Feature Relevance and Feature Redundancy

Traditionally, feature selection research has focused on searching for relevant features. Although
some recent work has pointed out the existence and effect of feature redundancy (Koller and Sa-
hami, 1996; Kohavi and John, 1997; Hall, 2000), there is little work on explicit treatment of feature
redundancy. In the following, we first present a classic notion of feature relevance and illustrate
why it alone cannot handle feature redundancy, and then provide ourformal definition of feature
redundancy which paves the way for efficient elimination of redundant features.

2.1 Feature Relevance

Based on a review of previous definitions of feature relevance, John,Kohavi, and Pfleger classified
features into three disjoint categories, namely, strongly relevant, weakly relevant, and irrelevant
features (John et al., 1994). LetF be a full set of features,Fi a feature, andSi = F −{Fi}. These
categories of relevance can be formalized as follows.

Definition 1 (Strong relevance)A feature Fi is strongly relevant iff

P(C | Fi , Si) 6= P(C | Si) .

Definition 2 (Weak relevance)A feature Fi is weakly relevant iff

P(C | Fi , Si) = P(C | Si), and

∃ S′i ⊂ Si , such thatP(C | Fi , S′i) 6= P(C | S′i) .

Corollary 1 (Irrelevance) A feature Fi is irrelevant iff

∀ S′i ⊆ Si , P(C | Fi , S′i) = P(C | S′i) .
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Strong relevance of a feature indicates that the feature is always necessary for an optimal subset;
it cannot be removed without affecting the original conditional class distribution. Weak relevance
suggests that the feature is not always necessary but may become necessary for an optimal subset
at certain conditions. Irrelevance (following Definitions 1 and 2) indicatesthat the feature is not
necessary at all. According to these definitions, it is clear that in previousExample 1, featureF1 is
strongly relevant,F2, F3 weakly relevant, andF4, F5 irrelevant. An optimal subset should include
all strongly relevant features, none of irrelevant features, and a subset of weakly relevant features.
However, it is not given in the definitions which of weakly relevant features should be selected and
which of them removed. Therefore, it is necessary to define feature redundancy among relevant
features.

2.2 Defining Feature Redundancy

Notions of feature redundancy are normally in terms of feature correlation. It is widely accepted
that two features are redundant to each other if their values are completelycorrelated (for example,
featuresF2 andF3 in Example 1). In reality, it may not be so straightforward to determine feature
redundancy when a feature is correlated (perhaps partially) with a set of features. We now formally
define feature redundancy in order to devise an approach to explicitly identify and eliminate redun-
dant features. Before we proceed, we first introduce the definition ofa feature’s Markov blanket
given by Koller and Sahami (1996).

Definition 3 (Markov blanket) Given a feature Fi , let Mi ⊂ F (Fi /∈ Mi), Mi is said to be a Markov
blanket for Fi iff

P(F −Mi −{Fi}, C | Fi , Mi) = P(F −Mi −{Fi}, C | Mi) .
The Markov blanket condition requires thatMi subsume not only the information thatFi has

aboutC, but also about all of the other features. It is pointed out in Koller and Sahami (1996) that
an optimal subset can be obtained by a backward elimination procedure, known asMarkov blanket
filtering: let G be the current set of features (G = F in the beginning), at any phase, if there exists
a Markov blanket forFi within the currentG, Fi is removed fromG. It is proved that this process
guarantees a feature removed in an earlier phase will still find a Markov blanket in any later phase,
that is, removing a feature in a later phase will not render the previously removed features necessary
to be included in the optimal subset. According to previous definitions of feature relevance, we can
also prove that strongly relevant features cannot find any Markov blanket. Since irrelevant features
should be removed anyway, we exclude them from our definition of redundant features.

Definition 4 (Redundant feature)Let G be the current set of features, a feature is redundant and
hence should be removed from G iff it is weakly relevant and has a Markov blanket Mi within G .

From the property of Markov blanket, it is easy to see that a redundant feature removed earlier
remains redundant when other features are removed. Figure 1 depicts the relationships between
definitions of feature relevance and redundancy introduced so far. It shows that an entire feature set
can be conceptually divided into four basic disjoint parts: irrelevant features (I), redundant features
(II, part of weakly relevant features), weakly relevant but non-redundant features (III), and strongly
relevant features (IV). An optimal subset essentially contains all the features in parts III and IV. It is
worthy to point out that although parts II and III are disjoint, different partitions of them can result
from the process of Markov blanket filtering. In previous Example 1, either of F2 or F3, but not
both, should be removed as a redundant feature.
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III IV

I: Irrelevant features

IV: Strongly relevant features

II: Weakly relevant and 

III + IV: Optimal subset

redundant features

non−redundant features

III: Weakly relevant but

I II

Figure 1: A view of feature relevance and redundancy.

3. Efficient Feature Selection via Relevance and Redundancy Analysis

We now review two major approaches in dealing with feature relevance and redundancy, analyze
their limitations for high-dimensional data, and then propose a new frameworkof efficient feature
selection based on relevance and redundancy analysis.

3.1 Existing Approaches in Dealing with Relevance and Redundancy

As mentioned earlier, there exist two major approaches in feature selection:individual evaluation
andsubset evaluation. Individual evaluation, also known as feature weighting/ranking (Blum and
Langley, 1997; Guyon and Elisseeff, 2003), assesses individual features and assigns them weights
according to their degrees of relevance. A subset of features is oftenselected from the top of a
ranking list, which approximates the set of relevant features (II, III, and IV in Figure 1). With its
linear time complexity in terms of dimensionalityN, this approach is efficient for high-dimensional
data. However, it is incapable of removing redundant features because redundant features likely
have similar rankings. As long as features are deemed relevant to the class, they will all be selected
even though many of them are highly correlated to each other. For high-dimensional data which may
contain a large number of redundant features, this approach may produce results far from optimal.

Many feature selection methods take the subset evaluation approach whichhandles feature re-
dundancy with feature relevance. The diagram in Figure 2 exhibits a traditional framework of
feature selection via subset evaluation (Liu and Motoda, 1998). Subsetgeneration produces can-
didate feature subsets based on a certain search strategy. Each candidate subset is evaluated by a
certain evaluation measure and compared with the previous best one with respect to this measure.
If a new subset turns out to be better, it replaces the previous best subset. The process of subset
generation and evaluation is repeated until a given stopping criterion is satisfied. Distinguished
from individual evaluation, evaluation measures used by this approach are defined against feature
subsets, taking into account the existence and effect of redundant features. A feature subset selected
by this approach approximates the optimal subset (parts III and IV in Figure 1). Many methods have
proven effective to some extent in removing both irrelevant features andredundant features (John
et al., 1994; Koller and Sahami, 1996; Bell and Wang, 2000; Hall, 2000).However, methods in
this framework can suffer from an inevitable problem caused by searching through feature sub-
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sets required in the subset generation step. Although there exist variousheuristic search strategies
such as greedy sequential search, best-first search, and genetic algorithm (Liu and Motoda, 1998),
most of them still incur time complexityO(N2), which prevents them from scaling well to data sets
containing tens of thousands of features.

Subset

Generation

Subset

Evaluation

Stopping

Criterion

Original

Set

Current Best Subset

Candidate

Subset

Selected Subset

Yes

No

Figure 2: A traditional framework of feature selection.

3.2 A New Framework of Efficient Feature Selection

From previous discussions, it is clear that in order to eliminate redundant features, the state-of-the-
art feature selection methods have to rely on the approach of subset evaluation which implicitly
handles feature redundancy with feature relevance. These methods can produce better results than
methods without handling feature redundancy, but the high computational cost of the subset search
makes them inefficient for high-dimensional data. Therefore, in our solution, we propose a new
framework of feature selection which avoids implicitly handling feature redundancy and turns to
efficient elimination of redundant features viaexplicitly handling feature redundancy.

Relevance definitions divide features into strongly relevant, weakly relevant, and irrelevant ones;
redundancy definition further divides weakly relevant features into redundant and non-redundant
ones. Our goal is to efficiently find the optimal subset (parts III and IV in Figure 1). We can achieve
this goal through a new framework of feature selection (shown in Figure 3) composed of two steps:
first, relevance analysis determines the subset of relevant features byremoving irrelevant ones, and
second, redundancy analysis determines and eliminates redundant features from relevant ones and
thus produces the final subset. Its advantage over the traditional framework of subset evaluation lies
in that by decoupling relevance and redundancy analysis, it circumventssubset search and allows a
both efficient and effective way in finding a subset that approximates anoptimal subset.

Relevance

Analysis

Redundancy

Analysis

Original

Set

Relevant

Subset

Relevant

Subset

Selected

Subset

Selected

Subset

Figure 3: A new framework of feature selection.
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It is sensible to use efficient heuristic methods to approximate the computation ofrelevant fea-
tures and redundant features under our new framework for two reasons. On one hand, searching
for an optimal subset based on the definitions of feature relevance and redundancy is combinatorial
in nature. It is obvious that exhaustive or complete search is prohibitive with a large number of
features. On the other hand, an optimal subset is defined based on the full population where the true
data distribution is known. It is generally assumed (Mitchell, 1997; Miller, 2002) that a training data
set is only a small portion of the full population, especially in a high-dimensional space. Therefore,
it is not proper to search for an optimal subset from the training data as over-searching the training
data can cause over-fitting (Jensen and Cohen, 2000). We next present our approximation method.

4. A Correlation Based Method

Correlation is widely used in machine learning and statistics for relevance analysis. In this section,
we first introduce our choice of correlation measure in Section 4.1, then describe our correlation-
based method for both relevance and redundancy analysis in Section 4.2,and present and analyze
the algorithm in Section 4.3.

4.1 Correlation Measures

There exist broadly two types of measures for the correlation between tworandom variables: linear
and non-linear. Of linear correlation, the most well known measure islinear correlation coefficient.
For a pair of variables(X, Y), the linear correlation coefficientρ is given by

ρ =
∑
i
(xi −xi)(yi −yi)

√

∑
i
(xi −xi)2

√

∑
i
(yi −yi)2

,

wherexi is the mean ofX, andyi is the mean ofY. The value ofρ lies between -1 and 1, inclusive.
If X andY are completely correlated,ρ takes the value of 1 or -1; ifX andY are independent,ρ is
zero. It is a symmetrical measure for two variables. Other measures in this category are basically
variations of the above formula, such asleast square regression errorand maximal information
compression index(Mitra et al., 2002). However, it is not safe to always assume linear correlation
between features in the real world. Linear correlation measures may not be able to capture corre-
lations that are not linear in nature. It can also be observed that linear correlation coefficient is not
suitable for nominal data.

Among non-linear correlation measures, many measures are based on the information-theoretical
concept ofentropy, a measure of the uncertainty of a random variable. The entropy of a variableX
is defined as

H(X) = −∑
i

P(xi) log2(P(xi)) ,

and the entropy ofX after observing values of another variableY is defined as

H(X|Y) = −∑
j

P(y j)∑
i

P(xi | y j) log2(P(xi | y j)) ,

whereP(xi) is the prior probabilities for all values ofX, andP(xi | yi) is the posterior probabilities
of X given the values ofY. The amount by which the entropy ofX decreases reflects additional
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information aboutX provided byY and is calledinformation gain(Quinlan, 1993), given by

IG(X | Y) = H(X)−H(X | Y) .

According to this measure, featureY is regarded more correlated to featureX than to featureZ,
if IG(X | Y) > IG(Z | Y). It is easy to prove that information gain is a symmetrical measure.
Symmetry is a desired property for a measure of correlations between features. It ensures that the
order of two features ((X, Y) or (Y, X)) will not affect the value of the measure. Since information
gain tends to favor features with more values, it should be normalized with theircorresponding
entropy. Therefore, we choosesymmetrical uncertainty(Press et al., 1988), defined as

SU(X, Y) = 2

[

IG(X | Y)

H(X)+H(Y)

]

.

It compensates for information gain’s bias toward features with more valuesand restricts its values
to the range[0,1]. A value of 1 indicates that knowing the values of either feature completely
predicts the values of the other; a value of 0 indicates thatX andY are independent. In addition,
it still treats a pair of features symmetrically. Entropy-based measures handle nominal or discrete
features, and therefore continuous features need to be properly discretized (Liu et al., 2002a) in
order to use entropy-based measures.

4.2 Efficient Relevance and Redundancy Analysis

Using symmetrical uncertainty (SU) as the correlation measure, we are ready to develop an approx-
imation method for both relevance and redundancy analysis under our newframework introduced
in Section 3.2. We first differentiate two types of correlation between features (including the class).

Definition 5 (C-correlation) The correlation between any feature Fi and the class C is called C-
correlation, denoted by SUi,c .

Definition 6 (F-correlation) The correlation between any pair of features Fi and Fj (i 6= j) is called
F-correlation, denoted by SUi, j .

Aiming to achieve high efficiency, we calculateC-correlation for each feature, and heuristically
decide a featureFi to be relevant if it is highly correlated with the classC, i.e., if SUi,c > γ, where
γ is a relevance threshold which can be determined by users. The selected relevant features are
then subject to redundancy analysis. Similarly, we can evaluate the correlation between individ-
ual features for redundancy analysis without considering the correlation between various feature
subsets. However, there are two difficulties in determining feature redundancy via pair-wiseF-
correlation calculation: (1) when two features are not completely correlated with each other, it may
be hard to determine feature redundancy and which one to be removed; and (2) it may still require
F-correlation calculation for a total ofN(N−1)

2 pairs, which is inefficient for high-dimensional data.
Below, we try to efficiently determine feature redundancy by substantially reducing the number of
feature pairs evaluated forF-correlation.

In Section 2, we apply Markov blankets toexactlydetermine feature redundancy. When it comes
to approximatelydetermine feature redundancy, the key is to find approximate Markov blankets for
the selected relevant features. We assume that a feature with a largerC-correlation value contains
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by itself more information about the class than a feature with a smallerC-correlation value. We
determine the existence of an approximate Markov blanket between a pair ofcorrelated features
Fi andFj based on theirF-correlation levelSUi, j as follows. WhenSUj,c ≥ SUi,c, we choose to
evaluate whether featureFj can form an approximate Markov blanket for featureFi (instead ofFi

for Fj ) in order to maintain more information about the class. In addition, we heuristically useSUi,c

as a threshold to determine whether theF-correlationSUi, j is strong or not. An approximate Markov
blanket can be defined as follows.

Definition 7 (Approximate Markov blanket) For two relevant features Fi and Fj (i 6= j), Fj forms
an approximate Markov blanket for Fi iff SUj,c ≥ SUi,c and SUi, j ≥ SUi,c .

Recall that Markov blanket filtering, a backward elimination procedure based on a feature’s
Markov blanket in the current set, guarantees that a redundant feature removed in an earlier phase
will still find a Markov blanket in any later phase when another redundantfeature is removed. It is
easy to verify that this is not the case for backward elimination based on a feature’s approximate
Markov blanket in the current set. For instance, ifFj is the only feature that forms an approximate
Markov blanket forFi , andFk forms an approximate Markov blanket forFj , after removingFi based
on Fj , further removingFj based onFk will result in no approximate Markov blanket forFi in the
current set. However, we can avoid this situation by removing a feature only when it can find an
approximate Markov blanket formed by a predominant feature, defined as follows.

Definition 8 (Predominant feature) A relevant feature is predominant iff it does not have any
approximate Markov blanket in the current set.

Predominant features will not be removed at any stage. If a featureFi is removed based on
a predominant featureFj in an earlier phase, it is guaranteed that it will still find an approximate
Markov blanket (the sameFj ) in any later phase when another feature is removed. To summarize,
our method for redundancy analysis consists of (1) selecting a predominant feature, (2) removing all
features for which it forms an approximate Markov blanket, and (3) iterating steps (1) and (2) until
no more predominate features can be selected. An optimal subset can therefore be approximated by
a set of predominant features.

4.3 Algorithm and Analysis

The approximation method for relevance and redundancy analysis presented before can be realized
by an algorithm, named FCBF (Fast Correlation-Based Filter). It involves two connected steps:
(1) selecting a subset of relevant features, and (2) selecting predominant features from relevant
ones. As shown in Figure 4, for a data setS with N features and classC, the algorithm finds a
set of predominant featuresSbest. In the first step (lines 2-7), it calculates theSU value for each
feature, selects relevant features intoS′list based on a predefined thresholdδ, and orders them in a
descending order according to theirSU values. In the second step (lines 8-18), it further processes
the ordered listS′list to select predominant features. A featureFj that has already been determined
to be a predominant feature can always be used to filter out other features for whichFj forms an
approximate Markov blanket. Since the feature with the highestC-correlation does not have any
approximate Markov blanket, it must be one of the predominant features. So the iteration starts
from the first element inS′list (line 8) and continues as follows. For all the remaining features (from
the one right next toFj to the last one inS′list), if Fj happens to form an approximate Markov blanket
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input: S(F1,F2, ...,FN,C) // a training data set
δ // a predefined threshold

output: Sbest // a selected subset

1 begin
2 for i = 1 toN do begin
3 calculateSUi,c for Fi ;
4 if (SUi,c > δ)
5 appendFi to S′list ;
6 end;
7 orderS′list in descendingSUi,c value;
8 Fj = getFirstElement(S′list);
9 do begin
10 Fi = getNextElement(S′list ,Fj);
11 if (Fi <> NULL)
12 do begin
13 if (SUi, j ≥ SUi,c)
14 removeFi from S′list ;
15 Fi = getNextElement(S′list ,Fi);
16 end until (Fi == NULL);
17 Fj = getNextElement(S′list ,Fj);
18 end until (Fj == NULL);
19 Sbest= S′list ;
20 end;

Figure 4: FCBF Algorithm.

for Fi (line 13),Fi will be removed fromS′list . After one round of filtering features based onFj , the
algorithm will take the remaining feature right next toFj as the new reference (line 17) to repeat the
filtering process. The algorithm stops until no more predominant features can be selected. Figure 5
illustrates how predominant features are selected with the rest features removed as redundant ones.
In Figure 5, six features are selected as relevant ones and ranked according to theirC-correlation
values, withF1 being the most relevant one. In the first round,F1 is selected as a predominant
feature, andF2 andF4 are removed based onF1. In the second round,F3 is selected, andF6 is
removed based onF3. In the last round,F5 is selected.
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Figure 5: Selection of predominant features

We now analyze the time complexity of FCBF before an empirical study of its efficiency. As
we can see from Figure 4, major computation of the algorithm involvesSU values forC- andF-
correlations, which has linear complexity in term of the number of instances in adata set. In terms
of dimensionalityN, to determine relevant features, the algorithm has linear complexityO(N); to
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determine predominant features from relevant ones (assuming all features are selected as relevant
ones), it has a best-case complexityO(N) when only one feature is selected and all of the rest of the
features are removed, and a worse-case complexityO(N2) when all features are selected. These time
complexity results are comparable to subset evaluation based on greedy sequential search in which
features are, one at a time, added to the current subset (i.e., sequentialforward selection) or removed
from the current subset (i.e., sequential backward elimination). However, in general cases whenk
(1 < k < N) features are selected, the number of evaluations performed by FCBF will typically be
much less (and certainly never more) than the number of evaluations performed by greedy sequential
search because features removed in each round are not consideredin the next round and FCBF
typically removes a large number of features (instead of only one by greedy sequential search) in
each round. This makes FCBF substantially faster than algorithms of subsetevaluation based on
greedy sequential search, as will be demonstrated by the running time comparisons reported in
Section 5. The more features removed in an earlier round, the faster FCBFis. Moreover, selecting
a subset of relevant features in the first step can further improves its efficiency.

In summary, our method approximates relevance and redundancy analysisby selecting all pre-
dominant features and removing the rest features. It uses bothC- andF-correlations to determine
feature redundancy and combines sequential forward selection with elimination so that it not only
circumvents full pair-wiseF-correlation analysis but also achieves higher efficiency than pure se-
quential forward selection or backward elimination. However, our method issuboptimal due to the
way C- andF-correlations are used for relevance and redundancy analysis and the approximates
that it uses. It is fairly straightforward to improve the optimality of the results byconsidering differ-
ent combinations of features in evaluating feature relevance and redundancy, which in turn increases
time complexity. Another way to improve result optimality is to find better heuristics in determining
a feature’s approximate Markov blanket.

5. Empirical Study

In this section, we empirically evaluate the efficiency and effectiveness ofour method by comparing
FCBF with representative feature selection algorithms. We describe experimental setup in Section
5.1, discuss results on synthetic data and benchmark data in Sections 5.2 and5.3 respectively, and
summarize the findings in Section 5.4.

5.1 Experimental Setup

The efficiency of a feature selection algorithm can be directly measured byits running time over
various data sets. As to effectiveness, a simple and direct evaluation criterion is how similar the
selected subset and the optimal subset are, but it can only be measured over synthetic data for which
we know beforehand which features are irrelevant or redundant. For real-world data, we often do
not have such prior knowledge about the optimal subset, so we use the predictive accuracy on the
selected subset of features as an indirect measure.

In terms of the above criteria, we limit our comparisons to the filter model as FCBFis a fil-
ter algorithm designed for high-dimensional data. We choose representative algorithms from both
approaches (i.e., individual evaluation and subset evaluation). One algorithm, from individual eval-
uation, is ReliefF (Robnik-Sikonja and Kononenko, 2003) which searches for nearest neighbors of
instances of different classes and weights features according to how well they differentiate instances
of different classes. Another algorithm, from subset evaluation, is a variation of CFS (Hall, 2000),
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denoted by CFS-SF (Sequential Forward). CFS exploits best-first search based on some correlation
measure which evaluates the goodness of a subset by considering the individual predictive ability
of each feature and the degree of correlation between them. Sequential forward selection is used
in CFS-SF as initial experiments show CFS-SF runs much faster to produce similar results than
CFS. A third one, also from subset evaluation, is a variation of FOCUS (Almuallim and Dietterich,
1994), denoted by FOCUS-SF. FOCUS exhaustively examines all subsets of features, selecting the
minimal subset that separates classes as consistently as the full set can. It is prohibitively costly
even for data sets with moderate dimensionality. FOCUS-SF replaces exhaustive search in FOCUS
with sequential forward selection. In our experiments, we heuristically setthe relevance thresholdγ
to be theSU value of thebN/logNcth ranked feature for each data set. To test how the selection of
threshold affects the performance of FCBF, we also include in our comparisons the results of FCBF
with γ set to the default value 0. We use FCBF(log) to represent a version of FCBF with the former
setting, and FCBF(0) with the latter setting in the rest of the paper.

In addition to feature selection algorithms, we use two learning algorithms, NBC (Witten and
Frank, 2000) and C4.5 (Quinlan, 1993), to evaluate the predictive accuracy on the selected subset of
features. All these selected algorithms are from Weka’s collection (Witten and Frank, 2000). FCBF
is also implemented in Weka environment.

5.2 Results and Discussions on Synthetic Data

We use three synthetic data sets to illustrate the strengthes and limitations of FCBF and compare it
with ReliefF, CFS-SF, and FOCUS-SF. The first data set is the widely usedCorral data (John et al.,
1994) which contains six Boolean features (A0, A1, B0, B1, I , R) and a Boolean classY defined
by Y = (A0∧A1)∨ (B0∧B1). FeaturesA0, A1, B0, andB1 are independent to each other, feature
I is uniformly random, and featureR matches the classY 75% of the time. It is obvious that an
optimal subset includesA0, A1, B0, andB1. I is irrelevant, andR is redundant. The other two data
sets, Corral-47 and Corral-46, are obtained by introducing more irrelevant features and redundant
features to the original Corral data. As its name says, Corral-47 containsa total of 47 Boolean
features including 5 original featuresA0,A1,B0,B1, andR, 14 irrelevant features, and 28 additional
redundant features. Among the 14 irrelevant features, only two features are uniformly random and
each of the remaining 12 is completely correlated with either of the two. Among the 28 additional
redundant features, for each ofA0, A1, B0, andB1, there are 7 features that are correlated with it at
various levels. The ratios of non-matches are 0,1/16,2/16, ...,6/16 respectively. Corral-46 is the
same as Corral-47 except that it excludesR. Table 1 shows features selected by each algorithm. We
useA0, A1, B0, B1 combined with subscripts 0,1, ...,6 to represent the newly introduced redundant
features, with the value of the subscripts indicating the ratio of non-matches.

We can see that for Corral, all the algorithms in comparison remove the irrelevant featureI ,
but fail to remove the redundant featureR. FCBF(log) misses three features due to the setting of an
improper threshold. For Corral-47, these algorithm also remove all the irrelevant features, but fail
to removeR. The difference is that FCBF(log), FCBF(0), and CFS-SF successfully remove all the
additional redundant features. For Corral-46, only FCBF(log) and FCBF(0) find the optimal subset.
In Corral-47 and Corral-46, the threshold in FCBF(log) does not affect the selection results. These
results suggest that when feature redundancy can only be identified based on feature subsets (e.g.,
the redundancy ofR is defined by the subset ofA0, A1, B0, andB1), FCBF may not successfully
remove redundant features. This is a hard problem for most heuristic search algorithms as well.
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FCBF(log) FCBF(0) ReliefF CFS-SF FOCUS-SF
Corral R A0 R A0 A1 B0 A0 B0 R B1 A0 A1 B0 B1 R

B1 A1 R
Corral-47 R A0 A1 B0 R A0 A1 B0 R B11 A0 A00 A0 A1 B0 B1 A0 A1 A12 B0

B1 B1 B1 B10 B0 B00 R B1 R
B02 A1 A10

Corral-46 A0 A1 B0 B1 A0 A1 B0 B1 A0 A00 B11 B0 A0 A03 A04 A1 A0 A1 A13 A14
B00 B1 B10 B02 A12 A14 B0 B00 B0 B1

A1 A10 B1 B11

Table 1: Features selected by each feature selection algorithm on syntheticdata.

However, in high-dimensional data which often contains a large portion of irrelevant and/or redun-
dant features (as in Corral-47 and Corral-46), FCBF can effectively remove redundant features.
We next further verify its effectiveness as well as efficiency compared to other algorithms through
various real-world data of high dimensionality.

5.3 Results and Discussions on Benchmark Data

In various machine learning domains, there are two forms of high-dimensional data. Traditionally,
the dimensionality is usually thought high if data contains tens or hundreds of features. In this form
of data, the number of instances is normally much larger than the dimensionality. In new domains
such as text categorization and genomic microarray analysis, the dimensionality is in the order of
thousands or even higher, and often greatly exceeds the number of instances. Therefore, we evaluate
our method in comparison with others on high-dimensional data of both forms.

5.3.1 UCIBENCHMARK DATA

Title Features Instances Classes
Lung-cancer 56 32 3
Promoters 57 106 2
Splice 60 3190 3
USCensus90 67 9338 3
CoIL2000 85 5822 2
Chemical 150 936 3
Musk2 166 6598 2
Arrhythmia 279 452 16
Isolet 617 1560 26
Multi-features 649 2000 10

Table 2: Summary ofUCI benchmark data sets.

All together 10 data sets in the traditional form are selected from the UCI Machine Learning
Repository1 and the UCI KDD Archive.2 These data sets contain various numbers of features, in-
stances, and classes, as shown in Table 2. For each data set, we first run all the feature selection algo-

1. http://www.ics.uci.edu/∼mlearn/MLRepository.html
2. http://kdd.ics.uci.edu
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rithms in comparison, and obtain the running time and selected features for each algorithm. For data
sets containing features with continuous values, we apply the MDL discretization method (Fayyad
and Irani, 1993) before applying FCBF, CFS-SF, and FOCUS-SF. For ReliefF, we use 5 neigh-
bors and 30 instances throughout the experiments as suggested by Robnik-Sikonja and Kononenko
(2003). We then apply NBC and C4.5 on both the original data set and eachof the newly obtained
data sets (with only selected features), and obtain overall accuracy of 10-fold cross-validation. All
experiments were conducted on a Pentium IV PC with 1 GB RAM.

Table 3 records the running time for each feature selection algorithm. We canobserve that
FCBF(0) is consistently faster than CFS-SF and FOCUS-SF. The time savings from FCBF(0) be-
come more obvious when the data dimensionality increases. In many cases especially compared
with FOCUS-SF, the time savings are in degrees of magnitude. These results verify the superior
computational efficiency of sequential forward selection with elimination applied by FCBF over
greedy sequential search applied by CFS-SF and FOCUS-SF. Comparison between FCBF(0) and
ReliefF shows that ReliefF is unexpectedly slow even though its time complexity is linear to di-
mensionality. The reason lies in that searching for nearest neighbors in ReliefF involves distance
calculation which is more costly than the calculation of symmetrical uncertainty. When we compare
FCBF(0) with FCBF(log), it is clear that the setting of a larger relevance thresholdγ further speeds
up FCBF.

Title FCBF(log) FCBF(0) ReliefF CFS-SF FOCUS-SF
Lung-cancer 0.001 0.02 0.09 0.05 0.08
Promoters 0.001 0.02 0.06 0.03 0.16
Splice 0.20 0.55 0.89 0.55 16.59
USCensus90 0.30 0.50 2.94 0.52 77.67
CoIL2000 0.25 0.50 4.25 1.98 143.94
Chemical 0.05 0.05 1.36 0.28 6.56
Musk2 0.53 0.88 9.55 4.84 85.78
Arrhythmia 0.06 0.08 1.19 0.78 13.70
Isolet 0.42 3.05 10.05 93.94 107.33
Multi-Features 1.19 19.42 11.42 71.00 67.56

Table 3: Running time (seconds) for each feature selection algorithm onUCI data.

Table 4 records the number of features selected by each feature selection algorithm. We can see
that all these algorithms achieve significant reduction of dimensionality by selecting only a small
portion of the original features. FCBF(log) on average selects the smallest number of features.

Tables 5 and 6 show the 10-fold cross-validation accuracy of NBC and C4.5 respectively. For
each data set, we conduct Student’s paired two-tailed t-Test in order to evaluate the statistical sig-
nificance of the difference between two averaged accuracy values: one resulted from FCBF(log) and
the other resulted from one of FCBF(0), the full set, ReliefF, CFS-SF, and FOCUS-SF. Each value
in a p-val column records the probability associated with the t-Test. The smaller the value, the more
significant the difference of the two average values is. The last row (L/W/T) in each table summa-
rizes over all data sets the losses/wins/ties in accuracy (at significance level 0.1) comparing various
feature sets with those selected by FCBF(log). We can see that in general FCBF(log) achieves similar
accuracy as FCBF(0). Therefore, the effectiveness of FCBF can be verified from the following two
general trends: (1) FCBF(log) improves or maintains the accuracy of both NBC and C4.5, and the
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Title FCBF(log) FCBF(0) ReliefF CFS-SF FOCUS-SF
Lung-cancer 4 6 5 8 4
Promoters 6 6 4 4 4
Splice 9 22 11 6 10
USCensus90 3 4 2 1 13
CoIL2000 3 5 12 10 29
Chemical 4 5 7 7 11
Musk2 2 2 2 10 11
Arrhythmia 5 12 25 25 24
Isolet 5 32 23 137 11
Multi-Features 27 130 14 87 7

Average 7 22 11 30 12

Table 4: Number of features selected by each feature selection algorithm on UCI data.

FCBF(log) FCBF(0) Full Set ReliefF CFS-SF FOCUS-SF
Title Acc Acc p-Val Acc p-Val Acc p-Val Acc p-Val Acc p-Val
Lung-cancer 83.33 86.67 0.34 78.33 0.34 84.17 0.85 86.67 0.34 87.5 0.46
Promoters 93.27 93.27 1 91.55 0.55 87.82 0.25 95.18 0.17 90.45 0.40
Splice 93.95 96.14 0.00+ 95.52 0.00+ 91.32 0.00− 93.54 0.24 94.36 0.08+

USCensus90 97.94 97.88 0.19 93.49 0.00− 97.97 0.17 97.99 0.65 97.87 0.44
CoIL2000 93.94 93.92 0.34 78.68 0.00− 93.89 0.66 92.92 0.01− 83.22 0.00−

Chemical 71.91 67.73 0.02− 60.90 0.00− 71.26 0.77 70.51 0.35 66.35 0.00−

Musk2 84.59 84.59 1 84.78 0.51 84.59 1 64.87 0.00− 83.53 0.01−

Arrhythmia 67.48 65.73 0.45 60.88 0.01− 55.79 0.00− 69.05 0.45 69.06 0.56
Isolet 50.06 83.33 0.00+ 84.10 0.00+ 60.90 0.00+ 87.31 0.00+ 71.03 0.00+

Multi-feat 95.9 95.65 0.50 94.1 0.01− 67.65 0.00− 96.15 0.64 93.7 0.02−

L/W/T - 1/2/7 5/2/3 3/1/6 2/1/7 4/2/4

Table 5: Accuracy ofNBC on selected features forUCI data: Acc records 10-fold cross-validation
accuracy rate(%) andp-Val records the probability associated with a paired two-tailed t-
Test. The symbols “+” and “−” respectively identify statistically significant (at 0.1 level)
wins or losses over FCBF(log).

improvement is more pronounced for NBC; and (2) FCBF(log) can achieve similar or even higher
accuracy compared with other algorithms.

5.3.2 NIPSBENCHMARK DATA

Three data sets with very high dimensionality but relatively few instances areselected from the
NIPS 2003 feature selection benchmark data sets.3 All these data sets contain two classes and a
large number of artificially introduced random features in addition to real features. A summary of
the data sets is given in Table 7. For each data set, we conduct experimentsfollowing the same
procedure as that used in UCI data. The results are shown in Tables 8, 9, 10, and 11.

From Table 8, we observe similar trends as those from UCI data except that (1) for Dexter and
Dorothea data, CFS-SF did not produce running time results (hence, neither selected features nor

3. http://clopinet.com/isabelle/Projects/NIPS2003/
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FCBF(log) FCBF(0) Full Set ReliefF CFS-SF FOCUS-SF
Title Acc Acc p-Val Acc p-Val Acc p-Val Acc p-Val Acc p-Val
Lung-cancer 86.67 86.67 1 80.83 0.17 84.17 0.34 84.17 0.34 84.17 0.34
Promoters 80.18 80.18 1 78.09 0.42 82.36 0.55 80.18 1 81.36 0.67
Splice 94.01 94.14 0.64 93.98 0.89 90.53 0.00− 93.39 0.00− 93.79 0.11
USCensus90 98.12 98.12 1 98.19 0.39 98.12 1 97.99 0.00− 98.21 0.11
CoIL2000 94.02 94.02 1 93.87 0.12 94.02 1 94.02 1 93.97 0.39
Chemical 95.41 95.41 1 94.13 0.01− 95.94 0.14 95.94 0.14 95.31 0.86
Musk2 91.35 91.35 1 96.91 0.00+ 88.00 0.00− 95.79 0.00+ 95.45 0.00+

Arrhythmia 71.47 68.80 0.19 67.70 0.04− 69.02 0.07− 68.58 0.13 67.02 0.04−

Isolet 49.17 75.77 0.00+ 79.87 0.00+ 59.10 0.00+ 81.35 0.00+ 68.84 0.00+

Multi-feat 92.45 93.65 0.04+ 94.3 0.01+ 78.65 0.00− 94.7 0.00+ 91.75 0.42
L/W/T - 0/2/8 2/3/5 4/1/5 2/3/5 1/2/7

Table 6: Accuracy ofC4.5on selected features forUCI data: Acc records 10-fold cross-validation
accuracy rate(%) andp-Val records the probability associated with a paired two-tailed t-
Test. The symbols “+” and “−” respectively identify statistically significant (at 0.1 level)
wins or losses over FCBF(log).

Features Instances
Title Total Real Random Total Class 1 Class 2
Arcene 10000 7000 3000 100 44 56
Dexter 20000 9947 10053 300 150 150
Dorothea 100000 50000 50000 800 78 722

Table 7: Summary ofNIPS benchmark data sets.

accuracy results) because the program ran out of memory after a period of considerably long time
due to its quadratic space complexity; and (2) FCBF achieves tremendous time savings for this
group of data sets, for instance, roughly 1 minute by FCBF(log) versus 4.5 hours by FOCUS-SF in
Dorothea data. Results in Table 9 show that all the algorithms in comparison candramatically reduce
the dimensionality for this group of data sets. In spite of its impressive efficiency and capability of
dimensionality reduction, the effectiveness of FCBF can still be clearly revealed by the results in
Tables 10 and 11. As we can see, FCBF either improves or maintains the accuracy of both NBC
and C4.5 for all the three data sets. In addition, for each of the three data sets, the highest accuracy
is achieved by applying NBC on the feature subset selected by FCBF.

Title FCBF(log) FCBF(0) ReliefF CFS-SF FOCUS-SF
Arcene 0.42 0.75 9.16 1108.66 21.39
Dexter 1.80 2.63 45.43 N/A 928.78
Dorothea 68.95 393.80 349.27 N/A 16470.92

Table 8: Running time (seconds) for each feature selection algorithm onNIPS data.
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Title FCBF(log) FCBF0 ReliefF CFS-SF FOCUS-SF
Arcene 24 39 45 50 4
Dexter 35 35 71 N/A 23
Dorothea 50 96 137 N/A 21

Table 9: Number of features selected by each feature selection algorithm on NIPS data.

FCBF(log) FCBF(0) Full Set ReliefF CFS-SF FOCUS-SF
Title Acc Acc p-Val Acc p-Val Acc p-Val Acc p-Val Acc p-Val
Arcene 91.0 93.0 0.34 69.0 0.00− 69.0 0.02− 92.0 0.68 59.0 0.00−

Dexter 90.0 90.0 1 88.0 0.26 73.00 0.00− N/A N/A 90.0 1
Dorothea 97.5 98.38 0.01+ 90.25 0.00− 94.38 0.00− N/A N/A 95.25 0.00−

Table 10: Accuracy ofNBC on selected features forNIPS data: Acc records 10-fold cross-
validation accuracy rate(%) and p-Val records the probability associated with a paired
two-tailed t-Test. The symbols “+” and “−” respectively identify statistically significant
(at 0.1 level) wins or losses over FCBF(log).

5.4 Summary

From the previous empirical study, we can conclude that FCBF can efficiently achieve high degree
of dimensionality reduction and enhance or maintain predictive accuracy withselected features. Its
proven efficiency and effectiveness compared with other algorithms through various synthetic and
benchmark data sets suggest that FCBF is practical for feature selectionof high-dimensional data.
It is worthy to emphasize that feature subsets selected by FCBF are decoupled from the choice
of learning algorithms. In other words, FCBF does not directly aim to increase the accuracy of a
particular learning algorithm as wrapper algorithms do. In order to achievebetter accuracy within
affordable time, a wrapper algorithm based on an intended learning algorithm can be applied to the
significantly reduced subset obtained from FCBF.

In FCBF, there is one parameter, the relevance thresholdγ. As consistently shown from the
benchmark data, different settings ofγ affect the speed of FCBF. The closerγ is set to 1, the faster
FCBF is. As shown from Corral-47 and Corral-46 as well as many of the benchmark data sets which
may contain a large number of irrelevant and/or redundant features, speeding up the algorithm by

FCBF(log) FCBF(0) Full Set ReliefF CFS-SF FOCUS-SF
Title Acc Acc p-Val Acc p-Val Acc p-Val Acc p-Val Acc p-Val
Arcene 83.0 82.0 0.76 76.0 0.17 65.0 0.04− 79.0 0.40 75.0 0.26
Dexter 83.67 83.67 1 76.33 0.02− 76.67 0.08− N/A N/A 90.00 0.01+

Dorothea 92.88 93.0 0.76 90.38 0.01− 93.38 0.68 N/A N/A 96.5 0.00+

Table 11: Accuracy ofC4.5 on selected features forNIPS data: Acc records 10-fold cross-
validation accuracy rate(%) and p-Val records the probability associated with a paired
two-tailed t-Test. The symbols “+” and “−” respectively identify statistically significant
(at 0.1 level) wins or losses over FCBF(log).
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settingγ to a reasonably large value does not sacrifice the goodness of the selected subsets. However,
a close look at the accuracy of individual data sets in Tables 5 and 6 reveals that in certain cases
(e.g., Isolet data), FCBF(log) results in significantly reduced accuracy than FCBF(0) due to the setting
of overly high threshold. Therefore, when we do not have prior knowledge about data, an easy and
safe way of applying FCBF is to setγ to the default value 0.

6. Conclusions

In this paper, we have identified the need for explicit redundancy analysis in feature selection,
provided a formal definition of feature redundancy, and investigated therelationship between feature
relevance and redundancy. We have proposed a new framework of efficient feature selection via
relevance and redundancy analysis, and a correlation-based method which usesC-correlation for
relevance analysis and bothC- andF-correlations for redundancy analysis. A new feature selection
algorithm FCBF is implemented and evaluated through extensive experiments comparing with three
representative feature selection algorithms. The feature selection resultsare further verified by two
different learning algorithms. Our method demonstrates its efficiency and effectiveness for feature
selection in supervised learning in domains where data contains many irrelevant and/or redundant
features.

Some future works are planed along the following directions. First, since symmetrical uncer-
tainty measure only handles nominal or discrete values, our current methodrequires continuous
values be discretized, which opens the opportunity to investigate how different discretization meth-
ods affect the performance of FCBF. Second, it would be interesting to explore measures that can
handle all types of values or ways of combining different measures under our framework of rele-
vance and redundancy analysis. Another direction is to investigate how our method can be extended
to deal with regression problems in which the class contains continuous values. Moreover, addi-
tional effort is needed to experiment our method on genomic microarray datafor informative gene
selection and investigate how small samples affect the performance of feature selection.
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Abstract
The purpose of this paper is to investigate statistical properties of risk minimization based multi-

category classification methods. These methods can be considered as natural extensions of binary
large margin classification. We establish conditions that guarantee the consistency of classifiers
obtained in the risk minimization framework with respect tothe classification error. Examples are
provided for four specific forms of the general formulation,which extend a number of known meth-
ods. Using these examples, we show that some risk minimization formulations can also be used to
obtain conditional probability estimates for the underlying problem. Such conditional probability
information can be useful for statistical inferencing tasks beyond classification.

1. Motivation

Consider a binary classification problem where we want to predict labely∈ {±1} based on observa-
tion x. One of the most significant achievements for binary classification in machinelearning is the
invention of large margin methods, which include support vector machines and boosting algorithms.

Based on a set of training samples(X1,Y1), . . . ,(Xn,Yn), a large margin binary classification
algorithm produces a decision functionf̂ (·) by minimizing an empirical loss function that is often a
convex upper bound of the binary classification error function. Givenf̂ (·), the binary decision rule
is to predicty = 1 if f̂ (x) ≥ 0, and to predicty = −1 otherwise (the decision rule atf̂ (x) = 0 is not
important).

In the literature, the following form of large margin binary classification is often encountered:
we minimize the empirical risk associated with a convex functionφ in a pre-chosen function class
Cn that may depend on the sample size:

f̂ (·) = arg min
f (·)∈Cn

1
n

n

∑
i=1

φ( f (Xi)Yi). (1)

Originally such a scheme was regarded as a compromise to avoid computationaldifficulties
associated with direct classification error minimization, which often leads to an NP-hard problem.
Some recent works in the statistical literature argued that such methods couldbe used to obtain
conditional probability estimates. For example, see Friedman et al. (2000), Lin (2002), Schapire
and Singer (1999), Zhang (2004), Steinwart (2003) for related studies. This point of view allows
people to show the consistency of various large margin methods: that is, in thelarge sample limit,
the obtained classifiers achieve the optimal Bayes error rate. For example,see Bartlett et al. (2003),
Jiang (2004), Lugosi and Vayatis (2004), Mannor et al. (2003), Steinwart (2002, 2004), Zhang
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(2004). The consistency of a learning method is certainly a very desirableproperty, and one may
argue that a good classification method should at least be consistent in the large sample limit.

Although statistical properties of binary classification algorithms based on therisk minimization
formulation (1) are quite well-understood due to many recent works such as those mentioned above,
there are much fewer studies on risk minimization based multi-category problems which generalizes
the binary large margin method (1). The complexity of possible generalizationsmay be one reason.
Another reason may be that one can always estimate the conditional probability for a multi-category
problem using the binary classification formulation (1) for each category,and then pick the category
with the highest estimated conditional probability (or score).1

It is still useful to understand whether there are more natural alternatives, and what risk min-
imization formulations that generalize (1) can be used to yield consistent classifiers in the large
sample limit. An important step toward this direction has recently been taken by Leeet al. (2004),
where the authors proposed a multi-category extension of the support vector machine that is infinite-
sample Bayes consistent (Fisher consistent). The purpose of this paperis to generalize their study
so as to include a much wider class of risk minimization formulations that can lead to consistent
classifiers in the infinite-sample limit. Moreover, combined with some relatively simplegeneraliza-
tion analysis for kernel methods, we are able to show that with appropriatelychosen regularization
conditions, classifiers obtained from certain formulations can approach the optimal Bayes error in
the large sample limit.

Theoretical analysis of risk minimization based multi-category large margin methods have started
to draw more attention recently. For example, in Desyatnikov and Meir (2003), learning bounds for
some multi-category convex risk minimization methods were obtained, although the authors did not
study possible choices of Bayes consistent formulations. A related study can be found in Liu and
Shen (2004), but again only for special formulations.

Although this paper studies a number of multi-category classification methods, we shall not try
to argue which one is better practically, or to compare different formulationsexperimentally. One
reason is that some methods investigated in this paper were originally proposed by different re-
searchers, who have much more practical experience with the corresponding algorithms. Due to the
scope of this paper, it is simply impossible for us to include a comprehensive empirical study with-
out overlooking some engineering tricks. Casual experimental comparisons can lead to misleading
conclusions. Therefore in this paper we only focus on asymptotic theoretical analysis. Although
our analysis provides useful statistical insights (especially asymptotically),the performance of a
learning algorithm may also be affected by factors which we do not considered here, especially
for small-sample problems. We shall refer the readers to Rifkin and Klautau (2004) for a recent
experimental study on some multi-category classification algorithms, although theissue of which
algorithm may have better practical performance (and under what circumstances) is far from re-
solved.

We organize the paper as follows. Section 2 introduces the multi-category classification prob-
lem, and a general risk minimization based approach. In Section 3, we give conditions that guar-
antee the infinite-sample consistency of the risk minimization formulation. In Section 4, examples
of the general formulation, which extend some existing methods in the literature,will be presented.
We shall study their properties such as the associated statistical models and conditions that en-

1. This approach is often called one-versus-all in machine learning. Another main approach is to encode a multi-
category classification problem into binary classification sub-problems. The consistency of such encoding schemes
cannot be analyzed in our framework, and we shall not discuss them.
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sure the infinite-sample consistency (ISC) of the resulting risk minimization estimators. Section 5
contains a relatively simple generalization analysis (which is not necessarilytight) for kernel multi-
categorization methods. Our purpose is to demonstrate that with appropriatelychosen regularization
conditions, classifiers obtained from ISC risk minimization formulations can approach the optimal
Bayes classifier in the large sample limit. Concluding remarks will be presented inSection 6.

2. Multi-Category Classification

We consider the followingK-category classification problem: given an input vectorx, we would like
to predict its corresponding labely ∈ {1, . . . ,K}. Let p(x) be a predictor ofy which is a function
of x. In the machine learning framework, the quality of this predictor can be measured by a loss
functionL(p(x),y), and the data(X,Y) are drawn from an unknown underlying distributionD.

Given a set of training samples(X1,Y1), . . . ,(Xn,Yn), randomly drawn fromD, our goal is to find
a predictor ˆp(x) so that the expected true loss of ˆp given below is as small as possible:

EX,YL(p̂(X),Y),

where we useEX,Y to denote the expectation with respect to the true (but unknown) underlying
distributionD.

The loss functionL(p,y) can be regarded as aK ×K cost matrix. In this paper, we are mainly
interested in the simple but also the most important case of 0− 1 classification loss: we have a
loss of 0 for correct prediction, and loss of 1 for incorrect prediction. We consider a slightly more
general family of cost matrices, where the classification errors for different classes are penalized
differently:

L(p,y) =

{

0 if p = y

ay if p 6= y,
(2)

whereay > 0 (y= 1, . . . ,K) areK pre-defined positive numbers. If we letay = 1 (y= 1, . . . ,K), then
we have the standard classification error. The more general cost-sensitive classification error in (2)
is useful for many applications. For example, in some medical diagnosis applications, classifying a
patient with cancer to theno-cancercategory is much worse than classifying a patient without cancer
to thepossible cancercategory (since in the latter case, a more thorough test can be performed to
produce a more definite diagnosis).

Let p(X) ∈ {1, . . . ,K} be a classifier. Its classification error under (2) is given by

`(p(·)) := EX

K

∑
c=1,c6=p(X)

acP(Y = c|X). (3)

If we know the conditional densityP(Y = c|X), then the optimal classification rule with the mini-
mum loss in (3), often referred to as theBayes rule, is given by

p∗(X) = max
c∈{1,2,...,K}

acP(Y = c|X). (4)

In binary classification with 0-1 classification error, the class rule can be obtained using the
sign of a real-valued decision function. This can be generalized toK class classification problem as
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follows: we considerK decision functionsfc(x) wherec = 1, . . . ,K and we predict the labely of x
as

T(f(x)) := arg max
c∈{1,...,K}

fc(x), (5)

where we denote byf(x) the vector functionf(x) = [ f1(x), . . . , fK(x)]. In the following, we use bold
symbols such asf to denote vectors, andfc to denote itsc-th component. We also usef(·) to denote
vector functions. If two or more components off achieve the same maximum value, then we may
choose any of them asT(f). In this framework,fc(x) is often regarded as a scoring function for
categoryc that is correlated with how likelyx belongs to categoryc (compared with the remaining
k−1 categories).

Note that only the relative strength of the componentfc compared with the alternativesfk (k 6= c)
is important. In particular, the decision rule given in (5) does not change when we add the same
numerical quantity to each component off(x). This allows us to impose one constraint on the
vectorf(x) which decreases the degree of freedomK of theK-component vectorf(x) to K −1. For
example, in the binary classification case, we can enforcef1(x)+ f2(x) = 0, and hencef (x) can be
represented as[f1(x),−f1(x)]. The decision rule in (5), which comparesf1(x) ≥ f2(x), is equivalent
to f1(x) ≥ 0. This leads to the binary classification rule mentioned in the introduction.

In the multi-category case, one may also interpret the possible constraint onthe vector function
f(·), which reduces its degree of freedom fromK to K −1, based on the following observation. In
many cases, we seekfc(x) as a function ofp(Y = c|x). Since we have a constraint∑K

c=1 p(Y = c|x) =
1 (implying that the degree of freedom forp(Y = c|x) is K−1), the degree of freedom forf is also
K −1 (instead ofK). However, we shall point out that in the algorithms we formulate below, we
may either enforce such a constraint that reduces the degree of freedom of f , or we do not impose
any constraint, which keeps the degree of freedom off to beK. The advantage of the latter is that
it allows the computation of eachfc(x) to be decoupled. It is thus much simpler both conceptually
and numerically. Moreover, it directly handles multiple-label problems wherewe may assign each
x to multiple labels ofy∈ {1, . . . ,K}. In this scenario, we do not have a constraint.

In this paper, we consider an empirical risk minimization method to solve a multi-category
problem, which is of the following general form:

f̂(·) = arg min
f(·)∈Cn

1
n

n

∑
i=1

ΨYi (f(Xi)), (6)

wheref(·) is aK-component vector function, andCn is a vector function class. EachΨY(·) : RK →R
(indexed by class labelY ∈ {1, . . . ,K}) is a real-valued function that takes aK-component vector as
its parameter. As we shall see later, this method is a natural generalization of the binary classification
method (1). Note that one may consider an even more general form withΨY(f(X)) replaced by
ΨY(f(X),X), which we don’t study in this paper.

The general formulation (6) covers many traditional and newly proposedmulti-category classi-
fication methods. Examples will be given in Section 4. Some of them such as somemulti-category
extensions of support vector machines are directly motivated by margin maximization (in the sepa-
rable case). In general, as we shall see in Section 4, the functionΨY(f) should be chosen such that it
favors a vector predictorf with the componentfY corresponding to the observed class labelY larger
than the alternativesfk for k 6= Y. In this sense, it encourages the correct classification rule in (5)
by implicitly maximizes the difference offY and the remaining componentsfk (k 6= Y). One may
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interpret this effect as soft margin-maximization, and hence one may consider learning algorithms
based on (6) generally as multi-category large margin methods.

Given the estimator̂f(·) from (6), the classification rule is based on (5) or some variants which
we shall discuss later. The main purpose of the paper is to investigate the following two issues:

• Consistency: whether the classification error`(f̂(·)) converges tò(p∗(·)) wherep∗(·) is the
Bayes rule defined in (4).

• Probability model: the relationship off̂(X) and the conditional probability vector[P(Y =
c|X)]c=1,...,K .

3. Approximation Estimation Decomposition

From the standard learning theory, one can expect that with appropriately chosenCn, the solution
f̂(·) of (6) approximately minimizes the trueΨ risk EX,YΨY(f̂(X)) with respect to the unknown
underlying distributionD within the vector function classCn. The true risk of a vector functionf(·)
can be rewritten as

EX,YΨY(f(X)) = EXW(P(·|X), f(X)), (7)

whereP(·|X) = [P(Y = 1|X), . . . ,P(Y = K|X)] is the conditional probability, and

W(q, f) :=
K

∑
c=1

qcΨc(f). (8)

Note that we useqc to denote the componentc of a K-dimensional vectorq ∈ Λ, whereΛK is the
set of possible conditional probability vectors:

ΛK :=

{

q ∈ RK :
K

∑
c=1

qc = 1, qc ≥ 0

}

.

The vector argumentq of W(q, f) represents the conditional probability vector evaluated at some
point x; the argumentf represents the value of our vector predictor evaluated at the same point
x. Intuitively, W(q, f) is the point-wise true loss off at somex, with respect to the conditional
probability distributionq = [P(Y = ·|X = x)].

In order to understand the large sample behavior of the algorithm based onsolving (6), we first
need to understand the behavior of a vector functionf(·) that approximately minimizesEX,YΨY(f(X)).
We introduce the following definition. The property has also been referred to asclassification cali-
bratedin Bartlett et al. (2003) orFisher consistentin Lin (2002). In this paper, we explicitly call it
asinfinite-sample consistent.

Definition 1 Consider[Ψc(f)] in (7). We say that the formulation is infinite-sample consistent (ISC)
on a setΩ ⊆ RK with respect to the classification error loss (3), if the following conditions hold:

• For each c,Ψc(·) : Ω → R is bounded below and continuous.

• ∀q ∈ ΛK and c∈ {1, . . . ,K} such that acqc < supk akqk, we have

W∗(q) := inf
f∈Ω

W(q, f) < inf

{

W(q, f) : f ∈ Ω, fc = sup
k

fk

}

.
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Remark 2 Among the two conditions, the second is more essential. It says that (point-wisely) for
each conditional probability vectorq ∈ ΛK , an exact optimal solution of W(q, ·) leads to a Bayes
rule with respect to the classification error defined in (3). That is, the exact minimization of (7) leads
to the exact minimization of classification error. This condition is clearly necessary for consistency.
The first condition (continuity) is needed to show that point-wisely, an approximate (instead of
exact) minimizer of (7) also approximately minimizes the classification error.

The following result relates the approximate minimization of theΨ risk to the approximate
minimization of classification error. The proof is left to Appendix B. A more general but also more
abstract theory is presented in Appendix A.

Theorem 3 Let B be the set of all vector Borel measurable functions (with respect to someunder-
lying topology on the input space) which take values in RK . For Ω ⊂RK , let BΩ = {f ∈ B : ∀x, f(x)∈
Ω}. If [Ψc(·)] is ISC onΩ with respect to (3), then∀ε1 > 0, ∃ε2 > 0 such that for all underlying
Borel probability measurable D, andf(·) ∈ BΩ,

EX,YΨY(f(X)) ≤ inf
f′∈BΩ

EX,yΨY(f′(X))+ ε2

implies
`(T(f(·))) ≤ `B + ε1,

T(·) is defined in (5), and̀B is the optimal Bayes error:̀B = `(p∗(·)), with p∗ given in (4).

Based on the above theorem, an ISC risk minimization formulation is suitable for multi-category
classification problems. The classifier obtained from minimizing (6) can approach the Bayes error
rate if we can show that with appropriately chosen function classCn, approximate minimization of
(6) implies approximate minimization of (7). Learning bounds of this kind have been very well-
studied in statistics and machine learning. For example, for binary classification, such bounds can
be found in Blanchard et al. (2003), Bartlett et al. (2003), Jiang (2004), Lugosi and Vayatis (2004),
Mannor et al. (2003), Steinwart (2002, 2004), Zhang (2004), where they were used to prove the
consistency of various large margin classification methods. In order to achieve consistency, it is
also necessary to take a sequence of function classesCn (typically, one takes a sequenceC1 ⊂C2 ⊂
·· · ⊂ BΩ) such that∪nCn is dense (e.g. with respect to the uniform-norm topology) inBΩ. This
method, widely studied in the statistics literature, is often referred to asthe method of sieves(for
example, see Chapter 10 of van de Geer, 2000, and references therein). It is also closely related to
the structural risk minimization method of Vapnik (1998). The setCn has the effect of regularization,
which ensures that for largen, EX,YΨY(f̂(X)) ≈ inff(·)∈Cn

EX,YΨY(f(X)). It follows that asn→ ∞,

EX,YΨY(f̂(X))
P→ inff(·)∈BΩ EX,YΨY(f(X)). Theorem 3 then implies that`(T(f̂(·))) P→ `B. The above

idea, although intuitively clear, is not rigorously stated at this point. A rigorous treatment can be
found in Section 5.

We can see that there are two types of errors in this framework. The firsttype of error, often
referred to asapproximation error, measures how close we are from the optimal Bayes error when
we approximately minimize the true risk with respect to the surrogate loss functionΨ in (7). Theo-
rem 3 implies that the approximation error goes to zero when we approximately minimize (7). The
second type of error, often referred to asestimation error, is how close we are from achieving the
minimum of the trueΨ risk in (7), when we obtain a classifier based on the empirical minimization
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of (6). The overall statistical error of the risk minimization based classification method (6) is given
by the combination of approximation error and estimation error.

Before studying learning bounds that relate approximate minimization of (6) to the approximate
minimization of (7), we provide examples ofΨ that lead to ISC formulations. We pay special
attention to the case that eachΨc(f) is a convex function off, so that the resulting formulation
becomes computationally more tractable (assuming we also use convex functionclassesCn).

4. Multi-Category Classification Formulations

We give some examples of ISC multi-category classification formulations. Theyare motivated from
methods proposed in the literature, and will be extended in our framework.

The following simple result says that an ISC formulation for an arbitrary lossof the form (2)
can be obtained from an ISC formulation of any particular loss in that family.

Proposition 4 Assume[Ψc(f)] is ISC onΩ ⊂ RK with respect to (3) with ac = a′c (c = 1, . . . ,K).
Then∀ positive numbers a′′c (c = 1, . . . ,K), [Ψc(f)a′′c/a′c] is ISC onΩ ⊂ RK with respect to (3) with
ac = a′′c (c = 1, . . . ,K).

Proof The first condition of ISC holds automatically. Now we shall check the second condition.
For all q ∈ ΛK , we defineq′ asq′

c = qca′′c/a′c. Therefore

K

∑
c=1

qc
Ψc(f)a′′c

a′c
=

K

∑
c=1

q′
cΨc(f).

The ISC condition of[Ψc(f)] with respect to{a′c} implies

inf

{

K

∑
c=1

qc
Ψc(f)a′′c

a′c
: f ∈ Ω, fc = sup

k
fk

}

> inf
f∈Ω

K

∑
c=1

qc
Ψc(f)a′′c

a′c

for all c such thata′cq
′
c < supk a′kq

′
k. That is, for allc such thata′′cqc < supk a′′kqk. This gives the

second condition of ISC.

Due to the above result, for notational simplicity, we shall focus on the 0-1 classification error
in this section, withac = 1 in (3):

`(p(·)) = EX

K

∑
c=1,c6=p(X)

P(Y = c|X) = 1−EXP(Y = p(·)|X). (9)

4.1 Pairwise Comparison Method

This model is motivated from the multi-class support vector machine in Weston and Watkins (1998).2

Here we consider a more general formulation with the following choice ofΨ:

Ψc(f) =
K

∑
k=1

φ(fc− fk), (10)

2. According to Scḧolkopf and Smola. (2002), page 213, an identical method was proposed independently by Blanz
et al. (1995) three years earlier in a talk given at AT&T.
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whereφ is an appropriately chosen real-valued function. The choice in Weston and Watkins (1998)
is the hinge loss for the SVM formulation:φ(p) = (1− p)+.

Typically we choose a decreasing functionφ in (10). Assume that we observe a datumX with its
labelY. The intuition behind (10) is to favor a large valuefY(X)− fk(X) for k 6=Y, which encourages
the correct classification rule. This approach has some attractive features. Since it makes pairwise
comparisons, the penalty termφ(fc− fk) can be adjusted in a pairwise fashion. This can be useful
for some cost-sensitive classification problems that are more general thanthe particular form we
consider in (3). With a differentiableφ (thus excludes the SVM hinge loss), this method also has
the very desirable property oforder preserving, which we state below.

Theorem 5 Consider the formulation in (10). Letφ(·) : R→ R be a non-increasing function such
that φ(z) < φ(−z) for all z > 0. Consider anyq ∈ ΛK and f such that W(q, f) = W∗(q). If qi < q j ,
we havef i ≤ f j . Moreover, ifφ(·) is differentiable andφ′(0) < 0, then we havef i < f j .

Proof We can takei = 1 and j = 2. Let f′ = fk whenk > 2, f′1 = f2, andf′2 = f1. We now prove the
first part by contradiction. Assumef1 > f2. We have

W(q, f′)−W(q, f)

=(q2−q1)

[

φ(f1− f2)−φ(f2− f1)+ ∑
k>2

(φ(f1− fk)−φ(f2− fk))

]

<(q2−q1)[0+0] = 0.

This is a contradiction to the optimality off. Therefore we must havef1 ≤ f2, which proves the first
part.

Now we assume in addition thatφ(·) is differentiable. Then at the optimal solution, we have the
first order condition ∂

∂fc
W(q, f) = 0:

qc

K

∑
k=1

φ′(fc− fk) =
K

∑
k=1

qkφ′(fk− fc).

Again, we prove the second part by contradiction. To this end let us assume f1 = f2 = f , then the
above equality implies that

q1

K

∑
k=1

φ′( f − fk) = q2

K

∑
k=1

φ′( f − fk).

This is not possible since∑K
k=1 φ′( f − fk) ≤ 2φ′(0) < 0.

Note that for functions that are not differentiable, even ifq1 < q2, we may still allowf1 = f2

at an optimal solution. Moreover, it is possible that the formulation is not ISC.We provide such
a counter-example for the hinge loss in Appendix C. However, for differentiable functions, the
method is infinite-sample consistent.

Theorem 6 Letφ(·) : R→ R be a differentiable non-negative and non-increasing function such that
φ′(0) < 0. Then the formulation (10) is ISC onΩ = RK with respect to (9).

1232



MULTI -CATEGORY CLASSIFICATION

Proof Considerq ∈ ΛK , and assume thatq1 < q2. We show that

inf {W(q, f) : f ∈ Ω, f1 ≥ f2} > W∗(q).

This will imply ISC. We again prove by contradiction. If the claim is not true, then we can find
sequencesf(m) such that 0= f(m)

1 ≥ f(m)
2 and limmW(q, f(m)) = W∗(q). We can further select subse-

quences such that for each pairi and j, f(m)
i − f(m)

j converges (may converge to±∞). This gives a
limiting vector f, with properly definedf i − f j even when eitherf i or f j is ±∞. It follows from the
assumption thatW(q, f) = W∗(q) and 0= f1 ≥ f2. However, this violates Theorem 5 (with trivial
modification of the proof to handle the infinity-case), which asserts thatf1 < f2.

A method closely related to (10) is to employ the following choice ofΨ (see Crammer and
Singer, 2001):

Ψc(f) = φ(fc−sup
k6=c

fk). (11)

However, for convexφ, this method is usually not infinite-sample consistent. To see this, we assume
that φ is a convex decreasing function andq1 ≥ q2 · · · ≥ qK . After some simple algebra, we may
choosef1 ≥ f2 = · · · = fK , and the correspondingW(q, f) = q1φ(f1− f2)−∑K

k=2qkφ(f2− f1). This
means that unlessq1 > 0.5, we can choosef1 = f2 to achieve the optimal value.

It is also worth mentioning that the formulation in (11) has been applied successfully in many
practical applications. This may not be surprising since in many practical problems, the most im-
portant scenario is when the true label can be predicted relatively accurately. In such case (more
precisely, when supk qk > 0.5), the method is well behaved (ISC). The same reason is also why
one may often successfully use (10) with the SVM hinge loss in practical problems, although from
Appendix C, we know that the resulting classification method can be inconsistent. However, the
analysis given in this section is still useful for the purpose of understanding the limitations of these
methods.

4.2 Constrained Comparison Method

As pointed out, one may impose constraints on possible choices off. In this section, we consider
another direct extension of binary large-margin method (1) to multi-categorycase. The choice given
below is motivated by Lee et al. (2004), where an extension of SVM was proposed. For simplicity,
we will consider linear equality constraint only:

Ψc(f) =
K

∑
k=1,k6=c

φ(−fk), s.t. f ∈ Ω, (12)

where we defineΩ as

Ω =

{

f ∈ RK :
K

∑
k=1

fk = 0

}

.

Similar to the pairwise comparison model, if we choose a decreasing functionφ in (10), then this
formulation also encourages the correct classification rule. If we observe a datumX with its labelY,
then the formulation favors smallfk(X) for all k 6= Y. Due to the sum to zero constraint, this implies
a largefY(X).
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We may interpret the added constraint in (12) as a restriction on the function classCn in (6) such
that everyf ∈Cn satisfies the constraint. Note that withK = 2, this leads to the standard binary large
margin method.

Using (12), the conditional trueΨ risk (8) can be written as

W(q, f) =
K

∑
c=1

(1−qc)φ(−fc), s.t.f ∈ Ω. (13)

Similar to the pairwise comparison model, for certain choices of functionφ, this formulation
has the desirable order preserving property.

Theorem 7 Consider the formulation in (12), and assume thatφ is strictly decreasing. Consider
any q ∈ ΛK and f ∈ Ω such that W(q, f) = W∗(q). If qi < q j , we havef i ≤ f j . Moreover, ifφ is
strictly convex and differentiable, thenf i < f j .

Proof The proof is rather straight forward. Leti = 1 and j = 2. Also letf′k = fk whenk > 2, f′1 = f2,
andf′2 = f1. FromW(q, f′) ≥W(q, f), we obtain(q1−q2)(φ(−f1)−φ(−f2)) ≥ 0. This implies that
φ(−f2) ≥ φ(−f1). Thereforef1 ≤ f2.

If φ is also differentiable, then using the Lagrangian multiplier method for the constraint∑K
c=1 fc =

0, and differentiate at the optimal solution, we have(1−q1)φ′(−f1) = (1−q2)φ′(−f2) = λ < 0,
whereλ is the Lagrangian multiplier. The assumption 1− q1 > 1− q2 implies thatφ′(−f1) >
φ′(−f2). The strict convexity implies thatf1 < f2.

The following result provides a simple way to check the infinite-sample consistency of (12).
Note that since it only requires the differentiability on(−∞,0], the SVM hinge loss is included.

Theorem 8 If φ is a convex function which is bounded below, differentiable on(−∞,0], andφ′(0) <
0, then (12) is infinite-sample consistency onΩ with respect to (9).

Proof The continuity condition is straight-forward to verify. We may also assume thatφ(·) ≥ 0
without loss of generality.

Considerq ∈ ΛK . Without loss of generality, we can assume thatq1 < q2, and only need
to show that inf{W(q, f) : f ∈ Ω, f1 = supk fk} > W∗(q). Now consider a sequencef(m) such that

limmW(q, f(m)) = inf{W(q, f) : f ∈ Ω, f1 = supk fk}. Note that(1−q1)φ(−f(m)
1 ) is bounded.

Now if the sequence{f(m)} is unbounded, then due to the constraint∑k f(m)
k = 0 andf(m)

1 ≥ f(m)
k ,

we know that the sequence{f(m)
1 } must also be unbounded. It follows that there is a subsequence

(which for simplicity, denote as the whole sequence) such thatf(m)
1 → +∞. The boundedness of

(1−q1)φ(−f(m)
1 ) implies thatq1 = 1, which is not possible sinceq1 < q2.

Therefore we know that the sequence{f(m)} must be bounded, and thus it contains a convergent
subsequence. Denote the limit asf. We haveW(q, f) = limmW(q, f(m)). Therefore we only need to
show thatW(q, f) > W∗(q). We consider three cases:

• f1 = f2. Sincef1 = supk fk, we havef1 = f2 ≥ 0. The convexity assumption implies that
φ′(−f1) = φ′(−f′2) ≤ φ′(0) < 0. Therefore(1−q1)φ′(−f1)− (1−q2)φ′(−f2) < 0. It follows
that there is a sufficiently smallδ such that(1−q1)φ(−f1 + δ)+ (1−q2)φ(−f2− δ) < (1−
q1)φ(−f1)+ (1−q2)φ(−f2). Therefore if we letf′1 = f1− δ, f′2 = f2 + δ, andf′k = fk when
k > 2, thenW(q, f) > W(q, f′) ≥W∗(q).
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• f1 > f2 andφ(−f1) > φ(−f2). In this case, if we letf′1 = f2, f′2 = f1, andf′k = fk whenk> 2, then
it is easy to check thatW(q, f)−W∗(q)≤W(q, f)−W(q, f′) = (q1−q2)(φ(−f2)−φ(−f1)) >
0.

• f1 > f2 andφ(−f1)≤ φ(−f2). Using the condition that−f1 < 0 and henceφ′(−f1)≤ φ′(0) < 0,
we know that for a sufficiently smallδ > 0, we haveφ(−f1 + δ) < φ(−f1) ≤ φ(−f2) and
−f2−δ >−f1. Since the convexity ofφ implies thatφ(z) achieves the maximum on[−f1,−f2]
at its end points, we haveφ(−f2) ≥ φ(−f2− δ). Therefore if we letf′1 = f1− δ, f′2 = f2 + δ,
andf′k = fk whenk > 2, thenW(q, f) > W(q, f′) ≥W∗(q).

Combining the above three cases, we obtain the result.

Using the above criterion, we can convert an ISC convexφ for the binary formulation (1) into
an ISC multi-category classification formulation (12). In Lee et al. (2004) the special case of SVM
(with loss functionφ(z) = (1− z)+ which is convex and differentiable on(−∞,0]) was studied.
The authors demonstrated the infinite-sample consistency by direct calculation, although no results
similar to Theorem 3, needed for proving consistency, were established.The treatment presented
here generalizes their study.

4.3 One-Versus-All Method

The constrained comparison method in (12) is closely related to the one-versus-all approach, where
we use the formulation (1) to train one functionfc(X) for each classc separately but regarding all
data(X,Y) such thatY 6= c as negative data, and all data(X,Y) such thatY = c as positive data. It
can be easily checked that the resulting formulation is a special case of (6)with

Ψc(f) = φ(fc)+
K

∑
k=1,k6=c

φ(−fk). (14)

Note that this formula is similar to (12), but we don’t require the sum-of-zeroconstraint onf (that
is Ω = RK). Intuitively, with an observation(X,Y), this formulation encourages the correct clas-
sification rule in that it favors a largefY(X) and favors smallfk(X) whenk 6= Y. However, if a
binary classification method (such as SVM) does not estimate the conditional probability, then the
one-versus-all approach may not be infinite-sample consistent, while the formulation in (12) can
still be. In order to establish the ISC condition for the one-versus-all approach, we can write

W(q, f) =
K

∑
c=1

[qcφ(fc)+(1−qc)φ(−fc)] . (15)

We have the following order-preserving property.

Theorem 9 Consider (14). Assume thatφ is convex, bounded below, differentiable, andφ(z) <
φ(−z) when z> 0. Consider anyq ∈ ΛK andf ∈ [−∞,+∞]K such that W(q, f) = W∗(q). If qi < q j ,
we havef i < f j .

Proof Let fq (not necessarily unique) minimizesqφ( f )+ (1−q)φ(− f ). We have the first-order
optimality condition

qφ′( fq) = (1−q)φ′(− fq).
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Note that the assumptions imply thatφ′(0) < 0. Thereforefq 6= 0 whenq 6= 0.5 (otherwise, the
optimality condition cannot be satisfied). Therefore by the assumption thatφ(z) < φ(−z) when
z> 0, we havefq > 0 whenq > 0.5 and fq < 0 whenq < 0.5.

Let i = 1 and j = 2. We have eitherq1 ∈ [0,0.5) or q2 ∈ (0.5,1]. Assume the former (due to
the symmetry, the latter case can be proved similarly), which implies thatf1 < 0. If f2 ≥ 0, then the
claim f1 < f2 holds. Therefore we only need to consider the casef2 < 0, and thus 0≤ q1 < q2 ≤ 0.5.
We now prove by contradiction. Note thatf2 > −∞ (otherwise,q2φ(f2) = +∞). If f2 ≤ f1 < 0, then
the convexity ofφ impliesφ′(f2) ≤ φ′(f1) < 0. We have

φ′(−f1) = q1φ′(f1)/(1−q1) > q2φ′(f1)/(1−q2) ≥ q2φ′(f2)/(1−q2) = φ′(−f2).

The convexity implies that−f1 > −f2 (thusf1 < f2), which is a contradiction. Therefore we must
havef1 < f2.

The following result shows that for a (non-flat) differentiable convex functionφ, the one-versus-
all method is infinite-sample consistent. Note that the theorem excludes the standard SVM method,
which employs the non-differentiable hinge loss. However, similar to the discussion at the end
of Section 4.1, if the true label can be predicted relatively accurately (thatis, the dominant class
has a conditional probability larger than 0.5), then the SVM one-versus-all method is consistent.
Therefore the method may still perform well for some practical problems (see Rifkin and Klautau,
2004, for example).

Theorem 10 Under the assumptions of Theorem 9. The method (14) is ISC onΩ = RK with respect
to (9).

Proof Considerq ∈ ΛK . Without loss of generality, we can assume thatq1 < q2, and only need
to show that inf{W(q, f) : f ∈ Ω, f1 = supk fk} > W∗(q). Now consider a sequencef(m) such that
limmW(q, f(m)) = inf{W(q, f) : f ∈ Ω, f1 = supk fk}. Let f be a limiting point off(m) in [−∞,+∞]K,
we haveW(q, f) = limmW(q, f(m)) andf1 = supk fk. From Theorem 9, we haveW(q, f) > W∗(q).

Using Theorem 24, we can also obtain a more quantitative bound.

Theorem 11 Under the assumptions of Theorem 9. The function Vφ(q) = inf f∈R[qφ( f ) + (1−
q)φ(− f )] is concave on[0,1]. Assume that there exists a constant cφ > 0 such that

(q−q′)2 ≤ c2
φ

(

2Vφ(
q+q′

2
)−Vφ(q)−Vφ(q

′)

)

,

then we have∀f(·),

`(T(f(·))) ≤ `B +cφ

(

EX,YΦY(f(X))− inf
f′

EX,YΦY(f′(X))

)1/2

,

whereΦY(f) is given in (14), T(·) is defined in (5),̀ is the 0-1 classification error in (9), and̀B is
the optimal Bayes error.
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Proof Vφ(q) is the infimum of concave functionsqφ( f ) + (1− q)φ(− f ) indexed by f ∈ R, thus
concave.

The second part is an application of Theorem 24. We use the notations of Appendix A: letX
be the input space,Q = ΛK be the space of conditional probability vectors, andD = {1, . . . ,K} be
the space of class labels. We let`(q,k) = ∑c=1,c6=k qc, and thus the classification error of a decision
functionp(·) in (9) can be expressed as`(p(·)) = EX`([P(Y = c|X)]c, p(X)). The estimation-model
space isRK , with decisionT given by (5). TheW function is given by (15). Letv(q) ≡ 1. ∀ε > 0,
assume∆`(q,T(f)) ≥ ε.

DefineVφ(q, f ) = qφ( f )+(1−q)φ(− f ). Without loss of generality, we may assume thatT(f) =
1 andq2 = supcqc. Then∆`(q,T(f)) = q2−q1 ≥ ε.

∆W(q, f) ≥ inf
f1≥f2

2

∑
i=1

[

Vφ(qi , f i)−Vφ(qi)
]

= inf
f1=f2

2

∑
i=1

[

Vφ(qi , f i)−Vφ(qi)
]

=2inf
f1

Vφ

(

q1 +q2

2
, f1

)

− (Vφ(q1)+Vφ(q2)) ≥ c−2
φ (q1−q2)

2 ≥ c−2
φ ε2.

The first equality holds because the minimum cannot be achieved at a pointf1 < f2 due to the
order-preserving property in Theorem 9. The assumption thus implies thatc2

φ∆H`,W,T,v(ε)≥ ε2. The
desired result is now a direct consequence of Theorem 24.

Remark 12 Using Taylor expansion, it is easy to verify that the condition V′′
φ (q) ≤−c < 0 implies

that (2Vφ((q+ q′)/2)−Vφ(q)−Vφ(q′)) ≥ c(q−q′)2/4. In this case, we may take cφ = 2/
√

c. As
an example, we consider the least squares method and one of its variants: φ(z) = (1− v)2 or
φ(z) = (1−v)2

+. In both cases, Vφ(q) = 4q(1−q). Therefore we can let cφ = 1/
√

2.

The bound can also be further refined under the so-called Tsybakov small noise assumption (see
Mammen and Tsybakov, 1999).

Theorem 13 Under the assumptions of Theorem 11. Let

γ(X) = inf{sup
c

P(Y = c|X)−P(Y = c′|X) : P(Y = c′|X) < sup
c

P(Y = c|X)}

be the margin between the largest conditional probability and the second largest conditional prob-
ability (let γ(X) = 1 if all conditional probabilities are equal). Considerα ≥ 0 such that cγ =
EXγ(X)−α < +∞, then we have∀f(·),

`(T(f(·))) ≤ `B +c(2α+2)/(α+2)
φ

(

EX,YΦY(f(X))− inf
f′(·)

EX,YΦY(f′(X))

)(α+1)/(α+2)

c1/(α+2)
γ .

Proof Using notations in the proof of Theorem 11, but letv(q) = γ(q)−α/cγ, where γ(q) =
inf{supcqc−qk : qk < supcqc}. It is clear thatEXv(q(X)) = 1 with q(X) = [P(Y = 1|X), · · · ,P(Y =
K|X)].
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Following the proof of Theorem 11, but assumeq2−q1 ≥ εv(q). Fromq2−q1 ≥ γ(q), we have
∀β ≥ 0: (q2−q1)

1+β/γ(q)−α+β ≥ (q2−q1)/γ(q)−α ≥ ε/cγ. Let β = α/(α+2), we have

(

(q2−q1)
2/γ(q)−α)(α+1)/(α+2) ≥ ε/cγ.

This implies that (the first inequality follows from the proof of Theorem 11)

∆W(q, f)/v(q) ≥ c−2
φ (q1−q2)

2/v(q) ≥ ε(α+2)/(α+1)c−1/(α+1)
γ c−2

φ .

Thusc1/(α+1)
γ c2

φ∆H`,W,T,v(ε) ≥ ε(α+2)/(α+1). The bound now follows directly from Theorem 24.

4.4 Unconstrained Background Discriminative Method

We consider the following unconstrained formulation:

Ψc(f) = ψ(fc)+s

(

K

∑
k=1

t(fk)

)

, (16)

whereψ, s andt are appropriately chosen convex functions that are continuously differentiable. As
we shall see later, this is a generalization of the maximum-likelihood method, which corresponds to
s(z) = t(z) = 1 andψ(z) = − ln(z).

We shall chooses andt such that the unconstrained background terms
(

∑K
k=1 t(fk)

)

penalizes
largefk for all k. We also choose a decreasingψ(fc) so that it favors a largefc. That is, it serves the
purpose of discriminatingfc against the background term. The overall effect is to favor a predictorin
which fc is larger thanfk (k 6= c). In (16), the first term has a relatively simple form that depends only
on the labelc. The second term is independent of the label, and can be regarded as anormalization
term. Note that this function is symmetric with respect to components off. This choice treats
all potential classes equally. It is also possible to treat different classesdifferently. For example,
replacingψ(fc) by ψc(fc) or replacingt(fk) by tk(fk).

4.4.1 OPTIMALITY EQUATION AND PROBABILITY MODEL

Using (16), the conditional trueΨ risk (8) can be written as

W(q, f) =
K

∑
c=1

qcψ(fc)+s

(

K

∑
c=1

t(fc)

)

.

In the following, we study the property of the optimal vectorf∗ that minimizesW(q, f) for a fixedq.
Givenq, the optimal solutionf∗ that minimizesW(q, f) satisfies the following first order opti-

mality condition:
qcψ′(f∗c)+µf∗t

′(f∗c) = 0 (c = 1, . . . ,K). (17)

where the quantityµf∗ = s′(∑K
k=1 t(f∗k)) is independent ofc.

Clearly this equation relatesqc to f∗c for each componentc. The relationship ofq andf∗ defined
by (17) can be regarded as the (infinity sample-size) probability model associated with the learning
method (6) withΨ given by (16). The following result is quite straight-forward. We shall skip the
proof.
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Theorem 14 Assume thatψ, t,s are differentiable functions such that s′(x) > 0. If for a ∈ [0,+∞),
the the solution x of aψ′(x)+ t ′(x) = 0 is an increasing function of a, then the solution of (17) has
the order preserving property:qi < q j impliesf∗i < f∗j . Moreover, the method (16) is ISC.

In the following, we shall present various formulations of (16) which have the order preserving
property.

4.4.2 DECOUPLEDFORMULATIONS

We lets(u) = u in (16). The optimality condition (17) becomes

qcψ′(f∗c)+ t ′(f∗c) = 0 (c = 1, . . . ,K). (18)

This means that we haveK decoupled equalities, one for eachfc. This is the simplest and in the
author’s opinion, the most interesting formulation. Since the estimation problem in(6) is also
decoupled intoK separate equations, one for each component off̂, this class of methods are com-
putationally relatively simple and easy to parallelize. Although this method seems to bepreferable
for multi-category problems, it is not the most efficient way for two-class problems (if we want to
treat the two classes in a symmetric manner) since we have to solve two separateequations. We
only need to deal with one equation in (1) due to the fact that an effective constraintf1 + f2 = 0 can
be used to reduce the number of equations. This variable elimination has little impact if there are
many categories.

In the following, we list some examples of multi-category risk minimization formulations. They
all have the order preserving property, hence are infinite-sample consistent. We focus on the rela-
tionship of the optimal optimizer functionf∗(q) and the conditional probabilityq, which gives the
probability model.

ψ(u) = −u AND t(u) = eu

We obtain the following probability model:qc = ef∗c . This formulation is closely related to the
maximum-likelihood estimate with conditional modelqc = ef∗c/∑K

k=1ef∗k (logistic regression). In
particular, if we choose a function class such that the normalization condition∑K

k=1efk = 1 holds,
then the two formulations are identical. However, they become different when we do not impose
such a normalization condition.

φ(u) = − lnu AND t(u) = u

This formulation is closely related to the previous formulation. It is an extensionof maximum-
likelihood estimate with probability modelqc = f∗c. The resulting method is identical to the maximum-
likelihood method if we choose our function class such that∑k fk = 1 andfk ≥ 0 for k = 1, . . . ,K.
However, the formulation also allows us to use function classes that do not satisfy the normalization
constraint∑k fk = 1. Therefore this method is more flexible.

φ(u) = − 1
αuα (0 < α < 1) AND t(u) = u

Closely related to the maximum-likelihood method, this formulation replacesφ(u) = − ln(u) by
φ(u) = −uα. The solution isqc = (f∗c)

1/(1−α). Similar to the case ofφ(u) = − ln(u), we may also

impose a constraint∑k f1/(1−α)
k = 1, which ensures that the estimated probability always sum to one.
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φ(u) = −u AND t(u) = ln(1+eu)

This version uses binary logistic regression loss, and we have the following probability model:
qc = (1+e−f∗c)−1. Again this is an unnormalized model.

φ(u) = −u AND t(u) = 1
p|u|p (p > 1)

We obtain the following probability model:qc = sign(f∗c)|f∗c|p−1. This means that at the solution,
f∗c ≥ 0. This formulation is not normalized. If we choose a function family such that∑k |fk|p−1 = 1
andfk ≥ 0, then we have a normalized model for which the estimated conditional probability always
sum to one. One can also modify this method such that we can usef∗c ≤ 0 to model the condition
probabilityqc = 0.

φ(u) = −u AND t(u) = 1
p max(u,0)p (p > 1)

In this probability model, we have the following relationship:qc = max(f∗c,0)p−1. The equation
implies that we allowf∗c ≤ 0 to model the conditional probabilityqc = 0. Therefore, with a fixed
function class, this model is more powerful than the previous one. However, at the optimal solution,
we still require thatf∗c ≤ 1. This restriction can be further alleviated with the following modification.

φ(u) = −u AND t(u) = 1
p min(max(u,0)p, p(u−1)+1) (p > 1)

In this model, we have the following relationship at the solution:qc = min(max(f∗c,0),1)p−1.
Clearly this model is more powerful than the previous model since the function valuef∗c ≥ 1 can be
used to modelqc = 1. For separable problems, at each point there exists ac such thatqc = 1 and
qk = 0 whenk 6= c. The model requires thatf∗c ≥ 1 andf∗k ≤ 0 whenk 6= c. This is essentially a
large margin separation condition, where the function for the true class is separated from the rest by
a margin of one.

4.4.3 COUPLED FORMULATIONS

In the coupled formulation withs(u) 6= u, the probability model are inherently normalized in some
sense. We shall just list a few examples.

φ(u) = −u, AND t(u) = eu, AND s(u) = ln(u)

This is the standard logistic regression model. The probability model is

qc(x) =
ef∗c(x)

∑K
c=1ef∗c(x)

.

The right hand side is always normalized (sum up to 1). One potential disadvantage of this method
(at this moment, we don’t know whether or not this theoretical disadvantagecauses real problems in
practice or not) is that it does not model separable data very well. That is,if qc(x) = 0 orqc(x) = 1,
we requiref∗c = ±∞. In comparison, some large margin methods described earlier can model the
separable scenario using finite valuedf∗.
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φ(u) = −u, AND t(u) = |u|p′ , AND s(u) = 1
p|u|p/p′ (p, p′ > 1)

The probability model is

qc(x) =

(

K

∑
k=1

|f∗k(x)|p
′

)(p−p′)/p′

sign(f∗c(x))|f∗c(x)|p
′−1.

We may replacet(u) by t(u) = max(0,u)p, and the probability model becomes

qc(x) =

(

K

∑
k=1

max(f∗k(x),0)p′

)(p−p′)/p′

max(f∗c(x),0)p′−1.

These formulations do not seem to have advantages over the decoupled counterparts (withs(u) = 1).
For the decoupled counterparts, as explained, the normalization (so that the estimated probability
sum to one) can be directly included into the function class. This is more difficult to achieve here due
to the more complicated formulations. However, it is unclear whether normalizedformulations have
practical advantages since one can always explicitly normalize the estimated conditional probability.

5. Consistency of Kernel Multi-Category Classification Methods

In this section, we give conditions that lead to the consistency of kernel methods. It is worth men-
tioning that generalization bounds obtained in this section are not necessarily tight. We use simple
analysis to demonstrate that statistical consistency can be obtained. In order to obtain good rate
of convergence results, more sophisticated analysis (such as those used by Blanchard et al., 2004,
Bartlett et al., 2003, Mannor et al., 2003, van de Geer, 2000, Scovel and Steinwart, 2003) is needed.

The analysis given in this section is kernel independent. Therefore we can start with an arbi-
trary reproducing kernel Hilbert spaceH (for example, see Wahba, 1990, for definition) with inner
product· and norm‖ · ‖H . Each element ofH is a functionf (x) of the inputx. It is well known that
for each data pointx, we can embed it intoH ashx such thatf (x) = f ·hx for all f ∈ H.

In this section, we only consider bounded input distributionD:

sup
x
‖hx‖H < ∞.

We also introduce the following notations:

HA ={ f (·) ∈ H : ‖ f‖H sup
x
‖hx‖H ≤ A},

HA,K =HK
A = {f(·) : fc(·) ∈ HA for all c = 1, . . . ,K}.

For notation simplicity, we shall limit our discussion to formulations such that for all c =
1, . . . ,K, Ψc(·) defined on a subsetΩ ⊂ RK can be extended toRK . For example, for the con-
strained comparison model with the SVM loss. we require thatΩ = {f ∈ RK : ∑K

k=1 fk = 0}, but the
formulation itself is well-defined on the entireRK .

In order to obtain a uniform convergence bound, we shall introduce thefollowing Lipschitz
condition. It is clear that all well-behaved formulations such as those considered in this paper
satisfy this assumption.
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Assumption 15 Given any A> 0, and consider SA = {f ∈ RK : supc |fc| ≤ A}. Then there existsγA

such that∀f, f′ ∈ SA and1≤ c≤ K:

|Ψc(f)−Ψc(f′)| ≤ γAsup
k
|fk− f′k|.

Definition 16 Let Qn = {(X1,Y1), . . . ,(Xn,Yn)} be a set of n points. We define the`∞(Qn) distance
between any two functions f(x,y) and g(x,y) as

`∞(Qn)( f ,g) = sup
i
| f (Xi ,Yi)−g(Xi ,Yi)| .

LetF be a class of functions of(x,y), theempirical̀ ∞-covering numberof F , denoted by N(ε,F , `∞(Qn)),
is the minimal number of balls{g : `∞(Qn)(g, f ) ≤ ε} of radiusε needed to coverF . Theuniform
`∞ covering numberis given by

N∞(ε,F ,n) = sup
Qn

N(ε,F, `∞(Qn)),

where the supremum is over all samples Qn of size n.

Note that we may also use other covering numbers such as`2 covering numbers. Thè∞ covering
number is more suitable for the specific Lipschitz condition used in Assumption 15. We use the
following kernel-independent covering number bound.

Lemma 17 Consider the function classFA,K = {ΨY(f(X)) : f ∈ HA,K} such thatΨ satisfies As-
sumption 15. Then there exists a universal constant C1 > 0 such that

lnN∞(γAε,FA,K,n) ≤ KC1A2 ln(2+A/ε)+ lnn
nε2 .

Proof Note that Theorem 4 of Zhang (2002) implies that there existsC1 such that

lnN∞(ε,HA,n) ≤C1A2 ln(2+A/ε)+ lnn
nε2 .

Therefore with empirical samplesQn = {(Xi ,Yi)}, we can find exp(KC1A2 ln(2+A/ε)+lnn
nε2 ) vectors

f j(Xi) such that for eachf ∈ HA,K , we have infj supi,c |fc(Xi)− f j
c(Xi)| ≤ ε. The assumption implies

that this is a cover ofFA,K of radiusγAε.

Remark 18 For specific kernels, the bound can usually be improved. Moreover, the log-covering
number (entropy) depends linearly on the number of classes K. This is due to the specific regulariza-
tion condition we use here. For practical problems, it can be desirable to use other regularization
conditions so that the corresponding covering numbers have much weaker dependency (or even
independence) on K. For simplicity, we will not discuss such issues in this paper.
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Lemma 19 Consider function classFA,K = {ΨY(f(X)) : f ∈ HA,K} such thatΨ satisfies Assump-
tion 15. Then there exists a universal constant C such that for all n≥ 2:

EQn sup
f∈FA,K

∣

∣

∣

∣

∣

1
n

n

∑
i=1

ΨYi (f(Xi))−EX,YΨY(f(X))

∣

∣

∣

∣

∣

≤C
√

K
γAAln3/2n√

n
,

whereEQn denotes the expectation over empirical training data Qn = {(Xi ,Yi)}.

Proof Let f0 ∈ HA,K , and defineF 0
A,K = {ΨY(f(X))−ΨY(f0(X)) : f ∈ FA,K}. Consider a sequence

of binary random variables such thatσi = ±1 with probability 1/2. TheRademacher complexityof
F 0

A,K under empirical sampleQn = {(X1,Y1), . . . ,(Xn,Yn)} is given by

R(F 0
A,K ,Qn) = Eσ sup

f∈HA,K

∣

∣

∣

∣

∣

1
n

n

∑
i=1

σi(ΨYi (f(Xi))−ΨYi (f0(Xi))

∣

∣

∣

∣

∣

.

It is well known that there exists a universal constantC2 (a variant of Corollary 2.2.8 in van der
Vaart and Wellner, 1996):

R(F 0
A,K ,Qn) ≤C2 inf

ε0

[

ε0 +
1√
n

Z ∞

ε0

√

logN∞(ε,F ,Qn)dε
]

.

Using the bound in Lemma 17, and perform the integration withε0 = γAA
√

1/n, we obtain

R(F 0
A,K ,Qn) ≤

C
√

K
2

γAAln3/2n√
n

,

whereC is a universal constant.
Now using the standard symmetrization argument (for example, see Lemma 2.3.1 of van der

Vaart and Wellner, 1996), we have

EQn sup
f∈FA,K

∣

∣

∣

∣

∣

1
n

n

∑
i=1

ΨYi (f(Xi))−EX,YΨY(f(X))

∣

∣

∣

∣

∣

≤ 2EQn R(F 0
A,K ,Qn) ≤C

√
K

γAAln3/2n√
n

.

Theorem 20 ConsiderΨ that satisfies Assumption 15. Choose An such that An→∞ andγAnAn ln3/2n/
√

n→
0. Let Cn = HAn,K ∩BΩ (see Theorem 3 for the definition ofBΩ), whereΩ ⊂ RK is a constraint set.
Consider the estimator̂f(·) in (6). We have

lim
n→∞

EQn EX,YΨY(f̂(X)) = inf
f∈H∩BΩ

EX,YΨY(f(X)).

Proof Considerf(n) ∈Cn that minimizesEX,YΨY(f(X)). Since∑n
i=1 ΨYi (f̂(Xi))≤∑n

i=1 ΨYi (f
(n)(Xi)),

we have from Lemma 19 that

EQn EX,YΨY(f̂(X)) ≤ EX,YΨY(f(n)(X))+2C
√

K
γAnAn ln3/2n√

n
.
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Therefore asn→ ∞,

lim
n

EQnEX,YΨY(f̂(X)) → lim
n

EX,YΨY(f(n)(X)) = inf
f∈H∩BΩ

EX,YΨY(f(X)).

The following consistency result is a straight-forward consequence ofTheorem 20 and Theo-
rem 3.

Corollary 21 Under the conditions of Theorem 20. Assume thatΨ is ISC onΩ with respect to (3).
If H is dense inBΩ, that is,

inf
f(·)∈H∩BΩ

EX,YΨY(f(X)) = inf
f(·)∈BΩ

EX,YΨY(f(X)),

then
lim
n→∞

EQn EX,YΨY(f̂(X)) = inf
f(·)∈BΩ

EX,YΨY(f(X)).

This implies that the classification error`(f̂) converges to the optimal Bayes error in probability.

6. Conclusion

In this paper we investigated a general family of risk minimization based multi-category classifi-
cation algorithms, which can be considered as natural extensions of binary large margin methods.
We established infinite-sample consistency conditions that ensure the statistical consistency of the
obtained classifiers in the infinite-sample limit. Several specific forms of the general risk minimiza-
tion formulation were considered. We showed that some models can be used toestimate conditional
class probabilities. As an implication of this work, we see that it is possible to obtain consistent
conditional density estimators using various non-maximum likelihood estimation methods. One
advantage of some proposed large margin methods is that they allow us to modelzero conditional
probability directly. Note that for the maximum-likelihood method, near-zero conditional proba-
bility may cause robustness problems (at least in theory) due to the unboundedness of the log-loss
function. Moreover, combined with some relatively simple generalization analysis, we showed that
given appropriately chosen regularization conditions in some reproducing kernel Hilbert spaces,
classifiers obtained from some multi-category kernel methods can approach the optimal Bayes error
in the large sample limit.

Appendix A. Relationship of True Loss Minimization and Surrogate Loss
Minimization

We consider an abstract decision model. Consider input spaceX , output-model spaceQ , decision
spaceD, and estimation-model spaceΩ.

Consider the following functions:

• True loss function:̀ : Q ×D → R. We also define the corresponding excess loss as

∆`(q,d) = `(q,d)− inf
d′∈D

`(q,d′).
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• Surrogate loss function:W : Q ×Ω → R. We also define the corresponding excess surrogate
loss as

∆W(q, f) = W(q, f)− inf
f′∈D

W(q, f′).

• Decision-rule:T : Ω → D.

For the multi-category classification problem studied in the main text,X is the input space,
Q = ΛK is the space of conditional probability vectors[P(Y = c|·)]c, D = {1, . . . ,K} is the space of
class labels, andΩ ⊂ RK is the set of possible vector predictorsf ∈ RK , with T given by (5). TheW
function is given by (8). With classification error in (2), we let

`(q,k) =
K

∑
c=1,c6=k

acqc.

Therefore the classification error of a decision functionp(·) in (3) can be expressed as

`(p(·)) = EX`([P(Y = c|X)]c, p(X)).

Definition 22 Consider function v: Q → R+. ∀ε ≥ 0, we define

∆H`,W,T,v(ε) = inf

{

∆W(q, f)
v(q)

: ∆`(q,T(f)) ≥ εv(q)

}

∪{+∞}.

The definition is designed so that the following properties hold. They are simple re-interpretations
of the definition.

Proposition 23 We have:

• ∆H`,W,T,v(ε) ≥ 0.

• ∆H`,W,T,v(0) = 0.

• ∆H`,W,T,v(ε) is non-decreasing on[0,+∞).

• v(q)∆H`,W,T,v(∆`(q,T(f))/v(q)) ≤ ∆W(q, f).

The importance of the above definition is based on the following theorem. It essentially gives
a bound on the expected excessive true loss` using the expected excessive surrogate lossW. The
idea was used by Bartlett et al. (2003), Zhang (2004) to analyze binaryclassification problems.

Theorem 24 Given any distribution onX , and function v: Q → R+ such that

EXv(q(X)) = 1.

Let ζ(ε) be a convex function on[0,+∞) such thatζ(ε) ≤ ∆H`,W,T,v(ε). Then∀f : X → Ω, we have

ζ(EX∆`(q(X),T(f(X)))) ≤ EX∆W(q(X), f(X)).
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Proof Using Jensen’s inequality, we have

ζ(EX∆`(q(X),T(f(X)))) ≤ EXv(q(X))ζ
(

∆`(q(X),T(f(X)))

v(q(X))

)

.

Now using the assumption and Proposition 23, we can upper-bound the right hand side byEX∆W(q(X), f(X)).
This proves the theorem.

The following proposition is based mostly on Bartlett et al. (2003). We includeit here for
completeness.

Proposition 25 Let ζ∗(ε) = supa≥0,b{aε + b : ∀z≥ 0,az+ b ≤ ∆H`,W,T,v(z)}, thenζ∗ is a convex
function. It has the following properties:

• ζ∗(ε) ≤ ∆H`,W,T,v(ε).

• ζ∗(ε) is non-decreasing.

• For all convex functionζ such thatζ(ε) ≤ ∆H`,W,T,v(ε), ζ(ε) ≤ ζ∗(ε).

• Assume that∃a > 0 and b∈ R such that aε+b≤ ∆H`,W,T,v(ε), and∀ε > 0,∆H`,W,T,v(ε) > 0.
Then∀ε > 0,ζ∗(ε) > 0.

Proof We note thatζ∗ is the point-wise supreme of convex functions, thus it is also convex. We
now prove the four properties.

• The first property holds by definition.

• The second property follows from the fact that∆H`,W,T,v(z) is non-decreasing, andaε′ +b >
aε+b whenε′ > ε.

• Given a convex functionζ such thatζ(ε)≤ ∆H`,W,T,v(ε). At anyε, we can find a lineaz+b≤
ζ(z) ≤ ∆H`,W,T,v(z) andζ(ε) = aε+b. This implies thatζ(ε) ≤ ζ∗(ε).

• Considerε > 0. Using the fact that whenz≥ ε/2, ∆H`,W,T,v(z) ≥ ∆H`,W,T,v(ε/2) > 0, and
the assumption, we know that there existsaε ∈ (0,a) such thataε(z− ε/2) < ∆H`,W,T,v(z).
Thereforeζ∗(ε) ≥ aε(ε− ε/2) > 0.

The following result shows that the approximate minimization of the expected surrogate loss
EX∆W implies the approximate minimization of the expected true lossEX∆`.

Corollary 26 Consider function v: Q → R+. If the loss functioǹ (q,d)/v(q) is bounded, and
∀ε > 0, ∆H`,W,T,v(ε) > 0, then there exists a concave functionξ on [0,+∞) that depends only oǹ,
W, T , and v, such thatξ(0) = 0 andlimδ→0+ ξ(δ) = 0. Moreover, for all distribution onX such that
EXv(q(X)) = 1, we have

EX∆`(q(X),T(f(X))) ≤ ξ(EX∆W(q(X), f(X))).
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Proof Considerζ∗(ε) in Proposition 25. Letξ(δ) = sup{ε : ε ≥ 0,ζ∗(ε) ≤ δ}. Thenζ∗(ε) ≤ δ
implies thatε ≤ ξ(δ). Therefore the desired inequality follows from Theorem 24. Givenδ1,δ2 ≥ 0:
from ζ∗( ξ(δ1)+ξ(δ2)

2 ) ≤ δ1+δ2
2 , we know thatξ(δ1)+ξ(δ2)

2 ≤ ξ( δ1+δ2
2 ). Thereforeξ is concave.

We now only need to show thatξ is continuous at 0. From the boundedness of`(q,d)/v(q), we
know that∆H`,W,T,v(z) = +∞ whenz> sup∆`(q,d)/v(q). Therefore∃a > 0 andb ∈ R such that
aε + b ≤ ∆H`,W,T,v(ε). Now Pick anyε′ > 0, and letδ′ = ζ∗(ε′)/2, we know from Proposition 25
thatδ′ > 0. This implies thatξ(δ) < ε′ whenδ < δ′.

One can always choosev(q) ≡ 1 to obtain a bound that applies to all underlying distributions
on X . However, with a more generalv, one may obtain better bounds in some scenarios especially
the low noise case. For example, see Theorem 13 in the main text.

Appendix B. Proof of Theorem 3

We shall first prove the following lemma.

Lemma 27 W∗(q) := inff∈ΩW(q, f) is a continuous function onΛK .

Proof Consider a sequenceq(m) ∈ ΛK such that limmq(m) = q. Without loss of generality, we
assume that there existsk such thatq1 = · · · = qk = 0 andqc > 0 for c > k. Moreover, since each
Ψc is bounded below, we may assume without loss of generality thatΨc ≥ 0 (this condition can be
achieved simply by adding a constant to eachΨc).

Now, let

W̄(q′, f) =
K

∑
c=k+1

q′
cΨc(f)

and

W̄∗(q′) = inf
f∈Ω

K

∑
c=k+1

q′
cΨc(f).

Since{W̄∗(q(m))}m is bounded, each sequence{q(m)
c Ψc(·)}m is also bounded near the optimal so-

lution. It is clear from the condition limmq(m)
c > 0 (c > k) that

lim
m→∞

W̄∗(q(m)) = W̄∗(q) = W∗(q).

SinceW∗(q(m)) ≥ W̄∗(q(m)), we have

liminf
m→∞

W∗(q(m)) ≥W∗(q). (19)

Now for a sufficiently large positive numberA, let

W∗
A(q′) = inf

f∈Ω,‖f‖1≤A

K

∑
c=1

q′
cΨc(f).

We have
limsup

m→∞
W∗(q(m)) ≤ limsup

m→∞
W∗

A(q(m)) = W∗
A(q).
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Since limA→∞W∗
A(q) = W∗(q), we have

limsup
m→∞

W∗(q(m)) ≤W∗(q).

Combining this inequality with (19), we obtain the lemma.

Lemma 28 ∀ε > 0, ∃δ > 0 such that∀q ∈ Λk:

inf

{

W(q, f) : fc = sup
k

fk,acqc ≤ sup
k

akqk− ε
}

≥W∗(q)+δ. (20)

Proof We prove this by contradiction. Assume that (20) does not hold, then∃ε > 0, and a sequence
of (c(m), f(m),q(m)) with f(m) ∈ Ω such thatf(m)

c(m) = supk f(m)
k , ac(m)q

(m)

c(m) ≤ supk akq
(m)
k − ε, and

lim
m→∞

[W(q(m), f(m))−W∗(q(m))] = 0.

SinceΛK is compact, we can choose a subsequence (which we still denoted as the whole sequence
for simplicity) such thatc(m) ≡ c(1) and limmq(m) = q ∈ ΛK . Using Lemma 27, we obtain

lim
m→∞

W(q(m), f(m)) = W∗(q).

Similar to the proof of Lemma 27, we assume thatΨc ≥ 0 (c = 1, . . . ,K), q1 = · · · = qk = 0 and
qc > 0 (c > k). We obtain

limsup
m→∞

W(q, f(m)) = limsup
m→∞

K

∑
c=k+1

q(m)
c Ψc(f(m)) ≤ lim

m→∞
W(q(m), f(m)) = W∗(q).

Note that our assumption also implies thatac(1)qc(1) ≤ supk akqk− ε andf(m)

c(1) = supk f(m)
k . We have

thus obtained a contradiction to the second ISC condition ofΨc(·). Therefore (20) must be valid.

Proof of the Theorem. We use the notations of Appendix A: letX be the input space,Q = ΛK be
the space of conditional probability vectors, andD = {1, . . . ,K} be the space of class labels. We
let `(q,k) = ∑c=1,c6=k acqc, and thus the classification error of a decision functionp(·) in (9) can
be expressed as̀(p(·)) = EX`([P(Y = c|X)]c, p(X)). The estimation-model space isΩ ⊂ RK , with
decisionT given by (5). TheW function is given by (8). Letv(q) ≡ 1. Then (20) implies that
∀ε > 0,∆H`,W,T,v(ε) > 0. The theorem now follows directly from the claim of Corollary 26.

Appendix C. Infinite-Sample Inconsistency of the SVM Pairwise Comparison
Method

Consider the non-differentiable SVM (hinge) lossφ(z) = (1− z)+. We show that the pairwise
comparison method in (10) is not ISC withK = 3. More precisely, we have the following counter-
example.
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Proposition 29 Letq = [q1,q2,q3] with 0< q3 < q2 < q1 such that q1 < q2+q3 and q2 > 2q3. Then
W∗(q) = W(q, [1,1,0]) = 1+q1 +q2 +4q3.

Proof Considerf = [ f1, f2, f3]. Without loss of generality, we can letf3 = 0. Therefore

W(q, f) = 1+q1[φ( f1)+φ( f1− f2)]+q2[φ( f2)+φ( f2− f1)]+q3[φ(− f1)+φ(− f2)].

Clearly if | f1| > 100/q3 or | f2| > 100/q3, thenW(q, f) > 100> W(q, [0,0,0]). Therefore the opti-
mization ofW(q, f) can be restricted to| f1|, | f2| ≤ 100/q3. It follows thatW∗(q) can be achieved at
some point, still denote byf = [ f1, f2,0] such that| f1|, | f2| ≤ 100/q3.

From the order-preserving property of Theorem 5, we havef1 ≥ f2, and f1, f2 ≥ f3 = 0. We can
rewriteW(q, f) as

W(q, f) = 1+q1[φ( f1)+φ( f1− f2)]+q2[φ( f2)+( f1− f2)+1]+q3[ f1 + f2 +2].

If f2 < 1, then

W(q, [1+ f1− f2,1,0])−W(q, [ f1, f2,0]) ≤−(q2−2q3)(1− f2) < 0.

Therefore we can assume thatf1 ≥ f2 ≥ 1. Now

W(q, f) = 1+q1φ( f1− f2)+q2[ f1− f2 +1]+q3[ f1 + f2 +2].

Sinceq1 < q2 + q3, we haveq1φ( f1 − f2) + (q2 + q3)[ f1 − f2] ≥ q1, and the equality holds only
when f1 = f2. ThereforeW(q, f) ≥ 1+q1 +q2[0+1]+q3[2 f2 +2], and the minimum can only be
achieved atf1 = f2 = 1.
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Abstract

We construct a distribution-free Bayes optimal classifier called the Minimum Error Minimax Proba-
bility Machine (MEMPM) in a worst-case setting, i.e., underall possible choices of class-conditional
densities with a given mean and covariance matrix. By assuming no specific distributions for the
data, our model is thus distinguished from traditional Bayes optimal approaches, where an as-
sumption on the data distribution is a must. This model is extended from the Minimax Probability
Machine (MPM), a recently-proposed novel classifier, and isdemonstrated to be the general case of
MPM. Moreover, it includes another special case named the Biased Minimax Probability Machine,
which is appropriate for handling biased classification. One appealing feature of MEMPM is that
it contains an explicit performance indicator, i.e., a lower bound on the worst-case accuracy, which
is shown to be tighter than that of MPM. We provide conditionsunder which the worst-case Bayes
optimal classifier converges to the Bayes optimal classifier. We demonstrate how to apply a more
general statistical framework to estimate model input parameters robustly. We also show how to
extend our model to nonlinear classification by exploiting kernelization techniques. A series of ex-
periments on both synthetic data sets and real world benchmark data sets validates our proposition
and demonstrates the effectiveness of our model.

Keywords: classification, distribution-free, kernel, minimum error, sequential biased minimax
probability machine, worst-case accuracies

1. Introduction

A novel model for two-category classification tasks called the Minimax Probability Machine (MPM)
has been recently proposed (Lanckriet et al., 2002a). This model triesto minimize the probability
of misclassification of future data points in a worst-case setting, i.e., under allpossible choices of
class-conditional densities with a given mean and covariance matrix. When compared with tradi-
tional generative models, MPM avoids making assumptions with respect to the data distribution;
such assumptions are often invalid and lack generality. This model’s performance is reported to be
comparable to the Support Vector Machine (SVM) (Vapnik, 1999), a state-of-the-art classifier.

However, MPM forces the worst-case accuracies for two classes to beequal. This constraint
seems inappropriate, since it is unnecessary that the worst-case accuracies are presumed equal.
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Therefore, the classifier derived from this model does not result in minimizing the worst-case error
rate of future data points and thus in a sense cannot represent the optimalclassifier.

In this paper, by removing this constraint, we propose a generalized MinimaxProbability Ma-
chine, called the Minimum Error Minimax Probability Machine (MEMPM). Insteadof optimizing
an equality-constrained worst-case error rate, this model minimizes the worst-case Bayes error rate
of future data and thus achieves the optimum classifier in the worst-case scenario. Furthermore, this
new model contains several appealing features.

First, as a generalized model, MEMPM includes and expands the Minimax Probability Machine.
Interpretations from the viewpoints of the optimal thresholding problem and the geometry will be
provided to show the advantages of MEMPM. Moreover, this generalizedmodel includes another
promising special case, named the Biased Minimax Probability Machine (BMPM)(Huang et al.,
2004b), and extends its application to a type of important classification, i.e., biased classification.

Second, this model derives a distribution-free Bayes optimal classifier in the worst-case sce-
nario. It thus distinguishes itself from the traditional Bayes optimal classifiers, which have to as-
sume distributions for the data and thus lack generality in real cases. Furthermore, we will show that,
under certain conditions, e.g., when a Gaussian distribution is assumed for the data, the worst-case
Bayes optimal classifier becomes the true Bayes optimal hyperplane.

Third, similar to MPM, the MEMPM model also contains an explicit performance indicator,
namely an explicit upper bound on the probability of misclassification of futuredata. Moreover, we
will demonstrate theoretically and empirically that MEMPM attains a smaller upper bound of the
probability of misclassification than MPM, which thus implies the superiority of MEMPM to MPM.

Fourth, although in general the optimization of MEMPM is shown to be a non-concave problem,
empirically, it demonstrates reasonable concavity in the main “interest” region and thus can be
solved practically. Furthermore, we will show that the final optimization problem involves solving
a one-dimensional line search problem and thus results in a satisfactory solution.

This paper is organized as follows. In the next section, we present the main content of this
paper, the MEMPM model, including its definition, interpretations, practical solving method, and
sufficient conditions for convergence to the true Bayes decision hyperplane. Following that, we
demonstrate a robust version of MEMPM. In Section 4, we seek to kernelize the MEMPM model to
attack nonlinear classification problems. We then, in Section 5, present a series of experiments on
synthetic data sets and real world benchmark data sets. In Section 6, we analyze the tightness of the
worst-case accuracy bound. In Section 7, we show that empirically MEMPM is often concave in the
main “interest” region. In Section 8, we present the limitations of MEMPM and envision possible
future work. Finally, we conclude this paper in Section 9.

2. Minimum Error Minimax Probability Decision Hyperplane

In this section, we first present the model definition of MEMPM while reviewing the original MPM
model. We then in Section 2.2 interpret MEMPM with respect to MPM. In Section 2.3, we spe-
cialize the MEMPM model for dealing with biased classification. In Section 2.4, we analyze the
MEMPM optimization problem and propose a practical solving method. In Section 2.5, we address
the sufficient conditions under which the worst-case Bayes optimal classifier derived from MEMPM
becomes the true Bayes optimal classifier. In Section 2.6, we provide a geometrical interpretation
for BMPM and MEMPM.
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2.1 Problem Definition

The notation in this paper will largely follow that of Lanckriet et al. (2002b). Letx andy denote two
random vectors representing two classes of data with means and covariance matrices as{x,Σx} and
{y,Σy}, respectively, in a two-category classification task, wherex, y, x, y ∈R

n, andΣx, Σy ∈R
n×n.

Assuming{x,Σx}, {y,Σy} for two classes of data are reliable, MPM attempts to determine the
hyperplaneaTz = b (a ∈ R

n\{0}, z ∈ R
n, b ∈ R, and superscriptT denotes the transpose) which

can separate two classes of data with the maximal probability. The formulation for the MPM model
is written as follows:

max
α,a6=0,b

α s.t.

inf
x∼(x,Σx)

Pr{aTx ≥ b} ≥ α,

inf
y∼(y,Σy)

Pr{aTy ≤ b} ≥ α,

whereα represents the lower bound of the accuracy for future data, namely, theworst-case accu-
racy. Future pointsz for which aTz≥ b are then classified as the classx; otherwise they are judged
as the classy. This derived decision hyperplane is claimed to minimize the worst-case (maximal)
probability of misclassification, or the error rate, of future data. Furthermore, this problem can be
transformed to a convex optimization problem, or more specifically, a Second Order Cone Program-
ming problem (Lobo et al., 1998; Nesterov and Nemirovsky, 1994).

As observed from the above formulation, this model assumes that the worst-case accuracies for
two classes are the same. However, this assumption seems inappropriate, since it is unnecessary
to require that the worst-case accuracies for two classes are exactly thesame. Thus, the decision
hyperplane given by this model does not necessarily minimize the worst-case error rate of future
data and is not optimal in this sense. Motivated from the finding, we eliminate this constraint and
propose a generalized model, the Minimum Error Minimax Probability Machine, as follows:

max
α,β,a6=0,b

θα+(1−θ)β s.t. (1)

inf
x∼(x,Σx)

Pr{aTx ≥ b} ≥ α, (2)

inf
y∼(y,Σy)

Pr{aTy ≤ b} ≥ β. (3)

Similarly, α and β indicate the worst-case classification accuracies of future data points forthe
classx andy, respectively, whileθ ∈ [0,1] is the prior probability of the classx and 1−θ is thus the
prior probability of the classy. Intuitively, maximizingθα+(1−θ)β can naturally be considered as
maximizing the expected worst-case accuracy for future data. In other words, this optimization leads
to minimizing the expected upper bound of the error rate. More precisely, if we change max{θα+
(1− θ)β} to min{θ(1−α) + (1− θ)(1− β)} and consider 1−α as the upper bound probability
that anx data point is classified as the classy (1−β is similarly considered), the MEMPM model
exactly minimizes the maximum Bayes error and thus derives the Bayes optimal hyperplane in the
worst-case scenario.
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2.2 Interpretation

We interpret MEMPM with respect to MPM in this section. First, it is evident thatif we presume
α = β, the optimization of MEMPM degrades to the MPM optimization. Therefore, MPM isa
special case of MEMPM.

An analogy to illustrate the difference between MEMPM and MPM can be seenin the optimal
thresholding problem. Figure 1 illustrates this analogy. To separate two classes of one-dimensional
data with density functions asp1 and p2, respectively, the optimal thresholding is given by the
decision plane in Figure 1(a) (assuming the prior probabilities for two classes of data are equal).
This optimal thesholding corresponds to the point minimizing the error rate(1−α) + (1− β) or
maximizing the accuracyα + β, which is exactly the intersection point of two density functions
(1−α represents the area of 135o-line filled region and 1−β represents the area of 45o-line filled
region). On the other hand, the thresholding point to forceα = β is not necessarily the optimal point
to separate these two classes.
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Figure 1: An analogy to illustrate the difference between MEMPM and MPM withequal prior
probabilities for two classes. The optimal decision plane corresponds to theintersection
point, where the error(1−α)+(1−β) is minimized (or the accuracyα+β is maximized)
as implied by MEMPM, rather than the one, whereα is equal toβ as implied by MPM.

It should be clarified that the MEMPM model assumes no distributions. This distinguishes the
MEMPM model from the traditional Bayes optimal methods, which have to make specific assump-
tions on the data distribution. On the other hand, although MEMPM minimizes the upper bound
of the Bayes error rate of future data points, as shown later in Section 2.5,it will represent the true
Bayes optimal hyperplane under certain conditions, in particular, when Gaussianity is assumed for
the data.
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2.3 Special Case for Biased Classification

The above discussion only covers unbiased classification, which does not favor one class over the
other class intentionally. However, another important type of pattern recognition tasks, namely bi-
ased classification, arises very often in practice. In this scenario, one class is usually more important
than the other class. Thus a bias should be imposed towards the important class. Such typical ex-
ample can be seen in the diagnosis of epidemical disease. Classifying a patient who is infected with
a disease into the opposite class results in serious consequences. Thus inthis problem, the classifi-
cation accuracy should be biased towards the class with disease. In otherwords, we would prefer to
diagnose the person without the disease to be the infected case rather thanthe other way round.

In the following we demonstrate that MEMPM contains a special case we call the Biased Mini-
max Probability Machine for biased classification. We formulate this special case as

max
α,β,a6=0,b

α s.t.

inf
x∼(x,Σx)

Pr{aTx ≥ b} ≥ α,

inf
y∼(y,Σy)

Pr{aTy ≤ b} ≥ β0,

whereβ0 ∈ [0, 1), a pre-specified constant, represents an acceptable accuracy levelfor the less
important classy.

The above optimization utilizes a typical setting in biased classification, i.e., the accuracy for
the important class (associated withx) should be as high as possible, if only the accuracy for the less
important class (associated withy) maintains at an acceptable level specified by the lower boundβ0

(which can be set by users).

By quantitatively plugging a specified biasβ0 into classification and also by containing an ex-
plicit accuracy boundα for the important class, BMPM provides a direct and elegant means for
biased classification. Comparatively, to achieve a specified bias, traditionalbiased classifiers such
as the Weighted Support Vector Machine (Osuna et al., 1997) and the Weightedk-Nearest Neighbor
method (Maloof et al., 2003) usually adapt different costs for different classes. However, due to the
difficulties in establishing quantitative connections between the costs and the accuracy,1 for impos-
ing a specified bias, these methods have to resort to trial and error procedure to attain suitable costs;
these procedures are generally indirect and lack rigorous treatments.

2.4 Solving the MEMPM Optimization Problem

In this section, we will propose to solve the MEMPM optimization problem. As will bedemon-
strated shortly, the MEMPM optimization can be transformed to a one-dimensional line search
problem. More specifically, the objective function of the line search problemis implicitly deter-
mined by dealing with a BMPM problem. Therefore, solving the line search problem corresponds
to solving a Sequential Biased Minimax Probability Machine (SBMPM) problem. Before we pro-
ceed, we first introduce how to solve the BMPM optimization problem.

1. Although cross validation might be used to provide empirical connections, they are problem-dependent and are
usually slow procedures as well.
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2.4.1 SOLVING THE BMPM OPTIMIZATION PROBLEM

First, we borrow Lemma 1 from Lanckriet et al. (2002b).

Lemma 1 Givena 6= 0 and b, such thataTy ≤ b andβ ∈ [0,1), the condition

inf
y∼(y,Σy)

Pr{aTy ≤ b} ≥ β,

holds if and only if b−aTy ≥ κ(β)
√

aTΣya with κ(β) =
√

β
1−β .

By using Lemma 1, we can transform the BMPM optimization problem as follows:

max
α,a6=0,b

α s.t.

−b+aTx ≥ κ(α)
√

aTΣxa , (4)

b−aTy ≥ κ(β0)
√

aTΣya , (5)

whereκ(α) =
√

α
1−α , κ(β0) =

√

β0
1−β0

. (5) is directly obtained from (3) by using Lemma 1. Simi-

larly, by changingaTx ≥ b to aT(−x) ≤−b, (4) can be obtained from (2).
From (4) and (5), we get

aTy+κ(β0)
√

aTΣya≤ b≤ aTx−κ(α)
√

aTΣxa .

If we eliminateb from this inequality, we obtain

aT(x−y) ≥ κ(α)
√

aTΣxa+κ(β0)
√

aTΣya . (6)

We observe that the magnitude ofa does not influence the solution of (6). Moreover, we can assume
x 6= y; otherwise, the minimax machine does not have a physical meaning. In this case, (6) may even
have no solution for everyβ0 6= 0, since the right hand side would always be positive provided that
a 6= 0. Thus in the extreme case,α andβ have to be zero, implying that the worst-case classification
accuracy is always zero.

Without loss of generality, we can setaT(x−y) = 1. Thus the problem can further be changed
to:

max
α,a6=0

α s.t.

1≥ κ(α)
√

aTΣxa+κ(β0)
√

aTΣya , (7)

aT(x−y) = 1.

SinceΣx can be assumed to be positive definite (otherwise, we can always add a small positive
amount to its diagonal elements and make it positive definite), from (7) we canobtain:

κ(α) ≤ 1−κ(β0)
√

aTΣya
√

aTΣxa
.
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Becauseκ(α) increases monotonically withα, maximizingα is equivalent to maximizingκ(α),
which further leads to

max
a6=0

1−κ(β0)
√

aTΣya
√

aTΣxa
s.t. aT(x−y) = 1.

This kind of optimization is called the Fractional Programming (FP) problem (Schaible, 1995). To
elaborate further, this optimization is equivalent to solving the following fractional problem:

max
a6=0

f (a)

g(a)
, (8)

subject toa∈ A = {a|aT(x−y) = 1}, where f (a) = 1−κ(β0)
√

aTΣya, g(a) =
√

aTΣxa.

Theorem 2 The Fractional Programming problem (8) associated with the BMPM optimization is a
pseudo-concave problem, whose every local optimum is the global optimum.

Proof It is easy to see that the domainA is a convex set onRn, and thatf (a) andg(a) are differ-
entiable onA. Moreover, sinceΣx andΣy can be both considered as positive definite matrices,f (a)

is a concave function onA andg(a) is a convex function onA. Then f (a)
g(a) is a concave-convex FP

problem. Hence it is a pseudoconcave problem (Schaible, 1995). Therefore, every local maximum
is the global maximum (Schaible, 1995).

To handle this specific FP problem, many methods such as the parametric method (Schaible,
1995), the dual FP method (Schaible, 1977; Craven, 1988), and the concave FP method (Craven,
1978) can be used. A typical Conjugate Gradient method (Bertsekas, 1999) in solving this problem
has a worst-caseO(n3) time complexity. Adding the time cost to estimatex, y, Σx, andΣy, the total
cost for this method isO(n3 + Nn2), whereN is the number of data points. This complexity is in
the same order as the linear Support Vector Machines (Schölkopf and Smola, 2002) and the linear
MPM (Lanckriet et al., 2002b).

In this paper, the Rosen gradient projection method (Bertsekas, 1999) isused to find the solution
of this pseudo-concave FP problem, which is proved to converge to a local maximum with a worst-
case linear convergence rate. Moreover, the local maximum will exactly bethe global maximum in
this problem.

2.4.2 SEQUENTIAL BMPM OPTIMIZATION METHOD FORMEMPM

We now turn to solving the MEMPM problem. Similar to Section 2.4.1, we can base Lemma 1 to
transform the MEMPM optimization as follows:

max
α,β,a6=0,b

θα+(1−θ)β s.t.

−b+aTx ≥ κ(α)
√

aTΣxa , (9)

b−aTy ≥ κ(β)
√

aTΣya . (10)
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Using an analysis similar to that in Section 2.4.1, we can further transform the above optimiza-
tion to:

max
α,β,a6=0

θα+(1−θ)β s.t. (11)

1≥ κ(α)
√

aTΣxa+κ(β)
√

aTΣya , (12)

aT(x−y) = 1. (13)

In the following we provide a lemma to show that the MEMPM solution is attained on the
boundary of the set formed by the constraints of (12) and (13).

Lemma 3 The maximum value ofθα+(1−θ)β under the constraints of (12) and (13) is achieved
when the right hand side of (12) is strictly equal to1.

Proof Assume the maximum is achieved when 1> κ(β)
√

aTΣya+κ(α)
√

aTΣxa. A new solution
constructed by increasingα or κ(α) a small positive amount,2 and maintainingβ, a unchanged will
satisfy the constraints and will be a better solution.

By applying Lemma 3, we can transform the optimization problem (11) under theconstraints of
(12) and (13) as follows:

max
β,a6=0

θκ2(α)

κ2(α)+1
+(1−θ)β s.t. (14)

aT(x−y) = 1, (15)

whereκ(α) =
1−κ(β)

√
aT ∑y a√

aT ∑x a
.

In (14), if we fix β to a specific value within[0,1), the optimization is equivalent to maximizing
κ2(α)

κ2(α)+1 and further equivalent to maximizingκ(α), which is exactly the BMPM problem. We can

then updateβ according to some rules and repeat the whole process until an optimalβ is found.
This is also the so-called line search problem (Bertsekas, 1999). More precisely, if we denote the
value of optimization as a functionf (β), the above procedure corresponds to finding an optimalβ
to maximize f (β). Instead of using an explicit function as in traditional line search problems,the
value of the function here is implicitly given by a BMPM optimization procedure.

Many methods can be used to solve the line search problem. In this paper, weuse the Quadratic
Interpolation (QI) method (Bertsekas, 1999). As illustrated in Figure 2, QIfinds the maximum
point by updating a three-point pattern(β1, β2, β3) repeatedly. The newβ denoted byβnew is
given by the quadratic interpolation from the three-point pattern. Then a new three-point pattern
is constructed byβnew and two ofβ1,β2,β3. This method can be shown to converge superlinearly
to a local optimum point (Bertsekas, 1999). Moreover, as shown in Section 7, although MEMPM
generally cannot guarantee its concavity, empirically it is often concave. Thus the local optimum
will often be the global optimum in practice.

2. Sinceκ(α) increases monotonically withα, increasingα a small positive amount corresponds to increasingκ(α) a
small positive amount.
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f(β) 

β
1
 β

2
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3
 

Figure 2: A three-point pattern and Quadratic Line search method. Aβnew is obtained and a new
three-point pattern is constructed byβnew and two ofβ1, β2 andβ3.

Until now, we do not mention how to calculate the interceptb. From Lemma 3, we can see that
the inequalities (9) and (10) will become equalities at the maximum point(a∗,b∗). The optimalb
will thus be obtained by

b∗ = aT
∗ x−κ(α∗)

√

aT∗ Σxa∗ = aT
∗ y+κ(β∗)

√

aT∗ Σya∗ .

2.5 When Does the Worst-Case Bayes Optimal Hyperplane Become the True One?

As discussed, MEMPM derives the worst-case Bayes optimal hyperplane. Therefore, it is interesting
to discover the conditions at which the worst-case optimal one changes to thetrue optimal one.

In the following we demonstrate two propositions. The first is that, when data are assumed
to conform to some distributions, e.g., Gaussian distribution, the MEMPM framework leads to
the Bayes optimal classifier; the second is that, when applied to high-dimensional classification
tasks, the MEMPM model can be adapted to converge to the true Bayes optimalclassifier under the
Lyapunov condition.

To introduce the first proposition, we begin by assuming the data distribution as a Gaussian
distribution.

Assumingx ∼ N (x,Σx) andy ∼ N (y,Σy), (2) becomes

inf
x∼N (x,Σx)

Pr{aTx ≥ b} = Prx∼N (x,Σx){aTx ≥ b}

= Pr{N (0,1) ≥ b−aTx
√

aTΣxa
}

= 1−Φ(
b−aTx
√

aTΣxa
)

= Φ(
−b+aTx
√

aTΣxa
) ≥ α, (16)
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whereΦ(z) is the cumulative distribution function for the standard normal Gaussian distribution:

Φ(z) = Pr{N (0,1) ≤ z} =
1√
2π

Z z

−∞
exp(−s2/2)ds.

Due to the monotonic property ofΦ(z), we can further write (16) as

−b+aTx ≥ Φ−1(α)
√

aTΣxa .

Constraint (3) can be reformulated in a similar form. The optimization (1) is thus changed to:

max
α,β,a6=0,b

θα+(1−θ)β s.t.

−b+aTx ≥ Φ−1(α)
√

aTΣxa , (17)

b−aTy ≥ Φ−1(β)
√

aTΣya . (18)

The above optimization is nearly the same as (1) subject to the constraints of (2) and (3) except that

κ(α) is equal toΦ−1(α), instead of
√

α
1−α . Thus, it can similarly be solved based on the Sequential

Biased Minimax Probability Machine method.
On the other hand, the Bayes optimal hyperplane corresponds to the one,aTz= b that minimizes

the Bayes error:

min
a6=0,b

θPrx∼N (x,Σx){aTx ≤ b}+(1−θ)Pry∼N (y,Σy){aTy ≥ b}.

The above is exactly the upper bound ofθα + (1− θ)β. From Lemma 3, we can know (17) and
(18) will eventually become equalities. Traced back to (16), the equalities implythat α and β
will achieve their upper bounds respectively. Therefore, when Gaussianity is assumed for the data,
MEMPM derives the optimal Bayes hyperplane.

We propose Proposition 4 to extend the above analysis to general distribution assumptions.

Proposition 4 If the distribution of the normalized random variableaTx−aTx√
aT Σxa

, denoted asN S , is

independent ofa, minimizing the Bayes error bound in MEMPM exactly minimizes the true Bayes
error, provided thatΦ(z) is changed toPr{N S(0,1) ≤ z}.

Before presenting Proposition 6, we first introduce the central limit theorem under the Lyapunov
condition (Chow and Teicher, 1997).

Theorem 5 Letxn be a sequence of independent random variables defined on the same probability
space. Assume thatxn has finite expected value µn and finite standard deviationσn. We define
s2
n = ∑n

i=1 σ2
i . Assume that the Lyapunov conditions are satisfied, namely, the third central moment

r3
n = ∑n

i=1E(|xn − µn|3) is finite for every n, and thatlimn→∞
rn
sn

= 0. The sum Sn = x1 + ... + xn

converges towards a Gaussian distribution.

One interesting finding directly elicited from the above central limit theorem is that, if the com-
ponent variablexi of a givenn-dimensional random variablex satisfies the Lyapunov condition, the
sum of weighted component variablesxi , 1≤ i ≤ n, namely,aTx tends towards a Gaussian distri-
bution, asn grows.3 This shows that, under the Lyapunov condition, when the dimensionn grows,

3. Some techniques such as Independent Component Analysis (Decoand Obradovic, 1996) can be applied to decorrelate
the dependence among random variables beforehand.
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the hyperplane derived by MEMPM with the Gaussianity assumption tends towards the true Bayes
optimal hyperplane. In this case, the MEMPM usingΦ−1(α), the inverse function of the normal cu-

mulative distribution, instead of
√

α
1−α , will converge to the true Bayes optimal decision hyperplane

in the high-dimensional space. We summarize the analysis in Proposition 6.

Proposition 6 If the component variablexi of a given n-dimensional random variablex satisfies
the Lyapunov condition, the MEMPM hyperplane derived by usingΦ−1(α), the inverse function of
the normal cumulative distribution, will converge to the true Bayes optimal one.

The underlying justifications in the above two propositions are rooted in the fact that the gen-
eralized MPM is exclusively determined by the first and second moments. These two propositions
emphasize the dominance of the first and second moments in representing data.More specifically,
Proposition 4 hints that the distribution is only decided by up to the second moments. The Lyapunov
condition in Proposition 6 also implies that the second order moment dominates the third order mo-
ment in the long run. It is also noteworthy that, with a fixed mean and covariance, the distribution
of Maximum Entropy Estimation is a Gaussian distribution (Keysers et al., 2002). This would once
again suggest the usage ofΦ−1(α) in the high-dimensional space.

2.6 Geometrical Interpretation

In this section, we first provide a parametric solving method for BMPM. We then demonstrate that
this parametric method enables a nice geometrical interpretation for both BMPM and MEMPM.

2.6.1 A PARAMETRIC METHOD FORBMPM

We present a parametric method to solve BMPM in the following. When comparedwith Gradient
methods, this approach is relatively slow, but it need not calculate the gradient in each step and
hence may avoid accumulated errors.

According to the parametric method, the fractional function can be iterativelyoptimized in two
steps (Schaible, 1995):

Step1: Find a by maximizing f (a)−λg(a) in the domainA, whereλ ∈ R is the newly introduced
parameter.

Step2: Updateλ by f (a)
g(a) .

The iteration of the above two steps will guarantee to converge to a local maximum, which is also
the global maximum in our problem. In the following, we adopt a method to solve themaximization
problem in Step 1. Replacingf (a) andg(a), we expand the optimization problem to:

max
a6=0

1−κ(β0)
√

aTΣya−λ
√

aTΣxa s.t. aT(x−y) = 1. (19)

Maximizing (19) is equivalent to mina κ(β0)
√

aTΣya+ λ
√

aTΣxa under the same constraint. By
writing a= a0+Fu, wherea0 = (x−y)/ ‖ x−y ‖2

2 andF∈R
n×(n−1) is an orthogonal matrix whose

columns span the subspace of vectors orthogonal tox−y, an equivalent form (a factor12 over each
term has been dropped) to remove the constraint can be obtained:

min
u,η>0,ξ>0

η+
λ2

η
‖Σx

1/2(a0 +Fu)‖2
2 +ξ+

κ(β0)
2

ξ
‖Σy

1/2(a0 +Fu)‖2
2 ,
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whereη, ξ ∈ R. This optimization form is very similar to the one in the Minimax Probability Ma-
chine (Lanckriet et al., 2002a) and can also be solved by using an iterative least-squares approach.

2.6.2 A GEOMETRICAL INTERPRETATION FORBMPM AND MEMPM

The parametric method enables a nice geometrical interpretation of BMPM and MEMPM in a fash-
ion similar to that of MPM in Lanckriet et al. (2002b). Again, we assumex 6= y for the meaningful
classification and assume thatΣx andΣy are positive definite for the purpose of simplicity.

By using the 2-norm definition of a vectorz : ‖z‖2 = max{uTz : ‖u‖2 ≤ 1}, we can express (19)
as its dual form:

τ∗ := min
a6=0

max
u,v

λuTΣ1/2
x a+κ(β0)vTΣ1/2

y a+ τ(1−aT(x−y)) : ‖u‖2 ≤ 1,‖v‖2 ≤ 1 .

We change the order of the min and max operators and consider the min:

min
a6=0

λuTΣ1/2
x a+κ(β0)vTΣ1/2

y a+ τ(1−aT(x−y))

=

{

τ if τx−λΣ1/2
x u = τy+κ(β0)Σ

1/2
y v

−∞ otherwise
.

Thus, the dual problem can further be changed to:

max
τ,u,v

τ : ‖u‖2 ≤ 1,‖v‖2 ≤ 1,τx−λΣ1/2
x u = τy+κ(β0)Σ

1/2
y v .

By defining` := 1/τ, we rewrite the dual problem as

min
`,u,v

` : x−λΣ1/2
x u = y+κ(β0)Σ

1/2
y v,‖u‖2 ≤ `,‖v‖2 ≤ ` . (20)

When the optimum is attained, we have

τ∗ = λ‖Σ1/2
x a∗‖2 +κ(β0)‖Σ1/2

y a∗‖2 = 1/`∗ .

We consider each side of (20) as an ellipsoid centered at the meanx andy and shaped by the
weighted covariance matricesλΣx andκ(β0)Σy respectively:

Hx(`) = {x = x+λΣ1/2
x u : ‖u‖2 ≤ `}, Hy(`) = {y = y+κ(β0)Σ

1/2
y v : ‖v‖2 ≤ `} .

The above optimization involves finding a minimum̀for which two ellipsoids intersect. For
the optimum`, these two ellipsoids are tangential to each other. We further note that, according to
Lemma 3, at the optimum,λ∗, which is maximized via a series of the above procedures, satisfies

1 = λ∗‖Σ1/2
x a∗‖2 +κ(β0)‖Σ1/2

y a∗‖2 = τ∗ = 1/`∗
⇒ `∗ = 1 .

This means that the ellipsoid for the classy finally changes to the one centered aty, whose
Mahalanobis distance toy is exactly equal toκ(β0). Moreover, the ellipsoid for the classx is the one
centered atx and tangential to the ellipsoid for the classy. In comparison, for MPM, two ellipsoids
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grow with the same speed (with the sameκ(α) and κ(β)). On the other hand, since MEMPM
corresponds to solving a sequence of BMPMs, it similarly leads to a hyperplane tangential to two
ellipsoids, which achieves to minimize the maximum of the worst-case Bayes error. Moreover, it
is not necessarily attained in a balanced way as in MPM, i.e., two ellipsoids do not necessarily
grow with the same speed and hence probably contain the unequal Mahalanobis distance from their
corresponding centers. This is illustrated in Figure 3.

−6 −4 −2 0 2 4 6 8 10 12 14 16
−4

−2

0

2

4

6

8

10

12

14

o

o

Data: Class x depicted as +’s and Class y depicted as o’s
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K=1.28
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Figure 3: The geometrical interpretation of MEMPM and BMPM. Finding the optimal BMPM hy-
perplane corresponds to finding the decision plane (the black dashed line) tangential to
an ellipsoid (the inner red dashed ellipsoid on they side) , which is centered aty, shaped
by the covarianceΣy and whose Mahalanobis distance toy is exactly equal toκ(β0)
(κ(β0) = 1.28 in this example). The worst-case accuracyα for x is determined by the
Mahalanobis distanceκ (κ = 5.35 in this example), at which, an ellipsoid (centered atx
and shaped byΣx) is tangential to thatκ(β0) ellipsoid, i.e., the outer red dashed ellipsoid
on thex side. In comparison, MPM tries to find out the minimum equality-constrainedκ,
at which two ellipsoids forx andy intersect (both dotted red ellipsoids withκ = 2.77).
For MEMPM, it achieves a tangent hyperplane in a non-balanced fashion, i.e., two ellip-
soids may not attain the sameκ but is globally optimal in the worst-case setting (see the
solid blue ellipsoids).
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3. Robust Version

In the above, the estimates of means and covariance matrices are assumed reliable. We now consider
how the probabilistic framework in (1) changes in the face of variation of themeans and covariance
matrices:

max
α,β,a6=0,b

θα+(1−θ)β s.t.

inf
x∼(x̄,Σx)

Pr{aTx ≥ b} ≥ α,∀(x̄,Σx) ∈ X ,

inf
y∼(ȳ,Σy)

Pr{aTy ≤ b} ≥ β,∀(ȳ,Σy) ∈ Y ,

whereX andY are the sets of means and covariance matrices and are the subsets ofR×P +
n , where

P +
n is the set ofn×n symmetric positive semidefinite matrices.

Motivated by the tractability of the problem and from a statistical viewpoint, a specific setting of
X andY has been proposed in Lanckriet et al. (2002b). However, these authors consider the same
variations of the means for two classes, which is easy to handle but less general. Now, considering
the unequal treatment of each class, we propose the following setting, which is in a more general
and complete form:

X =
{

(x̄,Σx) |(x̄− x̄0)Σ −1
x (x̄− x̄0) ≤ ν2

x, ‖Σx −Σ 0
x ‖F ≤ ρx

}

,

Y =
{

(ȳ,Σy) |(ȳ− ȳ0)Σ −1
y (ȳ− ȳ0) ≤ ν2

y, ‖Σy −Σ 0
y ‖F ≤ ρy

}

,

wherex̄0, Σ0
x are the “nominal” mean and covariance matrices obtained through estimation. Param-

etersνx, νy, ρx, andρy are positive constants. The matrix norm is defined as the Frobenius norm:
‖M‖2

F = Tr(MTM).
With the equality assumption for the variations of the means for two classes, the parametersνx

andνy are required equal in Lanckriet et al. (2002b). This enables the direct usage of the MPM op-
timization in its robust version. However, the assumption may not be valid in realcases. Moreover,
in MEMPM, the assumption is also unnecessary and inappropriate. This will be demonstrated later
in the experiment.

By applying the results from Lanckriet et al. (2002b), we obtain the robust MEMPM as

max
α,β,a6=0,b

θα+(1−θ)β s.t.

−b+aT x̄0 ≥ (κ(α)+νx)
√

aT(Σ 0
x +ρxIn)a,

b−aT ȳ0 ≥ (κ(β)+νy)
√

aT(Σ 0
y +ρyIn)a.

Analogously, we transform the above optimization problem to

max
α,β,a6=0

θ
κ2

r (α)

1+κ2
r (α)

+(1−θ)β s.t.aT(x̄0− ȳ0) = 1,

whereκr(α) = max

(

1−(κ(β)+νy)
√

aT(Σ 0
y +ρyIn)a√

aT(Σ 0
x +ρxIn)a

−νx,0

)

and thus can be solved by the SBMPM

method. The optimalb is therefore calculated by

b∗ = a∗T x̄0− (κ(α∗)+νx)
√

a∗T(Σ 0
x +ρxIn)a∗

= a∗T ȳ0 +(κ(β∗)+νy)
√

a∗T(Σ 0
y +ρyIn)a∗.
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Remarks. Interestingly, if MPM is treated with unequal robust parametersνx andνy, it leads
to solving an optimization similar to MEMPM, sinceκ(α)+ νx will not be equal toκ(α)+ νy. In
addition, similar to the robust MPM, when applied in practice, the specific values of νx, νy, ρx, and
ρy can be provided based on the central limit theorem or the resampling method.

4. Kernelization

We note that, in the above, the classifier derived from MEMPM is given in a linear configuration.
In order to handle nonlinear classification problems, in this section, we seekto use the kernelization
trick (Scḧolkopf and Smola, 2002) to map then-dimensional data points into a high-dimensional
feature spaceR f , where a linear classifier corresponds to a nonlinear hyperplane in the original
space.

Since the optimization of MEMPM corresponds to a sequence of BMPM optimization problems,
this model will naturally inherit the kernelization ability of BMPM. We thus in the following mainly
address the kernelization of BMPM.

Assuming training data points are represented by{xi}Nx
i=1 and{y j}Ny

j=1 for the classx and class
y, respectively, the kernel mapping can be formulated as

x → ϕ(x) ∼ (ϕ(x),Σϕ(x)),

y → ϕ(y) ∼ (ϕ(y),Σϕ(y)),

whereϕ : R
n → R

f is a mapping function. The corresponding linear classifier inR
f is aTϕ(z) = b,

wherea, ϕ(z) ∈R
f , andb∈R. Similarly, the transformed FP optimization in BMPM can be written

as

max
a

1−κ(β0)
√

aTΣϕ(y)a
√

aTΣϕ(x)a
s.t. aT(ϕ(x)−ϕ(y)) = 1. (21)

However, to make the kernel work, we need to represent the final decision hyperplane and
the optimization in a kernel form,K(z1,z2) = ϕ(z1)

Tϕ(z2), namely an inner product form of the
mapping data points.

4.1 Kernelization Theory for BMPM

In the following, we demonstrate that, although BMPM possesses a significantly different optimiza-
tion form from MPM, the kernelization theory proposed in Lanckriet et al.(2002b) is still viable,
provided that suitable estimates for means and covariance matrices are applied therein.

We first state a theory similar to Corollary 5 of Lanckriet et al. (2002b) andprove its validity in
BMPM.

Corollary 7 If the estimates of means and covariance matrices are given in BMPM as

ϕ(x) =
Nx

∑
i=1

λiϕ(xi), ϕ(y) =
Ny

∑
j=1

ω jϕ(y j) ,
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Σϕ(x) = ρxIn +
Nx

∑
i=1

Λi(ϕ(xi)−ϕ(x))(ϕ(xi)−ϕ(x))T ,

Σϕ(y) = ρyIn +
Ny

∑
j=1

Ω j(ϕ(y j)−ϕ(y))(ϕ(y j)−ϕ(y))T ,

whereIn is the identity matrix of dimension n, then the optimala in problem (21) lies in the space
spanned by the training points.

Proof Similar to Lanckriet et al. (2002b), we writea = ap +ad, whereap is the projection ofa in
the vector space spanned by all the training data points andad is the orthogonal component to this
span space. It can be easily verified that (21) changes to maximize the following:

1−κ(β0)
√

aT
p ∑Nx

i=1 Λi(ϕ(xi)−ϕ(x))(ϕ(xi)−ϕ(x))Twp +ρx(aT
pap +wT

d ad)
√

aT
p ∑Ny

j=1 Ω j(ϕ(y j)−ϕ(y))(ϕ(y j)−ϕ(y))Tap +ρy(aT
pap +aT

d ad)

subject to the constraints ofaT
p(ϕ(x)−ϕ(y)) = 1.

Since we intend to maximize the fractional form and both the denominator and the numerator
are positive, the denominator needs to be as small as possible and the numerator needs to be as large
as possible. This would finally lead toad = 0. In other words, the optimala lies in the vector space
spanned by all the training data points. Note that the introduction ofρx andρy enables a direct
application of the robust estimates in the kernelization.

According to Corollary 7, if appropriate estimates of means and covariancematrices are applied,
the optimala can be written as the linear combination of training points. In particular, if we obtain
the means and covariance matrices as the plug-in estimates, i.e.,

ϕ(x) =
1
Nx

Nx

∑
i=1

ϕ(xi) ,

ϕ(y) =
1
Ny

Ny

∑
j=1

ϕ(y j) ,

Σϕ(x) =
1
Nx

Nx

∑
i=1

(ϕ(xi)−ϕ(x))(ϕ(xi)−ϕ(x))T ,

Σϕ(y) =
1
Ny

Ny

∑
j=1

(ϕ(y j)−ϕ(y))(ϕ(y j)−ϕ(y))T ,

we can writea as

a =
Nx

∑
i=1

µiϕ(xi)+
Ny

∑
j=1

υ jϕ(y j), (22)

where the coefficientsµi , υ j ∈ R, i = 1, . . . ,Nx, j = 1, . . . ,Ny.
By simply substituting (22) and four plug-in estimates into (21), we can obtain theKernelization

Theorem of BMPM.
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Kernelization Theorem of BMPM The optimal decision hyperplane of the problem (21) involves
solving the Fractional Programming problem

κ(α∗) = max
w6=0

1−κ(β0)
√

1
Ny

wTK̃T
y K̃ yw

√

1
Nx

wTK̃T
x K̃ xw

s.t. wT(k̃x − k̃y) = 1 . (23)

The intercept b is calculated as

b∗ = wT
∗ k̃x −κ(α∗)

√

1
Nx

wT∗ K̃T
x K̃ xw∗ = wT

∗ k̃y +κ(β0)

√

1
Ny

wT∗ K̃T
y K̃ yw∗ ,

whereκ(α∗) is obtained when (23) attains its optimum(w∗,b∗). For the robust version of BMPM,
we can incorporate the variations of the means and covariances by conducting the following re-
placements:

1
Nx

wT
∗ K̃T

x K̃ xw∗ → wT
∗ (

1
Nx

K̃T
x K̃ x +ρxK)w∗ ,

1
Ny

wT
∗ K̃T

y K̃ yw∗ → wT
∗ (

1
Ny

K̃T
y K̃ y +ρyK)w∗ ,

κ(β0) → κ(β0)+µy ,

κ(α∗) → κ(α∗)+µx .

The optimal decision hyperplane can be represented as a linear form in thekernel space

f (z) =
Nx

∑
i=1

w∗iK(z,xi)+
Ny

∑
i=1

w∗Nx+iK(z,yi)−b∗.

The notation in the above are defined in Table 1.

5. Experiments

In this section, we first evaluate our model on a synthetic data set. Then we compare the performance
of MEMPM with that of MPM, on six real world benchmark data sets. To demonstrate that BMPM
is ideal for imposing a specified bias in classification, we also implement it on the Heart-disease
data set. The means and covariance matrices for two classes are obtained directly from the training
data sets by plug-in estimations. The prior probabilityθ is given by the proportion ofx data in the
training set.

5.1 Model Illustration on a Synthetic Data Set

To verify that the MEMPM model achieves the minimum Bayes error rate in the Gaussian dis-
tribution, we synthetically generate two classes of two-dimensional Gaussiandata. As plotted in
Figure 4(a), data associated with the classx are generated with the meanx as[3,0]T and the covari-
ance matrixΣx as[4, 0;0, 1], while data associated with the classy are generated with the meany
as[−1,0]T and the covariance matrixΣy as[1, 0;0, 5]. The solved decision hyperplaneZ1 = 0.333
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Notation
z∈ R

Nx+Ny zi := xi i = 1,2, . . . ,Nx .
zi := yi−Nx i = Nx +1,Nx +2, . . . ,Nx +Ny .

w ∈ R
Nx+Ny w := [µ1, . . . ,µNx ,υ1, . . . ,υNy ]

T .
K is Gram matrix K i, j := ϕ(zi)

Tϕ(z j).

K x :=











K1,1 K1,2 . . . K1,Nx+Ny

K2,1 K2,2 . . . K2,Nx+Ny
...

...
...

...
KNx,1 KNx,2 . . . KNx,Nx+Ny











.

K y :=











KNx+1,1 KNx+1,2 . . . KNx+1,Nx+Ny

KNx+2,1 KNx+2,2 . . . KNx+2,Nx+Ny
...

...
...

...
KNx+Ny,1 KNx+Ny,2 . . . KNx+Ny,Nx+Ny











.

k̃x, k̃y ∈ R
Nx+Ny [k̃x]i := 1

Nx
∑Nx

j=1K(x j ,zi) .

[k̃y]i := 1
Ny

∑Ny
j=1K(y j ,zi) .

1Nx ∈ R
Nx 1i := 1 i = 1,2, . . .Nx .

1Ny ∈ R
Ny 1i := 1 i = 1,2, . . .Ny .

K̃ :=

(

K̃ x

K̃ y

)

:=

(

K x −1Nx k̃
T
x

K y −1Ny k̃
T
y

)

.

Table 1: Notation used in Kernelization Theorem of BMPM

given by MPM is plotted as the solid blue line and the solved decision hyperplaneZ1 = 0.660 given
by MEMPM is plotted as the dashed red line. From the geometrical interpretation, both hyperplanes
should be perpendicular to theZ1 axis.

As shown in Figure 4(b), the MEMPM hyperplane exactly represents the optimal thresholding
under the distributions of the first dimension for two classes of data, i.e., the intersection point of two
density functions. On the other hand, we find that, the MPM hyperplane exactly corresponds to the
thresholding point with the same error rate for two classes of data, since thecumulative distributions
Px(Z1 < 0.333) andPy(Z1 > 0.333) are exactly the same.

5.2 Evaluations on Benchmark Data Sets

We next evaluate our algorithm on six benchmark data sets. Data for Twonorm problem were
generated according to Breiman (1997). The remaining five data sets (Breast, Ionosphere, Pima,
Heart-disease, and Vote) were obtained from the UCI machine learning repository (Blake and Merz,
1998). Since handling the missing attribute values is out of the scope of this paper, we simply
remove instances with missing attribute values in these data sets.

We randomly partition data into 90% training and 10% test sets. The final resultsare averaged
over 50 random partitions of data. We compare the performance of MEMPMand MPM in both
the linear setting and Gaussian kernel setting. The width parameter (σ) for the Gaussian kernel is
obtained via cross validations over 50 random partitions of the training set. The experimental results
are summarized in Table 2 and Table 3 for the linear kernel and Gaussian kernel respectively.
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Figure 4: An experiment on a synthetic data set. The decision hyperplane derived from MEMPM
(the dashed red line) exactly corresponds to the optimal thresholding point,i.e., the inter-
section point, while the decision hyperplane given by MPM (the solid blue line)corre-
sponds to the point in which the error rates for the two classes of data are equal.

From the results, we can see that our MEMPM demonstrates better performance than MPM in
both the linear setting and Gaussian kernel setting. Moreover, in these benchmark data sets, the
MEMPM hyperplanes are obtained with significantly unequalα andβ except in Twonorm. This
further confirms the validity of our proposition, i.e., the optimal minimax machine is not certain to
achieve the same worst-case accuracies for two classes. Twonorm is not an exception to this. The
two classes of data in Twonorm are generated under the multivariate normaldistributions with the
same covariance matrices. In this special case, the intersection point of twodensity functions will
exactly represent the optimal thresholding point and the one with the same error rate for each class as
well. Another important finding is that the accuracy bounds, namelyθα+(1−θ)β in MEMPM and
α in MPM, are all increased in the Gaussian kernel setting when compared withthose in the linear
setting. This shows the advantage of the kernelized probability machine overthe linear probability
machine.

In addition, to show the relationship between the bounds and the test set accuracies (TSA)
clearly, we plot them in Figure 5. As observed, the test set accuracies including TSAx (for class
x), TSAy (for the classy), and the overall accuracies TSA are all greater than their corresponding
accuracy bounds in both MPM and MEMPM. This demonstrates how the accuracy bound can serve
as the performance indicator on future data. It is also observed that the overall worst-case accuracies
θα+(1−θ)β in MEMPM are greater thanα in MPM both in the linear and Gaussian setting. This
again demonstrates the superiority of MEMPM to MPM.

Since the lower bounds keep well within the test accuracies in the above experimental results,
we do not perform the robust version of both models for the real world data sets. To see how
the robust version works, we generate two classes of Gaussian data. As illustrated in Figure 6,
x data are sampled from the Gaussian distribution with the mean as[3,0]T and the covariance as
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Figure 5: Bounds and test set accuracies. The test accuracies including TSAx (for the classx), TSAy

(for the classy), and the overall accuracies TSA are all greater than their corresponding
accuracy bounds in both MPM and MEMPM. This demonstrates how the accuracy bound
can serve as the performance indicator on future data.
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Data Set MEMPM MPM
α β θα+(1−θ)β Accuracy α Accuracy

Twonorm(%) 80.3±0.2% 79.9±0.1% 80.1±0.1% 97.9±0.1% 80.1±0.1% 97.9±0.1%
Breast(%) 77.8±0.8% 91.4±0.5% 86.7±0.5% 96.9±0.3% 84.4±0.5% 97.0±0.2%

Ionosphere(%) 95.9±1.2% 36.5±2.6% 74.5±0.8% 88.5±1.0% 63.4±1.1% 84.8±0.8%
Pima(%) 0.9±0.0% 62.9±1.1% 41.3±0.8% 76.8±0.6% 32.0±0.8% 76.1±0.6%

Heart-disease(%) 43.6±2.5% 66.5±1.5% 56.3±1.4% 84.2±0.7% 54.9±1.4% 83.2±0.8%
Vote(%) 82.6±1.3% 84.6±0.7% 83.9±0.9% 94.9±0.4% 83.8±0.9% 94.8±0.4%

Table 2: Lower boundα, β, and test accuracy compared to MPM in the linear setting.

Data Set MEMPM MPM
α β θα+(1−θ)β Accuracy α Accuracy

Twonorm(%) 91.7±0.2% 91.7±0.2% 91.7±0.2% 97.9±0.1% 91.7±0.2% 97.9±0.1%
Breast(%) 88.4±0.6% 90.7±0.4% 89.9±0.4% 96.9±0.2% 89.9±0.4% 96.9±0.3%

Ionosphere(%) 94.2±0.8% 80.9±3.0% 89.4±0.8% 93.8±0.4% 89.0±0.8% 92.2±0.4%
Pima(%) 2.6±0.1% 62.3±1.6% 41.4±1.1% 77.0±0.7% 32.1±1.0% 76.2±0.6%

Heart-disease(%) 47.1±2.2% 66.6±1.4% 58.0±1.5% 83.9±0.9% 57.4±1.6% 83.1±1.0%
Vote(%) 85.1±1.3% 84.3±0.7% 84.7±0.8% 94.7±0.5% 84.4±0.8% 94.6±0.4%

Table 3: Lower boundα, β, and test accuracy compared to MPM with the Gaussian kernel.

[1 0;0 3], while y data are sampled from another Gaussian distribution with the mean as[−3,0]T

and the covariance as[3 0;0 1]. We randomly select 10 points of each class for training and leave
the remaining points for test from the above synthetic data set. We present the result below.

First, we calculate the corresponding means,x̄0 andȳ0 and covariance matrices,Σ 0
x andΣ 0

y and
plug them into the linear MPM and the linear MEMPM. We obtain the MPM decision line(magenta
dotted line) with a lower bound (assuming the Gaussian distribution) being 99.1% and the MEMPM
decision line (black dash-dot line) with a lower bound of 99.7%. However, for the test set, we obtain
the accuracies of only 93.0% for MPM and 97.0% for MEMPM (see Figure 6(a)). This obviously
violates the lower bound.

Based on our knowledge of the real means and covariance matrices in this example, we set the
parameters as

νx =

√

(x̄− x̄0)TΣ −1
x (x̄− x̄0) = 0.046, νy =

√

(ȳ− ȳ0)TΣ −1
y (ȳ− ȳ0) = 0.496,

ν = max(νx,νy), ρx = ‖Σx −Σ 0
x ‖F = 1.561, ρy = ‖Σy −Σ 0

y ‖F = 0.972.

We then train the robust linear MPM and the robust linear MEMPM by these parameters and
obtain the robust MPM decision line (red dashed line), and the robust MEMPM decision line (blue
solid line), as seen in Figure 6(a). The lower bounds decrease to 87.3% for MPM and 93.2% for
MEMPM respectively, but the test accuracies increase to 98.0% for MPM and 100.0% for MEMPM.
Obviously, the lower bounds accord with the test accuracies.

Note that in the above, the robust MEMPM also achieves better performance than the robust
MPM. Moreover,νx andνy are not necessarily the same. To see the result of MEMPM whenνx

andνy are forced to be the same, we train the robust MEMPM again by setting the parameters as
νx = νy = ν as used in MPM. We obtain the corresponding decision line (black dash-dot line) as
seen in Figure 6(b). The lower bound decreases to 91.0% and the test accuracy decreases to 98.0%.
The above example indicates how the robust MEMPM clearly improves on the standard MEMPM
when a bias is incorporated by inaccurate plug-in estimates and also validatesthat νx need not be
equal toνy.
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Figure 6: An example inR2 demonstrates the results of robust versions of MEMPM and MPM.
Training points are indicated with black+’s for the classx and magenta�’s for the class
y. Test points are represented by blue×’s for the classx and by green o’s for the classy.
In (a), the robust MEMPM outperforms both MEMPM and the robust MPM.In (b), the
robust MEMPM withνx 6= νy outperforms the robust MEMPM withνx = νy.
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5.3 Evaluations of BMPM on the Heart-Disease Data Set

To demonstrate the advantages of the BMPM model in dealing with biased classification, we imple-
ment BMPM on the Heart-disease data set, where a different treatment fordifferent classes is nec-
essary. Thex class is associated with subjects with heart disease, whereas they class corresponds to
subjects without heart disease. Obviously, a bias should be consideredfor x, since misclassification
of an x case into the opposite class would delay the therapy and may have a higher risk than the
other way round. Similarly, we randomly partition data into 90% training and 10% test sets. Also,
the width parameter (σ) for the Gaussian kernel is obtained via cross validations over 50 random
partitions of the training set. We repeat the above procedures 50 times and report the average results.

By intentionally varyingβ0 from 0 to 1, we obtain a series of test accuracies, including thex
accuracy, TSAx, they accuracy TSAy for both the linear and Gaussian kernel. For simplicity, we
denote thex accuracy in the linear setting as TSAx(L), while others are similarly defined.

The results are summarized in Figure 7. Four observations are worth highlighting. First, in both
linear and Gaussian kernel settings, the smallerβ0 is, the higher the test accuracy forx becomes.
This indicates that a bias can indeed be embedded in the classification boundary for the important
classx by specifying a relatively smallerβ0. In comparison, MPM forces an equal treatment on
each class and thus is not suitable for biased classification. Second, the test accuracies fory andx
are strictly lower bounded byβ0 andα. This shows how a bias can be quantitatively, directly, and
rigorously imposed towards the important classx. Note that again, for other weight-adapting based
biased classifiers, the weights themselves lack accurate interpretations andthus cannot rigorously
impose a specified bias, i.e., they would try different weights for a specifiedbias. Third, when
given a prescribedβ0, the test accuracy forx and its worst-case accuracyα in the Gaussian kernel
setting are both greater than the corresponding accuracies in the linear setting. Once again, this
demonstrates the power of the kernelization. Fourth, we note thatβ0 actually contains an upper
bound, which is around 90% for the linear BMPM in this data set. This is reasonable. Observed
from (7), the maximumβ0, denoted asβ0m, is decided by settingα = 0, i.e.,

κ(β0m) = max
a6=0

1
√

aTΣya
s.t. aT(x−y) = 1.

It is interesting to note that whenβ0 is set to zero, the test accuracies fory in the linear and
Gaussian settings are both around 50% (see Figure 7(b)). This seeming “irrationality” is actually
reasonable. We will discuss this in the next section.

6. How Tight Is the Bound?

A natural question for MEMPM is, how tight is the worst-case bound? In thissection, we present a
theoretical analysis in addressing this problem.

We begin with a lemma proposed in Popescu and Bertsimas (2001).

sup
y∼(y,Σy)

Pr{y ∈ S} =
1

1+d2 , with d2 = inf
y∈S

(y−y)TΣ−1
y (y−y), (24)

whereS denotes a convex set.
If we defineS = {aTy ≥ b}, the above lemma is changed to:

sup
y∼{y,Σy}

Pr{aTy ≥ b} =
1

1+d2 , with d2 = inf
aTy≥b

(y−y)TΣ−1
y (y−y) .
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Figure 7: Bounds and real accuracies. Withβ0 varying from 0 to 1, the real accuracies are lower
bounded by the worst-case accuracies. In addition,α(G) is aboveα(L), which shows the
power of the kernelization.

By reference to (3), for a given hyperplane{a,b}, we can easily obtain that

β =
d2

1+d2 . (25)

Moreover, in Lanckriet et al. (2002b), a simple closed-form expression for the minimum dis-
tanced is derived:

d2 = inf
aTy≥b

(y−y)TΣ−1
y (y−y) =

max((b−aTy),0)2

aTΣya
. (26)

It is easy to see that when the decision hyperplane{a,b} passes the centery, d would be equal
to 0 and the worst-case accuracyβ would be 0 according to (25).

However, if we consider the Gaussian data (which we assume asy data) in Figure 8(a), a vertical
line approximatingy would achieve about 50% test accuracy. The large gap between the worst-case
accuracy and the real test accuracy seems strange. In the following, we construct an example of
one-dimensional data to show the inner rationality of this observation. We attempt to provide the
worst-case distribution containing the given mean and covariance, while a hyperplane passing its
mean achieves a real test accuracy of zero.

Consider one-dimensional datay consisting ofN− 1 observations with values asm and one
single observation with the value asσ

√
N + m. If we calculate the mean and the covariance, we

obtain:

y = m+
σ√
N

,

Σy =
N−1

N
σ2 .
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WhenN goes to infinity, the above one-dimensional data have the mean asm and the covariance as
σ. In this extreme case, a hyperplane passing the mean will achieve a zero test accuracy, which is
exactly the worst-case accuracy given the fixed mean and covariance as m andσ respectively. This
example demonstrates the inner rationality of the minimax probability machines.
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Figure 8: Three two-dimensional data sets with the same means and covariances but with different
skewness. The worst-case accuracy bound of (a) is tighter than that of (b) and looser than
that of (c).

To further examine the tightness of the worst-case bound in Figure 8(a), we varyβ from 0 to 1
and plot againstβ the real test accuracy that a vertical line classifies they data by using (25). Note
that the real accuracy can be calculated asΦ(z≤ d). This curve is plotted in Figure 9.

Observed from Figure 9, the smaller the worst-case accuracy is, the looser it is. On the other
hand, if we skew they data towards the left side, while simultaneously maintaining the mean and
covariance unchanged (see Figure 8(b)), an even bigger gap will begenerated whenβ is small;
similarly, if we skew the data towards the right side (see Figure 8(c)), a tighter accuracy bound
will be expected. This finding means that adopting up to the second order moments only may not
achieve a satisfactory bound. In other words, for a tighter bound, higher order moments such as
skewness may need to be considered. This problem of estimating a probability bound based on
moments is presented as the(n,k,Ω)-bound problem, which means “finding the tightest bound for
ann-dimensional variable in the setΩ based on up to thek-th moments.” Unfortunately, as proved
in Popescu and Bertsimas (2001), it is NP-hard for(n,k,Rn)-bound problems withk ≥ 3. Thus
tightening the bound by simply scaling up the moment order may be intractable in this sense. We
may have to exploit other statistical techniques to achieve this goal. This certainly deserves a closer
examination in the future.

7. On the Concavity of MEMPM

We address the issue of the concavity on the MEMPM model in this section. We will demonstrate
that, although MEMPM cannot generally guarantee its concavity, there is strong empirical evidence
showing that many real world problems demonstrate reasonable concavity inMEMPM. Hence, the
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Figure 9: Theoretical comparison between the worst-case accuracy and the real test accuracy for
the Gaussian data in Figure 8(a).

MEMPM model can be solved successfully by standard optimization methods, e.g., the linear search
method proposed in this paper.

We first present a lemma for the BMPM model.

Lemma 8 The optimal solution for BMPM is a strictly and monotonically decreasing functionwith
respect toβ0.

Proof Let the corresponding optimal worst-case accuracies onx beα1 andα2 respectively, when
β01 andβ02 are set to the acceptable accuracy levels fory in BMPM. We will prove that ifβ01 > β02,
thenα1 < α2.

This can be proved by considering the contrary case, i.e., we assumeα1 ≥α2. From the problem
definition of BMPM, we have:

α1 ≥ α2 =⇒ κ(α1) ≥ κ(α2)

=⇒ 1−κ(β01)
√

a1
TΣya1

√

a1
TΣxa1

≥ 1−κ(β02)
√

a2
TΣya2

√

a2
TΣxa2

, (27)

wherea1 anda2 are the corresponding optimal solutions that maximizeκ(α1) andκ(α2) respec-
tively, whenβ01 andβ02 are specified.

Fromβ01 > β02 and (27), we have

1−κ(β02)
√

a1
TΣya1

√

a1
TΣxa1

>
1−κ(β01)

√

a1
TΣya1

√

a1
TΣxa1

≥ 1−κ(β02)
√

a2
TΣya2

√

a2
TΣxa2

. (28)

On the other hand, sincea2 is the optimal solution of maxa
1−κ(β02)

√
aT Σya√

aT Σxa
, we have:

1−κ(β02)
√

a2
TΣya2

√

a2
TΣxa2

≥ 1−κ(β02)
√

a1
TΣya1

√

a1
TΣxa1

.
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This is obviously contradictory to (28).

From the sequential solving method of MEMPM, we know that MEMPM actually corresponds
to a one-dimensional line search problem. More specifically, it further corresponds to maximizing
the sum of two functions, namely,f1(β)+ f2(β),4 where f1(β) is determined by the BMPM opti-
mization andf2(β) = β. According to Lemma 8,f1(β) strictly decreases asβ increases. Thus it is
strictly pseudo-concave. However, generally speaking, the sum of a pseudo-concave function and
a linear function is not necessarily a pseudo-concave function and thuswe cannot assure that every
local optimum is the global optimum. This can be clearly observed in Figure 10. In this figure,f1
is pseudo-concave in all three sub-figures; however, the sumf1 + f2 does not necessarily lead to a
pseudo-concave function.
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Figure 10: The sum of a pseudo-concave function and a linear functionis not necessarily a concave
function. In (a),f1 + f2 is a concave function, however in (b) and (c) it is not.

Nevertheless, there is strong empirical evidence showing that for many “well-behaved” real
world classification problems,f1 is overall concave, which results in the concavity off1 + f2. This
is first verified by the data sets used in this paper. We shiftβ from 0 to the corresponding upper
bound and plotα againstβ in Figure 11. It is clearly observed that in all six data sets including
both kernel and linear cases, the curves ofα againstβ are overall concave. This motivates us to
look further into the concavity of MEMPM. As shown in the following, when twoclasses of data
are “well-separated,”f1 would be concave in the main “interest” region.

We analyze the concavity off1(β) by imagining thatβ changes from 0 to 1. In this process,
the decision hyperplane moves slowly fromy to x according to (25) and (26). At the same time,
α = f1(β) should decrease accordingly. More precisely, if we denotedx anddy respectively as the

4. For simplicity, we assumeθ as 0.5. Since a constant does not influence the concavity analysis, the factorof 0.5 is
simply dropped.
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Figure 11: The curves ofα againstβ ( f1) all tend to be concave in the data sets used in this paper.
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Mahalanobis distances thatx andy are from the associated decision hyperplane with a specifiedβ,
we can formulate the changing ofα andβ as

α → α−k1(dx)∆dx,

β → β+k2(dy)∆dy,

wherek1(dx) andk2(dy) can be considered as the changing rate ofα andβ when the hyperplane lies
dx distance far away fromx anddy distance far away fromy respectively. We consider the changing
of α againstβ, namely,f ′1:

f ′1 =
−k1(dx)∆dx

k2(dy)∆dy
.

If we considerdx and∆dy insensitively change against each other or change with a proportional
rate, i.e.,∆dx ≈ c∆dy (c is a positive constant) as the decision hyperplane moves, the above equation

can further be written asf ′1 = c−k1(dx)
k2(dy)

.

Lemma 9 (1) If dy ≥ 1/
√

3 or the correspondingβ ≥ 0.25, k2(dy) decreases as dy increases.
(2) If dx ≥ 1/

√
3 or the correspondingα ≥ 0.25, k1(dx) decreases as dx increases.

Proof Since(1) and(2) are very similar statements, we only prove(1). Note thatk2(d) is the first
order derivative of d2

1+d2 according to (25). We consider the first order derivative ofk2(d) or the

second order derivative ofd
2

1+d2 . It is easily verified that( d2

1+d2 )
′′ ≤ 0 whend ≥ 1/

√
3. This is also

illustrated in Figure 12. According to the definition of the second order derivative, we immediately
obtain the lemma. Note thatd ≥ 1/

√
3 corresponds toβ ≥ 0.25. Thus the condition can also be

replaced byβ ≥ 0.25.
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Figure 12: The curve ofd2/(1+d2). This function is concave whend ≥ 1/
√

3.

In the above procedure,dy, β increase anddx, α decrease, as the hyperplane moves towardsx.
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Therefore, according to Lemma 9,k1(dx) increases whilek2(dy) decreases whenα,β ∈ [0.25, 1).
This shows thatf ′1 is getting smaller as the hyperplane moves towardsx. In other words,f ′′1 would
be less than 0, and it is concave whenα,β∈ [0.25, 1). It should be noted that in many well-separated
real world data sets, there is a high possibility that the optimalα andβ will be greater than 0.25,
since to achieve good performance, the worst-case accuracies are naturally required to be greater
than a certain small amount, e.g., 0.25. This is observed in the data sets used in the paper. All the
data sets except the Pima data attain their optima satisfying this constraint. For Pima,the overall
accuracy is relatively lower, which implies two classes of data in this data set appear to overlap
substantially with each other.5

An illustration can also be seen in Figure 13. We generate two classes of Gaussian data with
x = [0, 0]T , y = [L, 0]T , andΣx = Σy = [1, 0;0, 1]. The prior probability for each data class is set
to an equal value 0.5. We plot the curves off1(β) and f1(β)+ β whenL is set to different values.
It is observed that when two classes of data substantially overlap with eachother, for example in
Figure 13(a) withL = 1, the optimal solution of MEMPM lies in the small-value range ofα andβ,
which is usually not concave. On the other hand, (b), (c), and (d) show that when two classes of
data are well-separated, the optimal solutions lie in the region withα,β ∈ [0.25, 1), which is often
concave.
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Figure 13: An illustration of the concavity of the MEMPM. Subfigure (a) shows that when two
classes of data overlap substantially with each other, the optimal solution of MEMPM
lies in the small-value range ofα andβ, which is usually not concave. (b), (c), and (d)
show that when two classes of data are well-separated, the optimal solutionslie in the
region withα,β ∈ [0.25, 1), which is often concave.

5. It is observed, even for Pima, the proposed solving algorithm is still successful, sinceα is approximately linear as
shown in Figure 11. Moreover, due to the fact that the slope ofα is slightly greater than−1, the final optimum
naturally leadsβ to achieve its maximum.
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Note that, in the above, we make an assumption that as the decision hyperplanemoves,dx anddy

change at an approximately fixed proportional rate. From the definition ofdx anddy, this assumption
implies thata, the direction of the optimal decision hyperplane, is insensitive toβ. This assumption
does not hold in all cases; however, observed from the geometrical interpretation of MEMPM, for
those data with isotropic or not significantly anisotropicΣx andΣy, a would indeed be insensitive to
β.

We summarize the above analysis in the following proposition.

Proposition 10 Assuming (1) two classes of data are well-separated and (2) dx and dy change at
an approximately fixed proportional rate as the optimal decision hyperplane (associated with a
specifiedβ) moves, the one-dimensional line search problem of MEMPM is often concave in the
range ofα,β ∈ [0.25,1) and will often attain its optimum in this range. Therefore the proposed
solving method leads to a satisfactory solution.

Remarks. As demonstrated in the above, although the MEMPM is often overall concavein real
world tasks, there exist cases that the MEMPM optimization problem is not concave. This may lead
to a local optimum, which may not be the global optimum. In this case, we may need to choose
the initial starting point carefully. In addition, the physical interpretation ofβ as the worst-case
accuracy may make it relatively easy to choose a suitable initial value. For example, we can set the
initial value by using the information obtained from prior domain knowledge.

8. Limitations and Future Work

In this section, we present the limitations and future work. First, although MEMPM achieves better
performance than the MPM, its sequential optimization of the Biased Minimax Probability Machine
may cost more training time than MPM. Although in pattern recognition tasks, especially in off-line
classification, effectiveness is often more important than efficiency, expensive time-cost presents
one of the main limitations of the MEMPM model, in particular for large scale data setswith mil-
lions of samples. To solve this problem, one possible direction is to eliminate those redundant points
that make less contribution to the classification. In this way, the problem dimension (in the kernel-
ization) would be greatly decreased and this may help in reducing the computational time required.
Another possible direction is to exploit some techniques to decompose the Grammatrix (as is done
in SVM) and to develop some specialized optimization procedures for MEMPM.Recently, we also
note that Strohmann et al. (2004) have proposed a speed-up method by exploiting the sparsity of
MPM. Undoubtedly, speeding up the algorithm will be a highly worthy topic in thefuture.

Second, as a generalized model, MEMPM actually incorporates some other variations. For ex-
ample, when the prior probability (θ) cannot be estimated reliably (e.g., in sparse data), maximizing
α + β, namely the sum of the accuracies or the difference between true positiveand false positive,
would be considered. This scheme is widely used in the pattern recognition field, e.g., in medical
diagnosis (Grzymala-Busse et al., 2003) and in graph detection, especially line detection and arc
detection, where it is called the Vector Recovery Index (Liu and Dori, 1997; Dori and Liu, 1999).
Moreover, when there are domain experts at hand, a variation of MEMPM, namely, the maximiza-
tion of Cxα +Cyβ may be used, whereCx (Cy) is the cost of a misclassification ofx (y) obtained
from experts. Exploring these variations in some specific domains is thus a valuable direction in the
future.
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Third, we have proposed a general framework for robustly estimating model input parameters,
namely, the means and covariances. Based on this framework, estimating the input vector or matrix
parameters is changed to finding four adapting scale parameters, i.e.,νx,νy,ρx, andρy. While we
may obtain these four parameters by conducting cross validation in small data sets, it is computa-
tionally hard to do this in large scale data sets. Although one possible way to determine these values
is based on the central limit theorem or the resampling method (Lanckriet et al.,2002b), it is still
valuable to investigate other techniques in the future.

Fourth, Lanckriet et al. (2002b) have built up a connection between MPM and SVM from the
perspective of the margin definition, i.e., MPM corresponds to finding the hyperplane with the max-
imal margin from the class center. Nevertheless, some deeper connectionsneed to be investigated,
e.g., how is the bound of MEMPM related to the generalization bound of SVM? More recently,
Huang et al. (2004a) have disclosed the relationship between them from either a local or a global
viewpoint of data. It is particularly useful to look into these links and explore their further connec-
tions in the future.

9. Conclusion

The Minimax Probability Machine achieves performance in classification tasksthat is comparable
to that of a state-of-the-art classifier, the Support Vector Machine. This model attempts to minimize
the worst-case probability of misclassification of future data points. However, its equality constraint
on the worst-case accuracies for two classes makes it unnecessarily minimize the error rate in the
worst-case setting and thus cannot assure the optimal classifier in this sense.

In this paper, we have proposed a generalized Minimax Probability Machine, called the Mini-
mum Error Minimax Probability Machine, which removes the equality constraint on the worst-case
accuracies for two classes. By minimizing the upper bound of the Bayes error of future data points,
our approach derives the distribution-free Bayes optimal hyperplane inthe worst-case setting. More
importantly, we have shown that the worst-case Bayes optimal hyperplane derived by MEMPM be-
comes the true Bayes optimal hyperplane when certain conditions are satisfied, in particular, when
Gaussianity is assumed for the data. We have evaluated our algorithm on bothsynthetic data sets
and real world benchmark data sets. The performance of MEMPM is demonstrated to be very
promising. Moreover, the validity of our proposition, i.e., the minimum error rateMinimax Prob-
ability Machine is not certain to achieve the same worst-case accuracies fortwo classes, has also
been verified by the experimental results.
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Abstract
In this paper, we provide new complexity results for algorithms that learn discrete-variable Bayesian
networks from data. Our results apply whenever the learningalgorithm uses a scoring criterion that
favors the simplest structure for which the model is able to represent the generative distribution ex-
actly. Our results therefore hold whenever the learning algorithm uses a consistent scoring criterion
and is applied to a sufficiently large dataset. We show that identifying high-scoring structures is NP-
hard, even when any combination of one or more of the following hold: the generative distribution
is perfect with respect to some DAG containing hidden variables; we are given an independence
oracle; we are given an inference oracle; we are given an information oracle; we restrict potential
solutions to structures in which each node has at mostk parents, for allk≥ 3.

Our proof relies on a new technical result that we establish in the appendices. In particular,
we provide a method for constructing the local distributions in a Bayesian network such that the
resulting joint distribution is provably perfect with respect to the structure of the network.
Keywords: learning Bayesian networks, search complexity, large-sample data, NP-Hard

1. Introduction

Researchers in the machine-learning community have generally accepted that without restrictive
assumptions, learning Bayesian networks from data is NP-hard, and consequently a large amount of
work in this community has been dedicated to heuristic-search techniques to identify good models.
A number of discouraging complexity results have emerged over the last fewyears that indicate that
this belief is well founded. Chickering (1996) shows that for a generaland widely used class of
Bayesian scoring criteria, identifying the highest-scoring structure fromsmall-sample data is hard,
even when each node has at most two parents. Dasgupta (1999) showsthat it is hard to find the
polytree with highest maximum-likelihood score. Although we can identify the highest-scoring
tree structure using a polynomial number of calls to the scoring criterion, Meek (2001) shows that
identifying the bestpath structure—that is, a tree in which each node has degree at most two—
is hard. Bouckaert (1995) shows that for domains containing only binary variables, finding the
parameter-minimal structure that is consistent with an independence oracle ishard; we discuss this
result in more detail below. Finally, Srebro (2001) shows that it is hard to find Markov networks
with bounded tree width that maximize the maximum-likelihood score.

In this paper, we are interested in the large-sample version of the learning problem considered
by Chickering (1996). The approach used by Chickering (1996) to reduce a known NP-complete
problem to the problem of learning is to construct a complicated prior networkthat defines the
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Bayesian score, and then create a dataset consisting of a single record. Although the result is
discouraging, the proof technique leaves open the hope that, in scenarios where the network scores
are more “well behaved”, learning is much easier.

As the number of records in the observed data grows large, most scoringcriteria will agree on the
same partial ranking of model structures; in particular, anyconsistentscoring criterion will—in the
limit of large data—favor a structure that allows the model to represent the generative distribution
over a structure that does not, and when comparing two structures that both allow the model to
represent the generative distribution, will favor the structure that results in fewer model parameters.
Almost all scoring criteria used in practice are consistent, including (1) anyBayesian criterion that
does not rule out model structures apriori, (2) the minimum-description-length criterion, and (3) the
Bayesian-information criterion.

In this paper, we consider the scenario when a learning algorithm is using aconsistent scoring
criterion with a large dataset. We assume that the learning algorithm has directaccess to the gener-
ative distribution itself; the resulting learning problem is to identify the simplest DAG that allows
the resulting Bayesian network to represent the generative distribution exactly. There are a number
of algorithms that have been developed for this large-sample learning problem. The SGS algorithm
(Spirtes, Glymour and Scheines, 2000), the GES algorithm (Meek, 1997;Chickering, 2002), and
the KES algorithm (Nielsen, Kŏcka and Pẽna, 2003) all identify the optimal DAG if there exists
a solution in which all independence and dependence relationships implied bythat structure hold
in the generative distribution (that is, the generative distribution isDAG perfectwith respect to the
observable variables). Unfortunately, none of these algorithms run in polynomial time in the worst
case.

With some restrictive assumptions, however, we can accomplish large-samplelearning effi-
ciently. If (1) the generative distribution is DAG perfect with respect to theobservable variables
and (2) we know that there exists a solution in which each node has at mostk parents (for some
constantk), then we can apply the SGS algorithm to identify the best network structure ina poly-
nomial number of independence tests. In particular, because we know thevaluek, we can limit the
worst-case number of independence tests used by the algorithm. Alternatively, if (1) the generative
distribution is DAG perfect with respect tosomeDAG that might contain vertices corresponding to
hidden variables, and (2) we are given a total ordering over the variables that is consistent with the
best structure, then we can find the best DAG using a polynomial number ofcalls to the scoring
criterion by applying a version of the GES algorithm that greedily adds and then deletes the parents
of each node.

Unfortunately, the assumptions needed for these special-case efficientsolutions are not likely to
hold in most real-world scenarios. In this paper, we show that in general—without the assumption
that the generative distribution is DAG perfect with respect to the observables and without the
assumption that we are given a total ordering—large-sample learning is NP-hard. We demonstrate
that learning is NP-hard even when (1) the generative distribution is perfect with respect to a DAG
(which contains hidden variables), (2) we are given an independenceoracle, (3) we are given given
an inference oracle, and/or (4) we are given an information oracle. Weshow that these results also
apply to the problem of identifying high-scoring structures in which each node has at mostk parents,
for all k≥ 3.

A secondary contribution of this paper is a general result about Bayesian networks: in the
appendices of this paper, we identify two properties of the local distributionsin a Bayesian network
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that are sufficient to guarantee that all independence and dependence facts implied by the structure
also hold in the joint distribution. Our NP-hard proof relies on this result.

As an extension of our main result, we consider the case in which we are given an independence
oracle, and we show in Theorem 15 that the resulting learning problem remains NP-hard. This
theorem extends the independence-oracle result of Bouckaert (1995) in a number of ways. Perhaps
most important, we place no restriction on the number of states for the (discrete) variables in the
domain, which proves the conjecture in Bouckaert (1995) that learning with an independence oracle
in non-binary domains is NP-hard. Another extension we make has to do with assumptions about
the generative distribution. In the elegant reduction proof of Bouckaert (1995), the constructed inde-
pendence oracle is consistent with a particular generative distribution thatis not perfect with respect
to any DAG. Although this distribution has properties that yield a much simpler reduction than our
own, the results of this paper apply under the common assumption in the machine-learning literature
that the generative distribution is, in fact, perfect with respect to some DAG. Furthermore, the DAG
we use in the reduction, which contains hidden variables, has a sparse dependency structure: each
node has at most two parents. Finally, our result extends the Bouckaert(1995) oracle-learning result
to scenarios where we want to identify sparse (i.e., parent-count limited) model structures that are
consistent with an oracle.

2. Background

In this section, we provide background material relevant to the rest of thepaper. We denote a
variable by an upper case token (e.g.,A,Bi ,Y) and a state or value of that variable by the same
token in lower case (e.g.,a,bi ,y). We denote sets with bold-face capitalized tokens (e.g.,A,B) and
corresponding sets of values by bold-face lower case tokens (e.g.,a,b). Finally, we use calligraphic
tokens (e.g.,B,G ) to denote Bayesian networks and graphs.

In this paper, we concentrate on Bayesian networks for a set of variables X = {X1, . . . ,Xn},
where eachXi ∈ X has a finite number of states. ABayesian networkfor a set of variablesX
is a pair(G ,θG ) that defines a joint probability distribution overX. G = (V,E) is an acyclic
directed graph—orDAG for short—consisting of (1) nodesV in one-to-one correspondence with
the variablesX, and (2) directed edgesE that connect the nodes.θG is a set of parameter values
that specify the conditional probability distributions that collectively define the joint distribution.

We assume that each conditional probability distribution is a full table. That is,for each variable
there is a separate (unconstrained) multinomial distribution given every distinct configuration of the
parent values. For a variableXi with r i states,r i−1 parameters are both necessary and sufficient to
specify an arbitrary multinomial distribution overXi . Thus, assuming that there areqi distinct parent
configurations forXi , the conditional distribution forXi will contain (r −1) ·qi parameter values.
We also assume that the number of states for each variable is some constant that does not depend
on the number of variables in the domain.

Learning a Bayesian network from data requires both identifying the modelstructureG and
identifying the corresponding set of model parameter valuesθG . Given a fixed structure, however,
it is straightforward to estimate the parameter values. As a result, research on the problem of
learning Bayesian networks from data is focused on methods for identifying one or more “good”
DAG structures from data.

All independence constraints that necessarily hold in the joint distribution represented by any
Bayesian network with structureG can be identified by the by thed-separationcriterion of Pearl
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(1988) applied to toG . In particular, two nodesX andY are said to be d-separated in a DAGG
given a set of nodesO if and only if there is noO-active pathin G betweenX andY; anO-active
path is a simple path for which each nodeZ along the path either (1) has converging arrows andZ
or a descendant ofZ is in O or (2) does not have converging arrows andZ is not inO. By simple,
we mean that the path never passes through the same node twice. If two nodes are not d-separated
given some set, we say that they ared-connectedgiven that set. We useX⊥⊥GY|Z to denote the
assertion that DAGG imposes the constraint—via d-separation—that for all valuesz of the setZ,
X is independent ofY givenZ = z. For a probability distributionp(·), we useX⊥⊥pY|Z to denote
the assertion that for all valuesz of the setZ, X is independent ofY givenZ = z in p.

We say that a distributionp(X) is Markov with respect to a DAGG if X⊥⊥GY|Z implies

X⊥⊥pY|Z. Similarly, we say thatp(X) is faithful with respect toG if X⊥⊥pY|Z impliesX⊥⊥GY|Z.
If p is both Markov and faithful with respect toG , we say thatp is perfectwith respect toG . Note
that if p is faithful with respect toG , thenX 6⊥⊥GY|Z implies thatthere existssomex, y andz such

that p(x,y|z) 6= p(x|z)p(y|z); there may be other values for which equality holds. We say thatp(X)
is DAG perfectif there exists a DAGG such thatp(X) is perfect with respect toG .

We say that a DAGG includesa distributionp(X)—and thatp(X) is included byG—if the
distribution can be represented by some Bayesian network with structureG . Because we are only
considering Bayesian networks that have complete tables as conditional distributions,G includes
p(X) if and only if p(X) is Markov with respect toG . We say that two DAGsG and G ′ are
equivalentif the two sets of distributions included byG andG ′ are the same. Due to the complete-
table assumption, an equivalent definition is thatG andG ′ are equivalent if they impose the same
independence constraints (via d-separation). For any DAGG , we say an edgeX→Y is coveredin G
if X andY have identical parents, with the exception thatX is not a parent of itself. The significance
of covered edges is evident from the following result:

Lemma 1 (Chickering, 1995) Let G be any DAG, and letG ′ be the result of reversing the edge
X→Y in G . ThenG ′ is a DAG that is equivalent toG if and only if X→Y is covered inG .

As described above, when a Bayesian network has complete tables, the number of parameters
is completely determined by its DAG and the number of states for each variable in the domain.
To simplify presentation, we assume that the number of states for the variable corresponding to
each vertex in a DAG is available implicitly, and therefore we can define the number of parameters
associated with a DAG without reference to the corresponding state counts. In particular, we say
that a DAGsupportsa number of parametersk when all Bayesian networks with that structure
(defined over a particular domain) containk parameters. The following result follows immediately
from Lemma 1 for Bayesian networks with complete tables:

Lemma 2 (Chickering, 1995) If G andG ′ are equivalent, then they support the same number of
parameters.

We say that DAGH includesDAG G if every distribution included byG is also included by
H . As above, an alternative but equivalent definition—due to the assumptionof complete-table
Bayesian networks—is thatH includesG if every independence constraint implied byH is also
implied byG . Note that we are using “includes” to describe the relationship between a DAG and a
particular distribution, as well as a relationship between two DAGs.
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Theorem 3 (Chickering, 2002) If H includesG , then there exists a sequence of single edge
additions and covered edge reversals inG such that (1) after each addition and reversal,G remains
a DAG, (2) after each addition and reversal,H includesG , and (3) after all additions and reversals,
G = H .

The “converse” of Theorem 3 will also prove useful.

Lemma 4 If F can be transformed intoG by a series of single edge additions and covered edge
reversals, such that after each addition and reversalF remains a DAG, thenG includesF .

Proof: Follows immediately from Lemma 1 and from the fact that the DAG that results fromadding
a single edge toF necessarily includesF . �

3. Main Results

In this section, we provide the main results of this paper. We first define the decision problems that
we use to prove that learning is NP-hard. As discussed in Section 1, in the limitof large data, all
consistent scoring criteria rank network structures that include the generative distribution over those
that do not, and among those structures that include the generative distribution, the criteria rank
according to the number of parameters supported—with simpler structures receiving better scores.
Thus, a natural decision problem corresponding to large-sample learning is the following:

LEARN
INSTANCE: Set of variablesX = {X1, . . . ,Xn}, probability distributionp(X), and constant param-
eter boundd.
QUESTION: Does there exist a DAG that includesp and supports≤ d parameters?

It is easy to see that if there exists an efficient algorithm for learning the optimal Bayesian-
network structure from large-sample data, we can use that algorithm to solve LEARN: simply learn
the best structure and evaluate the number of parameters it supports. By showing that LEARN
is NP-hard, we therefore immediately conclude that the optimization problem ofidentifying the
optimal DAG is hard as well. We show that LEARN is NP-hard using a reductionfrom a restricted
version of the NP-complete problem FEEDBACK ARC SET. The general FEEDBACK ARC SET
problem is stated by Garey and Johnson (1979) as follows:

FEEDBACK ARC SET
INSTANCE: Directed graphG = (V,A), positive integerk≤ |A|.
QUESTION: Is there a subsetA′ ⊂ A with |A′| ≤ k such thatA′ contains at least one arc from every
directed cycle inG?

Gavril (1977) shows that FEEDBACK ARC SET remains NP-complete for directed graphs in
which no vertex has a total in-degree and out-degree more than three. Werefer to this restricted
version as DEGREE-BOUNDED FEEDBACK ARC SET, orDBFASfor short.

The remainder of this section is organized as follows. In Section 3.1, we describe a polynomial-
time reduction from instances of DBFAS to instances of LEARN. In Section 3.2, we describe the
main result of the appendices upon which Section 3.3 relies; in Section 3.3, weprove that there is
a solution to an instance of DBFAS if and only if there is a solution to the instance of LEARN that
results from the reduction, and therefore we establish that LEARN is NP-hard. In Section 3.4, we
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extend our main result to the case when the learning algorithm has access to various oracles, and
to the case when there is an upper bound on the number of parents for each node in the solution to
LEARN.

For the remainder of this paper we assume—without loss of generality—that in any instance of
DBFAS, no vertex has in-degree or out-degree of zero; if such a node exists, none of its incident
edges can participate in a cycle, and we can remove that node from the graph without changing the
solution.

3.1 A Reduction from DBFAS to LEARN

In this section, we show how to reduce an arbitrary instance of DBFAS into acorresponding instance
of LEARN. To help distinguish between elements in the instance of DBFAS and elements in the
instance of LEARN, we will subscript the corresponding symbols withD andL, respectively. In
particular, we useGD = (VD,AD) andkD to denote the graph and arc-set bound, respectively, from
the instance of DBFAS; from this instance, we create an instance of LEARNconsisting of a set of
variablesXL, a probability distributionpL(XL), and a parameter bounddL.

For eachVi ∈ VD in the instance of DBFAS, we create a corresponding nine-state discrete vari-
ableVi for XL. For each arcVi → Vj ∈ AD in the instance of DBFAS, we create seven discrete
variables forXL: Ai j ,Bi j ,Ci j ,Di j ,Ei j ,Fi j ,Gi j . VariablesAi j , Di j andGi j have nine states, variables
Bi j , Ei j andFi j have two states, and variableCi j has three states. There are no other variables in
XL for the instance of LEARN. The probability distributionpL(XL) for the instance of LEARN is
specified using a Bayesian network(H L,θH L

). The model is defined over the variables inXL,
along with, for each arcVi →Vj ∈ AD from the instance of DBFAS, a single “hidden” binary vari-
ableHi j . Let HL denote the set of all such hidden variables. The distributionpL(XL) is defined by
summing the distributionpL(HL,XL), defined by(H L,θH L

), over all of the variables inHL. The

structureH L is defined as follows. For each arcVi →Vj ∈ AD in the instance of DBFAS, the DAG
contains the edges shown in Figure 1. The number of states for each nodein the figure is specified
in parentheses below the node.

V
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V
j

G
ij

F
ij

E
ij

D
ij

C
ij

B
ij

A
ij

H
ij

(9)

(9)

(9)

(9)

(9)

(2) (2)

(2)

(2)

(3)

Figure 1: Edges inH L corresponding to each arcVi →Vj ∈ AD from the instance of DBFAS. The
number of states for each node is given in parentheses below the node.

For an example, Figure 2a shows an instance of DBFAS, and Figure 2b shows the resulting
structure ofH L.
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Figure 2: An example of the structureH L that results from the reduction from a specific instance
of DBFAS: (a) an instance of DBFAS consisting of three nodesV1, V2 andV3 and (b) the
corresponding structureH L.

We now specify the local probability distributions inθH L
. Let rX denote the number of states

of X, let PaX denote the set of parents ofX in H L, and letNNZ(paX) denote the number of values
in paX that arenotequal to zero. Then for each nodeX in H L, the local probability distribution for
X is defined as follows:

p(X = x|PaX = paX) =



























































1
16 if x = 0 andNNZ(paX) = 0

1
(rX−1)

15
16 if x 6= 0 andNNZ(paX) = 0

1
64 if x = 0 andNNZ(paX) = 1

1
(rX−1)

63
64 if x 6= 0 andNNZ(paX) = 1

1
128 if x = 0 andNNZ(paX) = 2

1
(rX−1)

127
128 if x 6= 0 andNNZ(paX) = 2.

(1)

Because each node inH L has at most two parents, the above conditions define every local distribu-
tion in θH L

.
Finally, we define the constantdL in the instance of LEARN. Every node inGD has either

exactly one or exactly two parents because, in any instance of DBFAS, thetotal degree of each node
is at most three and by assumption no node has an in-degree or an out-degree of zero. LettD denote
the number of nodes inGD from the instance of DBFAS that have exactly two in-coming edges;
similarly, let oD = |VD|− tD be the number of nodes that have exactly one in-coming edge. Then
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we have
dL = 186|AD|+18kD +16(|AD|−kD)+16oD +32tD. (2)

We now argue that the reduction is polynomial. It is easy to see that we can specify the structure
H L and the bounddL in polynomial time; we now argue that we can specify all of the parameter
valuesθH L

in polynomial time as well. Because each node inH L has at most two parents, each
corresponding conditional-probability table contains a constant number ofparameters. Thus, as
long as each parameter is represented using number of bits that is polynomialin the size of the
instance of DBFAS, the parametersθH L

can be written down in polynomial time. Each node has

either two, three, or nine states, and thus it follows from the specification ofp(X = x|PaX = paX)
in Equation 1 that each parameter is a fraction whose denominator is a power of two that can never
exceed 1024 (i.e.,(9−1)×128). Thus, when using a straight-forward binary representation forthe
parameter values, we can represent each such value exactly using at most ten (i.e., log21024) bits.
Thus we conclude that the entire reduction is polynomial.

3.2 Specifying a Perfect Distribution

In our reduction from DBFAS to LEARN in the previous section, we specified the probability
distribution pL(XL) using the Bayesian network(H L,θH L

). As we shall see in Section 3.3, our

proof that LEARN is NP-hard requires that the distributionpL(HL,XL) is perfect with respect to
the structureH L. In this section, we discuss the result from the appendices that guarantees that the
local distributions defined by Equation 1 lead to an appropriate joint distribution.

Our results on perfectness are closely related to work on qualitative beliefnetworks (QBNs),
which are studied by (e.g.) Wellman (1990) and Druzdzel and Henrion (1993). In the appendices,
we consider two properties of local probability distributions: one is related tothe positive-influence
property of QBNs, and the other is related to the positive-product-synergy property of QBNs. For
a rigorous definition of these QBN concepts, see Druzdzel and Henrion(1993). Roughly speaking,
a distribution has the positive-influence property if observing higher values of a parent node cannot
decrease the probability of observing higher values of the target node when all other parent values
are fixed. The positive-product-synergy property dictates how changes in the values for apair of
parents affects the probability of the target node, and is closely related to the function property
multivariate total positivity of order twoin the mathematics community (see Karlin and Rinott,
1980). The two QBN properties imposenon-strictinequality constraints. For example, if the local
distribution for a nodeY has the positive-influence property, then increasing the value of one ofits
parents does not necessarily increase the probability ofY; it is instead constrained to not decrease.
The positive-product-synergy property imposes an analogous non-strict inequality constraint.

In the appendices, we define strict versions of the QBN properties for aspecial class of distribu-
tions. The main result of the appendices (Lemma 17) is that for any Bayesiannetwork in which each
local distribution has both of our properties, the joint distribution is necessarily perfect with respect
to the network structure. The following result provides a prescription forconstructing distributions
for which both our properties hold:

Lemma 5 Let (G ,θG ) be a Bayesian network, let rX denote the number of states of node X, let

PaX denote the set of parents of node X inG , let NNZ(paX) denote the number of non-zero elements
in the setpaX, and letαX be a constant satisfying0 < αX < 1. If all of the local distributions inθG
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are defined as

p(X = x|PaX = paX) =







αF(paX)
X if x = 0
1

(rX−1)

(

1−αF(paX)
X

)

otherwise,
(3)

where

F(paX) = 2−
1
2

NNZ(paX)

,

then the distribution defined by(G ,θG ) is perfect with respect toG .

The local distributions defined by Equation 1 are simply specializations of Equation 3 where
αX = 1

16 for everyX. Thus, the following corollary follows immediately from Lemma 5:

Corollary 6 The distribution pL(HL,XL) resulting from the reduction is perfect with respect toH L.

3.3 Reduction Proofs

In this section, we prove LEARN is NP-hard by demonstrating that there is a solution to the instance
of DBFAS if and only if there is a solution to the instance of LEARN that results from the reduction.
In the results that follow, we often consider sub-graphs of solutions to LEARN that correspond
only to those nodes that are “relevant” to a particular arc in the instance of DBFAS. Therefore, to
simplify the discussion, we use{Vi ,Vj} edge componentto refer to a sub-graph defined by the nodes
{Vi ,Ai j ,Bi j ,Ci j ,Di j ,Ei j ,Fi j ,Gi j ,Vj}. We useedge componentwithout reference to a particularVi

andVj when an explicit reference is not necessary. Figure 3, which is key to the results that follow,
shows two configurations of the edges in an edge component.
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(a) (b)

Figure 3: Two configurations of the edges in an edge component.

We first prove a preliminary result that is used in both of the main proofs of this section. Re-
call thatH L contains an additional “hidden” nodeHi j within each edge component. We will be
considering active paths inH L, but are only concerned about those in which the endpoints are in
XL and for which noHi j is in the conditioning set; these active paths correspond to dependencies
that exist within the (marginalized) distributionpL(XL). To simplify presentation, we define aXL-
restrictedactive path to denote such an active path. In this and later results, we will demonstrate
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that one DAGF 1 includes another DAGF 2 by showing that for any active path inF 2, there exists
a corresponding (i.e., same endpoints and same conditioning set) active pathin F 1.

Lemma 7 Let pL(XL) be the distribution defined for the instance of LEARN in the reduction, and
let F be any DAG defined overXL such that each edge component inF contains the edges in either
Figure 3a or in Figure 3b. ThenF includes pL(XL).

Proof: Let H L be the DAG definingpL(XL) in the reduction. We prove thatF includespL(XL)
by demonstrating that for everyXL-restricted active path inH L, there exists a corresponding active
path inF . To do this, we construct an additional modelH

′ that includesH L—and consequently
H
′ can representpL(XL) exactly—such thatXL-restricted active paths inH ′ are easily mapped to

their corresponding active paths inF .
We createH

′ from H L as follows. For eachi and j, if the edge component inF is in the
configuration shown in Figure 3a, we add the edgeEi j → Hi j to H and then reverse the (now
covered) edgeHi j → Fi j . Similarly, if the edge component inF is in the configuration shown in
Figure 3b, we add the edgeBi j → Hi j to H and then reverse the edgeHi j → Ci j . The resulting
components inH ′ are shown in Figure 4a and Figure 4b, respectively. Because we createdH

′ by
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Figure 4: Edges inH ′ corresponding to the edge components in Figure 3

edge additions and covered edge reversals, we know by Lemma 4 thatH
′ includesH L. It is now

easy to see that anyXL-restricted active path inH ′ has a corresponding active path inF : simply
replace any segmentX→ Hi j →Y in the path by the corresponding edgeX→Y from F , and the
resulting path will be active inF . �

Theorem 8 If there is a solutionA′D to the given instance of DBFAS with|A′D| ≤ kD, then there is a
solutionF L to the instance of LEARN with≤ dL parameters.

Proof: We create a solution DAGF L as follows. For every arcVi → Vj ∈ A′D in the DBFAS
solution,F L contains the edges shown in Figure 3a. For the remaining arcsVi → Vj that are not
in A′D, F L contains the edges shown in Figure 3b.F L contains no other edges. First we argue
that F L is acyclic. Each{Vi ,Vj} edge component inF L is itself acyclic, and contains a directed
path fromVi to Vj if and only if the corresponding arcVi →Vj ∈ AD from the instance of DBFAS
is not in A′D; if the corresponding arc from the instance of DBFAS is inA′D, F L contains neither
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a directed path fromVi to Vj , nor a directed path fromVj to Vi that is contained within the edge
component. Therefore, for any hypothetical cycle inF L, there would be a corresponding cycle
in GD that passed entirely through arcs not inA′D, which is impossible assumingA′D is a solution
to DBFAS. From Lemma 7, we know thatF L includespL(XL). Now we derive the number of
parameters supported byF L. Within each edge component, the parents forAi j , Bi j , Di j , Ei j and
Gi j are the same regardless of whether or not the arc is inA′D; it is easy to verify that for each edge
component, the local distributions for these nodes contribute a total of 186 parameters. For each arc
Vi →Vj ∈ A′D, the corresponding nodesCi j andFi j contribute a total of 16+2 = 18 parameters; for
each arcVi→Vj 6∈ A′D, the nodesCi j andFi j contribute a total of 4+12= 16 parameters. For every
nodeVi ∈ VD in the instance of DBFAS that has exactly two parents, the correspondingVi ∈ XL in
the instance of LEARN will also have two parents. Similarly, for every nodeVi ∈ VD with exactly
one parent, the correspondingVi ∈ XL has exactly one parent. By construction ofF L, every parent
node for anyVi ∈ XL has two states (and is equalFji for some j), and therefore because each node
Vi ∈XL has nine states, the total number of parameters used in the local distributions for these nodes
is 16oD +32tD. Thus, we conclude that the number of parameters inF is exactly

186|AD|+18|A′D|+16(|AD|− |A′D|)+16oD +32tD.

Because|A′D| ≤ kD, we conclude from Equation 2 that the number of parameters inF L is less than
or equal todL, and thusF L is a valid solution to the instance of LEARN.�

Theorem 9 If there is a solutionF L to the instance of LEARN with≤ dL parameters, then there is
a solution to the given instance of DBFAS with|A′D| ≤ kD.

Proof: Given the solutionF L, we create a new solutionF L
′ as follows. For every pair(Vi ,Vj)

corresponding to an edgeVi→Vj ∈ AD in the instance of DBFAS, if there is no directed path inF L

from Vi to Vj , then the corresponding edge component inF L
′ contains the edges shown in Figure

3a. Otherwise, when there is at least one directed path inF L from Vi to Vj , the corresponding edge
component inF L

′ contains the edges shown in Figure 3b. By construction,F L
′ will contain a cycle

only if F L contains a cycle, and consequently we conclude thatF L
′ is a DAG. From Lemma 7, we

know thatF L
′ includespL(XL).

In the next two paragraphs, we argue thatF L
′ does not support more parameters than doesF L.

Consider the DAGF 0 that is identical toF L
′, except that for alli and j, the only parent ofCi j is

Bi j and the only parent ofFi j is Ei j (see Figure 5). BecauseF 0 is a subgraph ofF L
′, any active
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Figure 5: Edges within each edge component ofF 0

path inF 0 must have a corresponding active path inF L
′, and thus we conclude thatF L

′ includes

1297



CHICKERING, HECKERMAN AND MEEK

F 0. The original solutionF L also includesF 0 by the following argument:F 0 is a strict sub-graph
of H L (F 0 contains a subset of the edges and noHi j nodes), and thus any active path inF 0 has a
correspondingXL-restricted active path inH L; becauseH L is perfect with respect to the distribution
pL(HL,XL) defined by(H L,θH L

) (Corollary 6), we know that any suchXL-restricted active path

in H L corresponds to a dependence inpL(XL), and thus, becauseF L includespL(XL), there must
be a corresponding active path inF L.

From Theorem 3, we know that there exists a sequence of edge additions and covered edge
reversals that transformsF 0 into F L, and another sequence of edge additions and covered edge
reversals that transformsF 0 into F L

′. From Lemma 1 and Lemma 2, a covered edge reversal does
not change the number of parameters supported by a DAG, and thus we can compare the number
of parameters supported by the two DAGs by evaluating the increase in parameters that result from
the additions within each of the two transformations.F 0 can be transformed intoF L

′ by simply
adding, for each edge component, the corresponding two extra edges inF L

′. That is, we either (1)
add the edgesEi j →Ci j andFi j →Ci j , resulting in an increase of 12 parameters, or (2) add the edges
Bi j → Fi j andCi j → Fi j , resulting in an increase of 10 parameters. IfF L supports fewer parameters
thanF L

′, there must be at least one{Vi ,Vj} edge component for which the total parameter increase
from adding edges between nodes in that component is less than the corresponding increase in
F L
′. In order to reverse any edge in an edge component fromF 0, we need to first cover that

edge by adding at least one other edge that is contained in that component; itis easy to verify
that any such “covering addition” results in an increase of at least 16 parameters (addingEi j →Vj

results in this increase, and all other additions result in a larger increase). Thus we conclude that
for the{Vi ,Vj} edge component, only edge additions are performed in the transformation from F 0

to F L. Hi j does not exist inF L, and therefore becausepL(HL,XL) is a DAG-perfect distribution
(Corollary 6),Ci j andFi j cannot be conditionally independent given any other nodes inXL; thus,
in order forF L to includepL(XL), there must be an edge betweenCi j andFi j in F L. We consider
two cases, corresponding to the two possible directions of the edge between Ci j andFi j in F L. If
the edge is directed asCi j → Fi j , we know that there is a directed path betweenVi andVj in F L

because none of the edges fromF 0 can be reversed. By construction ofF L
′, this implies that the

increase in parameters supported byF L
′ attributed to this edge component is 10. InH L, Fi j and

Bi j are d-connected given any conditioning set fromXL that containsCi j (see Figure 1), and thus
we know thatFi j 6⊥⊥pL

Bi j |S for any S⊂ XL that containsCi j ; this implies that the edgeBi j → Fi j

must exist inF L, else we could find a conditioning setS that containsCi j for whichFi j⊥⊥F L
Bi j |S,

which contradicts the fact thatF L includespL(XL). But adding bothCi j → Fi j andBi j → Fi j to
F 0 requires an addition ofat least10 parameters, contradicting the supposition that the parameter
increase due to this edge component is smaller inF L than inF L

′. If the edge betweenCi j andFi j is
directed asFi j →Ci j , we know thatF L must also contain the edgeEi j →Ci j , lest (using the same
logic as above) there would exist some conditioning setS containingFi j such thatCi j⊥⊥F L

Ei j |S
but Ci j 6⊥⊥pL

Ei j |S, contradicting the fact thatF L includespL(XL). Adding both of these edges,
however, requires an addition ofat least12 parameters; because the corresponding edge component
in F L

′ attributedat most12 parameters in the transformation fromF L
′, this again contradicts the

supposition that the parameter increase due to this edge component is smaller inF L than inF L
′.

Having established thatF L
′ is a solution to LEARN that supports fewer parameters thanF L,

we now useF L
′ to construct a solutionA′D to the instance of DBFAS. For each{Vi ,Vj} edge
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component inF L
′, if that component contains the edges shown in Figure 3a, then we include inA′D

the arcVi →Vj . A′D contains no other arcs.
We now argue thatA′D contains at least one arc from every cycle from the instance of DBFAS.

Each arcVi → Vj ∈ AD that isnot contained inA′D has a corresponding edge component inF L
′

for which there is a directed path fromVi to Vj . Thus, any hypothetical cycle in the instance of
DBFAS that does not pass through an edge inA′D has a corresponding directed cycle inF L

′, which
is impossible becauseF L

′ is a DAG.
Finally, we argue thatA′D contains at mostkD arcs. Recall thatoD andtD denote the number

of nodes inGD that have exactly one and two in-coming edges, respectively. As in the proof of
Theorem 8, it is easy to verify that the number of parametersd′L supported byF L

′ is exactly

186|AD|+18|A′D|+16(|AD|− |A′D|)+16oD +32tD.

Given thatd′L ≤ dL, we conclude from Equation 2 that|A′D| ≤ kD. �

Given the previous results, the main result of this paper now follows easily.

Theorem 10 LEARN is NP-hard.

Proof: Follows immediately from Theorem 8 and Theorem 9.�

Also, due to the fact that the distribution in the reduction is obtained by marginalizing out the
hidden variables in a DAG-perfect distribution, the following result is immediate.

Corollary 11 LEARN remains NP-hard when we restrict the input probability distribution tobe the
marginalization of a DAG-perfect distribution.

3.4 Extensions

Many approaches to learning Bayesian networks from data use independence tests or mutual-
information calculations to help guide a search algorithm. In this section, we show that even if
such tests and calculations could be obtained in constant time, the search problem remains hard.
In particular, we show that Theorem 10 holds even when the learning algorithm has access to at
least one of three oracles. Furthermore, we show that the problem remains hard when we restrict
ourselves to considering only those solutions to LEARN for which each node has at mostk parents,
for all k≥ 3.

The first oracle we consider is an independence oracle. This oracle can evaluate independence
queries in constant time.

Definition 12 (Independence Oracle)
An independence oraclefor a distribution p(X) is an oracle that, in constant time, can determine
whether or not X⊥⊥pY|Z for any X and Y inX and for anyZ ⊆ X.

The second oracle we consider can perform certain inference queries in constant time; namely,
the inference oracle can return the joint probability of any constant-sizedset of variables. This
oracle can in turn be used to compute conditional probabilities in constant time using division.

Definition 13 (Constrained Inference Oracle)
A constrained inference oraclefor a distribution p(X) is an oracle that, in constant time, can com-
pute p(Z = z) for anyZ ⊆ X such that|Z| ≤ k for some constant k.
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Some learning algorithms use mutual information—or an approximation of mutual
information—from a distribution to help construct model structures. The(conditional mutual) in-
formationbetween variablesX andY given the set of variablesZ is defined as

In f (X;Y|Z) = ∑
x,y,z

p(x,y,z) log
p(x,y|z)

p(x|z)p(y|z)
. (4)

The third oracle we consider can compute the mutual information between two variable in constant
time, given that there are only a constant number of variables in the conditioning set.

Definition 14 (Constrained Information Oracle)
A constrained information oraclefor a distribution p(X) is an oracle that, in constant time, can
compute In f(X;Y|Z) for any X and Y inX and for anyZ ⊆ X such that|Z| ≤ k for some constant
k.

Theorem 15 Theorem 10 holds even when the learning algorithm has access to (1) an indepen-
dence oracle, (2) a constrained inference oracle, or (3) a constrained information oracle.

Proof: We establish this result by demonstrating that we can implement all three of theseoracles in
polynomial time using the Bayesian network(H ,θH ) from our reduction. Thus if LEARN can be
solved in polynomial time when we have access to any of the constant-time oracles, it must also be
solvable in polynomial timewithoutany such oracle.

(1) holds immediately because we can test for d-separation inH in polynomial time. (3) follows
from (2) because, given that each variable has some constant numberof states, we can implement a
constrained information oracle via Equation 4 by calling a constrained inference oracle a constant
number of times.

Let Z ⊆ X be any subset of the variables such that|Z| ≤ k for some constantk. It remains to be
shown how to computep(Z = z) in polynomial time from(H ,θH ). The trick is to see that there
is always a cut-set of constant size that decomposesH into a set of polytrees, where each polytree
has a constant number of nodes; within any polytree containing a constantnumber of nodes, we can
perform inference in constant time. We define a cut-setB as follows:B contains every nodeBi j for
which (1)Ci j is in Z and (2)Bi j is not inZ. Note thatB∩Z = /0. Given conditioning setB, no active
path can contain a nodeCi j as an interior (i.e., non-endpoint) node, even when any subset ofZ is
added to the conditioning set (see Figure 6): any such hypothetical active path must pass through at
least one segmentBi j →Ci j ←Hi j . But this is not possible, because every such segment is blocked:
if Ci j is not inZ, then the segment is blocked becauseCi j has no descendants, and hence can have no
descendants in the conditioning set; ifCi j is in Z, then we know thatBi j ∈ B and thus the segment
is blocked byBi j .

Because no active path can pass through a nodeCi j , it follows by construction ofH that—given
B and any subset ofZ—each node inZ is d-connected to only a constant number of other nodes in
Z. Furthermore, the structure ofH that is bounded between theCi j nodes forms a polytree. Thus,
we can expressp(Z = z) as

p(Z = z) = ∑
b

p(Z = z,B = b)

= ∑
b

∏
i

p(T i = t i(z,b)),
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Figure 6: Portion ofH showing that no active path can pass through anyCi j onceBi j is given.

where eachT i contains a constant number of variables—t i(z,b) is the set of values for those vari-
ables as determined byz andb—that constitute a polytree inH . Thus, each termp(T i = t i(z,b))
above can be computed in constant time using inference in a polytree. Because there are at mostk
nodes inZ, the setB can contain at mostk nodes. Therefore, given that each node inB has at most
r states, there are at mostrk terms in the sum above—where bothr andk are constants—and we
conclude thatp(Z) can be computed in polynomial time.�

Finally, we prove that if we restrict LEARN to solutions in which each node has at mostk
parents, the problem remains NP-hard for allk≥ 3.

Theorem 16 Theorem 15 holds even when solutions to LEARN are restricted to DAGs in which
each node has at most k parents, for all k≥ 3.

Proof: The case wherek = 3 follows immediately from the proof of Theorem 8, where the con-
structed solution to LEARN is a DAG in which each node has at most three parents, and from the
proof of Theorem 9, where the given solution to LEARN is converted into a(better) solution in
which each node has at most three parents. It is easy to see that these proofs remain valid under a
less restrictive (k > 3) bound on the number of parents, and thus the theorem follows.�

4. Conclusion

In this paper, we demonstrated that the problem of identifying high-scoringDAGs from large
datasets when using a consistent scoring criterion is NP-hard. Togetherwith the result of Chickering
(1996) that the non-asymptotic learning problem is NP-hard, our result implies that learning is hard
regardless of the size of the data. There is an interesting gap in the present results. In particular,
Chickering (1996) proved that finite-sample learning is NP-hard when each node is restricted to
have at most two parents, whereas in this paper we proved that large-sample learning is NP-hard
with a three-parent restriction. This leads to the question of whether or notlarge-sample learning is
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NP-hard when we restrict to two parents; we believe that this problem is probably NP-hard, and is
worth further investigation.

In practice, the large-sample learning problem actually requires scanninga dataset with a large
number of samples, as opposed to accessing a compact representation ofthe generative distribution.
We could alternatively have defined a learning problem in which there is an actual data set supplied;
the problem with this approach is that in order to guarantee that we get the large-sample ranking
of model structures, we will need the number of data points to be so large thatthe size of the
problem instance is exponential in the number of variables in the domain. Our results have practical
importance when it is reasonable to assume that (1) there is enough data such that the relative
ranking of those DAGs considered by the learning algorithm is the same as in the large-sample
limit, and (2) the number of records in the data is small enough that we can compute the score for
candidate structures in a reasonable amount of time.

As discussed in Section 1, there exist assumptions about the generative distribution that lead to
efficient large-sample learning algorithms. These assumptions are not likelyto hold in most real-
world scenarios, but the corresponding “correct” algorithms can workwell even if the assumptions
do not hold. An interesting line of research is to investigate alternative, weaker assumptions about
the generative distribution that lead to efficient learning algorithms and guarantee large-sample cor-
rectness.

Appendix A. Introduction to Perfectness Proofs

As described in Section 3.2, in these appendices we define two properties of local distributions,
and prove that as long as these properties hold for every local distribution in the network, the cor-
responding joint distribution is perfect with respect to the network structure. Lemma 5 follows
immediately from our main result once we demonstrate that the two properties hold for the family
of distributions defined by Equation 3.

The two properties that we define arebinary-like lattice(BLL) and binary-like totally strictly
positive(BLTSP). The “binary like” aspect of both of these properties refersto the fact that the
distributions are defined such that we can treat each variableas if it only has two states: a “distin-
guished” state and an “other” state. As first mentioned in Section 3.2, the BLLproperty of a local
distribution is similar to the positive-influence property found in the QBN literature; it specifies that
the probability of a node being in its “distinguished” state necessarily increases when we change a
single parent from the “other” state to the “distinguished” state. The difference between BLL and
the positive-influence property is that BLL requires that the probability strictly increase, whereas
the positive-influence property requires that the probability does not decrease. The BLTSP property
of a local distribution is similar to the positive-synergy property in the QBN literature. The intuition
behind this property is that it requires that the (BLL) influence of a parent strictly increases with the
number of other parents that are in the “distinguished” state. The difference between BLTSP and
positive synergy is, as above, the requirement of a strict inequality.

Our main result demonstrates that if all local distributions in a Bayesian network are both BLL
and BLTSP, then any active path corresponds to a dependence in the jointprobability distribution
defined by that network:

Lemma 17 Let (G ,θ) be a Bayesian network in which all local distributions defined byθ are both
BLL and BLTSP. Then the joint distribution represented by(G ,θ) is perfect with respect toG .
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The proof of Lemma 17 is non-trivial, but the main technique can be understood as follows.
We prove perfectness by demonstrating that for any active path betweentwo nodesX andY, there
is a corresponding dependence in the joint distribution whenever the nodes in the conditioning set
are all in their distinguished states. IfX andY are adjacent inG and if there are no nodes in
the conditioning set, this dependence follows easily from the definition of BLL. We establish the
general result by induction, using the simple case as the basis. In general, we show how to apply
graph transformations that result in a simpler model for which our induction step applies. Each
graph transformation is defined such that the original distribution over the non-observed nodes,
when conditioned on the observed nodes, is represented exactly, and where every local distribution
retains the BLL property; the BLTSP property is required in the original distributions to guarantee
that the BLL property is retained as a result of each transformation.

The appendices are organized as follows. In Appendix B, we describegraph-transformation
methods that can be applied to a Bayesian network. In Appendix C, we rigorously define BLL and
BLTSP, and we demonstrate that the transformations described in AppendixB necessarily maintain
the BLL property on every distribution. Finally, in Appendix D, we prove Lemma 17.

To simplify notation, we useG to denote a Bayesian network (as opposed to just the structure
of that network) for the remainder of the paper, and we leave the parameter valuesθ implicit.

Appendix B. Graph Transformations

In this section, we describe a number of transformations that we apply to a Bayesian network in
order to more easily prove our main result. For the remainder of the paper, we will assume that
the domain of interestV = {V1, . . . ,Vn} is decomposed into two sets of variables:O is the set
of observed variables for which we are given a corresponding set of stateso, and U is the set
of unobserved variables. In contrast to the “hidden” variablesHL described in Section 3.1, the
unobserved variablesU simply correspond to variables that are not in the particular conditioning set
O.

Given a Bayesian networkG defined over the domainO∪U, each transformation outputs a new
Bayesian networkGT . We will usep(·) andpT(·) to denote the probability distributions defined by
G andGT , respectively. As we see below,GT may be defined over only a subset of the nodes inG .
UsingOT andUT to denote the observed and unobserved nodes, respectively, that remain inGT , all
of our transformations maintain the following invariant:

∀uT pT(uT |oT) = p(uT |o). (5)

Note thato andoT are fixed (observed) values. In words, Equation 5 asserts that the distribution over
the unobserved nodes that remain after the transformation is identical in the two models whenever
we condition on the observed values.

B.1 Individual Transformations

There are five transformations that we use to prove our main result: edge deletion, edge reversal,
node combination, barren node removal, and observed-child separation. For each transformation,
there is both a structural change (e.g., an edgeX → Y is added) and a corresponding change to
the conditional distributions (e.g., the local distribution forY is extended to include the new parent
X). For the remainder of this paper, we assume that the local distributions in themodel that result

1303



CHICKERING, HECKERMAN AND MEEK

from a transformation are obtained via inference from the original model. In the case where the
parents of a node are identical in the two models, inference corresponds tocopying the original
local distribution.

Whenever the structure of the resulting model includes the original distribution, populating the
local distributions via inference results in a new model that defines the original joint distribution.
This follows because, by definition of inclusion, there exists a set of localdistributions for the new
model that yield the original joint distribution. Furthermore, these local distributions are unique
(assuming that the original distribution is positive) and must match the corresponding conditional
distributions from the original model; we use inference to ensure this match.

We say that a transformation isvalid if (1) the preconditions of the transformation (e.g., there
exists an edgeX→ Y in the model) are met and (2) the result of the transformation is an acyclic
model. We now consider each transformation in turn.

B.1.1 EDGE DELETION

An edge deletiondeletes an edge of the formO→ Y from G , whereO∈ O is an observed node,
and replaces the local distribution inY by the same local distribution except that the valueo for O
is fixed to its observed value (e.g.)o0 (see Figure 7). Thus, if the parents ofY areO∪Z in G , then
the new local distribution forY in GT is defined as

pT(y|z) = p(y|z,o0),

where the probabilityp(y|z,o0) can be extracted directly from the local distribution ofY in G . It is
easy to see that for the resulting modelGT we have

∀u pT(u,o) = p(u,o)

(for fixed o) and thus Equation 5 holds. Because deleting an edge can never create acycle, an
edge-deletion transformation (for an existing edge) is always valid.

O U

T

O U

T

pT(u|t)

=

p(u|t,o0)

Figure 7: Example of an edge-deletion transformation. The observed value of nodeO is o0. After
deleting the edgeO→ U , the local distribution for nodeU is identical to the original
distribution when constrained too = o0.
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B.1.2 EDGE REVERSAL

An edge reversal, originally defined by Howard and Matheson (1981), is a transformation that first
“covers” an edge by adding new edges until the edge is covered, and then reverses the edge (see
Figure 8). In particular, for an edgeH → Y, let X be the parents ofH that are not parents ofY,
let Z be the parents of bothH andY, and letW be the parents ofY that are not parents ofH. The
edge-reversal transformation adds the edgeX→Y for everyX ∈ X, adds the edgeW→H for every
W ∈W, and reversesH→Y.

YH

X Z W

YH

X Z W

pT(h|x,z,w,y)

=

p(h|x,z,w,y)

pT(y|x,z,w)

=

p(y|x,z,w)

Figure 8: The relevant fragment of a graph structure for an edge-reversal transformation.

As shown in Figure 8, the local distributions forH andY in GT are defined by the joint distribu-
tion defined inG . In contrast to the edge-deletion transformation, the local probability distributions
for these nodes inGT cannot simply be extracted from the corresponding distributions inG ; for
example, we obtain the local distribution forH in GT via inference as follows:

pT(h|x,z,w,y) = p(h|x,z,w,y)

=
p(h,y|x,z,w)

p(y|h,x,z,w)

=
p(h|x,z)p(y|h,z,w)

∑i p(hi |x,z)p(y|hi ,z,w)
,

wherep(h|x,z) andp(y|h,z,w) are the local distributions inG .

Proposition 18 If there is no directed path from H to Y other than the edge H→Y, then the edge
can be covered as described without creating a cycle.

Proof: Suppose not. Using the notation from above, there must either be someX ∈ X for which
addingX→ Y creates a cycle, or there must be someW ∈W for which addingW→ H creates a
cycle. Because there is already a directed path fromX to Y, we immediately rule out the first case.
If addingW→ H creates a cycle, then there must already be a directed path fromH to W. By
appendingW→ Y to this directed path, we have a directed path fromH to Y that is not the edge
H→Y, yielding a contradiction.�
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Because no independence constraints are added as a result of addingan edge to a model, and
because the edge is reversed only after being covered, the following result follows immediately from
Proposition 18 and Lemma 1:

Proposition 19 If in G there is no directed path from H to Y other than the edge H→ Y, then
the edge-reversal transformation applied to H→Y is valid; and for the modelGT that results, the
constraints of Equation 5 must hold.

B.1.3 NODE COMBINATION

A node combinationtakes a set of nodesY, where each node inY has no children, and replaces
the set with the singlecompositenodeY = Comp(Y) whose states take on the cross product of the
states of all nodes inY (see Figure 9). The parents ofY are defined to be the union of all of the
parents of the nodes inY. Because no node inY has any children, it is easy to see that applying
a node-combination transformation can never create a cycle, and thus the transformation is always
valid.

X Z W
X Z W

Y
1 Y

2
Y

3

States:

0

1

Y

States:

0

1

States:

0

1

States:

000 100

001 101

010 110

011 111

Figure 9: An example of a node-combination transformation. The state spaceof the combined node
Y has a unique state for every possible combination of values forY1, Y2, andY3.

The local distribution for the composite nodeY is defined in the obvious way: the local prob-
ability in GT of a composite statey given the parent values is simply the joint probability of the
corresponding states ofY in the original modelG given the same parent values.

Although the set of nodes in the Bayesian networkGT that results from a node combination is
different than in the original networkG , it is important to understand thatGT represents a proba-
bility distribution over the original set of nodes. In particular, because thestates of the composite
nodeY are defined to be the cross product of the states for all of the nodes inY, there is a one-to-
one correspondence between states ofY and sets of all states of the nodes inY. Thus, given any
Bayesian network containing composite nodes, we can always “unwind” those nodes into a clique
of nodes, where each node in the clique—in addition to the adjacencies within the clique—has the
same parents and children of the composite node. Because the nodes that made up the composite
node form a clique, there are no independence constraints introduced by this unwinding process.
For the remainder of this paper, when we discuss the joint distribution represented by a Bayesian
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network, it is to be understood that we mean the distribution over the original domain; we leave
implicit the unwinding process that can be performed so that the networks contain the same nodes.

B.1.4 BARREN NODE REMOVAL

An unobserved nodeU ∈ U is barren if U has no children. An observed nodeO ∈ O is barren
if O has no parents and no children. Thebarren-node-removaltransformation simply removes
from G any barren nodes along with their incident edges (see Figure 10). Because a barren node
has no children, no conditional distributions change (other than the deletionof the barren-node
distribution). Because removing a barren node can never create a cycle, the transformation is always
valid.

U

X O

X

pT(x)=p(x)

Figure 10: An example of a barren-node-removal transformation: both the unobserved nodeU and
the observed nodeO are barren.

We now explain why Equation 5 must hold after removing anunobservedbarren node. Letting
UT = U \U denote the unobserved nodes that remain after removingU , we can compute the joint
probability in the original model overUT andO as

p(uT ,o) = ∑
u

p(u,u,o).

BecauseU has no children, we can “push the sum” all the way through to the last conditional
distribution:

p(uT ,o) = ∏
x∈uT∪o

p(x|paX)

(

∑
u

p(u|·)

)

= ∏
x∈uT∪o

p(x|paX).

BecauseGT is identical toG except that it does not contain nodeU , it follows that the above product
of conditional distributions is exactly the distribution represented byGT ; thuspT(uT ,o) = p(uT ,o)
and Equation 5 must hold.

Equation 5 holds after removing anobservedbarren nodeO by a similar argument and because
O is independent of every other node regardless of the conditioning set.

B.1.5 OBSERVEDCHILD SEPARATION (OCS)

The observed-child-separation (OCS) transformation is a “macro” transformation that combines a
node-combination transformation, an edge-reversal transformation, and an edge-deletion transfor-
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mation. In particular, letH be any node inU that has at least one child inO, and letY = {Y1, . . . ,Ym}
denote the set of all children ofH that are inO that have no children themselves. For the OCS
transformation (see the example in Figure 11), we first apply a node-combination transformation
to the nodes inY, resulting in a model containing the composite nodeY = Comp(Y). Next, we
apply an edge-reversal transformation on the edgeH → Y. Finally, we delete the resulting edge
Y→ H using an edge-deletion transformation. The OCS transformation is valid whenever the sub-
transformations are valid.

H Z

Y
1

Y
2

H Z

Y

H Z

Y

H Z

Y

Figure 11: An example showing the sub-transformations that make up the OCSmacro transforma-
tion.

Because we have already shown that the invariant of Equation 5 holds after each component
transformation that makes up the OCS macro transformation, we conclude thatEquation 5 holds as
a result of this transformation as well.

In Figure 12, we show the relevant network fragment both before and after a general OCS
transformation is applied, along with the local distributions inGT that must be derived via inference
in G . The nodesYj—which are shaded in the figure—are the observed children of nodeH that will
be separated fromH using the transformation. The bold-font nodesX, Z, andW represent sets of
nodes: each node inX is a parent ofH but not a parent of anyYj , each node inZ is a parent ofH
and a parent of at least oneYj , and each node inW is not a parent ofH but is a parent of at least
oneYj . In the figure, the termy0 in p(h|x,z,w,y0) is shorthand for the set of all observed states
y0

1, . . . ,y
0
n of theYj variables; we assume thaty0

j is the observed state ofYj for all j. Similarly, the
termy in p(y|x,z,w) denotes an arbitrary set of statesy1, . . . ,yn for the observedYj variables.

B.2 Transformation Algorithms

In this section, we present two graph-transformation algorithms that, like the OCS “macro” trans-
formation, apply a sequence of transformations to a modelG . We distinguish an “algorithm” from
a “macro transformation” by the fact that in the former, the order in which weapply the individ-
ual transformations depends on the topology of the entire network structure. As in the case of the
OCS macro transformation, we conclude that because the individual transformations that define the
algorithm all maintain the invariant of Equation 5, the invariant holds for the algorithms as well.

We say that a nodeX in a graph is alowestnode with some property if no descendant ofX in
the graph also has that property. Thus when the graph is a DAG containing at least one node with a
given property, there must always exist at least one lowest node with that property.
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Y
1

Y
2

H

Y
m

WX Z

YH

WX Z

pT(h|x,z,w)

=

p(h|x,z,w,y0)

pT(y|x,z,w)

=

p(y|x,z,w)

Figure 12: General OCS macro transformation.

B.2.1 THE UNOBSERVEDPATH SHORTENING (UPS) ALGORITHM

The unobserved-path-shortening (UPS) algorithm is applied whenG contains only unobserved
nodes (all nodes fromO have been removed before this algorithm is used). We say a node is a
root if it has no parents. The algorithm takes as input any non-root nodeY, and returns the model
GT in which all nodes have been deleted except forY and its root-node ancestorsR. For every
R∈ R, the edgeR→ Y is in GT (the edge need not be inG); GT contains no other edges (see
Figure 13). In Figure 14, we show how the UPS algorithm is implemented by a sequence of the
transformations presented in Section B.1.

B

AR
1 R

2

Y

C

R
1 R

2

Y

Figure 13: An example application of the UPS algorithm.

The following lemma demonstrates that the steps given in Figure 14 correctly implement the
UPS algorithm using graph transformations.

Lemma 20 Let G be a Bayesian network containing non-root node Y, and letR denote the set
of root-node ancestors of Y inG . Let GT denote the Bayesian network that results from applying
Algorithm UPS with inputsG and Y. Then after the algorithm completes, the nodes inGT are
preciselyR∪{Y}, and the edges inGT are precisely R→Y for every R∈ R.
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Algorithm UPS
Input: Bayesian networkG and non-root nodeY. (Let R denote the set of root-node ancestors ofY
in G , and assume that all nodes inG are unobserved.)
Output: Bayesian networkGT containing nodesR∪{Y} and edgesR→Y for everyR∈ R

1. SetGT = G

2. While GT contains at least one barren nodeB 6= Y, deleteB using the barren-node removal
transformation.

3. WhileY has at least one parent that is not a root node

4. Choose any lowest non-rootH that is a parent ofY

5. Reverse the edgeH→Y using the edge-reversal transformation

6. Delete the (now barren) nodeH using the barren-node-removal transformation.

7. ReturnGT

Figure 14: The unobserved path shortening (UPS) algorithm

Proof: First we note that after step 2 of the algorithm, every node inGT other thanY is an ancestor
of Y. This follows because, given that every node inGT is unobserved, any non-ancestor ofY must
either be barren or have some descendant (not equal toY) that is barren.

At step 5, there cannot be any directed path fromH to Y other than the edgeH→Y becauseH
is chosen to be a lowest parent ofH. Thus, we know that the edge-reversal transformation at step 5
is always valid. Furthermore, because every node is an ancestor ofY, we know thatY must be the
only child of H, and thus after the edge reversal,H must be barren (H cannot gain a child from the
reversal), and we can always deleteH in step 6.

By definition of an edge reversal, the only nodes that can gain parents in step 5 areY andH.
BecauseH is necessarily a non-root node, we conclude that every node inR will remain a root node
after every edge reversal. The definition of an edge reversal also guarantees that any node other than
H that is an ancestor ofY before the reversal will remain an ancestor after the reversal. Thus when
the algorithm terminates, all nodes other thanY must be root-node parents ofY. �

B.2.2 THE OBSERVEDNODE ELIMINATION (ONE) ALGORITHM

In this section, we describe the observed-node elimination (ONE) algorithm that deletes all of the
observed variables fromG such that, given certain preconditions, the invariant of Equation 5 holds
on the resulting model. The details of the algorithm are shown in Figure 15.

In Figure 16, we show an example of the algorithm applied to a model. The original model
is shown in Figure 16a, where the observed nodesE, F , andG are depicted by shading. In step
2 of the algorithm, the edgesF →C andF → G are removed, resulting in the model from Figure
16b. For step 3, we see that all four unobserved nodes have at leastone observed child. The only
lowest nodes areC andD; (arbitrarily) choosingC first (shown with a thick border in the figure), we
apply the OCS transformation (which “combines” the singleton nodeG, covers the edgeC→G by
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Algorithm ONE
Input: Bayesian networkG consisting of observed nodesO and unobserved nodesU, set of obser-
vationso corresponding to nodesO
Output: Bayesian networkGT containing only the nodes inU

1. SetGT = G .

2. For every edgeO→ X in GT for which O∈ O is observed, remove the edge using an edge-
removal transformation.

3. While there exists an unobserved node inU that has at least one child fromO in GT , apply
the OCS transformation toGT using any lowest such node.

4. Delete every nodeO∈O by applying the barren-node-elimination transformation.

5. ReturnGT .

Figure 15: The observed node elimination (ONE) algorithm

addingB→ G, then reverses and deletes the edge betweenC andG) resulting in the model shown
in Figure 16c. Still in step 3, the lowest nodes areB andD; choosingB for the OCS transformation
results in model shown in Figure 16d. In this model,EFG is the combined node ofE, F , andG
from the OCS transformation. Still in step 3, the lowest nodes areA andD; choosingD for the OCS
transformation results in the model shown in Figure 16e. For the last iteration of step 3,A is the
only node with an observed child, and applying the OCS transformation results in the model shown
in Figure 16f. Finally, in step 4, the barren nodeEFG is deleted, resulting in the final model shown
in Figure 16g that contains only observed nodes.

To help prove properties about Algorithm ONE, we useG i to denote the Bayesian network that
results afteri iterations of the While loop at step 3. We defineG0 to be the graphGT that results
after applying step 2 but before the first iteration of the While loop at step 3.We useH i to denote
the (lowest) node chosen in iterationi of the While loop, we useY i to denote the set of observed
children ofH i on iterationi of the While loop, and we useYi = Comp(Y i) to denote the composite
node created by the OCS transformation in iterationi of the While loop.

As a result of applying the OCS transformation in step 3, we create the new composite nodeYi

defined by the subsetY ⊆O of the observed variables. To simplify discussion, we find it convenient
to treatO as a static set of nodes as opposed to a set that changes each time a new composite node
is created. Thus, we will say that any composite nodeYi is contained in the setO when technically
we should say that all nodes that have been combined to createY are contained inO.

Lemma 21 For all G i (i.e., for all graphs considered in step 3 of Algorithm ONE), every node inO
has zero children.

Proof: The proposition clearly holds forG0 due to step 2. Toward a contradiction, leti be the
first iteration of the While loop in which a node inO gains a child. By definition of the OCS
transformation, the only nodes that can gain children are parents ofH i and parents of nodes inY i .
Because these nodes already have children, they cannot be inO. �
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Figure 16: Example of the ONE algorithm applied to a model. Lowest nodes chosen in step 3 are
shaded.

Recall from Section B.1.5 that the OCS transformation required that the observed children must
have no children themselves. Lemma 21 guarantees that this property holds for everyG i , and thus
the OCS transformation can always be applied in step 3. We now demonstrate that the nodeH i can
be chosen by Algorithm ONE in step 3 at most once. An immediate consequenceof this result is
that step 3 terminates in at most|U| iterations.

Proposition 22 Let Anci(O) denote the set of nodes inU that are ancestors inG i of at least one
node inO. Then Anci(O) = Anci−1(O)\H i .

Proof: From the definition of the OCS transformation, at each iterationi this “macro” transfor-
mation first applies a node-combination transformation on the observed children Y i of H i , then
applies an edge-reversal transformation on the edgeH i → Yi , and then applies the edge-removal
transformation onYi → H i .

We first note that applying a node-combination transformation on nodes inO cannot change the
set of ancestors of node inO.

In order for a node to become a new ancestor of a node inO, some edgeA→ B must be added
to G i such that before the addition,A is not an ancestor of a node inO andB is an ancestor of a
node inO. From the definition of the OCS transformation, the only edges that are added are either
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(1) of the formA→Yi , whereA is a parent ofH i and hence an ancestor of nodeYi ∈ O, or (2) of
the formA→ H i , whereA is the parent ofYi ∈O. Thus we conclude thatAnci(O)⊆ Anci−1(O).

In order for a node to no longer be an ancestor of a node inO, some edgeA→B must be deleted
such that after the deletion,A is no longer an ancestor ofO. The only edge that is deleted by the
transformation isH i →Yi . After the transformation, all parents ofH i are necessarily parents ofYi ,
and thus the only node that can possibly no longer be an ancestor of a node in O is H i . BecauseH i

was chosen as the lowest node with a child inO, and because the only added edges were incident
into H i or a parent ofH i , we know that no descendant ofH i can be an ancestor of a node inO, and
the lemma follows.�

Corollary 23 Algorithm ONE terminates after choosing each node fromU in step 3 at most once.

Proof: As in Lemma 22, we useAnci(O) to denote the set of nodes inU that are ancestors inG i

of at least one node inO. In order to be chosen in Step 3 during iterationi of the While loop,H i

must be inAnci(O). From Lemma 22, ifH i is chosen during iterationi, it can never be an element
of Ancj(O) for j > i. �

The next result demonstrates that by breaking ties as appropriate, we can guarantee that any
particular unobserved node with no unobserved parents will be a root node after applying Algorithm
ONE.

Lemma 24 Let U ∈ U be any unobserved node with no unobserved parents inG . If in Algorithm
ONE we break ties in step 3 in favor of not selecting U, then U will be a root node in GT .

Proof: Suppose not. Then at some iteration of the While loop in step 3, an unobserved parentW
must be added toU by the algorithm. Leti be the first iteration in which this occurs. By definition of
the OCS transformation, we conclude thatH i = U and thatW is a parent ofYi that is not a parent of
U . Because we break ties in favor of not choosingU , and becauseW has a child inO, we conclude
that there must be a directed path fromW toU . But from Lemma 21 we conclude that the last edge
in this directed path is from a node inU which means thatU already has an unobserved parent.�

Appendix C. Properties of Local Distributions

In this appendix, we formally define the BLL and BLTSP properties that were described (infor-
mally) in Appendix A, and we show the conditions under which these properties are maintained in
the conditional probability distributions as a result of the various graph transformations defined in
Appendix B. We begin in Section C.1 by presenting some preliminary definitions and results. In
Section C.2, we use this material to derive the main results of this section.

C.1 Preliminary Definitions and Results

In this section, we consider non-negative real-valued functions ofX, whereX = (X1, . . . ,Xn) is a set
of variables such that the states of each variableXi are totally ordered. Bytotally ordered, we mean
totally ordered in thenon-strictsense, where some states may have equal order. For convenience,
we often writef (x1, . . . ,xn) as f (. . . ,xi , . . .) to emphasize the argumentxi .

Definition 25 The function f(X) is lattice if, for any i such that xi > x′i ,

f (. . . ,xi , . . .) > f (. . . ,x′i , . . .),

1313



CHICKERING, HECKERMAN AND MEEK

where the other arguments are held fixed and are arbitrary.

For example, for a function with two binary arguments(X1,X2) with state orderingsx0
1 > x1

1 and
x0

2 > x1
2, we havef (x0

1,x
0
2) > f (x0

1,x
1
2) > f (x1

1,x
1
2) and f (x0

1,x
0
2) > f (x1

1,x
0
2) > f (x1

1,x
1
2).

Definition 26 The function f(X) is totally non-strictly positiveif, for all i < j,

f (. . . ,max(xi ,x
′
i), . . . ,max(x j ,x

′
j), . . .) · f (. . . ,min(xi ,x

′
i), . . . ,min(x j ,x

′
j), . . .)≥ (6)

f (. . . ,xi , . . . ,x j , . . .) · f (. . . ,x
′
i , . . . ,x

′
j , . . .).

The concept of total non-strict positivity is often referred to asmultivariate total positivity of
order two (see Karlin and Rinott, 1980). We now define a version of total positivity where the
inequality in Equation 6 must be strict whenever equality does not hold trivially.

Definition 27 The function f(X) is totally strictly positiveif, for all i < j,

f (. . . ,max(xi ,x
′
i), . . . ,max(x j ,x

′
j), . . .) · f (. . . ,min(xi ,x

′
i), . . . ,min(x j ,x

′
j), . . .)≥ (7)

f (. . . ,xi , . . . ,x j , . . .) · f (. . . ,x
′
i , . . . ,x

′
j , . . .),

where the other arguments are held fixed and are arbitrary, and equalityholds if and only if either

f (. . . ,max(xi ,x
′
i), . . . ,max(x j ,x

′
j), . . .) = f (. . . ,xi , . . . ,x j , . . .) and

f (. . . ,min(xi ,x
′
i), . . . ,min(x j ,x

′
j), . . .) = f (. . . ,x′i , . . . ,x

′
j , . . .)

or

f (. . . ,max(xi ,x
′
i), . . . ,max(x j ,x

′
j), . . .) = f (. . . ,x′i , . . . ,x

′
j , . . .) and

f (. . . ,min(xi ,x
′
i), . . . ,min(x j ,x

′
j), . . .) = f (. . . ,xi , . . . ,x j , . . .).

For example, a functionf with two binary arguments(X1,X2) with state orderingsx0
1 > x1

1 and
x0

2 > x1
2 is totally strictly positive if f (x0

1,x
0
2) f (x1

1,x
1
2) > f (x0

1,x
1
2) f (x1

1,x
0
2). Note that all other

combinations of arguments yield trivial equalities. For example, applying the definition whenx1 =
x′1 = x0

1, x2 = x0
2, andx′2 = x1

2, yields the constraint

f (min(x0
1,x

0
1),min(x0

2,x
1
2)) f (max(x0

1,x
0
1),max(x0

2,x
1
2))≥ f (x0

1,x
1
2) f (x0

1,x
0
2),

for which equality holds trivially by solving the left-hand side.
We now give properties of positive, lattice, and totally strictly positive functions whose argu-

mentsx are binary with valuesx0 andx1, and with state orderingx0 > x1. We call functions having
only binary argumentscube functions. As a shorthand, we use (e.g.)f i j to representf (xi

1,x
j
2).

Proposition 28 Given real numbersα1 ≥ α2 in the interval(0,1) and positive real numbers f00,
f 01, f10, and f11 such that f00≥ f 01≥ f 11 and f00≥ f 10,

α1 f 00+(1−α1) f 01≥ α2 f 10+(1−α2) f 11, (8)

where equality holds if and only if( f 10≥ f 11)∧ ( f 00 = f 10)∧ ( f 01 = f 11)∧ (( f 10 = f 11)∨ (α1 =
α2)). Equivalently,

f 01+α1( f 00− f 01)≥ f 10+α2( f 10− f 11). (9)
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Proof: There are two cases to consider.
Case 1:f 11 > f 10. Here, the right-hand-side of 8 will be strictly less thanf 11≤ f 01. Thus, because
the left-hand-side of 8 will be at leastf 01, 8 holds with strict inequality.
Case 2:f 10≥ f 11. Here, becausef 00≥ f 10, f 01≥ f 11, and 0< α1 < 1,

α1 f 00+(1−α1) f 01≥ α1 f 10+(1−α1) f 11, (10)

where equality holds if and only if( f 00 = f 10)∧ ( f 01 = f 11). Becausef 10≥ f 11 andα1 ≥ α2, we
have

α1 f 10+(1−α1) f 11≥ α2 f 10+(1−α2) f 11, (11)

where equality holds if and only if( f 10 = f 11)∨ (α1 = α2). Inequalities 10 and 11 imply 8, where
equality holds if and only if( f 00 = f 10)∧ ( f 01 = f 11)∧ (( f 10 = f 11∨ (α1 = α2)). �

Proposition 29 Given a positive, cube, and lattice function f(X1,X2),

α1 f 00+(1−α1) f 01 > α2 f 10+(1−α2) f 11, (12)

for any two real numbers0 < α2≤ α1 < 1.

Proof: Becausef (X1,X2) is lattice, we havef 00 > f 01 > f 11 and f 00 > f 10 > f 11. The strict
inequality 12 therefore follows by Proposition 28.�

Proposition 30 Given a positive, cube, lattice, and totally strictly positive function f(X1,X2),

f 00+ f 11 > f 01+ f 10. (13)

Proof: We know
f 00 f 11 > f 01 f 10.

Subtractingf 01 f 11 from both sides, we obtain

( f 00− f 01) f 11 > ( f 10− f 11) f 01.

Becausef 01 > f 11, we have
f 00− f 01 > f 10− f 11.

�

The remainder of this section contains propositions needed to prove the main results in Section
C.2. We sometimes use functions having a range of(0,1). We call such functionsunit functions.

Proposition 31 Given a real number f in(0,1) and a positive, cube, and totally strictly positive
function g(Y1,Y2), the ratio

f g00+(1− f )g01

f g10+(1− f )g11

is a strictly increasing function of f .
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Proof: A straightforward algebraic arrangement yields

f g00+(1− f )g01

f g10+(1− f )g11 =
g01

g11 +
1

1+(1− f )g11/( f g10)

(

g00

g10−
g01

g11

)

(14)

Becauseg(Y1,Y2) is totally strictly positive, the difference of fractions at the end of Equation 14 is
positive. The proposition then follows becauseg11/g10 is positive.�

Proposition 32 Given a unit, cube, lattice, and totally strictly positive function f(X1,X2) and a
positive, cube, and lattice function g(Y),

f 00g0 +(1− f 00)g1

f 01g0 +(1− f 01)g1 >
f 10g0 +(1− f 10)g1

f 11g0 +(1− f 11)g1 . (15)

Proof: By Proposition 30, we know thatf 00+ f 11 > f 01+ f 10. Therefore, we have

(g0g0 +g1g1) f 00 f 11+g1(g0−g1)( f 00+ f 11) > (g0g0 +g1g1) f 01 f 10+g1(g0−g1)( f 01+ f 10).
(16)

Addingg1g1 to both sides of inequality 16 and factoring, we obtain

( f 00g0 +(1− f 00)g1)( f 11g0 +(1− f 11)g1) > ( f 01g0 +(1− f 01)g1)( f 10g0 +(1− f 10)g1).

Inequality 15 follows from the fact that terms in the denominator are positive.�

Proposition 33 Given unit, cube, lattice, and totally strictly positive function f(X1,X2) and a posi-
tive, cube, and totally strictly positive function g(Y1,Y2), where g(0,Y2) is lattice,

f 00g00+(1− f 00)g01

f 01g10+(1− f 01)g11 >
f 10g00+(1− f 10)g01

f 11g10+(1− f 11)g11. (17)

Proof: The functiong(0,Y2) is unit, cube, and lattice. Consequently, by Proposition 32, we have

f 00g00+(1− f 00)g01

f 01g00+(1− f 01)g01 >
f 10g00+(1− f 10)g01

f 11g00+(1− f 11)g01.

Interchanging the denominator on the left-hand-side with the numerator on theright-hand-side, we
get

f 00g00+(1− f 00)g01

f 10g00+(1− f 10)g01 >
f 01g00+(1− f 01)g01

f 11g00+(1− f 11)g01. (18)

Using Proposition 31 and that fact thatf 01 > f 11, we obtain

f 01g00+(1− f 01)g01

f 01g10+(1− f 01)g11 >
f 11g00+(1− f 11)g01

f 11g10+(1− f 11)g11

or, equivalently,
f 01g00+(1− f 01)g01

f 11g00+(1− f 11)g01 >
f 01g10+(1− f 01)g11

f 11g10+(1− f 11)g11. (19)

Inequalities 18 and 19 imply

f 00g00+(1− f 00)g01

f 10g00+(1− f 10)g01 >
f 01g10+(1− f 01)g11

f 11g10+(1− f 11)g11.

which is equivalent to 17.�
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Proposition 34 Given a real number f in(0,1) and a positive and cube function g(Y1,Y2,Y3), where
g(0,Y2,Y3), g(1,Y2,Y3), and g(Y1,1,Y3) are totally strictly positive and g(Y1,Y2,0) and g(Y1,Y2,1)
are totally non-strictly positive,

f g000+(1− f )g001

f g010+(1− f )g011 >
f g100+(1− f )g101

f g110+(1− f )g111. (20)

Proof: Using Equation 14, we rewrite inequality 20 as follows:

g001

g011 +
1

1+(1− f )g011/( f g010)

(

g000

g010−
g001

g011

)

> (21)

g101

g111 +
1

1+(1− f )g111/( f g110)

(

g100

g110−
g101

g111

)

.

Now, observe that inequality 21 has the same form as 9, with

α1 =
1

1+(1− f )g011/( f g010)
and α2 =

1
1+(1− f )g111/( f g110)

.

In addition, becauseg(0,Y2,Y3) and g(1,Y2,Y3) are totally strictly positive andg(Y1,Y2,0) and
g(Y1,Y2,1) are totally (non-strictly) positive, we have

g000

g010 >
g001

g011 ≥
g101

g111 and
g000

g010 ≥
g100

g110 >
g101

g111.

Thus, the conditions of Proposition 28 apply, and 20 will hold ifα1 > α2, or

1
1+(1− f )g011/( f g010)

>
1

1+(1− f )g111/( f g110)
. (22)

Rearranging inequality 22 and canceling the termsf and(1− f ), we obtain

g011

g010 <
g111

g110

which holds becauseg(Y1,1,Y3) is totally strictly positive.�

Proposition 35 Given a unit, cube, and lattice function f(X) and positive, cube, and lattice func-
tion g(Y1,Y2,Y3), where g(0,Y2,Y3), g(1,Y2,Y3), and g(Y1,1,Y3) are totally strictly positive and
g(Y1,Y2,0) and g(Y1,Y2,1) are totally (non-strictly) positive,

f 0g000+(1− f 0)g001

f 0g010+(1− f 0)g011 >
f 1g100+(1− f 1)g101

f 1g110+(1− f 1)g111. (23)

Proof: By Proposition 34, we have

f 0g000+(1− f 0)g001

f 0g010+(1− f 0)g011 >
f 0g100+(1− f 0)g101

f 0g110+(1− f 0)g111. (24)

Becausef 0 > f 1 andg(1,Y2,Y3) is totally strictly positive, Proposition 31 yields

f 0g100+(1− f 0)g101

f 0g110+(1− f 0)g111 >
f 1g100+(1− f 1)g101

f 1g110+(1− f 1)g111. (25)

Inequalities 24 and 25 imply 23.�
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Proposition 36 Given a unit, cube, lattice and totally strictly positive function f(X1,X2) and
positive, cube, lattice function g(Y1,Y2,Y3), where g(0,0,Y3) is lattice, g(0,Y2,Y3), g(1,Y2,Y3),
g(Y1,0,Y3), and g(Y1,1,Y3) are totally strictly positive and g(Y1,Y2,0) and g(Y1,Y2,1) are totally
(non-strictly) positive,

f 00g000+(1− f 00)g001

f 01g010+(1− f 01)g011 >
f 10g100+(1− f 10)g101

f 11g110+(1− f 11)g111. (26)

Proof: Using Proposition 33 and the fact thatg(0,0,Y3) is lattice andg(Y1,0,Y3) is totally strictly
positive, we get

f 00g000+(1− f 00)g001

f 01g000+(1− f 01)g001 >
f 10g100+(1− f 10)g101

f 11g100+(1− f 11)g101. (27)

Becausef (X1,1) is lattice, Proposition 35 yields

f 01g000+(1− f 01)g001

f 01g010+(1− f 01)g011 >
f 11g100+(1− f 11)g101

f 11g110+(1− f 11)g111. (28)

Multiplying the left-hand-sizes of inequalities 27 and 28 and the right-hand-sides of the same in-
equalities, we obtain 26.�

C.2 The BLL and BLTSP Properties

In this section, we turn our attention from general non-negative real-valued functions to conditional
probability distributions. In particular, we consider Bayesian networks for discrete, finite-valued
variables in which the local distributionsp(y|x1, . . . ,xn) have the following properties.

Definition 37 Given a set of variables Y, X1,. . . ,Xn such that each variable has a finite number of
totally ordered states, the distribution p(y|x1, . . . ,xn) is lattice with respect to statey0 if the function
f (x1, . . . ,xn) = p(y0|x1, . . . ,xn) is lattice.

Definition 38 Given a set of variables Y, X1,. . . ,Xn such that each variable has a finite number of
totally ordered states, the distribution p(y|x1, . . . ,xn) is totally strictly positive with respect to state
y0 if the function f(x1, . . . ,xn) = p(y0|x1, . . . ,xn) is totally strictly positive.

We further concentrate on local distributions that are binary-like. In describing such distribu-
tions, we need the concept of adistinguishedstate of a variable. For the remainder of the paper, we
usex0 to denote the distinguished state of variableX.

Definition 39 Given a set of variables Y , X1,. . . ,Xn such that each variable has a finite number
of states and each variable X has a distinguished state x0, the local distribution p(y|x1, . . . ,xn) is
binary-like if

y 6= y0 andy′ 6= y0 implies p(y|x1, . . . ,xn) = p(y′|x1, . . . ,xn) (29)

xi = x′i or (xi 6= x0
i andx′i 6= x0

i ) i = 1, . . . ,n implies p(y|x1, . . . ,xn) = p(y|x′1, . . . ,x
′
n). (30)

If condition 30 is satisfied for some particular state y, then p(y|x1, . . . ,xn) is said to bebinary-like
with respect toy.
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Thus, for a local distribution that is binary-like, if any non-distinguished state is replaced with
another non-distinguished state on either side of the conditioning bar, the conditional probability re-
mains the same. For a local distribution that is binary-like with respect toy, if any non-distinguished
state on the right-hand side of the conditioning bar is replaced with another non-distinguished state,
the conditional probability for statey remains the same. When appropriate, we usex1 to denote an
arbitrary non-distinguished state ofX.

When working with distributions that are both binary-like and either lattice or totally strictly
positive, we need to be careful how we assign the total ordering to the states for each variableX.
In particular, in order for a distribution to be both binary-like and either latticeor totally strictly
positive, all non-distinguished states must have equal order in the (non-strict) total ordering. We
incorporate this condition in the following definitions. In addition, we use the orderingx0 > x1 for
all variablesX.

Definition 40 Given a set of variables Y , X1,. . . ,Xn such that each variable has a finite number of to-
tally ordered states, and each variable X has a distinguished state x0, the distribution p(y|x1, . . . ,xn)
is binary-like lattice (BLL)if (1) the distribution is lattice with respect to y0, (2) the distribution is
binary-like and (3) if, for each variable X, x0 is greatest in order and all non-distinguished states
of X are equal in order. The distribution p(y|x1, . . . ,xn) is binary-like lattice (BLL) with respect to
y0 if (1) the distribution is lattice with respect to y0, (2) the distribution is binary-like with respect
to y0 and (3) if, for each variable X, x0 is greatest in order and all non-distinguished states of X are
equal in order.

Definition 41 Given a set of variables Y , X1,. . . ,Xn such that each variable has a finite number of to-
tally ordered states, and each variable X has a distinguished state x0, the distribution p(y|x1, . . . ,xn)
is binary-like totally strictly positive (BLTSP)if (1) the distribution is totally strictly positive with
respect to y0, (2) the distribution is binary-like and (3) if, for each variable X, x0 is greatest in
order and all non-distinguished states of X are equal in order. The distribution p(y|x1, . . . ,xn) is
binary-like totally strictly positive (BLTSP) with respect toy0 if (1) the distribution is binary-like
with respect to y0, (2) the distribution is totally strictly positive with respect to y0, and (3) if, for
each variable X, x0 is greatest in order and all non-distinguished states of X are equal in order.

In the following sections, we consider the graph transformations of SectionB.1, and investigate
the conditions under which the BLL and the BLTSP properties are retained inthe distributions
that result from a transformation. We will say that a node is BLL (BLTSP) tomean that the local
distribution for that node is BLL (BLTSP).

C.2.1 BLL AND BLTSP FOR THEEDGE-DELETION TRANSFORMATION

Lemma 42 (Edge Deletion, BLL and BLTSP) Let G be a model containing the edge O→ U,
where O∈O is observed, and letGT denote the model that results from applying the edge-deletion
transformation on O→U in G . If U is BLL in G then U is BLL inGT , and if U is BLTSP inG than
U is BLTSP inGT .

Proof: Let T be the set of parents ofU other thanO. From the definition of an edge deletion,T will
be the parents ofU in GT and, assuming (e.g.)o∗ is the observed value ofO, we have

pT(u|t) = p(u|t,o∗)
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for all u andt. From the definition of BLL, ifp(u|t,o) is BLL, then it is also BLL when restricted to
o = o∗. Similarly, from the definition of BLTSP, ifp(u|t,o) is BLTSP, then it is also BLTSP when
restricted too = o∗. �

C.2.2 BLL AND BLTSP FOR THEBARREN-NODE-REMOVAL TRANSFORMATION

Proposition 43 Let G be a model containing barren node X, and letGT denote the model that
results from applying a barren-node-removal transformation toG on X. For any node Y6= X in G ,
we have: (1) if Y is BLL inG , then Y is BLL inGT , and (2) if Y is BLTSP inG , then Y is BLTSP in
GT .

Proof: Follows immediately from the definition of a barren-node removal because thelocal distri-
butions that remain inGT are identical inG . �

C.2.3 BLL AND BLTSP FOR THEOCS TRANSFORMATION

Lemma 44 (OCS, BLL in Y) Consider the OCS transformation shown in Figure 12, where
p(h|x,z) is BLL. If p(y j |z,w,h) is BLL with respect to y0j , j = 1, . . . ,m, then pT(y|x,z,w) =

p(y|x,z,w) is BLL with respect to y0 = y0. If m = 1 and p(y|z,w,h) = p(y1|z,w,h) is BLL, then
pT(y|x,z,w) is BLL.

Proof: For notational simplicity, we useY to denote the set ofYj nodes in the original graphG ; that
is, we use the nodeY from GT as shorthand for the set of nodes that were combined to create that
variable.

First, we show thatp(y|x,z,w) is either binary-like or binary-like with respect toy0. From the
sum rule of probability, we have

p(y|x,z,w) = p(h0|x,z) p(y|z,w,h0)+ ∑
h6=h0

p(h|x,z) p(y|z,w,h). (31)

Whenm = 1 andp(y|z,w,h) is binary-like, becausep(h|x,z) is also binary like, we can rewrite
Equation 31 as follows:

p(y|x,z,w) = p(h0|x,z) p(y|z,w,h0)+(1− p(h0|x,z)) p(y|z,w,h1). (32)

Becausep(h|x,z) is binary-like with respect toh0 and the remaining two terms in Equation 32 are
binary-like, it follows thatp(y|x,z,w) is binary-like. Whenm≥ 1 andp(y j |z,w,h) is binary-like
with respect toy0

j , j = 1, . . . ,m, Equation 32 withY = y0 still holds, becausep(y|z,w,h) is binary-
like with respect toy0. Consequently,p(y|x,z,w) is binary-like with respect toy0. It remains to
show thatp(y0|x,z,w) is lattice. There are three cases to consider.
Case 1:X ∈ X changes. IfX is empty, there is nothing to prove, so assumeX is not empty. Here,
we need to show thatp(y0|x0,x′,z,w) > p(y0|x1,x′,z,w), whereX′ = X \{X}. Using Equation 32
with Y = y0 and omitting those variables that are held constant, we rewrite this condition as

p(h0|x0) p(y0|h0)+(1− p(h0|x0)) p(y0|h1) > (33)

p(h0|x1) p(y0|h0)+(1− p(h0|x1)) p(y0|h1).

Becausep(y0
j |h) is lattice, j = 1, . . . ,m, we know thatp(y0|hi) = ∏m

j=1 p(y0
j |h

i) is lattice—that is,
p(y0|h0) > p(y0|h1). Becausep(h0|x), we havep(h0|x0) > p(h0|x1). Consequently, inequality 33
holds.

1320



LARGE-SAMPLE LEARNING OF BAYESIAN NETWORKS ISNP-HARD

Case 2:W ∈W changes. IfW is empty there is nothing to prove, so assumeW is not empty. Here,
we need to show thatp(y0|x,z,w0,w′) > p(y0|x,z,w1,w′), whereW′ = W \ {W}. Again using
Equation 32 and omitting those variables that are held constant, this condition becomes

p(h0) p(y0|w0,h0)+(1− p(h0)) p(y0|w0,h1) > (34)

p(h0) p(y0|w1,h0)+(1− p(h0)) p(y0|w1,h1).

First note thatp(y0|w,h) is lattice. To see this fact, write

p(y0|w,h) = ∏
a

p(y0
a|w,h)∏

b

p(y0
b|h),

where eachYa has parentsW andH and eachYb has parentH. Because there is at least oneYa

and p(y0
a|w,h) is lattice, it follows thatp(y0|w,h) is lattice. Identifyingp(h0) with α1 = α2 and

p(y0|wi ,h j) with f i j in Proposition 29, and noting thatf i j is lattice becausep(y0|w,h) is lattice, we
find that inequality 34 holds.
Case 3:Z ∈ Z changes. IfZ is empty there is nothing to prove, so assumeZ is not empty. Here, we
need to show thatp(y0|x,z0,z′,w) > p(y0|x,z1,z′,w), whereZ′ = Z \{Z}. Using Equation 32, this
condition becomes

p(h0|z0) p(y0|z0,h0)+(1− p(h0|z0)) p(y0|z0,h1) > (35)

p(h0|z1) p(y0|z1,h0)+(1− p(h0|z1)) p(y0|z1,h1).

By an argument analogous to that in Case 2 of this Lemma, it follows thatp(y0|z,h) is lattice. Thus,
identifying p(h0|zi) with αi andp(y0|zi ,h j) with f i j in Proposition 29 and using the fact thatp(h0|z)
andp(y0|z,h) are lattice, we establish inequality 35.�

Lemma 45 (OCS, BLL in H) Consider the OCS transformation shown in Figure 12, where
p(h|x,z) is BLL. If p(y j |z,w,h) is BLTSP with respect to y0

j , j = 1, . . . ,m, then pT(h|x,z,w) =

p(h|y0,x,z,w) is BLL.

Proof: As in the proof of Lemma 44, we useY to denote the set ofYj nodes in the original graphG .
From Bayes’ rule and the definition ofY, we have

p(h|y0,x,z,w) =
p(h|x,z) p(y0|z,w,h)

p(h0|x,z) p(y0|z,w,h0)+(1− p(h0|x,z)) p(y0|z,w,h1)
. (36)

wherep(y0|z,w,h) = ∏m
j=1 p(y0

j |z,w,h). Becausep(h|x,z) is binary-like andp(y j |z,w,h) is binary-
like with respect toy0

j , i = 1, . . . ,m, it follows thatp(h|y0,x,z,w) is binary-like. It remains to show
that p(h0|y0,x,z,w) is lattice.

Dividing the numerator and denominator of the right-hand-side of Equation 36 by the numerator
and settingh to h0, we obtain

p(h0|y0,x,z,w) =
1

1+ (1−p(h0|x,z))
p(h0|x,z)

p(y0|z,w,h1)
p(y0|z,w,h0)

. (37)

There are three cases to consider.
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Case 1: X ∈ X changes. IfX is empty, there is nothing to prove, so assumeX is not empty.
Here, we need to show thatp(h0|y0,x0,x′,z,w) > p(h0|y0,x1,x′,z,w), whereX′ = X \{X}. Using
Equation 37 and the fact that 1/(1+ a) > 1/(1+ b) if and only if 1/a > 1/b for positivea andb,
this condition becomes

p(h0|x0)

(1− p(h0|x0))

p(y0|h0)

p(y0|h1)
>

p(h0|x1)

(1− p(h0|x1))

p(y0|h0)

p(y0|h1)
,

which holds becausep(h0|x) is lattice.
Case 2:W ∈W changes. IfW is empty, there is nothing to prove, so assumeW is not empty.
Here, we need to show thatp(h0|y0,x,z,w0,w′) > p(h0|y0,x,z,w1,w′), whereW′ = W \{W}. By
an argument similar to that in Case 1, this condition becomes

p(h0)

(1− p(h0))

p(y0|w0,h0)

p(y0|w0,h1)
>

p(h0)

(1− p(h0))

p(y0|w1,h0)

p(y0|w1,h1)
.

Canceling the terms involvingp(h0), we see that this inequality holds ifp(y0|h,w) is totally strictly
positive. To establish the latter fact, recall that

p(y0|w,h) = ∏
a

p(y0
a|w,h)∏

b

p(y0
b|h),

where eachYa has parentsW andH and eachYb has parentH. Now note that the product of two
functions that are positive and totally strictly positive is also positive and totallystrictly positive, and
that if f (X1,X2) is positive and totally strictly positive andg(X1) is positive, thenf (X1,X2) ·g(X1)
is positive and totally strictly positive.
Case 3:Z ∈ Z changes. IfZ is empty, there is nothing to prove, so assumeX is not empty. Here,
we need to show thatp(h0|y0,x,z0,z,w) > p(h0|y0,x,z1,z,w), whereZ′ = Z \{Z}. This condition
becomes

p(h0|z0)

(1− p(h0|z0))

p(y0|z0,h0)

p(y0|z0,h1)
>

p(h0|z1)

(1− p(h0|z1))

p(y0|z1,h0)

p(y0|z1,h1)
. (38)

By an argument analogous to the last one in Case 2,p(y0|z,h) is totally strictly positive. Also,
p(h0|x) is lattice. The inequality therefore holds.�

In the base case of the proof of our main result (Theorem 53), we require only that the distri-
butions have the BLL property. The proof of the preceding lemma shows why BLTSP is a required
property in the original model. Namely, in Case 2,p(h0|y0,w) is lattice if and only ifp(y0|w,h) is
totally strictly positive.

Lemma 46 (OCS, BLTSP inY) Consider the OCS transformation shown in Figure 12, where
p(h|x,z) is BLL and BLTSP. If p(y j |z,w,h) is BLL with respect to y0j and BLTSP with respect to y0

j ,

j = 1, . . . ,m, then p(y|x,z,w) is BLTSP with respect to y0. If m= 1 and p(y|z,w,h) = p(y1|z,w,h)
is BLL and BLTSP, then p(y|x,z,w) is BLTSP.

Proof: In the proof of Lemma 44, we showed that (1) ifm = 1 and p(y|z,w,h) is binary-like,
then p(y|x,z,w) is binary-like; and (2) ifm≥ 1 andp(y j |z,w,h) is binary-like with respect toy0

j ,
j = 1, . . . ,m, thenp(y|x,z,w) is binary-like with respect toy0. It remains to show thatp(y0|x,z,w)
is totally strictly positive. There are six cases to consider.

1322



LARGE-SAMPLE LEARNING OF BAYESIAN NETWORKS ISNP-HARD

Case 1:X1,X2 ∈ X changes. Assume|X| ≥ 2. Here, we need to show that

p(y0|x0
1,x

0
2,x
′,z,w)

p(y0|x0
1,x

1
2,x
′,z,w)

>
p(y0|x1

1,x
0
2,x
′,z,w)

p(y0|x1
1,x

1
2,x
′,z,w)

. (39)

whereX′ = X \ {X1,X2}. Using Equation 32 forY = y0 and omitting those variables that are held
constant, we rewrite this condition as

p(h0|x0
1,x

0
2) p(y0|h0)+(1− p(h0|x0

1,x
0
2)) p(y0|h1)

p(h0|x0
1,x

1
2) p(y0|h0)+(1− p(h0|x0

1,x
1
2)) p(y0|h1)

> (40)

p(h0|x1
1,x

0
2) p(y0|h0)+(1− p(h0|x1

1,x
0
2)) p(y0|h1)

p(h0|x1
1,x

1
2) p(y0|h0)+(1− p(h0|x1

1,x
1
2)) p(y0|h1)

.

Becausep(y0
j |h) is lattice, j = 1, . . . ,m, we know thatp(y0|h) = ∏m

j=1 p(y0
j |h) is lattice. Thus,

identifying p(h0|xi
1,x

j
2) with f i j and p(y0|hi) with gi in Proposition 32, we find that inequality 40

holds.
Case 2:X ∈ X andW ∈W changes. Assume|X| ≥ 1 and|W| ≥ 1. Using Equation 32, we need to
show the inequality

p(h0|x0) p(y0|w0,h0)+(1− p(h0|x0)) p(y0|w0,h1)

p(h0|x0) p(y0|w1,h0)+(1− p(h0|x0)) p(y0|w1,h1)
> (41)

p(h0|x1) p(y0|w0,h0)+(1− p(h0|x1)) p(y0|w0,h1)

p(h0|x1) p(y0|w1,h0)+(1− p(h0|x1)) p(y0|w1,h1)
.

By an argument analogous to one in Case 2 of Lemma 45, we know thatp(y0|w,h) is totally strictly
positive. Therefore, identifyingp(y0|wi ,h j) with gi j in Proposition 31 and noting thatp(h0|x0) >
p(h0|x1), we establish inequality 41.
Case 3:X ∈ X andZ ∈ Z changes. Assume|X| ≥ 1 and|Z| ≥ 1. Using Equation 32, we need to
show the inequality

p(h0|x0,z0) p(y0|z0,h0)+(1− p(h0|x0,z0)) p(y0|z0,h1)

p(h0|x0,z1) p(y0|z1,h0)+(1− p(h0|x0,z1)) p(y0|z1,h1)
>

p(h0|x1,z0) p(y0|z0,h0)+(1− p(h0|x1,z0)) p(y0|z0,h1)

p(h0|x1,z1) p(y0|z1,h0)+(1− p(h0|x1,z1)) p(y0|z1,h1)
.

Becausep(y0|z0,h) = ∏m
j=1 p(y0

j |z
0,h), we know thatp(y0|z0,h) is lattice. By an argument analo-

gous to one in Case 2 of Lemma 45, we know thatp(y0|z,h) is totally strictly positive. Identifying
p(h0|xi ,zj) with f i j andp(y0|zi ,h j) with gi j , Proposition 33 establishes this identity.
Case 4:W1,W2 ∈W changes. Assume|W| ≥ 2. Using Equation 32, we need to show the inequality

p(h0) p(y0|w0
1,w

0
2,h

0)+(1− p(h0)) p(y0|w0
1,w

0
2,h

1)

p(h0) p(y0|w0
1,w

1
2,h

0)+(1− p(h0)) p(y0|w0
1,w

1
2,h

1)
>

p(h0) p(y0|w1
1,w

0
2,h

0)+(1− p(h0)) p(y0|w1
1,w

0
2,h

1)

p(h0) p(y0|w1
1,w

1
2,h

0)+(1− p(h0)) p(y0|w1
1,w

1
2,h

1)
.
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Identifying p(h0) with f andp(y0|wi
1,w

j
2,h

k) with gi jk , Proposition 34 establishes this identity if we
can show thatgi jk satisfies the strict and non-strict total positivity conditions of the proposition. To
do so, write

p(y0|w1,w2,h) = ∏
a

p(y0
a|w1,w2,h)∏

b

p(y0
b|w1,h)∏

c
p(y0

c|w2,h)∏
d

p(y0
c|h),

where eachYa has parentsW1, W2, andH, eachYb has parentsW1 andH, eachYc has parentsW2

andH, and eachYd has parentH. It is not difficult to show that, if there is at least one variable
having bothW1 andW2 as parents, then the product is totally strictly positive. If there is no such
variable, however, the product is not totally strictly positive, becauseg000/g010= g100/g110 and
g001/g011= g101/g111. Nonetheless, it is not difficult to show that the remaining four pairwise
total strict positivity conditions hold. Consequently, the conditions of Proposition 34 hold.
Case 5:Z ∈ Z andW ∈W changes. Assume|Z| ≥ 1 and|W| ≥ 1. Using Equation 32, we need to
show the inequality

p(h0|z0) p(y0|z0,w0,h0)+(1− p(h0|z0)) p(y0|z0,w0,h1)

p(h0|z0) p(y0|z0,w1,h0)+(1− p(h0|z0)) p(y0|z0,w1,h1)
>

p(h0|z1) p(y0|z1,w0,h0)+(1− p(h0|z1)) p(y0|z1,w0,h1)

p(h0|z1) p(y0|z1,w1,h0)+(1− p(h0|z1)) p(y0|z1,w1,h1)
.

Identifying p(h0|zi) with f i andp(y0|zi ,w j ,hk) with gi jk , Proposition 35 establishes this identity if
gi jk satisfies the strict and non-strict total positivity conditions of the Proposition. By an argument
analogous to one in Case 4 of this Lemma,gi jk satisfies these conditions.
Case 6:Z1,Z2 ∈ Z changes. Assume|Z| ≥ 2. Using Equation 32, we need to show the inequality

p(h0|z0
1,z

0
2) p(y0|z0

1,z
0
2,h

0)+(1− p(h0|z0
1,z

0
2)) p(y0|z0

1,z
0
2,h

1)

p(h0|z0
1,z

1
2) p(y0|z0

1,z
1
2,h

0)+(1− p(h0|z0
1,z

1
2)) p(y0|z0

1,z
1
2,h

1)
>

p(h0|z1
1,z

0
2) p(y0|z1

1,z
0
2,h

0)+(1− p(h0|z1
1,z

0
2)) p(y0|z1

1,z
0
2,h

1)

p(h0|z1
1,z

1
2) p(y0|z1

1,z
1
2,h

0)+(1− p(h0|z1
1,z

1
2)) p(y0|z1

1,z
1
2,h

1)
.

Identifying p(h0|zi
1,z

j
2) with f i j andp(y0|zi

1,z
j
2,h

k) with gi jk , Proposition 36 establishes this identity
if gi jk satisfies the conditions of the Proposition. Becausep(y0|z0

1,x
0
2,h) = ∏m

j=1 p(y0
j |z

0
1,z

0
2,h), we

know thatp(y0|z0
1,z

0
2,h) is lattice. By an argument analogous to that of Case 4 of this Lemma,gi jk

satisfies the strict and non-strict total positivity conditions of Proposition 36. �

Putting the three previous lemmas together, we get the following general result for the OCS
transformation.

Corollary 47 (OCS transformation) LetG be a Bayesian network, and letGT be the result of ap-
plying the observed-child-separation transformation on unobserved node H with observed children
Y. If the observed values for the childrenY are the distinguished statesy0 for those children, and
if in G , H is both BLL and BLTSP, and each observed child Yi ∈ Y is both BLL with respect to y0

i
and BLTSP with respect to y0

i , then inGT , (1) H is BLL, (2) Y= Comp(Y) is BLL with respect to
y0, and (3) Y= Comp(Y) BLTSP with respect to y0.

Proof: (1), (2), and (3) follow immediately from Lemma 45, Lemma 44, and Lemma 46, respec-
tively. �
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C.2.4 BLL AND BLTSP FOR THEEDGE-REVERSAL TRANSFORMATION

Corollary 48 (Edge Reversal, BLL inY) Consider the edge-reversal transformation shown in
Figure 8. If the local distributions for H and Y are BLL inG , then the local distribution for Y
in GT is BLL.

Proof: The local distribution forY after reversingH→Y is exactly the same as the local distribution
for Y after a one-child OCS transformation forH →Y; thus, the corollary follows from them= 1
case of Lemma 44.�

Corollary 49 (Edge Reversal, BLTSP inY) Consider the edge-reversal transformation shown in
Figure 8. If the local distribution for H is BLL and BLTSP inG , and if the local distribution for Y
is BLL and BLTSP inG , then the local distribution for Y inGT is BLTSP.

Proof: The local distribution forY after reversingH→Y is exactly the same as the local distribution
for Y after a one-child OCS transformation forH →Y; thus, the corollary follows from them= 1
case of Lemma 46.�

C.2.5 BLL FOR THEUPS ALGORITHM

We now show that if every node inG is BLL, then every node in the graph that results from applying
the UPS algorithm is also BLL.

Lemma 50 LetG be any Bayesian network, and letGT be the result of applying the UPS algorithm
with Bayesian networkG and non-root node Y. If every node inG is BLL, then every node inGT is
BLL.

Proof: The result follows because, from Corollary 48, after each edgeH→Y is reversed,Y remains
BLL; the property need not hold forH after the reversal becauseH is immediately removed.�

C.2.6 BLL FOR THEONE ALGORITHM

Recall Algorithm ONE from Section B.2.2 which eliminates all observed nodes from a model. In
this section, we show conditions under which the nodes that remain after the algorithm are BLL.
As in Section B.2.2, we useG i to denote the Bayesian network that results afteri iterations of the
While loop at step 3 of the algorithm, we defineG0 to be the graphGT that results after applying
step 2 but before the first iteration of the While loop at step 3, we useH i to denote the (lowest) node
chosen in iterationi of the While loop, we useY i to denote the set of observed children ofH i on
iterationi of the While loop, and we useYi = Comp(Y i) to denote the composite node created by
the OCS transformation in iterationi of the While loop.

Lemma 51 Let G be a Bayesian network in which all nodes are both BLL and BLTSP, and leto
be a set of observations for nodesO. If for every O∈ O that has at least one parent not inO, the
observation ino for O is the distinguished state o0, then every node in the Bayesian networkGT

that results from applying Algorithm ONE toG is BLL.

Proof: From Lemma 42, we know that we retain the BLL and BLTSP properties of all nodes
while removing edges in step 2, and thus all nodes inG0 are both BLL and BLTSP. Similarly,
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from Proposition 43, step 4 does not affect the BLL or BLTSP properties of the nodes that remain.
Thus, the lemma follows if we can show that for every OCS transformation applied in step 3 of the
algorithm, every non-observed node retains the BLL property.

Consider theith iteration of the While loop in step 3. From Corollary 47, if (1) the observed
state for each child inY i is the distinguished state for that child, (2)H i is both BLL and BLTSP, and
(3) each child inY i is both BLL with respect to its distinguished state and BLTSP with respect to
its distinguished state, then we are guaranteed that all observed variablesretain the BLL property.
We now demonstrate that these three preconditions of Corollary 47 hold forevery iterationi.

After applying step 2 of the algorithm, any observed node without at least one observed parent
will be completely disconnected from the graph, and thus precondition (1) isalways satisfied. From
Corollary 23, each unobserved node is chosen at most once in step 3. Because the parents (and
hence the local distribution) for an unobserved node only change whenit is chosen in step 3, we
conclude that precondition (2) is always satisfied.

The only local distributions for nodes inO that change in iterationi are the nodesY i , which are
replaced by the single nodeYi . From Corollary 47, if preconditions (1) and (2) hold, and if every
nodeO∈O is both BLL with respect too0 and BLTSP with respect too0 beforethe transformation,
then every nodeO ∈ O is both BLL with respect too0 and BLTSP with respect too0 after the
transformation. Because all nodes inO are initially both BLL with respect to their distinguished
states and BLTSP with respect to their distinguished states, precondition (3)always holds and the
lemma follows.�

Appendix D. Main Results

In this appendix, we prove Lemma 17 and Lemma 5 using results established in theprevious ap-
pendices.

Lemma 52 Let G be any Bayesian network in which all local distributions are BLL, and let X be
any root node inG . If X and Y are d-connected by an/0-active path inG , then p(y0|x0) > p(y0|x1).

Proof: From Lemma 50, we can apply Algorithm UPS toG and nodeY, and every node in the
resulting modelGT will be BLL. Furthermore, we know from Lemma 20 thatX is a root-node
parent ofY, and that all other nodesZ in GT are also root-node parents ofY. Expressing the
difference of interest usingGT :

p(y0|x0)− p(y0|x1) =

[

∑
z

pT(y0|x0,z)pT(z|x0)

]

−

[

∑
z

pT(y0|x1,z)pT(z|x0)

]

.

Because all nodes inZ are d-separated fromX in GT wheneverY is not in the conditioning set we
have

p(y0|x0)− p(y0|x1) = ∑
z

p(z)
[

pT(y0|x0,z)− pT(y0|x1,z)
]

.

Every difference in the sum above is guaranteed to be greater than zeroby definition of BLL.�

Theorem 53 Let G be a Bayesian network in which all conditional distributions are BLL and
BLTSP, and leto be a set of observations for nodesO. If for every O∈ O that has at least one
parent not inO, the observation ino for O is the distinguished state o0, then if there is aO-active
path between X and Y inG , then p(y0|x0,o0) > p(y0|x1,o0).
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Proof: Without loss of generality, assume thatX is not a descendant ofY in G . LetUAnc(X) denote
the set of unobserved nodes inG for which there is a directed path toX though unobserved nodes.
In other words,UAnc(X) is the set of ancestors ofX if we were to remove all of the nodes inO
from G . We prove the theorem by induction on the size ofUAnc(X).

For the basis, we consider the case when|UAnc(X)| = 0. From Lemma 51, we can use Algo-
rithm ONE to convertG into a Bayesian network containing only unobserved nodes and for which
every node is BLL. Furthermore, becauseX has no unobserved parents inG , we can assume by
Lemma 24 thatX is a root node in the resulting modelGT . Because there is aO-active path be-
tweenX andY in G , there must be a/0-active path betweenX andY in GT . Thus the base case
follows from Lemma 52.

For the induction hypothesis, we assume the theorem is true whenever|UAnc(X)| is less than
k, and we consider the case when|UAnc(X)| = k. Let Z be any element ofUAnc(X) for which no
parent ofZ is also inUAnc(X); that is,Z is a root-node ancestor ofX in the graph that results from
removingO from G . BecauseZ 6∈O, we know that the theorem holds if

p(z0|x0,o0)p(y0|x0,z0,o0) + p(z1|x0,o0)p(y0|x0,z1,o0)

>

p(z0|x1,o0)p(y0|x1,z0,o0) + p(z1|x1,o0)p(y0|x1,z1,o0).

We conclude from Proposition 29—usingα1 = p(z0|x0,o0), α2 = p(z0|x1,o0), and f i j =
p(y0|xi ,zj ,o0)—that the following four conditions are sufficient to establishp(y0|x0,o0) ≥
p(y0|x1,o0):

1. p(z0|x0,o0)≥ p(z0|x1,o0) (i.e.,α1≥ α2)

2. p(y0|x0,z0,o0)≥ p(y0|x0,z1,o0) (i.e., f 00≥ f 01)

3. p(y0|x0,z1,o0)≥ p(y0|x1,z1,o0) (i.e., f 01≥ f 11)

4. p(y0|x0,z0,o0)≥ p(y0|x1,z0,o0) (i.e., f 00≥ f 10)

and that either of the following two conditions is sufficient to rule out equality,and thus establish
the lemma:

5.
(

p(y0|x0,z0,o0) > p(y0|x0,z1,o0)
)

∧
(

p(z0|x0,o0) > p(z0|x1,o0)
)

(i.e.,(α1 > α2)∧ ( f 00 > f 01))

6. p(y0|x0,z0,o0) > p(y0|x1,z0,o0) (i.e., f 00≥ f 10).

We consider two cases: inG , eitherX andY are d-separated byO∪ {Z} or they are not d-
separated byO∪{Z}.

SupposeX andY are d-separated byO∪{Z}. We can immediately conclude that equality holds
for both (3) and (4). BecauseX andY are not d-separated byO, we conclude both thatZ andY are
d-connected givenO and thatY andZ are d-connected givenO∪X. From this first d-connection
fact and the fact that|UAnc(Z)| = 0, we conclude that (1) is a strict inequality by the base case of
the induction. From the second d-connection fact, and because the preconditions of the theorem are
not violated by addingX = x0 to the observation set, we conclude that (2) is also a strict inequality
by again deferring to the base case of the induction. Thus, all inequalities (1)-(4) hold, with (1)
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and (2) holding as strict inequalities. Because condition (5) is simply the conjunction of the strict
versions of (2) and (1), the theorem follows.

SupposeX andY are not d-separated byO∪ {Z}. In this case, the two d-connection facts
from the previous case may or may not hold. If either or both of them hold, we can show that the
corresponding inequality is strict using the same argument as above. If either or both of them do
not hold, we conclude that equality holds for the corresponding inequality. Thus, we know that (1)
and (2) both hold, although we have no guarantees on strictness. Because all of the parents ofZ are
necessarily in the conditioning set, the preconditions of the theorem are notviolated by adding either
z= z0 or z= z1 to the conditioning set. Because the result of either addition reduces|UAnc(X)| by
one, we conclude by induction that both (3) and (4) are strict inequalities.Thus, all inequalities
(1)-(4) hold. Because condition (6) is simply the strict version of (4), thetheorem follows.�

Theorem 53 is closely related to existing results in the QBN literature. In particular, Theorem 4
from Druzdzel and Henrion (1993) implies that in a graph satisfying the non-strict versions of BLL
and BLTSP, our Theorem 53 holds except with the conclusion thatp(y0|x0,o0)≥ p(y0|x1,o0).

We now prove the main results of the appendices. We re-state the corollary here, adopting our
convention of usingG to denote both the structure and the parameters of a Bayesian network.
Lemma 17Let G be a Bayesian network in which all local distributions are both BLL and BLTSP.
Then the joint distribution represented byG is perfect with respect to the structure ofG .
Proof: Let p(·) denote the joint distribution defined byG . Becausep(·) is defined by a Bayesian
network, we know it factors according to the structure ofG , and thus we need only show thatp(·)
is faithful with respect to the structure ofG . To demonstrate thatp(·) is faithful, we consider an
arbitrary d-connection fact inG and prove that there is a corresponding dependence inp(·). Let X
andY be any pair of nodes inG that are d-connected by some setO in G . From Theorem 53, we
know that for the observationO = o0, we havep(y0|x0,o0) > p(y0|x1,o0), and thusp(·) is faithful.
�

We now prove Lemma 5; this lemma provides a method for constructing BLL and BLTSP
distributions.
Lemma 5LetG be a Bayesian network, let rY denote the number of states of node Y, letPaY denote
the set of parents of node Y inG , let NNZ(paY) denote the number of non-zero elements in the set
paY, and letαX be a constant satisfying0 < αX < 1. If all of the local distributions are defined as

p(y|paY) =







αF(paY)
X if y = 0
1

(rY−1)

(

1−αF(paY)
X

)

otherwise,
(42)

where
F(paY) = 2−2−NNZ(paY),

then the distribution defined byG is perfect with respect to the structure ofG .
Proof: Given Lemma 17, we need only show thatp(y|paY) is BLL and BLTSP. For every variable
in G , we define the distinguished state to be state zero, and we order the states such that state zero is
greatest and all non-zero states are equal. Thus, according to the definition of BLL (Definition 40)
and the definition of BLTSP (Definition 41), we need to show thatp(y|paY) is binary-like, lattice
with respect toy = 0, and totally strictly positive with respect toy = 0.

Due to the definition ofF in Equation 42, it follows immediately from Definition 39 that
p(y|paY) is binary-like. We now show thatp(y|paY) is lattice with respect toy = 0. From Equation
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42, this follows as long as

α2−( 1
2)

NNZ(pa1
Y)

> α2−( 1
2)

NNZ(pa2
Y)

whenpa1
Y andpa2

Y are identical except thatpa1
Y contains one extra zero in some position. Due to the

fact thatα < 1, the above condition is equivalent toNNZ(pa1
Y) < NNZ(pa2

Y) (simplify by taking the
logarithm baseα, then subtracting constants, then multiplying by -1, and then taking the logarithm
base1

2; the direction of the sign above thus changes three times). Becausepa1
Y contains exactly one

more zero than doespa2
Y, NNZ(pa1

Y) = NNZ(pa2
Y)+1 and we conclude thatp(y|paY) is lattice with

respect toy = 0.
Finally, we show thatp(y|paY) is totally strictly positive with respect toy = 0. For an arbitrary

pair of parents{Xi ,Xj} ⊆ PaY, let X i j denote the remaining parents. That is,

PaY = {Xi ,Xj}∪X i j .

From Definition 27 (and the example that follows it), it suffices to show that

p(y = 0|x0
i ,x

0
j ,xi j ) p(y = 0|x1

i ,x
1
j ,xi j ) > p(y = 0|x0

i ,x
1
j ,xi j ) p(y = 0|x1

i ,x
0
j ,xi j ).

Lettingni j denote the number of non-zero elements inxi j and plugging in Equation 42 yields

α2−( 1
2)

ni j +2

α2−( 1
2)

ni j
> α2−( 1

2)
ni j +1

α2−( 1
2)

ni j +1

.

Taking the logarithm (baseα) of both sides (which reverses the sign of the inequality becauseα < 1),
subtracting 4 from both sides, and then dividing both sides by−1

2
ni j (which reverses the sign of the

inequality once again) leaves
(

1
2

)2

+1 >
1
2

+
1
2
,

which clearly holds.�
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Abstract
Variable selection, the process of identifying input variables that are relevant to a particular learning
problem, has received much attention in the learning community. Methods that employ a learning
algorithm as a part of the selection process (wrappers) havebeen shown to outperform methods
that select variables independently from the learning algorithm (filters), but only at great compu-
tational expense. We present a randomized wrapper algorithm whose computational requirements
are within a constant factor of simply learning in the presence of all input variables, provided that
the number of relevant variables is small and known in advance. We then show how to remove the
latter assumption, and demonstrate performance on severalproblems.

1. Introduction

When learning in a supervised environment, a learning algorithm is typically presented with a set
of N-dimensional data points, each with its associated target output. The learningalgorithm then
outputs a hypothesis describing the function underlying the data. In practice, the set ofN input
variables is carefully selected by hand in order to improve the performanceof the learning algorithm
in terms of both learning speed and hypothesis accuracy.

In some cases there may be a large number of inputs available to the learning algorithm, few of
which are relevant to the target function, with no opportunity for human intervention. For example,
feature detectors may generate a large number of features in a pattern recognition task. A second
possibility is that the learning algorithm itself may generate a large number of newconcepts (or
functions) in terms of existing concepts. Valiant (1984), Fahlman and Lebiere (1990), and Kivinen
and Warmuth (1997) all discuss situations in which a potentially large number offeatures are created
during the learning process. In these situations, an automatic approach to variable selection is
required.

One approach to variable selection that has produced good results is the wrapper method (John
et al., 1994). Here, a search is performed in the space of variable subsets, with the performance
of a specific learning algorithm based on such a subset serving as an evaluation function. Using
the actual generalization performance of the learning algorithm as an evaluation metric allows this
approach to search for the most predictive set of input variables with respect to the learner. However,
executing the learning algorithm for each selection of variables during the search ultimately renders
the approach intractable in the presence of many irrelevant variables.

c©2004 David J. Stracuzzi and Paul E. Utgoff.
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In spite of the cost, variable selection can play an important role in learning. Irrelevant variables
can often degrade the performance of a learning algorithm, particularly when data are limited. The
main computational cost associated with the wrapper method is usually that of executing the learn-
ing algorithm. The learner must produce a hypothesis for each subset ofthe input variables. Even
greedy selection methods (Caruana and Freitag, 1994) that ignore largeareas of the search space
can produce a large number of candidate variable sets in the presence ofmany irrelevant variables.

Randomized variable elimination avoids the cost of evaluating many variable setsby taking
large steps through the space of possible input sets. The number of variables eliminated in a single
step depends on the number of currently selected variables. We presenta cost function whose pur-
pose is to strike a balance between the probability of failing to select successfully a set of irrelevant
variables and the cost of running the learning algorithm many times. We use a form of backward
elimination approach to simplify the detection of relevant variables. Removal ofany relevant vari-
able should immediately cause the learner’s performance to degrade. Backward elimination also
simplifies the selection process when irrelevant variables are much more common than relevant
variables, as we assume here.

Analysis of our cost function shows that the cost of removing all irrelevant variables is dom-
inated by the cost of simply learning with allN variables. The total cost is therefore within a
constant factor of the cost of simply learning the target function based onall N input variables,
provided that the cost of learning grows at least polynomially inN. The bound on the complexity
of our algorithm is based on the complexity of the learning algorithm being used. If the given learn-
ing algorithm executes in timeO(N2), then removing theN− r irrelevant variables via randomized
variable elimination also executes in timeO(N2). This is a substantial improvement compared to
the factorN or more increase experienced in removing inputs one at a time.

2. Variable Selection

The specific problem of variable selection is the following: Given a large set of input variables and a
target concept or function, produce a subset of the original input variables that predict best the target
concept or function when combined into a hypothesis by a learning algorithm.The term “predict
best” may be defined in a variety of ways, depending on the specific application and selection
algorithm. Ideally the produced subset should be as small as possible to reduce training costs and
help prevent overfitting.

From a theoretical viewpoint, variable selection should not be necessary. For example, the pre-
dictive power of Bayes rule increases monotonically with the number of variables. More variables
should always result in more discriminating power, and removing variables should only hurt. How-
ever, optimal applications of Bayes rule are intractable for all but the smallest problems. Many
machine learning algorithms perform sub-optimal operations and do not conform to the strict con-
ditions of Bayes rule, resulting in the potential for a performance decline in the face of unnecessary
inputs. More importantly, learning algorithms usually have access to a limited number of exam-
ples. Unrelated inputs require additional capacity in the learner, but do not bring new information
in exchange. Variable selection is thus a necessary aspect of inductivelearning.

A variety of approaches to variable selection have been devised. Most methods can be placed
into one of two categories:filter methods orwrappermethods. Filter approaches perform variable
selection independently of the learning algorithm, while wrappers make learner-dependent selec-
tions. A third group of special purpose methods perform feature selection in the context of neural
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networks, known as parameter pruning. These methods cannot directly perform variable selection
for arbitrary learning algorithms; they are approaches to removing irrelevant inputs from learning
elements.

Many variable selection algorithms (although not all) perform some form of search in the space
of variable subsets as part of their operation. A forward selection algorithm begins with the empty
set and searches for variables to add. A backward elimination algorithm begins with the set of all
variables and searches for variables to remove. Optionally, forward algorithms may occasionally
choose to remove variables, and backward algorithms may choose to add variables. This allows the
search to recover from previous poor selections. The advantage of forward selection is that, in the
presence of many irrelevant variables, the size of the subsets will remain relatively small, helping to
speed evaluation. The advantage of backward elimination is that recognizing irrelevant variables is
easier. Removing a relevant variable from an otherwise complete set should cause a decline in the
evaluation, while adding a relevant variable to an incomplete set may have little immediate impact.

2.1 Filters

Filter methods use statistical measures to evaluate the quality of the variable subsets. The goal
is to find a set of variables that is best with respect to the specific quality measure. Determining
which variables to include may either be done via an explicit search in the space of variable subsets,
or by numerically weighting the variables individually and then selecting those with the largest
weight. Filter methods often have the advantage of speed. The statistical measures used to evaluate
variables typically require very little computation compared to cost of running alearning algorithm
many times. The disadvantage is that variables are evaluated independently,not in the context of
the learning problem.

Early filtering algorithms include FOCUS (Almuallim and Dietterich, 1991) and Relief(Kira
and Rendell, 1992). FOCUS searches for a smallest set of variables that can completely discriminate
between target classes, while Relief ranks variables according to a distance metric. Relief selects
training instances at random when computing distance values. Note that this isnot related to our
approach of selecting variables at random.

Decision trees have also been employed to select input variables by first inducing a tree, and then
selecting only those variables tested by decision nodes (Cardie, 1993; Kubat et al., 1993). In another
vein, Koller and Sahami (1996) discuss a variable selection algorithm based on cross entropy and
information theory.

Methods from statistics also provide a basis for a variety of variable filteringalgorithms. Correlation-
based feature selection (CFS) (Hall, 1999) attempts to find a set of variables that are each highly
correlated with the target function, but not with each other. The ChiMerge(Kerber, 1992) and Chi2
algorithms (Liu and Setiono, 1997) remove both irrelevant and redundantvariables using aχ2 test
to merge adjacent intervals of ordinal variables.

Other methods from statistics solve problems closely related to variable selection. For example,
principal component analysis (see Dunteman, 1989) is a method for transforming the observed
variables into a smaller number of dimensions, as opposed to removing irrelevant or redundant
variables. Projection pursuit (Friedman and Tukey, 1974) and factor analysis (Thurstone, 1931)
(see Cooley and Lohnes, 1971, for a detailed presentation) are used both to reduce dimensionality
and to detect structure in relationships among variables.
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Discussion of filtering methods for variable selection also arises in the patternrecognition liter-
ature. For example, Devijver and Kittler (1982) discuss the use of a varietyof linear and non-linear
distance measures and separability measures such as entropy. They alsodiscuss several search al-
gorithms, such as branch and bound and plusl -take awayr. Branch and bound is an optimal search
technique that relies on a careful ordering of the search space to avoidan exhaustive search. Plusl -
take awayr is more akin to the standard forward and backward search. At each step, l new variables
are selected for inclusion in the current set andr existing variables are removed.

2.2 Wrappers

Wrapper methods attempt to tailor the selection of variables to the strengths and weaknesses of
specific learning algorithms by using the performance of the learner to evaluate subset quality. Each
candidate variable set is evaluated by executing the learning algorithm given the selected variables
and then testing the accuracy of the resulting hypotheses. This approachhas the advantage of using
the actual hypothesis accuracy as a measure of subset quality. The problem is that the cost of
repeatedly executing the learning algorithm can quickly become prohibitive.Nevertheless, wrapper
methods do tend to outperform filter methods. This is not surprising given that wrappers evaluate
variables in the context of the learning problem, rather than independently.

2.2.1 ALGORITHMS

John, Kohavi, and Pfleger (1994) appear to have coined the term “wrapper” while researching the
method in conjunction with a greedy search algorithm, although the technique has a longer history
(Devijver and Kittler, 1982). Caruana and Freitag (1994) also experimented with greedy search
methods for variable selection. They found that allowing the search to eitheradd variables or remove
them at each step of the search improved over simple forward and backward searches. Aha and
Bankert (1994) use a backward elimination beam search in conjunction withthe IB1 learner, but
found no evidence to prefer this approach to forward selection. OBLIVION (Langley and Sage,
1994) selects variables for the nearest neighbor learning algorithm. Thealgorithm uses a backward
elimination approach with a greedy search, terminating when the nearest neighbor accuracy begins
to decline.

Subsequent work by Kohavi and John (1997) used forward and backward best-first search in the
space of variable subsets. Search operators generally include addingor removing a single variable
from the current set. This approach is capable of producing a minimal setof input variables, but
the cost grows exponentially in the face of many irrelevant variables. Compound operators generate
nodes deep in the search tree early in the search by combining the best children of a given node.
However, the cost of running the best-first search ultimately remains prohibitive in the presence of
many irrelevant variables.

Hoeffding races (Maron and Moore, 1994) take a different approach. All possible models (se-
lections) are evaluated via leave-one-out cross validation. For each ofthe N evaluations, an error
confidence interval is established for each model. Models whose error lower bound falls below the
upper bound of the best model are discarded. The result is a set of models whose error is insignifi-
cantly different.

Several algorithms for constructing regression models are also forms of wrapper methods. For
example, Least angle regression (Efron et al., 2003), which generalizes and improves upon several
forward selection regression algorithms, adds variables to the model incrementally.
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Genetic algorithms have been also been applied as a search mechanism for variable selection.
Vafaie and De Jong (1995) describe using a genetic algorithm to performvariable selection. They
used a straightforward representation in which individual chromosomes were bit-strings with each
bit marking the presence or absence of a specific variable. Individualswere evaluated by training
and then testing the learning algorithm. In a similar vein, SET-Gen (Cherkauerand Shavlik, 1996)
used a fitness (evaluation) function that included both the accuracy of theinduced model and the
comprehensibility of the model. The learning model used in their experiments wasa decision tree
and comprehensibility was defined as a combination of tree size and number offeatures used. The
FSS-EBNA algorithm (Inza et al., 2000) used Bayesian Networks to mate individuals in a GA-based
approach to variable selection.

The relevance-in-context (RC) algorithm (Domingos, 1997) is based onthe idea that some fea-
tures may only be relevant in particular areas of the instance space for instance based (lazy) learners.
Clusters of training examples are formed by finding examples of the same classwith nearly equiva-
lent feature vectors. The features along which the examples differ are removed and the accuracy of
the entire model is determined. If the accuracy declined, the features are restored and the failed ex-
amples are removed from consideration. The algorithm continues until thereare no more examples
to consider. Results showed that RC outperformed other wrapper methods with respect to a 1-NN
learner.

2.2.2 LEARNER SELECTIONS

Many learning algorithms already contain some (possibly indirect) form of variable selection, such
as pruning in decision trees. This raises the question of whether the variable selections made by the
learner should be used by the wrapper. Such an approach would almostcertainly run faster than
methods that rely only on the wrapper to make variable selections. The wrapper selects variables
for the learner, and then executes the learner. If the resulting hypothesis is an improvement, then the
wrapper further removes all variables not used in the hypothesis before continuing on with the next
round of selections.

This approach assumes the learner is capable of making beneficial variable selections. If this
were true, then both filter and wrapper methods would be largely irrelevant.Even the most so-
phisticated learning algorithms may perform poorly in the presence of highly correlated, redundant
or irrelevant variables. For example, John, Kohavi, and Pfleger (1994) and Kohavi (1995) both
demonstrate how C4.5 (Quinlan, 1993) can be tricked into making bad decisions at the root. Vari-
ables highly correlated with the target value, yet ultimately useless in terms of making beneficial
data partitions, are selected near the root, leading to unnecessarily large trees. Moreover, these bad
decisions cannot be corrected by pruning. Only variable selection performed outside the context of
the learning algorithm can recognize these types of correlated, irrelevant variables.

2.2.3 ESTIMATING PERFORMANCE

One question that any wrapper method must consider is how to obtain a good estimate of the ac-
curacy of the learner’s hypothesis. Both the amount and quality of data available to the learner
affect the testing accuracy. Kohavi and John (1997) suggest usingmultiple runs of five-fold cross-
validation to obtain an error estimate. They determine the number of cross-validation runs by con-
tinuing until the standard deviation of the accuracy estimate is less than 1%. Thishas the nice
property of (usually) requiring fewer runs for large data sets. However, in general, cross-validation
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is an expensive procedure, requiring the learner to produce several hypotheses for each selection of
variables.

2.3 Model Specific Methods

Many learning algorithms have built-in variable (or parameter) selection algorithms which are used
to improve generalization. As noted above, decision tree pruning is one example of built-in variable
selection. Connectionist algorithms provide several other examples, known as parameter pruning.
As in the more general variable selection problem, extra weights (parameters) in a network can
degrade the performance of the network on unseen test instances, andincrease the cost of evaluat-
ing the learned model. Parameter pruning algorithms often suffer the same disadvantages as tree
pruning. Poor choices made early in the learning process can not usuallybe undone.

One method for dealing with unnecessary network parameters is weight decay (Werbos, 1988).
Weights are constantly pushed toward zero by a small multiplicitive factor in the update rule. Only
the parameters relevant to the problem receive sufficiently large weight updates to remain signifi-
cant. Methods for parameter pruning include the optimal brain damage (OBD)(LeCun et al., 1990)
and optimal brain surgeon (OBS) (Hassibi and Stork, 1993) algorithms. Both rely on the second
derivative to determine the importance of connection weights. Sensitivity-based pruning (Moody
and Utans, 1995) evaluates the effect of removing anetworkinput by replacing the input by its mean
over all training points. The autoprune algorithm (Finnoff et al., 1993) defines an importance metric
for weights based on the assumption that irrelevant weights will become zero. Weights with a low
metric value are considered unimportant and are removed from the network.

There are also connectionist approaches that specialize in learning quickly in the presence ir-
relevant inputs, without actually removing them. The WINNOW algorithm (Littlestone, 1988) for
Boolean functions and the exponentiated gradient algorithm (Kivinen andWarmuth, 1997) for real-
valued functions are capable of learning linearly separable functions efficiently in the presence of
many irrelevant variables. Exponentiated gradient algorithms, of which WINNOW is a special case,
are similar to gradient descent algorithms, except that the updates are multiplicative rather than ad-
ditive.

The result is a mistake bound that is linear in the number of relevant inputs, but only logarithmic
in the number of irrelevant inputs. Kivinen and Warmuth also observed thatthe number of examples
required to learn an accurate hypothesis also appears to obey these bounds. In other words, the num-
ber of training examples required by exponentiated gradient algorithms grows only logarithmicly in
the number of irrelevant inputs.

Exponentiated gradient algorithms may be applied to the problem of separatingthe set of rel-
evant variables from irrelevant variables by running them on the available data and examining the
resulting weights. Although exponentiated gradient algorithms produce a minimum error fit of the
data in non-separable problems, there is no guarantee that such a fit will rely on the variables rele-
vant to a non-linear fit.

Many algorithms that are directly applicable in non-linear situations experience a performance
decline in the presence of irrelevant input variables. Even support vector machines, which are often
touted as impervious to irrelevant variables, have been shown to improve performance with feature
selection (Weston et al., 2000). A more general approach to recognizingrelevant variables is needed.
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3. Setting

Our algorithm for randomized variable elimination (RVE) requires a set (or sequence) ofN-dimensional
vectorsxi with labelsyi . The learning algorithmL is asked to produce a hypothesish based only
on the inputsxi j that have not been marked as irrelevant (alternatively, a preprocessor could remove
variables marked irrelevant). We assume that the hypotheses bear some relation to the data and
input values. A degenerate learner (such as one that produces the same hypothesis regardless of
data or input variables) will in practice cause the selection algorithm ultimately to select zero vari-
ables. This is true of most wrapper methods. For the purposes of this article, we use generalization
accuracy as the performance criteria, but this is not a requirement of thealgorithm.

We make the assumption that the numberr of relevant variables is at least two to avoid degen-
erate cases in our analysis. The number of relevant variables should besmall compared to the total
number of variablesN. This condition is not critical to the functionality of the RVE algorithm; how-
ever the benefit of using RVE increases as the ratio ofN to r increases. Importantly, we assume that
the number of relevant variables is known in advance, although which variables are relevant remains
hidden. Knowledge ofr is a very strong assumption in practice, as such information is not typically
available. We remove this assumption in Section 6, and present an algorithm for estimatingr while
removing variables.

4. The Cost Function

Randomized variable elimination is a wrapper method motivated by the idea that, in thepresence
of many irrelevant variables, the probability of successfully selecting several irrelevant variables
simultaneously at random from the set of all variables is high. The algorithmcomputes the cost
of attempting to removek input variables out ofn remaining variables given thatr are relevant.
A sequence of values fork is then found by minimizing the aggregate cost of removing allN− r
irrelevant variables. Note thatn represents the number of remaining variables, whileN denotes the
total number of variables in the original problem.

The first step in applying the RVE algorithm is to define the cost metric for the given learning
algorithm. The cost function can be based on a variety of metrics, depending on which learning
algorithm is used and the constraints of the application. Ideally, a metric would indicate the amount
of computational effort required for the learning algorithm to produce a hypothesis.

For example, an appropriate metric for the perceptron algorithm (Rosenblatt, 1958) might relate
to the number of weight updates that must be performed, while the number of calls to the data
purity criterion (e.g. information gain (Quinlan, 1986)) may be a good metric for decision tree
induction algorithms. Sample complexity represents a metric that can be applied to almost any
algorithm, allowing the cost function to compute the number of instances the learner must see in
order to remove the irrelevant variables from the problem. We do not assume a specific metric for
the definition and analysis of the cost function.

4.1 Definition

The first step of defining the cost function is to consider the probability

p+(n, r,k) =
k−1

∏
i=0

(

n− r− i
n− i

)
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of successfully selectingk irrelevant variables at random and without replacement, given that there
aren remaining andr relevant variables. Next we use this probability to compute the expected
number of consecutive failures before a success at selectingk irrelevant variables fromn remaining
given thatr are relevant. The expression

E−(n, r,k) =
1− p+(n, r,k)

p+(n, r,k)

yields the expected number of consecutive trials in which at least one of ther relevant variables will
be randomly selected along with irrelevant variables prior to success.

We now discuss the cost of selecting and removingk variables, givenn and r. Let M(L ,n)
represent an upper bound on the cost of running algorithmL based onn inputs. In the case of a
perceptron,M(L ,n) could represent an estimated upper bound on the number of updates performed
by ann-input perceptron. In some instances, such as a backpropagation neural network (Rumelhart
and McClelland, 1986), providing such a bound may be troublesome. In general, the order of
the worst case computational cost of the learner with respect to the numberof inputs is all that
is needed. The bounding function should account for any assumptions about the nature of the
learning problem. For example, if learning Boolean functions requires lesscomputational effort
than learning real-valued functions, thenM(L ,n) should include this difference. The general cost
function described below therefore need not make any additional assumptions about the data.

In order to simplify the notation somewhat, the following discussion assumes a fixed algorithm
for L . The expected cost of successfully removingk variables fromn remaining given thatr are
relevant is given by

I(n, r,k) = E−(n, r,k) ·M(L ,n−k)+M(L ,n−k)
= M(L ,n−k)(E−(n, r,k)+1)

for 1≤ k≤ n− r. The first term in the equation denotes the expected cost of failures (i.e. unsuc-
cessful selections ofk variables) while the second denotes the cost of the one success.

Given this expected cost of removingk variables, we can now define recursively the expected
cost of removing alln− r irrelevant variables. The goal is to minimize locally the expected cost
of removingk inputs with respect to the expected remaining cost, resulting in a global minimum
expected cost for removing alln− r irrelevant variables. The use of a greedy minimization step
relies upon the assumption thatM(L ,n) is monotonic inn. This is reasonable in the context of
metrics such as number of updates, number of data purity tests, and sample complexity. The cost
(with respect to learning algorithmL) of removingn− r irrelevant variables is represented by

Isum(n, r) = min
k

(I(n, r,k)+ Isum(n−k, r)).

The first part of the minimization term represents the cost of removing the first k variables while the
second part represents the cost of removing the remainingn− r− k irrelevant variables. Note that
we defineIsum(r, r) = 0.

The optimal valuekopt(n, r) for k givenn andr can be determined in a manner similar to com-
puting the cost of removing alln− r irrelevant inputs. The value ofk is computed as

kopt(n, r) = argmin
k

(I(n, r,k)+ Isum(n−k, r)).
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4.2 Analysis

The primary benefit of this approach to variable elimination is that the combined cost (in terms of
the metricM(L ,n)) of learning the target function and removing the irrelevant input variables is
within a constant factor of the cost of simply learning the target function based on allN inputs. This
result assumes that the functionM(L ,n) is at least a polynomial of degreej > 0. In cases where
M(L ,n) is sub-polynomial, running the RVE algorithm increases the cost of removingthe irrelevant
inputs by a factor of log(n) over the cost of learning alone as shown below.

4.2.1 REMOVING MULTIPLE VARIABLES

We now show that the above average-case bounds on the performanceof the RVE algorithm hold.
The worst-case is the unlikely condition in which the algorithm always selects arelevant variable.
We assume integer division here for simplicity. First letk = n

r , which allows us to remove the min-
imization term from the equation forIsum(n, r) and reduces the number of variables. This value of
k is not necessarily the value selected by the above equations. However, the cost function is com-
puted via dynamic programming, and the functionM(L ,n) is assumed monotonic. Any differences
between our chosen value ofk and the actual value computed by the equations can only serve to de-
crease further the cost of the algorithm. Note also that, becausek depends on the number of current
variablesn, k changes at each iteration of the algorithm.

The probability of successp+(n, r, n
r ) is minimized whenn = r + 1, since there is only one

possible successful selection andr possible unsuccessful selections. This in turn maximizes the
expected number of failuresE−(n, r, n

r ) = r. The formula forI(n, r,k) is now rewritten as

I(n, r,
n
r
)≤ (r +1) ·M(L ,n−

n
r
),

where bothM(L ,n−k) terms have been combined.
The expected cost of removing alln− r irrelevant inputs may now be rewritten as a summation

Isum(n, r)≤
r lg(n)

∑
i=0

(

(r +1)M

(

L ,n

(

r−1
r

)i+1
))

.

The second argument to the learning algorithm’s cost metricM denotes the number of variables used
at stepi of the RVE algorithm. Notice that this number decreases geometrically towardr (recall that
n = r is the terminating condition for the algorithm). The logarithmic factor of the upper bound on
the summation, lg(n)−lg(r)

lg(1+1/(r−1)) ≤ r lg(n), follows directly from the geometric decrease in the number
of variables used at each step of the algorithm. The linear factorr follows from the relationship
betweenk andr. In general, asr increases,k decreases. Notice that asr approachesN, RVE and
our cost function degrade into testing and removing variables individually.

Concluding the analysis, we observe that for functionsM(L ,n) that are at least polynomial inn
with degreej > 0, the cost incurred by the first pass of RVE (i = 0) will dominate the remainder of
the terms. The average-case cost of running RVE in these cases is therefore bounded byIsum(N, r)≤
O(rM(L ,N)). An equivalent view is that the sum of a geometrically decreasing series converges to
a constant. Thus, under the stated assumption thatr is small compared to (and independent of)N,
RVE requires only a constant factor more computation than the learner alone.

WhenM(L ,n) is sub-linear inn (e.g logarithmic), each pass of the algorithm contributes signif-
icantly to the total expected cost, resulting in an average-case bound ofO(r2 log(N)M(L ,N)). Note
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that we use average-case analysis here because in the worst case thealgorithm can randomly select
relevant variables indefinitely. In practice however, long streaks of bad selections are rare.

4.2.2 REMOVING VARIABLES INDIVIDUALLY

Consider now the cost of removing theN− r irrelevant variables one at a time (k = 1). Once
again the probability of success is minimized and the expected number of failures is maximized at
n = r +1. The total cost of such an approach is given by

Isum(n, r) =
n−r

∑
i=1

(r +1) ·M(L ,n− i).

Unlike the multiple variable removal case, the number of variables available to thelearner at each
step decreases only arithmetically, resulting in a linear number of steps inn. This is an important
deviation from the multiple selection case, which requires only a logarithmic number of steps. The
difference between the two methods becomes substantial whenN is large. Concluding, the bound
on the average-case cost of RVE isIsum(N, r)≤O(NrM(L ,N)) whenk = 1. This is true regardless
of whether the variables are selected randomly or deterministically at each step.

In principle, a comparison should be made between the upper bound of the algorithm that re-
moves multiple variables per step and the lower bound of the algorithm that removes a single vari-
able per step in order to show the differences clearly. However, generating a sufficiently tight lower
bound requires making very strong assumptions on the form ofM(L ,n). Instead, note that the two
upper bounds are comparable with respect toM(L ,n) and differ only by the leading factorN.

4.3 Computing the Cost andk-Sequence

The equations forIsum(n, r) andkopt(n, r) suggest a simpleO(N2) dynamic programming solution
for computing both the cost and optimalk-sequence for a problem ofN variables. Table 1 shows an
algorithm for computing a table of cost andk values for eachi with r +1≤ i ≤ N. The algorithm
fills in the tables of values by starting with smalln, and bootstrapping to find values for increasingly
largen. The functionI(n, r,k) in Table 1 is computed as described above.

TheO(N2) cost of computing the sequence ofk values is of some concern. WhenN is large and
the learning algorithm requires time only linear inN, the cost of computing the optimalk-sequence
could exceed the cost of removing the irrelevant variables. In practice the cost of computing values
for k is negligible for problems up toN = 1000. For larger problems, one solution is simply to set
k = n

r as in Section 4.2.1. The analysis shows that this produces good performance and requires no
computational overhead.

5. The Randomized Variable Elimination Algorithm

Randomized variable elimination conducts a backward search through the space of variable subsets,
eliminating one or more variables per step. Randomization allows for selection ofirrelevant vari-
ables with high probability, while selecting multiple variables allows the algorithm to move through
the space without incurring the cost of evaluating the intervening points in thespace. RVE conducts
its search along a very narrow trajectory. The space of variable subsets is sampled sparsely, rather
than broadly and uniformly. This structured yet random search allows RVE to reduce substantially
the total cost of selecting relevant variables.
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Given: L ,N, r

Isum[r +1..N]← 0
kopt[r +1..N]← 0

for i← r +1 toN do
bestCost← ∞
for k← 1 to i− r do

temp← I(i, r,k)+ Isum[i−k]
if temp< bestCostthen

bestCost← temp
bestK← k

Isum[i]← bestCost
kopt[i]← bestK

Table 1: Algorithm for computingk and cost values.

A backward approach serves two purposes for this algorithm. First, backward elimination eases
the problem of recognizing irrelevant or redundant variables. As longas a core set of relevant
variables remains intact, removing other variables should not harm the performance of a learning
algorithm. Indeed, the learner’s performance mayincreaseas irrelevant features are removed from
consideration. In contrast, variables whose relevance depends on thepresence of other variables may
have no noticeable effect when selected in a forward manner. Thus, mistakes should be recognized
immediately via backward elimination, while good selections may go unrecognized by a forward
selection algorithm.

The second purpose of backward elimination is to ease the process of selecting variables. If
most variables in a problem are irrelevant, then a random selection of variables is naturally likely to
uncover them. Conversely, a random selection is unlikely to turn up relevant variables in a forward
search. Thus, the forward search must work harder to find each relevant variable than backward
search does for irrelevant variables.

5.1 Algorithm

The algorithm begins by computing the values ofkopt(i, r) for all r +1≤ i ≤ n. Next it generates an
initial hypothesis based on alln input variables. Then, at each step, the algorithm selectskopt(n, r)
input variables at random for removal. The learning algorithm is trained onthe remainingn− k
inputs, and a hypothesish is produced. If the errore(h′) of hypothesish′ is less than the errore(h) of
the previous hypothesish (possibly within a given tolerance), then the selectedk inputs are marked
as irrelevant and are all simultaneously removed from future consideration. Kohavi and John (1997)
provide an in depth discussion on evaluating and comparing hypotheses based on limited data sets.
If the learner was unsuccessful, meaning the new hypothesis had a larger error, then at least one of
the selected variables was relevant. A new set of inputs is selected and the process repeats. The
algorithm terminates when alln− r irrelevant inputs have been removed. Table 2 shows the RVE
algorithm.
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Given: L , n, r, tolerance

compute tables forIsum(i, r) andkopt(i, r)
h← hypothesis produced byL onn inputs

while n > r do
k← kopt(n, r)
selectk variables at random and remove them
h′← hypothesis produced byL onn−k inputs
if e(h′)−e(h)≤ tolerancethen

n← n−k
h← h′

else
replace the selectedk variables

Table 2: Randomized backward-elimination variable selection algorithm.

The structured search performed by RVE is easily distinguished from other randomized search
methods. For example, genetic algorithms maintain a population of states in the search space and
randomly mate the states to produce offspring with properties of both parents. The effect is an
initially broad search that targets more specific areas as the search progresses. A wide variety of
subsets are explored, but the cost of so much exploration can easily exceed the cost of a traditional
greedy search. See Goldberg (1989) or Mitchell (1996) for detailed discussions on how genetic
algorithms conduct search.

While GAs tend to drift through the search space based on the properties of individuals in
the population, the LVF algorithm (Liu and Setino, 1996) samples the space ofvariable subsets
uniformly. LVF selects both the size of each subset and the member variablesat random. Although
such an approach is not susceptible to “bad decisions” or local minima, the probability of finding
a best or even good variable subset decreases exponentially as the number of irrelevant variables
increases. Unlike RVE, LVF is a filtering method, which relies on the inconsistency rate (number
of equivalent instances divided by number of total instances) in the data with respect to the selected
variables.

5.2 A Simple Example

The preceding presentation of the RVE algorithm has remained strictly general, relying on no spe-
cific learning algorithm or cost metric. We consider now a specific example ofhow the randomized
variable elimination algorithm may be applied to a linear threshold unit. The specifictask examined
here is to learn a Boolean function that is true when seven out of ten relevant variables are true, given
a total of 100 input variables. In order to ensure that the hypotheses generated for each selection of
variables has nearly minimal error, we use the thermal perceptron training algorithm (Frean, 1992).
The thermal perceptron uses simulated annealing to settle weights regardlessof data separability.
The pocket algorithm (Gallant, 1990) is also applicable, but we found this tobe slower and prone to
more testing errors.
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Figure 1: Plot of the expected cost of running RVE (Isum(N, r = 10)) along with the cost of removing
inputs individually, and the estimated number of updatesM(L ,N).

Twenty problems were generated randomly withN = 100 input variables, of which 90 are ir-
relevant andr = 10 are relevant. Each of the twenty problems used a different set of ten relevant
variables (selected at random) and different data sets. Two data sets, each with 1000 instances, were
generated independently for each problem. One data set was used for training while the other was
used to validate the error of the hypotheses generated during each round of selections. The values
of the 100 input variables were all generated independently. The mean number of unique instances
with respect to the ten relevant variables was 466 .

The first step in applying the RVE algorithm is to define the cost metric and the functionM(L ,n)
for learning onn inputs. For the perceptron, we choose the number of weight updates as the metric.
The thermal perceptron anneals a temperatureT that governs the magnitude of the weight updates.
Here we usedT0 = 2 and decayed the temperature at a rate of 0.999 per training epoch untilT < 0.3
(we observed no change in the hypotheses produced by the algorithm for T < 0.3). Given the tem-
perature and decay rate, exactly 1897 training epochs are performed each time a thermal perceptron
is trained. With 1000 instances in the training data, the cost of running the learning algorithm is
fixed atM(L ,n) = 1897000(n+1). Given the above cost formula for ann-input perceptron, a table
of values forIsum(n, r) andkopt(n, r) can be constructed.

Figure 1 plots a comparison of the computed cost of the RVE algorithm, the costof removing
variables individually, and the estimated number of updatesM(L ,N) of anN-input perceptron. The
calculated cost of the RVE algorithm maintains a linear growth rate with respectto N, while the
cost of removing variables individually grows asN2. This agrees with our analysis of the RVE
and individual removal approaches. Relationships similar to that shown in Figure 1 arise for other
values ofr, although the constant factor that separatesIsum(n, r) andM(L ,n) increases withr.
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After creating the tablekopt(n, r), the selection and removal process begins. Since the seven-
of-ten learning problem is linearly separable, the tolerance for comparingthe new and current hy-
potheses was set to near zero. A small tolerance of 0.06 (equivalent to about 15 misclassifications)
is necessary since the thermal perceptron does not guarantee a minimum error hypothesis.

We also allow the current hypothesis to bias the next by not randomizing the weights (of remain-
ing variables) after each pass of RVE. Small value weights, suggesting potential irrelevant variables,
can easily transfer from one hypothesis to the next, although this is not guaranteed. Seeding the per-
ceptron weights may increase the chance of finding a linear separatorif one exists. If no separator
exists, then seeding the weights should have minimal impact. In practice we found that the effect of
seeding the weights was nullified by the pocket perceptron’s use of annealing.

5.3 Example Results

The RVE algorithm was run using the twenty problems described above. Hypotheses based on ten
variables were produced using an average of 5.45×109 weight updates, 81.1 calls to the learning
algorithm, and 359.9 seconds on a 3.12 GHz Intel Xenon processor. A version of the RVE algorithm
that removes variables individually (i.e.k was set permanently to 1) was also run, and produced
hypotheses using 12.7×109 weight updates, 138.7 calls to the learner, and 644.7 seconds. These
weight update values agree with the estimate produced by the cost function.Both versions of the
algorithm generated hypotheses that included irrelevant and excluded relevant variables for three of
the test problems. All cases in which the final selection of variables was incorrect were preceded by
an initial hypothesis (based on all 100 variables) with unusually high error (error greater than 0.18
or approximately 45 misclassified instances). Thus, poor selections occured for runs in which the
first hypothesis produced has high error due to annealing in the pocketperceptron.

Figure 2 plots the average number of inputs used for each variable set size (number of inputs)
compared to the total number of weight updates. Each marked point on the plot denotes a size of
the set of input variables given to the perceptron. The error bars indicate the standard deviation
in number of updates required to reach that point. Every third point is plottedfor the individual
removal algorithm. Compare both the rate of drop in inputs and the number of hypotheses trained
for the two RVE versions. This reflects the balance between the cost of training and unsuccessful
variable selections. Removing variables individually in the presence of manyirrelevant variables
ignores the cost of training each hypothesis, resulting in a total cost that rises quickly early in the
search process.

6. Choosingk When r Is Unknown

The assumption that the number of relevant variablesr is known has played a critical role in the
preceding discussion. In practice, this is a strong assumption that is not easily met. We would like
an algorithm that removes irrelevant attributes efficiently without such knowledge. One approach
would be simply to guess values forr and see how RVE fares. This is unsatisfying however, as a
poor guess can destroy the efficiency of RVE. In general, guessing specific values forr is difficult,
but placing a loose bound aroundr may be much easier. In some cases, the maximum value forr
may be known to be much less thanN, while in other cases,r can always be bounded by 1 andN.

Given some bound on the maximumrmax and minimumrmin values forr, a binary search for
r can be conducted during RVE’s search for relevant variables. This relies on the idea that RVE
attempts to balance the cost of learning against the cost of selecting relevant variables for removal.
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Figure 2: A comparison between the number of inputs on which the perceptrons are trained and the
mean aggregate number of updates performed by the perceptrons.

At each step of RVE, a certain number of failures,E−(n, r,k), are expected. Thus, if selecting
variables for removal is too easy (i.e. we are selecting too few variables ateach step), then the
estimate forr is too high. Similarly, if selection fails an inordinate number of times, then the
estimate forr is too low.

The choice of when to adjustr is important. The selection process must be allowed to fail a
certain number of times for each success, but allowing too many failures will decrease the efficiency
of the algorithm. We bound the number of failures byc1E−(n, r,k) wherec1 > 1 is a constant.
This allows for the failures prescribed by the cost function along with some amount of “bad luck”
in the random variable selections. The number of consecutive successes is bounded similarly by
c2(r −E−(n, r,k)) wherec2 > 0 is a constant. SinceE−(n, r,k)) is at mostr, the value of this
expression decreases as the expected number of failures increases.In practicec1 = 3 andc2 = 0.3
appear to work well.

6.1 A General Purpose Algorithm

Randomized variable elimination including a binary search forr (RVErS — “reverse”) begins by
computing tables forkopt(n, r) for values ofr betweenrmin andrmax. Next an initial hypothesis is
generated and the variable selection loop begins. The algorithm chooses the number of variables
to remove at each step based on the current value ofr. Each time the bound on the maximum
number of successful selections is exceeded,rmax reduces tor and a new value is calculated as
r = rmax+rmin

2 . Similarly, when the bound on consecutive failures is exceeded,rmin increases tor and
r is recalculated. The algorithm also checks to ensure that the current number of variables never
falls belowrmin. If this occurs,r, rmin andrmax are all set to the current number of variables. RVErS
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Given: L , c1, c2, n, rmax, rmin, tolerance

compute tablesIsum(i, r) andkopt(i, r) for rmin≤ r ≤ rmax

r ← rmax+rmin
2

success, f ail ← 0
h← hypothesis produced byL onn inputs

repeat
k← kopt(n, r)
selectk variables at random and remove them
h′← hypothesis produced byL onn−k inputs
if e(h′)−e(h)≤ tolerancethen

n← n−k
h← h′

success← success+1
fail← 0

else
replace the selectedk variables
fail← fail +1
success← 0

if r ≤ rmin then
r, rmax, rmin← n

else iffail ≥ c1E−(n, r,k) then
rmin← r
r ← rmax+rmin

2
success, fail← 0

else ifsuccess≥ c2(r−E−(n, r,k)) then
rmax← r
r ← rmax+rmin

2
success, fail← 0

until rmin < rmax and fail ≤ c1E−(n, r,k)

Table 3: Randomized variable elimination algorithm including a search forr.

terminates whenrmin andrmax converge andc1E−(n, r,k) consecutive variable selections fail. Table
3 shows the RVErS algorithm.

While RVErS can produce good performance without finding the exact value ofr, how well the
estimated value must approximate the actual value is unclear. An important factor in determining
the complexity of RVErS is how quickly the algorithm reaches a good estimate forr. In the best
case, the search forr will settle on a good approximation of the actual number of relevant variables
immediately, and the RVE complexity bound will apply. In the worst case, the search for r will
proceed slowly over values ofr that are too high, causing RVErS to behave like the individual
removal algorithm.
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Algorithm Mean Updates Mean Time (s) Mean Calls Mean Inputs
RVE (kopt) 5.5×109 359.9 81.1 10.0
rmax= 20 6.5×109 500.7 123.8 10.8
rmax= 40 8.0×109 603.8 151.3 10.2
rmax= 60 9.3×109 678.8 169.0 10.0
rmax= 80 10.0×109 694.7 172.3 10.0
rmax= 100 11.7×109 740.7 184.1 9.9
RVE (k = 1) 12.7×109 644.7 138.7 10.0

Table 4: Results of RVE and RVErS for several values ofrmax. Mean calls refers to the number
calls made to the learning algorithm. Mean inputs refers to the number of inputs used by
the final hypothesis.

With respect to the analysis presented in Section 4.2.1, note that the constantsc1 andc2 do not
impact the total cost of performing variable selection. However, a large number of adjustments to
rmin andrmax do impact the total cost negatively.

6.2 An Experimental Comparison of RVE and RVErS

The RVErS algorithm was applied to the seven-of-ten problems using the same conditionsas the
experiments with RVE. Table 4 shows the results of running RVErS based on five values ofrmaxand
rmin = 2. The results show that for increasing values ofrmax, the performance of RVErS degrades
slowly with respect to cost. The difference between RVErS with rmax= 100 and RVE withk = 1
is significant at the 95% confidence level (p = 0.049), as is the difference between RVErS with
rmax = 20 and RVE withk = kopt (p = 0.0005). However, this slow degradation does not hold in
terms of run time or number of calls to the learning algorithm. Here, only versionsof RVErS with
rmax= 20 or 40 show an improvement over RVE withk = 1.

The RVErS algorithm termination criteria causes the sharp increase in the number of callsto
the learning algorithm. Recall that asn approachesr the probability of a failed selection increases.
This means that the number of allowable selection failures grows as the algorithm nears completion.
Thus, the RVErS algorithm makes many calls to the learner using a small number of inputsn in an
attempt to determine whether the search should be terminated. The search forr compounds the
effect. If, at the end of the search, the irrelevant variables have been removed butrmin andrmax have
not converged, then the algorithm must work through several failed sequences in order to terminate.

Figure 3 plots of the number of variables selected compared to the average total number of
weight updates forrmax = 20, 60 and 100. The error bars represent the standard deviation in the
number of updates. Notice the jump in the number of updates required for the algorithm to reach
completion (represented by number of inputs equals ten) compared to the number of updates re-
quired to reach twenty remaining inputs. This pattern does not appear in the results of either version
of the RVE algorithm shown in Figure 2. Traces of the RVErS algorithm support the conclusion
that many calls to the learner are needed to reach termination even after the correct set of variables
has been found.
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Figure 3: A comparison between the number of inputs on which the thermal perceptrons are trained
and the aggregate number of updates performed using the RVErS algorithm.

The increase in run times follows directly from the increasing number of calls to the learner.
The thermal perceptron algorithm carries a great deal of overhead not reflected by the number of
updates. Since the algorithm executes for a fixed number of epochs, the run time of any call to the
learner will contribute noticeably to the run time of RVErS, regardless of the number of selected
variables. Contrast this behavior to that of learner whose cost is basedmore firmly on the number
of input variables, such as naive Bayes. Thus, even though RVErS always requires fewer weight
updates than RVE withk = 1, the latter may still run faster.

This result suggests that the termination criterion of the RVErS algorithm is flawed. The large
number of calls to the learner at the end of the variable elimination process wastes a portion of the
advantage generated earlier in the search. More importantly, the excess number of calls to the learner
does not respect the very careful search trajectory computed by the cost function. Although our cost
function for the learnerM(L ,n) does take the overhead of the thermal perceptron algorithm into
account, there is no allowance for unnecessary calls to the learner. Future research with randomized
variable elimination should therefore include a better termination criterion.

7. Experiments with RVErS

We now examine the general performance properties of randomized variable elimination via ex-
periments with several data sets. The previous experiments with perceptronson the seven-of-ten
problem focused on performance with respect to the cost metric. The following experiments are
concerned primarily with minimizing run time and the number of calls to the learner whilemain-
taining or improving accuracy. All tests were run on a 3.12 GHz Intel Xenon processor.
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Data Set Variables Classes Train Size Test Size Values ofrmax

internet-ad 1558 2 3279 CV 1558, 750, 100
mult. feature 240 10 2000 CV 240, 150, 50
DNA 180 3 2000 1186 180, 100, 50
LED 150 10 2000 CV 150, 75, 25
opt-digits 64 10 3823 1797 64, 40, 25
soybean 35 19 683 CV 35, 25, 15
sick-euthyroid 25 2 3164 CV 25, 18, 10
monks-2-local 17 2 169 432 17, 10, 5

Table 5: Summary of data sets.

Unlike the linearly-separable perceptron experiments, the problems used here do not necessarily
have solutions with zero test error. The learning algorithms may produce hypotheses with more
variance in accuracy, requiring a more sophisticated evaluation function.The utility of variable
selection with respect to even the most sophisticated learning algorithms is well known, see for
example Kohavi and John (1997) or Weston, Mukherjee, Chapelle, Pontil,Poggio, and Vapnik
(2000). The goal here is to show that our comparatively liberal elimination method sacrifices little
in terms of accuracy and gains much in terms of speed.

7.1 Learning Algorithms

The RVErS algorithm was applied to two learning algorithms. The first is the C4.5 release 8algo-
rithm (Quinlan, 1993) for decision tree induction with options to avoid pruningand early stopping.
We avoid pruning and early stopping because these are forms of variableselection, and may obscure
the performance of RVErS. The cost metric for C4.5 is based on the number of calls to the gain-
ratio data purity criterion. The cost of inducing a tree is therefore roughlyquadratic in the number
of variables: one call per variable, per decision node, with at most a linear number of nodes in the
tree. Recall that an exact metric is not needed, only the order with respect to the number of variables
must be correct.

The second learning algorithm used is naive Bayes, implemented as described by Mitchell
(1997). Here, the cost metric is based on the number of operations required to build the condi-
tional probability table, and is therefore linear in the number of inputs. In practice, these tables need
not be recomputed for each new selection of variables, as the irrelevanttable entries can simply be
ignored. However, we recompute the tables here to illustrate the general case in which the learning
algorithm must start from scratch.

7.2 Data Sets

A total of eight data sets were selected. Table 5 summarizes the data sets, anddocumentation is
generally available from the UCI repository (Blake and Merz, 1998), except for the DNA problem,
which is from StatLog (King et al., 1995). The first five problems reflect apreference for data with
an abundance of variables and a large number of instances in order to demonstrate the efficiency of
RVErS. The last three problems are included to show how RVErS performs on smaller problems,
and to allow comparison with other work in variable selection. Further tests on smaller data sets
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are possible, but not instructive, as randomized elimination is not intended for data sets with few
variables.

Three of the data sets (DNA, opt-digits, and monks) include predetermined training and test
sets. The remaining problems used ten-fold cross validation. The version of the LED problem used
here was generated using code available at the repository, and includesa corruption of 10% of the
class labels. Following Kohavi and John, the monks-2 data used here includes a local (one ofn)
encoding for each of the original six variables for a total of 17 Boolean variables. The original
monks-2 problem contains no irrelevant variables, while the encoded version contains six irrelevant
variables.

7.3 Methodology

For each data set and each of the two learning algorithms (C4.5 and naive Bayes), we ran four
versions of the RVErS algorithm. Three versions of RVErS use different values ofrmax in order to
show how the choice ofrmaxaffects performance. The fourth version is equivalent to RVE withk= 1
using a stopping criterion based on the number of consecutive failures (as in RVErS). This measures
the performance of removing variables individually given that the number of relevant variables is
completely unknown. For comparison, we also ran forward step-wise selection, backward step-wise
elimination and a hybrid filtering algorithm. The filtering algorithm simply ranked the variables by
gain-ratio, executed the learner using the first 1, 2, 3,. . ., N variables, and selected the best.

The learning algorithms used here provide no performance guarantees,and may produce highly
variable results depending on variable selections and available data. All seven selection algorithms
therefore perform five-fold cross-validation using the training data to obtain an average hypothesis
accuracy generated by the learner foreach selection of variables. The methods proposed by Kohavi
and John (1997) could be used to improve error estimates for cases in which the variance in hypoth-
esis error rates is high. Their method should provide reliable estimates for adjusting the values of
rmin andrmax regardless of learning algorithm.

Preliminary experiments indicated that the RVErS algorithm is more prone to becoming bogged
down during the selection process than deterministic algorithms. We thereforeset a small tolerance
(0.002) as shown in Table 3, which allows the algorithm to keep only very good selections of vari-
ables while still preventing the selection process from stalling unnecessarily. We have not performed
extensive tests to determine ideal tolerance values.

The final selections produced by the algorithms were evaluated in one of twoways. Domains
for which there no specific test set is provided were evaluated via ten-fold cross-validation. The
remaining domains used the provided training and test sets. In the second case, we ran each of the
four RVErS versions five times in order to smooth out any fluctuations due to the random nature of
the algorithm.

7.4 Results

Tables 6–9 summarize the results of running the RVErS algorithm on the given data sets using naive
Bayes and C4.5 for learning algorithms. In the tables,itersdenotes the number of search iterations,
evalsdenotes the number of subset evaluations performed,inputsdenotes the size of the final set of
selected variables,error rates include the standard deviation where applicable, andcostrepresents
the total cost of the search with respect to the learner’s cost metric. The first row in each block
shows the performance of the learner prior to variable selection, while the remaining rows show
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Data Set Learning Selection Iters Subset Inputs Percent Time Search
Algorithm Algorithm Evals Error (sec) Cost

internet Bayes 1558 3.0±0.9 0.5 4.61×106

rmax= 100 137 137 37.8 3.0±1.2 165 6.13×108

rmax= 750 536 536 9.2 3.2±1.2 790 3.99×109

rmax= 1558 845 845 17.5 2.9±0.8 1406 8.26×109

k = 1 1658 1658 8.8 3.0±1.2 2685 1.46×1010

forward 20 30810 18.9 2.5±0.8 22417 5.32×109

backward NA
filter 1558 1558 837 3.1±0.9 2614 1.44×1010

internet C4.5 1558 3.0±0.8 48 2.04×105

rmax= 100 340 340 33.9 3.3±1.0 5386 3.30×107

rmax= 750 1233 1233 25.7 3.7±1.2 40656 2.61×108

rmax= 1558 1489 1489 20.0 3.2±1.3 78508 5.02×108

k = 1 1761 1761 20.6 3.3±1.0 91204 6.02×108

forward 19 28647 17.5 3.2±1.2 18388 1.95×107

backward NA
filter 1558 1558 640 3.1±1.0 77608 3.98×108

mult-ftr Bayes 240 34.1±4.5 0.1 4.51×105

rmax= 50 53 53 18.8 18.3±2.0 13 3.09×107

rmax= 150 84 84 19.4 17.5±4.7 27 7.28×107

rmax= 240 112 112 19.9 17.5±2.2 41 1.13×108

k = 1 341 341 17.2 15.7±3.0 99 2.57×108

forward 20 4539 18.7 12.3±1.6 527 7.55×108

backward 186 27323 55.6 13.9±1.7 12097 3.52×1010

filter 240 240 53.6 22.5±2.7 83 2.30×108

mult-ftr C4.5 240 22.0±4.0 0.6 3.74×104

rmax= 50 306 306 22.3 22.1±2.0 241 1.13×107

rmax= 150 459 459 21.3 20.2±2.7 427 2.12×107

rmax= 240 474 474 22.0 22.1±3.5 519 2.66×107

k = 1 460 460 22.9 20.5±2.5 523 2.71×107

forward 26 5960 25.3 20.4±3.5 2004 5.06×107

backward 151 24722 90.8 20.4±3.1 51018 2.90×109

filter 240 240 140 21.2±2.7 354 1.93×107

Table 6: Variable selection results using the naive Bayes and C4.5 learningalgorithms.

the performance of the seven selection algorithms. Finally, “NA” indicates that the experiment was
terminated due to excessive computational cost.

The performance of RVErS on the five largest data sets is encouraging. In most cases RVErS
was comparable to the performance of step-wise selection with respect to generalization, while
requiring substantially less computation. This effect is most clear in the mult-ftr data set, where
forward selection with the C4.5 learner required nearly six CPU days to run(for ten-fold cross-
validation) while the slowest RVErS version required just six hours. An exception to this trend
occurs with the internet-ad data using C4.5. Here, the huge cost of running C4.5 with most of
the variables included overwhelms RVErS’s ability to eliminate variables quickly. Only the most
aggressive run of the algorithm, withrmax= 100, manages to bypass the problem.
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Data Set Learning Selection Iters Subset Inputs Percent Time Search
Algorithm Algorithm Evals Error (sec) Cost

DNA Bayes 180 6.7 0.08 3.63×105

rmax= 50 359 359 24.2 4.7±0.7 52 1.52×108

rmax= 100 495 495 30.0 4.9±0.8 75 2.39×108

rmax= 180 519 519 25.6 5.0±0.5 84 2.89×108

k = 1 469 469 23.6 4.7±0.3 76 2.56×108

forward 19 3249 18.0 5.8 269 2.99×108

backward 34 5413 148 6.5 1399 7.16×109

filter 180 180 101 5.7 32 1.33×108

DNA C4.5 180 9.7 0.5 1.95×104

rmax= 50 356 356 17.0 8.1±1.7 198 8.42×106

rmax= 100 384 384 16.2 7.1±1.5 222 9.07×106

rmax= 180 432 432 13.8 6.5±1.2 282 1.21×107

k = 1 374 374 14.4 6.5±1.1 274 1.18×107

forward 13 2262 12.0 5.9 418 2.33×106

backward 110 13735 72.0 8.7 18186 8.23×108

filter 180 180 17.0 7.6 163 7.10×106

LED Bayes 150 30.3±3.0 0.09 2.75×105

rmax= 25 127 127 22.7 26.9±3.9 19 3.97×107

rmax= 75 293 293 17.4 26.0±3.3 50 1.09×108

rmax= 150 434 434 25.6 25.9±2.6 86 2.02×108

k = 1 423 423 23.7 27.0±2.1 85 2.04×108

forward 14 2006 13.0 26.6±2.9 141 1.54×108

backward 14 1870 138.0 30.1±2.6 667 1.95×109

filter 150 150 23.7 27.1±2.1 34 8.49×107

LED C4.5 150 43.9±4.5 0.5 5.48×104

rmax= 25 85 85 51.1 42.0±3.0 89 1.01×107

rmax= 75 468 468 25.8 42.5±4.5 363 3.70×107

rmax= 150 541 541 25.2 40.8±5.7 440 4.48×107

k = 1 510 510 32.4 42.5±2.7 439 4.63×107

forward 9 1286 7.8 27.0±3.2 196 9.52×105

backward 61 7218 90.9 43.5±3.5 11481 1.33×109

filter 150 150 7.1 27.3±3.5 156 1.69×107

Table 7: Variable selection results using the naive Bayes and C4.5 learningalgorithms.

The internet-ad via C4.5 experiment highlights a second point. Notice how the forward selection
algorithm runs faster than all but one version of RVErS. In this case, the cost and time of running
C4.5 many times on a small number of variables is less than that of running C4.5 few times on
many variables. However, note that a slight change in the number of iterations needed by the
forward algorithm would change the time and cost of the search dramatically.This is not the case
for RVErS, since each iteration involves only a single evaluation instead ofO(N) evaluations.

The number of subset evaluations made by RVErS is also important. Notice the growth in num-
ber of evaluations with respect to the total (initial) number of inputs. For aggressive versions of
RVErS, growth is very slow, while more conservative versions, such ask = 1 grow approximately
linearly. This suggests that the theoretical results discussed for RVE remain valid for RVErS. Addi-
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Data Set Learning Selection Iters Subset Inputs Percent Time Search
Algorithm Algorithm Evals Error (sec) Cost

opt-digits Bayes 64 17.4 0.08 2.59×105

rmax= 25 111 111 14.2 15.7±1.5 15.9 4.05×107

rmax= 40 157 157 13.2 14.9±0.7 22.9 5.92×107

rmax= 64 162 162 14.4 14.7±1.0 24.9 6.66×107

k = 1 150 150 14.0 14.2±1.1 24.7 6.76×107

forward 17 952 16.0 14.1 93.8 1.91×108

backward 41 1781 25.0 13.5 423.0 1.39×109

filter 64 64 37.0 16.1 11.9 3.63×107

opt-digits C4.5 64 43.2 0.7 2.15×104

rmax= 25 130 130 12.0 42.4±2.0 148 3.64×106

rmax= 40 158 158 10.8 42.2±0.3 181 4.42×106

rmax= 64 216 216 10.4 42.5±1.2 253 6.36×106

k = 1 140 140 11.4 42.1±1.1 189 5.33×106

forward 16 904 15.0 41.6 645 9.64×106

backward 28 1378 38.0 44.0 2842 9.55×107

filter 64 64 50.0 43.6 87 2.12×106

soybean Bayes 35 7.8±2.4 0.02 2.40×104

rmax= 15 142 142 12.6 8.9±4.2 5.9 6.47×106

rmax= 25 135 135 11.9 10.5±5.8 5.8 6.26×106

rmax= 35 132 132 11.2 9.8±5.1 5.8 6.17×106

k = 1 88 88 12.3 9.6±5.0 4.6 4.67×106

forward 13 382 12.3 7.3±2.9 8.9 1.09×107

backward 19 472 18.0 7.9±4.6 37.5 3.63×107

filter 35 35 31.3 7.8±2.6 2.0 1.97×106

C4.5 35 8.6±4.0 0.04 1.21×103

rmax= 15 118 118 16.3 9.5±4.6 13.5 2.78×105

rmax= 25 158 158 14.7 10.1±4.1 18.6 1.90×105

rmax= 35 139 139 16.3 9.1±3.7 17.3 3.86×105

k = 1 117 117 16.1 9.3±3.5 14.9 3.52×105

forward 16 435 14.8 9.1±4.0 33.7 3.22×105

backward 18 455 19.1 10.4±4.4 69.0 1.75×106

filter 35 35 30.8 8.5±3.7 3.7 6.06×104

Table 8: Variable selection results using the naive Bayes and C4.5 learningalgorithms.

tional tests using data with many hundreds or thousands of variables would be instructive, but may
not be feasible with respect to the deterministic search algorithms.

RVErS does not achieve the same economy of subset evaluations on the three smaller problems
as on the larger problems. This is not surprising, since the ratio of relevant variables to total variables
is much smaller, requiring RVErS to proceed more cautiously. In these cases, the value ofrmax has
only a minor effect on performance, as RVErS is unable to remove more than two or three variables
in any given step.

One problem evidenced by both large and small data sets is that there appears to be no clear
choice of a best value forrmax. Conservative versions of RVErS tend to produce lower error rates,
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Data Set Learning Selection Iters Subset Inputs Percent Time Search
Algorithm Algorithm Evals Error (sec) Cost

euthyroid Bayes 25 6.2±1.3 0.02 7.54×104

rmax= 10 30 30 2.0 4.6±1.5 2.1 2.65×106

rmax= 18 39 39 2.0 4.8±1.2 1.3 3.73×106

rmax= 25 46 46 2.3 5.1±1.4 1.6 4.32×106

k = 1 35 35 1.7 5.0±1.2 1.5 4.86×106

forward 5 118 4.2 4.6±1.1 3.4 6.45×106

backward 16 263 11.3 4.2±1.3 14.4 5.91×107

filter 25 25 4.7 4.2±0.6 1.4 4.16×106

C4.5 25 2.7±1.0 0.2 1.00×103

rmax= 10 49 49 2.9 2.4±0.8 21.0 2.98×104

rmax= 18 63 63 3.3 2.2±0.7 27.6 4.58×104

rmax= 25 55 55 2.7 2.5±0.8 25.3 4.92×104

k = 1 54 54 3.8 2.3±0.9 29.4 6.39×104

forward 7 151 5.9 2.4±0.7 51.8 3.89×104

backward 16 269 11.0 2.5±0.9 200.0 6.73×105

filter 25 25 15.2 2.7±1.1 15.4 3.60×104

monks-2 Bayes 17 39.4 0.01 3.11×103

rmax= 5 25 25 2.6 36.1±3.2 0.02 1.10×105

rmax= 10 54 54 4.0 37.2±2.3 0.05 2.50×105

rmax= 17 74 74 6.0 37.4±3.1 0.08 4.93×105

k = 1 41 41 6.0 36.8±3.1 0.04 2.89×105

forward 2 33 1.0 32.9 0.02 6.70×104

backward 8 99 11.0 38.4 0.13 9.93×105

filter 17 17 2.0 40.3 0.01 1.21×105

C4.5 17 23.6 0.03 5.14×102

rmax= 5 36 36 8.2 16.7±10.9 0.8 2.34×104

rmax= 10 84 84 6.2 4.6±0.4 1.9 3.74×104

rmax= 17 79 79 6.4 6.5±4.7 1.8 4.63×104

k = 1 55 55 6.2 4.4±0.0 1.4 4.13×104

forward 2 33 1.0 32.9 0.6 3.95×102

backward 13 139 6.0 4.4 3.9 1.61×105

filter 17 17 13.0 35.6 0.4 1.51×104

Table 9: Variable selection results using the naive Bayes and C4.5 learningalgorithms.

but there are exceptions. In some cases,rmax has very little effect on error. However, in most cases,
small values ofrmax have a distinct positive effect on run time.

The results suggest two other somewhat surprising conclusions. One is that backward elimina-
tion does not appear to have the commonly assumed positive effect on generalization. Step-wise
forward selection tends to outperform step-wise backward elimination, although randomization of-
ten reduces this effect. The second conclusion is that the hybrid filter algorithm performs well in
some cases, but worse than RVErS and step-wise selection in most cases. Notice also that for prob-
lems with many variables, RVErS runs as fast or faster than the filter. Additional experiments along
these lines would be instructive.
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Figure 4: Naive Bayes overfitting plots for DNA data.
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Figure 5: C4.5 overfitting plots for DNA data.
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Overfitting is sometimes a problem with greedy variable selection algorithms. Figures 4 and
5 show both the test and inner (training) cross-validation error rates forthe selection algorithms
on naive Bayes and C4.5 respectively. Solid lines indicate test error, while dashed lines indicate
the inner cross-validation error. Notice that the test error is not alwaysminimized with the final
selections produced by RVErS. The graphs show that RVErS does tend to overfit naive Bayes, but
not C4.5 (or at least to a lesser extent). Trace data from the other data sets agree with this conclusion.

There are at least two possible explanations for overfitting by RVErS. One is that the tolerance
level either causes the algorithm to continue eliminating variables when it shouldstop, or allows
elimination of relevant variables. In either case, a better adjusted tolerancelevel should improve
performance. The monks-2 data set provides an example. In this case, ifthe tolerance is set to zero,
RVErS reliably finds variable subsets that produce low-error hypotheses withC4.5.

A second explanation is that the stopping criteria, which becomes more difficult to satisfy as
the algorithm progresses, causes the elimination process to become overzealous. In this case the
solution may be to augment the given stop criteria with a hold-out data set (in addition to the vali-
dation set). Here the algorithm monitors performance in addition to counting consecutive failures,
returning the best selection, rather than simply the last. Combining this overfittingresult with the
above performance results suggests that RVErS is capable of performing quite well with respect to
both generalization and speed.

8. Discussion

The speed of randomized variable elimination stems from two aspects of the algorithm. One is the
use of large steps in moving through the search space of variable sets. Asthe number of irrelevant
variables grows, and the probability of selecting a relevant variable at random shrinks, RVE attempts
to take larger steps toward its goal of identifying all of theirrelevantvariables. In the face of many
irrelevant variables, this is a much easier task than attempting to identify the relevant variables.

The second source of speed in RVE is the approach of removing variables immediately, instead
of finding the best variable (or set) to remove. This is much less conservative than the approach
taken by step-wise algorithms, and accounts for much of the benefit of RVE. In practice, the full
benefit of removing multiple variables simultaneously may only be beginning to materialize in the
data sets used here. However, we expect that as domains scale up, multiple selections will become
increasingly important. One example of this occurs in the STL algorithm (Utgoffand Stracuzzi,
2002), which learns many concepts over a period of time. There, the number of available input
variables grows as more concepts are learned by the system.

Consider briefly the cost of forward selection wrapper algorithms. Greedy step-wise search is
bounded byO(rNM(L , r)) for forward selection andO(N(N− r)M(L ,N)) for backward elimina-
tion, provided it does not backtrack or remove (or add) previously added (or removed) variables.
The bound on the backward approach reflects both the larger number ofsteps required to remove
the irrelevant variables and the larger number of variables used at eachcall to the learner. The cost
of training each hypothesis is small in the forward greedy approach compared to RVE, since the
number of inputs to any given hypothesis is much smaller (bounded roughly by r). However, the
number of calls to the learning algorithm is polynomial inN. As the number of irrelevant variables
increases, even a forward greedy approach to variable selection becomes quickly unmanageable.

The cost of a best-first search using compound operators (Kohavi and John, 1997) is somewhat
harder to analyze. Their approach combines the two best operators (e.g. add variable or remove
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variable) and then checks whether the result is an improvement. If so, the resulting operator is
combined with the next best operator and tested, continuing until there is no improvement. The-
oretically this type of search could find a solution using approximately 2r forward evaluations or
2(N− r) backward subset evaluations. However, this would require the algorithmto make the cor-
rect choice at every step. The experimental results (Kohavi and John, 1997) suggest that in practice
the algorithm requires many more subset evaluations than this minimum.

Compare the above bounds on forward and backward greedy searchto that of RVE given a fixed
k = 1, which isO(rNM(L ,N)). Notice that the number of calls to the learning algorithm is the
same for RVE with fixedk and a greedyforward search (the cost of learning is different however).
The empirical results support the conclusion that the two algorithms produce similar cost, but also
show that RVE withk = 1 requires less CPU time. The source of this additional economy is unclear,
although it may be related to various overhead costs associated with the learning algorithms. RVE
requires many fewer total learner executions, thereby reducing overhead.

In practice, thek = 1 version of RVErS often makes fewer thanrN calls to the learning algo-
rithm. This follows from the very high probability of a successful selection of an irrelevant variable
at each step. In cases whenN is much larger thanr, the algorithm withk = 1 makes roughlyN calls
to the learner as shown in Tables 6 and 7. Additional economy may also be possible whenk is fixed
at one. Each variable should only need to be tested once, allowing RVErS to make exactlyN calls
to the learner. Further experiments are needed to confirm this intuition.

Although the RVE algorithm using a fixedk= 1 is significantly more expensive than the optimal
RVE or RVErS using a good guess forrmax, experiments and analysis show that this simple algo-
rithm is generally faster than the deterministic forward or backward approaches, provided that there
are enough irrelevant variables in the domain. As the ratior/N decreases, and the probability of
selecting an irrelevant variable at random increases, the benefit of a randomized approach improves.
Thus, even when no information about the number of relevant variables isavailable, a randomized,
backward approach to variable selection may be beneficial.

A disadvantage to randomized variable selection is that there is no clear way torecover from
poor choices. Step-wise selection algorithms sometimes consider both adding and removing vari-
ables at each step, so that no variable is ever permanently selected or eliminated. A hybrid version of
RVErS which considers adding a single variable each time a set a variables is eliminated is possible,
but this would ultimately negate much of the algorithm’s computational benefit.

Step-wise selection algorithms are sometimes parallelized in order to speed the selection pro-
cess. This is due in large part to the very high cost of step-wise selection.RVE mitigates this
problem to a point, but there is no obvious way to parallelize a randomized selection algorithm.
Parallelization could be used to improve generalization performance by allowing the algorithm to
evaluate several subsets simultaneously and then choose the best.

9. Future Work

There are at least three possible directions for future work with RVE. The first is an improved
method for choosingk when r is unknown. We have presented an algorithm based on a binary
search, but RVErS still wastes a great deal of time deciding when to terminate the search, and
can quickly degenerate into a one-at-a-time removal strategy if bad decisions are made early in
the search. Notice however, that this worst-case performance is still better than stepwise backward
elimination, and comparable to stepwise forward selection, both popular algorithms.
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A second direction for future work involves further study of the effectof testing very few of the
possible successors to the current search node. Testing all possible successors is the source of the
high cost of most wrapper methods. If a sparse search, such as that used by RVE, does not sacrifice
much quality in general, then other fast wrapper algorithms may be possible.

A third possible direction involves biasing the random selections at each step. If a set ofk
variables fails to maintain evaluation performance, then at least one of thek must have been relevant
to the learning problem. Thus, variables included in a failed selection may be viewed as more likely
to be relevant. This “relevance likelihood” can be tracked throughout theelimination process and
used to bias selections at each step.

10. Conclusion

The randomized variable elimination algorithm uses a two-step process to remove irrelevant input
variables. First, a sequence of values fork, the number input variables to remove at each step, is
computed such that the cost of removing allN− r irrelevant variables is minimized. The algorithm
then removes the irrelevant variables by randomly selecting inputs for removal according to the
computed schedule. Each step is verified by generating and testing a hypothesis to ensure that the
new hypothesis is at least as good as the existing hypothesis. A randomizedapproach to variable
elimination that simultaneously removes multiple inputs produces a factorN speed-up over ap-
proaches that remove inputs individually, provided that the numberr of relevant variables is known
in advance.

When number of relevant variables is not known, a search forr may be conducted in parallel
with the search for irrelevant variables. Although this approach wastes some of the benefits gener-
ated by the theoretical algorithm, a reasonable upper bound on the number of relevant variables still
produces good performance. When even this weaker condition cannotbe satisfied, a randomized
approach may still outperform the conventional deterministic wrapper approaches provided that the
number of relevant variables is small compared to the total number of variables. A randomized ap-
proach to variable selection is therefore applicable whenever the target domain is believed to have
many irrelevant variables.

Finally, we conclude that an explicit search through the space of variablesubsets is not necessary
to achieve good performance from a wrapper algorithm. Randomized variable elimination provides
competitive performance without incurring the high cost of expanding andevaluating all successors
of a search node. As a result, randomized variable elimination scales well beyond current wrapper
algorithms for variable selection.
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Abstract
In regularized kernel methods, the solution of a learning problem is found by minimizing func-

tionals consisting of the sum of a data and a complexity term.In this paper we investigate some
properties of a more general form of the above functionals inwhich the data term corresponds to
the expected risk. First, we prove a quantitative version ofthe representer theorem holding for
both regression and classification, for both differentiable and non-differentiable loss functions, and
for arbitrary offset terms. Second, we show that the case in which the offset space is non triv-
ial corresponds to solving a standard problem of regularization in a Reproducing Kernel Hilbert
Space in which the penalty term is given by a seminorm. Finally, we discuss the issues of existence
and uniqueness of the solution. From the specialization of our analysis to the discrete setting it
is immediate to establish a connection between the solutionproperties of sparsity and coefficient
boundedness and some properties of the loss function. For the case of Support Vector Machines
for classification, we also obtain a complete characterization of the whole method in terms of the
Khun-Tucker conditions with no need to introduce the dual formulation.
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1. Introduction

The problem of learning from examples can be seen as the problem of estimating an unknown
functional dependency given only a finite (possibly small) number of instances. The seminal work
of Vapnik Vapnik (1988) shows that the key to effectively solve this problem is by controlling the
complexity of the solution. In the context of statistical learning this leads to techniques known
as regularization networks(Evgeniou et al., 2000) orregularized kernel methods(Vapnik, 1988;
Cristianini and Shawe Taylor, 2000; Schölkopf and Smola, 2002). More precisely, given a training
setS= (xi ,yi)

`
i=1 of ` pairs of examples, the estimator is defined as

f λ
S ∈ argmin

f∈H

{

1
`

`

∑
i=1

V(yi , f (xi))+λ‖ f‖2
H

}

, (1)

whereV is the loss function,H is the Hilbert space of thehypothesesandλ > 0 is the regulariza-
tion parameter. As shown by Evgeniou et al. (2000) the above minimization problem can also be
seen as particular instance of Tikhonov Regularization (Tikhonov and Arsenin, 1977; Mukherjee
et al., 2002) for a multivariate function approximation problem which is well known to be ill-posed
(Bertero et al., 1988; Evgeniou et al., 2000; Poggio and Smale, 2003).

In this paper we study the generalization of the above problem to thecontinuous setting, that is,
given a probability distributionρ defined onX×Y whereX is the input space andY is the output
space, we study the properties of the estimator

( f λ,gλ) ∈ argmin
( f ,g)∈H ×B

{

Z

X×Y
V(y, f (x)+g(x))dρ(x,y)+λ‖ f‖2

H

}

, (2)

whereH andB are reproducing kernel Hilbert spaces (RKHS):H is the space of penalized func-
tions andB is the offset space (Wahba, 1990).

Considering the continuous setting is meaningful for several reasons. First, it is useful in order
to study the problem of the generalization properties of kernel methods (Steinwart, 2002). To this
purpose, one associates with each functionf : X → R its expected risk,

I [ f ] =
Z

X×Y
V(y, f (x))dρ(x,y),

whereρ is the unknown probability distribution describing the relation between the inputx ∈ X and
the outputy∈Y. Following Cucker and Smale (2002), for regularized kernel methods thediscrep-
ancy between the expected risk of the estimator,f λ

S, and the minimum obtainable risk, inff∈H I [ f ],
can be decomposed as

I [ f λ
S]− inf

f∈H
I [ f ] =

(

I [ f λ
S]− I [ f λ]

)

+

(

I [ f λ]− inf
f∈H

I [ f ]

)

,

where the first term represents the sample error and the second term the approximation error (Niyogi
and Girosi, 1999). Clearly, insight on the form off λ can be useful to obtain better bounds on
both errors. Second, considering the continuous measureρ corresponds intuitively to finding a
stable solution to the learning problem in the case of infinite number of examples and, hence, gives
information about the best we can do in the hypothesis spaceH ×B (Mukherjee et al., 2002). Third,
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we can treat both the empirical measure and the ideal unknown probability distribution in a unified
framework.

The contribution of our work is threefold. First we provide a complete characterization of the
explicit form of the estimator( f λ,gλ) given by Eq. (2) by exploiting a convexity assumption on the
loss functions. Our result can be interpreted as a quantitative version ofthe representer theorem
holding for both regression and classification and in which explicit care is taken of the offset space
B. Then, we discuss the role of the offset spaceB. The starting point of our discussion is the obvious
observation that the estimator given by Problem (2) is not thepair ( f λ,gλ) but thesum fλ +gλ. In
other words the natural hypothesis space is thesumH +B instead of theproductH ×B (which is
not even a space of functions fromX to R). For arbitrary loss function we prove that Problem (2)
is equivalent to a kernel method defined onH +B, which is a RKHS, with a penalty term given by
a seminorm. Finally, for sake of completeness, we study the issues of the existence and uniqueness
for Problem (2). WhenB is not the empty set, both issues are not trivial. In particular, forB

equal to the set of constants, we prove existence under very reasonable conditions: for example,
for classification, one needs at least two examples with different labels. About uniqueness we show
that, for strictly convex loss functions, one has uniqueness if and only if the spaceB is small enough
to be separated by the measureρ: for example, in the discrete setting, this last condition means that
a functiong∈ B is equal to 0 if and only ifg(xi) = 0 for all i. For the hinge loss function, which is
convex but not strictly convex, we give anad hoccondition in terms of number of support vectors
of the two classes.

The plan of the paper is as follows. In Section 2 we discuss our contributions with respect to
previous works. In Section 3 we introduce some basic concepts of learning theory and state the
assumptions we make on the loss functionV and hypothesis spacesH andB. In Section 4 we study
the form of the solution of Problem (2). In Section 5 we discuss the theoretical meaning of the offset
spaceB. We discuss the problem of existence and uniqueness in Section 6. In Section 7 we apply
our results to the discrete setting and focus on the case of Support VectorMachines. In the appendix
we recall some notions from convex analysis in infinite dimensional spaces.

2. Putting Our Work in Context

We now briefly discuss the relation between our results and the previous works on this subject.
Results about the form of the solution of kernel methods are known in the literature asrepresenter
theorems(if B is not trivial they are calledsemiparametric representer theorems).

The first result in this direction is due to Kimeldorf and Wahba (1970) for thesquared loss
function (see also Wahba, 1990). However, the structure of the proofholds for arbitrary loss function
as shown by many authors such as Cox and O’Sullivan (1990). In the framework of statistical
learning, Scḧolkopf et al. (2001) give a proof of the representer theorem that holds for an arbitrary
loss function and for any penalty term, being it a strictly increasing function of the norm. This kind
of results shows that, if theH is a RKHS with kernelK, the estimatorf λ

S defined by Eq. (1) can be
written as

f λ
S(x) =

`

∑
i=1

αiK(x,xi) .

The above result holds for arbitrary loss function and for a large classof penalty terms. However,
the form of the coefficientsαi is unknown.
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For the squared loss function, the form of the coefficients is well known inthe context of inverse
problem, see, for example, Tikhonov and Arsenin (1977), and reduces to solve a linear system of
equations. For arbitrary differentiable functions, this problem was studied by Poggio and Girosi
(1992); Girosi (1998); Wahba (1998) where the coefficientsαi are solution of a system of algebraic
equations.

This approach cannot be applied to hinge andε-insensitive loss function (Vapnik, 1988), since
they are not differentiable: the form of the coefficientsαi is recovered only through the usual dual
Lagrangian formulation of the minimization problem, see, for example, Vapnik (1988); Cristianini
and Shawe Taylor (2000).

Recently, Zhang (2001) gives a quantitative representer theorem in theclassification setting that
holds for differentiable loss function and Steinwart (2003) extends this result for arbitrary convex
loss function, without using the dual problem. In these papers the form ofthe coefficientsαi is given
in terms of a closed equation involving the subgradient of the loss function. Moreover, they are able
to extend the representer theorem to the continuous setting (a study of the solution of Tikhonov
regularization in the continuous setting when the square loss is used can be found also in Cucker
and Smale, 2002).

This paper, using techniques similar to those of Steinwart (2003), extendsthe above result in
the following directions:

• our result holds both for regression and classification;

• we provide a general result that holds also when the offset term is considered. The presence
of the offset space forces the coefficientsαi to satisfy a system of linear equations;

• we do not assume that input spaceX and the output spaceY are compact. In particular, for
regression we can assumeY = R;

• we provide a simpler proof than the one of Steinwart (2003) by using known results about
integral convex functionals.

A discussion of the role of the offset terms can be found in Evgeniou et al.(2000) and in Poggio
et al. (2002) when the spaceB reduces to the set of constant functions. The results are close to our
Theorem 6, but they are proved assuming that the unit constant is in the Mercer decomposition of
the kernel and for the discrete setting, while our result holds true for offset term living in arbitrary
RKHS.

The problem of the existence and uniqueness is discussed in Wahba (1998) for the discrete
setting and with differentiable loss functions. For arbitraryρ the papers by Steinwart (2002, 2003)
study the existence for the classification setting with offset space reducedto the constant functions.
For the hinge loss andε-insensitive loss, the problem of uniqueness is treated in Burges and Crisp
(2000, 2003). Their proof is based on the dual problem and on the Kuhn-Tucker conditions. Our
results subsume the cited results as special cases, but are all obtained in the more general continuous
setting. In particular our results on uniqueness of SVM solution are similar to those in Burges and
Crisp (2000, 2003) but do not make use of the dual formulation.

3. Notation and Assumptions

In this section we first fix the notation and then state and comment upon the basicassumptions
needed to derive the results described in the rest of the paper. We startwith input and output spaces.

1366



SOME PROPERTIES OFREGULARIZED KERNEL METHODS

3.1 Input and Output Spaces

As usual, we denote withX andY the input and output spaces respectively. We assume thatX is
a locally compact second countable space (this assumption is satisfied for instance ifX is a closed
subset ofRd) andY is a closed subspace ofR.

We letZ = X×Y and endow it with a probability distributionρ defined on the Borelσ-algebra
of Z. We recall that, sinceρ is a bounded measure andZ is second countable,ρ is a Radon measure.
In practice,ρ will be either the unknown distribution describing the relation betweenx andy or the
empirical measure

ρS =
1
`

`

∑
i=1

δ(xi ,yi),

associated with thetraining set S= {(xi ,yi)}`
i=1 drawn i.i.d. with respect toρ. We now deal with

loss functions.

3.2 Loss Functions

We collect the mathematical assumptions on the loss function in the following definition and we
comment on the purpose of each assumption.

Definition 1 Given p∈ [1,+∞[, a function V: Y×R → [0,+∞[ such that

1. for all y∈Y the function V(y, ·) is convex onR;

2. the function V is measurable on Y×R;

3. there are b∈ [0,+∞[ and a: Y → [0,+∞[ such that

V(y,w) ≤ a(y)+b|w|p ∀w∈ R, y∈Y (3)
Z

X×Y
a(y)dρ(x,y) < +∞, (4)

is called a p-loss function with respect toρ.

If the context is clear,V is simply called a loss function. The convexity hypothesis is not restrictive,
being satisfied by all the loss functions commonly in use. Moreover, it is powerful from a technical
point of view: it allows for the use of subgradient techniques without assuming differentiability
of V and makes it possible to use convex analysis tools in the study of existence and uniqueness
of functional minimizers. Finally, this requirement ensures stronger bounds for the sample error
(Bartlett et al., 2002; Bartlett, 2003; Bartlett et al., 2003).

Assumption 2. is a minimal requirement for defining the expected risk and it is usually satisfied
since loss functions commonly in use are continuous onZ.

Condition 3. is a technical hypothesis we need in order to use results from convex integral
functional analysis. For example, it is satisfied in the following cases

1. for p = 2, if V is the square loss function,V(y,w) = (y−w)2, and
Z

X×Y
y2dρ(x,y) < +∞;
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2. for p = 1, if V(y, ·) is Lipschitz onR with a Lipschitz constant independent ofy and
Z

X×Y
V(y,0)dρ(x,y) < +∞.

We now restrict our analysis to some functionals studied in statistical learning.

3.3 Learning Functionals

Theexpected riskof a measurable functionf : X → R is defined as

I [ f ] =
Z

X×Y
V(y, f (x))dρ(y,x),

and can be seen as the average error obtained by the functionf , where f is a possible solution of
the learning problem and the probability measureρ is unknown.

Given a training setS, a possible way to estimateI [ f ] is to evaluate theempirical risk

IS
emp[ f ] =

1
`

`

∑
i=1

V(yi , f (xi)).

The problem of learning is to find, given the training setS, anestimator feffectively predicting the
label of a new point. This translates in finding a functionf such that its expected risk is small with
high probability.

A possible way to efficiently solve the learning problem is provided byregularized kernel meth-
odswhich amounts to solving a problem of functional minimization as Problem (1). A general-
ization of Problem (1) to a continuous setting is provided by Problem (2) in which the continuous
measureρ replaces the empirical measureρS in the first term. In what follows we will refer to the
functionals to be minimized in both Eq. (1) and Eq. (2) asTikhonov functionalsand to the solutions
as theregularized solutions.

The second term of a Tikhonov functional is asmoothnessor acomplexityterm measuring the
norm of the functionf in a suitable Hilbert spaceH . The minimization takes place in thehypothesis
spaceH ×B. We now collect the assumptions on the hypothesis space at the basis of ouranalysis.

3.4 Hypothesis Space

First of all, we recall the definition of reproducing kernel Hilbert space. A RKHS H on X with
kernelK : X×X → R is defined as the unique Hilbert space of real valued functions onX such that,
for all f ∈ H ,

f (x) = 〈 f ,Kx〉H ∀x ∈ X, (5)

whereKx is the function onX defined byKx(s) = K(x,s).
Given a probability meausureρ on Z and p ∈ [1,+∞[, we say that the kernelK is p-bounded

with respect toρ if the functionK is measurable onX×X and
Z

X×Y
K(x,x)

p
2 dρ(x,y) < +∞. (6)

Clearly the above condition depends only on the marginal distribution ofρ on X and ensures that
H is a subspace ofLp(Z,ρ) with continuous inclusion (see Lemma 4 in Section 4). This fact is
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essential for proving our results. In particular, thep-boundedness of the kernel is fulfilled for all
p∈ [1,+∞ [ if X is compact and the kernel is continuous or if the kernel is measurable and bounded.

We are now ready to discuss the assumptions on the hypothesis space. We fix the probability
measureρ on Z and p ∈ [1,+∞ [ such thatV is p-bounded with respect toρ. We require that the
space of penalized functionsH and the space of offset functionsB are RKHS onX such that the
corresponding kernelsK andKB are p-bounded with respect toρ. We denote the corresponding
norms by‖·‖H and‖·‖B . Finally, we notice that, in general, the product spaceH ×B is not a
RKHS.

In learning theory usuallyX is compact,K is continuous andB is the one dimensional vector
space of constant functions

B = { f : X → R | f (x) = b, b∈ R} = R

with kernelKB simply given byKB(x,s) = 1. Another example of offset space, which arises in
approximation problems in RKHS on a bounded interval, is the space of splinesof ordern, whose
corresponding kernel is continuous (Wahba, 1990). In both case thep-boundedness assumption is
satisfied for allp. Our framework allows to treat arbitrary (possibly infinite-dimensional) offset
spaces with the possibility to incorporate jumps in the offset term.

Finally, the requirement that the hypothesis space is a RKHS is due to the factthat minimization
of a convex functional in a Hilbert space is easier to treat than in an arbitrary Banach space since in
the former case the subgradient of the functional is an element of the space itself. Moreover, in the
proofs we use extensively the reproducing property given by Eq. (5).

4. Explicit Form of the Regularized Solution

In this section we determine the explicit form of the minimizer of the Tikhonov functional intro-
duced in the previous section. We first state the main theorem and comment on the obtained result,
then we provide the mathematical proof.

4.1 Main Theorem

Theorem 2 Letρ be a probability measure on X×Y where X is a locally compact second countable
space and Y is a closed subset ofR. Let V be a p-loss function with respect toρ, p∈ [1,+∞[. Let
H and B reproducing kernel Hilbert spaces such that the corresponding kernels K and KB are
p-bounded with respect toρ. Define q=]1,+∞] such that1q + 1

p = 1.

Let λ > 0 and( f λ,gλ) ∈ H ×B, then

( f λ,gλ) ∈ argmin
( f ,g)∈H ×B

{

Z

X×Y
V(y, f (x)+g(x))dρ(x,y)+λ‖ f‖2

H

}

(7)

if and only if there isα ∈ Lq(Z,ρ) satisfying

α(x,y) ∈ (∂V)(y, f λ(x)+gλ(x)) (x,y) ∈ X×Y a.e. (8)

f λ(s) = − 1
2λ

Z

X×Y
K(s,x)α(x,y)dρ(x,y) s∈ X (9)

0 =
Z

X×Y
KB(s,x)α(x,y)dρ(x,y) s∈ X. (10)
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The proof of this theorem is given in the following subsection. A few important remarks are in
order.

First, the theorem gives a general quantitative version of the representer theorem. The generality
is obtained by considering the continuous setting which subsumes the discretesetting if the measure
ρ is the empirical measureρS. In this case, the integral reduces to a finite sum and we recover the
well known result thatf λ

S = ∑`
i=1 αiKxi , where thexi form the training set. Moreover, the solution is

quantitatively characterized since the coefficientsα are given by Eq. (8) involving the subgradient.
For differentiable loss functions in the discrete setting, Eq. (8) reduces to

αi = V ′(yi , f λ
S(xi)+gλ

S(xi)),

whereV ′ denotes the derivative with respect to the second variable (Girosi, 1998; Wahba, 1998).
Second, if{ψi}m

i=1 is a base forB, the offset part of the solution can be written asgλ = ∑m
i=1diψi ,

where the coefficientsdi are again constrained by Eq. (8). A discussion on how to solve explicitly
Eq. (8) can be found in Wahba (1998). Furthermore, the presence ofB induces a system of linear
constraints on the coefficientsαi expressed by Eq. (10) that, forB = R, reduces to the well known
condition

`

∑
i=1

αi = 0.

We stress that, unlike previous works, the above equation has been derived without introducing the
dual formulation.

Finally, we discuss the role of Assumption 3) in Definition 1. From the proof, itis apparent
that this assumption is needed to ensure the continuity of the first term in the Tikhonov functional
which in the discrete setting is trivially guaranteed. Therefore, for the discrete setting Theorem 2
holds for any convex loss function. In particular,Lq(Z,ρS) = R

` and the conditionα ∈ Lq(Z,ρS) is
always satisfied. Back to the continuous setting, ifV(y, ·) is Lipschitz onR with a Lipschitz constant
independent ofy and

Z

X×Y
V(y,0)dρ(x,y) < +∞,

one can choosep = 1, so thatq = +∞ and conditionα ∈ L∞(Z,ρ) means thatα is bounded. For the
square loss, clearlyp = 2, so thatq = 2 andα is square-integrable. As shown by Steinwart (2003),
for classification and compactX, one can again remove Assumption 3) of Definition 1 using the fact
that a convex function is locally Lipschitz and the range of possibley is bounded.

The following corollary is the restatement of the representer theorem without offset space.

Corollary 3 With the assumptions of Theorem2, let fλ ∈ H then

f λ ∈ argmin
f∈H

{

Z

X×Y
V(y, f (x))dρ(x,y)+λ‖ f‖2

H

}

if and only if there isα ∈ Lq(Z,ρ) satisfying

α(x,y) ∈ (∂V)(y, f λ(x)) (x,y) ∈ X×Y a.e.

f λ(s) = − 1
2λ

Z

X×Y
K(s,x)α(x,y)dρ(x,y) s∈ X.
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4.2 Proof of the Main Theorem

Before giving the proof of the theorem we discuss the proof structure,which aside from some
technicalities is very simple, and is based on two lemmas. The Tikhonov functional I [ f + g] +
λ‖ f‖2

H is a convex map onH ×B, so ( f λ,gλ) is a minimizer of the Tikhonov functional if and
only if (0,0) is in its subgradient, which is a subset ofH ×B. Using linearity, the computation of
the subgradient of the Tikhonov functional reduces to the computation of the subgradient ofI [ f +g]
and‖ f‖2

H respectively. Since the latter functional is differentiable, the subgradient evaluation is
straightforward. Some care is needed for the subgradient of the former. First, we rewrite it as an
integral functional onLp(Z,ρ) and then use a fundamental result of convex analysis to interchange
the integral and the subgradient.
Proof [of Theorem 2] Clearly,λ‖ f‖2

H is continuous and, by Lemma 4, the functionalI [ f + g] is
continuous and finite. So, from item 5 of Proposition 14, one has that

∂
(

I [ f +g]+λ‖ f‖2
H

)

= ∂(I [ f +g])+λ∂(‖ f‖2
H ).

Now, the map
( f ,g) →‖ f‖2

H

is differentiable with derivative(2 f ,0) and, therefore, by item 1 of Proposition 14,

∂(‖ f‖2
H ) = {(2 f ,0)}. (11)

The main difficulty is the evaluation of the subgradient of the mapI [ f +g] given in Lemma 5. By
means of this lemma we obtain that the elements of the subgradient ofI [ f + g] at ( f ,g) are of the
form

(

Z

X×Y
K(x, ·)α(x,y)dρ(x,y),

Z

X×Y
KB(x, ·)α(x,y)dρ(x,y)

)

, (12)

whereα ∈ Lq(Z,ρ) satisfies
α(x,y) ∈ (∂V)(y, f (x)+g(x)) (13)

for ρ-almost all(x,y)∈ X×Y. Now, by combining Eq. (11) and Eq. (12), we have that the elements
of the subgradient ofI [ f +g]+λ‖ f‖2

H at point( f ,g) are of the form

(

Z

X×Y
K(x, ·)α(x,y)dρ(x,y)+2λ f ,

Z

X×Y
KB(x, ·)α(x,y)dρ(x,y)

)

. (14)

whereα ∈ Lq(Z,ρ) satisfies Eq. (13).
From item 3 of Proposition 14, we have that an element( f λ,gλ)∈H ×B is a minimizer ofI [ f +

g] + λ‖ f‖2
H if and only if (0,0) belongs to the subgradient evaluated at( f λ,gλ). Using Eq. (14),

one has that

f λ(s) = − 1
2λ

Z

X×Y
α(x,y)K(x,s)dρ(x,y)

Z

X×Y
α(x,y)KB(x,s)dρ(x,y) = 0.

where, by means of Eq. (13),α ∈ Lq(Z,ρ) satisfies Eq. (8). This ends the proof.
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Before computing the subgradient of the mapI [ f +g] in Lemma 5, we need to extend the definition
of expected risk onLp(Z,ρ). First of all, we let

I0[u] =
Z

X×Y
V(y,u(x,y)) dρ(x,y) u∈ Lp(Z,ρ),

so thatI [ f +g] = I0(J ( f ,g)) whereJ : H ×B → Lp(Z,ρ) is the linear map

J ( f ,g) = f +g,

(the functionf +g is viewed in a natural way as a function onZ).
The following lemma collects some technical facts onI0 andJ .

Lemma 4 With the above notations,

1. the functional I0 : Lp(Z,ρ) → [0,+∞ [ is well-defined and continuous;

2. the operatorJ : H ×B → Lp(Z,ρ) is well-defined and continuous.

Proof Since the loss functionV can be regarded as function onZ×R, that is,V(z,w) = V(y,w)
wherez= (x,y), one has thatI0[u] is the Nemitski functional associated withV (see Appendix), that
is,

I0[u] =
Z

Z
V(z,u(z))dρ(z) u∈ Lp(Z,ρ).

We claim thatI0[u] is finite. Indeed, givenu∈ Lp(Z,ρ), by Eq. (3),
Z

X×Y
V(y,u(z))dρ(x,y) ≤

Z

X×Y
a(y)+b|u(z)|pdρ(x,y) < +∞.

The proof thatI0 is continuous can be found in Proposition III.5.1 of Ekeland and Turnbull(1983).
In order to prove the second item, we letf ∈ H . Then, by Eq. (5),

Z

X×Y
| f (x)|pdρ(x,y) =

Z

X×Y
| 〈 f ,Kx〉H |pdρ(x,y)

≤ ‖ f‖p
H

Z

X×Y
K(x,x)

p
2 dρ(x,y)

= C‖ f‖p
H

< +∞.

whereC =
R

X×Y K(x,x)
p
2 dρ(x,y) is finite sinceK is p-bounded (see Eq. (6)). In particular, the

function (x,y) 7→ f (x) is in Lp(Z,ρ) and‖ f‖Lp ≤ p
√

C‖ f‖H . The same relation clearly holds for
g∈ B. It follows thatJ is well defined and

‖ f +g‖Lp ≤ p
√

C‖ f‖H +
p
√

C′ ‖g‖B .

SinceJ is linear, it follows thatJ is continuous.

Finally, the following lemma computes the subgradient ofI = I0◦ J .
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Lemma 5 With the above notations, let( f ,g) ∈ H ×B, then(φ,ψ) ∈ ∂(I0 ◦ J )( f ,g) if and only if
there isα ∈ Lq(Z,ρ) such that

α(x,y) ∈ (∂V)(y, f (x)+g(x)) (x,y) ∈ X×Y a.e.

φ(s) =
Z

X×Y
K(s,x)α(x,y)dρ(x,y) s∈ X

ψ(s) =
Z

X×Y
KB(s,x)α(x,y)dρ(x,y) s∈ X.

Proof SinceI0 is finite and continuous in 0= J (0), by point 6 of Proposition 14, we know that

∂(I0◦ J )( f ,g) = J ∗(∂I0)(J ( f ,g)), (15)

whereJ ∗ : Lq(Z,ρ) → H ×B is the adjoint ofJ , that is,

〈J ∗α,( f ,g)〉H ×B =
Z

X×Y
α(x,y)J ( f ,g)(x,y) dρ(x,y).

First of all, we compute∂I0. SinceI0[0] < +∞, we can apply Proposition 15 so that, given
u∈ Lp(Z,ρ), thenα ∈ (∂I0)(u) if and only if α ∈ Lq(Z,ρ) and

α(z) ∈ (∂V)(y,u(x,y)),

for ρ-almost all(x,y) ∈ X×Y.
We now compute the adjoint ofJ . Let α ∈ Lq(Z,ρ) and (φ,ψ) = J ∗α ∈ H ×B. Using the

reproducing property ofH and the definition ofJ ∗ we can write

φ(s) = 〈φ,Ks〉H

= 〈J ∗α,(Ks,0)〉H ×B = 〈α,J (Ks,0)〉L2(Z,ρ) .

Writing the scalar product explicitly we then find

φ(s) =
Z

X×Y
K(s,x)α(x,y)dρ(x,y).

Reasoning in the same way we find that

ψ(s) =
Z

X×Y
KB(s,x)α(x,y)dρ(x,y).

Replacing the above formulas in Eq. (15), we have the thesis.

5. Dealing with the Offset SpaceB

In this section we deal with the offset term which often appears in regularized solutions. We first
motivate our analysis, then state and discuss our main result on this issue. Finally, we give the proof
of the results.
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5.1 Motivations

In the previous section we minimized a Tikhonov functional on the setH ×B, dealing explicitly
with the possible presence of an offset term in the form of the solution. Typical examples in which
offset spaces arise are Support Vector Machine algorithms (Vapnik, 1988), where the offset term is
a constant accounting for the translation invariance of the separating hyperplane, and penalization
methods (Wahba, 1990), where the offset space is the kernel space of the penalization operator.

However, the fact that the setH ×B is not a RKHS (in fact, it is not even a function space)
makes it cumbersome to extend of typical statistical learning results to the general setting in which
the offset term is considered. For example a separate analysis, with and without the offset term, is
needed for measuring the complexity of the hypothesis space or studying algorithm consistency.

In this section we show that under very weak conditions the presence of an offset term is equiv-
alent to solving a standard regularization problem with a seminorm (Wahba, 1990).

The fact that the estimator isf λ(x)+gλ(x) (for regression) or sgn
(

f λ(x)+gλ(x)
)

(for classifi-
cation) suggests to replaceH ×B with the sum

S = H +B = { f +g| f ∈ H , g∈ B}.

The hypothesis spaceS is a space of functions onX and, in particular, a RKHS, the kernel being
the sum of the kernels ofH andB. In this section we show that the minimization of a Tikhonov
functional onH ×B is essentially equivalent to the minimization of an appropriate functional onS .
This provides a rigorous derivation of the following facts.

1. The equivalent functional onS is also a Tikhonov functional. The penalty term is a seminorm
penalizing the functions inS orthogonal toB only.

2. The estimator given by the minimization of the Tikhonov functional onS depends only on
the kernel sum.

Moreover, since the hypothesis spaceS is a RKHS, a number of classical results of learning theory
follows without further effort.

Finally, we notice that the norm ofB (hence the kernelKB ) plays no role in the functional

I [ f +g]+λ‖ f‖2
H ,

that is, all kernels, whose corresponding RKHS isB as a vector space, give rise to the same mini-
mizers( f λ,gλ). This fact is confirmed by Eq. (18) below (see also Eq. (20)).

5.2 Main Theorem

We recall that the norm inS is given by

‖ f +g‖2
S = inf

f ′∈H ,g′∈B

f+g= f ′+g′

(

∥

∥ f ′
∥

∥

2
H

+
∥

∥g′
∥

∥

2
B

)

(16)

and, with respect to this norm,S is a RKHS onX with kernelK +KB (Schwartz, 1964).
We are now ready to state the following result.
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Theorem 6 Let Q be the orthogonal projection on the closed subspace ofS

S0 = {s∈ S | 〈s,g〉S = 0 ∀g∈ B},

that is the subset of functions orthogonal toB w.r.t. the scalar product inS . We have the following
facts.

1. If ( f λ,gλ) ∈ H ×B is a solution of the problem

min
( f ,g)∈H ×B

{I [ f +g]+λ‖ f‖2
H },

then sλ = f λ +gλ ∈ S is a solution of the problem

min
s∈S

{I [s]+λ‖Qs‖2
S}

and fλ = Qsλ.

2. If sλ ∈ S is a solution of the problem

min
s∈S

{I [s]+λ‖Qs‖2
S},

let fλ = Qsλ and gλ = sλ −Qsλ, then

I [ f λ +gλ]+λ
∥

∥

∥
f λ
∥

∥

∥

2

H
= inf

( f ,g)∈H ×B
{I [ f +g]+λ‖ f‖2

H }.

In particular, if gλ ∈ B, then( f λ,gλ) ∈ H ×B is a minimizer of I[ f +g]+λ‖ f‖2
H .

Before giving the proof in the following subsection we comment on this result.
First, notice that ifH ∩B = {0} thenS = H ×B and

‖ f +g‖2
S = ‖ f‖2

H +‖g‖2
B .

In this case the theorem is trivial. However, in the arbitrary case care is needed because there are
functions inH not orthogonal toB. Moreover, the norm‖·‖S restricted toH andB could be dif-
ferent from‖·‖H and‖·‖B : in particular, it could happen that(B⊥)⊥ 6= B, where the orthogonality
⊥ is meant with respect to the dot product inS . This pathology is at the root of the fact that there
are cases in which the problem

min
s∈S

{I [s]+λ‖Qs‖2
S}

has a solution, whereas the functionalI [ f +g]+λ‖ f‖2
H does not admit a minimizer onH ×B (see

example below). In practice, sinceH ∩B in most applications is finite dimensional, this pathology
does not occur and the minimization problem onH ×B is fully equivalent to the one onS .

Second, the advantage of using the penalty term‖ f‖2
H instead of‖Qs‖2

S is that one can solve
the minimization problem without knowing the explicit form of the projectionQ. Conversely, the
spaceS is the natural space to address theoretical issues.
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Third, we observe that since the proof does not depend on the convexity of the loss function,
the theorem holds for arbitrary (positive) loss functions. However, ifV satisfies the hypotheses of
Definition 1, from Theorem 2 it follows that the minimizersλ of I [s]+λ‖Qs‖2

S is of the form

sλ(s) =
Z

X×Y
α(x,y)

(

K(x,s)+KB(x,s)
)

dρ(x,y)+gλ(s) (17)

=
Z

X×Y
α(x,y)K(x,s)dρ(x,y)+gλ(s) (18)

wheregλ ∈ B andα ∈ Lq(Z,ρ) satisfies

α(x,y) ∈ (∂V)(y,sλ(x)) (19)
Z

X×Y
α(x,y)KB(x,s) = 0. (20)

In particular, this implies that, givenh∈ B, one can replace the kernelK with K(x,s)+ h(x)h(s),
without changing the form of the minimizersλ. For example ifB is the set of constant functions,
the two kernelsK(x,s) = x ·sandK(x,s) = x ·s+1 are equivalent since both penalize the functions
orthogonal to 1, that is the space of linear functions.

5.3 Proof

Before giving the proof of Theorem 6 we need to prove the following technical lemma. For this
purpose we recall thatS0 was defined as

S0 = {s∈ S | 〈s,g〉S = 0 ∀g∈ B},

andQ was the corresponding orthogonal projection fromS onto S0. Moreover we letH0 be the
closed subspace ofH given by

H0 = { f ∈ H | 〈 f ,h〉H = 0 ∀h∈ H ∩B}

andP be the corresponding orthogonal projection fromH ontoH0.
In order to prove the main theorem we need the following technical lemma that characterizes

the spaceS0.

Lemma 7 Let s= f +g∈ S with f ∈ H and g∈ B, then

Qs = P f (21)

‖Qs‖S = ‖P f‖H (22)

and there is a sequence( fn,gn) ∈ H ×B such that

lim
n→∞

‖P f − fn‖H = 0 (23)

with fn +gn = s.
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Equations (21) and (22) show thatS0 andH0 are the same Hilbert space and, in particular,Qs∈ H .
However, in general, it could happen thats−Qs 6∈ B. Equation (23) is a technical trick to overcome
this pathology.
Proof [of Lemma 7] To give the proof of the lemma we need some preliminary facts. LetK be the
closed subspace ofH ×B

K = {( f ,g) ∈ H ×B |( f ,h)H = (g,h)B ∀h∈ H ∩B}.

It is known (Schwartz, 1964) that, givens∈ S , there is a unique( f ,g) ∈ K such thats = f + g.
Moreover for all( f ′,g′) ∈ H ×B,

〈

s, f ′ +g′
〉

S
=
〈

f , f ′
〉

H
+
〈

g,g′
〉

B
. (24)

From Eq. (16) one has that

‖ f‖S ≤ ‖ f‖H f ∈ H (25)

First of all we claim thatH0 ⊂ S0. Clearly, if f ∈ H0, then( f ,0) ∈ K and, by Eq. (24), for all
g′ ∈ B,

〈

f +0,0+g′
〉

S
= 〈 f ,0〉H +

〈

0,g′
〉

B
= 0,

that is f ∈ S0. This shows the claim. Moreover,

‖ f‖2
S = 〈 f +0, f +0〉S = 〈 f , f 〉H = ‖ f‖2

H . (26)

Let s= f +g with f ∈ H andg∈ B. Clearly, f = P f +h whereh∈ H ⊥
0 = ((H ∩B)⊥)⊥ = ¯H ∩B

(here⊥ denotes the orthogonal complement with respect to the scalar product ofH ). It follows that
there is a sequencehn ∈ H ∩B such that

lim
n→∞

‖h−hn‖H = 0. (27)

Since, by Eq. (25),‖h−hn‖S ≤ ‖h−hn‖H andQ is continuous, it follows thatQh= limn→∞ Qhn =
0, sinceQhn = 0. The statements of the theorem easily follow from the above facts. Indeed

Qs= Q(P f +h+g) = QP f = P f,

sinceP f ∈ H0 ⊂ S0, and Equation (21) is proved. Equation (22) follows from Eq. (26). Finally
let now fn = P f + h−hn andgn = g+ hn. Clearly, fn + gn = f + g = s, fn ∈ H andgn ∈ B and
moreover Eq. (23) follows from Eq. (27).

We are now ready to prove the main theorem of this section.
Proof [Theorem 6] First of all we note the following facts. Letf ∈ H , g∈ B ands= f +g∈ S .
By Eq. (22)

I [s]+λ‖Qs‖2
S = I [ f +g]+λ‖P f‖2

H (28)

Let ( fn,gn) ∈ H ×B as in Lemma 7, then

I [ f +g]+λ‖P f‖2
H = lim

n

(

I [ fn +gn]+λ‖ fn‖2
H

)

.
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From the above equalities it follows that

I [s]+λ‖Qs‖2
S = lim

n

(

I [ fn +gn]+λ‖ fn‖2
H

)

. (29)

We can now prove the first part of the theorem. Assume that( f λ,gλ) ∈ H ×B is a minimizer of
I [ f +g]+λ‖ f‖2

H and letsλ = f λ +gλ. From Eq. (29) and the definition of minimizer, one has that,
for all s∈ S ,

I [s]+λ‖Qs‖2
S ≥ I [ f λ +gλ]+λ

∥

∥

∥
f λ
∥

∥

∥

2

H
. (30)

In particular with the choices= sλ, by means of Eq. (22), one has that

‖Qs‖S =
∥

∥

∥
P fλ

∥

∥

∥

H
≥
∥

∥

∥
f λ
∥

∥

∥

H
,

and, hence, thatQsλ = P fλ = f λ. Therefore, it follows that

I [s]+λ‖Qs‖2
S ≥ I [sλ]+λ

∥

∥

∥
Qsλ
∥

∥

∥

2

S
,

that is,sλ is a minimizer ofI [s]+λ‖Ps‖2
S .

Before proving the second part of the theorem we note that the following inequality follows as
a simple consequence of the definition of projection.

I [s]+λ‖Qs‖2
S = I [ f +g]+λ‖P f‖2

H ≤ I [ f +g]+λ‖ f‖2
H . (31)

Assume now thatsλ ∈ S is a minimizer ofI [s]+ λ‖Qs‖2
S . Let f λ = Qsλ andgλ = s− f λ, then, by

Eq. (31) and Eq. (22), it follows that

I [ f λ +gλ]+λ
∥

∥

∥
f λ
∥

∥

∥

2

H
≤ inf

( f ,g)∈H ×B
{I [ f +g]+λ‖ f‖2

H }.

However, using Eq. (29) withs= f λ +gλ, one has that

I [ f λ +gλ]+λ
∥

∥

∥
f λ
∥

∥

∥

2

H
≥ inf

( f ,g)∈H ×B
{I [ f +g]+λ‖ f‖2

H }.

SoI [ f λ +gλ]+λ
∥

∥ f λ
∥

∥

2
H

is the infimum ofI [ f +g]+λ‖ f‖2
H onH ×B. Clearly, ifgλ ∈B, it follows

that( f λ,gλ) is a minimizer ofI [ f +g]+λ‖ f‖2
H .

5.4 A Counterexample

The following example shows that in some pathological framework the minimization on H ×B is
not equivalent to the one onS = H +B.

Example 1 Let H = `2 = { f = ( fn)n∈N | ∑n f 2
n < +∞}. The spacè2 is a RKHS onN with respect

to the kernel K(n,m) = δn,m. LetB = { f ∈ `2 | ∑nn2 f 2
n < +∞} with the scalar product

〈 f ,g〉B = ∑
n

n2 fngn.
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The spaceB is a RKHS with respect to the kernel KB(n,m) = 1
n2 δn,m.

Clearly, B ⊂ H , so thatH ∩B = B, which is not closed inH . SinceB is dense inH , P = 0
and, by Lemma 7, Q= 0.

Let V be the squared loss function and choose h= (hn)n∈N ∈ H such that h6∈ B. Letρ(n,y) =
δ(y−hn) so that

I [s] = ‖s−h‖2
S ,

then
I [s]+λ‖Qs‖2

S = ‖s−h‖2
S ,

and the minimizer is sλ = h. Moreover, by our theorem, one has that

inf
f∈H ,g∈B

{I [ f +g]+λ‖ f‖2
H } = I [sλ]+λ

∥

∥

∥
Qsλ
∥

∥

∥

2

S
= 0.

If ( f λ,gλ) ∈ H ×B were a minimizer, then fλ = 0 and, hence, gλ = h, but this is impossible since
h 6∈ B.

6. Existence and Uniqueness

We now discuss existence and uniqueness of the regularized solution inS . Before stating and
proving the main results we summarize our findings and show that if the offsetspace is empty
both existence and uniqueness are easily obtained. Our analysis extendsexistence to all cases of
interest under some weak assumptions on the kernel and the loss function for both regression and
classification.

Uniqueness depends critically on the convexity assumption. For strictly convex functions we
prove that the solution is unique if and only if the offset space satisfies suitable conditions, fulfilled
in the case of constant offsets. For loss functions which are not strictly convex we limit our attention
to the hinge loss and show that the solution is unique unless some particular conditions on the
number and location of the support vectors are met. In Burges and Crisp (2000, 2003) similar
results were obtained considering the dual formulation of the minimization problem.

If the offset space is empty, strict convexity and coerciveness of the penalty term trivially imply
both existence and uniqueness. Indeed, we have the following proposition.

Proposition 8 Givenλ > 0, there exists a unique solution of the problem

min
f∈H

(

I [ f ]+λ‖ f‖2
H

)

.

Proof The function
(

I [ f ]+λ‖ f‖2
H

)

is strictly convex and continuous. Moreover

I [ f ]+λ‖ f‖2
H ≥ λ‖ f‖2

H → +∞

if ‖ f‖H goes to+∞. From item 4 of Proposition 14 both existence and uniqueness follow.
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6.1 Existence

We now consider existence. IfB is not trivial, there are no general results (see Wahba, 1990, for a
discussion on this subject). However, ifB is the set of constant functions, we derive existence of
the solution in two different settings.

The first proposition holds only for classification under the assumption thatthe loss functionV
goes to infinity wheny f(x) goes to−∞ (see Condition 1 of Proposition 9 below). Similar results
were obtained in Steinwart (2002). We letν be the marginal measure onX associated withρ and
suppν its support.

Proposition 9 Assume that the following conditions hold

1. limw→−∞V(1,w) = +∞ and limw→+∞V(−1,w) = +∞

2. there is C> 0 such that
√

K(x,x) ≤C for all x ∈ suppν

3. ρ(X×{1}) > 0 andρ(X×{−1}) > 0

Then there is at least one solution of the problem

min
s∈S

(

I [s]+λ‖Qs‖2
S

)

,

whereS = H +R.

We observe that Assumption2. is satisfied ifX is compact andK is continuous. Assumption3. has
a very natural interpretation in the discrete setting where it simply amounts to have one example for
each class. This condition is need since Assumption1. does not requires thatV goes to+∞ when
y f(x) goes to+∞. Typical example of loss function satisfying Assumption1. is the hinge loss.

The second result holds both for regression and classification, but it requires the loss function
going to infinity whenf (x) goes to±∞, uniformly in y (compare Assumption1. of Proposition 10
and Assumption1. of Proposition 9).

Proposition 10 Assume that the following conditions hold

1. limw→±∞(infy∈YV(y,w)) = +∞.

2. there is C> 0 such that
√

K(x,x) ≤C for all x ∈ suppν.

Then there is at least one solution of the problem

min
s∈S

(

I [s]+λ‖Qs‖2
S

)

,

whereS = H +R.

We observe that for classification with symmetric loss functions, as the squared loss function, this
proposition gives a sharper result than Proposition 9.

We now prove Proposition 9 and omit the proof of Proposition 10 since it is essentially the same.
Proof [of Proposition 9] The idea of the proof is to show that the functional we have to minimize
goes to+∞ when‖s‖S goes to+∞. With this aim, let

α = min{ρ(X×{1}) ,ρ(X×{−1})}.
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By assumption3, α > 0. For a fixedM > 0, we are looking forR> 0 such that for alls∈ S with
‖s‖S ≥ R,

I [s]+λ‖Qs‖2
S ≥ M.

Due to assumption1, there isr > 0 such that, for allw ≤ −r, V(1,w) ≥ M
α and, for allw ≥ r

, V(−1,w) ≥ M
α . We now letR = max{2(1+C)

√

M
λ ,2r} and chooses∈ S with ‖s‖S ≥ R. If

‖Qs‖S = ‖Qs‖H ≥ R
2(1+C) , then

I [s]+λ‖Qs‖2
S ≥ λ‖Qs‖2

S

≥ λ(
R

2(1+C)
)2

≥ M,

sinceR≥ 2(1+C)
√

M
λ . If ‖Qs‖ ≤ R

2(1+C) , let b = s−Qs∈ R, then

|b| = ‖s−Qs‖S

≥ ‖s‖S −‖Qs‖S

≥ R− R
2(1+C)

= R
2C+1
2C+2

.

Assume, for example, thatb > 0. For allx ∈ suppν

s(x) = 〈Qs,Kx〉H +b

≥ b−‖Qs‖H ‖Kx‖H

≥ R
2C+1
2C+2

− R
2(1+C)

C

≥ R
C+1
2C+2

=
R
2
≥ r,

sinceR≥ r
2. By definition ofr, one has that for allx ∈ suppν

V(−1,s(x)) ≥ M
α

.

Integrating both sides, we find
Z

X×{−1}
V(−1,s(x))dρ(x,−1) ≥ M

α
ρ(X×{−1}) ≥ M

from which it follows that
I [s]+λ‖Qs‖2

S ≥ M.

The same proof holds whenb < 0 replacing the integration onX ×{−1} with the integration on
X×{1}. SinceM is arbitrary, we have that

I [s]+λ‖Qs‖2
S ≥ λ‖Qs‖2

S → +∞.

Since the functional is continuous, from item 4 of Proposition 14 the existence of the minimizer
follows.
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6.2 Uniqueness

The first proposition completely characterizes uniqueness for strictly convex functions.

Proposition 11 Let sλ be a solution of the problem

min
s∈S

(

I [s]+λ‖Qs‖2
S

)

.

1. If s′ is another solution, then Qs′ = Qsλ.

2. If V(y, ·) is strictly convex for all y∈ Y then all the minimizers are of the form sλ + g, with
g∈ S such that Qg= 0 and g(x) = 0 for ν-almost all x∈ X.

Let us comment on this proposition before providing the proof. We recall that a solutionsλ is the
sum of two terms:f λ = Qsλ which is orthogonal toB andgλ = sλ− f λ. The uniqueness off λ (item
1) is due to the strict convexity of the penalty term. Item2 states the general conditions that should
be satisfied by offset functions to obtain uniqueness onsλ: in the discrete setting one has uniqueness
if and only if the conditiong(xi) = 0 for all i implies thatg is equal to zero. Clearly, ifB is the
space of constant functions uniqueness is ensured. We now give the proof of the proposition.
Proof [of Proposition 11]

1. Let s′ another minimizer and assume thatQsλ 6= Qs′. Then, by the strict convexity of‖·‖2
S ,

one has that, for allt ∈ ]0,1[ ,
∥

∥

∥
(1− t)Qsλ + tQs′

∥

∥

∥

2

S
< (1− t)

∥

∥

∥
Qsλ
∥

∥

∥

2

S
+ t
∥

∥Qs′
∥

∥

2
S
.

SinceI [s] is convex, one has that

I [(1− t)sλ + ts′] ≤ (1− t)I [sλ]+ tI [s′].

From the above two inequalities we find

I [(1− t)sλ + ts′] + λ
∥

∥

∥
Q
(

(1− t)sλ + ts′
)∥

∥

∥

2

S

< (1− t)

(

I [sλ]+λ
∥

∥

∥
Qsλ
∥

∥

∥

2

S

)

+ t
(

I [s′]+λ
∥

∥Qs′
∥

∥

2
S

)

= min
s∈S

(

I [s]+λ‖Qs‖2
S

)

.

Since this is impossible, it follows thatQsλ = Qs′.

2. Let s′ = sλ + g with g as in item1. By straightforward computation we have thats′ is a
minimizer. It is left to show that the minimizers are only the functions written in the above
form. From item1 we have thatQg= 0. LetU be the measurable set

U = {x ∈ X |g(x) 6= 0} = {x ∈ X |s′(x) 6= sλ(x)}.

By contradiction, let us assume thatν(U) > 0 and, hence,ρ(U ×Y) > 0. Fix t ∈ ]0,1[ . since
V(y, ·) is strictly convex, for all(x,y) ∈U ×Y, one has that

V(y,(1− t)sλ(x)+ ts′(x)) < (1− t)V(y,sλ(x))+ tV(y,s′(x)).
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Therefore, by integration,
Z

U×Y
V(y,(1− t)sλ(x)+ ts′(x))dρ(x,y) <

< (1− t)
Z

U×Y
V(y,sλ(x))dρ(x,y)+ t

Z

U×Y
V(y,s′(x))dρ(x,y).

On the complement ofU ×Y, we haveV(y,sλ(x)) = V(y,s′(x)), so that

I [(1− t)sλ + ts′] < (1− t)I [sλ]+ tI [s′].

By the same line of reasoning of item1, one finds a contradiction. It follows thatν(U) = 0,
that is,g(x) = 0 for ν-almost allx ∈ X.

Two important examples of convex loss functions which are not strictly convex are the hinge
and theε-insensitive loss. The next proposition deals with the hinge loss though a similar result can
be also derived for theε-insensitive loss, see Burges and Crisp (2000). For the sake of simplicity
we develop our result in the discrete setting for the case of constant offset functions. In this case
uniqueness of the solution is expressed as a condition on the number of support vectors of the two
classes. Similar but a little bit more involved conditions can be found considering the continuous
setting.

Proposition 12 Let Y= {±1}, V(y,w) = |1−yw|+ andB = R. Let sλ be a solution of

min
s∈S

(

1
`

`

∑
i=1

V(yi ,s(xi))+λ‖Qs‖2
S

)

,

and define

I+ = {i |yi = 1, sλ(x) < 1} I− = {i |yi = −1, sλ(x) > −1}
B+ = {i |yi = 1, sλ(x1) = 1} B− = {i |yi = −1, sλ(x1) = −1}.

The solution is unique if and only if
#I+ 6= #I− +#B− (32)

and
#I− 6= #I+ +#B+, (33)

where# denotes set cardinality.

Proof Assume thats′ is another solution. From item1 of proposition 11, we have thatQsλ = Qs′

ands′ = sλ +b. Since both functions are minimizers, one concludes that

`

∑
i=1

|1−yis
λ(xi)|+ =

`

∑
i=1

|1−yis
′(xi)|+ (34)
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We notice that ifyw1 < 1 andyw2 > 1, then

V(y,(1− t)w1 + tw2) < (1− t)V(y,w1)+ tV(y,w2).

Reasoning as in the proof of the previous proposition, one has that, for all i ∈ I+∪ I−,

yis
′(xi) ≤ 1

and, for alli 6∈ (I+∪ I−∪B+∪B−)
yis

′(xi) ≥ 1.

Using the above two equations, it follows that equality (34) becomes

∑
i∈I+∪I−

(1−yis
λ(xi)) = ∑

i∈I+∪I−

(1−yis
′(xi))+ ∑

i∈B+∪B−

|−byi |+,

(if the index set is empty, we let the corresponding sum be equal to 0). Theabove equation is
equivalent to

∑
i∈I+∪I−

byi = ∑
i∈B+∪B−

|−byi |+,

that has a not trivial solution if and only if both the following conditions are true

1. if b > 0, then∑i∈I+∪I− yi = −∑B− yi (that is, Eq. (32) holds).

2. if b < 0, then∑i∈I+∪I− yi = ∑B+
yi (that is, Eq. (33) holds).

Now, if neither Eq. (32) nor Eq. (33) holds, thenb = 0 andsλ is unique. Conversely, assume for
example that Eq. (32) holds. It is simple to check that there isb > 0 such that for alli ∈ I+∪ I−,

yi(s
λ(xi)+b) ≤ 1

and, for alli 6∈ (I+∪ I−∪B+∪B−)
yi(s

λ(xi)+b) ≥ 1.

Finally, by direct computation one has that

I [sλ] = I [sλ +b].

If the solution is not unique, the solution family is parameterized assλ +b, whereb runs in a closed,
not necessarily bounded interval. However, if there is at least one example for each class,b lies in
the bounded interval[b−,b+] and one can easily show that

1. for the solution withb = b−, Eq. (32) holds;

2. for the solution withb = b+, Eq. (33) holds;

3. for the solution withb− < b < b+, both Eqs. (32) and (33) hold, from which it follows that
#I+ = #I− and #B+ = #B− = 0.
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7. Discrete Tikhonov Regularization

We now specialize our results to the case in which the probability measure is the empirical distri-
bution ρS andB is the space of constant functions (KB = 1) and discuss in detail Support Vector
Machines for classification.

We start by recalling that, from item 2 of Proposition 14 it follows that the left and right deriva-
tives ofV(y, ·) always exist and

(∂V)(y,w) = [V ′
−(y,w),V ′

+(y,w)].

Corollary 13 Let S = H +R and Q the projection on

{s∈ S | 〈s,1〉S = 0}.

Givenλ > 0, let fλ ∈ H and bλ ∈ R and define sλ = f λ +bλ ∈ S , then

( f λ,bλ) ∈ argmin
f∈H ,b∈R

{

1
`
∑

i

V(yi , f (xi)+b)+λ‖ f‖2
H

}

if and only if

sλ ∈ argmin
s∈S

{

1
`
∑

i

V(yi ,s(xi))+λ‖Qs‖2
H

}

f λ = Qsλ

if and only if there areα1, . . . ,α` ∈ R such that

f λ =
`

∑
i=1

αiKxi =
`

∑
i=1

αi(Kxi +1)

−1
2λ`

V ′
+(yi , f λ(xi)+bλ) ≤ αi ≤ −1

2λ`
V ′
−(yi , f λ(xi)+bλ)

`

∑
i=1

αi = 0

We notice two facts. First,αi can be zero only if 0∈ (∂V)(yi , f λ(xi)+bλ) – that is, only if f λ(xi)+
bλ is a minimizer ofV(yi , ·). Therefore, a necessary condition for obtaining sparsity is aplateauxin
the loss function. A quantitative discussion on this topic can be found in Steinwart (2003). Second
if V− andV+ are bounded by a constantM > 0, one has that|αi | ≤ 2λ`M – that is, a sufficient
conditions for box constraints on the coefficients.

In the rest of this section we consider Support Vector Machines for classification showing that
through our analysis the solution is completely characterized in the primal formulation.

A simple calculation for the hinge loss shows that

[V ′
−(y,w),V ′

+(y,w)] =







−y for yw< 1
[min{−y,0},max{0,−y}] for yw= 1
0 for yw> 1

. (35)

1385



DE V ITO, ROSASCO, CAPONNETTO, PIANA AND VERRI

To be consistent with the notation used in the literature, we letC = 1
2λ`

and factorize the labelsyi

from the coefficientsαi . Then, according to the above corollary, the solution of the SVM algorithm
is given by

sλ =
`

∑
i=1

αiyiKxi +bλ

where the set(α1, . . . ,α`,bλ) solves the following algebraic system of inequalities

0≤ αi ≤C if yi

(

`

∑
j=1

α jy jK(xi ,x j)+bλ

)

= 1

αi = 0 if yi

(

`

∑
j=1

α jy jK(xi ,x j)+bλ

)

> 1 (36)

αi = C if yi

(

`

∑
j=1

α jy jK(xi ,x j)+bλ

)

< 1

∑
i

αiyi = 0

Interestingly, the above inequalities, which fully characterize the supportvectors associated with the
solution, are usually obtained as the Kuhn-Tucker conditions of the dual QP optimization problem
(Vapnik, 1988).

Looking at Eqs.(35-36), it is immediate to see that the box constraints (0≤ αi ≤C) are due to
the linearity ofV(y f(x)) for y f(x) < 1, whereas sparsity (αi = 0) follows from the constancy of
V(y f(x)) for y f(x) > 1.

8. Conclusion

In this paper we study some properties of learning functionals derived from Tikhonov regulariza-
tion. We develop our analysis in a continuous setting and use tools from convex analysis in infinite
dimensional spaces to quantitatively characterize the explicit form of the regularized solution for
both regression and classification. We also address the case with and without the offset term within
the same unifying framework. We show that the presence of an offset term is equivalent to solving
a standard problem of regularization in a Reproducing Kernel Hilbert Space in which the penalty
term is given by a seminorm. Finally, we discuss issues of existence and uniqueness of the solution
and specialize our results to the discrete setting.

Current work aims at extending these results to vector-valued functions (Micchelli and Pontil,
2003) and exploring possible use of offset functions to incorporate invariances (Girosi and Chan,
1995).
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Appendix A. Convex Functions in Infinite Dimensional Spaces

The proof of Theorem 2 is based on the properties of convex functionsdefined on infinite dimen-
sional spaces. In particular, we use the notion of subgradient that extends the notion of derivative to
convex non-differentiable functions. In this appendix we collect the results we need. For details see
the book Ekeland and Turnbull (1983) and also Ekeland and Teman (1974).

Let H be a Banach space andH ∗ its dual. A functionF : H → R∪+∞ is convexif

F(tv+(1− t)w) ≤ tF(v)+(1− t)F(w),

for all v,w∈ H andt ∈ [0,1] (if the strict inequality holds fort ∈ (0,1), F is calledstrictly convex).
Let v0 ∈ H such thatF(v0) < +∞. Thesubgradientof F at pointv0 ∈ H is the subset ofH ∗

given by
∂F(v0) = {w∈ H ∗ |F(v) ≥ F(v0)+ 〈w,v−v0〉 , ∀v∈ H }. (37)

where〈·, ·〉 is the pairing betweenH ∗ andH . If F(v) = +∞, we let∂F(v0) = /0.
In the following proposition we summarize the main properties of the subgradient we need.

Proposition 14 The following facts hold:

1. If F is differentiable at v0, the subgradient reduces to the usual gradient F′(v0).

2. If F is defined onR and F(v0) < +∞, then F admits left and right derivative and

∂F(v0) = [F ′
−(v0),F

′
+(v0)].

3. Assume that F6= +∞. A point v0 is a minimizer of F if and only if0∈ ∂F(v0).

4. If F is continuous and
lim

‖v‖H →+∞
F(v) = +∞.

then F has a minimizer. If F is strictly convex, the minimizer is unique.

5. Let G be another convex function onH . Assume that there is v0 ∈ H such that F and G are
continuous and finite at v0. Let a,b≥ 0, then aF+bG is convex and, for all v∈ H ,

∂(aF +bG)(v) = a(∂F)(v)+b(∂G)(v).

6. Let H ′ be another Banach space andJ be a continuous linear operator fromH ′ into H .
Assume that there is v′0 ∈ H ′ such that F is continuous and finite atJ v′0. For all v′ ∈ H ′

(∂F ◦ J )(v′) = J ∗(∂F)(J v′),

whereJ ∗ : H ∗ → H ′∗ is the adjoint ofJ defined by
〈

v′,J ∗v
〉

H ′ =
〈

J v′,v
〉

H
.

for all v ∈ H and v′ ∈ H ′.
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Proof We simply give the references to the book of Ekeland and Turnbull (1983).

1. Prop. III.2.8

2. Prop. III.2.7

3. It is a simple consequence of Prop. III.3.1

4. It is a simple consequence of Prop. II.4.6.

5. Prop. III.2.13

6. Prop. III.2.12

We now recall the definition ofNemitskifunctional, adapted to our framework (Ekeland and Turn-
bull, 1983, p.143). LetZ be a locally compact second countable space,ρ be a finite measure onZ,
andW : Z×R → [0,+∞[ be a measurable function onZ×R such thatW(z, ·) is convex for allz∈ Z
(sinceW(z, ·) is convex onR, it is continuous).

Let p∈ [1,+∞ [ andLp(Z,ρ) be the Banach space of measurable functionsu : Z → R such that
R

Z |u(z)|pdρ(z) is finite.
TheNemitskifunctional associated withW is defined as the mapI0 : Lp(X,ν)→ [0,+∞[ ∪ {+∞}

given by

I0[u] =
Z

Z
W(z,u(z))dρ(z). (38)

Next proposition provides us with a straightforward method to study the subgradient(∂I0). Let
q∈]1,+∞] such that1p + 1

q = 1.

Proposition 15 Assume that there is an element u0 ∈ Lp(Z,ν) such thatsupz∈Z |u0(z)| < +∞ and
I0[u0] < +∞. Given u∈ Lp(Z,ρ)

(∂I0)(u) = {w∈ Lq(Z,ρ) | w(z) ∈ (∂W)(z,u(z)) ρ−a.e.}. (39)

Proof See the proof of Prop. III.5.3 of Ekeland and Turnbull (1983). The proof is for Z interval of
R, but can be easily extended to arbitraryZ, compare with Ekeland and Teman (1974).
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Abstract

The support vector machine (SVM) is a widely used tool for classification. Many efficient imple-
mentations exist for fitting a two-class SVM model. The user has to supply values for the tuning
parameters: the regularization cost parameter, and the kernel parameters. It seems a common prac-
tice is to use a default value for the cost parameter, often leading to the least restrictive model.
In this paper we argue that the choice of the cost parameter can be critical. We then derive an
algorithm that can fit the entire path of SVM solutions for every value of the cost parameter, with
essentially the same computational cost as fitting one SVM model. We illustrate our algorithm on
some examples, and use our representation to give further insight into the range of SVM solutions.

Keywords: support vector machines, regularization, coefficient path

1. Introduction

In this paper we study the support vector machine (SVM)(Vapnik, 1996;Scḧolkopf and Smola,
2001) for two-class classification. We have a set ofn training pairsxi ,yi , wherexi ∈R

p is ap-vector
of real-valued predictors (attributes) for theith observation, andyi ∈ {−1,+1} codes its binary
response. We start off with the simple case of a linear classifier, where our goal is to estimate a
linear decision function

f (x) = β0 +βTx, (1)

c©2004 Trevor Hastie, Saharon Rosset, Robert Tibshirani and Ji Zhu.
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Figure 1: A simple example shows the elements of a SVM model. The “+1” points are solid,
the “-1” hollow. C = 2, and the width of the soft margin is 2/||β|| = 2× 0.587. Two
hollow points{3,5} are misclassified, while the two solid points{10,12} are correctly
classified, but on the wrong side of their marginf (x) = +1; each of these hasξi > 0. The
three square shaped points{2,6,7} are exactly on the margin.

and its associated classifier
Class(x) = sign[ f (x)]. (2)

There are many ways to fit such a linear classifier, including linear regression, Fisher’s linear
discriminant analysis, and logistic regression (Hastie et al., 2001, Chapter4). If the training data
are linearly separable, an appealing approach is to ask for the decision boundary{x : f (x) = 0}
that maximizes the margin between the two classes (Vapnik, 1996). Solving such a problem is an
exercise in convex optimization; the popular setup is

min
β0,β

1
2
||β||2 subject to, for each i:yi(β0 +xT

i β) ≥ 1. (3)

A bit of linear algebra shows that1||β||(β0 + xT
i β) is the signed distance fromxi to the decision

boundary. When the data are not separable, this criterion is modified to

min
β0,β

1
2
||β||2 +C

n

∑
i=1

ξi , (4)

subject to, for eachi: yi(β0 +xT
i β) ≥ 1−ξi .
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Figure 2: The hinge loss penalizes observation marginsy f(x) less than+1 linearly, and is indiffer-
ent to margins greater than+1. The negative binomial log-likelihood (deviance) has the
same asymptotes, but operates in a smoother fashion near theelbowaty f(x) = 1.

Here theξi are non-negative slack variables that allow points to be on the wrong side of their “soft
margin” (f (x) = ±1), as well as the decision boundary, andC is a cost parameter that controls the
amount of overlap. Figure 1 shows a simple example. If the data are separable, then for sufficiently
largeC the solutions to (3) and (4) coincide. If the data are not separable, asC gets large the
solution approaches the minimum overlap solution with largest margin, which is attained for some
finite value ofC.

Alternatively, we can formulate the problem using aLoss+ Penaltycriterion (Wahba et al.,
2000; Hastie et al., 2001):

min
β0,β

n

∑
i=1

[1−yi(β0 +βTxi)]+ +
λ
2
||β||2. (5)

The regularization parameterλ in (5) corresponds to 1/C, with C in (4). Here thehinge loss
L(y, f (x)) = [1− y f(x)]+ can be compared to the negative binomial log-likelihoodL(y, f (x)) =
log[1+exp(−y f(x))] for estimating the linear functionf (x) = β0 +βTx; see Figure 2.

This formulation emphasizes the role of regularization. In many situations we have sufficient
variables (e.g. gene expression arrays) to guarantee separation. Wemay nevertheless avoid the
maximum margin separator (λ ↓ 0), which is governed by observations on the boundary, in favor of
a more regularized solution involving more observations.

This formulation also admits a class of more flexible, nonlinear generalizations

min
f∈H

n

∑
i=1

L(yi , f (xi))+λJ( f ), (6)

where f (x) is an arbitrary function in some Hilbert spaceH , andJ( f ) is a functional that measures
the “roughness” off in H .

The nonlinearkernelSVMs arise naturally in this context. In this casef (x) = β0 + g(x), and
J( f ) = J(g) is a norm in a Reproducing Kernel Hilbert Space of functionsHK generated by a
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Figure 3: Simulated data illustrate the need for regularization. The 200 data points are generated
from a pair of mixture densities. The two SVM models used radial kernels with the scale
and cost parameters as indicated at the top of the plots. The thick black curves are the
decision boundaries, the dotted curves the margins. The less regularizedfit on the right
overfits the training data, and suffers dramatically on test error. The broken purple curve
is the optimal Bayes decision boundary.

positive-definite kernelK(x,x′). By the well-studied properties of such spaces (Wahba, 1990; Ev-
geniou et al., 1999), the solution to (6) is finite dimensional (even ifHK is infinite dimensional), in
this case with a representationf (x) = β0 + ∑n

i=1 θiK(x,xi). Consequently (6) reduces to the finite
form

min
β0,θ

n

∑
i=1

L[yi ,β0 +
n

∑
j=1

θiK(xi ,x j)]+
λ
2

n

∑
j=1

n

∑
j ′=1

θ jθ j ′K(x j ,x
′
j). (7)

With L the hinge loss, this is an alternative route to the kernel SVM; see Hastie et al.(2001) for
more details.

It seems that the regularization parameterC (or λ) is often regarded as a genuine “nuisance”
in the community of SVM users. Software packages, such as the widely usedSVMlight (Joachims,
1999), provide default settings forC, which are then used without much further exploration. A
recent introductory document (Hsu et al., 2003) supporting theLIBSVM package does encourage
grid search forC.

Figure 3 shows the results of fitting two SVM models to the same simulated data set. The data
are generated from a pair of mixture densities, described in detail in Hastie et al. (2001, Chapter 2).1

The radial kernel functionK(x,x′) = exp(−γ||x−x′||2) was used, withγ = 1. The model on the left
is more regularized than that on the right (C = 2 vsC = 10,000, orλ = 0.5 vs λ = 0.0001), and

1. The actual training data and test distribution are available from
http:// www-stat.stanford.edu/ElemStatLearn.
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Figure 4: Test error curves for the mixture example, using four different values for the radial kernel
parameterγ. Small values ofC correspond to heavy regularization, large values ofC to
light regularization. Depending on the value ofγ, the optimalC can occur at either end of
the spectrum or anywhere in between, emphasizing the need for carefulselection.

performs much better on test data. For these examples we evaluate the test error by integration over
the lattice indicated in the plots.

Figure 4 shows the test error as a function ofC for these data, using four different values for the
kernel scale parameterγ. Here we see a dramatic range in the correct choice forC (or λ = 1/C);
whenγ = 5, the most regularized model is called for, and we will see in Section 6 that theSVM is
really performing kernel density classification. On the other hand, whenγ = 0.1, we would want to
choose among the least regularized models.

One of the reasons that investigators avoid extensive exploration ofC is the computational
cost involved. In this paper we develop an algorithm which fits theentire pathof SVM solu-
tions [β0(C),β(C)], for all possible values ofC, with essentially the computational cost of fitting a
single model for a particular value ofC. Our algorithm exploits the fact that the Lagrange multi-
pliers implicit in (4) are piecewise-linear inC. This also means that the coefficientsβ(C) are also
piecewise-linear inC. This is true for all SVM models, both linear and nonlinear kernel-based
SVMs. Figure 8 on page 1406 shows these Lagrange paths for the mixtureexample. This work
was inspired by the related “Least Angle Regression” (LAR) algorithm for fitting LASSO models
(Efron et al., 2004), where again the coefficient paths are piecewise linear.

These speedups have a big impact on the estimation of the accuracy of the classifier, using a
validation dataset (e.g. as in K-fold cross-validation). We can rapidly compute the fit for each test
data point for any and all values ofC, and hence the generalization error for the entire validation set
as a function ofC.

In the next section we develop our algorithm, and then demonstrate its capabilities on a number
of examples. Apart from offering dramatic computational savings when computing multiple solu-
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tions (Section 4.3), the nature of the path, in particular at the boundaries, sheds light on the action
of the kernel SVM (Section 6).

2. Problem Setup

We use a criterion equivalent to (4), implementing the formulation in (5):

min
β,β0

n

∑
i=1

ξi +
λ
2

βTβ (8)

subject to 1−yi f (xi) ≤ ξi ; ξi ≥ 0; f (x) = β0 +βTx.

Initially we consider only linear SVMs to get the intuitive flavor of our procedure; we then general-
ize to kernel SVMs.

We construct the Lagrange primal function

LP :
n

∑
i=1

ξi +
λ
2

βTβ+
n

∑
i=1

αi(1−yi f (xi)−ξi)−
n

∑
i=1

γiξi (9)

and set the derivatives to zero. This gives

∂
∂β

: β =
1
λ

n

∑
i=1

αiyixi , (10)

∂
∂β0

:
n

∑
i=1

yiαi = 0, (11)

∂
∂ξi

: αi = 1− γi , (12)

along with the KKT conditions

αi(1−yi f (xi)−ξi) = 0, (13)

γiξi = 0. (14)

We see that 0≤αi ≤ 1, withαi = 1 whenξi > 0 (which is whenyi f (xi) < 1). Also whenyi f (xi) > 1,
ξi = 0 since no cost is incurred, andαi = 0. Whenyi f (xi) = 1, αi can lie between 0 and 1.2

We wish to find the entire solution path for all values ofλ ≥ 0. The basic idea of our algorithm
is as follows. We start withλ large and decrease it toward zero, keeping track of all the events that
occur along the way. Asλ decreases,||β|| increases, and hence the width of the margin decreases
(see Figure 1). As this width decreases, points move from being inside to outside the margin. Their
correspondingαi change fromαi = 1 when they are inside the margin (yi f (xi) < 1) to αi = 0 when
they are outside the margin (yi f (xi) > 1). By continuity, points must linger on the margin (yi f (xi) =
1) while theirαi decrease from 1 to 0. We will see that theαi(λ) trajectories are piecewise-linear
in λ, which affords a great computational savings: as long as we can establish the break points, all

2. For readers more familiar with the traditional SVM formulation (4), we note that there is a simple connection be-
tween the corresponding Lagrange multipliers,α′

i = αi/λ = Cαi , and hence in that caseα′
i ∈ [0,C]. We prefer our

formulation here since ourαi ∈ [0,1], and this simplifies the definition of the paths we define.
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values in between can be found by simple linear interpolation. Note that points can return to the
margin, after having passed through it.

It is easy to show that if theαi(λ) are piecewise linear inλ, then bothα′
i(C) = Cαi(C) andβ(C)

are piecewise linear inC. It turns out thatβ0(C) is also piecewise linear inC. We will frequently
switch between these two representations.

We denote byI+ the set of indices corresponding toyi = +1 points, there beingn+ = |I+| in
total. Likewise forI− andn−. Our algorithm keeps track of the following sets (with names inspired
by the hinge loss function in Figure 2):

• E = {i : yi f (xi) = 1, 0≤ αi ≤ 1}, E for Elbow,

• L = {i : yi f (xi) < 1, αi = 1}, L for Left of the elbow,

• R = {i : yi f (xi) > 1, αi = 0}, R for Right of the elbow.

3. Initialization

We need to establish the initial state of the sets defined above. Whenλ is very large (∞), from (10)
β = 0, and the initial values ofβ0 and theαi depend on whethern− = n+ or not. If the classes are
balanced, one can directly find the initial configuration by finding the most extreme points in each
class. We will see that whenn− 6= n+, this is no longer the case, and in order to satisfy the constraint
(11), a quadratic programming algorithm is needed to obtain the initial configuration.

In fact, ourSvmPath algorithm can be started at any intermediate solution of the SVM optimiza-
tion problem (i.e. the solution for anyλ), since the values ofαi and f (xi) determine the setsL , E

andR . We will see in Section 6 that if there is no intercept in the model, the initialization is again
trivial, no matter whether the classes are balanced or not. We have prepared some MPEG movies
to illustrate the two special cases detailed below. The movies can be downloaded at the web site
http://www-stat.stanford.edu/∼hastie/Papers/svm/MOVIE/.

3.1 Initialization: n− = n+

Lemma 1 For λ sufficiently large, all theαi = 1. The initial β0 ∈ [−1,1] — any value gives the
same loss∑n

i=1 ξi = n+ +n−.

Proof Our proof relies on the criterion and the KKT conditions in Section 2. Sinceβ = 0, f (x) = β0.
To minimize∑n

i=1 ξi , we should clearly restrictβ0 to [−1,1]. Forβ0 ∈ (−1,1), all theξi > 0, γi = 0
in (12), and henceαi = 1. Picking one of the endpoints, sayβ0 = −1, causesαi = 1, i ∈ I+, and
hence alsoαi = 1, i ∈ I−, for (11) to hold.

We also have that for these early and large values ofλ

β =
1
λ

β∗ whereβ∗ =
n

∑
i=1

yixi . (15)

Now in order that (11) remain satisfied, we need that one or more positive and negative examples
hit the elbowsimultaneously. Hence asλ decreases, we require that∀i yi f (xi) ≤ 1 or

yi

[

β∗Txi

λ
+β0

]

≤ 1 (16)
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Figure 5: The initial paths of the coefficients in a small simulated dataset withn− = n+. We see
the zone of allowable values forβ0 shrinking toward a fixed point (20). The vertical lines
indicate the breakpoints in the piecewise linear coefficient paths.

or

β0 ≤ 1−
β∗Txi

λ
for all i ∈ I+ (17)

β0 ≥ −1−
β∗Txi

λ
for all i ∈ I−. (18)

Pick i+ = argmaxi∈I+ β∗Txi and i− = argmini∈I− β∗Txi (for simplicity we assume that these are
unique). Then at this point of entry and beyond for a while we haveαi+ = αi− , and f (xi+) = 1
and f (xi−) = −1. This gives us two equations to solve for the initial point of entryλ0 andβ0, with
solutions

λ0 =
β∗Txi+ −β∗Txi−

2
, (19)

β0 = −

(

β∗Txi+ +β∗Txi−

β∗Txi+ −β∗Txi−

)

. (20)

Figure 5 (left panel) shows a trajectory ofβ0(C) as a function ofC, for a small simulated data
set. These solutions were computed directly using a quadratic-programming algorithm, using a
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Figure 6: The initial paths of the coefficients in a case wheren− < n+. All the n− points are
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piecewise linearβ(C) paths. Note that theαi(C) arenot piecewise linear inC, but rather
in λ = 1/C.
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predefined grid of values forλ. The arbitrariness of the initial values is indicated by the zig-zag
nature of this path. The breakpoints were found using our exact-path algorithm.

3.2 Initialization: n+ > n−

In this case, whenβ = 0, the optimal choice forβ0 is 1, and the loss is∑n
i=1 ξi = n−. However, we

also require that (11) holds.

Lemma 2 With β∗(α) = ∑n
i=1yiαixi , let

{α∗
i } = argmin

α
||β∗(α)||2 (21)

s.t. αi ∈ [0,1] for i ∈ I+, αi = 1 for i ∈ I−, and∑i∈I+
αi = n− (22)

Then for someλ0 we have that for allλ > λ0, αi = α∗
i , andβ = β∗/λ, with β∗ = ∑n

i=1yiα∗
i xi .

Proof The Lagrange dual corresponding to (9) is obtained by substituting (10)–(12) into (9) (Hastie
et al., 2001, Equation 12.13):

LD =
n

∑
i=1

αi −
1
2λ

n

∑
i=1

n

∑
i′=1

αiαi′yiyi′xixi′ . (23)

Since we start withβ = 0, β0 = 1, all the I− points are misclassified, and hence we will have
αi = 1∀i ∈ I−, and hence from (11)∑n

i=1 αi = 2n−. This latter sum will remain 2n− for a while as
β grows away from zero. This means that during this phase, the first term inthe Lagrange dual is
constant; the second term is equal to− 1

2λ ||β
∗(α)||2, and since we maximize the dual, this proves

the result.

We now establish the “starting point”λ0 andβ0 when theαi start to change. Letβ∗ be the fixed
coefficient direction corresponding toα∗

i (as in (15)):

β∗ =
n

∑
i=1

α∗
i yixi . (24)

There are two possible scenarios:

1. There exist two or more elements inI+ with 0 < α∗
i < 1, or

2. α∗
i ∈ {0,1} ∀i ∈ I+.

Consider the first scenario (depicted in Figure 6), and supposeα∗
i+ ∈ (0,1) (on the margin). Let

i− = argmini∈I− β∗Txi . Then since the pointi+ remains on the margin until anI− point reaches its
margin, we can find

λ0 =
β∗Txi+ −β∗Txi−

2
, (25)

identical in form to to (19), as is the correspondingβ0 to (20).
For the second scenario, it is easy to see that we find ourselves in the samesituation as in

Section 3.1—a point fromI− and one of the points inI+ with α∗
i = 1 must reach the margin

simultaneously. Hence we get an analogous situation, except withi+ = argmaxi∈I 1
+

β∗Txi , where

I 1
+ is the subset ofI+ with α∗

i = 1.
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3.3 Kernels

The development so far has been in the original feature space, since it iseasier to visualize. It is
easy to see that the entire development carries through with “kernels” as well. In this casef (x) =
β0 +g(x), and the only change that occurs is that (10) is changed to

g(xi) =
1
λ

n

∑
j=1

α jy jK(xi ,x j), i = 1, . . . ,n, (26)

or θ j(λ) = α jy j/λ using the notation in (7).
Our initial conditions are defined in terms of expressionsβ∗Txi+ , for example, and again it is

easy to see that the relevant quantities are

g∗(xi+) =
n

∑
j=1

α∗
j y jK(xi+ ,x j), (27)

where theα∗
i are all 1 in Section 3.1, and defined by Lemma 2 in Section 3.2.

Hereafter we will develop our algorithm for this more general kernel case.

4. The Path

The algorithm hinges on the set of pointsE sitting at the elbow of the loss function — i.e on the
margin. These points haveyi f (xi) = 1 andαi ∈ [0,1]. These are distinct from the pointsR to the
right of the elbow, withyi f (xi) > 1 andαi = 0, and those pointsL to the left withyi f (xi) < 1 and
αi = 1. We consider this set at the point that an event has occurred. The event can be either:

1. The initial event, which means 2 or more points start at the elbow, with their initial values of
α ∈ [0,1].

2. A point fromL has just enteredE , with its value ofαi initially 1.

3. A point fromR has reenteredE , with its value ofαi initially 0.

4. One or more points inE has left the set, to join eitherR or L .

Whichever the case, for continuity reasons this set will stay stable until the next event occurs,
since to pass throughE , a point’sαi must change from 0 to 1 or vice versa. Since all points inE

haveyi f (xi) = 1, we can establish a path for theirαi .
Event 4 allows for the possibility thatE becomes empty whileL is not. If this occurs, then

the KKT condition (11) implies thatL is balanced w.r.t. +1s and -1s, and we resort to the initial
condition as in Section 3.1.

We use the subscript̀ to index the sets above immediately after the`th event has occurred.
Suppose|E`| = m, and letα`

i , β`
0 andλ` be the values of these parameters at the point of entry.

Likewise f ` is the function at this point. For convenience we defineα0 = λβ0, and henceα`
0 = λ`β`

0.
Since

f (x) =
1
λ

(

n

∑
j=1

y jα jK(x,x j)+α0

)

, (28)
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for λ` > λ > λ`+1 we can write

f (x) =

[

f (x)−
λ`

λ
f `(x)

]

+
λ`

λ
f `(x)

=
1
λ

[

∑
j∈E`

(α j −α`
j)y jK(x,x j)+(α0−α`

0)+λ` f `(x)

]

. (29)

The second line follows because all the observations inL` have theirαi = 1, and those inR` have
theirαi = 0, for this range ofλ. Since each of thempointsxi ∈ E` are to stay at the elbow, we have
that

1
λ

[

∑
j∈E`

(α j −α`
j)yiy jK(xi ,x j)+yi(α0−α`

0)+λ`

]

= 1, ∀i ∈ E`. (30)

Writing δ j = α`
j −α j , from (30) we have

∑
j∈E`

δ jyiy jK(xi ,x j)+yiδ0 = λ`−λ, ∀i ∈ E`. (31)

Furthermore, since at all times∑n
i=1yiαi = 0, we have that

∑
j∈E`

y jδ j = 0. (32)

Equations (31) and (32) constitutem+1 linear equations inm+1 unknownsδ j , and can be solved.
Denoting byK ∗

` them×m matrix with i j th entryyiy jK(xi ,x j) for i and j in E`, we have from
(31) that

K ∗
`δ+δ0y` = (λ`−λ)1, (33)

wherey` is themvector with entriesyi , i ∈ E`. From (32) we have

yT
` δ = 0. (34)

We can combine these two into one matrix equation as follows. Let

A` =

(

0 y`
T

y` K ∗
`

)

, δa =

(

δ0

δ

)

, and 1a =

(

0
1

)

, (35)

then (34) and (33) can be written
A`δa = (λ`−λ)1a. (36)

If A` has full rank, then we can write
ba = A`

−11a, (37)

and hence
α j = α`

j − (λ`−λ)b j , j ∈ {0}∪E`. (38)

Hence forλ`+1 < λ < λ`, theα j for points at the elbow proceedlinearly in λ. From (29) we have

f (x) =
λ`

λ

[

f `(x)−h`(x)
]

+h`(x), (39)
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where
h`(x) = ∑

j∈E`

y jb jK(x,x j)+b0. (40)

Thus the function itself changes in a piecewise-inverse manner inλ.
If A` does not have full rank, then the solution paths for some of theαi are not unique, and

more care has to be taken in solving the system (36). This occurs, for example, when two training
observations are identical (tied inx andy). Other degeneracies can occur, but rarely in practice, such
as three different points on the same margin inR

2. These issues and some of the related updating
and downdating schemes are an area we are currently researching, and will be reported elsewhere.

4.1 Finding λ`+1

The paths (38)–(39) continue until one of the following events occur:

1. One of theαi for i ∈ E` reaches a boundary (0 or 1). For eachi the value ofλ for which this
occurs is easily established from (38).

2. One of the points inL` or R ` attainsyi f (xi) = 1. From (39) this occurs for pointi at

λ = λ`

(

f `(xi)−h`(xi)

yi −h`(xi)

)

. (41)

By examining these conditions, we can establish the largestλ < λ` for which an event occurs, and
hence establishλ`+1 and update the sets.

One special case not addressed above is when the setE becomes empty during the course of the
algorithm. In this case, we revert to an initialization setup using the points inL . It must be the case
that these points have an equal number of +1’s as -1’s, and so we are inthe balanced situation as in
3.1.

By examining in detail the linear boundary in examples wherep = 2, we observed several
different types of behavior:

1. If |E | = 0, than asλ decreases, the orientation of the decision boundary stays fixed, but the
margin width narrows asλ decreases.

2. If |E | = 1 or |E | = 2, but with the pair of points of opposite classes, then the orientation
typically rotates as the margin width gets narrower.

3. If |E | = 2, with both points having the same class, then the orientation remains fixed, with
the one margin stuck on the two points as the decision boundary gets shrunk toward it.

4. If |E | ≥ 3, then the margins and hencef (x) remains fixed, as theαi(λ) change. This implies
thath` = f ` in (39).

4.2 Termination

In the separable case, we terminate whenL becomes empty. At this point, all theξi in (8) are zero,
and further movement increases the norm ofβ unnecessarily.

In the non-separable case,λ runs all the way down to zero. For this to happen withoutf
“blowing up” in (39), we must havef ` − h` = 0, and hence the boundary and margins remain
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fixed at a point where∑i ξi is as small as possible, and the margin is as wide as possible subject to
this constraint.

4.3 Computational Complexity

At any update event̀ along the path of our algorithm, the main computational burden is solving
the system of equations of sizem` = |E`|. While this normally involvesO(m3

`) computations, since
E`+1 differs from E` by typically one observation, inverse updating/downdating can reduce the
computations toO(m2

`). The computation ofh`(xi) in (40) requiresO(nm̀ ) computations. Beyond
that, several checks of costO(n) are needed to evaluate the next move.
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Figure 7: The elbow sizes|E`| as a function ofλ, for different values of the radial-kernel parameter
γ. The vertical lines show the positions used to compare the times withlibsvm.

We have explored using partitioned inverses for updating/downdating the solutions to the elbow
equations (for the nonsingular case), and our experiences are mixed.In our R implementations,
the computational savings appear negligible for the problems we have tackled, and after repeated
updating, rounding errors can cause drift. At the time of this publication, wein fact do not use
updating at all, and simply solve the system each time. We are currently exploring numerically
stable ways for managing these updates.

Although we have no hard results, our experience so far suggests thatthe total numberΛ of
moves isO(kmin(n+,n−)), for k around 4−6; hence typically some small multiplec of n. If the
average size ofE` is m, this suggests the total computational burden isO(cn2m+ nm2), which is
similar to that of a single SVM fit.

Our R functionSvmPath computes all 632 steps in the mixture example (n+ = n− = 100, radial
kernel,γ = 1) in 1.44(0.02) secs on a Pentium 4, 2Ghz Linux machine; thesvm function (using the
optimized codelibsvm, from the R librarye1071) takes 9.28(0.06) seconds to compute the solution
at 10 points along the path. Hence it takes our procedure about 50% moretime to compute the entire
path, than it costslibsvm to compute a typical single solution.
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We often wish to make predictions at new inputs. We can also do this efficiently for all values
of λ, because from (28) we see that (modulo 1/λ), these also change in a piecewise-linear fashion
in λ. Hence we can compute the entire fit path for a single inputx in O(n) calculations, plus an
additionalO(nq) operations to compute the kernel evaluations (assuming it costsO(q) operations
to computeK(x,xi)).

5. Examples

In this section we look at three examples, two synthetic and one real. We examine our running mix-
ture example in some more detail, and expose the nature of quadratic regularization in the kernel
feature space. We then simulate and examine a scaled-down version of thep� n problem—many
more inputs than samples. Despite the fact that perfect separation is possible with large margins, a
heavily regularized model is optimal in this case. Finally we fit SVM path models to some microar-
ray cancer data.

5.1 Mixture Simulation

In Figure 4 we show the test-error curves for a large number of values of λ, and four different values
for γ for the radial kernel. Theseλ` are in fact theentirecollection of change points as described
in Section 4. For example, for the second panel, withγ = 1, there are 623 change points. Figure 8
[upper plot] shows the paths of all theαi(λ), as well as [lower plot] a few individual examples. An
MPEG movie of the sequence of models can be downloaded from the first author’s website.

We were at first surprised to discover that not all these sequences achieved zero training errors
on the 200 training data points, at their least regularized fit. In fact the minimaltraining errors, and
the corresponding values forγ are summarized in Table 1. It is sometimes argued that the implicit

γ 5 1 0.5 0.1
Training Errors 0 12 21 33
Effective Rank 200 177 143 76

Table 1: The number of minimal training errors for different values of the radial kernel scale pa-
rameterγ, for the mixture simulation example. Also shown is the effective rank of the
200×200 Gram matrixK γ.

feature space is “infinite dimensional” for this kernel, which suggests that perfect separation is
always possible. The last row of the table shows the effective rank of the kernelGram matrix K
(which we defined to be the number of singular values greater than 10−12). This 200×200 matrix
has elementsK i, j = K(xi ,x j), i, j = 1, . . . ,n. In general a full rankK is required to achieve perfect
separation. Similar observations have appeared in the literature (Bach and Jordan, 2002; Williams
and Seeger, 2000).

This emphasizes the fact that not all features in the feature map implied byK are of equal
stature; many of them are shrunk way down to zero. Alternatively, the regularization in (6) and (7)
penalizes unit-norm features by the inverse of their eigenvalues, which effectively annihilates some,
depending onγ. Smallγ implies wide, flat kernels, and a suppression of wiggly, “rough” functions.
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Figure 8: [Upper plot] The entire collection of piece-wise linear pathsαi(λ), i = 1, . . . ,N, for the
mixture example. Note:λ is plotted on the log-scale. [Lower plot] Paths for 5 selected
observations;λ is not on the log scale.
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Writing (7) in matrix form,

min
β0,θ

L[y,Kθ]+
λ
2

θTKθ, (42)

we reparametrize using the eigen-decomposition ofK = UDUT . Let Kθ = Uθ∗ whereθ∗ = DUTθ.
Then (42) becomes

min
β0,θ∗

L[y,Uθ∗]+
λ
2

θ∗TD−1θ∗. (43)

Now the columns ofU are unit-norm basis functions (inR2) spanning the column space ofK ;
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Figure 9: The eigenvalues (on the log scale) for the kernel matricesK γ corresponding to the four
values ofγ as in Figure 4. The larger eigenvalues correspond in this case to smoother
eigenfunctions, the small ones to rougher. The rougher eigenfunctionsget penalized ex-
ponentially more than the smoother ones. For smaller values ofγ, the effective dimension
of the space is truncated.

from (43) we see that those members corresponding to near-zero eigenvalues (the elements of the
diagonal matrixD) get heavily penalized and hence ignored. Figure 9 shows the elements ofD for
the four values ofγ. See Hastie et al. (2001, Chapter 5) for more details.

5.2 p�n Simulation

The SVM is popular in situations where the number of features exceeds the number of observations.
Gene expression arrays are a leading example, where a typical datasethasp> 10,000 whilen< 100.
Here one typically fits a linear classifier, and since it is easy to separate the data, the optimal marginal
classifier is thede factochoice. We argue here that regularization can play an important role for these
kinds of data.
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We mimic a simulation found in Marron (2003). We havep = 50 andn = 40, with a 20-20 split
of “+” and “-” class members. Thexi j are all iid realizations from aN(0,1) distribution, except for
the first coordinate, which has mean +2 and -2 in the respective classes.3 The Bayes classifier in
this case uses only the first coordinate ofx, with a threshold at 0. The Bayes risk is 0.012. Figure 10
summarizes the experiment. We see that the most regularized models do the besthere, not the
maximal margin classifier.

Although the most regularized linear SVM is the best in this example, we notice a disturbing
aspect of its endpoint behavior in the top-right plot. Althoughβ is determined by all the points, the
thresholdβ0 is determined by the two most extreme points in the two classes (see Section 3.1). This
can lead to irregular behavior, and indeed in some realizations from this model this was the case. For
values ofλ larger than the initial valueλ1, we saw in Section 3 that the endpoint behavior depends
on whether the classes are balanced or not. In either case, asλ increases, the error converges to the
estimated null error ratenmin/n.

This same objection is often made at the other extreme of the optimal margin; however, it typi-
cally involves more support points (19 points on the margin here), and tendsto be more stable (but
still no good in this case). For solutions in the interior of the regularization path, these objections
no longer hold. Here the regularization forces more points to overlap the margin (support points),
and hence determine its orientation.

Included in the figures are regularized linear discriminant analysis and logistic regression mod-
els (using the sameλ` sequence as the SVM). Both show similar behavior to the regularized SVM,
having the most regularized solutions perform the best. Logistic regression can be seen to assign
weightspi(1− pi) to observations in the fitting of its coefficientsβ andβ0, where

pi =
1

1+e−β0−βTxi
(44)

is the estimated probability of+1 occurring atxi (Hastie and Tibshirani, 1990, e.g.).

• Since the decision boundary corresponds top(x) = 0.5, these weights can be seen to die down
in a quadratic fashion from 1/4, as we move away from the boundary.

• The rate at which the weights die down with distance from the boundary depends on||β||; the
smaller this norm, the slower the rate.

It can be shown, for separated classes, that the limiting solution (λ ↓ 0) for the regularized
logistic regression model is identical to the SVM solution: the maximal margin separator (Rosset
et al., 2003).

Not surprisingly, given the similarities in their loss functions (Figure 2), bothregularized SVMs
and logistic regression involve more or less observations in determining their solutions, depending
on the amount of regularization. This “involvement” is achieved in a smoother fashion by logistic
regression.

5.3 Microarray Classification

We illustrate our algorithm on a large cancer expression data set (Ramaswamy et al., 2001). There
are 144 training tumor samples and 54 test tumor samples, spanning 14 common tumor classes that

3. Here we have one important feature; the remaining 49 are noise. With expression arrays, the important features
typically occur in groups, but the total numberp is much larger.
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Figure 10: p� n simulation. [Top Left] The training data projected onto the space spanned bythe
(known) optimal coordinate 1, and the optimal margin coefficient vector found by a non-
regularized SVM. We see the large gap in the margin, while the Bayes-optimal classifier
(vertical red line) is actuallyexpectedto make a small number of errors. [Top Right] The
same as the left panel, except we now project onto the most regularized SVM coefficient
vector. This solution is closer to the Bayes-optimal solution. [Lower Left] The angles
between the Bayes-optimal direction, and the directions found by the SVM (S) along the
regularized path. Included in the figure are the corresponding coefficients for regularized
LDA (R)(Hastie et al., 2001, Chapter 4) and regularized logistic regression (L)(Zhu
and Hastie, 2004), using the same quadratic penalties. [Lower Right] The test errors
corresponding to the three paths. The horizontal line is the estimated Bayes rule using
only the first coordinate.
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account for 80% of new cancer diagnoses in the U.S.A. There are 16,063genes for each sample.
Hencep = 16,063 andn = 144. We denote the number of classes byK = 14. A goal is to build a
classifier for predicting the cancer class of a new sample, given its expression values.

We used a common approach for extending the SVM from two-class to multi-class classifica-
tion:

1. Fit K different SVM models, each one classifying a single cancer class (+1) versus the rest
(-1).

2. Let [ f λ
1 (x), . . . , f λ

K(x)] be the vector of evaluations of the fitted functions (with parameterλ) at
a test observationx.

3. ClassifyCλ(x) = argmaxk f λ
k (x).

Other, more direct, multi-class generalizations exist (Rosset et al., 2003; Weston and Watkins,
1998); although exact path algorithms are possible here too, we were ableto implement our ap-
proach most easily with the “one vs all” strategy above. Figure 11 shows theresults of fitting
this family of SVM models. Shown are the training error, test error, as well as 8-fold balanced
cross-validation.4 The training error is zero everywhere, but both the test and CV error increase
sharply when the model is too regularized. The right plot shows similar results using quadratically
regularized multinomial regression (Zhu and Hastie, 2004).

Although the least regularized SVM and multinomial models do the best, this is still not very
good. With fourteen classes, this is a tough classification problem.

It is worth noting that:

• The 14 different classification problems are very “lop-sided”; in many cases 8 observations
in one class vs the 136 others. This tends to produce solutions with all membersof the small
class on the boundary, a somewhat unnatural situation.

• For both the SVM and the quadratically regularized multinomial regression, one can reduce
the logistics by pre-transforming the data. IfX is then× p data matrix, withp � n, let its
singular-value decomposition beUDVT . We can replaceX by then×n matrixXV = UD = R
and obtain identical results (Hastie and Tibshirani, 2003). The same transformationV is
applied to the test data. This transformation is applied once upfront, and the transformed data
is used in all subsequent analyses (i.e. K-fold cross-validation as well).

6. No Intercept and Kernel Density Classification

Here we consider a simplification of the models (6) and (7) where we leave out the intercept term
β0. It is easy to show that the solution forg(x) has the identical form as in (26):

g(x) =
1
λ

n

∑
j=1

α jy jK(x,x j). (45)

However, f (x) = g(x) (or f (x) = βTx in the linear case), and we lose the constraint (11) due to the
intercept term.

This also adds considerable simplification to our algorithm, in particular the initial conditions.

4. By balanced we mean the 14 cancer classes were represented equally in each of the folds; 8 folds were used to
accommodate this balance, since the class sizes in the training set were multiples of 8.
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Figure 11: Misclassification rates for cancer classification by gene expression measurements. The
left panel shows the the training (lower green), cross-validation (middle black, with
standard errors) and test error (upper blue) curves for the entire SVM path. Although the
CV and test error curves appear to have quite different levels, the region of interesting
behavior is the same (with a curious dip at aboutλ = 3000). Seeing the entire path
leaves no guesswork as to where the region of interest might be. The right panel shows
the same for the regularized multiple logistic regression model. Here we do not have an
exact path algorithm, so a grid of 15 values ofλ is used (on a log scale).

• It is easy to see that initiallyαi = 1∀i, since f (x) is close to zero for largeλ, and hence all
points are inL . This is true whether or notn− = n+, unlike the situation when an intercept is
present (Section 3.2).

• With f ∗(x) = ∑n
j=1y jK(x,x j), the first element ofE is i∗ = argmaxi | f ∗(xi)|, with λ1 =

| f ∗(xi∗)|. Forλ ∈ [λ1,∞), f (x) = f ∗(x)/λ.

• The linear equations that govern the points inE are similar to (33):

K ∗
`δ = (λ`−λ)1, (46)

We now show that in the most regularized case, these no-intercept kernel models are actually
performing kernel density classification. Initially, forλ > λ1, we classify to class +1 iff ∗(x)/λ > 0,
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else to class -1. But

f ∗(x) = ∑
j∈I+

K(x,x j)− ∑
j∈I−

K(x,x j)

= n·

(

n+

n
·

1
n+

∑
j∈I+

K(x,x j)−
n−
n

·
1

n−
∑
j∈I−

K(x,x j)

)

(47)

∝ π+h+(x)−π−h−(x). (48)

In other words, this is the estimated Bayes decision rule, withh+ the kernel density (Parzen window)
estimate for the + class,π+ the sample prior, and likewise forh−(x) andπ−. A similar observation
is made in Scḧolkopf and Smola (2001), for the model with intercept. So at this end of the regular-
ization scale, the kernel parameterγ plays a crucial role, as it does in kernel density classification.
As γ increases, the behavior of the classifier approaches that of the 1-nearest neighbor classifier. For
very smallγ, or in fact a linear kernel, this amounts to closest centroid classification.

As λ is relaxed, theαi(λ) will change, giving ultimately zero weight to points well within their
own class, and sharing the weights among points near the decision boundary. In the context of
nearest neighbor classification, this has the flavor of “editing”, a way ofthinning out the training set
retaining only those prototypes essential for classification (Ripley, 1996).

All these interpretations get blurred when the interceptβ0 is present in the model.
For the radial kernel, a constant term is included in span{K(x,xi)}

n
1, so it is not strictly necessary

to include one in the model. However, it will get regularized (shrunk towardzero) along with all
the other coefficients, which is usually why these intercept terms are separated out and freed from
regularization. Adding a constantb2 to K(·, ·) will reduce the amount of shrinking on the intercept
(since the amount of shrinking of an eigenfunction ofK is inversely proportional to its eigenvalue;
see Section 5). For the linear SVM, we can augment thexi vectors with a constant elementb, and
then fit the no-intercept model. The largerb, the closer the solution will be to that of the linear SVM
with intercept.

7. Discussion

Our work on the SVM path algorithm was inspired by earlier work on exact path algorithms in
other settings. “Least Angle Regression” (Efron et al., 2002) shows that the coefficient path for
the sequence of “lasso” coefficients (Tibshirani, 1996) is piecewise linear. The lasso solves the
following regularized linear regression problem,

min
β0,β

n

∑
i=1

(yi −β0−xT
i β)2 +λ|β|, (49)

where|β| = ∑p
j=1 |β j | is theL1 norm of the coefficient vector. ThisL1 constraint delivers a sparse

solution vectorβλ; the largerλ, the more elements ofβλ are zero, the remainder shrunk toward zero.
In fact, any model with anL1 constraint and a quadratic, piecewise quadratic, piecewise linear, or
mixed quadratic and linear loss function, will have piecewise linear coefficient paths, which can be
calculated exactly and efficiently for all values ofλ (Rosset and Zhu, 2003). These models include,
among others,

• A robust version of the lasso, using a “Huberized” loss function.
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• TheL1 constrained support vector machine (Zhu et al., 2003).

The SVM model has a quadratic constraint and a piecewise linear (“hinge”) loss function. This
leads to a piecewise linear path in the dual space, hence the Lagrange coefficientsαi are piecewise
linear.

Other models that would share this property include

• Theε-insensitive SVM regression model

• Quadratically regularizedL1 regression, including flexible models based on kernels or smooth-
ing splines.

Of course, quadratic criterion + quadratic constraints also lead to exact path solutions, as in the
classic case of ridge regression, since a closed form solution is obtainedvia the SVD. However,
these paths are nonlinear in the regularization parameter.

For general non-quadratic loss functions andL1 constraints, the solution paths are typically
piecewise non-linear. Logistic regression is a leading example. In this case, approximate path-
following algorithms are possible (Rosset, 2005).

The general techniques employed in this paper are known as parametric programming via active
sets in the convex optimization literature (Allgower and Georg, 1992). The closest we have seen to
our work in the literature employ similar techniques in incremental learning for SVMs (Fine and
Scheinberg, 2002; Cauwenberghs and Poggio, 2001; DeCoste and Wagstaff, 2000). These authors
do not, however, construct exact paths as we do, but rather focus on updating and downdating the
solutions as more (or less) data arises. Diehl and Cauwenberghs (2003) allow for updating the
parameters as well, but again do not construct entire solution paths. The work of Pontil and Verri
(1998) recently came to our notice, who also observed that the lagrange multipliers for the margin
vectors change in a piece-wise linear fashion, while the others remain constant.

TheSvmPath has been implemented in theR computing environment (contributed librarysvmpath
at CRAN), and is available from the first author’s website.
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Abstract
This paper addresses the issue of feature selection for linear classifiers given the moments of the
class conditional densities. The problem is posed as findinga minimal set of features such that
the resulting classifier has a low misclassification error. Using a bound on the misclassification
error involving the mean and covariance of class conditional densities and minimizing anL1 norm
as an approximate criterion for feature selection, a secondorder programming formulation is de-
rived. To handle errors in estimation of mean and covariances, a tractable robust formulation is also
discussed. In a slightly different setting the Fisher discriminant is derived. Feature selection for
Fisher discriminant is also discussed. Experimental results on synthetic data sets and on real life
microarray data show that the proposed formulations are competitive with the state of the art linear
programming formulation.

1. Introduction

The choice of useful features for discriminating between two classes is animportant problem and
has many applications. This paper addresses the issue of constructing linear classifiers using a small
number of features when data is summarized by its moments.

A linear two-class classifier is a function defined as

f (x) = sgn(w>x−b). (1)

The classifier outputs 1 if the observationx ∈ R
n falls in the halfspace{x|w>x > b}, otherwise it

outputs−1. During training, the parameters,{w,b}, of the discriminating hyperplanew>x = b are
computed from a specified data setD = {(xi ,yi)|xi ∈ R

n,yi = {1,−1}, i = 1, . . . ,m}.
Finding useful features for linear classifiers is equivalent to searching for a w, such that most

elements ofw are zero. This can be understood as when theith component ofw is zero, then by (1)
the ith component of the observation vectorx is irrelevant in deciding the class ofx. Using theL0

norm ofw, defined as
‖w‖0 = |S| S= {i|wi 6= 0},

the problem of feature selection can be posed as a combinatorial optimization problem:

minimize
w,b

‖w‖0,

subject to yi
(

w>xi −b
)

≥ 1, ∀1≤ i ≤ m.
(2)

The constraints ensure that the classifier correctly assigns labels to all training data points. Due to
the unwieldy objective the formulation is intractable for largen (Amaldi and Kann, 1998). A heuris-
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tic tractable approximation to the proposed objective is to minimize theL1 norm ofw. For a discus-
sion of this issue see Chen et al. (1999), and for other approximations toL0 norm see Weston et al.
(2003). In the sequel, we will enforce the feature selection criterion by minimizing theL1 norm.

Let X1 andX2 denoten dimensional random vectors belonging to class 1 and class 2 respec-
tively. Without loss of generality assume that class 1 is identified with the labely = 1, while class
2 is identified with labely = −1. Let the mean and covariance ofX1 be µ1 ∈ R

n andΣ1 ∈ R
n×n

respectively. Similarly forX2 the mean and covariance beµ2 ∈R
n andΣ2 ∈R

n×n respectively. Note
that Σ1 andΣ2 are positive semidefinite symmetric matrices. In this paper we wish to address the
problem of feature selection for linear classifiers givenµ1,µ2,Σ1 andΣ2.

Lanckriet et al. (2002a,b) addressed the problem of classification given µ1, µ2, Σ1 andΣ2 in a
minimax setting. In their approach, a Chebychev inequality is used to bound theerror of misclas-
sification. We wish to use the same inequality along with theL1 norm minimization criterion for
feature selection. This leads to a Second Order Cone Programming problem(SOCP). SOCPs are a
special class of nonlinear convex optimization problems, which can be efficiently solved by interior
point codes (Lobo et al., 1998). We also investigate a tractable robust formulation, which takes into
account errors in estimating the moments.

The paper is organized as follows. In Section 2 the linear programming approach is discussed.
The main contributions are in Section 3 and Section 4. The Chebychev boundand the feature
selection criterion leads to a SOCP. The Fisher discriminant is also rederived using the Chebychev
bound. We also discuss feature selection for the Fisher discriminant. A robust formulation is dis-
cussed in Section 4. Experimental results for these formulations are shownin Section 5. The
concluding section summarizes the main contributions and future directions.

2. Linear Programming Formulation for Feature Selection

The problem of finding a{w,b}, so that the hyperplanew>x = b discriminates well between two
classes and also selects a small number of features, can be posed by the following optimization
problem.

minimize
w,b

‖w‖1,

subject to yi
(

w>xi −b
)

≥ 1, ∀1≤ i ≤ m.
(3)

At optimality it is hoped that most of the elements of the weight vectorw are zero. The above
formulation can be posed as a Linear Programming (LP) problem by introducing two vectors in the
following way.

w = u−v; ‖w‖1 = (u+v)>e; u ≥ 0, v ≥ 0. (4)

This makes the nonlinear objective linear (see Fletcher, 1989) and the optimization problem can be
posed as the following LP.

minimize
u,v,b

(u+v)>e,

subject to yi
(

(u−v)>xi −b
)

≥ 1 ∀1≤ i ≤ m,

u ≥ 0, v ≥ 0.

(5)

The computational advantages of solving LPs make the above formulation extremely attractive.
In the next section we discuss the problem of feature selection when data issummarized by the
moments.
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3. Feature Selection Using Moments

Let the data for each class be specified by the first two moments, the mean andcovariance. The
problem of feature selection, given the moments, is approached in a worstcase setting by using
a multivariate generalization of Chebychev-Cantelli inequality. The inequalityis used to derive a
SOCP, which yields a classifier using a very small number of features.

The following multivariate generalization of Chebychev-Cantelli inequality willbe used in the
sequel to derive a lower bound on the probability of a random vector taking values in a given half
space.

Theorem 1 LetX be a n dimensional random vector. The mean and covariance ofX be µ∈R
n and

Σ ∈ R
n×n. LetH (w,b) = {z|w>z < b,w,z ∈ R

n,b∈ R} be a given half space, withw 6= 0. Then

P(X ∈ H ) ≥ s2

s2 +w>Σw
(6)

where s= (b−w>µ)+, (x)+ = max(x,0).

For proof see Appendix A.
The theorem says that the probability of the event that an observation drawn fromX takes values

in the halfspaceH , can be bounded usingµ andΣ. Let X1 ∼ (µ1,Σ1) denote a class of distributions
that have meanµ1, and covarianceΣ1, but are otherwise arbitrary; likewise for class 2,X2 ∼ (µ2,Σ2).
The discriminating hyperplane tries to place class 1 in the half spaceH1(w,b) = {x|wTx > b} and
class 2 in the other half spaceH2(w,b) = {x|wTx < b}. To ensure this, one has to find{w,b} such
thatP(X1 ∈ H1) andP(X2 ∈ H2) are both high. Lanckriet et al. (2002a,b) considers this problem
and solves it in a minimax setting.

In this paper we consider the problem of feature selection. As remarked before, feature selection
can be enforced by minimizing theL1 norm ofw. To this end, consider the following problem

min
w,b

‖w‖1,

s.t Prob(X1 ∈ H1) ≥ η,

Prob(X2 ∈ H2) ≥ η,

X1 ∼ (µ1,Σ1), X2 ∼ (µ2,Σ2). (7)

In most cases the objective yields a sparsew. The two constraints state that the probability of
belonging to the proper half space should be atleast more than a user defined parameterη. The
parameterη takes values in(0,1). Higher the value ofη, more stringent is the requirement that all
points belong to the correct half space.

The problem (7) has two constraints, one for each class, which states that the probability of a
random vector taking values in a given half space is lower-bounded byη. These constraints can be
posed as nonlinear constraints by applying theorem 1 (see Lanckriet etal., 2002b). The constraint
for class 1 can be handled by setting

Prob(X1 ∈ H1) ≥
(wTµ1−b)2

+

(wTµ1−b)2
+ +wTΣw

≥ η,
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which yield two constraints

w>µ1−b≥
√

η
1−η

√

wTΣ1w; w>µ1−b≥ 0.

Similarly applying theorem 1 to the other constraint, two more constraints are obtained. Note that
the constraints are positively homogenous, that is, ifw,b satisfies the constraints then acw,cb also
satisfies the constraints wherec is any positive number. To deal with this extra degree of freedom
one can require that the classifier should separateµ1 andµ2 even ifη = 0. One way to impose this
requirement is via the constraint

wTµ1−b≥ 1, b−wTµ2 ≥ 1.

As both the matricesΣ1 andΣ2 are positive semi-definite, there exist matricesC1 andC2 such that

Σ1 = C1C>
1 , Σ2 = C2C>

2 .

The problem (7) can now be stated as a deterministic optimization problem

min
w,b

‖w‖1,

s.t w>µ1−b≥
√

η
1−η‖C>

1 w‖2,

b−w>µ2 ≥
√

η
1−η‖C>

2 w‖2,

wTµ1−b≥ 1,

b−wTµ2 ≥ 1.

The nonlinear objective can be tackled, as in (4), by introducing two vectors u andv, which leads
to the formulation

min
u,v,b

(u+v)>e,

s.t (u−v)>µ1−b≥
√

η
1−η‖C>

1 (u−v)‖2,

b− (u−v)>µ2 ≥
√

η
1−η‖C>

2 (u−v)‖2,

(u−v)>µ1−b≥ 1,

b− (u−v)>µ2 ≥ 1,

u ≥ 0,v ≥ 0. (8)

This problem is convex, and is an instance of SOCP. The nonlinear constraints are called Second
Order Cone(SOC) constraints. A SOC constraint on the variablex ∈ R

n is of the form

c>x+d ≥ ‖Ax+b‖2,

whereb ∈ R
m,c ∈ R

n,A ∈ R
m×n are given. Minimizing a linear objective over SOC constraints is

known as SOCP problems. Recent advances in interior point methods for convex nonlinear opti-
mization (Nesterov and Nemirovskii, 1993) have made such problems feasible. As a special case of
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convex nonlinear optimization SOCPs have gained much attention in recent times.For a discussion
of efficient algorithms and applications of SOCP see Lobo et al. (1998).

On the training data set, the error rate of the classifier is upper bounded by 1−η. This upper
bound also holds for the generalization error (Lanckriet et al., 2002b)if the test data comes from a
distribution having the same mean and covariance as the training data. Asη is increased, the data
is forced to lie on the correct side of the hyperplane with more probability. This should result in a
smaller training error. Again with increasingη, sparseness would decrease, as more stress is given
to accuracy. Thus the parameterη trades off accuracy with sparseness.

3.1 Feature Selection for Fisher Discriminants

In this section we derive the Fisher discriminant using the Chebychev bound and discuss a formula-
tion for feature selection. For a linearly separable dataset, one can find{w,b} so that all observations
belonging to class 1(class 2) obeyw>x1 ≥ b (w>x2 ≤ b), which impliesw>X1 ≥ b(w>X2 ≤ b). If
X = X1−X2 defines the difference between the class conditional random vectors, then X lies in
the halfspaceH (w) = {z|w>z ≥ 0}. One can derive the Fisher discriminant by considering the
following formulation

max
w,η

η

s.t Prob(X ∈ H ) ≥ η, X ∼ (µ,Σ). (9)

As X1 andX2 are independent the mean ofX is µ= µ1−µ2 and covarianceΣ = Σ1 +Σ2. Using the
Chebychev bound (6) the constraint can be lower bounded by

Prob(X ∈ H ) ≥ (w>µ)2

(w>µ)2 +w>Σw
; w>µ≥ 0,

and hence it follows that (9) is equivalent to solving

max
w

{w>(µ1−µ2)}2

w>(Σ1 +Σ2)w
, (10)

which is same as the Fisher discriminant. The above formulation shows that Fisher discriminant
can be understood as computing a discriminant hyperplane whose generalization error is less than
1−η∗, where

η∗ =
d(w∗)

1+d(w∗)
; d(w∗) = max

w

{w>(µ1−µ2)}2

w>(Σ1 +Σ2)w
.

The bound holds provided the data distribution has the neccessary first and second moments. One
can incorporate feature selection by minimizing theL1 norm ofw for a fixed value ofη as follows

min
w,b

‖w‖1

s.t Prob(X ∈ H ) ≥ η, X ∼ (µ1−µ2,Σ1 +Σ2)

(11)
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and arguing as in (8) the following SOCP

min
w,b

‖w‖1,

s.t w>(µ1−µ2) ≥
√

1−η
η

√

w>(Σ1 +Σ2)w,

w>(µ1−µ2) ≥ 1, (12)

is obtained. The parameterη ensures that the resulting classifier has a misclassification error less
than 1−η, while feature selection is ensured by the objective.

3.2 Estimation of Mean and Covariance for Each Class

Let T1 = [x11, . . . ,x1m1] be the data matrix for one class, say with labely = 1. Similarly T2 =
[x21, . . . ,x2m2] be the data matrix for the other class having the labely=−1. Both the matrices have
the same number of rows,n, the number of features. The columns correspond to data points;m1 data
points for the first class andm2 data points for the other class. For microarray data sets the number
of features,n, is in thousands, while the number of examples,m1 or m2, is less than hundred.

In the present formulation, empirical estimates of the mean and covariance are used

µ1 = x1 =
1

m1
T1e, µ2 = x2 =

1
m2

T2e;

Σ1 = Σ1 = C1CT
1 , C1 =

1√
m1

(T1−µ1e>);

Σ2 = Σ2 = C2CT
2 , C2 =

1√
m2

(T2−µ2e>).

Note that the covariances are huge matrices (of sizen×n). Instead of storing such huge matrices one
can store the much smaller matricesC1 andC2 of sizen×m1 andn×m2 respectively. The resulting
classifier is heavily dependent on the estimates of the mean and covariance.In the next section, we
will discuss classifiers which are robust to errors in the estimation of mean and covariance.

4. A Robust Formulation

In practical cases it might happen that the error rate of the classifiers is well above 1−η. As pointed
out by Lanckriet et al. (2002b), this problem often occurs when the training data set has very few
data-points compared to the number of features, for example, microarray data sets. In such cases the
estimates of mean and covariance are not very accurate. It will be useful, especially for microarray
data sets, to explore formulations which can yield classifiers robust to suchestimation errors. In the
following, we discuss one such formulation.

We assume that the means and covariances take values in a specified set, in particular(µ1,Σ1) ∈
U1 whereU1 ⊂ R

n ×S+
n and S+

n is the set of all positive semidefiniten× n matrices. Similarly
another setU2 is defined which characterizes the values of(µ2,Σ2). Consider the robust version of
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formulation (7),

min
w,b

‖w‖1,

s.t Prob(X1 ∈ H1) ≥ η,

Prob(X2 ∈ H2) ≥ η,

X1 ∼ (µ1,Σ1) X2 ∼ (µ2,Σ2),

(µ1,Σ1) ∈U1, (µ2,Σ2) ∈U2. (13)

It ensures that the misclassification rate of the classifier is always less than1−η, for any arbitrary
distribution whose means and covariances take values in some specified sets.

The tractability of this formulation depends on the definition of the setsU1 andU2. We assume
that the sets describing the values of means and covariances are independent of one another, more
preciselyUm1,Um2,Uv1 andUv2 describe the uncertainty in the values ofµ1,µ2,Σ1 andΣ2 respec-
tively. As before, applying the Chebychev bound and with a reformulationof (8) the following
robust version

minw,b,t1,t2 ‖w‖1

s.t. w>µ1−b≥ t1 ∀µ1 ∈Um1,

b−w>µ2 ≥ t2 ∀µ2 ∈Um2,
√

w>Σ1w ≤
√

1−η
η t1 ∀Σ1 ∈Uv1,

√

w>Σ2w ≤
√

1−η
η t2 ∀Σ2 ∈Uv2,

t1 ≥ 1, t2 ≥ 1 (14)

is obtained. The reformulation is obtained by modifying the SOC constraint corresponding to class
1 by introducing a new variablet1 as follows,

w>µ1−b≥ t1 ≥
√

η
1−η

‖C>
1 w‖2, t1 ≥ 1.

Likewise another variable is introduced to deal with the other SOC constraintbelonging to class 2.
To restrict the uncertainty to a low dimension space the following assumption is made.
Assumption 1 The random vectorX1 takes values in the linear span of columns ofT1, while the
random vectorX2 takes values in the linear span of columns ofT2. More precisely then dimensional
random vectorsX1 and X2 are linearly related to am1 dimensional random vectorZ1 and am2

dimensional random vectorZ2 respectively as follows

X1 = T1Z1, X2 = T2Z2. (15)

For microarray data setsm1 andm2 are much smaller thann. Thus, the assumption restricts the
random variablesX1 and X2 to much smaller dimension spaces. Letµz1, Σz1 be the mean and
covariance of the random variableZ1, andµz2, Σz2 be the mean and covariance of the random
variableZ2. It follows that

µ1 = T1µz1, µ2 = T2µz2; Σ1 = T1Σz1T>
1 , Σ2 = T2Σz2T>

2 .
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Clearly then the sample estimatesz1 andz2 are related tox1 andx2 by

xi = Tizi Σi = TiΣziT>
i , Σzi =

1
mi

(I− ee>)∀i ∈ {1,2}. (16)

Assuming an ellipsoidal uncertainty on the estimate ofµ1 and in light of (16), we define

Um1 = {µ1|µ1 = T1µz1, (µz1− z1)
>T>

1 T1(µz1− z1) ≤ δ2}.

For the uncertainty setUm1 and a givenw the constraint

w>µ1−b≥ t1 ∀µ1 ∈Um1,

is equivalent to
min

µ1∈Um1
w>µ1−b≥ t1. (17)

Noting that minimizing a linear function over an ellipsoid is a convex optimization problem having
the following closed form solution (see Appendix B),

min
µ1∈Um1

w>µ1 =
1

m1
w>T1e−δ‖T1w‖, (18)

the constraint (17) can be restated as

1
m1

w>T1e−b≥ t1 +δ‖T1w‖. (19)

Similarly for µ2 the uncertainty set is defined as

Um2 = {µ2|µ2 = T2µz2, (µz2− z2)
>T>

2 T2(µz2− z2) ≤ δ2},

and analogous to (19) the following constraint

b− 1
m2

w>T2e ≥ t2 +δ‖T2w‖, (20)

is obtained. Following Lanckriet et al. (2002b), the sets characterizing the covariance matrices are
defined using Frobenius norm

Uvi = {Σi |Σi = TiΣziT
>
i ‖Σzi−Σzi‖F ≤ ρ} i = {1,2}.

Imposing robustness to estimation errors in the covariance matrixΣi is equivalent to the constraint

maxΣi∈Uvi

√

w>Σiw ≤
√

1−η
η

ti , i = {1,2}. (21)

Using the result (see Appendix B)

maxΣi∈Uvi

√

w>Σiw =
√

w>Ti(Σzi +ρI)T>
i w,
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η 0 0.2 0.4 0.6 0.8 0.9 0.95 0.99
fs 10 10 10 10 10 10 9, 10 7,8,9,10

Table 1: The set of selected features, fs, for various values ofη on synthetic data set. See text for
more details.

the formulation (14) turns out to be

minw,b,t1,t2 ‖w‖1,

s.t. 1
m1

w>T1e−b≥ t1 +δ‖T1w‖2,

b− 1
m2

w>T2e ≥ t2 +δ‖T2w‖2,

‖C>
1zT

>
1 w‖2 ≤

√

1−η
η t1,

‖C>
2zT

>
2 w‖2 ≤

√

1−η
η t2,

t1 ≥ 1 t2 ≥ 1, (22)

an SOCP. The matrixC1z is obtained by using the cholesky decomposition of the regularized matrix
Σz1 +ρI , similarly for C2z.

As a consequence of Assumption 1, one needs to factorize matrices of sizem1×m1, andm2×
m2 instead of a much largern× n matrix for the Frobenius norm uncertainty model. Thus, the
assumption has computational benefits but it is quite restrictive. However, inabsence of any prior
knowledge, this maybe a good alternative to explore. In the next section, we experiment on the
formulations (8) and (22) on both synthetic and real world microarray datasets.

5. Experiments

The feature selection abilities of the proposed formulations were tested on both synthetic and real
world data sets. As a benchmark, the performance of the LP formulation on the same data sets are
also reported.

Consider a synthetic data set generated as follows. The class label,y, of each observation was
randomly chosen to be 1 or−1 with probability 0.5. The first ten features of the observation,x,
are drawn asyN (−i,1), whereN (µ,σ2) is a gaussian centered aroundµ and varianceσ2. Nine
hundred ninety other features were drawn asN (0,1). Fifty such observations were generated. The
feature selection problem is to detect the first ten features, since they arethe most discriminatory
from the given pool of 1000 features, when the sample size is fifty.

The features were selected by the following procedure (see?). From the data set fifty partitions
was generated by holding out one example as test data and others as training data. For each partiton,
formulation (8) was solved on the training set for a fixed value ofη using the open source package
SEDUMI (Sturm, 1999) to obtain a set of features and the resulting classifier was used to predict
the label of test data. The union of fifty sets of features is reported in Table 1 for various values of
η. The average number of errors on all the fifty test sets, the Leave one out(LOO) error, was found
to be 0. For low values ofη sayη = 0.2, only one feature, feature number 10, was selected. This
is not surprising because among the ten features, feature number 10 hasthe most discriminatory
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power. As the value ofη is increased the formulation reports more discriminatory features. For
η = 0.95, the formulation reported{7,8,9,10}, a set of four features. This shows that inspite
of sample size being low compared to the number of features this formulation is ableto discover
the most discriminatory features. The corresponding list of features selected by the LP(5) is fs=
{2,3,4,5,6,7,8,9,10}. Both the formulations pick up the most discriminatory features but the LP
formulation picks up more features. The experiment was repeated for 100randomly generated data
sets, and gave similar results. This demonstrates that the formulation (8) picksup discriminatory
features and is comparable to the LP formulation.

We also experimented with the robust formulation (14) for different valuesof δ, andρ. In Figure
1 number of features are plotted for various values ofδ. As δ increases, the number of features
selected by the formulation (22) increases, the value ofρ was zero for the reported experiment. The
robust formulation tries to maintain the classification accuracy even when the estimates of mean
and covariance are not correct. To ensure this, more features are needed to maintain the accuracy.
Similar results were also obtained by varyingρ.
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Figure 1: Plots of number of selected features versusη for various values ofδ.

The formulation (8) was tested on six data sets (B, C, D, E, F, G) defined byBhattacharyya et al.
(2003). These binary classification problems are related to Small Round Blue Cell Tumors (SR-
BCT). Each data set have various number of data points but have the samenumber of features,
n = 2308.

From the given data set, a partition was generated by holding out a data point as test set while
the training set consisted of all the other data points. For each fixed value of η, the formulation
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data set B C D E F G
SOCP 38 46 25 1 23 21

LP 21 8 8 2 12 13

Table 2: Number of selected features for which the LOO error was minimum. The row titled SOCP
tabulates the minimum number of features reported by (8) for which the LOO error was
zero. The row titled LP tabulates the number of features selected by the LP formulation.
Total number of features isn = 2308

was solved for all possible partitions. For each partition the resulting classifier was tested on the
held out data point. Average number of errors over all the partitions was reported as the LOO
(leave one out) error. The results were compared against the linear programming formulation(5).
Table 2 compares the number of features required to attain a zero LOO error by formulations (8)
and (5). In both cases very small number of features, less than 2% of thetotal number of 2308
features, were selected. However the LP formulations almost always found a smaller set of features.
Figures 2, 3, 4 show plots for the number of features selected by (8) forvarious values ofη. As η
increases, the number of features increase. For comparison, the number of features selected by the
LP formulation is also plotted on the same graph. Figures 5, 6, 7 show plots forthe LOO error the
SOCP formulation. Asη increases the LOO error decreases. This conforms to the view that asη
increases, the classifier is forced to be accurate which leads to increasein the number of features.
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Figure 2: Plots of number of selected features versusη for data sets E, F.

6. Conclusions and Future Directions

The problem of selecting discriminatory features by using the moments of the class conditional
densities was addressed in the paper. Using a Chebyshev-Cantelli inequality, the problem was posed
as a SOCP. The above approach was also used to derive a formulation for doing feature selection
for Fisher discriminants. A robust formulation was discussed which yields classifiers robust to
estimation errors in the mean and covariance.
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Figure 3: Plots of number of selected features versusη for data sets D, C.
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Figure 4: Plots of number of selected features versusη for data sets G, B.

On a toy data set, the formulation discovered the discriminatory features. Theformulation has
a parameterη, which can trade off accuracy with number of features. For small valuesof η, low
number of discriminatory features are reported, while asη is increased the formulation reports more
number of features. As borne out by experiments on the microarray data sets, the accuracy of the
classifier increases asη is increased.

The approach in this paper can also be extended to design nonlinear classifiers using very
few support vectors. Let the discriminating surface be{x|∑i αiK(xi ,x) = b} which divides the n-
dimensional Euclidean space into two disjoint subsets{x|∑i αiK(x,xi) < b} and{x|∑i αiK(x,xi) >

b}, where the kernelK, is a functionK : R
n ×R

n → R obeying the Mercer conditions (Mercer,
1909).

One can restate the nonlinear discriminating surface by a hyperplane inmdimensions,

H = {x|α>k(x)−b = 0}

wherem is the number of examples andk(x) is a vector inm dimensions whoseith component
is k(x,xi). The set of support vectors is defined byS= {i|αi 6= 0}. We wish to find a decision
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Figure 5: Plots of LOO error versusη for data sets E, F.
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Figure 6: Plots of LOO error versusη for data sets D, C.

surface utilizing very small number of these vectors, or in other words, thegoal is to minimize the
cardinality of the setS, which can be approximated by theL1 norm ofα.

Let k1 = k(X1) be a random vector corresponding to class 1 whilek2 = k(X2) be another random
vector belonging to class 2. Let the means ofk1 andk2 be k̃1 andk̃2 respectively and the covariance
beΣ̃1 andΣ̃2 respectively. The problem can be approached as in (7) and on applying the Chebychev
bound (6) the following formulation

min
α,b

‖α‖1,

s.t α>k̃1−b≥
√

η
1−η

√

α>Σ̃>
1 α,

b−α>k̃2 ≥
√

η
1−η

√

α>Σ̃>
2 α,

α>k̃1−b≥ 1,

b−α>k̃2 ≥ 1, (23)

is obtained. We believe this can have non-trivial advantages for data-mining problems.
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Figure 7: Plots of LOO error versusη for data sets G, B.
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Appendix A. The Chebychev-Cantelli inequality

In this appendix we prove a multivariate generalization of the one sided Chebychev inequality. This
inequality will be used to derive a lower bound on the probability of a multivariate random variable
taking values in a given half space. Marshall and Olkin (1960)(also seePopescu and Bertsimas,
2001) proved a more general case.

We first state and prove the Chebychev inequality for a univariate random variable, (Lugosi,
2003). It would be useful to recall the Cauchy-Schwartz inequality. Let X andY be random variables
with finite variances,E(X−E(X))2 < ∞ andE(Y−E(Y))2 < ∞, then

|E[(X−E(X))(Y−E(Y))]| ≤
√

E(X−E(X))2E(Y−E(Y))2.

Chebychev-Cantelli inequality Let s≥ 0, Then

P(X−E(X) < s) ≥ s2

s2 +E(X−E(X))2 .

Proof Let Y = X−E(X). Note thatE(Y) = 0. For anys,

s= E(s−Y) ≤ E((s−Y)I{Y<s}(Y)).

For anys≥ 0, using the Cauchy-Schwartz inequality

s2 ≤ E(s−Y)2
E(I2

{Y<s}(Y)),

= E(s−Y)2P(Y < s),

= (E(Y2)+s2)P(Y < s). (24)
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On rearranging terms one obtains

P(Y < s) ≥ s2

E(Y2)+s2

and the result follows.

The above inequality can be used to derive a lower bound on the probabilityof a random vector
taking values in a given half space.

Theorem 1 Let X be a n dimensional random vector. The mean and covariance ofX be µ∈ R
n

and Σ ∈ R
n×n. Let H (w,b) = {z|w>z < b,w,z ∈ R

n,b ∈ R} be a given half space, withw 6= 0.
Then

P(X ∈ H ) ≥ s2

s2 +w>Σw
,

where s= (b−w>µ)+, (x)+ = max(x,0).
Proof There are two cases:b≤ w>µ andb > w>µ.

For the caseb≤ wTµ, s= 0, and plugging its value in the Chebychev-Cantelli inequality, yields
P(X∈H )≥ 0, which is trivially true. For the other caseb> wTµ, by definitions= b−wTµ. Define
Y = w>x, so thatE(Y) = wTµ E(Y−E(Y))2 = w>Σw. We have

P(X ∈ H ) = P(Y < b) = P(Y−E(Y) < s).

Application of Chebyshev-Cantelli inequality to the above relationship givesour desired result. This
completes the proof.

Note that the proof does not requireΣ to be invertible. For a more general proof pertaining to convex
sets and tightness of the bound see (Marshall and Olkin, 1960, Popescuand Bertsimas, 2001).

Appendix B. Uncertainty in Covariance Matrices

Consider the following problem

maxΣ

√

w>Σw,

Σ = TΣzT
>
,

‖Σz−Σz‖F ≤ ρ. (25)

Eliminating the equality constraint the objective can be stated as
√

w>Σw =

√

w>TΣzT>w.

Introduce a new variable∆Σ ∈ S+
n , so thatΣz = Σz+∆Σ, and the optimization problem (25) can be

stated as

max∆Σ

√

w>T(Σz+∆Σ)T>w,

s.t. ‖∆Σ‖F ≤ ρ.

(26)

The optimal is achieved at∆Σ = ρI , see Appendix C in Lanckriet et al. (2002b) for a proof.
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B.1 Notation

The vector[1,1, . . . ,1]> will denoted bye, and[0, . . . ,0] by 0, the dimension will be clear from the
context. Ifw = [w1, . . . ,wn]

>, we writew ≥ 0 to meanwi ≥ 0,∀i ∈ {1, . . . ,n}. The euclidean norm

of a vectorx = [x1, . . . ,xn]
>, will be denoted by‖x‖2 =

√

∑n
i=1x2

i , while the 1-norm ofx will be

denoted by‖x‖1 = ∑n
i=1 |xi |. The indicator function defined on the setA, denoted byIA(x), is

IA(x) =

{

1 x∈ A
0 otherwise.

The cardinality of setA is given by|A|. The Frobenius norm of am×n matrix A, is denoted by

‖A‖F =
√

∑m
i=1 ∑n

j=1a2
i j .

References

E. Amaldi and V. Kann. On the approximability of minimizing nonzero variables orunsatisfied
relations in linear systems.Theoretical Computer Science, 290:237–260, 1998.

C. Bhattacharyya, L. Grate, A. Rizki, D. Radisky, F. Molina, M. I. Jordan, M. Bissell, and Saira I.
Mian. Simultaneous classification and relevant feature identification in high-dimensional spaces:
application to molecular profiling data.Signal Processing, 83:729–743, 2003.

S. Chen, D. Donoho, and M. Saunders. Atomic decomposition by basis pursuit. Siam Journal of
Scientific Computing, 20(1):33–61, 1999.

R. Fletcher.Practical Methods of Optimization. John Wiley and Sons, New York, 1989.

G. R. G. Lanckriet, L. El Ghaoui, C. Bhattacharyya, and M. I. Jordan. Minimax probability machine.
In Advances in Neural Information Processing Systems. MIT Press, 2002a.

G. R. G. Lanckriet, L. El Ghaoui, C. Bhattacharyya, and M. I. Jordan. A robust minimax approach
to classification.Journal of Machine Learning Research, pages 555 – 582, December 2002b.

M. S. Lobo, L. Vandenberghe, S. Boyd, and H. Lebret. Applications of second-order cone program-
ming. Linear Algebra and its Applications, 284(1–3):193–228, 1998.

G. Lugosi. Concentration-of-measure inequalities, 2003. URL
http://www.econ.upf.es/˜lugosi/pre.html/anu.ps . Lecture notes presented at the
Machine learning Summer School 2003, ANU, Canberra.

A. W. Marshall and I. Olkin. Multivariate Chebychev inequalities.Annals of Mathematical Statis-
tics, 31(4):1001–1014, 1960.

J. Mercer. Functions of positive and negative type and their connectionwith the theory of integral
equations.Philosophical Transactions of the Royal Society, London, A 209:415–446, 1909.

Y. Nesterov and A. Nemirovskii.Interior Point Algorithms in Convex Programming. Number 13 in
Studies in Applied Mathematics. SIAM, Philadelphia, 1993.

1432

http://www.econ.upf.es/~lugosi/pre.html/anu.ps


SOCPFORMULATION FOR FEATURE SELECTION

I. Popescu and D. Bertsimas. Optimal inequalities in probability theory. Technical Report TM 62,
INSEAD, 2001.

J. F. Sturm. Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones.
Optimization Methods and Software, 11/12(1-4):625–653, 1999.

J. Weston, A. Elisseff, B. Schölkopf, and M. Tipping. Use of the zero-norm with linear models and
kernel methods.Journal of Machine Learning Research, 3, 2003.

1433





Journal of Machine Learning Research 5 (2004) 1435–1455 Submitted 1/04; Revised 7/04; Published 11/04

Fast String Kernels using Inexact Matching for Protein Sequences

Christina Leslie CLESLIE@CS.COLUMBIA .EDU

Center for Computational Learning Systems
Columbia University
New York, NY 10115, USA

Rui Kuang RKUANG@CS.COLUMBIA .EDU

Department of Computer Science
Columbia University
New York, NY 10027, USA

Editor: Kristin Bennett

Abstract

We describe several families ofk-mer based string kernels related to the recently presentedmis-
match kernel and designed for use with support vector machines (SVMs) for classification of pro-
tein sequence data. These new kernels – restricted gappy kernels, substitution kernels, and wildcard
kernels – are based on feature spaces indexed byk-length subsequences (“k-mers”) from the string
alphabetΣ. However, for all kernels we define here, the kernel valueK(x,y) can be computed in
O(cK(|x|+ |y|)) time, where the constantcK depends on the parameters of the kernel but is inde-
pendent of the size|Σ| of the alphabet. Thus the computation of these kernels is linear in the length
of the sequences, like the mismatch kernel, but we improve upon the parameter-dependent con-
stantcK = km+1|Σ|m of the(k,m)-mismatch kernel. We compute the kernels efficiently using atrie
data structure and relate our new kernels to the recently described transducer formalism. In protein
classification experiments on two benchmark SCOP data sets,we show that our new faster kernels
achieve SVM classification performance comparable to the mismatch kernel and the Fisher kernel
derived from profile hidden Markov models, and we investigate the dependence of the kernels on
parameter choice.

Keywords: kernel methods, string kernels, computational biology

1. Introduction

The original work on string kernels – kernel functions defined on the set of sequences from an al-
phabetΣ rather than on a vector space (Cristianini and Shawe-Taylor, 2000) – came from the field of
computational biology and was motivated by algorithms for aligning DNA and protein sequences.
Pairwise alignment algorithms, in particular the Smith-Waterman algorithm for optimallocal align-
ment and the Needleman-Wunsch algorithm for optimal global alignment (Waterman et al., 1991),
model the evolutionary process of mutations – insertions, deletions, and residue substitutions rela-
tive to an ancestral sequence – and give natural sequence similarity scores related to evolutionary
distance. However, standard pairwise alignment scores do not represent valid kernels (Vert et al.,
2004), and the first string kernels to be defined – dynamic alignment kernels based on pair hidden
Markov models by Watkins (1999) and convolution kernels introduced by Haussler (1999) – had to
develop new technical machinery to translate ideas from alignment algorithms into a kernel frame-
work. More recently, there has also been interest in the development of string kernels for use with

c©2004 Christina Leslie and Rui Kuang.
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support vector machine classifiers (SVMs) and other kernel methods in fields outside computational
biology, such as text processing and speech recognition. For example,the gappyn-gram kernel de-
veloped by Lodhi et al. (2002) implemented a dynamic alignment kernel for text classification. A
practical disadvantage of all these string kernels is their computational expense. In general, these
kernels rely on dynamic programming algorithms for which the computation of each kernel value
K(x,y) is quadratic in the length of the input sequencesx andy, that is,O(|x||y|) with constant factor
that depends on the parameters of the kernel.

The recently presentedk-spectrum (gap-freek-gram) kernel and the(k,m) mismatch kernel pro-
vide an alternative model for string kernels for biological sequences and were designed, in particular,
for the application of SVM protein classification. These kernels use countsof common occurrences
of shortk-length subsequences, calledk-mers, rather than notions of pairwise sequence alignment,
as the basis for sequence comparison. Thek-mer idea still captures a biologically-motivated model
of sequence similarity, in that sequences that diverge through evolution are still likely to contain
short subsequences that match or almost match. Leslie et al. (2002a) introduced a linear time
(O(k(|x|+ |y|)) implementation of thek-spectrum kernel, using exact matches ofk-mer patterns
only, based on a trie data structure. Later, the(k,m)-mismatch kernel (Leslie et al., 2002b) extended
thek-mer based kernel framework and achieved improved performance on the protein classification
task by incorporating the biologically important notion of character mismatches (residue substitu-
tions). Using a mismatch tree data structure, the complexity of the kernel calculation was shown
to beO(cK(|x|+ |y|)), with cK = km+1|Σ|m for k-grams with up tom mismatches from alphabetΣ.
A different extension of thek-mer framework was presented by Vishwanathan and Smola (2002),
who computed the weighted sum of exact-matchingk-spectrum kernels for differentk by using suf-
fix trees and suffix links, allowing elimination of the constant factor in the spectrum kernel for a
compute time ofO(|x|+ |y|).

In this paper, we extend thek-mer based kernel framework in new ways by presenting several
novel families of string kernels for use with SVMs for classification of proteinsequence data. These
kernels – restricted gappy kernels, substitution kernels, and wildcard kernels – are again based on
feature spaces indexed byk-length subsequences from the string alphabetΣ (or the alphabet aug-
mented by a wildcard character) and use biologically-inspired models of inexact matching. Thus
the new kernels are closely related both to the(k,m)-mismatch kernel and the gappyk-gram string
kernels used in text classification. However, for all kernels we define here, the kernel valueK(x,y)
can be computed inO(cK(|x|+ |y|)) time, where the constantcK depends on the parameters of the
kernel but is independent of the size|Σ| of the alphabet. Our efficient computation uses a recursive
function based on a trie data structure and is linear in the length of the sequences, like the mismatch
kernel, but we improve upon the parameter-dependent constant; a similar trie-based sequence search
strategy has been used, for example, in work of Sagot (1998) for motif discovery. The restricted
gappy kernels we present here can be seen as a fast approximation ofthe gappyk-gram kernel of
Lodhi et al. (2002), where by using ourk-mer based computation, we avoid dynamic programming
and the resultant quadratic compute time; we note that the gappyk-gram kernel can also be seen as
a special case of a dynamic alignment kernel (Watkins, 1999), giving a linkbetween this work and
some of the kernels we define. Cortes et al. (2002) have recently presented a transducer formalism
for defining rational string kernels, and all thek-mer based kernels can be naturally described in this
framework. We relate our new kernels to the transducer formalism and give transducers correspond-
ing to our newer kernels. We note that Cortes et al. (2002) also describethe original convolution
kernels of Haussler (1999) within their framework, suggesting that the transducer formalism is a
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natural unifying framework for describing many string kernels in the literature. However, the com-
plexity for kernel computation using the standard rational kernel algorithmis O(cT |x||y|), wherecT

is a constant that depends on the transducer, leading again to quadratic rather than linear dependence
on sequence length.

Finally, we report protein classification experiments on two benchmark data sets based on the
SCOP database (Murzin et al., 1995), where we show that our new faster kernels achieve SVM
classification performance comparable to the mismatch kernel and the Fisher kernel derived from
profile hidden Markov models. We also use kernel alignment scores (Cristianini et al., 2001) to
investigate how different the various inexact matching models are from each other, and to what
extent they depend on kernel parameters. Moreover, we show that byusing linear combinations of
different kernels, we can improve performance over the best individual kernel.

The current paper is an extended version of the original paper presenting these inexact string
matching kernels (Leslie and Kuang, 2003). We have added the second set of SCOP experiments to
allow more investigation of the dependence of SVM performance on kernelparameter choices. We
have also included the kernel alignment results to explore differences between kernels and parameter
choices and the advantage of combining these kernels.

2. Definitions of Feature Maps and String Kernels

Below, we review the definition of mismatch kernels (Leslie et al., 2002b) and present three new
families of string kernels: restricted gappy kernels, substitution kernels, and wildcard kernels.

In each case, the kernel is defined via an explicit feature map from the space of all finite se-
quences from an alphabetΣ to a vector space indexed by the set ofk-length subsequences fromΣ
or, in the case of wildcard kernels,Σ augmented by a wildcard character. For protein sequences,Σ
is the alphabet of|Σ| = 20 amino acids. We refer to ak-length contiguous subsequence occurring
in an input sequence as an instancek-mer (also called ak-gram in the literature). The mismatch
kernel feature map obtains inexact matching of instancek-mers from the input sequence tok-mer
features by allowing a restricted number of mismatches; the new kernels achieve inexact matching
by allowing a restricted number of gaps, by enforcing a probabilistic threshold on character sub-
stitutions, or by permitting a restricted number of matches to wildcard characters. These models
for inexact matching have all been used in the computational biology literaturein other contexts, in
particular for sequence pattern discovery in DNA and protein sequences (Sagot, 1998) and proba-
bilistic models for sequence evolution (Henikoff and Henikoff, 1992, Schwartz and Dayhoff, 1978,
Altschul et al., 1990).

2.1 Spectrum and Mismatch Kernels

In previous work, we defined the(k,m)-mismatch kernel via a feature mapΦMismatch
(k,m) to the |Σ|k-

dimensional vector space indexed by the set ofk-mers fromΣ. For a fixedk-mer α = a1a2 . . .ak,
with eachai a character inΣ, the (k,m)-neighborhood generated byα is the set of allk-length
sequencesβ from Σ that differ fromα by at mostm mismatches. We denote this set byN(k,m)(α).
For ak-merα, the feature map is defined as

ΦMismatch
(k,m) (α) = (φβ(α))β∈Σk
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whereφβ(α) = 1 if β belongs toN(k,m)(α), andφβ(α) = 0 otherwise. For a sequencex of any length,
we extend the map additively by summing the feature vectors for all thek-mers inx:

ΦMismatch
(k,m) (x) = ∑

k-mersα in x

ΦMismatch
(k,m) (α).

Each instance of ak-mer contributes to all coordinates in its mismatch neighborhood, and theβ-
coordinate ofΦMismatch

(k,m) (x) is just a count of all instances of thek-mer β occurring with up tom

mismatches inx. The (k,m)-mismatch kernelK(k,m) is then given by the inner product of feature
vectors:

KMismatch
(k,m) (x,y) = 〈ΦMismatch

(k,m) (x),ΦMismatch
(k,m) (y)〉.

Form= 0, we obtain thek-spectrum (Leslie et al., 2002a) ork-gram kernel (Lodhi et al., 2002).

2.2 Restricted Gappy Kernels

For the(g,k)-gappy string kernel,g≥ k, we use the same|Σ|k-dimensional feature space, indexed
by the set ofk-mers fromΣ, but we define our feature map based on gappy matches ofg-mers to
k-mer features. For a fixedg-mer α = a1a2 . . .ag(eachai ∈ Σ), let G(g,k)(α) be the set of all the
k-length subsequences occurring inα (with up to g− k gaps). Then we define the gappy feature
map onα as

ΦGap
(g,k)(α) = (φβ(α))β∈Σk,

whereφβ(α) = 1 if β belongs toG(g,k)(α), andφβ(α) = 0 otherwise. In other words, each instance
g-mer contributes to the set ofk-mer features that occur (in at least one way) as subsequences with
up to g− k gaps in theg-mer. Now we extend the feature map to arbitrary finite sequencesx by
summing the feature vectors for all theg-mers inx:

ΦGap
(g,k)(x) = ∑

g-mersα∈x
ΦGap

g,k (α).

The kernelKGap
(g,k)(x,y) is defined as before by taking the inner product of feature vectors forx andy.

Alternatively, given an instanceg-mer, we may wish to count the number of occurrences of each
k-length subsequence and weight each occurrence by the number of gaps. Following (Lodhi et al.,
2002), we can define forg-merα andk-mer featureβ = b1b2 . . .bk the weighting

φλ
β(α) =

1
λk ∑

1≤i1<i2<...<ik≤g
ai j =b j for j=1...k

λik−i1+1,

where the multiplicative factor satisfies 0< λ ≤ 1. We can then obtain a weighted version of the
gappy kernelKWeighted Gap

(g,k,λ) from the feature map:

ΦWeighted Gap
(g,k,λ) (x) = ∑

g-mersα∈x
(φλ

β(α))β∈Σk.

Here, the weighting
λik−i1+1

λk penalizes a gappy occurrence of ak-mer by a factorλ raised to the

number of internal gaps. This feature map is related to the gappyk-gram kernel defined by Lodhi
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et al. (2002) but enforces the following restriction: here, only thosek-character subsequences that
occur with at mostg− k gaps, rather than all gappy occurrences, contribute to the corresponding
k-mer feature. When restricted to input sequences of lengthg, our feature map coincides with
that of the usual gappyk-gram kernel. Note, however, that for our kernel, a gappyk-mer instance
(occurring with at mostg− k gaps) is counted in all (overlapping)g-mers that contain it, whereas
in Lodhi et al. (2002), a gappyk-mer instance is only counted once. If we wish to approximate the
gappyk-gram kernel, we can define a small variation of our restricted gappy kernel where one only
counts a gappyk-mer instance if its first character occurs in the first position of ag-mer window.
That is, the modified feature map is defined on eachg-merα by coordinate functions

φ̃λ
β(α) =

1
λk ∑

1=i1<i2<...<ik≤g
ai j =b j for j=1...k

λik−i1+1,

0 < λ≤ 1, and is extended to longer sequences by adding feature vectors forg-mers. This modified
feature map now gives a “truncation” of the usual gappyk-gram kernel.

In Section 3, we show that our restricted gappy kernel hasO(c(g,k)(|x|+ |y|)) computation
time, where constantc(g,k) depends on size ofg andk, while the original gappyk-gram kernel
has complexityO(k(|x||y|)). Note in particular that we do not compute the standard gappyk-gram
kernel on every pair ofg-grams fromx andy, which would necessarily be quadratic in sequence
length since there areO(|x||y|) such pairs. We will see that for reasonable choices ofg andk, we
obtain much faster computation time, while in experimental results reported in Section 5, we still
obtain good classification performance.

2.3 Substitution Kernels

The substitution kernel is again similar to the mismatch kernel, except that we replace the combi-
natorial definition of a mismatch neighborhood with a similarity neighborhood based on a proba-
bilistic model of character substitutions. In computational biology, it is standard to compute pair-
wise alignment scores for protein sequences using a substitution matrix (Henikoff and Henikoff,
1992, Schwartz and Dayhoff, 1978, Altschul et al., 1990) that givespairwise scoress(a,b) de-
rived from estimated evolutionary substitution probabilities. In one scoring system (Schwartz and
Dayhoff, 1978), the scoress(a,b) are based on estimates of conditional substitution probabilities
P(a|b) = p(a,b)/q(b), wherep(a,b) is the probability thata andb co-occur in an alignment of
closely related proteins,q(a) is the background frequency of amino acida, andP(a|b) represents
the probability of a mutation intoa during fixed evolutionary time interval given that the ancestor
amino acid wasb. We define the mutation neighborhoodM(k,σ)(α) of a k-mer α = a1a2 . . .ak as
follows:

M(k,σ)(α) = {β = b1b2 . . .bk ∈ Σk :−
k

∑
i

logP(ai |bi) < σ}.

Mathematically, we can defineσ = σ(N) such that maxα∈Σk|M(k,σ)(α)|< N, so we have theoretical
control over the maximum size of the mutation neighborhoods. In practice, choosingσ to allow an
appropriate amount of mutation while restricting neighborhood size may require experimentation
and cross-validation.

Now we define the substitution feature map analogously to the mismatch feature map:

ΦSub
(k,σ)(x) = ∑

k-mersα in x

(φβ(α))β∈Σk,
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whereφβ(α) = 1 if β belongs to the mutation neighborhoodM(k,σ)(α), andφβ(α) = 0 otherwise.

2.4 Wildcard Kernels

Finally, we can augment the alphabetΣ with a wildcard character denoted by∗, and we map to
a feature space indexed by the setW of k-length subsequences fromΣ∪ {∗} having at mostm

occurrences of the character∗. The feature space has dimension∑m
i=0

(
k
i

)
|Σ|k−i .

A k-mer α matches a subsequenceβ in W if all non-wildcard entries ofβ are equal to the
corresponding entries ofα (wildcards match all characters). The wildcard feature map is given by

ΦWildcard
(k,m,λ) (x) = ∑

k-mersα in x

(φβ(α))β∈W ,

whereφβ(α) = λ j if α matches patternβ containing j wildcard characters,φβ(α) = 0 if α does not
matchβ, and 0< λ≤ 1.

Other variations of the wildcard idea, including specialized weightings and use of groupings of
related characters, are described by Eskin et al. (2003).

3. Efficient Computation

All the k-mer based kernels we define above can be efficiently computed using a trie(retrieval tree)
data structure, similar to the mismatch tree approach previously presented (Leslie et al., 2002b).
In this framework,k-mer features correspond to paths from the root to the leaf nodes of the tree,
and the data structure is used to organize a traversal of all the inexact matching instance patterns
in the data that contribute to eachk-mer feature count. We will describe the computation of the
gappy kernel in most detail, since the other kernels are easier adaptationsof the mismatch kernel
computation. For simplicity, we explain how to compute a single kernel valueK(x,y) for a pair
of input sequences; computation of the full kernel matrix in one traversalof the data structure is a
straightforward extension.

3.1 (g,k)-Gappy Kernel Computation

For the(g,k)-gappy kernel, we represent our feature space as a rooted tree of depthk where each
internal node has|Σ| branches and each branch is labeled with a symbol fromΣ. In this depthk trie,
each leaf node represents a fixedk-mer in feature space by concatenating the branch symbols along
the path from root to leaf and each internal node represents the prefix for those for the set ofk-mer
features in the subtree below it.

Using a depth-first traversal of this tree, we maintain at each node that wevisit a set of pointers
to all g-mer instances in the input sequences that contain a subsequence (with gaps) that matches the
current prefix pattern; we also store, for eachg-mer instance, an index pointing to the last position
we have seen so far in theg-mer. At the root, we store pointers to allg-mer instances, and for each
instance, the stored index is 0, indicating that we have not yet seen any characters in theg-mer.
As we pass from a parent node to a child node along a branch labeled with symbol a, we process
each of parent’s instances by scanning ahead to find the next occurrence of symbola in eachg-
mer. If such a character exists, we pass theg-mer to the child node along with its updated index;
otherwise, we drop the instance and do not pass it to the child. Thus at each node of depthd, we
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have effectively performed a greedy gapped alignment ofg-mers from the input sequences to the
currentd-length prefix, allowing insertion of up tog−k gaps into the prefix sequence to obtain each
alignment. When we encounter a node with an empty list of pointers (no valid occurrences of the
current prefix), we do not need to search below it in the tree; in fact, unless there is a validg-mer
instance from each ofx andy, we do not have to process the subtree. When we reach a leaf node, we
sum the contributions of all instances occurring in each source sequence to obtain feature values for
x andy corresponding to the currentk-mer, and we update the kernel by adding the product of these
feature values. Since we are performing a depth-first traversal, we can accomplish the algorithm
with a recursive function and do not have to store the full trie in memory. Figure 1 shows expansion
down a path during the recursive traversal.
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Figure 1: Trie traversal for gappy kernel. Expansion along a path from root to leaf during traveral
of the trie for the(5,3)-gappy kernel, showing only the instance 5-mers for a single
sequencex = abaabab. Each node stores its valid 5-mer instances and the index to the
last match for each instance. Instances at the leaf node contribute to the kernel for 3-mer
featureabb.

The computation at the leaf node depends on which version of the gappy kernel one uses. For
the unweighted feature map, we obtain the feature values ofx andy corresponding to the currentk-
mer by counting theg-mer instances at the leaf coming fromx and fromy, respectively; the product
of these counts gives the contribution to the kernel for thisk-mer feature. For theλ-weighted gappy
feature map, we need a count of all alignments of each validg-mer instance against thek-mer
feature allowing up tog− k gaps. This can be computed with a simple dynamic programming
routine (similar to the Needleman-Wunsch algorithm), where we sum over a restricted set of paths,
as shown in Figure 2. The complexity isO(k(g−k)), since we fill a restricted trellis of(k+1)(g−
k+1) squares. Note that when we align a subsequencebi1bi2 . . .bik against ak-mera1a2 . . .ak, we
only penalize interior gaps corresponding to non-consecutive indices in1≤ i1 < i2 . . . < ik ≤ g.
Therefore, the multiplicative gap cost is 1 in the zeroth and last rows of the trellis andλ in the other
rows.

In order to determine the worst case complexity of the kernel computation, weestimate the
traversal time – which can be bounded by the total number ofg-mer instances that are processed
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(A) (B)

Figure 2: Dynamic programming at the leaf node. The trellis in (A) shows the restricted paths
for aligning ag-mer against ak-mer, with insertion of up tog− k gaps in thek-mer, for
g= 5 andk = 3. The basic recursion for summing path weights isS(i, j) = m(ai ,b j)S(i−
1, j − 1) + g(i)S(i, j − 1), wherem(a,b) = 1 if a and b match, 0 if they are different,
and the gap penaltyg(i) = 1 for i = 0,k andg(i) = λ for other rows. That is, except for
the top and bottom rows, every time we move to the right, we introduce an additional
internal gap and incur a multiplicative penalty ofλ; when we move diagonally, we see
whether the corresponding characters match or not. Trellis (B) shows theexample of
aligningababbagainst 3-merabb. An explanation of how to interpret trellis diagrams for
dynamic programming can be found in Durbin et al. (1998).

at the leaf nodes multiplied by the maximum number of times an instance is operated onas it is
passed from root to leaf – plus the processing time at the leaf nodes need tocompute the kernel

update. Eachg-mer instance in the input data can contribute to

(
g
k

)
k-mer features, which we can

write asO(gg−k) if g−k is smaller thank andO(gk) otherwise. For simplicity, we assume the more
typical former case, and we let the reader make simple adjustments in the latter case. Therefore, at
mostO(gg−k(|x|+ |y|) g-mer instances are processed at leaf nodes in the traversal. Since we iterate
through at mostg positions of eachg-mer instance as we pass from root to leaf, the traversal time is
O(gg−k+1(|x|+ |y|)). The total processing time at leaf nodes isO(gg−k(|x|+ |y|)) for the unweighted
gappy kernel andO(k(g−k)gg−k(|x|+ |y|)) for the weighted gappy kernel. Therefore, in both cases,
we have total complexity of the formO(c(g,k)(|x|+ |y|)), with c(g,k) = O((g− k)gg−k+1) for the
more expensive kernel. Further discussion of the complexity argument and pseudocode for the
algorithm can be found in Shawe-Taylor and Cristianini (2004).

Note that with the definition of the gappy feature maps given above, a gappyk-character sub-
sequence occuring withc≤ g− k gaps is counted in each of theg− (k+ c)+1 g-length windows
that contain it. To obtain feature maps that count a gappyk-character subsequence only once, we
can make minor variations to the algorithm by requiring that the first character of a gappyk-mer
occurs in the first position of theg-length window in order to contribute to the correspondingk-mer
feature.
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3.2 (k,σ)-Substitution Kernel Computation

For the substitution kernel, computation is very similar to the mismatch kernel algorithm. We
use a depthk trie to represent the feature space. We store, at each depthd node that we visit,
a set of pointers to allk-mer instancesα in the input data whosed-length prefixes have current
mutation score−∑d

i=1 logP(ai |bi) < σ of the current prefix patternb1b2 . . .bd, and we store the
current mutation score for eachk-mer instance. As we pass from a parent node at depthd to a child
node at depthd + 1 along a branch labeled with symbolb, we process eachk-mer α by adding
− logP(ad+1|b) to the mutation score and pass it to the child if and only if the score is still less
than σ. As before, we update the kernel at the leaf node by computing the contribution of the
correspondingk-mer feature.

The number of leaf nodes visited in the traversal isO(Nσ(|x|+ |y|)), where the constant is the
maximum mutation neighborhood size,Nσ = maxα∈Σk|M(k,σ)|. We can chooseσ sufficiently small
to get any desired bound onNσ, but it is difficult to estimate how to set the parameters to obtain
good SVM classification performance except by empirical results. Total complexity for the kernel
value computation isO(kNσ(|x|+ |y|)).

3.3 (k,m)-Wildcard Kernel Computation

Computation of the wildcard kernel is again very similar to the mismatch kernel algorithm. We use
a depthk trie with branches labeled by characters inΣ∪{∗}, and we prune (do not traverse) subtrees
corresponding to prefix patterns with greater thanm wildcard characters. At each node of depthd,
we maintain pointers to allk-mers instances in the input sequences whosed-length prefixes match
the currentd-length prefix pattern (with wildcards) represented by the path down fromthe root.

Eachk-mer instance in the data matches at most∑m
i=0

(
k
i

)
= O(km) k-length patterns having

up tom wildcards. Thus the number of leaf nodes visited is in the traversal isO(km(|x|+ |y|)), and
total complexity for the kernel value computation isO(km+1(|x|+ |y|)).

3.4 Comparison with Mismatch Kernel Complexity

For the(k,m) mismatch kernel, the size of the mismatch neighborhood of an instancek-mer is
O(km|Σ|m), so total kernel value computation isO(km+1|Σ|m(|x|+ |y|)). All the other kernels pre-
sented here have running timeO(cK(|x|+ |y|)), where constantcK depends on the parameters of the
kernel but not on the size of the alphabetΣ. Therefore, we have improved constant term for larger
alphabets (such as the alphabet of 20 amino acids). In Section 5, we showthat these new, faster
kernels have performance comparable to the mismatch kernel in protein classification experiments.

4. Transducer Representation

Cortes et al. (2002) recently showed that many known string kernels canbe associated with and
constructed from weighted finite state transducers with input alphabetΣ. We briefly outline their
transducer formalism and give transducers for some of our newly defined kernels. For simplicity,
we only describe transducers over the probability semiringR+ = [0,∞), with regular addition and
multiplication.

Following the development in Cortes et al. (2002), a weighted finite state transducer overR+ is
defined by a finite input alphabetΣ, a finite output alphabet∆, a finite set of statesQ, a set of input
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statesI ⊂Q, a set of output statesF ⊂Q, a finite set of transitionsE⊂Q× (Σ∪{ε})× (∆∪{ε})×
R+×Q, an initial weight functionλ : I → R+, and a final weight functionρ : F → R+. Here, the
symbolε represents the empty string. The transducer can be represented by a weighted directed
graph with nodes indexed byQ and each transitione∈ E corresponding to a directed edge from its
origin statep[e] to its destination staten[e] and labeled by the input symboli[e] it accepts, the output
symbolo[e] it emits, and the weightw[e] it assigns. We write the label asi[e] : o[e]/w[e] (abbreviated
asi[e] : o[e] if the weight is 1).

For a pathπ = e1e2 . . .ek of consecutive transitions (directed path in graph), the weight for the
path isw[π] = w[e1]w[e2] . . .w[ek], and we denotep[π] = p[e1] andn[π] = n[ek]. We write Σ∗ =
∪k≥0Σk for the set of all strings overΣ. For an input stringx ∈ Σ∗ and output stringz∈ ∆∗, we
denote byP(I ,x,z,F) the set of paths from initial statesI to final statesF that accept stringx and
emit stringz. A transducerT is called regulated if for any pair of input and output strings(x,z), the
output weight[[T]](x,z) thatT assigns to the pair is well-defined. The output weight is given by:

[[T]](x,z) = ∑
π∈P(I ,x,z,F)

λ(p[π])w[π]ρ(n[π])

A key observation from Cortes et al. (2002) is that there is a general method for defining a string
kernel from a weighted transducerT. Let Ψ : R+ → R be a semiring morphism (for us, it will
simply be inclusion), and denote byT−1 the transducer obtained fromT by transposing the input
and output labels of each transition. Then if the composed transducerS= T ◦T−1 is regulated, one
obtains a rational string kernel for alphabetΣ via

K(x,y) = Ψ([[S]](x,y)) = ∑
z

Ψ([[T]](x,z))Ψ([[T]](y,z))

where the sum is over all stringsz∈ ∆∗ (where∆ is the output alphabet forT) or equivalently, over
all output strings that can be emitted byT. Therefore, we can think ofT as defining a feature map
indexed by all possible output stringsz∈ ∆∗ for T.

Using this construction, Cortes et al. showed that thek-gram counter transducerTk corresponds
to thek-gram ork-spectrum kernel, and the gappyk-gram counter transducerTk,λ gives the unre-
stricted gappyk-gram kernel from Lodhi et al. (2002). Figure 3(a) shows the diagram of the 3-gram
transducerT3, and Figure 3(b) gives the gappy 3-gram transducerT3,λ. Our (g,k,λ)-gappy kernel

KWeighted Gap
(g,k,λ) can be obtained from the composed transducerT = Tk,λ ◦Tg using theT ◦T−1 con-

struction. (In all our examples, we useλ(s) = 1 for every initial states andρ(t) = 1 for every final
statet.)

For the(k,m)-wildcard kernel, we set the output alphabet to be∆ = Σ∪{∗} and define a trans-
ducer withm+ 1 final states, as indicated in the figure. Them+ 1 final states correspond to des-
tinations of paths that emitk-grams with 0, 1, . . . ,m wildcard characters, respectively. The(3,1)-
wildcard transducer is shown in Figure 4.

The (k,σ)-substitution kernel does not appear to fall exactly into this framework, though if
we threshold individual substitution probabilities independently rather than threshold the product
probability over all positions in thek-mer, we can define a transducer that generates a similar kernel.
Starting with thek-gram transducer, we add additional transitions (between “consecutive” states of
thek-gram) of the forma : b for those pairs of symbols with− logP(a|b) < σo. Now there will be
a (unique) path in the transducer that acceptsk-merα = a1a2 . . .ak and emitsβ = b1b2 . . .bk if and
only if every substitution satisfies− logP(ai |bi) < σo.
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(a)

(b)

Figure 3: The k-gram and gappyk-gram transducers.The diagrams show the 3-gram transducer
(a) and the gappy 3-gram transducer (b) for a two-letter alphabet. Here, the edge label
a : ε : λ, for example, means “accept symbola, output the empty symbolε, multiply the
weight byλ”.

Figure 4: The (k,m)-wildcard transducer. The diagram shows the(3,1)-wildcard transducer for
a two-letter alphabet.

5. Experiments

We tested all the new string kernels with SVM classifiers on two benchmark datasets (Jaakkola
et al., 1999, Weston et al., 2003), both designed for the remote protein homology detection problem,
in order to compare to results with the mismatch kernel reported previously (Leslie et al., 2002b) and
other recent kernel representations for protein sequence data. We also present results to explore how
parameter choices for the new kernels affect SVM classification performance. The benchmarks are
based on different versions of the SCOP database (Murzin et al., 1995), an expert-curated database
of protein domains with known 3D structure, organized hierarchically into folds, superfamilies, and
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families. Protein domain sequences belonging to different families but the samesuperfamily are
considered to be remote homologs in SCOP. In these experiments, remote homology is simulated
by holding out all members of a target SCOP family from a given superfamily as a test set, while
examples chosen from the remaining families in the same superfamily form the positive training
set. The negative test and training examples are chosen from disjoint setsof folds outside the target
family’s fold, so that negative test and negative training sets are unrelated to each other and to the
positive examples. More details of the experimental set-up can be found in Jaakkola et al. (1999).

While in principle, we can define and test inexact matching string kernels fora wide range
of parameters, in practice, only a small parameter range is biologically motivated for use in the
remote protein homology detection problem. For the exact matchingk-spectrum kernel (Leslie
et al., 2002a), the only interesting parameter choices arek = 3 andk = 4, since exact occurrences of
k-mers of lengthk≥ 5 in remotely homologous proteins are so rare that the spectrum kernel would
mostly be 0 off the diagonal. By incorporating inexact matching such as mismatches or gaps, we
can use slightly longer subsequence instances and allow a few mismatches orgaps; however, using
very long subsequences, or allowing a great amount of mutation of subsequence instances in our
inexact matching scheme, would not capture biologically realistic sequence similarity. For example,
for the gappy kernel, we expect that length(g,k) = (6,4) – 4-mers allowing up to 2 gaps – would
be a useful parameter choice, while allowing many more gaps and hence a longerg-length window
would be less useful. We test a range of parameter choices that seem reasonable in the experiments
below.

In the first and larger SCOP benchmark data set, based on SCOP version1.37, we compare to
the Fisher kernel of Jaakkola et al. (1999) in addition to our previous mismatch kernel. In the Fisher
kernel method, the feature vectors are derived from profile HMMs trained on the positive training
examples. The feature vector for sequencex is the gradient of the log likelihood function logP(x|θ)
defined by the model and evaluated at the maximum likelihood estimate for model parameters:
Φ(x) = ∇θ logP(x|θ)|θ=θ0. The Fisher kernel was the best performing method on this data set prior
to the mismatch-SVM approach, whose performance is as good as Fisher-SVM and better than all
other standard methods tried (Leslie et al., 2002b). We note that in this data set, additional positive
training sequences were pulled in from the non-redundant protein sequence database using an iter-
ative training method for the profile HMMs. The presence of these additional “domain homologs”
makes the learning task easier for all methods.

We also include a second set of experiments to further investigate the dependence of SVM
performance on parameter choices for the new kernels. This second data set is based on SCOP
version 1.59 and contains only sequences from the SCOP database – no domain homologs are
added. The experiments are similar to those described by Liao and Noble (2002) but use a more
recent version of SCOP. In this data set, the positive training sets are quitesmall, and the learning
task is more difficult in this setting. In particular, there is not enough positivetraining data to
train profile HMMs in these experiments, so we do not report Fisher kernel results (which are not
competitive in this setting).

There is another successful feature representation for protein classification, the SVM-pairwise
method presented in Liao and Noble (2002). Here one uses an empirical kernel map based on
pairwise Smith-Waterman (Waterman et al., 1991) alignment scores

Φ(x) = (d(x1,x), . . . ,d(xm,x)),
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wherexi , i = 1. . .m, are the training sequences andd(xi ,x) is the E-value for the alignment score
betweenx andxi . We have previously shown (Leslie et al., 2004) that the mismatch kernel used
with an SVM classifier is competitive with SVM-pairwise on the SCOP benchmark presented in
Liao and Noble (2002), so we do not repeat the SVM-pairwise experiments for the very similar
benchmark here.

In both experiments, we normalized the kernel byk(x,y)← k(x,y)√
k(x,x)
√

k(y,y)
. All methods are eval-

uated using the receiver operating characteristic (ROC) score, which isthe area under the receiver
operating curve, which plots the rate of true positives as a function of the rate of false positives as
the threshold for the classifier varies (Gribskov and Robinson, 1996).Perfect ranking of all positives
above all negatives gives an ROC score of 1, while a random classifierhas an expected score close to
0.5. We also use the ROC-50 score, which is the normalized area under the receiver operating curve
up to the first 50 false positives; this score focuses on the top of the ranking of the test examples
produced by the classifier and is more informative when there are very few positive examples in
the test set. Use of ROC-50 scores (or other ROC-N scores) is the most standard way of evaluating
performance of homology detection methods in bioinformatics (Gribskov and Robinson, 1996).

Finally, we use kernel alignment scores (Cristianini et al., 2001) on the second SCOP data set
to investigate the empirical differences between the different inexact matching models for protein
sequence data, and we investigate methods for combining kernels to improve SVM performance.

5.1 SCOP Experiments with Domain Homologs: Comparison with Fisher and Mismatch
Kernels

We first present experimental results for the new kernels on the larger of the two SCOP data sets, the
Fisher-SCOP benchmark introduced by Jaakkola et al. (1999) that contains domain homologs for
additional positive training data, and compare SVM classification performance to both the mismatch
kernel and the Fisher kernel.

We tested the(g,k)-gappy kernel with parameter choices(g,k) = (6,4), (7,4), (8,5), (8,6), and
(9,6). Among them(g,k) = (6,4) yielded the best results, though other choices of parameters had
quite similar performance (data not shown). We also tested the alternative weighted gappy kernel,
where the contribution of an instanceg-mer to ak-mer feature is a weighted sum of all the possible
matches of thek-mer to subsequences in theg-mer with multiplicative gap penaltyλ (0< λ≤ 1). We
used gap penaltyλ = 1.0 andλ = 0.5 with the(6,4) weighted gappy kernel. We found thatλ = 0.5
weighting slightly weakened performance (results not shown). In Figure5, we see that unweighted
and weighted (λ = 1.0) gappy kernels have comparable results to(5,1)-mismatch kernel and Fisher
kernel.

We tested the substitution kernels with(k,σ) = (4,6.0). Here,σ = 6.0 was chosen so that the
members of a mutation neighborhood of a particular 4-mer would typically have only one position
with a substitution, and such substitutions would have fairly high probability. Therefore, the mu-
tation neighborhoods were much smaller than, for example,(4,1)-mismatch neighborhoods. The
results are shown in Figure 6. Again, the substitution kernel has comparable performance with
mismatch-SVM and Fisher-SVM, though results are perhaps slightly weakerfor more difficult test
families.

In order to compare with the(5,1)-mismatch kernel, we tested wildcard kernels with parameters
(k,m,λ) = (5,1,1.0) and(k,m,λ) = (5,1,0.5). Results are shown in Figure 7. The wildcard kernel
with λ = 1.0 seems to perform as well or almost as well as the(5,1)-mismatch kernel and Fisher
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Figure 5: Comparison of of Mismatch-SVM, Fisher-SVM and Gappy-SVM. The graph plots
the total number of families for which a given method exceeds an ROC score threshold
(a) or ROC-50 score threshold (b).
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Figure 6: Comparison of mismatch-SVM, Fisher-SVM and substitution-SVM.The graph plots
the total number of families for which a given method exceeds an ROC score threshold
(a) or ROC-50 score threshold (b).

kernel, while enforcing a penalty on wildcard characters ofλ = 0.5 seems to weaken performance
somewhat.

If we compare results for the best-performing parameter choices that we tried from each kernel
family – the (5,1)-mismatch kernel, the(5,1,1.0)-wildcard kernel, the(6,4)-gappy kernel with
λ = 1.0, and the(4,6.0)-substitution kernel – then a signed ranked test with Bonferroni correction
for multiple comparisons (Henikoff and Henikoff, 1992, Salzberg, 1997) and a p-value cut-off of
0.05 finds no significant differences between the four kernels, either on the basis of ROC or ROC-50
scores.

5.2 SCOP Experiments without Domain Homologs: Dependence on Parameters

In the second set of SCOP experiments, we take advantage of the smaller data set from Weston
et al. (2003) to generate kernels corresponding to a wider range of parameter values, so that we
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Figure 7: Comparison of mismatch-SVM, Fisher-SVM and wildcard-SVM.The graph plots the
total number of families for which a given method exceeds an ROC score threshold (a) or
ROC-50 score threshold (b).

can explore how parameter choices affect SVM classification performance. We also use kernel
alignment and kernel-target alignment scores (Cristianini et al., 2001) to investigate differences
between different kernel models. Note that this data set contains no domainhomologs, and thus the
small amount of positive training data makes the experiments more difficult.

In experiments with the gappy kernel, we chose parameter values(g,k) = (6,4), (7,5) and(8,6)
and set the gap penalty toλ = 1.0, the preferred choice from the previous experiments. The choice
(g,k) = (6,4) still produced the best classification results, which were slightly but not significantly
weaker than those of(5,1)-mismatch kernel. The results are shown in Figure 8. Performance
deteriorates as larger values of theg parameter are chosen with the number of gaps held fixed.
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Figure 8: Dependence on parameters for the gappy kernel.The graph plots the total number of
families for which a given method exceeds an ROC (a) or ROC-50 (b) score threshold.

The substitution kernel was tested with parameter choices(k,σ) = (4,6.0),(5,7.5) and(6,9.0).
All of these three kernels gave slightly stronger performance than the(5,1)-mismatch kernel, and
results for the different parameter choices were remarkably similar, as shown in Figure 9. Thus,
more so than for other inexact matching models, the substitution kernel performance seems stable
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as we varyk while σ is adjusted additively; however, as we see below, the Gram matrices produced
by these different choices of kernels are in fact quite different.
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Figure 9: Dependence on parameters for substitution kernel.The graph plots the total number
of families for which a given method exceeds an ROC (a) or ROC-50 (b) score threshold.
Results for three parameter choices give almost identical results.

We tested the wildcard kernel with(k,m,λ) = (5,1,1.0) and(5,2,1.0). We observed a signif-
icant improvement in performance when we allowed up to 2 wildcards instead of 1 with k = 5.
The performance of(5,2,1.0)-wildcard kernel gave the best results among all kernel families and
parameters that we tried, though several other kernel choices gave very similar performance. The re-
sults are shown in Figure 10. Intuitively, it is clear that allowing 1 mismatch is closer to permitting 2
wildcards than to permitting a single wildcard: twok-mers that are identical except intwopositions
have intersecting(k,1)-mismatch neighborhoods and hence their(k,1)-mismatch feature vectors
have non-zero inner product; similarly, such a pair ofk-mers have non-orthogonal(k,2)-wildcard
feature vectors but orthogonal(k,1)-wildcard feature vectors.
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Figure 10: Dependence on parameters for the wildcard kernel.The graph plots the total number
of families for which a given method exceeds an ROC (a) or ROC-50 (b) score threshold.
In the graph, the curve of(5,2,1.0)-wildcard kernel clearly outperforms the(5,1,1.0)-
wildcard kernel.
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Kernel Kernel Alignment ROC ROC-50
(5,1)-mismatch 0.0982 0.875 0.416

(6,4)-gappy 0.1428 0.851 0.387
(7,5)-gappy 0.0269 0.825 0.315
(8,6)-gappy 0.0090 0.782 0.242

(4,6.0)-substitution 0.1643 0.876 0.441
(5,7.5)-substitution 0.0369 0.865 0.428
(6,9.0)-substitution 0.0170 0.871 0.442
(5,1,1.0)-wildcard 0.0310 0.816 0.304
(5,2,1.0)-wildcard 0.1565 0.881 0.447

Table 1: Mean ROC and ROC-50 scores over 54 target families.

Kernel (5,1)-mismatch (6,4)-gappy (4,6)-subst (6,9)-subst (5,1)-wildcard (5,2)-wildcard
(5,1)-mismatch 1.000 0.923 0.812 0.947 0.968 0.864
(6,4)-gappy 1.000 0.915 0.742 0.775 0.955
(4,6)-subst 1.000 0.591 0.622 0.942
(6,9)-subst 1.000 0.991 0.626
(5,1)-wildcard 1.000 0.669
(5,2)-wildcard 1.000

Table 2: Pairwise kernel alignment scores over the full SCOP data set.

In Table 1, we summarize the mean ROC and ROC-50 scores across the 54 target families for
all the string kernels families and parameter values chosen. The table also shows mean training
set kernel-target alignmentscores across the experiments. Kernel alignment was introduced by
Cristianini et al. (2001) as a measure of similarity between pairs of kernels or between a kernel and
a target function. Theempirical kernel alignmentscore between two kernels is defined as the value

〈K1,K2〉√
〈K1,K1〉〈K2,K2〉

, whereK1 andK2 are the Gram matrices for the kernels on the sample data, and

〈·, ·〉 is the euclidean inner product when the Gram matrices are viewed as vectors (Hilbert-Schmidt
inner product). Thus the alignment score is simply the cosine of the angle between the two vectors
representing Gram matrices. Theempirical kernel-target alignmentis the kernel alignment for a
Gram matrix and the targetyyt , wherey is the column vector of labels.

Table 1 shows that for the gappy and wildcard kernels, high kernel-target alignment scores do
seem to correlate with good SVM classification performance. However, for the substitution kernels,
the kernel-target alignment is low for larger values ofk while performance remains strong. In Table
2, we show the pairwise kernel alignment scores between normalized kernels on the full SCOP
data set of 7329 sequences. In some cases, the alignment scores between kernels of the same
family with different parameters can be quite low, for example the(5,1,1.0)-wildcard kernel and
(5,2,1.0)-wildcard kernel. Surprisingly, the(6,9)-substitution kernel Gram matrix is very similar to
the(5,1,1.0)-wildcard kernel Gram matrix when compared by alignment score, even though their
SVM performance is somewhat different, showing that the score gives only a rough measure of
kernel similarity. The(6,4)-gappy kernel,(4,6)-substitution kernel and(5,2,1.0)-wildcard kernel
are a group of well aligned Gram matrices.(5,1)-mismatch kernel seems to be in between the two
previous groups in terms of kernel alignment. Clearly, all the models of inexact matching are fairly
similar, but there do appear to be several significantly different Gram matrices in the set below that
all successfully represent the data for the purposes of SVM learning.
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Kernel ROC ROC-50
Keq(αi = 1) 0.907 0.520

Kopt(σ = 0.01) 0.901 0.502

Table 3: Mean ROC and ROC-50 scores of linearly combined kernels. Here Kopt = ∑N
i=1 αiKi ,

whereN is the number of kernels,α is the optimal vector for the best alignment with
targetyy′, and the the regularization parameter depends onσ as described in the text.

Since different kernels capture somewhat different notions of sequence similarity, we consider
whether a convex combination of kernelsK(α) = ∑N

i=1 αiKi , with αi ≥ 0 for i = 1. . .N, can outper-
form individual kernels. We consider two schemes for choosing such alinear combination. In the
first approach, we simply assign equal weightsαi = 1/N for all i to obtain a new kernelKeq. For
a second approach, we follow Kandola et al. (2002), who proposed ageneral method for learning
theαi by solving a optimization problem to maximize the kernel alignment between Gram matrix
of K(α) and targetyy′,

A(S,K(α),yy′) =
y′K(α)y
|y|||K(α)|| ,

yielding a new kernelKopt. Here, one introduces a regularization parameterλ to constrain||α|| and
prevent over-alignment; the optimization then amounts to a quadratic programmingproblem that
can be solved through standard methods. We now pick 6 kernels with relatively good performance
and low pairwise kernel alignment as components for the new kernel –(5,1)-mismatch,(6,4)-
gappy,(4,6.0)-substitution,(5,7.5)-substitution,(6,9.0)-substitution and(5,2,1.0)-wildcard – and
repeat the second set of SCOP experiments with these two linear combination kernels. ForKopt,
we use a regularization parameter of the formλ = σ

N2 ∑i j 〈Ki ,K j〉, where〈·, ·〉 is the Hilbert-Schmidt
inner product between matrices. We found that performance varied slightly but significantly as we
variedσ = .001, .01, .1,1,10,100,1000 (results not shown); since the experiments do not contain
a cross-validation set, we simply report the performance of the best parameter choice (σ = .01)
with the caveat that this result may be somewhat optimistic. We report the mean ROC and ROC-50
scores across 54 experiments for the simple caseKeq, and the optimal alignment caseKopt in Table
3. We found thatKopt with the best regularization parameter choice does achieve significant im-
provement over the best individual kernel (indeed, almost all regularization parameters that we tried
displayed some advantage over the best individual kernel); however,the simple weighting used in
Keq slightly outperformedKopt in these experiments. Interestingly, for most of 54 experiments,Kopt

(σ = 0.01) had non-zero weights only for the two best performing kernels, the(4,6.0)-substitution
and(5,2,1.0)-wildcard kernels, with the weight for the latter about an order of magnitudesmaller
than that of the former. These results suggest that some of the kernels are complementary to each
other and that combining them can help improve performance, though it appears that optimal align-
ment does not outperform a simple uniform weighting scheme for combining kernels.

6. Discussion

We have presented a number of differentk-mer based string kernels that capture a notion of inex-
act matching – through use of gaps, probabilistic substitutions, and wildcards – but maintain fast
computation time. Using a recursive function based on a trie data structure, we show that for all our
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new kernels, the time to compute a kernel valueK(x,y) is O(cK(|x|+ |y|)), where the constantcK

depends on the parameters of the kernel but not on the size of the alphabet Σ. Thus we improve on
the constant factor involved in computation of the previously presented mismatch kernel, in which
|Σ| as well ask andmcontrol the size of the mismatch neighborhood and hence the constantcK .

We also show how many of our kernels can be obtained through the recentlypresented trans-
ducer formalism of rationalT ◦T−1 kernels and give the transducerT for several examples. This
connection gives an intuitive understanding of the kernel definitions andcould inspire new string
kernels.

Finally, we present results on two benchmark SCOP data sets for the remote protein homology
detection problem and show that many of the new, faster kernels achieve performance comparable
to the mismatch kernel. We also investigate how kernel performance dependson parameter choice
for the different inexact matching models. Intuitively, it is clear that the onlybiological reasonable
choices involve shortk-mer features, since as we allowk to grow, we cannot permit sufficient inexact
matching without also introducing noise. However, within these constraints, our results demonstrate
the somewhat different behavior of the various kernel families.

We note that Vishwanathan and Smola (2002) used counting statistics and a suffix tree con-
struction to eliminate the constant factor ofk in computation time for the exact-matching spectrum
kernel (Leslie et al., 2002a). It may be possible to extend this technique to the fast inexact-matching
kernels presented here.

A promising direction for applied work in this area is combining string kernel representations
with semi-supervised approaches for leveraging the abundant unlabeled protein sequence data (se-
quences whose 3D structure is unknown) available in sequence databases. One recent approach is
presented by Weston et al. (2003), where string kernels are used as abase kernel representation,
and unlabeled sequence data together with a dissimilarity measure between sequence examples are
used to buildcluster kernelsthat modify the base kernel for a richer representation. In more recent
work (Kuang et al., 2004), we definek-mer based string kernels for probabilistic sequence profiles
(Gribskov et al., 1987), which also give a richer representation of sequences by estimating posi-
tion specific residue emission probabilities from unlabeled data. These profile-based string kernels
provide another promising semi-supervised approach for kernel representation of protein sequence
data.
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Abstract

Non-negative matrix factorization (NMF) is a recently developed technique for finding parts-based,
linear representations of non-negative data. Although it has successfully been applied in several
applications, it does not always result in parts-based representations. In this paper, we show how
explicitly incorporating the notion of ‘sparseness’ improves the found decompositions. Addition-
ally, we provide complete MATLAB code both for standard NMF and for our extension. Our hope
is that this will further the application of these methods tosolving novel data-analysis problems.

Keywords: non-negative matrix factorization, sparseness, data-adaptive representations

1. Introduction

A fundamental problem in many data-analysis tasks is to find a suitable representation of the data.
A useful representation typically makes latent structure in the data explicit, and often reduces the
dimensionality of the data so that further computational methods can be applied.

Non-negative matrix factorization (NMF) (Paatero and Tapper, 1994; Lee and Seung, 1999) is
a recent method for finding such a representation. Given a non-negative data matrixV, NMF finds
an approximate factorizationV ≈ WH into non-negative factorsW and H. The non-negativity
constraints make the representation purely additive (allowing no subtractions), in contrast to many
other linear representations such as principal component analysis (PCA) and independent compo-
nent analysis (ICA) (Hyv̈arinen et al., 2001).

One of the most useful properties of NMF is that it usually produces asparserepresentation
of the data. Such a representation encodes much of the data using few ‘active’ components, which
makes the encoding easy to interpret. Sparse coding (Field, 1994) has also, on theoretical grounds,
been shown to be a useful middle ground between completely distributed representations, on the
one hand, and unary representations (grandmother cells) on the other (Földiák and Young, 1995;
Thorpe, 1995). However, because the sparseness given by NMF issomewhat of a side-effect rather
than a goal, one cannot in any way control the degree to which the representation is sparse. In many
applications, more direct control over the properties of the representation is needed.

In this paper, we extend NMF to include the option to control sparseness explicitly. We show that
this allows us to discover parts-based representations that are qualitatively better than those given

c©2004 Patrik O. Hoyer.
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by basic NMF. We also discuss the relationship between our method and otherrecent extensions of
NMF (Li et al., 2001; Hoyer, 2002; Liu et al., 2003).

Additionally, this contribution includes a complete MATLAB package for performing NMF
and its various extensions. Although the most basic version of NMF requires only two lines of
code and certainly does not warrant distributing a separate software package, its several extensions
involve more complicated operations; the absense of ready-made code hasprobably hindered their
widespread use so far. We hope that our software package will alleviatethe problem.

This paper is structured as follows. In Section 2 we describe non-negative matrix factorization,
and discuss its success but also its limitations. Section 3 discusses why and how to incorporate
sparseness constraints into the NMF formulation. Section 4 provides experimental results that verify
our approach. Finally, Sections 5 and 6 compare our approach to other recent extensions of NMF
and conclude the paper.

2. Non-negative Matrix Factorization

Non-negative matrix factorization is alinear, non-negativeapproximate data representation. Let’s
assume that our data consists ofT measurements ofN non-negative scalar variables. Denoting the
(N-dimensional) measurement vectorsvt (t = 1, . . . ,T), a linear approximation of the data is given
by

vt ≈
M

∑
i=1

wih
t
i = Wht ,

whereW is anN×M matrix containing thebasis vectorswi as its columns. Note that each mea-
surement vector is written in terms of thesamebasis vectors. TheM basis vectorswi can be thought
of as the ‘building blocks’ of the data, and the (M-dimensional) coefficient vectorht describes how
strongly each building block is present in the measurement vectorvt .

Arranging the measurement vectorsvt into the columns of anN×T matrixV, we can now write

V ≈ WH,

where each column ofH contains the coefficient vectorht corresponding to the measurement vector
vt . Written in this form, it becomes apparent that a linear data representation is simpy a factorization
of the data matrix. Principal component analysis, independent componentanalysis, vector quanti-
zation, and non-negative matrix factorization can all be seen as matrix factorization, with different
choices of objective function and/or constraints.

Whereas PCA and ICA do not in any way restrict the signs of the entries ofW andH, NMF
requires all entries of both matrices to be non-negative. What this means is that the data is described
by using additive components only. This constraint has been motivated in a couple of ways. First,
in many applications one knows (for example by the rules of physics) that thequantities involved
cannot be negative. In such cases, it can be difficult to interpret the results of PCA and ICA (Paatero
and Tapper, 1994; Parra et al., 2000). Second, non-negativity hasbeen argued for based on the
intuition that parts are generally combined additively (and not subtracted) toform a whole; hence,
these constraints might be useful for learning parts-based representations (Lee and Seung, 1999).

Given a data matrixV, the optimal choice of matricesW andH are defined to be those non-
negative matrices that minimize the reconstruction error betweenV andWH. Various error func-
tions have been proposed (Paatero and Tapper, 1994; Lee and Seung, 2001), perhaps the most widely
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a c

b

Figure 1: NMF applied to various image data sets. (a) Basis images given
by NMF applied to face image data from the CBCL database
(http://cbcl.mit.edu/cbcl/software-datasets/FaceData2.html), follow-
ing Lee and Seung (1999). In this case NMF produces a parts-based represen-
tation of the data. (b) Basis images derived from the ORL face image database
(http://www.uk.research.att.com/facedatabase.html), following Li et al.
(2001). Here, the NMF representation is global rather than parts-based. (c) Basis vectors
from NMF applied to ON/OFF-contrast filtered natural image data (Hoyer, 2003). Top:
Weights for the ON-channel. Each patch represents the part of one basis vector wi

corresponding to the ON-channel. (White pixels denote zero weight, darker pixels
are positive weights.) Middle: Corresponding weights for the OFF-channel. Bottom:
Weights for ON minus weights for OFF. (Here, gray pixels denote zero.) Note that NMF
represents this natural image data using circularly symmetric features.

used is the squared error (euclidean distance) function

E(W,H) = ‖V−WH‖2 = ∑
i, j

(Vi j − (WH)i j )
2.

Although the minimization problem is convex inW and H separately, it is not convex in both
simultaneously. Paatero and Tapper (1994) gave a gradient algorithm for this optimization, whereas
Lee and Seung (2001) devised a multiplicative algorithm that is somewhat simpler to implement
and also showed good performance.

Although some theoretical work on the properties of the NMF representationexists (Donoho
and Stodden, 2004), much of the appeal of NMF comes from its empirical success in learning
meaningful features from a diverse collection of real-life data sets. Leeand Seung (1999) showed
that, when the data set consisted of a collection of face images, the representation consisted of
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basis vectors encoding for the mouth, nose, eyes, etc; the intuitive features of face images. In
Figure 1a we have reproduced that basic result using the same data set. Additionally, they showed
that meaningful topics can be learned when text documents are used as data. Subsequently, NMF
has been successfully applied to a variety of data sets (Buchsbaum and Bloch, 2002; Brunet et al.,
2004; Jung and Kim, 2004; Kim and Tidor, 2003).

Despite this success, there also exist data sets for which NMF does not give an intuitive decom-
position into parts that would correspond to our idea of the ‘building blocks’of the data. Li et al.
(2001) showed that when NMF was applied to a different facial image database, the representation
was global rather than local, qualitatively different from that reported by Lee and Seung (1999).
Again, we have rerun that experiment and confirm those results, see Figure 1b. The difference was
mainly attributed to how well the images were hand-aligned (Li et al., 2001).

Another case where the decomposition found by NMF does not match the underlying elements
of the data is shown in Figure 1c. In this experiment (Hoyer, 2003), natural image patches were high-
pass filtered and subsequently split into positive (‘ON’) and negative (‘OFF’) contrast channels, in
a process similar to how visual information is processed by the retina. When NMF is applied to
such a data set, the resulting decomposition does not consist of the orientedfilters which form
the cornerstone of most of modern image processing. Rather, NMF represents these images using
simple, dull, circular ‘blobs’.

We will show that, in both of the above cases, explicitly controlling the sparseness of the repre-
sentation leads to representations that are parts-based and match the intuitive features of the data.

3. Adding Sparseness Constraints to NMF

In this section, we describe the basic idea of sparseness, and show howto incorporate it into the
NMF framework.

3.1 Sparseness

The concept of ‘sparse coding’ refers to a representational schemewhere only a few units (out of a
large population) are effectively used to represent typical data vectors (Field, 1994). In effect, this
implies most units taking values close to zero while only few take significantly non-zero values.
Figure 2 illustrates the concept and our sparseness measure (defined below).

Numerous sparseness measures have been proposed and used in the literature to date. Such
measures are mappings fromRn to R which quantify how much energy of a vector is packed into
only a few components. On a normalized scale, the sparsest possible vector (only a single compo-
nent is non-zero) should have a sparseness of one, whereas a vector with all elements equal should
have a sparseness of zero.

In this paper, we use a sparseness measure based on the relationship between theL1 norm and
theL2 norm:

sparseness(x) =

√
n− (∑ |xi |)/

√

∑x2
i√

n−1
,

wheren is the dimensionality ofx. This function evaluates to unity if and only ifx contains only a
single non-zero component, and takes a value of zero if and only if all components are equal (up to
signs), interpolating smoothly between the two extremes.
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0.1 0.4 0.7 0.9

Figure 2: Illustration of various degrees of sparseness. Four vectors are shown, exhibiting sparse-
ness levels of 0.1, 0.4, 0.7, and 0.9. Each bar denotes the value of one element of the
vector. At low levels of sparseness (leftmost), all elements are roughly equally active.
At high levels (rightmost), most coefficients are zero whereas only a few take significant
values.

3.2 NMF with Sparseness Constraints

Our aim is to constrain NMF to find solutions with desired degrees of sparseness. The first question
to answer is then: what exactly should be sparse? The basis vectorsW or the coefficientsH? This
is a question that cannot be given a general answer; it all depends onthe specific application in
question. Further, just transposing the data matrix switches the role of the two, so it is easy to see
that the choice of which to constrain (or both, or none) must be made by the experimenter.

For example, a doctor analyzing disease patterns might assume that most diseases are rare
(hence sparse) but that each disease can cause a large number of symptoms. Assuming that symp-
toms make up the rows of her matrix and the columns denote different individuals, in this case it is
the ‘coefficients’ which should be sparse and the ‘basis vectors’ unconstrained. On the other hand,
when trying to learn useful features from a database of images, it might make sense to require both
W andH to be sparse, signifying that any given object ispresentin few images andaffectsonly a
small part of the image.

These considerations lead us to defining NMF with sparseness constraintsas follows:

Definition: NMF with sparseness constraints

Given a non-negative data matrix V of size N×T, find the non-negative matrices W and H of
sizes N×M and M×T (respectively) such that

E(W,H) = ‖V−WH‖2 (1)

is minimized, under optional constraints

sparseness(wi) = Sw, ∀i

sparseness(hi) = Sh, ∀i,

where wi is the i:th column of W and hi is the i:th row of H. Here, M denotes the number of
components, and Sw and Sh are the desired sparsenesses of W and H (respectively). These three
parameters are set by the user.
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Note that we did not constrain the scales ofwi or hi yet. However, sincewihi = (wiλ)(hi/λ)
we are free to arbitrarily fix any norm of either one. In our algorithm, we thus choose to fix theL2

norm ofhi to unity, as a matter of convenience.

3.3 Algorithm

We have devised a projected gradient descent algorithm for NMF with sparseness constraints. This
algorithm essentially takes a step in the direction of the negative gradient, andsubsequently projects
onto the constraint space, making sure that the taken step is small enough that the objective function
(1) is reduced at every step. The main muscle of the algorithm is the projectionoperator which
enforces the desired degree of sparseness. This operator is described in detail following this algo-
rithm.

Algorithm: NMF with sparseness constraints

1. Initialize W and H to random positive matrices

2. If sparseness constraints on W apply, then project each column of W to be non-negative, have
unchanged L2 norm, but L1 norm set to achieve desired sparseness

3. If sparseness constraints on H apply, then project each row of H to be non-negative, have unit
L2 norm, and L1 norm set to achieve desired sparseness

4. Iterate

(a) If sparseness constraints on W apply,

i. Set W := W−µW(WH−V)HT

ii. Project each column of W to be non-negative, have unchanged L2 norm, but L1

norm set to achieve desired sparseness

else take standard multiplicative step W := W⊗ (VHT)� (WHHT)

(b) If sparseness constraints on H apply,

i. Set H := H−µHWT(WH−V)

ii. Project each row of H to be non-negative, have unit L2 norm, and L1 norm set to
achieve desired sparseness

else take standard multiplicative step H := H⊗ (WTV)� (WTWH)

Above, ⊗ and � denote elementwise multiplication and division, respectively. Moreover, µW and µH

are small positive constants (stepsizes) which must be set appropriately for the algorithm to work.
Fortunately, they need not be set by the user; our implementation of the algorithm automatically
adapts these parameters. The multiplicative steps are directly taken from Lee and Seung (2001) and
are used when constraints are not to be applied.

Many of the steps in the above algorithm require a projection operator whichenforces sparse-
ness by explicitly setting bothL1 andL2 norms (and enforcing non-negativity). This operator is
defined as follows
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problem Given any vector x, find the closest (in the euclidean sense) non-negative vector s with a
given L1 norm and a given L2 norm.

algorithm The following algorithm solves the above problem. See below for comments.

1. Set si := xi +(L1−∑xi)/dim(x), ∀i

2. Set Z := {}
3. Iterate

(a) Set mi :=

{

L1/(dim(x)− size(Z)) if i /∈ Z
0 if i ∈ Z

(b) Set s := m + α(s−m), where α ≥ 0 is selected such that the resulting s satisfies
the L2 norm constraint. This requires solving a quadratic equation.

(c) If all components of s are non-negative, return s, end

(d) Set Z := Z∪{i;si < 0}
(e) Set si := 0, ∀i ∈ Z

(f) Calculate c := (∑si −L1)/(dim(x)− size(Z))

(g) Set si := si −c, ∀i /∈ Z

(h) Go to (a)

In words, the above algorithm works as follows: We start by projecting thegiven vector onto the
hyperplane∑si = L1. Next, within this space, we project to the closest point on the joint constraint
hypersphere (intersection of the sum and theL2 constraints). This is done by moving radially
outward from the center of the sphere (the center is given by the point where all components have
equal values). If the result is completely non-negative, we have arrived at our destination. If not,
those components that attained negative values must be fixed at zero, anda new point found in a
similar fashion under those additional constraints.

Note that, once we have a solution to the abovenon-negativeproblem, it would be straightfor-
ward to extend it to a general solution without non-negativity constraints. If a given component of
x is positive (negative), we know because of the symmetries ofL1 andL2 norms that the optimal
solutions will have the corresponding component positive or zero (negative or zero). Thus, we may
simply record the signs ofx, take the absolute value, perform the projection in the first quadrant
using the algorithm above, and re-enter the signs into the solution.

In principle, the devised projection algorithm may take as many as dim(x) iterations to converge
to the correct solution (because at each iteration the algorithm either converges, or at least one
component is added to the set of zero valued components). In practice, however, the algorithm
converges much faster. In Section 4 we show that even for extremely highdimensions the algorithm
typically converges in only a few iterations.

3.4 Matlab Implementation

Our software package, available athttp://www.cs.helsinki.fi/patrik.hoyer/ implements
all the details of the above algorithm. In particular, we monitor the objective functionE throughout
the optimization, and adapt the stepsizes to ensure convergence. The software package contains, in
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a b c

Figure 3: Features learned from the CBCL face image database using NMFwith sparseness con-
straints.(a) The sparseness of the basis images were fixed to 0.8, slightly higher than the
average sparseness produced by standard NMF, yielding a similar result. The sparseness
of the coefficients was unconstrained.(b) Here, we switched the sparseness constraints
such that the coefficients were constrained to 0.8 but the basis images wereunconstrained.
Note that this creates a global representation similar to that given by vector quantization
(Lee and Seung, 1999).(c) Illustration of another way to obtain a global representation:
setting the sparseness of the basis images to a low value (here: 0.2) also yields a non-local
representation.

addition to the projection operator and NMF code, all the files needed to reproduce the results de-
scribed in this paper, with the exception of data sets. For copyright reasons the face image databases
are not included, but they can easily be downloaded separately from their respective www addresses.

4. Experiments with Sparseness Constraints

In this section, we show that adding sparseness constraints to NMF can make it find parts-based
representations in cases where unconstrained NMF does not. In addition, we experimentally verify
our claim that the projection operator described in Section 3.3 converges inonly a few iterations
even when the dimensionality of the vector is high.

4.1 Representations Learned from Face Image Databases

Recall from Section 2 the mixed results of applying standard NMF to face imagedata. Lee and
Seung (1999) originally showed that NMF found a parts-based representation when trained on data
from the CBCL database. However, when applied to the ORL data set, in which images are not as
well aligned, a global decomposition emerges. These results were shown inFigure 1a and 1b. To
compare, we applied sparseness constrained NMF to both face image data sets.

For the CBCL data, some resulting bases are shown in Figure 3. Setting a highsparseness
value for the basis images results in a local representation similar to that foundby standard NMF.
However, we want to emphasize the fact that sparseness constrained NMF does not always lead to
local solutions: Global solutions can be obtained by deliberately setting a low sparseness on the
basis images, or by requiring a high sparseness on the coefficients (forcing each coefficient to try to
represent more of the image).
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a b c

Figure 4: Features learned from the ORL face image database using NMF with sparseness con-
straints. When increasing the sparseness of the basis images, the representation switches
from a global one (like the one given by standard NMF, cf Figure 1b) to alocal one.
Sparseness levels were set to(a) 0.5 (b) 0.6 (c) 0.75.

The ORL database provides the more interesting test of the method. In Figure4 we show bases
learned by sparseness constrained NMF, for various sparseness settings. Note that our method can
learn a parts-based representation of this data set, in contrast to standard NMF. Also note that the
representation is not very sensitive to the specific sparseness level chosen.

4.2 Basis Derived from Natural Image Patches

In Figure 1c we showed that standard NMF applied to natural image data produces only circular
features, not oriented features like those employed by modern image processing techniques. Here,
we tested the result of using additional sparseness constraints. Figure 5shows the basis vectors ob-
tained by putting a sparseness constraint on the coefficients (Sh = 0.85) but leaving the sparseness of
the basis vectors unconstrained. In this case, NMF learns oriented features that represent edges and
lines. Such oriented features are widely regarded as the best type of low-level features for represent-
ing natural images, and similar features are also used by the early visual system of the biological
brain (Field, 1987; Simoncelli et al., 1992; Olshausen and Field, 1996; Bell and Sejnowski, 1997).
This example illustrates that sparseness constrained NMF does not simply ‘sparsify’ the result of
standard, unconstrained NMF, but rather can find qualitatively different parts-based representations
that are more compatible with the sparseness assumptions.

4.3 Convergence of Algorithm Implementing the Projection Step

To verify the performance of our projection method we performed extensive tests, varying the num-
ber of dimensions, the desired degree of sparseness, and the sparseness of the original vector. The
desired and the initial degrees of sparseness were set to 0.1, 0.3, 0.5, 0.7, and 0.9, and the dimen-
sionality of the problem was set to 2, 3, 5, 10, 50, 100, 500, 1000, 3000, 5000, and 10000. All
combinations of sparsenesses and dimensionalities were analyzed. Basedon this analysis, the worst
case (most iterations on average required) was when the desired degree of sparseness was high (0.9)

1465



HOYER

Figure 5: Basis vectors from ON/OFF-filtered natural images obtained using NMF with sparseness
constraints. The sparseness of the coefficients was fixed at 0.85, andthe sparseness of
the basis images was unconstrained. As opposed to standard NMF (cf Figure 1c), the
representation is based on oriented, Gabor-like, features.
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Figure 6: Number of iterations required for the projection algorithm to converge, in the worst-case
scenario tested (desired sparseness 0.9, initial sparseness 0.1). Thesolid line shows the
average number (over identical random trials) of iterations required, thedashed lines
show the minimum and maximum iterations. Note that the number of iterations grows
very slowly with the dimensionality of the problem.

but the initial sparseness was low (0.1). In Figure 6 we plots the number of iterations required for
this worst case, as a function of dimensionality. Even in this worst-case scenario, and even for
the highest tested dimensionality, the algorithm never required more than 10 iterations to converge.
Thus, although we do not have analytical bounds on the performance onthe algorithm, empirically
the projection method performs extremely well.

5. Relation to Other Recent Work

Here, we describe how our method relates to other recently developed extensions of NMF and to
non-negative independent component analysis.
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5.1 Extensions of NMF

Several authors have noted the shortcomings of standard NMF, and suggested extensions and modi-
fications of the original model. Li et al. (2001) noted that NMF found only global features from the
ORL database (see Figure 1b) and suggested an extension they callLocalNon-negative Matrix Fac-
torization (LNMF). Their method indeed produces local features from theORL database, similar to
those given by our method (Figure 4c). However, it does not produceoriented filters from natural
image data (results not shown). Further, there is no way to explicitly controlthe sparseness of the
representation, should this be needed.

Hoyer (2002) extended the NMF framework to include an adjustable sparseness parameter. The
present paper is an extension of those ideas. The main improvement is that inthe present model
sparseness is adjusted explicitly, rather than implicitly. This means that one does not any more need
to employ trial-and-error to find the parameter setting that yields the desired level of sparseness.

Finally, Liu et al. (2003) also noted the need for incorporating the notion ofsparseness, and
suggested an extension termedSparseNon-negative Matrix Factorization (SNMF). Their extension
is similar in spirit and form to that given by Hoyer (2002) with the added benefit of yielding a more
convenient, faster algorithm. Nevertheless, it also suffers from the drawback that sparseness is only
controlled implicitly. Furthermore, their method does not yield oriented featuresfrom natural image
data (results not shown).

In summary, the framework presented in the present paper improves on these previous exten-
sions by allowing explicit control of the statistical properties of the representation.

In order to facilitate the use of, and comparison between, the various extensions of NMF, they
are all provided as part of the Matlab code package distributed with this paper. Using this package
readers can effortlessly verify our current claims by applying the algorithms to the various data sets.
Moreover, the methods can be compared head-to-head on new interestingdata sets.

5.2 Non-negative Independent Component Analysis

Our method has a close connection to the statistical technique called independent component anal-
ysis (ICA) (Hyvärinen et al., 2001). ICA attempts to find a matrix factorization similar to ours, but
with two important differences. First, the signs of the components are in general not restricted; in
fact, symmetry is often assumed, implying an approximately equal number of positive and negative
elements. Second, the sources are not forced to any desired degree of sparseness (as in our method)
but rather sparseness is incorporated into the objective function to be optimized. The sparseness
goal can be put on eitherW or H, or both (Stone et al., 2002).

Recently, some authors have considered estimating the ICA model in the case of one-sided,
non-negative sources (Plumbley, 2003; Oja and Plumbley, 2004). In these methods, non-negativity
is not specified as a constraint but rather as an objective; hence, complete non-negativity of the
representation is seldom achieved for real-life data sets. Nevertheless,one can show that if the
linear ICA model holds, with non-negative components, these methods can identify the model.

6. Conclusions

Non-negative matrix factorization (NMF) has proven itself a useful tool inthe analysis of a diverse
range of data. One of its most useful properties is that the resulting decompositions are often
intuitive and easy to interpret because they are sparse. Sometimes, however, the sparseness achieved
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by NMF is not enough; in such situations it might be useful to control the degree of sparseness
explicitly. Our main contributions of this paper were (a) to describe a projection operator capable
of simultaneously enforcing bothL1 andL2 norms and hence any desired degree of sparseness, (b)
to show its use in the NMF framework for learning representations that couldnot be obtained by
regular NMF, and (c) to provide a software package to enable researchers and practitioners to easily
perform NMF and its various extensions. We hope that all three contributions will prove useful to
the field of data-analysis.
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Abstract
Policy gradient methods for reinforcement learning avoid some of the undesirable properties of

the value function approaches, such as policy degradation (Baxter and Bartlett, 2001). However,
the variance of the performance gradient estimates obtained from the simulation is sometimes ex-
cessive. In this paper, we consider variance reduction methods that were developed for Monte
Carlo estimates of integrals. We study two commonly used policy gradient techniques, the baseline
and actor-critic methods, from this perspective. Both can be interpreted as additive control variate
variance reduction methods. We consider the expected average reward performance measure, and
we focus on the GPOMDP algorithm for estimating performancegradients in partially observable
Markov decision processes controlled by stochastic reactive policies. We give bounds for the esti-
mation error of the gradient estimates for both baseline andactor-critic algorithms, in terms of the
sample size and mixing properties of the controlled system.For the baseline technique, we compute
the optimal baseline, and show that the popular approach of using the average reward to define the
baseline can be suboptimal. For actor-critic algorithms, we show that using the true value function
as the critic can be suboptimal. We also discuss algorithms for estimating the optimal baseline and
approximate value function.

Keywords: reinforcement learning, policy gradient, baseline, actor-critic, GPOMDP

1. Introduction

The task in reinforcement learning problems is to select a controller that will perform well in some
given environment. This environment is often modelled as a partially observable Markov decision
process (POMDP); see, for example, Kaelbling et al. (1998); Aberdeen (2002); Lovejoy (1991).
At any step in time this process sits in some state, and that state is updated when thePOMDP is
supplied with an action. An observation is generated from the current stateand given as information
to a controller. A reward is also generated, as an indication of how good that state is to be in.
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The controller can use the observations to determine which action to produce, thereby altering the
POMDP state. The expectation of the average reward over possible future sequences of states
given a particular controller (the expected average reward) can be used as a measure of how well
a controller performs. This performance measure can then be used to select a controller that will
perform well.

Given a parameterized space of controllers, one method to select a controller is by gradient
ascent (see, for example, Glynn, 1990; Glynn and L‘Ecuyer, 1995;Reiman and Weiss, 1989; Ru-
binstein, 1991; Williams, 1992). An initial controller is selected, then the gradient direction in the
controller space of the expected average reward is calculated. The gradient information can then be
used to find the locally optimal controller for the problem. The benefit of usinga gradient approach,
as opposed to directly comparing the expected average reward at different points, is that it can be
less susceptible to error in the presence of noise. The noise arises fromthe fact that we estimate,
rather than calculate, properties of the controlled POMDP.

Determining the gradient requires the calculation of an integral. We can produce an estimate
of this integral through Monte Carlo techniques. This changes the integration problem into one of
calculating a weighted average of samples. It turns out that these samples can be generated purely
by watching the controller act in the environment (see Section 3.3). However, this estimation tends
to have a high variance associated with it, which means a large number of stepsis needed to obtain
a good estimate.

GPOMDP (Baxter and Bartlett, 2001) is an algorithm for generating an estimateof the gradient
in this way. Compared with other approaches (such as the algorithms described in Glynn, 1990;
Rubinstein, 1991; Williams, 1992, for example), it is especially suitable for systems with large state
spaces, when the time between visits to a recurrent state is large but the mixing timeof the controlled
POMDP is short. However, it can suffer from the problem of high variance in its estimates. We seek
to alter GPOMDP so that the estimation variance is reduced, and thereby reduce the number of steps
required to train a controller.

One generic approach to reducing the variance of Monte Carlo estimates ofintegrals is to use
an additive control variate (see, for example, Hammersley and Handscomb, 1965; Fishman, 1996;
Evans and Swartz, 2000). Suppose we wish to estimate the integral of the function f :X → R, and
we happen to know the value of the integral of another function on the same spaceϕ : X → R. As
we have

Z

X
f(x) =

Z

X
(f(x)−ϕ(x))+

Z

X
ϕ(x) (1)

the integral of f(x)−ϕ(x) can be estimated instead. Obviously ifϕ(x) = f(x) then we have managed
to reduce our variance to zero. More generally,

Var( f −ϕ) = Var( f )−2Cov( f ,ϕ)+Var(ϕ).

If ϕ and f are strongly correlated, so that the covariance term on the right hand side is greater than
the variance ofϕ, then a variance improvement has been made over the original estimation problem.

In this paper, we consider two applications of the control variate approach to the problem of
gradient estimation in reinforcement learning. The first is the technique of adding a baseline, which
is often used as a way to affect estimation variance whilst adding no bias. Weshow that adding a
baseline can be viewed as a control variate method, and we find the optimal choice of baseline to
use. We show that the additional variance of a suboptimal baseline can be expressed as a certain
weighted squared distance between the baseline and the optimal one. A constant baseline, which
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does not depend on the state, has been commonly suggested (Sutton and Barto, 1998; Williams,
1992; Kimura et al., 1995, 1997; Kimura and Kobayashi, 1998b; Marbach and Tsitsiklis, 2001). The
expectation over all states of the discounted value of the state has been proposed, and widely used,
as a constant baseline, by replacing the reward at each step by the difference between the reward and
the average reward. We give bounds on the estimation variance that showthat, perhaps surprisingly,
this may not be the best choice. Our results are consistent with the experimental observations of
Dayan (1990).

The second application of the control variate approach is the use of a value function. The
discounted value function is usually not known, and needs to be estimated. Using some fixed, or
learnt, value function in place of this estimate can reduce the overall estimation variance. Such
actor-critic methodshave been investigated extensively (Barto et al., 1983; Kimura and Kobayashi,
1998a; Baird, 1999; Sutton et al., 2000; Konda and Tsitsiklis, 2000, 2003). Generally the idea
is to minimize some notion of distance between the value function and the true discounted value
function, using, for example, TD (Sutton, 1988) or Least-Squares TD (Bradtke and Barto, 1996).
In this paper we show that this may not be the best approach: selecting a value function to be equal
to the true discounted value function is not always the best choice. Even more surprisingly, we
give examples for which the use of a value function that is different fromthe true discounted value
function reduces the variance to zero, for no increase in bias. We consider a value function to be
forming part of a control variate, and find a corresponding bound on the expected squared error (that
is, including the estimation variance) of the gradient estimate produced in this way.

While the main contribution of this paper is in understanding a variety of ideas in gradient
estimation as variance reduction techniques, our results suggest a numberof algorithms that could
be used to augment the GPOMDP algorithm. We present new algorithms to learn the optimum
baseline, and to learn a value function that minimizes the bound on the expectedsquared error of
a gradient estimate, and we describe the results of preliminary experiments, which show that these
algorithms give performance improvements.

2. Overview of Paper

Section 3 gives some background information. The POMDP setting and controller are defined, and
the measure of performance and its gradient are described. Monte Carloestimation of integrals,
and how these integrals can be estimated, is covered, followed by a discussion of the GPOMDP
algorithm, and how it relates to the Monte Carlo estimations. Finally, we outline the control variates
that we use.

The samples used in the Monte Carlo estimations are taken from a single sequence of observa-
tions. Little can be said about the correlations between these samples. However, Section 4 shows
that we can bound the effect they have on the variance in terms of the variance of the iid case (that
is, when samples are generated iid according to the stationary distribution of the Markov chain).

Section 5 derives results for a baseline control variate in the iid setting, using results in Section 4
to interpret these as bounds in the more general case. In particular, we give an expression for the
minimum variance that may be obtained, and the baseline that achieves this minimum variance. The
section also compares the minimum variance against the common technique of using the expectation
over states of the discounted value function, and it looks at a restricted class of baselines that use
only observation information.
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Section 6 looks at the technique of replacing the estimate of the discounted value function with
some value function, in a control variate context. It shows that using the true discounted value
function may not be the best choice, and that additional gains may be made. It also gives bounds on
the expected squared error introduced by a value function.

Section 7 presents an algorithm to learn the optimal baseline. It also presentsan algorithm to
learn a value function by minimizing an estimate of the resulting expected squarederror. Section 8
describes the results of experiments investigating the performance of thesealgorithms.

3. Background

Here we formally define the learning setting, including the performance and itsgradient. We then
give an intuitive discussion of the GPOMDP algorithm, starting with its approximation to the true
gradient, and how it may be estimated by Monte Carlo techniques. Finally, we introduce the two
variance reduction techniques studied in this paper.

3.1 System Model

A partially observable Markov decision process (POMDP) can be modelledby a system consisting
of a state space,S , an action space,U, and an observation space,Y , all of which will be considered
finite here. State transitions are governed by a set of probability transition matricesP(u), where
u ∈ U, components of which will be denoted pi j (u), wherei, j ∈ S . There is also an observation
processν : S →PY , wherePY is the space of probability distributions overY , and a reward function
r : S → R. Together these define the POMDP(S ,U,Y ,P,ν, r).

A policy for this POMDP is a mappingµ : Y ∗ → PU , whereY ∗ denotes the space of all finite
sequences of observationsy1, . . . ,yt ∈ Y andPU is the space of probability distributions overU. If
only the set of reactive policiesµ : Y → PU is considered then the joint process of state, observation
and action, denoted{Xt ,Yt ,Ut}, is Markov. This paper considers reactive parameterized policies
µ(y,θ), whereθ ∈ R

K andy∈ Y . A reactive parameterized policy together with a POMDP defines
acontrolled POMDP(S ,U,Y ,P,ν, r,µ). See Figure 1.

ytut

-

rt
environment

� �

6
�

xt

r(xt)

Pxt (ut) ν(xt)

controller

-µ(θ,yt)

Average Reward:η = limT→∞ E
[

1
T ∑T−1

t=0 r(Xt)
]

Figure 1: POMDP with reactive parameterized policy
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Given a controlled POMDP the subprocess of states,{Xt}, is also Markov. A parameterized
transition matrixP(θ), with entries pi j (θ), can be constructed, with

pi j (θ) = Ey∼ν(i)
[

Eu∼µ(y,θ) [pi j (u)]
]

= ∑
y∈Y ,u∈U

νy(i)µu(y,θ)pi j (u),

whereνy(i) denotes the probability of observationy given the statei, andµu(y,θ) denotes the proba-
bility of actionu given the parametersθ and an observationy. The Markov chain M(θ) = (S ,P(θ))
then describes the behavior of the process{Xt}.

We will also be interested in the special case where the state is fully observable.

Definition 1. A controlled Markov decision processis a controlled POMDP(S ,U,Y ,P,ν, r,µ)
with Y = S andνy(i) = δyi, where

δyi =

{

1 y = i
0 otherwise,

and is defined by the tuple(S ,U,P, r,µ) .

In this case the set of reactive policies contains the optimal policy, that is, for our performance
measure there is a reactive policy that will perform at least as well as anyhistory dependent policy.
Indeed, we need only consider mappings to point distributions over actions. Of course, this is not
necessarily true of the parameterized class of reactive policies. In the partially observable setting
the optimal policy may be history dependent; although a reactive policy may still perform well. For
a study of using reactive policies for POMDPs see Singh et al. (1994); Jaakkola et al. (1995); Baird
(1999). For a recent survey of POMDP techniques see Aberdeen (2002).

We operate under a number of assumptions for the controlled POMDP(S ,U,Y ,P,ν, r,µ). Note
that any arbitrary vectorv is considered to be a column vector, and that we writev′ to denote
its transpose, a row vector. Also, the operator∇ takes a function f(θ) to a vector of its partial
derivatives, that is

∇f(θ) =

(

∂f(θ)

∂θ1
, . . . ,

∂f(θ)

∂θK

)′
,

whereθk denotes thekth element ofθ.

Assumption 1. For all θ ∈ R
K the Markov chainM(θ) = (S ,P(θ)) is irreducible and aperiodic

(ergodic), and hence has a unique stationary distributionπ(θ) satisfying

π(θ)′P(θ) = π(θ)′

The termsirreducible and aperiodic are defined in Appendix A. Appendix A also contains
a discussion of Assumption 1 and how both the irreducibility and aperiodicity conditions may be
relaxed.

Assumption 2. There is aR < ∞ such that for all i∈ S , |r(i)| ≤ R.

Assumption 3. For all u ∈ U, y∈ Y andθ ∈ R
K the partial derivatives

∂µu(y,θ)

∂θk
, ∀k∈ {1, . . . ,K}
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exist and there is aB < ∞ such that the Euclidean norms
∥

∥

∥

∥

∇µu(y,θ)

µu(y,θ)

∥

∥

∥

∥

are uniformly bounded byB. We interpret0/0 to be 0 here, that is, we may have µu(y,θ) = 0

provided‖∇µu(y,θ)‖ = 0. The Euclidean norm of a vector v is given by
√

∑k v2
k.

Note that Assumption 3 implies that

∥

∥

∥

∥

∇pi j (θ)

pi j (θ)

∥

∥

∥

∥

≤ B,

where, as in Assumption 3, we interpret 0/0 to be 0, and so we may have pi j (θ) = 0 provided
‖∇pi j (θ)‖ = 0. This bound can be seen from

∥

∥∇pi j (θ)
∥

∥ =

∥

∥

∥

∥

∥

∇ ∑
y∈Y ,u∈U

νy(i)µu(y,θ)pi j (u)

∥

∥

∥

∥

∥

=

∥

∥

∥

∥

∥

∑
y∈Y ,u∈U

νy(i)∇µu(y,θ)pi j (u)

∥

∥

∥

∥

∥

≤ B ∑
y∈Y ,u∈U

νy(i)µu(y,θ)pi j (u)

= Bpi j (θ).

A useful measure of the system’s performance is the expected average reward,

η(θ)
def
= lim

T→∞
E

[

1
T

T−1

∑
t=0

r(Xt)

]

. (2)

From Equation (24) in Appendix A we see thatη(θ) = E[r(X)|X ∼ π(θ)], and hence is independent
of the starting state. In this paper we analyze certain training algorithms that aimto select a policy
such that this quantity is (locally) maximized.

It is also useful to consider the discounted value function,

Jβ(i,θ)
def
= lim

T→∞
E

[

T−1

∑
t=0

βtr(Xt)

∣

∣

∣

∣

∣

X0 = i

]

.

Throughout the rest of the paper the dependence uponθ is assumed, and dropped in the notation.

3.2 Gradient Calculation

It is shown in Baxter and Bartlett (2001) that we can calculate an approximation to the gradient of
the expected average reward by

∇βη = ∑
i, j∈S

πi∇pi j Jβ( j),
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and that the limit of∇βη asβ approaches 1 is the true gradient∇η. Note that∇βη is a parameterized
vector in R

K approximating the gradient ofη, and there need not exist any function f(θ) with
∇f(θ) = ∇βη.

The gradient approximation∇βη can be considered as the integration over the state transition
space,

∇βη =
Z

(i, j)∈S×S
πi∇pi j Jβ( j)C(di×d j), (3)

whereC is a counting measure, that is, for a countable spaceC , and a setA⊂ C , we haveC(A) =
card(A) whenA is finite, andC(A) = ∞ otherwise. Here card(A) is the cardinality of the setA. It is
unlikely that the true value function will be known. The value function can, however, be expressed
as the integral over a sample path of the chain, as Assumption 1 implies ergodicity.

∇βη =
Z

(i0,i1,...)∈S×S×...
πi0 (∇pi0i1) pi1i2 pi2i3 . . .

(

r(i1)+βr(i2)+β2r(i3)+ · · ·
)

C(di0×. . .).

To aid in analysis, the problem will be split into an integral and a sub integral problem.

∇βη =
Z

(i, j)∈S×S

Z

(x1,...)∈S×...
πi (∇pi j )δx1 j px1x2 . . .(r(x1)+ · · ·)C(dx1×. . .)C(di×d j)

=
Z

(i, j)∈S×S
πi (∇pi j )

Z

(x1,...)∈S×...
δx1 j px1x2 . . .(r(x1)+ · · ·)C(dx1×. . .)C(di×d j).

3.3 Monte Carlo Estimation

Integrals can be estimated through the use of Monte Carlo techniques by averaging over samples
taken from a particular distribution (see Hammersley and Handscomb, 1965;Fishman, 1996; Evans
and Swartz, 2000). Take a function f :X → R and a probability distributionρ over the spaceX . An
unbiased estimate of

R

x∈X f(x) can be generated from samples{x0,x1, . . . ,xm−1} taken fromρ by

1
m

m−1

∑
n=0

f(xn)

ρ(xn)
.

Consider a finite ergodic Markov chainM = (S ,P) with stationary distributionπ. Generate the
Markov process{Xt} from M starting from the stationary distribution. The integral of the function
f : S → R over the spaceS can be estimated by

1
T

T−1

∑
t=0

f(Xt)

πXt

.

This can be used to estimate the integral
Z

(i, j)∈S×S
πi∇pi j Jβ( j)C(di×d j).

The finite ergodic Markov chainM = (S ,P), with stationary distributionπ, can be used to create
the extended Markov process{Xt ,Xt+1} and its associated chain. Its stationary distribution has the
probability mass functionρ(i, j) = πi pi j , allowing the estimation of the above integral by

1
T

T−1

∑
t=0

∇pXtXt+1

pXtXt+1

Jt+1, Jt =
∞

∑
s=t

βs−tr(Xs). (4)

1477



GREENSMITH, BARTLETT AND BAXTER

In addition to the Monte Carlo estimation, the value function has been replaced with an unbiased
estimate of the value function. In practice we would need to truncate this sum; a point discussed in
the next section. Note, however, that

E

[

1
T

T−1

∑
t=0

∇pXtXt+1

pXtXt+1

Jt+1

]

=
1
T

T−1

∑
t=0

E

[

∇pXtXt+1

pXtXt+1

E [Jt+1|Xt+1]

]

= E

[

1
T

T−1

∑
t=0

∇pXtXt+1

pXtXt+1

Jβ(Xt+1)

]

.

We will often be looking at estimates produced by larger Markov chains, such as that formed by
the process{Xt ,Yt ,Ut ,Xt+1}. The discussion above also holds for functions on such chains.

3.4 GPOMDP Algorithm

The GPOMDP algorithm uses a single sample path of the Markov process{Zt} = {Xt ,Yt ,Ut ,Xt+1}
to produce an estimate of∇βη. We denote an estimate produced by GPOMDP withT samples by
∆T .

∆T
def
=

1
T

T−1

∑
t=0

∇µUt
(Yt)

µUt (Yt)
Jt+1, Jt

def
=

T

∑
s=t

βs−tr(Xs). (5)

This differs from the estimate given in (4), but can be obtained similarly by considering the estima-
tion of ∇βη by samples from{Zt}, and noting that

∇pi j = ∑
y∈Y ,u∈U

νy(i)∇µu(y)pi j (u).

GPOMDP can be represented as the two dimensional calculation

∆T = 1
T

(

f(Z0) J1 + f(Z1) J2 + · · · + f(ZT−1) JT
)

def
= def
= ...

def
=

g(Z0) g(Z1) ...
g(ZT−1)

+βg(Z1) +βg(Z2)
+β2g(Z2)

...

... +βT−2g(ZT−1)
+βT−1g(ZT−1)

where f(Zt) = (∇µUt (Yt))/µUt (Yt) and g(Zt) = r(Xt+1).
One way to understand the behavior of GPOMDP is to assume that the chains being used to

calculate eachJt sample are independent. This is reasonable when the chain is rapidly mixing and
T is large compared with the mixing time, because then most pairsJt1 andJt2 are approximately

independent. ReplacingJt by these independent versions,J(ind)
t , the calculation becomes

∆(ind)
T

def
= 1

T

(

f(Z0) J(ind)
1 + f(Z1) J(ind)

2 + · · · + f(ZT−1) J(ind)
T

)

def
= def
= ...

def
=

g(Z00) g(Z10) ...
g
(

Z(T−1)0
)

+βg(Z01) +βg(Z11)
+β2g(Z02)

...

... +βT−2g
(

Z1(T−2)

)

+βT−1g
(

Z0(T−1)

)
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where the truncated process{Ztn} is an independent sample path generated from the Markov chain
of the associated POMDP starting from the stateZt = Zt0.

The truncation of the discounted sum of future rewards would cause a bias from ∇βη. By
consideringT to be large compared to 1/(1−β) then this bias becomes small for a large proportion

of the samples. Replacing eachJ(ind)
t by an untruncated version,J(est)

t , shows how GPOMDP can
be thought of as similar to the calculation

∆(est)
T

def
= 1

T

(

f(Z0) J(est)
1 + f(Z1) J(est)

2 + · · · + f(ZT−1) J(est)
T

)

def
= def
= ...

def
=

g(Z00) g(Z10) ...
g
(

Z(T−1)0
)

+βg(Z01) +βg(Z11) +βg
(

Z(T−1)1
)

+β2g(Z02) +β2g(Z12) +β2g
(

Z(T−1)2
)

...
...

...

The altered∆T sum can be written as

∆(est)
T =

1
T

T−1

∑
t=0

∇µUt (Yt)

µUt (Yt)
J(est)
t+1 . (6)

3.5 Variance Reduction

Equation (1) shows how a control variate can be used to change an estimation problem. To be of
benefit the use of the control variate must lower estimation variance, and theintegral of the control
variate must have a known value. We look at two classes of control variatefor which the value of
the integral may be determined (or assumed).

The Monte Carlo estimates performed use correlated samples, making it difficult to analyze the
variance gain. Given that we wish to deal with quite unrestricted environments, little is known about
this sample correlation. We therefore consider the case of iid samples and show how this case gives
a bound on the case using correlated samples.

The first form of control variate considered is the baseline control variate. With this, the integral
shown in Equation (3) is altered by a control variate of the formπi∇pi j b(i).

Z

(i, j)∈S×S
πi∇pi j Jβ( j)C(di×d j) =

Z

(i, j)∈S×S
πi∇pi j

(

Jβ( j)−b(i)
)

C(di×d j)

+
Z

(i, j)∈S×S
πi∇pi j b(i)C(di×d j)

The integral of the control variate term is zero, since
Z

(i, j)∈S×S
πi∇pi j b(i)C(di×d j) = ∑

i∈S

πib(i)∇ ∑
j∈S

pi j

= ∑
i∈S

πib(i)∇(1)

= 0. (7)

Thus, we are free to select an arbitrary b(i) with consideration for the variance minimization alone.
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The second form of control variate considered is constructed from a value function, V( j), a
mappingS → R.

Z

(i, j)∈S×S
πi∇pi j Jβ( j)C(di×d j) =

Z

(i, j)∈S×S
πi∇pi j

(

Jβ( j)−
(

Jβ( j)−V( j)
))

C(di×d j)

+
Z

(i, j)∈S×S
πi∇pi j

(

Jβ( j)−V( j)
)

C(di×d j)

The integral of this control variate (the last term in the equation above) is theerror associated with
using a value function in place of the true discounted value function. The task is then to find a value
function such that the integral of the control variate is small, and yet it still provides good variance
minimization of the estimated integral.

Note that the integrals being estimated here are vector quantities. We considerthe trace of the
covariance matrix of these quantities, that is, the sum of the variance of the components of the
vector. Given the random vectorA = (A1,A2, . . . ,Ak)

′, we write

Var(A) =
k

∑
m=1

Var(Am) = E
[

(A−E [A])′ (A−E [A])
]

= E

[

(A−E [A])2
]

,

where, for a vectora, a2 denotesa′a.

4. Dependent Samples

In Sections 5 and 6 we study the variance of quantities that, like∆(est)
T (Equation (6)), are formed

from the sample average of a process generated by a controlled (PO)MDP. From Section 3 we know
this process is Markov, is ergodic, and has a stationary distribution, and so the sample average is
an estimate of the expectation of a sample drawn from the stationary distribution,π (note that, as
in Section 3.3, we can also look at samples formed from an extended space,and its associated
stationary distributions). In this section we investigate how the variance of thesample average
relates to the variance of a sample drawn fromπ. This allows us to derive results for the variance of
a sample drawn fromπ and relate them to the variance of the sample average. In the iid case, that
is, when the process generates a sequence of samplesX0, . . . ,XT−1 drawn independently from the
distributionπ, we have the relationship

Var

(

1
T

T−1

∑
t=0

f(Xt)

)

=
1
T

Var(f(X)),

whereX is a random variable also distributed according toπ. More generally, however, correlation
between the samples makes finding an exact relationship difficult. Instead welook to find a bound
of the form

Var

(

1
T

T−1

∑
t=0

f(Xt)

)

≤ h

(

1
T

Var(f(X))

)

,

where h is some “well behaved” function.
We first define a notion of mixing time for a Markov chain. The mixing time is a measureof

the forgetfulness of a Markov chain. More specifically, it is a measure ofhow long it takes for the
distance between the distributions of two sequences, starting in distinct states, to become small. The
distance measure we use is the total variation distance.
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Definition 2. Thetotal variation distancebetween two distributions p,q on the finite setS is given
by

dTV(p,q)
def
=

1
2 ∑

i∈S

|pi −qi |.

Definition 3. Themixing timeof a finite ergodic Markov chain M= (S ,P) is defined as

τ def
= min

{

t > 0 : max
i, j

dTV
(

Pt
i ,P

t
j

)

≤ e−1
}

,

where Pti denotes the ith row of the t-step transition matrix Pt .

The results in this section are given for a Markov chain with mixing timeτ. In later sections we
will use τ as a measure of the mixing time of the resultant Markov chain of states of a controlled
(PO)MDP, but will look at sample averages over larger spaces. The following lemma, due to Bartlett
and Baxter (2002), shows that the mixing time does not grow too fast when looking at the Markov
chain on sequences of states.

Lemma 1. (Bartlett and Baxter, 2002, Lemma 4.3) If the Markov chain M= (S ,P) has mixing time
τ, then the Markov chain formed by the process{Xt ,Xt+1, . . . ,Xt+k} has mixing timẽτ, where

τ̃ ≤ τ ln(e(k+1)) .

Note 1. For a controlled POMDP, the Markov chain formed by the process
{Xt ,Xt+1, . . . ,Xt+k} has the same mixing time as the Markov chain formed by the process
{Xt ,Yt ,Ut ,Xt+1, . . . ,Yt+k−1,Ut+k−1,Xt+k}.

We now look at showing the relationship between the covariance between twosamples in a
sequence and the variance of an individual sample. We show that the gainof the covariance of two
samplesXt ,Xt+s over the variance of an individual sample decreases exponentially ins.

Theorem 2. Let M= (S ,P) be a finite ergodic Markov chain, and letπ be its stationary distribution.
Let f be some mappingf : S →R. The tuple(M, f) has associated positive constantsα andL (called
mixing constants(α,L)) such that, for all t≥ 0,

|Covπ(t; f)| ≤ LαtVar(f(X))

where X∼ π, and Covπ(t; f) is the auto-covariance of the process{f(Xs)}, i.e. Covπ(t; f) =
Eπ [(f(Xs)−Eπf(Xs))(f(Xs+t)−Eπf(Xs+t))], whereEπ[·] denotes the expectation over the chain
with initial distribution π. Furthermore, if M has mixing timeτ, we have:

1. for reversible M, and anyf , we may chooseL = 2e andα = exp(−1/τ); and

2. for any M (that is, any finite ergodic M), and anyf , we may chooseL =
√

2|S |e andα =
exp(−1/(2τ)).

The proof is shown in Appendix B, along with proofs for the rest of this section.
Using this result, the variance of the sample average can be bounded as follows.
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Theorem 3. Let M = (S ,P) be a finite ergodic Markov chain, with mixing timeτ, and letπ be its
stationary distribution. Letf be some mappingf : S → R. Let{Xt} be a sample path generated by
M, with initial distribution π, and let X∼ π. With (M, f) mixing constants(α,L) chosen such that
α ≤ exp(−1/(2τ)), there is anΩ∗ ≤ 6Lτ such that

Var

(

1
T

T−1

∑
t=0

f(Xt)

)

≤ Ω∗

T
Var(f(X)).

Provided acceptable mixing constants can be chosen, Theorem 3 gives the same rate as in the
case of independent random variables, that is, the variance decreases asO(1/T). The most that can
be done to improve the bound of Theorem 3 is to reduce the constantΩ∗. It was seen, in Theorem 2,
that good mixing constants can be chosen for functions on reversible Markov chains. We would like
to deal with more general chains also, and the mixing constants given in Theorem 2 for functions on
ergodic Markov chains lead toΩ∗ increasing with the size of the state space. However, for bounded
functions on ergodic Markov chains we have the following result:

Theorem 4. Let M= (S ,P) be a finite ergodic Markov chain, and letπ be its stationary distribution.
If M has mixing timeτ, then for any functionf : S → [−c,c] and any0 < ε < e−1, we have

Var

(

1
T

T−1

∑
t=0

f(Xt)

)

≤ ε+

(

1+25τ(1+c)ε+4τ ln
1
ε

)

1
T

Var(f(X)) ,

where{Xt} is a process generated by M with initial distribution X0 ∼ π, and X∼ π.

Here we have an additional errorε, which we may decrease at the cost of a lnε−1 penalty in the
constant multiplying the variance term.

Consider the following corollary of Theorem 4.

Corollary 5. Let M = (S ,P) be a finite ergodic Markov chain, and letπ be its stationary distribu-
tion. If M has mixing timeτ, then for any functionf : S → [−c,c], we have

Var

(

1
T

T−1

∑
t=0

f(Xt)

)

≤ 4τ ln

(

7(1+c)+
1
4τ

(

1
T

Var(f(X))

)−1
)

1
T

Var(f(X))

+(1+8τ)
1
T

Var(f(X))

where{Xt} is a process generated by M with initial distribution X0 ∼ π, and X∼ π.

Here, again, our bound approaches zero as Var(f(X))/T → 0, but at the slightly slower rate of

O

(

1
T

Var(f(X)) ln

(

e+

(

1
T

Var(f(X))

)−1
))

,

where we have ignored the dependence onτ andc. For a fixed variance the rate of decrease inT is
O(ln(T)/T), slightly worse than theO(1/T) rate for independent random variables.
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5. Baseline Control Variate

As stated previously, a baseline may be selected with regard given only to theestimation variance.
In this section we consider how the baseline affects the variance of our gradient estimates when the
samples are iid, and the discounted value function is known. We show that, when using Theorem 3
or Theorem 4 to bound covariance terms, this is reasonable, and in fact the error in analysis (that is,
from not analyzing the variance of∆T with baseline directly) associated with the choice of baseline
is negligible. This statement will be made more precise later.

Section 5.2 looks at the Markov chain of states generated by the controlled POMDP and is
concerned with producing a baseline bS : S → R to minimize the variance

σ2
S (bS ) = Varπ

(

∇pi j

pi j

(

Jβ( j)−bS (i)
)

)

, (8)

where, for somef : S × S → R
K , Varπ(f(i, j)) = Eπ (f(i, j)−Eπf(i, j))2 with Eπ [·] denoting the

expectation over the random variablesi, j with i ∼ π and j ∼ Pi . Equation (8) serves as a definition
of σ2

S (bS ). The section gives the minimal value of this variance, and the minimizing baseline. Addi-
tionally, the minimum variance and corresponding baseline is given for the case where the baseline
is a constant,b ∈ R. In both cases, we give expressions for the excess variance of a suboptimal
baseline, in terms of a weighted squared distance between the baseline and the optimal one. We can
thus show the difference between the variance for the optimal constant baseline and the variance
obtained whenb = EπJβ(i).

Section 5.3 considers a baseline bY : Y → R for the GPOMDP estimates. It shows how to
minimize the variance of the estimate

σ2
Y (bY ) = Varπ

(

∇µu(y)
µu(y)

(

Jβ( j)−bY (y)
)

)

, (9)

where, for somef : S ×Y ×U×S → R
K , Varπ(f(i,y,u, j)) = Eπ (f(i,y,u, j)−Eπf(i,y,u, j))2 with,

in this case,Eπ [·] denoting the expectation over the random variablesi,y,u, j with i ∼ π, y∼ ν(i),
u ∼ µ(y), and j ∼ Pi(u). Equation (9) serves as a definition ofσ2

Y (bY ). The case where the state
space is fully observed is shown as a consequence.

5.1 Matching Analysis and Algorithm

The analysis in following sections will look at Equation (8) and Equation (9).Here we will show
that the results of that analysis can be applied to the variance of a realizablealgorithm for generating
∇βη estimates. Specifically, we compare the variance quantity of Equation (9) to a slight variation
of the∆T estimate produced by GPOMDP, where the chain is run for an extraSsteps. We consider
the estimate

∆(+S)
T

def
=

1
T

T−1

∑
t=0

∇µUt (Yt)

µUt (Yt)
J(+S)
t+1 , J(+S)

t
def
=

T+S

∑
s=t

βs−tr(Xs), (10)

and are interested in improving the variance by use of a baseline, that is, byusing the estimate

∆(+S)
T (bY )

def
=

1
T

T−1

∑
t=0

∇µUt (Yt)

µUt (Yt)

(

J(+S)
t+1 −bY (Yt)

)

.
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We delay the main result of the section, Theorem 7, to gain an insight into the ideas behind it. In
Section 3.4 we saw how GPOMDP can be thought of as similar to the estimate∆(est)

T , Equation (6).
Using a baseline gives us the new estimate

∆(est)
T (bY )

def
=

1
T

T−1

∑
t=0

∇µUt (Yt)

µUt (Yt)

(

J(est)
t+1 −bY (Yt)

)

. (11)

The termJ(est)
t in Equation (11) is an unbiased estimate of the discounted value function. The

following lemma shows that, in analysis of the baseline, we can consider the discounted value
function to be known, not estimated.

Lemma 6. Let {Xt} be a random process over the spaceX . Define arbitrary functions on the
spaceX : f : X → R, J : X → R, anda : X → R. For all t let Jt be a random variable such that
E [Jt |Xt = i] = J(i). Then

Var

(

1
T

T−1

∑
t=0

f(Xt)(Jt −a(Xt))

)

−Var

(

1
T

T−1

∑
t=0

f(Xt)(J(Xt)−a(Xt))

)

= E

(

1
T

T−1

∑
t=0

f(Xt)(Jt −J(Xt))

)2

The proof of Lemma 6 is given in Appendix C, along with the proof of Theorem 7 below.
Direct application of Lemma 6 gives,

Var
(

∆(est)
T (bY )

)

= Var

(

1
T

T−1

∑
t=0

∇µUt (Yt)

µUt (Yt)

(

Jβ(Xt+1)−bY (Yt)
)

)

+E

(

1
T

T−1

∑
t=0

∇µUt (Yt)

µUt (Yt)

(

J(est)
t+1 −Jβ(Xt+1)

)

)2

.

Thus, we see that we can split the variance of this estimate into two components: the first is the
variance of this estimate withJ(est)

t replaced by the true discounted value function; and the second
is a component independent of our choice of baseline. We can now use Theorem 3 or Corollary 5
to bound the covariance terms, leaving us to analyze Equation (9).

We can obtain the same sort of result, using the same reasoning, for the estimate we are inter-
ested in studying in practice:∆(+S)

T (bY ) (see Equation (12) below).

Theorem 7. Let D= (S ,U,Y ,P,ν, r,µ) be a controlled POMDP satisfying Assumptions 1, 2 and 3.
Let M = (S ,P) be the resultant Markov chain of states, and letπ be its stationary distribution; M
has a mixing timeτ; {Zt} = {Xt ,Yt ,Ut ,Xt+1} is a process generated by D, starting X0 ∼ π. Suppose
thata(·) is a function uniformly bounded byM , andJ( j) is the random variable∑∞

s=0 βsr(Ws) where
the states Ws are generated by D starting in W0 = j. There are constants C1 ≤ 7+7B(R+M) and
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C2 = 20τB2R(R+M) such that for all T,S≥ 1 we have

Var

(

1
T

T−1

∑
t=0

∇µUt (Yt)

µUt (Yt)

(

J(+S)
t+1 −a(Zt)

)

)

≤ h

(

τ ln(e(S+1))

T
Varπ

(

∇µu(y)
µu(y)

(

Jβ( j)−a(i,y,u, j)
)

))

+h

(

τ ln(e(S+1))

T
Eπ

(

∇µu(y)
µu(y)

(

J( j)−Jβ( j)
)

)2
)

+
2C2

(1−β)2

[

ln
1
β

+ ln

(

C1

1−β
+

K(1−β)2

C2

)]

(T +S) ln(e(S+1))

T
βS,

whereh : R
+ → R

+ is continuous and increasing withh(0) = 0, and is given by

h(x) = 9x+4xln

(

C1

1−β
+

K
4

x−1
)

.

By selectingS= T in Theorem 7, and applying to∆(+S)
T (bY ) with absolutely bounded bY , we

obtain the desired result:

Var
(

∆(+T)
T (bY )

)

≤ h

(

τ ln(e(T +1))

T
σ2

Y (bY )

)

+N(D,T)+O
(

ln(T)βT) . (12)

Here N(D,T) is the noise term due to using an estimate in place of the discounted value function,
and does not depend on the choice of baseline. The remaining term is of theorder ln(T)βT ; it is
almost exponentially decreasing inT, and hence negligible. The functionh is due to the application
of Theorem 4, and consequently the discussion in Section 4 on the rate of decrease applies here,
that is, a log penalty is paid. In this case, forσ2

Y (bY ) fixed, the rate of decrease isO(ln2(T)/T).
Note that we may replace(∇µu(y))/µu(y) with (∇pi j )/pi j in Theorem 7. So if the(∇pi j )/pi j

can be calculated, then Theorem 7 also relates the analysis of Equation 8 witha realizable algorithm
for generating∇βη estimates; in this case an estimate produced by watching the Markov process of
states.

5.2 Markov Chains

Here we look at baselines for∇βη estimates for a parameterized Markov chain and associated
reward function (a Markov reward process). The Markov chain of states generated by a controlled
POMDP (together with the POMDPs reward function) is an example of such a process. However,
the baselines discussed in this section require knowledge of the state to use,and knowledge of
(∇pi j (θ))/pi j (θ) to estimate. More practical results for POMDPs are given in the next section.

Consider the following assumption.

Assumption 4. The parameterized Markov chain M(θ) = (S ,P(θ)) and associated reward function
r : S →R satisfy: M(θ) is irreducible and aperiodic, with stationary distributionπ; there is aR < ∞
such that for all i∈ S we have|r(i)| ≤ R; and for all i, j ∈ S , and allθ ∈ R

K , the partial derivatives
∇pi j (θ) exist, and there is aB < ∞ such that‖(∇pi j (θ))/pi j (θ)‖ ≤ B.
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For any controlled POMDP satisfying Assumptions 1, 2 and 3, Assumption 4 is satisfied for the
Markov chain formed by the subprocess{Xt} together with the reward function for the controlled
POMDP.

Now consider a control variate of the form

ϕS (i, j)
def
= πi∇pi j bS (i)

for estimation of the integral in Equation (3). We refer to the function bS : S → R as a baseline.
As shown in Section 3.5, the integral of the baseline control variateϕS (i, j) overS ×S can be

calculated analytically and is equal to zero. Thus an estimate of the integral
Z

(i, j)∈S×S

(

πi∇pi j Jβ( j)−ϕS (i, j)
)

C(di×d j)

forms an unbiased estimate of∇βη.
The following theorem gives the minimum variance, and the baseline to achievethe minimum

variance. We useσ2
S to denote the variance of the estimate without a baseline,

σ2
S = Varπ

(

∇pi j

pi j
Jβ( j)

)

,

and we recall, from Equation (8), thatσ2
S (bS ) denotes the variance with a baseline,

σ2
S (bS ) = Varπ

(

∇pi j

pi j

(

Jβ( j)−bS (i)
)

)

.

Theorem 8. Let M(θ) = (S ,P(θ)) and r : S → R be a parameterized Markov chain and reward
function satisfying Assumption 4. Then

σ2
S (b∗S )

def
= inf

bS∈RS
σ2

S (bS ) = σ2
S −Ei∼π







(

E

[

(∇pi j /pi j )
2Jβ( j)

∣

∣

∣
i
])2

E

[

(∇pi j /pi j )
2
∣

∣

∣
i
]






,

whereE [ ·| i] is the expectation over the resultant state j conditioned on being in state i, that is,
j ∼ Pi , andR

S is the space of functions mappingS to R. This infimum is attained with the baseline

b∗S (i) =
E

[

(∇pi j /pi j )
2Jβ( j)

∣

∣

∣
i
]

E

[

(∇pi j /pi j )
2
∣

∣

∣
i
] .

The proof uses the following lemma.

Lemma 9. For anybS ,

σ2
S (bS ) = σ2

S +Eπ

[

b2
S (i)E

[

(

∇pi j

pi j

)2
∣

∣

∣

∣

∣

i

]

−2bS (i)E

[

(

∇pi j

pi j

)2

Jβ( j)

∣

∣

∣

∣

∣

i

]]

.
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Proof.

σ2
S (bS ) = Eπ

(

∇pi j

pi j

(

Jβ( j)−bS (i)
)

−Eπ

[

∇pi j

pi j

(

Jβ( j)−bS (i)
)

])2

= Eπ

((

∇pi j

pi j
Jβ( j)−Eπ

[

∇pi j

pi j
Jβ( j)

])

−
(

∇pi j

pi j
bS (i)−Eπ

[

∇pi j

pi j
bS (i)

]))2

= σ2
S +Eπ

[

(

∇pi j

pi j
bS (i)

)2

−2

(

∇pi j

pi j
bS (i)

)′(∇pi j

pi j
Jβ( j)

)

]

(13)

= σ2
S +Ei∼π

[

b2
S (i)E

[

(

∇pı̃˜

pı̃˜

)2
∣

∣

∣

∣

∣

ı̃ = i

]

− 2bS (i)E

[

(

∇pı̃˜

pı̃˜

)2

Jβ( )̃

∣

∣

∣

∣

∣

ı̃ = i

]]

,

where Equation (13) uses

Eπ

[

∇pi j

pi j
bS (i)

]

=
Z

(i, j)∈S×S
πi∇pi j bS (i)C(di×d j) = 0,

from (7).

Proof of Theorem 8.We use Lemma 9 and minimize for eachi ∈ S . Differentiating with respect to
each bS (i) gives

2bS (i)E

[

(

∇pi j

pi j

)2
∣

∣

∣

∣

∣

i

]

−2E

[

(

∇pi j

pi j

)2

Jβ( j)

∣

∣

∣

∣

∣

i

]

= 0

⇒ bS (i) =
E

[

(∇pi j /pi j )
2Jβ( j)

∣

∣

∣ i
]

E

[

(∇pi j /pi j )
2
∣

∣

∣ i
] ,

which implies the result.

The following theorem shows that the excess variance due to a suboptimal baseline function can
be expressed as a weighted squared distance to the optimal baseline.

Theorem 10. Let M(θ) = (S ,P(θ)) and r : S → R be a parameterized Markov chain and reward
function satisfying Assumption 4. Then

σ2
S (bS )−σ2

S (b∗S ) = Eπ

[

(

∇pi j

pi j

)2
(

bS (i)−b∗S (i)
)2

]

.

Proof. For eachi ∈ S , defineSi andWi as

Si = E

[

(

∇pi j

pi j

)2
∣

∣

∣

∣

∣

i

]

,

Wi = E

[

(

∇pi j

pi j

)2

Jβ( j)

∣

∣

∣

∣

∣

i

]

.

1487



GREENSMITH, BARTLETT AND BAXTER

Lemma 9 and the definition of b∗S in Theorem 8 imply that

σ2
S (bS )−σ2

S (b∗S ) = Eπ

[

b2
S (i)Si −2bS (i)Wi +

W2
i

Si

]

= Eπ

(

bS (i)
√

Si −
Wi√

Si

)2

= Eπ

[

(

bS (i)−b∗S (i)
)2

Si

]

= Eπ

[

(

∇pi j

pi j

)2
(

bS (i)−b∗S (i)
)2

]

.

The following theorem gives the minimum variance, the baseline to achieve the minimum vari-
ance, and the additional variance away from this minimum, when restricted to a constant baseline,
b∈ R. We useσ2

S (b) to denote the variance with constant baselineb,

σ2
S (b) = Varπ

(

∇pi j

pi j

(

Jβ( j)−b
)

)

. (14)

The proof uses Lemma 9 in the same way as the proof of Theorem 8. The proof of the last statement
follows that of Theorem 10 by replacingSi with S= EπSi , andWi with W = EπWi .

Theorem 11. Let M(θ) = (S ,P(θ)) and r : S → R be a parameterized Markov chain and reward
function satisfying Assumption 4. Then

σ2
S (b∗)

def
= inf

b∈R

σ2
S (b) = σ2

S −

(

Eπ

[

(∇pi j /pi j )
2Jβ( j)

])2

Eπ (∇pi j /pi j )
2 .

This infimum is attained with

b∗ =
Eπ

[

(∇pi j /pi j )
2Jβ( j)

]

Eπ (∇pi j /pi j )
2 .

The excess variance due to a suboptimal constant baseline b is given by,

σ2
S (b)−σ2

S (b∗) = Eπ

(

∇pi j

pi j

)2

(b−b∗)2 .

A baseline of the formb = EπJβ(i) is often promoted as a good choice. Theorem 11 gives us a
tool to measure how far this choice is from the optimum.

Corollary 12. Let M(θ) = (S ,P(θ)) and r : S → R be a Markov chain and reward function satisfy-
ing Assumption 4. Then

σ2
S (EJβ(i))−σ2

S (b∗) =

(

Eπ (∇pi j /pi j )
2
EπJβ( j)−Eπ

[

(∇pi j /pi j )
2Jβ( j)

])2

Eπ (∇pi j /pi j )
2 .
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Notice that the sub-optimality of the choiceb = EπJβ(i) depends on the independence of the
random variables(∇pi j /pi j )

2 and Jβ( j); if they are nearly independent,EπJβ(i) is a good choice.
Of course, when considering sample paths of Markov chains, Corollary12 only shows the

difference of the twoboundson the variance given by Theorem 7, but it gives an indication of the
true distance. In particular, as the ratio of the mixing time to the sample path length becomes small,
the difference between the variances in the dependent case approaches that of Corollary 12.

5.3 POMDPs

Consider a control variate over the extended spaceS ×Y ×U ×S of the form

ϕ(i,y,u, j) = πiνy(i)∇µu(y)pi j (u)b(i,y).

Again, its integral is zero.
Z

(i,y,u, j)∈S×Y ×U×S
ϕ(i,y,u, j)C(di×dy×du×d j)

= ∑
i∈S ,y∈Y

πiνy(i)b(i,y)∇

(

∑
u∈U, j∈S

µu(y)pi j (u)

)

= 0.

Thus an unbiased estimate of the integral
Z

(i,y,u, j)∈S×Y ×U×S

(

πiνy(i)∇µu(y)pi j (u)Jβ( j)−ϕ(i,y,u, j)
)

C(di×dy×du×d j)

is an unbiased estimate of∇βη. Here results analogous to those achieved forϕS (i, j) can be ob-
tained. However, we focus on the more interesting (and practical) case ofthe restricted control
variate

ϕY (i,y,u, j)
def
= πiνy(i)∇µu(y)pi j (u)bY (y).

Here, only information that can be observed by the controller (the observationsy) may be used to
minimize the variance. Recall, from Equation (9), we useσ2

Y (bY ) to denote the variance with such
a restricted baseline control variate,

σ2
Y (bY ) = Varπ

(

∇µu(y)
µu(y)

(

Jβ( j)−bY (y)
)

)

.

We useσ2
Y to denote the variance without a baseline, that is

σ2
Y = Varπ

(

∇µu(y)
µu(y)

Jβ( j)

)

.

We have the following theorem.

Theorem 13. Let D = (S ,U,Y ,P,ν, r,µ) be a controlled POMDP satisfying Assumptions 1, 2
and 3, with stationary distributionπ. Then

σ2
Y (b∗Y )

def
= inf

bY ∈RY
σ2

Y (bY ) = σ2
Y −Eπ







(

Eπ

[

(∇µu(y)/µu(y))
2Jβ( j)

∣

∣

∣y
])2

Eπ

[

(∇µu(y)/µu(y))
2
∣

∣

∣
y
]






,
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whereEπ [ ·|y] is the expectation (ofπ-distributed random variables, that is, random variables dis-
tributed as inEπ[·]) conditioned on observing y, and this infimum is attained with the baseline

b∗Y (y) =
Eπ

[

(∇µu(y)/µu(y))
2Jβ( j)

∣

∣

∣
y
]

Eπ

[

(∇µu(y)/µu(y))
2
∣

∣

∣
y
] .

Furthermore, when restricted to the class of constant baselines, b∈R, the minimal variance occurs
with

b∗ =
Eπ

[

(∇µu(y)/µu(y))
2Jβ( j)

]

Eπ(∇µu(y)/µu(y))
2 .

We have again usedb∗ to denote the optimal constant baseline. Note though that theb∗ here
differs from that given in Theorem 11. The proof uses the following lemma.

Lemma 14. For anybY ,

σ2
Y (bY ) = σ2

Y +Eπ

[

b2
Y (y)Eπ

[

(

∇µu(y)
µu(y)

)2
∣

∣

∣

∣

∣

y

]

−2bY (y)Eπ

[

(

∇µu(y)
µu(y)

)2

Jβ( j)

∣

∣

∣

∣

∣

y

]]

.

Proof. Following the same steps as in the proof of Lemma 9,

σ2
Y (bY ) = Eπ

(

∇µu(y)
µu(y)

(

Jβ( j)−bY (y)
)

−Eπ

[

∇µu(y)
µu(y)

(

Jβ( j)−bY (y)
)

])2

= σ2
Y +Eπ

[

(

∇µu(y)
µu(y)

bY (y)

)2

−2

(

∇µu(y)
µu(y)

bY (y)

)′(∇µu(y)
µu(y)

Jβ( j)

)

]

= σ2
Y +∑

y

[

b2
Y (y)

(

∑
i,u, j

πiνy(i)µu(y)pi j (u)

(

∇µu(y)
µu(y)

)2
)

−2bY (y)

(

∑
i,u, j

πiνy(i)µu(y)pi j (u)

(

∇µu(y)
µu(y)

)2

Jβ( j)

)]

.

Note that for functions a :Y → R and f :S ×Y ×U ×S → R

∑
y

a(y) ∑̃
ı,ũ,˜

πı̃νy(ı̃)µũ(y)pı̃˜(ũ)f(ı̃,y, ũ, )̃

= ∑
y

a(y)∑
i

πiνy(i) ∑
ı̃,ỹ,ũ,˜

δyỹπı̃νy(ı̃)µũ(y)pı̃˜(ũ)

∑i πiνy(i)
f(ı̃, ỹ, ũ, )̃

= ∑
i,y

πiνy(i)a(y) ∑
ı̃,ỹ,ũ,˜

Pr{ı̃, ỹ, ũ, |̃ỹ = y} f(ı̃, ỹ, ũ, )̃

= Eπ [a(y)Eπ [ f(i,y,u, j)|y]] ,

implying the result.
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Proof of Theorem 13.We apply Lemma 14 and minimize for each bY (y) independently, to obtain

bY (y) =
Eπ

[

(∇µu(y)/µu(y))
2Jβ( j)

∣

∣

∣y
]

Eπ

[

(∇µu(y)/µu(y))
2
∣

∣

∣y
] .

Substituting gives the optimal variance. A similar argument gives the optimal constant baseline.

Example 1. Consider the k-armed bandit problem (for example, see Sutton and Barto, 1998). Here
each action is taken independently and the resultant state depends only on the action performed;
that is µu(y) = µu andpi j (u) = p j(u). So, writing Rβ = EU0∼µ [∑∞

t=1 βtr(Xt)] , we have

∇βη = Eπ

[

∇µu(y)
µu(y)

Jβ( j)

]

= Eu∼µ

[

∇µu

µu

(

r( j)+Rβ
)

]

= Eu∼µ

[

∇µu

µu
r( j)

]

.

Note that this last line isβ independent, and it follows fromlimβ→1 ∇βη = ∇η that

∇η = ∇βη ∀β ∈ [0,1]. (15)

For k = 2 (2 actions{u1,u2}) we have µu1 +µu2 = 1 and∇µu1 =−∇µu2, and so the optimal constant
baseline is given by

b∗ =
Eπ

[

(∇µu(y)/µu(y))
2Jβ( j)

]

Eπ (∇µu(y)/µu(y))
2

=
Eu∼µ

[

(∇µu/µu)
2 r( j)

]

Eu∼µ(∇µu/µu)
2 +Rβ

=
µu1 (∇µu1/µu1)

2
E [ r|u1]+µu2 (∇µu2/µu2)

2
E [ r|u2]

µu1 (∇µu1/µu1)
2 +µu2 (∇µu2/µu2)

2 +Rβ

=
µu1µu2

µu1 +µu2

(

1
µu1

E [ r|u1]+
1

µu2

E [ r|u2]

)

+Rβ

= µu2E [ r|u1]+µu1E [ r|u2]+Rβ,

where we have usedE [ r|u] to denoteE j∼p(u)r( j). From (15) we know thatβ may be chosen arbi-
trarily. Choosingβ = 0 gives Rβ = 0 and we regain the result of Dayan (1990).

In the special case of a controlled MDP we obtain the result that would be expected. This
follows immediately from Theorem 13.

Corollary 15. Let D= (S ,U,P, r,µ) be a controlled MDP satisfying Assumptions 1, 2 and 3, with
stationary distributionπ. Then

inf
bY ∈RS

σ2
Y (bY ) = σ2

Y −Ei∼π







(

E

[

(∇µu(i)/µu(i))
2Jβ( j)

∣

∣

∣ i
])2

E

[

(∇µu(i)/µu(i))
2
∣

∣

∣
i
]






,
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and this infimum is attained with the baseline

bY (i) =
E

[

(∇µu(i)/µu(i))
2Jβ( j)

∣

∣

∣
i
]

E

[

(∇µu(i)/µu(i))
2
∣

∣

∣
i
] .

The following theorem shows that, just as in the Markov chain case, the variance of an estimate
with an arbitrary baseline can be expressed as the sum of the variance withthe optimal baseline and
a certain squared weighted distance between the baseline function and the optimal baseline function.

Theorem 16. Let (S ,U,Y ,P,ν, r,µ) be a controlled POMDP satisfying Assumptions 1, 2 and 3,
with stationary distributionπ. Then

σ2
Y (bY )−σ2

Y (b∗Y ) = Eπ

[

(

∇µu(y)
µu(y)

)2
(

bY (y)−b∗Y (y)
)2
]

.

Furthermore if the estimate using b∗, the optimalconstantbaseline defined in Theorem 13,
has varianceσ2

Y (b∗), we have that the varianceσ2
Y (b) of the gradient estimate with an arbitrary

constant baseline is

σ2
Y (b)−σ2

Y (b∗) = Eπ

(

∇µu(y)
µu(y)

)2

(b−b∗)2 .

Proof. For eachy∈ Y , defineSy andWy as

Sy = E

[

(

∇µu(y)
µu(y)

)2
∣

∣

∣

∣

∣

y

]

,

Wy = E

[

(

∇µu(y)
µu(y)

)2

Jβ( j)

∣

∣

∣

∣

∣

y

]

.

Follow the steps in Theorem 10, replacingSi with Sy, andWi with Wy. The constant baseline case
follows similarly by consideringS= EπSy andW = EπWy.

In Section 7.1 we will see how Theorem 16 can be used to construct a practical algorithm for
finding a good baseline. In most cases it is not possible to calculate the optimalbaseline, b∗Y , a
priori. However, for a parameterized class of baseline functions, a gradient descent approach could
be used to find a good baseline. Section 7.1 explores this idea.

As before, Theorem 16 also gives us a tool to measure how far the baseline b = EπJβ(i) is from
the optimum.

Corollary 17. Let D = (S ,U,Y ,P,ν, r,µ) be a controlled POMDP satisfying Assumptions 1, 2
and 3, with stationary distributionπ. Then

σ2
Y (EπJβ(i))− inf

b∈R

σ2
Y (b) =

(

Eπ (∇µu(y)/µu(y))
2
EπJβ( j)−Eπ

[

(∇µu(y)/µu(y))
2Jβ( j)

])2

Eπ (∇µu(y)/µu(y))
2 .

As in the case of a Markov reward process, the sub-optimality of the choiceb = EπJβ(i) de-
pends on the independence of the random variables(∇µu(y)/µu(y))2 and Jβ( j); if they are nearly
independent,EπJβ(i) is a good choice.
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6. Value Functions: Actor-Critic Methods

Consider the estimate produced by GPOMDP (see Equation (5)) in the MDP setting, where the state
is observed. In this section we look at replacingJt , the biased and noisy estimate of the discounted
value function, in∆T with an arbitrary value function, that is, a function V :S → R. For a MDP,
this gives the following estimate of∇βη:

∆V
T

def
=

1
T

T−1

∑
t=0

∇µUt
(Xt)

µUt (Xt)
V(Xt+1). (16)

Imagine that the discounted value function, Jβ, is known. By replacingJt with Jβ(Xt) in Equa-
tion (5), that is, by choosing V= Jβ, the bias and noise due toJt is removed. This seems a good
choice, but we may be able to do better. Indeed we will see that in some casesthe selection of
a value function differing from the discounted value function can removeall estimation variance,
whilst introducing no bias.

6.1 Control Variate for a Value Function

Consider a control variate of the form

ϕβ(i,u, j)
def
= πi∇µu(i)pi j (u)Aβ( j)

where

Aβ( j)
def
= lim

T→∞
E

[

T

∑
k=1

βk−1d(Xt+k,Xt+1+k)

∣

∣

∣

∣

∣

Xt+1 = j

]

and
d(i, j)

def
= r(i)+βV( j)−V(i).

We make the following assumption.

Assumption 5. For all j ∈ S , |V( j)| ≤ M < ∞.

Under this assumption, the estimation of the integral
Z

(i,u, j)∈S×U×S

(

πi∇µu(i)pi j (u)Jβ( j)−ϕβ(i,u, j)
)

C(di×du×d j) (17)

has an expected bias from∇βη of
Z

(i,u, j)∈S×U×S
ϕβ(i,u, j)C(di×du×d j) = ∑

i∈S ,u∈U, j∈S

πi∇µu(i)pi j (u)
(

Jβ( j)−V( j)
)

.

This can be easily seen by noting that under Assumption 5, and asβ ∈ [0,1),

Aβ( j) = lim
T→∞

E

[

T

∑
k=1

βk−1(r(Xt+k)+βV(Xt+1+k)−V(Xt+k))

∣

∣

∣

∣

∣

Xt+1 = j

]

= Jβ( j)−V( j)+ lim
T→∞

E
[

βTV(Xt+1+T)
∣

∣Xt+1 = j
]

= Jβ( j)−V( j).
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We see then that∆V
T gives an estimate of the integral in Equation (17). The following theorem

gives a bound on the expected value of the squared Euclidean distance between this estimate and
∇βη. Notice that the bound includes both bias and variance terms.

Theorem 18. Let D= (S ,U,P, r,µ) be a controlled MDP satisfying Assumptions 1, 2 and 3, with
stationary distributionπ. Let{Xt ,Ut} be a process generated by D, starting X0 ∼ π. Then

E

(

∆V
T −∇βη

)2
= Var

(

1
T

T−1

∑
t=0

∇µUt (Xt)

µUt (Xt)
V(Xt+1)

)

+

(

Eπ

[

∇µu(i)
µu(i)

Aβ( j)

])2

,

and hence there is anΩ∗ such that

E

(

∆V
T −∇βη

)2
≤ Ω∗

T
Varπ

(

∇µu(i)
µu(i)

V( j)

)

+

(

Eπ

[

∇µu(i)
µu(i)

Aβ( j)

])2

.

Proof.

E

(

∆V
T −∇βη

)2

= E

(

1
T

T−1

∑
t=0

∇µUt (Xt)

µUt (Xt)
V(Xt+1)−Eπ

[

∇µu(i)
µu(i)

(

V( j)+Aβ( j)
)

]

)2

= E

(

1
T

T−1

∑
t=0

∇µUt (Xt)

µUt (Xt)
V(Xt+1)−Eπ

[

∇µu(i)
µu(i)

V( j)

]

)2

−2

(

Eπ

[

∇µu(i)
µu(i)

Aβ( j)

])′(

E

[

1
T

T−1

∑
t=0

∇µUt (Xt)

µUt (Xt)
V(Xt+1)−Eπ

[

∇µu(i)
µu(i)

V( j)

]

])

+

(

E

[

∇µu(i)
µu(i)

Aβ( j)

])2

(18)

= Var

(

1
T

T−1

∑
t=0

∇µUt (Xt)

µUt (Xt)
V(Xt+1)

)

+

(

Eπ

[

∇µu(i)
µu(i)

Aβ( j)

])2

≤ Ω∗

T
Varπ

(

∇µu(i)
µu(i)

V( j)

)

+

(

Eπ

[

∇µu(i)
µu(i)

Aβ( j)

])2

. (19)

Note that

Eπ

[

∇µu(i)
µu(i)

V( j)

]

= E

[

1
T

T−1

∑
t=0

∇µUt (Xt)

µUt (Xt)
V(Xt+1)

]

,

which means that the second term of Equation (18) is zero, and the first term becomes the variance
of the estimate. Equation (19), and hence Theorem 18, follow from Theorem 3.

Corollary 19. Let D= (S ,U,P, r,µ) be a controlled MDP satisfying Assumptions 1, 2 and 3. Let
M = (S ,P) be the resultant chain of states, and letπ be its stationary distribution; M has mixing
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timeτ. Let{Xt ,Ut} be a process generated by D, starting X0 ∼ π. Then for any0 < ε < e−1 there is
a Cε ≤ 1+50τ(1+M)+8τ lnε−1 such that

E

(

∆V
T −∇βη

)2
≤ Kε+

Cε

T
Varπ

(

∇µu(i)
µu(i)

V( j)

)

+

(

Eπ

[

∇µu(i)
µu(i)

Aβ( j)

])2

.

Proof. Apply Theorem 4 to the first part of Theorem 18, for each of theK dimensions, noting that
the mixing time of the process{Xt ,Ut ,Xt+1} is at mostτ ln(2e) ≤ 2τ (Lemma 1).

6.2 Zero Variance, Zero Bias Example

Write v = V −Jβ. The bias due to using V in place of Jβ is given by

Gv,

whereG is aK×|S | matrix with its j th column given by∑i∈S ,u∈U πi∇µu(i)pi j (u). If v is in the right
null space ofG then this bias is zero. An example of such av is a constant vector;v = (c,c, . . . ,c)′.
This can be used to construct a trivial example of how∆V

T (Equation (16)) can produce an unbiased,
zero variance estimate. The observation that we need only consider valuefunctions that span the
range space ofG to produce a “good” gradient estimate, in the sense that convergence results may
be obtained, was made by Konda and Tsitsiklis (2003, 2000); Sutton et al. (2000). Here we wish
to consider a richer class of value functions for the purpose of activelyreducing the variance of
gradient estimates.

Consider a controlled MDPD = (S ,U,P, r,µ) satisfying Assumptions 1, 2 and 3, and with
r(i) = (1−β)c, for some constantc, and alli ∈ S . This gives a value function of Jβ(i) = c, for all
i ∈ S , and consequently

∇βη = ∑
i,u

πi∇µu(i)c = c∑
i

πi∇∑
u

µu(i) = 0.

With v = (−c,−c, . . . ,−c)′, and selecting the fixed value function V= Jβ +v, we have

∇µu(i)
µu(i)

V( j) = 0, ∀i,u, j.

So∆V
T will produce a zero bias, zero variance estimate of∇βη. Note also that if the MDP is such

that there exists ani,u pair such that Pr{Xt = i,Ut = u} > 0 and∇µu(i) 6= 0 then selecting V= Jβ
gives an estimate that, whilst still unbiased, has non-zero variance. The event

{

∇µu(i)
µu(i)

V( j) 6= 0

}

has a non-zero probability of occurrence.
A less trivial example is given in Appendix D.
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7. Algorithms

In Section 5 and Section 6 we have seen bounds on squared error of gradient estimates when using
various additive control variates. For the baseline control variates we have also seen the choice of
baseline which minimizes this bound. Though it may not be possible to select the best baseline or
value function a priori, data could be used to help us choose. For a parameterized baseline, or value
function, we could improve the error bounds via gradient decent. In this section we explore this
idea.

7.1 Minimizing Weighted Squared Distance to the Optimal Baseline

Given a controlled POMDP and a parameterized class of baseline functions
{

bY (·,ω) : Y → R
∣

∣ω ∈ R
L} ,

we wish to choose a baseline function to minimize the variance of our gradient estimates. Theo-
rem 16 expresses this variance as the sum of the optimal variance and a squared distance between
the baseline function and the optimal one. It follows that we can minimize the variance of our gra-
dient estimates by minimizing the distance between our baseline and the optimum baseline. The
next theorem shows that we can use a sample path of the controlled POMDP toestimate the gradi-
ent (with respect to the parameters of the baseline function) of this distance. We need to make the
following assumptions about the parameterized baseline functions.

Assumption 6. There are boundsM ,G < ∞ such that for all y∈ Y , and all ω ∈ R
L, the baseline

function is bounded,
∣

∣bY (y,ω)
∣

∣≤M , and the gradient of the baseline is bounded,
∥

∥∇bY (y,ω)
∥

∥≤G.

We dropω in the notation, and, to avoid confusion, we write g2(y,u) to denote[(∇µu(y))/µu(y)]2,
where the gradient is with respect to the parameters of the policy,θ.

Theorem 20. Let D = (S ,U,Y ,P,ν, r,µ) be a controlled POMDP satisfying Assumptions 1, 2
and 3. LetbY : Y ×R

L → R be a parameterized baseline function satisfying Assumption 6. If
{Xt ,Yt ,Ut} is a sample path of the controlled POMDP (for any X0), then with probability1

1
2

∇σ2
Y (bY ) = lim

T→∞

1
T

T

∑
t=1

(

bY (Yt−1)−βbY (Yt)− r(Xt)
)

t−1

∑
s=0

βt−s−1∇bY (Ys)g
2(Ys,Us) .

Proof. From Theorem 16,

1
2

∇σ2
Y (bY ) = Eπ

[

g2(y,u)∇bY (y)
(

bY (y)−b∗Y (y)
)]

,

but

Eπ

[

g2(y,u)∇bY (y)b∗Y (y)
]

= ∑
i,y,u

πiνy(i)µu(y)g
2(y,u)∇bY (y)

× ∑ı̃,ũ,˜πı̃νy(ı̃)µũ(y)pı̃˜(ũ)g2(y, ũ)Jβ( )̃

∑ı̃,ũ πı̃νy(ı̃)µũ(y)g2(y, ũ)

= ∑
y

∇bY (y) ∑
i,u, j

πiνy(i)µu(y)pi j (u)g2(y,u)Jβ( j)

= Eπ
[

∇bY (y)g2(y,u)Jβ( j)
]

.
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Also, as bY (Yt) is uniformly bounded, we can write

bY (Yt) =
∞

∑
s=t+1

βs−t−1(bY (Ys−1)−βbY (Ys)).

The boundedness of r, and the dominated convergence theorem, likewisegives Jβ(Xt+1)= E[∑∞
s=t+1 βs−t−1r(Xs)|Xt+1].

Now we have

1
2

∇σ2
Y (bY ) = Eπ

[

g2(Yt ,Ut)∇bY (Yt)
∞

∑
s=t+1

βs−t−1(bY (Ys−1)−βbY (Ys)− r(Xs)
)

]

. (20)

The rest of the proof is as the proof of Baxter and Bartlett (2001, Theorem 4): we use an ergodicity
result to express the expectation as an average, then show that we can truncate the tail of theβ
decaying sum.

AssumeX0 ∼ π. Write X̃t to denote the tuple(Xt ,Yt ,Ut), write P̃ to denote the correspond-
ing transition matrix, and writẽπ to denote the corresponding stationary distribution (soπ̃i,y,u =
πiνy(i)µu(y)). Now consider running the Markov chain on the process{X̃t} backwards. We have

Pr
{

X̃−1|X̃0, X̃1, . . .
}

=
Pr
{

X̃−1, X̃0, X̃1, . . .
}

Pr
{

X̃0, X̃1, . . .
} =

Pr
{

X̃−1
}

P̃X̃−1X̃0

π̃X̃0

=
π̃X̃−1

P̃X̃−1X̃0

π̃X̃0

,

asπ̃ is the unique distribution such thatπ̃′P̃ = π̃′. This gives the distribution for̃X−1, and repeating
this argument gives the distribution forX̃−2, X̃−3, . . . . Denote this doubly infinite process by{X̃t}∞

−∞.
We wish to look at the behavior of time averages of the function

f
(

{

X̃t
}∞
−∞

)

def
= g2(Y0,U0)∇bY (Y0)

∞

∑
s=1

βs−1(bY (Ys−1)−βbY (Ys)− r(Xs)
)

.

Specifically, we would like to show that

lim
T→∞

1
T

T−1

∑
m=0

f
(

S
m
(

{

X̃t
}∞
−∞

))

= E

[

f
(

{

X̃t
}∞
−∞

)]

, w.p.1 (21)

whereSm denotesm applications of the shift operatorS, and whereS({X̃t}∞
−∞) = {Wt}∞

−∞ with
Wt = X̃t+1 for all t. Doob (1994,L2 Ergodic theorem, pg. 119) tells us, provided thatS is one-to-one
and measure preserving, and that f is square integrable, the left hand side of Equation (21) is almost
surely constant, and furthermore, provided that the only invariant sets of S are sets of measure zero
and their complements, this constant is equal to the right hand side of Equation (21). Expanding f
andS in Equation (21) then gives, with probability one,

1
2

∇σ2
Y (bY ) = lim

T→∞

1
T

T−1

∑
t=0

g2(Yt ,Ut)∇bY (Yt)
∞

∑
s=t+1

βs−t−1(bY (Ys−1)−βbY (Ys)− r(Xs)
)

. (22)

It remains to be shown that the conditions of theL2 Ergodic theorem hold.

1. S is one-to-one.By considering howS behaves at each index, we see that it is a bijection.
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2. S is measure preserving.That is, for a set of sequencesA, AandS(A) have the same measure.
This follows from the Markov property, and from the fact that the transition operator at timet,
as well as the marginal distribution onXt , is identical for all timest. Specifically, we have the
following. LetA− ⊂A be the smallest set such that Pr{{Wt}∞

−∞ ∈A}= Pr{{Wt}∞
−∞ ∈A−∩A},

and writeAs = {Ws : {Wt}∞
−∞ ∈ A−} andAs2

s1
= {{Wt}s2

s1
: {Wt}∞

−∞ ∈ A−}, where{Wt}s2
s1

is the
process starting att = s1 and ending att = s2. For anyswe have

Pr
{

S

(

{

X̃t
}∞
−∞

)

∈ A
}

=
Z

x∈As

Pr
{

X̃s+1 = x
}

Pr
{

{

X̃t
}∞

s+2 ∈ A∞
s+1

∣

∣

∣
X̃s+1 = x

}

×Pr
{

{

X̃t
}s
−∞ ∈ As−1

−∞

∣

∣

∣
X̃s+1 = x

}

C(dx)

=
Z

x∈As

Pr
{

X̃s = x
}

Pr
{

{

X̃t
}∞

s+1 ∈ A∞
s+1

∣

∣

∣
X̃s = x

}

×Pr
{

{

X̃t
}s−1
−∞ ∈ As−1

−∞

∣

∣

∣ X̃s = x
}

C(dx)

= Pr
{

{

X̃t
}∞
−∞ ∈ A

}

.

We also have thatS−1 (the inverse ofS) is measure preserving; by the change of variables
{Wt}∞

−∞ = S({X̃t}∞
−∞).

3. f is square integrable.The measure on{X̃t}∞
−∞ is finite, and|f | is bounded.

4. If set A is such thatS−1(A) = A (whereS−1(A) = {{Wt}∞
−∞ : S({Wt}∞

−∞) ∈ A}), then either
A has measure zero, or A has measure one.Consider a setA of positive measure such that
S−1(A) = A, and writeĀ for its complement. AsS is a bijection, we also have thatS−1(Ā) =
Ā. Assumption 1 implies thatAt = S̃ (at least, this is true for the state component, and,
without loss of generality, we may assume it is true for the extended space).If we assume
thatA0∩ Ā0 = /0, and henceAt ∩ Āt = /0 for all t, then the measure of̄A must be zero. We will
show thatA0∩ Ā0 = /0.

UnlessĀ has measure zero, for eachx∈A0∩Ā0 we must have that Pr{{Wt}−1
−∞ ∈ Ā−1

−∞|W0 = x}
and Pr{{Wt}∞

1 ∈ A∞
1 |W0 = x} are both positive, by the Markov property. Hence ifA0∩ Ā0 is

non-empty there must be a set of positive measure, which we denoteB, that follows sequences
in Ā− until time t = 0, and then follows sequences inA−. Without loss of generality, let us
assume thatB⊂ A−. We will also assume that ifb∈ B thenS−1(b) ∈ B, as the existence ofB
implies the existence of̂B = B∪{S−1(b)} with the same properties. We will show that such
aB does not exist, and thereforeA0∩ Ā0 = /0.

Let As∗
−∞ = {{Wt}∞

−∞ : {Wt}s
−∞ ∈ As

−∞}, the set of sequences that followA− until time s,
and then follow any sequence. We have thatB0∗

−∞ ⊂ Ā0∗
−∞. Construct the setB∗ ⊂ B by

B∗ = limt→∞ S−t(B) (note,S−t(B) is a non-increasing sequence of sets, and hence its limit
exists). We have thatS−t(B) ⊂ S−t(B)t∗

−∞ = S−t(B0∗
−∞) ⊂ S−t(Ā0∗

−∞) = Āt∗
−∞, and soB∗ =

liminf t→∞ S−t(B) ⊂ limsupt→∞ Āt∗
−∞ = Ā−, where the last equality follows from̄At∗

−∞ being
non-increasing. Furthermore, by the dominated convergence theorem we have Pr{{Ws}∞

−∞ ∈
B∗} = limt→∞ Pr{{Ws}∞

−∞ ∈ S−t(B)}= Pr{{Ws}∞
−∞ ∈ B} > 0. This means that the setB∗ has

positive measure and is a subset of bothA andĀ, which is impossible, and so such aB does
not exist.
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The statement given by Equation (21) is for a sample such thatX0 ∼ π, but can be generalized to
an arbitrary distribution using the convergence of{Xt} to stationarity. Indeed, for the finite chains
we consider, all states have positiveπ-measure, and hence Equation (22) holds forX0 ∼ π only if it
holds for allX0 ∈ S .

If we truncate the inner sum atT, the norm of the error is
∥

∥

∥

∥

∥

lim
T→∞

1
T

T−1

∑
t=0

g2(Yt ,Ut)∇bY (Yt)
∞

∑
s=T+1

βs−t−1(bY (Ys−1)−βbY (Ys)− r(Xs)
)

∥

∥

∥

∥

∥

=

∥

∥

∥

∥

∥

lim
T→∞

1
T

T−1

∑
t=0

g2(Yt ,Ut)∇bY (Yt)βT

(

bY (YT)−
∞

∑
s=T+1

βs−t−1r(Xs)

)∥

∥

∥

∥

∥

≤ lim
T→∞

1
T

T−1

∑
t=0

B2GβT
(

M +
R

1−β

)

= 0,

where we have used Assumptions 2, 3, and 6. This gives

1
2

∇σ2
Y (bY ) = lim

T→∞

1
T

T−1

∑
t=0

g2(Yt ,Ut)∇bY (Yt)
T

∑
s=t+1

βs−t−1(bY (Ys−1)−βbY (Ys)− r(Xs)
)

,

and changing the order of summation gives the result.

Theorem 20 suggests the use of Algorithm 1 to compute the gradient ofσ2
Y (bY ) with respect to

the parameters of the baseline function bY . The theorem implies that, as the number of samplesT
gets large, the estimate produced by this algorithm approaches the true gradient.

Algorithm 1 Compute estimate of gradient of distance to optimal baseline
given

• A controlled POMDP(S ,U,Y ,P,ν, r,µ).

• The sequence of states, observations and controls generated by the controlled POMDP,
{i0,y0,u0, i1,y1, . . . , iT−1,yT−1,uT−1, iT ,yT}.

• A parameterized baseline function bY : Y ×R
L → R.

write g2(y,u) to denote[(∇µu(y))/µu(y)]2.
setz0 = 0 (z0 ∈ R

L), ∆0 = 0 (∆0 ∈ R
L)

for all {it ,yt ,ut , it+1,yt+1} do
zt+1 = βzt +∇bY (yt ,ω)g2(yt ,ut)
∆t+1 = ∆t +

1
t+1

((

bY (yt ,ω)−βbY (yt+1,ω)− r(xt+1)
)

zt+1−∆t
)

end for

In Bartlett and Baxter (2002) a variant of the GPOMDP algorithm is shown togive an estimate
that, in finite time and with high probability, is close to∇βη. A similar analysis could be performed
for the estimate produced by Algorithm 1, in particular, we could replace∇t = (∇µUt (Yt))/µUt (Ut)
and Rt = r(Xt) in Bartlett and Baxter (2002) with̃∇t = g2(Yt ,Ut)∇bY (Yt) and R̃t = bY (Yt−1)−
βbY (Yt)− r(Xt). Notice that∇t andRt occur in precisely the same way in GPOMDP to produce an
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estimate of

E

[

∇t

∞

∑
s=t+1

βs−t−1Rs

]

as∇̃t andR̃t occur in Algorithm 1 to produce an estimate of

E

[

∇̃t

∞

∑
s=t+1

βs−t−1R̃s

]

.

Algorithm 2 gives an online version of Algorithm 1. The advantage of suchan algorithm is that
the baseline may be updated whilst the estimate of the performance gradient is being calculated.
Such a strategy for updates would, however, affect the convergence of performance gradient esti-
mates (for constant baselines this may be avoided, see Section 8.2). The question of the convergence
of Algorithm 2, and the convergence of performance gradient estimates inthe presence of online
baseline updates, is not addressed in this paper; though simulations in Sections 8.2 and 8.3 show
that performing such online baseline updates can give improvements.

Algorithm 2 Online version of Algorithm 1
given

• A controlled POMDP(S ,U,Y ,P,ν, r,µ).

• The sequence of states, observations and controls generated by the controlled POMDP,
{i0,y0,u0, i1,y1, . . . , iT−1,yT−1,uT−1, iT ,yT}.

• A parameterized baseline function bY : Y ×R
L → R.

• A sequence of step sizes,γt

write g2(y,u) to denote[(∇µu(y))/µu(y)]2.
setz0 = 0 (z0 ∈ R

L)
for all {it ,yt ,ut , it+1,yt+1} do

zt+1 = βzt +∇bY (yt ,ωt)g2(yt ,ut)
ωt+1 = ωt − γt

(

bY (yt ,ωt)−βbY (yt+1,ωt)− r(xt+1)
)

zt+1

end for

7.2 Minimizing Bound on Squared Error when using a Value Function

Given a controlled MDP and a parameterized class of value functions,
{

V(·,ω) : S → R|ω ∈ R
L} ,

we wish to choose a value function to minimize the expected squared error of our gradient estimates.
Theorem 18 gives a bound on this error,

ET =
Ω∗

T
Varπ

(

∇µu(i)
µu(i)

V( j,ω)

)

+

(

Eπ

[

∇µu(i)
µu(i)

Aβ( j,ω)

])2

.

We dropω in the notation, and write g(i,u) to denote(∇µu(i))/µu(i), where the gradient is with
respect to the policy parameters,θ. We can compute the gradient of this bound:

∇
1
2

ET = ∇
1
2

(

Ω∗

T
Varπ(g(i,u)V( j))+

(

Eπ
[

g(i,u)Aβ( j)
])2
)
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=
1
2

(

Ω∗

T
∇Eπ

[

(g(i,u)V( j))2
]

− Ω∗

T
∇(Eπ [g(i,u)V( j)])2 +∇

(

Eπ
[

g(i,u)Aβ( j)
])2
)

=

(

Ω∗

T
Eπ
[

(g(i,u)V( j))′
(

g(i,u)(∇V( j))′
)]

− Ω∗

T
(Eπ [g(i,u)V( j)])′

(

Eπ
[

g(i,u)(∇V( j))′
])

−
(

Eπ
[

g(i,u)Aβ( j)
])′ (

Eπ
[

g(i,u)(∇V( j))′
])

)

. (23)

This gradient can be estimated from a single sample path of the controlled MDP,{Xs,Us}. We need
the following assumption on the value function.

Assumption 7. There are boundsM ,G < ∞ such that for all i∈ S , and all ω ∈ R
L, the value

function is bounded,|V(i,ω)| ≤M , and the gradient of the value function is bounded,‖∇V(i,ω)‖≤
G.

Algorithm 3 gives an estimate of (23) from a sample path of the controlled MDP;constructing
this estimate from the following four estimations:

∆AS =
1
S

S−1

∑
s=0

(g(Xs,Us)V(Xs+1))
′ (g(Xs,Us)(∇V(Xs+1))

′) ∈ R
1×L;

∆BS =
1
S

S−1

∑
s=0

g(Xs,Us)V(Xs+1) ∈ R
K ;

∆CS =
1
S

S−1

∑
s=0

(r(Xs+1)+βV(Xs+2)−V(Xs+1))zs+1 ∈ R
K ;

∆DS =
1
S

S−1

∑
s=0

g(Xs,Us)(∇V(Xs+1))
′ ∈ R

K×L,

wherez0 = 0 andzs+1 = βzs+g(Xs,Us). The estimate of the gradient then becomes

∆S =

(

Ω∗

T
∆AS−

Ω∗

T
∆B′

S∆DS−∆C′
S∆DS

)′
.

Notice that∆AS,∆BS, and∆DS are simply sample averages (produced by the Markov chain)
estimating the relevant expectations in Equation (23). We see from Theorem3 and Corollary 5 that
the variance of these estimates areO(ln(S)/S), giving swift convergence. By noting the similarity
between the expectation in Equation (20) and the expectation estimated by∆CS, we see that the
ergodicity and truncation arguments of Theorem 20, and the convergence discussion following, also
hold for the∆CS estimate.

An online implementation is complicated by the multiplication of expectations. The online
algorithm (Algorithm 4) uses a decaying window of time (normalized for the rateof decay) in the
calculation of the expectations.
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Algorithm 3 Compute estimate of gradient of squared error wrt value function parameter
given

• A controlled POMDP(S ,U,Y ,P,ν, r,µ).

• The sequence of states, observations and controls generated by the controlled POMDP,
{i0,u0, i1, . . . , iS,uS, iS+1}.

• A parameterized value function V :S ×R
L → R.

write g(i,u) to denote(∇µu(i))/µu(i).
set z0 = 0 (z0 ∈ R

K), ∆A0 = 0 (∆A0 ∈ R
L), ∆B0 = 0 (∆B0 ∈ R

K), ∆C0 = 0 (∆C0 ∈ R
K) and

∆D0 = 0 (∆D0 ∈ R
K×L)

for all {is,us, is+1, is+2} do
zs+1 = βzs+g(is,us)
∆As+1 = ∆As+ 1

s+1

(

(g(is,us)V(is+1))
′ (g(is,us)(∇V(is+1))

′)−∆As
)

∆Bs+1 = ∆Bs+ 1
s+1 (g(is,us)V(is+1)−∆Bs)

∆Cs+1 = ∆Cs+ 1
s+1 ((r(is+1)+βV(is+2)−V(is+1))zs+1−∆Cs)

∆Ds+1 = ∆Ds+ 1
s+1

(

g(is,us)(∇V(is+1))
′−∆Ds

)

end for
∆S =

(Ω∗
T ∆AS− Ω∗

T ∆B′
S∆DS−∆C′

S∆DS
)′

Algorithm 4 Online version of Algorithm 3
given

• A controlled POMDP(S ,U,Y ,P,ν, r,µ).

• The sequence of states, observations and controls generated by the controlled POMDP,
{i0,u0, i1, . . . , iS,uS, iS+1}.

• α ∈ R, 0< α < 1

• A sequence of step sizes,γs

• A parameterized value function V :S ×R
L → R.

write g(i,u) to denote(∇µu(i))/µu(i).
set z0 = 0 (z0 ∈ R

K), ∆A0 = 0 (∆A0 ∈ R
L), ∆B0 = 0 (∆B0 ∈ R

K), ∆C0 = 0 (∆C0 ∈ R
K) and

∆D0 = 0 (∆D0 ∈ R
K×L)

for all {is,us, is+1, is+2} do
zs+1 = βzs+g(is,us)
∆As+1 = α∆As+(g(is,us)V(is+1))

′ (g(is,us)(∇V(is+1))
′)

∆Bs+1 = α∆Bs+g(is,us)V(is+1)
∆Cs+1 = α∆Cs+(r(is+1)+βV(is+2)−V(is+1))zs+1

∆Ds+1 = α∆Ds+g(is,us)(∇V(is+1))
′

ωs+1 = ωs− γs

(

(

1−α
1−αs+1

)

Ω∗
T ∆AS−

(

1−α
1−αs+1

)2 Ω∗
T ∆B′

S∆DS−
(

1−α
1−αs+1

)2
∆C′

S∆DS

)′

end for
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7.3 Minimizing the Bias Error when using a Value Function

As the number of stepsT gets large, the errorET of the gradient estimate becomes proportional to
the square of the bias error,

E∞ =
(

Eπ
[

g(i,u)Aβ( j)
])2

.

The gradient of this quantity, with respect to the parameters of the value function, can be computed
using Algorithm 3, withΩ∗/T = 0. In this case, only∆Cs and∆Ds need to be computed.

7.4 Minimizing Bound on Sample Error when using a Value Function

A more restrictive approach is to minimize the error seen at each sample,

R= Eπ
(

g(i,u)Aβ( j)
)2

.

This approach directly drives V towards Jβ and as such does not aim for additional beneficial cor-
relation. It produces an algorithm that is very similar to TD Sutton (1988), but has the benefit that
the relative magnitude of the gradient with respect to the policy parameters is taken into account. In
this way, more attention is devoted to accuracy in regions of the state space withlarge gradients.

For a parameterized class of value functions,
{

V(·,ω) : S → R|ω ∈ R
L
}

, we can determine the
gradient of this quantity.

∇
1
2

R = ∇
1
2

Eπ
(

g(i,u)Aβ( j)
)2

= −Eπ

[

(

g(i,u)(∇V( j))′
)′ (

g(i,u)Aβ( j)
)

]

= −Eπ

[

(g(i,u))2 ∇V( j)Aβ( j)
]

.

If the value function satisfies Assumption 7, the gradient may be estimated by a single sample path
from a controlled MDP. The ergodicity and truncation argument is the same asthat in the proof of
Theorem 20.

∆RT =
1
T

T

∑
t=1

(r(Xt)+βV(Xt+1)−V(Xt))zt ,

wherez0 = 0, andzt+1 = βzt +(g(Xt ,Ut))
2 ∇V(Xt+1).

8. Simulation Examples

This section describes some experiments performed in simulated environments.First, the estimates
suggested by Sections 5 and 6 are tested in a simple, simulated setting. This simple setting is then
used to test the algorithms of Section 7. Finally, a larger, target-tracking setting is used to test a
number of gradient estimates at various stages of the learning process.

8.1 Three State MDP, using Discounted Value Function

This section describes experiments comparing choices of control variate for a simple three state
MDP. The system is the described in detail in Baxter et al. (2001). The gradient∇η was compared
to the gradient estimates produced with a variety of schemes: GPOMDP withoutany control variate;
a constant baseline set toEπJβ(i); the optimum constant baseline, described in Theorem 11; the
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optimum baseline function, described in Corollary 15; and a value function that was trained using
Algorithm 3 withΩ∗/T set to 0.001. This value function had a distinct parameter for each state, all
initially set to zero.

Because of its simplicity, a number of quantities can be computed explicitly, including the true
gradient∇η, the discounted value function Jβ, the expectation of the discounted value function,
the optimal baseline, and the optimal constant baseline. All experiments used the precomputed
discounted value function in their∇βη estimations rather than the discounted sum of future rewards,
an estimate of the discounted value function. For each experiment, the data was collected over 500
independent runs, withβ = 0.95.

Figures 2 and 3 plot the mean and standard deviation (respectively) of therelative norm differ-
ence of the gradient estimate from∇η, as a function of the number of time steps. The relative norm
difference of a gradient estimate∆ from the true gradient∇η is given by

‖∆−∇η‖
‖∇η‖ .

It is clear from the figures that the use of these control variates gives significant variance reduc-
tions over GPOMDP. It is also clear that the optimum baseline gives better performance than the use
of the expectation of the discounted value function as a baseline. For this MDP, the performance
difference between the optimum baseline and the optimum constant baseline is small; the optimum
baseline of this system, b∗Y = (6.35254,6.35254,6.26938)′, is close to a constant function. The
optimum constant baseline isb∗ = 6.33837.

Since the value ofΩ∗/T was fixed when optimizing the value function, the asymptotic error of
its associated gradient estimate is non-zero, as Figure 2 shows. However, the expected error remains
smaller than that of GPOMDP for all but very large values ofT, and the standard deviation is always
smaller.

8.2 Online Training

Instead of precomputing the optimum baseline, and pretraining the value function, they could be
learned online, whilst estimating∇βη. Figures 4 and 5 show experiments on the same three state
MDP as in Section 8.1, but here the baseline and value function were learned online, using Al-
gorithm 2 and Algorithm 4 respectively. GPOMDP and baseline plots were over 500 independent
runs, the value function plots were over 1000 independent runs. Aβ value of 0.95 was used, and
the online training step sizeγt was set to 1/ln(1+ t). For the value function,Ω∗/T was set to 0.01
andα was set to 0.99. The baseline and the value function had a parameter for each state andwere
initially set to zero.

It is clear from the figures that the online baseline algorithm gives a significant improvement
from the GPOMDP algorithm. Looking at the error using the online value function algorithm we
see a performance increase over GPOMDP untilT becomes large.

Note that the baseline, when trained online, is non-stationary, and the gradient estimate becomes

∆ =
1
T

T−1

∑
t=0

∇µUt
(Yt)

µUt (Yt)

(

T

∑
s=t+1

βs−t−1r(Xs)−bt(Yt)

)

.
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Figure 2: The mean of the relative norm difference from∇η: using no control variate (GPOMDP-
Jβ); using the expected discounted value function as a baseline (BL-EJβ); using the opti-
mum baseline (BL-b∗Y (y)); using the optimal constant baseline (BL-b∗); and using a pre-
trained value function (VF-pretrained). In all cases the explicitly calculated discounted
value function was used in place of the estimatesJt (except, of course, for the pretrained
value function case, where the value function is used in place of the estimatesJt .)
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Figure 3: The standard deviation of the relative norm difference from∇η (see Figure 2 for an
explanation of the key).
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This non-stationarity could mean an additional bias in the estimate, though we cansee by the graphs
that, at least in this case, this additional bias is small. The estimate that we actually use is

∆ =
1
T

T

∑
t=1

zt (r(Xt)− (bt−1(Yt−1)−βbt−1(Yt))) ,

wherezt , the eligibility trace, is given byz0 = 0 andzt+1 = βzt + (∇µUt
(Yt))/µUt (Yt). One might

argue that this additionally correlates our baseline with any errors due to thetruncation of the sum
of discounted future rewards. This should make little difference, exceptfor smallT; we have seen
that, for the modified estimate∆(+S)

T (bY ), any influence this error has is exponentially decreasing.
Note that for any constant baseline we need not worry about non-stationarity, as we have

T

∑
t=1

zt (bT −βbT) =

(

T

∑
t=1

zt

)

(1−β)bT ,

so by additionally keeping track ofΣT = ∑T
t=1zt we have the estimate, at timeT,

1
T

T

∑
t=1

zt (r(Xt)− (bT −βbT)) =
1
T

T

∑
t=1

ztr(Xt)−
1
T

ΣT(1−β)bT ,

an unbiased estimate of∇βη; again, treating the error due to the truncation of the discounted sum
of future rewards as negligible.

8.3 Locating a Target

These experiments deal with the task of a puck, moving in a plane, learning to locate a target. The
puck had unit mass, 0.05 unit radius, and was controlled by applying a 5 unit force in either the
positive or negativex direction and either the positive or negativey direction. The puck moved
within a 5×5 unit area with elastic walls and a coefficient of friction of 0.0005; gravity being set
to 9.8. The simulator worked at a granularity of 1/100 of a second with controller updates at every
1/20 of a second. The distance between the puck and the target location wasgiven as a reward at
each update time. Every 30 seconds this target and the puck was set to a random location, and the
puck’sx andy velocities set randomly in the range[−10,10].

The puck policy was determined by a neural network with seven inputs, no hidden layer, and
four outputs; the outputs computing a tanh squashing function. The inputs to thecontroller were:
thex andy location of the puck, scaled to be in[−1,1]; thex andy location of the puck relative to
the target, scaled by the dimension sizes; the velocity of the puck, scaled such that a speed of 10
units per second was mapped to a value of 1; and a constant input of 1 to supply an offset. The
outputs of the neural network gave a weighting,ξi ∈ (0,1), to each of the(x,y) thrust combinations:
(−5,−5); (−5,5); (5,−5); and(5,5). So, collating the seven inputs in the vectorv, we have

ξi = sqsh

(

7

∑
k=1

θi,kvk

)

, i ∈ {1,2,3,4},

whereθ is a vector of 28 elements, one element,θi,k, for eachi,k pair, and the squashing function
is sqsh(x) = (1+ tanh(x))/2. The probability of theith thrust combination is then given by

µi(v,θ) =
ξi

∑ j ξ j
,
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Figure 4: The mean of the relative norm difference from∇η: using no control variate (GPOMDP);
using a baseline trained online (BL-online); and using a value function trained online
(VF-online).
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Figure 5: The standard deviation of the relative norm difference from∇η (see Figure 4 for an
explanation of the key).
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where actions have been labelled with the associated thrust combination.
The puck was first trained using conjugate gradient ascent, with GPOMDP(with T = 108) used

to estimate the gradient. The parameters of the policy were recorded at 28 points along the training
curve: at the initial parameter setting (θ = 0); and at each change in line search direction. Results
for 4 of the 28 points are shown in Figure 6. The results show the mean, over 100 independent trials,
of the relative norm difference between gradient estimates when using a range of different baselines,
all learned online (γt = 1/ ln(1+ t)) and initially set to zero, and an estimate of∇βη. The second
order baseline was a second order polynomial of the inputs, that is, againcollating the inputs in the
vectorv,

b(v,ω) = ω0,0 +
7

∑
k=1

ωk,0vk +
7

∑
k=1

7

∑
l=k

ωk,l vkvl ,

whereω is a vector of 32 elements, with one element,ωk,l , for each second order termvkvl , one
additional element,ωk,0, for each first order termvk, and one additional element,ω0,0, for the
constant term. The estimate of∇βη was produced by averaging the unbiased∇βη estimates at
T = 223; an average over 400 samples.

Figure 6 shows that each baseline method performed better than GPOMDP, with the second
order baseline performing the best of these. The estimated average reward and the estimated optimal
constant baseline performed almost equally, and both performed better than the online constant
baseline in this case. That the two estimation methods performed almost equally would suggest
that, in this case, the random variables(∇µu(y)/µu(y))

2 and Jβ( j) are close to independent. It might
be that for most policies, or at least policies at theθ values we tested,‖EπJβ(i)‖�‖Jβ(i)−EπJβ(i)‖,
since this implies

Eπ

[

(

∇µu(y)
µu(y)

)2

Jβ( j)

]

= Eπ

(

∇µu(y)
µu(y)

)2

EπJβ(i)+Eπ

[

(

∇µu(y)
µu(y)

)2
(

Jβ( j)−EπJβ(i)
)

]

≈ Eπ

(

∇µu(y)
µu(y)

)2

EπJβ(i).

9. Conclusions

We have shown that the use of control variate techniques can reduce estimation variance when
estimating performance gradients. The first technique was to add a baseline. Here we analyzed
the variance quantities of (8) and (9), the estimation variance when using a baseline under the
assumption that the discounted value function is known and samples may be drawn independently.
We have given the optimal baseline, the baseline that minimizes this variance, and have expressed
the additional variance resulting from using an arbitrary baseline as a weighted squared distance
from this optimum. Similar results have also been shown for a constant baseline. Here it was also
shown how much additional variance results from using the expected discounted value function, a
popular choice of baseline, in place of the optimal constant baseline. We have also shown that the
estimation variance from∆(+S)

T (bY ), a realizable estimate of∇βη formed from a single sample path
of the associated POMDP, is bounded by the stationary variance plus a termindependent of the
choice of baseline, and another term of negligible magnitude.

A second control variate technique used to reduce estimation variance wasto replace estimates
of the discounted value function with some appropriate value function V. We have shown that, even
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Figure 6: Each plot shows the mean, over 100 independent runs, of therelative norm difference
from ∇βη: using no baseline (��); using a constant baseline, trained online (+ ); using
a second order polynomial of the inputs as a baseline, trained online (�

�
); usingEπJβ(i)

as a baseline, estimated online (��); and using the optimal constant baseline, estimated
online ( | ). The reference∇βη is estimated by averaging the unbiased estimates at
T = 223. The four plots show four of the 28 parameter values at the end points of each
line search in the conjugate gradient ascent algorithm, when training on the target location
example using GPOMDP (withT = 108) to produce gradient estimates. The remaining
24 parameter values give similar plots.
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if the discounted value function is known, selecting V to be equal to the discounted value function
is not necessarily the best choice. We have shown examples where this is the case; where additional
reduction in estimation variance can be achieved by selecting V to be a functionother than the
discounted value function, with no addition of estimation bias. We have also given a bound on the
expected squared error of the estimate∆V

T , an estimate of∇βη that uses V in place of discounted
value function estimates and is formed from a single sample path of the associated MDP.

The gradient estimates∆(+S)
T (bY ) and∆V

T use a baseline bY and a value function V, respectively,
in their calculations. In experiments on a toy problem we investigated the improvements obtained
when using the optimal choice of baseline in∆(+S)

T (bY ), and also when using the value function
minimizing the bound on expected squared error of estimates in∆V

T . Significant improvement was
shown.

In general the optimal choices for the baseline and the value function may not be known. We
have explored the idea of using gradient descent on the error boundsderived in this paper to learn a
good choice for a baseline, or for a value function. We have given realizable algorithms to obtain the
appropriate gradient estimates, along with their online versions. In experiments on the toy problem,
and in a target location problem, we have seen some improvements given by these algorithms.

In experiments we have looked at using the online versions of the algorithms inSection 7; updat-
ing the baseline (or value function) whilst estimating the gradient of the performance. Consequently
some additional bias in the performance gradient estimate is likely to have occurred. The results of
the experiments, however, would suggest that this bias is small. Further work of interest is the study
of the convergence of these online algorithms, and also the convergenceof the performance whilst
using these online algorithms.
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Appendix A. Discussion of Assumption 1

The details in this section can be found in texts covering Markov chains; see, for example, Puterman
(1994); Grimmett and Stirzaker (1992); Seneta (1981). We include them to: define the terms used
in Assumption 1; show how Assumption 1 may be relaxed; and give an intuition ofour use of
Assumption 1.

The states of a Markov chainM = (S ,P) can be divided into equivalence classes under the
communicating relation↔. We definei ↔ i, and writei ↔ j if there are integersm,n > 0 such
that p(m)

i j > 0 andp(n)
ji > 0, wherep(t)

i j is the i j th entry of thet-step transition matrixPt . We call a
classS̃ ⊂ S recurrent if its states are recurrent, otherwise we call it transient. A stateis recurrent if
Pr{Xt = i for somet > 0|X0 = i} = 1, otherwise it is transient. Notice that this means that once the
chain enters a recurrent class it never leaves, but rather visits all states of that class infinitely often.
If the chain is finite then it will eventually leave every transient class and settlein some recurrent
class.
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We say a Markov chainM = (S ,P) is irreducible if the spaceS forms a single class under↔;
necessarily a recurrent class for finite Markov chains. We can relax the irreducibility condition, and
instead allow anyS that contains a single recurrent classSR plus a set (possibly containing more
than one class) of transient statesST such that Pr{Xt ∈ SR for somet > 0|X0 = j} = 1 for all j ∈ ST

(guaranteed for finite chains).
The period,d, of a statei ∈ S of a Markov chainM = (S ,P) is the greatest common divisor of

the set of times{t > 0 : p(t)
ii > 0}. It is uniform across the states of a class. A state, and consequently

a class, is aperiodic ifd = 1. We can relax the aperiodicity condition and allow arbitrary periods.
ConsiderSR to be constructedSR = S0∪S1∪ ·· ·∪Sd−1, whered is the period ofSR and the setsSk

are chosen such that Pr{Xt+1 ∈ Sk+1(mod d)|Xt ∈ Sk} = 1.

Our interest is in the existence and uniqueness of the stationary distributionπ. The existence of
π stems from the Markov chain reaching, and never leaving, a recurrentclass, combined with the
forgetfulness of the Markov property. The uniqueness ofπ stems from us allowing only a single
recurrent class. So given a finite Markov chainM = (S ,P) with the constructionS = ST ∪SR, and
SR = S0∪S1∪ ·· ·∪Sd−1, as above, we have, writingN[0,T)(i) to denote the number of times statei
is visited before timeT,

lim
T→∞

T−1N[0,T)(i) = πi , a.s. (24)

Equation (24) is helpful in two ways. Firstly, our choice of performance measure, (2), is the
expected average of r(Xt), where{Xt} is produced by the chain. We see from (24) that this value
is independent of the initial state, and we could equivalently use the expected value of r(X), with
X ∼ π. Secondly, we are interested in calculating expectations over the stationarydistribution (such
as∇βη), and we see from (24) that this expectation can be calculated by observing a single sample
path generated by the Markov chain, almost surely. In Section 4 it is seen that we can even do well
with a finite length sample path; it is here we use the assumption of irreducibility andaperiodicity.

The analytical results of Section 5 and Section 6 use Theorem 3, Theorem 4and Corollary 5 of
Section 4 to bound the variance terms of the form

Var

(

1
T

T−1

∑
t=0

f(Xt)

)

, (25)

whereXt is generated by a Markov chainM = (S ,P) starting in the stationary distributionX0 ∼ π,
with variance terms of the form

Var(f(X)), (26)

whereX ∼ π. The proofs of these results use the property

lim
T→∞

Pr{XT = i} = πi , (27)

which holds whenSR is aperiodic, and is stronger than Equation (24). In particular, Equation (27)
holds with the addition of the set of transient statesST ; indeed the variance quantities of Equa-
tion (25) and (26) are not affected by such an addition, as the setST hasπ-measure zero. Also,
when SR is periodic, writingX(k)

t for the d-step subprocess with elements inSk andπ(k) for the
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stationary distribution corresponding to this irreducible aperiodic chain, wehave

Var

(

1
dT

dT−1

∑
t=0

f(Xt)

)

= E





(

1
dT

dT−1

∑
t=0

f(Xt)−E

[

1
dT

dT−1

∑
t=0

f(Xt)

∣

∣

∣

∣

∣

X0 ∼ π

])2
∣

∣

∣

∣

∣

∣

X0 ∼ π





=
1
d2

d−1

∑
k1=0

d−1

∑
k2=0

E

[(

1
T

T−1

∑
t=0

f
(

X(k1)
t

)

−E

[

1
T

T−1

∑
t=0

f
(

X(k1)
t

)

∣

∣

∣

∣

∣

X0 ∼ π

])

×
(

1
T

T−1

∑
t=0

f
(

X(k2)
t

)

−E

[

1
T

T−1

∑
t=0

f
(

X(k2)
t

)

∣

∣

∣

∣

∣

X0 ∼ π

])∣

∣

∣

∣

∣

X0 ∼ π

]

≤ 2
d

d−1

∑
k=0

E





(

1
T

T−1

∑
t=0

f
(

X(k)
t

)

−E

[

1
T

T−1

∑
t=0

f
(

X(k)
t

)

∣

∣

∣

∣

∣

X0 ∼ π

])2
∣

∣

∣

∣

∣

∣

X0 ∼ π





=
2
d

d−1

∑
k=0

E





(

1
T

T−1

∑
t=0

f
(

X(k)
t

)

−E

[

1
T

T−1

∑
t=0

f
(

X(k)
t

)

∣

∣

∣

∣

∣

X(k)
0 ∼ π(k)

])2
∣

∣

∣

∣

∣

∣

X(k)
0 ∼ π(k)





=
2
d

d−1

∑
k=0

Var

(

1
T

T−1

∑
t=0

f
(

X(k)
t

)

)

(that the distribution ofX(k)
0 is π(k) whenX0 ∼ π is due to the setsSk having equalπ-measure.) It is

now straightforward to give analogous results to those of Section 5 and 6 when the Markov chain
consists of a single, possibly periodic, recurrent class plus a set of transient states.

The justification in studying the variance quantity (25) is that, after leaving the set of statesST ,
the distribution over states will approachπ exponentially quickly. Whilst this does not hold for
periodic chains, it does hold that the distribution over states restricted to the set of times{Tk +dt :
t ∈ {0,1,2. . .}}, whereTk is the first timeXt hits the setSk, will approachπ(k) exponentially quickly.

Appendix B. Proofs for Section 4

In this section we give the proofs for Theorem 2, Theorem 3, Theorem4, and Corollary 5 of Sec-
tion 4. Before giving the proof of Theorem 2 we first look at some properties of Markov chains. In
particular, we look at the covariance decay matrix of a finite ergodic Markov chain.

Definition 4. Let M = (S ,P) be a finite ergodic Markov chain, and letπ be its stationary distribu-
tion. We denote thecovariance decay matrixof this chain by D(t), and define it by

D(t)
def
= Π

1
2
(

Pt −eπ′)Π− 1
2

where, givenS = {1,2, . . . ,n}, Π 1
2 = diag(

√
π1,

√
π2, . . . ,

√
πn), andΠ− 1

2 =
[

Π1/2
]−1

.

We will see that the gain of the auto-covariance over the variance can be bound by the spectral
norm of the covariance decay matrix. First we will give a bound on the spectral norm of the co-
variance decay matrix for general finite ergodic Markov chains. Then we will give a much tighter
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bound for reversible finite ergodic Markov chains. The spectral normof a matrix is given by the
following definition.

Definition 5. Thespectral normof a matrix A is denoted‖A‖λ. It is the matrix norm induced by the
Euclidean norm,

‖A‖λ
def
= max

‖x‖=1
‖Ax‖ .

An equivalent definition is

‖A‖λ = max
‖x‖=1

‖Ax‖ = max
‖x‖=1

√
x′A′Ax=

√

λmax(A′A),

whereλmax(A) denotes the largest eigenvalue of the matrix A. As A′A is symmetric and positive
semi-definite, all of its eigenvalues are real and positive.

Note 2. We have that, for any matrix A

‖Ax‖ ≤ ‖A‖λ ‖x‖ .

This can be seen from: for‖x‖ 6= 0

‖Ax‖ =

∥

∥

∥

∥

A

(

x
‖x‖

)∥

∥

∥

∥

‖x‖ .

Recall the following two definitions.

Definition 6. Thetotal variation distancebetween two distributions p,q on the finite setS is given
by

dTV(p,q)
def
=

1
2 ∑

i∈S

|pi −qi | = ∑
i∈S :pi>qi

(pi −qi).

Definition 7. Themixing timeof a finite ergodic Markov chain M= (S ,P) is defined as

τ def
= min

{

t > 0 : max
i, j

dTV
(

Pt
i ,P

t
j

)

≤ e−1
}

,

where Pti denotes the ith row of the t-step transition matrix Pt .

Note 3. Denoting dt
def
= maxi, j dTV

(

Pt
i ,P

t
j

)

, for s, t ≥ 1 we have that dt+s ≤ dtds, and hence

dt ≤ exp(−bt/τc) .

Note 4. We have that

max
i∈S

dTV
(

Pt
i ,π
)

≤ dt .
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The sub-multiplicative property in Note 3 can be seen from

dTV

(

Pt+s
i ,Pt+s

j

)

= ∑
l∈S :p(t+s)

il >p(t+s)
jl

(

p(t+s)
il − p(t+s)

jl

)

= ∑
l∈S :p(t+s)

il >p(t+s)
jl

∑
k∈S

(

p(t)
ik − p(t)

jk

)

p(s)
kl

= ∑
k∈S :p(t)

ik >p(t)
jk

(

p(t)
ik − p(t)

jk

)

∑
l∈S :p(t+s)

il >p(t+s)
jl

p(s)
kl

− ∑
k∈S :p(t)

jk >p(t)
ik

(

p(t)
jk − p(t)

ik

)

∑
l∈S :p(t+s)

il >p(t+s)
jl

p(s)
kl

≤ dTV
(

Pt
i ,P

t
j

)

max
k1,k2∈S

∑
l∈S :p(t+s)

il >p(t+s)
jl

(

p(s)
k1l − p(s)

k2l

)

≤ dTV
(

Pt
i ,P

t
j

)

ds, (28)

wherep(t)
i j denotes thei j th component ofPt , and we have used that∑l p(t)

il p(s)
lk = p(t+s)

ik . As dt ≤ 1,
this also impliesdt is non-increasing (fort ≥ 1). The inequality in Note 3 then follows from applying
the sub-multiplicative property toτbt/τc ≤ t, giving

dt ≤
{

dbt/τc
τ t ≥ τ,

1 t < τ.

Note 4 can be seen from

∑
k∈S

∣

∣

∣
p(t)

ik −πk

∣

∣

∣
= ∑

k∈S

∣

∣

∣

∣

∣

∑
j∈S

π j

(

p(t)
ik − p(t)

jk

)

∣

∣

∣

∣

∣

≤ ∑
j∈S

π j ∑
k∈S

∣

∣

∣
p(t)

ik − p(t)
jk

∣

∣

∣
.

We will also consider the following, asymmetric, notion of distance.

Definition 8. Theχ2 distancebetween the distribution p and the distribution q on the finite setS ,
with qi > 0 for all i ∈ S , is given by

dχ2(p,q)
def
=

(

∑
i∈S

(pi −qi)
2

qi

)1/2

.

Lemma 21. Let M= (S ,P) be a finite ergodic Markov chain, and letπ be its stationary distribution.
There exists a mixing timeτ, which is a property of M, such that

‖D(t)‖λ ≤
√

Ei∼π
(

dχ2(Pt
i ,π)

)2 ≤
√

2|S |max
i∈S

dTV(Pt
i ,π) ≤

√

2|S |exp(−bt/τc).

Thus we have‖D(t)‖λ ≤
√

2|S |exp(−bt/τc).
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Proof. Note thatD(t)′D(t) is symmetric and positive semi-definite and hence its eigenvalues are
real and positive. Label them, in non-increasing order,λ1,λ2, . . . . This combined with the relation-
ship∑i λi = tr

(

D(t)′D(t)
)

, where tr(A) denotes the trace of the matrixA, gives

0≤ λ1 ≤ tr
(

D(t)′D(t)
)

.

Furthermore,

tr
(

D(t)′D(t)
)

= ∑
i∈S

∑
k∈S

πi

πk

(

p(t)
ik −πk

)2
= Ei∼π

(

dχ2

(

Pt
i ,π
))2

= ∑
i∈S

∑
k∈S

πi p
(t)
ik

πk

(

p(t)
ik −πk

)

−∑
i∈S

∑
k∈S

πi

(

p(t)
ik −πk

)

≤ ∑
k∈S

max
ı̃∈S

∣

∣

∣
p(t)

ı̃k −πk

∣

∣

∣

(

1
πk

∑
i∈S

πi p
(t)
ik

)

≤ |S |max
i∈S

∑
k∈S

∣

∣

∣
p(t)

ik −πk

∣

∣

∣

= 2|S |max
i∈S

dTV
(

Pt
i ,π
)

≤ 2|S |exp(−bt/τc) .

The last inequality follows from Note 3 and Note 4.

Recall that a reversible Markov chain has a transition probability matrix and stationary distribu-
tion satisfying the detailed balance equations

πi pi j = π j p ji ,

for all i, j.

Lemma 22. Let M = (S ,P) be a finite ergodic reversible Markov chain, and letπ be its stationary
distribution. Order the eigenvalues of P such that1 = λ1 > |λ2| ≥ |λ3| ≥ . . .. Then

‖D(t)‖λ = |λ2|t .

Furthermore, if M has mixing timeτ, we have that|λ2|t ≤ 2exp(−bt/τc) .

Proof. As P is reversible,

√

πi

π j
p(t)

i j =

√

πi

π j

(

π j

πi

)

p(t)
ji =

√

π j

πi
p(t)

ji , (29)

and henceD(t)′ = D(t). Given a polynomial f(·) and the symmetric matrixA, Ax = λx implies
f(A)x = f(λ)x. Thus,

‖D(t)‖λ =
√

λmax
(

D(t)′D(t)
)

=

√

λmax

(

D(t)2
)

= max
i

|λi(D(t))| ,
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whereλ1(D(t)),λ2(D(t)), . . . are the eigenvalues ofD(t). The matrixD(t) is similar to(Pt −eπ′)
via the matrixΠ 1

2 , and hence has the same eigenvalues. Letx1,x2,x3, . . . be the left eigenvectors of
P, labelled with the indices of their associated eigenvalues. Then

x′i
(

Pt −eπ′)= x′i
(

Pt − lim
n→∞

Pn
)

= λt
ix
′
i − lim

n→∞
λn

i x′i =

{

0 i = 1,
λt

ix
′
i i 6= 1.

Thereforeλt
2 is the greatest magnitude eigenvalue ofD(t). Furthermore, ifx 6= 0 is a right eigen-

vector ofD(t) with eigenvalueλ, we have

∑
j∈S

√

πi

π j

(

p(t)
i j −π j

)

x j =
1√
πi

∑
j∈S

(

p(t)
ji −πi

)√π jx j = λxi , from (29),

and so

|λ|∑
i∈S

√
πi |xi | = ∑

i∈S

∣

∣

∣

∣

∣

∑
j∈S

(

p(t)
ji −πi

)√π jx j

∣

∣

∣

∣

∣

≤ ∑
i∈S

∑
j∈S

∣

∣

∣
p(t)

ji −πi

∣

∣

∣

√π j |x j |

≤
(

max
i∈S

∑
k∈S

∣

∣

∣
p(t)

ik −πk

∣

∣

∣

)

∑
j∈S

√π j |x j |

= 2max
i∈S

dTV
(

Pt
i ,π
)

∑
j∈S

√π j |x j |.

So from Note 3 and Note 4 we have that|λ| ≤ 2exp(−bt/τc).

Lemma 23. Let M= (S,P) be a finite ergodic Markov chain, and letπ be its stationary distribution.
Let{Xt} be the process generated by M starting X0 ∼ π. For any two functionsf ,g : S → R

|E [(f(Xs)−Eπf(i))(g(Xs+t)−Eπg(i))]| ≤ ‖D(t)‖λ

√

Eπ (f(i)−Eπf(i))2
Eπ (g(i)−Eπg(i))2.

Proof. Denoting fto be the column vector of f(x)−Eπf(i) over the statesx∈ S , then
∣

∣

∣
E

[

fXs
g

Xs+t

]∣

∣

∣
=

∣

∣

∣
f ′ΠPtg

∣

∣

∣

=
∣

∣

∣f ′Π
(

Pt −eπ′)g
∣

∣

∣

=
∣

∣

∣
f ′Π

1
2 D(t)Π

1
2 g
∣

∣

∣

≤
∥

∥

∥
f ′Π

1
2

∥

∥

∥

2

∥

∥

∥
D(t)Π

1
2 g
∥

∥

∥

2
(Schwartz)

≤ ‖D(t)‖λ

∥

∥

∥f ′Π
1
2

∥

∥

∥

2

∥

∥

∥Π
1
2 g
∥

∥

∥

2
(Note 2)

= ‖D(t)‖λ

√

Eπ (f i)
2
Eπ

(

g
i

)2
.
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Lemma 23 shows how covariance terms can be bounded by the variance under the stationary
distribution attenuated by the spectral norm of the covariance decay matrix.Combining this with
Lemma 23 (or Lemma 22 for reversible chains) gives us Theorem 2.

Proof of Theorem 2.By the application of Lemma 21 and Lemma 23,

|Covπ(t; f)| ≤ ‖D(t)‖λ Varπ(f) (Lemma 23)

≤
√

2|S |exp(−bt/τc)Varπ(f) (Lemma 21)

≤
√

2|S |e
√

exp(−t/τ)Varπ(f).

This shows that Theorem 2 holds with someL ≤
√

2|S |e and 0≤ α ≤ exp(−1/(2τ)). If the chain
is reversible, then similarly, using Lemma 22, the bound of Theorem 2 holds withL = 2e and
α = exp(−1/τ).

We can use the result of Theorem 2 to prove Theorem 3. Recall that Theorem 3 shows how the
variance of an average of dependent samples can be bounded byO(1/T) times the variance of a
sample distributed according to the stationary distribution.

Proof of Theorem 3.

Var

(

1
T

T−1

∑
t=0

f(Xt)

)

=
1

T2E

(

T−1

∑
t=0

(f(Xt)−Ef(Xt))

)2

=
1

T2

T−1

∑
t1=0

T−1

∑
t2=0

E [(f(Xt1)−Ef(Xt1))(f(Xt2)−Ef(Xt2))]

=
1

T2

T−1

∑
t1=0

T−1

∑
t2=0

Covπ(|t2− t1| ; f)

=
1

T2

T−1

∑
t=−(T−1)

(T −|t|)Covπ(|t| ; f).

Then, using Theorem 2,

1
T2

T−1

∑
t=−(T−1)

(T −|t|)Covπ(|t| ; f) ≤ 1
T2

T−1

∑
t=−(T−1)

(T −|t|)Lα|t|Var(f(X))

=
L
T2

(

T (1+α)

1−α
− 2α

(

1−αT
)

(1−α)2

)

Var(f(X))

≤ 1
T

(

L (1+α)

1−α

)

Var(f(X)),

where the equality follows from

T−1

∑
t=−(T−1)

(T −|t|)α|t| = T +2T
T−1

∑
t=1

αt −2
T−1

∑
t=1

tαt
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= T +
2Tα

(

1−αT−1
)

1−α
−2

T−1

∑
s=1

T−1

∑
t=s

αt

=

(

T +
2Tα
1−α

)

− 2TαT

1−α
−2

T−1

∑
s=1

T−1

∑
t=s

αt

=
T (1+α)

1−α
− 2TαT

1−α
−2

T−1

∑
s=1

αs1−αT−s

1−α

=
T (1+α)

1−α
− 2TαT

1−α
− 2α

(

1−αT−1
)

(1−α)2 +
2(T −1)αT

1−α

=
T (1+α)

1−α
− 2α

(

1−αT−1
)

+2αT (1−α)

(1−α)2

=
T (1+α)

1−α
− 2α

(

1−αT
)

(1−α)2 .

We may set theΩ∗ in Theorem 3 toΩ∗ = L (1+α)/(1−α). Furthermore, recalling thatα ≤
exp(−1/(2τ)), we have

Ω∗ = L
1+α
1−α

≤ 2L
1

1−exp(−1/(2τ))
≤ 6Lτ,

where the last inequality uses[1−exp(−1/(2τ))]−1 ≤ 8
3τ. Note that forx = 1/(2τ) we have 0≤

x≤ 1/2, and that for such anx

exp(−x) ≤ 1−x+
x2

2

⇔ 1−exp(−x) ≥ x
(

1− x
2

)

⇔ 1
1−exp(−x)

≤ 1
x
· 2
2−x

⇒ 1
1−exp(−x)

≤ 4
3x

.

(30)

Theorem 4 gives a result similar to Theorem 3, but without relying on Theorem 2, and hence
without relying on the size of the state space. For the proof we find it useful to define the following.

Definition 9. The triangular discrimination(Topsøe, 2000) between two distributions p,q on the
finite setS is given by

d4(p,q)
def
= ∑

i∈S

(pi −qi)
2

pi +qi
.

Note 5. We have thatd4(p,q) ≤ 2dTV(p,q).

Note 5 can be seen from∑
i∈S

(pi −qi)
2

pi +qi
= ∑

i∈S

|pi −qi |
pi +qi

|pi −qi | ≤ ∑
i∈S

|pi −qi |.
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Proof of Theorem 4.Write gi = f(i)−Ef(X), and writeV = ∑i∈S πig2
i , the variance of f(X). We

have that|gi | ≤ 2c for all i ∈ S . Now, we have for anys≥ 0 andt ≥ 0,

E(f(Xs)−Ef(Xs))(f(Xs+t)−Ef(Xs+t))

= ∑
i, j∈S

πigi

(

p(t)
i j −π j

)

g j

= ∑
i, j∈S

√
πi

p(t)
i j −π j

√

p(t)
i j +π j

√
πi gi

√

p(t)
i j +π j g j

≤





∑
i∈S

πi ∑
j∈S

(

p(t)
i j −π j

)2

p(t)
i j +π j







1/2
(

∑
i∈S

πig
2
i ∑

j∈S

(

p(t)
i j +π j

)

g2
j

)1/2

(Schwartz)

=

(

∑
i∈S

πid4
(

Pt
i ,π
)

)1/2(

2V2 + ∑
i∈S

πig
2
i ∑

j∈S

(

p(t)
i j −π j

)

g2
j

)1/2

≤ (2dt)
1/2

(

2V2 +(2c)2 ∑
i∈S

πig
2
i ∑

j∈S

∣

∣

∣p
(t)
i j −π j

∣

∣

∣

)1/2

(Note 5)

≤ 2d1/2
t

(

V2 +2c2Vdt
)1/2

. (31)

Consider the case whereV = Var(f(X)) > ε. If dt ≤ ε, from Equation (31), we have

E(f(Xs)−Ef(Xs))(f(Xs+t)−Ef(Xs+t)) ≤ 2
√

2(1+c)d1/2
t V. (32)

This holds for alls, t such thatdt ≤ ε, which is implied by

exp(−t/τ+1) ≤ ε
⇔ −t/τ ≤ lnε−1

⇔ t ≥ τ
(

1+ ln
1
ε

)

⇐ t ≥ 2τ ln
1
ε
,

asε ≤ e−1. For alls, t we have

E(f(Xs)−Ef(Xs))(f(Xs+t)−Ef(Xs+t)) ≤V, (33)

which is a Cauchy-Schwartz inequality:

E(f(Xs)−Ef(Xs))(f(Xs+t)−Ef(Xs+t))

= ∑
i, j∈S

πigi p
(t)
i j g j

= ∑
i, j∈S

√

πi p
(t)
i j gi

√

πi p
(t)
i j g j

≤
(

∑
i∈S

πig
2
i ∑

j∈S

p(t)
i j

)1/2(

∑
j∈S

(

∑
i∈S

πi p
(t)
i j

)

g2
j

)1/2
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=

(

∑
i∈S

πig
2
i

)1/2(

∑
j∈S

π jg
2
j

)1/2

= V.

So from Equation (32) and Equation (33) we have

Var

(

1
T

T−1

∑
t=0

f(Xt)

)

=
1

T2

T−1

∑
t1=0

T−1

∑
t2=0

E(f(Xt1)−Ef(Xt1))(f(Xt2)−Ef(Xt2))

=
1

T2

T−1

∑
t=0

E(f(Xt)−Ef(Xt))
2 +

2
T2

T−2

∑
s=0

T−s−1

∑
t=1

E(f(Xs)−Ef(Xs))(f(Xs+t)−Ef(Xs+t))

=
1

T2

T−1

∑
t=0

E(f(X)−Ef(X))2 +
2

T2

T−1

∑
t=1

(T − t)E(f(X0)−Ef(X0))(f(Xt)−Ef(Xt))

=
1
T

V +
2

T2

b2τ ln(1/ε)c

∑
t=1

(T − t)E(f(X0)−Ef(X0))(f(Xt)−Ef(Xt))

+
2

T2

T−1

∑
t=b2τ ln(1/ε)c+1

(T − t)E(f(X0)−Ef(X0))(f(Xt)−Ef(Xt))

≤ 1
T

V +4τ ln
(

ε−1) 1
T

V +4
√

2(1+c)
∞

∑
t=b2τ ln(1/ε)c+1

d1/2
t

1
T

V

≤
(

1+4τ ln
1
ε

+25τ(1+c)ε
)

1
T

V, (34)

where the last line follows from

∞

∑
t=b2τ ln(1/ε)c+1

d1/2
t ≤

∞

∑
t=b2τ ln(1/ε)c+1

exp(−t/(2τ)+1/2)

=
√

e
∞

∑
t=b2τ ln(1/ε)c+1

exp(−t/(2τ))

≤
√

eexp

(

− ln
1
ε

) ∞

∑
t=0

(exp(−1/(2τ)))t

=
√

eε
1

1−exp(−1/(2τ))

≤ 8
√

e
3

τε,

where we have again used Equation (30). For the case where Var(f(X)) ≤ ε we have

Var

(

1
T

T−1

∑
t=0

f(Xt)

)

=
1

T2

T−1

∑
t1=0

T−1

∑
t2=0

E(f(Xt1)−Ef(Xt1))(f(Xt2)−Ef(Xt2))
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≤ 1
T2

T−1

∑
t1=0

T−1

∑
t2=0

V

≤ ε. (35)

As the variance is bounded either by Equation (34) or by Equation (35), taking their sum gives the
result.

Lastly, we prove the corollary to Theorem 4, which shows the essential rate of decrease of the
bound.

Proof of Corollary 5. Selectingε such that, writingV = Var(f(X)),

1
ε

=
T

4τV
+

25
4

(1+c),

satisfies 0≤ ε ≤ e−1. Substituting this into the result of Theorem 4 gives

Var

(

1
T

T−1

∑
t=0

f(Xt)

)

≤ 4τV
T +25(1+c)τV

+

(

1+
100(1+c)τ2V

T +25(1+c)τV

+4τ ln

(

T
4τV

+
25
4

(1+c)

))

V
T

≤ 4τV
T

+

(

1+4τ+4τ ln

(

T
4τV

+
25
4

(1+c)

))

V
T

≤ (1+8τ)
V
T

+4τ ln

(

7(1+c)+
1
4τ

(

V
T

)−1
)

V
T

.

Appendix C. Proofs for Section 5.1

In this section we give the proofs for Lemma 6 and Theorem 7 in Section 5.1. Afew auxiliary
lemmas are also given.

Proof of Lemma 6.ConsiderF -measurable random variablesA,B, with F being someσ-algebra.
If B is alsoG -measurable for someG ⊂ F such thatE[A|G ] = B almost surely, then we have:

E [A−B] = 0; and E [B(A−B)] = 0

(Note thatE[B(A−B)|G ] = BE[A−B|G ] = 0, almost surely). This gives us

Var(A) = E

[

(A−E[A])2
]

= E

[

((B−E[B])+(A−B)−E[A−B])2
]

= E

[

((B−E[B])+(A−B))2
]

= E

[

(B−E[B])2 +2(B−E[B])(A−B)+(A−B)2
]

= E

[

(B−E[B])2
]

+2E [B(A−B)]−2E[B]E [A−B]+E
[

(A−B)2]

= Var(B)+E
[

(A−B)2] . (36)
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Now choosing F to be the smallest σ-algebra such that the random variable
(X0, . . . ,XT−1,J0, . . . ,JT−1) and our functions f,J,a, for all Xt , are measurable, andG such
that(X0, . . . ,XT−1), and the functions onXt , are measurable, we have that for

A =
1
T

T−1

∑
t=0

f(Xt)(Jt −a(Xt)) and B =
1
T

T−1

∑
t=0

f(Xt)(J(Xt)−a(Xt)) ,

A andB areF -measurable,B is G -measurable, andG ⊂ F . Furthermore, we have

E [A|G ] = E

[

1
T

T−1

∑
t=0

f(Xt)(Jt −a(Xt))

∣

∣

∣

∣

∣

X0, . . . ,XT−1

]

=
1
T

T−1

∑
t=0

E [ f(Xt)(Jt −a(Xt))|Xt ]

=
1
T

T−1

∑
t=0

f(Xt)(E [Jt |Xt ]−a(Xt))

=
1
T

T−1

∑
t=0

f(Xt)(J(Xt)−a(Xt))

= B.

The proof then follows from Equation 36.

The proof of Theorem 7 requires some additional tools. In addition to (10)we also consider a
variation of GPOMDP where a fixed length chain is used to estimate the discounted value function:

∆(S)
T

def
=

1
T

T−1

∑
t=0

∇µUt (Yt)

µUt (Yt)
J(S)
t+1, J(S)

t
def
=

t+S−1

∑
s=t

βs−tr(Xs).

Lemma 24. Let D= (S ,U,Y ,P,ν, r,µ) be a controlled POMDP satisfying Assumptions 1, 2 and 3.
Then

∥

∥

∥
∆(+S)

T −∆(S)
T

∥

∥

∥
≤ BR

1−β
βS,

and similarly,
∥

∥

∥
∆(∞)

T −∆(S)
T

∥

∥

∥
≤ BR

1−β
βS,

where∆(∞)
T denotes∆(S)

T in the limit as S→ ∞.

Proof.

∥

∥

∥
∆(+S)

T −∆(S)
T

∥

∥

∥
=

∥

∥

∥

∥

∥

1
T

T−1

∑
t=0

∇µUt (Yt)

µUt (Yt)
J(+S)
t+1 − 1

T

T−1

∑
t=0

∇µUt (Yt)

µUt (Yt)
J(S)
t+1

∥

∥

∥

∥

∥

=

∥

∥

∥

∥

∥

1
T

T−1

∑
t=0

∇µUt (Yt)

µUt (Yt)

c

∑
s=t+1+S

βs−t−1r(Xs)

∥

∥

∥

∥

∥

, c = T +S

1522



VARIANCE REDUCTION OFGRADIENT ESTIMATES IN RL

≤ BR
1
T

T−1

∑
t=0

c

∑
s=t+1+S

βs−t−1

= BR
1
T

T−1

∑
t=0

βS(1−βc−S−t−1)

1−β

≤ BR
1−β

βS.

Obtain the bound
∥

∥

∥
∆(∞)

T −∆(S)
T

∥

∥

∥
similarly by considering the limit asc→ ∞.

Lemma 25. Let D= (S ,U,Y ,P,ν, r,µ) be a controlled POMDP satisfying Assumptions 1, 2 and 3.
Let {Zt} = {Xt ,Yt ,Ut ,Xt+1} be the process generated by D. For anya :S ×Y ×U ×S → R satis-
fying |a(·)| ≤ M , we have

Var

(

1
T

T−1

∑
t=0

∇µUt (Yt)

µUt (Yt)

(

J(+S)
t+1 −a(Zt)

)

)

≤ Var

(

1
T

T−1

∑
t=0

∇µUt (Yt)

µUt (Yt)

(

J(S)
t+1−a(Zt)

)

)

+
5B2R(R+M)

(1−β)2 βS

and similarly,

Var

(

1
T

T−1

∑
t=0

∇µUt (Yt)

µUt (Yt)

(

J(S)
t+1−a(Zt)

)

)

≤ Var

(

1
T

T−1

∑
t=0

∇µUt (Yt)

µUt (Yt)

(

J(∞)
t+1−a(Zt)

)

)

+
5B2R(R+M)

(1−β)2 βS,

where J(∞)
t denotes J(S)

t in the limit as S→ ∞.

Proof.

Var

(

1
T

T−1

∑
t=0

∇µUt (Yt)

µUt (Yt)

(

J(+S)
t+1 −a(Zt)

)

)

= E

(

1
T

T−1

∑
t=0

∇µUt (Yt)

µUt (Yt)

(

J(+S)
t+1 −a(Zt)

)

−E

[

1
T

T−1

∑
t=0

∇µUt (Yt)

µUt (Yt)

(

J(+S)
t+1 −a(Zt)

)

])2

= E

(

1
T

T−1

∑
t=0

∇µUt (Yt)

µUt (Yt)

(

J(S)
t+1−a(Zt)

)

−E

[

1
T

T−1

∑
t=0

∇µUt (Yt)

µUt (Yt)

(

J(S)
t+1−a(Zt)

)

]

+
(

∆(+S)
T −∆(S)

T

)

−E

[

∆(+S)
T −∆(S)

T

])2

= Var

(

1
T

T−1

∑
t=0

∇µUt (Yt)

µUt (Yt)

(

J(S)
t+1−a(Zt)

)

)

+E

(

∆(+S)
T −∆(S)

T

)2
−
(

E

[

∆(+S)
T −∆(S)

T

])2

+2E

[(

1
T

T−1

∑
t=0

∇µUt (Yt)

µUt (Yt)

(

J(S)
t+1−a(Zt)

)

−E

[

1
T

T−1

∑
t=0

∇µUt (Yt)

µUt (Yt)

(

J(S)
t+1−a(Zt)

)

])′

×
(

∆(+S)
T −∆(S)

T

)]
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≤ Var

(

1
T

T−1

∑
t=0

∇µUt (Yt)

µUt (Yt)

(

J(S)
t+1−a(Zt)

)

)

+E

∥

∥

∥
∆(+S)

T −∆(S)
T

∥

∥

∥

2

+2E

[(∥

∥

∥

∥

∥

1
T

T−1

∑
t=0

∇µUt (Yt)

µUt (Yt)

(

J(S)
t+1−a(Zt)

)

∥

∥

∥

∥

∥

+E

∥

∥

∥

∥

∥

1
T

T−1

∑
t=0

∇µUt (Yt)

µUt (Yt)

(

J(S)
t+1−a(Zt)

)

∥

∥

∥

∥

∥

)

×
∥

∥

∥∆(+S)
T −∆(S)

T

∥

∥

∥

]

≤ Var

(

1
T

T−1

∑
t=0

∇µUt (Yt)

µUt (Yt)

(

J(S)
t+1−a(Zt)

)

)

+

(

BR
1−β

βS
)2

+4E

∥

∥

∥

∥

∥

1
T

T−1

∑
t=0

∇µUt (Yt)

µUt (Yt)

(

J(S)
t+1−a(Zt)

)

∥

∥

∥

∥

∥

BR
1−β

βS (Lemma 24)

≤ Var

(

1
T

T−1

∑
t=0

∇µUt (Yt)

µUt (Yt)

(

J(S)
t+1−a(Zt)

)

)

+

(

BR
1−β

βS
)2

+4

(

B(R+M(1−β))

1−β

)(

BR
1−β

βS
)

≤ Var

(

1
T

T−1

∑
t=0

∇µUt (Yt)

µUt (Yt)

(

J(S)
t+1−a(Zt)

)

)

+
5B2R(R+M)

(1−β)2 βS.

Obtain the second result by replacingJ(+S)
t with J(S)

t , andJ(S)
t with J(∞)

t ; then∆(+S)
T −∆(S)

T becomes

∆(S)
T −∆(∞)

T .

Using these Lemmas, and Theorem 4, we can now prove Theorem 7.

Proof of Theorem 7.In this proof we will apply Theorem 4 to show that the variance of the sample
average isO(ln(T)/T) times the variance of a single sample, and we will apply Lemma 6 to show
that the additional variance due to estimating the value function need not be considered. We first
use Lemma 25 to convert each of the samples within the average to be functionson a fixed length
of the chain, that is, functions on states of the Markov process{Xt ,Yt ,Ut , . . . ,Ut+S−1,Xt+S}. We can
then use Theorem 4 for the sample average of functions on this process.Write

V = Varπ

(

∇µu(y)
µu(y)

(

Jβ( j)−a(i,y,u, j)
)

)

,

E = Eπ

[

(

∇µu(y)
µu(y)

(

J( j)−Jβ( j)
)

)2
]

,

and

C =
5B2R(R+M)

(1−β)2 βS,

note that

1+

∥

∥

∥

∥

∇µUt (Yt)

µUt (Yt)

(

J(S)
t+1−a(Zt)

)

∥

∥

∥

∥

∞
≤ 1

7
· C1

1−β
,
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where‖a‖∞ is the maximum of the magnitudes of the components of vectora, and denote the mixing
time of the process{Xt ,Yt ,Ut , . . . ,Ut+S−1,Xt+S} by τ̃. We have

Var

(

1
T

T−1

∑
t=0

∇µUt (Yt)

µUt (Yt)

(

J(+S)
t+1 −a(Zt)

)

)

≤ Var

(

1
T

T−1

∑
t=0

∇µUt (Yt)

µUt (Yt)

(

J(S)
t+1−a(Zt)

)

)

+C (Lemma 25)

≤ Kε+

(

1+
25
7

τ̃
C1

1−β
ε+4τ̃ ln

1
ε

)

1
T

Var

(

∇µU0(Y0)

µU0(Y0)

(

J(S)
1 −a(Z0)

)

)

+C (Theorem 4)

≤ Kε+

(

1+
25
7

τ̃
C1

1−β
ε+4τ̃ ln

1
ε

)

1
T

Var

(

∇µU0(Y0)

µU0(Y0)

(

J(∞)
1 −a(Z0)

)

)

+

(

1+
25
7

τ̃
C1

1−β
ε+4τ̃ ln

1
ε

)

C
T

+C (Lemma 25)

= Kε+

(

1+
25
7

τ̃
C1

1−β
ε+4τ̃ ln

1
ε

)(

V
T

+
E
T

+
C
T

)

+C (Lemma 6).

Here, Theorem 4 was applied to each of theK dimensions of the quantity the variance is taken
over (recall that we consider the variance of a vector quantity to be the sum of the variance of its
components). Now, similar to the proof of Corollary 5, we choose

1
ε

=
K
4τ̃

(

V
T

+
E
T

+
C
T

)−1

+
25
28

· C1

1−β
,

giving

Var

(

1
T

T−1

∑
t=0

∇µUt (Yt)

µUt (Yt)

(

J(+S)
t+1 −a(Zt)

)

)

≤ Kε+

(

1+
25
7

τ̃
C1

1−β
ε+4τ̃ ln

1
ε

)(

V
T

+
E
T

+
C
T

)

+C

≤ 4τ̃
(

V
T

+
E
T

+
C
T

)

+[1+4τ̃

+4τ̃ ln

(

25
28

· C1

1−β
+

K
4τ̃

(

V
T

+
E
T

+
C
T

)−1
)]

(

V
T

+
E
T

+
C
T

)

+C

≤ h

(

τ̃
T

V

)

+h

(

τ̃
T

E

)

+h

(

τ̃
T

C

)

+C

≤ h

(

τ ln(e(S+1))

T
V

)

+h

(

τ ln(e(S+1))

T
E

)

+h

(

τ ln(e(S+1))

T
C

)

+C,

where the last line follows from̃τ ≤ τ ln(e(S+ 1)) (Lemma 1), and from h being an increasing
function. Lastly, we have

h

(

τ ln(e(S+1))

T
C

)

+C
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≤
(

1
T

+8τ
lne(S+1)

T

+4τ
ln(e(S+1))

T
ln

(

C1

1−β
+

K(1−β)2

20τB2R(R+M) ln(e(S+1))

(

βS

T

)−1
)

+1

)

C

≤
(

1
T

+8τ
lne(S+1)

T
+4τ

ln(T) ln(e(S+1))

T

+4τ
Sln(e(S+1))

T
ln

1
β

+4τ
ln(e(S+1))

T
ln

(

C1

1−β
+

K(1−β)2

20τB2R(R+M)

)

+1

)

C

≤ 2C2

(1−β)2

[

ln
1
β

+ ln

(

C1

1−β
+

K(1−β)2

C2

)]

(T +S) ln(e(S+1))

T
βS.

The second step has used the increasing property of ln, along with ln(e(S+1)) ≥ 1 andβS/T ≤ 1.
This gives us, for anyA,B≥ 0,

ln

(

A+
B

ln(e(S+1))

(

βS

T

)−1
)

≤ ln

(

A+B

(

βS

T

)−1
)

≤ ln

(

(A+B)

(

βS

T

)−1
)

.

Appendix D. Value Function Example

Here we consider a somewhat less trivial example than that presented in Section 6.2—an example
of reducing variance through appropriate choice of value function. A toy MDP is shown in Figure 7.
Here actiona1 causes the MDP to have a tendency to stay in states1, and actiona2 causes the MDP
to have a tendency to move away froms1 and stay in states2 ands3.

P(a1)

s1

s2s3

0.
75

0.25

0.75

0.25

0.75

0.
25

P(a2)

s1

s2s3

0.
25

0.75

0.25

0.75

0.25

0.
75

Figure 7: Transition probabilities for a toy 3 state, 2 action Markov decision process

Now consider the resultant controlled MDP when the single parameter, state independent policy

µa1 =
eθ

eθ +e−θ µa2 = 1−µa1 =
e−θ

eθ +e−θ

along with any reward function satisfying Assumption 2 is used. Note that this controlled MDP
satisfies Assumptions 1, 2 and 3 for allθ. For the policy atθ = 0 we haveµa1 = µa2 = 0.5 and

∇µa1 = 0.5 ∇µa2 = −0.5.
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The transition matrix and stationary distribution of the resultant chain are:

P =





0.5 0.5 0
0 0.5 0.5

0.5 0 0.5



 π =





1/3
1/3
1/3



 .

In this case the 1×3 matrixG = (1/6,−1/6,0), and the right null space ofG is {α1v1 +α2v2 :
α1,α2 ∈ R}, where

v1 =
1√
2





1
1
0



 v2 =





0
0
1



 .

Any value function of the form V= Jβ +α1v1 +α2v2 will produce an unbiased estimate of∇βη. In
this case we have that, writingr i = r(si),

Jβ = (I −βP)−1 r =
2

(2−β)3−β3





(2−β)2 β(2−β) β2

β2 (2−β)2 β(2−β)
β(2−β) β2 (2−β)2









r1

r2

r3



 .

If we selectβ = 0.9 this becomes

J0.9 =
1

0.301





1.21 0.99 0.81
0.81 1.21 0.99
0.99 0.81 1.21









r1

r2

r3



=
1

0.301





1.21r1 +0.99r2 +0.81r3

0.81r1 +1.21r2 +0.99r3

0.99r1 +0.81r2 +1.21r3



 .

If we had r= (1/10,2/11,0)′ then we would again have J0.9[= (1,1,81/99)′] in the right null
space ofG, and we could again choose V= 0 to obtain a zero bias, zero variance estimate of∇βη.
Consider instead the reward function

r(i) =

{

4.515 i = s1

0 otherwise,

so that J0.9 = (18.15,12.15,14.85)′ and∇0.9η = 1. We now have

Varπ

(

∇µu(i)
µu(i)

J0.9( j)

)

= Eπ

(

∇µu(i)
µu(i)

J0.9( j)

)2

−
(

Eπ

[

∇µu(i)
µu(i)

J0.9( j)

])2

= Eπ (J0.9( j))2−1

= π′





18.152

12.152

14.852



−1

= 231.5225.

The second line is obtained from|∇µu(i)/µu(i)| = 1 and∇0.9η = 1. If we chooseα1 = −15.15
√

2
andα2 = −14.85 then, for the value function V= Jβ +α1v1 +α2v2, we have

Varπ

(

∇µu(i)
µu(i)

V( j)

)

= Eπ

(

∇µu(i)
µu(i)

V( j)

)2

−
(

Eπ

[

∇µu(i)
µu(i)

V( j)

])2

= π′





(18.15−15.15)2

(12.15−15.15)2

0



−1

= 5;
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a significant reduction in variance, with no additional bias.
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Abstract

We propose in this paper a very fast feature selection technique based on conditional mutual in-
formation. By picking features which maximize their mutualinformation with the class to predict
conditional to any feature already picked, it ensures the selection of features which are both individ-
ually informative and two-by-two weakly dependant. We showthat this feature selection method
outperforms other classical algorithms, and that a naive Bayesian classifier built with features se-
lected that way achieves error rates similar to those of state-of-the-art methods such as boosting or
SVMs. The implementation we propose selects 50 features among 40,000, based on a training set
of 500 examples in a tenth of a second on a standard 1Ghz PC.

Keywords: classification, mutual information, feature selection, naive Bayes, information theory,
fast learning

1. Introduction

By reducing the number of features, one can both reduce overfitting of learning methods, and in-
crease the computation speed of prediction (Guyon and Elisseeff, 2003). We focus in this paper
on the selection of a few tens of binary features among a several tens of thousands in a context of
classification.

Feature selection methods can be classified into two types,filters andwrappers(Kohavi and
John, 1997; Das, 2001). The first kind are classifier agnostic, as they are not dedicated to a specific
type of classification method. On the contrary thewrappersrely on the performance of one type of
classifier to evaluate the quality of a set of features. Our main interest in this paper is to design an
efficientfilter, both from a statistical and from a computational point of view.

The most standard filters rank features according to their individual predictive power, which can
be estimated by various means such as Fisher score (Furey et al., 2000),Kolmogorov-Smirnov test,
Pearson correlation (Miyahara and Pazzani, 2000) or mutual information(Battiti, 1994; Bonnlan-
der and Weigend, 1996; Torkkola, 2003). Selection based on such a ranking does not ensure weak
dependency among features, and can lead to redundant and thus less informative selected families.
To catch dependencies between features, a criterion based on decisiontrees has been proposed re-
cently (Ratanamahatana and Gunopulos, 2003). Features which appearin binary trees build with
the standard C4.5 algorithm are likely to be either individually informative (those at the top) or con-

c©2004 François Fleuret.
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ditionally informative (deeper in the trees). The drawbacks of such a method are its computational
cost and sensitivity to overfitting.

Our approach iteratively picks features which maximize their mutual informationwith the class
to predict, conditionally to the response of any feature already picked (Vidal-Naquet and Ullman,
2003; Fleuret, 2003). This Conditional Mutual Information Maximization criterion (CMIM) does
not select a feature similar to already picked ones, even if it is individually powerful, as it does not
carry additional information about the class to predict. Thus, this criterion ensures a good tradeoff
between independence and discrimination. A very similar solution called Fast Correlation-Based
Filter (Yu and Liu, 2003) selects features which are highly correlated with the class to predict if
they are less correlated to any feature already selected. This criterion is very closed to ours but
does not rely on a unique cost function which includes both aspects (i.e. information about the class
and independence between features) and may be tricked in situation wherethe dependence between
feature appears only conditionally on the object class. It also requires the tuning of a thresholdδ for
feature acceptance, while our algorithm does not.

Experiments demonstrate that CMIM outperforms the other feature selection methods we have
implemented. Results also show and that a naive Bayesian classifier (Duda and Hart, 1973; Langley
et al., 1992) based on features chosen with our criterion achieves error rates similar or lower than
AdaBoost (Freund and Schapire, 1996a) or SVMs (Boser et al., 1992; Vapnik, 1998; Christiani and
Shawe-Taylor, 2000). Also, experiments show the robustness of this method when challenged by
noisy training sets. In such a context, it actually achieves better results thanregularized AdaBoost,
even though it does not require the tuning of any regularization parameterbeside the number of
features itself.

We also propose in this paper a fast but exact implementation based on a lazyevaluation of
feature scores during the selection process. This implementation divides thecomputational time
by two orders of magnitude and leads to a learning scheme which takes for instance one tenth of a
second to select 50 out of 43,904 features, based on 500 training examples. It is available under the
GNU General Public Licence athttp://diwww.epfl.ch/˜fleuret/files/cmim-1.0.tgz .

In §2 we introduce the notation, summarize basic concepts of information theory, and present
several feature selection schemes, including ours. In §3 we describe how features can be combined
with standard classification techniques (perceptron, naive Bayesian, nearest neighbors and SVM
with a Gaussian kernel). We propose a very fast implementation of our algorithm in §4 and give
experimental results in §5 and §6. We finally analyze those results in §7 and §8.

2. Feature Selection

Our experiments are based on two tasks. The first one is a standard pattern recognition problem
and consists of classifying small grey-scale pictures asface or non face, given a large number
of elementary boolean edge-like features. The second one is a drug-design problem and consists
of predicting the bio-activity of unknown molecules, given a large number of three-dimensional
boolean properties. For clarity, we relate our notation to those two problems, but our approach is
generic.

2.1 Notation

Denote byY a boolean random variable standing for the real class of the object to classify. The value
1 (respectively 0) stands forfacein the image classification experiments and foractive moleculein
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the drug design task (respectively fornon-faceandinactive molecule). Let X1, . . . , XN denote theN
boolean features. They depend on the presence or absence of edges at certain positions in the image
classification task and to certain three-dimensional properties of the moleculein the drug-design
task (see §5.1.2 and §5.2).

The total number of featuresN is of the order of a few thousands. We denote byXν(1), . . . , Xν(K)

theK features selected during the feature selection process. The numberK of such features is very
small compared toN, of the order of a few tens.

All statistical estimation is based on a few hundreds of samples, labeled by hand with their real
classes and denoted

L = {(x(1)
, y(1)), . . . , (x(T)

, y(T))}.

See §5.1 and §5.2 for a precise description of those sets. Eachx(t) ∈ {0, 1}N is the boolean

vector of feature responses on thetth training example. Hence,x(t)
n is the response of thenth feature

on the samplet, andx(1)
n , . . . , x(T)

n are independent and identically distributed realizations ofXn. We
denotexn ∈ {0, 1}T this vector of values of featuren on the training samples.

We will use those examples implicitly for all the empirical estimation during training.

2.2 Information Theory Tools

Information theory provides intuitive tools to quantify the uncertainty of random quantities, or how
much information is shared by a few of them (Cover and Thomas, 1991). Weconsider in this section
finite random variables and we denote byU , V andW The three of them.

The most fundamental concept in information theory is the entropyH(U) of a random variable,
which quantifies the uncertainty ofU . The conditional entropyH(U |V) quantifies the remaining
uncertainty ofU , whenV is known. For instance, ifU is a deterministic function ofV, then this
conditional entropy is zero, as no more information is required to describeU whenV is known.
On the contrary, if they are independent, knowingV does not tell you anything aboutU and the
conditional entropy is equal to the entropy itself.

Our feature selection is based on the conditional mutual information

I(U ; V |W) = H(U |W) − H(U |W, V).

This value is an estimate of the quantity of information shared betweenU andV whenW is
known. It can also be seen, as shown above, as the difference between the average remaining
uncertainty ofU whenW is known and the same uncertainty when bothW andV are known. IfV
andW carry the same information aboutU , the two terms on the right are equal, and the conditional
mutual information is zero, even if bothV andW are individually informative. On the contrary ifV
brings information aboutU which is not already contained inW the difference is large.

2.3 Conditional Mutual Information Maximization

The main goal of feature selection is to select a small subset of features that carries as much
information as possible. The ultimate goal would be to chooseν(1), . . . , ν(K) which minimize
Ĥ

(
Y |Xν(1), . . . , Xν(K)

)
. But this expression can not be estimated with a training set of realistic size
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as it requires the estimation of 2K+1 probabilities. Furthermore, even if there were ways to have an
estimation, its minimization would be computationally intractable.

At the other extreme, one could do a trivial random sampling which would ensure to some extent
independence between features (if different types of features are equally represented) but would not
account for predictive power. This could be dealt with by basing the choice on an estimate of this
predictive power. The main weakness of this approach is that although it takes care of individual
performance, it does not avoid at all redundancy among the selected features. One would pick many
similar features, as the ones carrying a lot of information are likely to be of a certain type. For face
detection with edge-like features for instance, edges on the eyebrows and the mouth would be the
only ones competitive as they are more face-specific than any other edge,yet numerous enough.

We propose an intermediate solution. Our approach deals with the tradeoff between individual
power and independence by comparing each new feature with the ones already picked. We say that
a featureX′ is good only if Î(Y ; X′ |X) is large forevery Xalready picked. This means thatX′ is
good only if it carries information aboutY, and if this information has not been caught by any of
theX already picked. More formally, we propose the following iterative scheme

ν(1) = argmax
n

Î (Y ; Xn) (1)

∀k, 1≤ k < K, ν(k+1) = argmax
n

{

min
l≤k

Î
(
Y ; Xn |Xν(l)

)
}

︸ ︷︷ ︸

s(n,k)

. (2)

As said before,̂I
(
Y ; Xn |Xν(l)

)
is low if eitherXn does not bring information aboutY or if this

information was already caught byXν(l). Hence, the scores(n, k) is low if at least one of the features
already picked is similar toXn (or if Xn is not informative at all).

By taking the featureXn with the maximum scores(n, k) we ensure that the new feature is both
informative and different than the preceding ones, at least in term of predictingY.

The computation of those scores can be done accurately as each scoreI(Y ;Xn |Xν(l)) requires
only estimating the distribution of triplets of boolean variables. Despite its apparent cost this al-
gorithm can be implemented in a very efficient way. We will come back in details to such an
implementation in §4.

Note that this criterion is equivalent to maximizingI(X, Xν(k) ; Y)− I(Xν(k) ; Y), which is pro-
posed in (Vidal-Naquet and Ullman, 2003).

2.4 Theoretical Motivation

In Koller and Sahami (1996) the authors propose using the concept of the Markov blanket to char-
acterize features that can be removed without hurting the classification performance. A subfamily
of featuresM is a blanket for a featureXi if Xi is conditionally independent of the other feature and
the class to predict givenM. However, as the authors point out, such a criterion is stronger than
what is really required which is the conditional independence betweenXi andY givenM.

CMIM is a forward-selection of features based on an approximation of that criterion. This ap-
proximation considers familiesM composed of a unique feature already picked. Thus, a featureX
can be discarded if there is one featureXν already picked such thatX andY are conditionally inde-
pendent givenXν. This can be expressed as∃k, I(Y ; X |Xν(k)) = 0. Since the mutual information is
positive, this can be re-written
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min
k

I(Y ; X |Xν(k)) = 0.

Conversely, the higher this value, the moreX is relevant. A natural criterion consists of ranking
the remaining features according to that quantity, and to pick the one with the highest value.

2.5 Other Feature Selection Methods

This section lists the various feature selection methods we have used for comparison in our experi-
ments.

2.5.1 RANDOM SAMPLING

The most trivial form of feature selection consist of a uniform random subsampling without rep-
etition. Such an approach leads to features as independent as the original but does not pick the
informative ones. This leads to poor results when only a small fraction of thefeatures actually
provide information about the class to predict.

2.5.2 MUTUAL INFORMATION MAXIMIZATION

To avoid the main weakness of the random sampling described above, we have also implemented a
method which picks theK featuresν(1), . . . , ν(K) maximizing individually the mutual information
Î
(
Y ; Xν(l)

)
with the class to predict. Selection based on such a ranking does not ensure weak

dependency among features, and can lead to redundant and poorly informative families of features.
In the following sections, we call this method MIM for Mutual Information Maximization.

2.5.3 C4.5 BINARY TREES

As proposed by Ratanamahatana and Gunopulos (2003), binary decision trees can be used for fea-
ture selection. The idea is to grow several binary trees and to rank features according to the number
of times they appear in the top nodes. This technique is proposed in the literature as a good filter
for naive Bayesian classifiers, and is a good example of a scheme able to spot statistical dependen-
cies between more than two features, since the choice of a feature in a binary tree depends on the
statistical behavior conditionally on the values of the ones picked above.

Efficiency was increased on our specific task by using randomization (Amitet al., 1997) which
consist of using random subsets of the features instead of random subsets of training examples as in
bagging (Breiman, 1999, 1996).

We have built 50 trees, each with one half of the features selected at random, and collected the
features in the first five layers. Several configurations of number of trees, proportions of features
and proportions of training examples were compared and the best one kept. This method is called
“C4.5 feature selection” in the result sections.

2.5.4 FAST CORRELATION-BASED FILTER

Th FCBF method addresses explicitly the correlation between features. It first ranks the features
according to their mutual information with the class to predict, and remove those which mutual
information is lesser than a thresholdδ.
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In a second step, it iteratively removes any featureXi if there exist a featureXj such that
I(Y;Xj) ≥ I(Y;Xi) and I(Xi ;Xj) ≥ I(Xi ;Y), i.e. Xj is better as a predictor ofY and Xi is more
similar toXj than toY. The thresholdδ can be adapted to get the expected number of features.

2.5.5 ADABOOST

A last method consists of keeping the features selected during boosting andis described precisely
in §3.4, page 1538.

3. Classifiers

To evaluate the efficiency of the CMIM feature selection method, we comparethe error rates of
classifiers based on the features it selects to the error rates with the same classifiers build on features
selected by other techniques.

We have implemented several classical type of classifiers, two linear (perceptron and naive
Bayesian) and two non-linear (k-NN and SVM with a Gaussian kernel), to test the generality of
CMIM. We also implemented a boosting method which avoids the feature selection process since
it selects the features and combine them into a linear classifier simultaneously. This technique
provides a baseline for classification score.

In this section, recall that we denote byXν(1), . . . , Xν(K) the selected features.

3.1 Linear Classifiers

A linear classifier depends on the sign of a function of the form

f (x1, . . . , xN) =
K

∑
k=1

ωk xν(k) + b.

We have used two algorithms to estimate the(ω1, . . . , ωK) andb from the training setL. The
first one is the classical perceptron (Rosenblatt, 1958; Novikoff, 1962) and the second one is the
naive Bayesian classifier (Duda and Hart, 1973; Langley et al., 1992).

3.1.1 PERCEPTRON

The perceptron learning scheme estimates iteratively the normal vector(ω1, . . . , ωK) by correcting it
as long as training examples are misclassified. More precisely, as long as there exists a misclassified
example, its feature vector is added to the normal vector if it is of class positive, and is otherwise
subtracted. The bias termb is computed by considering a constant feature always “positive”. If
the training set is linearly separable in the feature space, the process is known to converge to a
separating hyperplane and the number of iterations can be easily bounded(Christiani and Shawe-
Taylor, 2000, page. 12–14). If the data are not linearly separable, the process is terminated after an
a priori fixed number of iterations.

Compared to linear SVM for instance, the perceptron has a greater algorithmic simplicity, and
suffers from different weaknesses (over-fitting in particular). It isan interesting candidate to esti-
mate the quality of the feature selection methods as a way to control overfitting.
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3.1.2 NAIVE BAYESIAN

The naive Bayesian classifier is a simple likelihood ratio test with an assumption of conditional
independence among the features. The predicted class depends on the sign of

f (x1, . . . , xN) = log
P̂(Y = 1|Xν(1) = xν(1), . . . , Xν(K) = xν(K))

P̂(Y = 0|Xν(1) = xν(1), . . . , Xν(K) = xν(K))
.

Under the assumption that theXν(.) are conditionally independent, givenY, and witha = log P̂(Y=1)

P̂(Y=0)
,

we have

f (x1, . . . , xN) = log
∏K

k=1 P̂(Xν(k) = xν(k) |Y = 1)

∏K
k=1 P̂(Xν(k) = xν(k) |Y = 0)

+ a

=
K

∑
k=1

log
P̂(Xν(k) = xν(k) |Y = 1)

P̂(Xν(k) = xν(k) |Y = 0)
+ a

=
K

∑
k=1

{

log
P̂(Xν(k) = 1|Y = 1)

P̂(Xν(k) = 1|Y = 0)

P̂(Xν(k) = 0|Y = 0)

P̂(Xν(k) = 0|Y = 1)

}

xν(k) + b.

Thus we finally obtain a simple expression for the coefficients

ωk = log
P̂(Xν(k) = 1|Y = 1)

P̂(Xν(k) = 1|Y = 0)

P̂(Xν(k) = 0|Y = 0)

P̂(Xν(k) = 0|Y = 1)
.

The biasb can be estimated empirically given theωk to minimize the error rate on the training
set.

3.2 Nearest Neighbors

We used the Nearest-Neighbors as a first non-linear classifier. Givena regularization parameter
k and an examplex, thek-NN technique considers thek training examples closest tox according
to their distance in the feature space{0, 1}K (eitherL1 or L2, which are equivalent in that case),
and gives as predicted class the dominant real class among thosek examples. To deal with highly
unbalanced population, such as in drug-design series of experiments, we have introduced a second
parameterα ∈ [0, 1] used to weight the positive examples.

Bothk andα are optimized by cross-validation during training.

3.3 SVM

As a second non-linear technique, we have used a SVM (Boser et al., 1992; Vapnik, 1998; Christiani
and Shawe-Taylor, 2000) based on a Gaussian kernel. This techniqueis known to be robust to
overfitting and has demonstrated excellent behavior on a very large spectrum of problems. The
unbalanced population is dealt with by changing the soft-margin parametersC accordingly to the
number of training samples of each class, and the choice of theσ parameter of the kernel is described
in §6.1.
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3.4 AdaBoost

The idea of boosting is to select and combine several classifiers (often referred to asweak learners,
as they may have individually high error rate) into an accurate one with a voting procedure. In our
case, the finite set of features is considered as the space of weak learners itself (i.e. each feature is
considered as a boolean predictor). Thus, the training of a weak learner simply consist of picking the
one with the minimum error rate. We allow negative weights, which is equivalentto adding for any
featureXn its anti-feature 1−Xn. Note that this classifier is not combined with a feature selection
methods since it does both the feature selection and the estimation of the weights tocombine them
simultaneously.

The process maintains a distribution on the training examples which concentrates on the mis-
classified ones during training. At iterationk, the featureXν(k) which minimizes the weighted error
rate is selected, and the distribution is refreshed to increase the weight of the misclassified samples
and reduce the importance of the others. Boosting can be seen as a functional gradient descent
(Breiman, 2000; Mason et al., 2000; Friedman et al., 2000) in which each added weak learner is a
step in the space of classifiers. From that perspective, the weight of a given sample is proportional to
the derivative of the functional to minimize with respect to the response of theresult classifier on that
sample: the more a correct prediction on that particular example helps to optimizethe functional,
the higher its weight.

In our comparisons, we have used the original AdaBoost procedure (Freund and Schapire,
1996a,b), which is known to suffer from overfitting. For noisy tasks, wehave chosen a soft-margin
version called AdaBoostreg (Ratsch et al., 1998), which regularizes the classical AdaBoost by pe-
nalizing samples which too heavily influence the training, as they are usually outliers.

To use boosting as a feature selector, we just keep the set of selected featuresXν(1), . . . , Xν(K),
and combine them with another classification rule instead of aggregating them linearly with the
weightsω1, . . . , ωK computed during the boosting process.

4. CMIM Implementations

We describe in this section how we compute efficiently entropy and mutual information and give
both a naive and an efficient implementation of CMIM.

4.1 Mutual Information Estimation

For the clarity of the algorithmic description that follows, we describe here how mutual information
and conditional mutual information are estimated from the training set. Recall that as said in §2.1
for any 1≤ n≤ N we denote byxn ∈ {0, 1}T the vector of responses of thenth feature on theT
training samples.

The estimation of the conditional entropy, mutual information, or conditional mutual informa-
tion can be done by summing and subtracting estimation of entropies of families of one to three
variables. Letx, y, andz be three boolean vectors andu, v, andw, three boolean values. We denote
by ||.|| the cardinal of a set and define three counting functions

ηu(x) = ||{t : x(t) = u}||
ηu,v(x, y) = ||{t : x(t) = u, y(t) = v}||
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ηu,v,w(x, y, z) = ||{t : x(t) = u, y(t) = v, z(t) = w}||.

From this, if we define∀x,ξ(x) = x
T log(x), with the usual conventionξ(0) = 0, we have

Ĥ(Y) = log(T) − ∑
u∈{0,1}

ξ(ηu(y))

Ĥ(Y, Xn) = log(T) − ∑
u,v∈{0,1}2

ξ(ηu,v(y, xn))

Ĥ(Y, Xn, Xm) = log(T) − ∑
u,v,w∈{0,1}3

ξ(ηu,v,w(y, xn, xm)).

And by definition, we have

Î(Y ; Xn) = Ĥ(Y)+ Ĥ(Xn) − Ĥ(Y, Xn)

Î(Y ; Xn |Xm) = Ĥ(Y |Xm) − Ĥ(Y |Xn, Xm)

= Ĥ(Y, Xm) − Ĥ(Xm)− Ĥ(Y, Xn, Xm)+ Ĥ(Xn, Xm).

Finally, those computations are based on counting the numbers of occurrences of certain patterns
of bits in families of one to three vectors, and evaluations ofξ on integer values between 0 andT.
The most expensive operation is the former: the evaluations of theηu, ηu,v andηu,v,w, which can
be decomposed into bit counting of conjunctions of binary vectors. The implementation can be
optimized by using a look-up table to count the number of bits in couples of bytesand computing
the conjunctions by block of 32 bits. Also, note that because the evaluation of ξ is restricted on
integers smaller thanT, a lookup table can be used for it too. In the pseudo-code, the function
mut inf(n) computeŝI(Y ; Xn) andcond mut inf(n, m) computeŝI(Y ; Xn |Xm).

Note that the naive Bayesian coefficients can be computed very efficientlywith the same count-
ing procedures

ωk = log η0,0(xν(k), y)+ log η1,1(xν(k), y)− log η1,0(xν(k), y)− log η0,1(xν(k), y).

4.2 Standard Implementation

The most straight-forward implementation of CMIM keeps a score vectors which contains for
every featureXn, after the choice ofν(k), the scores[n] = minl≤k Î

(
Y ; Xn | Xν(l)

)
. This score table

is initialized with the valueŝI (Y ; Xn).
The algorithm picks at each iteration the featureν(k) with the highest score, and then refreshes

every scores[n] by taking the minimum ofs[n] and Î
(
Y ; Xn | Xν(k)

)
. This implementation is given

in pseudo-code on Algorithm 1 and has a cost ofO(K×N×T).

4.3 Fast Implementation

The most expensive part in the algorithm described above are theK×N calls tocond mut inf,
each costingO(T) operations. The fast implementation of CMIM relies on the fact that becausethe
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Algorithm 1 Simple version of CMIM
for n = 1. . .N do

s[n] ← mut inf(n)
for k = 1. . .K do

nu[k] = argmaxn s[n]
for n = 1. . .N do

s[n] ← min(s[n], cond mut inf(n, nu[k]))

score vector can only decrease when the process goes on, bad scores may not need to be refreshed.
This implementation does not rely on any approximation and produces the exact same results as the
naive implementation described above.

Intuitively, consider a set of features containing several ones almost identical. Picking one of
them makes all the other ones of this group useless during the rest of the computation. This can be
spotted early because their scores are low, and will remain so because scores can only decrease.

The fast version of CMIM stores for every featureXn a partial scoreps[n], which is the mini-
mum over a few of the conditional mutual informations appearing in the min in equation (2) page
1534. Another vectorm[n] contains the index of the last picked feature taken into account in the
computation ofps[n]. Thus, we have at any moment

ps[n] = min
l≤m[n]

Î
(
Y ; Xn | Xν(l)

)
.

At every iteration, the algorithm goes through all candidates and update its score only if the best
one found so far in that iteration is not better, since scores can only go down when updated. For
instance, if theup-to-date scoreof the first feature was 0.02 and thenon-already updatedscore of
the second feature was 0.005, it is not necessary to update the later, since it can only go down.

The pseudo-code on Algorithm 2 is an implementation of that idea. It goes through all the
candidate features, but does not compute the conditional mutual informationbetween a candidate
and the class to predict, given the most recently picked features, if the score of that candidate is
below the best up-to-date scores? found so far in that iteration (see figure 1).

Algorithm 2 Fast version of CMIM
for n = 1. . .N do

ps[n] ← mut inf(n)
m[n] ← 0

for k = 1. . .K do
s? ← 0
for n = 1. . .N do

while ps[n] > s? and m[n] < k−1 do
m[n] ← m[n]+1
ps[n] ← min(ps[n], cond mut inf(n, nu[m[n]]))

if ps[n] > s? then
s? ← ps[n]
nu[k] ← n
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Figure 1: The cell in column n and row l in the array contains the valuecond mut inf(n, nu[l ]).
The score of feature Xn at step k+ 1 is the minimum over the k top-cells of column n.
While the naive version evaluates the values of all cells in the first k rows, thefast version
computes a partial score, which is the minimum over only the first m[n] cells in column n.
It does not update a feature score ps[n] if its current value is already below the best score
of a column found so far in that iteration.
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5. Experimental Settings

All the experiments have been done with softwares written in C++ on GNU/Linuxcomputers. We
have used free software tools (editor, compiler, debugger, word-processors, etc.), mainly from the
Free Software Foundation.1 We have also used the Libsvm2 for the SVM.

5.1 Image Classification

This task is a classical pattern-recognition problem in which one tries to predict the real class of
a picture. The input data are small grayscale patches and the two classes are face and background
(non-face) pictures.

5.1.1 TRAINING AND TEST SETS

We have used training and test sets built from two large sets of scenes. Those original big sets were
assembled by collecting a few thousand scenes from the web and marking byhand the locations
of eyes and mouth on every visible frontal viewed face. Using two sets ensures that examples
belonging to the same scene series will all be used either as training pictures or as test pictures. This
prevents from trivial similarities between the training and test examples.

From every face of every scene we generate ten small grayscale faceimages by applying ro-
tation, scaling and translation to randomize its pose in the image plan. We have alsocollected
complex scenes (forests, buildings, furniture, etc.) from which we haveautomatically extracted tens
of thousands of background (non-face) pictures. This leads to a totalof 14,268 faces and 14,800
background pictures for training (respectively 5,202 and 5,584 for test).

All those images, faces and backgrounds, are of size 28×28 pixels, and with 256 grayscale
levels. Faces have been registered roughly so that the center of the eyes is in a 2×2 central square,
the distance between the eyes is between 10 to 12 pixels and the tilt is between−20 and+20 degrees
(see figure 2 for a few examples of images).

For each experiment both the training and the test sets contain 500 images, roughly divided into
faces and non-faces. Errors are averaged over 25 rounds with such training and test sets.

5.1.2 EDGE FEATURES

We use features similar to the edge fragment detectors in (Fleuret and Geman, 2001, 2002). They
are easy to compute, robust to illumination variations, and do not require anytuning.

Each feature is a boolean function indexed by a location(x,y) in the 28×28 reference frame
of the image, a directiond which can take 8 different values (see figures 3 and 4) and a tolerance
t which is an integer value between 1 and 7 (this maximum value has been fixed empirically). The
tolerance corresponds to the size of the neighborhood where the edge can “float”, i.e. where it has
to be present for the feature to be equal to 1 (see figure 3).

For every location in the reference frame (i.e. every pixel), we thus have7×8 features, one for
each couple direction / tolerance. For tolerance 1, those features are simple edge fragment detector
(see figure 4). For tolerance 2, they are disjunction of those edge fragment detectors on two locations
for each pixel, etc.

The total number of such features is 28×28×8×7 = 43,904.

1. http://www.fsf.org
2. http://www.csie.ntu.edu.tw/˜cjlin/libsvm
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Figure 2: The two upper rows show examples of background pictures, and the two lower rows show
examples of face pictures. All images are grayscale of size 28×28 pixels, extracted
from complete scenes found on the World Wide Web. Faces are roughly centered and
standardized in size.

y

x

y

x

t

Figure 3: The boolean features we are using are crude edge detectors, invariant to changes in il-
lumination and to small deformations of the image. The picture on the left shows the
criterion for a horizontal edge located in(x,y). The detector responds positively if the six
differences between pixels connected by a thin segment are lesser in absolute value than
the difference between the pixels connected by the thick segment. The relative values of
the two pixels connected by the thick line define the polarity of the edge (dark tolight or
light to dark). The picture on the right shows the strip where the edge can “float” for the
feature to respond when the tolerancet is equal to 5.
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Figure 4: The original grayscale pictures are shown on the left. The eight binary maps on the right
show the responses of the edge detectors at every locations in the 28×28 frame, for
every one of the 8 possible directions and polarities. The binary featuresare disjunctions
(ORings) of such edge detectors in small neighborhoods, which ensuretheir robustness
to image deformations.

5.2 Prediction of Molecular Bio-activity

The second data set is based on 1,909 compounds tested for their ability to bind to a target site on
thrombin. This corresponds to a drug-design task in which one tries to predict which molecules will
achieve the expected effect.

Each compound has a binary class (activeor inactive) and 139,351 binary features standing for
as many three-dimensional properties. The exact semantic of those features remains unknown but is
consistent among the samples. To be able to use many techniques in our comparisons, we restricted
the number of binary features to 2,500 by a rough random sampling, since the computation time
would have been intractable with classical methods on such a large number ofbinary features.

All the experiments are done with 25 rounds of cross-validation. For eachone of this round,
100 samples are randomly picked as test examples, and all the others used for training. Since the
population are highly unbalanced (42 positive vs. 1867 negative examples), the balanced error rate
(average of false positive and false negative error rates) was usedboth for training and testing.

The dataset was provided by DuPont Pharmaceutical for the KDD-Cup 2001 competition3 and
was used in 2003 for the NIPS feature selection challenge4 under the name DOROTHEA.

6. Results

The experimental results we present in this section address both performance in term of error rates
and speed.

In §6.1, we compare several associations of a feature selection method (CMIM, MIM, C4.5,
random and AdaBoost as a feature selection method) and a classifier (naive Bayesian,k-NN, Gaus-
sian SVM, perceptron). Also, AdaBoost and a regularized version ofAdaBoost were tested on the
same data.

For the image recognition task, since the error rates with 50 features correspond roughly to the
asymptotic score of our main methods (CMIM + naive Bayesian and AdaBoost, see figure 5), we

3. http://www.cs.wisc.edu/˜dpage/kddcup2001/
4. http://www.nipsfsc.ecs.soton.ac.uk
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Figure 5: The asymptotic error rates are reached with 50 features on the picture classification task.

have used this number of features for the extensive comparisons. Similarly, the number of features
was 10 for the bio-activity prediction.

The σ parameter of the Gaussian kernel was chosen separately for every feature selection
method by optimizing the test error with a first series of 25 rounds. The training and test errors
reported in the results section are estimated by running 25 other rounds of cross-validation. The
results may suffer slightly from over-fitting and over-estimate the score of the SVM. However the
effect is likely to be negligible considering the large size of the complete sets.

In §6.2 we compare the fast implementation of CMIM to the naive one and provide experimental
computation times in the task of image recognition.

6.1 Error Rates

To quantify the statistical significance in our comparisons, we estimate empiricalerror rates form
the data sets, but also the empirical variance of those estimates. Those variances are computed under
the assumption that the samples are independent and identically distributed.

We provide for every experiments in the tables 1, 2 and 3 both the estimated testerror e and
the score e?−e√

σe?+σe
wheree? is the score of our reference setting (CMIM + Naive Bayesian), andσe?

andσe are the empirical variances of the error rate estimates. This empirical variance are estimated
simply as empirical variance of Bernoulli variables.

6.1.1 IMAGE CLASSIFICATION

The first round of experiments uses the dataset of pictures described in§5.1. The results on ta-
ble 1 show that the best scores are obtained with CMIM + SVM, closely followed by AdaBoost
features combined also with SVM. The Naive Bayesian with CMIM features performs pretty well,
ranking fourth. CMIM as a feature selection method is always the best, forany given classification
technique.

It is meaningful to note that the computational cost of SVM is few orders of magnitudes higher
than those of AdaBoost alone or CMIM + Bayesian as it requires for training the computation of the
optimalσ through cross-validation, and requires during classification the evaluation of hundreds of
exponentials.
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Classifier Training error Test error (e) e?−e√
σe?+σe

CMIM + SVM 0.53% 1.12% −2.77
AdaBoost feature selection + SVM 0% 1.21% −2.11
AdaBoost 0% 1.45% −0.45
CMIM feature selection + naive Bayesian 0.52% 1.52% –
CMIM feature selection +k-NN 0% 1.69% 1.07
AdaBoost feature selection +k-NN 0% 1.71% 1.19
FCBF feature selection + SVM 0.75% 1.85% 2.02
FCBF feature selection + naive Bayesian 1.28% 2.13% 3.60
CMIM feature selection + perceptron 0% 2.28% 4.40
AdaBoost feature selection + perceptron 0% 2.46% 5.32
C4.5 feature selection + SVM 0.73% 2.58% 5.91
FCBF feature selection +k-NN 0% 2.75% 6.73
C4.5 feature selection + perceptron 0% 3.26% 9.02
C4.5 feature selection + naive Bayesian 1.4% 3.28% 9.11
FCBF feature selection + perceptron 0% 3.50% 10.03
AdaBoost feature selection + naive Bayesian 0.4% 3.51% 10.06
C4.5 feature selection +k-NN 0% 3.57% 10.31
MIM + SVM 3 .26% 5.67% 17.73
MIM feature selection + perceptron 3.56% 8.28% 25.06
MIM feature selection + naive Bayesian 5.58% 8.54% 25.72
MIM feature selection +k-NN 0.23% 8.99% 26.84
Random feature selection + SVM 9.04% 11.86% 33.44
Random feature selection + perceptron 13.36% 17.45% 44.66
Random feature selection +k-NN 0.30% 21.54% 52.18
Random feature selection + naive Bayesian 21.69% 24.77% 57.93

Table 1: Error rates with 50 features on the accurate face vs. background data set. The right col-
umn shows the difference between the test error ratee? of the CMIM + naive Bayesian
method and the test error ratee in the given row, divided by the standard deviation of that
difference.
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To test the robustness of the combination of CMIM and naive Bayes, we have run a second
round of experiments with noisy training data, known to be problematic for boosting schemes. We
generated the new training set by flipping at random 5% of the training labels. This corresponds to
a realistic situation in which some training examples have been mis-labelled.

It creates a difficult situation for learning methods which take care of outliers, since there are
5% of them, distributed uniformly among the training population. Results are summarized in table
2. Note that the performance of the regularized version of AdaBoost correspond to the optimal
performance on thetest set.

All methods based on perceptron or boosting have high error rates, since they are very sensitive
to outliers. The best classification techniques are those protected from over-fitting, thus SVM, Naive
Bayesian and regularized AdaBoost, which take the 8 first rankings. Again in this experiment,
CMIM is the best feature selection method for any classification scheme.

The FCBF method, which is related to CMIM since it looks for features both highly correlated
with the class to predict and two-by-two uncorrelated scores very well, better than in the non-noisy
case. It may be due to the fact that in this noisy situation protection from overfitting matters more
than picking optimal features on the training set.

6.1.2 MOLECULAR BIO-ACTIVITY

This third round of experiments is more difficult to analyze since the characteristics of the features
we deal with are mainly unknown. Because of the highly unbalanced population, methods sensitive
to overfitting perform badly.

Results for these experiments are given 3. Except in one case (SVM), CMIM leads to the lowest
error rate for any classification method. Also, when combined with the naiveBayesian rule, it gets
lower error rates than SVM or nearest-neighbors.

The same dataset was used in the NIPS 2003 challenge,5 in which it was divided in three subsets
for training, test and validation (respectively of size 800, 350 and 800). Our main method CMIM
+ Bayesian achieves 12.46% error rate on the validation set without any tunning, while the top-
ranking method achieves 5.47% with a Bayesian Network, see (Guyon et al., 2004) for more details
on the participants and results.

6.2 Speed

The image classification task requires the selection of 50 features among 43,904 with a training set
of 500 examples. The naive implementation of CMIM takes 18800ms to achieve this selection on
a standard 1Ghz personal computer, while with the fast version this duration drops to 255ms for
the exact same selection, thus a factor of 73. For the thrombin dataset (selecting 10 features out of
139,351 based on 1,909 examples) the computation times drops from 156,545ms with the naive
implementation to 1,401ms with the fast one, corresponding to a factor 110.

The dramatic gain in performance can be explained by looking at the number of calls tocond mut inf,
which drops for the faces by a factor 80 (from 4,346,496 to 54,928), and for the thrombin dataset
by a factor 220 (from 13,795,749 to 62,125).

The proportion of calls tocond mut inf for the face dataset is depicted on figure 6. We have
also looked at the number of calls required to sort out each feature. In the simple implementation
that number is the same for all features and is equal to the number of selectedfeaturesK. For the fast

5. http://www.nipsfsc.ecs.soton.ac.uk
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Classifier Training error Test error (e) e?−e√
σe?+σe

CMIM + SVM 5.68% 1.37% −3.59
FCBF feature selection + SVM 6.02% 1.49% −2.79
CMIM feature selection + naive Bayesian 5.06% 1.95% –
FCBF feature selection + naive Bayesian 5.38% 2.39% 2.38
C4.5 + SVM 5.57% 2.99% 5.30
AdaBoostreg (optimized on test set) 3.80% 3.06% 5.61
C4.5 feature selection + naive Bayesian 6.14% 3.62% 8.03
AdaBoost feature selection + SVM 4.39% 4.18% 10.25
CMIM feature selection +k-NN 0.08% 5.36% 14.42
MIM + SVM 7 .85% 5.87% 16.07
AdaBoost 0.58% 6.33% 17.48
C4.5 feature selection +k-NN 0.71% 6.34% 17.52
FCBF feature selection +k-NN 0.87% 6.50% 17.99
AdaBoost feature selection +k-NN 0.39% 7.20% 20.02
AdaBoost feature selection + perceptron 0.12% 8.23% 22.82
MIM feature selection + naive Bayesian 9.47% 8.59% 23.75
CMIM feature selection + perceptron 7.36% 9.32% 25.60
FCBF feature selection + naive Bayesian 8.20% 9.33% 25.62
AdaBoost feature selection + naive Bayesian 10.28% 9.46% 25.94
C4.5 feature selection + perceptron 7.58% 11.06% 29.71
Random + SVM 13.00% 12.19% 32.23
MIM feature selection +k-NN 2.92% 11.46% 30.61
MIM feature selection + perceptron 11.53% 13.12% 34.23
Random feature selection + perceptron 19.47% 20.58% 48.75
Random feature selection +k-NN 1.43% 24.77% 56.29
Random feature selection + naive Bayesian 24.13% 24.99% 56.68

Table 2: Error rates with 50 features on the face vs. background data set whose training labels have
been flipped with probability 5%. The right column shows the difference between the test
error ratee? of the CMIM + naive Bayesian method and the test error ratee in the given
row, divided by the standard deviation of that difference.
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Classifier Training error Test error (e) e?−e√
σe?+σe

CMIM feature selection + naive Bayesian 10.45% 11.72% –
AdaBoost feature selection + SVM 9.35% 12.99% 1.36
AdaBoost feature selection + naive Bayesian 10.29% 13.60% 1.99
AdaBoostreg (optimized on test set) 9.48% 13.64% 2.04
CMIM + SVM 13.21% 13.65% 2.05
AdaBoost 9.49% 13.76% 2.16
C4.5 feature selection + naive Bayesian 9.22% 13.90% 2.31
C4.5 + SVM 8.72% 17.34% 5.65
CMIM feature selection +k-NN 17.17% 18.77% 6.97
FCBF feature selection + naive Bayesian 13.62% 19.22% 7.37
FCBF feature selection + SVM 13.39% 23.14% 10.76
MIM feature selection + naive Bayesian 21.53% 23.35% 10.94
CMIM feature selection + perceptron 20.31% 23.51% 11.08
C4.5 feature selection + perceptron 12.86% 23.88% 11.38
MIM + SVM 24.65% 25.75% 12.93
FCBF feature selection + perceptron 21.98% 27.06% 13.98
FCBF feature selection +k-NN 19.28% 27.94% 14.68
Random + SVM 30.10% 30.92% 17.05
C4.5 feature selection +k-NN 24.18% 34.11% 19.54
Random feature selection + naive Bayesian 39.32% 40.13% 24.23
MIM feature selection + perceptron 32.70% 40.27% 24.34
Random feature selection + perceptron 43.61% 45.68% 28.63
Random feature selection +k-NN 45.09% 47.29% 29.94
MIM feature selection +k-NN 50.00% 50.00% 32.19

Table 3: Error rates with 10 features on the Thrombin dataset. The right column shows the differ-
ence between the test error ratee? of the CMIM + naive Bayesian method and the test error
ratee in the given row, divided by the standard deviation of that difference.
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Figure 6: Those curves show the proportion of calls tocond mut inf actually done in the fast ver-
sion compared to the standard version for each iteration. The curve on theleft shows the
proportion for each step of the selection process, while the curve on the right shows the
proportion of cumulate evaluations since the beginning. As it can be seen,this proportion
is around1%on the average.
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Figure 7: This curve shows on an logarithmic scale how many features (y axis) require a certain
number of calls tocond mut inf (x axis). The peak on the right corresponds to the50
features actually selected, which had to be compared with all the other features, thus
requiring49comparisons.

version, this number depends on the feature, as very inefficient ones will probably require only one
of them. The distribution of the number of evaluations is represented on figure 7 on a logarithmic
scale, and fits roughly 100× 0.92n. This means that there are roughly 8% fewer features which
requiren+1 evaluations than features which requiren evaluations.
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7. Discussion

The experimental results we provide show the strength of the CMIM, even when combined with a
simple naive Bayesian rule, since it ranks 4th, 3rd and 1st in the three experiments in which it is
compared with 26 other combination feature selection + classifier.

Classification Power

It is easy to build a task CMIM can not deal with. Consider a situation where the positive population
is a mixture of two sub-populations, and where half of the features provideinformation about the
first population, while the other features provide information about the second population. This can
happen in an image context by considering two different objects which do not share informative
edges.

In such a situation, if one sub-population dominates statistically, CMIM does not pick feature
providing information about the second sub-population. It would go on picking feature informative
about the domineering sub-population as long as independent features remain.

A feature selection based on C4.5 would be able to catch informative features since the minority
class would quickly be revealed as the source of uncertainty, and features dedicated to them would
be selected. Similarly, AdaBoost can handle such a challenge because theerror concentrates quickly
on the second sub-population, which eventually drives the choice of features. In fact, both can be
ween as wrappers since they take into account the classification outcome to select the features.

We could fix this weakness of CMIM by weighting challenging examples as well,forcing the
algorithm to care about problematic minorities and pick features related to them. This would be the
dual solution to AdaBoost regularization techniques which on the contraryreduce the influence of
outliers.

From that point of view, CMIM and AdaBoost are examples of two families oflearning methods.
The first one is able to cope with overfitting by making a strong assumption of homogeneity of the
informative power of features, while the second one is able to deal with a composed population by
sequentially focusing on sub populations as soon as they become the source of error.

In both cases, the optimal tradeoff has to be specified on a per-problem basis, as there is no
absolute way to know if the training examples are reliable examples of a complex mixture or noisy
examples of an homogeneous population.

Speed

CMIM and boosting share many similarities from an algorithmic point of view. Bothof them pick
features one after another and compute at each iteration a score for every single candidate which
requires to go through every training example.

Despite this similarity the lazy evaluation idea can not be applied directly to boosting. One
could try to estimate a bound of the score of a weak learner at iterationk+1 (which is a weighted
error rate), given its value at iterationk, using a bound on the weight variation. Practically, this idea
gives very bad results because the variation can not be controlled efficiently and turns out to be very
pessimistic. It leads to a negligible rate of rejection of the candidate features tocheck.

The feature selection based on C4.5 is even more difficult to optimize. Because of the complex
interactions between features selected in previous nodes and the remainingcandidates at a given
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node, there is no simple way to predict that a feature can be ignored withoutreducing the perfor-
mance of the method.

Usability

The CMIM algorithm does not require the tuning of any regularizing parameter, and since the im-
plementation is an exact exhaustive search it also avoids the tuning of an optimization scheme.

Also, compared to methods like SVM or AdaBoost, both the feature selection criterion and
the naive Bayesian classifier have a very clear statistical semantic. Since the naive Bayesian is an
approximation of a likelihood ratio test, it can be easily combined with other techniques such as
HMM, Bayesian Inference and more generally with other statistical methods.

Multi-class, Continuous Valued Features and Regression

Extension to the multi-class problem can be addressed either with a classifier-agnostic technique (for
instance training several classifiers dedicated to different binary problems which can be combined
into a multi-class predictor (Hastie and Tibshirani, 1998) or by extending CMIM and the Bayesian
classifier directly to the multi-class context.

In that case, the price to pay is both in term of accuracy and computation cost. The estimation of
the conditional mutual information requires the estimation of the empirical distribution of triples of
variables, orN3

c empirical probabilities in aNc class problem. Thus, accurate estimation requires as
many more training samples. From the implementation perspective the fast version can be kept as-is
but the computation of a conditional mutual information isO(N3

c ), and the boolean computations
by block require aO(Nc) memory usage.

Extension to the case of continuous valued features and to regression (continuous valued class)
is the center of interest of our current works. It is natural as soon asparametric density models are
provided for any variable, couple of variables and triplet of variables.For any couple of featuresXi ,
Xj , the estimation of the conditional mutual information givenY requires first an estimation of the
model parameterα according to the training data.

The most naive form of multi-variable density would be piece-wise constant,thus discretisation
with features of the formF = 1X≥t whereX is one of the original continuous feature. Such a model
would lead to the same weakness as those described above for the multi-classsituation.

If a more sophisticated model can legitimately be used – for instance multi-dimensional Gaus-
sian – the only difficulty is the computation of the conditional mutual information itself, requiring
sums over the space of values of products and ratios of such expressions. Depending on the ex-
istence of analytical form of this sum, the algorithm may require numerical integration and heavy
computations. Nevertheless, even if the computation of the conditional mutual information is ex-
pensive, the lazy evaluation trick presented in §2 can still be used, reducing the cost by the same
amount as in the provided results.

8. Conclusion

We have presented a simple and very efficient scheme for feature selection in a context of classi-
fication. On the experiments we have done CMIM is the best feature selectionmethod except in
one case (SVM for the thrombin experiment). Combined with a naive Bayesian classifier the scores
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we obtained are comparable or better than those of state-of-the-art techniques such as boosting or
Support Vector Machines, while requiring a training time of a few tenth of a second.

Because of its high speed, this learning method could be used to tune learnt structures on the fly,
to adapt them to the specific difficulties of the populations they have to deal with. In the context of
face detection, such an on-line training could exploit the specificities of the background population
and reduce the false-positive error rate. Also, it could be used in applications requiring the training
of a very large number of classifiers. Our current works in object recognition are based on several
thousands of classifiers which are built in a few minutes.
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Abstract
In order to study the convergence properties of the AdaBoostalgorithm, we reduce AdaBoost to

a nonlinear iterated map and study the evolution of its weight vectors. This dynamical systems
approach allows us to understand AdaBoost’s convergence properties completely in certain cases;
for these cases we find stable cycles, allowing us to explicitly solve for AdaBoost’s output.

Using this unusual technique, we are able to show that AdaBoost does not always converge to a
maximum margin combined classifier, answering an open question. In addition, we show that “non-
optimal” AdaBoost (where the weak learning algorithm does not necessarily choose the best weak
classifier at each iteration) may fail to converge to a maximum margin classifier, even if “optimal”
AdaBoost produces a maximum margin. Also, we show that if AdaBoost cycles, it cycles among
“support vectors”, i.e., examples that achieve the same smallest margin.

Keywords: boosting, AdaBoost, dynamics, convergence, margins

1. Introduction

Boosting algorithms are currently among the most popular and most successful algorithms for pat-
tern recognition tasks (such as text classification). AdaBoost (Freundand Schapire, 1997) was the
first practical boosting algorithm, and due to its success, a number of similar boosting algorithms
have since been introduced (see the review paper of Schapire, 2002,for an introduction, or the re-
view paper of Meir and R̈atsch, 2003). Boosting algorithms are designed to construct a “strong”
classifier using only a training set and a “weak” learning algorithm. A “weak” classifier produced
by the weak learning algorithm has a probability of misclassification that is slightlybelow 50%,
i.e., each weak classifier is only required to perform slightly better than a random guess. A “strong”
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classifier has a much smaller probability of error on test data. Hence, thesealgorithms “boost” the
weak learning algorithm to achieve a stronger classifier. In order to exploit the weak learning al-
gorithm’s advantage over random guessing, the data is reweighted (the relative importance of the
training examples is changed) before running the weak learning algorithm at each iteration. That is,
AdaBoost maintains a distribution (set of weights) over the training examples,and selects a weak
classifier from the weak learning algorithm at each iteration. Training examples that were misclas-
sified by the weak classifier at the current iteration then receive higher weights at the following
iteration. The end result is a final combined classifier, given by a thresholded linear combination of
the weak classifiers.

AdaBoost does not often seem to suffer from overfitting, even after alarge number of itera-
tions (Breiman, 1998; Quinlan, 1996). This lack of overfitting has been explained to some extent by
themargin theoryof Schapire, Freund, Bartlett, and Lee (1998). Themarginof a boosted classifier
is a number between -1 and 1, that according to the margin theory, can be thought of as a confidence
measure of a classifier’s predictive ability, or as a guarantee on the generalization performance. If
the margin of a classifier is large, then it tends to perform well on test data. If the margin is small,
then the classifier tends not to perform so well. (The margin of a boosted classifier is also called the
minimum margin over training examples.) Although the empirical success of a boosting algorithm
depends on many factors (e.g., the type of data and how noisy it is, the capacity of the weak learn-
ing algorithm, the number of boosting iterations, regularization, entire margin distribution over the
training examples), the margin theory does provide a reasonable explanation (though not a complete
explanation) of AdaBoost’s success, both empirically and theoretically.

Since the margin tends to give a strong indication of a classifier’s performance in practice, a
natural goal is to find classifiers that achieve a maximum margin. Since the AdaBoost algorithm
was invented before the margin theory, the algorithm became popular due to itspractical success
rather than for its theoretical success (its ability to achieve large margins). Since AdaBoost was not
specifically designed to maximize the margin, the question remained whether in fact it does actually
maximize the margin. The objective function that AdaBoost minimizes (the exponential loss) is not
related to the margin in the sense that one can minimize the exponential loss while simultaneously
achieving an arbitrarily bad (small) margin. Thus, AdaBoost does not, in fact, optimize a cost
function of the margins (see also Wyner, 2002). It was shown analyticallythat AdaBoost produces
large margins, namely, Schapire et al. (1998) showed that AdaBoost achieves at least half of the
maximum margin, and R̈atsch and Warmuth (2002) have recently tightened this bound slightly.
However, because AdaBoost does not necessarily make progress towards increasing the margin
at each iteration, the usual techniques for analyzing coordinate algorithmsdo not apply; for all
the extensive theoretical and empirical study of AdaBoost prior to the present work, it remained
unknown whether or not AdaBoost always achieves a maximum margin solution.

A number of other boosting algorithms emerged over the past few years thataim more explicitly
to maximize the margin at each iteration, such as AdaBoost∗ (Rätsch and Warmuth, 2002), arc-
gv (Breiman, 1999), Coordinate Ascent Boosting and Approximate Coordinate Ascent Boosting
(Rudin et al., 2004c,b,a; Rudin, 2004), the linear programming (LP) boosting algorithms including
LP-AdaBoost (Grove and Schuurmans, 1998) and LPBoost (Demiriz et al., 2002). (Also see the
ε-boosting literature, for example, Rosset et al., 2004.) However, AdaBoost is still used in practice,
because it often empirically seems to produce maximum margin classifiers with low generalization
error. In fact, under tightly controlled tests, it was shown empirically that themaximum margin
algorithms arc-gv and LP-AdaBoost tend to performworsethan AdaBoost (Breiman, 1999; Grove
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and Schuurmans, 1998). In the experiments of Grove and Schuurmans (1998), AdaBoost achieved
margins that were almost as large, (but not quite as large) as those of the LP algorithms when
stopped after a large number of iterations, yet often achieved lower generalization error. AdaBoost
is also easy to program, and in our trials, it seems to converge the fastest (with respect to the margin)
among the coordinate-based boosting algorithms.

Another surprising result of empirical trials is that AdaBoost does seem tobe converging to
maximum margin solutionsasymptoticallyin the numerical experiments of Grove and Schuurmans
(1998) and R̈atsch and Warmuth (2002). Grove and Schuurmans have questioned whether AdaBoost
is simply a “general, albeit very slow, LP solver”. If AdaBoost is simply a margin-maximization
algorithm, then why are other algorithms that achieve the same margin performingworse than Ada-
Boost? Is AdaBoost simply a fancy margin-maximization algorithm in disguise, oris it something
more? As we will see, the answers are sometimes yes and sometimes no. So clearly the margins do
not tell the whole story.

AdaBoost, as shown repeatedly (Breiman, 1997; Friedman et al., 2000; Rätsch et al., 2001;
Duffy and Helmbold, 1999; Mason et al., 2000), is actually a coordinate descent algorithm on a
particular exponential loss function. However, minimizing this function in otherways does not
necessarily achieve large margins; the process of coordinate descentmust be somehow responsible.
Hence, we look to AdaBoost’s dynamics to understand the process by which the margin is generated.

In this work, we took an unusual approach to this problem. We simplified AdaBoost to reveal
a nonlinear iterated map for AdaBoost’s weight vector. This iterated map gives a direct relation
between the weights at timet and the weights at timet +1, including renormalization, and thus pro-
vides a much more concise mapping than the original algorithm. We then analyzedthis dynamical
system in specific cases. Using a small toolbox of techniques for analyzingdynamical systems, we
were able to avoid the problem that progress (with respect to the margin) does not occur at every
iteration. Instead, we measure progress another way; namely, via the convergence towards limit
cycles.

To explain this way of measuring progress more clearly, we have found that for some specific
cases, the weight vector of AdaBoost produces limit cycles that can be analytically stated, and are
stable. When stable limit cycles exist, the convergence of AdaBoost can beunderstood. Thus,
we are able to provide the key to answering the question of AdaBoost’s convergence to maximum
margin solutions: a collection of examples in which AdaBoost’s convergencecan be completely
understood.

Using a very low-dimensional example (8×8, i.e., 8 weak classifiers and 8 training examples),
we are able to show that AdaBoost does not always produce a maximum margin solution, finally
answering the open question.

There are two interesting cases governing the dynamics of AdaBoost: the case where the optimal
weak classifiers are chosen at each iteration (the “optimal” case), and thecase where permissible
non-optimal weak classifiers may be chosen (the “non-optimal” case). In the optimal case (which
is the case we usually consider), the weak learning algorithm is required to choose a weak classifier
that has the largest edge at every iteration, where the edge measures theperformance of the weak
learning algorithm. In the non-optimal case, the weak learning algorithm may choose any weak
classifier as long as its edge exceedsρ, the maximum margin achievable by a combined classifier.
This is a natural notion of non-optimality for boosting, thus it provides a natural sense in which to
measure robustness. Based on large scale experiments and a gap in theoretical bounds, R̈atsch and
Warmuth (2002) conjectured that AdaBoost does not necessarily converge to a maximum margin
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classifier in the non-optimal case, i.e., that AdaBoost is not robust in this sense. In practice, the
weak classifiers are generated by CART or another weak learning algorithm, implying that the
choice need not always be optimal.

In Section 8, we show this conjecture to be true using a 4× 5 example. That is, we show
that “non-optimal AdaBoost” (AdaBoost in the non-optimal case) may not converge to a maximum
margin solution, even in cases where “optimal AdaBoost” does.

Empirically, we have found very interesting and remarkable cyclic dynamics inmany differ-
ent low-dimensional cases (many more cases than the ones analyzed in this paper), for example,
those illustrated in Figure 6. In fact, we have empirically found that AdaBoost produces cycles on
randomly generated matrices – even on random matrices with hundreds of dimensions. On low-
dimensional random matrices, cycles are almost always produced in our experiments. Thus, the
story of AdaBoost’s dynamics does not end with the margins; it is important to study AdaBoost’s
dynamics in more general cases where these cycles occur in order to understand its convergence
properties.

To this extent, we prove that if AdaBoost cycles, it cycles only among a setof “support vec-
tors” that achieve the same smallest margin among training examples. In this sense, we confirm
observations of Caprile et al. (2002) who previously studied the dynamical behavior of boosting,
and who also identified two sorts of examples which they termed “easy” and “hard.” In addition,
we give sufficient conditions for AdaBoost to achieve a maximum margin solution when cycling
occurs. We also show that AdaBoost treats identically classified examples as one example, in the
sense we will describe in Section 6. In Section 10, we discuss a case in which AdaBoost exhibits
indications of chaotic behavior, namely sensitivity to initial conditions, and movement into and out
of cyclic behavior.

We proceed as follows. In Section 2 we introduce some notation and state the AdaBoost al-
gorithm. Then in Section 3 we decouple the dynamics for AdaBoost in the binary case so that we
have a nonlinear iterated map. In Section 4, we analyze these dynamics for asimple case: the case
where each weak classifier has one misclassified training example. In a 3× 3 example, we find
that the weight vectors always converge to one of two stable limit cycles, allowing us to calculate
AdaBoost’s output vector directly. From this, we can prove the output ofAdaBoost yields the best
possible margin. We generalize this case tom×m in Section 5. In Section 6 we discuss identically
classified examples. Namely, we show that the weights on identically classified training examples
can be shifted among these examples while preserving the cycle; that is, manifolds of stable cycles
can occur. For an extension of the simple 3×3 case, we show that manifolds of cycles exist and
are stable. In Section 7 we show that the training examples AdaBoost cyclesupon are “support
vectors” in that they all achieve the same margin. In the process, we provide a formula to directly
calculate the margin from the cycle parameters. We also give sufficient conditions for AdaBoost
to produce a maximum margin classifier when cycling occurs. Then in Section 8we produce an
example to show non-robustness of AdaBoost in the non-optimal case. InSection 9, we produce the
example discussed above to show that AdaBoost may not converge to a maximum margin solution.
And finally in Section 10, we provide a case for which AdaBoost exhibits indications of chaotic
behavior.
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2. Notation and Introduction to AdaBoost

The training set consists of examples with labels{(xi ,yi)}i=1,...,m, where(xi ,yi)∈ X ×{−1,1}. The
spaceX never appears explicitly in our calculations. LetH = {h1, ...,hn} be the set of all possible
weak classifiers that can be produced by the weak learning algorithm, where h j : X → {1,−1}.
We assume that ifh j appears inH , then−h j also appears inH . Since our classifiers are binary,
and since we restrict our attention to their behavior on a finite training set, we can assume the
number of weak classifiersn is finite. We typically think ofn as being very large,m� n, which
makes a gradient descent calculation impractical becausen, the number of dimensions, is too large;
hence, AdaBoost uses coordinate descent instead, where only one weak classifier is chosen at each
iteration.

We define anm× n matrix M whereMi j = yih j(xi), i.e., Mi j = +1 if training examplei is
classified correctly by weak classifierh j , and−1 otherwise. We assume that no column ofM has
all +1’s, that is, no weak classifier can classify all the training examples correctly. (Otherwise the
learning problem is trivial. In this case, AdaBoost will have an undefined step size.) Although
M is too large to be explicitly constructed in practice, mathematically, it acts as the only“input”
to AdaBoost in this notation, containing all the necessary information about the weak learning
algorithm and training examples.

AdaBoost computes a set of coefficients over the weak classifiers. At iteration t, the (unnor-
malized) coefficient vector is denotedλt ; i.e., the coefficient of weak classifierh j determined by
AdaBoost at iterationt is λt, j . The final combined classifier that AdaBoost outputs isfλtmax given
via λtmax/‖λtmax‖1:

fλ =
∑n

j=1 λ jh j

‖λ‖1
where ‖λ‖1 =

n

∑
j=1

|λ j |.

In the specific examples we provide, eitherh j or−h j remains unused over the course of AdaBoost’s
iterations, so all values ofλt, j are non-negative. Themargin of training example iis defined by
yi fλ(xi). Informally, one can think of the margin of a training example as the distance (by some
measure) from the example to the decision boundary,{x : fλ(x) = 0}.

A boosting algorithm maintains a distribution, or set of weights, over the trainingexamples that
is updated at each iterationt. This distribution is denoteddt ∈ ∆m, anddT

t is its transpose. Here,
∆m denotes the simplex ofm-dimensional vectors with non-negative entries that sum to 1. At each
iterationt, a weak classifierh jt is selected by the weak learning algorithm. Theprobability of error
at iterationt, denotedd−, for the selected weak classifierh jt on the training examples (weighted by
dt) is ∑{i:Mi j t =−1}dt,i . Also, denoted+ := 1−d−. Note thatd+ andd− depend ont; although we
have simplified the notation, the iteration number will be clear from the context. The edgeof weak
classifierjt at timet with respect to the training examples is(dT

t M) jt , which can be written as

(dT
t M) jt = ∑

i:Mi j t =1

dt,i − ∑
i:Mi j t =−1

dt,i = d+−d− = 1−2d−.

Thus, a smaller edge indicates a higher probability of error. For theoptimal case (the case we
usually consider), we will require the weak learning algorithm to give us theweak classifier with
the largest possible edge at each iteration,

jt ∈ argmax
j

(dT
t M) j ,
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i.e., jt is the weak classifier that performs the best on the training examples weightedby dt . For the
non-optimalcase (which we consider in Section 8), we only require a weak classifier whose edge
exceedsρ, whereρ is the largest possible margin that can be attained forM , i.e.,

jt ∈ { j : (dT
t M) j ≥ ρ}.

(The valueρ is defined formally below.) The edge for the chosen weak classifierjt at iterationt is
denotedrt , i.e.,rt = (dT

t M) jt . Note thatd+ = (1+ rt)/2 andd− = (1− rt)/2.
The margin theory developed via a set of generalization bounds that are based on the margin dis-

tribution of the training examples (Schapire et al., 1998; Koltchinskii and Panchenko, 2002). These
bounds can be reformulated (in a slightly weaker form) in terms of the minimum margin, which was
the focus of previous work by Breiman (1999), Grove and Schuurmans(1998), and R̈atsch and War-
muth (2002). Thus, these bounds suggest maximizing the minimum margin over training examples
to achieve a low probability of error over test data. Hence, our goal is to find a normalized vector
λ̃ ∈ ∆n that maximizes the minimum margin over training examples, mini (M λ̃)i (or equivalently
mini yi fλ(xi)). That is, we wish to find a vector

λ̃ ∈ argmax
λ̄∈∆n

min
i

(M λ̄)i .

We call this minimum margin over training examples (i.e., mini(Mλ)i/‖λ‖1) the`1-marginor sim-
ply marginof classifierλ. Any training example that achieves this minimum margin will be called
asupport vector. Due to the von Neumann Min-Max Theorem for 2-player zero-sum games,

min
d∈∆m

max
j

(dTM) j = max
λ̃∈∆n

min
i

(M λ̃)i .

That is, the minimum value of the edge (left hand side) corresponds to the maximum value of the
margin (i.e., the maximum value of the minimum margin over training examples, right hand side).
We denote this value byρ. One can think ofρ as measuring the worst performance of the best
combined classifier, mini(M λ̃)i .

The “unrealizable” or “non-separable” case whereρ = 0 is fully understood (Collins et al.,
2002). For this work, we assumeρ > 0 and study the less understood “realizeable” or “separable”
case. In both the non-separable and separable cases, AdaBoost converges to a minimizer of the
empirical loss function

F(λ) :=
m

∑
i=1

e−(Mλ)i .

In the non-separable case, thedt ’s converge to a fixed vector (Collins et al., 2002). In the
separable case, thedt ’s cannot converge to a fixed vector, and the minimum value ofF is 0, occurring
as||λ||1 → ∞. It is important to appreciate that this tells us nothing about the value of the margin
achieved by AdaBoost or any other procedure designed to minimizeF . To see why, consider any
λ̄ ∈ ∆n such that(M λ̄)i > 0 for all i (assuming we are in the separable case so such aλ̄ exists).
Then lima→∞ aλ̄ will produce a minimum value forF , but the original normalized̄λ need not yield
a maximum margin. To clarify, any normalized̄λ for which(M λ̄)i > 0 for all i produces a classifier
that classifies all training examples correctly, has unnormalized counterparts that attain values ofF
arbitrarily close to 0, yet may produce a classifier with arbitrarilysmallmargin. In other words, an
arbitrary algorithm that minimizesF can achieve an arbitrarily bad margin. So it must be theprocess

1562



THE DYNAMICS OF ADABOOST

AdaBoost(“optimal” case):

1. Input: Matrix M , No. of iterationstmax

2. Initialize: λ1, j = 0 for j = 1, ...,n

3. Loop for t = 1, ..., tmax

(a) dt,i = e−(Mλt)i /∑m
ī=1e−(Mλt)i for i = 1, ...,m

(b) jt ∈ argmax
j

(dT
t M) j

(c) rt = (dT
t M) jt

(d) αt = 1
2 ln
(

1+rt
1−rt

)

(e) λt+1 = λt +αtejt , whereejt is 1 in positionjt and 0 elsewhere.

4. Output: λtmax/‖λtmax‖1

Figure 1: Pseudocode for the AdaBoost algorithm.

of coordinate descent that awards AdaBoost its ability to increase margins, not simply AdaBoost’s
ability to minimizeF . The value of the functionF tells us very little about the value of the margin;
even asymptotically, it only tells us whether the margin is positive or not.

Figure 1 shows pseudocode for the AdaBoost algorithm. Usually theλ1 vector is initialized to
zero, so that all the training examples are weighted equally during the first iteration. The weight
vectordt is adjusted so that training examples that were misclassified at the previous iteration are
weighted more highly, so they are more likely to be correctly classified at the next iteration. The
weight vectordt is determined from the vector of coefficientsλt , which has been updated. The
map fromdt to dt+1 also involves renormalization, so it is not a very direct map when written in
this form. Thus on each round of boosting, the distributiondt is updated and renormalized (Step
3a), classifierjt with maximum edge (minimum probability of error) is selected (Step 3b), and the
weight of that classifier is updated (Step 3e). Note thatλt, j = ∑t

t̃=1 αt̃1 j t̃= j where1 j t̃= j is 1 if j t̃ = j
and 0 otherwise.

3. The Iterated Map Defined By AdaBoost

AdaBoost can be reduced to an iterated map for thedt ’s, as shown in Figure 2. This map gives a
direct relationship betweendt anddt+1, taking the normalization of Step 3a into account automat-
ically. For the cases considered in Sections 4, 5, and 6, we only need to understand the dynamics
of Figure 2 in order to compute the final coefficient vector that AdaBoostwill output. Initialize
d1,i = 1/m for i = 1, ...,m as in the first iteration of AdaBoost. Also recall that all values ofrt are
nonnegative sincert ≥ ρ > 0.

To show the equivalence with AdaBoost, consider the iteration defined by AdaBoost and reduce
as follows. Since:

αt =
1
2

ln

(
1+ rt

1− rt

)
, we havee−(Mi j t αt) =

(
1− rt

1+ rt

) 1
2Mi j t

=

(
1−Mi j t rt

1+Mi j t rt

) 1
2

.
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Iterated Map Defined by AdaBoost

1. jt ∈ argmax
j

(dT
t M) j

2. rt = (dT
t M) jt

3. dt+1,i =
dt,i

1+Mi j t rt
for i = 1, ...,m

Figure 2: The nonlinear iterated map obeyed by AdaBoost’s weight vectors. This dynamical system
provides a direct map fromdt to dt+1.

Here, we have used the fact thatM is a binary matrix. The iteration defined by AdaBoost combined
with the equation above yields:

dt+1,i =
e−(Mλt)i e−(Mi j t αt)

∑m
ī=1e−(Mλt)ī e−(Mī j t αt)

=
dt,i

∑m
ī=1dt,ī

(
1−Mī j t rt

1+Mī j t rt

) 1
2
(

1+Mi j t rt

1−Mi j t rt

) 1
2

.

Here, we have divided numerator and denominator by∑m
ĩ=1e−(Mλt)ĩ . For eachi such thatMi j t = 1,

we find:

dt+1,i =
dt,i

∑{ī:Mī j t =1}dt,ī

(
1−rt
1+rt

) 1
2
(

1+rt
1−rt

) 1
2
+∑{ī:Mī j t =−1}dt,ī

(
1+rt
1−rt

) 1
2
(

1+rt
1−rt

) 1
2

=
dt,i

d+ +d−
(

1+rt
1−rt

) =
dt,i

1+rt
2 + 1−rt

2

(
1+rt
1−rt

) =
dt,i

1+ rt
.

Likewise, for eachi such thatMi j t = −1, we finddt+1,i =
dt,i

1−rt
. Thus our reduction is complete. To

check that∑m
i=1dt+1,i = 1, i.e., that renormalization has been taken into account by the iterated map,

we calculate:
m

∑
i=1

dt+1,i =
1

1+ rt
d+ +

1
1− rt

d− =
(1+ rt)

2(1+ rt)
+

(1− rt)

2(1− rt)
= 1.

For the iterated map, fixed points (rather than cycles or other dynamics) occur when the training
data fails to be separable by the set of weak classifiers. In that case, theanalysis of Collins, Schapire,
and Singer (2002) shows that the iterated map will converge to a fixed point,and that theλ′

ts will
asymptotically attain the minimum value of the convex functionF(λ) := ∑m

i=1e−(Mλ)i , which is
strictly positive in the non-separable case. Consider the possibility of fixedpoints for thedt ’s in the
separable caseρ > 0. From our dynamics, we can see that this is not possible, sincert ≥ ρ > 0 and
for any i such thatdt,i > 0,

dt+1,i =
dt,i

(1+Mi, jt rt)
6= dt,i .

Thus, we have shown that AdaBoost does not produce fixed points in the separable case.
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4. The Dynamics of AdaBoost in the Simplest Case : The3×3 Case

In this section, we will introduce a simple 3×3 input matrix (in fact, the simplest non-trivial matrix)
and analyze the convergence of AdaBoost in this case, using the iteratedmap of Section 3. We will
show that AdaBoost does produce a maximum margin solution, remarkably through convergence
to one of two stable limit cycles. We extend this example to them×m case in Section 5, where
AdaBoost produces at least(m−1)! stable limit cycles, each corresponding to a maximum margin
solution. We will also extend this example in Section 6 to include manifolds of cycles.

Consider the input matrix

M =




−1 1 1
1 −1 1
1 1 −1




corresponding to the case where each classifier misclassifies one of three training examples. We
could add columns to include the negated version of each weak classifier, but those columns would
never be chosen by AdaBoost, so they have been removed for simplicity. The value of the margin
for the best combined classifier defined byM is 1/3. How will AdaBoost achieve this result? We
will proceed step by step.

Assume we are in the optimal case, wherejt ∈ argmaxj(d
T
t M) j . Consider the dynamical system

on the simplex∆3 defined by our iterated map in Section 3. In the triangular region with vertices
(0,0,1),(1

3, 1
3, 1

3),(0,1,0), jt will be 1 for Step 1 of the iterated map. That is, within this region,
dt,1 < dt,2 anddt,1 < dt,3, so jt will be 1. Similarly, we have regions forjt = 2 and jt = 3 (see Figure
3(a)).

AdaBoost was designed to set the edge of the previous weak classifier to0 at each iteration, that
is, dt+1 will always satisfy(dT

t+1M) jt = 0. To see this using the iterated map,

(dT
t+1M) jt = ∑

{i:Mi j t =1}
dt,i

1
1+ rt

− ∑
{i:Mi j t =−1}

dt,i
1

1− rt

= d+
1

1+ rt
−d−

1
1− rt

=
1+ rt

2
1

1+ rt
− 1− rt

2
1

1− rt
= 0. (1)

This implies that after the first iteration, thedt ’s are restricted to

{d : [(dTM)1 = 0]
[

[(dTM)2 = 0]
[

[(dTM)3 = 0]}.

Thus, it is sufficient for our dynamical system to be analyzed on the edges of a triangle with vertices(
0, 1

2, 1
2

)
,
(

1
2,0, 1

2

)
,
(

1
2, 1

2,0
)

(see Figure 3(b)). That is, within one iteration, the 2-dimensional map
on the simplex∆3 reduces to a 1-dimensional map on the edges of the triangle.

Consider the possibility of periodic cycles for thedt ’s. If there are periodic cycles of lengthT,
then the following condition must hold fordcyc

1 , ...,dcyc
T in the cycle: For eachi, either

• dcyc
1,i = 0, or

• ∏T
t=1(1+Mi j t r

cyc
t ) = 1,

wherercyc
t = (dcycT

t M) jt . (As usual,dcyc
t

T := (dcyc
t )T , superscriptT denotes transpose.) The state-

ment above follows directly from the reduced map iteratedT times. In fact, the first condition
dcyc

1,i = 0 impliesdcyc
t,i = 0 for all t ∈ {1, ...,T}. We call the second condition thecycle condition.
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a) b)
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Figure 3: (a) Regions ofdt-space where classifiersjt = 1,2,3 will respectively be selected for Step
1 of the iterated map of Figure 2. Sincedt,3 = 1− dt,2 − dt,1, this projection onto the
first two coordinatesdt,1 anddt,2 completely characterizes the map. (b) Regardless of
the initial positiond1, the weight vectors at all subsequent iterationsd2, ...,dtmax will be
restricted to lie on the edges of the inner triangle which is labelled. (c1) Within one iter-
ation, the triangular region wherejt = 1 maps to the line{d : (dTM)1 = 0}. The arrows
indicate where various points in the shaded region will map at the following iteration.
The other two regions have analogous dynamics as shown in (c2) and (c3). (d) There are
six total subregions of the inner triangle (two for each of the three edges). Each subregion
is mapped to the interior of another subregion as indicated by the arrows. (e) Coordinates
for the two 3-cycles. The approximate positionsdcyc

1 , dcyc
2 , anddcyc

3 for one of the 3-cycles
are denoted by a small ‘o’, the positions for the other cycle are denoted bya small ‘x’.
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0.2 0.3 0.4 0.5

0.2
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0.5

d
t,1

d t,2

Figure 4: 50 iterations of AdaBoost showing convergence ofdt ’s to a cycle. Small rings indicate
earlier iterations of AdaBoost, while larger rings indicate later iterations. There are many
concentric rings at positionsdcyc

1 , dcyc
2 , anddcyc

3 .

Consider the possibility of a periodic cycle of length 3, cycling through eachweak classifier
once. For now, assumej1 = 1, j2 = 2, j3 = 3, but without loss of generality one can choosej1 =
1, j2 = 3, j3 = 2, which yields another cycle. Assumedcyc

1,i > 0 for all i. From the cycle condition,

1 = (1+Mi j1r
cyc
1 )(1+Mi j2r

cyc
2 )(1+Mi j3r

cyc
3 ) for i = 1,2, and 3, i.e.,

1 = (1− rcyc
1 )(1+ rcyc

2 )(1+ rcyc
3 ) for i = 1, (2)

1 = (1+ rcyc
1 )(1− rcyc

2 )(1+ rcyc
3 ) for i = 2, (3)

1 = (1+ rcyc
1 )(1+ rcyc

2 )(1− rcyc
3 ) for i = 3. (4)

From (2) and (3),
(1− rcyc

1 )(1+ rcyc
2 ) = (1+ rcyc

1 )(1− rcyc
2 ),

thusrcyc
1 = rcyc

2 . Similarly, rcyc
2 = rcyc

3 from (3) and (4), sorcyc
1 = rcyc

2 = rcyc
3 . Using either (2), (3),

or (4) to solve forr := rcyc
1 = rcyc

2 = rcyc
3 (taking positive roots sincer > 0), we find the value of the

edge for every iteration in the cycle to be equal to the golden ratio minus one, i.e.,

r =

√
5−1
2

.

Now, let us solve for the weight vectors in the cycle,dcyc
1 , dcyc

2 , anddcyc
3 . At t = 2, the edge with

respect to classifier 1 is 0. Again, it is required that eachdcyc
t lies on the simplex∆3.

(dcyc
2

TM)1 = 0 and
3

∑
i=1

dcyc
2,i = 1, that is,

−dcyc
2,1 +dcyc

2,2 +dcyc
2,3 = 0 and dcyc

2,1 +dcyc
2,2 +dcyc

2,3 = 1,

thus, dcyc
2,1 =

1
2
.
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Sincedcyc
2,1 = 1

2, we havedcyc
2,2 = 1

2 −dcyc
2,3 . At t = 3, the edge with respect to classifier 2 is 0. From

the iterated map, we can writedcyc
3 in terms ofdcyc

2 .

0 = (dcyc
3

TM)2 =
3

∑
i=1

Mi2dcyc
2,i

1+Mi2r
=

1
2

1+ r
−

1
2 −dcyc

2,3

1− r
+

dcyc
2,3

1+ r
, so

dcyc
2,3 =

r
2

=

√
5−1
4

and thus dcyc
2,2 =

1
2
−dcyc

2,3 =
3−

√
5

4
.

Now that we have founddcyc
2 , we can recover the rest of the cycle:

dcyc
1 =

(
3−

√
5

4
,

√
5−1
4

,
1
2

)T

,

dcyc
2 =

(
1
2
,
3−

√
5

4
,

√
5−1
4

)T

,

dcyc
3 =

(√
5−1
4

,
1
2
,
3−

√
5

4

)T

.

To check that this actually is a cycle, starting fromdcyc
1 , AdaBoost will choosejt = 1. Thenr1 =

(dcyc
1

TM)1 =
√

5−1
2 . Now, computing

dcyc
1,i

1+Mi,1r1
for all i yieldsdcyc

2 . In this way, AdaBoost will cycle
between weak classifiersj = 1,2,3,1,2,3, etc.

The other 3-cycle can be determined similarly:

dcyc′

1 =

(
3−

√
5

4
,
1
2
,

√
5−1
4

)T

,

dcyc′

2 =

(
1
2
,

√
5−1
4

,
3−

√
5

4

)T

,

dcyc′

3 =

(√
5−1
4

,
3−

√
5

4
,
1
2

)T

.

Since we always start from the initial conditiond1 =
(

1
3, 1

3, 1
3

)T
, the initial choice ofjt is arbitrary;

all three weak classifiers are within the argmax set in Step 1 of the iterated map.This arbitrary step,
along with another arbitrary choice at the second iteration, determines whichof the two cycles the
algorithm will choose; as we will see, the algorithm must converge to one of these two cycles.

To show that these cycles are globally stable, we will show that the map is a contraction from
each subregion of the inner triangle into another subregion. We only needto consider the one-
dimensional map defined on the edges of the inner triangle, since within one iteration, every trajec-
tory starting within the simplex∆3 lands somewhere on the edges of the inner triangle. The edges of
the inner triangle consist of 6 subregions, as shown in Figure 3(d). We will consider one subregion,
the segment from

(
0, 1

2, 1
2

)T
to
(

1
4, 1

2, 1
4

)T
, or simply

(
x, 1

2, 1
2 −x

)T
wherex∈ (0, 1

4). (We choose not
to deal with the endpoints since we will show they are unstable; thus the dynamics never reach or
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converge to these points. For the first endpoint the map is not defined, and for the second, the map
is ambiguous; not well-defined.) For this subregionjt = 1, and the next iterate is

(
x

1− (1−2x)
,

1
2

1+(1−2x)
,

1
2 −x

1+(1−2x)

)T

=

(
1
2
,

1
4(1−x)

,
1
2
− 1

4(1−x)

)T

.

To compare the length of the new interval with the length of the previous interval, we use the fact that
there is only one degree of freedom. A position on the previous interval can be uniquely determined
by its first componentx∈ (0, 1

4). A position on the new interval can be uniquely determined by its
second component taking values14(1−x) , where we still havex∈ (0, 1

4). The map

x 7→ 1
4(1−x)

is a contraction. To see this, the slope of the map is14(1−x)2 , taking values within the interval(1
4, 4

9).
Thus the map is continuous and monotonic, with absolute slope strictly less than 1.The next it-
erate will appear within the interval

(
1
2, 1

4, 1
4

)T
to
(

1
2, 1

3, 1
6

)T
, which is strictly contained within the

subregion connecting
(

1
2, 1

4, 1
4

)T
with

(
1
2, 1

2,0
)T

. Thus, we have a contraction. A similar calculation
can be performed for each of the subregions, showing that each subregion maps monotonically to
an area strictly within another subregion by a contraction map. Figure 3(d) illustrates the various
mappings between subregions. After three iterations, each subregion maps by a monotonic con-
traction to a strict subset of itself. Thus, any fixed point of the three-iteration cycle must be the
unique attracting fixed point for that subregion, and the domain of attractionfor this point must be
the whole subregion. In fact, there are six such fixed points, one for each subregion, three for each
of the two cycles. The union of the domains of attraction for these fixed pointsis the whole triangle;
every positiond within the simplex∆3 is within the domain of attraction of one of these 3-cycles.
Thus, these two cycles are globally stable.

Since the contraction is so strong at every iteration (as shown above, the absolute slope of the
map is much less than 1), the convergence to one of these two 3-cycles is very fast. Figure 5(a) shows
where each subregion of the “unfolded triangle” will map after the first iteration. The “unfolded
triangle” is the interval obtained by traversing the triangle clockwise, startingand ending at

(
0, 1

2, 1
2

)
.

Figure 5(b) illustrates that the absolute slope of the second iteration of this mapat the fixed points
is much less than 1; the cycles are strongly attracting.

The combined classifier that AdaBoost will output is

λcombined=

(
1
2 ln
(

1+rcyc
1

1−rcyc
1

)
, 1

2 ln
(

1+rcyc
2

1−rcyc
2

)
, 1

2 ln
(

1+rcyc
3

1−rcyc
3

))T

normalization constant
=

(
1
3
,
1
3
,
1
3

)T

,

and since mini(Mλcombined)i = 1
3, we see that AdaBoost always produces a maximum margin solu-

tion for this input matrix.
Thus, we have derived our first convergence proof for AdaBoost in a specific separable case.

We have shown that at least in some cases, AdaBoost is in fact a margin-maximizing algorithm. We
summarize this first main result.

Theorem 1 For the3×3 matrix M:
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Figure 5: (a) The iterated map on the unfolded triangle. Both axes give coordinates on the edges of
the inner triangle in Figure 3(b). The plot shows wheredt+1 will be, givendt . (b) The
map from (a) iterated twice, showing wheredt+3 will be, givendt . For this “triple map”,
there are 6 stable fixed points, 3 for each cycle.

• The weight vectorsdt converge to one of two possible stable cycles. The coordinates of the
cycles are:

dcyc
1 =

(
3−

√
5

4
,

√
5−1
4

,
1
2

)T

,

dcyc
2 =

(
1
2
,
3−

√
5

4
,

√
5−1
4

)T

,

dcyc
3 =

(√
5−1
4

,
1
2
,
3−

√
5

4

)T

,

and

dcyc′

1 =

(
3−

√
5

4
,
1
2
,

√
5−1
4

)T

,

dcyc′

2 =

(
1
2
,

√
5−1
4

,
3−

√
5

4

)T

,

dcyc′

3 =

(√
5−1
4

,
3−

√
5

4
,
1
2

)T

.

• AdaBoost produces a maximum margin solution for this matrixM.

5. Generalization to m Classifiers, Each with One MisclassifiedExample

This simple 3 classifier case can be generalized tom classifiers, each having one misclassified
training example; we will find solutions of a similar nature to the ones we found for the 3×3 case,
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where there is a rotation of the coordinates at every iteration and a contraction. Here,

M =




−1 1 1 · · · 1
1 −1 1 · · · 1

1 1 −1
...

...
.. . 1

1 · · · · · · 1 −1




.

Theorem 2 For the m×m matrix above:

• The dynamical system for AdaBoost’s weight vectors contains at least(m−1)! stable periodic
cycles of length m.

• AdaBoost converges to a maximum margin solution when the weight vectors converge to one
of these cycles.

The proof of Theorem 2 can be found in Appendix A.

6. Identically Classified Examples and Manifolds of Cycles

In this section, we show how manifolds of cycles appear automatically from cyclic dynamics when
there are sets of identically classified training examples. We show that the manifolds of cycles that
arise from a variation of the 3×3 case are stable. One should think of a “manifold of cycles” as a
continuum of cycles; starting from a position on any cycle, if we move along the directions defined
by the manifold, we will find starting positions for infinitely many other cycles. These manifolds
are interesting from a theoretical viewpoint. In addition, their existence andstability will be an
essential part of the proof of Theorem 7.

A set of training examplesI is identically classifiedif each pair of training examplesi and i′

contained inI satisfyyih j(xi) = yi′h j(xi′) ∀ j. That is, the rowsi and i′ of matrix M are identical;
training examplesi and i′ are misclassified by the same set of weak classifiers. When AdaBoost
cycles, it treats each set of identically classified training examples as one training example, in a
specific sense we will soon describe.

For convenience of notation, we will remove the ‘cyc’ notation so thatd1 is a position within the
cycle (or equivalently, we could make the assumption that AdaBoost starts on a cycle). Say there
exists a cycle such thatd1,i > 0∀i ∈ I , whered1 is a position within the cycle andM possesses some
identically classified examplesI . (I is not required to include all examples identically classified
with i ∈ I .) We know that for each pair of identically classified examplesi and i′ in I , we have
Mi j t = Mi′ jt ∀t = 1, ...,T. Let perturbationa∈ R

m obey

∑̄
i∈I

aī = 0, and alsoai = 0 for i /∈ I .

Now, let da
1 := d1 + a. We accept only perturbationsa so that the perturbation does not affect the

value of any jt in the cycle. That is, we assume each component ofa is sufficiently small; since
the dynamical system defined by AdaBoost is piecewise continuous, it is possible to choosea small
enough so the perturbed trajectory is still close to the original trajectory after T iterations. Also,da

1
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must still be a valid distribution, so it must obey the constraintda
1 ∈ ∆m, i.e., ∑i ai = 0 as we have

specified. Choose any elementsi andi′ ∈ I . Now,

ra
1 = (da

1
TM) j1 = (d1

TM) j1 +(aTM) j1 = r1 + ∑̄
i∈I

aīMī j1
= r1 +Mi′ j1 ∑̄

i∈I

aī = r1

da
2,i =

da
1,i

1+Mi j1r
a
1

=
da

1,i

1+Mi j1r1
=

d1,i

1+Mi j1r1
+

1
1+Mi′ j1r1

ai = d2,i +
1

1+Mi′ j1r1
ai

ra
2 = (da

2
TM) j2 = (d2

TM) j2 +
1

1+Mi′ j1r1
(aTM) j2 = r2 +

1
1+Mi′ j1r1

∑̄
i∈I

aīMī j2

= r2 +
Mi′ j2

1+Mi′ j1r1
∑̄
i∈I

aī = r2

da
2,i =

da
2,i

1+Mi j2r
a
2

=
da

2,i

1+Mi j2r2
=

d2,i

1+Mi j2r2
+

1
(1+Mi′ j2r2)(1+Mi′ j1r1)

ai

= d3,i +
1

(1+Mi′ j2r2)(1+Mi′ j1r1)
ai

...

da
T+1,i = dT+1,i +

1

∏T
t=1(1+Mi′ jt rt)

ai = d1,i +ai = da
1,i .

The cycle condition was used in the last line. This calculation shows that if we perturb any cycle
in the directions defined byI , we will find another cycle. An entire manifold of cycles then exists,
corresponding to the possible nonzero acceptable perturbationsa. Effectively, the perturbation shifts
the distribution among examples inI , with the total weight remaining the same. For example, if
a cycle exists containing vectord1 with d1,1 = .20,d1,2 = .10, andd1,3 = .30, where{1,2,3} ⊂ I ,
then a cycle withd1,1 = .22,d1,2 = .09, andd1,3 = .29 also exists, assuming none of thejt ’s change;
in this way, groups of identically distributed examples may be treated as one example, because they
must share a single total weight (again, only within the region where none ofthe jt ’s change).

We will now consider a simple case where manifolds of cycles exist, and we willshow that these
manifolds are stable in the proof of Theorem 3.

The form of the matrixM is 


−1 1 1
...

...
...

−1 1 1
1 −1 1
...

...
...

1 −1 1
1 1 −1
...

...
...

1 1 −1
1 1 1
...

...
...

1 1 1




.

To be more specific, the firstq1 training examples are misclassified only byh1, the nextq2 examples
are misclassified only byh2, the nextq3 examples are misclassified only byh3, and the lastq4
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examples are always correctly classified (their weights converge to zero). Thus we consider the
components ofd as belonging to one of four pieces; as long as

(
q1

∑
i=1

di ,
q1+q2

∑
i=q1+1

di ,
q1+q2+q3

∑
i=q1+q2+1

di

)T

= dcyc
1 ,dcyc

2 ,dcyc
3 ,dcyc′

1 ,dcyc′

2 , or dcyc′

3 from Section 4,

thend lies on a 3-cycle as we have just shown.

Theorem 3 For the matrixM defined above, manifolds of cycles exist (there is a continuum of
cycles). These manifolds are stable.

The proof of Theorem 3 can be found in Appendix B.

7. Cycles and Support Vectors

Our goal is to understand general properties of AdaBoost in cases where cycling occurs, to broaden
our understanding of the phenomenon we have observed in Sections 4, 5, and 6. Specifically, we
show that if cyclic dynamics occur, the training examples with the smallest margin are the training
examples whosedt,i values stay non-zero (the “support vectors”). In the process, we provide a
formula that allows us to directly calculate AdaBoost’s asymptotic margin from theedges at each
iteration of the cycle. Finally, we give sufficient conditions for AdaBoostto produce a maximum
margin solution when cycling occurs.

As demonstrated in Figure 6, there are many low-dimensional matricesM for which AdaBoost
empirically produces cyclic behavior. The matrices used to generate the cycle plots in Figure 6 are
contained in Figure 7. These matrices were generated randomly and reduced (rows and columns
that did not seem to play a role in the asymptotic behavior were eliminated). We observe cyclic
behavior in many more cases than are shown in the figure; almost every low-dimensional random
matrix that we tried (and even some larger matrices) seems to yield cyclic behavior. Our empirical
observations of cyclic behavior in many cases leads us to build an understanding of AdaBoost’s
general asymptotic behavior in cases where cycles exist, though there is not necessarily a contraction
at each iteration so the dynamics may be harder to analyze. (We at least assume the cycles AdaBoost
produces are stable, since it is not likely we would observe them otherwise.) These cyclic dynamics
may not persist in very large experimental cases, but from our empiricalevidence, it seems plausible
(even likely) that cyclic behavior might persist in cases in which there are very few support vectors.

When AdaBoost converges to a cycle, it “chooses” a set of rows anda set of columns, that is:

• The jt ’s cycle amongst some of the columns ofM , but not necessarily all of the columns. In
order for AdaBoost to produce a maximum margin solution, it must choose a set of columns
such that the maximum margin forM can be attained using only those columns.

• The values ofdt,i (for a fixed value ofi) are either always 0 or always strictly positive through-
out the cycle. Asupport vectoris a training examplei such that thedt,i ’s in the cycle are
strictly positive. These support vectors are similar to the support vectorsof a support vector
machine in that they all attain the minimum margin over training examples (as we will show).
These are training examples that AdaBoost concentrates the hardest on. The remaining train-
ing examples have zero weight throughout the cycle; these are the examples that are easier
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Figure 6: Examples of cycles from randomly generated matricesM . An image ofM for each plot
appears in Figure 7. These plots show a projection onto the first two components of Ada-
Boost’s weight vector, e.g., the axes might bedt,1 vs. dt,2. Smaller circles indicate earlier
iterations, and larger circles indicate later iterations. For (a), (d) and (f), 400 iterations
were plotted, and for (b) and (e), 300 iterations were plotted. Plot (c) shows 5500 itera-
tions, but only every 20th iteration was plotted. This case took longer to converge, and
converged to a simple 3-cycle.
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Figure 7: The matricesM used to generate the plots in Figure 6. White indicates a value of 1, and
black indicates a value of -1. The size ofM does not seem to have a direct correlation on
either the number of iterations per cycle, or the speed of convergence to acycle.

1575



RUDIN , DAUBECHIES, AND SCHAPIRE

for the algorithm to classify, since they have margin larger than the supportvectors. For sup-
port vectors, the cycle condition holds,∏T

t=1(1+Mi j t r
cyc
t ) = 1. (This holds by Step 3 of the

iterated map.) For non-support vectors,∏T
t=1(1+Mi j t r

cyc
t ) > 1 so thedt,i ’s converge to 0 (the

cycle must be stable).

Theorem 4 AdaBoost produces the same margin for each support vector and larger margins for
other training examples. This margin can be expressed in terms of the cycle parameters rcyc

1 , ..., rcyc
T .

Proof Assume AdaBoost is cycling. Assumed1 is within the cycle for ease of notation. The cycle
produces a normalized outputλcyc := limt→∞ λt/||λt ||1 for AdaBoost. (This limit always converges
when AdaBoost converges to a cycle.) Denote

zcyc :=
T

∑
t=1

αt =
T

∑
t=1

1
2

ln

(
1+ rt

1− rt

)
.

Let i be a support vector. Then,

(Mλcyc)i =
1

zcyc

T

∑
t=1

Mi j t αt =
1

zcyc

T

∑
t=1

Mi j t
1
2

ln

(
1+ rt

1− rt

)

=
1

2zcyc

T

∑
t=1

ln

(
1+Mi j t rt

1−Mi j t rt

)
=

1
2zcyc

ln

[
T

∏
t=1

1+Mi j t rt

1−Mi j t rt

]

=
1

2zcyc
ln



(

T

∏
t=1

1+Mi j t rt

1−Mi j t rt

)(
T

∏
t=1

1
(1+Mi j t rt)

)2



=
1

2zcyc
ln

[
T

∏
t=1

1
(1−Mi j t rt)(1+Mi j t rt)

]

=
1

2zcyc
ln

[
T

∏
t=1

1

1− r2
t

]
= −1

2
ln∏T

t=1(1− r2
t )

∑T
t̃=1

1
2 ln
(

1+r t̃
1−r t̃

)

= − ln∏T
t=1(1− r2

t )

ln∏T
t̃=1

(
1+r t̃
1−r t̃

) . (5)

The first line uses the definition ofαt from the AdaBoost algorithm, the second line uses the fact
that M is binary, the third line uses the fact thati is a support vector, i.e.,∏T

t=1(1+ Mi j t rt) = 1.
Since the value in (5) is independent ofi, this is the value of the margin that AdaBoost assigns to
every support vectori. We denote the value in (5) asµcycle, which is only a function of the cycle
parameters, i.e., the edge values.

Now we show that every non-support vector achieves a larger margin than µcycle. For a non-

support vectori, we have∏T
t=1(1+Mi j t rt)> 1, that is, the cycle is stable. Thus, 0> ln

[
1

∏T
t=1(1+Mi j t rt)

]2
.
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Now,

(Mλcyc)i =
1

zcyc

T

∑
t=1

Mi j t αt =
1

2zcyc
ln

[
∏t(1+Mi j t rt)

∏t̃(1−Mi j t̃ r t̃)

]

>
1

2zcyc
ln

[
∏t(1+Mi j t rt)

∏t̃(1−Mi j t̃ r t̃)

]
+

1
2zcyc

ln

[
1

∏t̃(1+Mi j t̃ r t̃)

]2

=
− ln∏T

t=1(1− r2
t )

ln∏T
t̃=1

(
1+r t̃
1−r t̃

) = µcycle.

Thus, non-support vectors achieve larger margins than support vectors.

The previous theorem shows that the asymptotic margin of the support vectors is the same as the
asymptotic margin produced by AdaBoost; this asymptotic margin can be directly computed using
(5). AdaBoost may not always produce a maximum margin solution, as we willsee in Sections 8
and 9; however, there are sufficient conditions such that AdaBoost will automatically produce a
maximum margin solution when cycling occurs. Before we state these conditions, we define the
matrix M cyc∈ {−1,1}mcyc×ncyc, which contains certain rows and columns ofM . To constructM cyc

from M , we choose only the rows ofM that correspond to support vectors (eliminating the others,
whose weights vanish anyway), and choose only the columns ofM corresponding to weak classifiers
that are chosen in the cycle (eliminating the others, which are never chosen after cycling begins
anyway). Here,mcyc is the number of support vectors chosen by AdaBoost, andncyc is the number
of weak classifiers in the cycle.

Theorem 5 Suppose AdaBoost is cycling, and that the following are true:

1.
max

λ̂∈∆ncyc

min
i

(Mcycλ̂)i = max
λ̃∈∆n

min
i

(Mλ̃)i = ρ

(AdaBoost cycles among columns ofM that can be used to produce a maximum margin solu-
tion.)

2. There existsλρ ∈ ∆ncyc such that(Mcycλρ)i = ρ for i = 1, ...,mcyc. (AdaBoost chooses support
vectors corresponding to a maximum margin solution forMcyc.)

3. The matrixMcyc is invertible.

Then AdaBoost produces a maximum margin solution.

The first two conditions specify that AdaBoost cycles among columns ofM that can be used to
produce a maximum margin solution, and chooses support vectors corresponding to this solution.
The first condition specifies that the maximum margin,ρ, (corresponding to the matrixM ) must be
the same as the maximum margin corresponding toM cyc. Since the cycle is stable, all other training
examples achieve larger margins; henceρ is the best possible marginM cyc can achieve. The second
condition specifies that there is at least one analytical solutionλρ such that all training examples of
M cyc achieve a margin of exactlyρ.
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Proof By Theorem 4, AdaBoost will produce the same margin for all of the rows of M cyc, since
they are all support vectors. We denote the value of this margin byµcycle.

Let χmcyc := (1,1,1, . . . ,1)T , with mcyc components. From 2, we are guaranteed the existence of
λρ such that

M cycλρ = ρχmcyc.

We already know

M cycλ
cyc = µcycleχmcyc

since all rows are support vectors for our cycle. SinceM cyc is invertible,

λcyc = µcycleM−1
cycχmcyc and λρ = ρM−1

cycχmcyc,

so we haveλcyc = constant·λρ. Sinceλcyc andλρ must both be normalized, the constant must be
1. Thusρ = µcycle.

It is possible for the conditions of Theorem 5 not to hold, for example, condition 1 does not hold
in the examples of Sections 8 and 9; in these cases, a maximum margin solution is not achieved.
It can be shown that the first two conditions are necessary but the third one is not. It is not hard
to understand the necessity of the first two conditions; if it is not possible to produce a maximum
margin solution using the weak classifiers and support vectors AdaBoosthas chosen, then it is not
possible for AdaBoost to produce a maximum margin solution. The third condition is thus quite
important, since it allows us to uniquely identifyλcyc. Condition 3 does hold for the cases studied
in Sections 4 and 5.

8. Non-Optimal AdaBoost Does Not Necessarily Converge to a Maximum Margin
Solution, Even if Optimal AdaBoost Does

Based on large scale experiments and a gap in theoretical bounds, Rätsch and Warmuth (2002)
conjectured that AdaBoost does not necessarily converge to a maximum margin classifier in the
non-optimal case, i.e., that AdaBoost is not robust in this sense. In practice, the weak classifiers are
generated by CART or another weak learning algorithm, implying that the choice need not always
be optimal.

We will consider a 4×5 matrixM for which AdaBoost fails to converge to a maximum margin
solution if the edge at each iteration is required only to exceedρ (the non-optimal case). That is,
we show that “non-optimal AdaBoost” (AdaBoost in the non-optimal case)may not converge to a
maximum margin solution, even in cases where “optimal AdaBoost” does.

Theorem 6 AdaBoost in the non-optimal case may fail to converge to a maximum marginsolution,
even if optimal AdaBoost does. An example illustrating this is

M =




−1 1 1 1 −1
1 −1 1 1 −1
1 1 −1 1 1
1 1 1 −1 1


 .
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Proof For this matrix, the maximum marginρ is 1/2. Actually, in the optimal case, AdaBoost will
produce this value by cycling among the first four columns ofM . Recall that in the non-optimal
case:

jt ∈ { j : (dT
t M) j ≥ ρ}.

Consider the following initial condition for the dynamics:

d1 =

(
3−

√
5

8
,
3−

√
5

8
,
1
2
,

√
5−1
4

)T

.

Since(dT
1 M)5 = (

√
5−1)/2 > 1/2 = ρ, we are justified in choosingj1 = 5, although here it is not

the optimal choice. Another iteration yields

d2 =

(
1
4
,
1
4
,

√
5−1
4

,
3−

√
5

4

)T

,

satisfying(dT
1 M)4 > ρ for which we choosej2 = 4. At the following iteration, we choosej3 = 3,

and at the fourth iteration we findd4 = d1. This cycle is the same as one of the cycles considered in
Section 4 (although there is one extra dimension). There is actually a whole manifold of 3-cycles,
sinced̃1

T
:= (ε, 3−

√
5

4 − ε, 1
2,

√
5−1
4 ) lies on a (non-optimal) cycle for anyε, 0≤ ε ≤ 3−

√
5

4 . In any
case, the value of the margin produced by this cycle is 1/3, not 1/2.

We have thus established that AdaBoost is not robust in the sense we described; if the weak
learning algorithm is not required to choose the optimal weak classifier at each iteration, but is
required only to choose a sufficiently good weak classifierjt ∈ { j : (dT

t M) j ≥ ρ}, a maximum
margin solution will not necessarily be attained, even if optimal AdaBoost would have produced
a maximum margin solution. We are not saying that the only way for AdaBoost toconverge to a
non-maximum margin solution is to fall into the wrong cycle; it is conceivable thatthere may be
many other, non-cyclic, ways for the algorithm to fail to converge to a maximummargin solution.

Note that for some matricesM , the maximum value of the margin may still be attained in the
non-optimal case; an example is the 3×3 matrix we analyzed in Section 4. If one considers the 3×3
matrix in the non-optimal case, the usual 3-cycle may not persist. Oddly, a 4-cycle may emerge
instead. If AdaBoost converges to this 4-cycle, it will still converge to thesame (maximum) margin
of 1/3. See Appendix C for the coordinates of such a 4-cycle. Thus, there is no guarantee as to
whether the non-optimal case will produce the same asymptotic margin as the optimal case.

In Figure 8, we illustrate the evolution of margins in the optimal and non-optimal cases for
matrix M of Theorem 6. Here, optimal AdaBoost converges to a margin of 1/2 via convergence to
a 4-cycle, and non-optimal AdaBoost converges to a margin of 1/3 via convergence to a 3-cycle.

9. Optimal AdaBoost Does Not Necessarily Converge to a MaximumMargin Solution

In this section, we produce a low-dimensional example that answers the question of whether Ada-
Boost always converges to a maximum margin in the optimal case.
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Figure 8: AdaBoost in the optimal case (higher curve) and in the non-optimal case (lower curve).
Optimal AdaBoost converges to a margin of 1/2 via convergence to a 4-cycle, and non-
optimal AdaBoost converges to a margin of 1/3 via convergence to a 3-cycle. In both
cases we start withλ1 = 0.

Theorem 7 Consider the following matrix whose image appears in Figure 9 (one can seethe nat-
ural symmetry more easily in the imaged version):

M =




−1 1 1 1 1 −1 −1 1
−1 1 1 −1 −1 1 1 1
1 −1 1 1 1 −1 1 1
1 −1 1 1 −1 1 1 1
1 −1 1 −1 1 1 1 −1
1 1 −1 1 1 1 1 −1
1 1 −1 1 1 1 −1 1
1 1 1 1 −1 −1 1 −1




. (6)

For this matrix, it is possible for AdaBoost to fail to converge to a maximum margin solution.

Proof The dynamical system corresponding to this matrix contains a manifold of strongly attracting
3-cycles. The cycles we will analyze alternate between weak classifiers 3, 2, and 1. If we consider
only weak classifiers 1, 2, and 3, we find that training examplesi = 1 and 2 are identically classified,
i.e., rows 1 and 2 of matrixM are the same (only considering columns 1, 2, and 3). Similarly,
examples 3, 4 and 5 are identically classified, and additionally, examples 6 and7. Training example
8 is correctly classified by each of these weak classifiers. Because we have constructedM to have
such a strong attraction to a 3-cycle, there are many initial conditions (initial values ofλ) for which
AdaBoost will converge to one of these cycles, including the vectorλ = 0. For the first iteration,
we chosejt = 1 to achieve the cycle we will analyze below; there are a few different choices for jt
within the first few iterations, since the argmax set sometimes contains more than one element. The
dynamics may converge to a different 3-cycle, depending on which values of jt are chosen within
the first few iterations. (Oddly enough, there are initial values ofλ where AdaBoost converges to
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Figure 9: The image of the matrixM in (6). White indicates +1, black indicates -1. This matrix has
natural symmetry.

a cycle in which a maximum margin solution is produced, although finding such a cycle requires
some work.)

To show that a manifold of 3-cycles exists, we present a vectord1 such thatd4 = d1, namely:

d1 =

(
3−

√
5

8
,
3−

√
5

8
,
1
6
,
1
6
,
1
6
,

√
5−1
8

,

√
5−1
8

,0

)T

. (7)

To see this, we iterate the iterated map 4 times.

dT
1 M =

(√
5−1
2

,0,
3−

√
5

2
,
3
√

5−1
12

,
3
√

5−1
12

,
3
√

5−1
12

,
1
2
,
11−3

√
5

12

)
,

and herej1 = 1,

d2 =

(
1
4
,
1
4
,

√
5−1
12

,

√
5−1
12

,

√
5−1
12

,
3−

√
5

8
,
3−

√
5

8
,0

)T

dT
2 M =

(
0,

3−
√

5
2

,

√
5−1
2

,
4−

√
5

6
,
4−

√
5

6
,
4−

√
5

6
,

√
5−1
4

,
5+

√
5

12

)
,

and herej2 = 3,

d3 =

(√
5−1
8

,

√
5−1
8

,
3−

√
5

12
,
3−

√
5

12
,
3−

√
5

12
,
1
4
,
1
4
,0

)T

dT
3 M =

(
3−

√
5

2
,

√
5−1
2

,0,
3
4
−

√
5

12
,
3
4
−

√
5

12
,
3
4
−

√
5

12
,
3−

√
5

4
,

√
5

6

)
,

and here,j3 = 2, and thend4 = d1.
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Figure 10: AdaBoost (lower curve) and Approximate Coordinate Ascent Boosting (higher curve),
using the 8× 8 matrix M given in Section 9 and initial conditionλ = 0. AdaBoost
converges to a margin of 1/3, yet the value ofρ is 3/8. Thus, AdaBoost does not converge
to a maximum margin solution for this matrixM .

Hence the 3-cycle exists, and since there are identically classified examples, a manifold of cy-
cles exists; it is automatically stable due to the calculation in the proof of Theorem3. The margin
produced by one of these 3-cycles is always 1/3, yet the maximum margin for this matrix is 3/8. To
see that a margin of 3/8 can be obtained, note thatM × [2,3,4,1,2,2,1,1]T ×1/16= 3/8 for all i.

In Figure 10, we have plotted the evolution of the margin over time forM , for both AdaBoost
and Approximate Coordinate Ascent Boosting. Approximate Coordinate Ascent Boosting (Rudin
et al., 2004c,b,a; Rudin, 2004) is an algorithm similar to AdaBoost that converges to a maximum
margin solution, and runs in polynomial time. AdaBoost rapidly converges to the cycle analyzed
above and does not produce a maximum margin solution.

Again, we are not saying that the only way for AdaBoost to converge to anon-maximum margin
solution is to fall into the wrong cycle since there may be many other non-cyclic ways for the
algorithm to fail to converge to a maximum margin solution. However, many high dimensional
cases can be reduced to low dimensional cases simply by restricting our attention to support vectors
and weak classifiers that are actually chosen by the algorithm. Thus, a “bad” cycle may not be as
uncommon as one would expect, even in a realistic setting.

10. Indications of Chaos

Although we do observe cyclic behavior for many random low-dimensionalmatrices, we have found
an example for which AdaBoost exhibits behavior resembling that of a chaotic dynamical system.
In particular, this case exhibits:

• Sensitivity to initial conditions.
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• Movement into and out of cyclic behavior.

The matrixM we consider for this section is given in Figure 7(a).
Figure 11 shows AdaBoost’s edgert for t ranging from 0 to 10,000; a number of different initial

conditions were considered, which are of the formλ1,i = a for all i, for a= 0,0.01,0.02,0.03,0.05,0.06,0.07,0.08,0.09
and 0.1, (a-j) respectively. In many of these cases, cyclic behavior occursafter some time. In fact,
for a = 0.08, AdaBoost converges to a 3-cycle. Sometimes, AdaBoost seems to migrate in and out
of cyclic behavior, and its behavior is not at all clear. Thus, this example suggests sensitivity to
initial conditions. This sensitivity makes sense, since the iterated map is not continuous, it is only
piecewisecontinuous. That is, if the argmax set contains two different elements, sayj1 and j2, the
arbitrary choice between them may cause the dynamics to change spectacularly. If we are near such
a boundary of ajt region, a small perturbation may change the choice ofjt chosen and the trajec-
tory may change dramatically. (Note that the Li and Yorke “Period-3-Implies-Chaos” result does
not apply to the dynamical system defined by AdaBoost since the iterated mapis not continuous, as
illustrated in Figure 5 for the 3×3 case.)

Within Figure 11, we can see AdaBoost moving into and out of cyclic behavior, for example,
in Figure 11(j). In order to closely examine the switch between the large region of cycling within
approximately iterations 8500-9381 and the following chaotic region, we focus our attention on
the iterations just before the switch into chaotic behavior. This switch does seem to occur due to
a change in region. In other words, as AdaBoost cycles for many iterations (in a cycle of length
14), the weight vectors (viewed every 14th iteration, as in Figure 12) migrate towards the edge of
a region and eventually cross over this edge. Where previously, at every 14th iteration AdaBoost
would choosejt = 19, it instead choosesjt = 3. Figure 12 shows the values of(dT

t M)3 and(dT
t M)19

at every 14th iterate preceding the switch into chaotic behavior at iteration 9381. Figure 13, which
shows the evolution of two components of the weight vector, also illustrates theswitches into and
out of chaotic behavior.

Eventually, the dynamics drift back towards the same cycle and actually seemto converge to
it, as shown in Figure 14(a). Here, the weight vectors do not cross regions, since the values of the
largest two components of(dTM) do not cross, as shown in Figure 14(b).

Thus, there are many open questions regarding AdaBoost’s dynamics that could help us under-
stand its asymptotic behavior; for example, is AdaBoost chaotic in some casesor does it perhaps
always produce cyclic behavior asymptotically?

11. Conclusions

We have used the nonlinear iterated map defined by AdaBoost to understand its update rule in
low-dimensional cases and uncover remarkable cyclic dynamics. We describe many aspects of
AdaBoost’s dynamical traits including the fact that AdaBoost does not necessarily converge to a
maximum margin solution. We have also proved the conjecture that AdaBoost isnot robust to
the choice of weak classifier. The key to answering these questions was our analysis of cases in
which AdaBoost’s asymptotic behavior could be completely determined. Thus an understanding of
simple cases has yielded answers to important open questions concerning AdaBoost’s large-scale
asymptotic behavior.

We leave open many interesting questions. To what extent is AdaBoost chaotic? For what cases
does AdaBoost produce maximum margin solutions? Does AdaBoost always exhibit cyclic behavior
in the limit? If AdaBoost can behave chaotically without converging to a cycle,how large does the
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Figure 11: AdaBoost is sensitive to initial conditions. Value of the edgert at each iterationt, for
many different runs of AdaBoost. For all plots we used the matrixM shown in Fig-
ure 7(a), but with slightly different initial conditions. Some of these plots looksome-
what chaotic except for a few regions where AdaBoost seems to be converging to a cycle
before becoming chaotic again. In (h), AdaBoost converges to a simple 3-cycle after a
significant number of iterations.
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Figure 12: The values of(dT
t M)3 and (dT

t M)19 at every 14th iterate preceding the switch into
chaotic behavior of Figure 11(j) wherea= 0.1. AdaBoost switches from a 14-cycle into
chaotic behavior after iteration 9381 when it switches regions, from the region where
jt = 19 into the region wherejt = 3.
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Figure 13: Scatter plot ofdt,1 vs. dt,2 for the iterations surrounding the slow convergence to the
cycle in Figure 11(j), where the initial condition isλ1, j = 0.1 for all j. By examining
the circles (especially the smallest and largest ones) one can see the switchinto the
cyclic behavior, the slow migration towards a cycle, and the fast switch backinto chaotic
behavior. Again, smaller circles indicate earlier iterations and larger circlesindicate later
iterations.
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Figure 14: (a) This is the same plot as in Figure 11(j), extended to 30,000 iterations. After more than
13,000 iterations, AdaBoost finally seems to settle on the 14-cycle. (b) The same plot as
in Figure 12, but for a different set of iterations. In Figure 12 the edges corresponding
to j = 19 and j = 3 cross, whereas here, the edges are well separated. Thus, AdaBoost
is able to maintain the cycle.
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matrix M need to be in order to produce such behavior? And finally, how does AdaBoost achieve
its strong generalization performance if it does not simply maximize the margin? Wehope the
analytical tools provided in this work, namely the reduction of AdaBoost to a dynamical system and
the analysis of its asymptotic behavior in special cases, will help yield answers to these interesting
questions.
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Appendix A. Proof of Theorem 2

Let us first assume a cycle with rotating coordinates exists for this case, and then we will prove its
existence and stability. Denote the first position in our cycle as follows (we drop the(cyc) notation
here):

d1 = (β1, · · · ,βi , · · · ,βm−1,βm)T ,

where 0< β1 < β2 < · · · < βm. Note thatβm = 1
2, again because(dT

2 M)1 = 0 and∑i d2,i = 1. Now,

dT
1 M = ((1−2β1), · · · ,(1−2βm−1),0)T ,

so j1 = 1 andr1 = 1−2β1. Then, using the iterated map,

d2 =

(
1
2
,

β2

2(1−β1)
, · · · , βi

2(1−β1)
, · · · , βm−1

2(1−β1)
,

βm

2(1−β1)

)T

.

Assuming that the coordinates cycle,

βi−1 =
βi

2(1−β1)
for i = 2, ...,m, (8)

in order for the current iterate to agree with the next iterate. This recursive relation gives

βi−(i−1) =
βi

[2(1−β1)]i−1 ,

so that

β1 =
βm

[2(1−β1)]m−1 (9)

and
βi = β1[2(1−β1)]

i−1, for i = 1, ...,m. (10)

Thus, substituting (9) into (10), recalling thatβm = 1/2,

βi =
βm

[2(1−β1)]m−1 [2(1−β1)]
i−1 =

1
2
[2(1−β1)]

i−m. (11)
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It remains to show that there is a viable solution forβ1 to prove the existence of a cycle. (We require
a solution to obeyβ1 ≤ 1/m so that it is possible for∑i d1,i = 1.) The condition∑i d1,i = 1 can be
rewritten as

1 =
1
2

m

∑
i=1

[2(1−β1)]
i−m.

Substitutingς = 2(1−β1) and multiplying both sides by 2ςm−1, we have a geometric series:

2ςm−1 =
m

∑
i=1

ςi−m+m−1 =
m

∑
i=1

ςi−1 =
1− ςm

1− ς
,

that is,
ςm−2ςm−1 +1 = 0. (12)

Substituting back forς,
2m(1−β1)

m−1[(1−β1)−1]+1 = 0,

or more simply,
1−β12m(1−β1)

m−1 = 0.

To show a solution exists form≥ 4 (we have already handled them= 3 case), we will apply the
Intermediate Value Theorem to the function

ϕ(β̄1,m) := 1− β̄12m(1− β̄1)
m−1.

We knowϕ(0,m) = 1 > 0. Consider

ϕ
(

1
10

,m

)
= 1−2m 1

10

(
9
10

)m−1

= 1−
(

9
5

)m 1
9
.

Plugging inm = 4, we find thatϕ(1/10,4) = −104/625< 0. On the other hand, extending the
definition ofϕ to non-integer values ofm, we have

∂ϕ(1/10,m)

∂m
= −1

9

[
ln

(
9
5

)](
9
5

)m

< 0 for all m≥ 4.

Hence,ϕ(1/10,m) ≤ −104/625< 0 for all m≥ 4. By the Intermediate Value Theorem, there is a
root β1 of ϕ(·,m) for anym≥ 4 with 0≤ β1 ≤ 1/10. Since

∂ϕ(β̄1,m)

∂β̄1
= 2m(1− β̄1)

m−2(mβ̄1−1),

we have ∂ϕ
∂β̄1

(β̄1,m) = 0 only whenβ̄1 = 1/m, and thatϕ(·,m) decreases for 0≤ β̄1 < 1/m and

increases forβ̄1 > 1/m (whereβ̄1 < 1). If m≤ 10, sinceϕ(·,m) decreases for 0≤ β̄1 < 1/m, the
Intermediate Value Theorem provides the unique root 0≤ β1 ≤ 1/10≤ 1/m. If m > 10, ϕ(·,m)
decreases for 0≤ β̄1 < 1/mand increases to the valueϕ(1/10,m), which is negative. Thus, there is
a unique root 0≤ β1 ≤ 1/m. Hence, the root exists and is unique form≥ 4. Now we have shown
the existence and uniqueness of our cycle, namely the cycle starting from

d1 =
(
β1,2β1(1−β1),4β2

1(1−β1)
2, ...,1/2

)T
.

1588



THE DYNAMICS OF ADABOOST

Of course, this is not the only periodic orbit. Any permutation of the components in d1 will lie
on a periodic cycle. If (without loss of generality) we fix the first iteration of each cycle to start with
the same first componentd1,i = β1, then the number of permutations of the other components (and
thus the number of periodic cycles we have defined by relabelling the coordinates) is(m−1)!.

We now show that these(m−1)! cycles are stable. It is sufficient to show that just one cycle is
stable, since the others are obtained by simply relabelling the order of the coordinates (without loss
of generality sayjt = t for t = 1, ...,m). We add a perturbationεa to d1, small enough so that none
of the jt ’s chosen within the cycle are affected. (Note that choosing such a perturbation is possible,
since the map is piecewise continuous, andβ1 < ... < βm without equality between theβi ’s. This
will ensure that nodt lies on the boundary of a region, so that the argmaxj(d

T
t M) j set contains

exactly one element.) Also, we require∑m
i=1ai = 0 so the perturbed starting point still lies on the

simplex∆m. Assume‖a‖1 is O(1), and thatε is small. Our perturbed starting point is

da
1 := d1 + εa.

Now, sincer1 = 1−2β1,

ra
1 = (da

1
TM)1 = (d1

TM)1 + ε(aTM)1 = 1−2β1 + ε(aTM)1.

Again we use the iterated map. Recall thatβm = 1
2, andda

2,1 = 1
2. For all otheri,

da
2,i =

βi + εai

1+ ra
1

=
βi + εai

2−2β1 + ε(aTM)1
.

To see whether the perturbation has shrunk due to the dynamics, we computeεã := da
2 − d2. If

‖ã‖1 ≤C‖a‖1 whereC is a constant less than 1, the map is a contraction. Recall that

d2 =

(
1
2
,β1, · · · ,βm−1

)T

.

Thus,
εã1 = da

2,1−d2,1 = 0,

and for otheri,

εãi = da
2,i −d2,i =

βi + εai

2−2β1 + ε(aTM)1
−βi−1.

We are done with thei = 1 term. For all other terms, we will do an approximation to first order in
ε. Using a first order Taylor expansion11+x ≈ 1−x, we obtain

1
1+ ra

1
=

1
2−2β1 + ε(aTM)1

=
1

2(1−β1)
(

1+ ε(aTM)1
2(1−β1)

) ≈
1− ε(aTM)1

2(1−β1)

2(1−β1)
.

Our expansion yields:

εãi = da
2,i −d2,i ≈

(βi + εai)
(

1− ε(aTM)1
2(1−β1)

)

2(1−β1)
−βi−1.

1589



RUDIN , DAUBECHIES, AND SCHAPIRE

Grouping terms in orders ofε, we can use (8) to show the first term vanishes, and we find:

εãi ≈ 0+ ε
(

ai

2(1−β1)
− βi(aTM)1

4(1−β1)2

)
+O(ε2), so that

ãi ≈ ai

2(1−β1)
− βi(aTM)1

4(1−β1)2 +O(ε).

We will show that the perturbation shrinks at every iteration. Sinceε is small, we do not care about
theO(ε) contribution to ˜ai . Recall that∑i βi = 1, so that:

‖ã‖1 ≤ 1
2(1−β1)

m

∑
i=1

|ai |+
∣∣(aTM)1

∣∣
4(1−β1)2

m

∑
i=1

βi +O(ε)

=
1

2(1−β1)
‖a‖1 +

∣∣(aTM)1
∣∣

4(1−β1)2 +O(ε)

≤ 1
2(1−β1)

‖a‖1 +
1

4(1−β1)2‖a‖1 +O(ε)

=
3−2β1

4(1−β1)2‖a‖1 +O(ε).

For the third line, we used the fact that the entries ofM are always within{−1,+1}. In order to
have

3−2β1

4(1−β1)2 < 1,

we would need
3−2β1 < 4(1−β1)

2 = 4−8β1 +4β2
1,

i.e.,
0 < 1−6β1 +4β2

1,

or more simply,
β1 < (3−

√
5)/4.

This condition does hold, since

0≤ β1 ≤ 1/10< (3−
√

5)/4.

Thus we have shown a contraction of the perturbation at the first iteration.An identical calculation
(one must simply reorder the components in the vectors) will yield a contractionat every iteration,
so our cycle is stable. We have thus proven the existence and stability of(m−1)! cycles for the case
with mweak classifiers, each with 1 misclassified example.

Appendix B. Proof of Theorem 3

The existence of manifolds of cycles follows from the fact thatM has the same 3-cycles as the 3×3
case, except that the weight is distributed among identically classified examples. (Recall that the
weights of the lastq4 examples vanish, since these examples are always correctly classified.) In
order to move along the manifold, just shift the weights among identically classified examples; this
new weight vector will lie directly on another 3-cycle.

In order to show the manifold is stable, we will show that any vectorda that lies sufficiently
near the manifold will be attracted towards it. More specifically, we will:
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• choose an arbitrary vectorda
1 sufficiently close to the manifold of stable cycles.

• carefully choose a corresponding vectord1 on the manifold.

• show there is a contraction, sending the successiveda
t vectors closer to thedt vectors at every

iteration. In this way, the path ofda
t ’s will converge to the cycle obeyed by thedt ’s.

Consider an arbitrary vectorda
1, which we assume to be close enough to the manifold so that the

distance between vectorda
1 and vectord1 (defined below) isO(ε). Define

ka
1 :=

q1

∑
i=1

da
1,i , ka

2 :=
q1+q2

∑
i=q1+1

da
1,i , ka

3 :=
q1+q2+q3

∑
i=q1+q2+1

da
1,i , and ka

4 :=
m

∑
i=q1+q2+q3+1

da
1,i .

Assume that(ka
1,k

a
2,k

a
3)

T is O(ε) close to eitherdcyc
1 ,dcyc

2 ,dcyc
3 ,dcyc′

1 ,dcyc′

2 , or dcyc′

3 from Section 4.
Since we are permitted to freely shuffle the rows and columns ofM without loss of generality, we
assume that(ka

1,k
a
2,k

a
3)

T is O(ε) close todcyc
1 , i.e., thatka

1 is O(ε) close tok1 := (3−
√

5)/4, ka
2 is

close tok2 := (
√

5−1)/4, ka
3 is close tok3 := 1/2, andka

4 is O(ε). Now we will carefully choose a
corresponding vectord1 on the manifold, namely

d1,i :=





k1
ka

1
da

1,i if i ≤ q1
k2
ka

2
da

1,i if q1 < i ≤ q1 +q2
k3
ka

3
da

1,i if q1 +q2 < i ≤ q1 +q2 +q3

0 otherwise





. (13)

Definea1 as follows:

εa1,i := da
1,i −d1,i =





(
ka

1
k1
−1
)

d1,i if i ≤ q1(
ka

2
k2
−1
)

d1,i if q1 < i ≤ q1 +q2(
ka

3
k3
−1
)

d1,i if q1 +q2 < i ≤ q1 +q2 +q3

da
1,i otherwise





.

The assumption thatda
1 is sufficiently close to the manifold amounts to the assumption that‖a1‖1 is

O(1). It is important to note that each of the four pieces ofa1 is proportional to a piece ofd1, and
thus proportional to a piece ofda

1. Recalling thatr1 = r2 = r3 = r = (
√

5−1)/2, we have:

ra
1 = (da

1M)1 = (d1M)1 + ε(aT
1 M)1 = r + ε(aT

1 M)1, so
1

1− ra
1

=
1

1− r − ε(aT
1 M)1

=
1

(1− r)
(

1− ε(aT
1 M)1

1−r

)

=
1

1− r

(
1+

ε(aT
1 M)1

1− r

)
+O(ε2)

1
1+ ra

1
=

1
1+ r + ε(aT

1 M)1
=

1

(1+ r)
(

1+
ε(aT

1 M)1

1+r

)

=
1

1+ r

(
1− ε(aT

1 M)1

1+ r

)
+O(ε2).
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According to the iterated map, fori ≤ q1, removing terms ofO(ε2),

da
2,i =

da
1,i

1− ra
1

≈ d1,i

1− r

(
1+

ε(aT
1 M)1

1− r

)
+

εa1,i

1− r

=
d1,i

1− r

[
1+

ε(aT
1 M)1

1− r
+

εa1,i

d1,i

]

=
d1,i

1− r

[
1+

ε(aT
1 M)1

1− r
+

(
ka

1

k1
−1

)]

= d2,i

[
ε(aT

1 M)1

1− r
+

ka
1

k1

]
. (14)

Since the term in brackets does not depend oni, we knowda
2,i is proportional tod2,i for i ≤ q1.

Recall that for the 3-cycle, the edge of weak classifier 1 must be 0 at iteration 2. Thus,(da
2M)1 = 0,

and∑m
i=1da

2,i = 1, and as before:

−
q1

∑
i=1

da
2,i +

m

∑
i=q1+1

da
2,i = 0 and

q1

∑
i=1

da
2,i +

m

∑
i=q1+1

da
2,i = 1, so

q1

∑
i=1

da
2,i =

1
2

and we also have
q1

∑
i=1

d2,i =
1
2
. (15)

Combining (14) and (15),

1
2

=
q1

∑
i=1

da
2,i ≈

[
ε(aT

1 M)1

1− r
+

ka
1

k1

] q1

∑
i=1

d2,i =

[
ε(aT

1 M)1

1− r
+

ka
1

k1

]
1
2
,

thus
da

2,i ≈ d2,i for i ≤ q1. (16)

A similar calculation forq1 < i ≤ q1 +q2 yields

da
2,i =

da
1,i

1+ ra
1

≈ d1,i

1+ r

(
1− ε(aT

1 M)1

1+ r

)
+

εa1,i

1+ r
(17)

=
d1,i

1+ r

[
1− ε(aT

1 M)1

1+ r
+

εa1,i

d1,i

]

=
d1,i

1+ r

[
1− ε(aT

1 M)1

1+ r
+

(
ka

2

k2
−1

)]

= d2,i

[
−ε(aT

1 M)1

1+ r
+

ka
2

k2

]
. (18)

And similarly, forq1 +q2 < i ≤ q1 +q2 +q3,

da
2,i ≈

d1,i

1+ r

(
1− ε(aT

1 M)1

1+ r

)
+

εa1,i

1+ r
= d2,i

[
−ε(aT

1 M)1

1+ r
+

ka
3

k3

]
. (19)
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For the remainingq1 +q2 +q3 < i ≤ m,

da
2,i =

εa1,i

1+ ra ≈ εa1,i

1+ r

[
1− ε(aT

1 M)1

1+ r

]
≈ εa1,i

1+ r
. (20)

This last set of components will always shrink ast increases, since the lastq4 examples are always
correctly classified. From (16), (18), (19), and (20), we can see that each of the first three sections
of da

2 is proportional to the corresponding section ofd2 to O(ε2), and that the last section ofda
2 is

vanishing.
Now calculating the vectora2 to O(ε), incorporating equations (16), (17), (19), and (20):

εa2,i = da
2,i −d2,i ≈





0 if i ≤ q1

− εd1,i(aT
1 M)1

(1+r)2 +
εa1,i

1+r if q1 < i ≤ q1 +q2 +q3
εa1,i

1+r otherwise





.

We will now show thata1 undergoes a contraction via the iterated map.

ε‖a2‖1 = ‖da
2−d2‖1 ≤ ε

[(
∑m

i=q1+1d1,i
)
|(aT

1 M)1|
(1+ r)2 +

‖a‖1

1+ r

]
+O(ε2)

≤ ε

[(
∑m

i=q1+1d1,i
)
‖a1‖1

(1+ r)2 +
‖a1‖1

1+ r

]
+O(ε2).

Aside, we note
(
∑m

i=q1+1d1,i
)

= 1/2+(
√

5−1)/4 = (
√

5+1)/4. Also,r = (
√

5−1)/2, so 1/(1+

r) = (
√

5−1)/2. Now,

‖a2‖1 ≤ ‖a1‖1

[
1+

√
5

4
(
√

5−1)2

4
+

√
5−1
2

]
+O(ε)

= ‖a1‖1
3(
√

5−1)

4
+O(ε) < ‖a1‖1.

Thus, we have shown a contraction at the first iteration. The same calculation (with indices changed
accordingly) is valid for each iteration, since the relation betweenda

2 andd2 is now the same as the
relation betweenda

1 andd1, that is, each section ofda
2 is proportional to the corresponding section

of d2 from (16), (18), and (19) (and the last section vanishes). Since the calculation is valid for each
iteration, there is a contraction to the manifold at every iteration. Hence, the manifold is stable.

Appendix C. 4 Cycle for the 3×3 matrix in the Non-Optimal Case

In this appendix, we prove the following theorem:

Theorem 8 For the 3×3 matrix analyzed in Section 4, AdaBoost in the non-optimal case may
produce a 4-cycle which yields a maximum margin solution.

Proof We will show the existence of such a 4-cycle by presenting its coordinates,and omit a proof
of stability. One coordinate on the cycle is given by

dcyc
1 =

(
1
2
,
1
2
−

√
2

4
,

√
2

4

)T

.
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The only choice forj1 is j1 = 2, and the edge value is(dcycT
1 M)2 = 1/

√
2, which is larger than 1/3.

Now, we computedcyc
2 using the iterated map:

dcyc
2 =

(
1

2+
√

2
,
1
2
,

1√
2
− 1

2

)T

.

We now choosej2 = 1 even though it is not the optimal choice. We are justified in this choice, since
the edge is(dcycT

2 M)1 =
√

2−1 > 1/3. Now iterating again, we obtaindcyc
3 :

dcyc
3 =

(
1
2
,

√
2

4
,
1
2
−

√
2

4

)T

.

Again, we must choosej3 = 3 since it is the only permissible edge,(dcycT
3 M)3 = 1/

√
2. Iterating,

dcyc
4 =

(
1

2+
√

2
,

1√
2
− 1

2
,
1
2

)T

.

With the choicej4 = 1, the edge value is(dcycT
4 M)1 =

√
2−1> 1/3, and the next iterate of the map

will yield dcyc
1 . We have completed the proof.
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