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Abstract
We introduce pyGPs, an object-oriented implementation of Gaussian processes (gps) for
machine learning. The library provides a wide range of functionalities reaching from simple
gp specification via mean and covariance and gp inference to more complex implementa-
tions of hyperparameter optimization, sparse approximations, and graph based learning.
Using Python we focus on usability for both “users” and “researchers”. Our main goal is to
offer a user-friendly and flexible implementation of gps for machine learning.
Keywords: Gaussian processes, Python, regression and classification

1. Introduction

pyGPs is a Python software project implementing Gaussian processes (gps) for machine
learning (ml). gps have become a popular model for a wide variety of ml tasks (Rasmussen
and Williams, 2006), such as standard regression and classification, as well as active learning
(Freytag et al., 2013), graph-based and relational learning (Chu et al., 2006), and Bayesian
optimization (Osborne et al., 2009). Besides the recent advances in ml research, gps get
more and more attention for applications in other fields such as animal behaviour research
(Mann et al., 2011) or reconfigurable computing (Kurek et al., 2013). Existing procedural
gp libraries are gpml (Rasmussen and Nickisch, 2010) and gpstuff (Vanhatalo et al., 2013).
However, depending on their design procedural implementations can be hard to extend.
Being an established object-oriented programming language Python has great support and
is easy to use. There are a few existing Python implementations of gps. gps in scikit
(Pedregosa et al., 2011) provide only very restricted functionality and they are difficult
to extend. pyGP1 is little developed in terms of documentation and developer interface.
GPy (the GPy authors, 2014) was developed in parallel to pyGPs and the library focuses

1. Online at https://github.com/PMBio/pygp.
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mainly on dimensionality reduction and multi-output learning, whereas our implementation
provides extensions for graph-based learning including an implementation of propagation
kernels (Neumann et al., 2012), as well as simple routines for multi-class classification,
evaluation, and enhanced hyperparameter optimization.

pyGPs is both user-friendly and flexible. We explicitly want to bridge the gap between
systems designed primarily for “users”, who mainly want to apply gps and need basic ml
routines for model training, evaluation, and visualization, and expressive systems for “de-
velopers”, who focus on extending the core gp functionalities as covariance and likelihood
functions, as well as inference techniques. We provide a comprehensive and illustrative doc-
umentation including a lot of demos and an overview of functionalities providing an easy
start with pyGPs. Further, we believe that utilizing object-oriented programming is the
right direction towards our goal of developing user-friendly and flexible software.

2. Implementation and Documentation

pyGPs is released under the FreeBSD license and it can be downloaded from http://
mloss.org/software/view/509/ or https://github.com/marionmari/pyGPs. pyGPs re-
quires Python 2.6 or 2.7 (www.python.org) and the numpy (www.numpy.org), scipy (www.
scipy.org), and Matplotlib (www.matplotlib.org/) packages. The provided functional-
ity follows roughly the gpml toolbox introduced in Rasmussen and Nickisch (2010), which
is implemented in a procedural way in matlab. However, pyGPs has an object-oriented
structure and it additionally supports useful routines for the practical use of gps, such as
cross validation functionalities for evaluation as well as basic routines for iterative restarts
for gp hyperparameter optimization. The library also supports fitc sparse approxima-
tions (Snelson and Ghahramani, 2005), one-vs-one multi-class classification and kernels for
graph-based and semi-supervised learning.2

pyGPs provides a comprehensive documentation in form of a pdf-manual including
an API and an online documentation at http://www-ai.cs.uni-dortmund.de/weblab/
static/api_docs/pyGPs/. This documentation guides the user through installation, offers
a small tutorial on gps, summarizes the functionalities of the library and walks the user
through a lot of demos. There are demo implementations of basic and sparse regression,
as well as of basic and sparse binary classification. Further, we show how to do multi-class
classification in a one-vs-one fashion, how to perform k-fold cross validation and how to
incorporate kernels on graphs and graph kernels. The documentation also gives instructions
on how to develop customized kernel, mean, likelihood, or inference functions. pyGPs also
includes unit tests and instructions on how to test newly developed functions.

3. Functionalities of pyGPs

Now we exemplify the use of pyGPs for regression and describe its functionalities in detail.

2. We also released the procedural version pyGP_PR, which consists of a subset of pyGPs routines and is
intended for users familiar with the gpml toolbox. It provides all basic routines needed to follow the
examples in Rasmussen and Williams (2006). Online at https://github.com/marionmari/pyGP_PR.
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3.1 Basic Example

Given the training data (x, y), where x ∈ Rn×d and y ∈ Rn, we get the predictions f∗ = f(z)
for test inputs z ∈ Rm×d by invoking the following four lines:
1 model = pyGPs.GPR() # specify model (GP regression)
2 model.getPosterior(x,y) # get default model (zero mean & rbf kernel)
3 model.optimize(x,y) # optimize hyperparams (single run minimize)
4 model.predict(z) # prediction for test cases

Besides the predictive mean f̄∗ (model.ym) of the gp which is commonly used as point
estimate for the input targets, the model contains the predictive variance (model.ys2) and
the means and variances of the latent function (model.fm and model.fs2).

In the following, we give a more detailed description of the above routine. By specifying
the model as gp regression, cf. line 1, we assume a prior gp f ∼ GP (m(x), k(x, x′)), where
the default mean function is zero, m(x) = 0, and the default covariance is a radial basis
function (rbf) kernel, k(x, x′) = σ2 exp(−‖x−x

′‖2
2`2

), with hyperparameters θ = {σ, `}; both
of which have a default value of 1. Further, the default gp regression settings are a Gaus-
sian likelihood function and exact inference. For hyperparameter optimization we use an
optimizer introduced in Rasmussen (1996) commonly referred to as minimize as the default.
We will describe and explain the use of non-default likelihoods, and inference and optimiza-
tion methods in the next section. Non-default means such as a linear (mean.Linear) mean
function and covariances such as polynomial (cov.Poly) or Matérn (cov.Matern) or sums
(+) and products (*) thereof can be set by using model.setPrior. A list of implemented
means and kernels is provided in Table 1.
The following lines show how to set composite mean and covariance functions:
5 m = pyGPs.mean.Linear(D=x.shape [1])+ pyGPs.mean.Const () # sum of means
6 k = pyGPs.cov.RBF() * pyGPs.cov.Linear () # product of kernels
7 model.setPrior(mean=m, kernel=k) # non -default prior

After we have specified the gp for regression, we can fit the model to our training data, cf.
line 2. Now, we get the current value of the negative log marginal likelihood (model.nlZ)
and its partial derivatives w.r.t. each hyperparameter (model.dnlZ) and the (approximate)
posterior (model.posterior) represented by L = cholesky(K + σ2nI) (posterior.L), α =
L>\(L\y) (posterior.alpha) and σn (posterior.sW). So far, we performed inference
with the default hyperparameters of the specified covariance function. For better results,
however, we optimize the hyperparameters, cf. line 3. This means that we minimize the
negative log marginal likelihood −log p(y|x, θ) = −1

2 y
>K−1y − 1

2 log|K| −
n
2 log2π and fit

the model again with the learned hyperparameters. The hyperparameters can be accessed
via model.covfunc.hyp and the posterior (model.posterior) and negative log marginal
likelihood (model.nlZ) will be updated accordingly. Now, we can get the predictions with the
optimal hyperparameters, cf. line 4, where f̄∗ is the expected value of f∗|x, y, z (model.ym)
and V (f∗) is the variance of f∗|x, y, z (model.ys2).

3.2 Functionalities

The object-oriented implementation offers one base class GP for the general gp model and
five base classes for the core gp functionality Mean, Kernel, Likelihood, Inference, and
Optimizer. Tables 1 and 2 show lists of implemented functionalities in pyGPs. Due to
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kernels kernels means optimization evaluation
for graphs methods measures

constant diffusion constant minimize acc
linear (iso, ard, one) l+ linear bfgs rmse
rbf (iso, iso-unit, ard) reg laplacian one cg prec
matern (iso, ard) random walk zero scg recall
rq (iso, ard) vnd nlpd
periodic inverse cosine
polynomial propagation kernel
piecwisepoly (iso)
noise
composite: sum (+), product (∗), scale (∗)

Table 1: pyGPs functionality: kernels, means, optimizers, evaluation measures

likelihood

inference gaussian laplace error function

exact X
laplace X X
ep X X X
fitc-exact X
fitc-laplace X X
fitc-ep X X X

Table 2: pyGPs functionality: inference methods, likelihoods

the intuitive class hierarchy it is easy to augment the classes by for instance customized
covariance functions and likelihoods. This makes pyGPs suitable for researches in ml.
Further, we provide functionalities to ease usability of GPs as a machine learning tool
as for instance parameter optimization, evaluation, and one-vs-one multi-class classification.
They are explained by detailed demos (demo_GPMC.py, demo_Validation.py) and in the
documentation. In the following, we briefly describe the most important aspects of pyGPs.

Sparse Approximations. We support sparse approximations for large scale gps for regres-
sion and classification. We implement the popular “fully independent training conditional”
(fitc) approximation (Snelson and Ghahramani, 2005) for exact and approximate inference.

Optimizers. Beside minimize, other optimization methods included in pyGPs are scaled
conjugate gradient optimization (scg) and it is also possible to use built-in optimizers from
scipy such as conjugate gradient (cg) or the quasi-Newton method bfgs.

Validation. We provide the most common technique for model evaluation, k-fold cross
validation (valid.py ). The implemented evaluation measures are root mean squared error
(RMSE), accuracy (ACC), precision and recall (Prec, Recall) and the negative log predictive
density (NLPD) to evaluate the quality of the whole predictive gp model.

GraphExtensions. pyGPs offers the possibility to perform gp inference on networked
data. So far, we provide one example graph kernel (propagation kernel (Neumann et al.,
2012)), kernels for graph-based and semi-supervised learning, and knn-graph creation.

Currently, we are working on time series modeling and Bayesian optimization with gps,
as well as the incorporation of more state-of-the-art graph kernels for structured data.We
also plan to add multi-output gps, active learning, further application support, and more
likelihood and covariance functions in the near future.

2614



pyGPs – Gaussian Processes in Python

Acknowledgments

We would like to thank the following persons for their help in improving this software:
Roman Garnett, Maciej Kurek, Hannes Nickisch, Zhao Xu, and Alejandro Molina. This
software project is partly supported by the Fraunhofer attract fellowship stream.

References

W. Chu, V. Sindhwani, Z. Ghahramani, and S.S. Keerthi. Relational Learning with Gaussian
Processes. In Advances in Neural Information Processing Systems (NIPS-06), pages 289–
296. 2006.

A. Freytag, E. Rodner, P. Bodesheim, and J. Denzler. Labeling examples that matter:
Relevance-based active learning with gaussian processes. In Proceedings of the 35th Ger-
man Conference on Pattern Recognition (GCPR), volume 8142 of Lecture Notes in Com-
puter Science, pages 282–291. Springer, 2013.

M. Kurek, T. Becker, and W. Luk. Parametric Optimization of Reconfigurable Designs Using
Machine Learning. In Reconfigurable Computing: Architectures, Tools and Applications -
9th International Symposium (ARC-2013), pages 134–145, 2013.

R. Mann, R. Freeman, M. A. Osborne, R. Garnett, C. Armstrong, J. Meade, D. Biro,
T. Guilford, and S. Roberts. Objectively identifying landmark use and predicting flight
trajectories of the homing pigeon using Gaussian processes. Journal of the Royal Society
Interface, 8(55):210–219, 2011.

M. Neumann, N. Patricia, R. Garnett, and K. Kersting. Efficient Graph Kernels by Random-
ization. In Proceedings of the Machine Learning and Knowledge Discovery in Databases -
European Conference (ECML/PKDD-12), pages 378–393, 2012.

M. A. Osborne, R. Garnett, and S. J. Roberts. Gaussian processes for global optimization.
In Proceedings of the 3rd Learning and Intelligent Optimization Conference (LION-09),
2009.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blon-
del, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau,
M. Brucher, M. Perrot, and É. Duchesnay. Scikit-learn: Machine learning in python.
Journal of Machine Learning Research, 12:2825–2830, 2011.

C. E. Rasmussen. Function minimization using conjugate gradients: Conj, 1996.

C. E. Rasmussen and H. Nickisch. Gaussian Processes for Machine Learning (gpml) Tool-
box. Journal of Machine Learning Research, 11:3011–3015, 2010.

C. E. Rasmussen and C. K. I. Williams. Gaussian Processes for Machine Learning. MIT
Press, 2006.

E. Snelson and Z. Ghahramani. Sparse Gaussian Processes using Pseudo-inputs. In Advances
in Neural Information Processing Systems (NIPS-05), pages 1257–1264, 2005.

2615



Neumann, Marthaler, Huang, and Kersting

the GPy authors. GPy: A Gaussian process framework in python, 2014. https://github.
com/SheffieldML/GPy.

J. Vanhatalo, J. Riihimäki, J. Hartikainen, P. Jylänki, V. Tolvanen, and A. Vehtari. Gpstuff:
Bayesian modeling with gaussian processes. Journal of Machine Learning Research, 14
(1):1175–1179, 2013.

2616

https://github.com/SheffieldML/GPy
https://github.com/SheffieldML/GPy


Journal of Machine Learning Research 16 (2015) 2617-2641 Submitted 5/14; Revised 11/14; Published 7/15

Derivative Estimation Based on Difference Sequence via
Locally Weighted Least Squares Regression

WenWu Wang wengewsh@sina.com

Lu Lin linlu@sdu.edu.cn

Qilu Securities Institute for Financial Studies & School of Mathematics

Shandong University

Jinan, 250100, China

Editor: Francois Caron

Abstract

A new method is proposed for estimating derivatives of a nonparametric regression function.
By applying Taylor expansion technique to a derived symmetric difference sequence, we
obtain a sequence of approximate linear regression representation in which the derivative
is just the intercept term. Using locally weighted least squares, we estimate the derivative
in the linear regression model. The estimator has less bias in both valleys and peaks of the
true derivative function. For the special case of a domain with equispaced design points,
the asymptotic bias and variance are derived; consistency and asymptotic normality are
established. In simulations our estimators have less bias and mean square error than its
main competitors, especially second order derivative estimator.

Keywords: nonparametric derivative estimation, locally weighted least squares, bias-
correction, symmetric difference sequence, Taylor expansion

1. Introduction

In nonparametric regressions, it is often of interest to estimate mean functions. Many esti-
mation methodologies and relevant theoretical properties have been rigorously investigated,
see, for example, Fan and Gijbels (1996), Härdle et al. (2004), and Horowitz (2009). Non-
parametric derivative estimation has never attracted much attention as one usually gets the
derivative estimates as “by-products” from a local polynomial or spline fit, as Newell and
Einbeck (2007) mentioned. However, applications of derivative estimation are important
and wide-ranging. For example, in the analysis of human growth data, first and second
derivatives of the height as a function of time are important parameters (Müller, 1988;
Ramsay and Silverman, 2002): the first derivative has the interpretation of speed and the
second derivative acceleration. Another field of application is the change point problems,
including exploring the structures of curves (Chaudhuri and Marron, 1999; Gijbels and
Goderniaux, 2005), detecting the extremum of derivative (Newell et al., 2005), character-
izing submicroscopic nanoparticle (Charnigo et al., 2007) and comparing regression curves
(Park and Kang, 2008). Other needs arise in nonparametric regressions themselves, for
example, in the construction of confidence intervals (Eubank and Speckman, 1993), in the
computation of bias and variance, and in the bandwidth selection (Ruppert et al., 1995).

c©2015 WenWu Wang and Lu Lin.
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There are three main approaches of nonparametric derivative estimation in the litera-
ture: smoothing spline, local polynomial regression (LPR), and difference-based method. As
for smoothing spline, the usual way of estimating derivatives is to take derivatives of spline
estimate. Stone (1985) showed that spline derivative estimators achieve the optimal L2 rate
of convergence. Zhou and Wolfe (2000) derived asymptotic bias, variance, and established
normality properties. Heckman and Ramsay (2000) considered a penalized version. In the
case of LPR, a polynomial obtained by Taylor Theorem is fitted locally by kernel regres-
sion. Ruppert and Wand (1994) derived the leading bias and variance terms for general
multivariate kernel weights using locally weighted least squares theory. Fan and Gijbels
(1996) established its asymptotic properties. Delecroix and Rosa (2007) showed its uniform
consistency. In the context of difference-based derivative estimation, Müller et al. (1987)
and Härdle (1990) proposed a cross-validation technique to estimate the first derivative by
combining difference quotients with kernel smoothing. But the variance of the estimator
is proportional to n2 in the case of equidistant design. Charnigo et al. (2011) employed
a variance-reducing linear combination of symmetric quotients called empirical derivative,
quantified the asymptotic variance and bias, and proposed a generalized Cp criterion for
derivative estimation. De Brabanter et al. (2013) derived L1 and L2 rates and established
consistency of the empirical derivative.

LPR relies on Taylor expansion—a local approximation, and the main term of Taylor
series is the mean rather than the derivatives. The convergence rates of the mean estimation
and the derivative estimations are different in LPR. When the mean estimator achieves the
optimal rate of convergence, the derivative estimators do not (see Table 3 in Appendix
I). Empirical derivative can eliminate the main term of the approximation, but it seems
that their asymptotic bias and variance properties have not been well studied. Also large
biases may exist in valleys and peaks of the derivative function, and boundary problem
caused by estimation variance is still an unsolved problem. Motivated by Tong and Wang
(2005) and Lin and Li (2008), we propose a new method to estimate derivatives in the
interior. By applying Taylor expansion to a derived symmetric difference sequence, we
obtain a sequence of approximate linear regression representation in which the derivative
is just the intercept term. Then we estimate the derivative in the linear regression model
via locally weighted least squares. The asymptotic bias and variance of the new estimator
are derived, consistency and asymptotic normality are established. Theoretical properties
and simulation results illustrate that our estimators have less bias, especially higher order
derivative estimator. In the theory frame of locally weighted least squares regression, the
empirical first derivative is our special case: local constant estimator. In addition, one-side
locally weighted least squares regression is proposed to solve the boundary problem of first
order derivative estimation.

This paper is organized as follows. Section 2 introduces the motivation and methodology
of this paper. Section 3 presents theoretical results of the first order derivative estimator,
including the asymptotic bias and variance, consistency and asymptotic normality. Further,
we describe the behavior at the boundaries of first order derivative estimation and propose
a correction method. Section 4 generalizes the idea to higher order derivative estimation.
Simulation studies are given in Section 5, and the paper concludes by some discussions in
Section 6. All proofs are given in Appendices A-H, respectively.
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2. Motivation and Estimation Methodology for the First Order
Derivative

In this section, we first show that where the bias and variance of derivative estimation come
from, and then propose a new method for the first order derivative estimation.

2.1 Motivation

Consider the following nonparametric regression model

Yi = m(xi) + εi, 1 ≤ i ≤ n, (1)

where xi’s are equidistantly designed, that is, xi = i/n, Yi’s are random response variables,
m(·) is an unknown smooth mean function, εi’s are independent and identically distributed
random errors with E[εi] = 0 and V ar[εi] = σ2.

If errors εi’s are not present in (1), the model can be expressed as

Yi = m(xi), 1 ≤ i ≤ n. (2)

In this case, the observed Yi’s are actually the true values of the mean function at xi’s.
Derivative estimation in model (2) can be viewed as a numerical computation problem.
Assume thatm(·) is three times continuously differentiable on [0, 1]. Then Taylor expansions
of m(xi±j) at xi are given by

m(xi+j) = m(xi) +m(1)(xi)
j

n
+
m(2)(xi)

2!

j2

n2
+
m(3)(xi)

3!

j3

n3
+ o

(
j3

n3

)
,

m(xi−j) = m(xi)−m(1)(xi)
j

n
+
m(2)(xi)

2!

j2

n2
− m(3)(xi)

3!

j3

n3
+ o

(
j3

n3

)
.

In order to eliminate the dominant term m(xi), we employ a linear combination of m(xi−j)
and m(xi+j) subject to

aij ·m(xi+j) + bij ·m(xi−j) = 0 ·m(xi) + 1 ·m(1)(xi) +O

(
j

n

)
.

It is equivalent to solving the equations aij + bij = 0,

(aij − bij)
j

n
= 1,

whose solution is 
aij =

n

2j
,

bij = − n

2j
.

So we obtain

m(1)(xi) =
m(xi+j)−m(xi−j)

2j/n
− m(3)(xi)

6

j2

n2
+ o

(
j2

n2

)
. (3)
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As j increases , the bias will also increase. To minimize the bias, set j = 1. Then the first
order derivative m(1)(xi) is estimated by

m̂(1)(xi) =
m(xi+1)−m(xi−1)

2/n
.

Here the estimation bias is only the remainder term in Taylor expansion.

We now consider the true regression model (1). Symmetric (about i) difference quotients
(Charnigo et al., 2011; De Brabanter et al., 2013) are defined as

Y
(1)
ij =

Yi+j − Yi−j
xi+j − xi−j

, 1 ≤ j ≤ k, (4)

where k is a positive integer. Under model (1), we can decompose Y
(1)
ij into two parts as

Y
(1)
ij =

m(xi+j)−m(xi−j)

2j/n
+
εi+j − εi−j

2j/n
, 1 ≤ j ≤ k. (5)

On the right hand side of (5), the first term includes the bias, and the second term contains
the information of the variance.

From (3) and (5), we have

Y
(1)
ij = m(1)(xi) +

m(3)(xi)

6

j2

n2
+ o

(
j2

n2

)
+
εi+j − εi−j

2j/n
. (6)

Taking expectation on (6), we have

E[Y
(1)
ij ] = m(1)(xi) +

m(3)(xi)

6

j2

n2
+ o

(
j2

n2

)
.
= m(1)(xi) +

m(3)(xi)

6

j2

n2
.

For any fixed k = o(n),

E[Y
(1)
ij ]

.
= m(1)(xi) +

m(3)(xi)

6
dj , 1 ≤ j ≤ k, (7)

where dj = j2

n2 . We treat (7) as a linear regression with dj and Y
(1)
ij as the independent

variable and dependent variable respectively, and then estimate m(1)(xi) as the intercept
using the locally weighted least squares regression.

2.2 Estimation Methodology

For a fixed xi, express equation (6) in the following form:

Y
(1)
ij = βi0 + βi1d1j + δij , 1 ≤ j ≤ k,
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where βi0 = m(1)(xi), βi1 = m(3)(xi)
6 , d1j = j2

n2 , and δij = o
(
j2

n2

)
+

εi+j−εi−j

2j/n are independent

across j. The above expression takes a regression form, in which the independent variable

is d1j and the dependent variable Y
(1)
ij , and the error term satisfies

E[δij ] = o

(
j2

n2

)
.
= 0, V ar[δij ] =

n2σ2

2j2
.

To reduce the variance and combine the information for all j, we use the locally weighted
least squares regression (LWLSR) to estimate coefficients as

β̂i = arg min
βi0,βi1

k∑
j=1

(Y
(1)
ij − βi0 − βi1d1j)

2wij

= (D>WD)−1D>WY
(1)
i ,

where wij = σ2/2
V ar[δij ]

= j2

n2 , β̂i = (β̂i0, β̂i1)
>, superscript > denotes the transpose of a matrix,

D =


1 12/n2

1 22/n2

...
...

1 k2/n2

 , Y
(1)
i =


Y

(1)
i1

Y
(1)
i2
...

Y
(1)
ik

 ,W =


12/n2 0 · · · 0

0 22/n2 · · ·
...

... 0
. . . 0

0 0 · · · k2/n2

 .

Therefore, the estimator is obtained as

m̂(1)(xi) = β̂i0 = e>1 β̂i, (8)

where e1 = (1, 0)>.

3. Properties of the First Order Derivative Estimation

In this section, we study asymptotic properties of our first order derivative estimator (8) in
interior points, and reveal that empirical first derivative is our special case: local constant
estimator. For boundary points, we propose one-side LWLSR to reduce estimation variance.

3.1 Asymptotic Results

The following theorems provide asymptotic results on bias and variance, and establish
pointwise consistency and asymptotic normality of the first order derivative estimators.

Theorem 1 (Uniform Asymptotic Variance) Assume that the nonparametric model
(1) holds with equidistant design and the unknown smooth function m(·) is three times
continuously differentiable on [0, 1]. Furthermore, assume that the third order derivative
m(3)(·) is finite on [0, 1]. Then the variance of the first order derivative estimator in (8) is

V ar[m̂(1)(xi)] =
75σ2

8

n2

k3
+ o

(
n2

k3

)
uniformly for k + 1 ≤ i ≤ n− k.
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Theorem 1 shows that the variance of the derivative estimator is constant as x changes,
while the following theorem shows that the bias changes with x.

Theorem 2 (Pointwise Asymptotic Bias) Assume that the nonparametric model (1)
holds with equidistant design and the unknown smooth function m(·) is five times continu-
ously differentiable on [0, 1]. Furthermore, assume that the fifth order derivative m(5)(·) is
finite on [0, 1]. Then the bias of the first order derivative estimator in (8) is

Bias[m̂(1)(xi)] = −m
(5)(xi)

504

k4

n4
+ o

(
k4

n4

)
for k + 1 ≤ i ≤ n− k.

Using Theorems 1 and 2, we have that if nk−3/2 → 0 and n−1k → 0, then our estimator
has the consistency property

m̂(1)(xi)
P−→ m(1)(xi).

Furthermore, we establish asymptotic normality in the following theorem.

Theorem 3 (Asymptotic Normality) Under the assumptions of Theorem 2, if k → ∞
as n→∞ such that nk−3/2 → 0 and n−1k → 0, then

k3/2

n

(
m̂(1)(xi)−m(1)(xi) +

m(5)(xi)

504

k4

n4

)
d−→ N

(
0,

75σ2

8

)

for k+1 ≤ i ≤ n−k. Further, if k →∞ as n→∞ such that nk−3/2 → 0 and n−1k11/10 → 0,
then

k3/2

n

(
m̂(1)(xi)−m(1)(xi)

)
d−→ N

(
0,

75σ2

8

)
for k + 1 ≤ i ≤ n− k.

Theorem 3 shows that with suitable choice of k our first order derivative estimator is
asymptotically normally distributed, even asymptotically unbiased. Using the asymptotic
normality property, we can construct confidence intervals and confidence bands. From the
above theorems, the following corollary follows naturally.

Corollary 4 Under the assumptions of Theorem 2, the optimal choice of k that minimizes
the asymptotic mean square error of the first order derivative estimator in (8) is

kopt
.
= 3.48

(
σ2

(m(5)(xi))2

)1/11

n10/11.

With the optimal choice of k, the asymptotic mean square error of the first order derivative
estimator in (8) can be expressed as

AMSE[m̂(1)(xi)]
.
= 0.31

(
σ16(m(5)(xi))

6
)1/11

n−8/11.
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Figure 1: (a) Simulated data set of size 300 from model (1) with equidistant xi ∈ [0.25, 1],

m(x) =
√
x(1− x) sin((2.1π)/(x + 0.05)), εi

iid∼ N(0, 0.12), and the true mean
function (bold line). (b)-(f) The proposed first order derivative estimators
(green dots) and the empirical first derivatives (red dashed lines) for k ∈
{6, 12, 25, 30, 50}. As a reference, the true first order derivative is also plotted
(bold line).

Now we briefly examine the finite sample behavior of our estimator and compare it with
the empirical first derivative given by Charnigo et al. (2011) and De Brabanter et al. (2013).
Their estimator has the following form:

Y
[1]
i =

k1∑
j=1

wijY
(1)
ij , k1 + 1 ≤ i ≤ n− k1, (9)

where k1 is a positive integer, wij = j2/n2∑k1
j=1 j

2/n2
, and Y

(1)
ij is defined in (4).

Figure 1 displays our proposed first order derivative estimators (8) and empirical first
derivatives (9) with k1 = k ∈ {6, 12, 25, 30, 50}, for a data set of size 300 generated from

model (1) with xi ∈ [0.25, 1], εi
iid∼ N(0, 0.12), and m(x) =

√
x(1− x) sin((2.1π)/(x+0.05)).

This m(x) is borrowed from De Brabanter et al. (2013). When k is small (see Figure 1
(b) and (c)), the proposed estimators are noise corrupted versions of the true first order
derivatives, while the performance of the empirical derivatives is better except that there
are large biases near local peaks and valleys of the true derivative function. As k becomes
bigger (see Figure 1 (d)- (f)), our estimators have much less biases than empirical derivative
estimators near local peaks and valleys of the true derivative. The balance between the
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estimation bias and variance is clear even visually. Furthermore, if we combine the left part
of Figure 1 (d), the middle part of (e) and the right part of (f), more accurate derivative
estimators are obtained.

Actually, empirical first derivative and our estimator have a close relationship. Express
equation (6) in simple linear regression form

Y
(1)
ij = βi0 + ηij , 1 ≤ j ≤ k,

where βi0 = m(1)(xi), ηij = O
(

( jn)2
)

+
εi+j−εi−j

2j/n with

E[ηij ]
.
= 0, V ar[ηij ] =

n2σ2

2j2
.

This is called the local constant-truncated estimator. By the LWLSR, we get

m̂(1)(xi) = Y
[1]
i ,

which is exactly the empirical first derivative. On three times continuous differentiability,
we have the following bias and variance

Bias[Y
[1]
i ] =

m(3)(xi)

10

k2

n2
, V ar[Y

[1]
i ] =

3σ2

2

n2

k3
.

For empirical first derivative and our estimator, symmetric difference sequence eliminates
the even-order terms in Taylor expansion of mean function. This is an important advantage,
i.e., if the mean function is two times continuously differentiable, then the second-order term
is eliminated so that the bias is smaller than the second-order term. In De Brabanter et al.
(2013), the bias is O(k/n) which is obtained via a inequality (See Appendix B, De Brabanter
et al. 2013). In fact, the bias should be

Bias[Y
[1]
i ] < O(k/n) or Bias[Y

[1]
i ] = o(k/n),

which does not have exact and explicit expression on two times continuous differentiability.
In order to obtain explicit expression, we make the stronger smoothing condition—three
times continuous differentiability.

In addition, the smoothing assumptions on bias and variance are different in Theorem
1 and Theorem 2. For empirical first derivative and ours, the variance term only needs
one time continuous differentiability; whereas the bias term needs three times and five
times respectively. From the viewpoint of Taylor expansion, it seems we pay a serious
price. However, in practical applications bias-correction is needed especially in the cases
of immense oscillation of mean function. From the viewpoint of Weierstrass approximation
theorem, even if a continuous function is nondifferentiable we still can correct the bias.

3.2 Behavior at the Boundaries

Recall that for the boundary region (2 ≤ i ≤ k and n − k + 1 ≤ i ≤ n − 1) the weights in
empirical first derivative (9) are slightly modified by normalizing the weight sum. Whereas
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our estimator can be obtained directly from the LWLSR without any modification, the only
difference is that the smoothing parameter is i− 1 instead of k.

For the boundary (3 ≤ i ≤ k), the bias and variance for our estimator are

Bias[m̂(1)(xi)] = −m
(5)(xi)

504

(i− 1)4

n4
, V ar[m̂(1)(xi)] =

75σ2

8

n2

(i− 1)3
. (10)

Hence, the variance will be the largest for i = 3 and decrease for growing i till i = k,
whereas the bias will be smallest for i = 3 and increase for growing i till i = k. A similar
analysis for n− k + 1 ≤ i ≤ n− 2 shows the same results.

For the modified estimator (De Brabanter et al., 2013), the bias and variance in the
theory frame of the LWLSR are

Bias[m̂(1)(xi)] =
m(3)(xi)

10

(i− 1)2

n2
, V ar[m̂(1)(xi)] =

3σ2

2

n2

(i− 1)3
,

Which have the analogue change trend like (10) above. Although our estimator has less
bias (O(1/n4)) than empirical first derivative (O(1/n2)), the variances both are big enough
(O(n2)). So the two estimators are inaccurate and the boundary problem still exists.

In order to reduce the variance, we propose the one-side locally weighted least squares
regression method which consists of two cases: left-side locally weighted least squares re-
gression (LSLWLSR) and right-side locally weighted least squares regression (RSLWLSR).
These estimation methods can be used for the boundary: LSLWLSR is for n−k+1 ≤ i ≤ n
and RSLWLSR is for 1 ≤ i ≤ k. On two times continuous differentiability, the estimation
bias is O(k/n) and variance is O(n2/k3).

Assume that m(·) is two times continuously differentiable on [0, 1]. For 1 ≤ i ≤ n − k,
define right-side lag-j first-order difference sequence

Y <1>
ij =

Yi+j − Yi
xi+j − xi

, 1 ≤ j ≤ k. (11)

Decompose Y <1>
ij into two parts and simplify from (11) such as

Y <1>
ij =

m(xi+j)−m(xi)

j/n
+
εi+j − εi
j/n

= m(1)(xi) +
m(2)(xi)

2!

j1

n1
+ o

(
j1

n1

)
+
εi+j − εi
j/n

.

(12)

For some fixed i, εi is constant as j increases. Thus we express equation (12) in the
following form:

Y <1>
ij = βi0 + βi1d1j + δij , 1 ≤ j ≤ k,

where βi0 = m(1)(xi), βi1 = −εi, d1j = n
j , and δij = m(2)(xi)

2!
j1

n1 + o
(
j1

n1

)
+

εi+j

j/n are indepen-

dent across j with

E[δij |εi] =
m(2)(xi)

2!

j1

n1
+ o

(
j1

n1

)
.
= 0, V ar[δij |εi] =

n2σ2

j2
.
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So we use the LWLSR to estimate regression coefficients as

β̂i = arg min
βi0,βi1

k∑
j=1

(Y
(1)
ij − βi0 − βi1d1j)

2wij

= (D>WD)−1D>WY <1>
i ,

where wij = σ2

V ar[δij ]
= j2

n2 , β̂i = (β̂i0, β̂i1)
>,

D =


1 n1/11

1 n1/21

...
...

1 n1/k1

 , Y <1>
i =


Y <1>
i1

Y <1>
i2
...

Y <1>
ik

 ,W =


12/n2 0 · · · 0

0 22/n2 · · ·
...

... 0
. . . 0

0 0 · · · k2/n2

 .

Therefore, the estimator is obtained as

m̂(1)(xi) = β̂i0 = e>1 β̂i, (13)

where e1 = (1, 0)>.
Following Theorem 1-4 above, we have the similar theorems for the right-side first-order

derivative estimator in (13). Here we only give the asymptotic bias and variance as follows.

Theorem 5 Assume that the nonparametric model (1) holds with equidistant design and
the unknown smooth function m(·) is two times continuously differentiable on [0, 1]. Fur-
thermore, assume that the second order derivative m(2)(·) is finite on [0, 1]. Then the bias
and variance of the right-side first-order derivative estimator in (13) are

Bias[m̂(1)(xi)|εi] =
m(2)(xi)

2

k1

n1
+ o

(
k1

n1

)
V ar[m̂(1)(xi)|εi] = 12σ2

n2

k3
+ o

(
n2

k3

)
correspondingly for 1 ≤ i ≤ n− k.

From Theorem 5 above, we can see that the variance and bias for the right-side first-
order derivative estimator in (13) is O(n2/k3) and O(k/n), which is the same rate as De
Brabanter et al. (2013) deduced on two times continuous differentiability. For further bias-
correction, high-order Taylor expansion may be needed. A similar analysis for left-side lag-j
first-order difference sequence obtains the same results.

3.3 The Choice of k

From the tradeoff between bias and variance, we have two methods for the choice of k:
adaptive method and uniform method. The adaptive k based on asymptotic mean square
error is

ka = 3.48

(
σ2

(m(5)(xi))2

)1/11

n10/11.
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To choose k globally, we consider the mean averaged square error (MASE) criterion

MASE =
1

n− 2k

n−k∑
i=k+1

MSE(m̂(1)(xi))

=
1

n− 2k

n−k∑
i=k+1

(
75σ2

8

n2

k3
+

(m(5)(xi))
2

5042
k8

n8
)

=
75σ2

8

n2

k3
+

1

n− 2k

n−k∑
i=k+1

(m(5)(xi))
2

5042
k8

n8

→ 75σ2

8

n2

k3
+

L5

5042
k8

n8
,

where L5 =
∫ 1
0 (m(5)(x))2dx. Minimizing the MASE with respect to k, the uniform k is

ku = 3.48(
σ2

L5
)1/11n10/11.

Since the ka and ku are unknown in practice, a rule of thumb estimator may be prefer-
able. The error variance σ2 can be estimated by Hall et al. (1990), the fifth order derivative
m(5)(xi) can be estimated by local polynomial regression (R-package: locpol), and L5 is
estimated by Seifert et al. (1993).

However, questions still remain. First, k = O(n10/11), which requires n to be large
enough to ensure k < n; Second, ‘the higher the derivative, the wilder the behavior’ (Ram-
say, 1998), thus the estimations of m(5)(xi) and L5 are inaccurate. The most important is
that when the bias is very small or large we can’t balance the bias and variance via only
increasing or decreasing the value of k. From the expression of adaptive k, uniform k and
simulations, we put forward the following considerations.

• On the whole, k should satisfy k < n/2 or else the needed data size 2k goes over the
total size n so that we can’t estimate any derivative. In addition, we can’t leave more
boundary points than interior points, so k needs to satisfy the condition k < n/4.

• The choice of k relies on Taylor expansion which is a local concept. There exists some
maximum value of k suitable for a fixed mean function, denoted by kmax. However,
adaptive and uniform k is determined by many factor: variance, sample size, frequency
and amplitude of mean function. Thus it is possible to obtain too big k in the cases
of large variance, and now cross validation could be an alternative. As frequency
and amplitude increase, the uniform and adaptive k decrease. This is the reason why
our estimator adopting different k for different oscillation has better performance in
Figure 1. In addition, as the order of Taylor expansion increases, the kmax becomes
large. So our estimator needs a larger k than empirical derivative.

• When the third-order and fifth-order derivatives are close to zero, the values of ka and
ku are too big even k > n/2. Thus we can’t balance bias and variance via increasing
the value of k when bias is very small. Meanwhile we can’t balance bias and variance
via decreasing the value of k when bias is too big. It is better to correct bias by
higher-order Taylor expansion.
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4. Higher Order Derivative Estimations

In this section, we generalize the idea of the first order derivative estimation to higher order.
Different difference sequences are adopted for first and second order derivative estimation.

4.1 Second Order Derivative Estimation

As for the second order derivative estimation, we can show by a similar technique as in (3)
that

m(2)(xi) =
m(xi−j)− 2m(xi) +m(xi+j)

j2/n2
− m(4)(xi)

12

j2

n2
+ o

(
j2

n2

)
.

Define

Y
(2)
ij =

Yi−j − 2Yi + Yi+j
j2/n2

. (14)

Just as in equation (5), decompose (14) into two parts as

Y
(2)
ij =

m(xi−j)− 2m(xi) +m(xi+j)

j2/n2
+
εi−j − 2εi + εi+j

j2/n2
, 1 ≤ j ≤ k.

Note that i is fixed as j changes. Thus the conditional expectation of Y
(2)
ij given εi is

E[Y
(2)
ij |εi] =

m(xi−j)− 2m(xi) +m(xi+j)

j2/n2
+ (−2εi)

n2

j2

.
= m(2)(xi) +

m(4)(xi)

12

j2

n2
+ (−2εi)

n2

j2
.

Therefore, the new regression model is given by

Y
(2)
ij = βi0 + βi1d1j + βi2d2j + δij , 1 ≤ j ≤ k,

where the regression coefficient vector βi = (βi0, βi1, βi2)
> = (m(2)(xi),

m(4)(xi)
12 ,−2εi)

>,

covariates d1j = j2

n2 and d2j = n2

j2
, and the error term δij =

εi+j+εi−j

j2/n2 + o
(
j2

n2

)
, with

E[δij |εi]
.
= 0, V ar[δij |εi] =

2σ2n4

j4
.

Now the locally weighted least squares estimator of βi can be expressed as

β̂i = (D>WD)−1D>WY
(2)
i ,

where

D =


1 12/n2 n2/12

1 22/n2 n2/22

...
...

...
1 k2/n2 n2/k2

 , Y
(2)
i =


Y

(2)
i1

Y
(2)
i2
...

Y
(2)
ik

 ,W =


14/n4 0 · · · 0

0 24/n4 · · ·
...

... 0
. . . 0

0 0 · · · k4/n4

 .
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Therefore,
m̂(2)(xi) = β̂i0 = e>1 β̂i, (15)

where e1 = (1, 0, 0)>.
The following three theorems provide asymptotic results on bias, variance and mean

square error, and establish pointwise consistency and asymptotic normality of the second
order derivative estimator.

Theorem 6 Assume that the nonparametric model (1) holds with equidistant design and
the unknown smooth function m(·) is six times continuously differentiable on [0, 1]. Further-
more, assume that the sixth order derivative m(6)(·) is finite on [0, 1]. Then the variance of
the second order derivative estimator in (15) is

V ar[m̂(2)(xi)|εi] =
2205σ2

8

n4

k5
+ o(

n4

k5
)

uniformly for k + 1 ≤ i ≤ n− k, and the bias is

Bias[m̂(2)(xi)|εi] = −m
(6)(xi)

792

k4

n4
+ o(

k4

n4
)

for k + 1 ≤ i ≤ n− k.

From Theorem 6, we can see that if nk−5/4 → 0 and n−1k → 0, then our estimator is
consistent

m̂(2)(xi)
P−→ m(2)(xi).

Moreover, we establish asymptotic normality, derive the asymptotic mean square error and
the optimal k value.

Corollary 7 Under the assumptions of Theorem 6, if k → ∞ as n → ∞ such that
nk−5/4 → 0 and n−1k → 0, then

k5/2

n2

(
m̂(2)(xi)−m(2)(xi) +

m(6)(xi)

792

k4

n4

)
d−→ N

(
0,

2205σ2

8

)
.

Moreover, if nk−5/4 → 0 and n−1k13/12 → 0, then

k5/2

n2

(
m̂(2)(xi)−m(2)(xi)

)
d−→ N

(
0,

2205σ2

8

)
.

Corollary 8 Under the assumptions of Theorem 6, the optimal k value that minimizes the
asymptotic mean square error of the second order derivative estimator in (15) is

kopt
.
= 4.15

(
σ2

(m(6)(xi))2

)1/13

n12/13.

With the optimal choice of k, the asymptotic mean square error of the second order derivative
estimator in (15) can be expressed as

AMSE[m̂(1)(xi)]
.
= 0.36

(
σ16(m(6)(xi))

10
)1/13

n−8/13.
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Figure 2: (a)-(f) The proposed second order derivative estimators (green points) and the
empirical second derivatives (red dashed line) for k ∈ {6, 9, 12, 25, 35, 60} based
on the simulated data set from Figure 1. As a reference, the true second order
derivative curve is also plotted (bold line).

Here we also use a simple simulation to examine the finite sample behavior of the new
estimator and compare it with the empirical second derivative given by Charnigo et al.
(2011) and De Brabanter et al. (2013). Their estimator has the following form:

Y
[2]
i =

k2∑
j=1

wijY
(2)
ij , k1 + k2 + 1 ≤ i ≤ n− k1 − k2, (16)

where wij = j/n∑k2
j=1 j/n

, Y
(2)
ij = (Y

(1)
i+j − Y

(1)
i−j)/(2j/n), k1 is the same as in (9), and k2 is

a positive integer. Figure 2 displays our second order derivative estimators and empirical
second derivatives (16) at interior point for the data from Figure 1, where k1 = k2 = k ∈
{6, 9, 12, 25, 35, 60}. The performance of the our second derivative estimator and empirical
second derivative is parallel to the first derivative’s case. Note that the k values used here
are larger than the counterparts in the first order derivative estimation.

4.2 Higher Order Derivative Estimation

We generalize the method aforementioned to higher order derivatives m(l)(xi) (l > 2). The
method includes two main steps: the first step is to construct a sequence of symmetric
difference quotients in which the derivative is the intercept of the linear regression derived
by Taylor expansion, and the second step is to estimate the derivative using the LWLSR.

2630



Derivative Estimation via Locally Weighted Least Squares Regression

The construction of a difference sequence is particularly important because it determines
the estimation accuracy.

When l is odd, set d = l+1
2 . We linearly combine m(xi±j)’s subject to

d∑
h=1

[ai,jd+hm(xi+jd+h) + ai,−(jd+h)m(xi−(jd+h))] = m(l)(xi) +O

(
j

n

)
, 0 ≤ j ≤ k,

where k is a positive integer. We can derive 2d equations through Taylor expansion and
solve out the 2d unknown parameters. Define

Y
(l)
ij =

d∑
h=1

[ai,jd+hYi+jd+h + ai,−(jd+h)Yi−(jd+h)].

and consider the linear regression

Y
(l)
ij = m(l)(xi) + δij , 1 ≤ j ≤ k,

where δij =
∑d

h=1[ai,jd+hεi+jd+h + ai,−(jd+h)εi−(jd+h)] +O( jn).

When l is even, set d = l
2 . We linearly combine m(xi±j)’s subject to

bi,jm(xi)+
d∑

h=1

[ai,jd+hm(xi+jd+h)+ai,−(jd+h)m(xi−(jd+h))] = m(l)(xi)+O

(
j

n

)
, 0 ≤ j ≤ k,

where k is a positive integer. We can derive 2d+ 1 equations through Taylor expansion and
solve out the 2d+ 1 unknown parameters. Define

Y
(l)
ij = bi,jm(xi) +

d∑
h=1

[ai,jd+hYi+jd+h + ai,−(jd+h)Yi−(jd+h)].

and consider the linear regression

Y
(l)
ij = m(l)(xi) + bi,jεi + δij , 1 ≤ j ≤ k,

where δij =
∑d

h=1[ai,jd+hεi+jd+h + ai,−(jd+h)εi−(jd+h)] +O( jn).
If k is large enough, it is better to keep the j2/n2 term like (7) to reduce the estimation

bias. With the regression models defined above, we can obtain the higher order derivative
estimators and deduce their asymptotic results by similar arguments as in the previous
subsection; the details are omitted here.

5. Simulations

In addition to the simple simulations in the previous sections, we conduct more simulation
studies in this section to further evaluate the finite-sample performances of the proposed
method and compare it with two other well-known methods. To get more comprehensive
comparisons, we use estimation curves and mean absolute errors to assess the performances
of different methodologies.
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5.1 Finite Sample Results of the First Order Derivative Estimation

We first consider the following two regression functions

m(x) = sin(2πx) + cos(2πx) + log(4/3 + x), x ∈ [−1, 1], (17)

and

m(x) = 32e−8(1−2x)
2
(1− 2x), x ∈ [0, 1]. (18)

Figure 3: (a) The true first order derivative function (bold line) and our first order derivative
estimations (green dashed line). Simulated data set of size 500 from model (1)
with equispaced xi ∈ [−1, 1], m(x) = sin(2πx) + cos(2πx) + log(4/3 + x), and

εi
iid∼ N(0, 0.12). (b) The true first order derivative function (bold line) and our

first order derivative estimations (green dashed line). Simulated data set of size
500 from model (1) with equispaced xi ∈ [0, 1], m(x) = 32e−8(1−2x)

2
(1− 2x), and

εi
iid∼ N(0, 0.12).

These two functions were considered by Hall (2010) and De Brabanter et al. (2013),
respectively. The data sets are of size n = 500 and generated from model (1) with ε ∼
N(0, σ2) for σ = 0.1. Figure 3 presents the first order derivative estimations of regression
functions (17) and (18). It shows that our estimation curves of the first order derivative fit
the true curves accurately, although a comparison with the other estimators is not given in
the figure.

We now evaluate our estimator with empirical first derivative. Since the oscillation of
the periodic function depends on frequency and amplitude, in our simulations we choose
the mean function

m(x) = A sin(2πfx), x ∈ [0, 1],
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Ours Empirical Ours Empirical Ours Empirical

A f σ n=50 n=50 n=200 n=200 n=1000 n=1000

1 1 0.1 0.28(0.09) 0.36(0.08) 0.14(0.04) 0.24(0.04) 0.07(0.02) 0.16(0.03)
0.5 1.38(0.45) 1.01(0.28) 0.69(0.23) 0.61(0.16) 0.30(0.10) 0.38(0.07)
2 5.54(1.87) 2.35(0.90) 2.73(0.89) 1.39(0.48) 1.18(0.37) 0.85(0.24)

2 0.1 0.58(0.15) 1.00(0.13) 0.34(0.07) 0.61(0.07) 0.19(0.03) 0.39(0.04)
0.5 1.76(0.57) 2.33(0.52) 1.08(0.31) 1.52(0.28) 0.60(0.17) 0.97(0.16)
2 5.59(1.88) 4.91(1.60) 2.96(1.05) 3.36(0.95) 1.63(0.52) 2.11(0.48)

10 1 0.1 0.41(0.09) 0.98(0.12) 0.24(0.05) 0.67(0.07) 0.13(0.03) 0.42(0.04)
0.5 1.45(0.47) 2.46(0.44) 0.80(0.22) 1.65(0.25) 0.42(0.10) 1.05(0.14)
2 5.52(1.76) 5.27(1.24) 2.71(0.89) 3.55(0.76) 1.28(0.35) 2.31(0.38)

2 0.1 1.15(0.17) 2.90(0.20) 0.64(0.09) 1.66(0.12) 0.35(0.05) 1.06(0.06)
0.5 3.72(0.79) 6.44(0.77) 2.06(0.39) 4.18(0.42) 1.16(0.19) 2.65(0.24)
2 9.38(2.78) 13.3(2.40) 5.66(1.38) 9.14(1.35) 3.17(0.72) 5.74(0.65)

Table 1: Adjusted Mean Absolute Error for the first order derivative estimation.

with design points xi = i/n, and the errors are independent and identically normal distri-
bution with zero mean and variance σ2. We consider three sample sites n = 50, 200, 1000,
corresponding to small, moderate, and large sample sizes, three standard deviations σ =
0.1, 0.5, 2, two frequencies f = 1, 2, and two amplitudes A = 1, 10. The number of repeti-
tions is set as 1000. We consider two criterion: adjusted mean absolute error (AMAE) and
mean averaged square error, and find that they have similar performance. For the sake of
simplicity and robustness, we choose the AMAE as a measure of comparison. It is defined
as

AMAE(k) =
1

n− 2k

n−k∑
i=k+1

|m̂′(xi)−m′(xi)|,

here the boundary effects are excluded. According to the condition k < n/4 and the AMAE
criterion, we choose k as follows

k̂ = min{arg min
k
AMAE(k),

n

4
}.

Table 1 reports the simulation results. The numbers outside and inside the brackets
are the mean and standard deviation of the AMAE. It indicates our estimator performs
better than empirical first derivative in most cases except that the adoptive k is much less
the theoretically uniform k.

5.2 Finite Sample Results of the Second Order Derivative Estimation

Consider the same functions as in Subsection 5.1. Figure 4 presents the estimation curves
and the true curves of the second order derivatives of (17) and (18). It shows that our
estimators track the true curves closely.
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Figure 4: (a)-(b) The true second order derivative function (bold line) and proposed second
order derivative estimations (green dashed line) based on the simulated data sets
from Figure 3 correspondingly.

method n=50 n=100 n=250 n=500

σ = 0.02 ours 1.03(0.18) 0.79(0.11) 0.62(0.068) 0.47(0.07)
locpol 1.58(0.45) 0.98(0.22) 0.70(0.11) 0.54(0.08)
pspline 1.05(0.87) 0.80(0.82) 0.41(0.18) 0.60(0.78)

σ = 0.1 ours 2.40(0.55) 2.03(0.39) 1.46(0.27) 1.26(0.25)
locpol 3.90(1.53) 2.93(1.71) 1.79(0.46) 1.52(1.14)
pspline 2.53(2.32) 3.54(8.33) 1.86(2.79) 2.36(3.91)

σ = 0.5 ours 6.63(2.05) 5.05(1.61) 4.08(0.96) 3.27(0.90)
locpol 9.48(2.70) 8.16(5.07) 5.80(3.47) 4.38(2.20)
pspline 8.23(11.9) 8.00(15.1) 7.52(12.3) 4.77(11.8)

Table 2: Adjusted Mean Absolute Error for the second order derivative estimation.

We evaluate our method with two other well-known methods by Monte Carlo studies,
that is local polynomial regression with p = 5 (R packages locpol, Cabrera, 2012) and pe-
nalized smoothing splines with norder = 6 and method = 4 (R packages pspline, Ramsay
and Ripley, 2013) in model (1). For the sake of simplicity, we set the mean function

m(x) = sin(2πx), x ∈ [−1, 1].

We consider four sample sizes, n ∈ {50, 100, 250, 500}, and three standard deviations, σ ∈
{0.02, 0.1, 0.5}. The number of repetitions is set as 100. Table 2 indicates that our estimator
is superior to the others in both mean and standard deviation.
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6. Discussion

In this paper we propose a new methodology to estimate derivatives in nonparametric re-
gression. The method includes two main steps: construct a sequence of symmetric difference
quotients, and estimate the derivative using locally weighted least squares regression. The
construction of a difference sequence is particularly important, since it determines the es-
timation accuracy. We consider three basic principles to construct a difference sequence.
First, we eliminate the terms before the derivative of interest through linear combinations,
the derivative is thus put in the important place. Second, we adopt every dependent vari-
able only once, which keeps the independence of the difference sequence’s terms. Third, we
retain one or two terms behind the derivative of interest in the derived linear regression,
which reduces estimation bias.

Our method and the local polynomial regression (LPR) have a close relationship. Both
methods rely on Taylor expansion and employ the idea of locally weighted fitting. However,
there are important differences between them. The first difference is the aim of estimation.
The aim of LPR is to estimate the mean, the derivative estimation is only a “by-product”,
while the aim of our method is to estimate the derivative directly. The second difference is
the method of weighting. LPR is kernel-weighted, the farther the distance, the lower the
weight; our weight is based on variance, which can be computed exactly. Our simulation
studies show that our estimator is more efficient than the LPR in most cases.

All results have been derived for equidistant design with independent identical dis-
tributed errors, and extension to more general designs is left to further research. Also, the
boundary problem deserve further consideration.
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Appendix A. Proof of Theorem 1

For (8), we yield V ar[β̂i] = V ar[(D>WD)−1D>WY
(1)
i ] = σ2

2 (D>WD)−1. We can compute

D>WD =

(
I2/n

2 I4/n
4

I4/n
4 I6/n

6

)
,

where Il =
∑k

j=1 j
l, l is an integer. Using the formula for the inverse of a matrix, we have

(D>WD)−1 =
n8

I2I6 − I24

(
I6/n

6 −I4/n4
−I4/n4 I2/n

2

)
.

Therefore the variance of β̂i0 is

V ar[β̂i0] =
σ2

2
e>1 (D>WD)−1e1 =

75σ2

8

n2

k3
+ o(

n2

k3
).
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Appendix B. Proof of Theorem 2

From (8), we yield E[β̂i] = E[(D>WD)−1D>WY
(1)
i ] = β + (D>WD)−1D>WE[δi]. So we

have
Bias[β̂i] = (D>WD)−1D>WE[δi].

Since m is five times continuously differentiable, the following Taylor expansions are valid
for m(xi±j) around xi

m(xi±j) = m(xi) +m(1)(x)(
±j
n

) +
m(2)(x)

2!
(
±j
n

)2 +
m(3)(x)

3!
(
±j
n

)3 +
m(4)(x)

4!
(
±j
n

)4

+
m(5)(x)

5!
(
±j
n

)5 + o

(
(
±j
n

)5
)
.

We have

Y
(1)
ij =

Yi+j − Yi−j
xi+j − xi−j

=
m(1)(xi)(

2j
n ) + m(3)(xi)

3 ( jn)3 + m(5)(xi)
60 ( jn)5 + o

(
( jn)5

)
+ (εi+j − εi−j)

2j/n

= m(1)(xi) +
m(3)(xi)

6
(
j

n
)2 +

m(5)(xi)

120
(
j

n
)4 + o

(
(
j

n
)4
)

+
εi+j − εi−j

2j/n

= m(1)(xi) +
m(3)(xi)

6
(
j

n
)2 + δij .

So

E[δi] =
m(5)(xi)

120


14/n4

24/n4

...
k4/n4

+ o(


14/n4

24/n4

...
k4/n4

),

Bias[β̂i] =
m(5)(xi)

120

k4

n4

(
−5/21
10/9

)
+ o(

k4

n4
).

The estimation bias is Bias[β̂i0] = −m(5)(xi)
504

k4

n4 + o( k
4

n4 ).

Appendix C. Proof of Theorem 3

Using the asymptotic theory of least squares and the fact that {δij}kj=1 are independent

distributed with mean zeros and variance {n2σ2

2j2
}kj=1, it follows that the asymptotic normality

is proved.

Appendix D. Proof of Corollary 4

For the first derivative estimation, the mean square error is given by

MSE[m̂(1)(xi)] = (Bias[m̂(1)(xi)])
2 + V ar[m̂(1)(xi)]

=
(m(5)(xi))

2

254016

k8

n8
+

75σ2

8

n2

k3
+ o(

k8

n8
) + o(

n2

k3
).

2636



Derivative Estimation via Locally Weighted Least Squares Regression

Ignoring higher order terms, we obtain the asymptotic mean square error

AMSE(m̂(1)(xi)) =
(m(5)(xi))

2

254016

k8

n8
+

75σ2

8

n2

k3
. (19)

To minimize (19) with respect to k, we take the first derivative of (19) and yield the gradient

d[AMSE(m̂(1)(xi))]

dk
=

(m(5)(xi))
2

31752

k7

n8
− 225σ2

8

n2

k4
,

our optimization problem is to solve d[AMSE(m̂(1)(xi))]
dk = 0. So we obtain

kopt =

(
893025σ2

(m(5)(xi))2

)1/11

n10/11
.
= 3.48

(
σ2

(m(5)(xi))2

)1/11

n10/11,

and
AMSE(m̂(1)(xi))

.
= 0.31(σ16(m(5)(xi))

6)1/11n−8/11.

Appendix E. Proof of Theorem 5

The conditional variance of β̂i0 is V ar[β̂i0|εi] = σ2(D>WD)−1 = 12σ2 n
2

k3
+ o(n

2

k3
).

Since the conditional bias of δij is

E[δij |εi] =
m(2)(xi)

2!

j1

n1
+ o

(
j1

n1

)
.

Thus the conditional bias of β̂i0 is

Bias[β̂i0|εi] = (D>WD)−1D>WE[δi]

=
m(2)(xi)

2

k1

n1
+ o

(
k1

n1

)
.

Appendix F. Proof of Theorem 6

The conditional variance is given by V ar[β̂i|εi] = 2σ2(D>WD)−1. We can compute

D>WD =

 I4/n
4 I6/n

6 I2/n
2

I6/n
6 I8/n

8 I4/n
4

I2/n
2 I4/n

4 I0/n
0

 .

The determinant of D>WD is

|D>WD| = I0I4I8 + 2I2I4I6 − I0I26 − I34 − I22I8
n12

,

and the adjoint matrix is

(D>WD)? =

 (I0I8 − I24 )/n8 (I2I4 − I0I6)/n6 (I4I6 − I2I8)/n10
(I2I4 − I0I6)/n6 (I0I4 − I22 )/n4 (I2I6 − I24 )/n8

(I4I6 − I2I8)/n10 (I2I6 − I24 )/n8 (I4I8 − I26 )/n12

 .
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Based on the formula for the inverse of a matrix A−1 = 1
|A|A

?, we have

V ar[β̂i0|εi] = 2σ2e>1 (D>WD)−1e1 =
2205σ2

8

n4

k5
+ o(

n4

k5
).

Revisit the sixth order Taylor approximation for m(xi±j) around xi

m(xi±j) = m(xi) +m(1)(xi)(
±j
n

) +
m(2)(xi)

2!
(
±j
n

)2 +
m(3)(xi)

3!
(
±j
n

)3 +
m(4)(xi)

4!
(
±j
n

)4

+
m(5)(xi)

5!
(
±j
n

)5 +
m(6)(xi)

6!
(
±j
n

)6 + o

(
(
±j
n

)6
)
.

We have

Y
(2)
ij =

m(xi−j)− 2m(xi) +m(xi+j)

j2/n2
+
εi−j − 2εi + εi+j

j2/n2

= m(2)(xi) +
m(4)(xi)

12

j2

n2
+ (−2εi)

n2

j2
+
m(6)(xi)

360

j4

n4
+ o

(
j4

n4

)
+
εi−j + εi+j
j2/n2

.

So the conditional mean is

E[δi|εi] =
m(6)(xi)

360


14/n4

24/n4

...
k4/n4

+ o(


14/n4

24/n4

...
k4/n4

),

and the conditional bias is

Bias[β̂i|εi] = (D>WD)−1D>WE[δi|εi]

=
m(6)(xi)

360

 5/11
15/11

5/231

 k4/n4

k2/n2

k6/n6

+ o(

 k4/n4

k2/n2

k6/n6

).

We get

Bias[β̂i0|εi] = −m
(6)(xi)

792

k4

n4
+ o(

k4

n4
).

Appendix G. Proof of Corollary 7

Using the asymptotic theory of least square and the fact that {δij}kj=1 are independent

distributed with conditional mean zeros and conditional variance {2σ2n4

j4
}kj=1, it follows that

the asymptotic normality is proved.

Appendix H. Proof of Corollary 8

For the second derivative estimation, the MSE is

MSE[m̂(2)(xi)|εi] = Bias[m̂(2)(xi)]
2 + V ar[m̂(2)(xi)]

=
(m(6)(xi))

2

627264

k8

n8
+

2205σ2

8

n4

k5
+ o(

n4

k5
) + o(

k8

n8
).
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Ignoring higher order terms, we get AMSE

AMSE[m̂(2)(xi)|εi] =
(m(6)(xi))

2

627264

k8

n8
+

2205σ2

8

n4

k5
. (20)

To minimize (20) with respect to k, take the first derivative of (20) and yield the gradient

d[AMSE[m̂(2)(xi)|εi]]
dk

=
(m(6)(xi))

2

78408

k7

n8
− 11025σ2

8

n4

k6
,

our optimization problem is to solve d[AMSE[m̂(2)(xi)|εi]]
dk = 0. So we obtain

kopt =

(
108056025σ2

(m(6)(xi))2

)1/13

n12/13
.
= 4.15

(
σ2

(m(6)(xi))2

)1/13

n12/13,

and

AMSE(m̂(1)(xi))
.
= 0.36

(
σ16(m(6)(xi))

10
)1/13

n−8/13.

Appendix I. Convergence Rates

In Table 3, we give the convergence rate of mean estimator and the first order derivative
estimator in LPR. p = 1 means that the order of LPR is 1. V ar0 represents the convergence
rate of the variance of the mean estimator, V ar1 represents the convergence rate of the

variance of the first order derivative estimator. M̃SE1 stands for the convergence rate of
the mean square error of first order derivative estimator when k = k0,

V ar0 Bias20 k0 MSE0 V ar1 Bias21 k1 MSE1 M̃SE1

p=1 1/k k4/n4 n4/5 n−4/5 n2/k3 k4/n4 n6/7 n−4/7 n−2/5

p=2 1/k k8/n8 n8/9 n−8/9 n2/k3 k4/n4 n6/7 n−4/7 n−4/9

p=3 1/k k8/n8 n8/9 n−8/9 n2/k3 k8/n8 n10/11 n−8/11 n−2/3

p=4 1/k k12/n12 n12/13 n−12/13 n2/k3 k8/n8 n10/11 n−8/11 n−8/13

Table 3: The convergence rates for mean estimator and the first order derivative estimator.
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Abstract

Overcomplete latent representations have been very popular for unsupervised feature learn-
ing in recent years. In this paper, we specify which overcomplete models can be identified
given observable moments of a certain order. We consider probabilistic admixture or topic
models in the overcomplete regime, where the number of latent topics can greatly exceed
the size of the observed word vocabulary. While general overcomplete topic models are
not identifiable, we establish generic identifiability under a constraint, referred to as topic
persistence. Our sufficient conditions for identifiability involve a novel set of “higher order”
expansion conditions on the topic-word matrix or the population structure of the model.
This set of higher-order expansion conditions allow for overcomplete models, and require
the existence of a perfect matching from latent topics to higher order observed words.
We establish that random structured topic models are identifiable w.h.p. in the overcom-
plete regime. Our identifiability results allows for general (non-degenerate) distributions
for modeling the topic proportions, and thus, we can handle arbitrarily correlated topics in
our framework. Our identifiability results imply uniqueness of a class of tensor decompo-
sitions with structured sparsity which is contained in the class of Tucker decompositions,
but is more general than the Candecomp/Parafac (CP) decomposition.
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1. Introduction

The performance of many machine learning methods is hugely dependent on the choice
of data representations or features. Overcomplete representations, where the number of
features can be greater than the dimensionality of the input data, have been extensively
employed, and are arguably critical in a number of applications such as speech and computer
vision (Bengio et al., 2012). Overcomplete representations are known to be more robust to
noise, and can provide greater flexibility in modeling (Lewicki et al., 1998). Unsupervised
estimation of overcomplete representations has been hugely popular due to the availability
of large-scale unlabeled samples in many applications.

A probabilistic framework for incorporating features posits latent or hidden variables
that can provide a good explanation to the observed data. Overcomplete probabilistic
models can incorporate a much larger number of latent variables compared to the observed
dimensionality. In this paper, we characterize the conditions under which overcomplete
latent variable models can be identified from their observed moments.

For any parametric statistical model, identifiability is a fundamental question of whether
the model parameters can be uniquely recovered given the observed statistics. Identifiability
is crucial in a number of applications where the latent variables are the quantities of in-
terest, e.g. inferring diseases (latent variables) through symptoms (observations), inferring
communities (latent variables) via the interactions among the actors in a social network
(observations), and so on. Moreover, identifiability can be relevant even in predictive set-
tings, where feature learning is employed for some higher level task such as classification.
For instance, non-identifiability can lead to the presence of non-isolated local optima for
optimization-based learning methods, and this can affect their convergence properties, e.g.,
see Uschmajew (2012).

In this paper, we characterize identifiability for a popular class of latent variable models,
known as the admixture or topic models (Blei et al., 2003; Pritchard et al., 2000). These
are hierarchical mixture models, which incorporate the presence of multiple latent states
(i.e. topics) in each document consisting of a tuple of observed variables (i.e. words). Pre-
vious works have established that the model parameters can be estimated efficiently using
low order observed moments (second and third order) under some non-degeneracy assump-
tions, e.g. Anandkumar et al. (2012b); Anandkumar et al. (2012); Arora et al. (2012b).
However, these non-degeneracy conditions imply that the model is undercomplete, i.e., the
latent dimensionality (number of topics) cannot exceed the observed dimensionality (word
vocabulary size). In this paper, we remove this restriction and consider overcomplete topic
models, where the number of topics can far exceed the word vocabulary size.

It is perhaps not surprising that general topic models are not identifiable in the over-
complete regime. To this end, we introduce an additional constraint on the model, referred
to as topic persistence, which roughly means that topics (i.e. latent states) persist locally
in a sequence of observed words (but not necessarily globally). This “locality” effect among
the observed words is not present in the usual “bag-of-words” or exchangeable topic model.
Such local dependencies among observations abound in applications such as text, images
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Figure 1: Hierarchical structure of the n-persistent topic model is illustrated for 2rn number of
words (views) where r ≥ 1 is an integer. A single topic yj , j ∈ [2r], is chosen for each sequence of n
views {x(j−1)n+1, . . . , x(j−1)n+n}. Matrix A is the population structure or topic-word matrix.

and speech, and can lead to a more faithful representation. In addition, we establish that
the presence of topic persistence is central towards obtaining model identifiability in the
overcomplete regime, and we provide an in-depth analysis of this phenomenon in this paper.

1.1 Summary of Results

In this paper, we provide conditions for generic 1 model identifiability of overcomplete topic
models given observable moments of a certain order (i.e., having a certain number of words
in each document). We introduce the notion of topic persistence, and analyze its effect on
identifiability. We establish identifiability in the presence of a novel combinatorial object,
referred to as perfect n-gram matching, in the bipartite graph from topics to words. Finally,
we prove that random structured topic models satisfy these criteria, and are thus identifiable
in the overcomplete regime.

1.1.1 Persistent Topic Model

We first introduce the n-persistent topic model, where the parameter n determines the
persistence level of a common topic in a sequence of n successive words. For instance, in
Figure 1, the sequence of successive words x1, . . . , xn share a common topic y1, and similarly,
the words xn+1, . . . , x2n share topic y2, and so on. The n-persistent model reduces to the
popular “bag-of-words” model, when n = 1, and to the single topic model (i.e. only one topic
in each document) when n → ∞. Intuitively, topic persistence aids identifiability since we
have multiple views of the common hidden topic generating a sequence of successive words.
We establish that the bag-of-words model (with n = 1) is too non-informative about the
topics in the overcomplete regime, and is therefore, not identifiable. On the other hand, n-
persistent overcomplete topic models with n ≥ 2 can become identifiable, and we establish
a set of transparent conditions for identifiability.

1.1.2 Deterministic Conditions for Identifiability

Our sufficient conditions for identifiability are in the form of expansion conditions from
the latent topic space to the observed word space. In the overcomplete regime, there are
more topics than words in the vocabulary, and thus it is impossible to have expansion on
the bipartite graph from topics to words, i.e., the graph encoding the sparsity pattern of

1. A model is generically identifiable, if all the parameters in the parameter space are identifiable, almost
surely. Refer to Definition 2 for more discussion.

3

Figure 1: Hierarchical structure of the n-persistent topic model is illustrated for 2rn number of
words (views) where r ≥ 1 is an integer. A single topic yj , j ∈ [2r], is chosen for each
sequence of n views {x(j−1)n+1, . . . , x(j−1)n+n}. Matrix A is the population structure or
topic-word matrix.

and speech, and can lead to a more faithful representation. In addition, we establish that
the presence of topic persistence is central towards obtaining model identifiability in the
overcomplete regime, and we provide an in-depth analysis of this phenomenon in this paper.

1.1 Summary of Results

In this paper, we provide conditions for generic 1 model identifiability of overcomplete topic
models given observable moments of a certain order (i.e., having a certain number of words
in each document). We introduce the notion of topic persistence, and analyze its effect on
identifiability. We establish identifiability in the presence of a novel combinatorial object,
referred to as perfect n-gram matching, in the bipartite graph from topics to words. Finally,
we prove that random structured topic models satisfy these criteria, and are thus identifiable
in the overcomplete regime.

1.1.1 Persistent Topic Model

We first introduce the n-persistent topic model, where the parameter n determines the
persistence level of a common topic in a sequence of n successive words. For instance, in
Figure 1, the sequence of successive words x1, . . . , xn share a common topic y1, and similarly,
the words xn+1, . . . , x2n share topic y2, and so on. The n-persistent model reduces to the
popular “bag-of-words” model, when n = 1, and to the single topic model (i.e. only one topic
in each document) when n → ∞. Intuitively, topic persistence aids identifiability since we
have multiple views of the common hidden topic generating a sequence of successive words.
We establish that the bag-of-words model (with n = 1) is too non-informative about the
topics in the overcomplete regime, and is therefore, not identifiable. On the other hand, n-
persistent overcomplete topic models with n ≥ 2 can become identifiable, and we establish
a set of transparent conditions for identifiability.

1. A model is generically identifiable, if all the parameters in the parameter space are identifiable, almost
surely. Refer to Definition 2 for more discussion.
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1.1.2 Deterministic Conditions for Identifiability

Our sufficient conditions for identifiability are in the form of expansion conditions from
the latent topic space to the observed word space. In the overcomplete regime, there are
more topics than words in the vocabulary, and thus it is impossible to have expansion on
the bipartite graph from topics to words, i.e., the graph encoding the sparsity pattern of
the topic-word matrix. Instead, we impose an expansion constraint from topics to “higher
order” words, which allows us to incorporate overcomplete models. We establish that this
condition translates to the presence of a novel combinatorial object, referred to as the
perfect n-gram matching, on the topic-word bipartite graph. Intuitively, the perfect n-gram
matching condition implies “diversity” among the higher-order word supports for different
topics which leads to identifiability. In addition, we present trade-offs among the following
quantities: number of topics, size of the word vocabulary, the topic persistence level, the
order of the observed moments at hand, the minimum and maximum degrees of any topic
in the topic-word bipartite graph, and the Kruskal rank (Kruskal, 1976) of the topic-word
matrix, under which identifiability holds. To the best of our knowledge, this is the first
work to provide conditions for characterizing identifiability of overcomplete topic models
with structured sparsity.

As a corollary of our result, we also show that the expansion condition can be removed
if the topic-word matrix is full column rank (and therefore undercomplete) and the model
is persistent with persistence level at least two.

1.1.3 Identifiability of Random Structured Topic Models

We explicitly characterize the regime of identifiability for the random setting, where each
topic i is supported on a random set of di words. Therefore, the bipartite graph from topics
to words is a random graph with prescribed degrees for topics. For this random model with
q topics, p-dimensional word vocabulary, and topic persistence level n, when q = O(pn) and
Θ(log p) ≤ di ≤ Θ(p1/n), for all topics i, the topic-word matrix is identifiable from 2nth

order observed moments with high probability. Intuitively, the upper bound on the degrees
di is needed to limit the overlap of word supports among different topics in the overcomplete
regime: as the number of topics q increases (i.e., n increases in the above degree bound),
the degree needs to be correspondingly smaller to ensure identifiability, and we make this
dependence explicit. Intuitively, as the extent of overcompleteness increases, we need sparser
connections from topics to words to ensure sufficient diversity in the word supports among
different topics. The lower bound on the degrees is required so that there are enough
edges in the topic-word bipartite graph so that various topics can be distinguished from one
another. Furthermore, we establish that the size condition q = O(pn) for identifiability is
tight.

As in the deterministic case, we also argue the result in the undercomplete setting and
show that if q ≤ O(p) and di ≥ Ω(log p), then the topic-word matrix is identifiable from 2nth

order observed moment with high probability under the persistent model with persistence
level n at least equal to two. Here, the upper bound on the degree is relaxed and hence
there is no sparsity constraints on the topic-word matrix.
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1.1.4 Implications on Uniqueness of Overcomplete Tucker and CP Tensor
Decompositions

We establish that identifiability of an overcomplete topic model is equivalent to uniqueness of
decomposition of the observed moment tensor (of a certain order). Our identifiability results
for persistent topic models imply uniqueness of a structured class of tensor decompositions,
which is contained in the class of Tucker decompositions, but is more general than the
candecomp/parafac (CP) decomposition (Kolda and Bader, 2009). This sub-class of Tucker
decompositions involves structured sparsity and symmetry constraints on the core tensor,
and sparsity constraints on the inverse factors of the Tucker decomposition. The structural
constraints on the Tucker tensor decomposition are related to the topic model as follows: the
sparsity and symmetry constraints on the core tensor are related to the persistence property
of the topic model, and the sparsity constraints on the inverse factors are equivalent to the
sparsity constraints on the topic-word matrix. For n-persistent topic model with n = 1 (bag-
of-words model), the tensor decomposition is a general Tucker decomposition, where the
core tensor is fully dense, while for n → ∞ (single-topic model), the tensor decomposition
reduces to a CP decomposition, i.e. the core tensor is a diagonal tensor. For a finite
persistence level n, in between these two extremes, the core tensor satisfies certain sparsity
and symmetry constraints, which becomes crucial towards establishing identifiability in the
overcomplete regime.

1.2 Overview of Techniques

We now provide a short overview of the techniques employed in this paper.

Recap of Identifiability Conditions in Under-complete Setting (Expansion Conditions on
Topic-Word Matrix): Our approach is based on the recent results of Anandkumar et al.
(2012), where conditions for identifiability of topic models are derived, given pairwise ob-
served moments (specifically, co-occurrence of word-pairs in documents). Consider a topic
model with q topics and observed word vocabulary of size p. Let A ∈ Rp×q denote the
topic-word matrix. Expansion conditions are imposed in Anandkumar et al. (2012) on the
topic-word bipartite graph which imply that (generically) the sparsest vectors in the column
span of A, denoted by Col(A), are the columns of A themselves. Thus the topic-word ma-
trix A is identifiable from pairwise moments under expansion constraints. However, these
expansion conditions constrain the model to be under-complete, i.e., the number of topics
q ≤ p, the size of the word vocabulary. Therefore, the techniques derived in Anandkumar
et al. (2012) are not directly applicable here since we consider overcomplete models.

Identifiability in Overcomplete Setting and Why Topic-Persistence Helps: Pairwise mo-
ments are thus not sufficient for identifiability of overcomplete models, and the question
is whether higher order moments can yield identifiability. We can view the higher order
moments as pairwise moments of another equivalent topic model, which enables us to apply
the techniques of Anandkumar et al. (2012). The key question is whether we have expansion
in the equivalent topic model, which implies identifiability. For a general topic model (with-
out any topic persistence constraints), it can be shown that for identifiability, we require
expansion of the nth-order Kronecker product of the original topic-word matrix A, denoted
by A⊗n ∈ Rpn×qn , when given access to (2n)th-order moments, for any integer n ≥ 1. In
the overcomplete regime where q > p, A⊗n cannot expand, and therefore, overcomplete
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models are not identifiable in general. On the other hand, we show that imposing the con-
straint of topic persistence can lead to identifiability. For a n-persistent topic model, given
(2n)th-order moments, we establish that identifiability occurs when the nth-order Khatri-Rao
product of A, denoted by A�n ∈ Rpn×q, expands. Note that the Khatri-Rao product A�n is
a sub-matrix of the Kronecker product A⊗n, and the Khatri-Rao product A�n can expand
as long as q ≤ pn. Thus, the property of topic persistence is central towards achieving
identifiability in the overcomplete regime.

First-Order Approach for Identifiability of Overcomplete Models (Expansion of n-gram
Topic-Word Matrix): We refer to A�n ∈ Rpn×q as the n-gram topic-word matrix, and
intuitively, it relates topics to n-tuple words. Imposing the expansion conditions derived
in Anandkumar et al. (2012) on A�n implies that (generically) the sparsest vectors in
Col(A�n), are the columns of A�n themselves. Thus, the topic-word matrix A is identifiable
from (2n)th-order moments for a n-persistent topic model. We refer to this as the “first-
order” approach since we directly impose the expansion conditions of Anandkumar et al.
(2012) on A�n, without exploiting the additional structure present in A�n.

Why the First-Order Approach is not Enough: Note that A�n ∈ Rpn×q matrix relates
topics to n-tuples of words. Thus, the entries of A�n are highly correlated, even if the
original topic-word matrix A is assumed to be randomly generated. It is non-trivial to derive
conditions on A, so that A�n expands. Moreover, we establish that A�n fails to expand
on “small” sets, as required in Anandkumar et al. (2012), when the degrees are sufficiently
different 2. Thus, the first-order approach is highly restrictive in the overcomplete setting.

Incorporating Rank Criterion: Note that A�n is highly structured: the columns of A�n

matrix possess a tensor 3 rank of 1, when n > 1. This can be incorporated in our identifiabil-
ity criteria as follows: we provide conditions under which the sparsest vectors in Col(A�n),
which also possess a tensor rank of 1, are the columns of A�n themselves. This implies
identifiability of a n-persistent topic model, when given access to (2n)th-order moments.
Note that when a small number of columns of A�n are combined, the resulting vector can-
not possess a tensor rank of 1, and thus, we can rule out that such sparse combinations of
columns using the rank criterion. The maximum such number is at least the Kruskal rank 4

of A. Thus, sparse combinations of columns of A (up to the Kruskal rank) can be ruled out
using the rank criterion, and we require expansion on A�n only on large sets of topics (of
size larger than the Kruskal rank). This agrees with the intuition that when the topic-word
matrix A has a larger Kruskal rank, it should be easier to identify A, since the Kruskal rank
is related to the mutual incoherence 5 among the columns of A, see Gandy et al. (2011).

2. For A�n to expand on a set of size s ≥ 2, it is necessary that s ·
(
dmin+n−1

n

)
≥ s+

(
dmax+n−1

n

)
, where dmin

and dmax are the minimum and maximum degrees, and n is the extent of overcompleteness: q = Θ(pn).
When the model is highly overcomplete (large n) and we require small set expansion (small s), the
degrees need to be nearly the same. Thus, it is desirable to impose expansion only on large sets, since
it allows for more degree diversity.

3. When any column of A�n ∈ Rpn×q (of length pn) is reshaped as a nth-order tensor T ∈ Rp×p×···×p, the
tensor T is rank 1.

4. The Kruskal rank is the maximum number k such that every k-subset of columns of A are linearly
independent. Note that the Kruskal rank is equal to the rank of A, when A has full column rank. But
this cannot happen in the overcomplete setting.

5. It is easy to show that krank(A) ≥ (maxi6=j |a>i aj |)−1, where ai, aj are any pair of columns of A. Thus,
higher incoherence leads to a larger kruskal rank.

2648



When are Overcomplete Topic Models Identifiable?

Notion of Perfect n-gram Matching and Final Identifiability Conditions: Thus, we es-
tablish identifiability of overcomplete topic models subject to expansion conditions A�n on
sets of size larger than the Kruskal rank of the topic-word matrix A. However, it is desir-
able to impose transparent and interpretable conditions directly on A for identifiability. We
introduce the notion of perfect n-gram matching on the topic-word bipartite graph, which
ensures that each topic can be uniquely matched to a n-tuple word. This combined with
a lower bound on the Kruskal rank provides the final set of deterministic conditions for
identifiability of the overcomplete topic model. Intuitively, we require that the columns
of A be sparse, while still maintaining a large enough Kruskal rank; in other words, the
topics have to be sparse and have sufficiently diverse word supports. Thus, we establish
identifiability under a set of transparent conditions on the topic-word matrix A, consisting
of perfect n-gram matching condition and a lower bound on the Kruskal rank of A.

Analysis under Random-Structured Topic-Word Matrices: Finally, we establish that the
derived deterministic conditions are satisfied when the topic-word bipartite graph is ran-
domly generated, as long as the degrees satisfy certain lower and upper bounds. Intuitively,
a lower bound on the degrees of the topics is required to have degree concentration on
various subsets so that expansion can occur, while the upper bound is required so that the
Kruskal rank of the topic-word matrix is large enough compared to the sparsity level. Here,
the main technical result is establishing the presence of a perfect n-gram matching in a
random bipartite graph with a wide range of degrees. We present a greedy and a recursive
mechanism for constructing such a n-gram matching for overcomplete models, which can
be relevant even in other settings. For instance, our results imply the presence of a perfect
matching when the edges of a bipartite graph are correlated in a structured manner, as
given by the Khatri-Rao product.

1.3 Related Works

We now summarize some recent related works in the area of identifiability and learning of
latent variable models.

1.3.1 Identifiability, Learning and Applications of Overcomplete Latent
Representations

Many recent works employ unsupervised estimation of overcomplete features for higher level
tasks such classification, e.g. Coates et al. (2011); Le et al. (2011); Deng and Yu (2013);
Bengio et al. (2012), and record huge gains over other approaches in a number of applica-
tions such as speech recognition and computer vision. However, theoretical understanding
regarding learnability or identifiability of overcomplete representations is far more limited.

Overcomplete latent representations have been analyzed in the context of the indepen-
dent components analysis (ICA), where the sources are assumed to be independent, and
the mixing matrix is unknown. In the overcomplete or under-determined regime of the
ICA, there are more sources than sensors. Identifiability and learning of the overcomplete
ICA reduces to the problem of finding an overcomplete candecomp/parafac (CP) tensor
decomposition. The classical result by Kruskal provides conditions for uniqueness of a CP
decomposition (Kruskal, 1976, 1977), with recent extensions to the notion of robust iden-
tifiability (Bhaskara et al., 2013). These results provide conditions for strict identifiability
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of the model, and here, the dimensionality of the latent space is required to be of the same
order as the observed space dimensionality. In contrast, a number of recent works analyze
generic identifiability of overcomplete CP decomposition, which is weaker than strict iden-
tifiability, e.g. Jiang and Sidiropoulos (2004); Lathauwer (2006); Stegeman et al. (June
2006); De Lathauwer et al. (2007); Chiantini and Ottaviani (2012); Bocci et al. (2013);
Chiantini et al. (2013). These works assume that the factors (i.e. the components) of the
CP decomposition are generically drawn and provide conditions for uniqueness. They allow
for the latent dimensionality to be much larger (polynomially larger) than the observed
dimensionality. These results on the uniqueness of CP decompositions also lead to identifi-
ability of other latent variable models, such as latent tree models, e.g. Allman et al. (2009,
Dec. 2012), and the single-topic model, or more generally latent Dirichlet allocation (LDA).
Recently, Goyal et al. (2013) proposed an alternative framework for overcomplete ICA mod-
els based on the eigen-decomposition of the reweighted covariance matrix (or higher order
moments), where the weights are the Fourier coefficients. However, their approach requires
independence of sources (i.e. latent topics in our context), which is not imposed here.

In contrast to the above works dealing with the CP tensor decomposition, we require
uniqueness for a more general class of tensor decompositions, in order to establish identifia-
bility of topic models with arbitrarily correlated topics. We establish that our class of tensor
decomposition is contained in the class of Tucker decompositions which is more general than
CP decomposition. Moreover, we explicitly characterize the effect of the sparsity pattern
of the factors (i.e., the topic-word matrix) on model identifiability, while all the previous
works based on generic identifiability assume fully dense factors (since sparse factors are
not generic). For a general overview of tensor decompositions, see Kolda and Bader (2009);
Landsberg (2012).

1.3.2 Identifiability and Learning of Undercomplete/Over-determined
latent Representations

Much of the theoretical results on identifiability and learning of the latent variable models
are limited to non-singular models, which implies that the latent space dimensionality is at
most the observed dimensionality. We outline some of the recent works below.

The works of Anandkumar et al. (2012,a,b) provide an efficient moment-based approach
for learning topic models, under constraints on the distribution of the topic proportions, e.g.
the single topic model, and more generally latent Dirichlet allocation (LDA). In addition,
the approach can handle a variety of latent variable models such as Gaussian mixtures,
hidden Markov models (HMM) and community models (Anandkumar et al., 2013). The
high-level idea is to reduce the problem of learning of the latent variable model to finding a
CP decomposition of the (suitably adjusted) observed moment tensor. Various approaches
can then be employed to find the CP decomposition. In Anandkumar et al. (2012b), a
tensor power method approach is analyzed and is shown to be an efficient guaranteed
recovery method in the non-degenerate (i.e. undercomplete) setting. Previously, simulta-
neous diagonalization techniques have been employed for solving the CP decomposition,
e.g. Anandkumar et al. (2012); Mossel and Roch (2006); Chang (1996). However, these
techniques fail when the model is overcomplete, as considered here. We note that some
recent techniques, e.g. De Lathauwer et al. (2007), can be employed instead, albeit at a cost
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of higher computational complexity for overcomplete CP tensor decomposition. However,
it is not clear how the sparsity constraints affect the guarantees of such methods. Moreover,
these approaches cannot handle general topic models, where the distribution of the topic
proportions is not limited to these classes (i.e. either single topic or Dirichlet distribution),
and we require tensor decompositions which are more general than the CP decomposition.

There are many other works which consider learning mixture models when multiple
views are available. See Anandkumar et al. (2012) for a detailed description of these works.
Recently, Rabani et al. (2012) consider learning discrete mixtures given a large number of
“views”, and they refer to the number of views as the sampling aperture. They establish
improved recovery results (in terms of `1 bounds) when sufficient number of views are
available (2k − 1 views for a k-component mixture). However, their results are limited to
discrete mixtures or single-topic models, while our setting can handle more general topic
models. Moreover, our approach is different since we incorporate sparsity constraints in the
topic-word distribution. Another series of recent works by Arora et al. (2012a,b) employ
approaches based on non-negative matrix factorization (NMF) to recover the topic-word
matrix. These works allow models with arbitrarily correlated topics, as considered here.
They establish guaranteed learning when every topic has an anchor word, i.e. the word is
uniquely generated from that topic, and does not occur under any other topic. Note that
the anchor-word assumption cannot be satisfied in the overcomplete setting.

Our work is closely related to the work of Anandkumar et al. (2012) which considers
identifiability and learning of topic models under expansion conditions on the topic-word
matrix. The work of Spielman et al. (2012b) considers the problem of dictionary learning,
which is closely related to the setting of Anandkumar et al. (2012), but in addition assumes
that the coefficient matrix is random. However, these works in Anandkumar et al. (2012);
Spielman et al. (2012b) can handle only the under-complete setting, where the number of
topics is less than the dimensionality of the word vocabulary (or the number of dictionary
atoms is less than the number of observations in Spielman et al. (2012b)). We extend these
results to the overcomplete setting by proposing novel higher order expansion conditions on
the topic-word matrix, and also incorporate additional rank constraints present in higher
order moments.

1.3.3 Dictionary Learning/Sparse Coding

Overcomplete representations have been very popular in the context of dictionary learning
or sparse coding. Here, the task is to jointly learn a dictionary as well as a sparse selec-
tion of the dictionary atoms to fit the observed data. There have been Bayesian as well as
frequentist approaches for dictionary learning (Lewicki et al., 1998; Kreutz-Delgado et al.,
2003; Rao and Kreutz-Delgado, 1999). However, the heuristics employed in these works
(Lewicki et al., 1998; Kreutz-Delgado et al., 2003; Rao and Kreutz-Delgado, 1999) have
no performance guarantees. The work of Spielman et al. (2012b) considers learning (un-
dercomplete) dictionaries and provide guaranteed learning under the assumption that the
coefficient matrix is random (distributed as Bernoulli-Gaussian variables). Recent works
in Mehta and Gray (2013); Maurer et al. (2012) provide generalization bounds for predictive
sparse coding, where the goal of the learned representation is to obtain good performance
on some predictive task. This differs from our framework since we do not consider predic-
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tive tasks here, but the task of recovering the underlying latent representation. Hillar and
Sommer (2011) consider the problem of identifiability of sparse coding and establish that
when the dictionary succeeds in reconstructing a certain set of sparse vectors, then there
exists a unique sparse coding, up to permutation and scaling. However, our setting here is
different, since we do not assume that a sparse set of topics occur in each document.

2. Model

We first introduce some notations, and then we provide the persistent topic model.

2.1 Notation

The set {1, 2, . . . , n} is denoted by [n] := {1, 2, . . . , n}. Given a set X = {1, . . . , p}, set
X(n) denotes all ordered n-tuples generated from X. The cardinality of a set S is denoted
by |S|. For any vector u (or matrix U), the support is denoted by Supp(u), and the `0
norm is denoted by ‖u‖0, which corresponds to the number of non-zero entries of u, i.e.,
‖u‖0 := | Supp(u)|. For a vector u ∈ Rq, Diag(u) ∈ Rq×q is the diagonal matrix with vector
u on its diagonal. The column space of a matrix A is denoted by Col(A). Vector ei ∈ Rq
is the i-th basis vector, with the i-th entry equal to 1 and all the others equal to zero. For
A ∈ Rp×q and B ∈ Rm×n, the Kronecker product A⊗B ∈ Rpm×qn is defined as (Golub and
Loan, 2012)

A⊗B =




a11B a12B · · · a1qB
a21B a22B · · · a2qB

...
...

. . .
...

ap1B ap2B · · · apqB


 ,

and for A = [a1|a2| · · · |ar] ∈ Rp×r and B = [b1|b2| · · · |br] ∈ Rm×r, the Khatri-Rao product
A�B ∈ Rpm×r is defined as

A�B = [a1 ⊗ b1|a2 ⊗ b2| · · · |ar ⊗ br] .

2.2 Persistent Topic Model

In this section, the n-persistent topic model is introduced and this imposes an additional
constraint, known as topic persistence on the popular admixture model(Blei et al., 2003;
Pritchard et al., 2000; Nguyen, 2012). The n-persistent topic model reduces to the bag-of-
words admixture model when n = 1.

An admixture model specifies a q-dimensional vector of topic proportions h ∈ ∆q−1 :=
{u ∈ Rq : ui ≥ 0,

∑q
i=1 ui = 1} which generates the observed variables xl ∈ Rp through

vectors a1, . . . , aq ∈ Rp. This collection of vectors ai, i ∈ [q], is referred to as the popula-
tion structure or the topic-word matrix (Nguyen, 2012). For instance, ai is the conditional
distribution of words given topic i. The latent variable h is a q dimensional random vec-
tor h := [h1, . . . , hq]

> known as proportion vector. A prior distribution P (h) over the
probability simplex ∆q−1 characterizes the prior joint distribution over the latent variables
hi, i ∈ [q]. In the topic modeling, this is the prior distribution over the q topics.
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The n-persistent topic model has a three-level multi-view hierarchy in Figure 1. 2rn
number of words (views) are shown in the model for some integer r ≥ 1. In this model, a
common hidden topic is persistent for a sequence of n words {x(j−1)n+1, . . . , x(j−1)n+n}, j ∈
[2r]. Note that the random observed variables (words) are exchangeable within groups of
size n, where n is the persistence level, but are not globally exchangeable.

We now describe a linear representation of the n-persistent topic model, on lines of
Anandkumar et al. (2012b), but with extensions to incorporate persistence. Each random
variable yj , j ∈ [2r], is a discrete valued random variable taking one of the q possibilities
{1, . . . , q}, i.e., yj ∈ [q] for j ∈ [2r]. In the n-persistent model, a single common topic
is chosen for a sequence of n words {x(j−1)n+1, . . . , x(j−1)n+n}, j ∈ [2r], i.e., the topic is
persistent for n successive views. For notational purposes, we equivalently assume that
variables yj , j ∈ [2r], are encoded by the basis vectors ei, i ∈ [q]. Thus, the variable
yj , j ∈ [2r], is

yj = ei ∈ Rq ⇐⇒ the topic of the j-th group of words is i.

Given proportion vector h, topics yj , j ∈ [2r], are independently drawn according to the
conditional expectation

E
[
yj |h

]
= h, j ∈ [2r],

or equivalently Pr
[
yj = ei|h

]
= hi, j ∈ [2r], i ∈ [q].

Finally, at the bottom layer, each observed variable xl for l ∈ [2rn], is a discrete-valued
p-dimensional random variable, where p is the size of word vocabulary. Again, we assume
that variables xl, are encoded by the basis vectors ek, k ∈ [p], such as

xl = ek ∈ Rp ⇐⇒ the l-th word in the document is k.

Given the corresponding topic yj , j ∈ [2r], words xl, l ∈ [2rn], are independently drawn
according to the conditional expectation

E
[
x(j−1)n+k|yj = ei

]
= ai, i ∈ [q], j ∈ [2r], k ∈ [n], (1)

where vectors ai ∈ Rp, i ∈ [q], are the conditional probability distribution vectors. The
matrix A = [a1|a2| · · · |aq] ∈ Rp×q collecting these vectors is the population structure or
topic-word matrix.

The (2rn)-th order moment of observed variables xl ∈ Rp, l ∈ [2rn], for some integer
r ≥ 1, is defined as (in the matrix form) 6

M2rn(x) := E
[
(x1 ⊗ x2 ⊗ · · · ⊗ xrn)(xrn+1 ⊗ xrn+2 ⊗ · · · ⊗ x2rn)>

]
∈ Rp

rn×prn . (2)

We now briefly remind why this matrix corresponds to the (2rn)-th order moment. Let
vectors i := (i1, . . . , irn) and j := (j1, . . . , jrn) index the rows and columns of moment
matrix M2rn(x). Then, from the above definition, the (i, j)-th entry of M2rn(x) is equal to

E [(x1)i1 · · · (xrn)irn(xrn+1)j1 · · · (x2rn)jrn ] ,

6. Vector x is the vector generated by concatenating all vectors xl, l ∈ [2rn].
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which specifies the corresponding (2rn)-th observed moment.
For the n-persistent topic model with 2rn number of observations (words) xl, l ∈ [2rn],

the corresponding moment is denoted by M
(n)
2rn(x). Note that to estimate the (2rn)th mo-

ment, we require a minimum of 2rn words in each document. We can select the first 2rn
words in each document, and average over the different documents to obtain a consistent
estimate of the moment. In this paper, we consider the problem of identifiability when
exact moments are available.

The moment characterization of the n-persistent topic model is provided in Lemma 2 in

Section 4.1. Given M
(n)
2rn(x), what are the sufficient conditions under which the population

structure A is identifiable? This is answered in Section 3.

Remark 1 Note that our results are valid for the more general linear model xl = Ayj (more
precisely, x(j−1)n+k = Ayj , j ∈ [2r], k ∈ [n]), i.e., each column of matrix A does not need to
be a valid probability distribution. Furthermore, the observed random variables xl, can be
continuous while the hidden ones yj are assumed to be discrete.

3. Sufficient Conditions for Generic Identifiability

In this section, the identifiability result for the n-persistent topic model with access to
(2n)-th order observed moment is provided. First, sufficient deterministic conditions on the
population structure A are provided for identifiability in Theorem 9. Next, the deterministic
analysis is specialized to a random structured model in Theorem 15.

We now make the notion of identifiability precise. As defined in literature, (strict) identi-
fiability means that the population structure A can be uniquely recovered up to permutation
and scaling for all A ∈ Rp×q. Instead, we consider a more relaxed notion of identifiability,
known as generic identifiability.

Definition 2 (Generic identifiability) We refer to a matrix A ∈ Rp×q as generic, with
a fixed sparsity pattern when the nonzero entries of A are drawn from a distribution which is
absolutely continuous with respect to Lebesgue measure 7. For a given sparsity pattern, the
class of population structure matrices is said to be generically identifiable (Allman et al.,
Dec. 2012), if all the non-identifiable matrices form a set of Lebesgue measure zero.

The (2r)-th order moment of hidden variables h ∈ Rq, denoted by M2r(h) ∈ Rqr×qr , is
defined as

M2r(h) := E
[( r terms︷ ︸︸ ︷
h⊗ · · · ⊗ h

)( r terms︷ ︸︸ ︷
h⊗ · · · ⊗ h

)>]
∈ Rq

r×qr . (3)

We now provide a set of sufficient conditions for generic identifiability of structured topic
models given (2rn)-th order observed moment. We first start with a natural assumption on
the hidden variables.

Condition 1 (Non-degeneracy) The (2r)-th order moment of hidden variables h ∈ Rq,
defined in equation (3), is full rank (non-degeneracy of hidden nodes).

7. As an equivalent definition, if the non-zero entries of an arbitrary sparse matrix are independently
perturbed with noise drawn from a continuous distribution to generate A, then A is called generic.
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Note that there is no hope of distinguishing distinct hidden nodes without this non-degeneracy
assumption. We do not impose any other assumption on hidden variables and can incorpo-
rate arbitrarily correlated topics.

Furthermore, we can only hope to identify the population structure A up to scaling and
permutation. Therefore, we can identify A up to a canonical form defined as:

Definition 3 (Canonical form) Population structure A is said to be in canonical form
if all of its columns have unit norm.

3.1 Deterministic Conditions for Generic Identifiability

In this section, we consider a fixed sparsity pattern on the population structure A and
establish generic identifiability when non-zero entries of A are drawn from some continuous
distribution. Before providing the main result, a generalized notion of (perfect) matching
for bipartite graphs is defined. We subsequently impose these conditions on the bipartite
graph from topics to words which encodes the sparsity pattern of population structure A.

3.1.1 Generalized Matching for Bipartite Graphs

A bipartite graph with two disjoint vertex sets Y and X and an edge set E between them
is denoted by G(Y,X;E). Given the bi-adjacency matrix A, the notation G(Y,X;A) is also
used to denote a bipartite graph. Here, the rows and columns of matrix A ∈ R|X|×|Y | are
respectively indexed by X and Y vertex sets. For any subset S ⊆ Y , the set of neighbors of
vertices in S with respect to A is defined as NA(S) := {i ∈ X : Aij 6= 0 for some j ∈ S},
or equivalently, NE(S) := {i ∈ X : (j, i) ∈ E for some j ∈ S} with respect to edge set E.

Here, we define a generalized notion of matching for a bipartite graph and refer to it as
n-gram matching.

Definition 4 ((Perfect) n-gram matching) A n-gram matching M for a bipartite graph
G(Y,X;E) is a subset of edges M ⊆ E which satisfies the following conditions. First,
for any j ∈ Y , we have |NM (j)| ≤ n. Second, for any j1, j2 ∈ Y, j1 6= j2, we have
min{|NM (j1)|, |NM (j2)|} > |NM (j1) ∩NM (j2)|.

A perfect n-gram matching or Y -saturating n-gram matching for the bipartite graph
G(Y,X;E) is a n-gram matching M in which each vertex in Y is exactly connected to n
edges in M .

In words, in a n-gram matching M , each vertex j ∈ Y is at most connected to n
edges in M and for any pair of vertices in Y (j1, j2 ∈ Y, j1 6= j2), there exists at least one
non-common neighbor in set X for each of them (j1 and j2).

As an example, a bipartite graph G(Y,X;E) with |X| = 4 and |Y | = 6 is shown in
Figure 2 for which the edge set E itself is a perfect 2-gram matching.

We also define the following definition of a n-gram matrix.

Definition 5 (n-gram Matrix) Given a matrix A ∈ Rp×q, its n-gram matrix A�n ∈
Rpn×q is defined as the matrix whose (i, j)-th entry is given by, for i := (i1, i2, . . . , in) ∈ [p]n

and j ∈ [q],

A�n(i, j) := Ai1,jAi2,j · · ·Ain,j , or A�n :=

n times︷ ︸︸ ︷
A� · · · �A .
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Y

X

Figure 2: A bipartite graph G(Y, X ; E) with |X | = 4 and |Y | = 6 where the edge set E itself is a
perfect 2-gram matching.

Definition 3 (Canonical form) Population structure A is said to be in canonical form
if all of its columns have unit norm.

3.1 Deterministic Conditions for Generic Identifiability

In this section, we consider a fixed sparsity pattern on the population structure A and
establish generic identifiability when non-zero entries of A are drawn from some continuous
distribution. Before providing the main result, a generalized notion of (perfect) matching
for bipartite graphs is defined. We subsequently impose these conditions on the bipartite
graph from topics to words which encodes the sparsity pattern of population structure A.

3.1.1 Generalized Matching for Bipartite Graphs

A bipartite graph with two disjoint vertex sets Y and X and an edge set E between them
is denoted by G(Y,X;E). Given the bi-adjacency matrix A, the notation G(Y,X;A) is also
used to denote a bipartite graph. Here, the rows and columns of matrix A ∈ R|X|×|Y | are
respectively indexed by X and Y vertex sets. For any subset S ⊆ Y , the set of neighbors of
vertices in S with respect to A is defined as NA(S) := {i ∈ X : Aij #= 0 for some j ∈ S},
or equivalently, NE(S) := {i ∈ X : (j, i) ∈ E for some j ∈ S} with respect to edge set E.

Here, we define a generalized notion of matching for a bipartite graph and refer to it as
n-gram matching.

Definition 4 ((Perfect) n-gram matching) A n-gram matching M for a bipartite graph
G(Y,X;E) is a subset of edges M ⊆ E which satisfies the following conditions. First,
for any j ∈ Y , we have |NM (j)| ≤ n. Second, for any j1, j2 ∈ Y, j1 #= j2, we have
min{|NM (j1)|, |NM (j2)|} > |NM (j1) ∩ NM (j2)|.

A perfect n-gram matching or Y -saturating n-gram matching for the bipartite graph
G(Y,X;E) is a n-gram matching M in which each vertex in Y is exactly connected to n
edges in M .

In words, in a n-gram matching M , each vertex j ∈ Y is at most connected to n
edges in M and for any pair of vertices in Y (j1, j2 ∈ Y, j1 #= j2), there exists at least one
non-common neighbor in set X for each of them (j1 and j2).

As an example, a bipartite graph G(Y,X;E) with |X| = 4 and |Y | = 6 is shown in
Figure 2 for which the edge set E itself is a perfect 2-gram matching.

We also define the following definition of a n-gram matrix.

Definition 5 (n-gram Matrix) Given a matrix A ∈ Rp×q, its n-gram matrix A"n ∈
Rpn×q is defined as the matrix whose (i, j)-th entry is given by, for i := (i1, i2, . . . , in) ∈ [p]n
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Figure 2: A bipartite graph G(Y,X;E) with |X| = 4 and |Y | = 6 where the edge set E itself is a
perfect 2-gram matching.

That is, A�n is the column-wise nth order Kronecker product of n copies of A, and is known
as the Khatri-Rao product (Golub and Loan, 2012). Given bipartite graph G(Y,X;A),
the notation G(Y,X(n);A�n) is also used to denote the bipartite graph corresponding to
bi-adjacency matrix A�n. Here X(n) denotes all ordered n-tuples generated from elements
of set X which indexes the rows of A�n.

The above two definitions might seem unrelated at the first glance, but the following
lemma connects them where an interesting property is stated relating the existence of perfect
matching in G(Y,X(n);A�n) to the existence of perfect n-gram matching in G(Y,X;A).
This property is also the original motivation behind defining such notion of generalized
matching.

Lemma 1 If G(Y,X;A) has a perfect n-gram matching, then G(Y,X(n);A�n) has a perfect
matching. In the other direction, if G(Y,X(n);A�n) has a perfect matching M�n, then
G(Y,X;A) has a perfect n-gram matching under the following condition on M�n. All the
matching edges (j, (i1, . . . , in)) ∈ M�n should satisfy i1 6= i2 6= · · · 6= in for all j ∈ Y . In
words, the matching edges should be connected to nodes in X(n), which are indexed by tuples
of distinct indices.

See Appendix A.4 for the proof.
We also provide more discussions and remarks on the n-gram matching as follows.

Remark 6 (Relationship to other matchings) The relationship of n-gram matching
to other types of matchings is discussed below.

• Regular matching: For special case n = 1, the (perfect) n-gram matching reduces to
the usual (perfect) matching for bipartite graphs.

• b-matching: For a bipartite graph G(Y,X;E), a b-matching for vertices in Y is a
subset of edges Mb ⊆ E, where each vertex in Y is connected to b edges. Comparing
with the proposed perfect (Y -saturating) b-gram matching, b-matching does not enforce
that the set of neighbors be different.

Remark 7 (Necessary size bound) Consider a bipartite graph G(Y,X;E) with |Y | = q
and |X| = p which has a perfect n-gram matching. Note that there are

(
p
n

)
n-combinations on

X side and each combination can at most have one neighbor (a node in Y which is connected
to all nodes in the combination) through the matching, and therefore we necessarily have
q ≤

(
p
n

)
.
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Finally, note that the existence of perfect n-gram matching results in the existence of
perfect (n+1)-gram matching 8, but the reverse is not true. For example, the bipartite graph
G(Y,X;E) with |X| = 4 and |Y | =

(
4
2

)
= 6 in Figure 2, has a perfect 2-gram matching, but

not a perfect (1-gram) matching (since 6 > 4).

3.1.2 Identifiability Conditions Based on Existence of Perfect n-gram
Matching in Topic-word Graph

Now, we are ready to propose the identifiability conditions and result.

Condition 2 (Perfect n-gram matching on A) The bipartite graph G(Vh, Vo;A) between
hidden and observed variables, has a perfect n-gram matching 9.

The above condition implies that the sparsity pattern of matrix A is appropriately
scattered in the mapping from hidden to observed variables to be identifiable. Intuitively, it
means that every hidden node can be distinguished from another hidden node by its unique
set of neighbors under the corresponding n-gram matching.

Furthermore, condition 2 is the key to be able to propose identifiability in the overcom-
plete regime. As stated in the size bound in Remark 7, for n ≥ 2, the number of hidden
variables can be more than the number of observed variables and we can still have perfect
n-gram matching.

Definition 8 (Kruskal rank, (Kruskal, 1977)) The Kruskal rank or the krank of ma-
trix A is defined as the maximum number k such that every subset of k columns of A is
linearly independent.

Note that krank is different from the general notion of matrix rank and it is a lower
bound for the matrix rank, i.e., Rank(A) ≥ krank(A).

Condition 3 (Krank condition on A) The Kruskal rank of matrix A satisfies the bound
krank(A) ≥ dmax(A)n, where dmax(A) is the maximum node degree of any column of A, i.e.,
dmax(A) := maxi∈[q] ‖Aei‖0. Here n is the same as parameter n in Condition 2.

In the overcomplete regime, it is not possible forA to be full column rank and krank(A) <
|Vh| = q. However, note that a large enough krank ensures that appropriate sized subsets of
columns of A are linearly independent. For instance, when krank(A) > 1, any two columns
cannot be collinear and the above condition rules out the collinear case for identifiability. In
the above condition, we see that a larger krank can incorporate denser connections between
topics and words.

On the other hand, the bound in Condition 3 imposes sparsity on the columns of topic-
word matrix as dmax(A) ≤ krank(A)1/n. Under such sparsity constraint, each topic (index-

8. Note that the degree of each node (on matching side Y ) in the original bipartite graph should be at least
n+ 1.

9. Parameter n in all of the conditions refer to the same parameter n as the persistence level of the model.
Note that we are considering the n-persistent topic model proposed in Section 2.
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ing the columns of A) is supported on a specific set of words which enables us to distinguish
between different topics and identify the model. But, it seems that this bound is not tight10.

The main identifiability result under a fixed graph structure is stated in the following
theorem for n ≥ 2, where n is the topic persistence level. The identifiability result relies on
having access to the (2rn)-th order moment of observed variables xl, l ∈ [2rn], defined in
equation (2) as

M2rn(x) := E
[
(x1 ⊗ x2 ⊗ · · · ⊗ xrn)(xrn+1 ⊗ xrn+2 ⊗ · · · ⊗ x2rn)>

]
∈ Rp

rn×prn ,

for some integer r ≥ 1.

Theorem 9 (Generic identifiability under deterministic topic-word graph structure)

Let M
(n)
2rn(x) in equation (2) be the (2rn)-th order observed moment of the n-persistent topic

model for some integer r ≥ 1. If the model satisfies conditions 1, 2 and 3, then, for any

n ≥ 2, all the columns of population structure A are generically identifiable from M
(n)
2rn(x).

Furthermore, the (2r)-th order moment of the hidden variables, denoted by M2r(h), is also
generically identifiable.

The theorem is proved in Appendix A. It is seen that the population structure A is iden-
tifiable, given any observed moment of order at least 2n. Increasing the order of observed
moment results in identifying higher order moments of the hidden variables.

The above theorem does not cover the case when the persistence level n = 1. This is the
usual bag-of-words admixture model. Identifiability of this model has been studied earlier
in Anandkumar et al. (2012) and we recall it below.

Remark 10 (Bag-of-words admixture model, (Anandkumar et al., 2012)) Given (2r)-
th order observed moments with r ≥ 1, the structure of the popular bag-of-words admixture
model and the (2r)-th order moment of hidden variables are identifiable, when A is full
column rank and the following expansion condition holds (Anandkumar et al., 2012)

|NA(S)| ≥ |S|+ dmax(A), ∀S ⊆ Vh, |S| ≥ 2. (4)

Our result for n ≥ 2 in Theorem 9, provides identifiability in the overcomplete regime with
weaker matching condition 2 and krank condition 3. The matching condition 2 is weaker
than the above expansion condition which is based on the perfect matching and hence, does
not allow overcomplete models. Furthermore, the above result for the bag-of-words admixture
model requires full column rank of A which is more stringent than our krank condition 3.

Remark 11 (Kruskal rank and degree diversity) Condition 3 requires that the Kruskal
rank of the topic-word matrix be large enough compared to the maximum degree of the top-
ics. Intuitively, a larger Kruskal rank ensures enough diversity in the word supports among
different topics under a higher level of sparsity. This Kruskal rank condition also allows
for more degree diversity among the topics, when the topic persistence level n > 1. On

10. The looseness originates from bound (37) as
∣∣∣NA�n

Rest.
(S)
∣∣∣ ≥ |NA(S)| + |S| in the proof. See Defini-

tions 5 and 25 for the definition of A�n
Rest.. Note that many terms in this lower bound on

∣∣∣NA�n
Rest.

(S)
∣∣∣

are ignored which leads to a loose bound that might be improved.
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the other hand, for the bag-of-words model (n = 1), using (4) implies that 2dmin > dmax,
where dmin, dmax are the minimum and maximum degrees of the topics. Thus, we provide
identifiability results with more degree diversity when higher order moments are employed.

Remark 12 (Recovery using `1 optimization) It turns out that our conditions for iden-
tifiability imply that the columns of the n-gram matrix A�n, defined in Definition 5, are the

sparsest vectors in Col
(
M

(n)
2n (x)

)
, having a tensor rank of one. See Appendix A. This im-

plies recovery of the columns of A through exhaustive search, which is not efficient. On
the other hand, efficient `1-based recovery algorithms have been analyzed in Spielman et al.
(2012a); Anandkumar et al. (2012) for the undercomplete case (n = 1). They can be em-
ployed here for recovery from higher order moments as well. Exploiting additional structure
present in A�n, for n > 1, such as rank-1 test devices proposed in De Lathauwer et al.
(2007) are interesting avenues for future investigation.

In Theorem 9, we provide our identifiability result for the overcomplete topic-word
matrix A under topic persistent model. The result for the bag-of-words admixture model
is also reviewed in Remark 10 under the assumption that A is full column rank. In the
following corollary, we provide the strong identifiability result for the full column rank
topic-word matrix under the topic persistent model.

Corollary 13 (Identifiability for undercomplete topic-word matrix) Let M
(n)
2rn(x) in

equation (2) be the (2rn)-th order observed moment of the n-persistent topic model for some
integer r ≥ 1. If the model satisfies condition 1, and in addition A is full column rank,
then for any n ≥ 2, all the columns of population structure A are generically identifiable

from M
(n)
2rn(x). Furthermore, the (2r)-th order moment of the hidden variables, denoted by

M2r(h), is also generically identifiable.

Comparing to Theorem 9 and Remark 10, the expansion (and krank) conditions are not
required in the above result which is a huge relaxation. The reason is both undercomplete
regime and topic persistence are assumed here which relaxes the other conditions. Note
that the assumptions that topic persists with persistence n ≥ 2, and the topic-word matrix
is full column rank (and therefore undercomplete) is reasonable in many applications.

3.2 Analysis Under Random Topic-word Graph Structures

In this section, we specialize the identifiability result to the random case. This result is based
on more transparent conditions on the size and the degree of the random bipartite graph
G(Vh, Vo;A). We consider the random model where in the bipartite graph G(Vh, Vo;A),
each node i ∈ Vh is randomly connected to di different nodes in set Vo. Note that this is a
heterogeneous degree model.

Furthermore, the random identifiability result is provided with high probability which
is defined as follows.

Definition 14 (whp) A sequence of events Ep (depending on size parameter p) occurs with
high probability (whp) if Pr(Ep) = 1−O(p−ε) for some ε > 0.

Condition 4 (Size condition) The random bipartite graph G(Vh, Vo;A) with |Vh| = q, |Vo| =
p, and A ∈ Rp×q, satisfies the size condition q ≤

(
c pn
)n

for some constant 0 < c < 1.
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Parameter Representing

p dimension of observed variables
q dimension of hidden variables
n persistence level
c size ratio such that q ≤

(
c pn
)n

α, β
Constants for lower bound on degree
such that dmin ≥ max{1 + β log p, α log p}

Table 1: Table of parameters.

This size condition is required to establish that the random bipartite graph has a perfect
n-gram matching (and hence satisfies deterministic condition 2). It is shown in Section
5.2.1 that the necessary size constraint q = O(pn) stated in Remark 7, is achieved in the
random case. Thus, the above constraint allows for the overcomplete regime, where q � p
for n ≥ 2, and is tight.

Condition 5 (Degree condition) In the random bipartite graph G(Vh, Vo;A) with |Vh| =
q, |Vo| = p, and A ∈ Rp×q, the degree di of nodes i ∈ Vh satisfies the following lower and
upper bounds (di ∈ [dmin, dmax]):

• Lower bound: dmin ≥ max{1 + β log p, α log p} for some constants β > n−1
log 1/c , α >

max
{

2n2
(
β log 1

c + 1
)
, 2βn

}
.

• Upper bound: dmax ≤ (cp)
1
n .

Intuitively, the lower bound on the degree is required to show that the corresponding bi-
partite graph G(Vh, Vo;A) has sufficient number of random edges to ensure that it has
perfect n-gram matching with high probability. The upper bound on the degree is mainly
required to satisfy the krank condition 3, where dmax(A)n ≤ krank(A). As discussed after
Condition 3, this upper bound is not tight.

It is important to see that, for n ≥ 2, the above condition on degree covers a range of
models from sparse to intermediate regimes and it is reasonable in a number of applications
that each topic does not generate a very large number of words.

The proposed parameters in Conditions 4 and 5 are summarized in Table 1.

The main random identifiability result is stated in the following theorem for n ≥ 2, while
n = 1 case is addressed in Remark 17. The identifiability result relies on having access to
the (2rn)-th order moment of observed variables xl, l ∈ [2rn], defined in equation (2) as

M2rn(x) := E
[
(x1 ⊗ x2 ⊗ · · · ⊗ xrn)(xrn+1 ⊗ xrn+2 ⊗ · · · ⊗ x2rn)>

]
∈ Rp

rn×prn ,

for some integer r ≥ 1.

Probability rate constants: The probability rate of success in the following random iden-
tifiability result is specified by constants β′ > 0 and γ = γ1 + γ2 > 0 as

β′ = −β log c− n+ 1, (5)
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γ1 = en−1
( c

nn−1
+

e2

1− δ1
nβ
′+1
)
, (6)

γ2 =
cn−1e2

nn(1− δ2)
, (7)

where δ1 and δ2 are some constants satisfying e2
(
p
n

)−β log 1/c
< δ1 < 1 and cn−1e2

nn p−β
′
<

δ2 < 1.

Theorem 15 (Random identifiability) Let M
(n)
2rn(x) in equation (2) be the (2rn)-th or-

der observed moment of the n-persistent topic model for some integer r ≥ 1. If the model
with random population structure A satisfies conditions 1, 4 and 5, then whp (with proba-
bility at least 1− γp−β′ for constants β′ > 0 and γ > 0, specified in (5)-(7)), for any n ≥ 2,

all the columns of population structure A are identifiable from M
(n)
2rn(x). Furthermore, the

(2r)-th order moment of hidden variables, denoted by M2r(h), is also identifiable, whp.

The theorem is proved in Appendix B. Similar to the deterministic analysis, it is seen
that the population structure A is identifiable given any observed moment with order at
least 2n. Increasing the order of observed moment results in identifying higher order mo-
ments of the hidden variables.

Remark 16 (Trade-off between topic-word size ratio and degree) When the num-
ber of hidden variables increases, i.e. c increases, but the order n is kept fixed, the bounds
on degree in condition 5 also needs to grow. Intuitively, a larger degree is needed to provide
more flexibility in choosing the subsets of neighbors for hidden nodes to ensure the existence
of a perfect n-gram matching in the bipartite graph, which in turn ensures identifiability.
Note that as c grows, the parameter β, which is the lower bound on d also grows, and the
probability rate (i.e., the term −β log c) remains constant. Hence, the probability rate does
not change as c increases, since the increase in the degree d compensates the additional
“difficulty” arising due to a larger number of hidden variables.

The above identifiability theorem only covers for n ≥ 2 and the n = 1 case is addressed in
the following remark.

Remark 17 (Bag-of-words admixture model) The identifiability result for the ran-
dom bag-of-words admixture model is comparable to the result in Spielman et al. (2012a),
which considers exact recovery of sparsely-used dictionaries. They assume that Y = DX
is given for some unknown arbitrary dictionary D ∈ Rq×q and unknown random sparse
coefficient matrix X ∈ Rq×p. They establish that if D ∈ Rq×q is full rank and the random
sparse coefficient matrix X ∈ Rq×p follows the Bernoulli-subgaussian model with size con-
straint p > Cq log q and degree constraint O(log q) < E[d] < O(q log q), then the model is
identifiable, whp. Comparing the size and degree constraints, our identifiability result for
n ≥ 2 requires more stringent upper bound on the degree (d = O(p1/n)), while more relaxed
condition on the size (q = O(pn)) which allows to identifiability in the overcomplete regime.
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Remark 18 (The size condition is tight) The size bound q = O(pn) in the above theo-
rem achieves the necessary condition that q ≤

(
p
n

)
= O(pn) (see Remark 7), and is therefore

tight. The sufficiency is argued in Theorem 22, where we show that the matching condition
2 holds under the above size and degree conditions 4 and 5.

As in the deterministic case, we finish this section by providing random identifiability
result for the full column rank topic-word matrix under the topic persistent model.

Corollary 19 (Random identifiability for undercomplete topic-word matrix) Let

M
(n)
2rn(x) in equation (2) be the (2rn)-th order observed moment of the n-persistent topic

model for some integer r ≥ 1. If the model with random population structure A ∈ Rp×q
satisfies condition 1, size condition q ≤ cp for some constant 0 < c < 1 and the degree
condition dmin ≥ 1 + β log p for some constant β > 0, then whp (with probability at least
1−O(z−β log 1/c) where β log 1

c > 0), for any n ≥ 2, all the columns of population structure A

are identifiable from M
(n)
2rn(x). Furthermore, the (2r)-th order moment of hidden variables,

denoted by M2r(h), is also identifiable, whp.

Comparing to Theorem 15, the upper bound on the degree (sparsity constraint) is not
required in the above result which is a huge relaxation.

4. Identifiability via Uniqueness of Tensor Decompositions

In this section, we characterize the moments of the n-persistent topic model in terms of
the model parameters, i.e. the topic-word matrix A and the moment of hidden variables.
We relate identifiability of the topic model to uniqueness of a certain class of tensor de-
compositions, which in turn, enables us to prove Theorems 9 and 15. We then discuss the
special cases of the persistent topic model, viz., the single topic model (infinite-persistent
topic model) and the bag-of-words admixture model (1-persistent topic model).

4.1 Moment Characterization of the Persistent Topic Model

In the following lemma, which is proved in Appendix A.2, we characterize the observed
moments of a persistent topic model. Throughout this section, the order of the observed
moment is fixed to 2m.

Lemma 2 (n-persistent topic model moment characterization) The (2m)-th order
moment of observed variables, defined in equation (2), for the n-persistent topic model is
characterized as 11:

• if m = rn, for some integer r ≥ 1, then

M
(n)
2m (x) =

( r times︷ ︸︸ ︷
A�n ⊗ · · · ⊗A�n

)
M2r(h)

( r times︷ ︸︸ ︷
A�n ⊗ · · · ⊗A�n

)>
, (8)

where M2r(h) ∈ Rqr×qr is the (2r)-th order moment of hidden variables h ∈ Rq,
defined in equation (3), and the n-gram matrix A�n is defined in Definition 5.

11. The other cases not covered in Lemma 2 are deferred to Appendix A.2. See Remark 30.
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Figure 3: Hierarchical structure of the single topic model and bag-of-words admixture model shown
for 2m number of words (views).

the persistence level is large enough compared to the order of the moment (n ≥ 2m), the
moment form reduces to a Khatri-Rao product form in (9). Moreover, in (9), we have a diag-
onal matrix M1(h) instead of a general (dense) matrix M2r(h) in (8), when n < 2m = 2rn.
Thus, we have a more succinct representation of the moments in (9) when the persistence
level of the topics is large enough.

In the following, we contrast the special cases when the persistence level n is n → ∞
(single topic model) and n = 1 (bag of words admixture model), as shown in Fig.3a and
Fig.3b. In order to have a fair comparison, the number of observed variables is fixed to 2m
and the persistence level is varied.

Single topic model (n → ∞): The condition in (9) (n ≥ 2m) is always satisfied for the
single-topic model, since n → ∞ in this case, and we have

M
(∞)
2m (x) =

(
A"m

)
M1(h)

(
A"m

)#
. (10)

Note that M1(h) is a diagonal matrix.
Bag-of-words admixture model (n = 1): From Lemma 2, the (2m)-th order moment of

observed variables xl, l ∈ [2m], for the bag-of-words admixture model (1-persistent topic
model), shown in Figure 3b, is given by

M
(1)
2m(x) =

( m times︷ ︸︸ ︷
A ⊗ · · · ⊗ A

)
M2m(h)

( m times︷ ︸︸ ︷
A ⊗ · · · ⊗ A

)#
, (11)

where M2m(h) ∈ Rqm×qm
is the (2m)-th order moment of hidden variables h ∈ Rq, defined

in (3). Note that M2m(h) is a full matrix in general.
Contrasting single topic (n → ∞) and bag of words models (n = 1): Comparing equa-

tions (10) and (11), it is seen that the moments under the single topic model in (10) are
more “structured” compared to the bag of words model in (11). In (11), we have Kronecker
products of the topic-word matrix A, while (10) involves Khatri-Rao products of A. This
forms a crucial criterion in determining of whether overcomplete models are identifiable, as
discussed below.

Why does persistence help in identifiability of overcomplete models? For simplicity, let
the order of the moment 2m = 4. The equations (10) and (11) reduce to

M
(∞)
4 (x) = (A & A)Diag

(
E

[
h]

)
(A & A)#, (12)

21
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the persistence level is large enough compared to the order of the moment (n ≥ 2m), the
moment form reduces to a Khatri-Rao product form in (9). Moreover, in (9), we have a diag-
onal matrix M1(h) instead of a general (dense) matrix M2r(h) in (8), when n < 2m = 2rn.
Thus, we have a more succinct representation of the moments in (9) when the persistence
level of the topics is large enough.

In the following, we contrast the special cases when the persistence level n is n → ∞
(single topic model) and n = 1 (bag of words admixture model), as shown in Fig.3a and
Fig.3b. In order to have a fair comparison, the number of observed variables is fixed to 2m
and the persistence level is varied.

Single topic model (n → ∞): The condition in (9) (n ≥ 2m) is always satisfied for the
single-topic model, since n → ∞ in this case, and we have

M
(∞)
2m (x) =

(
A"m

)
M1(h)

(
A"m

)#
. (10)

Note that M1(h) is a diagonal matrix.
Bag-of-words admixture model (n = 1): From Lemma 2, the (2m)-th order moment of

observed variables xl, l ∈ [2m], for the bag-of-words admixture model (1-persistent topic
model), shown in Figure 3b, is given by

M
(1)
2m(x) =

( m times︷ ︸︸ ︷
A ⊗ · · · ⊗ A

)
M2m(h)

( m times︷ ︸︸ ︷
A ⊗ · · · ⊗ A

)#
, (11)

where M2m(h) ∈ Rqm×qm
is the (2m)-th order moment of hidden variables h ∈ Rq, defined

in (3). Note that M2m(h) is a full matrix in general.
Contrasting single topic (n → ∞) and bag of words models (n = 1): Comparing equa-

tions (10) and (11), it is seen that the moments under the single topic model in (10) are
more “structured” compared to the bag of words model in (11). In (11), we have Kronecker
products of the topic-word matrix A, while (10) involves Khatri-Rao products of A. This
forms a crucial criterion in determining of whether overcomplete models are identifiable, as
discussed below.

Why does persistence help in identifiability of overcomplete models? For simplicity, let
the order of the moment 2m = 4. The equations (10) and (11) reduce to

M
(∞)
4 (x) = (A & A)Diag

(
E

[
h]

)
(A & A)#, (12)

21
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Figure 3: Hierarchical structure of the single topic model and bag-of-words admixture model shown
for 2m number of words (views).

• If n ≥ 2m, then

M
(n)
2m (x) =

(
A�m

)
M1(h)

(
A�m

)>
, (9)

where M1(h) := Diag(E[h]) ∈ Rq×q is the first order moment of hidden variables
h ∈ Rq, stacked in a diagonal matrix.

Thus, we see that the observed moments can be expressed in terms of the hidden mo-
ments M(h) and the Kronecker products of the n-gram matrices. In the special case, when
the persistence level is large enough compared to the order of the moment (n ≥ 2m), the
moment form reduces to a Khatri-Rao product form in (9). Moreover, in (9), we have a diag-
onal matrix M1(h) instead of a general (dense) matrix M2r(h) in (8), when n < 2m = 2rn.
Thus, we have a more succinct representation of the moments in (9) when the persistence
level of the topics is large enough.

In the following, we contrast the special cases when the persistence level n is n → ∞
(single topic model) and n = 1 (bag of words admixture model), as shown in Fig.3a and
Fig.3b. In order to have a fair comparison, the number of observed variables is fixed to 2m
and the persistence level is varied.

Single topic model (n → ∞): The condition in (9) (n ≥ 2m) is always satisfied for the
single-topic model, since n→∞ in this case, and we have

M
(∞)
2m (x) =

(
A�m

)
M1(h)

(
A�m

)>
. (10)

Note that M1(h) is a diagonal matrix.
Bag-of-words admixture model (n = 1): From Lemma 2, the (2m)-th order moment of

observed variables xl, l ∈ [2m], for the bag-of-words admixture model (1-persistent topic
model), shown in Figure 3b, is given by

M
(1)
2m(x) =

( m times︷ ︸︸ ︷
A⊗ · · · ⊗A

)
M2m(h)

( m times︷ ︸︸ ︷
A⊗ · · · ⊗A

)>
, (11)

where M2m(h) ∈ Rqm×qm is the (2m)-th order moment of hidden variables h ∈ Rq, defined
in (3). Note that M2m(h) is a full matrix in general.
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Contrasting single topic (n → ∞) and bag of words models (n = 1): Comparing equa-
tions (10) and (11), it is seen that the moments under the single topic model in (10) are
more “structured” compared to the bag of words model in (11). In (11), we have Kronecker
products of the topic-word matrix A, while (10) involves Khatri-Rao products of A. This
forms a crucial criterion in determining of whether overcomplete models are identifiable, as
discussed below.

Why does persistence help in identifiability of overcomplete models? For simplicity, let
the order of the moment 2m = 4. The equations (10) and (11) reduce to

M
(∞)
4 (x) = (A�A) Diag

(
E
[
h]
)

(A�A)>, (12)

M
(1)
4 (x) = (A⊗A)E

[
(h⊗ h)(h⊗ h)>

]
(A⊗A)>. (13)

Note that for the single topic model in (12), the Khatri-Rao product matrix A�A ∈ Rp2×q
has the same as the number of columns (i.e. the latent dimensionality) of the original
matrix A, while the number of rows (i.e. the observed dimensionality) is increased. Thus,
the Khatri-Rao product “expands” the effect of hidden variables to higher order observed
variables, which is the key towards identifying overcomplete models. In other words, the
original overcomplete representation becomes determined due to the ‘expansion effect’ of
the Khatri-Rao product structure of the higher order observed moments.

On the other hand, in the bag-of-words admixture model in (13), this interesting ‘expan-
sion property’ does not occur, and we have the Kronecker product A⊗A ∈ Rp2×q2 , in place
of the Khatri-Rao products. The Kronecker product operation increases both the number
of the columns (i.e. latent dimensionality) and the number of rows (i.e. observed dimen-
sionality), which implies that higher order moments do not help in identifying overcomplete
models.

An example is provided in Figure 4 which helps to see how the matrices A � A and
A⊗A behave differently in terms of mapping topics to word tuples.

Note that for the n-persistent model, for n = 2, the 4th order moment reduces to

M
(2)
4 (x) = (A�A)E

[
hh>](A�A)>. (14)

Contrasting the above equation with (12) and (13), we find that the 2-persistent model
retains the desirable property of possessing Khatri-Rao products, while being more general
than the form for single topic model in (12). This key property enables us to establish
identifiability of topic models with finite persistence levels.

4.2 Tensor Algebra of the Moments

In Section 4.1, we provided a representation of the moment forms in the matrix form. We
now provide the equivalent tensor representation of the moments. The tensor representation
is more compact and transparent, and allows us to compare the topic models under different
levels of persistence. We compare the derived tensor form with the well-known Tucker and
CP decompositions. We first introduce some tensor notations and definitions.

4.2.1 Tensor Notations and Definitions

A real-valued order-n tensor A ∈ ⊗n
i=1Rpi := Rp1×···×pn is a n dimensional array A(1 :

p1, . . . , 1 : pn), where the i-th mode is indexed from 1 to pi. In this paper, we restrict
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Figure 4: An example of an overcomplete matrix A and the matrices A " A and A ⊗ A. The
corresponding bipartite graphs encode the sparsity pattern of each of the matrices. A " A expands
the effect of hidden variables to second order observed variables which is crucial for overcomplete
identifiability, while in the A⊗A, the order of both the hidden and observed variables are increased.

23

(a) Structure of an overcomplete matrix A ∈ R4×5 having a perfect 2-gram matching.

When are Overcomplete Topic Models Identifiable?

X

Y

1

1

2

2

3

3

4

4 5

(a) Structure of an overcomplete matrix A ∈ R4×5 having a perfect 2-gram matching.

X(2)

Y
1 2 3 4 5

(1, 1) (1, 2) (1, 3) (1, 4) (2, 1) (2, 2) (2, 3) (2, 4) (3, 1) (3, 2) (3, 3) (3, 4) (4, 1) (4, 2) (4, 3) (4, 4)

(b) Structure of A " A ∈ R16×5 having a perfect (Y -saturating) matching, highlighted by dashed
red edges.

X(2)

Y (2)

(1, 1)

(1, 1)

(1, 2)

(1, 2)

(1, 3)

(1, 3)

(1, 4)

(1, 4) (1, 5)

(2, 1)

(2, 1)

(2, 2)

(2, 2)

(2, 3)

(2, 3)

(4, 2) (4, 3) (4, 4)

(4, 5) (5, 1) (5, 2) (5, 3) (5, 4) (5, 5)

(c) Structure of A ⊗ A ∈ R16×25. For simplicity, only a few edges and nodes are shown and the
dashed edges denote the bunch of edges connected to each node, not specifically shown.

Figure 4: An example of an overcomplete matrix A and the matrices A " A and A ⊗ A. The
corresponding bipartite graphs encode the sparsity pattern of each of the matrices. A " A expands
the effect of hidden variables to second order observed variables which is crucial for overcomplete
identifiability, while in the A⊗A, the order of both the hidden and observed variables are increased.

23

(b) Structure of A � A ∈ R16×5 having a perfect (Y -saturating) matching, highlighted by dashed
red edges.

When are Overcomplete Topic Models Identifiable?

X

Y

1

1

2

2

3

3

4

4 5

(a) Structure of an overcomplete matrix A ∈ R4×5 having a perfect 2-gram matching.

X(2)

Y
1 2 3 4 5

(1, 1) (1, 2) (1, 3) (1, 4) (2, 1) (2, 2) (2, 3) (2, 4) (3, 1) (3, 2) (3, 3) (3, 4) (4, 1) (4, 2) (4, 3) (4, 4)

(b) Structure of A " A ∈ R16×5 having a perfect (Y -saturating) matching, highlighted by dashed
red edges.

X(2)

Y (2)

(1, 1)

(1, 1)

(1, 2)

(1, 2)

(1, 3)

(1, 3)

(1, 4)

(1, 4) (1, 5)

(2, 1)

(2, 1)

(2, 2)

(2, 2)

(2, 3)

(2, 3)

(4, 2) (4, 3) (4, 4)

(4, 5) (5, 1) (5, 2) (5, 3) (5, 4) (5, 5)

(c) Structure of A ⊗ A ∈ R16×25. For simplicity, only a few edges and nodes are shown and the
dashed edges denote the bunch of edges connected to each node, not specifically shown.

Figure 4: An example of an overcomplete matrix A and the matrices A " A and A ⊗ A. The
corresponding bipartite graphs encode the sparsity pattern of each of the matrices. A " A expands
the effect of hidden variables to second order observed variables which is crucial for overcomplete
identifiability, while in the A⊗A, the order of both the hidden and observed variables are increased.

23

(c) Structure of A ⊗ A ∈ R16×25. For simplicity, only a few edges and nodes are shown and the
dashed edges denote the bunch of edges connected to each node, not specifically shown.

Figure 4: An example of an overcomplete matrix A and the matrices A � A and A ⊗ A. The
corresponding bipartite graphs encode the sparsity pattern of each of the matrices. A�A
expands the effect of hidden variables to second order observed variables which is crucial
for overcomplete identifiability, while in the A ⊗ A, the order of both the hidden and
observed variables are increased.
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ourselves to the case that p1 = · · · = pn = p, and simply write A ∈ ⊗nRp. A fiber of a
tensor A is a vector obtained by fixing all indices of A except one, e.g., for A ∈⊗4R3, the
vector f = A(2, 1 : 3, 3, 1) is a fiber.
For a vector u ∈ Rp, Diagn(u) ∈⊗nRp is the n-th order diagonal tensor with vector u on
its diagonal. The tensor A ∈⊗nRp, is stacked as a vector a ∈ Rpn by the vec(·) operator,
defined as

a = vec(A)⇔ a
(
(i1 − 1)pn−1 + (i2 − 1)pn−2 + · · ·+ (in−1 − 1)p+ in)

)
= A(i1, i2, . . . , in).

The inverse of a = vec(A) operation is denoted by A = ten(a).
For vectors ai ∈ Rpi , i ∈ [n], the tensor outer product operator “◦” is defined as (Golub and
Loan, 2012)

A = a1 ◦ a2 ◦ · · · ◦ an ∈
n⊗

i=1

Rpi ⇔ A(i1, i2, . . . , in) := a1(i1)a2(i2) · · · an(in). (15)

The above generated tensor is a rank-1 tensor. The tensor rank is the minimal number
of rank-1 tensors into which a tensor can be decomposed. This type of rank is called CP
(Candecomp/Parafac) tensor rank in the literature (Golub and Loan, 2012).
According to above definitions, for any set of vectors ai ∈ Rpi , i ∈ [n], we have the following
pair of equalities:

vec(a1 ◦ a2 ◦ · · · ◦ an) = a1 ⊗ a2 ⊗ · · · ⊗ an,
ten(a1 ⊗ a2 ⊗ · · · ⊗ an) = a1 ◦ a2 ◦ · · · ◦ an.

For any vector a ∈ Rp, the power notations are also defined as

a⊗n :=

n times︷ ︸︸ ︷
a⊗ a⊗ · · · ⊗ a ∈ Rp

n
,

a◦n :=

n times︷ ︸︸ ︷
a ◦ a ◦ · · · ◦ a ∈

n⊗
Rp.

The second power is usually called the n-th order tensor power of vector a.
Finally, the Tucker and CP (Candecomp/Parafac) representations are defined as follows
(Golub and Loan, 2012; Kolda and Bader, 2009).

Definition 20 (Tucker representation) Given a core tensor S ∈⊗n
i=1Rri and inverse

factors Ui ∈ Rpi×ri , i ∈ [n], the Tucker representation of the n-th order tensor A ∈⊗n
i=1Rpi

is

A =

r1∑

i1=1

r2∑

i2=1

· · ·
rn∑

in=1

S(i1, i2, . . . , in)U1(:, i1) ◦ U2(:, i2) ◦ · · · ◦ Un(:, in) =: [[S;U1, U2, . . . , Un]],

(16)

where Uj(:, ij) denotes the ij-th column of matrix Uj. The tensor S is referred to as the
core tensor.
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Definition 21 (CP representation) Given λ ∈ Rr, Ui ∈ Rpi×r, i ∈ [n], the CP represen-
tation of the n-th order tensor A ∈⊗n

i=1Rpi is

A =
r∑

i=1

λiU1(:, i) ◦ U2(:, i) ◦ · · · ◦ Un(:, i) =: [[Diagn(λ);U1, U2, . . . , Un]], (17)

where Uj(:, i) denotes the i-th column of matrix Uj.

Note that the CP representation is a special case of the Tucker representation when the
core tensor S is square and diagonal.

4.2.2 Tensor Representation of Moments Under Topic Model

We now provide a tensor representation of the moments.

For the n-persistent topic model, the 2m-th observed moment is denoted by T
(n)
2m (x),

which is the tensor form of the moment matrix M
(n)
2m (x), characterized in Lemma 2. It is

given by

T2m(x)(i1,i2,...,i2m) := E[x1(i1)x2(i2) · · ·x2m(i2m)], i1, i2, . . . , i2m ∈ [p], (18)

where T2m(x) ∈⊗2mRp.
This tensor is characterized in the following lemma, and is proved in Appendix A.2.

Lemma 3 (n-persistent topic model moment characterization in tensor form) The
(2m)-th order moment of words, defined in equation (18), for the n-persistent topic model
is characterized as 12:

• if m = rn for some integer r ≥ 1, then

T
(n)
2m (x) =

q∑

i1=1

q∑

i2=1

· · ·
q∑

i2r=1

E[hi1hi2 · · ·hi2r ]a◦ni1 ◦ a◦ni2 ◦ · · · ◦ a◦ni2r (19)

=
[[
Sr;

2m times︷ ︸︸ ︷
A,A, . . . , A

]]
,

where Sr ∈
⊗2rnRq is the core tensor in the above Tucker representation with the

sparsity pattern as

Sr
(
i
)

=

{
M2r(h)(

(in,i2n,...,irn),(i(r+1)n,i(r+2)n,...,i2rn)
) , i1= i2= · · ·= in, in+1= in+2= · · ·= i2n, . . .

0 , o.w.,

where i := (i1, i2, . . . , i2rn).

• If n ≥ 2m, then

T
(n)
2m (x) =

∑

i∈[q]
E[hi]a

◦2m
i =

[[
Diag2m(E[h]);

2m times︷ ︸︸ ︷
A,A, . . . , A

]]
. (20)

12. The other cases not covered in Lemma 3 are deferred to Appendix A.2. See Remark 30.
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The tensor representation in (19) is a specific type of tensor decomposition which is a
special case of the Tucker representation (since Sr is not fully dense), but more general than
the CP representation. The tensor representation in (20) has a CP form.

4.2.3 Comparison with Single Topic Model and Bag-of-words Admixture
Model

We now provide the tensor form for the special cases single topic model and bag-of-words
admixture model. In order to have a fair comparison, the number of observed variables is
fixed to 2m and the persistence level is varied.

CP representation of the single topic model: The (2m)-th order moment of the words
for the single topic model (infinite-persistent topic model) is provided in equation (20) as

T
(∞)
2m (x) =

∑

i∈[q]
E[hi]a

◦2m
i =

[[
Diag2m(E[h]);

2m times︷ ︸︸ ︷
A,A, . . . , A

]]
. (21)

This representation is the symmetric CP representation of T
(∞)
2m (x). In Appendix C, we

provide a more detailed comparison between our approach and some of the previous iden-
tifiability results for the (overcomplete) CP decomposition. In particular, we show that
our uniqueness result for CP decomposition is the sparse analogue of uniqueness result
in Lathauwer (2006) where the factors of CP tensor decomposition (the columns of matrix
A) satisfy specific sparsity constraints. See Appendix C for the details.

Tucker representation of the bag-of-words admixture model: From Lemma 3, the tensor
form of the (2m)-th order moment of observed variables xl, l ∈ [2m], for the bag-of-words
admixture model (1-persistent topic model) is given by

T
(1)
2m(x) =

q∑

i1=1

q∑

i2=1

· · ·
q∑

i2m=1

E[hi1hi2 · · ·hi2m ]ai1 ◦ ai2 ◦ · · · ◦ ai2m

=
[[
E
[
h◦(2m)

]
;

2m times︷ ︸︸ ︷
A,A, . . . , A

]]
. (22)

This representation is the Tucker representation (decomposition) of T
(1)
2m(x) where the core

tensor S = E
[
h◦(2m)

]
is the tensor form of the (2m)-th order hidden moment M2m(h),

defined in equation (3), and the inverse factors correspond to the population structure A.
Comparing the tensor forms for the n-persistent topic model (19), single topic model

(21), and bag of words admixture model (22), we find that all of them involve Tucker
decompositions, where the inverse factors correspond to the topic-word matrix A, and the
only difference is in the sparsity level of the core tensor S. For the bag of words model,
with n = 1, the core tensor is fully dense in general, while for the single topic model,
with n → ∞, the core tensor is diagonal which reduces to the CP decomposition. For
a general topic model with persistence level n, the core tensor is in between these two
extremes and has structured sparsity. This sparsity property of the core tensor is crucial
towards establishing identifiability in the overcomplete regime. The bag-of-words model is
not identifiable in the overcomplete regime since the core tensor is fully dense in this case,
while an overcomplete n-persistent topic model can be identified under certain constraints
provided in Section 3, since the core tensor has structured sparsity and symmetry.
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5. Proof Techniques and Auxiliary Results

The main identifiability results are given in Theorems 9 and 15 for deterministic and random
cases of topic-word graph structures. In this section, we provide a proof sketch of these
results, and then, we propose auxiliary results on the existence of perfect n-gram matching
for random bipartite graphs and a lower bound on the Kruskal rank of random matrices.

5.1 Proof Sketch

Summary of relationships among different conditions: To summarize, there exists a hierar-
chy among the proposed conditions as follows. See Figure 5. First, in the random analysis,
the size and the degree conditions 4 and 5 are sufficient for satisfying the perfect n-gram
matching and the krank conditions 2 and 3, shown by Theorems 22 and 24. Then, these
conditions 2 and 3 ensure that the rank and the expansion conditions 6 and 7 hold, shown
by Lemma 5. And finally, these conditions 6 and 7 together with non-degeneracy condition
1 conclude the primary identifiability result in Theorem 27. Note that the genericity of A
is also required for these results to hold.

Primary deterministic analysis in Theorem 27: The deterministic analysis is primarily
based on conditions on the n-gram matrix A!n; but since these conditions are opaque
(mainly expansion condition on A!n, provided in condition 7), this analysis is related to
conditions on the matrix A itself (see Lemma 5). See Theorem 27 in Appendix A.1 for
the identifiability result based on A!n. We briefly discuss it below for the case when 2n
words are available under the n-persistent topic model. From equation (8), the (2n)-th
order moment of the observed variables under the n-persistent topic model can be written
as

M
(n)
2n (x) =

(
A!n

)
E

[
hh"](

A!n
)"

. (23)

The question is whether we can recover A, given the M
(n)
2n (x). Obviously, the matrix A is

not identifiable without any further conditions. First, non-degeneracy and rank conditions
(conditions 1 and 6) are required. Assuming these two conditions, we have from (23) that

Col
(
M

(n)
2n (x)

)
= Col

(
A!n

)
.

Therefore, the problem of recovering A from M
(n)
2n (x) reduces to finding A!n in Col

(
A!n

)
.

Then, we show that under the following expansion condition on A!n and the genericity
property, matrix A is identifiable from Col

(
A!n

)
. The expansion condition (refer to con-

dition 7 for a more detailed statement), imposes the following property on the bipartite
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(mainly expansion condition on A�n, provided in condition 7), this analysis is related to
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order moment of the observed variables under the n-persistent topic model can be written
as

M
(n)
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(
A�n
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E
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hh>
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A�n
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(n)
2n (x). Obviously, the matrix A is

not identifiable without any further conditions. First, non-degeneracy and rank conditions
(conditions 1 and 6) are required. Assuming these two conditions, we have from (23) that

Col
(
M

(n)
2n (x)

)
= Col

(
A�n

)
.

Therefore, the problem of recovering A from M
(n)
2n (x) reduces to finding A�n in Col

(
A�n

)
.

Then, we show that under the following expansion condition on A�n and the genericity
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property, matrix A is identifiable from Col
(
A�n

)
. The expansion condition (refer to con-

dition 7 for a more detailed statement), imposes the following property on the bipartite

graph 13 G
(
Vh, V

(n)
o ;A�n

)
,

∣∣∣NA�n
Rest.

(S)
∣∣∣ ≥ |S|+ dmax

(
A�n

)
, ∀S ⊆ Vh, |S| > krank(A), (24)

where dmax

(
A�n

)
is the maximum node degree in set Vh, and the restricted version of

n-gram matrix, denoted by A�nRest., is obtained by removing its redundant (identical) rows
(see Definition 25). The identifiability claim is proved by showing that the columns of A�n

are the sparsest and rank-1 vectors (in the tensor form) in Col
(
A�n

)
under the expansion

condition in (24) and genericity conditions. Note that since we only require expansion on
sets larger than Kruskal rank, the expansion condition (24) is a more relaxed condition
compared to expansion condition proposed in Anandkumar et al. (2012); Spielman et al.
(2012a) for identifiability in the undercomplete regime. For a more detailed comparison,
refer to Remark 26 in Appendix A.1.

Deterministic analysis in Theorem 9: Expansion and rank conditions in Theorem 27
are imposed on the n-gram matrix A�n. According to the generalized matching notions,
defined in Section 3.1, sufficient combinatorial conditions on matrix A (conditions 2 and 3)
are introduced which ensure that the expansion and rank conditions on A�n are satisfied.

Recall Lemma 1 which says that existence of perfect n-gram matching in G(Y,X;A)
(condition 2) implies that G(Y,X(n);A�n) has a perfect matching. Then, it is straight-
forward to argue that the expansion and rank conditions on A�n are satisfied, which is
shown in Lemma 5 in Appendix A.3. This leads to the generic identifiability result stated
in Theorem 9.

5.2 Analysis of Random Structures

The identifiability result for a random structured matrix A is provided in Theorem 15.
Sufficient size and degree conditions 4 and 5 on the random matrix A are proposed such
that the deterministic combinatorial conditions 2 and 3 on A are satisfied. The details of
these auxiliary results are provided in the following two subsequent sections.14 In Section
5.2.1, it is shown in Theorem 22 that a random bipartite graph satisfying reasonable size
and degree constraints, has a perfect n-gram matching (condition 2), whp. Then, a lower
bound on the Kruskal rank of a random matrix A under size and degree constraints is
provided in Theorem 24 in Section 5.2.2, which implies the krank condition 3. Intuitions
on why such size and degree conditions are required, are mentioned in Section 3.2 where
these conditions are proposed.

5.2.1 Existence of Perfect n-gram Matching for Random Bipartite Graphs

We show in the following theorem that a random bipartite graph satisfying reasonable
size and degree constraints, proposed earlier in conditions 4 and 5, has a perfect n-gram
matching whp.

13. V
(n)
o denotes all ordered n-tuples generated from set Vo := {1, . . . , p} which indexes the rows of A�n.

14. Since these auxiliary results can also have independent interests as combinatorial results, we put them
as theorems in the main part of the paper.
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Theorem 22 (Existence of perfect n-gram matching for random bipartite graphs)
Consider a random bipartite graph G(Y,X;E) with |Y | = q nodes on the left side and |X| =
p nodes on the right side, and each node i ∈ Y is randomly connected to di different nodes in
X. Let dmin := mini∈Y di. Assume that it satisfies the size condition q ≤

(
c pn
)n

(condition
4) for some constant 0 < c < 1 and the degree condition dmin ≥ max{1+β log p, α log p} for
some constants β > n−1

log 1/c , α > max
{

2n2
(
β log 1

c + 1
)
, 2βn

}
(lower bound in condition 5).

Then, there exists a perfect (Y -saturating) n-gram matching in the random bipartite graph
G(Y,X;E), with probability at least 1− γ1p−β′ for constants β′ > 0 and γ1 > 0, specified in
(5) and (6).

See Appendix B.1 for the proof.
Note that the sufficient size bound q = O(pn) in the above theorem is also necessary

(see Remark 7), and is therefore tight.

Remark 23 (Insufficiency of the union bound argument) It is easier to exploit the
union bound arguments to propose random bipartite graphs which have a perfect n-gram
matching whp. It is proved in Appendix B.1 that if d ≥ n and the size constraint |Y | =
O(|X|n2−δ) for some δ > 0 is satisfied, then whp, the random bipartite graph has a perfect
n-gram matching. Comparing this result with ours in Theorem 22, our approach has a
better size scaling while the union bound approach has a better degree scaling. The size
scaling limitation in the union bound argument makes it unattractive. In order to identify
the population structure A in the overcomplete regime where |Y | = O(|X|n), we need access
to at least (4n)-th order moment under the union bound argument, while only the (2n)-th
order moment is required under our argument.

5.2.2 Lower Bound on the Kruskal Rank of Random Matrices

In the following theorem, a lower bound on the Kruskal rank of a random matrix A under
dimension and degree constraints is provided.

Theorem 24 (Lower bound on the Kruskal rank of random matrices) Consider a
random matrix A ∈ Rp×q, where for any i ∈ [q], there are di number of random non-
zero entries in column i. Let dmin := mini∈[q] di. Assume that it satisfies the size con-

dition q ≤
(
c pn
)n

(condition 4) for some constant 0 < c < 1 and the degree condition
dmin ≥ 1 + β log p for some constant β > n−1

log 1/c (lower bound in condition 5) and in addi-

tion A is generic. Then, krank(A) ≥ cp, with probability at least 1 − γ2p−β′ for constants
β′ > 0 and γ2 > 0, specified in (5) and (7).

See Appendix B.1 for the proof.
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Appendix A. Proof of Deterministic Identifiability Result (Theorem 9)

First, we show the identifiability result under an alternative set of conditions on the n-gram
matrix, A�n, and then, we show that the conditions of Theorem 9 are sufficient for these
conditions to hold.

A.1 Deterministic Analysis Based on A�n

In this section, the deterministic identifiability result based on conditions on the n-gram
matrix, A�n, is provided.

In the n-gram matrix, A�n ∈ Rpn×q, redundant rows exist. If some row of A�n is
indexed by n-tuple (i1, . . . , in) ∈ [p]n, then another row indexed by any permutation of the
tuple (i1, . . . , in) has the same entries. Therefore, the number of distinct rows of A�n is
at most

(
p+n−1
n

)
. In the following definition, we define a non-redundant version of n-gram

matrix which is restricted to the (potentially) distinct rows.

Definition 25 (Restricted n-gram matrix) For any matrix A ∈ Rp×q, restricted n-
gram matrix A�nRest. ∈ Rs×q, s =

(
p+n−1
n

)
, is defined as the restricted version of n-gram

matrix A�n ∈ Rpn×q, where the redundant rows of A�n are removed, as explained above.

Condition 6 (Rank condition) The n-gram matrix A�n is full column rank.

Condition 7 (Graph expansion) Let G(Vh, V
(n)
o ;A�n) denote the bipartite graph with

vertex sets Vh corresponding to the hidden variables (indexing the columns of A�n) and

V
(n)
o corresponding to the n-th order observed variables (indexing the rows of A�n) and

edge matrix A�n ∈ R|V
(n)
o |×|Vh|. The bipartite graph G(Vh, V

(n)
o ;A�n) satisfies the following

expansion property 15 on the restricted version specified by A�nRest.,

∣∣∣NA�n
Rest.

(S)
∣∣∣ ≥ |S|+ dmax

(
A�n

)
, ∀S ⊆ Vh, |S| > krank(A), (25)

where dmax

(
A�n

)
is the maximum node degree in set Vh.

Remark 26 The expansion condition for the bag-of-words admixture model is provided in
(4), introduced in Anandkumar et al. (2012). The proposed expansion condition in (25)
is inherited from (4), with two major modifications. First, the condition is appropriately
generalized for our model which involves a graph with edges specified by the n-gram matrix,

15. Note that this notion of generalized expansion is different from unbalanced expander graphs proposed
in the compressed sensing literature (Khajehnejad et al., 2011; Indyk and Razenshteyn, 2013). For a
left regular bipartite graph G(Y,X;A) with regular degree d for the vertices on Y side, we say that it
is a (k, ε)-expander if for any set S ⊆ Y with |S| ≤ k, we have NA(S) ≥ |S|d(1− ε). This is completely
different with the expansion condition we define here in some aspects: first our expansion condition is
additive while this one is multiplicative, and second our expansion condition is imposed on large sets
while this one is imposed on small sets.
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A�n, as stated in (23). Second, the expansion property (4), proposed in Anandkumar et al.
(2012), needs to be satisfied for all subsets S with size |S| ≥ 2, which is a stricter condition
than the one proposed here in (25), since we can have krank(A)� 2.

The deterministic identifiability result based on the conditions on A�n, is stated in
the following theorem for n ≥ 2, while n = 1 case is addressed in Remarks 10 and 26.
The identifiability result relies on access to the (2n)-th order moment of observed variables
xl, l ∈ [2n], defined in equation (2) as

M2n(x) := E
[
(x1 ⊗ x2 ⊗ · · · ⊗ xn)(xn+1 ⊗ xn+2 ⊗ · · · ⊗ x2n)>

]
∈ Rp

n×pn .

Theorem 27 (Generic identifiability under deterministic conditions on A�n) Let

M
(n)
2n (x) (defined in equation (2)) be the (2n)-th order moment of the n-persistent topic

model described in Section 2. If the model satisfies conditions 1, 6 and 7, then, for any

n ≥ 2, all the columns of population structure A are generically identifiable from M
(n)
2n (x).

Proof: Define B := A�n ∈ Rpn×q. Then, the moment characterized in equation (23)

can be written as M
(n)
2n (x) = BE

[
hh>

]
B>. Since both matrices E

[
hh>

]
and B have full

column rank (from conditions 1 and 6), the rank of BE
[
hh>

]
B> is q where q = O(pn),

and furthermore Col(BE
[
hh>

]
B>) = Col(B). Let U := {u1, . . . , uq} ∈ Rpn be any basis

of Col(BE
[
hh>

]
B>) satisfying the following two properties:

1) The maximum of `0 norm of ui’s is minimized (among all basis sets).

2) The tensor rank of ui’s (in the n-th order tensor form) is equal to 1, i.e., Rank(ten(ui)) =
1, i ∈ [q].

Let the columns of matrix B be bi for i ∈ [q]. Since all the bi’s (which belong to
Col(BE

[
hh>

]
B>)) are rank-1 in the n-th order tensor form (since ten(bi) = a◦ni ) and

the number of non-zero entries in each of bi’s is at most dmax(B) = dmax(A)n, we conclude
that

max
i

Rank(ten(ui)) = 1 and max
i
‖ui‖0 ≤ dmax(B). (26)

The above bounds are concluded from the fact that bi ∈ Col(BE
[
hh>

]
B>), i ∈ [q], and

therefore the `0 norm and the rank properties of bi’s are upper bounds for the corresponding
properties of basis vectors ui’s (according to the proposed conditions for ui’s).
Now, exploiting these observations and also the genericity of A and the expansion condition
7, we show that the basis vectors ui’s are scaled columns of B. Since ui for i ∈ [q], is a
vector in the column space of B, it can be represented as ui = Bvi for some vector vi ∈ Rq.
Equivalently, for any i ∈ [q], ui =

∑q
j=1 vi(j)bj where bj = a⊗nj is the j-th column of matrix

B and vi(j) is a scalar which is the j-th entry of vector vi. Then, the tensor form of ui can
be written as

ten(ui) =

q∑

j=1

vi(j) ten(bj) =

q∑

j=1

vi(j) ten(a⊗nj ) =

q∑

j=1

vi(j)a
◦n
j = [[Diagn(vi);

n times︷ ︸︸ ︷
A, . . . , A]],

(27)
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where the last equality is based on the notation defined in Definition 21, and Diagn(vi)
is defined as the n-th order diagonal tensor with vector vi on its diagonal. We define
ṽi := [vi(j)]j:vi(j)6=0 as the vector which contains only the non-zero entries of vi, i.e., ṽi is the
restriction of vector vi to its support. Therefore, ṽi ∈ Rr, where r := ‖vi‖0. Furthermore,
the matrix Ãi := {aj : vi(j) 6= 0} ∈ Rp×r is defined as the restriction of A to its columns

corresponding to the support of vi. Let (ãi)j denote the j-th column of Ãi. According to
these definitions, equation (27) reduces to

ten(ui) = [[Diagn(ṽi);

n times︷ ︸︸ ︷
Ãi, . . . , Ãi]] =

r∑

j=1

ṽi(j)[(ãi)j ]
◦n, (28)

which is derived by removing columns of A corresponding to the zero entries in vi.
Next, we rule out that ‖vi‖0 ≥ 2 under two cases (2 ≤ ‖vi‖0 ≤ krank(A) and krank(A) <
‖vi‖0 ≤ q), to conclude that ui’s vectors are scaled columns of B.

Case 1: 2 ≤ ‖vi‖0 ≤ krank(A). Here, the number of columns of Ãi ∈ Rp×‖vi‖0 is less
than or equal to krank(A) and therefore it is full column rank. Since, all the components
of CP representation in equation (28) are full column rank 16, for any 17 n ≥ 2, we have
Rank(ten(ui)) = r = ‖vi‖0 > 1, which contradicts the fact that maxi Rank(ten(ui)) = 1 in
(26).

Note that for the full column rank topic-word matrix A ∈ Rp×q (where Rank(A) =
krank(A) = q) as in Corollary 13, it is sufficient to argue this case and there is no need to
argue next case. This is why the expansion condition is not required in Corollary 13.

Case 2: krank(A) < ‖vi‖0 ≤ q. Here, we first restrict the n-gram matrix B to distinct
rows, denoted by BRest., as defined in Definition 25. Let u′i = BRest.vi. Since u′i is the
restricted version of ui, we have

‖ui‖0 ≥ ‖u′i‖0 = ‖BRest.vi‖0
>
∣∣NBRest.

(Supp(vi))
∣∣− | Supp(vi)|

≥ dmax(B),

where the second inequality is from Lemma 4 (which is stated and proved right after this
theorem), and the third inequality follows from the graph expansion property (condition
7). This result contradicts the fact that maxi‖ui‖0 ≤ dmax(B) in (26).

From above contradictions, ‖vi‖0 = 1 and hence, columns of B := A�n are the scaled
versions of ui’s.

The following lemma is useful in the proof of Theorem 27. The result proposed in this
lemma is similar to the parameter genericity condition in Anandkumar et al. (2012), but
generalized for the n-gram matrix, A�n. The lemma is proved along the lines of the proof
of Remark 2.2 in Anandkumar et al. (2012).

16. Note that for n ≥ 3, this full rank condition can be relaxed by Kruskal’s condition for uniqueness of
CP decomposition (Kruskal, 1977) and its generalization to higher order tensors (Sidiropoulos and Bro,

2000). Precisely, instead of saying Rank
(
Ãi

)
= krank

(
Ãi

)
= r, it is only required to have krank

(
Ãi

)
≥

(2r+n−1)/n to argue the result of case 1. This only improves the constants involved in the final result.
17. Note that for n = 1, since the (tensor) rank of any vector is 1, this analysis does not work.
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Lemma 4 If A ∈ Rp×q is generic (see Definition 2), then the n-gram matrix A�n ∈ Rpn×q
satisfies the following property with Lebesgue measure one. For any vector v ∈ Rq with
‖v‖0 ≥ 2, we have

∥∥A�nRest.v
∥∥
0
>
∣∣∣NA�n

Rest.
(Supp(v))

∣∣∣− | Supp(v)|,

where for a set S ⊆ [q], NA�n(S) := {i ∈ [p]n : A�n(i, j) 6= 0 for some j ∈ S}.

Here, we prove the result for the case of n = 2. The proof can be easily generalized to
larger n.

Let A := P + Z be generic, where P is an arbitrary matrix perturbed by random
continuous independent 18 perturbations Z. Consider the 2-gram matrix B := A � A ∈
Rp2×q. We show that the restricted version of B, denoted by B̃ := BRest. ∈ R

p(p+1)
2
×q,

satisfies the above genericity condition. Before that, we first establish some definitions and
one claim.

Definition 28 We call a vector fully dense if all of its entries are non-zero.

Definition 29 We say a matrix has the Null Space Property (NSP) if its null space does
not contain any fully dense vector.

Claim 1 Fix any S ⊆ [q] with |S| ≥ 2, and set R := N(P�2)Rest.
(S). Let C̃ be a |S| × |S|

submatrix of B̃R,S. Then Pr(C̃ has the NSP) = 1.

Proof of Claim 1: First, note that B̃ can be expanded as

B̃ := (A�A)Rest. = (P � P )Rest. + (P � Z + Z � P )Rest. + (Z � Z)Rest.︸ ︷︷ ︸
:=U

.

Let s = |S| and let C̃ = [c̃1|c̃2| · · · |c̃s]>, where c̃>i is the i-th row of C̃. Also, let C :=
[c1|c2| · · · |cs]> and W := [w1|w2| · · · |ws]> be the corresponding |S| × |S| submatrices of(
P�2

)
Rest.

and U , respectively. For each i ∈ [s], denote by Ni the null space of the matrix

C̃i = [c̃1|c̃2| · · · |c̃i]>. Finally let N0 = Rs. Then, N0 ⊇ N1 ⊇ · · · ⊇ Ns. We need to show
that, with probability one, Ns does not contain any fully dense vector.

If one of Ni, i ∈ [s], does not contain any full dense vector, the result is proved. Suppose
that Ni contains some fully dense vector v. Since C is a submatrix of

(
P�2

)
R,S

, every row

c>i+1 of C contains at least one non-zero entry. Therefore,

v>c̃i+1 =
∑

j∈[s]
v(j)c̃i+1(j)

=
∑

j∈[s]:ci+1(j) 6=0

v(j)(ci+1(j) + wi+1(j)),

18. Note that the distribution of Z does not matter as long as the independence and continuous conditions
hold.
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where {wi+1(j) : j ∈ [s] s.t. ci+1(j) 6= 0} are independent random variables, and moreover,
they are independent of c̃1, . . . , c̃i and thus of v. By assumption on the distribution of the
wi+1(j),

Pr

[
v ∈ Ni+1

∣∣∣∣c̃1, c̃2, . . . , c̃i
]

= Pr

[ ∑

j∈[s]:ci+1(j)6=0

v(j)(ci+1(j) + wi+1(j)) = 0

∣∣∣∣c̃1, c̃2, . . . , c̃i
]

= 0.(29)

Consequently,

Pr

[
dim(Ni+1) < dim(Ni)

∣∣∣∣c̃1, c̃2, . . . , c̃i
]

= 1 (30)

for all i = 0, . . . , s− 1. As a result, with probability one, dim(Ns) = 0.

Now, we are ready to prove Lemma 4.

Proof of Lemma 4: It follows from Claim 1 that, with probability one, the following
event holds: for every S ⊆ [q], |S| ≥ 2, and every |S| × |S| submatrix C̃ of B̃R,S where
R := N(P�2)Rest.

(S), then C̃ has the NSP.

Now fix v ∈ Rq with ‖v‖0 ≥ 2. Let S := Supp(v) and H := B̃R,S . Furthermore, let
u ∈ (R \ {0})|S| be the restriction of vector v to S; observe that u is fully dense. It is clear
that ‖B̃v‖0 = ‖Hu‖0, so we need to show that

‖Hu‖0 > |R| − |S|. (31)

For the sake of contradiction, suppose that Hu has at most |R|− |S| non-zero entries. Since
Hu ∈ R|R|, there is a subset of |S| entries on which Hu is zero. This corresponds to a
|S| × |S| submatrix of H := B̃R,S which contains u in its null space. It means that this
submatrix does not have the NSP, which is a contradiction. Therefore we conclude that Hu
must have more than |R| − |S| non-zero entries, which finishes the proof.

A.2 Proof of Moment Characterization Lemmata

Remark 30 In Lemmata 2 and 3, a specific case of order and persistence (m = rn) was
considered. Here, we provide the moment form for a more general case. Assume that
m = rn+ s for some integers r ≥ 1, 1 ≤ s ≤ n

2 , then

M
(n)
2m (x) =

( r times︷ ︸︸ ︷
A�n ⊗ · · · ⊗A�n⊗A�s

)

M̃2r(h)

(
A�(n−s) ⊗

r−1 times︷ ︸︸ ︷
A�n ⊗ · · · ⊗A�n⊗A�(2s)

)>
,

where M̃2r(h) ∈ Rqr+1×qr+1
is the hidden moment as

M̃2r(h)(
(i1,...,ir+1),(j1,...,jr+1)

) :=

{
E[hi1 · · ·hirh2ir+1

hj2 · · ·hjr+1 ] if ir+1 = j1,

0 o.w .
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The tensor form is also characterized as

T
(n)
2m (x) =

[[
S̃r;

2m times︷ ︸︸ ︷
A,A, . . . , A

]]
,

where S̃r ∈
⊗2mRq is the core tensor in the above Tucker representation with the sparsity

pattern as follows. Let i := (i1, i2, . . . , i2m). If

i1 = i2 = · · · = in, in+1 = in+2 = · · · = i2n, · · · , i(2r−1)n+1 = i(2r−1)n+2 = · · · = i2rn,

i2(m−s)+1 = i2(m−s)+2 = · · · = i2m,

we have
S̃r
(
i
)

= M̃2r(h)(
(in,i2n,...,irn,im),(i(r+1)n,i(r+2)n,...,i2rn,i2m)

).

Otherwise, S̃r
(
i
)

= 0.

Proof of Lemma 2: The proof is basically incorporating the conditional independence
relationships between random variables xl and yj under the n-persistent topic model.

In order to simplify the notation, similar to tensor powers for vectors, the tensor power
for a matrix U ∈ Rp×q is defined as

U⊗r :=

r times︷ ︸︸ ︷
U ⊗ U ⊗ · · · ⊗ U ∈ Rp

r×qr . (32)

First, consider the case m = rn for some integer r ≥ 1. One advantage of encoding
yj , j ∈ [2r], by basis vectors appears in characterizing the conditional moments. The first
order conditional moment of words xl, l ∈ [2m], in the n-persistent topic model can be
written as

E
[
x(j−1)n+k|yj

]
= Ayj , j ∈ [2r], k ∈ [n],

where A = [a1|a2| · · · |aq] ∈ Rp×q. Next, the m-th order conditional moment of different
views xl, l ∈ [m], in the n-persistent topic model can be written as

E[x1 ⊗ x2 ⊗ · · · ⊗ xm|y1 = ei1 , y2 = ei2 , . . . , yr = eir ] = a⊗ni1 ⊗ a
⊗n
i2
⊗ · · · ⊗ a⊗nir ,

which is derived from the conditional independence relationships among the observations
xl, l ∈ [m], given topics yj , j ∈ [r]. Similar to the first order moments, since vectors
yj , j ∈ [r], are encoded by the basis vectors ei ∈ Rq, the above moment can be written as
the following matrix multiplication

E[x1 ⊗ x2 ⊗ · · · ⊗ xm|y1, y2, . . . , yr] =
(
A�n

)⊗r
(y1 ⊗ y2 ⊗ · · · ⊗ yr) , (33)

where the (·)⊗r notation is defined in equation (32). Now for the (2m)-th order moment,
we have

M
(n)
2m (x) := E

[
(x1 ⊗ x2 ⊗ · · · ⊗ xm)(xm+1 ⊗ xm+2 ⊗ · · · ⊗ x2m)>

]
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= E(y1,y2,...,y2r)

[
E
[
(x1 ⊗ · · · ⊗ xm)(xm+1 ⊗ · · · ⊗ x2m)>|y1, y2, . . . , y2r

]]

(a)
= E(y1,y2,...,y2r)

[
E
[
(x1 ⊗ · · · ⊗ xm)|y1, . . . , y2r

]
E
[
(xm+1 ⊗ · · · ⊗ x2m)>|y1, . . . , y2r

]]

(b)
= E(y1,y2,...,y2r)

[
E
[
(x1 ⊗ · · · ⊗ xm)|y1, . . . , yr

]
E
[
(xm+1 ⊗ · · · ⊗ x2m)>|yr+1, . . . , y2r

]]

(c)
= E(y1,y2,...,y2r)

[([
A�n

]⊗r)
(y1 ⊗ · · · ⊗ yr) (yr+1 ⊗ · · · ⊗ y2r)>

([
A�n

]⊗r)>
]

=

([
A�n

]⊗r)
E
[
(y1 ⊗ · · · ⊗ yr) (yr+1 ⊗ · · · ⊗ y2r)>

]([
A�n

]⊗r)>

(d)
=

([
A�n

]⊗r)
M2r(y)

([
A�n

]⊗r)>
, (34)

where (a) results from the independence of (x1, . . . , xm) and (xm+1, . . . , x2m) given (y1, y2, . . . , y2r)
and (b) is concluded from the independence of (x1, . . . , xm) and (yr+1, . . . , y2r) given (y1, . . . , yr)
and the independence of (xm+1, . . . , x2m) and (y1, . . . , yr) given (yr+1, . . . , y2r). Equa-
tion (33) is used in (c) and finally, the (2r)-th order moment of (y1, . . . , y2r) is defined

as M2r(y) := E
[
(y1 ⊗ · · · ⊗ yr) (yr+1 ⊗ · · · ⊗ y2r)>

]
in (d).

For M2r(y), we have by the law of total expectation

M2r(y) := E
[
(y1 ⊗ · · · ⊗ yr) (yr+1 ⊗ · · · ⊗ y2r)>

]

= Eh
[
E
[
(y1 ⊗ · · · ⊗ yr) (yr+1 ⊗ · · · ⊗ y2r)> |h

]]

= Eh
[( r times︷ ︸︸ ︷
h⊗ · · · ⊗ h

)( r times︷ ︸︸ ︷
h⊗ · · · ⊗ h

)>]

= M2r(h),

where the third equality is concluded from the conditional independence of variables yj , j ∈
[2r], given h and the model assumption that E

[
yj |h

]
= h, j ∈ [2r]. Substituting this in

equation (34), finishes the proof for the n-persistent topic model. Similarly, the moment of
single topic model (infinite persistence) can be also derived.

Proof of Lemma 3: Defining Λ := M2r(h) ∈ Rqr×qr and B :=
[
A�n

]⊗r ∈ Rprn×qr , the

(2rn)-th order moment M
(n)
2rn(x) ∈ Rprn×prn of the n-persistent topic model proposed in

equation (8) can be written as

M
(n)
2rn(x) = BΛB>.

Let b(i1,...,ir) ∈ Rprn denote the corresponding column ofB indexed by r-tuple (i1, . . . , ir), ik ∈
[q], k ∈ [r]. Then, the above matrix equation can be expanded as

M
(n)
2rn(x) =

∑

i1,...,ir∈[q]
j1,...,jr∈[q]

Λ
(
(i1, . . . , ir), (j1, . . . , jr)

)
b(i1,...,ir)b

>
(j1,...,jr)

=
∑

i1,...,ir∈[q]
j1,...,jr∈[q]

Λ
(
(i1, . . . , ir), (j1, . . . , jr)

)
[a⊗ni1 ⊗ · · · ⊗ a

⊗n
ir

][a⊗nj1 ⊗ · · · ⊗ a
⊗n
jr

]>,
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where relation b(i1,...,ir) = a⊗ni1 ⊗ · · · ⊗ a
⊗n
ir
, i1, . . . , ir ∈ [q], is used in the last equality. Let

m
(n)
2rn(x) ∈ Rp2rn denote the vectorized form of (2rn)-th order moment M

(n)
2rn(x) ∈ Rprn×prn .

Therefore, we have

m
(n)
2rn(x) := vec

(
M

(n)
2rn(x)

)

=
∑

i1,...,ir∈[q]
j1,...,jr∈[q]

Λ
(
(i1, . . . , ir), (j1, . . . , jr)

)
a⊗ni1 ⊗ · · · ⊗ a

⊗n
ir
⊗ a⊗nj1 ⊗ · · · ⊗ a

⊗n
jr
.

Then, we have the following equivalent tensor form for the original model proposed in
equation (8)

T
(n)
2rn(x) := ten

(
m

(n)
2rn(x)

)

=
∑

i1,...,ir∈[q]
j1,...,jr∈[q]

Λ
(
(i1, . . . , ir), (j1, . . . , jr)

)
a◦ni1 ◦ · · · ◦ a◦nir ◦ a◦nj1 ◦ · · · ◦ a◦njr .

A.3 Sufficient Matching Properties for Satisfying Rank and Graph Expansion
Conditions

In the following lemma, it is shown that under a perfect n-gram matching and additional
genericity and krank conditions, the rank and graph expansion conditions 6 and 7 on A�n,
are satisfied.

Lemma 5 Assume that the bipartite graph G(Vh, Vo;A) has a perfect n-gram matching
(condition 2 is satisfied). Then, the following results hold for the n-gram matrix A�n:

1) If A is generic, A�n is full column rank (condition 6) with Lebesgue measure one
(almost surely).

2) If krank condition 3 holds, A�n satisfies the proposed expansion property in condition
7.

Proof: Let M denote the perfect n-gram matching of the bipartite graph G(Vh, Vo;A).

From Lemma 1, there exists a perfect matchingM�n for the bipartite graphG(Vh, V
(n)
o ;A�n).

Denote the corresponding bi-adjacency matrix to the edge set M as AM . Similarly, BM de-
notes the corresponding bi-adjacency matrix to the edge set M�n. Note that Supp(AM ) ⊆
Supp(A) and Supp(BM ) ⊆ Supp(A�n).

Since BM is a perfect matching, it consists of q := |Vh| rows, each of which has only one
non-zero entry, and furthermore, the non-zero entries are in q different columns. Therefore,
these rows form q linearly independent vectors. Since the row rank and column rank of a
matrix are equal, and the number of columns of BM is q, the column rank of BM is q or
in other words, BM is full column rank. Since A is generic, from Lemma 6 (with a slight
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modification in the analysis 19), A�n is also full column rank with Lebesgue measure one
(almost surely). This completes the proof of part 1.

Next, we prove the second part. From krank definition, we have

|NA(S′)| ≥ |S′| for S′ ⊆ Vh, |S′| ≤ krank(A),

which is concluded from the fact that the corresponding submatrix of A specified by S′

should be full column rank. From this inequality, we have

|NA(S′)| ≥ krank(A) for S′ ⊆ Vh, |S′| = krank(A). (35)

Then, we have

|NA(S)| ≥ |NA(S′)| for S′ ⊂ S ⊆ Vh, |S| > krank(A), |S′| = krank(A),

≥ krank(A)

≥ dmax(A)n, (36)

where (35) is used in the second inequality and the last inequality is from krank condition
3.

In the restricted n-gram matrix A�nRest., the number of neighbors for a set S ⊆ Vh, |S| >
krank(A), can be bounded as

∣∣∣NA�n
Rest.

(S)
∣∣∣ ≥ |NA(S)|+ |S| (37)

≥ dmax(A)n + |S| for |S| > krank(A),

where the first inequality is due to the fact that the set NA�n
Rest.

consists of rows indexed

by the following two 20 subsets: n-tuples (i, i, . . . , i) where all the indices are equal and
n-tuples (i1, . . . , in) with distinct indices, i.e., i1 6= i2 . . . 6= in. The former subset is exactly
NA(S) while the size of the latter subset is at least |S| due to the existence of a perfect
n-gram matching in A. The bound (36) is used in the second inequality. Since dmax

(
A�n

)
=

dmax(A)n, the proof of part 2 is also completed.

Remark 31 The second result of above lemma is similar to the necessity argument of
(Hall’s) Theorem 32 for the existence of perfect matching in a bipartite graph, but gen-
eralized to the case of perfect n-gram matching and with additional krank condition.

A.4 Auxiliary Lemma

Proof of Lemma 1: We show that if G(Y,X;A) has a perfect n-gram matching, then
G(Y,X(n);A�n) has a perfect matching. The reverse can be also immediately shown by
reversing the discussion and exploiting the additional condition stated in the lemma.

19. The Lemma 6 result is about the column rank of A itself, but here it is about the column rank of A�n

for which the same analysis works. Note that the support of BM (which is full column rank here) is
within the support of A�n and therefore Lemma 6 can still be applied.

20. Note that many terms in this bound are ignored which leads to a loose bound that might be improved.
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Let E�n denote the edge set of the bipartite graph G(Y,X(n);A�n). Assume G(Y,X;A) has
a perfect n-gram matching M ⊆ E. For any j ∈ Y , let NM (j) denote the set of neighbors
of vertex j according to edge set M . Since M is a perfect n-gram matching, |NM (j)| = n
for all j ∈ Y . It can be immediately concluded from Definition 4 that sets NM (j) are all
distinct, i.e., NM (j1) 6= NM (j2) for any j1, j2 ∈ Y, j1 6= j2. For any j ∈ Y , let N ′M (j) denote
an arbitrary ordered n-tuple generated from the elements of set NM (j). From the definition
of n-gram matrix, we have A�n(N ′M (j), j) 6= 0 for all j ∈ Y . Hence, (j,N ′M (j)) ∈ E�n for
all j ∈ Y which together with the fact that all N ′M (j)’s tuples are distinct, it results that
M�n := {(j,N ′M (j))|j ∈ Y } ⊆ E�n is a perfect matching for G(Y,X(n);A�n).

Lemma 6 Consider matrix C ∈ Rm×r which is generic. Let C̃ ∈ Rm×r be such that
Supp(C̃) ⊆ Supp(C) and the non-zero entries of C̃ are the same as the corresponding non-
zero entries of C. If C̃ is full column rank, then C is also full column rank, almost surely.

Proof: Since C̃ is full column rank, there exists a r × r submatrix of C̃, denoted by C̃S ,
with non-zero determinant, i.e., det(C̃S) 6= 0. Let CS denote the corresponding submatrix
of C indexed by the same rows and columns as C̃S .
The determinant of CS is a polynomial in the entries of CS . Since C̃S can be derived from
CS by keeping the corresponding non-zero entries, det(CS) can be decomposed into two
terms as

det(CS) = det(C̃S) + f(CS),

where the first term corresponds to the monomials for which all the variables (entries of
CS) are also in C̃S and the second term corresponds to the monomials for which at least
one variable is not in C̃S . The first term is non-zero as stated earlier. Since C is generic,
the polynomial f(CS) is non-trivial and therefore its roots have Lebesgue measure zero. It
implies that det(CS) 6= 0 with Lebesgue measure one (almost surely), and hence, it is full
(column) rank. Thus, C is also full column rank, almost surely.

Finally, Theorem 9 is proved by combining the results of Theorem 27 and Lemma 5.
Proof of Theorem 9: Since conditions 2 and 3 hold and A is generic, Lemma 5 can be applied
which results that rank condition 6 is satisfied almost surely and expansion condition 7 also
holds. Therefore, all the required conditions for Theorem 27 are satisfied almost surely and
this completes the proof.

Appendix B. Proof of Random Identifiability Result (Theorem 15)

We provide detailed proof of the steps stated in the proof sketch of random result in Section
5.2.

B.1 Proof of Existence of Perfect n-gram Matching and Kruskal Results

Restatement of Theorem 22 Consider a random bipartite graph G(Y,X;E) with |Y | = q
nodes on the left side and |X| = p nodes on the right side, and each node i ∈ Y is
randomly connected to di different nodes in X. Let dmin := mini∈Y di. Assume that it
satisfies the size condition q ≤

(
c pn
)n

(condition 4) for some constant 0 < c < 1 and
the degree condition dmin ≥ max{1 + β log p, α log p} for some constants β > n−1

log 1/c , α >
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Figure 6: Partitioning of sets Y and X , proposed in the proof of Theorem 22. Set X is randomly
(uniform) partitioned into n sets of (almost) equal size, denoted by X ′

l , l ∈ [n]. Set Y is also randomly
partitioned in a recursive manner. In each step, it is partitioned to J = c p

n = O(p) number of sets.
These smaller sets are again partitioned, recursively. This partitioning process is performed until
reaching sets with size O(p). The first two steps are shown in this figure.

max
{
2n2

(
β log 1

c + 1
)
, 2βn

}
(lower bound in condition 5). Then, there exists a perfect (Y -

saturating) n-gram matching in the random bipartite graph G(Y,X;E), with probability at
least 1 − γ1p

−β′
for constants β′ > 0 and γ1 > 0, specified in (5) and (6).

Proof of Theorem 22: Vertex sets X and Y are partitioned, described as follows (see
Figure 6). Define J := c p

n . Partition set X uniformly at random into n sets of (almost)
equal size 21, denoted by X ′

l , l ∈ [n]. Define sets Xl := ∪l
i=1X

′
i, l ∈ [n]. Furthermore,

partition set Y uniformly at random, hierarchically as follows. First, partition into J sets,
each with size at most

(
c p

n

)n−1
, and denote them by Yi, i ∈ [J ]. Next, partition each of these

new smaller sets Yi further into J sets, each with size at most
(
c p

n

)n−2
. Do it iteratively up

to n − 1 steps, where at the end, set Y is partitioned into sets with size at most c p
n . The

first two steps are shown in Figure 6.

Proof by induction: The existence of perfect n-gram matching from set Y to set X is
proved by an induction argument. Consider one of intermediate sets in the hierarchical
partitioning of Y with size O(pl) and its further partitioning into J := c p

n sets, each with
size O(pl−1), for any l ∈ {2, . . . , n}. In the induction step, it is shown that if there exists
a perfect (l − 1)-gram matching from each of these subsets of Y with size O(pl−1) to Xl−1,
then there exists a perfect l-gram matching from the original set with size O(pl) to set Xl.
Specifically, in the last induction step, it is shown that if there exists a perfect (n−1)-gram
matching from each set Yl, l ∈ [J ], to set Xn−1, then there exists a perfect n-gram matching
from Y to Xn = X.

Base case of induction: The base case of induction argument holds as follows. By
applying Lemma 8 and Lemma 7, there exists a perfect matching from each partition in Y
with size at most c p

n = O(p) to set X1, whp.

21. By almost, we mean the maximum difference in the size of partitions is 1 which is always possible.

40

Figure 6: Partitioning of sets Y and X, proposed in the proof of Theorem 22. Set X is randomly
(uniform) partitioned into n sets of (almost) equal size, denoted by X ′l , l ∈ [n]. Set Y
is also randomly partitioned in a recursive manner. In each step, it is partitioned to
J = c pn = O(p) number of sets. These smaller sets are again partitioned, recursively.
This partitioning process is performed until reaching sets with size O(p). The first two
steps are shown in this figure.

max
{

2n2
(
β log 1

c + 1
)
, 2βn

}
(lower bound in condition 5). Then, there exists a perfect (Y -

saturating) n-gram matching in the random bipartite graph G(Y,X;E), with probability at
least 1− γ1p−β′ for constants β′ > 0 and γ1 > 0, specified in (5) and (6).

Proof of Theorem 22: Vertex sets X and Y are partitioned, described as follows (see
Figure 6). Define J := c pn . Partition set X uniformly at random into n sets of (almost)
equal size 21, denoted by X ′l , l ∈ [n]. Define sets Xl := ∪li=1X

′
i, l ∈ [n]. Furthermore,

partition set Y uniformly at random, hierarchically as follows. First, partition into J sets,
each with size at most

(
c pn
)n−1

, and denote them by Yi, i ∈ [J ]. Next, partition each of these

new smaller sets Yi further into J sets, each with size at most
(
c pn
)n−2

. Do it iteratively up
to n − 1 steps, where at the end, set Y is partitioned into sets with size at most c pn . The
first two steps are shown in Figure 6.

Proof by induction: The existence of perfect n-gram matching from set Y to set X is
proved by an induction argument. Consider one of intermediate sets in the hierarchical
partitioning of Y with size O(pl) and its further partitioning into J := c pn sets, each with
size O(pl−1), for any l ∈ {2, . . . , n}. In the induction step, it is shown that if there exists
a perfect (l− 1)-gram matching from each of these subsets of Y with size O(pl−1) to Xl−1,
then there exists a perfect l-gram matching from the original set with size O(pl) to set Xl.
Specifically, in the last induction step, it is shown that if there exists a perfect (n−1)-gram
matching from each set Yl, l ∈ [J ], to set Xn−1, then there exists a perfect n-gram matching
from Y to Xn = X.

21. By almost, we mean the maximum difference in the size of partitions is 1 which is always possible.
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(a) Partitioning of sets Y and X pro-
posed for the induction step.

Y
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perfect matchings from Pa(S) to X′
n

(b) Partitioning of set Y through perfect
(n − 1)-gram matchings Mi, i ∈ [J ].

Figure 7: Auxiliary figures for proof of induction step. (a) Partitioning of sets Y and X proposed
in the proof, where set Y is partitioned to J := c p

n partitions Y1, . . . , YJ with (almost) equal size,
for some constant c < 1. In addition, set X is partitioned to two partitions Xn−1 and X ′

n with sizes
|Xn−1| = n−1

n p and |X ′
n| = p

n . The perfect (n − 1)-gram matchings Mi, i ∈ [J ], through bipartite
graphs Gi(Yi, Xn−1; Ei), i ∈ [J ], are also highlighted in the figure. (b) Set Y is partitioned to subsets
Pa(S), S ∈ Pn−1(Xn−1), which is generated through perfect (n − 1)-gram matchings Mi, i ∈ [J ].
S1, S2 and S3 are three different sets in Pn−1(Xn−1) shown as samples. In addition, the perfect
matchings from Pa(S), S ∈ Pn−1(Xn−1), to X ′

n, proposed in the proof, are also highlighted in the
figure.

Induction step: Consider J different bipartite graphs Gi(Yi,Xn−1;Ei), i ∈ [J ], by con-
sidering sets Yi and Xn−1 and the corresponding subset of edges Ei ⊂ E incident to them.
See Figure 7a. The induction step is to show that if each of the corresponding J bipartite
graphs Gi(Yi,Xn−1;Ei), i ∈ [J ], has a perfect (n−1)-gram matching, then whp, the original
bipartite graph G(Y,X;E) has a perfect n-gram matching.

Let us denote the corresponding perfect (n − 1)-gram matching of Gi(Yi,Xn−1;Ei) by
Mi. Furthermore, the set of all subsets of Xn−1 with cardinality n − 1 are denoted by
Pn−1(Xn−1), i.e., Pn−1(Xn−1) includes the sets with (n − 1) elements in the power set 22 of
Xn−1. For each set S ∈ Pn−1(Xn−1), take the set of all nodes in Y which are connected to
all members of S according to the union of matchings ∪J

i=1Mi. Call this set the parents of
S, denoted by Pa(S). According to the definition of perfect (n − 1)-gram matching, there
is at most one node in each set Yi which is connected to all members of S through the
matching Mi and therefore, |Pa(S)| ≤ J = c p

n . In addition, note that sets Pa(S) impose a
partitioning on set Y , i.e., each node j ∈ Y is exactly included in one set Pa(S) for some
S ∈ Pn−1(Xn−1). This is because of the perfect (n − 1)-gram matchings considered for sets
Yi, i ∈ [J ].
Now, a perfect n-gram matching for the original bipartite graph is constructed as follows.
For any S ∈ Pn−1(Xn−1), consider the set of parents Pa(S). Create the bipartite graph
GS(Pa(S),X ′

n;ES), where ES ⊂ E is the subset of edges incident to partitions Pa(S) ⊂ Y
and X ′

n ⊂ X. Denote by dS the minimum degree of nodes in set Pa(S) in the bipartite
graph GS(Pa(S),X ′

n;ES). Applying Lemma 8, we have

Pr[dS ≥ 1 + β log(p/n)] ≥ 1 − J exp

(
− 2

n2

(dmin − βn log(p/n))2

dmin

)
(38)

22. The power set of any set S is the set of all subsets of S.
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Figure 7: Auxiliary figures for proof of induction step. (a) Partitioning of sets Y and X proposed
in the proof, where set Y is partitioned to J := c p

n partitions Y1, . . . , YJ with (almost) equal size,
for some constant c < 1. In addition, set X is partitioned to two partitions Xn−1 and X ′

n with sizes
|Xn−1| = n−1

n p and |X ′
n| = p

n . The perfect (n − 1)-gram matchings Mi, i ∈ [J ], through bipartite
graphs Gi(Yi, Xn−1; Ei), i ∈ [J ], are also highlighted in the figure. (b) Set Y is partitioned to subsets
Pa(S), S ∈ Pn−1(Xn−1), which is generated through perfect (n − 1)-gram matchings Mi, i ∈ [J ].
S1, S2 and S3 are three different sets in Pn−1(Xn−1) shown as samples. In addition, the perfect
matchings from Pa(S), S ∈ Pn−1(Xn−1), to X ′

n, proposed in the proof, are also highlighted in the
figure.

Induction step: Consider J different bipartite graphs Gi(Yi,Xn−1;Ei), i ∈ [J ], by con-
sidering sets Yi and Xn−1 and the corresponding subset of edges Ei ⊂ E incident to them.
See Figure 7a. The induction step is to show that if each of the corresponding J bipartite
graphs Gi(Yi,Xn−1;Ei), i ∈ [J ], has a perfect (n−1)-gram matching, then whp, the original
bipartite graph G(Y,X;E) has a perfect n-gram matching.

Let us denote the corresponding perfect (n − 1)-gram matching of Gi(Yi,Xn−1;Ei) by
Mi. Furthermore, the set of all subsets of Xn−1 with cardinality n − 1 are denoted by
Pn−1(Xn−1), i.e., Pn−1(Xn−1) includes the sets with (n − 1) elements in the power set 22 of
Xn−1. For each set S ∈ Pn−1(Xn−1), take the set of all nodes in Y which are connected to
all members of S according to the union of matchings ∪J

i=1Mi. Call this set the parents of
S, denoted by Pa(S). According to the definition of perfect (n − 1)-gram matching, there
is at most one node in each set Yi which is connected to all members of S through the
matching Mi and therefore, |Pa(S)| ≤ J = c p

n . In addition, note that sets Pa(S) impose a
partitioning on set Y , i.e., each node j ∈ Y is exactly included in one set Pa(S) for some
S ∈ Pn−1(Xn−1). This is because of the perfect (n − 1)-gram matchings considered for sets
Yi, i ∈ [J ].
Now, a perfect n-gram matching for the original bipartite graph is constructed as follows.
For any S ∈ Pn−1(Xn−1), consider the set of parents Pa(S). Create the bipartite graph
GS(Pa(S),X ′

n;ES), where ES ⊂ E is the subset of edges incident to partitions Pa(S) ⊂ Y
and X ′

n ⊂ X. Denote by dS the minimum degree of nodes in set Pa(S) in the bipartite
graph GS(Pa(S),X ′

n;ES). Applying Lemma 8, we have

Pr[dS ≥ 1 + β log(p/n)] ≥ 1 − J exp

(
− 2

n2

(dmin − βn log(p/n))2

dmin

)
(38)

22. The power set of any set S is the set of all subsets of S.
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(b) Partitioning of set Y through perfect
(n− 1)-gram matchings Mi, i ∈ [J ].

Figure 7: Auxiliary figures for proof of induction step. (a) Partitioning of sets Y and X proposed in
the proof, where set Y is partitioned to J := c pn partitions Y1, . . . , YJ with (almost) equal
size, for some constant c < 1. In addition, set X is partitioned to two partitions Xn−1
and X ′n with sizes |Xn−1| = n−1

n p and |X ′n| = p
n . The perfect (n − 1)-gram matchings

Mi, i ∈ [J ], through bipartite graphs Gi(Yi, Xn−1;Ei), i ∈ [J ], are also highlighted in the
figure. (b) Set Y is partitioned to subsets Pa(S), S ∈ Pn−1(Xn−1), which is generated
through perfect (n−1)-gram matchings Mi, i ∈ [J ]. S1, S2 and S3 are three different sets
in Pn−1(Xn−1) shown as samples. In addition, the perfect matchings from Pa(S), S ∈
Pn−1(Xn−1), to X ′n, proposed in the proof, are also highlighted in the figure.

Base case of induction: The base case of induction argument holds as follows. By
applying Lemma 8 and Lemma 7, there exists a perfect matching from each partition in Y
with size at most c pn = O(p) to set X1, whp.

Induction step: Consider J different bipartite graphs Gi(Yi, Xn−1;Ei), i ∈ [J ], by con-
sidering sets Yi and Xn−1 and the corresponding subset of edges Ei ⊂ E incident to them.
See Figure 7a. The induction step is to show that if each of the corresponding J bipartite
graphs Gi(Yi, Xn−1;Ei), i ∈ [J ], has a perfect (n−1)-gram matching, then whp, the original
bipartite graph G(Y,X;E) has a perfect n-gram matching.

Let us denote the corresponding perfect (n − 1)-gram matching of Gi(Yi, Xn−1;Ei) by
Mi. Furthermore, the set of all subsets of Xn−1 with cardinality n − 1 are denoted by
Pn−1(Xn−1), i.e., Pn−1(Xn−1) includes the sets with (n− 1) elements in the power set 22 of
Xn−1. For each set S ∈ Pn−1(Xn−1), take the set of all nodes in Y which are connected to
all members of S according to the union of matchings ∪Ji=1Mi. Call this set the parents of
S, denoted by Pa(S). According to the definition of perfect (n − 1)-gram matching, there
is at most one node in each set Yi which is connected to all members of S through the
matching Mi and therefore, |Pa(S)| ≤ J = c pn . In addition, note that sets Pa(S) impose a
partitioning on set Y , i.e., each node j ∈ Y is exactly included in one set Pa(S) for some
S ∈ Pn−1(Xn−1). This is because of the perfect (n− 1)-gram matchings considered for sets
Yi, i ∈ [J ].
Now, a perfect n-gram matching for the original bipartite graph is constructed as follows.
For any S ∈ Pn−1(Xn−1), consider the set of parents Pa(S). Create the bipartite graph
GS(Pa(S), X ′n;ES), where ES ⊂ E is the subset of edges incident to partitions Pa(S) ⊂ Y

22. The power set of any set S is the set of all subsets of S.
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and X ′n ⊂ X. Denote by dS the minimum degree of nodes in set Pa(S) in the bipartite
graph GS(Pa(S), X ′n;ES). Applying Lemma 8, we have

Pr[dS ≥ 1 + β log(p/n)] ≥ 1− J exp

(
− 2

n2
(dmin − βn log(p/n))2

dmin

)
(38)

≥ 1− c

n
p−β log 1/c = 1−O(p−β log 1/c),

where β log 1/c > n− 1, and the last inequality is concluded from the degree bound dmin ≥
α log p. Furthermore, we have |Pa(S)| ≤ c pn = c|X ′n|. Now, we can apply Lemma 7
concluding that there exists a perfect matching from Pa(S) to X ′n within the bipartite
graph GS(Pa(S), X ′n;ES), with probability at least 1−O(p−β log 1/c). Refer to Figure 7b for
a schematic picture. The edges of this perfect matching are combined with the corresponding
edges of the existing perfect (n−1)-gram matchings Mi, i ∈ [J ], to provide n incident edges
to each node i ∈ Pa(S). It is easy to see that this provides a perfect n-gram matching from
Pa(S) to X.
We perform the same steps for all sets S ∈ Pn−1(Xn−1) to obtain a perfect n-gram matching
from any Pa(S), S ∈ Pn−1(Xn−1), to X. Finally, according to this construction, the union
of all of these matchings is a perfect n-gram matching from ∪S∈Pn−1(Xn−1) Pa(S) = Y to
X. This finishes the proof of induction step. Note that here we analyzed the last induction
step where the existence of perfect n-gram matching is concluded from the existence of
corresponding perfect (n − 1)-gram matchings. The earlier induction steps, where the
existence of perfect l-gram matching is concluded from the existence of corresponding perfect
(l − 1)-gram matchings for any l ∈ {2, . . . , n}, can be similarly proven.

Probability rate: We now provide the probability rate of the above events. Let N
(hp)
l , l ∈

[n], denote the total number of times that perfect matching result of Lemma 7 is used in
step l in order to ensure that there exists a perfect l-gram matching from corresponding

partitions of Y to set Xl, whp. Let N (hp) =
∑

l∈[n]N
(hp)
l . As earlier, let Pl−1

(
Xl−1

)
denote

the set of all subsets of Xl−1 with cardinality l − 1. We have

∣∣Pl−1
(
Xl−1

)∣∣ =

(∣∣Xl−1
∣∣

l − 1

)
=

( l−1
n p

l − 1

)
, l ∈ {2, . . . , n}.

According to the construction method of l-gram matching from (l − 1)-gram matchings,
proposed in the induction step,

∣∣Pl−1
(
Xl−1

)∣∣ is the number of times Lemma 7 is used in
order to ensure that there exists a perfect l-gram matching for each partition on the Y side.
Since at most Jn−l number of such l-gram matchings are proposed in step l, the number

N
(hp)
l can be bounded as

N
(hp)
l ≤ Jn−l

∣∣Pl−1
(
Xl−1

)∣∣ = Jn−l
( l−1

n p

l − 1

)
, l ∈ {2, . . . , n}. (39)

Since in the first step, N
(hp)
1 = Jn−1 number of perfect matchings needs to exist in the

above discussion, we have

N (hp) = Jn−1 +

n∑

l=2

N
(hp)
l
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≤ Jn−1 +

n∑

l=2

Jn−l
( l−1

n p

l − 1

)

≤
(
c
p

n

)n−1
+

n∑

l=2

(
c
p

n

)n−l(
e
p

n

)l−1

≤ n
(
e
p

n

)n−1
= O(pn−1),

where inequality (39) is used in the first inequality and J := c pn and inequality
(
n
k

)
≤
(
enk
)k

are exploited in the second inequality.
Since the result of Lemma 7 holds with probability at least 1 − O(p−β log 1/c) and it is
assumed that β log 1/c > n− 1, by applying union bound, we have the existence of perfect
n-gram matching with probability at least 1−O(p−β

′
), for β′ = β log 1

c − (n− 1) > 0.
Furthermore, note that the degree concentration bound in (38) is also used O(pn−1) times.
Since the bound in (38) holds with probability at least 1−O(p−β log 1/c) and it is assumed
that β log 1/c > n− 1, this also reduces to the same probability rate.
The coefficient of the above polynomial probability rate is also explicitly computed, saying
that the perfect n-gram matching exists with probability at least 1− γ1p−β′ , with

γ1 = en−1
( c

nn−1
+

e2

1− δ1
nβ
′+1
)
,

where δ1 is a constant satisfying e2
(
p
n

)−β log 1/c
< δ1 < 1.

Proof of Theorem 24: Let G(Y,X;A) denote the corresponding bipartite graph to matrix
A where node sets Y = [q] and X = [p] index the columns and rows of A respectively.
Therefore, |Y | = q and |X| = p. Fix some S ⊆ Y such that |S| ≤ p. Then

Pr(|N(S)| ≤ |S|) ≤
∑

T⊆X:
|T |=|S|

Pr(N(S) ⊆ T )

=
∑

T⊆X:
|T |=|S|

∏

i∈S

(|S|
di

)/( p
di

)

≤
∑

T⊆X:
|T |=|S|

∏

i∈S

( |S|
p

)di

≤
∑

T⊆X:
|T |=|S|

∏

i∈S

( |S|
p

)dmin

=

(
p

|S|

)( |S|
p

)dmin|S|
, (40)

where the bound
(|S|
di

)/(
p
di

)
≤
(
|S|
p

)di
is used in the second inequality, and the last inequality

is concluded from the fact that |S|p ≤ 1.
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Let E denote the event that for any subset S ⊆ Y with |S| ≤ r, we have |N(S)| ≥ |S|, i.e.,

E := “∀S ⊆ Y ∧ 1 ≤ |S| ≤ r : |N(S)| ≥ |S|”.

Then, by the union bound and inequality (40), we have

Pr(Ec) = Pr(∃S ⊆ Y s. t. 1 ≤ |S| ≤ r ∧ |N(S)| < |S|) ≤
r∑

s=1

(
q

s

)(
p

s

)(
s

p

)dmins

≤
r∑

s=1

(
e
q

s

)s(
e
p

s

)s(s
p

)dmins

≤
r∑

s=1

(
e2qrdmin−2

pdmin−1

)s
,

where the bound
(
n
k

)
≤
(
enk
)k

is used in the second inequality. For r = cp , the above
inequality reduces to

Pr(Ec) ≤
r∑

s=1

(
e2cdmin−2 q

p

)s

≤
r∑

s=1

(
e2c′cdmin−1pn−1

)s

≤
r∑

s=1

(
e2c′cβ log ppn−1

)s

=
r∑

s=1

(
e2c′pn−1−β log 1/c

)s

≤ e2c′

pβ′ − e2c′ = O(p−β
′
), for β′ = β log

1

c
− (n− 1) > 0,

where the size condition assumed in the theorem is used in the second inequality with
c′ := 1

c

(
c
n

)n
, and the degree condition is exploited in the third inequality. The last inequality

is concluded from the geometric series sum formula for large enough p.
Then, Lemma 9 can be applied concluding that krank(A) ≥ r = cp, with probability at
least 1− γ2p−β′ for constants β′ = β log 1

c − (n− 1) > 0 and γ2 > 0 as

γ2 =
cn−1e2

nn(1− δ2)
,

where δ2 is a constant satisfying c′e2p−β
′
< δ2 < 1.

Proof of Remark 23: Consider a random bipartite graph G(Y,X;E) where for each node
i ∈ X:

1. Neighbors N(i) ⊆ X are picked uniformly at random among all size d subsets of X.

2. Matching M(i) ⊆ N(i) is picked uniformly at random among all size n subsets of
N(i).
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Note that as long as n ≤ d, the distribution of M(i) is uniform over all size n subsets of X.
Fix some pair i, i′ ∈ Y . Then

Pr(M(i) = M(i′)) =

(|X|
n

)−1
.

By the union bound,

Pr
(
∃i, i′ ∈ Y, i 6= i′ s. t.M(i) = M(i′)

)
≤
(|Y |

2

)(|X|
n

)−1
,

which is Θ(|Y |2/|X|n) when n is constant. Therefore, if d ≥ n and the size constraint
|Y | = O(|X|s) for some s < n

2 is satisfied, then whp, there is no pair of nodes in set Y with
the same random n-gram matching. This concludes that the random bipartite graph has a
perfect n-gram matching whp, under these size and degree conditions.

B.2 Auxiliary Lemmata

Lemma 7 (Existence of perfect matching for random bipartite graphs) Consider
a random bipartite graph G(W,Z;E) with |W | = w nodes on the left side and |Z| = z on
the right side, and each node i ∈ W is randomly connected to di different nodes in set Z.
Let dw := mini∈W di. Assume that it satisfies the size condition w ≤ cz for some constant
0 < c < 1 and the degree condition dw ≥ 1 + β log z for some constant β > 0. Then, there
exists a perfect matching in the random bipartite graph G(W,Z;E) with probability at least
1−O(z−β log 1/c) where β log 1

c > 0.

Proof: From Hall’s theorem (Theorem 32), the existence of perfect matching for a bipar-
tite graph is equivalent to occurrence of the following event

Ẽ := “∀S ⊆W : |N(S)| ≥ |S|”.
Similar to the analysis in the proof of Theorem 24, applying the union bound we have

Pr
(
Ẽc
)

= Pr(∃S ⊆W s. t. |N(S)| < |S|) ≤
w∑

s=1

(
w

s

)(
z

s

)(
s

z

)dws

≤
w∑

s=1

(
e
w

s

)s(
e
z

s

)s(s
z

)dws

≤
w∑

s=1

(
e2wdw−1

zdw−1

)s

≤
w∑

s=1

(
e2cdw−1

)s
,

where the bound
(
n
k

)
≤
(
enk
)k

is used in the second inequality. From the assumed lower
bound on the degree dw and the fact that 0 < c < 1, we have

Pr
(
Ẽc
)
≤

w∑

s=1

(
e2cβ log z

)s
=

w∑

s=1

(
e2zβ log c

)s
≤ e2

zβ log 1
c − e2

≤ e2

1− δ1
z−β log 1/c,
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where the second inequality is concluded from the geometric series sum formula for large
enough z, and δ1 is a constant satisfying e2z−β log 1/c < δ1 < 1.

Lemma 8 (Degree concentration bound) Consider a random bipartite graph G(Y,X;E)
with |Y | = q and |X| = p, where each node i ∈ Y is randomly connected to di different
nodes in set X. Let Y ′ ⊂ Y be any subset 23 of nodes in Y with size |Y ′| = q′ and X ′ ⊂ X
be a random (uniformly chosen) subset of nodes in X with size |X ′| = p′. Create the new
bipartite graph G(Y ′, X ′;E′) where edge set E′ ⊂ E is the subset of edges in E incident to
Y ′ and X ′. Denote the degree of each node i ∈ Y ′ within this new bipartite graph by d′i. Let
dmin := mini∈Y di and d′min := mini∈Y ′ d′i. Then, if dmin > r pp′ for a non-negative integer r,
we have

Pr[d′min ≥ r + 1] ≥ 1− q′ exp

(
−2(p′/p)2

(dmin − (p/p′)r)2

dmin

)
.

Proof: For any i ∈ Y ′, we have

Pr[d′i ≤ r] =
r∑

j=0

(
p′

j

)(
p− p′
di − j

)/( p
di

)
,

where the inner term of summation is a hypergeometric distribution with parameters p
(population size), p′ (number of success states in the population), di (number of draws) and
j is the hypergeometric random variable denoting number of successes. The following tail
bound for the hypergeometric distribution is provided (Chvátal, 1979; Skala)

Pr[d′i ≤ r] ≤ exp(−2t2i di),

for ti > 0 given by r =
(p′
p − ti

)
di. Note that assumption dmin > p

p′ r in the lemma is

equivalent to having ti > 0, i ∈ Y . Considering the minimum degree, for any i ∈ Y ′, we
have

Pr[d′i ≤ r] ≤ exp(−2t2dmin),

for t > 0 given by r =
(p′
p − t

)
dmin. Substituting t from this equation gives the following

bound

Pr[d′i ≤ r] ≤ exp

(
−2(p′/p)2

(dmin − (p/p′)r)2

dmin

)
. (41)

Finally, applying the union bound, we can prove the result as follows

Pr[d′min ≥ r + 1] = Pr[∩q′i=1{d′i ≥ r + 1}]

≥1−
q′∑

i=1

Pr[d′i ≤ r]

≥1−
q′∑

i=1

exp

(
−2(p′/p)2

(dmin − (p/p′)r)2

dmin

)

23. Note that Y ′ need not to be uniformly chosen and the result is valid for any subset of nodes Y ′ ⊂ Y .
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=1− q′ exp

(
−2(p′/p)2

(dmin − (p/p′)r)2

dmin

)
,

where the union bound is applied in the first inequality and the second inequality is con-
cluded from (41).

A lower bound on the Kruskal rank of matrix A based on a sufficient relaxed expansion
property on A is provided in the following lemma which might have independent interest.

Lemma 9 If A is generic and the bipartite graph G(Y,X;A) satisfies the relaxed 24 expan-
sion property |N(S)| ≥ |S| for any subset S ⊆ Y with |S| ≤ r, then krank(A) ≥ r, almost
surely.

Before proposing the proof, we state the marriage or Hall’s theorem which gives an
equivalent condition for having a perfect matching in a bipartite graph.

Theorem 32 (Hall’s theorem, (Hall, 1935)) A bipartite graph G(Y,X;E) has Y -saturating
matching if and only if for every subset S ⊆ Y , the size of the neighbors of S is at least as
large as S, i.e., |N(S)| ≥ |S|.
Proof of Lemma 9: Denote the submatrix AN(S),S by ÃS , i.e., ÃS := AN(S),S . Exploiting

marriage or Hall’s theorem, it is concluded that the bipartite graph G(S,N(S); ÃS) has
a perfect matching MS for any subset S ⊆ Y such that |S| ≤ r. Denote by ÃMS

the

corresponding matrix to this perfect matching edge set MS , i.e., ÃMS
keeps the non-zero

entries of ÃS on edge set MS and everywhere else, it is zero. Note that the support of ÃMS

is within the support of ÃS . According to the definition of perfect matching, the matrix
ÃMS

is full column rank. From Lemma 6, it is concluded that ÃS is also full column rank

almost surely. This is true for any ÃS with S ⊆ Y and |S| ≤ r, which directly results that
krank(A) ≥ r, almost surely.

Finally, Theorem 15 is proved by exploiting the random results on the existence of
perfect n-gram matching and Kruskal rank, provided in Theorems 22 and 24.
Proof of Theorem 15: We claim that if random conditions 4 and 5 are satisfied, then
deterministic conditions 2 and 3 hold whp. Then Theorem 9 can be applied and the proof
is done.
From size and degree conditions, Theorem 22 can be applied, which implies that the perfect
n-gram matching condition 2 is satisfied with probability at least 1 − γ1p

−β′ for β′ =
β log 1

c−(n−1) > 0. The conditions required for Theorem 24 also hold and by applying this

theorem we have the bound krank(A) ≥ cp, with probability at least1− γ2p−β′ . Combining
this inequality with the upper bound on degree d in condition 5, we conclude that krank
condition 3 is also satisfied whp. Hence, all the conditions required for Theorem 9 are
satisfied with probability at least 1− γp−β′ , where

γ = γ1 + γ2 = en−1
( c

nn−1
+

e2

1− δ1
nβ
′+1
)

+
cn−1e2

nn(1− δ2)
,

and this completes the proof.
Finally, Corollary 19 can be also proved by showing that the size and degree conditions

satisfy the full column rank condition required in Corollary 13. This is proved in Lemma 7.

24. There is no dmax term in contrast to the expansion property proposed in condition 7.
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Appendix C. Relationship to CP Decomposition Uniqueness Results

In this section, we provide a more detailed comparison with some uniqueness results of
overcomplete CP decomposition. Here, the following CP decomposition for the third order
tensor T ∈ Rp×s×q is considered,

T =

r∑

i=1

ai ◦ bi ◦ ci, (42)

where A = [a1| . . . |ar] ∈ Rp×r, B = [b1| . . . |br] ∈ Rs×r and C = [c1| . . . |cr] ∈ Rq×r.
The most important and general uniqueness result of CP, called Kruskal’s condition, is
provided in Kruskal (1977), where it is guaranteed that the above CP decomposition is
unique if

krank(A) + krank(B) + krank(C) ≥ 2r + 2.

Since then, several works have analyzed the uniqueness of CP decomposition. One set of
works assume that one of the components, say C, is full column rank (Lathauwer, 2006;
Jiang and Sidiropoulos, 2004). It is shown in Lathauwer (2006), for generic (fully dense)
components A,B and C, if r ≤ q and r(r−1) ≤ p(p−1)s(s−1)/2, then the CP decomposition
in (42) is generically unique.
Now, we demonstrate how this CP uniqueness result can be adapted to our setting. First,
consider the matrix M ∈ Rps×q which is obtained by stacking the entries of T as

M(i−1)s+j,k = Tijk.

Then, we have

M = (A�B)C>. (43)

On the other hand, for the 2-persistent topic model with 4 words (n = 2,m = 2), the
moment can be written as

M
(2)
4 (x) = (A�A)E

[
hh>

]
(A�A)>,

for A ∈ Rp×q. The following matrix has the same column span of M
(2)
4 (x),

M ′ = (A�A)C ′>,

for some full rank matrix C ′ ∈ Rq×q. Our random identifiability result in Theorem 15
provides the uniqueness of A and C ′, given M ′, under the size condition q ≤

(
cp2
)2

and the
additional degree condition 5. Note that as discussed in the previous section, this identifi-
ability argument is the same as the unique decomposition of the corresponding tensor.
Thus, in equation (43), by setting A = B and a full rank square matrix C, we obtain the
2-persistent topic model, under consideration in this paper. Thus, the identifiability results
of Lathauwer (2006) are applicable to our setting, if we assume generic (i.e. fully dense)
matrix A. However, we incorporate a sparse matrix A, and therefore, require different
techniques to provide identifiability results. We note that the size bound specified in Lath-
auwer (2006) is comparable to the size bound derived in this paper (for random structured
matrices), but we have additional degree considerations for identifiability. Analyzing the
regime where the uniqueness conditions of Lathauwer (2006) are satisfied under sparsity
constraints is an interesting question for future investigation.
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Abstract

We propose an algorithm for two-class classification problems when the training data are
imbalanced. This means the number of training instances in one of the classes is so low
that the conventional classification algorithms become ineffective in detecting the minority
class. We present a modification of the kernel Fisher discriminant analysis such that the
imbalanced nature of the problem is explicitly addressed in the new algorithm formulation.
The new algorithm exploits the properties of the existing minority points to learn the
effects of other minority data points, had they actually existed. The algorithm proceeds
iteratively by employing the learned properties and conditional sampling in such a way
that it generates sufficient artificial data points for the minority set, thus enhancing the
detection probability of the minority class. Implementing the proposed method on a number
of simulated and real data sets, we show that our proposed method performs competitively
compared to a set of alternative state-of-the-art imbalanced classification algorithms.

Keywords: kernel Fisher discriminant analysis, imbalanced data, two-class classification

1. Introduction

Classification is a task of supervised learning in which the response function assumes a set
of integer values known as the class labels. In particular, two-class classification refers to
algorithms producing binary responses and aiming at separating two probability densities
after observing some instances from each class. In this paper, we are interested in developing
a classification algorithm for a two-class classification problem in which the number of data
points in one class (i.e. the majority class) is greater than those of the other class (i.e. the
minority class). This type of data structure is called imbalanced data.

It is particularly crucial to correctly identify test cases belonging to the minority class
as a low detection rate for the minority class could incur heavy expenses in practice. The
reason lies in the nature of the minority classes. For example, in quality control applications,
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the minority class is the class of defective products; in security applications, the minority
class is the class of potential perpetrators or attackers; in medical applications, the minority
class is the class of diseases or cancerous cells. A classification method that fails to detect
the minority classes is useless for practical purposes.

If one is interested in detecting minority cases in application, a direct use of traditional
two-class classifications, such as support-vector machines or logistic regression, is not reliable
because when the minority class data are too few in the training set, those methods tend
to label almost all the instances in the test set, minority or otherwise, as the majority class
(Chen et al., 2005). A training data set overwhelmed with one class of data points and
deficient in the other class misleads the two classification algorithms about the accurate
boundary between the two groups. Using most standard loss functions, these classification
algorithms see little penalty by classifying regions in which both the minority and majority
points have high density.

The major efforts aimed at solving the imbalanced classification problem can be cate-
gorized into: (a) cost-sensitive methods and (b) sampling strategies (He and Garcia, 2009;
Japkowicz, 2000). Cost-sensitive methods take the imbalance structure into account by
assigning a higher cost to the miss-classification of minority data points (Elkan, 2001; Ting,
2002). Despite a theoretical connection between imbalanced structure and cost-sensitive
framework (Maloof, 2003; Weiss, 2004), this class of algorithms however may fail in prac-
tice; for example, if in the training stage the instances forming the classes are separable
(Wallace et al., 2011, p.757). More critically, determining a suitable cost function is not a
straightforward task and it may be difficult to achieve a robust algorithm using cost-sensitive
methods.

The basic idea of the sampling-based approach is to alter the imbalanced structure
of the problem by using different types of sampling methods. Hence, the algorithms in
this category can be classified according to the specific sampling approaches, including
resampling with replication, undersampling, or synthetic oversampling. In resampling with
replication, one can use, for instance, bootstrapping for oversampling the minority data
(Chen et al., 2005; Byon et al., 2010). In undersampling, one downsamples the majority
data points to create more balanced data sets and alleviate the imbalance attached to the
original data (Liu et al., 2009).

A novel approach proposed by Chawla et al. (2002) and called SMOTE, generates extra
synthetic minority data points by interpolating the spaces between existing minority data
points. Unlike other sampling methods which resample the existing data, SMOTE “creates”
new data points, debuting the synthetic oversampling approach. Since SMOTE, many other
variations of synthetic oversampling have been proposed in the literature; among others, Han
et al. (2005) proposed an algorithm generating minority data points close to the boundary
of the two classes and Batista et al. (2004) utilized different heuristics to integrate with
synthetic oversampling.

SMOTE has proven to be a powerful method for handling imbalanced classification
problems and still serves as a benchmark for this class of problems. An important revelation
from the success of SMOTE and the like is that the synthetic oversampling is more potent
than merely resampling existing data. The power of synthetic oversampling seems to lie
in the simple fact that extra data are synthesized. From another perspective, synthetic
data generation can be considered as a case of “phantom-transduction” as opposed to
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the inductive inference (Akbani et al., 2004). In other words, generating extra synthetic
minority data points resembles that of using test sets in learning (Gammerman et al., 1998).
SMOTE, for instance, does not employ a sophisticated approach for data synthesizing, but
uses a simple, yet proved highly effective in practice, data interpolation (Chawla et al.,
2002). It is not clear, however, whether the mechanism of data synthesizing matters and if
so, which type of mechanism to use.

The current literature does not seem to present a consensus concerning the effectiveness
of data synthesizing mechanisms. We tend to believe that it matters, because if a data
synthesizing mechanism is tailored to and/or embedded in a specific classification problem,
we expect to observe improvements in classification performance. Some empirical evidence
supports our belief (Han et al., 2005). At a minimum, we believe that the data synthesizing
issue remains unsettled and is worth further investigation.

We also believe that an important question to ponder is how to decide the decision
boundary if we were furnished with more instances of the minority class. It should be
emphasized, however, that not all those could-be minority points carry the same amount of
information; those that can guide the algorithm to expand the minority class’s region are
more valuable because it is the difficulty that classification algorithms confront. Basically
the question becomes how to use the current data points to synthesize the “valuable” but
absent minority data points that allow us to obtain a tighter boundary for the majority
class.

Towards that goal, we employ the kernel trick embedded in Fisher discriminant analysis
(Hofmann et al., 2008; Mika et al., 1999) in our data synthesizing mechanism in order
to exploit the properties of newly generated points in the feature space without actually
specifying them. We utilize two properties of the “artificially” generated minorities: (i) the
points should be located as close as possible to the boundary of the majority class, (ii) their
projection onto a lower dimensional space should be close to that of the existing minority
points in their vicinity. Then we sample more minority points from the augmented data
set, conditional on the boundary achieved. We perform this procedure iteratively until the
algorithm achieves the desired performance, and label the resulting algorithm Absent Data
Generator (ADG).

The remainder of this paper is organized as follows. Section 2 outlines the kernel Fisher
discriminant analysis, formally defines the imbalanced classification problem and presents
the main optimization formulation. Section 3 presents the details of the proposed algorithm.
Section 4 describes the proposed method’s application to several simulated and real data
sets and the results when the data structure is imbalanced. Section 5 discusses finding a
bound on the generalization error of the algorithm. Section 6 concludes the paper and offers
suggestions for future research.

2. Problem Formulation

Let X denote the input space, and suppose X− = {x−1 ,x
−
2 , . . . ,x

−
l−
} ⊂ X is the training set

of majority data points which are independent and identically distributed (i.i.d.) (negative
points, labeled as −1 or simply “−”) and X+ = {x+

1 ,x
+
2 , . . . ,x

+
l+
} ⊂ X is the training set

of minority data points, also i.i.d. (positive points, labeled as +1, or simply “+” ). For
notation simplicity, the subscript “+” on l+ is dropped when the context is clear. In the
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case of imbalance data, we have l+ � l−, or simply l � l−. The goal in this section is
to introduce a basic framework and general thoughts on how to generate and then utilize
artificial data points. We propose generating artificial data points near the discriminative
boundary of the two classes, and that they are generated within existing clusters with the
probability of artificial data generated within a cluster inversely proportional to the size of
that cluster.

First, we introduce the notion of “absent data”: intuitively, absent data refer to the
data points belonging to the minority class whose lack of presence has made the problem
imbalanced, and we intend to re-generate them for the purpose of two-class classification.
The concept of some data being absent is based on the thought that the existing data points
may convey some information that allows us to identify some new data points belonging
to the same class. Of course, acknowledging the existing of absent data does not imply
that we know their numbers or exact locations in the space a priori. But in the context of
imbalanced classification, this assumption paves the way for solving the problem through
synthetic oversampling of minority data. Let Z = {x+

l+1,x
+
l+2, . . . ,x

+
l+k} ⊂ X

+ denote these
absent data from the minority class; we assume the absent data are also an i.i.d. sample.
We may denote each x+

l+j ∈ Z by zj for j = 1, 2, . . . , k.

We first review the Fisher discriminant analysis briefly. For a two-class classification,
Fisher linear discriminant can be expressed simply through the following optimization prob-
lem:

max
w

J(w) =
wTSBw

wTSWw
, (1)

where SB and SW are the between and within class scatter matrices, respectively:

SB = (m− −m+)(m− −m+)T ,

SW =
∑

i∈{−,+}

∑
x∈X i

(x−mi)(x−mi)
T , (2)

and mi = 1
li

∑li
j=1 x

i
j , for i ∈ {−,+}, is the sample average of each class. Problem (1)

can be interpreted as maximizing the ratio of the between-class variance to the pooled
variance about the means. Under certain conditions, we can also interpret this formulation
as an optimal Bayes classifier (Bickel and Levina, 2004). We will revisit this formulation in
Section 5 when developing an error bound.

To deal with nonlinear cases, one can map the data into a high-dimensional feature space
and perform the calculation in that space. However, if an appropriate kernel is chosen for
the transformation of the data and the calculation only requires kernel evaluations, we do
not have to perform any calculations in the high-dimensional feature space (Hofmann et al.,
2008). This property, known as the kernel trick, can be applied to the Fisher discriminant
analysis, resulting in the Kernel Fisher Discriminant (KFD) (Mika et al., 1999). Specifically,
the KFD is the extension of the Fisher linear discriminant performed in the feature space
which solves

max
w

J(w) =
wTSφBw

wTSφWw
, (3)
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where SφB and SφW are the between and within class scatter matrices, respectively, in the
feature space:

SφB = (mφ
− −m

φ
+)(mφ

− −m
φ
+)T ,

SφW =
∑

i∈{−,+}

∑
x∈X i

(φ(x)−mφ
i )(φ(x)−mφ

i )T , (4)

and mφ
i = 1

li

∑li
j=1φ(xij). Here, φ is a nonlinear mapping from X to the feature space F ,

which is assumed to be a separable Hilbert space endowed with an inner product 〈·, ·〉 such
that there exists a function K : X ×X → R where K(x,x′) = 〈φ(x),φ(x′)〉. Obviously, in
this case w ∈ F . Applying to imbalanced data sets, KFD suffers the same problem as most
other classifiers do, i.e. it falls short of detecting most minority points in the test stage.

Our goal is to consider the imbalanced structure explicitly and extend KFD in such a
way that it could be applied to imbalanced data. Towards this end, our thought process is
as follows: first, if we had extra data points from the minority class, those points would be
projected with high probability to where the existing minority points are projected; second,
points close to the boundary of the majority points carry more “information” so we can use
them to find the separating hyperplane in the feature space. The latter is in fact an intuitive
property we are seeking, but the former requires more clarification. Particularly, if dealing
with complex patterns in high dimensions, we may frequently observe that the minority data
points constitute separate clusters after (or before) being projected to a lower-dimensional
space. Therefore, if resemblance in projection regions is used as a property to generate
artificial data, it entails precaution against the effect of complex structures. One way to
address this issue is to take the cluster-based structure of the data into account explicitly.

Suppose the training minority points constitute C different clusters, for C ≥ 1. That
is, we have X+ =

⋃C
c=1X+

c and X+
c′ ∩ X

+
c = ∅ for c 6= c′, where X+

c = {x+
1,c,x

+
2,c, · · · ,x

+
lc,c
}

is the c-th cluster of the minority data points, and we have |X+
c | = lc, and

∑C
c=1 lc = l.

Accordingly, we partition the absent data in Z also into C different clusters, Zc’s, for
c = 1, 2, . . . , C, each of which corresponds to one of the C clusters of the minority points.
Specifically Zc = {x+

lc+1,c,x
+
lc+2,c, . . . ,x

+
lc+kc,c

},
⋃C
c=1Zc = Z, and Zc′ ∩ Zc = ∅, for c 6= c′.

We also have |Zc| = kc, and
∑C

c=1 kc = k. The previously defined notation zj can be
similarly extended as zj,c := x+

lc+j,c
, for j = 1, 2, · · · , kc.

To enforce the property that newly generated points would be projected with high
probability to where the existing minority points are projected, we add the constraint(

wTφ(zj,c)−wTmφ
+,c

)2
≤ δ, for j = 1, 2, . . . kc, c = 1, 2, . . . C, (5)

for some positive δ > 0, where mφ
+,c = 1

lc

∑lc
j=1φ(x+

j,c), namely the mean of cluster c in the
feature space. To have the second property, i.e. to have more points close to the boundary
of the majority points, we add another constraint,

(φ(zj,c)−mφ
−)T (φ(zj,c)−mφ

−) ≤ Λ for j = 1, 2, . . . kc, c = 1, 2, . . . C, (6)

for some positive Λ > 0. Constraint (5) ensures that the point φ(zj,c) is at most δ distance
away from the current cluster center of a minority group. This constraint also incorporates
the cases where the minority data are cohesive and do not constitute many clusters, i.e.
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only one cluster is determined according to the algorithm discussed in Section 3, which
means that the constraint implies that the newly generated data point is at most δ distance
away from the mean of the minority data points. Constraint (6) ensures that the newly
generated points are “useful” in the sense that they are located close to the boundary of
the two groups.

As a result of the Representer’s Theorem (Hofmann et al., 2008), we can safely assume
both w and φ(zj,c) belong to the space generated by the training points, namely X−∪X+,
whose elements, with a slight abuse of notation, can be represented by {xp}np=1 where
n = l− + l. Specifically,

w =
n∑
p=1

αpφ(xp), (7)

and

φ(zj,c)−mφ
− =

n∑
p=1

βj,cp φ(xp), for j = 1, 2, . . . kc, c = 1, 2, . . . C, (8)

where αp and βj,cp are real coefficients for p = 1, 2, . . . , n, j = 1, 2, . . . , kc and c = 1, 2, . . . C.
Having made these assumptions, we can express constraints (5) and (6) as n∑

p=1

αpφ(xp)
T

 n∑
p=1

βj,cp φ(xp) +
1

l−

l−∑
`=1

φ(x−` )− 1

lc

lc∑
`=1

φ(x+
` )

2

≤ δ, (9)

and
n∑
p=1

(βj,cp )2K(xp,xp) ≤ Λ, for j = 1, 2, . . . kc, c = 1, 2, . . . C, (10)

respectively. In the matrix forms, the above two expressions can be represented as[
αTKβj,c +αT (M− −M c

+)
]2 ≤ δ, for j = 1, 2, . . . kc, c = 1, 2, . . . C, (11)

and
(βj,c)TK(βj,c) ≤ Λ, for j = 1, 2, . . . kc, c = 1, 2, . . . C, (12)

where α = [α1, α2, . . . , αn]T and βj,c = [βj,c1 , βj,c2 , . . . βj,cn ]T , and M− is an n × 1 vector

such that (M−)j = 1
l−

∑l−
`=1K(xj ,x

−
` ), and M c

+ is an n × 1 vector such that (M c
+)j =

1
lc

∑lc
`=1K(xj ,x

+
`,c). The n× n matrix K consists of all of the pairwise kernel evaluations,

namely (K)r,s = K(xr,xs), for r, s ∈ {1, 2, . . . , n}.
Following the notation introduced in Mika et al. (1999),

M := (M− −M+)(M− −M+)T , and (13)

N :=
∑

i∈{−,+}

Ki(I − 1li)K
T
i , (14)

where M+ is an n× 1 vector such that (M+)j = 1
l

∑l
`=1K(xj ,x

+
` ), Ki is an n× li matrix

with (Ki)r,s = K(xr,x
i
s) for r ∈ {1, 2, . . . , n}, s ∈ {1, 2, . . . , li} for i ∈ {−,+}, I is the
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identity matrix of appropriate size, and 1li is a matrix of appropriate size whose entries are
1
li

for i = − and i = +, respectively. Now, we can formulate the classification problem with
imbalanced data through the following optimization

max
α

J(α) =
αTMα

αTNα
, (15)

subject to[
αTKβj,c +αT (M− −M c

+)
]2 ≤ δ, for j = 1, 2, . . . kc, c = 1, 2, . . . C, (16)

(βj,c)TK(βj,c) ≤ Λ, for j = 1, 2, . . . kc, c = 1, 2, . . . C. (17)

To solve optimization problem (15)-(17), we assume δ = 0. This implies that the newly
generated points zj,c should be projected where the mean of the corresponding cluster in
the minority group is projected. As such, constraint (16) is replaced by

αTKβj,c +αT (M− −M+) = 0, for j = 1, 2, . . . kc, c = 1, 2, . . . C.

This new constraint is not restricting, since we next solve a relaxation of the original prob-
lem. Specifically, we use the Lagrangian relaxation (Anstreicher and Wolkowicz, 1998) for
solving ((15))-(17). First, note that an equivalent way of writing the optimization ((15))-
(17) is to consider the denominator in the objective function (15) as another constraint and
only have the numerator in the objective function. Specifically, we consider the objective
function to be

max
α

J(α) = αTMα, (18)

and add the constraint

αTNα ≤ R, (19)

to the optimization problem (15), for some positive number R. Having done that, we get
the following for the Lagrangian function

J(α,β) = αTMα − γ
[
αTNα−R

]
−

C∑
c=1

kc∑
j=1

λcj
[
αTKβj,c +αT (M− −M c

+)
]

−
C∑
c=1

kc∑
j=1

µcj
[
(βj,c)TK(βj,c)− Λ

]
, (20)

for γ, λcj , µ
c
j > 0.

To find the stationary points, we set the partial derivatives of the Lagrangian to zero,

∂

∂α
J = 2 (M − γN)α−

C∑
c=1

kc∑
j=1

λcj
(
Kβj,c + (M− −M c

+)
)

= 0, (21)
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∂

∂βj,c
J = −λcj (Kα)− 2µcjKβ

j,c = 0, for j = 1, 2, . . . kc, c = 1, 2, . . . C. (22)

Substituting βj,c = − λcj
2µcj
α, which results from (22), into (21) yields

2 (M − γN)α = −
C∑
c=1

kc∑
j=1

λcj

(
K

λcj
2µcj

α+ (M− −M c
+)

)
, (23)

which can be further simplified as

(M − γN)α = −Kα
C∑
c=1

kc∑
j=1

(λcj)
2

4µcj
−

C∑
c=1

(M− −M c
+)

kc∑
j=1

λcj
2

 . (24)

Let ω = −
∑C

c=1

∑kc
j=1

(λcj)
2

4µcj
, and νc = −

∑kc
j=1

λcj
2 . Then, we have

(M − γN)α = Kαω +

C∑
c=1

{
(M− −M c

+)νc
}
. (25)

Therefore, α is the solution of the linear system

((M − γN)− ωK)α =

C∑
c=1

{
(M− −M c

+)νc
}
. (26)

Solving the problem yields the optimal projection coefficients α∗ = [α∗1, α
∗
2, . . . , α

∗
n]. Subse-

quently, we find the projection of a new test point xtest ⊂ X onto w by

< w,φ(xtest) >=

l∑
`=1

α∗`K(x`,xtest). (27)

The solution of the linear system of equations, namely (26), provides us with the co-
efficients α∗ which will be used for finding a tighter boundary for the majority class. We
note that despite not being present in (26), βj,c’s affect the values of α through the values
of the Lagrangian coefficients, λcj and µcj . As such, βj,c’s are used implicitly to identify the
locations of absent points, although not explicitly needed for prediction; this is how the use
of absent points helps find a tighter boundary for the majority class.

3. Algorithm

As mentioned in Section 2, in optimization problem (15)-(17) we find the projection coef-
ficients α∗ based upon two considerations specifically developed to address the imbalanced
structure. The outcome is a decision boundary separating the two classes. Yet, those absent
data points are still implicitly considered and have not been used to update the estimate
of scatter matrices. This section explains how to generate the synthetic data points, based
on the newly decided class boundary, and use them to update the scatter matrices.
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From a different angle, optimization problem (15)-(17) can be seen as a way to expand
the region associated with the minority data points, as opposed to the region one would
have had without imposing constraints (16) and (17). This expansion allows us to identify
the minority region with better precision and to estimate SB and SW more accurately.
Once the minority class region is revised, we can use the knowledge to synthesize more data
points for the minority class.

We start by using an iterative procedure that alternately updates the class boundary
and revises the SB and SW estimation. In other words, optimization problem (15)-(17)
splits the input region X into two disjoint regions X− and X+ which are estimated regions
belonging to the majority and minority points, respectively. Then, we draw additional
minority points, i.e. data synthesizing for the minority class, from the updated minority
region to improve the estimates of the scatter matrices.

Specifically, we draw independent samples from the estimated density of the current
minority points, conditional on the boundary imposed by the optimal projection coefficients
α∗. Let F̂ uα∗ be the estimated distribution of the minority points as a mixture of u Gaussian
distribution estimated using X+ = {x+

1 ,x
+
2 , . . . ,x

+
l } ⊂ X and truncated according to α∗,

namely

F̂ uα∗ =
1

u

u∑
b=1

abΨb, (28)

where Ψb is a Gaussian distribution with mean µb and variance Σ2
b , truncated over the

region X+, 0 ≤ ab ≤ 1 for b = 1, 2, . . . , u, and
∑u

b=1 ab = 1. Let Z̃ denote a set of q

independent samples drawn from F̂ uα∗ , specifically x̃+
` ∼ F̂ uα∗ , for ` = 1, 2, . . . , q. Denote

the augmented minority set by X̃+ = X+
⋃
Z̃ = {x+

1 ,x
+
2 , . . . ,x

+
l , x̃

+
1 , x̃

+
2 , . . . , x̃

+
q }. Note

the difference between x̃+
` used here and z` used in the previous section: z` denotes the

absent data points close to the class boundary, playing a role similar to the support vector
points, while x̃+

` denotes any data point actually generated for the minority class. The
x̃+
` points cannot be guaranteed to be close to the class boundary; rather they may be

over the interior of the minority region or cross the boundary and over the region of the
majority class (called intrusion). Consequently, there is a difference between k and q: k
is the number of data points represented by z`, similar to the number of support vector
points, while q is the number of actually generated data points scattering around in the
input space. Generally, q is larger than k.

Then we use the augmented minority set to reevaluate the between- and within-class
scatter matrices, such as:

S̃
φ

B =
(
mφ
− − m̃

φ
+

)(
mφ
− − m̃

φ
+

)T
,

S̃
φ

W =
∑
x∈X−

(φ(x)−mφ
−)(φ(x)−mφ

−)T +
∑
x∈X̃+

(
φ(x)− m̃φ

+

)(
φ(x)− m̃φ

+

)T
, (29)

where m̃φ
+ = 1

l+q

∑l+q
j=1φ(x+

j ). In other words, we update the estimates of the scatter
matrices using the newly generated points. Using (7) and (8) and following the steps for
the optimization procedure stated in Section 2, we obtain a new optimization problem
similar to (15)-(17) in which the matrices K, N , and M and vectors M− and M c

+, for
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c = 1, 2, . . . , C, are evaluated using the sets X− and X̃+. The new optimization problem
yields a new optimal projection coefficient vector α∗ which, in turn, we use to re-estimate
the scatter matrices by fitting again a mixture of Gaussian distributions and generating
q ← b q2c absent points (i.e. half of the points we generated in the previous iteration). We
continue this procedure until q < 1, and we use the final α∗ as the optimal projection
coefficient vector.

The clusters at each stage are decided based on the X-means algorithm (Pelleg and
Moore, 2000). X-means is simply a k-means clustering algorithm in which the number of
clusters, which is denoted by C in our algorithm, is decided based on a Bayesian Information
Criterion (BIC) (Hastie et al., 2009). We choose X-means because the number of clusters is
not known in advance; this number is estimated by X-means based on data; other clustering
methods can also be used (Fraley and Raftery, 1998).

The number of Gaussian mixtures to estimate the distribution of the minority points is
also decided based on BIC. Specifically, the number of Gaussian mixtures at each iteration
is

arg min
u∈N

BIC
(
F̂ uα∗

)
, (30)

where N is the set of positive integers and

BIC
(
F̂ uα∗

)
= −2 log(L) + u log(q),

where L is the likelihood of the minority data points, assuming they are random samples
from F̂ uα∗ .

Once we find the number of Gaussian mixtures, we generate q data points such that
those points are sampled from the fitted Gaussian mixture, assuming the current boundary
defined by the classifier. Among the q synthetic data points at each stage, we first admit
q′ ≤ q of them based on (27); this step is to discard the synthetic data points that are on

the wrong side of the decision boundary. We denote the set of the admitted points by Z̃ ′,
which is the final set of the newly generated data points at a given stage.

The data points in Z̃ ′ are then assigned to a cluster c = 1, 2, . . . , C according to their
Euclidean distance to the center of the cluster in the original space. Specifically, for x̃+

` ∈ Z̃ ′,
its cluster membership is assigned as

c = arg minc′∈{1,...,C}‖x̃
+
` − x̄

+
c′‖, (31)

where x̄+
c′ = 1

lc′

∑lc′
`=1 x

+
`,c′ , which is the center of cluster c′ in the original space. This gives

us qc new data points for each cluster c = 1, 2, . . . , C, such that
∑C

c=1 qc = q′.

The values of Lagrangian coefficients λjc and µjc are determined to be inversely propor-
tional to the number of current minority data points in their associated clusters, namely
λjc = λ

lc
and µjc = µ

lc
. This means that if there are very few data points in a cluster, violating

constraints (16) and (17) is more heavily penalized in comparison to the case when there
are more data points in that cluster. The number of perceived absent data points in a
cluster kc is also inversely proportional to the current number of data points in that cluster,
because a cluster formed by very few data points is not reliable enough to generate many
new data points. Note that kc is the a priori number of perceived absent data points in a
cluster, while qc is the actually generated data points belonging to cluster c.
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Assuming we know the values of the tuning parameters γ and λ, we can summarize
the steps of the Absent Data Generator classifier (ADG) in Algorithm 1. In practice,
the aforementioned tuning parameters are determined using cross validation (Hastie et al.,
2009). Based on our experiments, ADG is not very sensitive to the number of absent points
k, so that it can be simply set to a number between 10 to 15. The number of actual minority
data points generated, q, on the other hand, is decided so that the final data set of interest
is relatively balanced. Note that the number of newly generated points q is decreasing at
each stage.

Algorithm 1 Absent Data Generator for Imbalanced Classification

Given X− and X+, evaluate K, M , N , Ki, and M i, for i ∈ {−,+} and let X̃+ = X+.
repeat

1. Find C clusters for the augmented minority set X̃+, where C is decided by mini-
mizing the associated BIC.
2. Choose λjc = λ

lc
, µjc = µ

lc
, for j = 1, 2, . . . kc, and kc is chosen proportionally to 1

lc
,

for c = 1, 2, . . . C, such that
∑C

c=1 kc = k.

3. Let ω = −
∑C

c=1

∑kc
j=1

(λcj)
2

4µcj
, νc = −

∑kc
j=1

λcj
2 and (M c

+)j = 1
lc

∑lc
`=1K(xj ,x

+
`,c)

4. Let α∗ be the solution of ((M − γN)− ωK)α =
∑C

c=1

{
(M− −M c

+)νc
}

.
5. Fit a mixture of u normal distributions to X+ where u provides the smallest BIC
in (30).
6. Generate q data points from the resulting Gaussian mixtures above, say Z̃ =
{x̃+

1 , x̃
+
2 , . . . , x̃

+
q }.

7. Utilize α∗ according to (27) to test if each x̃+
` , ` = 1, 2, . . . , q belongs to class +1 or

not. Let Z̃ ′ = {x+l+1,x
+
l+2, . . . ,x

+
l+q′} ⊂ Z̃ be the set of data points admitted into the

minority set.
8. Identify the clusters to which the new data points belong according to (31). Let qc
be the number of elements in Z̃ ′ belonging to cluster c, for c = 1, 2, . . . C.
9. X̃+ ← X̃+ ∪ Z̃ ′.
10. X̃ ← X− ∪ X̃+.
11. (M−)j ← 1

l−

∑l−
`=1K(xj ,x

−
` ) for xj ∈ X̃ .

12. (M+)j ← 1
l+q′

∑l+q′

`=1 K(xj ,x
+
` ) for xj ∈ X̃ .

13. (M c
+)j = 1

lc+qc

∑lc+qc
`=1 K(xj ,x

+
`,c) for xj ∈ X̃ .

14. (K)r,s ← K(xr,xs), for r, s ∈ {1, 2, . . . , n+ q′},
(K−)r,s = K(xr,x

−
s ) for r ∈ {1, 2, . . . , n+ q}, s ∈ {1, 2, . . . , l−},

(K+)r,s = K(xr,x
+
s ) for r ∈ {1, 2, . . . , n+ q}, s ∈ {1, 2, . . . , l + q}.

15. M ← (M− −M+)(M− −M+).
16. N ←

∑
i∈{−,+}Ki(I − 1li)K

T
i .

17. q ← b q2c,
l← |X̃+|,
n← |X̃ |.

until q < 1.
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Having the optimal projection coefficients α∗ which corresponds to the optimal pro-
jection vector w in the feature space, we can obtain the prediction for the class labels by
classifying the projected values of the data points onto w. Let κx be an n× 1 vector of the
kernel evaluation between x ∈ X and all the training samples and the synthetic minority
points generated by Algorithm 1, that is,

(κx)` = K(x`,x), ∀x` ∈ X̃ . (32)

Then assume CT is a one-dimensional binary classifier, e.g. the Support Vector Machine,
trained on the set T = {(h(x`;α∗), y`) : x` ∈ X̃ , ` = 1, 2, . . . , n}, where y` is the class
label for x`, and h(x`;α∗) = αT∗ κx`

. More precisely, the classifier CT , after training on T ,
yields a real number as the threshold v∗ such that if h(x;α∗) > v∗, then the corresponding
h(x;α∗) is labeled as +1; otherwise −1. Then, the label prediction for a test point xt using
the ADG will be

ADG(xt) =

{
+1 if h(xt;α∗) > v∗,
−1 if h(xt;α∗) ≤ v∗.

(33)

We note that the ADG’s data generation mechanism is based on an iterative method
that explores the minority region by data generating constraints that are embedded in the
optimization problem. Unlike SMOTE, in ADG, the synthetic data are not necessarily in
the convex hull of existing data which could be another advantage for ADG, especially in
higher dimensions. Also, ADG acknowledges the significance of the data points close to the
boundary and generates synthetic data by utilizing both majority and minority data points.

ADG’s computational complexity is of polynomial order. Note that the major operation
in the algorithm is solving the system of linear equations (26), i.e. step 4 in the algorithm,
since all the other steps involve relatively low computational costs. Particularly, clustering,
if solved exactly, has cost O(ndC+1 log n), where d denotes the dimension here (Inaba et al.,
1994); however, we appeal to heuristics to accelerate the process even close to a linear
order of complexity in n under mild conditions (Kanungo et al., 2002). Other approaches
to implement the X-means algorithm faster are discussed by Pelleg and Moore (2000).
Fitting a mixture of u normal distributions requires only O(nu2) flops (Verbeek et al., 2003).
Using the kernel trick does not impact the complexity of the algorithm, and moreover, the
number of iterations is O(log n). Hence, from a computational complexity perspective,
the algorithm is dominated by (26) which can be solved using an LU decomposition in
2
3n

3 + O(n2) operations (Trefethen and Bau III, 1997). As such, the complexity of the
algorithm is O(n3 log n).

4. Experiments

In this section, we apply the proposed ADG algorithm to a number of data sets, both real
and artificial, and compare it to five alternative methods. Three of the methods in compar-
ison are the Cost-Sensitive Support Vector Machine (CS-SVM), Synthetic Minority Over-
Sampling Technique (SMOTE) (Chawla et al., 2002) and Borderline-SMOTE (BSMOTE)
(Han et al., 2005). CS-SVM is an SVM algorithm (Hastie et al., 2009) modified for the
imbalanced classification by imposing a higher cost on minority miss-classification (Elkan,
2001). In CS-SVM, we choose the value of the so-called “box constraint” in SVM to be
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l+l−
2l for positive samples and l+l−

2l−
for negative samples, so that the cost ratio for the two-

class misclassification is l
l−

. BSMOTE is similar to SMOTE but generates the new data
points close to the boundary between the minority and majority classes. In this regard,
BSMOTE uses a data synthesizing mechanism closest to that used in the proposed ADG.
For both SMOTE and BSMOTE, once the new data points are generated, we can use a
KFD algorithm to perform the task of classification on the balanced data set. Thereby, it
would be straightforward to compare their performance against the ADG, as ADG also has
the KFD as its classifier. The main parameter in SMOTE and B-SMOTE is the amount of
oversampling, which is set to the same level as that in ADG, which, in turn, is determined
by the value of q as discussed in Section 3.

The aforementioned competing algorithms are selected to compare different data gener-
ating mechanisms (SMOTE and BSMOTE) with that of the ADG, and to observe how they
perform compared to another school of thought in imbalanced classification, cost-sensitive
classification (CSSVM). We therefore present comparison among these algorithms in more
detail. As a general principle, we select the parameters in the competing methods based
on the recommendations made by the authors of the associated papers, unless otherwise
indicated.

To further investigate ADG’s viability as a means for imbalanced classification, at the
end of this section we also compare the results of ADG with a combination of ensemble
learners and undersampling (Wallace et al., 2011), and generating data using a fitted prob-
abilistic distribution for the minority data points (Hempstalk et al., 2008; Liu et al., 2007).
The former, referred to as “Under+ENS” hereafter, undersamples the majority data points
several times to obtain balanced data sets and then uses a set of ensemble classifiers on
the balanced data sets. The latter, referred to as “Prob-Fit” hereafter, fits a probability
distribution to the existing minority data points and then generates synthetic data points
from that distribution to create balanced data sets which, in turn, are used for classification.
The probability distribution used in Prob-Fit, for all the data sets used in this paper, is a
mixture of Gaussian distributions.

Concerning the kernel function used in both ADG and SVM (recall SVM is used in
CS-SVM, SMOTE and BSMOTE), we use a Radial Basis Function kernel K(x,y) =
exp(−d‖x − y‖2), in which the parameter d is estimated through cross validation. To
implement KFD we use the MATLAB package Statistical Pattern Recognition Tool

(STPRtool) (Franc, 2011). We code ADG, SMOTE, BSMOTE, Under+ENS, and Prob-Fit
in MATLAB, and also use the SVM implementation in MATLAB.

The performance measures we are interested in are the false alarm rate and detection
power. Specifically, for the test set {(x`, y`)|` = 1, 2, . . . , N}, we can estimate the false
alarm rate and detection power as follows

F̂A =
1

N−

N−∑
`=1

L(0,1)(y`, ŷ`), for ` such that y` = −1, (34)

and

D̂P = 1− 1

N+

N+∑
`=1

L(0,1)(y`, ŷ`), for ` such that y` = +1, (35)
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where N− and N+ are the number of majority and minority points in the test set, respec-
tively. The variable ŷi is the predicted class label (i.e. −1 or 1) for the associated prediction
method, and L(0,1)(., .) is the 0-1 loss function

L(0,1)(y1, y2) =

{
0 if y1 = y2,
1 if y1 6= y2.

(36)

Concerning the numerical experiments, we need to utilize simulated/real data sets which
are deemed imbalanced. However, the number of available imbalanced data sets is limited,
and we are also interested in testing algorithms on data sets with varying degrees of imbal-
ance ratio, which can be characterized by the proportion of the majority data points to the
minority data points in each data set. To this end, having the original training sets, X+

and X−, we can build training sets that are comprised of a subset of X+ and X− and have
a different proportion of majority to minority compared to the original training sets. That

is, we have X+
u ⊂ X+ and X−u ⊂ X− where X

+
u

X−u
> X+

X− . Then we can utilize X+
u and X−u as

the new training set and the remaining data for testing. We will explain this approach in
Section 4.2.

4.1 Using a Simulated Data set

Before presenting the classification results using the real data sets, we want to observe
the difference of the mechanism of data generation between ADG and SMOTE. For this
purpose, we create one simulated data set, in which we generate 900 data points as the
majority data set from a mixture of five Gaussian distributions on R2 and 450 data points
as the minority data set from a mixture of another five Gaussian distributions on R2.

Figure 1 shows a sample of synthetic data generation for a subset of the mixture of
Gaussian distributions with an imbalance ratio greater than 6. Comparing region A in plots
(b) and (c) in Figure 1 suggests that, for this particular data set, the ADG mechanism
is more “space-filling” than that of SMOTE. Comparing region B in plots (b) and (d)
shows that the intrusion into the majority space, while attempting to be space-filling, is
less of a problem for ADG than that for BSMOTE, which also aims at generating data
close to the boundary. Performing this space-filling property within the minority region,
is of paramount importance for imbalanced classification in higher dimensions as well. It
is not easy to demonstrate this property for the other data sets, as their dimensions are
larger than two. The subsequent numerical results, however, support ADG’s potency in
imbalanced classification, and we think its strength can be partly attributed to ADG’s
ability to maintain the property better than SMOTE and BSMOTE.

4.2 Real Data sets

We use a total of eleven real data sets for training and testing. Four of them are from the
UCI Machine Learning Repository (http://archive.ics.uci.edu/ml/), which are the
Wisconsin Diagnostic Breast Cancer data set, the Ionosphere data set, the Yeast data set
and Speech Recognition data set. The other seven are used in (Wallace and Dahabreh, 2012)
(http://www.cebm.brown.edu/static/imbalanced-datasets.zip). Table 1 summarizes
the basic properties associated with these data sets, including the Gaussian mixture data
simulated in Section 4.1.
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Figure 1: Comparing the mechanism of data generation in ADG with SMOTE for an artifi-
cial data set: (a) Original imbalanced data; (b) Balanced data after one iteration
of ADG; (c) Balanced data after using SMOTE; (d) Balanced data after using
BSMOTE. Comparing region A in plots (b) and (c) and region B in plots (c) and
(d) shows ADG is more space-filling and intrudes less into the majority space.

Among the aforementioned data sets, not all of them are genuinely imbalanced. In
those circumstances, we form the training data sets using a large portion of the majority
data and a very small portion of the minority data. Besides, we are interested in observing
how different methods perform as a data set becomes more imbalanced. For this purpose,
we adjust the degrees of imbalance in a training set, by tuning the ratio of the number of
majority points over the number of minority points in the data set. Specifically, for a given
imbalance ratio, we first randomly undersample both the majority and the minority data
points so that the training data set is constructed with the specified degree of imbalance.
This means we obtain new training sets X+

u and X−u as explained in the beginning of this
section, run each algorithm on the training set, and use the remaining data for testing. We
repeat this procedure ten times and report the average values as the estimated false alarm
rate and detection power. Note that these new X+

u and X−u will have the role of X+ and
X− in Algorithm 1 and no further modification is applied to the algorithm.
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Data set Dimension Total Data Amount # of Majority # of Minority

Simulated Gaussian mixtures 2 1350 900 450

Breast Cancer Detection 9 699 458 241

Speech Recognition 10 990 900 90

Yeast 10 1484 1449 35

Ionosphere 34 351 225 126

Pima 8 768 500 268

Car 21 1728 1659 69

Ecoli 9 336 301 35

Glass 9 214 197 17

Haberman 3 306 225 81

Vehicle 18 846 634 212

CMC 24 1473 1140 333

Table 1: Basic properties of data sets

4.3 Results

We represent the performance of each algorithm on each data set using the Area Under
Curve (AUC) of the Receiver Operating Characteristic (ROC) plot (Bradley, 1997). In the
ROC analysis we plot each (FA, DP) point for a test case in an ROC space in which the FA
is on the x-axis and the DP is on the y-axis (Provost et al., 1997). We use the perfcurve

command in MATLAB to generate the ROC curves, once we have computed a sufficient
number of (FA, DP) points. Then, we compute AUC as the area under a respective ROC
curve. Note that a larger AUC generally denotes better performance.

We apply the six competing methods (ADG included) to the twelve data sets (including
the simulated Gaussian mixture data) under different imbalance ratios. We report the
average AUC and its standard deviation (both from ten repetitions), instead of the ROC
plots themselves. Considering the number of classification methods in comparison, data
sets involved, and imbalance ratios used, it is impractical to hope that plotting all ROC
curves can produce a clear overall picture. Instead, we present the AUC information in a
concise form: Table 2 lists the average values and Table 3 lists the corresponding standard
deviations.

As evident in Table 2, ADG provides the largest AUC for most cases, especially under
the most imbalanced circumstances of each test instance. Rather than expecting the ROC
to suggest the optimal classifier, one may identify the regions or scenarios where a classifier
can be recommended (Provost et al., 1997). We find that ADG provides a good balance
between the conflicting objectives of reducing the false alarm, while increasing the detection
power.

As expected, Prob-Fit performs very well on the simulated data, because the data
are simulated using Gaussian mixture models. On the real data sets, the performance of
Prob-Fit depends on the actual number of minority data points, that is, it performs better
when the minority data are enough to reliably fit a distribution, and it performs poorly
when the data set suffers from absolute scarcity. Therefore, simply fitting a distribution to
generate data is of little use (Liu et al., 2007). The mechanism behind the performance of
Under+ENS seems to be more involved, and it appears to be competitive for a few cases
only. The comparisons demonstrate the importance of the structure of specific data sets,
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and that no one classifier is dominant for all types of data under all imbalance ratios. The
relation between a data structure and the mechanism embedded in the classifiers to handle
the imbalanced data is of interest to be understood, but currently there are not enough
insights garnered and we leave that issue to future efforts.

The fact that there are no dominating classifiers leads us to ask whether ADG’s perfor-
mance is statistically significant compared to the other methods. Considering that we are
in presence of several classifiers and several data sets, we need to use a test which ranks
classifiers based on their performance, followed by a post hoc analysis. One classical method
which we utilize is the Friedman test (Dems̆ar, 2006), a non-parametric method which sorts
the algorithms conducted on several data sets. Let ma be the number of algorithms, i.e.
classifiers, and md be the number of data sets. Let Re be an md×ma matrix of the results
listed in Table 2, in which each row represents a data set and each column is a classifier.
Considering the average results for each imbalance ratio as produced by one “data set”, we
have md = 48 and ma = 6. First, define the matrix Ra whose entries in each row represent
the classifier’s rank for that specific data set. Under the null hypothesis that all classifiers
are equivalent, i.e. their performance on each data set is identical, the Friedman statistic

F =
12md

ma(ma + 1)

(
ma∑
`=1

Ra
2
` −

ma(ma + 1)2

4

)
, (37)

has a Chi-squared distribution with ma − 1 degrees of freedom, where Ra` is the average
value of column ` = 1, 2, . . . ,ma. Table 4 lists the means for the estimated ranks associated
with each method. Figure 2, which presents the post hoc analysis on the ranking data using
multiple comparisons, shows the ADG’s ranking is significantly higher than other competing
algorithms under the 0.05 level of significance.

Before concluding this section, we want to briefly discuss the drawbacks of the cost-
sensitive approach (Maloof, 2003) and one-class classification (also known as novelty detec-
tion) (Park et al., 2010). One major obstacle faced with cost-sensitive methods is how to
choose a suitable cost ratio that leads to robust outcomes. Figure 3 shows the detection
power and false alarm as a function of cost ratio for the Haberman data where an imbal-
ance ratio greater than 3 is used in training. Specifically, the cost ratio denotes the value
associated with the box constraint in the SVM for minority data points divided into that
value for the majority data points. As Figure 3 shows, the detection power remains almost
constant after the cost ratio passes a threshold around 7, yet the false alarm rate continues
to increase. Similar evidence has been documented in the literature regarding the lack of
robustness in choosing a good cost ratio in the cost-sensitive methods (Byon et al., 2010).
This lack of robust performance is one reason why synthetic oversampling is generally more
powerful than cost-sensitive methods.

Some researchers favor one-class classification (OCC) approaches to solve imbalanced
data problems. In other words, it is better to ignore the data points due to their sparseness
in the minority data set, and instead create a closed decision boundary to characterize the
majority data only. In a detection mission, one would classify a new data point as belonging
either to the majority or the minority class. This OCC approach can be useful for some
extreme cases in which the number of data points in the minority is so few that there are no
practical ways to elicit any relevant information. In many practical cases, however, despite
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Data Imb. Ratio ADG SMOTE BSMOTE CSSVM Under+ENS Prob-Fit

Gaussian Mixture

7 0.886 0.879 0.879 0.886 0.601 0.879
4 0.888 0.886 0.881 0.888 0.675 0.903
3 0.885 0.887 0.878 0.890 0.659 0.912
2 0.892 0.900 0.886 0.893 0.666 0.906

Breast Cancer

6 0.900 0.896 0.897 0.895 0.814 0.882
4 0.899 0.893 0.894 0.894 0.856 0.889
3 0.905 0.901 0.902 0.899 0.879 0.900
2 0.899 0.897 0.897 0.894 0.903 0.916

Speech Recognition

29 0.894 0.877 0.868 0.871 0.663 0.860
15 0.911 0.900 0.908 0.906 0.774 0.902
10 0.891 0.898 0.903 0.891 0.867 0.915
7 0.925 0.919 0.921 0.897 0.932 0.909

Yeast

121 0.811 0.709 0.731 0.760 0.614 0.778
65 0.820 0.723 0.755 0.775 0.683 0.789
40 0.849 0.766 0.812 0.801 0.765 0.810
27 0.858 0.780 0.807 0.809 0.825 0.859

Ionosphere

6 0.896 0.890 0.884 0.891 0.796 0.854
4 0.891 0.885 0.878 0.891 0.841 0.891
3 0.895 0.888 0.881 0.894 0.869 0.905
2 0.899 0.892 0.885 0.893 0.906 0.918

Pima

6 0.681 0.622 0.679 0.668 0.680 0.718
4 0.710 0.660 0.697 0.692 0.702 0.729
3 0.721 0.687 0.699 0.692 0.709 0.720
2 0.734 0.753 0.724 0.700 0.709 0.736

Car

69 0.890 0.872 0.875 0.889 0.851 0.597
37 0.898 0.888 0.891 0.896 0.917 0.756
23 0.900 0.895 0.897 0.899 0.970 0.873
15 0.904 0.897 0.903 0.903 0.991 0.900

Ecoli

25 0.729 0.641 0.696 0.619 0.724 0.681
14 0.732 0.616 0.705 0.601 0.773 0.697
8 0.731 0.702 0.701 0.613 0.849 0.715
6 0.752 0.797 0.681 0.699 0.775 0.722

Glass

33 0.713 0.653 0.669 0.718 0.667 0.710
19 0.754 0.716 0.663 0.709 0.649 0.693
11 0.779 0.737 0.768 0.728 0.701 0.729
8 0.826 0.896 0.852 0.796 0.808 0.774

Haberman

8 0.602 0.568 0.549 0.518 0.595 0.608
4 0.640 0.543 0.584 0.569 0.586 0.601
3 0.653 0.582 0.573 0.598 0.605 0.625
2 0.681 0.596 0.584 0.596 0.618 0.627

Vehicle

9 0.714 0.693 0.708 0.712 0.700 0.701
5 0.729 0.707 0.728 0.729 0.701 0.709
3 0.783 0.778 0.763 0.831 0.712 0.729
2 0.782 0.796 0.790 0.843 0.770 0.735

CMC

10 0.589 0.532 0.538 0.586 0.607 0.549
5 0.679 0.593 0.593 0.664 0.639 0.555
3 0.682 0.646 0.667 0.712 0.652 0.605
2 0.692 0.683 0.678 0.727 0.670 0.641

Table 2: Average Area Under Curve (AUC). The largest values in each row are boldfaced.
“Imb. Ratio” means imbalance ratio, the ratio of the number of majority points
over the number of minority points in a data set.
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Data Imb. Ratio ADG SMOTE BSMOTE CSSVM Under+ENS Prob-Fit

Gaussian Mixture

7 0.053 0.034 0.037 0.032 0.061 0.012
4 0.065 0.037 0.037 0.037 0.061 0.008
3 0.048 0.047 0.050 0.048 0.050 0.008
2 0.020 0.016 0.017 0.024 0.023 0.009

Breast Cancer

6 0.008 0.013 0.012 0.009 0.009 0.015
4 0.015 0.011 0.012 0.013 0.015 0.008
3 0.011 0.010 0.010 0.012 0.012 0.010
2 0.013 0.011 0.020 0.013 0.012 0.009

Speech Recognition

29 0.021 0.021 0.018 0.018 0.021 0.018
15 0.044 0.033 0.029 0.033 0.041 0.021
10 0.027 0.042 0.020 0.034 0.031 0.010
7 0.035 0.020 0.023 0.032 0.033 0.012

Yeast

121 0.028 0.039 0.045 0.029 0.029 0.046
65 0.042 0.055 0.044 0.032 0.039 0.046
40 0.070 0.075 0.067 0.063 0.073 0.069
27 0.165 0.163 0.154 0.135 0.165 0.152

Ionosphere

6 0.038 0.032 0.030 0.036 0.037 0.028
4 0.032 0.029 0.027 0.034 0.039 0.030
3 0.028 0.031 0.020 0.029 0.028 0.013
2 0.024 0.023 0.022 0.019 0.023 0.022

Pima

6 0.026 0.022 0.021 0.031 0.030 0.017
4 0.031 0.037 0.023 0.034 0.033 0.016
3 0.019 0.020 0.021 0.021 0.023 0.018
2 0.026 0.023 0.027 0.028 0.027 0.022

Car

69 0.033 0.040 0.050 0.033 0.033 0.054
37 0.025 0.074 0.068 0.031 0.028 0.120
23 0.015 0.024 0.028 0.015 0.016 0.037
15 0.006 0.040 0.043 0.005 0.006 0.082

Ecoli

25 0.060 0.082 0.073 0.070 0.070 0.089
14 0.075 0.091 0.087 0.073 0.090 0.085
8 0.045 0.051 0.049 0.039 0.047 0.058
6 0.154 0.144 0.138 0.140 0.144 0.130

Glass

33 0.083 0.094 0.096 0.088 0.098 0.092
19 0.114 0.118 0.114 0.108 0.134 0.109
11 0.150 0.174 0.113 0.149 0.155 0.126
8 0.146 0.138 0.156 0.132 0.161 0.133

Haberman

8 0.041 0.040 0.040 0.042 0.043 0.037
4 0.053 0.057 0.043 0.049 0.060 0.029
3 0.045 0.055 0.064 0.046 0.053 0.054
2 0.049 0.053 0.053 0.043 0.049 0.050

Vehicle

9 0.016 0.019 0.017 0.017 0.019 0.017
5 0.025 0.027 0.026 0.029 0.028 0.027
3 0.027 0.024 0.024 0.029 0.029 0.019
2 0.033 0.051 0.042 0.027 0.031 0.054

CMC

10 0.026 0.048 0.057 0.023 0.025 0.080
5 0.016 0.038 0.049 0.016 0.019 0.060
3 0.020 0.021 0.022 0.020 0.024 0.022
2 0.073 0.089 0.076 0.079 0.079 0.088

Table 3: Standard deviation for Area Under Curve (AUC) reported in Table 2.
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ADG 

SMOTE 

BSMOTE 

CS-SVM 

Under+ENS 

Prob-Fit 

Figure 2: Post hoc analysis on the ranking data obtained by the Friedman test. ADG’s
mean column rank is significantly higher than other classifiers.
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Detection Power 

False Alarm 

Figure 3: Detection power (left axis) and false alarm (right axis) as a function of the cost
ratio in CS-SVM for the Haberman data set.
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Classifier ADG SMOTE BSMOTE CSSVM Under+ENS Prob-Fit

Mean of Ranking 5.125 2.865 3.104 3.469 2.833 3.604

Table 4: Mean of rankings based on Friedman test

the sparseness of the data, minority data sets still can provide useful information if utilized
appropriately. To demonstrate the usefulness of utilizing the minority data, we compare
ADG with the OCC method developed in Park et al. (2010) using four sample data sets; this
OCC method was proven to provide asymptotically the tightest bound for majority data
points. For these four sample data sets, we select the training and test data such that the
training data sets have the smallest value of imbalance ratio reported in Table 2. As Figure
4 shows, the OCC could be effective, for instance, duplicating ADG’s performance in the
case of Pima data. One drawback is that OCC methods often suffer from a high false alarm
rate, while attaining a high detection power (e.g. in the case of the Ionosphere data). When
an OCC tries to build the tightest possible closed boundary around the majority data, the
result can be an over-tightened boundary, instead of a boundary loose enough to identify all
majority data points. On the other hand, in the two-class cases, the existence of minority
data points can actually help relax the position of the decision boundary, at least locally
where these minority data points are present. For more detailed comparisons of another
OCC method with two-class classifiers, the reader may consult (Hempstalk et al., 2008);
the results presented there also confirm the argument that if minority data are utilized, one
generally observes an improvement in the minority detection.

5. Extension and Error Bounds

In this section, we consider two additional aspects regarding the proposed algorithm. First,
we seek to identify bounds on the generalization error for the ADG. Second, we extend the
proposed method to deal with the multi-class classification in which a subset of classes has
very few observations available in the training stage.

5.1 Bounds on Generalization Error

Generalization error refers to the expected error on test instances coming from the same
distribution of the training sample (Rasmussen and Williams, 2006). Specifically, if x ∼ G,
where G is the distribution of the input x, the generalization error of some decision function
h with respect to loss function L is defined as

Ex{L(h)}, (38)

where E is the expectation operator.

Let αF denote the optimal value of α obtained by solving optimization problem (3),
namely the KFD. Similar to the procedure explained in Section 3 for obtaining the prediction
label for ADG, let CU be the same one-dimensional binary classifier used for ADG, trained
on the set U = {(h(x`;αF ), y`) : x` ∈ X− ∪ X+, ` = 1, 2, . . . , n}, where κx is defined
similarly to (32) for x` ∈ X− ∪X+, and h(x`;αF ) = αTFκx`

. If the threshold value for the
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Figure 4: Comparing ROCs for ADG and OCC for four sample data sets.
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CU is vF , we have the following prediction for a test point xt using the KFD

KFD(xt) =

{
1 if h(xt;αF ) > vF ,
−1 if h(xt;αF ) ≤ vF .

(39)

Consequently, following the total law of probability, we can deduce that the generalization
error of KFD is equal to

errK = π−P [h(xt;αF ) > vF |yt = −1] + π+P [h(xt;αF ) ≤ vF |yt = 1] , (40)

where πi is the prior probability that a point belongs to the class i ∈ {−,+}.
Durrant and Kabán (2012) established an upper bound on this generalization error,

under the assumption that the data points of each class follow a Gaussian distribution once
mapped to the feature space. Specifically, having a training data set of size n = l+ + l− and
assuming data in the feature space are normally distributed with mean µi and covariance
matrix Σ for i ∈ {−,+}, then for any ρ ∈ (0, 1) the generalization error of KFD is bounded
above with probability of at least 1− ρ by ub(l, ρ) where

ub(l, ρ) =
∑

i∈{−,+}

πiΦ

(
−2

[
g(τ̄(ε))×Π−

√
n

li

(
1 +

√
2

n
log

4

ρ

)])
, (41)

where

Π =

[√
‖µ+ − µ−‖2
λmax(Σ)

+
n

l−l+

tr(Σ)

λmax(Σ)
−

√
2n

l−l+
log

4

ρ

]
+

, (42)

g(r) =
√
r

1+r for r ∈ R, λmax(Σ) is the largest eigenvalue of the covariance matrix, [.]+ =
max (0, .), Φ is the CDF of the standard normal distribution, and

τ̄(ε) =
λmax(Σ)

η

(
1 +

√
n− 2

n
+

ε√
n

)2

+ τ(Σn), (43)

where ε =
√

2 log 4
ρ , τ(Σn) denotes the condition number of Σn that is the covariance

matrix of the points in a subset of the feature space generated by the n points in X− ∪X+,
and η is a regularization constant to ensure non-singularity of the estimate of Σn. As g(.) is
a monotonic decreasing function on r ≥ 1, a smaller value for τ̄(ε) suggests a smaller value
for the upper bound. Note that assuming the regularization constant η does not need to
change as more data points are added to the training set, then the only quantities which
affect τ̄(ε) are τ(Σn) and n.

Note that as the number of observations increases, (41) yields a tighter bound, assuming
that all other quantities remain constant. This is in fact what happens in synthetic data
generation, especially for ADG, since it generates extra observations at each iteration of the
algorithm. The more subtle issue is how the estimated value of the covariance matrix Σ,
projected in the Hilbert space generated by the observation, changes with the generation
of more data points.

Note that Σn = PΣP T , where P is an orthogonal projection into the Hilbert space
spanned by the observations. Assuming that data points mapped to the feature space are
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linearly independent, we can have P n =
(
Xφ

n
T
Xφ

n

)− 1
2
Xφ

n
T

, where Xφ
n is a matrix whose

columns are φ(x`) for x` ∈ X− ∪X+. If we add a new observation xn+1 to the training set

X− ∪ X+, we will get the projection matrix Pφn+1. See the Appendix for an explanation
that as the number of data points increases, the condition number of the covariance matrix
of the space generated by the data points in the feature space decreases, which in turn
implies we achieve a tighter bound for generalization error using ADG.

In fact, as long as a synthetic data generation mechanism is embedded in a KFD frame-
work, as ADG does, we can invoke the above theoretical result on the reduction of the
generalization error. Despite the fact that SMOTE and BSMOTE can also be used, note
that their data generation mechanisms cannot be integrated with KFD. For this reason, the
above error bound result cannot be readily applied to SMOTE and BSMOTE.

5.2 Extension to Multi-class Classification

The methodology presented for the imbalanced two-class classification can be easily ex-
tended to cover multi-class classification in which a subset of classes lack sufficient obser-
vations for the training stage. Let X i = {xi1,xi2, . . . ,xili} ⊂ X denote the training set for
class i ∈ I = {1, 2, . . . , Is}, where li2 � li1 , for i1 ∈ I1, i2 ∈ I2, where I1 ∪ I2 = I and
I1∩I2 = ∅. Let Zis = {xislis+1,x

is
lis+2, . . . ,x

is
lis+kis

} ⊂ X be the absent data from the minor-

ity class is, and denote each xlis+kis by zisj . For simplicity, consider a case in which the data
in each group consist of a single cluster, i.e. C = 1; however, the following algorithm can
be readily extended to consider more clusters. Assume that the data are centered around
each covariate so they have mean 0. Sequentially solve the following optimization problem
to obtain wi for i ∈ I:

max
wi

J(wi) =
wT
i S

φ
Bwi

wT
i S

φ
Wwi

, (44)

subject to
wi ⊥ w`, ∀` < i, (45)(

wT
i φ(zisj )−wTmφ

is

)2
≤ δ, (46)

(φ(zisj )−mφ
id

)T (φ(zisj )−mφ
ir

) ≤ Λ for j = 1, 2, . . . kis , is ∈ I2, ir ∈ I1, (47)

where SφB and SφW are the between and within class scatter matrices, respectively, in the
feature space

SφB =
∑
i∈I

lim
φ
i (mφ

i )T ,

SφW =
∑
i∈I

∑
x∈X i

(φ(x)−mφ
i )(φ(x)−mφ

i )T , (48)

and mφ
i = 1

li

∑li
j=1φ(xij), for i ∈ I. For each minority class in I2, generate kis artificial

points from class ic ∈ I2. Similar to the two-class classification problem, use the Represen-
ter’s Theorem to replace each wi and φ(zisj ) −mφ

ir
as linear combinations of the training

data in the feature space as in (7) and (8). This leads to systems of linear equations as in
(26) which can be embedded into an algorithm similar to Algorithm 1.
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6. Summary

This paper presents an algorithm for solving the two-class classification with imbalanced
training data. The difficulty associated with such data structures is that the inadequate
number of data points belonging to one class (i.e. minority) leads to the problem that most
two-class classification algorithms tend to favor the majority class in labeling test points.
To solve the problem, we devise an algorithm that relies on minority data synthesis. At
each iteration we solve an optimization which considers more numbers of minority points
without explicitly specifying them. Those points affect our decision by forcing the algorithm
to set the decision boundary as though the points genuinely existed. We draw samples
from the new region to enable a more accurate estimation for the scatter matrices. Using
several simulated and real data sets, we compare the performance of the resulting ADG
algorithm with the competing methods, CS-SVM, SMOTE, BSMOTE, Under+ENS and
Prob-Fit. The results suggest that using ADG is preferable when there is a pronounced
data imbalance.

This paper is a first step for developing a data mechanism embedded in a classification
algorithm which we proved useful based on empirical evidence. Since the introduction
of SMOTE (Chawla et al., 2002), there has been significant attention to synthetic data
generation. We suggest however, that more research is needed to understand the relationship
between data generation and classification algorithms.

There are a few critical issues which deserve further attention in this regard. First,
the impact of the data structure on the data generation mechanism needs to be studied
more thoroughly. The current procedure of data generation may not be suitable for all
data structures. Certain alterations on the algorithm, based on the knowledge of how the
physical system of interest works, can help improve the performance of ADG. Second, ADG
can benefit from an investigation into certain assumptions made in the algorithm. One place
is on the assumption that the absent data reside in existing clusters. While reasonable, it
might be restrictive for some data sets. Another aspect is that in the current iteration of
algorithm, we eliminate all artificial data points that fall on the majority side; this appears
beneficial in the examples we studied. Whether or not it can be beneficial for all types of
data remains unclear. These issues are certainly important and how to address them is an
ongoing pursuit.
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Appendix A.

We want to show as the number of training data points increases, the condition number
of the projected covariance matrix into the Hilbert space generated by the data points
decreases. Let x` ∈ X for ` = 1, 2, . . . , n denote the data points in the original space and let
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ζ` for ` = 1, 2, . . . , n denote the data points mapped to a separable Hilbert space H using
a feature map φ, that is ζ` = φ(x`) for ` = 1, 2, . . . , n. Suppose Hn is an n dimensional
subspace of H spanned by ζ` for ` = 1, 2, . . . , n. If ζ` follow a normal distribution in H with
mean µ and covariance matrix Σ, we can have Σn as the projected covariance matrix into
the finite dimensional spaceHn. More precisely, Σn = P nΣP

T
n , namely P n is an orthogonal

projection into Hn, where P n =
(
Xφ

n
T
Xφ

n

)− 1
2
Xφ

n
T

and Xφ
n = [ζ` : ` = 1, 2, . . . , n]. We

want to show that the condition number of Σn is larger than or equal to that of Σn+1.

Without loss of generality, after a rotation and scaling of the data, assume
(
Xφ

p
T
Xφ

p

)
=

I, for p ∈ N, where I is the identity matrix of appropriate size. Therefore,

P n+1 =
(
Xφ

n+1

)T
=
[
(Xφ

n )T |ζTn+1

]
, (49)

and

λmax(Σn+1) = λmax
(
P n+1ΣP

T
n+1

)
= λmax

([
(Xφ

n )T

ζTn+1

]
Σ
[
Xφ

n |ζn+1

])
(50)

= λmax

([
Σn (Xφ

n )TΣζn+1

ζTn+1ΣX
φ
n ζTn+1Σζn+1

])
. (51)

Let ‖ζn+1‖2 := ζTn+1Σζn+1. Therefore,

λmax(Σn+1) ≤ λmax(Σn) + ‖ζn+1‖2, (52)

and

λmin(Σn+1) ≥ λmin(Σn) + ‖ζn+1‖2. (53)

Let τ(.) denote the condition number of a matrix, so

τ(Σn+1) =
λmax(Σn+1)

λmin(Σn+1)
≤
λmax(Σn) + ‖ζn+1‖2

λmin(Σn) + ‖ζn+1‖2
< τ(Σn). (54)
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Abstract

Bayesian network classifiers are a powerful machine learning tool. In order to evaluate the
expressive power of these models, we compute families of polynomials that sign-represent
decision functions induced by Bayesian network classifiers. We prove that those families are
linear combinations of products of Lagrange basis polynomials. In absence of V -structures
in the predictor sub-graph, we are also able to prove that this family of polynomials does
indeed characterize the specific classifier considered. We then use this representation to
bound the number of decision functions representable by Bayesian network classifiers with
a given structure.

Keywords: Bayesian networks, supervised classification, decision boundary, polynomial
threshold function, Lagrange basis

1. Introduction

One of the problems with any supervised classification model, and Bayesian network clas-
sifiers in particular, is to understand the limits of the expressive power of these models.
The first rigorous result in this direction was reported by Minsky (1961), showing that the
decision boundary in naive Bayes classifiers with binary predictors is a hyperplane. Since
then several other researchers have addressed the problem. Peot (1996) reviewed Minsky’s
results about binary predictors and presented some extensions. He mainly discussed the
case of naive Bayes with k-valued observations and observation-observation dependencies.
He also reported an upper bound on the number of linearly separable dichotomies of the
vertices of an n-dimensional cube, consequently bounding the number of decision functions
that are representable by naive Bayes classifiers with binary predictors. Domingos and Paz-
zani (1997) studied the optimality of naive Bayes at length and pointed out that, even if the
independence assumption among predictors is violated, naive Bayes could achieve optimal-
ity under 0-1 loss. Jaeger (2003) showed, for binary predictors that, classifier expressivity
at different levels of complexity is characterized by separability with polynomials of differ-
ent degrees. Ling and Zhang (2002) reported negative results for the expressive power of
Bayesian networks; they proved that a Bayesian network where each node has at most k
parents cannot represent any function containing (k + 1)-XORs. Nakamura et al. (2005)
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studied the inner product space for Bayesian network classifiers with binary predictors, that
is, the smallest Euclidean space that represents the induced concept class. They obtained
upper and lower bounds on the dimension of the inner product space and they linked the
dimension of the inner product space with the Vapnik-Chervonekis (VC) dimension (Vapnik
and Chervonenkis, 1971). Yang and Wu (2012) studied the case of Bayesian networks with
k-valued nodes. They computed the VC dimension for fully connected Bayesian networks
and for Bayesian networks without V -structures. In both cases they showed that the VC
dimension is equal to the dimension of the inner product space.

In this paper we try to generalize the above results within a unified framework. To do
this we compute polynomial threshold functions for Bayesian network (BN) binary classifiers
in order to express their decision boundaries. This research is restricted to BN classifiers
where the binary class variable, C, has no parents and where the predictors are categorical.
As usual, our results extend to non-binary classifiers considering an ensemble of binary
classifiers. Polynomial threshold functions are a way to describe the decision boundary of a
discrete classifier and are a generalization of the results of Minsky (1961) and Peot (1996).
In absence of V -structures in the BN we prove that the obtained families of polynomial
representing the induced decision functions form linear spaces that are representations of
the inner product spaces. We are able to compute the dimensions of those linear spaces and
thus of the inner product space extending the results of Nakamura et al. (2005) and Yang
and Wu (2012).

In Section 2 we define the notation used and briefly describe Bayesian network classi-
fiers. In Section 3 we define a polynomial representation of the Iverson bracket (Iverson,
1962) over a finite number of categorical variables and derive the representation of discrete
probability functions and of conditional probability tables. We then investigate polynomial
representations of decision functions induced by Bayesian network classifiers. We look at
Bayesian network classifiers in ascending order of complexity: naive Bayes classifiers in Sec-
tion 3.2, tree augmented naive Bayes classifiers in Section 3.3, Bayesian network-augmented
naive Bayes classifiers in Section 3.4 and fully connected Bayesian network classifiers in Sec-
tion 3.5. In Section 4 we analyse the expressive power of BAN classifiers. Finally we present
our conclusions and suggest possible future works in Section 5.

2. Preliminaries

We will use bold letters, x or k, to represent elements of a product space, and letters with a
subscript to represent the respective components, for example x2 indicates the second com-
ponent of x. The capital letter P always refers to a probability, defined on an appropriate
measure space, and capital letters X or X1, X2, Xi refer to random variables. For every
function f : Ω→ R and Ω0 ⊆ Ω, we write f|Ω0

for the restriction of f over Ω0, that is, the
function f|Ω0

: Ω0 → R such that f|Ω0
(ξ) = f(ξ) for every ξ ∈ Ω0.

We consider a binary classification, that is, we are given a training set of labelled obser-
vations T =

{
(x1, c1), . . . , (xN , cN )

}
, where xi = (xi1, x

i
2, . . . , x

i
n) ∈ Ω ⊂ Rn, with |Ω| <∞,

and classes ci ∈ {−1,+1}. We search for a classification algorithm (classifier) Φ that, once
trained on the set T , is able to classify every new instance x ∈ Ω into one of the two classes
−1 or +1. Every classifier induces a decision function fΦ

T : Ω → {−1,+1}, where the clas-
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sifier Φ will classify each new instance x to class a if fΦ
T (x) = a. We drop the subscript T

since we are not interested in the relationship to the training set.

In this paper we focus on Bayes classifiers, probabilistic classifiers which learn from the
training set T a joint probability P (X, C) and classify each new instance x = (x1, x2, . . . , xn)
in the most probable a posteriori class (MAP), that is,

fΦ(x) = argmax
c
P (C = c|X = x) = argmax

c
P (X = x, C = c).

BN classifiers (Bielza and Larrañaga, 2014) are Bayesian classifiers that factorize the
joint probability distribution according to a Bayesian network. They range from the sim-
plest naive Bayes classifier (Figure 1), where the predictor variables are assumed to be
conditionally independent given the class variable, to the unrestricted Bayesian classifier,
where a general form of Bayesian network (Pearl, 1988) is permitted. We will study only
Bayesian network augmented naive Bayes classifiers, that is, we will consider the class C as
a root node parent of every predictor variable. Once the structure of the Bayesian network
is fixed, we need to estimate the parameters of the probability distribution. Thanks to the
factorization implied by the Bayesian network structure we just estimate the conditional
probability distributions of every variable given its parents, that is we have to estimate
P (Xi = xi|Xpa(i) = xpa(i)), where Xpa(i) stands for the vector of the parents of Xi. In the
discrete case this is reduced to the estimation of conditional probability tables. They could
be estimated in several ways, but the straightforward approach using the maximum likeli-
hood estimators (MLE), which are the relative frequencies, could lead to some conditional
probabilities equal to zero. A Bayesian approach, such as the Laplace estimator or more
generally Dirichlet-prior estimation of the parameters, will avoid this drawback. Because of
this observation we will assume from now on that all parameters learned will be different
from zero, that is, all the probabilities are positive.

To describe the complexity of decision functions we use the concept of threshold func-
tions.

Definition 1 Given a decision function f : Ω → {−1,+1}, where Ω ⊂ Rn, |Ω| < ∞
and r : Rn 7→ R a polynomial we say that r sign-represents f or that f is computed by a
polynomial threshold function, if

f(x) = sgn(r(x)) for every x ∈ Ω.

Moreover, given a set of polynomials P, we denote by sgn(P) the set of decision functions
that are sign-representable by polynomials in P and by {−1,+1}Ω the set of all the 2|Ω|

decision functions over Ω. Polynomial threshold functions are mainly studied in the theory
of Boolean functions, functions g : {−1,+1}n → {−1,+1} (O’Donnell and Servedio, 2010;
Wang and Williams, 1991). A particular case is the linear threshold function, that is, when
the degree of the polynomial that sign-represents the decision function is equal to one.
Observe that different polynomials can sign-represent the same decision function, and not
every polynomial sign-represents a decision function. In general we have that a polynomial
r(x) sign-represents a decision function over Ω if and only if r(x) 6= 0 for every x ∈ Ω.
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Example 1 Consider Ω = Ω1 × Ω2, with Ω1 = {0, 2, 4} and Ω2 = {0, 1}, and a decision
function f : Ω→ {−1,+1} such that

f(x1, x2) =

{
−1 if (x1, x2) ∈ {(0, 0), (2, 0), (4, 1)}
+1 if (x1, x2) ∈ {(0, 1), (2, 1), (4, 0)}.

If we define polynomials

r(x1, x2) = −2x1x2 + x1 + 6x2 − 3
q(x1, x2) = −2x2

1x2 + x2
1 + 16x2 − 8,

we have sgn(r(x1, x2)) = sgn(q(x1, x2)) = f(x1, x2) for every (x1, x2) ∈ Ω, with r 6= q, thus
both polynomials sign-represent f .

If we consider a polynomial s(x1, x2) = x3
1 + x2 − 8, we have that s(2, 0) = 0 and thus

s(x1, x2) cannot sign-represent any decision function over Ω.

3. Polynomial Threshold Functions for Bayesian Network Classifiers

We develop a method to easily compute polynomial threshold functions for Bayesian network
classifiers. This method is an extension of the well-known results on the decision boundary of
naive Bayes classifiers (Minsky, 1961; Peot, 1996). The method is based on the polynomial
interpolation of discrete probability functions or equivalently their logarithms. Pistone
et al. (2001) give a more formal and general description of this subject, also addressing
applications to Bayesian networks. We will develop this method directly using Lagrange
basis polynomials.

3.1 Lagrange Interpolation of Discrete Probability

The proofs of the results on the decision boundary in naive Bayes classifiers are based on a
representation of the categorical distribution over two values {0, 1} in an exponential form,
P (X = x) = px(1 − p)1−x, with x ∈ {0, 1} and p ∈ (0, 1). We aim to reproduce the same
representation for a categorical variable X ∈ Λ = {ξ1, ξ2, . . . , ξm} ⊂ R, where the values
of variable X are indicated as ξj with j as upper index. We consider {p(1), . . . , p(m)} such
that

∑m
j=1 p(j) = 1 and, using the Iverson bracket (Iverson, 1962), we write

P (X = x) =
m∏
j=1

p(j)[x=ξj ]. (1)

If X ∈ {0, 1} we could represent [x = 0] as 1−x and [x = 1] as x. If we consider a categorical

variable, X ∈ Λ = {ξ1, ξ2, . . . , ξm} ⊂ R, we need to find m polynomials
{
`Λj

}m
j=1

such that

`Λj (ξj) = 1,

and

`Λj (ξk) = 0 for every k 6= j.
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We easily see that such polynomials exist and have the following form:

`Λj (x) =
∏
k 6=j

(x− ξk)
(ξj − ξk)

. (2)

The polynomials defined in Equation (2) are the Lagrange basis polynomials (Abramowitz
and Stegun, 1964; Jeffreys and Jeffreys, 1999) over the points in Λ. These polynomials are m
linearly independent polynomials of degree m− 1, and so they form a basis of polynomials
in one variable whose degree is at most m − 1. We summarize some properties of these
polynomials in the following lemma.

Lemma 2 Let Ωi = {ξ1
i , ξ

2
i , . . . , ξ

mi
i } ⊂ R, for i = 1, . . . , n. For every i define the Lagrange

basis,
{
`Ωi
j (xi)

}
, over Ωi as in Equation (2). Then we have

1. For every i = 1, . . . , n,
{
`Ωi
j (xi)

}mi

j=1
form a basis of the space of polynomials in xi of

degree |Ωi| − 1.

2.
∑mi1

ji1=1

∑mi2
ji2=1 · · ·

∑mil
jil=1

∏
s∈I `

Ωs
js

(xs) =
∏
i∈I
∑mi

ji=1 `
Ωi
ji

(xi) = 1, for every x ∈ RI

and for all I = {i1, . . . , il} ⊆ {1, . . . , n}.

3.
∏
i∈I `

Ωi
ji

(xi) = [xi = ξjii ∀i ∈ I], for every I ⊆ {1, . . . , n}, for all {ji}i∈I such that
1 ≤ ji ≤ mi, and for every x ∈ ×i∈IΩi.

4.
∑mi1

ji1=1

∑mi2
ji2=1 · · ·

∑mip

jip=1

∏
s∈I `

Ωs
js

(xs) =
∏
i∈I\J `

Ωi
ji

(xi), for every x ∈ RI and for all

J = {ii, . . . , ip} ⊂ I ⊆ {1, . . . , n}.

Proof The proof of the above lemma is trivial, and we just outline some points. Point 1 fol-
lows from the linear independences of the Lagrange basis polynomials. To prove point 2, we

have merely to observe that, since
{
`Ωi
j

}mi

j=1
is a basis, we have that the polynomial constant

1 admits a unique representation in the considered basis, in particular 1 =
∑mi

j=1 `
Ωi
j (xi).

Point 3 follows trivially by substitution. To prove point 4 we apply point 2 as follows,

mi1∑
ji1=1

mi2∑
ji2=1

· · ·
mip∑
jip=1

∏
s∈I

`Ωs
js

(xs) =

 mi1∑
ji1=1

mi2∑
ji2=1

· · ·
mip∑
jip=1

∏
s∈J

`Ωs
js

(xs)


︸ ︷︷ ︸

= 1

∏
i∈I\J

`Ωi
ji

(xi) =
∏
i∈I\J

`Ωi
ji

(xi).

If we are given a categorical random variable X over Λ = {ξ1, . . . , ξm} whose probability
mass function is P , we are able to rewrite Equation (1) using the Lagrange basis, as

P (X = x) =
m∏
j=1

p(j)[x=ξj ] =

m∏
j=1

p(j)`
Λ
j (x), (3)
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C

X3X2X1 X4 X5

Figure 1: Naive Bayes classifier structure with five predictor variables

where p(j) = P (X = ξj) are the values of the probability mass function over Λ. Equation
(3) is a consequence of the identity [x = ξj ] = `Λj (x) which derives from point 3 of Lemma 2
considering |I| = 1. More generally, we consider a set of random variables {X1, X2, . . . , Xn}
such that, for every i = 1, . . . , n, the variable Xi ∈ Ωi = {ξ1

i , ξ
2
i , . . . , ξ

mi
i }. If we are given

a conditional probability table that represents the probability function P (X1 = x1|X2 =
x2, . . . , Xn = xn), we can use the Iverson bracket over n variables x1, . . . , xn to describe the
conditional distribution of X1 given X2, . . . , Xn,

P (X1 = x1|X2 = x2, . . . , Xn = xn) =
∏

(j1,...,jn)

p(j1|j2, . . . , jn)[xi=ξ
ji
i ∀i=1,...,n],

where p(j1|j2, . . . , jn) = P (X1 = ξj11 |X2 = ξj22 , . . . , Xn = ξjnn ) are the values of the condi-
tional probability table. Now using point 3 of Lemma 2 with I = {1, . . . , n}, we get

P (X1 = x1|X2 = x2, . . . , Xn = xn) =
∏

(j1,...,jn)

p(j1|j2, . . . , jn)
∏m

i=1 `
Ωi
ji

(xi). (4)

3.2 Naive Bayes

We consider a naive Bayes classifier (NB) (Figure 1) where the predictor variables Xi ∈ Ωi

are conditionally independent given the class variable C. The joint probability distribution
factorizes as follows:

P (C = c,X1 = x1, X2 = x2, . . . , Xn = xn) = P (C = c)

n∏
i=1

P (Xi = xi|C = c). (5)

If the predictor variables are binary, Minsky (1961) proved that the decision boundaries
are hyperplanes. For categorical predictors, the scenario is much more complicated as shown
in Figure 2.

Theorem 3 A decision function f for a binary classification problem over n categorical
variables Xi ∈ Ωi = {ξ1

i , . . . , ξ
mi
i }, with |Ωi| = mi, is sign-represented by a polynomial of

the form
∑n

i=1

(∑mi
j=1 αi(j)`

Ωi
j (xi)

)
if and only if there exists a naive Bayes classifier, with

probability tables without zeros entries, that induces f , where `Ωi
j are the Lagrange basis

over Ωi.
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(a) X,Y ∈ {0, 1, . . . , 5}
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(b) X,Y ∈ {0, 1, . . . , 6}

Figure 2: Decision boundary for two example, (a) and (b), of naive Bayes classifiers with
two categorical variables X, Y . Boundaries are computed as location of zeroes of
polynomials built as in Theorem 3

Proof We consider a naive Bayes classifier as in Figure 1. For every i = 1, . . . , n the
variable Xi takes values over Ωi = {ξ1

i , . . . , ξ
mi
i }, a subset of R of cardinality mi. Thanks

to Equation (3), we can express, for every value c of the class, the conditional probability
P (Xi|C) as

P (Xi = xi|C = c) =

mi∏
j=1

pi(j|c)`
Ωi
j (xi),

where pi(j|c) = P (Xi = ξji |C = c). If we define ai(j|c) = ln(pi(j|c)), and assuming that
pi(j|c) > 0, we have that

P (Xi = xi|C = c) = exp

 mi∑
j=1

ai(j|c)`Ωi
j (xi)

 . (6)

Using this representation we easily find the decision function for NB with arbitrary discrete
predictor variables. Setting a = ln(P (C = +1)) and b = ln(P (C = −1)), we have that a
new instance x = (x1, . . . , xn) will be classified as C = +1 if

P (X1 = x1, . . . , Xn = xn, C = +1) > P (X1 = x1, . . . , Xn = xn, C = −1).

Using Equations (5) and (6) we have that the previous inequality could be rewritten as

exp

a+

n∑
i=1

 mi∑
j=1

ai(j|+ 1)`Ωi
j (xi)

 > exp

b+

n∑
i=1

 mi∑
j=1

ai(j| − 1)`Ωi
j (xi)

 ,
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so the decision function for a naive Bayes classifier is

fNB(x) = sgn

a− b+
n∑
i=1

 mi∑
j=1

α′i(j)`
Ωi
j (xi)

 , (7)

where α′i(j) = ai(j|+ 1)− ai(j| − 1) = ln

(
P (Xi=ξ

j
i |C=+1)

P (Xi=ξ
j
i |C=−1)

)
. We see from Equation (7) that

the decision function is sign-represented by a polynomial that admits the representation∑n
i=1

(∑mi
j=1 αi(j)`

Ωi
j (xi)

)
. In fact we have that the a − b = ln

(
P (C=+1)
P (C=−1)

)
term could

be included in the summation using Lemma 2, for example with the following choice of
coefficient,

αi(j) = ln

(
P (Xi = ξji |C = +1)

P (Xi = ξji |C = −1)

)
+ ki ln

(
P (C = +1)

P (C = −1)

)
, (8)

where
∑n

i=1 ki = 1. We have proved the if part of the theorem.
To prove the only if we have just to observe that choosing the conditional probabilities

for the predictor variables given the class, P (Xi = ξji |C = c), the probability mass for the
class P (C = +1) = 1 − P (C = −1), and the values of {ki}ni=1 we are able to adjust the
coefficients αi(j) in (8) to any possible values in R. For example the following choices are
sufficient

P (Xi = ξji |C = −1) =
1

mi
∀i = 1, . . . , n and j = 1, . . . ,mi,

P (Xi = ξji |C = +1) =
eαi(j)∑mi
j=1 e

αi(j)
∀i = 1, . . . , n and j = 1, . . . ,mi,

ki =
ln
(

1
mi

∑mi
j=1 e

αi(j)
)

∑n
i=1 ln

(
1
mi

∑mi
j=1 e

αi(j)
) ∀i = 1, . . . , n,

ln

(
P (C = +1)

P (C = −1)

)
=

n∑
i=1

ln

 1

mi

mi∑
j=1

eαi(j)

 .

As a result of Theorem 3 we have that a naive Bayes classifier could represent every
decision function which is sign-representable by a polynomial of the familyr(x) =

n∑
i=1

 mi∑
j=1

αi(j)`
Ωi
j (xi)

 , αi(j) ∈ R

 .

Only if we fix the prior probability over the class C are there restrictions on the coeffi-
cients αi(j).

Corollary 4 Let f be a decision function for a binary classification problem with n cat-
egorical predictor variables Xi ∈ Ωi = {ξ1

i , . . . , ξ
mi
i } ⊂ R. The following sentences are

equivalent:
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X1 C = −1 C = +1
0 0.3 0.3
1 0.1 0.2
2 0.4 0.1
3 0.1 0.2
4 0.1 0.2

X2 C = −1 C = +1

0 0.2 0.4

1 0.1 0.2

2 0.7 0.4

Table 1: Conditional Probability Tables in Example 2

i) f is sign-represented by a polynomial of the form
∑n

i=1

(∑mi
j=1 αi(j)`

Ωi
j (xi)

)
with αi(j)

such that for every i = 1, . . . , n, there exists ji,1 and ji,2 such that αi(ji,1) < 0 and
αi(ji,2) > 0 or alternatively eαi(j) = 1 for every j = 1, . . . ,mi.

ii) There exists a naive Bayes classifier, with probability tables without zeros entries, that
induces f , with uniform prior probability over the class C.

Proof The corollary follows from (8) in proof of Theorem 3, it is easy to show that the
two conditions are equivalent.

As we can see, the coefficients αi(j) are related to the probability model underlying the
problem, and are usually estimated from the training set but they do not generally assure
the minimization of classification errors. An interesting model to deal with this problem
is the weighted naive Bayes classifier (Webb and Pazzani, 1998; Hall, 2007). Weights are
introduced in the probability factorization,

P (C = c|X = x) ∝ wcP (C = c)
n∏
i=1

[P (Xi = xi|C = c)]wi ,

and thus the decision function has the same form as in (7), but with modified coefficients

αi(j) = wi ln
P (Xi = j|C = +1)

P (Xi = j|C = −1)
.

Note that introducing the weights in the model does not change the form of the polynomial
sign-representing the decision functions, so it does not improve the expressive power of the
model. Even so, using the weighted model it is possible to search for polynomials that
minimize the misclassification and improve accuracy (Zaidi et al., 2013). As future research
it may be of some interest to study how to search polynomials to directly minimize the
misclassification error and how this reflects on the implicitly defined NB classifier.

Example 2 We consider a naive Bayes classifier with two predictor variables X1 ∈ Ω1 =
{0, 1, 2, 3, 4} and X2 ∈ Ω2 = {0, 1, 2}. We have a uniform prior probability over the class C,
that is, P (C = −1) = P (C = +1) = 0.5, and we consider the conditional probability tables
for X1 and X2 given in Table 1. We can directly build the polynomial threshold functions
r(x1, x2) that sign-represent the decision function induced by this classifier. The related
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α1(0) = ln 0.3
0.3 = 0 α2(0) = ln 0.4

0.2 = ln 2

α1(1) = ln 0.2
0.1 = ln 2 α2(1) = ln 0.2

0.1 = ln 2

α1(2) = ln 0.1
0.4 = − ln 4 α2(2) = ln 0.4

0.7 = − ln 7
4

α1(3) = ln 0.2
0.1 = ln 2

α1(4) = ln 0.2
0.1 = ln 2

Table 2: Coefficients computations of polynomial (9)

coefficients are α1(j) = ln P (X1=j|C=+1)
P (X1=j|C=−1) and α2(j) = ln P (X2=j|C=+1)

P (X2=j|C=−1) , and the polynomial

r(x1, x2) is

r(x1, x2) =
4∑
j=0

α1(j)`Ω1
j (x1) +

2∑
j=0

α2(j)`Ω2
j (x2). (9)

The computations of the coefficients are shown in Table 2. We have that the polynomial
threshold function in Equation (9), expressed with the Lagrange basis, is

r(x1, x2) =
x1(x1 − 2)(x1 − 3)(x1 − 4)

−6
ln 2− x1(x1 − 1)(x1 − 3)(x1 − 4)

4
ln 4

+
x1(x1 − 1)(x1 − 2)(x1 − 4)

−6
ln 2 +

x1(x1 − 1)(x1 − 2)(x1 − 3)

24
ln 2

+
(x2 − 1)(x2 − 2)

2
ln 2 +

x2(x2 − 2)

−1
ln 2− x2(x2 − 1)

2
ln

7

4
.

We observe that the above polynomial satisfies the condition of Corollary 4, as it should
because the prior probability over C is uniform. Figure 3 shows the decision boundary
induced by r(x1, x2).

3.3 Tree Augmented Naive Bayes

We now consider a tree augmented naive Bayes (TAN) classifier (Friedman et al., 1997) as
shown in Figure 4. In this model, a predictor variable Xi ∈ Ωi = {ξ1

i , . . . , ξ
mi
i } is allowed

to have at most two parents, the class C and an other variable, Xpa(i) ∈ Ωpa(i). The
joint probability distribution of (C,X1, X2, . . . , Xn) over {−1,+1} × Ω1 × · · · × Ωn can be
factorized according to the Bayesian network theory as

P (C = c)
n∏
i=1

P
(
Xi = xi|C = c,Xpa(i) = xpa(i)

)
. (10)
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Figure 3: Decision boundary for the naive Bayes structure of Example 2

C

X3X2X1 X4 X5

Figure 4: Tree augmented naive Bayes classifier structure with five predictor variables
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C

Xsp

X2X1 X3 X4

Figure 5: SPODE Bayes classifier structure with five predictor variables

We can write down a similar representation to the NB case. For each i = 1, . . . , n, we apply
Equation (4) and obtain

P
(
Xi = xi|C = c,Xpa(i) = xpa(i)

)
=

mi∏
j=1

mpa(i)∏
k=1

pi(j|c, k)

(
`
Ωpa(i)
k (xpa(i))`

Ωi
j (xi)

)
. (11)

We can now prove, combining Equations (10) and (11), a result similar to the NB case.

Lemma 5 If fTAN is the decision function induced by a TAN for a binary classification
problem with n categorical predictor variables {Xi ∈ Ωi}ni=1 and with probability tables
without zeros entries, then there exists a polynomial, of the form

n∑
i=1

mi∑
j=1

`Ωi
j (xi)

mpa(i)∑
k=1

βi(j|k)`
Ωpa(i)

k (xpa(i)),

that sign-represents fTAN , where we consider
∑mpa(i)

k=1 βi(j|k)`
Ωpa(i)

k (xpa(i)) = βi(j) when
Ωpa(i) = ∅, that is, when class C is the only parent of a node (the root node of the tree).

Proof The proof is a straightforward computation of the logarithm of Equation (10) using

Equation (11) and the definition βi(j|k) = ln
(
pi(j|+1,k)
pi(j|−1,k)

)
. The term corresponding to the

probability over the class ln
(
P (C=+1)
P (C=−1)

)
could be made vanishing into the coefficients of the

root node Xt of the tree, using point 2 of Lemma 2 with I = {t}, with the following choice
of coefficients

βt(j) = ln

(
pi(j|+ 1)

pi(j| − 1)

)
+ ln

(
P (C = +1)

P (C = −1)

)
.

A particular case of TAN is the SuperParent-One-Dependence Estimator (SPODE)
(Keogh and Pazzani, 2002), where all the predictors depend on the same predictor (su-
perparent) (Figure 5). The joint distribution factorizes as follows:

P (C = c)P (Xsp = xsp|C = c)
∏
i 6=sp

P (Xi = xi|C = c,Xsp = xsp) ,
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where Xsp stands for the superparent node. In this case, the representation of Lemma 5
reduces to

fSPODE(x) = sgn

∑
i 6=sp

mi∑
j=1

`Ωi
j (xi)

msp∑
k=1

βi(j|k)`
Ωsp

k (xsp)

 , (12)

where fSPODE is the induced decision function. If we fix the superparent node, we have a
stronger characterization of the induced decision functions, the analogue of Theorem 3.

Theorem 6 A decision function for a binary classification problem over categorical predic-
tor variables is sign-represented by a polynomial of the form

∑
i 6=sp

mi∑
j=1

`Ωi
j (xi)

msp∑
k=1

βi(j|k)`
Ωsp

k (xsp),

if and only if it is induced by a SPODE classifier with Xsp as the superparent node and
with probability tables without zeros entries.

Proof The if part of the theorem is precisely Equation (12). To prove the only if part we
repeat a similar argument as in Theorem 3. We observe (Lemma 2, point 4, with J = {i}
and I = {i, sp}) that for every i 6= sp,

`
Ωsp

k (xsp) =

mi∑
j=1

`Ωi
j (xi)`

Ωsp

k (xsp),

and so the coefficient βi(j|k) could be seen as

βi(j|k) = ln

(
P (Xi = j|Xsp = k,C = +1)

P (Xi = j|Xsp = k,C = −1)

)
+ αi(k),

where
∑

i 6=sp αi(k) = ln
(
P (Xsp=ξksp|C=+1

P (Xsp=ξksp|C=−1

)
+α and α = ln

(
P (C=+1)
P (C=−1)

)
. Then adjusting αi(k)

and α properly we can find a SPODE model, that is, probability distributions over the
predictors and the class that induces

f = sgn

∑
i 6=sp

mi∑
j=1

`Ωi
j (xi)

msp∑
k=1

βi(j|k)`
Ωsp

k (xsp)

 ,

for every βi(j|k) ∈ R.

Remark 7 We observe that, as for Theorem 3, the proof of Theorem 6 adds free parameters
to the model. For every variable we modify the related coefficients and then we adjust the
modifications with the parent coefficients. As in the proof of Theorem 3 we are able to use
the added parameters to define proper probability distributions, that is to make the defined
probability add up to one.
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Remark 8 Results similar to Theorem 6 could be proved whenever the structure of the
predictor sub-graph of a TAN classifier is fixed. We expound no further theorems about
TAN classifiers, as, in the next section, we will prove a more general result, of which NB
and TAN are special cases.

Example 3 We look at the SPODE model (see Figure 6 for structure) with the superparent
node Xsp. We consider X1 ∈ {0, 1, 2}, X2 ∈ {0, 1, 2, 3} and Xsp ∈ {0, 1} with conditional
probability tables as shown in Table 3. The polynomial threshold function r(xsp, x1, x2) can
be computed directly as specified in Lemma 5:

r(xsp, x1, x2) = (1− xsp) ln

(
0.4

0.8

)
+ xsp ln

(
0.6

0.2

)
+ (1− xsp)

(
(1− x1)(2− x1)

2
ln

(
0.2

0.1

)
+ x1(2− x1) ln

(
0.7

0.1

)
+
x1(x1 − 1)

2
ln

(
0.1

0.8

))
+ xsp

(
(1− x1)(2− x1)

2
ln

(
0.7

0.3

)
+ x1(2− x1) ln

(
0.1

0.2

)
+
x1(x1 − 1)

2
ln

(
0.2

0.5

))
+ (1− xsp)

(
x2(2− x2)(3− x2)

2
ln

(
0.3

0.2

)
+
x2(x2 − 1)(x2 − 2)

6
ln

(
0.1

0.2

))
+ xsp

(
(1− x2)(2− x2)(3− x2)

6
ln

(
0.2

0.5

)
+
x2(x2 − 1)(3− x2)

2
ln

(
0.5

0.2

))
.

We observe that some elements of the Lagrange bases do not appear in r(xsp, x1, x2) because
the corresponding coefficients are zero, since the conditional probabilities given C are equal.

3.4 Bayesian Network-Augmented Naive Bayes

If the predictor sub-graph can be a generic Bayesian network, we have a Bayesian network-
augmented naive Bayes (BAN) classifier. In this case the joint probability distribution is
factorized as follows:

P (C = c)

n∏
i=1

P
(
Xi = xi|C = c,Xpa(i) = xpa(i)

)
, (13)

where Xpa(i) denotes the vector of the parent variables of Xi that are not C. From now
on we will write pa(i) for the set of indexes defining Xi’s parents that are not C and Mi =
×s∈pa(i){1, . . . ,ms} for the set of possible configurations of the parents of Xi. Applying the
same arguments as in previous sections we can prove the lemma below.

Lemma 9 If fBAN is the decision function induced by a BAN classifier for a binary clas-
sification problem with n categorical predictors variables {Xi ∈ Ωi ⊂ R, |Ωi| = mi}ni=1 and
with probability tables without zeros entries, then there exists a polynomial of the form

n∑
i=1

mi∑
j=1

`Ωi
j (xi)

∑
k∈Mi

βi(j|k)
∏

s∈pa(i)

`Ωs
ks

(xs),

which sign-represents fBAN , where we write
∑

k∈Mi
βi(j|k)

∏
s∈pa(i) `

Ωs
ks

(xs) = βi(j) when
a variable does not have parents that are not C, that is, pa(i) = ∅.
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C

Xsp

X1 X2

Figure 6: SPODE classifier structure, Example 3

Xsp C = −1 C = +1
0 0.8 0.4
1 0.2 0.6

X1 C = −1 C = +1
Xsp = 0 Xsp = 1 Xsp = 0 Xsp = 1

0 0.1 0.3 0.2 0.7

1 0.1 0.2 0.7 0.1

2 0.8 0.5 0.1 0.2

X2 C = −1 C = +1
Xsp = 0 Xsp = 1 Xsp = 0 Xsp = 1

0 0.5 0.5 0.5 0.2

1 0.2 0.2 0.3 0.2

2 0.1 0.2 0.1 0.5

3 0.2 0.1 0.1 0.1

Table 3: Conditional probability tables in Example 3
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X Y

Z

(a)

X Y

Z

(b)

Figure 7: Graphical representation of (a) a V -structure and (b) an example which is not a
V -structure

Proof Given a BAN model over predictors Xi ∈ Ωi = {ξ1
i , . . . , ξ

mi
i }, we define

βi(j|k) = ln

P
(
Xi = ξji |C = +1, Xs = ξkss , ∀s ∈ pa(i)

)
P
(
Xi = ξji |C = −1, Xs = ξkss , ∀s ∈ pa(i)

)
 .

Using Equation (4) and taking the logarithm of Equation (13) we obtain the polynomial
representation. The additional constant term due to the prior probability over the class,

ln
(
P (C=+1)
P (C=−1)

)
, could be embedded into the βi(j|k) coefficients using point 2 of Lemma 2 as

in the proofs of Theorem 3 and Lemma 5.

Generally speaking, it is not always possible to prove results similar to Theorem 3 or
Theorem 6 for BAN classifiers, when decision functions are completely characterized by
the set of sign-representing polynomials. Like Yang and Wu (2012), we find that problems
arise in the presence of V -structures (Figure 7a) in the predictor sub-graph. A V -structure
appears when two nodes share the same child, but are not directly connected. In absence
of V -structures we can prove the following result, which extends the previous ones.

Theorem 10 Let G be a directed acyclic graph with node Xi for i = 1, . . . , n, and let
f be a decision function for a binary classification problem over predictor variables Xi ∈
Ωi = {ξ1

i , . . . , ξ
mi
i }. Suppose that G does not contain V -structures, then we have that f is

sign-represented by the following polynomial

r(x) =
n∑
i=1

mi∑
j=1

`Ωi
j (xi)

∑
k∈Mi

βi(j|k)
∏

s∈pa(i)

`Ωs
ks

(xs),

if and only if f is induced by a BAN classifier whose predictor sub-graph is G and with
probability tables without zeros entries.

Proof We merely have to prove the only if because the if implication is precisely Lemma
9. Given a polynomial of the form

r(x) =

n∑
i=1

∑
j∈Ωi

`Ωi
j (xi)

∑
k∈Mi

βi(j|k)
∏

s∈pa(i)

`Ωs
ks

(xs),
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we have to find a BAN classifier inducing sgn(r(x)), whose predictor sub-graph is G. We just
have to define the conditional probability distribution of every variable given its parents,
since the structure of the BAN is already fixed by G. For every i = 1, . . . , n, we observe
that the sub-graph of the parents of Xi is a fully connected Bayesian network, otherwise we
will have a V -structure on G. For every i, we can rewrite using point 4 of Lemma 2 the ith
addend on the summation,∑
j∈Ωi

`Ωi
j (xi)

∑
k∈Mi

βi(j|k)
∏

s∈pa(i)

`Ωs
ks

(xs) +
∑
k∈Mi

αi(k)
∏

s∈pa(i)

`Ωs
ks

(xs)−
∑
k∈Mi

αi(k)
∏

s∈pa(i)

`Ωs
ks

(xs)

=
∑
j∈Ωi

`Ωi
j (xi)

∑
k∈Mi

(βi(j|k) + αi(k))
∏

s∈pa(i)

`Ωs
ks

(xs)−
∑
k∈Mi

αi(k)
∏

s∈pa(i)

`Ωs
ks

(xs).

Using the free parameters αi(k), it is possible to find for every k, pi(j|k,+1) and pi(j|k,−1) ∈
(0, 1) such that

mi∑
j=1

pi(j|k,+1) =

mi∑
j=1

pi(j|k,−1) = 1

βi(j|k) + αi(k) = ln
pi(j|k,+1)

pi(j|k,−1)
.

To avoid changing the polynomial r(x), we have to subtract∑
k∈Mi

αi(k)
∏

s∈pa(i)

`Ωs
ks

(xs)

from another addend on the summation. Because the parents of Xi are fully connected, we
have that among the other addends of r(x), apart from the ith, there is one product that
contains

∏
s∈pa(i) `

Ωs
ks

(xs) and so we just subtract αi(k) from the related coefficient. Iterating
the above procedure for all the nodes of the graph G, we are able to build a probability
distribution over X1, X2, . . . , Xn, C that satisfies the Bayesian network structure given by
G. More precisely, setting

P
(
Xi = ξji |C = c,Xs = ξkss , ∀s ∈ pa(i)

)
= pi(j|k, c),

we obtain the target BAN model.

We observe that the meaning of the representation in Theorem 10 is intuitive. If, as
usual, we denote by pa(i) the function, dependent on G, that maps each variable Xi to the
set of its parents, we have that a new instance x = (ξj11 , . . . , ξ

jn
1 ) of the predictors will be

classified as C = +1 if and only if

r(x) =
n∑
i=1

mi∑
j=1

`Ωi
j (ξjii )

∑
k∈Mi

βi(j|k)
∏

s∈pa(i)

`Ωs
ks

(ξjss )

=
n∑
i=1

`Ωi
ji

(ξjii )βi(ji|{js}s∈pa(i))
∏

s∈pa(i)

`Ωs
js

(ξjss )=

n∑
i=1

βi(ji|{js}s∈pa(i)) ≥ 0.
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In other words, every variable Xi, together with its parents pa(i), expresses a degree (posi-
tive or negative) βi(ji|{js}s∈pa(i)) on x, based only on the values of the i-th variable, ξkii and

its parent values, {ξkss ∀s ∈ pa(i)}. The degrees are summed, and a decision is taken based
on the result. The degree expressed by each coalition child-parents in the Bayesian network
classifier is the logarithm of the ratio between the two probabilities obtained conditioned
on the values of the class C,

βi(ji|{js}s∈pa(i)) = ln
P (Xi = ξjii |Xs(i) = ξjss , ∀s ∈ pa(i), C = +1)

P (Xi = ξjii |Xs(i) = ξjss , ∀s ∈ pa(i), C = −1)
.

3.5 Full Bayesian Network

When the predictor sub-graph is a fully connected Bayesian network (Figure 8), that is,
a directed acyclic graph with the maximum number of arcs, we have a fully connected
Bayesian network classifier (FBN). A FBN can represent any joint probability distribu-
tion over (C,X1, . . . , Xn) and so it is a classifier able to induce any decision function over
Ω = ×ni=1Ωi whatsoever. We have that the product of the Lagrange bases,

∏n
i=1 `

Ωi
ki

(xi),
interpolates the Iverson bracket over all the predictors, that is,

n∏
i=1

`Ωi
ki

(xi) = [xi = ξkii , ∀i = 1, . . . , n].

And so the following lemma holds.

Lemma 11 If Φ is a classifier for a binary class problem with n categorical predictor vari-
ables X1, . . . , Xn such that Xi ∈ Ωi = {ξ1

i , . . . , ξ
mi
i } ⊂ R, |Ωi| = mi, then the associated

decision function, fΦ, is sign-represented by a polynomial of the form∑
k∈M

γk

n∏
i=1

`Ωi
ki

(xi),

where M = ×ni=1{1, . . . ,mi}.

We observe that the coefficients γk in Lemma 11 are the values of the polynomial at
point (ξk1

1 , ξk2
2 , . . . , ξknn ), and so fΦ(ξk1

1 , ξk2
2 , . . . , ξknn ) = sgn(γk). Roughly speaking, a new

instance (ξk1
1 , ξk2

2 , . . . , ξknn ) will be classified as C = +1 if and only if γk > 0. Moreover the
set

PFBN =

{∑
k∈M

γk

n∏
i=1

`Ωi
ki

(xi) s.t. γk ∈ R

}
of polynomials, which could sign-represent every classifier, is a space of dimension M =
|M| =

∏n
i=1mi. From now on we will write

δk(x) =

n∏
i=1

`Ωi
ki

(xi), (14)

for the k-th element of the canonical basis of PFBN . We call {δk}k∈Ω the canonical basis
because the sign of the coefficients with respect to this basis is the value of the sign-
represented decision function. Lemma 11 states that sgn(PFBN ) = {−1, 1}Ω.
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C

X1

X2 X3

X4 X5

Figure 8: FBN classifier structure with five predictor variables

4. Expressive Power of Bayesian Network Classifiers

So far, we have seen how to build polynomial threshold functions that sign-represent decision
functions induced by Bayesian network classifiers. We use now the resulting representation
to bound the number of decision functions representable by Bayesian network classifiers.
As observed, Lemma 11 says that sgn(PFBN ) = {−1, 1}Ω. We now study NB, SPODE
and BAN through the families of associated polynomial threshold functions. Moreover,
we embed those families in PFBN . For predictor variables Xi ∈ Ωi = {ξ1

i , . . . , ξ
mi
i }, i =

1, . . . , n, for every sp ∈ {1, . . . , n} and a directed acyclic graph G without V -structures we
define

PNB =

r(x) =

n∑
i=1

 mi∑
j=1

αi(j)`
Ωi
j (xi)

 s.t. αi(j) ∈ R

 , (15)

PSPODEsp =

r(x) =
∑
i 6=sp

mi∑
j=1

msp∑
k=1

βi(j|k)`
Ωsp

k (xsp)`
Ωi
j (xi) s.t. βi(j|k) ∈ R

 , (16)

PBANG =

r(x) =
n∑
i=1

mi∑
j=1

`Ωi
j (xi)

∑
k∈Mi

βi(j|k)
∏

s∈pa(i)

`Ωs
ks

(xs) s.t. βi(j|k) ∈ R

 , (17)

where pa(i) is a function that maps every i into the set of parents ofXi in the directed acyclic
graph G, and Mi = ×s∈pa(i){1, . . . ,ms}. The families PNB, PSPODEsp and PBANG are the sets
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of polynomials sign-representing the decision functions induced by naive Bayes classifier,
SPODE classifier and BAN classifier, respectively. Hence sgn(PNB), sgn(PSPODEsp ) and

sgn(PBANG ) are the sets of decision functions induced by naive Bayes, SPODE and BAN
classifiers, respectively. Obviously, we have that

PNB ⊂ PBANG ⊂ PFBN ,

and
sgn(PNB) ⊂ sgn(PBANG ) ⊂ sgn(PFBN ) = {−1,+1}Ω.

We can prove that the above sets are indeed subspaces of PFBN and we can compute their
dimensions.

Lemma 12 PNB is a subspace of PFBN of dimension
∑n

i=1mi − n+ 1.

Proof Obviously PNB =
{
p(x) =

∑n
i=1

(∑mi
j=1 αi(j)`

Ωi
j (xi)

)
, αi(j) ∈ R

}
is a subspace of

PFBN . The union of the Lagrange bases over different variables is not a basis, because for
each i = 1, . . . , n we have that

1 =

mi∑
j=1

`Ωi
j (xi) for every xi ∈ R.

So for every i, we can define

Bi =


mi⋃
j=2

{lΩi
j (xi)}

 ∪ {e0},

where e0 is the polynomial constant 1, and we find that Bi is a basis of polynomials in xi
of degree |Ωi| − 1 = mi − 1, equivalent to the Lagrange basis over Ωi. Then, we have that

B =
n⋃
i=1

Bi =
n⋃
i=1

mi⋃
j=2

{
lΩi
j (xi)

}
∪ {e0}

generates the subspace PNB. We prove that B is in fact a basis of PNB. We have to prove
that the elements of B are linearly independent. We consider

p(x1, x2, . . . , xn) =
n∑
i=1

mi∑
j=2

αi(j)`
Ωi
j (xi) + α0e0 = 0, ∀(x1, x2, . . . , xn) ∈ Rn.

If, as usual, Ωi = {ξ1
i , . . . , ξ

mi
i }, let us consider p(x1, . . . , xn) evaluated in (ξ1

1 , ξ
1
2 , . . . , ξ

1
n),

0 = p(ξ1
1 , ξ

1
2 , . . . , ξ

1
n) =

n∑
i=1

mi∑
j=2

αi(j)`
Ωi
j (ξ1

i ) + α0e0 = α0,

since `Ωi
j (ξ1

i ) = 0 for every j 6= 1. And so α0 = 0. We now evaluate p(·) over (ξj1, ξ
1
2 , . . . , ξ

1
n)

and we have that, for every j = 2, . . . ,mi,

0 = p(ξj1, ξ
1
2 , . . . , ξ

1
n) = α1(j),
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since `Ω1
j (ξj1) = 1 for every j = 2, . . . ,m1. We repeat the above argument for every variable

xi, i = 1, . . . , n and we obtain αi(j) = 0 for every i = 1, . . . , n and every j = 2, . . . ,mi.
We have proved that the elements of B generate PNB and are linearly independent, so they
form a basis of PNB. Consequently we obtain

dim(PNB) = |B| =
n∑
i=1

mi − n+ 1.

Analogously we can prove, in the general case,

Lemma 13 For every Bayesian network classifier without V -structures in the predictor
sub-graph G, the set PBANG is a subspace of PFBN of dimension

n∑
i=1

(mi − 1)
∏

s∈pa(i)

ms

+ 1.

And, in the particular case of SPODE, we have,

Lemma 14 For every sp = 1, . . . , n, the set PSPODEsp is a subspace of PFBN of dimension

msp

(
1− n+

∑
i 6=spmi

)
.

We now consider the space PFBN with respect to the canonical basis given by Equation
(14). With respect to this coordinate system we have that each orthant represents a decision
function. We know that the number of orthants of an M -dimensional space is 2M , the
number of decision functions over a set of cardinality M . Since we now have a bijection
between orthants in PFBN and decision functions over Ω, in order to compute how many
decision functions are representable by a class of Bayesian network classifier (NB, SPODE
or BAN) we merely have to count the number of orthants in PFBN intersected by the
corresponding subspaces (PNB, PSPODEsp , PBANG ).

Theorem 15 (Flatto, 1970) A d-dimensional subspace in an M -dimensional space inter-
sects at most C(M,d) = 2

∑d−1
k=0

(
M−1
k

)
orthants with equality if and only if it is in general

position.

Definition 16 A d-dimensional subspace V of RM is in general position if the M subspaces
V ∩ Hi, where Hi = {x ∈ Rn s.t. xi = 0} are hyperplanes of V in general position, that
is, all the intersections of d of such hyperplanes are the zero vector. Precisely, for all
J ⊂ {1, . . . ,M} such that |J | = d we have that

⋂
j∈J (V ∩Hj) = 0.

Applying Theorem 15 to our case, we find that the space PFBN is minimal in the following
sense.

Corollary 17 If V is a d-dimensional subspace of PFBN , then |sgn(V )| ≤ C(M,d), where
M = dim(PFBN ) and equality holds if and only if V is in general position with respect to
the canonical basis of PFBN .
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As a first result of Corollary 17 we have that the space PFBN is the smallest vector space of
polynomials in x1, . . . , xn that sign-represents every decision function over Ω, that is, there
is not a space V of polynomials in x1, . . . , xn with degrees in each variable xi that are less or
equal than mi−1 such that sgn(V ) = {−1,+1}Ω and dim(V ) < dim(PFBN ). This justifies
the choice of PFBN as the space to study the polynomial families defined in Equations (15),
(16) and (17). Next, we can use Corollary 17 combined with Lemma 13 to upper bound
the number of decision functions that are sign-representable by BAN classifiers with a fixed
predictor sub-graph G not containing V -structures.

Corollary 18 Consider a BAN classifier over predictor variables Xi ∈ Ωi, |Ωi| = mi for
every i = 1, . . . , n. Moreover suppose that the predictor sub-graph G does not contain V -
structures. Then we have

2d ≤ |sgn(PBANG )| ≤ C(M,d) = 2

d−1∑
k=0

(
M − 1

k

)
,

where d =
∑n

i=1

(
(mi − 1)

∏
s∈pa(i)ms

)
+ 1 and M =

∏n
i=1mi.

Peot (1996) observed that naive Bayes could only represent a fraction of dichotomies
(binary decision) on binary predictors, and that this fraction goes to zero as the number of
predictors increase, we extend this observation to BAN classifier without V -structures as
follows.

Corollary 19 We consider, for every n ∈ N, classification problems with predictors Xi ∈
Ωi ⊂ R, |Ωi| = mi for i = 1, . . . , n. For every n, let Gn be a directed acyclic graph over the
predictor variables, not containing V -structures. Suppose moreover that if pan(i) are the
functions that map every Xi into the set of parents in the graph Gn,

|pan(i)| ≤ K ∀n ∈ N and i ∈ {1, . . . , n},

then we have that

lim
n→∞

∣∣sgn (PBANGn
)∣∣∣∣{−1,+1}Ω(n)
∣∣ = lim

n→∞

∣∣sgn (PBANGn
)∣∣

2|Ω(n)| = 0,

where Ω(n) = ×ni=1Ωi. In other words, the fraction of decision functions representable
by BAN classifiers, with a fixed maximum number of parents for each variable, becomes
vanishingly small by increasing the number of predictors.

Proof For every n ∈ N, we apply Corollary 18 and we obtain

∣∣sgn (PBANGn
)∣∣ ≤ C (M(n), d(n)) = 2

d(n)−1∑
k=0

(
M(n)− 1

k

)
,

where d(n) =
∑n

i=1

(
(mi − 1)

∏
s∈pa(i)ms

)
+ 1 and M(n) = |Ω(n)| =

∏n
i=1mi. We observe

now that, as n→∞,
d(n)

M(n)
→ 0
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and thus,

C(M(n), d(n))

2M(n)
→ 0,

which proves the statement.

5. Conclusions

In this paper we have shown how to build polynomial threshold functions related to Bayesian
network classifiers. Our results reveal connections between the algebraic structure of the
decision functions induced by BN classifiers and the topology of the structure of the predictor
sub-graph. In absence of V -structures in the predictor sub-graph we have also proved that
the specific polynomial representation fully characterized the type of Bayesian network
classifier. By representing classifiers by polynomial threshold functions, we can obtain
bounds on the number of decision functions which can be induced by Bayesian network
classifiers with a given structure. The bounding does not hold in presence of V -structures
in the predictor sub-graph. Strong characterizations of induced decision functions cannot be
proven due to the conditional independence of V -structure. Moreover we observe that the
obtained polynomial representation permits to easily prove the results of Ling and Zhang
(2002) for BAN classifiers without V -structures.

The bounds points to the fact, already conjectured by Peot (1996) for naive Bayes,
that if we fix the maximum number of parents in a Bayesian network classifier, the type of
classifier considered is not scalable, in other words, more complex classifiers are expected to
perform better when dealing with a large number of predictor variables.

Moreover, the resulting bounds for the number of decision functions representable are
strictly upper bounds since the subspaces generated by the different Bayesian networks
considered are not in general position. What happens in the case of subspaces not in general
position? Clearly we have to define some other property to characterize the position of a
subspace with respect to orthants in some given basis and try to count the number of such
intersected orthants. With similar geometric results we will be able to precisely count the
number of decision functions representable by a given Bayesian network classifier, and we
will be able to compute the gain in expressivity from simple to more complicated Bayesian
network classifiers.
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Abstract

Regularization is commonly used in classifier design, to assure good generalization. Clas-
sical regularization enforces a cost on classifier complexity, by constraining parameters.
This is usually combined with a margin loss, which favors large-margin decision rules. A
novel and unified view of this architecture is proposed, by showing that margin losses act
as regularizers of posterior class probabilities, in a way that amplifies classical parameter
regularization. The problem of controlling the regularization strength of a margin loss is
considered, using a decomposition of the loss in terms of a link and a binding function.
The link function is shown to be responsible for the regularization strength of the loss,
while the binding function determines its outlier robustness. A large class of losses is then
categorized into equivalence classes of identical regularization strength or outlier robust-
ness. It is shown that losses in the same regularization class can be parameterized so as to
have tunable regularization strength. This parameterization is finally used to derive boost-
ing algorithms with loss regularization (BoostLR). Three classes of tunable regularization
losses are considered in detail. Canonical losses can implement all regularization behav-
iors but have no flexibility in terms of outlier modeling. Shrinkage losses support equally
parameterized link and binding functions, leading to boosting algorithms that implement
the popular shrinkage procedure. This offers a new explanation for shrinkage as a special
case of loss-based regularization. Finally, α-tunable losses enable the independent parame-
terization of link and binding functions, leading to boosting algorithms of great flexibility.
This is illustrated by the derivation of an algorithm that generalizes both AdaBoost and
LogitBoost, behaving as either one when that best suits the data to classify. Various exper-
iments provide evidence of the benefits of probability regularization for both classification
and estimation of posterior class probabilities.

Keywords: classification, margin losses, regularization, boosting, probability elicitation,
generalization, loss functions, link functions, binding functions, shrinkage
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1. Introduction

The ability to generalize beyond the training set is a central challenge for classifier design. A
binary classifier is usually implemented by thresholding a continuous function, the classifier
predictor, of a high-dimensional feature vector. Predictors are frequently affine functions,
whose level sets (decision boundaries) are hyperplanes in feature space. Optimal predictors
minimize the empirical expectation of a loss function, or risk, on a training set. Modern
risks guarantee good generalization by enforcing large margins and parameter regularization.
Large margins follow from the use of margin losses, such as the hinge loss of the support
vector machine (SVM), the exponential loss of AdaBoost, or the logistic loss of logistic
regression and LogitBoost. These are all upper-bounds on the zero-one classification loss
of classical Bayes decision theory. Unlike the latter, margin losses assign a penalty to
examples correctly classified but close to the boundary. This guarantees a classification
margin and improved generalization (Vapnik, 1998). Regularization is implemented by
penalizing predictors with many degrees of freedom. This is usually done by augmenting
the risk with a penalty on the norm of the parameter vector. Under a Bayesian interpretation
of risk minimization, different norms correspond to different priors on predictor parameters,
which enforce different requirements on the sparseness of the optimal solution.

While for some popular classifiers, e.g. the SVM, regularization is a natural side-product
of risk minimization under a margin loss (Moguerza and Munoz, 2006; Chapelle, 2007;
Huang et al., 2014), the relation between the two is not always as clear for other learning
methods, e.g. boosting. Regularization can be added to boosting (Buhlmann and Hothorn,
2007; Lugosi and Vayatis, 2004; Blanchard et al., 2003) in a number of ways, including re-
stricting the number of boosting iterations (Raskutti et al., 2014; Natekin and Knoll, 2013;
Zhang and Yu, 2005; Rosset et al., 2004; Jiang, 2004; Buhlmann and Yu, 2003), adding a
regularization term (Saha et al., 2013; Culp et al., 2011; Xiang et al., 2009; Bickel et al.,
2006; Xi et al., 2009), restricting the weight update rule (Lozano et al., 2014, 2006; Lugosi
and Vayatis, 2004; Jin et al., 2003) or using divergence measures (Liu and Vemuri, 2011)
and has been implemented for both the supervised and semi-supervised settings (Chen and
Wang, 2008, 2011). However, many boosting algorithms lack explicit parameter regular-
ization. Although boosting could eventually overfit (Friedman et al., 2000; Rosset et al.,
2004), and there is an implicit regularization when the number of boosting iterations is
limited (Raskutti et al., 2014; Natekin and Knoll, 2013; Zhang and Yu, 2005; Rosset et al.,
2004; Jiang, 2004; Buhlmann and Yu, 2003), there are several examples of successful boost-
ing on very high dimensional spaces, using complicated ensembles of thousands of weak
learners, and no explicit regularization (Viola and Jones, 2004; Schapire and Singer, 2000;
Viola et al., 2003; Wu and Nevatia, 2007; Avidan, 2007). This suggests that regularization is
somehow implicit in large margins, and additional parameter regularization may not always
be critical, or even necessary. In fact, in domains like computer vision, large margin classi-
fiers are more popular than classifiers that enforce regularization but not large margins, e.g.
generative models with regularizing priors. This suggests that the regularization implicit in
large margins is complementary to parameter regularization. However, this connection has
not been thoroughly studied in the literature.

In this work, we approach the problem by studying the properties of margin losses.
This builds on prior work highlighting the importance of three components of risk mini-
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mization: the loss φ, the minimum risk C∗φ, and a link function f∗φ that maps posterior
class probabilities to classifier predictions (Friedman et al., 2000; Zhang, 2004; Buja et al.,
2006; Masnadi-Shirazi and Vasconcelos, 2008; Reid and Williamson, 2010). We consider
the subset of losses of invertible link, since this enables the recovery of class posteriors from
predictor outputs. Losses with this property are known as proper losses and important
for applications that require estimates of classification confidence, e.g. multiclass decision
rules based on binary classifiers (Zadrozny, 2001; Rifkin and Klautau, 2004; Gonen et al.,
2008; Shiraishi and Fukumizu, 2011). We provide a new interpretation of these losses as
regularizers of finite sample probability estimates and show that this regularization has at
least two important properties for classifier design. First, it combines multiplicatively with
classical parameter regularization, amplifying it in a way that tightens classification error
bounds. Second, probability regularization strength is proportional to loss margin for a
large class of link functions, denoted generalized logit links. This enables the introduction
of tunable regularization losses φσ, parameterized by a probability regularization gain σ.
A procedure to derive boosting algorithms of tunable loss regularization (BoostLR) from
these losses is also provided. BoostLR algorithms generalize the GradientBoost procedure
(Friedman, 2001), differing only in the example weighting mechanism, which is determined
by the loss φσ.

To characterize the behavior of these algorithms, we study the space R of proper losses φ
of generalized logit link. It is shown that any such φ is uniquely defined by two components:
the link f∗φ and a binding function βφ that maps f∗φ into the minimum risk C∗φ. This
decomposition has at least two interesting properties. First, the two components have a
functional interpretation: while f∗φ determines the probability regularization strength of φ,
βφ determines its robustness to outliers. Second, both βφ and f∗φ define equivalence classes
in R. It follows that R can be partitioned into subsets of losses that have either the same
outlier robustness or probability regularization properties. It is shown that the former are
isomorphic to a set of symmetric scale probability density functions and the latter to the set
of monotonically decreasing odd functions. Three loss classes, with three different binding
functions, are then studied in greater detail. The first, the class of canonical losses, consists
of losses of linear binding function. This includes some of the most popular losses in the
literature, e.g. the logistic. While they can implement all possible regularization behaviors,
these losses have no additional degrees of freedom. In this sense, they are the simplest
tunable regularization losses. This simplicity enables a detailed analytical characterization
of their shape and how this shape is affected by the regularization gain. The second,
the class of shrinkage losses, is a superset of the class of canonical losses. Unlike their
canonical counterparts, shrinkage losses support nonlinear binding functions, and thus more
sophisticated handling of outliers. However, they require an identical parameterization of
the link and binding function. It is shown that, under this constraint, BoostLR implements
the popular shrinkage regularization procedure (Hastie et al., 2001). Finally, the class of
α-tunable losses enables independent parameterization of the link and binding functions.
This endows the losses in this class, and the associated BoostLR algorithms, with a great
deal of flexibility. We illustrate this by introducing an α-tunable loss that generalizes both
the exponential loss of AdaBoost and the logistic loss of LogitBoost, allowing BoostLR to
behave as either of the two algorithms, so as to best suit the data to classify.
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The paper is organized as follows. Section 2 briefly reviews classifier design by risk mini-
mization. The view of margin losses as regularizers of probability estimates is introduced in
Section 3. Section 4 characterizes the regularization strength of proper losses of generalized
logit link. Tunable regularization losses and binding functions are introduced in Section 5,
which also introduces the BoostLR algorithm. The structure of R is then characterized
in Section 6, which introduces canonical, shrinkage, and α-tunable losses. An extensive
set of experiments on various aspects of probability regularization is reported in Section 7.
Finally, some conclusions are drawn in Section 8.

2. Loss Functions and Risk Minimization

We start by reviewing the principles of classifier design by risk minimization (Friedman
et al., 2000; Zhang, 2004; Buja et al., 2006; Masnadi-Shirazi and Vasconcelos, 2008) .

2.1 The Classification Problem

A classifier h maps a feature vector x ∈ X to a class label y ∈ {−1, 1}, according to

h(x) = sign[p(x)], (1)

where p : X → R is the classifier predictor. Feature vectors and class labels are drawn
from probability distributions PX(x) and PY |X(y|x) respectively. Given a non-negative loss
function L(x, y), the optimal predictor p∗(x) minimizes the risk

R(p) = EX,Y [L(p(x), y)]. (2)

This is equivalent to minimizing the conditional risk

EY |X[L(p(x), y)|X = x]

for all x ∈ X . It is frequently useful to express p(x) as a composition of two functions,

p(x) = f(η(x)),

where η(x) = PY |X(1|x) is the posterior probability function, and f : [0, 1] → R a link
function. The problem of learning the optimal predictor can thus be decomposed into the
problems of learning the optimal link f∗(η) and estimating the posterior function η(x). Since
f∗(η) can usually be determined analytically, this reduces to estimating η(x), whenever
f∗(η) is a one-to-one mapping.

In classical statistics, learning is usually based on the zero-one loss

L0/1(y, p) =
1− sign(yp)

2
=

{
0, if y = sign(p);
1, if y 6= sign(p),

where we omit the dependence on x for notational simplicity. The associated conditional
risk

C0/1(η, p) = η
1− sign(p)

2
+ (1− η)

1 + sign(p)

2
=

{
1− η, if p = f(η) ≥ 0;
η, if p = f(η) < 0,
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is the probability of error of the classifier of (1), and is minimized by any f∗ such that
f∗(η) > 0 if η > 1

2
f∗(η) = 0 if η = 1

2
f∗(η) < 0 if η < 1

2 .
(3)

The optimal classifier h∗(x) = sign[p∗(x)], where p∗ = f∗(η), is the well known Bayes
decision rule, and has minimum conditional (zero-one) risk

C∗0/1(η) = η

(
1

2
− 1

2
sign(2η − 1)

)
+ (1− η)

(
1

2
+

1

2
sign(2η − 1)

)
= min{η, 1− η}.

2.2 Learning from Finite Samples

Practical learning algorithms produce an estimate p̂∗(x) of the optimal predictor by min-
imizing an empirical estimate of (2), the empirical risk, from a training sample D =
{(x1, y1), . . . , (xn, yn)}

Remp(p) =
1

n

∑
i

L(p(xi), yi). (4)

This can be formulated as fitting a model η̂(x) = [f∗]−1(p(x; w)) to the sample D, where f∗

is an invertible link that satisfies (3) and p(x; w) a parametric predictor. Two commonly
used links are

f∗ = 2η − 1 and f∗ = log
η

1− η
.

In this way, the learning problem is reduced to the estimation of the model parameters w of
minimum empirical risk. Most modern learning techniques rely on a linear predictor, imple-
mented on either X - p(x,w) = wTx - or some transformed space - p(x,w) = wTΦ(x). For
example, logistic regression (Hosmer and Lemeshow, 2000) uses the logit link f∗ = log η

1−η ,

or equivalently the logistic inverse link [f∗]−1(v) = ev

1+ev , and learns a linear predictor

p(x,w) = wTx. When a transformation Φ(x) is used, it is either implemented indi-
rectly with recourse to a kernel function, e.g. kernelized logistic regression (Zhu and
Hastie, 2001), or learned. For example, boosting algorithms rely on a transformation
Φ(x) = (h1(x), . . . , hm(x)) where hi(x) is a weak or base classifier selected during training.
In this case, the predictor has the form

p(x; w) =
∑
i

wihi(x). (5)

In all cases, given the optimal predictor estimate p̂∗(x) = p(x,w∗), estimates of the
posterior probability η(x) can be obtained with η̂(x) = [f∗]−1(p̂∗(x)). However, when
learning is based on the empirical risk of (4), convergence to the true probabilities is only
guaranteed asymptotically and for certain loss functions L(., .). Even when this is the case,
learning algorithms can easily overfit to the training set, for finite samples. The minimum
of (4) is achieved for some empirical predictor

p̂∗(x) = p∗(x) + εp(x), (6)
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Figure 1: Left: A margin loss function (the logistic loss) of margin parameter µφ, defined
in (25). Right: corresponding inverse link (in blue) and its growth rate (in red).

where p∗(x) is the optimal predictor and εp(x) a prediction error, sampled from a zero mean
distribution of decreasing variance with sample size. For a given sample size, a predictor
with error of smaller variance is said to generalize better. One popular mechanism to prevent
overfitting is to regularize the parameter vector w, by imposing a penalty on its norm, i.e.
minimizing

Remp(p) =
1

n

∑
i

L(p(xi), yi) + λ||w||l

instead of (4). We refer to this as parameter regularization.

2.3 Margin Losses

Another possibility is to change the loss function, e.g. by replacing the 0-1 loss with a
margin loss Lφ(y, p(x)) = φ(yp(x)). As illustrated in Figure 1 (left), these losses assign a
non-zero penalty to small positive values of the margin yp, i.e. in the range 0 < yp < µφ,
where µφ is a parameter, denoted the loss margin. Commonly used margin losses include
the exponential loss of AdaBoost, the logistic loss (shown in the figure) of logistic regression,
and the hinge loss of SVMs. The resulting large-margin classifiers have better finite sample
performance (generalization) than those produced by the 0-1 loss (Vapnik, 1998). The
associated conditional risk

Cφ(η, p) = Cφ(η, f(η)) = ηφ(f(η)) + (1− η)φ(−f(η)) (7)

is minimized by the link

f∗φ(η) = arg min
f
Cφ(η, f) (8)

leading to the minimum conditional risk function

C∗φ(η) = Cφ(η, f∗φ). (9)
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Algorithm φ(v) f∗φ(η) [f∗φ]−1(v) C∗φ(η)

SVM max(1− v, 0) sign(2η − 1) NA 1− |2η − 1|
Boosting exp(−v) 1

2 log η
1−η

e2v

1+e2v
2
√
η(1− η)

Logistic Regression log(1 + e−v) log η
1−η

ev

1+ev -η log η − (1− η) log(1− η)

Table 1: Loss φ, optimal link f∗φ(η), optimal inverse link [f∗φ]−1(v) , and minimum condi-
tional risk C∗φ(η) of popular learning algorithms.

Unlike the 0-1 loss, the optimal link is usually unique for margin losses and computable in
closed-form, by solving ηφ′(f∗φ(η)) = (1−η)φ′(−f∗φ(η)) for f∗φ. Table 1 lists the loss, optimal
link, and minimum risk of popular margin losses.

The adoption of a margin loss can be equivalent to the addition of parameter reg-
ularization. For example, a critical step of the SVM derivation is a normalization that
makes the margin identical to 1/||w||, where w is the normal of the SVM hyperplane
p(x; w) = wTx (Moguerza and Munoz, 2006; Chapelle, 2007). This renders margin maxi-
mization identical to the minimization of hyperplane norm, leading to the interpretation of
the SVM as minimizing the hinge loss under a regularization constraint on w (Moguerza
and Munoz, 2006; Chapelle, 2007), i.e.

RSVM (w) =
1

n

∑
i

max[0, 1− yp(xi; w)] + λ||w||2. (10)

In this case, larger margins translate directly into the regularization of classifier parameters.
This does not, however, hold for all large margin learning algorithms. For example, boosting
does not use explicit parameter regularization, although regularization is implicit in early
stopping (Raskutti et al., 2014; Natekin and Knoll, 2013; Zhang and Yu, 2005; Rosset et al.,
2004; Jiang, 2004; Buhlmann and Yu, 2003). This consists of terminating the algorithm
after a small number of iterations. While many bounds have been derived to characterize
the generalization performance of large margin classifiers, it is not always clear how much of
the generalization ability is due to the loss vs. parameter regularization. In what follows, we
show that margin losses can themselves be interpreted as regularizers. However, instead of
regularizing predictor parameters, they directly regularize posterior probability estimates,
by acting on the predictor output. This suggests a complementary role for loss-based and
parameter regularization. We will see that the two types of regularization in fact have a
multiplicative effect.

3. Proper Losses and Probability Regularization

We start by discussing the role of margin losses as probability regularizers.
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3.1 Regularization Losses

For any margin loss whose link of (8) is invertible, posterior probabilities can be recovered
from

η(x) = [f∗φ]−1(p∗(x)). (11)

Whenever this is the case, the loss is said to be proper1 and the predictor calibrated (De-
Groot and Fienberg, 1983; Platt, 2000; Niculescu-Mizil and Caruana, 2005; Gneiting and
Raftery, 2007). For finite samples, estimates of the probabilities η(x) are obtained from the
empirical predictor p̂∗ with

η̂(x) = [f∗φ]−1(p̂∗(x)). (12)

Parameter regularization improves estimates p̂∗(x) by constraining predictor parameters.
For example, a linear predictor estimate p̂∗(x; ŵ) = ŵTx can be written in the form of (6),
with p∗(x) = w∗Tx and εp(x) = wε

Tx, where wε is a parameter estimation error. The
regularization of (10) reduces wε and the prediction error εp(x), improving probability
estimates in (12).

Loss-based regularization complements parameter regularization, by regularizing the
probability estimates directly. To see this note that, whenever the loss is proper and the
noise component εp of (6) has small amplitude, (12) can be approximated by its Taylor
series expansion around p∗

η̂(x) ≈ [f∗φ]−1(p∗(x)) + {[f∗φ]−1}′(p∗(x))εp(x)

= η(x) + εη(x)

with

εη(x) = {[f∗φ]−1}′(p∗(x))εp(x). (13)

If |{[f∗φ]−1}′(p∗(x))| < 1 the probability estimation noise εη has smaller magnitude than the

prediction noise εp. Hence, for equivalent prediction error εp, a loss φ with inverse link [f∗φ]−1

of smaller growth rate |{[f∗φ]−1}′(v)| produces more accurate probability estimates. Figure 1
(right) shows the growth rate of the inverse link of the logistic loss. When the growth rate is
smaller than one, the loss acts as a regularizer of probability estimates. From (13), this reg-
ularization multiplies any decrease of prediction error obtained by parameter regularization.
This motivates the following definition.

Definition 1 Let φ(v) be a proper margin loss. Then

ρφ(v) =
1

|{[f∗φ]−1}′(v)|
(14)

is the regularization strength of φ(v). If ρφ(v) ≥ 1, ∀v, then φ(v) is denoted a regularization
loss.

1. When the optimal link is unique, the loss is denoted strictly proper. Because this is the case for all losses
considered in this work, we simply refer to the loss as proper.
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3.2 Generalization

An alternative way to characterize the interaction of loss-based and parameter-based regu-
larization is to investigate how the two impact classifier generalization. This can be done
by characterizing the dependence of classification error bounds on the two forms of regular-
ization. Since, in this work, we will emphasize boosting algorithms, we rely on the following
well known boosting bound.

Theorem 1 (Schapire et al., 1998) Consider a sample S of m examples {(x1, yi), . . . , (xm, ym)}
and a predictor p̂∗(x; w) of the form of (5) where the hi(x) are in a space H of base classi-
fiers of VC-dimension d. Then, with probability at least 1 − δ over the choice of S, for all
θ > 0,

PX,Y [yp(x; w) ≤ 0] ≤ PS
[
yp̂∗(x; w)

||w||1
≤ θ
]

+O

 1√
m

√
d log2(m/d)

θ2
+ log(1/δ)

 ,

where PS denotes an empirical probability over the sample S.

Given H,m, d and δ, the two terms of the bound are functions of θ. The first term depends
on the distribution of the margins yip̂

∗(xi; w) over the sample. Assume, for simplicity, that
S is separable by p̂∗(x; w), i.e. yip̂

∗(xi; w) > 0, ∀i, and denote the empirical margin by

γs = yi∗ p̂
∗(xi∗ ; w), i∗ = arg min

i
yip̂
∗(xi; w). (15)

Then, for any ε > 0 and θ = γs/||w||1 − ε, the empirical probability is zero and

PX,Y [yp(x; w) ≤ 0] ≤ O

(
1√
m

√
d log2(m/d)

( γs
||w||1 − ε)

2
+ log(1/δ)

)
.

Using (11) and a first order Taylor series expansion of [f∗φ]−1(.) around the origin

η̂(xi∗) = [f∗φ]−1(yi∗γs)

≈ [f∗φ]−1(0) + yi∗γs{[f∗φ]−1}′(0)

it follows that
γs ≈ ρφ(0)|η̂(xi∗)− 1/2|, (16)

and the bound can be approximated by

PX,Y [yp(x; w) ≤ 0] ≤ O

 1√
m

√√√√√ d log2(m/d)(
ρφ(0)
||w||1 |η̂(xi∗)− 1/2| − ε

)2 + log(1/δ)

 . (17)

Since this is a monotonically decreasing function of the generalization factor

κ =
ρφ(0)

||w||1
, (18)
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larger κ lead to tighter bounds on the probability of classification error, i.e. classifiers with
stronger generalization guarantees. This confirms the complimentary nature of parameter
and probability regularization, discussed in the previous section. Parameter regularization,
as in (10), encourages solutions of smaller ||w||1 and thus larger κ. Regularization losses
multiply this effect by the regularization strength ρφ(0). This is in agreement with the
multiplicative form of (13). In summary, for regularization losses, the generalization guar-
antees of classical parameter regularization are amplified by the strength of the probability
regularization at the classification boundary.

4. Controlling the Regularization Strength of Proper Losses

In the remainder of this work, we study the design of regularization losses. In particular,
we study how to control the regularization strength of a proper loss, by manipulating some
loss parameter.

4.1 Proper Losses

The structure of proper losses can be studied by relating conditional risk minimization to
the classical problem of probability elicitation in statistics (Savage, 1971; DeGroot and
Fienberg, 1983). Here, the goal is to find the probability estimator η̂ that maximizes the
expected score

I(η, η̂) = ηI1(η̂) + (1− η)I−1(η̂), (19)

of a scoring rule that assigns to prediction η̂ a score I1(η̂) when event y = 1 holds and a
score I−1(η̂) when y = −1 holds. The scoring rule is proper if its components I1(·), I−1(·)
are such that the expected score is maximal when η̂ = η, i.e.

I(η, η̂) ≤ I(η, η) = J(η), ∀η (20)

with equality if and only if η̂ = η. A set of conditions under which this holds is as follows.

Theorem 2 (Savage, 1971) Let I(η, η̂) be as defined in (19) and J(η) = I(η, η). Then (20)
holds if and only if J(η) is convex and

I1(η) = J(η) + (1− η)J ′(η) I−1(η) = J(η)− ηJ ′(η). (21)

Several works investigated the connections between probability elicitation and risk mini-
mization (Buja et al., 2006; Masnadi-Shirazi and Vasconcelos, 2008; Reid and Williamson,
2010). We will make extensive use of the following result.

Theorem 3 (Masnadi-Shirazi and Vasconcelos, 2008) Let I1(·) and I−1(·) be as in (21),
for any continuously differentiable convex J(η) such that J(η) = J(1 − η), and f(η) any
invertible function such that f−1(−v) = 1− f−1(v). Then

I1(η) = −φ(f(η)) I−1(η) = −φ(−f(η))

if and only if
φ(v) = −J

(
f−1(v)

)
− (1− f−1(v))J ′

(
f−1(v)

)
.
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It has been shown that, for Cφ(η, p), f∗φ(η), and C∗φ(η) as in (7)-(9), C∗φ(η) is concave (Zhang,
2004) and

C∗φ(η) = C∗φ(1− η) (22)

[f∗φ]−1(−v) = 1− [f∗φ]−1(v). (23)

Hence, the conditions of the theorem are satisfied by any continuously differentiable J(η) =
−C∗φ(η) and invertible f(η) = f∗φ(η). It follows that, I(η, η̂) = −Cφ(η, f) is the expected
score of a proper scoring rule if and only if the loss has the form

φ(v) = C∗φ
(
[f∗φ]−1(v)

)
+ (1− [f∗φ]−1(v))[C∗φ]′

(
[f∗φ]−1(v)

)
. (24)

In this case, the predictor of minimum risk is p∗ = f∗φ(η), and posterior probabilities can
be recovered with (11). Hence, the loss φ is proper and the predictor p∗ calibrated. In
summary, proper losses have the structure of (22)-(24). In this work, we also assume that
C∗φ(0) = C∗φ(1) = 0. This guarantees that the minimum risk is zero when there is absolute
certainty about the class label Y , i.e. PY |X(1|x) = 0 or PY |X(1|x) = 1.

4.2 Loss Margin and Regularization Strength

The facts that 1) the empirical margin γs of (15) is a function of the loss margin µφ of
Figure 1, and 2) the regularization strength ρφ is related to γs by (16), suggests that µφ is a
natural loss parameter to control ρφ. A technical difficulty is that a universal definition of
µφ is not obvious, since most margin losses φ(v) only converge to zero as v →∞. Although
approximately zero for large positive v, they are strictly positive for all finite v. This is, for
example, the case of the logistic loss φ(v) = log(1 + e−v) of Figure 1 and the boosting loss
of Table 1. To avoid this problem, we use a definition based on the second-order Taylor
series expansion of φ around the origin. The construct is illustrated in Figure 2, where the
loss margin µφ is defined by the point where the quadratic expansion reaches its minimum.
It can be easily shown that this is the point v = µφ, where

µφ = − φ
′(0)

φ′′(0)
. (25)

In Appendix A, we show that, under mild conditions (see Lemma 9) on the inverse link
[f∗φ]−1(η) of a twice differentiable loss φ

µφ =
ρφ(0)

2
, (26)

and the regularization strength of φ is lower bounded by twice the loss margin

ρφ(v) ≥ 2µφ. (27)

Under these conditions, φ(v) is a regularization loss if and only if µφ ≥ 1
2 . This establishes

a direct connection between margins and probability regularization: larger loss margins
produce more strongly regularized probability estimates. Hence, for proper losses of suitable
link, the large margin strategy for classifier learning is also a strategy for regularization of
probability estimates. In fact, from (26) and (18), the generalization factor of these losses

is directly determined by the loss margin, since κ =
2µφ
||w||1 .
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Figure 2: Definition of the loss margin µφ of a loss φ.

4.3 The Generalized Logit Link

As shown in Lemma 9 of Appendix A, the conditions that must be satisfied by the inverse
link for (26) and (27) to hold (monotonically increasing, maximum derivative at the origin)
are fairly mild. For example, they hold for the scaled logit

γ(η; a) = a log
η

1− η
γ−1(v; a) =

ev/a

1 + ev/a
, (28)

which, as shown in Table 1, is the optimal link of the exponential loss when a = 1/2 and
of the logistic loss when a = 1. Since the exponential loss of boosting has margin µφ = 1
and the logistic loss µφ = 2, it follows from the lemma that these are regularization losses.
However, the conditions of the lemma hold for many other link functions. In this work, we
consider a broad family of such functions, which we denote as the generalized logit.

Definition 2 An invertible transformation π(η) is a generalized logit if its inverse, π−1(v),
has the following properties

1. π−1(v) is monotonically increasing,

2. limv→∞ π
−1(v) = 1

3. π−1(−v) = 1− π−1(v),

4. for finite v, (π−1)(2)(v) = 0 if and only if v = 0,

where π(n) is the nth order derivative of π.

In Appendix B, we discuss some properties of the generalized logit and show that all con-
ditions of Lemma 9 hold when f∗φ(η) is in this family of functions. When combined with
Lemma 9, this proves the following result.
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Theorem 4 Let φ(v) be a twice differentiable proper loss of generalized logit link f∗φ(η).
Then

µφ =
ρφ(0)

2
(29)

and the regularization strength of φ(v) is lower bounded by twice the loss margin ρφ(v) ≥ 2µφ.
φ(v) is a regularization loss if and only if µφ ≥ 1

2 .

5. Controlling the Regularization Strength

The results above show that it is possible to control the regularization strength of a proper
loss of generalized logit link by manipulating the loss margin µφ. In this section we derive
procedures to accomplish this.

5.1 Tunable Regularization Losses

We start by studying the set of proper margin losses whose regularization is controlled by
a parameter σ > 0. These are denoted tunable regularization losses.

Definition 3 Let φ(v) be a proper loss of generalized logit link f∗φ(η). A parametric loss

φσ(v) = φ(v;σ) such that φ(v; 1) = φ(v)

is the tunable regularization loss generated by φ(v) if φσ(v) is a proper loss of generalized
logit link and

µφσ = σµφ,

for all σ such that

σ ≥ 1

2µφ
. (30)

The parameter σ is the gain of the tunable regularization loss φσ(v).

Since, from (29) and (14), the loss margin µφ only depends on the derivative of the inverse
link at the origin, a tunable regularization loss can be generated from any proper loss of
generalized logit link, by simple application of Theorem 3.

Lemma 4 Let φ(v) be a proper loss of generalized logit link f∗φ(η). The parametric loss

φσ(v) = C∗φσ{[f
∗
φσ ]−1(v)}+ (1− [f∗φσ ]−1(v))[C∗φσ ]′([f∗φσ ]−1(v)), (31)

where

f∗φσ(η) = σf∗φ(η) (32)

C∗φσ(η) is a minimum risk function (i.e. a continuously differentiable concave function with
symmetry [C∗φσ ](1 − η) = [C∗φσ ](η)) such that C∗φσ(0) = 0, and (30) holds is a tunable
regularization loss.
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Proof From (32)

[f∗φσ ]−1(v) = [f∗φ]−1
( v
σ

)
. (33)

Since [f∗φ]−1(v) is a generalized logit link it has the properties of Definition 2. Since these
properties continue to hold when v is replaced by v/σ, it follows that f∗φσ(v) is a generalized
logit link. It follows from (31) that φσ(v) satisfies the conditions of Theorem 3 and is a

proper loss. Since µφσ =
ρφσ (0)

2 = 1
2{[f∗φσ ]

−1}′(0) = σµφ, the parametric loss φσ(v) is a tunable

regularization loss.

In summary, it is possible to generate a tunable regularization loss by simply rescaling the
link of a proper loss. Interestingly, this holds independently of how σ parameterizes the
minimum risk [C∗φσ ](η). However, not all such losses are useful. If, for example, the process
results in

φσ(v) = φ(v/σ),

it corresponds to a simple rescaling of the horizontal axis of Figure 1. The loss φσ(v) is thus
not fundamentally different from φ(v). Using this loss in a learning algorithm is equivalent
to varying the margin by rescaling the feature space X .

5.2 The Binding Function

To produce non-trivial tunable regularization losses φσ(v), we need a better understanding
of the role of the minimum risk [C∗φσ ](η). This is determined by the binding function of the
loss.

Definition 5 Let φ(v) be a proper loss of link f∗φ(η), and minimum risk C∗φ(η). The func-
tion

βφ(v) = [C∗φ]′
(
[f∗φ]−1(v)

)
(34)

is denoted the binding function of φ.

The properties of the binding function are discussed in Appendix C and illustrated in
Figure 3. For proper losses of generalized logit link, βφ(v) is a monotonically decreasing
odd function, which determines the behavior of φ(v) away from the origin and defines a
one-to-one mapping between the link f∗φ and the derivative of the risk C∗φ. In this way, βφ
“binds” link and risk.

The following result shows that the combination of link and binding function determine
the loss up to a constant.

Theorem 5 Let φ(v) be a proper loss of generalized logit link f∗φ(η) and binding function
βφ(v). Then

φ′(v) = (1− [f∗φ]−1(v))β′φ(v). (35)

Proof From (24) and the definition of βφ,

φ(v) = C∗φ([f∗φ]−1(v)) + (1− [f∗φ]−1(v))βφ(v). (36)

Taking derivatives on both sides leads to (35).
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Figure 3: Link f∗φ(η), risk derivative [C∗φ]′(η), and binding function βφ(f∗φ(η)) of a proper
loss φ(v) of generalized logit link.

This result enables the derivation of a number of properties of proper losses of gener-
alized logit link. These are discussed in Appendix D.1, where such losses are shown to be
monotonically decreasing, convex under certain conditions on the inverse link and binding
function, and identical to the binding function for large negative margins. In summary, a
proper loss of generalized logit link can be decomposed into two fundamental quantities:
the inverse link, which determines its regularization strength, and the binding function,
which determines its behavior away from the origin. Since tunable regularization losses are
proper, the combination of this result with Lemma 4 and Definition 5 proves the following
theorem.

Theorem 6 Let φ(v) be a proper loss of generalized logit link f∗φ(η). The parametric loss

φ′σ(v) = (1− [f∗φσ ]−1(v))β′φσ(v), (37)

where

f∗φσ(η) = σf∗φ(η), (38)

βφσ(v) is a binding function (i.e. a continuously differentiable, monotonically decreasing,
odd function), and σ is such that (30) holds is a tunable regularization loss.
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Algorithm 1: BoostLR

Input: Training set D = {(x1, y1), . . . , (xn, yn)}, where yi ∈ {1,−1} is the class label of example
x, regularization gain σ, and number T of weak learners in the final decision rule.

Initialization: SetG(0)(xi)=0 and w(1)(xi) = −
(

1− [f∗φσ
]−1(yiG

(0)(xi))
)
β′φσ

(
yiG

(0)(xi)
)
∀xi

.
for t = {1, . . . , T} do

choose weak learner

g∗(x) = arg max
g(x)

n∑
i=1

yiw
(t)(xi)g(xi)

update predictor G(x)

G(t)(x) = G(t−1)(x) + g∗(x)

update weights

w(t+1)(xi) = −
(

1− [f∗φσ
]−1(yiG

(t)(xi))
)
β′φσ

(
yiG

(t)(xi)
)
∀xi

end for
Output: decision rule h(x) = sgn[G(T )(x)].

5.3 Boosting With Tunable Probability Regularization

Given a tunable regularization loss φσ, various algorithms can be used to design a classifier.
Boosting accomplishes this by gradient descent in a space W of weak learners. While
there are many variants, in this work we adopt the GradientBoost framework (Friedman,
2001). This searches for the predictor G(x) of minimum empirical risk on a sample D =
{(x1, y1), . . . , (xn, yn)},

R(G) =
n∑
i=1

φσ(yiG(xi)).

At iteration t, the predictor is updated according to

G(t)(x) = G(t−1)(x) + g(t)(x), (39)

where g(t)(x) is the gradient of R(G) in W, i.e. the weak learner

g(t)(x) = arg max
g

n∑
i=1

−yiφ′σ(yiG
(t−1)(xi))g(xi)

= arg max
g

n∑
i=1

yiw
(t)
σ (xi)g(xi),

where
w(t)
σ (xi) = −φ′σ(yiG

(t−1)(xi))
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is the weight of example xi at iteration t. For a tunable regularization loss φσ(v) of gener-
alized logit link f∗φσ(η) and binding function βφσ(v), it follows from (37) that

w(t)
σ (xi) = −

(
1− [f∗φσ ]−1

(
yiG

(t−1)(xi)
))

β′φσ

(
yiG

(t−1)(xi)
)
. (40)

Boosting with these weights is denoted boosting with loss regularization (BoostLR) and
summarized in Algorithm 1.

The weighting mechanism of BoostLR provides some insight on how the choices of link
and binding function affect classifier behavior. Using γi = yiG

(t−1)(xi) to denote the margin
of xi for the classifier of iteration t− 1,

w(t)
σ (xi) = −φ′σ(γi) = −

(
1− [f∗φσ ]−1 (γi))

)
β′φσ(γi). (41)

It follows from the discussion of the previous section that 1) the link f∗φσ is responsible for
the behavior of the weights around the classification boundary and 2) the binding function
βφσ for the behavior at large margins. For example, applying (34) to the links and risks of
Table 1 results in

β(v) = e−v − ev β′(v) = −e−v − ev (42)

for AdaBoost and
β(v) = −v β′(v) = −1 (43)

for LogitBoost. In result, AdaBoost weights are exponentially large for examples of large
negative margin γi, while LogitBoost weights remain constant. This fact has been used to
explain the much larger sensitivity of AdaBoost to outliers (Maclin and Opitz, 1997; Diet-
terich, 2000; Mason et al., 2000; Masnadi-Shirazi and Vasconcelos, 2008; Friedman et al.,
2000; McDonald et al., 2003; Leistner et al., 2009). Under this view, the robustness of a
boosting algorithm to outliers is determined by its binding function. Hence, the decomposi-
tion of a loss into link and binding functions translates into a functional decomposition for
boosting algorithms. It decouples the generalization ability of the learned classifier, deter-
mined by the regularization strength imposed by the link, from its robustness to outliers,
determined by the binding function.

6. The Set of Tunable Regularization Losses

The link-binding decomposition can also be used to characterize the structure of the set of
tunable regularization losses.

6.1 Equivalence Classes

A simple consequence of (37) is that the set R of tunable regularization losses φσ is the
Cartesian product of the set L of generalized logit links and the set B of binding functions.
It follows that both generalized logit links fσ and binding functions βσ define equivalence
classes in R. In fact, R can be partitioned according to

R = ∪βσRβσ where Rβσ = {φσ|βφσ = βσ}

or
R = ∪fσRfσ where Rfσ = {φσ|f∗φσ = fσ}.
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Figure 4: The set R of tunable regularization losses can be partitioned into equivalence
classes Rfφσ , isometric to the set B of binding functions, or equivalence classes
Rβφσ , isometric to the set L of generalized logit links. A tunable regularization
loss φσ is defined by a pair of link fφσ and binding βφσ functions.

The sets Rfσ are isomorphic to B, which is itself isomorphic to the set of continuously
differentiable, monotonically decreasing, odd functions. The sets Rβσ are isomorphic to L,
which is shown to be isomorphic, in Appendix B.2, to the set of parametric continuous scale
probability density functions (pdfs)

ψσ(v) =
1

σ
ψ
( v
σ

)
, (44)

where ψ(v) has unit scale, a unique maximum at the origin, and ψ(−v) = ψ(v). The
structure of the set of tunable regularization losses is illustrated in Figure 4. The set can
be partitioned in two ways. The first is into a set of equivalence classes Rβσ isomorphic to
the set of pdfs of (44). The second into a set of equivalence classes Rfσ isomorphic to the
set of monotonically decreasing odd functions.

6.2 Design of Regularization Losses

An immediate consequence of the structure of R is that all tunable regularization losses
can be designed by the following procedure.

1. select a scale pdf ψσ(v) with the properties of (44).

2. set [f∗φσ ]−1(v) = cσ(v), where cσ(v) =
∫ v
−∞ ψσ(q)dq is the cumulative distribution

function (cdf) of ψσ(v).
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Figure 5: Canonical regularization losses. Left: general properties of the loss and inverse
link functions. Right: Relations between losses and scale pdfs.

3. select a binding function βφσ(v). This can be any parametric family of continuously
differentiable, monotonically decreasing, odd functions.

4. define the tunable regularization loss as φ′σ(v) = (1− [f∗φσ ]−1(v))β′φσ(v).

5. restrict σ according to (30).

Note that the derivative φ′σ(v) is sufficient to implement the BoostLR algorithm. If desired,
it can be integrated to produce a formula for the loss φσ(v). This defines the loss up to
a constant, which can be determined by imposing the constraint that limv→∞ φσ(v) = 0.
As discussed in the previous section, this procedure enables the independent control of the
regularization strength and robustness of the losses φσ(v). In fact, it follows from step 2.
and (14) that

ρφσ(v) =
1

ψσ(v)
, (45)

i.e. the choice of pdf ψσ(v) determines the regularization strength of φσ(v). The choice of
binding function in step 3. then limits φσ(v) to an equivalence class Rβσ of regularization
losses with common robustness properties. We next consider some important equivalence
classes.

6.3 Canonical Regularization Losses

We start by considering the set of tunable regularization losses with linear binding function

βφσ(v) = −v. (46)
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Generalized Logistic (GLog) Generalized Gaussian (GGauss)

ψσ(v) e
v
σ

σ(1+e
v
σ )2

1
4σe
−(
√
π

4σ
v)2

cσ(v) ev/σ

1+ev/σ
1
2

[
1 + erf

(√
π

4σ v
)]

φσ(v) σ log
(

1 + e−
v
σ

)
v
2

[
erf

(√
π

4σ v
)
− 1
]

+ 2σ
π e
−
(√

π
4σ
v
)2

f∗φσ(η) σ log η
1−η

4σ√
π
· erf−1(2η − 1)

C∗φσ(η) −ση log(η)− σ(1− η) log(1− η) − 4σ√
π

∫
erf−1(2η − 1)dη

ρφ(v) σ(1+e
v
σ )2

e
v
σ

4σe(
√
π

4σ
v)2

Generalized Laplacian (GLaplacian) Generalized Boosting (GBoost)

ψσ(v) 1
4σe
− |v|

2σ
2

σ(4+( v
σ
)2)

3
2

cσ(v) 1
2

[
1 + sign(v)

(
1− e−

|v|
2σ

)]
1
2 +

v
σ

2
√

4+( vσ )
2

φσ(v) σe
−|v|
2σ + 1

2(|v| − v) σ
2

(√
4 +

(
v
σ

)2 − v
σ

)
f∗φσ(η) −2σsign(2η − 1) log(1− |2η − 1|) σ 2η−1√

η(1−η)
C∗φσ(η) σ(1− |2η − 1|)[1− log(1− |2η − 1|)] 2σ

√
η(1− η)

ρφ(v) 4σe
|v|
2σ

σ
2

(
4 + ( vσ )2

) 3
2

Table 2: Canonical tunable regularization losses

From (37), these losses are uniquely determined by their link function

φ′σ(v) = −(1− [f∗φσ ]−1(v)). (47)

Their properties are discussed in Appendix D.2. As illustrated in Figure 5, they are convex,
monotonically decreasing, linear (with slope −1) for large negative v, constant for large
positive v, and have slope −.5 and maximum curvature at the origin. The only degrees of
freedom are in the vicinity of the origin, and determine the loss margin, since µφσ = 1

2φ′′σ(0)
.

Furthermore, because these losses have regularization strength ρφσ(0) = 1
φ′′σ(0)

, they are

direct regularizers of probability scores, and regularization losses whenever φ′′σ(0) ≤ 1. This
is reminiscent of a well known result (Bartlett et al., 2006) that Bayes consistency holds for
a convex φ(v) if and only if φ′(0) ≤ 0. From Property 4. of Lemma 13, this holds for all
regularization losses with the form of (47). The constraint φ′′σ(0) ≤ 1 is also equivalent to
φ′′(0)
σ ≤ 1. This is the condition of (30) for the losses of (47).

When (46) holds, it follows from (34) that f∗φ(η) = −[C∗φ]′(η). Buja et al. showed that
the empirical risk of (4) is convex when φ is a proper loss and this relationship holds . They
denoted as canonical risks the risks of (7) for which this is the case (Buja et al., 2006).
For consistency, we denote the associated φ(v) a canonical loss. This is summarized by the
following definition.

Definition 6 A tunable regularization loss φσ(v) such that (47) holds for any σ such that
φ′′σ(0) ≤ 1 is a canonical loss.
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We note, however, that what makes canonical losses special is not the guarantee of a convex
risk, but that they have the simplest binding function with this guarantee. From Property
2. of Lemma 13, loss convexity does not require a linear binding function. On the other
hand, since 1) any risk of convex loss is convex, 2) (57) holds for the linear binding function,
and 3) binding functions are monotonically decreasing, the linear binding function is the
simplest that guarantees a convex risk.

It should also be noted that the equivalence class of (46) includes many regularization
losses. The relations of Figure 5, where cσ(v) is the cumulative distribution function (cdf)
of the pdf ψσ(v) of (44), can be used to derive losses from pdfs or pdfs from losses. Some
example tunable canonical regularization losses are presented in Table 2. The generalized
logistic (GLog), Gaussian (GGauss), and Laplacian (GLaplacian) losses are tunable losses
derived from the logistic, Gaussian, and Laplace pdfs respectively. The GBoost loss illus-
trates some interesting alternative possibilities for this loss design procedure. In this case,
we did not start from the pdf ψσ(v) but from the minimum risk of boosting (see Table 1).
We then used the top equations of Figure 5 to derive the cdf cσ(v) and the bottom equa-
tions to obtain φσ(v) and f∗φσ(η). The resulting pdf ψσ(v) is a special case of the Pearson

type VII distribution with zero location parameter, shape parameter 3
2 and scale parameter

2σ. These losses, their optimal inverse links, and regularization strength are plotted in Fig-
ure 6, which also shows how the regularization gain σ influences the loss around the origin,
both in terms of its margin properties and regularization strength. Note that, due to (45),
canonical losses implement all regularization behaviors possible for tunable regularization
losses. This again justifies the denomination of “canonical regularization losses,” although
such an interpretation does not appear to have been intended by Buja et al.

The combination of BoostLR with a canonical loss is denoted a canonical BoostLR
algorithm. For a proper loss φσ, G(t)(x) converges asymptotically to the optimal predictor
p∗σ(x) = f∗φσ(η(x)) and the weight function of (40) to

w∗(xi) =

{
1− η(xi) if yi = 1
η(xi) if yi = −1.

Hence, the weights of canonical BoostLR converge to the posterior example probabilities.
Figure 7 shows the weight functions of the losses of Table 2. An increase in regularization
gain σ simultaneously 1) extends the region of non-zero weight away from the boundary,
and 2) reduces the derivative amplitude, increasing regularization strength. Hence, larger
gains increase both the classification margin and the regularization of probability estimates.

6.4 Shrinkage Losses

Definition 7 A tunable regularization loss φσ(v) such that

β′φσ(v) = β′φ

( v
σ

)
, (48)

for some βφ(v) ∈ B is a shrinkage loss.

Note that, since (48) holds for the linear binding function of (46), canonical regularization
losses are shrinkage losses. These losses are easily identifiable, since combining (48), (37),
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Figure 6: Loss (left), inverse link (middle), and regularization strength (right) functions, for
various canonical regularization losses and gains σ. From top to bottom: GLog,
GBoost, GGauss and GLaplacian.
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Figure 7: BoostLR weights for various parametric regularization losses and gains. GLog
(top left), GBoost (top right), GGauss (bottom left) and GLaplace (bottom
right).

and (33) leads to φ′σ(v) = φ′(v/σ). Hence, φσ is a shrinkage loss if and only if

φσ(v) = σφ
( v
σ

)
. (49)

This enables the generalization of any proper loss of generalized logit link into a shrinkage
loss. For example, using Table 1, it is possible to derive the shrinkage losses generated by
the logistic

φσ(v) = σ log(1 + e−
v
σ )

and the exponential loss

φσ(v) = σe−
v
σ .

The former is the GLog loss of Table 2, but the later is not a canonical regularization loss.

Shrinkage losses also connect BoostLR to shrinkage, a popular regularization heuris-
tic (Hastie et al., 2001). For GradientBoost, this consists of modifying the learning rule
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of (39) into

G(t)(x) = G(t−1)(x) + λg(t)(x), (50)

where 0 < λ < 1 is a learning rate. Shrinkage is inspired by parameter regularization meth-
ods from the least-squares regression literature, where similar modifications follow from the
adoption of Bayesian models with priors that encourage sparse regression coefficients. This
interpretation does not extend to classification, barring the assumption of the least-squares
loss and some approximations (Hastie et al., 2001). In any case, it has been repeatedly
shown that small learning rates (λ ≤ 0.1) can significantly improve the generalization abil-
ity of the learned classifiers. Hence, despite its tenuous theoretical justification, shrinkage
is a commonly used regularization procedure.

Shrinkage losses, and the proposed view of margin losses as regularizers of probabil-
ity estimates, provide a much simpler and more principled justification for the shrinkage
procedure. It suffices to note that the combination of (49) and (41) leads to

w(t)
σ (xi) = −φ′σ(γi) = −φ′

(γi
σ

)
= −

(
1− [f∗φ]−1

(γi
σ

))
β′φ

(γi
σ

)
,

where γi = yiG
(t−1)(xi). Letting λ = 1/σ, this is equivalent to

wλ(xi) = −
(
1− [f∗φ]−1 (yiλG(xi))

)
β′φ (yiλG(xi)) .

Hence, the weight function of BoostLR with shrinkage loss φσ and predictor G(x) is equiv-
alent to the weight function of standard GradientBoost with loss φ and shrinked predictor
1/σG(x). Since the only other effect of replacing (39) with (50) is to rescale the final predic-
tor G(T )(x), the decision rule h(x) produced by the two algorithms is identical. In summary,
GradientBoost with shrinkage and a small learning rate λ is equivalent to BoostLR with
a shrinkage loss of large regularization strength (1/λ). This justifies the denomination of
“shrinkage losses” for the class of regularization losses with the property of (48).

It should be noted, however, that while rescaling the predictor does not affect the
decision rule, it affects the recovery of posterior probabilities from the shrinked predictor.
The regularization view of shrinkage makes it clear that the probabilities can be recovered
with

η̂(x) = [f∗φσ ]−1
(
G(T )(x)

)
= [f∗φ]−1

(
λG(T )(x)

)
. (51)

In the absence of this view, it is not obvious why shrinkage, which is justified as a simple
change of learning rate, would require a modified link function for probability recovery.
It is also neither clear nor it has been claimed that shrinkage would improve the quality
of probability estimates. On the other hand, the discussion above suggests that this is
why it works: shrinkage is a procedure for controlling probability regularization strength
by manipulation of the loss margin. In fact, since GradientBoost with shrinkage and a
small learning rate λ is equivalent to BoostLR with a shrinkage loss of large regularization
strength (1/λ), Section 3.2 provides a theoretical justification for the empirical evidence
that shrinkage improves generalization performance.
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Figure 8: Weight function of the α-tunable regularization loss, for different values of α.

6.5 α-tunable Regularization Losses

From (48), the key to the equivalence between loss-based regularization and shrinkage is
the identical parameterization of [f∗φσ ]−1(v) and β′φσ(v) in (33) and (48). When this is not
the case, BoostLR weights are given by

wσ(xi) = −
(
1− [f∗φσ ]−1 (γi)

)
β′φσ(γi)

= −
(
1− [f∗φ]−1 (λγi)

)
β′φσ(γi)

6= −
(
1− [f∗φ]−1 (λγi)

)
β′φ(λγi)),

and the shrinkage interpretation no longer holds. One such loss class is defined as follows.

Definition 8 A tunable regularization loss φσ(v) such that

β′φσ(v) = g(α)β′φ

(
α
v

σ

)
,

where βφ(v) ∈ B, g(α) is a constant that depends on α, and α ≥ 0 is denoted α-tunable.

The additional α parameter enables α-tunable losses to independently control the link
and binding functions. In fact, they generalize the previous two loss classes, reducing to
shrinkage losses when α = 1 and g(1) = 1 and canonical losses when α = 0 and g(0)β′φ(0) =
1. More generally, the α parameter allows the “interpolation” between pairs of canonical
or shrinkage losses of equal generalized logit link. For example, the logistic and exponential
losses have the scaled logit of (28) as link function, with a = 1 and a = 1

2 , respectively.
Since these can be written as a = 1

ξ+1 , for ξ = 0 and ξ = 1, scaled logits with ξ ∈ [0, 1]
interpolate between the links of the two losses. Similarly, the binding functions of the two
losses, given by (42) and (43), are special cases of

β′φ(v) = − 1

2− b
(e−bv + ebv) (52)
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with b = 0 and b = 1. Hence, binding functions with b = ξ and ξ ∈ [0, 1] interpolate between
the binding functions of the two losses. It follows that

φ′(v) = −

(
1− e(ξ+1)v

1 + e(ξ+1)v

)
1

2− ξ
(e−ξv + eξv), ξ ∈ [0, 1]

interpolates between the derivative of the logistic (ξ = 0) and exponential (ξ = 1) losses.
The derivative of the tunable regularization loss that it generates is

φ′µ(v) = −

(
1− e

(ξ+1) v
µ

1 + e
(ξ+1) v

µ

)
1

2− ξ
(e
−ξ v

µ + e
ξ v
µ ), ξ ∈ [0, 1].

Defining σ = µ
ξ+1 and α = ξ

1+ξ , this can be written as

φ′σ(v) = −

(
1− e

v
σ

1 + e
v
σ

)
1− α
2− 3α

(e−α
v
σ + eα

v
σ ), α ∈

[
0,

1

2

]
, (53)

i.e. a α-tunable loss of scaled logit link, g(α) = 1−α
2−3α , and the binding function of (52).

Figure 8 shows the weight function, wσ(γ) = −φ′σ(γ), of this loss as a function of the normal-
ized margin γ = v/σ, for different values of α. As α varies, the weight function interpolates
between the asymptotically constant weights of LogitBoost (less outlier sensitivity) and the
exponential weights of AdaBoost (more sensitive to outliers).

Note that, due to their ability to independently control the link and binding functions,
α-tunable losses can always implement this type of interpolation. This can be used to design
losses that adapt to the presence of outliers in the data, by cross-validation of α. It should
be noted, however, that not all values of α ≥ 0 lead to sensible loss functions. This is due
to the fact that (49) does not hold for these losses. For shrinkage losses, where the property
holds, φσ(v)→ 0 as v →∞ (whenever φ(v) has this property), guaranteeing that examples
of large positive margin have zero weight. For α-tunable losses, where (49) does not hold,
β′φσ(v) can decrease to −∞ faster than 1 − [f∗φσ ]−1(v) goes to zero, as v → ∞. In this
case, examples of large positive margin can receive large positive weight, which is usually
undesirable. The losses of (53) have this behavior for α > 1/2.

7. Experiments

In this section we discuss various experiments conducted to evaluate different properties of
probability regularization.

7.1 Experiments on Two Gaussian Classes

To gain some insight on probability regularization, we considered a simple classification
problem, composed of two Gaussian classes of identity covariance, Σ = I, on a two-
dimensional space. The means were set to (0, 0) and (0.7416, 0.7416), so as to produce
a problem with a Bayes error of 30%. Classifiers were learned with training sets of variable
size and evaluated with a test set of 10, 000 examples. All classifiers were learned with
BoostLR and the GLog loss, using histogram-based weak learners (Masnadi-Shirazi and
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Vasconcelos, 2011; Rasolzadeh et al., 2006; Wu et al., 2004). We started by investigating
how the probability estimates varied with the regularization gain σ. The accuracy of the
probability estimates was measured by the mean squared error

MSE =
1

n

n∑
i−1

[η(xi)− η̂(xi)]
2, (54)

where η(xi) and η̂(xi) are the true and estimated posterior probability for test example
xi. The latter was obtained with (51), where G(T )(x) is the predictor learned by BoostLR.
Three regimes were considered. The very small sample regime, where the training set
contained N = 5 examples per class, the moderate sample size regime, where N = 40 and
the large sample regime, where N = 1, 000. Classifiers were learned with BoostLR under
the three regimes, for a range of values of σ in the interval [0.5, 1000]. Figure 9 shows two
complementary views of the MSE data. The top row presents the classical curves of MSE
vs. number of boosting iterations T , for different regularization gains. These plots are
most useful to assess overfitting, which happens when there is a range of T over which the
MSE increases. It is clear that, for both the small and moderate sample sizes, all classifiers
eventually overfit as the number of boosting iterations increases, while no overfitting is
observed for large sample sizes. The bottom row is most useful to assess the impact of
predictor regularization. The data is the same, but these plots show the evolution of the
MSE with σ for fixed T . In this case, overfitting occurs on the left of each plot (small values
of σ, not enough regularization) and underfitting (too much regularization) on the right.

Overall, the plots demonstrate the complementarity between loss-based probability reg-
ularization and classic parameter regularization (due to early stopping, i.e. limiting the
number of weak learners in the final ensemble). This is most clear in the moderate sample
regime, where many of the curves of the middle column of Figure 9 (top) have the same
minimum. Varying the gain σ shifts this minimum, i.e. makes it occur at different num-
bers of boosting iterations. Hence, when a regularization loss is used, there is less need
for early stopping (parameter regularization). This explains the empirical observation that
boosted classifiers can do well even with little parameter regularization (e.g. boosted object
detectors with thousands of weak learners commonly used in computer vision (Viola and
Jones, 2004)). The problem with early stopping is that it can be insufficient for small sam-
ples. This is visible in the left column of Figure 9 (top), where there is too little data and
boosting overfits even in the earliest iterations. The same happens for the moderate sample
size (middle column of Figure 9 top) when the regularization gain is small. In these cases,
by amplifying parameter based regularization, loss-based regularization can substantially
improve the quality of probability estimates. For example, larger σ lead to significant gains
in estimation accuracy, for all numbers of boosting iterations, in the left column of Figure 9
(bottom). As σ increases, the best early-stopped MSE (T = 2) decreases from roughly 20%
to about 5%. Hence, for small samples, loss-based regularization is much more effective
than early stopping.

In summary, loss-based regularization is a more flexible way to control the generalization
ability of the boosted classifier than early stopping. Hence, in all remaining experiments,
we fix the number of boosting iterations and cross-validate the regularization gain. This
regularization strategy has one additional property of interest. As can be seen in the bottom
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Figure 9: Top: MSE as a function of the number of boosting iterations T for different
regularization gains. Bottom: MSE as a function of regularization gain σ for
different numbers of boosting iterations T . From left to right: small, moderate
sized, and large samples.

10
0

10
1

10
2

10
3

10
0

10
1

10
2

10
3

Train Set Size

σ

Figure 10: Cross-validated regularization gain as a function of training set size.

2778



A View of Margin Losses as Regularizers of Probability Estimates

row of Figure 9, when the number of iterations T is fixed, the best performing regularization
gain decreases with the sample size. This suggests that, when T is fixed, the cross-validated
σ can be seen as a diagnostic of whether the classifier would benefit from the collection of
further training data. Small samples (left of the figure) require large σ, while a small σ is
sufficient for large samples (right). This effect is illustrated in Figure 10, which presents a
plot of the cross-validated regularization gain as a function of training set size. Note the
monotonic relation between the two variables, suggesting that regularization gain can be
used as a diagnostic for data scarcity. While a large σ suggests that it is worth collecting
more training data, a small σ indicates that such an effort is likely not justified. This can
help learning practitioners perform cost-benefit analysis of their data collection efforts.

7.2 The Role of the Link Function

The next set of experiments used ten binary UCI data sets of relatively small size: (#1)
sonar, (#2) breast cancer prognostic, (#3) breast cancer diagnostic, (#4) original Wisconsin
breast cancer, (#5) Cleveland heart disease, (#6) tic-tac-toe, (#7) echo-cardiogram, (#8)
Haberman’s survival, (#9) Pima-diabetes, and (#10) liver disorder. These experiments
aimed to evaluate the impact of of the choice of regularization (link) function on calibration
and classification accuracy. Since, as discussed in Section 6.3, canonical losses implement
all regularization behaviors possible for tunable regularization losses, we only considered
the losses of Table 2 in these experiments. Each data set was split into five folds, four of
which were used for training and one for testing. This created four train-test pairs per data
set, over which the results were averaged. In all experiments, three of the four training folds
were used for classifier training and one as validation set for parameter selection.

BoostLR was run for 50 iterations, using histogram-based weak learners and regular-
ization gains σ ∈ [0.3, 500]. Classification accuracy was measured with test error. Since
the true posterior probabilities are not known for the UCI data sets, calibration cannot be
evaluated with (54). A measure of calibration commonly used when this is the case is the
cross-entropy between the distributions of the true η and estimated posterior probabilities
η̂ (Niculescu-Mizil and Caruana, 2005). Assuming the quantization of all probabilities into
K probability bins, this is defined as

H(η, η̂) = −
K∑
k=1

p(η = k) log p(η̂ = k) = −Eη[log p(η̂)].

For large samples, the cross-entropy can be estimated with

H(η, η̂) = −
N∑
i=1

1

N
log p(η̂(xi)).

This measure is largest for poorly calibrated classifiers that produce bimodally distributed
posterior estimates, concentrated around η̂ = 0 and η̂ = 1, and smallest for well calibrated
classifiers whose distribution of posteriors is less concentrated, and spread more evenly
between zero and one (Niculescu-Mizil and Caruana, 2005; Mease and Wyner, 2008).

Figure 11 presents curves of the average calibration and classification ranks of the pre-
dictor designed with the GLog loss for each σ. Similar curves were obtained for all losses
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Figure 11: Average calibration (left) and classification (right) rank as a function of regu-
larization gain for the GLog loss on the UCI data.

of Table 2. To produce these plots, a predictor was trained per data set, for 17 values of
σ ∈ [0.3, 10]. The results were then ranked, and rank 1 (17) assigned to the value of σ
of smallest (largest) cross-entropy or classification error. The ranks of each σ were then
averaged over the ten data sets (Demšar, 2006). Note that the curves of classification ac-
curacy and cross entropy rank have similar shape, although the rank curve is smoother for
cross-entropy. This is because the classifier produces binary decisions by thresholding the
predictor output. Nevertheless, the two plots support the conclusion that the best values of
σ for these data sets are in the range of 4 ≤ σ ≤ 6. Note that the average calibration rank
for this range (between 6.5 and 7.5), is substantially better than that (more than 9.5) of
the logistic loss of Figure 1 (which is identical to GLog with σ = 1). For classification, the
difference is similar (between 5.5 and 6.5 for 4 ≤ σ ≤ 6, around 9 for σ = 1). In summary,
regularization strength can have a significant impact in both classification and calibration
performance. The fact that best results occur for relatively large regularization gains is not
surprising, given that these data sets are relatively small.

We next attempted to quantify the intrinsic regularization gain of each data set, i.e.
the regularization gain that leads to best performance on that data set across all losses,
and the benefits of using that regularization over the standard values (e.g. σ = 1 for the
logistic loss in LogitBoost). For this, we averaged the performance of all BoostLR classifiers
learned with the four losses of Table 2, for each value of σ and data set. We then determined
the gain σopt of smallest average classification error per data set. This can be seen as a
loss-independent measure of the intrinsic regularization gain of the data set. The associated
classification error is a loss-independent estimate of the performance of a classifier tuned
to this intrinsic regularization value. These results are summarized in Table 3 (top). For
comparison, we also present the results of AdaBoost, LogitBoost (GLog loss with σ = 1),
the average performance of BoostLR with the four losses of Table 2 when the bandwidth is
constrained to σ = 1, and the drop in classification error due to the tuning to the intrinsic
regularization gain of the data set. To compute this drop, we defined as ε1 the average
error of the BoostLR methods with the intrinsic gain, as ε2 the smallest error of all other
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UCI data set# #1 #2 #3 #4 #5 #6 #7 #8 #9 #10

Classification

AdaBoost 11.4 15.2 9.2 6 11.4 21.6 7.4 23.2 42.8 26.6

LogitBoost(σ = 1) 12.4 15.4 8.6 5.6 11.4 46 7.2 25 40.4 26.4

Avg. BoostLR(σ = 1) 13.25 16.4 8.06 5.53 11.6 47.95 7.15 24.6 40.65 27.4

Avg. BoostLR(σopt) 11.6 14.95 6.93 4.86 11.1 13.25 6.7 14.6 38.8 26.5

Drop(%) −1.75 1.64 14.08 12.11 2.63 38.65 6.29 37.06 3.96 −0.37

Calibration

AdaBoost 4.70 4.40 5.31 5.58 3.89 3.453 3.77 3.593 3.43 3.54

LogitBoost(σ = 1) 4.73 4.06 5.16 5.49 3.68 3.414 3.71 3.609 3.42 3.58

Avg. BoostLR(σ = 1) 4.25 3.88 5.20 5.63 3.77 3.419 3.68 3.599 3.41 3.65

Avg. BoostLR(σopt) 3.71 3.83 4.48 4.82 3.58 3.414 3.50 3.595 3.39 3.53

Drop(%) 58.2 8.8 37.3 30.8 29.2 0.0 48.2 −0.7 26.3 5.3

Table 3: Intrinsic gain of regularization, in terms of classification error (top) and probabil-
ity estimation accuracy (bottom), on various UCI data sets. Avg. BoostLR(σ)
is the average error of classifiers learned with the margin losses of Table 2, for
regularization bandwidth σ. σopt is the bandwidth of smallest average error.

methods, and the drop as (1 − ε1
ε2

) × 100%. Note that BoostLR(σopt) outperformed all
other approaches in 8 out of the 10 data sets, virtually tied the best approach in one, and
performed slightly worse than the best method (AdaBoost) in another. On four of the
data sets its relative drop in classification error was larger than 10% and in two larger than
30%. Note also that the averaging over the four losses does not give an unfair advantage to
BoostLR (σopt), since the same average for BoostLR(σ = 1) has performance equivalent to
LogitBoost (which uses one of the four losses of unit gain). A similar analysis is presented
in the bottom half of Table 3 for calibration performance. In this case, the drop is defined
as (1− H1−H

H2−H )× 100% where H1 is the average cross entropy of the BoostLR methods with
the intrinsic gain, H2 the smallest cross entropy of all other methods and H the entropy
(minimum possible cross entropy value) of the problem. BoostLR (σopt) outperformed all
other approaches in 8 out of the 10 data sets with a relative drop in cross entropy of more
than 10% on six, more than 30% on four and more than 40% on two data sets. These
results show that, for an equal amount of parameter regularization (all classifiers have the
same number of weak learners) there can be substantial gains in tuning the regularization
strength of the loss.

We next evaluated the performance of the individual regularization losses. Since they are
canonical, this is equivalent to comparing the associated link f∗φσ or regularization strength
ρφσ functions of (45). Given that the the number of boosting iterations is the same for all
methods, i.e. all classifiers have the same amount of parameter regularization, this compari-
son is indicative of the effectiveness of the different link functions as probability regularizers.
The top half of Table 4 presents the average test error obtained for each UCI data set and
loss. Also shown are the baseline results of AdaBoost and LogitBoost (GLog loss with
σ = 1). The last two columns present two statistics, reporting to the number of wins of
each algorithm. This is the number of data sets in which the algorithm outperformed a set
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UCI data set# #1 #2 #3 #4 #5 #6 #7 #8 #9 #10 W1 W2

Classification

AdaBoost 11.4 11.4 9.4 6.4 14 28 6.6 21.8 41.2 28.2 - 1

LogitBoost 11.6 12.4 10 6.6 13.4 48.6 6.8 21.2 39.6 28.4 - 0

GLog 11.2 11.4 8 5.6 12.4 11.8 7 18.8 38.2 27 9 5

GBoost 12.6 11.6 21 18.6 17.6 7.2 6 21.8 37.6 28.6 3 3

GGauss 13.6 14.4 9 6 13 8.8 7.6 18.4 38.4 30.6 6 1

GLaplace 12 12.8 9 5 12.4 8.2 6.6 20.8 40.6 31.6 6 2

BoostLR wins 1 1 3 3 3 4 2 3 3 1 - -

Drop (%) 1.7 0 14.9 21.9 7.5 74.3 9.1 13.2 5.0 4.2 - -

Calibration

AdaBoost 4.59 4.19 5.47 3.94 5.77 3.61 4.71 3.48 3.442 3.461 - 0

LogitBoost 4.75 3.85 5.47 3.861 5.65 3.57 4.64 3.426 3.438 3.48 - 1

GLog 4.20 3.46 4.59 3.80 5.42 3.67 3.89 3.421 3.40 3.49 8 1

GBoost 3.77 4.60 5.33 3.69 5.21 3.65 3.83 3.406 3.41 3.44 8 4

GGauss 4.07 3.44 4.70 3.71 5.49 3.62 3.87 3.429 3.439 3.53 6 1

GLaplace 3.81 3.48 4.58 3.76 5.31 3.63 3.81 3.41 3.42 3.45 9 2

BoostLR wins 4 3 4 4 4 0 4 3 3 2 - -

Drop (%) 64.52 76.53 41.56 30.18 19.11 −6.50 62.76 22.23 28.52 13.01 - -

Table 4: Cross validated classification error (top) and cross entropy (bottom) for each loss
function and UCI data set. W1 : number of wins over AdaBoost and LogitBoost.
W2 : number of wins over all methods.

of competitors. The two statistics differ in the composition of this set. W1 compares the
performance of each tunable regularization loss to the AdaBoost and LogitBoost baselines,
evaluating how frequently each version of BoostLR outperforms the well established boost-
ing methods. W2 uses all other algorithms in the table as competitors, measuring how many
times each algorithm achieved the best performance among all methods considered. Finally,
the last two rows report similar statistics per data set. The row before last reports the num-
ber of BoostLR algorithms that outperformed both AdaBoost and LogitBoost. The last row
presents the drop in test error between the established boosting methods and BoostLR. To
compute this drop, we found the smallest test error ε1 of Ada and LogitBoost, the smallest
test error ε2 of all BoostLR methods, and defined the drop as (1− ε2/ε1)× 100%.

Several conclusions can be drawn from the table. First, statistic W1 shows that BoostLR
with either the GLog, GGauss, or GLaplace losses, beats both AdaBoost and LogitBoost
in at least half of the data sets. Best performance was achieved by GLog, which beat the
established methods in 9 out 10 data sets. Second, statistic W2 shows that, while BoostLR
with the GLog loss (logistic link) has the overall best performance, different links perform
best for different data sets (3 overall wins for GLaplace, 2 for GBoost, and 1 for GGauss ).
Third, the gains of tunable loss regularization vary substantially from data set to data set.
This is clear from the last two rows of the table, where BoostLR is shown to have modest
improvements (less that 5% drop in error rate) for 3 data sets, significant gains (between
5 and 20% drop) in 5, and massive gains (above 20%) in 2. In general, the magnitude
of the gain is correlated with the number of BoostLR variants that beat AdaBoost and
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LogitBoost, e.g. the more variants beat the established methods the largest the drop in
classification error. This suggests that the regularization gains of AdaBoost and LogitBoost
are severely mistuned for these data sets.

The bottom half of Table 4 presents a similar analysis for calibration performance, using
the cross entropy criteria. In this case the drop is defined as (1 − H1−H

H2−H ) × 100%, where
H1 is the smallest cross entropy of Ada and LogitBoost, H2 the smallest cross entropy of
all BoostLR methods and H the entropy (minimum possible cross entropy value) of the
problem. The cross entropy criteria produced similar results in terms of number of wins,
but the drop in relative cross entropy was much more substantial, with a drop of more than
10% on nine data sets, more than 20% on seven, more than 40% on four and more than
60% on three.

We next evaluated the impact of the link function in the recovery of posterior prob-
abilities. For this, we performed a comparison between BoostLR with shrinkage loss and
GradientBoost + shrinkage. As discussed in Section 6.4, while the two algorithms produce
identical classifiers, the posterior probability estimates are not the same. GradientBoost
relies on (12), BoostLR uses (51). The probabilities recovered, using the GLog loss, on the
ten UCI data sets were compared. In the first set of experiments, the regularization gain of
BoostLR was fixed at σ = 10 and the learning rate of shrinkage at λ = 0.1. The calibration
performance of both algorithms is shown, for each data set, in the top half of Table 5.
BoostLR has considerably better calibration on all ten data sets. We also compared the
results achieved with cross-validation of the regularization gain of BoostLR and the learning
rate of shrinkage. As shown on the bottom half of Table 5, BoostLR has better calibration
on seven of the ten data sets. In summary, even for shrinkage losses, where BoostLR and
GradientBoost with shrinkage produce identical classifiers, the fact that BoostLR uses the
correct link for probability recovery enables it to achieve superior calibration performance.

7.3 The Role of the Binding Function

The following set of experiments aimed to evaluate the impact of the binding function. For
this, we considered the scenario where BoostLR differs from GradientBoost with shrinkage
even for classification, by using the α-tunable loss of (53). As discussed in Section 6.5,
the additional α parameter of this loss enables independent control of binding and link
functions. This allows the loss to adapt to the outlier content of the data. To evaluate
the benefits of this adaptation, we compared the classification and calibration performance
of BoostLR with the loss of (53) to that of AdaBoost with shrinkage. All experiments
relied on five-fold cross-validation. For both algorithms the regularization gain σ was cross-
validated among 10 values in [1, 10]. The α parameter of BoostLR was cross-validated
among 5 values in [0, 1/2]. Various percentages of outliers were added to the ten UCI data
sets by randomly flipping labels of training examples. The classification and calibration
performance of the two algorithms are presented in Figure 12. The figure depicts the
average rank of the classifiers learned by the two methods, over the ten UCI data sets,
as a function of the percentage of outliers. BoostLR has better calibration (smaller rank)
for all outlier percentages. This illustrates the benefits of α-tuning for noisy data. For
classification, the same holds for all outlier percentages other than 15%. The reversal of
ranks for this percentage can be explained by the noisier nature of the classification data
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UCI data set# #1 #2 #3 #4 #5 #6 #7 #8 #9 #10

Fixed σ = 10 (λ = 0.1)

BoostLR 4.13 3.91 4.56 5.37 3.47 3.58 3.73 3.84 3.65 4.13

Shrinkage 4.65 4.49 5.30 5.74 4.63 4.97 4.16 4.35 4.97 4.19

Cross validated σ and λ

BoostLR 4.19 3.89 4.59 5.38 3.46 3.45 3.80 3.62 3.40 3.53

Shrinkage 4.66 4.52 5.30 5.70 3.85 3.42 3.87 3.59 3.43 3.46

Table 5: Calibration performance (cross-entropy) of BoostLR and GradientBoost with
shrinkage on the UCI data.

(due to the hard decision made by the classifier). Even though the BoostLR classifiers
are better calibrated, the classification error is larger. We note that better results should
be possible with α-tunable losses that implement binding functions expressly designed to
achieve outlier robustness, e.g. that of the Savage loss (Masnadi-Shirazi and Vasconcelos,
2008). This is left for future work. The goal here was not to produce the classifier of greatest
possible robustness, only to investigate the benefits of independently controlling the link
and binding functions.

7.4 Experiments on Larger Data sets

The data sets used in the previous section are of relatively small size. To investigate the ben-
efits of loss regularization for larger data sets, we considered the ADULT, LETTER.p1 and
LETTER.p2 data sets, which are widely used for comparing ensemble methods (Niculescu-
Mizil and Caruana, 2005; Caruana et al., 2004). Missing values in the ADULT training and
testing sets were omitted, leading to 30,162 training examples, of which 7,508 are positive
and 22,654 negative. The test set consists of 15,060 examples, of which 3,700 are positive
and 11,360 negative. The LETTER data was converted into two binary data sets (Caruana
et al., 2004). The LETTTER.p1 data set treats the confusable letter ”O” as the positive
class, and the remaining 25 letters of the alphabet as the negative class, resulting in a highly
unbalanced classification problem. LETTER.p2 uses the first 13 letters of the alphabet as
the negative class and the last 13 as the positive class, resulting in a balanced but difficult
problem. Both datasets contain 4,000 training and 16,000 test examples. As before, all
classifiers were learned with BoostLR, using histogram weak learners, and cross-validation
of the regularization gain. The performance of the GLog and GLaplacian losses was com-
pared to that of the exponential loss, used by AdaBoost, and GLog with unit gain, used by
LogitBoost. Each boosting algorithm was run for 100 iterations.

Table 6 presents the error achieved by each method, and the corresponding regularization
gain. Note that 1) best performance was never attained with the logistic loss (GLog with
σ = 1) of LogitBoost, or the exponential loss of AdaBoost, 2) each of the two losses of
tuned gain outperformed both standard boosting losses, and 3) in each case the gains were
substantial. Note also that the optimal σ was always smaller than one. This is explained
by the larger size of the datasets used in this experiment. The optimality of small σ in this
experiment and larger σ in the experiments of the previous section is in agreement with
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Figure 12: Average classification (left) and calibration (right) rank as a function of percent-
age of outliers on the UCI data, for BoostLR and AdaBoost with shrinkage.

the observations of Section 7.1. To further investigate this point, we considered reduced
versions of LETTER.p2, by randomly subsampling training examples. More precisely, the
training set was subsampled by a factor of 2 (DIV2) and 4 (DIV4). The size of the test set
was not changed. Table 7 presents 1) the optimal regularization gain for each loss, and 2)
the difference between the number of testing errors produced by the exponential and each
of the regularization losses, for each training set size. Note how 1) the regularization gain
increases for smaller datasets, eventually becoming larger than one, and 2) the classification
gains are larger for the smaller datasets. As previously noted in Section 7.1, these results
suggest that large margins are important for small datasets but do not add much, to classifier
performance, for large ones.

8. Conclusion

Large margins and parameter regularization are commonly used to assure classifier general-
ization. Large margins are implemented with risks based on margin losses, regularization by
inclusion, in these risks, of terms that encourage parameter sparsity. In this work, we have
shown that margin losses can also be viewed as regularizers of posterior class probability
estimates. In fact, an analysis of both 1) probability estimation error, and 2) generalization
bounds, has shown that, for proper losses of generalized logit link, loss-based regularization
amplifies the strength of parameter regularization by a factor equal to the loss margin.
These losses were also shown to have a simple decomposition in terms of a link and a
binding function. The link determines the loss behavior around the classification boundary
and is responsible for its regularization strength. The binding function determines the loss
behavior for large margins and is responsible for its outlier robustness. In this way, link and
binding functions partition the space of losses into equivalence classes of identical proba-
bility regularization or outlier robustness. These equivalence classes are isomorphic to the
set of symmetric scale probability densities of unique maximum at the origin and the set of
monotonically decreasing odd functions, respectively. Each equivalence class contains many
tunable regularization losses, parameterized by a regularization gain σ.

Tunable regularization losses can be used to derive boosting algorithms with loss reg-
ularization (BoostLR) of tunable strength. Three classes of losses were considered in this
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UCI data set ADULT LETTER1 LETTER2
error σ error σ error σ

GLog 2406 0.25 427 0.33 2831 0.5
GLaplacian 2680 0.45 420 0.25 2844 0.3

Exponential 2696 529 2940
Logit (σ = 1) 2673 464 2867

Table 6: Optimal regularization gain and corre-
sponding classification error on the large
UCI datasets.

LETTER2 DIV1 DIV2 DIV4

GLog 109 179 260
σ = 0.5 σ = 1.66 σ = 2

GLaplacian 96 178 186
σ = 0.3 σ = 1 σ = 2

Table 7: Optimal σ as a function of
training set size and corre-
sponding classification er-
ror gain over exponential
loss.

work: 1) canonical losses, which have linear binding functions and no flexibility in terms of
outlier modeling, 2) shrinkage losses, which support equally parameterized link and bind-
ing function pairs, and 3) α-tunable losses, which enable independent parameterization of
link and binding function. BoostLR algorithms with shrinkage losses were then shown to
implement the well known shrinkage procedure. This offers an alternative explanation of
shrinkage as regularization of posterior probability estimates, explaining its success in terms
of large margins and generalization bounds. On the other hand, the flexibility of α-tunable
losses enabled the derivation of a boosting algorithm that generalizes both AdaBoost and
LogitBoost, behaving as either of them according to the data to classify.

Extensive experiments on a series of synthetic and UCI datasets showed that, when the
regularization gain is optimized, BoostLR can substantially outperform previous boosting
algorithms, with respect to both classification error and probability calibration. These re-
sults challenge the popular belief that large-margin classifiers are not capable of producing
calibrated probability estimates. They also shed some light on the synergies between loss-
based and parameter regularization in boosting algorithms, where parameter regularization
is usually implemented by early stopping. For small samples, which demand strong regu-
larization, this can be insufficient, and a large loss regularization gain required. For large
samples, where little regularization is necessary, the bias introduced by the combination
of parameter and loss regularization can be too large. Better results can be obtained by
weakening the regularization. This can be accomplished by using a smaller σ.

Appendix A. Relations Between Loss Margin and Regularization
Strength

In this appendix, we determine the conditions under which the loss margin µφ of (25) is a
measure of the regularization strength of the loss φ.

Lemma 9 Let φ(v) be a twice differentiable proper loss of monotonically increasing inverse
link [f∗φ]−1(η). Then (26) holds. Furthermore, [f∗φ]−1(η) has an inflection point at the origin.

If this inflection point is the maximum of {[f∗φ]−1}′(v), then the regularization strength is
lower bounded by twice the loss margin, as in (27), and φ(v) is a regularization loss if and
only if µφ ≥ 1

2 .
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Proof If φ is proper, it follows from (24) that

φ′(v) =
(
1− [f∗φ]−1(v)

)
[C∗φ]′′

(
[f∗φ]−1(v)

)
{[f∗φ]−1}′(v)

φ′′(v) = −
(
{[f∗φ]−1}′(v)

)2
[C∗φ]′′

(
[f∗φ]−1(v)

)
+

(
1− [f∗φ]−1(v)

)
[C∗φ](3)

(
[f∗φ]−1(v)

) (
{[f∗φ]−1}′(v)

)2
+

(
1− [f∗φ]−1(v)

)
[C∗φ]′′

(
[f∗φ]−1(v)

)
{[f∗φ]−1}′′(v).

From (22) and (23), [f∗φ]−1(0) = 1/2, [C∗φ](3)(η) = −[C∗φ](3)(1 − η), and {[f∗φ]−1}′′(v) =

−{[f∗φ]−1}′′(−v), and it follows that

{[f∗φ]−1}′′(0) = 0 (55)

[C∗φ](3){[f∗φ]−1(0)} = 0, (56)

from which φ′(0) = 1
2 [C∗φ]′′

(
1
2

)
{[f∗φ]−1}′(0), φ′′(0) = −

(
{[f∗φ]−1}′(0)

)2
[C∗φ]′′

(
1
2

)
, and

µφ =
{[f∗φ]−1}′(0)

2
(
{[f∗φ]−1}′(0)

)2 =
ρφ(0)

2
.

Furthermore, from (55), [f∗φ]−1 has an inflection point at the origin. From (14), if this point

is a maximum of {[f∗φ]−1}′, then ρφ(v) ≥ ρφ(0) for all v, (27) holds, and the theorem follows.

Appendix B. The Generalized Logit Link

In this appendix, we discuss some properties of the generalized logit link that are used in
the remaining results of this work.

B.1 Properties

We start by noting that the conditions of Definition 2 are a set of sufficient conditions for
a function to be the link of a proper loss. The monotonicity of Property 1. is sufficient for
the invertibility of π. While it is not necessary that π−1 be increasing, this guarantees that
the probability estimates η = π−1(p) increase with p. Property 2. and 3. suffice for π to
be a link of some proper loss. Property 3. is the condition of (23). When combined with 1.
and 2. it constrains π−1(v) to be in [0, 1]. This guarantees that η is a probability. While
Property 3. is necessary, this is not the case of Property 2. For example,

π−1(v) =
1 + v

2
, v ∈ [−1, 1]

is a valid inverse link. However, the use of such a link requires that p(x) ∈ [−1, 1] for
η(x) = π−1(p(x)) to be a probability. This constraint on p(x) has to be enforced by
learning algorithms, complicating the underlying optimization. We are aware of no benefit
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in adopting such a link over a generalized logit. Property 2. eliminates all links of this
type. Finally, Property 4. is necessary and sufficient for π−1 to have a unique inflection
point at the origin. Note that the if statement follows from Property 3. but not the only if.
A “staircase” of sigmoids could satisfy 1.-3. and have multiple inflection points. Property
7. of the following lemma shows that this suffices for the inverse of the generalized logit
to have maximum derivative at the origin. It follows that all conditions of Lemma 9 hold
when f∗φ(η) is a generalized logit link, proving Theorem 4.

Lemma 10 A generalized logit π has the following properties

1. π−1(v) ∈ (0, 1)

2. limv→−∞ π
−1(v) = 0

3. π−1(0) = .5

4. (π−1)(n)(−v) = (−1)n+1(π−1)(n)(v)

5. (π−1)(n)(0) = 0, whenever n is even

6. limv→±∞(π−1)(n)(v) = 0, n ≥ 1.

7. (π−1)′(v) has a unique maximum at the origin.

Proof Properties 1.-5. are a straightforward consequence of Properties 1.-3. of Definition
2. Property 6. follows from the fact that π−1 is monotonically increasing and lower and
upper bounded by 0 and 1, respectively. Property 7. then follows from the fact that (π−1)′

is positive for all v and only has one critical point at the origin, by Property 4. of Definition
2.

B.2 Parametric Generalized Logit Links

In this section we show that the set L of generalized logit links is isomorphic to a set of
probability density functions.

Lemma 11 The set L of parametric generalized logit links of (38) is isomorphic to the set
of parametric continuous scale probability density functions (pdfs)

ψσ(v) =
1

σ
ψ
( v
σ

)
,

where ψ(v) has unit scale, a unique maximum at the origin, and ψ(−v) = ψ(v).

Proof Let c(v) =
∫
ψ(v)dv be the cdf of a continuous scale pdf ψ(v). Then c(v) satisfies

Properties 1. and 2. of Definition 2. Property 3. is also met if ψ(v) has symmetry
ψ(−v) = ψ(v), and Property 4. if ψ(v) has a unique maximum at the origin. Finally, from
the continuity of ψ(v), c(v) has an inverse and c−1(v) is a generalized logit link. Since any
generalized logit link with the properties of Definition 2 defines one such cdf, the set of
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generalized logit links is isomorphic to the set of continuous scale pdfs ψ(v) of symmetry
ψ(−v) = ψ(v) and a unique maximum at the origin.

Let ψ(v) be the pdf corresponding to f∗φ(η), i.e. [f∗φ]−1(v) =
∫ v
−∞ ψ(q)dq. Then, for any

σ, it follows from (38) that

[f∗φσ ]−1(v) = [f∗φ]−1
( v
σ

)
is the cdf of ψσ(v), as defined in (44). Since this procedure can be repeated for any link
function f∗φ(η), L is isometric to the set of these pdfs.

Appendix C. The Binding Function

In this appendix, we discuss the properties of the binding function.

Lemma 12 Let βφ(v) be the binding function of a proper loss φ(v) of generalized logit link
f∗φ(η), and minimum risk C∗φ(η). Then

1. the behavior of φ(v) for v → ±∞ is determined by βφ(v).

2. βφ(v) is monotonically decreasing.

3. the mapping [C∗φ]′(η) = βφ

(
f∗φ(η)

)
is one-to-one.

4. βφ(v) is an odd function, i.e. βφ(−v) = −βφ(v).

Proof To prove Property 1. we note that, combining (31) with Properties 2. of Definition 2
and Lemma 10, and C∗φ(0) = C∗φ(1) = 0, it follows that

lim
v→±∞

φ(v) = lim
v→±∞

(1− [f∗φ]−1(v))[C∗φ]′{[f∗φ]−1(v)}.

The property follows from the fact that limv→±∞(1− [f∗φ]−1(v)) ∈ {0, 1} and (34). Property
2 follows from the fact that

β′φ(v) = [C∗φ]′′
(
[f∗φ]−1(v)

)
{[f∗φ]−1}′(v)

C∗φ is concave (Theorem 3) and {[f∗φ]−1}′(v) > 0 (Property 1 of Definition 2). Property 3
then follows from (34) and Property 2. Finally, Property 4 follows from

βφ(−v) = [C∗φ]′
(
[f∗φ]−1(−v)

)
= [C∗φ]′

(
1− [f∗φ]−1(v)

)
= −[C∗φ]′

(
[f∗φ]−1(v)

)
= −βφ(v).

where we have used (22) and (23).
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Appendix D. Properties of Proper Losses

In this appendix, we derive various properties of proper losses.

D.1 Proper Losses of Generalized Logit Link

The following lemma summarizes various properties of proper losses with generalized logit
link.

Lemma 13 Let φ(v) be a proper loss of generalized logit link f∗φ(η) and binding function
βφ(v). Then, the following properties hold.

1. φ(v) is monotonically decreasing

2. φ(v) is convex if and only if

β′′φ(v)

β′φ(v)
<
{[f∗φ]−1}′(v)

(1− [f∗φ]−1(v))
, ∀v (57)

3. limv→−∞ φ(v) = limv→−∞ βφ(v)

4. φ′(0) = 1
2β
′
φ(0)

5. φ′′(0) = −β′φ(0)

ρφ(0)
.

Proof Property 1. follows from (35) and the facts that (1− [f∗φ]−1(v)) > 0 (Properties 1.
and 2. of Definition 2) and β′φ(v) < 0 (Property 2. of Lemma 12). To prove Property 2.
we take derivatives on both sides of (35),

φ′′(v) = −{[f∗φ]−1}′(v)β′φ(v) + (1− [f∗φ]−1(v))β′′φ(v).

It follows that φ(v) is convex if and only if, for all v, {[f∗φ]−1}′(v)β′φ(v) < (1−[f∗φ]−1(v))β′′φ(v).

Since (1 − [f∗φ]−1(v)) > 0 and β′φ(v) < 0, this is identical to (57). Property 3. follows
from (36) and Property 2. of Lemma 10, since limv→−∞ φ(v) = C∗φ(0) + limv→−∞(1 −
[f∗φ]−1(v))βφ(v), C∗φ(0) = 0, and limv→∞(1 − [f∗φ]−1(v)) = 1. Property 4. is a simple

consequence of (23), which implies that [f∗φ]−1(0) = 1
2 . Finally, Property 5. follows from

φ′′(0) = −{[f∗φ]−1}′(0)β′φ(0) + 1
2β
′′
φ(0) and Property 4. of Lemma 12, which implies that

β′′φ(0) = 0.

D.2 Canonical Regularization Losses

The following lemma summarizes various properties of canonical regularization losses.

Lemma 14 Let φσ(v) be a tunable regularization loss of binding function as in (46). The
following properties hold.

2790



A View of Margin Losses as Regularizers of Probability Estimates

1. φ′′σ(v) > 0, ∀v

2. limv→∞ φ
′
σ(v) = 0

3. limv→−∞ φ
′
σ(v) = −1

4. φ′σ(0) = −1/2

5. φ′′σ is maximum at the origin.

6. the loss margin and regularization strength are related by 2µφσ = ρφσ(0) = 1
φ′′σ(0)

.

Proof Properties 1. and 2. follow from (47) and Properties 1. and 2. of Definition 2.
Properties 3. to 5. follow from Properties 2., 3., and 7. of Lemma 10. Property 6. follows
from µφσ = σµφ and the combination of (29), Property 5. of Lemma 13, and (46).
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Abstract

We introduce an online tensor decomposition based approach for two latent variable mod-
eling problems namely, (1) community detection, in which we learn the latent communities
that the social actors in social networks belong to, and (2) topic modeling, in which we
infer hidden topics of text articles. We consider decomposition of moment tensors using
stochastic gradient descent. We conduct optimization of multilinear operations in SGD and
avoid directly forming the tensors, to save computational and storage costs. We present
optimized algorithm in two platforms. Our GPU-based implementation exploits the par-
allelism of SIMD architectures to allow for maximum speed-up by a careful optimization
of storage and data transfer, whereas our CPU-based implementation uses efficient sparse
matrix computations and is suitable for large sparse data sets. For the community detec-
tion problem, we demonstrate accuracy and computational efficiency on Facebook, Yelp
and DBLP data sets, and for the topic modeling problem, we also demonstrate good per-
formance on the New York Times data set. We compare our results to the state-of-the-art
algorithms such as the variational method, and report a gain of accuracy and a gain of
several orders of magnitude in the execution time.

Keywords: mixed membership stochastic blockmodel, topic modeling, tensor method,
stochastic gradient descent, parallel implementation, large datasets

1. Introduction

The spectral or moment-based approach involves decomposition of certain empirical mo-
ment tensors, estimated from observed data to obtain the parameters of the proposed prob-
abilistic model. Unsupervised learning for a wide range of latent variable models can be
carried out efficiently via tensor-based techniques with low sample and computational com-
plexities (Anandkumar et al., 2012). In contrast, usual methods employed in practice such
as expectation maximization (EM) and variational Bayes do not have such consistency
guarantees. While the previous works (Anandkumar et al., 2013b) focused on theoretical
guarantees, in this paper, we focus on the implementation of the tensor methods, study its
performance on several datasets.

c©2015 Furong Huang, U. N. Niranjan, Mohammad Umar Hakeem, and Animashree Anandkumar.
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1.1 Summary of Contributions

We consider two problems: (1) community detection (wherein we compute the decompo-
sition of a tensor which relates to the count of 3-stars in a graph) and (2) topic modeling
(wherein we consider the tensor related to co-occurrence of triplets of words in documents);
decomposition of the these tensors allows us to learn the hidden communities and topics
from observed data.

Community detection: We recover hidden communities in several real datasets with
high accuracy. When ground-truth communities are available, we propose a new error
score based on the hypothesis testing methodology involving p-values and false discovery
rates (Strimmer, 2008) to validate our results. The use of p-values eliminates the need to
carefully tune the number of communities output by our algorithm, and hence, we obtain
a flexible trade-off between the fraction of communities recovered and their estimation
accuracy. We find that our method has very good accuracy on a range of network datasets:
Facebook, Yelp and DBLP. We summarize the datasets used in this paper in Table 6. To
get an idea of our running times, let us consider the larger DBLP collaborative data set
for a moment. It consists of 16 million edges, one million nodes and 250 communities. We
obtain an error of 10% and the method runs in about two minutes, excluding the 80 minutes
taken to read the edge data from files stored on the hard disk and converting it to sparse
matrix format.

Compared to the state-of-the-art method for learning MMSB models using the stochas-
tic variational inference algorithm of (Gopalan et al., 2012), we obtain several orders of
magnitude speed-up in the running time on multiple real datasets. This is because our
method consists of efficient matrix operations which are embarrassingly parallel. Matrix
operations are carried out in the sparse format which is efficient especially for social net-
work settings involving large sparse graphs. Moreover, our code is flexible to run on a range
of graphs such as directed, undirected and bipartite graphs, while the code of (Gopalan
et al., 2012) is designed for homophilic networks, and cannot handle bipartite graphs in its
present format. Note that bipartite networks occur in the recommendation setting such as
the Yelp data set. Additionally, the variational implementation in (Gopalan et al., 2012)
assumes a homogeneous connectivity model, where any pair of communities connect with
the same probability and the probability of intra-community connectivity is also fixed. Our
framework does not suffer from this restriction. We also provide arguments to show that
the Normalized Mutual Information (NMI) and other scores, previously used for evaluating
the recovery of overlapping community, can underestimate the errors.

Topic modeling: We also employ the tensor method for topic-modeling, and there are
many similarities between the topic and community settings. For instance, each document
has multiple topics, while in the network setting, each node has membership in multiple
communities. The words in a document are generated based on the latent topics in the
document, and similarly, edges are generated based on the community memberships of the
node pairs. The tensor method is even faster for topic modeling, since the word vocabulary
size is typically much smaller than the size of real-world networks. We learn interesting
hidden topics in New York Times corpus from UCI bag-of-words data set1 with around
100, 000 words and 300, 000 documents in about two minutes. We present the important

1. https://archive.ics.uci.edu/ml/datasets/Bag+of+Words
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words for recovered topics, as well as interpret “bridging” words, which occur in many
topics.

Implementations: We present two implementations, viz., a GPU-based implementation
which exploits the parallelism of SIMD architectures and a CPU-based implementation
for larger datasets, where the GPU memory does not suffice. We discuss various aspects
involved such as implicit manipulation of tensors since explicitly forming tensors would
be unwieldy for large networks, optimizing for communication bottlenecks in a parallel
deployment, the need for sparse matrix and vector operations since real world networks
tend to be sparse, and a careful statistical approach to validating the results, when ground
truth is available.

1.2 Related work

This paper builds on the recent works of Anandkumar et al (Anandkumar et al., 2012,
2013b) which establishes the correctness of tensor-based approaches for learning MMSB (Airoldi
et al., 2008) models and other latent variable models. While, the earlier works provided a
theoretical analysis of the method, the current paper considers a careful implementation of
the method. Moreover, there are a number of algorithmic improvements in this paper. For
instance, while (Anandkumar et al., 2012, 2013b) consider tensor power iterations, based on
batch data and deflations performed serially, here, we adopt a stochastic gradient descent
approach for tensor decomposition, which provides the flexibility to trade-off sub-sampling
with accuracy. Moreover, we use randomized methods for dimensionality reduction in the
preprocessing stage of our method which enables us to scale our method to graphs with
millions of nodes.

There are other known methods for learning the stochastic block model based on tech-
niques such as spectral clustering (McSherry, 2001) and convex optimization (Chen et al.,
2012). However, these methods are not applicable for learning overlapping communities.
We note that learning the mixed membership model can be reduced to a matrix factor-
ization problem (Zhang and Yeung, 2012). While collaborative filtering techniques such
as (Mnih and Salakhutdinov, 2007; Salakhutdinov and Mnih, 2008) focus on matrix factor-
ization and the prediction accuracy of recommendations on an unseen test set, we recover
the underlying latent communities, which helps with the interpretability and the statistical
model can be employed for other tasks.

Although there have been other fast implementations for community detection be-
fore (Soman and Narang, 2011; Lancichinetti and Fortunato, 2009), these methods are
not statistical and do not yield descriptive statistics such as bridging nodes (Nepusz et al.,
2008), and cannot perform predictive tasks such as link classification which are the main
strengths of the MMSB model. With the implementation of our tensor-based approach, we
record huge speed-ups compared to existing approaches for learning the MMSB model.

To the best of our knowledge, while stochastic methods for matrix decomposition have
been considered earlier (Oja and Karhunen, 1985; Arora et al., 2012), this is the first work
incorporating stochastic optimization for tensor decomposition, and paves the way for fur-
ther investigation on many theoretical and practical issues. We also note that we never
explicitly form or store the subgraph count tensor, of size O(n3) where n is the number of
nodes, in our implementation, but directly manipulate the neighborhood vectors to obtain
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tensor decompositions through stochastic updates. This is a crucial departure from other
works on tensor decompositions on GPUs (Ballard et al., 2011; Schatz et al., 2013), where
the tensor needs to be stored and manipulated directly.

2. Tensor Forms for Topic and Community Models

In this section, we briefly recap the topic and community models, as well as the tensor forms
for their exact moments, derived in (Anandkumar et al., 2012, 2013b).

2.1 Topic Modeling

In topic modeling, a document is viewed as a bag of words. Each document has a latent set
of topics, and h = (h1, h2, . . . , hk) represents the proportions of k topics in a given document.
Given the topics h, the words are independently drawn and are exchangeable, and hence,
the term “bag of words” model. We represent the words in the document by d-dimensional
random vectors x1, x2, . . . xl ∈ Rd, where xi are coordinate basis vectors in Rd and d is the
size of the word vocabulary. Conditioned on h, the words in a document satisfy E[xi|h] =
µh, where µ := [µ1, . . . , µk] is the topic-word matrix. And thus µj is the topic vector
satisfying µj = Pr (xi|hj), ∀j ∈ [k]. Under the Latent Dirichlet Allocation (LDA) topic
model (Blei, 2012), h is drawn from a Dirichlet distribution with concentration parameter

vector α = [α1, . . . , αk]. In other words, for each document u, hu
iid∼ Dir(α), ∀u ∈ [n] with

parameter vector α ∈ Rk+. We define the Dirichlet concentration (mixing) parameter

α0 :=
∑
i∈[k]

αi.

The Dirichlet distribution allows us to specify the extent of overlap among the topics by
controlling for sparsity in topic density function. A larger α0 results in more overlapped
(mixed) topics. A special case of α0 = 0 is the single topic model.

Due to exchangeability, the order of the words does not matter, and it suffices to consider
the frequency vector for each document, which counts the number of occurrences of each
word in a document. Let ct := (c1,t, c2,t, . . . , cd,t) ∈ Rd denote the frequency vector for tth

document, and let n be the number of documents.
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We consider the first three order empirical moments, given by

MTop
1 :=

1

n

n∑
t=1

ct (1)

MTop
2 :=

α0 + 1

n

n∑
t=1

(ct ⊗ ct − diag (ct))− α0M
Top
1 ⊗MTop

1 (2)

MTop
3 :=

(α0 + 1)(α0 + 2)

2n

n∑
t=1

ct ⊗ ct ⊗ ct − d∑
i=1

d∑
j=1

ci,tcj,t(ei ⊗ ei ⊗ ej)

−
d∑

i=1

d∑
j=1

ci,tcj,t(ei ⊗ ej ⊗ ei)−
d∑

i=1

d∑
j=1

ci,tcj,t(ei ⊗ ej ⊗ ej) + 2

d∑
i=1

ci,t(ei ⊗ ei ⊗ ei)


− α0(α0 + 1)

2n

n∑
t=1

(
d∑

i=1

ci,t(ei ⊗ ei ⊗MTop
1 ) +

d∑
i=1

ci,t(ei ⊗MTop
1 ⊗ ei) +

d∑
i=1

ci,t(M
Top
1 ⊗ ei ⊗ ei)

)
+ α2

0M
Top
1 ⊗MTop

1 ⊗MTop
1 . (3)

We recall Theorem 3.5 of (Anandkumar et al., 2012):

Lemma 1 The exact moments can be factorized as

E[MTop
1 ] =

k∑
i=1

αi
α0
µi (4)

E[MTop
2 ] =

k∑
i=1

αi
α0
µi ⊗ µi (5)

E[MTop
3 ] =

k∑
i=1

αi
α0
µi ⊗ µi ⊗ µi. (6)

where µ = [µ1, . . . , µk] and µi = Pr (xt|h = i), ∀t ∈ [l]. In other words, µ is the topic-
word matrix.

From the Lemma 1, we observe that the first three moments of a LDA topic model have
a simple form involving the topic-word matrix µ and Dirichlet parameters αi. In (Anand-
kumar et al., 2012), it is shown that these parameters can be recovered under a weak
non-degeneracy assumption. We will employ tensor decomposition techniques to learn the
parameters.

2.2 Mixed Membership Model

In the mixed membership stochastic block model (MMSB), introduced by (Airoldi et al.,
2008), the edges in a social network are related to the hidden communities of the nodes.
A batch tensor decomposition technique for learning MMSB was derived in (Anandkumar
et al., 2013b).

Let n denote the number of nodes, k the number of communities and G ∈ Rn×n the
adjacency matrix of the graph. Each node i ∈ [n] has an associated community membership
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vector πi ∈ Rk, which is a latent variable, and the vectors are contained in a simplex, i.e.,∑
i∈[k]

πu(i) = 1, ∀u ∈ [n]

where the notation [n] denotes the set {1, . . . , n}. Membership vectors are sampled from

the Dirichlet distribution πu
iid∼ Dir(α), ∀u ∈ [n] with parameter vector α ∈ Rk+ where α0 :=∑

i∈[k] αi. As in the topic modeling setting, the Dirichlet distribution allows us to specify
the extent of overlap among the communities by controlling for sparsity in community
membership vectors. A larger α0 results in more overlapped (mixed) memberships. A
special case of α0 = 0 is the stochastic block model (Anandkumar et al., 2013b).

The community connectivity matrix is denoted by P ∈ [0, 1]k×k where P (a, b) measures
the connectivity between communities a and b, ∀a, b ∈ [k]. We model the adjacency matrix
entries as either of the two settings given below:

Bernoulli model: This models a network with unweighted edges. It is used for Facebook
and DBLP datasets in Section 6 in our experiments.

Gij
iid∼ Ber(π>i Pπj), ∀i, j ∈ [n].

Poisson model (Karrer and Newman, 2011): This models a network with weighted
edges. It is used for the Yelp data set in Section 6 to incorporate the review ratings.

Gij
iid∼ Poi(π>i Pπj), ∀i, j ∈ [n].

The tensor decomposition approach involves up to third order moments, computed from
the observed network. In order to compute the moments, we partition the nodes randomly
into sets X,A,B,C. Let FA := Π>AP

>, FB := Π>BP
>, FC := Π>CP

> (where P is the

community connectivity matrix and Π is the membership matrix) and α̂ :=
(
α1
α0
, . . . , αk

α0

)
denote the normalized Dirichlet concentration parameter. We define pairs over Y1 and Y2

as Pairs(Y1, Y2) := G>X,Y1 ⊗G
>
X,Y2

. Define the following matrices

ZB := Pairs (A,C) (Pairs (B,C))† , (7)

ZC := Pairs (A,B) (Pairs (C,B))† . (8)

We consider the first three empirical moments, given by

M1
Com :=

1

nX

∑
x∈X

G>x,A (9)

M2
Com :=

α0 + 1

nX

∑
x∈X

ZCG
>
x,CGx,BZ

>
B − α0

(
M1

ComM1
Com>

)
(10)

M3
Com :=

(α0 + 1)(α0 + 2)

2nX

∑
x∈X

[
G>x,A ⊗ ZBG>x,B ⊗ ZCG>x,C

]
+ α2

0M1
Com ⊗M1

Com ⊗M1
Com

− α0(α0 + 1)

2nX

∑
x∈X

[
G>x,A ⊗ ZBG>x,B ⊗M1

Com +G>x,A ⊗M1
Com ⊗ ZCG>x,C (11)

+M1
Com ⊗ ZBG>x,B ⊗ ZCG>x,C

]
(12)
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We now recap Proposition 2.2 of (Anandkumar et al., 2013a) which provides the form
of these moments under expectation.

Lemma 2 The exact moments can be factorized as

E[M1
Com|ΠA,ΠB,ΠC ] :=

∑
i∈[k]

α̂i(FA)i (13)

E[M2
Com|ΠA,ΠB,ΠC ] :=

∑
i∈[k]

α̂i(FA)i ⊗ (FA)i (14)

E[M3
Com|ΠA,ΠB,ΠC ] :=

∑
i∈[k]

α̂i(FA)i ⊗ (FA)i ⊗ (FA)i (15)

where ⊗ denotes the Kronecker product and (FA)i corresponds to the ith column of FA.

We observe that the moment forms above for the MMSB model have a similar form as
the moments of the topic model in the previous section. Thus, we can employ a unified
framework for both topic and community modeling involving decomposition of the third
order moment tensors MTop

3 and MCom
3 . Second order moments MTop

2 and MCom
2 are used

for preprocessing of the data (i.e., whitening, which is introduced in detail in Section 3.1).
For the sake of the simplicity of the notation, in the rest of the paper, we will use M2 to
denote empirical second order moments for both MTop

2 in topic modeling setting, and MCom
2

in the mixed membership model setting. Similarly, we will use M3 to denote empirical third
order moments for both MTop

3 and MCom
3 .

3. Learning using Third Order Moment

Our learning algorithm uses up to the third-order moment to estimate the topic word
matrix µ or the community membership matrix Π. First, we obtain co-occurrence of triplet
words or subgraph counts (implicitly). Then, we perform preprocessing using second order
moment M2. Then we perform tensor decomposition efficiently using stochastic gradient
descent (Kushner and Yin, 2003) on M3. We note that, in our implementation of the
algorithm on the Graphics Processing Unit (GPU), linear algebraic operations are extremely
fast. We also implement our algorithm on the CPU for large datasets which exceed the
memory capacity of GPU and use sparse matrix operations which results in large gains in
terms of both the memory and the running time requirements. The overall approach is
summarized in Algorithm 1.

3.1 Dimensionality Reduction and Whitening

Whitening step utilizes linear algebraic manipulations to make the tensor symmetric and
orthogonal (in expectation). Moreover, it leads to dimensionality reduction since it (im-
plicitly) reduces tensor M3 of size O(n3) to a tensor of size k3, where k is the number of
communities. Typically we have k � n. The whitening step also converts the tensor M3 to
a symmetric orthogonal tensor. The whitening matrix W ∈ RnA×k satisfies W>M2W = I.
The idea is that if the bilinear projection of the second order moment onto W results in
the identity matrix, then a trilinear projection of the third order moment onto W would
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Algorithm 1 Overall approach for learning latent variable models via a moment-based
approach.

Input: Observed data: social network graph or document samples.
Output: Learned latent variable model and infer hidden attributes.
1: Estimate the third order moments tensor M3 (implicitly). The tensor is not formed

explicitly as we break down the tensor operations into vector and matrix operations.
2: Whiten the data, via SVD of M2, to reduce dimensionality via symmetrization and

orthogonalization. The third order moments M3 are whitened as T .
3: Use stochastic gradient descent to estimate spectrum of whitened (implicit) tensor T .
4: Apply post-processing to obtain the topic-word matrix or the community memberships.

5: If ground truth is known, validate the results using various evaluation measures.

result in an orthogonal tensor. We use multilinear operations to get an orthogonal tensor
T := M3(W,W,W ).

The whitening matrix W is computed via truncated k−svd of the second order moments.

W = UM2Σ
−1/2
M2

,

where UM2 and ΣM2 = diag(σM2,1, . . . , σM2,k) are the top k singular vectors and singular
values of M2 respectively. We then perform multilinear transformations on the triplet data
using the whitening matrix. The whitened data is thus

ytA :=
〈
W, ct

〉
,

ytB :=
〈
W, ct

〉
,

ytC :=
〈
W, ct

〉
,

for the topic modeling, where t denotes the index of the documents. Note that ytA, ytB and
ytC ∈ Rk. Implicitly, the whitened tensor is T = 1

nX

∑
t∈X

ytA ⊗ ytB ⊗ ytC and is a k × k × k

dimension tensor. Since k � n, the dimensionality reduction is crucial for our speedup.

3.2 Stochastic Tensor Gradient Descent

In (Anandkumar et al., 2013b) and (Anandkumar et al., 2012), the power method with
deflation is used for tensor decomposition where the eigenvectors are recovered by iterating
over multiple loops in a serial manner. Furthermore, batch data is used in their itera-
tive power method which makes that algorithm slower than its stochastic counterpart. In
addition to implementing a stochastic spectral optimization algorithm, we achieve further
speed-up by efficiently parallelizing the stochastic updates.

Let v = [v1|v2| . . . |vk] be the true eigenvectors. Denote the cardinality of the sample
set as nX, i.e., nX := |X|. Now that we have the whitened tensor, we propose the Stochastic
Tensor Gradient Descent (STGD) algorithm for tensor decomposition. Consider the tensor
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T ∈ Rk×k×k using whitened samples, i.e.,

T =
∑
t∈X
T t =

(α0 + 1)(α0 + 2)

2nX

∑
t∈X

ytA ⊗ ytB ⊗ ytC

− α0(α0 + 1)

2nX

∑
t∈X

[
ytA ⊗ ytB ⊗ ȳC + ytA ⊗ ȳB ⊗ ytC + ȳA ⊗ ytB ⊗ ytC

]
+ α2

0ȳA ⊗ ȳB ⊗ ȳC ,

where t ∈ X and denotes the index of the online data and ȳA, ȳB, and ȳC denote the mean
of the whitened data. Our goal is to find a symmetric CP decomposition of the whitened
tensor.

Definition 3 Our optimization problem is given by

arg min
v:‖vi‖2F =1

{∥∥∑
i∈[k]

⊗3vi −
∑
t∈X
T t
∥∥2

F
+ θ‖

∑
i∈[k]

⊗3vi‖2F
}
,

where vi are the unknown components to be estimated, and θ > 0 is some fixed parameter.

In order to encourage orthogonality between eigenvectors, we have the extra term as
θ‖
∑

i∈[k]⊗3vi‖2F . Since ‖
∑

t∈X T t‖2F is a constant, the above minimization is the same as

minimizing a loss function L(v) := 1
nX

∑
t L

t(v), where Lt(v) is the loss function evaluated
at node t ∈ X, and is given by

Lt(v) :=
1 + θ

2

∥∥∑
i∈[k]

⊗3vi
∥∥2

F
−
〈∑
i∈[k]

⊗3vi, T t
〉

(16)

The loss function has two terms, viz., the term ‖
∑

i∈[k]⊗3vi‖2F , which can be interpreted as

the orthogonality cost, which we need to minimize, and the second term 〈
∑

i∈[k]⊗3vi, T t〉,
which can be viewed as the correlation reward to be maximized. The parameter θ provides
additional flexibility for tuning between the two terms.

Let Φt :=
[
φt1|φt2| . . . |φtk

]
denote the estimation of the eigenvectors using the whitened

data point t, where φti ∈ Rk, i ∈ [k]. Taking the derivative of the loss function leads us to
the iterative update equation for the stochastic gradient descent which is

φt+1
i ← φti − βt

∂Lt

∂vi

∣∣∣∣
φti

, ∀i ∈ [k]

where βt is the learning rate. Computing the derivative of the loss function and substituting
the result leads to the following lemma.

Lemma 4 The stochastic updates for the eigenvectors are given by

φt+1
i ← φti −

1 + θ

2
βt

k∑
j=1

[〈
φtj , φ

t
i

〉2
φtj

]
+ βt (α0 + 1)(α0 + 2)

2

〈
φti, y

t
A

〉 〈
φti, y

t
B

〉
ytC + βtα2

0

〈
φti, ȳA

〉 〈
φti, ȳ

t
B

〉
ȳC

− βtα0(α0 + 1)

2

〈
φti, y

t
A

〉 〈
φti, y

t
B

〉
ȳC − βtα0(α0 + 1)

2

〈
φti, y

t
A

〉 〈
φti, ȳB

〉
yC − βtα0(α0 + 1)

2

〈
φti, ȳA

〉 〈
φti, y

t
B

〉
yC ,

(17)
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ytA

ytC

ytB

vti

vti

Figure 1: Schematic representation of the stochastic updates for the spectral estimation.
Note the we never form the tensor explicitly, since the gradient involves vector
products by collapsing two modes, as shown in Equation 17.

In Equation (17), all our tensor operations are in terms of efficient sample vector inner
products, and no tensor is explicitly formed. The multilinear operations are shown in
Figure 1. We choose θ = 1 in our experiments to ensure that there is sufficient penalty for
non-orthogonality, which prevents us from obtaining degenerate solutions.

After learning the decomposition of the third order moment, we perform post-processing
to estimate Π̂.

3.3 Post-processing

Eigenvalues Λ := [λ1, λ2, . . . , λk] are estimated as the norm of the eigenvectors λi = ‖φi‖3.

Lemma 5 After we obtain Λ and Φ, the estimate for the topic-word matrix is given by

µ̂ = W>
†
Φ,

and in the community setting, the community membership matrix is given by

Π̂Ac = diag(γ)1/3 diag(Λ)−1Φ>Ŵ>GA,Ac .

where Ac := X ∪ B ∪ C. Similarly, we estimate Π̂A by exchanging the roles of X and A.
Next, we obtain the Dirichlet distribution parameters

α̂i = γ2λ−2
i ,∀i ∈ [k].

where γ2 is chosen such that we have normalization
∑

i∈[k] α̂i :=
∑

i∈[k]
αi
α0

= 1.
Thus, we perform STGD method to estimate the eigenvectors and eigenvalues of the

whitened tensor, and then use these to estimate the topic word matrix µ and community
membership matrix Π̂ by thresholding.

4. Implementation Details

4.1 Symmetrization Step to Compute M2

Note that for the topic model, the second order moment M2 can be computed easily from
the word-frequency vector. On the other hand, for the community setting, computing M2

requires additional linear algebraic operations. It requires computation of matrices ZB
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and ZC in equation (7). This requires computation of pseudo-inverses of “Pairs” matrices.
Now, note that pseudo-inverse of (Pairs (B,C)) in Equation (7) can be computed using rank
k-SVD:

k-SVD (Pairs (B,C)) = UB(:, 1 : k)ΣBC(1 : k)VC(:, 1 : k)>.

We exploit the low rank property to have efficient running times and storage. We first
implement the k-SVD of Pairs, given by G>X,CGX,B. Then the order in which the matrix
products are carried out plays a significant role in terms of both memory and speed. Note
that ZC involves the multiplication of a sequence of matrices of sizes RnA×nB , RnB×k, Rk×k,
Rk×nC , G>x,CGx,B involves products of sizes RnC×k, Rk×k, Rk×nB , and ZB involving products

of sizes RnA×nC , RnC×k, Rk×k, Rk×nB . While performing these products, we avoid products
of sizes RO(n)×O(n) and RO(n)×O(n). This allows us to have efficient storage requirements.
Such manipulations are represented in Figure 2.

=

† >†>
|A|

|A|

=

> > >

=

> > >

Figure 2: By performing the matrix multiplications in an efficient order (Equation (10)),
we avoid products involving O(n) × O(n) objects. Instead, we use objects of
size O(n) × k which improves the speed, since k � n. Equation (10) is equiv-

alent to M2 =
(

PairsA,B Pairs†C,B

)
PairsC,B

(
Pairs†B,C

)>
Pairs>A,C −shift, where

the shift = α0
α0+1

(
M1M1

> − diag
(
M1M1

>)). We do not explicitly calculate the
pseudoinverse but maintain the low rank matrix decomposition form.

We then orthogonalize the third order moments to reduce the dimension of its modes
to k. We perform linear transformations on the data corresponding to the partitions A,

B and C using the whitening matrix. The whitened data is thus ytA :=
〈
W,G>t,A

〉
, ytB :=〈

W,ZBG
>
t,B

〉
, and ytC :=

〈
W,ZCG

>
t,C

〉
, where t ∈ X and denotes the index of the online

data. Since k � n, the dimensionality reduction is crucial for our speedup.
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4.2 Efficient Randomized SVD Computations

When we consider very large-scale data, the whitening matrix is a bottleneck to handle
when we aim for fast running times. We obtain the low rank approximation of matrices
using random projections. In the CPU implementation, we use tall-thin SVD (on a sparse
matrix) via the Lanczos algorithm after the projection and in the GPU implementation,
we use tall-thin QR. We give the overview of these methods below. Again, we use graph
community membership model without loss of generality.

Randomized low rank approximation: From (Gittens and Mahoney, 2013), for the k-
rank positive semi-definite matrix M2 ∈ RnA×nA with nA � k, we can perform random
projection to reduce dimensionality. More precisely, if we have a random matrix S ∈ RnA×k̃

with unit norm (rotation matrix), we project M2 onto this random matrix to get Rn×k̃
tall-thin matrix. Note that we choose k̃ = 2k in our implementation. We will obtain lower
dimension approximation of M2 in Rk̃×k̃. Here we emphasize that S ∈ Rn×k̃ is a random
matrix for dense M2. However for sparse M2, S ∈ {0, 1}n×k̃ is a column selection matrix
with random sign for each entry.

After the projection, one approach we use is SVD on this tall-thin (Rn×k̃) matrix. Define

O := M2S ∈ Rn×k̃ and Ω := S>M2S ∈ Rk̃×k̃. A low rank approximation of M2 is given by
OΩ†O> (Gittens and Mahoney, 2013). Recall that the definition of a whitening matrix W
is that W>M2W = I. We can obtain the whitening matrix of M2 without directly doing a
SVD on M2 ∈ RnA×nA .

Tall-thin SVD: This is used in the CPU implementation. The whitening matrix can be
obtained by

W ≈ (O†)>(Ω
1
2 )>. (18)

The pseudo code for computing the whitening matrix W using tall-thin SVD is given in
Algorithm 2. Therefore, we only need to compute SVD of a tall-thin matrix O ∈ RnA×k̃.

Algorithm 2 Randomized Tall-thin SVD

Input: Second moment matrix M2.
Output: Whitening matrix W .
1: Generate random matrix S ∈ Rn×k̃ if M2 is dense.
2: Generate column selection matrix with random sign S ∈ {0, 1}n×k̃ if M2 is sparse.

3: O = M2S ∈ Rn×k̃
4: [UO, LO, VO] =SVD(O)

5: Ω = S>O ∈ Rk̃×k̃
6: [UΩ, LΩ, VΩ] =SVD(Ω)

7: W = UOL
−1
O V >O VΩL

1
2
ΩU
>
Ω

Note that Ω ∈ Rk̃×k̃, its square-root is easy to compute. Similarly, pseudoinverses can also
be obtained without directly doing SVD. For instance, the pseudoinverse of the Pairs (B,C)
matrix is given by

(Pairs (B,C))† = (J†)>ΨJ†,

where Ψ = S> (Pairs (B,C))S and J = (Pairs (B,C))S. The pseudo code for computing
pseudoinverses is given in Algorithm 3.
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Algorithm 3 Randomized Pseudoinverse

Input: Pairs matrix Pairs (B,C).
Output: Pseudoinverse of the pairs matrix (Pairs (B,C))†.
1: Generate random matrix S ∈ Rn,k if M2 is dense.
2: Generate column selection matrix with random sign S ∈ {0, 1}n×k if M2 is sparse.
3: J = (Pairs (B,C))S
4: Ψ = S>J
5: [UJ , LJ , VJ ] =SVD(J)
6: (Pairs (B,C))† = UJL

−1
J V >J ΨVJL

−1
J U>J

The sparse representation of the data allows for scalability on a single machine to
datasets having millions of nodes. Although the GPU has SIMD architecture which makes
parallelization efficient, it lacks advanced libraries with sparse SVD operations and out-of-
GPU-core implementations. We therefore implement the sparse format on CPU for sparse
datasets. We implement our algorithm using random projection for efficient dimensionality
reduction (Clarkson and Woodruff, 2012) along with the sparse matrix operations available
in the Eigen toolkit2, and we use the SVDLIBC (Berry et al., 2002) library to compute
sparse SVD via the Lanczos algorithm. Theoretically, the Lanczos algorithm (Golub and
Van Loan, 2013) on a n × n matrix takes around (2d + 8)n flops for a single step where d
is the average number of non-zero entries per row.

Tall-thin QR: This is used in the GPU implementation due to the lack of library to
do sparse tall-thin SVD. The difference is that we instead implement a tall-thin QR on O,
therefore the whitening matrix is obtained as

W ≈ Q(R†)>(Ω
1
2 )>.

The main bottleneck for our GPU implementation is device storage, since GPU memory
is highly limited and not expandable. Random projections help in reducing the dimension-
ality from O(n× n) to O(n× k) and hence, this fits the data in the GPU memory better.
Consequently, after the whitening step, we project the data into k-dimensional space. There-
fore, the STGD step is dependent only on k, and hence can be fit in the GPU memory.
So, the main bottleneck is computation of large SVDs. In order to support larger datasets
such as the DBLP data set which exceed the GPU memory capacity, we extend our imple-
mentation with out-of-GPU-core matrix operations and the Nystrom method (Gittens and
Mahoney, 2013) for the whitening matrix computation and the pseudoinverse computation
in the pre-processing module.

4.3 Stochastic updates

STGD can potentially be the most computationally intensive task if carried out naively
since the storage and manipulation of a O(n3)-sized tensor makes the method not scalable.
However we overcome this problem since we never form the tensor explicitly; instead, we
collapse the tensor modes implicitly as shown in Figure 1. We gain large speed up by
optimizing the implementation of STGD.To implement the tensor operations efficiently we

2. http://eigen.tuxfamily.org/index.php?title=Main_Page
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vti

ytA,ytB,ytC

CPU
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vti

ytA,ytB,ytC

CPU

GPU

Device Interface

vti

Figure 3: Data transfers in the standard and device interfaces of the GPU implementation.

convert them into matrix and vector operations so that they are implemented using BLAS
routines. We obtain whitened vectors yA, yB and yC and manipulate these vectors efficiently
to obtain tensor eigenvector updates using the gradient scaled by a suitable learning rate.

Efficient STGD via stacked vector operations: We convert the BLAS II into BLAS III
operations by stacking the vectors to form matrices, leading to more efficient operations.
Although the updating equation for the stochastic gradient update is presented serially in
Equation (17), we can update the k eigenvectors simultaneously in parallel. The basic idea
is to stack the k eigenvectors φi ∈ Rk into a matrix Φ, then using the internal parallelism
designed for BLAS III operations.

Overall, the STGD step involves 1+k+ i(2+3k) BLAS II over Rk vectors, 7N BLAS III
over Rk×k matrices and 2 QR operations over Rk×k matrices, where i denotes the number
of iterations. We provide a count of BLAS operations for various steps in Table 1.

Module BLAS I BLAS II BLAS III SVD QR

Pre 0 8 19 3 0
STGD 0 Nk 7N 0 2
Post 0 0 7 0 0

Table 1: Linear algebraic operation counts: N denotes the number of iterations for STGD
and k, the number of communities.

Reducing communication in GPU implementation: In STGD, note that the storage
needed for the iterative part does not depend on the number of nodes in the data set,
rather, it depends on the parameter k, i.e., the number of communities to be estimated,
since whitening performed before STGD leads to dimensionality reduction. This makes it
suitable for storing the required buffers in the GPU memory, and using the CULA device
interface for the BLAS operations. In Figure 3, we illustrate the data transfer involved in
the GPU standard and device interface codes. While the standard interface involves data
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Figure 4: Comparison of the running time for STGD under different k for 100 iterations.

transfer (including whitened neighborhood vectors and the eigenvectors) at each stochastic
iteration between the CPU memory and the GPU memory, the device interface involves
allocating and retaining the eigenvectors at each stochastic iteration which in turn speeds
up the spectral estimation.

We compare the running time of the CULA device code with the MATLAB code (using
the tensor toolbox (Bader et al., 2012)), CULA standard code and Eigen sparse code in
Figure 4. As expected, the GPU implementations of matrix operations are much faster
and scale much better than the CPU implementations. Among the CPU codes, we notice
that sparsity and optimization offered by the Eigen toolkit gives us huge gains. We obtain
orders of magnitude of speed up for the GPU device code as we place the buffers in the
GPU memory and transfer minimal amount of data involving the whitened vectors only
once at the beginning of each iteration. The running time for the CULA standard code is
more than the device code because of the CPU-GPU data transfer overhead. For the same
reason, the sparse CPU implementation, by avoiding the data transfer overhead, performs
better than the GPU standard code for very small number of communities. We note that
there is no performance degradation due to the parallelization of the matrix operations.
After whitening, the STGD requires the most code design and optimization effort, and so
we convert that into BLAS-like routines.

4.4 Computational Complexity

We partition the execution of our algorithm into three main modules namely, pre-processing,
STGD and post-processing, whose various matrix operation counts are listed above in Ta-
ble 1.
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Module Time Space

Pre-processing (Matrix Multiplication) O (max(nsk/c, log s)) O
(
max(s2, sk)

)
Pre-processing (CPU SVD) O

(
max(nsk/c, log s) + max(k2/c, k)

)
O(sk)

Pre-processing (GPU QR) O
(
max(sk2/c, log s) + max(sk2/c, log k)

)
O(sk)

Pre-processing(short-thin SVD) O
(
max(k3/c, log k) + max(k2/c, k)

)
O(k2)

STGD O
(
max(k3/c, log k)

)
O(k2)

Post-processing O (max(nsk/c, log s)) O(nk)

Table 2: The time and space complexity (number of compute cores required) of our algo-
rithm. Note that k � n, s is the average degree of a node (or equivalently, the
average number of non-zeros per row/column in the adjacency sub-matrix); note
that the STGD time is per iteration time. We denote the number of cores as c -
the time-space trade-off depends on this parameter.

The theoretical asymptotic complexity of our method is summarized in Table 2 and is
best addressed by considering the parallel model of computation (JáJá, 1992), i.e., wherein a
number of processors or compute cores are operating on the data simultaneously in parallel.
This is justified considering that we implement our method on GPUs and matrix products
are embarrassingly parallel. Note that this is different from serial computational complexity.
We now break down the entries in Table 2. First, we recall a basic lemma regarding the
lower bound on the time complexity for parallel addition along with the required number
of cores to achieve a speed-up.

Lemma 6 (JáJá, 1992) Addition of s numbers in serial takes O(s) time; with Ω(s/ log s)
cores, this can be improved to O(log s) time in the best case.

Essentially, this speed-up is achieved by recursively adding pairs of numbers in parallel.

Lemma 7 (JáJá, 1992) Consider M ∈ Rp×q and N ∈ Rq×r with s non-zeros per row/column.
Naive serial matrix multiplication requires O(psr) time; with Ω(psr/ log s) cores, this can
be improved to O(log s) time in the best case.

Lemma 7 follows by simply parallelizing the sparse inner products and applying Lemma 6
for the addition in the inner products. Note that, this can be generalized to the fact that
given c cores, the multiplication can be performed in O(max(psr/c, log s)) running time.

4.4.1 Pre-processing

Random projection: In preprocessing, given c compute cores, we first do random projection
using matrix multiplication. We multiply an O(n)×O(n) matrix M2 with an O(n)×O(k)
random matrix S. Therefore, this requires O(nsk) serial operations, where s is the number
of non-zero elements per row/column of M2. Using Lemma 7, given c = nsk

log s cores, we could
achieve O(log s) computational complexity. However, the parallel computational complexity
is not further reduced with more than nsk

log s cores.
After the multiplication, we use tall-thin SVD for CPU implementation, and tall-thin

QR for GPU implementation.
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Tall-thin SVD: We perform Lanczos SVD on the tall-thin sparse O(n) × O(k) matrix,
which involves a tri-diagonalization followed with the QR on the tri-diagonal matrix. Given
c = nsk

log s cores, the computational complexity of the tri-diagonalization is O(log s). We then

do QR on the tridiagonal matrix which is as cheap as O(k2) serially. Each orthogonalization
requires O(k) inner products of constant entry vectors, and there are O(k) such orthogonal-
izations to be done. Therefore given O(k) cores, the complexity is O(k). More cores does
not help since the degree of parallelism is k.

Tall-thin QR: Alternatively, we perform QR in the GPU implementation which takes
O(sk2). To arrive at the complexity of obtaining Q, we analyze the Gram-Schmidt or-
thonormalization procedure under sparsity and parallelism conditions. Consider a serial
Gram-Schmidt on k columns (which are s-dense) of O(n) × O(k) matrix. For each of the
columns 2 to k, we perform projection on the previously computed components and sub-
tract it. Both inner product and subtraction operations are on the s-dense columns and
there are O(s) operations which are done O(k2) times serially. The last step is the normal-
ization of k s-dense vectors with is an O(sk) operation. This leads to a serial complexity
of O(sk2 + sk) = O(sk2). Using this, we may obtain the parallel complexity in different
regimes of the number of cores as follows.

Parallelism for inner products : For each component i, we need i−1 projections on pre-
vious components which can be parallel. Each projection involves scaling and inner product
operations on a pair of s-dense vectors. Using Lemma 6, projection for component i can
be performed in O(max( skc , log s)) time. O(log s) complexity is obtained using O(sk/ log s)
cores.

Parallelism for subtractions: For each component i, we need i − 1 subtractions on a
s-dense vector after the projection. Serially the subtraction requires O(sk) operations, and
this can be reduced to O(log k) with O(sk/ log k) cores in the best case. The complexity is
O(max( skc , log k)).

Combing the inner products and subtractions, the complexity is O
(
max( skc , log s)

+ max( skc , log k)
)

for component i. There are k components in total, which can not be par-

allel. In total, the complexity for the parallel QR is O
(

max( sk
2

c , log s) + max( sk
2

c , log k)
)

.

Short-thin SVD: SVD of the smaller O(Rk×k) matrix time requires O(k3) computations
in serially. We note that this is the bottleneck for the computational complexity, but we
emphasize that k is sufficiently small in many applications. Furthermore, this k3 complexity
can be reduced by using distributed SVD algorithms e.g. (Kannan et al., 2014; Feldman
et al., 2013). An analysis with respect to Lanczos parallel SVD is similar with the discussion
in the Tall-thin SVD paragraph. The complexity is O(max(k3/c, log k) + max(k2/c, k)). In
the best case, the complexity is reduced to O(log k + k).

The serial time complexity of SVD is O(n2k) but with randomized dimensionality re-
duction (Gittens and Mahoney, 2013) and parallelization (Constantine and Gleich, 2011),
this is significantly reduced.

4.4.2 STGD

In STGD, we perform implicit stochastic updates, consisting of a constant number of matrix-
matrix and matrix-vector products, on the set of eigenvectors and whitened samples which
is of size k× k. When c ∈ [1, k3/ log k], we obtain a running time of O(k3/c) for computing
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inner products in parallel with c compute cores since each core can perform an inner product
to compute an element in the resulting matrix independent of other cores in linear time.
For c ∈ (k3/ log k,∞], using Lemma 6, we obtain a running time of O(log k). Note that the
STGD time complexity is calculated per iteration.

4.4.3 Post-processing

Finally, post-processing consists of sparse matrix products as well. Similar to pre-processing,
this consists of multiplications involving the sparse matrices. Given s number of non-zeros
per column of an O(n) × O(k) matrix, the effective number of elements reduces to O(sk).
Hence, given c ∈ [1, nks/ log s] cores, we need O(nsk/c) time to perform the inner products
for each entry of the resultant matrix. For c ∈ (nks/ log s,∞], using Lemma 6, we obtain a
running time of O(log s).

Note that nk2 is the complexity of computing the exact SVD and we reduce it to O(k)
when there are sufficient cores available. This is meant for the setting where k is small. This
k3 complexity of SVD on O(k × k) matrix can be reduced to O(k) using distributed SVD
algorithms e.g. (Kannan et al., 2014; Feldman et al., 2013). We note that the variational
inference algorithm complexity, by Gopalan and Blei (Gopalan and Blei, 2013), is O(mk)
for each iteration, where m denotes the number of edges in the graph, and n < m < n2.
In the regime that n � k, our algorithm is more efficient. Moreover, a big difference is in
the scaling with respect to the size of the network and ease of parallelization of our method
compared to variational one.

5. Validation methods

5.1 p-value testing:

$\Pi_{1}$

$\Pi_{2}$

$\Pi_{3}$

$\Pi_{4}$

$\hat{\Pi}_{1}$

$\hat{\Pi}_{2}$

$\hat{\Pi}_{3}$

$\hat{\Pi}_{4}$

$\hat{\Pi}_{5}$

$\hat{\Pi}_{6}$

Figure 5: Bipartite graph G{Pval} induced by p-value testing. Edges represent statistically
significant relationships between ground truth and estimated communities.

We recover the estimated community membership matrix Π̂ ∈ Rk̂×n, where k̂ is the
number of communities specified to our method. Recall that the true community member-
ship matrix is Π, and we consider datasets where ground truth is available. Let i-th row of
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Π̂ be denoted by Π̂i. Our community detection method is unsupervised, which inevitably
results in row permutations between Π and Π̂ and k̂ may not be the same as k. To validate
the results, we need to find a good match between the rows of Π̂ and Π. We use the notion
of p-values to test for statistically significant dependencies among a set of random variables.
The p-value denotes the probability of not rejecting the null hypothesis that the random
variables under consideration are independent and we use the Student’s3 t-test statistic (Fa-
dem, 2012) to compute the p-value. We use multiple hypothesis testing for different pairs of
estimated and ground-truth communities Π̂i,Πj and adjust the p-values to ensure a small
enough false discovery rate (FDR) (Strimmer, 2008).

The test statistic used for the p-value testing of the estimated communities is

Tij :=
ρ
(

Π̂i,Πj

)√
n− 2√

1− ρ
(

Π̂i,Πj

)2
.

The right p-value is obtained via the probability of obtaining a value (say tij) greater than
the test statistic Tij , and it is defined as

Pval(Πi, Π̂j) := 1− P (tij > Tij) .

Note that Tij has Student’s t-distribution with degree of freedom n − 2 (i.e. Tij ∼ tn−2).
Thus, we obtain the right p-value4.

In this way, we compute the Pval matrix as

Pval(i, j) := Pval

[
Π̂i,Πj

]
,∀i ∈ [k] and j ∈ [k̂].

5.2 Evaluation metrics

Recovery ratio: Validating the results requires a matching of the true membership Π with
estimated membership Π̂. Let Pval(Πi, Π̂j) denote the right p-value under the null hypothesis

that Πi and Π̂j are statistically independent. We use the p-value test to find out pairs Πi, Π̂j

which pass a specified p-value threshold, and we denote such pairs using a bipartite graph
G{Pval}. Thus, G{Pval} is defined as

G{Pval} :=
({
V

(1)
{Pval}, V

(2)
{Pval}

}
, E{Pval}

)
,

where the nodes in the two node sets are

V
(1)
{Pval} = {Π1, . . . ,Πk} ,

V
(2)
{Pval} =

{
Π̂1, . . . , Π̂k̂

}
3. Note that Student’s t-test is robust to the presence of unequal variances when the sample sizes of the

two are equal which is true in our setting.
4. The right p-value accounts for the fact that when two communities are anti-correlated they are not

paired up. Hence note that in the special case of block model in which the estimated communities
are just permuted version of the ground truth communities, the pairing results in a perfect matching
accurately.
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and the edges of G{Pval} satisfy

(i, j) ∈ E{Pval} s.t. Pval

[
Π̂i,Πj

]
≤ 0.01.

A simple example is shown in Figure 5, in which Π2 has statistically significant depen-
dence with Π̂1, i.e., the probability of not rejecting the null hypothesis is small (recall that
null hypothesis is that they are independent). If no estimated membership vector has a
significant overlap with Π3, then Π3 is not recovered. There can also be multiple pairings
such as for Π1 and {Π̂2, Π̂3, Π̂6}. The p-value test between Π1 and {Π̂2, Π̂3, Π̂6} indicates
that probability of not rejecting the null hypothesis is small, i.e., they are independent. We
use 0.01 as the threshold. The same holds for Π2 and {Π̂1} and for Π4 and {Π̂4, Π̂5}. There
can be a perfect one to one matching like for Π2 and Π̂1 as well as a multiple matching such
as for Π1 and {Π̂2, Π̂3, Π̂6}. Or another multiple matching such as for {Π1,Π2} and Π̂3.

Let Degreei denote the degree of ground truth community i ∈ [k] in G{Pval}, we define
the recovery ratio as follows.

Definition 8 The recovery ratio is defined as

R :=
1

k

∑
i

I {Degreei > 0} , i ∈ [k]

where I(x) is the indicator function whose value equals one if x is true.

The perfect case is that all the memberships have at least one significant overlapping es-
timated membership, giving a recovery ratio of 100%. Error function: For performance
analysis of our learning algorithm, we use an error function given as follows:

Definition 9 The average error function is defined as

E :=
1

k

∑
(i,j)∈E{Pval}

 1

n

∑
x∈|X|

∣∣∣∣ Π̂i(x)−Πj(x)

∣∣∣∣
 ,

where E{Pval} denotes the set of edges based on thresholding of the p-values.

The error function incorporates two aspects, namely the l1 norm error between each
estimated community and the corresponding paired ground truth community, and the error
induced by false pairings between the estimated and ground-truth communities through
p-value testing. For the former l1 norm error, we normalize with n which is reasonable
and results in the range of the error in [0, 1]. For the latter, we define the average error
function as the summation of all paired memberships errors divided by the true number of
communities k. In this way we penalize falsely discovered pairings by summing them up.
Our error function can be greater than 1 if there are too many falsely discovered pairings
through p-value testing (which can be as large as k × k̂).

Bridgeness: Bridgeness in overlapping communities is an interesting measure to evalu-
ate. A bridge is defined as a vertex that crosses structural holes between discrete groups of
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Hardware / software Version

CPU Dual 8-core Xeon @ 2.0GHz
Memory 64GB DDR3
GPU Nvidia Quadro K5000
CUDA Cores 1536
Global memory 4GB GDDR5
CentOS Release 6.4 (Final)
GCC 4.4.7
CUDA Release 5.0
CULA-Dense R16a

Table 3: System specifications.

people and bridgeness analyzes the extent to which a given vertex is shared among different
communities (Nepusz et al., 2008). Formally, the bridgeness of a vertex i is defined as

bi := 1−

√√√√√ k̂

k̂ − 1

k̂∑
j=1

(
Π̂i(j)−

1

k̂

)2

. (19)

Note that centrality measures should be used in conjunction with bridge score to distinguish
outliers from genuine bridge nodes (Nepusz et al., 2008). The degree-corrected bridgeness
is used to evaluate our results and is defined as

Bi := Dibi, (20)

where Di is degree of node i.

6. Experimental Results

The specifications of the machine on which we run our code are given in Table 3.

Results on Synthetic Datasets:

We perform experiments for both the stochastic block model (α0 = 0) and the mixed
membership model. For the mixed membership model, we set the concentration parameter
α0 = 1. We note that the error is around 8% − 14% and the running times are under a
minute, when n ≤ 10000 and n� k5.

We observe that more samples result in a more accurate recovery of memberships
which matches intuition and theory. Overall, our learning algorithm performs better in
the stochastic block model case than in the mixed membership model case although we
note that the accuracy is quite high for practical purposes. Theoretically, this is expected
since smaller concentration parameter α0 is easier for our algorithm to learn (Anandku-
mar et al., 2013b). Also, our algorithm is scalable to an order of magnitude more in n as
illustrated by experiments on real-world large-scale datasets.

5. The code is available at
http://github.com/FurongHuang/Fast-Detection-of-Overlapping-Communities-via-Online-Tensor-Methods
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Note that we threshold the estimated memberships to clean the results. There is a
tradeoff between match ratio and average error via different thresholds. In synthetic exper-
iments, the tradeoff is not evident since a perfect matching is always present. However, we
need to carefully handle this in experiments involving real data.

Results on Topic Modeling:

We perform experiments for the bag of words data set (Bache and Lichman, 2013) for
The New York Times. We set the concentration parameter to be α0 = 1 and observe top
recovered words in numerous topics. The results are in Table 4. Many of the results are
expected. For example, the top words in topic # 11 are all related to some bad personality.

We also present the words with most spread membership, i.e., words that belong to
many topics as in Table 5. As expected, we see minutes, consumer, human, member and so
on. These words can appear in a lot of topics, and we expect them to connect topics.

Topic # Top Words

1 prompting complicated eviscerated predetermined lap
renegotiating loose entity legalese justice

2 hamstrung airbrushed quasi outsold fargo
ennobled tantalize irrelevance noncontroversial untalented

3 scariest pest knowingly causing flub
mesmerize dawned millennium ecological ecologist

4 reelection quixotic arthroscopic versatility commanded
hyperextended anus precipitating underhand knee

5 believe signing ballcarrier parallel anomalies
munching prorated unsettle linebacking bonus

6 gainfully settles narrator considerable articles
narrative rosier deviating protagonist deductible

7 faithful betcha corrupted inept retrench
martialed winston dowdy islamic corrupting

8 capable misdeed dashboard navigation opportunistically
aerodynamic airbag system braking mph

9 apostles oracles believer deliberately loafer
gospel apt mobbed manipulate dialogue

10 physique jumping visualizing hedgehog zeitgeist
belonged loo mauling postproduction plunk

11 smirky silly bad natured frat
thoughtful freaked moron obtuse stink

12 offsetting preparing acknowledgment agree misstating
litigator prevented revoked preseason entomology

13 undertaken wilsonian idealism brethren writeoff
multipolar hegemonist multilateral enlargement mutating

14 athletically fictitious myer majorleaguebaseball familiarizing
resurrect slug backslide superseding artistically

15 dialog files diabolical lion town
password list swiss coldblooded outgained

16 recessed phased butyl lowlight balmy
redlining prescription marched mischaracterization tertiary

17 sponsor televise sponsorship festival sullied
ratification insinuating warhead staged reconstruct

18 trespasses buckle divestment schoolchild refuel
ineffectiveness coexisted repentance divvying overexposed

Table 4: Top recovered topic groups from the New York Times dataset along with the words
present in them.
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Keywords

minutes, consumer, human, member, friend, program, board, cell, insurance, shot

Table 5: The top ten words which occur in multiple contexts in the New York Times dataset.

Results on Real-world Graph Datasets: We describe the results on real datasets sum-
marized in Table 6 in detail below. The simulations are summarized in Table 7.

Statistics Facebook Yelp DBLP sub DBLP

|E| 766,800 672,515 5,066,510 16,221,000
|V | 18,163 10,010+28,588 116,317 1,054,066
GD 0.004649 0.000903 0.000749 0.000029
k 360 159 250 6,003
AB 0.5379 0.4281 0.3779 0.2066
ADCB 47.01 30.75 48.41 6.36

Table 6: Summary of real datasets used in our paper: |V | is the number of nodes in the

graph, |E| is the number of edges, GD is the graph density given by 2|E|
|V |(|V |−1) ,

k is the number of communities, AB is the average bridgeness and ADCB is the
average degree-corrected bridgeness(explained in Section 5).

The results are presented in Table 7. We note that our method, in both dense and sparse
implementations, performs very well compared to the state-of-the-art variational method.
For the Yelp dataset, we have a bipartite graph where the business nodes are on one side
and user nodes on the other and use the review stars as the edge weights. In this bipartite
setting, the variational code provided by Gopalan et al (Gopalan et al., 2012) does not work
on since it is not applicable to non-homophilic models. Our approach does not have this
restriction. Note that we use our dense implementation on the GPU to run experiments
with large number of communities k as the device implementation is much faster in terms
of running time of the STGD step.On the other hand, the sparse implementation on CPU is
fast and memory efficient in the case of sparse graphs with a small number of communities
while the dense implementation on GPU is faster for denser graphs such as Facebook. Note
that data reading time for DBLP is around 4700 seconds, which is not negligible as compared
to other datasets (usually within a few seconds). Effectively, our algorithm, excluding the
file I/O time, executes within two minutes for k = 10 and within ten minutes for k = 100.

Interpretation on Yelp Dataset: The ground truth on business attributes such as location
and type of business are available (but not provided to our algorithm) and we provide the
distribution in Figure 6 on the left side. There is also a natural trade-off between recovery
ratio and average error or between attempting to recover all the business communities and
the accuracy of recovery. We can either recover top significant communities with high
accuracy or recover more with lower accuracy. We demonstrate the trade-off in Figure 6 on
the right side.

We select the top ten categories recovered with the lowest error and report the business
with highest weights in Π̂. Among the matched communities, we find the business with
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Data Method k̂ Thre E R(%) Time(s)

Ten(sparse) 10 0.10 0.063 13 35
Ten(sparse) 100 0.08 0.024 62 309
Ten(sparse) 100 0.05 0.118 95 309
Ten(dense) 100 0.100 0.012 39 190
Ten(dense) 100 0.070 0.019 100 190

FB Variational 100 – 0.070 100 10, 795
Ten(dense) 500 0.020 0.014 71 468
Ten(dense) 500 0.015 0.018 100 468
Variational 500 – 0.031 100 86, 808
Ten(sparse) 10 0.10 0.271 43 10
Ten(sparse) 100 0.08 0.046 86 287
Ten(dense) 100 0.100 0.023 43 1, 127

YP Ten(dense) 100 0.090 0.061 80 1, 127
Ten(dense) 500 0.020 0.064 72 1, 706
Ten(dense) 500 0.015 0.336 100 1, 706
Ten(dense) 100 0.15 0.072 36 7, 664
Ten(dense) 100 0.09 0.260 80 7, 664
Variational 100 – 7.453 99 69, 156

DB sub Ten(dense) 500 0.10 0.010 19 10, 157
Ten(dense) 500 0.04 0.139 89 10, 157
Variational 500 – 16.38 99 558, 723
Ten(sparse) 10 0.30 0.103 73 4716

DB Ten(sparse) 100 0.08 0.003 57 5407
Ten(sparse) 100 0.05 0.105 95 5407

Table 7: Yelp, Facebook and DBLP main quantitative evaluation of the tensor method ver-
sus the variational method: k̂ is the community number specified to our algorithm,
Thre is the threshold for picking significant estimated membership entries. Refer
to Table 6 for statistics of the datasets.

Business RC Categories

Four Peaks Brewing Co 735 Restaurants, Bars, American (New), Nightlife, Food, Pubs, Tempe
Pizzeria Bianco 803 Restaurants, Pizza,Phoenix
FEZ 652 Restaurants, Bars, American (New), Nightlife, Mediterranean, Lounges

Phoenix
Matt’s Big Breakfast 689 Restaurants, Phoenix, Breakfast& Brunch
Cornish Pasty Company 580 Restaurants, Bars, Nightlife, Pubs, Tempe
Postino Arcadia 575 Restaurants, Italian, Wine Bars, Bars, Nightlife, Phoenix
Cibo 594 Restaurants, Italian, Pizza, Sandwiches, Phoenix
Phoenix Airport 862 Hotels & Travel, Phoenix
Gallo Blanco Cafe 549 Restaurants, Mexican, Phoenix
The Parlor 489 Restaurants, Italian, Pizza, Phoenix

Table 8: Top 10 bridging businesses in Yelp and categories they belong to. “RC” denotes
review counts for that particular business.

the highest membership weight (Table 9). We can see that most of the “top” recovered
businesses are rated high. Many of the categories in the top ten list are restaurants as they
have a large number of reviewers. Our method can recover restaurant category with high
accuracy, and the specific restaurant in the category is a popular result (with high number
of stars). Also, our method can also recover many of the categories with low review counts
accurately like hobby shops, yoga, churches, galleries and religious organizations which are
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Figure 6: Distribution of business categories (left) and result tradeoff between recovery ratio
and error for yelp (right).

the “niche” categories with a dedicated set of reviewers, who mostly do not review other
categories.

Category Business Star(B) Star(C) RC(B) RC(C)
Latin American Salvadoreno 4.0 3.94 36 93.8
Gluten Free P.F. Chang’s 3.5 3.72 55 50.6
Hobby Shops Make Meaning 4.5 4.13 14 7.6
Mass Media KJZZ 91.5FM 4.0 3.63 13 5.6
Yoga Sutra Midtown 4.5 4.55 31 12.6
Churches St Andrew Church 4.5 4.52 3 4.2
Art Galleries Sette Lisa 4.5 4.48 4 6.6
Libraries Cholla Branch 4.0 4.00 5 11.2
Religious St Andrew Church 4.5 4.40 3 4.2
Wickenburg Taste of Caribbean 4.0 3.66 60 6.7

Table 9: Most accurately recovered categories and businesses with highest membership
weights for the Yelp dataset. “Star(B)” denotes the review stars that the business
receive and “Star(C)”, the average review stars that businesses in that category
receive. “RC(B)” denotes the review counts for that business and “RC(C)” , the
average review counts in that category.

The top bridging nodes recovered by our method for the Yelp dataset are given in
the Table 8. The bridging nodes have multiple attributes typically, the type of business
and its location. In addition, the categories may also be hierarchical: within restaurants,
different cuisines such as Italian, American or Pizza are recovered by our method. Moreover,
restaurants which also function as bars or lounges are also recovered as top bridging nodes in
our method. Thus, our method can recover multiple attributes for the businesses efficiently.

Among all 11537 businesses, there are 89.39% of them are still open. We only select
those businesses which are still open. There are 285 categories in total. After we remove
all the categories having no more than 20 businesses within it, there are 134 categories that
remain. We generate community membership matrix for business categories Πc ∈ Rkc×n
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where kc := 134 is the number of remaining categories and n := 10141 is the number of
business remaining after removing all the negligible categories. All the businesses collected
in the Yelp data are in AZ except 3 of them (one is in CA, one in CO and the other in
SC). We remove the three businesses outside AZ. We notice that most of the businesses are
spread out in 25 cities. Community membership matrix for location is defined as Π ∈ Rkl×n
where kl := 25 is the number cities and n := 10010 is number of businesses. Distribution
of locations are in Table 11. The stars a business receives can vary from 1 (the lowest) to
5 (the highest). The higher the score is, the more satisfied the customers are. The average
star score is 3.6745. The distribution is given in Table 10. There are also review counts
for each business which are the number of reviews that business receives from all the users.
The minimum review counts is 3 and the maximum is 862. The mean of review counts is
20.1929. The preprocessing helps us to pick out top communities.

There are 5 attributes associated with all the 11537 businesses, which are “open”, “Cat-
egories”, “Location”, “Review Counts” and “Stars”. We model ground truth communities
as a combination of “Categories” and “Location”. We select business categories with more
than 20 members and remove all businesses which are closed. 10010 businesses are re-
mained. Only 28588 users are involved in reviews towards the 10010 businesses. There
are 3 attributes associated with all the 28588 users, which are “Female”, “Male”, “Review
Counts” and “Stars”. Although we do not directly know the gender information from the
dataset, a name-gender guesser6 is used to estimate gender information using names.

Star Score Num of businesses Percentage

1.0 108 0.94%
1.5 170 1.47%
2.0 403 3.49%
2.5 1011 8, 76%
3.0 1511 13.10%
3.5 2639 22.87%
4.0 2674 23.18%
4.5 1748 15.15%
5.0 1273 11.03%

Table 10: Table for distribution of business star scores.

We provide some sample visualization results in Figure 7 for both the ground truth and
the estimates from our algorithm. We sub-sample the users and businesses, group the users
into male and female categories, and consider nail salon and tire businesses. Analysis of
ground truth reveals that nail salon and tire businesses are very discriminative of the user
genders, and thus we employ them for visualization. We note that both the nail salon and
tire businesses are categorized with high accuracy, while users are categorized with poorer
accuracy.

Our algorithm can also recover the attributes of users. However, the ground truth
available about users is far more limited than businesses, and we only have information on
gender, average review counts and average stars (we infer the gender of the users through

6. https://github.com/amacinho/Name-Gender-Guesser by Amac Herdagdelen.
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City State Num of business

Anthem AZ 34
Apache Junction AZ 46
Avondale AZ 129
Buckeye AZ 31
Casa Grande AZ 48
Cave Creek AZ 65
Chandler AZ 865
El Mirage AZ 11
Fountain Hills AZ 49
Gilbert AZ 439
Glendale AZ 611
Goodyear AZ 126
Laveen AZ 22
Maricopa AZ 31
Mesa AZ 898
Paradise Valley AZ 57
Peoria AZ 267
Phoenix AZ 4155
Queen Creek AZ 78
Scottsdale AZ 2026
Sun City AZ 37
Surprise AZ 161
Tempe AZ 1153
Tolleson AZ 22
Wickenburg AZ 28

Table 11: Distribution of business locations. Only top cities with more than 10 businesses
are presented.

Tires

MaleFemale

Nail Salon Tires

MaleFemale

Nail Salon

Figure 7: Ground truth (left) vs estimated business and user categories (right). The error
in the estimated graph due to misclassification is shown by the mixed colours.

their names). Our algorithm can recover all these attributes. We observe that gender
is the hardest to recover while review counts is the easiest. We see that the other user
attributes recovered by our algorithm correspond to valuable user information such as their
interests, location, age, lifestyle, etc. This is useful, for instance, for businesses studying
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the characteristics of their users, for delivering better personalized advertisements for users,
and so on.

Facebook Dataset: A snapshot of the Facebook network of UNC (Traud et al., 2010) is
provided with user attributes. The ground truth communities are based on user attributes
given in the dataset which are not exposed to the algorithm. There are 360 top communities
with sufficient (at least 20) users. Our algorithm can recover these attributes with high
accuracy; see main paper for our method’s results compared with variational inference
result (Gopalan et al., 2012).

We also obtain results for a range of values of α0 (Figure 8). We observe that the recovery
ratio improves with larger α0 since a larger α0 can recover overlapping communities more
efficiently while the error score remains relatively the same.
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Figure 8: Performance analysis of Facebook dataset under different settings of the concen-
tration parameter (α0) for k̂ = 100.

For the Facebook dataset, the top ten communities recovered with lowest error consist
of certain high schools, second majors and dorms/houses. We observe that high school
attributes are easiest to recover and second major and dorm/house are reasonably easy
to recover by looking at the friendship relations in Facebook. This is reasonable: college
students from the same high school have a high probability of being friends; so do colleges
students from the same dorm.

DBLP Dataset:

The DBLP data contains bibliographic records7 with various publication venues, such
as journals and conferences, which we model as communities. We then consider authors
who have published at least one paper in a community (publication venue) as a member of
it. Co-authorship is thus modeled as link in the graph in which authors are represented as
nodes. In this framework, we could recover the top authors in communities and bridging
authors.

7. http://dblp.uni-trier.de/xml/Dblp.xml
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7. Conclusion

In this paper, we presented a fast and unified moment-based framework for learning over-
lapping communities as well as topics in a corpus. There are several key insights involved.
Firstly, our approach follows from a systematic and guaranteed learning procedure in con-
trast to several heuristic approaches which may not have strong statistical recovery guaran-
tees. Secondly, though using a moment-based formulation may seem computationally expen-
sive at first sight, implementing implicit “tensor” operations leads to significant speed-ups
of the algorithm. Thirdly, employing randomized methods for spectral methods is promising
in the computational domain, since the running time can then be significantly reduced.

This paper paves the way for several interesting directions for further research. While our
current deployment incorporates community detection in a single graph, extensions to multi-
graphs and hypergraphs are possible in principle. A careful and efficient implementation
for such settings will be useful in a number of applications. It is natural to extend the
deployment to even larger datasets by having cloud-based systems. The issue of efficient
partitioning of data and reducing communication between the machines becomes significant
there. Combining our approach with other simple community detection approaches to gain
even more speedups can be explored.
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Appendix A. Stochastic Updates

After obtaining the whitening matrix, we whiten the data G>x,A, G>x,B and G>x,C by linear

operations to get ytA, ytB and ytC ∈ Rk:

ytA :=
〈
G>x,A,W

〉
, ytB :=

〈
ZBG

>
x,B,W

〉
, ytC :=

〈
ZCG

>
x,C ,W

〉
.

where x ∈ X and t denotes the index of the online data.
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The stochastic gradient descent algorithm is obtained by taking the derivative of the

loss function ∂Lt(v)
∂vi

:

∂Lt(v)

∂vi
=θ

k∑
j=1

〈vj , vi〉2 vj −
(α0 + 1)(α0 + 2)

2

〈
vi, y

t
A

〉 〈
vi, y

t
B

〉
ytC − α2

0

〈
φti, ȳA

〉 〈
φti, ȳ

t
B

〉
ȳC

+
α0(α0 + 1)

2

〈
φti, y

t
A

〉 〈
φti, y

t
B

〉
ȳC +

α0(α0 + 1)

2

〈
φti, y

t
A

〉 〈
φti, ȳB

〉
yC

+
α0(α0 + 1)

2

〈
φti, ȳA

〉 〈
φti, y

t
B

〉
yC

for i ∈ [k], where ytA, ytB and ytC are the online whitened data points as discussed in the
whitening step and θ is a constant factor that we can set.

The iterative updating equation for the stochastic gradient update is given by

φt+1
i ← φti − βt

∂Lt

∂vi

∣∣∣∣
φti

(21)

for i ∈ [k], where βt is the learning rate, φti is the last iteration eigenvector and φti is the
updated eigenvector. We update eigenvectors through

φt+1
i ← φti − θβt

k∑
j=1

[〈
φtj , φ

t
i

〉2
φtj

]
+ shift[βt

〈
φti, y

t
A

〉 〈
φti, y

t
B

〉
ytC ] (22)

Now we shift the updating steps so that they correspond to the centered Dirichlet
moment forms, i.e.,

shift[βt
〈
φti, y

t
A

〉 〈
φti, y

t
B

〉
ytC ] := βt

(α0 + 1)(α0 + 2)

2

〈
φti, y

t
A

〉 〈
φti, y

t
B

〉
ytC

+ βtα2
0

〈
φti, ȳA

〉 〈
φti, ȳB

〉
ȳC − βt

α0(α0 + 1)

2

〈
φti, y

t
A

〉 〈
φti, y

t
B

〉
ȳC

− βtα0(α0 + 1)

2

〈
φti, y

t
A

〉 〈
φti, ȳB

〉
yC − βt

α0(α0 + 1)

2

〈
φti, ȳA

〉 〈
φti, y

t
B

〉
yC , (23)

where ȳA := Et[ytA] and similarly for ȳB and ȳC .

Appendix B. Proof of correctness of our algorithm:

We now prove the correctness of our algorithm.
First, we compute M2 as just

Ex
[
G̃>x,C ⊗ G̃>x,B|ΠA,ΠB,ΠC

]
where we define

G̃>x,B := Ex
[
G>x,A ⊗G>x,C

∣∣∣∣ ΠA,ΠC

](
Ex
[
G>x,B ⊗G>x,C

∣∣∣∣ ΠB,ΠC

])†
G>x,B

G̃>x,C := Ex
[
G>x,A ⊗G>x,B

∣∣∣∣ ΠA,ΠB

](
Ex
[
G>x,C ⊗G>x,B

∣∣∣∣ ΠB,ΠC

])†
G>x,C .
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Define FA is defined as FA := Π>AP
>, we obtainM2 = E

[
G>x,A ⊗G>x,A

]
= Π>AP

> (Ex[πxπ
>
x ]
)
PΠA =

FA
(
Ex[πxπ

>
x ]
)
F>A . Note that P is the community connectivity matrix defined as P ∈

[0, 1]k×k. Now that we know M2, E
[
π2
i

]
= αi(αi+1)

α0(α0+1) , and E [πiπj ] =
αiαj

α0(α0+1)∀i 6= j, we can

get the centered second order moments PairsCom as

PairsCom := FA diag

([
α1α1 + 1

α0(α0 + 1)
, . . . ,

αkαk + 1

α0(α0 + 1)

])
F>A (24)

= M2 −
α0

α0 + 1
FA

(
α̂α̂> − diag

(
α̂α̂>

))
F>A (25)

=
1

nX

∑
x∈X

ZCG
>
x,CGx,BZ

>
B −

α0

α0 + 1

(
µAµ

>
A − diag

(
µAµ

>
X→A

))
(26)

Thus, our whitening matrix is computed. Now, our whitened tensor is T is given by

T = T Com(W,W,W ) =
1

nX

∑
x

[
(W>FAπ

α0
x )⊗ (W>FAπ

α0
x )⊗ (W>FAπ

α0
x )
]
,

where πα0
x is the centered vector so that E[πα0

x ⊗ πα0
x ⊗ πα0

x ] is diagonal. We then apply the
stochastic gradient descent technique to decompose the third order moment.

Appendix C. GPU Architecture

The algorithm we propose is very amenable to parallelization and is scalable which makes it
suitable to implement on processors with multiple cores in it. Our method consists of simple
linear algebraic operations, thus enabling us to utilize Basic Linear Algebra Subprograms
(BLAS) routines such as BLAS I (vector operations), BLAS II (matrix-vector operations),
BLAS III (matrix-matrix operations), Singular Value Decomposition (SVD), and iterative
operations such as stochastic gradient descent for tensor decomposition that can easily
take advantage of Single Instruction Multiple Data (SIMD) hardware units present in the
GPUs. As such, our method is amenable to parallelization and is ideal for GPU-based
implementation.

Overview of code design: From a higher level point of view, a typical GPU based com-
putation is a three step process involving data transfer from CPU memory to GPU global
memory, operations on the data now present in GPU memory and finally, the result transfer
from the GPU memory back to the CPU memory. We use the CULA library for imple-
menting the linear algebraic operations.

GPU compute architecture: The GPUs achieve massive parallelism by having hundreds
of homogeneous processing cores integrated on-chip. Massive replication of these cores
provides the parallelism needed by the applications that run on the GPUs. These cores, for
the Nvidia GPUs, are known as CUDA cores, where each core has fully pipelined floating-
point and integer arithmetic logic units. In Nvidia’s Kepler architecture based GPUs, these
CUDA cores are bunched together to form a Streaming Multiprocessor (SMX). These SMX
units act as the basic building block for Nvidia Kepler GPUs. Each GPU contains multiple
SMX units where each SMX unit has 192 single-precision CUDA cores, 64 double-precision
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units, 32 special function units, and 32 load/store units for data movement between cores
and memory.

Each SMX has L1, shared memory and a read-only data cache that are common to
all the CUDA cores in that SMX unit. Moreover, the programmer can choose between
different configurations of the shared memory and L1 cache. Kepler GPUs also have an L2
cache memory of about 1.5MB that is common to all the on-chip SMXs. Apart from the
above mentioned memories, Kepler based GPU cards come with a large DRAM memory,
also known as the global memory, whose size is usually in gigabytes. This global memory
is also visible to all the cores. The GPU cards usually do not exist as standalone devices.
Rather they are part of a CPU based system, where the CPU and GPU interact with each
other via PCI (or PCI Express) bus.

In order to program these massively parallel GPUs, Nvidia provides a framework known
as CUDA that enables the developers to write programs in languages like C, C++, and
Fortran etc. A CUDA program constitutes of functions called CUDA kernels that execute
across many parallel software threads, where each thread runs on a CUDA core. Thus the
GPU’s performance and scalability is exploited by the simple partitioning of the algorithm
into fixed sized blocks of parallel threads that run on hundreds of CUDA cores. The threads
running on an SMX can synchronize and cooperate with each other via the shared memory
of that SMX unit and can access the Global memory. Note that the CUDA kernels are
launched by the CPU but they get executed on the GPU. Thus compute architecture of the
GPU requires CPU to initiate the CUDA kernels.

CUDA enables the programming of Nvidia GPUs by exposing low level API. Apart
from CUDA framework, Nvidia provides a wide variety of other tools and also supports
third party libraries that can be used to program Nvidia GPUs. Since a major chunk of the
scientific computing algorithms is linear algebra based, it is not surprising that the standard
linear algebraic solver libraries like BLAS and Linear Algebra PACKage (LAPACK) also
have their equivalents for Nvidia GPUs in one form or another. Unlike CUDA APIs, such
libraries expose APIs at a much higher-level and mask the architectural details of the
underlying GPU hardware to some extent thus enabling relatively faster development time.

Considering the tradeoffs between the algorithm’s computational requirements, design
flexibility, execution speed and development time, we choose CULA-Dense as our main im-
plementation library. CULA-Dense provides GPU based implementations of the LAPACK
and BLAS libraries for dense linear algebra and contains routines for systems solvers, sin-
gular value decompositions, and eigen-problems. Along with the rich set of functions that
it offers, CULA provides the flexibility needed by the programmer to rapidly implement the
algorithm while maintaining the performance. It hides most of the GPU architecture depen-
dent programming details thus making it possible for rapid prototyping of GPU intensive
routines.

The data transfers between the CPU memory and the GPU memory are usually explic-
itly initiated by CPU and are carried out via the PCI (or PCI Express) bus interconnecting
the CPU and the GPU. The movement of data buffers between CPU and GPU is the most
taxing in terms of time. The buffer transaction time is shown in the plot in Figure 9.
Newer GPUs, like Kepler based GPUs, also support useful features like GPU-GPU direct
data transfers without CPU intervention. Our system and software specifications are given
in Table 3.
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Figure 9: Experimentally measured time taken for buffer transfer between the CPU and
the GPU memory in our system.

CULA exposes two important interfaces for GPU programming namely, standard and
device. Using the standard interface, the developer can program without worrying about
the underlying architectural details of the GPU as the standard interface takes care of all
the data movements, memory allocations in the GPU and synchronization issues. This
however comes at a cost. For every standard interface function call the data is moved in
and out of the GPU even if the output result of one operation is directly required by the
subsequent operation. This unnecessary movement of intermediate data can dramatically
impact the performance of the program. In order to avoid this, CULA provides the device
interface. We use the device interface for STGD in which the programmer is responsible
for data buffer allocations in the GPU memory, the required data movements between the
CPU and GPU, and operates only on the data in the GPU. Thus the subroutines of the
program that are iterative in nature are good candidates for device implementation.

Pre-processing and post-processing: The pre-processing involves matrices whose leading
dimension is of the order of number of nodes. These are implemented using the CULA
standard interface BLAS II and BLAS III routines.

Pre-processing requires SVD computations for the Moore-Penrose pseudoinverse calcu-
lations. We use CULA SVD routines since these SVD operations are carried out on matrices
of moderate size. We further replaced the CULA SVD routines with more scalable SVD and
pseudo inverse routines using random projections (Gittens and Mahoney, 2013) to handle
larger datasets such as DBLP dataset in our experiment.

After STGD, the community membership matrix estimates are obtained using BLAS
III routines provided by the CULA standard interface. The matrices are then used for
hypothesis testing to evaluate the algorithm against the ground truth.

Appendix D. Results on Synthetic Datasets

Homophily is an important factor in social interactions (McPherson et al., 2001); the term
homophily refers to the tendency that actors in the same community interact more than
across different communities. Therefore, we assume diagonal dominated community connec-
tivity matrix P with diagonal elements equal to 0.9 and off-diagonal elements equal to 0.1.
Note that P need neither be stochastic nor symmetric. Our algorithm allows for randomly
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n k α0 Error Time (secs)

1e2 10 0 0.1200 0.5
1e3 10 0 0.1010 1.2
1e4 10 0 0.0841 43.2
1e2 10 1 0.1455 0.5
1e3 10 1 0.1452 1.2
1e4 10 1 0.1259 42.2

Table 12: Synthetic simulation results for different configurations. Running time is the time
taken to run to convergence.

generated community connectivity matrix P with support [0, 1]. In this way, we look at
general directed social ties among communities.

We perform experiments for both the stochastic block model (α0 = 0) and the mixed
membership model. For the mixed membership model, we set the concentration parameter
α0 = 1. We note that the error is around 8% − 14% and the running times are under a
minute, when n ≤ 10000 and n� k.

The results are given in Table 12. We observe that more samples result in a more ac-
curate recovery of memberships which matches intuition and theory. Overall, our learning
algorithm performs better in the stochastic block model case than in the mixed member-
ship model case although we note that the accuracy is quite high for practical purposes.
Theoretically, this is expected since smaller concentration parameter α0 is easier for our
algorithm to learn (Anandkumar et al., 2013b). Also, our algorithm is scalable to an order
of magnitude more in n as illustrated by experiments on real-world large-scale datasets.

Appendix E. Comparison of Error Scores

Normalized Mutual Information (NMI) score (Lancichinetti et al., 2009) is another popular
score which is defined differently for overlapping and non-overlapping community models.
For non-overlapping block model, ground truth membership for node i is a discrete k-
state categorical variable Πblock ∈ [k] and the estimated membership is a discrete k̂-state
categorical variable Π̂block ∈ [k̂]. The empirical distribution of ground truth membership
categorical variable Πblock is easy to obtain. Similarly is the empirical distribution of the
estimated membership categorical variable Π̂block. NMI for block model is defined as

Nblock(Π̂block : Πblock) :=
H(Πblock) +H(Π̂block)−H(Πblock, Π̂block)(

H(Πblock) +H(Π̂block)
)
/2

.

The NMI for overlapping communities is a binary vector instead of a categorical vari-
able (Lancichinetti et al., 2009). The ground truth membership for node i is a binary vector
of length k, Πmix, while the estimated membership for node i is a binary vector of length
k̂, Π̂mix. This notion coincides with one column of our membership matrices Π ∈ Rk×n and

Π̂ ∈ Rk̂×n except that our membership matrices are stochastic. In other words, we consider

2830



Huang et al.

all the nonzero entries of Π as 1’s, then each column of our Π is a sample for Πmix. The
m-th entry of this binary vector is the realization of a random variable Πmixm = (Πmix)m,
whose probability distribution is

P (Πmixm = 1) =
nm
n
, P (Πmixm = 0) = 1− nm

n
,

where nm is the number of nodes in community m. The same holds for Π̂mixm . The
normalized conditional entropy between Πmix and Π̂mix is defined as

H(Π̂mix|Πmix)norm :=
1

k

∑
j∈[k]

min
i∈[k̂]

H
(

Π̂mixi |Πmixj

)
H(Πmixj )

(27)

where Πmixj denotes the jth entry of Πmix and similarly for Π̂mixi . The NMI for overlapping
community is

Nmix(Π̂mix : Πmix) := 1− 1

2

[
H(Πmix|Π̂mix)norm +H(Π̂mix|Πmix)norm

]
.

There are two aspects in evaluating the error. The first aspect is the l1 norm error.

According to Equation (27), the error function used in NMI score is
H
(

Π̂mixi
|Πmixj

)
H(Πmixj

) . NMI

is not suitable for evaluating recovery of different sized communities. In the special case of
a pair of extremely sparse and dense membership vectors, depicted in Figure 10, H(Πmixj )
is the same for both the dense and the sparse vectors since they are flipped versions of
each other (0s flipped to 1s and vice versa). However, the smaller sized community (i.e.
the sparser community vector), shown in red in Figure 10, is significantly more difficult
to recover than the larger sized community shown in blue in Figure 10. Although this
example is an extreme scenario that is not seen in practice, it justifies the drawbacks of the
NMI. Thus, NMI is not suitable for evaluating recovery of different sized communities. In
contrast, our error function employs a normalized l1 norm error which penalizes more for
larger sized communities than smaller ones.

The second aspect is the error induced by false pairings of estimated and ground-truth
communities. NMI score selects only the closest estimated community through normal-
ized conditional entropy minimization and it does not account for statistically significant
dependence between an estimated community and multiple ground truth communities and
vice-versa, and therefore it underestimates error. However, our error score does not limit to a
matching between the estimated and ground truth communities: if an estimated community
is found to have statistically significant correlation with multiple ground truth communities
(as evaluated by the p-value), we penalize for the error over all such ground truth commu-
nities. Thus, our error score is a harsher measure of evaluation than NMI. This notion of
“soft-matching” between ground-truth and estimated communities also enables validation
of recovery of a combinatorial union of communities instead of single ones.

A number of other scores such as “separability”, “density”, “cohesiveness” and “clus-
tering coefficient” (Yang and Leskovec, 2012) are non-statistical measures of faithful com-
munity recovery. The scores of (Yang and Leskovec, 2012) intrinsically aim to evaluate the
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zeros

ones

length n vector

dense pi1

sparse pi2

dense community

sparse community

Figure 10: A special case of a pair of extremely dense and sparse communities. Theoret-
ically, the sparse community is more difficult to recover than the dense one.
However, the NMI score penalizes both of them equally. Note that for dense Π1,
P (Πmix1 = 0) = # of 0s in Π1

n which is equal to P (Πmix2 = 1) = # of 1s in Π2

n . Simi-

larly, P (Πmix1 = 1) = # of 1s in Π1

n which is equal to P (Πmix2 = 0) = # of 0s in Π2

n .
Therefore, H(Πmix1) = H(Πmix2).

level of clustering within a community. However our goal is to measure the accuracy of
recovery of the communities and not how well-clustered the communities are.

Banerjee and Langford (Banerjee and Langford, 2004) proposed an objective evaluation
criterion for clustering which use classification performance as the evaluation measure. In
contrast, we look at how well the method performs in recovering the hidden communities,
and we are not evaluating predictive performance. Therefore, this measure is not used in
our evaluation.

Finally, we note that cophenetic correlation is another statistical score used for eval-
uating clustering methods, but note that it is only valid for hierarchical clustering and it
is a measure of how faithfully a dendrogram preserves the pairwise distances between the
original unmodeled data points (Sokal and Rohlf, 1962). Hence, it is not employed in this
paper.
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Abstract

In Bayesian nonparametric models, Gaussian processes provide a popular prior choice for
regression function estimation. Existing literature on the theoretical investigation of the
resulting posterior distribution almost exclusively assume a fixed design for covariates. The
only random design result we are aware of (van der Vaart and van Zanten, 2011) assumes
the assigned Gaussian process to be supported on the smoothness class specified by the
true function with probability one. This is a fairly restrictive assumption as it essentially
rules out the Gaussian process prior with a squared exponential kernel when modeling
rougher functions. In this article, we show that an appropriate rescaling of the above
Gaussian process leads to a rate-optimal posterior distribution even when the covariates
are independently realized from a known density on a compact set. The proofs are based
on deriving sharp concentration inequalities for frequentist kernel estimators; the results
might be of independent interest.

Keywords: Bayesian, convergence rate, Gaussian process, nonparametric regression,
random design, rate-optimal

1. Introduction

Gaussian processes (Rasmussen, 2004; Seeger, 2004; Rasmussen and Williams, 2006) are
widely used in the machine learning community as a principled probabilistic approach to
function estimation. A mean-zero Gaussian process is completely specified by its covari-
ance kernel; popular choices include the squared-exponential and Matérn families. Recently,
there has been significant interest in frequentist convergence properties of Bayesian posteri-
ors in Gaussian process models. Ghosal and Roy (2006); Choi and Schervish (2007); Tokdar
and Ghosh (2007) established posterior consistency in a variety of settings including non-
parametric regression, classification and density estimation. Seeger et al. (2008) used an
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information criterion to evaluate closeness of the posterior distribution to the truth; see also
van der Vaart and van Zanten (2011). A major focus in the recent literature (van der Vaart
and van Zanten, 2007, 2008a, 2009, 2011; Bhattacharya et al., 2014; Shang and Cheng,
2014) has been on deriving the posterior convergence rate (Ghosal et al., 2000), which is
defined as the minimum possible sequence εn → 0 such that for some constant M > 0,

Eθ0Π(‖θ − θ0‖ < Mεn | Dn)→ 1, (1)

where Dn denotes the data, θ is the parameter of interest with some known transforma-
tion Ψ(θ) assigned a Gaussian process prior, θ0 is the true data generating parameter and
‖·‖ is a distance measure relevant to the statistical problem. In the context of nonpara-
metric regression, classification and density estimation, it has been established that the
posterior convergence rate based on appropriate Gaussian process priors coincides with the
minimax optimal rate n−α/(2α+d) for d-variate α-smooth functions up to a logarithmic fac-
tor (van der Vaart and van Zanten, 2007, 2008a), with rate-adaptivity to the unknown
smoothness achieved in van der Vaart and van Zanten (2009); Bhattacharya et al. (2014).

In this paper, we focus on a non-parametric regression problem,

Yi = f(Xi) + εi, εi ∼ N(0, 1), (2)

with f assigned a mean-zero Gaussian process prior. The above-mentioned literature on
posterior convergence rates under (2) typically assume that the covariates Xi’s are fixed
by design, in which the empirical L2 norm ‖f − f0‖2,n = (1/n

∑n
i=1 |f(xi)− f0(xi)|2)1/2 is

used as a discrepancy measure in (1). The empirical L2 norm evaluates the discrepancy of
the estimated function from the true function only at the observed data-points and is not
suitable to assess out-of-sample predictive performance. In this paper, we consider a random
design setup where the covariates Xi’s are drawn independently from a known distribution
q, and derive the posterior convergence rates under an integrated L1(q) metric:

‖f − f0‖1,q =

∫
|f(x)− f0(x)|q(x)dx.

The above integrated L1(q) metric is more relevant for studying statistical efficiency in a
random design setting. From a technical standpoint, dealing with the integrated metric
is challenging since one cannot directly leverage on properties of multivariate Gaussian
distributions as in the case of the empirical L2 norm to construct “test functions”; a key
ingredient in Bayesian asymptotics.

In the frequentist literature, existing results (Baraud, 2002; Brown et al., 2002; Birgé,
2004) on the convergence rates (with respect to an integrated metric) in random design
regression require an appropriate lower bound on the smoothness of the underlying true
function. For example, Brown et al. (2002); Birgé (2004) assumed that the univariate
function f0 belongs to a Lipschitz class with smoothness index α > 1/2. Moreover, Birgé
(2004) demonstrated the necessity of the α > 1/2 condition by establishing a lower bound
for the asymptotic risk for α ≤ 1/2. Similar lower bound condition will be assumed in our
main Bayesian Theorem as well.

As far as we are aware, the only Bayesian literature considering the random design
setting in (2) is van der Vaart and van Zanten (2011) who assigned Gaussian processes
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with Matérn or squared exponential kernels. Specifically, they obtained an optimal rate
n−α/(2α+d) (up to a logarithmic factor, with respect to L2(q) norm) under a particularly
strong assumption that the Gaussian process prior assigns probability one to the smooth-
ness class containing the true function. Since the squared-exponential kernel has infinitely
smooth sample paths, their result only delivers the optimal rate for analytic functions, but
provides a highly suboptimal (log n)−t rate for α-smooth functions. This significantly limits
the applicability of their result in the sense that it rules out the use of a squared-exponential
kernel for less smooth (but more commonly used) functions. An influential idea developed
in van der Vaart and van Zanten (2007, 2009) is to scale the sample paths of a Gaussian
process with a squared-exponential kernel to enable better approximation of α-smooth func-
tions. The scaling is typically dependent on the smoothness of the true function and the
sample size. However, Theorem 2 of van der Vaart and van Zanten (2011) is applicable
only to priors without scaling. This is not evident from the statement of their theorem,
but a closer inspection of their proof (ref. Page 2113) reveals that they have assumed
τ2 :=

∫
‖f‖2α|∞ dΠ(f) to be a global constant for every f in the support of the prior. This

may not hold for a rescaled Gaussian process.

In this article, we show that an appropriately rescaled Gaussian process prior with a
squared-exponential covariance kernel leads to a rate-optimal posterior distribution (with
respect to L1(q) norm) for any α-smooth function d-variate f0 in a random design setting
if α > d/2. While van der Vaart and van Zanten (2011) conjectured (see pp. 2103 after
Theorem 2) that their smoothness assumption on the prior is unavoidable for the L2(q)
norm, our result shows that this situation turns out to be different under the L1(q) norm.
Specifically, we develop exponentially consistent test functions under the L1(q) norm using
concentration inequalities for the Nadaraya–Watson kernel estimator. Existence of such
test functions plays a key role in Bayesian asymptotic theory (Ghosal et al., 2000). For
example, the classical Birgé – Le Cam testing theory (Birgé, 1984; Le Cam, 1986) for the
Hellinger metric provides appropriate tests in a wide variety of settings. Giné and Nickl
(2011) proposed an alternative framework for constructing tests based on concentration
inequalities of frequentist estimators which is particularly useful for stronger norms; see
also Ray (2013); Pati et al. (2014); Shang and Cheng (2014) for similar ideas in different
contexts.

2. Posterior Convergence in Random Design Regression

2.1 Notations

Let C[0, 1]d and Cα[0, 1]d denote the space of continuous functions and the Hölder space of
α-smooth functions f : [0, 1]d → R, respectively, endowed with the supremum norm ‖f‖∞ =
supt∈[0,1]d |f(t)|. For α > 0, the Hölder space Cα[0, 1]d consists of functions f ∈ C[0, 1]d

that have bounded mixed partial derivatives up to order bαc, with the partial derivatives
of order bαc being Lipschitz continuous of order α − bαc. Let ‖·‖1 and ‖·‖2 respectively
denote the L1 and L2 norm on [0, 1]d with respect to the Lebesgue measure (i.e., the uniform
distribution). To distinguish the L2 norm with respect to the Lebesgue measure on Rd, we
use the notation ‖·‖2,d.
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We write “-” for inequality up to a constant multiple. Let φ(t) = (2π)−1/2 exp(−t2/2)
denote the standard normal density, and let φn(x) =

∏n
i=1 φ(xi) for x ∈ Rn. Let a star

denote a convolution, i.e., f1 ? f2(y) =
∫
f1(y − t)f2(t)dt. We denote the Fourier transform

of f , whenever defined, by f̂ , with f̂(λ) = (2π)−d
∫

exp(i 〈λ, t〉)f(t)dt, where 〈λ, t〉 denotes
the complex inner product. Under this convention, the inverse Fourier transform f(t) =∫

exp(−i 〈λ, t〉)f̂(λ)dλ and ĥ = (2π)df̂ ĝ when h = f ? g.
Throughout C,C ′, C1, C2, . . . are generically used to denote positive constants whose

values might change from one line to another, but are independent from everything else.
Z1:n is used as a shorthand for Z1, . . . , Zn.

In the sequel, we consider a Gaussian process prior Π on the regression function f
with Ef(x) = 0 and covariance kernel c(x, x′) = cov(f(x), f(x′)). In particular, we focus
on the squared-exponential kernel ca(x, x

′) = exp(−a2 ‖x− x′‖2) indexed by an “inverse-
bandwidth” parameter a. We next recall some important facts relevant to our setting
from van der Vaart and van Zanten (2009) regarding the spectral measure and reproducing
kernel Hilbert space of Gaussian process priors. For the squared-exponential kernel ca,
the spectral measure µa admits a density ωa with respect to Lebesgue measure, where
ωa(λ) = a−dω(λ/a), with ω(λ) = exp(−‖λ‖2/4)/(2dπd/2). The reproducing kernel Hilbert
space Ha associated with a Gaussian process prior Π consists of (real parts of) functions
h(t) =

∫
exp(i 〈λ, t〉)ξ(λ)dµa(λ), where µa is the spectral measure of Π and ξ ∈ L2(µa). The

squared Hilbert space norm of h above is given by ‖h‖2Ha =
∥∥∥ξω1/2

a

∥∥∥2
2,d

=
∫
ξ2(λ)ωa(λ)dλ;

let Ha
1 denote the unit ball of the reproducing kernel Hilbert space {h ∈ Ha : ‖h‖Ha ≤

1}. Finally, let B1 denote the unit ball of C[0, 1]d with respect to the supremum norm.
For a detailed review of reproducing kernel Hilbert space of Gaussian process priors and
connections with posterior contraction rates, kindly refer to van der Vaart and van Zanten
(2008b).

2.2 Main Result

Consider the nonparametric regression model (2). We assume a random design setup,
where given the regression function f : [0, 1]d → R, the data (X1, Y1), . . . , (Xn, Yn) are
independently generated, with Xi having a density q on [0, 1]d that is bounded away from
zero and infinity. Let q(y, x) = q(y | x)q(x) denote the joint density of (Y,X) given f ,
where q(y | x) = φ{y − f(x)}. The joint data likelihood given f is therefore

q(n)(Y1:n, X1:n | f) =
n∏
i=1

q(Yi, Xi) =
n∏
i=1

φ{Yi − f(Xi)}q(Xi).

Similarly, we define q(n)(Y1:n | X1:n, f) and q(n)(X1:n) as the density of (Y1:n | X1:n, f)

and X1:n respectively. Let EfY,X(PfY,X) denote an expectation (probability) with respect to

q(n)(Y1:n, X1:n | f). Similarly define EfY |X(PfY |X) and EfX(PfX). When f is clear from the
context, we shall drop it from the superscript.

We assume a mean zero Gaussian process prior Π on f with a squared exponential kernel
exp(−a2n ‖x− x′‖

2) and denote the corresponding posterior measure by Π(· | Y1:n, X1:n), so
that

Π(f | Y1:n, X1:n) ∝ q(n)(Y1:n | X1:n, f) Π(f).
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Assuming the true regression function is f0, we study concentration of the posterior Π(· |
Y1:n, X1:n) in an L1(q) neighborhood of f0.

Theorem 1 Assume that f0 ∈ Cα[0, 1]d with α > d/2 and Π is a mean-zero Gaussian
process prior with a squared exponential covariance kernel c(x, x′) = exp(−a2n ‖x− x′‖

2).
Set an = n1/(2α+d). Then with εn = n−α/(2α+d) log3t1/2 n for t1 ≥ (d+ 1)/2, and some fixed
sufficiently large constant M > 0,

Ef0Y,XΠ
(
‖f − f0‖1,q > Mεn | Y1:n, X1:n

)
→ 0. (3)

As stated previously, the condition α > d/2 is necessary to obtain the optimal rate. van der
Vaart and van Zanten (2009) showed that the squared-exponential covariance kernel without
rescaling leads to a very slow (log n)−l contraction rate for α-smooth functions both in the
fixed and random design settings. This is not surprising as the sample paths of such a GP
are analytic. The effect of scaling the prior using the “inverse bandwidth” a to yield the
optimal posterior concentration was first noted by van der Vaart and van Zanten (2007) in
a fixed design context, who showed (for d = 1) that a deterministic scaling an = n1/(2α+1)

produces priors that are suitable for modeling α-smooth functions. Theorem 1 assures that
the same rescaling idea continues to work in the random design setting for an integrated L1

norm.
The optimal rescaling in Theorem 1 requires knowledge of the true smoothness α. If

there is a mismatch between the prior regularity and the function smoothness, one would
typically expect a sub-optimal rate. Corollary 2 quantifies this fact; while we only derive
an upper bound to the posterior convergence rate, such bounds are usually tight (van der
Vaart and van Zanten, 2009). In absence of any prior knowledge regarding the smoothness,
one may resort to an empirical or fully Bayes approach as in van der Vaart and van Zanten
(2009); Szabó et al. (2013). The related theoretical investigation will be considerably harder
in such cases.

Corollary 2 Under the conditions of Theorem 1, if an = n1/(2β+d) for β > d/2, β 6= α, the
conclusion of Theorem 1 holds with εn = n−α∧β/(2β+d) log3t1/2 n for t1 ≥ d/(4− 2κ) for any
0 < κ < 2.

Observe that the optimal rate n−α/(2α+d) is attained (upto logarithmic terms) if and only
if α = β. A scaling n1/(2β+d) for β < α makes the prior rougher compared to the true
function while β > α renders smoother prior realizations. In both cases, sub-optimal rates
are obtained. This is in accordance with the findings for GP priors with Matérn covariance
kernel; refer to Theorem 5 in van der Vaart and van Zanten (2011).

Note that by taking κ very close to 0, we can improve on the power of the log n term
in Corollary 2 from that in Theorem 1. The difference in the power of log n stems from the
fact that the corollary only targets sub-optimal rates as opposed to Theorem 1. Hence a
portion of the power of log n can be eliminated in Corollary 2.

2.3 Contributions Beyond Literature

The proof of Theorem 1 follows from a general set of sufficient conditions for posterior
concentration in model (2); kindly refer to Theorem 3 stated in the next Section. In
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particular, we exploit concentration inequalities for suitable kernel estimators to construct
the aforementioned exponentially consistent sequence of test functions. Such techniques
have been used previously to show convergence rates in density estimation (Giné and Nickl,
2011) and in linear inverse problems (Ray, 2013). Their techniques do not directly apply to
our case partly due to the lack of concentration bounds for kernel based estimators. Giné and
Nickl (2011); Ray (2013) construct estimators based on truncated spectral representations
which are well suited to sieve priors. However, to deal with a Gaussian process prior with
a squared-exponential covariance kernel, we need to construct test functions based on the
Nadaraya–Watson kernel estimator and derive sharp concentration bounds for this class of
estimators in Lemma 4 and 5.

The choice of the norm dictating the neighborhood around the true parameter plays
a critical role in Bayesian asymptotics. A fundamental tool for relating the likelihood
ratio with the neighborhood in consideration is a sequence of exponentially consistent test
functions (Ghosal et al., 2000). In a regression setting, such test functions are guaranteed to
exist for the empirical L2 norm by exploiting a direct relation between the empirical L2 norm
and the likelihood ratio of the multivariate Gaussian densities involved; refer to Section 4
of van der Vaart and van Zanten (2011). However, the integrated norm involves covariate
points different from the observations, which makes the problem more challenging. van der
Vaart and van Zanten (2011) applied Bernstein’s inequality to extrapolate to the L2(q)
norm from the empirical L2 norm. However, as stated in the Introduction, their approach
only works for priors that are supported on the true smoothness class with probability one.

Among other related work, Section 4 of Kleijn and van der Vaart (2006) considers
random design regression, where a correspondence between the Kullback–Leibler and L2(q)
neighborhood is established to derive the test function, assuming the prior support consists
of uniformly bounded functions. However, this assumption does not hold for the rescaled
Gaussian process prior in Theorem 1. In particular, the sieves constructed in van der Vaart
and van Zanten (2007) of the form MnHan

1 + εnB1 with Mn → ∞ do not correspond to
sup-norm bounded subsets of C[0, 1]d.

We comment here that convergence in the integrated metric has been settled in the bi-
nary regression setting. Using a logistic link function, a direct agreement can be established
between the integrated L1 metric on the function space and the Hellinger distance between
the resulting densities arising from the Bernoulli likelihood; see for example, Section 3.2 of
van der Vaart and van Zanten (2008a). Second, in this paper we implicitly refer to Gaussian
processes which are specified by a kernel function; specifically, kernel functions which do
not admit a finite series representation, such as the squared-exponential kernel. If a Gaus-
sian process is specified via a truncated orthogonal series representation with independent
Gaussian priors on the coefficients, the integrated metric can be related to the L2 norm of
the coefficient vector (Bontemps, 2011).

3. Auxiliary Results

We now state a general theorem which presents a set of sufficient conditions for proving
Theorem 1. From now onwards, we shall assume the covariate distribution q to be a uniform
distribution on [0, 1]d for notational simplicity; modifying our construction to a general q,
which is bounded from above and below, is straightforward. The L1(q) norm ‖·‖1,q with q
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the uniform distribution on [0, 1]d shall be simply denoted by ‖·‖1 following our convention
in Section 2.1. A proof of Theorem 3 can be found in the Appendix.

Theorem 3 Let ε′n, δn be sequences such that ε′n, δn → 0 and nε′2n , nδ
2
n →∞. Let Un = {f :

‖f −f0‖1 > Mε′n} for some fixed M > 0. Suppose that there exists a sequence of estimators
f̃n for f based on (Y1:n, X1:n) and a sequence of subsets/sieves Pn of C[0, 1]d such that

Π(Pcn) ≤ exp{−(C + 4)nδ2n}, (PCS)∥∥∥Ef0Y,X f̃n − f0∥∥∥
1
< ε′n, (BT)

Pf0Y,X

(∥∥∥f̃n − Ef0Y,X f̃n
∥∥∥
1
> ε′n

)
≤ exp{−(C + 4)nδ2n}, (DT)

sup
f∈Pn∩Un

∥∥∥EfY,X f̃n − f∥∥∥
1
< ε′n, (BS)

sup
f∈Pn∩Un

PfY,X

(∥∥∥f̃n − EfY,X f̃n
∥∥∥
1
> ε′n

)
≤ exp{−(C + 4)nδ2n}, (DS)

Π

(
‖f − f0‖∞ ≤ δn

)
≥ exp{−nδ2n}. (PCN)

Then, Ef0Y,XΠ
(
Un | Y1:n, X1:n

)
→ 0.

Condition (PCS) implies that the prior probability of the complement of the sieve Pn is
exponentially small. Condition (BT) assumes a sufficiently accurate estimator f̃n with bias
smaller than εn at f0 while (DT) assumes an exponential concentration bound of f̃n from
its expectation under q(n)(· | f0). (BS) and (DS) assume similar conditions as (BT) and
(DT) under q(n)(· | f) for any f ∈ Pn ∩ Un. The conditions (BT), (DT); (BS), (DS)
jointly guarantee the existence of exponentially consistent test functions; see Lemma 9 in
the Appendix. Condition (PCN) assumes that the prior Π places “enough” mass in an
εn-neighborhood of the truth f0 in terms of the sup-norm.

3.1 Verifying the Conditions of Theorem 3 to Prove Theorem 1

Letting δn = ε′n = εn with ε′n and εn as in the statement of Theorem 3 and Theorem 1
respectively, we now proceed to construct Pn and f̃n that satisfy the conditions of Theorem
3. While we choose the same sieve as in van der Vaart and van Zanten (2007), part of the
technical challenge lies in the fact that the concentration bounds need to be derived not just
for the truth, but rather for every function in the sieve. This requires precise control on the
size of the functions in the sieve Pn. We show in Proposition 7 below that the functions in
the chosen sieve are uniformly bounded in L2 norm, although they are unbounded in the
supremum norm.

Let ψ : Rd → C be a function such that
∫
ψ(t)dt = 1,

∫
tkψ(t)dt = 0 for any non-

zero multi-index k = (k1, . . . , kd) of non-zero integers,
∫
|t|max{α,2}|ψ(t)|dt < ∞, and the

functions |ψ̂|/ω and |ψ̂|2/ω are uniformly bounded; see proof of Lemma 4.3 in van der Vaart
and van Zanten (2009). Define,

f̃n(x) =
1

n

n∑
i=1

ψσn(x−Xi)Yi, (4)
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where ψσ(t) = σ−dψ(t/σ) for σ > 0 and set σn = n−1/(2α+d) log−t2 n, t2 = 1/(2 − κ) for

some 0 < κ < 1 . Next, with Mn = a
d/2
n , set

Pn = MnHan
1 + εnB1. (5)

Assume f0 ∈ Cα[0, 1]d. Let f̃n and Pn be as in (4) and (5) respectively. We show
below that the conditions of Theorem 3 are satisfied with εn = n−α/(2α+d) logt1 n for
t1 ≥ max{t2d/2, (d+ 1)/2} = (d+ 1)/2, provided α > d/2. (PCS) follow from the proof of
Theorem 3.1 in van der Vaart and van Zanten (2009). To verify (PCN), observe from the
proof of Theorem 3.1 in van der Vaart and van Zanten (2009) that with an = n1/(2α+d),

Π(‖f − f0‖∞ ≤ δn) ≥ exp{−nd/(2α+d)(log n)d+1}

for δn ≥ n−α/(2α+d). Hence (PCN) is satisfied with δn = εn.

We verify (BS) and (DS); the verifications of (BT) and (DT) follow along similar lines.

We first show that (DS) holds. Fix f ∈ Pn ∩ Un. We drop the superscript f from Ef
in the sequel. Let fn(x) = ψσn ? f(x) =

∫
ψσn(x− t)f(t)dt and fXn (x) = n−1

∑n
i=1 ψσn(x−

Xi)f(Xi). Observe that EY,X f̃n = fn and EY |X f̃n = fXn . Then,

PY,X
(∥∥∥f̃n − EY,X f̃n

∥∥∥
1
> εn

)
= PY,X

(∥∥∥f̃n − fn∥∥∥
1
> εn

)
≤ PY,X

(∥∥∥f̃n − fn∥∥∥
1
> εn,

∥∥fXn − fn∥∥1 ≤ εn/2)+ PX
(∥∥fXn − fn∥∥1 ≥ εn/2)

≤ EXPY |X
(∥∥∥f̃n − fXn ∥∥∥

1
≥ εn/2 | X1:n

)
+ PX

(∥∥fXn − fn∥∥1 ≥ εn/2). (6)

Lemmata 4 and 5 below deliver the desired bounds for the two terms appearing in (6).

Lemma 4 Under conditions of Theorem 1,

PY |X
(∥∥∥f̃n − fXn ∥∥∥

1
≥ εn/2 | X1:n

)
≤ exp(−Cnε2n) a.s.

for some constant C > 0.

Proof For simplicity of notation, we suppress the term “a.s.” in the displays that follow.
Let T (x) = n(f̃n−fXn )(x) =

∑n
i=1 ψσn(x−Xi)Zi, where Zi = Yi−f(Xi) with Z1:n | X1:n, f ∼

Nn(0, I). Given X1:n, T is a random element of L1[0, 1]d and ‖T‖1 is a non-negative random
variable. By the Hahn–Banach theorem, there exists a bounded linear functional G on
L∞[0, 1]d such that G(h) =

∫
T (x)h(x)dx for all h ∈ L∞[0, 1]d and ‖T‖1 = ‖G‖F , where

‖G‖F = suph∈F |G(h)| and F is a countable dense subset of {h ∈ L∞[0, 1]d : ‖h‖∞ ≤ 1}.
By definition, G(h) =

∑n
i=1 aiZi, where ai =

∫
ψσn(x − Xi)h(x)dx. Thus, given X1:n,

{G(h) : h ∈ F} is a Gaussian process and

PY |X
(∥∥∥f̃n − fXn ∥∥∥

1
≥ εn/2 | X1:n

)
= PY |X

(
‖G‖F ≥ nεn/2 | X1:n

)
. (7)
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By Borell’s inequality (Adler, 1990),

PY |X
(
‖G‖F − EY |X ‖G‖F ≥ t | X1:n

)
≤ 2 exp{−t2/(2σ2F )}, (8)

where σ2F = suph∈F EY |XG(h)2. We now proceed to estimate σ2F and EY |X ‖G‖F . For any
h ∈ F ,

EY |XG(h)2 =
n∑
i=1

{∫
[0,1]d

ψσn(x−Xi)h(x)dx

}2

≤ ‖h‖2∞
n∑
i=1

{∫
[0,1]d

|ψσn(x−Xi)| dx
}2

≤ C1n, (9)

where C1 =
∫
|ψ(t)|dt. Hence, σ2F ≤ C1n.

We next bound EY |X ‖G‖F = EY |X ‖T‖1. By Jensen’s inequality, EY |X ‖T‖1 ≤ (EY |X ‖T‖21)1/2.
Further,

(EY |X ‖T‖21)
1/2 =

[ ∫ {∫
|T (x)|dx

}2

φn(z)dz

]1/2
≤
∫ {∫

T (x)2φn(z)dz

}1/2

dx,

where the above inequality follows from an integral version of Minkowski’s inequality. Re-
calling T (x) =

∑n
i=1 ψσn(x−Xi)Zi,

∫
T (x)2φn(z)dz = E[T (x)2 | X1:n] =

∑n
i=1 ψσn(x−Xi)

2.
Substituting this in the above display and using Jensen’s inequality one more time, we get

EY |X ‖T‖1 ≤
∫ { n∑

i=1

ψσn(x−Xi)
2

}1/2

dx

≤
{ n∑
i=1

∫
ψσn(x−Xi)

2dx

}1/2

≤ C2(n/σ
d
n)1/2, (10)

where C2 = {
∫
ψ(t)2dt}1/2. In (8), set t = nεn/4. From the above calculations, EY |X ‖G‖F ≤

C2(n/σ
d
n)1/2 ≤ nεn/4 since t1 ≥ t2d/2. Using σ2F ≤ C1n, we finally obtain PY |X

(
‖G‖F ≥

nεn/2 | X1:n

)
≤ 2 exp(−Cnε2n).

Lemma 5 Under conditions of Theorem 1,

PX
(∥∥fXn − fn∥∥1 ≥ εn/2) ≤ exp(−nε2n).

Proof As in Lemma 4, we express the desired probability in terms of a tail bound for the
supremum of a stochastic process. However, the stochastic process in this case is no longer
a Gaussian process and we cannot use Borell’s inequality here. We instead use Bosquet’s
version of Talagrand’s inequality for the supremum of a centered empirical process. The
following Proposition 6 is adapted from Bousquet (2003) which also appears in Section 3.1
of Giné and Nickl (2011).

2845



Pati, Bhattacharya and Cheng

Proposition 6 Assume X1, . . . , Xn are independent and identically distributed as P . Let G
be a countable set of real valued functions and assume all functions g ∈ G are P -measurable,
square integrable and satisfy EP [g] = 0. Assume K1 = supg∈G ‖g‖∞ < ∞ and let W =
supg∈G |

∑n
i=1 g(Xi)|. Further, let σ2G = supg∈G EP [g(X1)

2] and K2 = nσ2G + K1EP [W ].
Then, for any t > 0,

P
{
W ≥ EPW + (2K2t)

1/2 +
K1t

3

}
≤ exp(−t).

Let Lx(t) = ψσn(x − t)f(t) − ψσn ? f(x) for x, t ∈ [0, 1]d and W =
∫
[0,1]d |

∑n
i=1 Lx(Xi)|dx.

Clearly, PX(
∥∥fXn − fn∥∥1 > εn/2) = PX(W > nεn/2). By an application of Hahn–Banach

theorem as in the proof of Lemma 4, W = ‖G‖F , where F is a countable dense subset
of the unit ball of L∞[0, 1]d, G(h) =

∑n
i=1 g(Xi), and g(t) =

∫
[0,1]d Lx(t)h(x)dx. Let-

ting G denote the class of functions {g(t) =
∫
[0,1]d Lx(t)h(x)dx, h ∈ F}, one has ‖G‖F =

supg∈G |
∑n

i=1 g(Xi)|. Putting together, W = supg∈G |
∑n

i=1 g(Xi)| and EXg(X1) = 0 by
Tonelli’s theorem. We now aim to apply Proposition 6 to bound PX(W > nεn/2). In order
to apply Proposition 6, we need to estimate K1, σ

2
G ,K2 and EP (W ) which is carried out

below.

Fix g ∈ G. Then, there exists h ∈ F such that g(t) =
∫
[0,1]d Lx(t)h(x)dx = f(t)

∫
[0,1]d ψσn(t−

x)h(x)dx−
∫
ψσn ? f(x)h(x)dx. Using the triangle inequality,

|g(t)| ≤ |f(t)|
∫
[0,1]d

|ψσn(t− x)h(x)|dx+

∫
[0,1]d

|ψσn ? f(x)| |h(x)|dx.

Using ‖h‖∞ ≤ 1, the first term in the above display can be bounded above by C1‖f‖∞
where C1 =

∫
|ψ(t)|dt. Similarly, the second term can be bounded above by ‖ψσn ? f‖1 ≤

‖ψσn ? f‖∞ ≤ ‖f‖∞ + εn, where the final inequality follows from (BS). Noting that for any
f ∈ Pn, ‖f‖∞ ≤ 2Mn (since the Hilbert space norm is stronger than the ‖ · ‖∞ norm), we
have K1 ≤ CMn.

Next we bound σ2G = supg∈G
∫
[0,1]d g(t)2dt. Fix g ∈ G. Using the expression for g(t) in

the previous paragraph, |g(t)| ≤ |f(t)|
∫
|ψσn(x− t)|dx+

∫
|ψσn ?f(x)|dx. As before, we can

bound
∫
|ψσn(x − t)|dx from above by C1 and also

∫
|ψσn ? f(x)|dx ≤ C1

∫
s∈[0,1]d |f(s)|ds.

Using (|a| + |b|)2 ≤ 2(|a|2 + |b|2) and the Cauchy–Schwarz inequality, |g(t)|2 ≤ C|f(t)|2 +
C{
∫
s∈[0,1]d |f(s)|ds}2 ≤ C

{
|f(t)|2 + ‖f‖22

}
. Thus, we have σ2G ≤ C‖f‖22 for some absolute

constant C. Using the bound for supf∈Pn ‖f‖
2
2 in the following Proposition 7, we conclude

that σ2G ≤ C for some absolute constant C > 0.

Proposition 7 Recall Pn from (5). Then, supf∈Pn ‖f‖
2
2 ≤ C for some absolute constant

C > 0.

Proof Let f ∈ Pn. Then, there exists h ∈ Han with ‖h‖Han ≤Mn such that ‖f−h‖∞ ≤ εn.
Hence, ‖f‖22 ≤ 2(‖h‖22 + ε2n) and it is enough to bound ‖h‖22. Recalling that ‖ · ‖2,d denotes
the L2 norm of Rd, we have ‖h‖22 ≤ ‖h‖22,d. We provide a bound for ‖h‖22,d below.

There exists ψ ∈ L2(µan) such that h(t) =
∫

exp(i 〈λ, t〉)ξ(λ)ωan(λ)dλ. Letting ĥ de-

note the Fourier transform of h, one has from the Fourier inversion theorem that ĥ(λ) =
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ξ(−λ)ωan(λ). By Parseval’s theorem, ‖h‖22,d = ‖ĥ‖22,d =
∫
ξ2(λ)ω2

an(λ)dλ1. Observe that

ω2
an(λ) = a−2dn exp{−‖λ‖2/(2a2n)}/C2, where C = 2dπd/2. Hence,

‖h‖22,d =
a−2dn

C2

∫
ξ2(λ) exp{−‖λ‖2/(2a2n)}dλ ≤ a−2dn

C2

∫
ξ2(λ) exp{−‖λ‖2/(4a2n)}dλ

=
a−dn
C

∫
ξ2(λ)ωan(λ)dλ =

‖h‖2Han
Cadn

≤ M2
n

Cadn
=

1

C
,

since ‖h‖2Han =
∥∥∥ξω1/2

an

∥∥∥2
2,d

and Mn = a
d/2
n .

Finally, we proceed to bound EXW , where W =
∫
[0,1]d |

∑n
i=1 Lx(Xi)|dx. Using Jensen’s

inequality and the integral version of Minkowski’s inequality, one has

EXW ≤ (EXW 2)1/2 =

[ ∫
∏n
i=1[0,1]

d

{∫
[0,1]d

|
n∑
i=1

Lx(ti)dx|
}2

dt1 . . . dtn

]1/2
≤
∫
[0,1]d

{∫
∏n
i=1[0,1]

d

|
n∑
i=1

Lx(ti)|2dt1 . . . dtn
}1/2

dx.

Clearly,
∫∏n

i=1[0,1]
d |
∑n

i=1 Lx(ti)|2dt1 . . . dtn = VarX{
∑n

i=1 Lx(Xi)} = nVarX{Lx(X1)}, since

EXLx(X1) = 0. Further, VarX{Lx(X1)} ≤ EX
{
ψσn(x − X1)f(X1)

}2
=
∫
[0,1]d ψσn(x −

t)2f(t)2dt ≤ 1
σdn
ψσn ? f

2. Substituting this in the above display

EXW ≤
(
n

σdn

)1/2 ∫
[0,1]d

{
ψσn ? f

2(x)
}1/2

dx

≤
(
n

σdn

)1/2{∫
[0,1]d

|ψσn | ? f2(x)dx

}1/2

≤
(
n

σdn

)1/2{∫
[0,1]d

∫
[0,1]d

|ψσn(x− t)| f2(t)dtdx
}1/2

≤
(
n

σdn

)1/2[ ∫
[0,1]d

f2(t)

{∫
Rd
|ψσn(x− t)| dx

}
dt

]1/2
≤ C

(
n

σdn

)1/2

= Cn
α+d
2α+d logt2d/2 n ≤ Cnεn.

From the penultimate line to the last line of the above display, we invoked Proposition 7 to
bound ‖f‖2 by a constant. We have thus obtained K1 ≤ CMn and K2 ≤ Cn. In Propo-
sition 6, set t = nε2n. We have K1t ≤ C(nεnMn)εn ≤ nεn for sufficiently large n provided

α > d/2. Further, K2t ≤ n2ε2n + K1EP (W )t = n
2α+2d
2α+d log3t1 n + n

α+2d+d/2
2α+d log2t1+t2d/2 n ≤

2n
2α+2d
2α+d log3t1 n for sufficiently large n if α > d/2. Therefore, (K2t)

1/2 ≤ nεn.

1. ωan is symmetric about zero.
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We next show that (BS) holds. Fix f ∈ Pn ∩ Un. Since f ∈ Pn, there exists h ∈ Han

with ‖h‖Han ≤ Mn such that ‖f − h‖∞ ≤ εn. By the triangle inequality, ‖ψσn ? f − f‖1 ≤
‖ψσn ? f − ψσn ? h‖1 + ‖ψσn ? h − h‖1 + ‖h − f‖1. Using ‖ψσn ? g‖1 ≤ ‖g‖1 for any L1

function g, we can further bound ‖ψσn ? f − f‖1 from above by 2εn + ‖ψσn ? h − h‖∞. It
thus remains to show that ‖ψσn ? h− h‖∞ ≤ εn.

There exists ξ ∈ L2(µan) such that h(t) =
∫

exp(i 〈λ, t〉)ξ(λ)ωan(λ)dλ. Clearly, ĥ(λ) =

ξ(−λ)ωa(λ). Since the Fourier transform of (ψσn ? h) is (2π)dψ̂σn ĥ and ψ̂σn(λ) = ψ̂(σnλ),
we have ψσn ? h(t) = (2π)d

∫
exp(−i 〈λ, t〉)ψ̂(σnλ)ĥ(λ)dλ. We can choose ψ in a manner

such that ψ̂ is compactly supported, equals (2π)−d on [−1, 1]d and is bounded above by
this constant everywhere; see proof of Lemma 4.3 in van der Vaart and van Zanten (2009).
Putting together,

|ψσn ? h(t)− h(t)|2 ≤
{∫
‖λ‖>σ−1

n

|ĥ(λ)|
}2

≤
{∫

ξ(λ)2ωan(λ)dλ

} ∫
‖λ‖>σ−1

n

ωan(λ)dλ

≤ C ‖h‖2Han exp{−σ−2n /(4a2n)} ≤ CM2
n exp{−σ−2n /(4a2n)} = Cadn exp{−(log2t2 n/4)},

where C is an absolute constant. The proof follows by noting that Cadn exp{− log2t2 n/4} ≤
ε2n whenever t2 > 1/2 (holds for t2 = 1/(2− κ), for 0 < κ < 1).

3.2 Proof of Corollary 2

Case β < α: Setting σn = n−1/(2β+d) log−t2 n for some constant t2 ≥ 1/(2 − κ), for 0 <

κ < 2, Mn = a
d/2
n , f̃n same as in (4), Pn = MnHan

1 + εnB1 with εn = n−β/(2β+d) log3t1/2 n,
t1 ≥ t2d/2, and δn = εn = ε′n, one can verify (PCS), (BT), (DT), (BS), (DS) exactly as in
the proof of Theorem 1. (PCN) follows from Lemma 4.3 of van der Vaart and van Zanten
(2009).
Case β > α: Same as before with εn = n−α/(2β+d) log3t1/2 n for t1 ≥ t2d/2.

4. Discussion

The article extends upon previous results on random design regression using Gaussian
process priors. A limitation of the current exposition is the requirement of the knowledge
of the smoothness parameter to construct the rescaling sequence. A natural question is
whether one can find a suitable prior on the bandwidth parameter which adapts to the
unknown smoothness level as in the fixed design case in van der Vaart and van Zanten
(2009). We propose to resolve this issue as a part of future research. Also, our current
proof technique would lead to a sub-optimal rate of posterior convergence for Lp norms
with p 6= 1. We believe this is due to the use of Talagrand’s inequality to construct the test
function. A key requirement to obtain optimal convergence rate is that the variance term
σ2F in the application of Talagrand’s inequality should be at most O(n). This assertion is
true only when p = 1. Obtaining convergence rates for integrated Lp norms with p 6= 1 is
a topic of future research.
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Appendix A. Proof of Theorem 3

Let ‖f‖2,n denote the empirical L2 norm of f , so that ‖f‖22,n = n−1
∑n

i=1 f
2(Xi). Also,

define

Ln(f, f0) =
q(n)(Y1:n, X1:n | f)

q(n)(Y1:n, X1:n | f0)
.

Lemma 8 Let An denote the following event in the sigma-field generated by (Y1:n, X1:n):

An =

{
(Y1:n, X1:n) :

∫
Ln(f, f0)Π(df) ≥ e−nδ2nΠ(‖f − f0‖∞ ≤ δn)

}
. (11)

Then, Pf0Y,X(An) ≥ 1− e−Cnδ2n.

Proof Clearly, Pf0Y,X(An) = Ef0X [Pf0Y |X(An)]. By Lemma 14 of van der Vaart and van Zanten

(2011), Pf0Y |X{
∫
Ln(f, f0)Π(df) ≥ e−nδ2nΠ(‖f − f0‖2,n ≤ δn)} ≥ 1− e−nδ2n/8. The conclusion

follows by noting that Π(‖f − f0‖∞ < δn) ≤ Π(‖f − f0‖2,n < δn).

Lemma 9 There exists a test function Φn for H0 : f = f0 vs H1 : f ∈ Un ∩ Pn such that

Ef0Y,XΦn ≤ e−Cnδ
2
n , (12)

sup
f∈Un∩Pn

EfY,X(1− Φn) ≤ e−Cnδ2n . (13)

for some absolute constant C.

Proof Let Φn = 1(‖f̃n − f0‖1 > Mεn/2). The error bounds follow from (BT), (DT) and
(BS), (DS).

Using a standard line of argument for establishing convergence rates in Bayesian non-
parametric models (Ghosal et al., 2000), we have Ef0Y,XΠ(Un | Y1:n, X1:n) ≤

∑4
i=1 bin,

where b1n = Ef0Y,XΦn, b2n = enδ
2
n supf∈Un∩Pn E

f
Y,X(1 − Φn)/Π(‖f − f0‖∞ < δn), b3n =

enδ
2
nΠ(Pcn)/Π(‖f − f0‖∞ < δn) and b4n = Pf0Y,X(Acn). The Theorem then follows from

Lemmas 8, 9 and Conditions (PCS) and (PCN).
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Abstract

CEKA is a software package for developers and researchers to mine the wisdom of crowds. It
makes the entire knowledge discovery procedure much easier, including analyzing qualities
of workers, simulating labeling behaviors, inferring true class labels of instances, filtering
and correcting mislabeled instances (noise), building learning models and evaluating them.
It integrates a set of state-of-the-art inference algorithms, a set of general noise handling
algorithms, and abundant functions for model training and evaluation. CEKA is written in
Java with core classes being compatible with the well-known machine learning tool WEKA,
which makes the utilization of the functions in WEKA much easier.

Keywords: crowdsourcing, learning from crowds, multiple noisy labeling, inference, noise
handling, repeated labeling simulation

1. Introduction

The emergence of crowdsourcing (Howe, 2006) has changed the way of knowledge acqui-
sition. It has already attracted vast attentions of the machine learning and data mining
research community in the past several years. Researchers show great interests in utilizing
crowdsourcing as a new approach to acquire class labels of objects from common users,
which costs much less than the traditional way—annotating by domain experts. In order to
improve the labeling quality, an object usually obtains multiple labels from different non-
expert annotators. Then, inference algorithms will be introduced to estimate the ground
truths of these objects. Many inference algorithms have been proposed in recent years.
Besides, building learning models from the inferred crowdsourced data is another research
issue with great challenges, which aims at lifting the quality of a learned model to the level
that can be achieved by training with the data labeled by domain experts.

To facilitate the research on mining the wisdom of crowds, we develop a novel software
package named Crowd Environment and its Knowledge Analysis (CEKA). The main contri-
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bution of CEKA lies on three aspects. (1) It provides comprehensive functions, which not
only includes a great number of ground truth inference algorithms with a uniform easy-to-use
programming interface but also includes a lot of well designed functions for the management
of crowdsourced data. (2) It is seamlessly compatible with the famous machine learning tool
WEKA (Hall et al., 2009), which facilitates the combination of the previous inference and
the subsequent model learning procedures. (3) It is written in Java and completely open
source. Therefore, many new ideas and methods, such as noise correction for crowdsourcing,
are easily integrated. The project CEKA is available at: http://ceka.sourceforge.net/.

2. Design Principles and System Architecture

The design of CEKA follows three basic guidelines. (1) Preferring integration of existing
algorithms rather than implementing them. Unless the original implementations of algo-
rithms are not released, we always try to integrate the original versions rather than re-
implementing them. The work that we have done is to unify the input/output file formats
and wrap the different algorithms into some newly designed java classes with a uniform
easy-to-use member functions. (2) Seamlessly compatible with WEKA. When input files
that contain crowdsourced data are loaded into the memory and form a Dataset object,
this object Dataset and all Examples inside can directly cooperate (e.g. training a model
and conducting a cross-validation) with the related classes in WEKA. (3) Extendibility.
Because machine learning in crowdsourcing is an emerging research domain, many topics
such as multi-label tasks in crowdsourcing have not been touched yet. In order to integrate
future research easily, when designing the core components of CEKA, we attempt to make
the class structures as extendable as possible.
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Info.

String respPath=D:/adult.response.txt; // labels obtained from crowd 
String arffPath=D:/adult.arffx;        // ground truth and features 
Dataset data = loadFile(respPath, null, arffPath); 
// infer the ground truth by Dawid & Skene’s algorithm 
DawidSkene dsAlgo = new DawidSkene(50); 
dsAlgo.doInference(data); 
// noise filtering with the CF algorithm 
Classifier [] classifiers = new Classifier[1]; 
Classifiers[0] = new SMO();            // SMO Classifier in WEKA 
ClassificationFilter noiseFilter = new ClassificationFilter(10); 
Dataset[] subData = null;              // cleansed and noise data sets 
cf.FilterNoise(data, classifiers[0]);  // conduct noise filtering 
subData[0] = noiseFilter. getCleansedDataset(); 
subData[1] = noiseFilter. getNoiseDataset(); 
// noise correction with STC algorithm 
SelfTrainCorrection stc = new SelfTrainCorrection(subData[0], subData[1], 1.0); 
stc.correction(classifiers[0]);        // correct mislabeled data 
// combining two data sets and then evaluate performance 
DatasetManipulator.addAllExamples(subData[0], subData[1]);  
PerformanceStatistic perfStat = new PerformanceStatistic(); 
perfStat.stat(subData[0]); 

Figure 1: The architecture of CEKA

Figure 1 illustrates the hierarchical architecture of CEKA, in which we also compare it
with two other tools for crowdsourcing SQUARE (Sheshadri and Lease, 2013) and BATC
(Nguyen et al., 2013). Generally, SQUARE and BATC only provide some inference algo-
rithms and several simple analysis functions. By contrast, CEKA conceives a more ambi-
tious blueprint. It attempts to support the entire knowledge discovery procedure including
analysis, inference and model learning. In the data layer, CEKA is able to read an arff(x)
file defined by WEKA, which contains features of instances for subsequent model building.
In the inference and learning layer, it provides a large number of inference algorithms. Our
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on-going studies find that mislabeled instances after inference can be effectively detected
and corrected, if a noise (mislabeled instance) handling algorithm can take advantage of the
information generated in the previous inference procedure. Thus, CEKA provides a batch
of noise handling algorithms. The core classes in this layer are derived from related classes
in WEKA. In the application layer, CEKA provides a lot of utilities such as calculating
performance evaluation metrics (i.e., accuracy, recall, precision, F source, AUC, M-AUC),
manipulating data (i.e., shuffling, splitting and combining data), etc.

Algo. CEKA SQUARE BATC Comments Algo. CEKA SQUARE BATC Comments 
MV ● ● ●  CF ●    
DS ● ● ●  IPF ●    
GLAD ● ● ● transplanted to Windows MPF ●    
KOS ●  ●  VF ●    
RY ● ● ● by SQUARE PLC ●    
ZenCrowd ● ●  by SQUARE STC ●    
PLAT ●   for biased binary labeling CC ●   unpublished 
AWMV ●   unpublished      
GTIC  ●   unpublished      

 

Table 1: Algorithms in CEKA compared with SQUARE and BATC

3. Algorithms

For the anonymous nature of crowdsourcing, CEKA currently only focuses on agnostic in-
ference algorithms, which are independent of any other prior knowledge besides annotations
assigned by non-experts. CEKA includes several novel inference algorithms proposed by
the authors such as ground truth inference using clustering (GTIC) for multi-class label-
ing, adaptive weighted majority Voting (AWMV) for biased binary labeling as well as the
well-known algorithms majority voting (MV), Dawid & Skene’s algorithm (DS) (Dawid and
Skene, 1979), GLAD (Whitehill et al., 2009), KOS (Karger et al., 2011), RY (Raykar et al.,
2010), ZenCrowd (Demartini et al., 2012), and PLAT (Zhang et al., 2015). To embody
our thought of introducing noise handling to improve the data quality of crowdsourcing,
we have proposed a novel framework and an algorithm adaptive voting noise correction
(AVNC) for crowdsourcing. In this framework, CEKA also includes a batch of noise fil-
tering and correction algorithms, such as classification filtering (CF) (Gamberger et al.,
1999), iterative partition filtering (IPF) (Khoshgoftaar and Rebours, 2007), multiple parti-
tion filtering (MPF) (Khoshgoftaar and Rebours, 2007), voting filtering (VF) (Brodley and
Friedl, 1999), polishing label correction (PLC) (Teng, 1999), self-training correction (STC)
(Triguero et al., 2014) and clustering correction (CC). Table 1 lists all algorithms in its
current version (v1.0), comparing with SQUARE (Sheshadri and Lease, 2013) and BATC
(Nguyen et al., 2013). Although our proposed algorithms GTIC, AWMV, and CC are under
review, all of them still can be accessed in the source code.

4. Usage Example

CEKA can be easily deployed in both Windows and Linux systems. We have transplanted
some algorithms such as GLAD from Linux to Windows. Figure 2 demonstrates a simple ex-
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periment including the ground truth inference, noise correction and performance evaluation.
In this sample code, like DS, all inference algorithms provide a uniform interface function
doInference, which assigns every instance an integrated label. The class Dataset is com-
pletely compatible with the class Instances in WEKA, which can be directly accepted by a
WEKA classifier as its parameter to train a model. Simply as the code shows, the statistical
information of the performance will be obtained when the class PerformanceStatistic is
applied to a Dataset object with the ground truth provided.  
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Info.

String respPath=D:/adult.response.txt; // labels obtained from crowd 
String arffPath=D:/adult.arffx;        // ground truth and features 
Dataset data = loadFile(respPath, null, arffPath); 
// infer the ground truth by Dawid & Skene’s algorithm 
DawidSkene dsAlgo = new DawidSkene(50); 
dsAlgo.doInference(data); 
// noise filtering with the CF algorithm 
Classifier [] classifiers = new Classifier[1]; 
Classifiers[0] = new SMO();            // SMO Classifier in WEKA 
ClassificationFilter noiseFilter = new ClassificationFilter(10); 
Dataset[] subData = null;              // cleansed and noise data sets 
cf.FilterNoise(data, classifiers[0]);  // conduct noise filtering 
subData[0] = noiseFilter. getCleansedDataset(); 
subData[1] = noiseFilter. getNoiseDataset(); 
// noise correction with STC algorithm 
SelfTrainCorrection stc = new SelfTrainCorrection(subData[0], subData[1], 1.0); 
stc.correction(classifiers[0]);        // correct mislabeled data 
// combining two data sets and then evaluate performance 
DatasetManipulator.addAllExamples(subData[0], subData[1]);  
PerformanceStatistic perfStat = new PerformanceStatistic(); 
perfStat.stat(subData[0]); 

Figure 2: A sample code for a basic usage

5. Conclusion and Future Work

CEKA is an easy-to-use open-source package for inference and machine learning tasks in
crowdsourcing. The current version of CEKA includes a large number of ground truth
inference algorithms, noise handling algorithms and useful functions supporting different
learning tasks. That CEKA is designed to cooperate with WEKA definitely facilitates and
accelerates the research progress in this field. CEKA is still growing. The future work
includes introducing crowdsourcing-specific active learning strategies, developing several
GUI tools (analyzer, simulator, and explorer) as well as integrating more inference, noise
handling and learning algorithms proposed either by the authors or other researchers.
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Abstract

Linear dimensionality reduction methods are a cornerstone of analyzing high dimensional
data, due to their simple geometric interpretations and typically attractive computational
properties. These methods capture many data features of interest, such as covariance, dy-
namical structure, correlation between data sets, input-output relationships, and margin
between data classes. Methods have been developed with a variety of names and motiva-
tions in many fields, and perhaps as a result the connections between all these methods
have not been highlighted. Here we survey methods from this disparate literature as opti-
mization programs over matrix manifolds. We discuss principal component analysis, factor
analysis, linear multidimensional scaling, Fisher’s linear discriminant analysis, canonical
correlations analysis, maximum autocorrelation factors, slow feature analysis, sufficient di-
mensionality reduction, undercomplete independent component analysis, linear regression,
distance metric learning, and more. This optimization framework gives insight to some
rarely discussed shortcomings of well-known methods, such as the suboptimality of certain
eigenvector solutions. Modern techniques for optimization over matrix manifolds enable
a generic linear dimensionality reduction solver, which accepts as input data and an ob-
jective to be optimized, and returns, as output, an optimal low-dimensional projection
of the data. This simple optimization framework further allows straightforward general-
izations and novel variants of classical methods, which we demonstrate here by creating
an orthogonal-projection canonical correlations analysis. More broadly, this survey and
generic solver suggest that linear dimensionality reduction can move toward becoming a
blackbox, objective-agnostic numerical technology.

Keywords: dimensionality reduction, eigenvector problems, matrix manifolds

1. Introduction

Linear dimensionality reduction methods have been developed throughout statistics, ma-
chine learning, and applied fields for over a century, and these methods have become in-
dispensable tools for analyzing high dimensional, noisy data. These methods produce a
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low-dimensional linear mapping of the original high-dimensional data that preserves some
feature of interest in the data. Accordingly, linear dimensionality reduction can be used
for visualizing or exploring structure in data, denoising or compressing data, extracting
meaningful feature spaces, and more. This abundance of methods, across a variety of data
types and fields, suggests a great complexity to the space of linear dimensionality reduction
techniques. As such, there has been little effort to consolidate our understanding. Here we
survey a host of methods and investigate when a more general optimization framework can
improve performance and extend the generality of these techniques.

We begin by defining linear dimensionality reduction (Section 2), giving a few canonical
examples to clarify the definition. We then interpret linear dimensionality reduction in
a simple optimization framework as a program with a problem-specific objective over or-
thogonal or unconstrained matrices. Section 3 surveys principal component analysis (PCA;
Pearson, 1901; Eckart and Young, 1936), multidimensional scaling (MDS; Torgerson, 1952;
Cox and Cox, 2001; Borg and Groenen, 2005), Fisher’s linear discriminant analysis (LDA;
Fisher, 1936; Rao, 1948), canonical correlations analysis (CCA; Hotelling, 1936), maxi-
mum autocorrelation factors (MAF; Switzer and Green, 1984), slow feature analysis (SFA;
Wiskott and Sejnowski, 2002; Wiskott, 2003), sufficient dimensionality reduction (SDR;
Fukumizu et al., 2004; Adragni and Cook, 2009), locality preserving projections (LPP; He
and Niyogi, 2004; He et al., 2005), undercomplete independent component analysis (ICA;
e.g. Hyvarinen et al., 2001), linear regression, distance metric learning (DML; Kulis, 2012;
Yang and Jin, 2006), probabilistic PCA (PPCA; Tipping and Bishop, 1999; Roweis, 1997;
Theobald, 1975), factor analysis (FA; Spearman, 1904), several related methods, and im-
portant extensions such as kernel mappings and regularizations.

A common misconception is that many or all linear dimensionality reduction problems
can be reduced to eigenvalue or generalized eigenvalue problems. Not only is this untrue in
general, but it is also untrue for some very well-known algorithms that are typically thought
of as generalized eigenvalue problems. The suboptimality of using eigenvector bases in these
settings is rarely discussed and is one notable insight of this survey. Perhaps inherited from
this eigenvalue misconception, a second common tendency is for practitioners to greedily
choose the low-dimensional data: the first dimension is chosen to optimize the problem ob-
jective, and then subsequent dimensions are chosen to optimize the objective on a residual
or reduced data set. The optimization framework herein shows the limitation of this view.
More importantly, the framework also suggests a more generalized linear dimensionality
reduction solver that encompasses all eigenvalue problems as well as many other important
variants. In this survey we restate these algorithms as optimization programs over matrix
manifolds that have a well understood geometry and a well developed optimization liter-
ature (Absil et al., 2008). This simple perspective leads to a generic algorithm for linear
dimensionality reduction, suggesting that, like numerical optimization more generally, lin-
ear dimensionality reduction can become abstracted as a numerical technology for a range
of problem-specific objectives. In all, this work: (i) surveys the literature on linear dimen-
sionality reduction, (ii) gives insights to some rarely discussed shortcomings of traditional
approaches, and (iii) provides a simple algorithmic template for generalizing to many more
problem-specific techniques.
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2. Linear Dimensionality Reduction as a Matrix Optimization Program

We define linear dimensionality reduction as all methods with the problem statement:

Definition 1 (Linear Dimensionality Reduction) Given n d-dimensional data points
X = [x1, ..., xn] ∈ IRd×n and a choice of dimensionality r < d, optimize some objective
fX(·) to produce a linear transformation P ∈ IRr×d, and call Y = PX ∈ IRr×n the low-
dimensional transformed data.

Note that throughout this work we assume without loss of generality that data X is
mean-centered, namely X1 = 0. To make this definition concrete, we briefly detail two
widespread linear dimensionality reduction techniques: principal component analysis (PCA;
Pearson, 1901) and canonical correlations analysis (CCA; Hotelling, 1936). PCA maximizes
data variance captured by the low-dimensional projection, or equivalently minimizes the
reconstruction error (under the `2-norm) of the projected data points with the original
data, namely

fX(M) = ||X −MM>X||2F .

Here M is a matrix with r orthonormal columns. In the context of Definition 1, optimizing
fX(M) produces an M such that P = M>, and the desired low-dimensional projection is
Y = M>X. PCA is discussed in depth in Section 3.1.1.

We stress that the notation of M and P in Definition 1 is not redundant, but rather
is required for other linear dimensionality reduction techniques where the linear transfor-
mation P does not equal the optimization variable M (as it does in PCA). Consider CCA,
another classical linear dimensionality reduction technique that jointly maps two data sets
Xa ∈ IRda×n and Xb ∈ IRdb×n to Ya ∈ IRr×n and Yb ∈ IRr×n, such that the sample corre-
lation between Ya and Yb is maximized1. Under the additional constraints that Ya and Yb
have uncorrelated variables (YaY

>
b = Λ, a diagonal matrix) and be individually uncorre-

lated with unit variance ( 1
nYaY

>
a = 1

nYbY
>
b = I), a series of standard steps produces the

well known objective

fX (Ma,Mb) =
1

r
tr
(
M>a (XaX

>
a )−1/2XaX

>
b (XbX

>
b )−1/2Mb

)
,

as will be detailed in depth in Section 3.1.4. This objective is maximized when M>a and
M>b are the left and right singular vectors of the matrix (XaX

>
a )−1/2XaX

>
b (XbX

>
b )−1/2. In

the context of Definition 1, the low dimensional canonical variables Ya are then related to

the original data as Ya = PaXa ∈ IRr×n, where Pa = M>a
(
XaX

>
a

)−1/2
(and similar for Yb).

Since Ma has by definition orthonormal columns, CCA, by inclusion of the whitening term(
XaX

>
a

)−1/2
, does not represent an orthogonal projection of the data. Accordingly, CCA

and PCA point out two key features of linear dimensionality reduction and Definition 1:
first, that the objective function fX(·) need not entirely define the linear mapping P to the
low-dimensional space; and second, that not all linear dimensionality reduction methods
need be orthogonal projections, or indeed projections at all.

1. As a point of technical detail, note that the use of two data sets and mappings is only a notational

convenience; writing the CCA projection as Y =

[
Ya
Yb

]
=

[
Pa 0
0 Pb

] [
Xa
Xb

]
= PX, we see that CCA

adheres precisely to Definition 1.
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Note also that both PCA and CCA result in a matrix decomposition, and indeed a com-
mon approach to many linear dimensionality reduction methods is to attempt to cast the
problem as an eigenvalue or generalized eigenvalue problem (Burges, 2010). This pursuit
can be fruitful but is limited, often resulting in ad hoc or suboptimal algorithms. As a spe-
cific example, in many settings orthogonal projections of data are required for visualization
and other basic needs. Can we create an Orthogonal CCA, where we seek orthogonal projec-
tions Ya = M>a Xa for a matrix Ma with orthonormal columns (and similar for Yb), such that
the sample correlation between Ya and Yb is maximized? No known eigenvalue problem can
produce this projection, so one tempting and common approach is to orthonormalize Pa and
Pb (the results found by traditional CCA). We will show that this choice can be significantly
suboptimal, and in later sections we will create Orthogonal CCA using a generic optimiza-
tion program. Thus matrix decomposition approaches suggest an unfortunate limitation to
the set of possible linear dimensionality reduction problems, and a broader framework is
required to fully capture Definition 1 and linear dimensionality reduction.

2.1 Optimization Framework for Linear Dimensionality Reduction

All linear dimensionality reduction methods presented here can be viewed as solving an
optimization program over a matrix manifold M, namely

minimize fX(M)

subject to M ∈M.
(1)

Given Definition 1, the intuition behind this optimization program should be apparent: the
objective fX(·) defines the feature of interest to be captured in the data, and the matrix
manifold encodes some aspects of the linear mapping P such that Y = PX.2

All methods considered here specify M as one of two matrix forms. First, some methods
are unconstrained optimizations over rank r linear mappings, implying the trivial manifold
constraint of Euclidean space, which we denote as M ∈ IRd×r. In this case, optimization
may be straightforward, and algorithms like expectation-maximization (Dempster et al.,
1977) or standard first order solvers have been well used.

Second, very often the matrix form will have an orthogonality constraint M = {M ∈
IRd×r : M>M = I}, corresponding to orthogonal projections of the data X. In this case
we write M = Od×r. As noted previously, the typical and often flawed approach is to
attempt to cast these problems as eigenvalue problems. Instead, viewed through the lens
of Equation 1, linear dimensionality reduction is simply an optimization program over a
matrix manifold, and indeed there is a well-developed optimization literature for matrix
manifolds (foundations include Luenberger, 1972; Gabay, 1982; Edelman et al., 1998; an
excellent summary is Absil et al., 2008).

As a primary purpose of this work is to survey linear dimensionality reduction, we first
detail linear dimensionality reduction techniques using this optimization framework. We
then implement a generic solver for programs of the form Equation 1, where M is the
family of orthogonal matrices Od×r. Thus we show the framework of Equation 1 to be not

2. Note that several methods will require optimization over additional auxiliary unconstrained variables,
which can be addressed algorithmically via a coordinate descent approach (alternating optimizations
over the auxiliary variable and Equation 1) or some more nuanced scheme.
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only conceptually simplifying, but also algorithmically simplifying. Instead of resorting to
ad hoc (and often suboptimal) formulations for each new problem in linear dimensionality
reduction, practitioners need only specify the objective fX(·) and the high-dimensional data
X, and these numerical technologies can produce the desired low-dimensional data. Section
4 validates this claim by applying this generic solver without change to different objectives
fX(·), both classic and novel. We require only the condition that fX(·) be differentiable
in M to enable simple gradient descent methods. However, this choice is a convenience
of implementation and not a fundamental issue, and thus approaches for optimization of
nondifferentiable objectives over nonconvex sets (here Od×r) could be readily introduced to
remove this restriction (for example, Boyd et al., 2011).

3. Survey of Linear Dimensionality Reduction Methods

We now review linear dimensionality reduction techniques using the framework of Section
2, to understand the problem-specific objective and manifold constraint of each method.

3.1 Linear Dimensionality Reduction with Orthogonal Matrix Constraints

Amongst all dimensionality reduction methods, the most widely used techniques are orthog-
onal projections. These methods owe their popularity in part due to their simple geometric
interpretation as a low-dimensional view of high-dimensional data. This interpretation is
of great comfort to many application areas, since these methods do not artificially create
or exaggerate many types of structure in the data, as is possible with other models that
encode strong prior assumptions.

3.1.1 Principal Component Analysis

Principal component analysis (PCA) was originally formulated by Pearson (1901) as a
minimization of the sum of squared residual errors between projected data points and the
original data fX(M) = ||X−MM>X||2F =

∑n
i=1 ||xi−MM>xi||22. Modern treatments tend

to favor the equivalent “maximizing variance” derivation (e.g., Bishop, 2006), resulting in
the objective −tr(M>XX>M). We write PCA in the formulation of Equation 1 as

minimize ||X −MM>X||2F
subject to M ∈ Od×r.

(2)

Equation 2 leads to the familiar SVD solution: after summarizing the data by its sample
covariance matrix 1

nXX
>, the decomposition XX> = QΛQ> produces an optimal point

M = Qr, where Qr denotes the columns of Q associated with the largest r eigenvalues of
XX> (Eckart and Young, 1936; Mirsky, 1960; Golub and Van Loan, 1996).

There are many noteworthy extensions to PCA. A first example is kernel PCA, which
uses PCA on a feature space instead of the inputs themselves (Schölkopf et al., 1999),
and indeed some dimensionality reduction methods and their kernelized counterparts can
be considered together as kernel regression problems (De la Torre, 2012). While quite
important for all machine learning methods, we consider kernelized methods orthogonal to
much of the presentation here, since using this kernel mapping is a question of representation
of data, not of the dimensionality reduction algorithm itself.
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Second, there have been several probabilistic extensions to PCA, such as probabilis-
tic PCA (PPCA; Tipping and Bishop, 1999; Roweis, 1997), extreme component analysis
(Welling et al., 2003), and minor component analysis (Williams and Agakov, 2002). These
algorithms all share a common purpose (modeling covariance) and the same coordinate sys-
tem for projection (the principal axes of the covariance ellipsoid), even though they differ
in the particulars of the projection and which basis is chosen from that coordinate system.
We present PPCA as a separate algorithm below and leave the others as extensions of this
core method.

Third, extensions have introduced outlier insensitivity via a different implicit noise model
such as a Laplace observation model, leading to a few examples of robust PCA (Galpin and
Hawkins, 1987; Baccini et al., 1996; Choulakian, 2006). An alternative approach to robust
PCA is driven by the observation that a small number of highly corrupted observations can
drastically influence standard PCA. Candes et al. (2011) takes this approach to robust PCA,
considering the data as low-rank plus sparse noise. Their results have particular theoretical
and practical appeal and connect linear dimensionality reduction to the substantial nuclear-
norm minimization literature.

Fourth, PCA has been made sparse in several contexts (Zou et al., 2006; d’Aspremont
et al., 2007, 2008; Journee et al., 2010), where the typical PCA objective is augmented with
a lasso-type `1 penalty term, namely fX(M) = ||X −MM>X||2F + λ||M ||1, with penalty
term λ and ||M ||1 =

∑
i

∑
j |Mij |. This objective does not admit an eigenvalue approach,

and as a result several specialized algorithms have been proposed. Note however that this
sparse objective is again simply a program over Od×r (albeit nondifferentiable).

Fifth, another class of popular extensions generalizes PCA to other exponential family
distributions, beyond the implicit normal distribution of standard PCA (Collins et al., 2002;
Mohamed et al., 2008). These methods, while important, result in nonlinear mappings of
the data and thus fall outside the scope of Definition 1. Additionally, there are other
nonlinear extensions to PCA; Chapter 12.6 of Hyvarinen et al. (2001) gives an overview.

3.1.2 Multidimensional Scaling

Multidimensional scaling (MDS; Torgerson, 1952; Cox and Cox, 2001; Borg and Groenen,
2005) is a class of methods and a large literature in its own right, but its connections to linear
dimensionality reduction and PCA are so well-known that it warrants individual mention.
PCA minimizes low-dimensional reconstruction error, but another sensible objective is to
maximize the scatter of the projection, under the rationale that doing so would yield the
most informative projection (this choice is sometimes called classical scaling). Defining our
projected points yi = M>xi for some M ∈ Od×r, MDS seeks to maximize pairwise distances∑

i

∑
j ||yi − yj ||2.

MDS leads to the seemingly novel optimization program (Equation 1) over the scatter
objective fX(M) =

∑
i

∑
j ||M>xi −M>xj ||2, which can be expanded as

fX(M) ∝ tr
(
M>XX>M

)
− 1>X>MM>X1 = tr

(
M>X

(
I − 1

n
11>

)
X>M

)
, (3)

where we denote the vector of all ones as 1. Noting that X has zero mean by definition
and thus X(I − 1

n11>) = X, we see classical MDS is precisely the ‘maximal variance’ PCA
objective tr(M>XX>M).
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The equivalence of MDS and PCA in this special case is well-known (Cox and Cox, 2001;
Borg and Groenen, 2005; Mardia et al., 1979; Williams, 2002), and indeed this particular
example only scratches the surface of MDS, which is usually considered in much more general
terms. Specifically, if we have available only pairwise distances dX(xi, xj), a more general
MDS problem statement is to fit the low-dimensional data so as to preserve these pairwise
distances as closely as possible in the least squares sense: minimizing

∑
i

∑
j(dX(xi, xj) −

dY (yi, yj))
2 is known as Kruskal-Shephard scaling, and the distance metrics can be arbitrary

and different between the original and low-dimensional data. First, it is worth noting that
least squares is by no means the only appropriate stress function on the distances dX and dY ;
a Sammon mapping is another common choice (see for example Hastie et al. (2008), §14.8).
Second, MDS does not generally require the data itself, but only the pairwise dissimilarities
dij = dX(xi, xj), which is often a useful property. When the data is known, we see here
that if we specify a low-dimensional orthogonal projection Y = M>X, then indeed this
objective will result in the class of linear dimensionality reduction programs

minimize
∑
i

∑
j

(
dX (xi, xj)− dY

(
M>xi,M

>xj

))2

subject to M ∈ Od×r.
(4)

Special approaches exist to solve this program on a case-by-case basis (Cox and Cox, 2001;
Borg and Groenen, 2005). However, by broadly considering Equation 4 as an optimization
over orthogonal projections, we again see the motivation for a generic numerical solver for
this class of problems, obviating objective-specific methods.

Of course, the low-dimensional data Y need not be a linear mapping of X (indeed, in
many cases the original points X are not even available). This more general form of MDS
is used in a variety of nonlinear dimensionality reduction techniques, including prominently
Isomap (Tenenbaum et al., 2000), as discussed below in Section 3.3.

3.1.3 Linear Discriminant Analysis

Another natural problem-specific objective occurs when the data X has associated class
labels, of which Fisher’s linear discriminant analysis (LDA; Fisher, 1936; Rao, 1948; modern
references include Fukunaga, 1990; Bishop, 2006) is perhaps the most prominent example.
The purpose of LDA is to project the data in such a way that separation between classes is
maximized. To do so, LDA begins by partitioning the data covariance XX> into covariance
contributed within each of the c classes (ΣW ) and covariance contributed between the classes
(ΣB) , such that XX> = ΣW + ΣB for

ΣW =
n∑
i=1

(xi − µci)(xi − µci)> ΣB =
n∑
i=1

(µci − µ)(µci − µ)>, (5)

where µ is the global data mean (here µ = 0 by definition) and µci is the class mean
associated with data point xi. LDA seeks the projection that maximizes between-class
variability tr

(
M>ΣBM

)
while minimizing within-class variability tr

(
M>ΣWM

)
, leading
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to the optimization program

maximize
tr
(
M>ΣBM

)
tr (M>ΣWM)

subject to M ∈ Od×r.
(6)

This objective appears very much like a generalized Rayleigh quotient, and is so for r = 1.
In this special case, M ∈ Od×1 can be found as the top eigenvector of Σ−1

W ΣB, which can

be seen by substituting L = Σ
1/2
W M into Equation 6 above. This one-dimensional LDA

projection is appropriate when there are c = 2 classes.

A common misconception is that LDA for higher dimensional projections r > 1 can be
solved with a greedy selection of the top r eigenvectors of Σ−1

W ΣB. However, this is certainly
not the case, as the top r eigenvectors of Σ−1

W ΣB will not in general be orthogonal. The eigen-

vector solution solves the similar but not equivalent objective tr
((
M>ΣWM

)−1 (
M>ΣBM

))
over M ∈ IRd×r; these two objectives and a few others are nicely discussed in Chapter 10
of Fukunaga (1990). While each of these choices has its merits, in the common case that
one seeks a projection of the original data, the orthogonal M produced by solving Equation
6 is more appropriate. Though rarely discussed, this misconception between the trace-of-
quotient and the quotient-of-traces has been investigated in the literature (Yan and Tang,
2006; Shen et al., 2007).

The commonality of this misconception adds additional motivation for this work, to
survey and consolidate a fragmented literature. Second, this misconception also points out
the limitations of eigenvector approaches: even when considered the standard algorithm
for a popular method, eigenvalue decompositions may in fact be an inappropriate choice.
Third, as Equation 6 is a simple program over orthogonal projections, we see again the
utility of a generic solver, an approach which should outperform traditional approaches
(and indeed does, as Section 4 will show).

In terms of extensions, we note a few key constraints of classical LDA: each data point
must be labeled with a class (no missing observations), each data point must be labeled with
only one class (no mixed membership), and the class boundaries are modeled as linear. As a
first extension, one might have incomplete class labels; Yu et al. (2006) extends LDA (with a
probabilistic PCA framework; see Section 3.2.2) to the semi-supervised setting where not all
points are labeled. Second, data points may represent a mixture of multiple features, such
that one wants to extract a projection where one feature is most discriminable. Brendel et al.
(2011) offers a possible solution by marginalizing covariances over each feature of interest.
Third, Mika et al. (1999) has extended LDA to the nonlinear domain via kernelization,
which has also been well used.

3.1.4 Canonical Correlations Analysis

Canonical correlation analysis (CCA) is a problem of joint dimensionality reduction: given
two data sets Xa ∈ IRda×n and Xb ∈ IRdb×n, find low-dimensional mappings Ya = PaXa
and Yb = PbXb that maximize the correlation between Ya and Yb, namely

ρ (ya, yb) =
E
(
y>a yb

)√
E (y>a ya)E

(
y>b yb

) =
tr
(
YaY

>
b

)√
tr (YaY >a ) tr

(
YbY

>
b

) =
tr
(
PaXaX

>
b P
>
b

)√
tr (PaXaX>a P>a ) tr

(
PbXbX

>
b P
>
b

) . (7)
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CCA was originally derived in Hotelling (1936); more modern treatments include Muirhead
(2005); Timm (2002); Hardoon et al. (2004); Hardoon and Shawe-Taylor (2009). This
method in its classical form, which we call Traditional CCA, seeks to maximize ρ (ya, yb)
under the constraint that all variables are uncorrelated and of unit variance: 1

nYaY
>
a = I,

1
nYbY

>
b = I, and YaY

>
b = Λ for some diagonal matrix Λ. As an optimization program over

Pa and Pb, Traditional CCA solves

maximize
tr
(
PaXaX

>
b P
>
b

)√
tr (PaXaX

>
a P
>
a ) tr

(
PbXbX

>
b P
>
b

)
subject to

1

n
PaXaX

>
a P
>
a = I

1

n
PbXbX

>
b P
>
b = I

PaXaX
>
b P
>
b = Λ.

(8)

Using the substitution Pa = M>a
(
XaX

>
a

)−1/2
for Ma ∈ Oda×r (and similar for Pb), Tradi-

tional CCA reduces to the well known objective

maximize tr
(
M>a (XaX

>
a )−1/2XaX

>
b (XbX

>
b )−1/2Mb

)
subject to Ma ∈ Oda×r

Mb ∈ Odb×r.

(9)

This objective is maximized when M>a is the top r left singular vectors and M>b is the
top r right singular vectors of (XaX

>
a )−1/2XaX

>
b (XbX

>
b )−1/2. The linear transformations

optimizing Equation 8 are then calculated as Pa = M>a (XaX
>
a )−1/2, and similar for Pb.

This solution is provably optimal for any dimensionality r under the imposed constraints
(Muirhead, 2005).

It is apparent by construction that Pa and Pb do not in general represent orthogonal
projections (except when XaX

>
a = I and XbX

>
b = I, respectively), and thus Traditional

CCA is unsuitable for common settings (such as visualization of data in an orthogonal axis)
where an orthogonal mapping is required. In these cases, a common heuristic approach is
to orthogonalize Pa and Pb to produce orthogonal mappings of the data Ya = M>a Xa and
Yb = M>b Xb. This heuristic choice, however, produces suboptimal results for the original
correlation objective of Equation 7 for all dimensions r > 1 (the r = 1 case is trivially an
orthogonal projection), as the results will show.

Our approach addresses a desire for orthogonal projections directly: with the optimiza-
tion framework of Equation 1, we can immediately write down a novel linear dimensionality
reduction method that preserves Hotelling’s original objective but is properly generalized
to produce orthogonal projections. We call this method Orthogonal CCA, maximizing the
correlation ρ (ya, yb) objective directly over orthogonal matrices, namely

maximize
tr
(
M>a XaX

>
b Mb

)√
tr (M>a XaX

>
a Ma) tr

(
M>b XbX

>
b Mb

)
subject to Ma ∈ Oda×r

Mb ∈ Odb×r.

(10)
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The resulting low-dimensional mappings are then the orthogonal projections that we desire:
Ya = M>a Xa and Yb = M>b Xb. The optimization program of Equation 10 can not be solved
with a known matrix decomposition, thus requiring a direct optimization approach. More
importantly, we point out the meaningful difference between Traditional CCA and Orthogo-
nal CCA: Traditional CCA whitens each data set Xa and Xb, and then orthogonally projects
these whitened data into a common space such that correlation is maximized. Orthogonal
CCA on the other hand preserves the covariance of the original data Xa and Xb, finding
orthogonal projections where correlation is maximized without the initial whitening step.
It is unsurprising then that these two methods should return different mappings, even when
the Traditional CCA result is orthogonalized post hoc. Accordingly, CCA demonstrates
the utility of considering linear dimensionality reduction in the framework of Equation 1;
methods can be directly written down for the objective and projection of interest, without
having to shoehorn the problem into an eigenvector decomposition.

3.1.5 Maximum Autocorrelation Factors

There are a number of linear dimensionality reduction methods that seek to preserve tem-
porally interesting structure in the projected data. A first simple example is maximum
autocorrelation factors (MAF; Switzer and Green, 1984; Larsen, 2002). Suppose the high-
dimensional data X ∈ IRd×n has data points xt for t ∈ {1, ..., n}, and that the index label
t defines an order in the data. In such a setting, the structure of interest for the low-
dimensional representation may have nothing to do with modeling data covariance (like
PCA), but rather the appropriate description should include temporal structure.

Assume that there is an underlying r-dimensional temporal signal that is smooth, and
that the remaining d−r dimensions are noise with little temporal correlation (less smooth).
MAF then seeks an orthogonal projection P = M> for M ∈ Od×r so as to maximize
correlation between adjacent points yt, yt+δ, yielding the objective

fX(M) = ρ(yt, yt+δ) =
E(y>t yt+δ)√
E(y2

t )E(y2
t+δ)

=
E(x>t MM>xt+δ)

E(x>t MM>xt)
=

tr(M>ΣδM)

tr(M>ΣM)
, (11)

where Σ is the empirical covariance of the data E(xtx
>
t ) = 1

nXX
> and Σδ is the sym-

metrized empirical cross-covariance of the data evaluated at a one-step time lag Σδ =
1
2

(
E(xt+δx

>
t ) + E(xtx

>
t+δ)

)
. This objective results in the linear dimensionality program

maximize
tr(M>ΣδM)

tr(M>ΣM)

subject to M ∈ Od×r.
(12)

Note again the appearance of the quotient-of-traces objective (as in LDA and CCA). Indeed,
the same heuristic (solving the trace-of-quotient problem) is typically applied to MAF, which
results in the standard choice of the top eigenvectors of Σ−1Σδ as the solution to Equation
12. Though correct in the r = 1 case, this misconception is incorrect for precisely the same
reasons as above with LDA, and its use results in the same pitfalls. Directly solving the
manifold optimization of Equation 1 presents a more straightforward option.
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MAF can be seen as a method balancing the desire for cross-covariance (Σδ) of the
data without overcounting data that has high power (the denominator containing Σ). In-
deed, such methods have been invented with slight variations in various application areas
(e.g., Cunningham and Yu, 2014). For example, one might simply ask to maximize the
cross-covariance E(y>t yt+δ) rather than the correlation itself. Doing so results in a simpler
problem than Equation 12: maximize tr(M>ΣδM) for M ∈ Od×r. In this case the eigenvec-
tor solution is optimal. Second, we may want to maximize (or minimize, as in Turner and
Sahani (2007)) the squared distance between projected points; the objective then becomes
E(||yt+δ − yt||2), which through a similar set of steps produces the similar eigenvalue prob-
lem tr

(
M>(Σ− Σδ)M

)
for M ∈ Od×r. This last choice is a discrete time analog of a more

popular method—slow feature analysis—which we discuss in the next section. Third, one
might want to specify a particular form of temporal structure in terms of a dynamics objec-
tive fX(M), and seek linear projections containing that structure. The advantage of such an
approach is that one can specify a range of dynamical structures well beyond the statistics
captured by an autocorrelation matrix. A recent simple example is Churchland et al. (2012),
who sought a linear subspace of the data where linear dynamics were preserved, namely an
M minimizing fX(M) = ||Ẋ −MDM>X||2F for some dynamics matrix D ∈ IRr×r. This
objective is but one simple choice of dynamical structure; given the canonical autonomous
system ẏ = g(y)+ε, one might similarly optimize fX(M) = ||M>Ẋ−g(M>X)||2F . Optimiz-
ing such a program finds the projection of the data that optimally expresses that dynamical
feature of interest, without danger of artificially creating that structure based on a strong
prior model (as is possible in state-space models like the Kalman filter).

3.1.6 Slow Feature Analysis

Similar in spirit to MAF, slow feature analysis (SFA; Wiskott and Sejnowski, 2002; Wiskott,
2003) is a linear dimensionality reduction technique developed to seek invariant representa-
tions in object recognition problems. SFA assumes that measured data, such as pixels in a
movie, can have rapidly changing values over time, whereas the identity, pose, or position
of the underlying object should move much more slowly. Thus, recovering a slowly moving
projection of data may produce a meaningful representation of the true object of interest.
Accordingly, assuming access to derivatives Ẋ = [ẋ1, ..., ẋn], SFA minimizes the trace of
the covariance of the projection tr(Ẏ Ẏ >) = tr(M>ẊẊ>M). This objective is PCA on the
derivative data:

minimize tr
(
M>ẊẊ>M

)
subject to M ∈ Od×r.

(13)

Linear SFA is the most straightforward case of the class of SFA methods. Several additional
choices are typical in SFA implementations, including: (i) data points xt ∈ X are usually
expanded nonlinearly via some feature mapping h : IRd → IRp for some p > d (a typical
choice is all monomials of degree one and two to capture linear and quadratic effects); and
(ii) data are whitened to prevent the creation of structure due to the mapping h(·) alone
before the application of the PCA-like program in Equation 13. A logical extension of this
nonlinear feature space mapping is to consider a reproducing kernel Hilbert space mapping,
as has indeed been done (Bray and Martinez, 2002). Turner and Sahani (2007) established
the connections between SFA and linear dynamical systems, giving a probabilistic interpre-
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tation of SFA that also makes different and interesting connections of this method to PCA
and its probabilistic counterpart (Section 3.2.2).

3.1.7 Sufficient Dimensionality Reduction

Consider a supervised learning problem with high dimensional covariates X ∈ IRd×n and
responses Z ∈ IR`×n. The concept behind sufficient dimensionality reduction is to find an
orthogonal projection of the data Y = M>X ∈ IRr×n such that the reduced-dimension
points Y capture all statistical dependency between X and Z. Thus, sufficient dimensional-
ity reduction (SDR) is a problem of feature selection that seeks an M ∈ Od×r which makes
covariates and responses conditionally independent:

pZ|X(z|x) = pZ|M>X(z|M>x) ⇐⇒ Z ⊥⊥ X|M>X. (14)

SDR is in fact a class of methods, as there are a number of ways one might derive an objective
for such a conditional independence relationship. Particularly popular in machine learning
is the use of kernel mappings to characterize the conditional independence relationship
of Equation 14 (Fukumizu et al., 2004, 2009; Nilsson et al., 2007). The essential idea in
these works is to map covariates X and responses Z into reproducing kernel Hilbert spaces,
where it has been shown that, for universal kernels, cross-covariance operators can be used
to determine conditional independence of X and Z (Fukumizu et al., 2004; Gretton et al.,
2012, 2005). Such an approach induces the cost function on the projection

fX(M) = J(Z,M>X) := tr
(
K̄Z

(
K̄M>X + nεI

)−1
)
, (15)

where K̄Z =
(
I − 1

n11>
)
KZ

(
I − 1

n11>
)

is the centered Gram matrix KZ = {k(zi, zj)}ij
(and similar for K̄M>X). Critically, this cost function is provably larger than J(Z,X), with
equality if and only if the desired conditional independence of Equation 14 holds. Thus, we
have the following linear dimensionality reduction program:

minimize tr
(
K̄Z

(
K̄M>X + nεI

)−1
)

subject to M ∈ Od×r.
(16)

SDR has been extended to the unsupervised case (Wang et al., 2010) and has been imple-
mented with other objectives such as the Hilbert-Schmidt independence criterion (Gretton
et al., 2005). An important review of non-kernel SDR techniques is Adragni and Cook
(2009), in addition to earlier work (Li, 1991).

3.1.8 Locality Preserving Projections

All methods considered thus far stipulate objectives based on global loss functions, which
can be sensitive to outliers and can be significantly distorted by nonlinear structure in the
data. A popular alternative throughout machine learning is to consider local neighborhood
structure. In the case of dimensionality reduction, considering locality often amounts to
constructing a neighborhood graph of the training data, and using that graph to define
the loss function. Numerous nonlinear methods have been proposed along these lines (see
Section 3.3), and this development has led to a few important linear methods that consider
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local structure. First, locality preserving projections (LPP) (He and Niyogi, 2004) is a
direct linear interpretation of Laplacian Eigenmaps (Belkin and Niyogi, 2003). LPP begins
by defining a graph with each data point xi ∈ IRd as a vertex, connecting xi and xj with
the edge δi,j if these points are in the same ε neighborhood (that is, ||xi − xj || < ε). A
kernel (typically the squared exponential kernel) is then used to weight the existing edges.
The cost of the reconstruction yi = Pxi is then

n∑
i=1

n∑
j=1

||Pxi − Pxj ||22Wij , where Wij = δi,j exp

{
−1

τ
||xi − xj ||22

}
. (17)

Through a few standard steps (see for example Belkin and Niyogi, 2003; He and Niyogi,
2004), this objective results in the linear dimensionality objective

minimize tr
(
PXLX>P>

)
subject to PXDX>P> = I,

(18)

where the matrix D is diagonal with the column sums of W , namely Dii =
∑

jWij , and
L = D − W is the Laplacian matrix. Note that this constraint set is sometimes called
a flag matrix manifold. As in Traditional CCA (Section 3.1.4), LPP can be solved to
produce the matrix P with columns equal to the generalized eigenvectors vi satisfying
XLX>vi = λiXDX

>vi, by implicitly solving an orthogonally constrained optimization
over M = (XDX>)1/2P> ∈ Od×r:

minimize tr
(
M>(XDX>)−>/2XLX>(XDX>)−1/2M

)
subject to M ∈ Od×r.

(19)

Note again that the resulting linear mapping Y = PX = M>(XDX>)−>/2X is not an
orthogonal projection.

Related to LPP, neighborhood preserving embedding (NPE) (He et al., 2005) has a
largely parallel motivation. NPE is a linear analogue to locally linear embedding (Roweis
and Saul, 2000) that produces a different linear approximation to the Laplace Beltrami
operator, resulting in the objective

minimize tr
(
M>(XX>)−>/2X(I −W )>(I −W )X>(XX>)−1/2M

)
subject to M ∈ Od×r,

(20)

where the matrix W is the same in LPP. We group these methods together due to their
similarity in motivation and resulting objective.

3.2 Linear Dimensionality Reduction with Unconstrained Objectives

All methods reviewed so far involve orthogonal mappings, but several methods simplify
further to an unconstrained optimization over matrices M ∈ IRd×r. We describe those
linear dimensionality reduction methods here.
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3.2.1 Undercomplete Independent Component Analysis

Independent Component Analysis (ICA; Hyvarinen et al., 2001) is a massively popular class
of methods that is often considered alongside PCA and other simple linear transformations.
ICA specifies the usual data X ∈ IRd×n as a mixture of unknown and independent sources
Y ∈ IRr×n. Note the critical difference between the independence requirement and the
uncorrelatedness of PCA and other methods: for each source data point y = [y1, ..., yr]> ∈
IRr (one column of Y ), independence implies p(y) ≈

∏r
j=1 p

(
yj
)
, where the p

(
yj
)

are the
univariate marginals of the low dimensional data (sources).

ICA finds the demixing matrix P such that we recover the independent sources as
Y = PX. The vast majority of implementations and presentations of ICA deal with the
dimension preserving case of r = d, and indeed most widely used algorithms require this
parity. In this case, ICA is not a dimensionality reduction method.

Our case of interest for dimensionality reduction is the ‘undercomplete’ case where r < d,
in which case Y = PX is a linear dimensionality reduction method according to Definition 1.
Interestingly, the most common approach to undercomplete ICA is to preprocess the mixed
data X with PCA (e.g., Joho et al., 2000), reducing the data to r dimensions, and running
a standard square ICA algorithm. That said, there are a number of principled approaches
to undercomplete ICA, including (Stone and Porrill, 1998; Zhang et al., 1999; Amari, 1999;
De Ridder et al., 2002; Welling et al., 2004). All of these models necessarily involve a
probabilistic model, required by the independence of the sources. As an implementation
detail, note that observations X are whitened as a preprocessing step.

With this model, authors have maximized the log-likelihood of a generative model
(De Ridder et al., 2002) or minimized the mutual information between the sources (Stone
and Porrill, 1998; Amari, 1999; Zhang et al., 1999), each of which requires an approxi-
mation technique. Welling et al. (2004) describes an exact algorithm for maximizing the
log-likelihood of a product of experts objective

fX(M) =
1

n

n∑
i=1

log p(xi) ∝ 1

2
log |M>M |+ 1

n

n∑
i=1

r∑
k=1

log pθ

(
m>k xi

)
, (21)

where mk are the (unconstrained) columns of M , and pθ(·) is a likelihood distribution
(an “expert”) parameterized by some θk. Thus this undercomplete ICA, as an optimization
program like Equation 1, is a simple unconstrained maximization of fX(M) over M ∈ IRd×r.

Extensions of ICA are numerous. Insomuch as undercomplete ICA is a special case of
ICA, many of these extensions will also be applicable in the undercomplete case; see the
reference Hyvarinen et al. (2001).

3.2.2 Probabilistic PCA

One often-noted shortcoming of PCA is that it partitions data into orthogonal signal (the
r-dimensional projected subspace) and noise (the (d − r)-dimensional nullspace of M>).
Furthermore, PCA lacks an explicit generative model. Probabilistic PCA (PPCA; Tip-
ping and Bishop, 1999; Roweis, 1997; Theobald, 1975) adds a prior to PCA to address
both these potential concerns, treating the high-dimensional data to be a linear mapping
of the low-dimensional data (plus noise). If we stipulate some latent independent, iden-
tically distributed r-dimensional data yi ∼ N (0, Ir) for i ∈ {1, ..., n}, and we presume
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that the high-dimensional data is a noisy linear mapping of that low-dimensional data
xi|yi ∼ N (Myi, σ

2
ε I) for some given or estimated noise parameter σ2

ε . This model yields a
natural objective with the total (negative log) data likelihood, namely

fX(M) = − log p(X|M) ∝ log |MM> + σ2
ε I|+ trace

(
(MM> + σ2

ε I)−1XX>
)
. (22)

Mapping this onto our dimensionality reduction program, we want to minimize the neg-
ative log likelihood fX(M) over an arbitrary matrix M ∈ IRd×r. Appendix A of Tip-
ping and Bishop (1999) shows that this objective can be minimized in closed form as

M = Ur(Sr − σ2
ε I)

1
2 where 1

nXX
> = USU> is the singular value decomposition of the em-

pirical covariance, and Ur denotes the first r columns of U (ordered by the singular values).
Tipping and Bishop (1999) also show that the noise parameter σ2

ε can be solved in closed
form, resulting in a closed-form maximum likelihood solution to the parameters of PPCA.
This closed-form obviates a more conventional expectation-maximization (EM) approach
(Dempster et al., 1977), though in practice EM is still used with the Sherman-Morrison-
Woodbury matrix inversion lemma for computational advantage when d � r. Under this
statistical model, the low-dimensional mapping of the observed data is the mean of the pos-
terior p(Y |X), which also corresponds to the MAP estimator: Y = M>(MM>+ σ2

ε I)−1X,
which again fits the form of linear dimensionality reduction Y = PX.

As with PCA, there are a number of noteworthy extensions to PPCA. Ulfarsson and
Solo (2008) add an `2 regularization term to the PPCA objective. This regularization can
be viewed as placing a Gaussian shrinkage prior p(M) on the entries of M , though the
authors termed this choice more as a penalty term to drive a sparse solution. A different
choice of regularization is found in “Directed” PCA (Kao and Van Roy, 2013), where a
trace penalty on the inverse covariance matrix is added. Finally, more generally, several of
the extensions noted in Section 3.1.1 are also applicable to the probabilistic version.

3.2.3 Factor Analysis

Factor analysis (FA; Spearman, 1904) has become one of the most widely used statistical
methods, in particular in psychology and behavioral sciences. FA is a more general case of a
PPCA model: the observation noise is fit per observation rather than across all observations,
resulting in the following conditional data likelihood: xi|yi ∼ N (Myi, D) for a diagonal
matrix D, where the matrix M is typically termed factor loadings. This choice can be
viewed as a means to add scale invariance to each measurement, at the cost of losing
rotational invariance across observations. Following the same steps as in PPCA, we arrive
at the linear dimensionality reduction program

minimize log |MM> +D|+ trace
(

(MM> +D)−1XX>
)
, (23)

which results in a similar linear dimensionality reduction mapping Y = PX for P =
M>(MM> + D)−1. Unlike PPCA, FA has no known closed-form solution, and thus an
expectation-maximization algorithm (Dempster et al., 1977) or direct gradient method is
typically used to find a (local) optimum of the log likelihood. Extensions similar to those
for PPCA have been developed for FA (see for example Kao and Van Roy (2013)).
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3.2.4 Linear Regression

Linear regression is one of the most basic and popular tools for statistical modeling. Though
not typically considered a linear dimensionality reduction method, this technique maps d-
dimensional data onto an r-dimensional hyperplane defined by the number of independent
variables. Considering d-dimensional data X as being partitioned into inputs and outputs
X = [Xin;Xout] for inputs Xin ∈ IRr×n and outputs Xout ∈ IR(d−r)×n, linear regression fits
Xout ≈ MXin for some parameters M ∈ IR(d−r)×r. The standard choice for fitting such a
model is to minimize a simple sum-of-squared-errors objective fX(M) = ||Xout−MXin||2F ,
which leads to the least squares solution M = XoutX

>
in(XinX

>
in)−1. In the form of Equation

1, linear regression is

minimize ||Xout −MXin||2F (24)

This model produces a regressed data set X̂ = [Xin;MXin] = [I;M ]Xin. Note that [I;M ]
has rank r (the data lie on a r-dimensional subspace) and thus Definition 1 applies. To find
the dimensionality reduction mapping P , we simply take the SVD [I;M ] = USV > and set
P = [SV > 0] where 0 is the (d−r)× (d−r) matrix of zeroes. The low dimensional mapping
of the original data X then takes the standard form Y = PX. Chapter 3 of Hastie et al.
(2008) gives a thorough introduction to linear regression and points out (Equation 3.46)
that the least squares solution can be viewed as mapping the output Xout in a projected
basis. Adragni and Cook (2009) point out linear regression as a dimensionality reduction
method in passing while considering the case of sufficient dimensionality reduction (see
SDR, Section 3.1.7, for more detail).

An important extension to linear regression is regularization for bias-variance tradeoff,
runtime performance, or interpretability of results. The two most popular include adding
an `2 (ridge or Tikhonov regression) or an `1 penalty (lasso), resulting in the objective

minimize ||Xout −MXin||2F + λ||M ||p (25)

for some penalty λ. While the `2 case can be solved in closed form as an augmented
least squares, the `1 case requires a quadratic program (Tibshirani, 1996); though the
simple quadratic program formulation scales poorly (Boyd et al., 2011; Bach et al., 2011).
Regardless, both methods produce an analogous form as in standard linear regression,
resulting in a linear dimensionality reduction Y = PX for P = [SV > 0] as above.

Another important extension, particularly given the present subject of dimensionality
reduction, is principal components regression and partial least squares (Hastie et al., 2008).
Principal components regression uses PCA to preprocess the input variables Xin ∈ IRr×n
down to a reduced X̃in ∈ IRr̃×n, where r̃ is chosen by computational constraints, cross-
validation, or similar. Standard linear regression is then run on the resulting components.
This two-stage method (first PCA, then regression) can produce deeply suboptimal results,
a shortcoming which to some extent is answered by partial least squares. Partial least
squares is another classical method that trades off covariance of Xin (as in the PCA step
of principal components regression) and predictive power (as in linear regression). Indeed,
partial least squares has been shown to be a compromise between linear regression and
principal components regression, using the framework of continuum regression (Stone and
Brooks, 1990). Even still, the partial least squares objective is heuristic and is carried
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out on r dimensions in a greedy fashion. Bakır et al. (2004) approached the rank-r linear
regression problem directly, writing the objective in the form of Equation 1 as

minimize ||Xout −MoutSM
>
inXin||2F

subject to Mout ∈ Odout×r

Min ∈ Odin×r,
(26)

where S is a nonnegative diagonal matrix, and the optimization program is over the variables
{Min,Mout, S}. This method can again be solved as an example of Equation 1.

3.2.5 Distance Metric Learning

Distance metric learning (DML) is an important class of machine learning methods that is
typically motivated by the desire to improve a classification method. Numerous algorithms—
canonical examples include k-nearest neighbors and support vector machines—calculate dis-
tances between training points, and the performance of these algorithms can be improved
substantially by a judicious choice of distance metric between these points. Many objectives
have been proposed to learn these distance metrics; a seminal work is Xing et al. (2002),
and thorough surveys of this literature include Kulis (2012); Yang and Jin (2006); Yang
(2007).

In the linear case, to generalize beyond Euclidean distance, distance metric learning seeks
a Mahalanobis distance dM (xi, xj) = ||M>xi −M>xj ||2 = ||xi − xj ||MM> that improves
some objective on training data. When M ∈ IRd×d is full rank, this approach is not
a dimensionality reduction. However, as is often noted in that literature, a lower rank
M ∈ IRd×r for r < d implies a linear mapping of the data to some reduced space where
classification (or another objective) is hopefully improved, thus implicitly defining a linear
dimensionality reduction method.

Numerous methods have been introduced in the DML literature. Here for clarity we
survey one representative method in depth and incorporate other popular approaches from
this literature thereafter. Large margin nearest neighbors (LMNN; Weinberger et al., 2005;
Torresani and Lee, 2006; Weinberger and Saul, 2009) assumes labeled data: (xi, zi), such
that zi ∈ {1, ..., C} for the C data classes. LMNN typically begins by identifying a target
neighbor set η(i) for each data point xi, which, in the absence of side information, is simply
the k nearest neighbors belonging to the same class zi as point xi. The key intuition behind
LMNN is that a distance metric dM (xi, xj) is desired such that target neighbors are pulled
closer together than any points belonging to a different class, ideally with a large margin.
Accordingly, LMNN optimizes the objective

fX(M) =
n∑
i=1

∑
j∈η(i)

(
dM (xi, xj)

2 + λ

n∑
`=1

1(zi 6= z`)
[
1 + dM (xi, xj)

2 − dM (xi, x`)
2
]
+

)
,

(27)
where 1(·) is the indicator function for the class labels zi, z`, and [·]+ is the hinge loss.
Intuitively, the first term of the right hand side pulls target neighbors closer together, while
the second term penalizes (with weight λ) any points x` that are closer to xi than its target
neighbors xj (plus some margin), and have a different label (zi 6= z`).
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As a dimensionality reduction technique, this objective is readily optimized over M ∈
IRd×r, to produce a low dimensional mapping of the data Y = M>X. Beyond LMNN, other
prominent methods explore slightly different objectives with similar motivations. Examples
include relevant component analysis for DML (Bar-Hillel et al., 2003), neighborhood com-
ponent analysis (Goldberger et al., 2004), collapsing classes (Globerson and Roweis, 2005),
discriminative component analysis (Peltonen et al., 2007), latent coincidence analysis (Der
and Saul, 2012), and an online, large-scale method (Chechik et al., 2009). Many of these
works also offer kerneled extensions for nonlinear DML.

3.3 Scope Limitations

Definition 1 limits our scope and excludes a number of algorithms that could be considered
dimensionality reduction methods. Here we consider four prominent cases that fall outside
the definition of linear dimensionality reduction.

3.3.1 Nonlinear Manifold Methods

The most obvious methods to exclude from linear dimensionality reduction are nonlinear
manifold methods, the most popular of which include Local Linear Embedding (Roweis and
Saul, 2000), Isomap (Tenenbaum et al., 2000), Laplacian eigenmaps (Belkin and Niyogi,
2003), maximum variance unfolding (Weinberger and Saul, 2006), t-distributed stochastic
neighbor embedding (Van der Maaten and Hinton, 2008), and diffusion maps (Coifman
and Lafon, 2006). These methods seek a nonlinear manifold by using local neighborhoods,
geodesic distances, or other graph theoretic considerations. Thus, while these methods are
an important contribution to dimensionality reduction, they do not produce low-dimensional
data as Y = PX for any P . It is worth noting that some of these problems, such as Laplacian
eigenmaps, do involve a generalized eigenvector problem in their derivation, though typically
those eigenproblems are the direct solution to a stated objective and not the heuristic that
is more often seen in the linear setting (and that motivates the use of direct optimization).
A concise introduction to nonlinear manifold methods is given in Zhao et al. (2007), an
extensive comparative review is Van der Maaten et al. (2009), and a probabilistic perspective
on many spectral methods is given in Lawrence (2012).

3.3.2 Nonparametric Methods

One might also consider classical methods from linear systems theory, like Kalman filtering
or smoothing (Kalman, 1960), as linear dimensionality reduction methods. Even more
generally, nonparametric methods like Gaussian Processes (Rasmussen and Williams, 2006)
also bear some similarity. The key distinction with these algorithms is that our definition
of linear dimensionality is parametric: P ∈ IRr×d is a fixed mapping and does not change
across the data set or some other index. Certainly any nonparametric method violates this
restriction, as by definition the transformation mapping must grow with the number of data
points. In the Kalman filter, for example, the mapping (which is indeed linear) between
each point xi and its low-dimensional projection yi changes with each data point (based on
all previous data), so in fact this method is also a nonparametric mapping that grows with
the number of data points n. This same argument applies to most state-space models and
subspace identification methods, including the linear quadratic regulator, linear quadratic
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Gaussian control, and similar. Hence these other classic methods also fall outside the scope
of linear dimensionality reduction.

3.3.3 Matrix Factorization Problems

A few methods discussed in this work have featured matrix factorizations, and indeed
there are many other methods that involve such a decomposition in areas like indexing
and collaborative filtering. This general class certainly bears similarity to dimensionality
reduction, in that it uses a lower dimensional set of factors to reconstruct noisy or missing
high-dimensional data (for example, classical latent semantic indexing is entirely equivalent
to PCA; Deerwester et al., 1990). A common factorization objective is to find H ∈ IRd×r
and Y ∈ IRr×n such that the product HY reasonably approximates X according to some
criteria. The critical difference between these methods and linear dimensionality reduction
is that these methods do not in general yield a sensible linear mapping Y = PX, but rather
the inverse mapping from low-dimension to high-dimension. While this may seem a trivial
and invertible distinction, it is not: specifics of the method often imply that the inverse
mapping is nonlinear or ill-defined. To demonstrate why this general class of problem
falls outside the scope of linear dimensionality reduction, we detail two popular examples:
nonnegative matrix factorization and matrix factorization as used in collaborative filtering.

Nonnegative matrix factorization (NMF; Lee and Seung, 1999; sometimes called multi-
nomial PCA; Buntine, 2002), solves the objective fX(H,Y ) = ||X−HY || for a nonnegative
linear basis H ∈ IRd×r+ and a nonnegative low-dimensional mapping Y ∈ IRr×n+ . The critical
difference with our construction is that NMF is not linear: there is no P such that Y = PX
for all points xi. If we are given H and a test point xi, we must do the nonlinear solve
yi = argminy≥0||xi−Hy||2. A simple counterexample is to take an existing point xj and its
nonnegative projection yj (which we assume is not zero). If we then test on −xj , certainly
we can not get −yj as a valid nonnegative projection.

A second example is the broad class of matrix factorization problems as used in collab-
orative filtering, which includes weighted low-rank approximations (Srebro and Jaakkola,
2003), maximum margin matrix factorization (Srebro et al., 2004; Rennie and Srebro, 2005),
probabilistic matrix factorization (Mnih and Salakhutdinov, 2007), and more. As above,
collaborative filtering algorithms approximate data X with a low-dimensional factor model
HY . However, the goal of collaborative filtering is to fill in the missing entries of X (e.g., to
make movie or product recommendations), and indeed the data matrix X is usually missing
the vast majority of its entries. Thus, not only is there no explicit dimensionality reduction
Y = PX, but that operation is not even well defined for missing data.

More broadly, there has been a longstanding literature in linear algebra of low rank
approximations and matrix nearness problems, often called Procrustes problems (Higham,
1989; Li and Hu, 2011; Ruhe, 1987; Schonemann, 1966). These optimization programs
have the objective fX(M) = ||X −M || for some norm (often a unitarily invariant norm,
most commonly the Frobenius norm) and some constrained, low-rank matrix M . PCA
would be an example, considering X as the data (or the covariance) and M as the r-
rank approximation thereof. While a few linear dimensionality reduction methods can be
written as Procrustes problems, not all can, and thus nothing general can be claimed about
the connection between Procrustes problems and the scope of this work.
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Method Objective fX(M) Manifold M Mapping Y = PX

PCA (§3.1.1) ||X −MM>X||2F Od×r M>X

MDS (§3.1.2)
∑
i,j

(
dX(xi, xj)− dY (M>xi,M>xj)

)2 Od×r M>X

LDA (§3.1.3)
tr(M>ΣBM)

tr(M>ΣWM)
Od×r M>X

Traditional
CCA (§3.1.4)

tr
(
M>a (XaX

>
a )−1/2XaX

>
b (XbX

>
b )−1/2Mb

)
Oda×r ×Odb×r M>a

(
XaX

>
a

)−1/2
Xa,

M>b
(
XbX

>
b

)−1/2
Xb

Orthogonal
CCA (§3.1.4)

tr
(
M>a XaX

>
b Mb

)
√

tr(M>a XaX>a Ma)tr(M>b XbX
>
b
M
b)

Oda×r ×Odb×r M>a Xa , M>b Xb

MAF (§3.1.5)
tr(M>ΣδM)

tr(M>ΣM)
Od×r M>X

SFA (§3.1.6) tr(M>ẊẊ>M) Od×r M>X

SDR (§3.1.7) tr
(
K̄Z

(
K̄M>X + nεI

)−1
)

Od×r M>X

LPP (§3.1.8) tr
(
M>(XDX>)−>/2XLX>(XDX>)−1/2M

)
Od×r M>(XDX>)−>/2X

UICA (§3.2.1) 1
2

log |M>M |+ 1
n

∑n
i=1

∑r
k=1 log fθ

(
m>k xn

)
IRd×r M>X

PPCA (§3.2.2) log |MM> + σ2I|+ tr
(
XX>(MM> + σ2I)−1

)
IRd×r M>(MM> + σ2I)−1X

FA (§3.2.3) log |MM> +D|+ tr
(
XX>(MM> +D)−1

)
IRd×r M>(MM> +D)−1X

LR (§3.2.4) ||Xout −MXin||2F + λ||M ||p IRd×r SV >Xin for M = USV >

DML (§3.2.5)

∑
i,j∈η(i)

{
dM (xi, xj)

2 + λ
∑
` 1(zi 6= z`)[

1 + dM (xi, xj)
2 − dM (xi, x`)

2
]
+

} IRd×r M>X

Table 1: Summary of linear dimensionality reduction methods.

3.4 Summary of the Framework

Table 1 offers a consolidated summary of these methods. Considering linear dimensionality
reduction through the lens of a constrained matrix optimization enables a few key insights.
First, as is the primary purpose of this paper, this framework surveys and consolidates
the space of linear dimensionality reduction methods. It clarifies that linear dimensional-
ity reduction goes well beyond PCA and can require much more than simply eigenvalue
decompositions, and also that many of these methods bear significant resemblance to each
other in spirit and in detail. Second, this consolidated view suggests that, since optimiza-
tion programs over well-understood matrix manifolds address a significant subclass of these
methods, an objective-agnostic solver over matrix manifolds may provide a useful generic
solver for linear dimensionality reduction techniques.
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4. Results

All methods considered here have specifiedM as either unconstrained matrices or matrices
with orthonormal columns, variables in the space IRd×r. In the unconstrained case, nu-
merous standard optimizers can and have been brought to bear to optimize the objective
fX(M). In the orthogonal case, we have also claimed that the very well-understood ge-
ometry of the manifold of orthogonal matrices enables optimization over these manifolds.
Pursuing such approaches is critical to consolidating and extending dimensionality reduc-
tion, as orthogonal projections Y = M>X for M ∈ Od×r are arguably the most natural
formulation of linear dimensionality reduction: one seeks a low-dimensional view of the data
where some feature is optimally preserved.

The matrix family Od×r is precisely the real Stiefel manifold, which is a compact, em-
bedded submanifold of IRd×r. In our context, this means that many important intuitions
of optimization can be carried over onto the Stiefel manifold. Notably, with a differentiable
objective function fX(M) and its gradient ∇Mf , one can carry out standard first order opti-
mization via a projected gradient method, where the unconstrained gradient is mapped onto
the Stiefel manifold for gradient steps and line searches. Second order techniques also exist,
with some added complexity. The foundations of these techniques are Luenberger (1972);
Gabay (1982), both of which build on classic and straightforward results from differential
geometry. More recently, Edelman et al. (1998) sparked significant interest in optimization
over matrix manifolds. Some relevant examples include Manton (2002, 2004); Fiori (2005);
Nishimori and Akaho (2005); Abrudan et al. (2008); Ulfarsson and Solo (2008); Srivastava
and Liu (2005); Rubinshtein and Srivastava (2010); Varshney and Willsky (2011). Indeed,
some of these works have been in the machine learning community (Fiori, 2005; Ulfarsson
and Solo, 2008; Varshney and Willsky, 2011), and some have made the connection of geo-
metric optimization methods to PCA (Srivastava and Liu, 2005; Ulfarsson and Solo, 2008;
Rubinshtein and Srivastava, 2010; Varshney and Willsky, 2011). The basic geometry of this
manifold, as well as optimization over Riemannian manifolds, has been often presented and
is now fairly standard. For completeness, we include a primer on this topic in Appendix
A. There, as a motivating example, we derive the tangent space, the projection operation,
and a retraction operation for the Stiefel manifold. Appendix A then includes Algorithm 1,
which uses these objects to present an optimization routine that performs gradient descent
over the Stiefel manifold. For a thorough treatment, we refer the interested reader to the
excellent summary of much of this modern work (Absil et al., 2008).

One important technical note warrants mention here. The Stiefel manifold is the man-
ifold of all ordered r-tuples of orthonormal vectors in IRd, but in some cases the dimen-
sionality reduction objective fX(·) evaluates only the subspace (orthonormal basis) implied
by M , not the particular choice and order of the orthonormal vectors in M . This class
of objective functions is precisely those functions fX(M) such that, for any r × r orthogo-
nal matrix R, fX(M) = f(MR). The implied constraint in these cases is the manifold of
rank-r subspaces in IRd, which corresponds to the real Grassmann manifold Gd×r (another
very well understood manifold). As a clarifying example, note that the PCA objective
is redundant on the Stiefel manifold: if we want the highest variance r-dimensional pro-
jection of our data, the parameterization of those r dimensions is arbitrary, and indeed
f(M) = ||X −MM>X||2F = f(MR) for any orthogonal R. If one is particularly inter-
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ested in ranked eigenvectors, there are standard numerical tricks to break this equivalence
and produce an ordered result: for example, maximizing tr(AM>XX>M) over the Stiefel
manifold, where A is any diagonal matrix with ordered elements (A11 > ... > Arr). From
the perspective of optimization and linear dimensionality reduction, the difference between
the Grassmann and Stiefel manifold is one of identifiability. Since there is an uncountable
set of Stiefel points corresponding to a single Grassmann point, it seems sensible for many
reasons to optimize over the Grassmann manifold when possible (though, as our results will
show, this distinction empirically mattered very little). Indeed, most of the optimization
literature noted above also deals with the Grassmann case, and the techniques are simi-
lar. Conveniently, an objective fX(M) can be quickly tested for the true implied manifold
by comparing values of fX(MR) for various R. Because the end result is still a matrix
M ∈ Od×r (which happens to be in a canonical form in the Grassmann case), this fact
truly is an implementation detail of the algorithm, not a fundamental distinction between
different linear dimensionality reduction methods. Thus, we present our results as agnostic
to this choice, and we empirically revisit the question of identifiability at the end of this
section.

To demonstrate the effectiveness of these optimization techniques, we implemented a
variety of linear dimensionality reduction methods with several solvers: first order steepest
descent methods over the Stiefel and Grassmann manifolds, and second order trust region
methods over the Stiefel and Grassmann manifolds (Absil et al., 2008). We implemented
these methods in MATLAB, both natively for first order methods, and using the excellent
manopt software library (Boumal et al., 2014) for first and second order methods (all code
is available at http://github.com/cunni/ldr). All of these solvers accept, as input, data
X and any function that evaluates a differential objective fX(M) and its gradient ∇Mf at
any point M ∈ Od×r, and return, as output, an orthogonal M that corresponds to a (local)
optimum of the objective fX(M).

4.1 Example of Eigenvector Suboptimality

We have cautioned throughout the above survey about the suboptimality of heuristic eigen-
vector solutions. Figure 1 demonstrates this suboptimality for LDA (Section 3.1.3). In
each panel (A and B), we simulated data of dimensionality d = 3, with n = 3000 points,
corresponding to 1000 points in each of 3 clusters (shown in black, blue, and red). Data
in each cluster were normally distributed with random means (normal with standard de-
viation 5/2) and random covariance (uniformly distributed orientation and exponentially
distributed eccentricity with mean 5). In the left subpanel of panel A, we then calculated
the r = 2 dimensional projection by orthogonalizing the top two eigenvectors of the matrix
Σ−1
W ΣB (‘Heuristic LDA’). In the right subpanel, we directly optimized the objective of

Equation 6 over Od×r (‘Orthogonal LDA’). We calculate the normalized improvement of
the manifold method as

−
(
fX
(
M (orth)

)
− fX

(
M (eig)

))∣∣fX (M (eig)
)∣∣ . (28)

Throughout the results we will call the results of traditional eigenvector approaches M (eig)

and the results of our manifold solver M (orth). Figure 1A shows an example where both the
heuristic and manifold optimization methods return qualitatively similar results, and indeed
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Figure 1: Cautionary example of differences in objectives for LDA. Panel A shows a data set
that offers only marginal performance gain by using manifold optimization (Or-
thogonal LDA, right subpanel of panel A) rather than the traditional eigenvector
heuristic (Heuristic LDA, left subpanel). Panel B shows a data set that has a
stark difference between the two methods. The measured performance difference
(see Equation 28) is shown.

the numerical improvement (0.02) reflects that indeed this heuristic is by no means wildly
inappropriate for the stated objective. Indeed, we know it to be correct for r = 1. Figure
1B shows a particularly telling example: both methods distinguish the red cluster easily,
whereas the heuristic method confounds the black and blue clusters, while the optimization
approach offers better separability, which indeed correlates with improvement on the stated
objective of Equation 6. It is critical to clarify the distinction between these two methods:
the heuristic and orthogonal solutions are indeed optimal, but for different objectives, as
discussion in Section 3.1.3. Thus, the purpose of this cautionary example is to highlight the
importance of optimizing the intended objective, and the freedom to choose that objective
without a tacit connection to a generalized eigenvalue problem. These goals can be directly
and generically achieved with the optimization framework of Equation 1.

4.2 Performance Improvement

Here we seek to demonstrate the quantitative improvements available by directly optimizing
an objective, rather than resorting to an eigenvector heuristic. First we implemented PCA
(Section 3.1.1) using both methods. We ran PCA on 20 random data sets for each dimen-
sionality d ∈ {4, 8, 16, ..., 1024}, each time projecting onto r = 3 dimensions. Data were
normally distributed with random covariance (exponentially distributed eccentricity with
mean 2). We calculated fX

(
M (eig)

)
and fX

(
M (orth)

)
from Equation 2, and we calculated

the normalized improvement of the manifold method as above in Equation 28. Since the
eigenvector decomposition is provably optimal for PCA, our method should demonstrate
no improvement. Indeed, Figure 2 (purple trace) shows the distribution of normalized im-
provements for PCA is entirely 0 in panel A. We then repeated this analysis for a fixed
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Figure 2: Performance comparison between heuristic solvers and direct optimization of lin-
ear dimensionality reduction objectives. The vertical axis denotes normalized
improvement of the optimization program over traditional approaches. The error
bars show median performance improvement and the central 50th percentile of
20 independent runs at each choice of (d, r).

data dimensionality d = 100 (generating data as above), now ranging the projected dimen-
sionality r ∈ {1, 2, 5, 10, 20, 40, 80}. These results are shown in Figure 2B, and again, the
optimization approach recovers the known PCA optima precisely. This confirmatory result
also shows, pleasingly, that there is no empirical downside (in terms of accuracy) to using
manifold optimization.

We next repeated the same experiment for LDA (Section 3.1.3). We generated data
with 1000 data points in each of d classes, where within class data was generated according
to a normal distribution with random covariance (uniformly distributed orientation and
exponentially distributed eccentricity with mean 5), and each class mean vector was ran-
domly chosen (normal with standard deviation 5/d). We compared the suboptimal LDA
heuristic M (eig) (orthogonalizing the top r eigenvectors of Σ−1

W ΣB) to the direct optimiza-
tion of fX(M) = tr(M>ΣBM)/tr(M>ΣWM), which produced M (orth). Unlike in PCA,
Figure 2 (green traces) shows that directly addressing the LDA objective produces signif-
icant performance improvements. The green trace is plotted at the median, and the error
bars show the median 50% of the distribution of performance improvements across both
data dimensionality d (panel A) and projected dimensionality r (panel B).

We next implemented Traditional CCA and Orthogonal CCA as introduced in Section
3.1.4, which yield the blue performance distributions shown in Figure 2A and B. Data set
Xa was generated by a random linear transformation of a latent data set Z (iid standard
normal points with dimensionality of d/2; the random linear transformation had the same
distribution), plus noise, and data set Xb was generated by a different random linear trans-
formation of the same latent Z, plus noise. Again we see significant improvement of direct
Orthogonal CCA over orthogonalizing Traditional CCA, when evaluated under the corre-
lation objective of Equation 10. First, we note that to be conservative in this case we omit
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the denominator term from the improvement metric (Equation 28); that is, we do not nor-
malize CCA improvements. CCA has a correlation objective, which is already a normalized
quantity, and thus renormalizing would increase these improvements. More importantly,
it is essential to note that we do not claim any suboptimality of Hotelling’s Traditional
CCA in solving Equation 8. Rather, it is the subsequent heuristic choice of orthogonalizing
the resulting mapping that is problematic. In other words, we show that if one seeks an
orthogonal projection of the data, as is often desired in practice, one should do so directly.
Our CCA results demonstrate the substantial underperformance of eigenvector heuristics
in this case, and our generic solver allows a direct solution without conceptual difficulty.

Finally, we implemented MAF as introduced in Section 3.1.5, where we generated data
by a random linear transformation (uniformly distributed entries on [0, d−1/2]) of d di-
mensions of univariate random temporal functions, which we generated with cubic splines
with four randomly located knots (uniformly distributed in the domain, standard normally
distributed in range), plus noise. MAF is another method that has been solved using an
eigenvector heuristic, and the performance improvement is shown in red in Figure 2.

In total, Figure 2 offers some key points of interpretation. First, note that no data lie in
the negative halfplane (see black dashed line atop the purple line at 0). Though unsurprising,
this is an important confirmation that the optimization program performs unambiguously
better than or equal to heuristic methods. Second, methods other than PCA produce
approximately 10% improvement using direct optimization, a significant improvement that
suggests the broad use of this optimization framework. Third, a natural question for these
nonconvex programs is that of local optima. We found that, across a wide range of choices
for d and r, nearly all methods converged to the same optimal value whether started at a
random M or started at the heuristic point M (eig). Deeper characterization of local optima
should be highly dependent on the particular objective and is beyond the scope of this work.
Third, we note that methods sometimes have performance equal to the heuristic method;
indeed M (eig) is sometimes a local optimum. We found empirically that larger r makes this
less likely, and larger d makes this more likely.

A significant point of interpretation is that of size of average performance. We stress
that these data sets were not carefully chosen to demonstrate effect. Indeed, we are able to
adversarially choose data to create much larger performance improvements, and similarly
we can choose data sets that demonstrate no effect. Thus, one should not infer from
Figure 2 that, for example, Orthogonal CCA fundamentally has increasing benefit over the
heuristic approach with increasing r (or decreasing benefit with increasing d). Instead, we
encourage the takeaway of this performance figure to be that one should always optimize
the objective of interest directly, rather than resorting to a reasonable but theoretically
unsound eigenvector heuristic, as the performance loss is potentially meaningful.

4.3 Computational Cost

Importantly, this matrix manifold solver does not incur massive computational cost. The
only additional computation beyond standard unconstrained first-order optimization of dr
variables is the projection onto or along the manifold to ensure a feasible M ∈ Od×r, which
in any scheme requires a matrix decomposition (see Appendix A). Thus each algorithmic
step carries an additional cost of O(dr2). This cost is in many cases dwarfed by the larger
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Figure 3: Computational cost of direct optimization of linear dimensionality reduction ob-
jectives. Data sets are the same as those in Figure 2. The vertical axis in panels
A and B denotes runtime in seconds. Panels C and D show the same data by the
number of solver iterations.

cost of calculating matrix-matrix products with a data matrix X ∈ IRd×n (which often
appear in the gradient calculations ∇Mf). Second order methods approximate or evalu-
ate a Hessian, which incurs more complexity per iteration, but as usual at the tradeoff of
drastically fewer iterations. Accordingly, the runtime of manifold optimization is at worst
moderately degraded compared to an unconstrained first or second order method. Com-
pared to eigenvector heuristics, which if implemented as a compact SVD cost only O(dr2),
direct optimization is an order of magnitude or more slower due to the iterative nature of
the algorithm.

Figure 3 shows the computational cost of these methods, using the same data as in
the previous section. In Figure 3A, at each of d ∈ {4, 8, 16, ..., 1024} and for r = 3, we
ran PCA, LDA, CCA, and MAF 20 times, and we show here the median and central 50%
of the runtime distribution (in seconds). This panel demonstrates that runtime increases
approximately linearly as expected in d: runtime increases by approximately three orders

2884



Linear Dimensionality Reduction

1 20 40 60 80 100

10−8

10−6

10−4

10−2

100

102

av
er

ag
e 

op
tim

al
ity

 g
ap

iteration
0 0.25 0.5 0.75 1

10−10

10−6

10−2

102
op

tim
al

ity
 g

ap

time (s)

 

 

Stiefel SD
Stiefel TR
Grassmann SD
Grassmann TR

A B

Figure 4: Comparison of different optimization techniques. PCA was run on 100 indepen-
dent data sets of size d = 100, projecting to r = 10 dimensions. Panel A shows
the median runtime performance (across data sets), with optimality gap as a
function of runtime in seconds. Panel B shows the average optimality gap by
iteration. PCA was run on each of these data sets independently with the Stiefel
steepest descent (red), Stiefel trust region (green), Grassmann steepest descent
(blue), and Grassmann trust region (brown) solvers.

of magnitude over three orders of magnitude increase in d. We do a similar simulation in
Figure 3B at each of r ∈ {1, 2, 5, 10, 20, 40, 80} for a fixed d = 100, and again runtime is
increasing.

Figures 3C and 3D show the same data as in Figures 3A and 3B, but by number of
solver iterations. In this figure we used a second-order solver over the Grassmann manifold
in PCA, LDA, and MAF (critically, the same solver for all three), and the second-order
solver over the product of two Stiefel manifolds in the case of CCA. These two panels again
underscore the overall point of Figure 3: runtime complexity is not particularly burdensome
across a range of reasonable choices for d and r, even with a generic solver.

4.4 Choice of Solver, and Identifiability

We have claimed that the choice of optimization over the Stiefel or Grassmann manifold is
a question of identifiability, and further that empirically it seems to matter little to algo-
rithmic performance. Figure 4 gives evidence to that claim. We created 100 independent
data sets with d = 100 and r = 10 for PCA. Here the choice of algorithm is less important,
and PCA is a sensible choice because we know the global optimum. We ran PCA using
four solvers: first-order steepest descent over the Stiefel manifold, first-order steepest de-
scent over the Grassmann manifold, second-order trust region optimization over the Stiefel
manifold, and second-order trust region optimization over the Grassmann manifold. Figure
4 shows the optimality gap by solver choice for each of these four solvers. Figure 4A shows
the optimality gap as a function of time for the median performing solver (median across
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the 100 independent data sets), and Figure 4B shows the optimality gap (mean across all
the 100 independent data sets) as a function of algorithmic iteration. From these figures
it is clear that second-order methods outperform first order methods, though perhaps less
than one might typically expect. More importantly, the difference between the choice of
optimization over the Stiefel or Grassmann manifold is minor at best. This figure, along
with previous results, suggest the feasibility of a generic solver for orthogonal linear dimen-
sionality reduction.

5. Discussion

Dimensionality reduction is a cornerstone of data analysis. Among many methods, perhaps
none are more often used than the linear class of methods. By considering these methods as
optimization programs of user-specified objectives over orthogonal or unconstrained matrix
manifolds, we have surveyed a surprisingly fragmented literature, offered insights into the
shortcomings of traditional eigenvector heuristics, and have pointed to straightforward gen-
eralizations with an objective-agnostic linear dimensionality reduction solver. The results
of Section 4 suggest that linear dimensionality reduction can be abstracted away in the
same way that unconstrained optimization has been, as a numerical technology that can
sometimes be treated as a black-box solver. This survey also suggests that future linear di-
mensionality reduction algorithms can be derived in a simpler and more principled fashion.
Of course, even with such a method one must be careful to design a linear dimensionality
reduction sensibly to avoid the many unintuitive pitfalls of high-dimensional data (e.g.,
Diaconis and Freedman, 1984).

Other authors have surveyed dimensionality reduction algorithms. Some relevant exam-
ples include Burges (2010); De la Torre (2012); Sun et al. (2009); Borga et al. (1997). These
works all focus on particular subsets of the dimensionality reduction field, and our work here
is no different, insomuch as we focus exclusively on linear dimensionality reduction and the
connecting concept of optimization over matrix manifolds. Burges (2010) gives an excellent
tutorial review of popular methods, including both linear and nonlinear methods, dividing
those methods into projective and manifold approaches. De la Torre (2012) surveys five
linear and nonlinear methods with their kernelized counterparts using methods from kernel
regression. Borga et al. (1997) and Sun et al. (2009) focus on those methods that can be
cast as generalized eigenvalue problems, and derive scalable algorithms for those methods,
connecting to the broad literature on optimizing Rayleigh quotients.

The simple optimization framework discussed herein offers a direct approach to linear
dimensionality reduction: many linear dimensionality reduction methods seek a meaning-
ful, low-dimensional orthogonal subspace of the data, so it is natural to create a program
that directly optimizes some objective on the data over these subspaces. This claim is
supported by the number of linear dimensionality reduction methods that fit naturally into
this framework, by the ease with which new methods can be created, and by the significant
performance gains achieved with direct optimization. Thus we believe this survey offers a
valuable simplifying principle for linear dimensionality reduction.

This optimization framework is conceptually most similar to the projection index from
important literature in projection pursuit (Huber, 1985; Friedman, 1987): both that litera-
ture and the present work focus on optimizing objective functions on projections to a lower
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dimensional coordinate space. Since the time of the fundamental work in projection pursuit,
massive developments in computational power and advances in optimization over matrix
manifolds suggest the merit of the present approach. First, the projection pursuit literature
is inherently greedy: univariate projections are optimized over the projection index, that
structure is removed from the high dimensional data, and the process is repeated. This
approach leads to (potentially significant) suboptimality of the results and requires costly
computation on the space of the high-dimensional data for structure removal. The present
matrix manifold framework circumvents both of these issues. Thus, while the spirit of this
framework is very much in line with the idea of a projection index, this framework, both in
concept and in implementation, is critically enabled by tools that were unavailable to the
original development of projection pursuit.
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Appendix A. Optimization over the Stiefel Manifold

Here we offer a basic introduction to optimization over matrix manifolds, restricting our
focus to a first-order, projected gradient optimization over the Stiefel manifold Od×r. Intu-
itively, manifold projected gradient methods are iterative optimization routines that require
firstly an understanding of search directions along the constraint set, called the tangent
space (§A.1). With an objective f , gradients ∇Mf are then calculated in the full space,
in this case IRd×r. These gradients are projected onto that tangent space (§A.2). Any
nonzero step in a linear tangent space will depart from the nonlinear constraint set, so
finally a retraction is needed to map a step onto the constraint set (§A.3). With these
three components, a standard first-order iterative solver can be carried out, with typical
convergence guarantees. We conclude this tutorial appendix with pseudocode in §A.4 and
a figure summarizing these steps (Figure 5).

We have previously introduced the Stiefel manifold Od×r as the set of all matrices with
orthonormal columns, namely Od×r =

{
M ∈ IRd×r : M>M = I

}
, where I is the r × r

identity matrix. Od×r is a manifold, an embedded submanifold of IRd×r, and bounded and
closed (and thus compact). From these facts we can carry over all intuitions of an explicit
(though nonlinear and nonconvex) constraint set within IRd×r.

A.1 Tangent Space TMOd×r

Critical to understanding the geometry of any manifold (in particular to exploit that geom-
etry for optimization) is the tangent space, the linear (vector space) approximation to the
manifold at a particular point. To define this space, we first define a curve on the manifold
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Od×r as a smooth map γ(·) : IR→ Od×r. Then, the tangent space is

TMOd×r =
{
γ̇(0) : γ(·) is a curve on Od×r with γ(0) = M

}
, (29)

where γ̇ is the derivative d
dtγ(t). Loosely, TMOd×r is the space of directions along the

manifold at a point M . While Equation 29 is fairly general for embedded submanifolds,
it is abstract and leaves little insight into numerical implementation. Conveniently, the
tangent space of the Stiefel manifold has a particularly nice equivalent form.

Claim 1 (Tangent space of the Stiefel Manifold) The following sets are equivalent:

TMOd×r =
{
γ̇(0) : γ(·) is a curve on Od×r with γ(0) = M

}
, (30)

T1 =
{
X ∈ IRd×r : M>X +X>M = 0

}
, (31)

T2 =
{
MA+ (I −MM>)B : A = −A>, B ∈ IRd×r

}
. (32)

Proof The proof proceeds in four steps:

1. X ∈ TMOd×r ⇒ X ∈ T1

Considering a curve γ(t) from Equation 30, we know γ(t)>γ(t) = I (every point of
the curve is on the manifold). We differentiate in t to see γ(t)>γ̇(t) + γ̇(t)>γ(t) = 0.
At t = 0, we have γ(0) = M , and we define the tangent space element γ̇(0) = X.
Then X is such that M>X +X>M = 0.

2. X ∈ T1 ⇒ X ∈ TMOd×r

We must construct a curve such that any X ∈ T1 is a point in the tangent space;
consider γ(t) = (M + tX)(I + t2X>X)−1/2 (a choice that we will see again below
in §A.3). First, this curve satisfies γ(0) = M . Second, γ(·) is a curve on the Stiefel
manifold, since every point γ(t) satisfies

γ(t)>γ(t) = (I + t2X>X)−1/2(M + tX)>(M + tX)(I + t2X>X)−1/2

= (I + t2X>X)−1/2(M>M + tM>X + tX>M + t2X>X)(I + t2X>X)−1/2

= (I + t2X>X)−1/2(I + t2X>X)(I + t2X>X)−1/2

= I,

where the third line uses M ∈ Od×r and X ∈ T1. It remains to show only that
γ̇(0) = X. We differentiate γ(t) as

γ̇(t) = X(I + t2X>X)−1/2 + (M + tX)
d

dt
(I + t2X>X)−1/2. (33)

The rightmost derivative term of Equation 33 does not have a closed form, but is the
unique solution to a Sylvester equation. Letting α(t) = (I + t2X>X)−1/2, we seek
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α̇(0). By implicit differentiation,[
d

dt
α(t)α(t)

]
t=0

=

[
d

dt
(I + t2X>X)−1

]
t=0

α̇(0)α(0) + α(0)α̇(0) =
[
(I + t2X>X)−1

(
2tX>X

)
(I + t2X>X)−1

]
t=0

2α̇(0) = 0,

since α(0) = I. Thus we see α̇(0) =
[
d
dt(I + t2X>X)−1/2

]
t=0

= 0. Equation 33 yields
γ̇(0) = X, which completes the proof of the converse.

3. X ∈ T2 ⇒ X ∈ T1

Let X = MA+ (I −MM>)B according to Equation 32. Then

M>X +X>M = M>MA+M>(I −MM>)B +A>M>M +B>(I −MM>)M

= A+A>

= 0,

by the skew-symmetry of A and M ∈ Od×r.

4. X ∈ T1 ⇒ X ∈ T2

We show the transposition X 6∈ T2 ⇒ X 6∈ T1. By the definition of T2, X = MA +
(I−MM>)B is not in T2 if and only if A 6= −A>. Then, using the previous argument,
we see that such an X has M>X +X>M 6= 0, and thus is not a member of T1.

Thus, the three tangent space definitions Equations 30-32 are equivalent. The definition of
Equation 32 is particularly useful as it is constructive, which is essential when considering
optimization.

A.2 Projection πM : IRd×r → TMOd×r

Because Od×r is an embedded submanifold of IRd×r, it is natural to consider the metric
implied by Euclidean space : IRd×r endowed with the standard inner product 〈P,N〉 =
tr(P>N), and the induced Frobenius norm || · ||F . With this metric, the Stiefel manifold is
then a Riemannian submanifold of Euclidean space. This immediately allows us to consider
the projection of an arbitrary vector Z ∈ IRd×r onto the tangent space TMOd×r, namely

π(Z) = arg min
X∈TMOd×r

||Z −X||F

= arg min ||Z − (MA− (I −MM>)B)||F
= arg min ||(MM>Z −MA) + (I −MM>)(Z −B)||F
= arg min ||M(M>Z −A)||F + ||(I −MM>)(Z −B)||F
= arg min ||M>Z −A||F + ||(I −MM>)(Z −B)||F ,
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where the last equality comes from the unitary invariance of the Frobenius norm. This
expression is minimized by setting B = Z and setting A to be the skew-symmetric part
of M>Z, namely A := skew(M>Z) = 1

2(M>Z − Z>M) (Fan and Hoffman, 1955). This
results in the projection

πM (Z) = Mskew(M>Z) + (I −MM>)Z. (34)

We note that an alternative canonical metric is often considered in this literature, namely
〈P,N〉M = tr

(
P>(I −MM>)N

)
. The literature is divided on this choice; for simplicity

we choose the standard inner product.

A.3 Retraction rM : TMOd×r → Od×r

Projected gradient methods seek an iterative step in the direction of steepest descent along
the manifold, namely M+βπM (−∇Mf). For any nonzero step size β, this iterate will leave
the Stiefel manifold. Thus, a retraction is required to map onto the manifold. A number of
projective retractions are available (Kaneko et al., 2013); here we define the retraction of a
step Z away from a current manifold point M as

rM (Z) = arg min
N∈Od×r

||N − (M + Z)||F , (35)

that is, the closest point on the manifold to the desired iterate M + Z. For unitarily
invariant norms, a classic result is that rM (Z) = UV >, where (M + Z) = USV > is the
singular value decomposition (Fan and Hoffman, 1955), or equivalently, rM (Z) = W for a
polar decomposition (M + Z) = WP . Conveniently, when Z ∈ TMOd×r, this retraction
has the simple closed form rM (Z) = (M + Z)(I + Z>Z)−1/2 (Kaneko et al., 2013), which
explains the choice of curve in §A.1.

In the cases of the Stiefel and Grassmann manifolds, it is possible to directly calculate
a manifold geodesic (shortest path between two points in the manifold). While more aes-
thetically pleasing, calculating such a geodesic requires a matrix exponential, and thus has
similar computational burden as a projective retraction (often the exponential is slightly
more expensive). Empirically, we have found very little difference in the convergence or
computational burden of this choice, and thus we focus this tutorial on the conceptually
simpler retraction. Absil and Malick (2012) discuss projective retractions compared with
geodesics/exponential maps.

A.4 Pseudocode for a Projected Gradient Solver

Algorithm 1 gives pseudocode for a projected gradient method over the Stiefel manifold.
This generic algorithm requires only a choice of convergence parameters and a line search
method, choices which are standard for first-order optimization. Chapter 4 of Absil et al.
(2008) offers a global convergence proof for such a method using Armijo line search. Indeed,
the only particular consideration for this algorithmic implementation is the tangent space
TMOd×r, the projection πM , and the retraction rM .

It is worth noting that the above operations imply a two-stage gradient step: Algorithm
1 first projects the free gradient onto the tangent space (πM ), and second the proposed
step is retracted onto the manifold (rM ). It is natural to ask why one does not perform
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Figure 5: Cartoon of a projected gradient step on the Stiefel manifold. Notation follows
Algorithm 1.

Algorithm 1 Gradient descent over the Stiefel manifold (with line search and retraction)

1: initialize M ∈ Od×r
2: while f(M) has not converged do
3: calculate ∇Mf ∈ IRd×r # free gradient of objective
4: calculate πM (−∇Mf) ∈ TMOd×r # search direction (Equation 34)
5: while f(rM (βπM (−∇Mf))) is not sufficiently smaller than f(M) do
6: adjust step size β # line search (using retraction, Equation 35)
7: end while
8: M ← rM (βπM (−∇Mf)) # iterate
9: end while

10: return (local) minima M∗ of f .

this projection in one step, for example by projecting the free gradient directly onto the
manifold. Firstly, while there is a rich literature of such ‘one-step’ projected gradient
methods (Bertsekas, 1976), convergence guarantees only exist for convex constraint sets.
Indeed, all matrix manifolds we have discussed are nonconvex (except the trivial IRd×r). The
theory of convergence for nonconvex manifolds requires this two-step procedure. Secondly,
in our empirical experience, while a one-step projection method does often converge, that
convergence is typically much slower than Algorithm 1.

This basic algorithm is extended in two ways: first, the constraint manifoldM is taken
to be the Grassmann manifold or some other manifold structure (like the product of Stiefel
manifolds, as in CCA above); and second, conjugate gradient methods or second-order
optimization techniques can be similarly adapted to the setting of matrix manifolds. Beyond
these steps, understanding optimization over matrix manifolds in full generality requires
topological and differential geometric machinery that is beyond the scope of this work. All
of these topics are discussed in the key reference to this appendix (Absil et al., 2008), as
well as the literature cited throughout this paper.
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Abstract

We are interested in learning causal relationships between pairs of random variables, purely
from observational data. To effectively address this task, the state-of-the-art relies on
strong assumptions on the mechanisms mapping causes to effects, such as invertibility or
the existence of additive noise, which only hold in limited situations. On the contrary,
this short paper proposes to learn how to perform causal inference directly from data,
without the need of feature engineering. In particular, we pose causality as a kernel mean
embedding classification problem, where inputs are samples from arbitrary probability
distributions on pairs of random variables, and labels are types of causal relationships.
We validate the performance of our method on synthetic and real-world data against the
state-of-the-art. Moreover, we submitted our algorithm to the ChaLearn’s “Fast Causation
Coefficient Challenge” competition, with which we won the fastest code prize and ranked
third in the overall leaderboard.

Keywords: causality, cause-effect inference, kernel mean embeddings, random features

1. Introduction

According to Reichenbach’s common cause principle (Reichenbach, 1956), the dependence
between two random variables X and Y implies that either X causes Y (denoted by X → Y ),
or that Y causes X (denoted by Y → X), or that X and Y have a common cause. In this
note, we are interested in distinguishing between these three possibilities by using samples
drawn from the joint probability distribution P on (X,Y ).

Two of the most successful approaches to tackle this problem are the information
geometric causal inference method (Daniusis et al., 2012; Janzing et al., 2014), and the
additive noise model (Hoyer et al., 2009; Peters et al., 2014). First, the Information Geometric
Causal Inference (IGCI) is designed to infer causal relationships between variables related by
invertible, noiseless relationships. In particular, assume that there exists a pair of functions
or mapping mechanisms f and g such that Y = f(X) and X = g(Y ). The IGCI method
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decides that X → Y if ρ(P (X), | log(f ′(X))|) < ρ(P (Y ), | log(g′(Y ))|), where ρ denotes
Pearson’s correlation coefficient. IGCI decides Y → X if the opposite inequality holds, and
abstains otherwise. The assumption here is that the cause random variable is independently
generated from the mapping mechanism; therefore it is unlikely to find correlations between
the density of the former and the slope of the latter. Second, the additive noise model
(ANM) assumes that the effect variable is equal to a nonlinear transformation of the cause
variable plus some independent random noise, i.e., Y = f(X) +NY . If X ⊥⊥ NY , then there
exists no model of the form X = g(Y ) +NX for which Y ⊥⊥ NX . As a result, one can find
the causal direction by performing independence test between the input variable and residual
variable in both directions. Specifically, the algorithm will conclude that X → Y if the pair
of random variables (X,NY ) are independent but the pair (Y,NX) is not. The algorithm
will conclude Y → X if the opposite claim is true, and abstain otherwise. The additive noise
model has been extended to study post-nonlinear models of the form Y = h(f(X) +NY ),
where h a monotone function (Zhang and Hyvärinen, 2009). The consistency of causal
inference under the additive noise model was established by Kpotufe et al. (2013) under
some technical assumptions.

As it becomes apparent from the previous exposition, there is a lack of a general method
to infer causality without assuming strong knowledge about the underlying causal mechanism.
Moreover, it is desirable to readily extend inference to other new model hypotheses without
incurring in the development of a new, specific algorithm. Motivated by this issue, we raise
the question:

Is it possible to automatically learn patterns revealing causal relationships between random
variables from large amounts of labeled data?

2. Learning to Learn Causal Inference

Unlike the methods described above, we propose a data-driven approach to build a flexible
causal inference engine. To do so, we assume access to some set of pairs {(Si, li)}ni=1,
where the sample Si = {(xij , yij)}ni

j=1 are drawn i.i.d. from the joint distribution Pi of
the two random variables Xi and Yi, which obey the causal relationship denoted by the
label li. To simplify exposition, the labels li = 1 denotes X → Y and li = −1 stands for
Y → X. Using these data, we build a causal inference algorithm in two steps. First, an
m-dimensional feature vector mi is extracted from each sample Si, to meaningfully represent
the corresponding distribution Pi. Second, we use the set {(mi, li)}ni=1 to train a binary
classifier, later used to predict the causal relationship between previously unseen pairs of
random variables. This framework can be straightforwardly extended to also infer the
“common cause” and “independence” cases, by introducing two extra labels.

Our setup is fundamentally different from the standard classification problem in the
sense that the inputs to the learners are samples from probability distributions, rather than
real-valued vectors of features (Muandet et al., 2012; Szabó et al., 2014). In particular, we
place two assumptions. First, the existence of a Mother distribution M(P, {−1,+1}) from
which all paired probability distributions Pi ∈ P on (Xi, Yi) and causal labels li ∈ {−1,+1}
are sampled, where P denotes the set of all distributions on two real-valued random variables.
Second, the causal relationships li can be inferred in most cases from observable properties of

2902



The Randomized Causation Coefficient

the distributions Pi. While these assumptions may not hold in generality, our experimental
evidence suggests their wide applicability in real-world data.

The rest of this paper is organized as follows. Section 3 elaborates on how to extract the
m−dimensional feature vectors mi from each causal sample Si. Section 4 provides empirical
evidence to validate our methods. Section 5 closes the exposition by commenting on future
research directions.

3. Featurizing Distributions with Kernel Mean Embeddings

Let P be the probability distribution of some random variable Z taking values in Rd. Then,
the kernel mean embedding of P associated with the positive definite kernel function k is

µk(P ) :=

∫
Rd

k(z, ·)dP (z) ∈ Hk, (1)

whereHk is the reproducing kernel Hilbert space (RKHS) endowed with the kernel k (Berlinet
and Thomas-Agnan, 2004; Smola et al., 2007). A sufficient condition which guarantees the
existence of µk is that the kernel k is bounded, i.e., supz∈Z k(z, z) <∞. One of the most
attractive property of µk is that it uniquely determines each distribution P when k is a
characteristic kernel (Sriperumbudur et al., 2010). In another words, ‖µk(P )−µk(Q)‖Hk

= 0
iff P = Q. Examples of characteristic kernels include the popular squared-exponential

k(z, z′) = exp
(
−γ‖z − z′‖22

)
, for γ > 0, (2)

which will be used throughout this work.
However, in practice, we do not have access to the true distribution P , and consequently

to the true embedding µk. Instead, we often have access to a sample S = {zi}ni=1 drawn
i.i.d. from P . Then, we can construct the empirical measure PS = 1

n

∑n
i=1 δ(zi), where δ(z)

is the Dirac mass at z, and estimate (1) by

µk(PS) :=
1

n

n∑
i=1

k(zi, ·) ∈ Hk. (3)

Though it can be improved (Muandet et al., 2014), the estimator (3) is the most common
due to its ease of implementation. We can essentially view (1) and (3) as the feature
representations of the distribution P and its sample S, respectively.

For some kernels such as (2), the feature maps (1) and (3) do not have a closed form,
or are infinite dimensional. This translates into the need of kernel matrices, which require
at least O(n2) computation. In order to alleviate these burdens, we propose to compute a
low-dimensional approximation of (3) using random Fourier features (Rahimi and Recht,
2007). In particular, if the kernel k is shift-invariant, we can exploit Bochner’s theorem
(Rudin, 1962) to construct a randomized approximation of (3), with form

µk,m(PS) =
1

n

n∑
i=1

[
cos(w′1zi + b1), . . . , cos(w′mzi + bm)

]′ ∈ Rm, (4)

where the vectors w1, . . . , wm ∈ Rd are sampled from the normalized Fourier transform of
k, and b1, . . . , bm ∼ U(0, 2π). The squared-exponential kernel in (2) is shift-invariant, and

2903



Lopez-Paz, Muandet and Recht

can be approximated in this fashion when setting wi ∼ N (0, 2γI). These features can be
computed in O(mn) time and stored in O(1) memory. Importantly, the low dimensional
representation µk,m is amenable for the off-the-shelf use with any standard learning algorithm,
and not only kernel-based methods.

Using the assumptions introduced in Section 1, the data {(mi, li)}ni=1 := {(µk,m(PSi), li)}ni=1

and a binary classifier, we can now pose causal inference as a supervised learning problem.

4. Numerical Simulations

We conduct an array of experiments to test the effectiveness of a simple implementation of
the presented causal learning framework1. Given the use of random embeddings (4) in our
classifier, we term our method the Randomized Causation Coefficient (RCC). Throughout
our simulations, we featurize each sample S = {(xi, yi)}ni=1 as

ν(S) = (µk,m(PSx), µk,m(PSy), µk,m(PS)), (5)

where the three elements forming (5) stand for the low-dimensional representations (4) of
the empirical kernel mean embeddings of {xi}ni=1, {yi}ni=1, and {(xi, yi)}ni=1, respectively.
This representation is motivated by the typical conjecture in causal inference about the
existence of asymmetries between the marginal and conditional distributions of causally-
related pairs of random variables (Schölkopf et al., 2012). Each of these three embeddings
has random features sampled to approximate the sum of three Gaussian kernels (2) with
hyper-parameters 0.1γ, γ, and 10γ, where γ is set using the median heuristic. In practice,
we set m = 1000, and observe no significant improvements when using larger amounts of
random features. To classify the embeddings (5) in each of the experiments, we use the
random forest implementation from Python’s sklearn-0.16-git. The number of trees
forming the forest is chosen from the set {100, 250, 500, 1000, 5000}, via cross-validation.

4.1 Tübingen Data

The Tübingen cause-effect pairs is a collection of heterogeneous, hand-collected, real-world
cause-effect samples2. Given the small size of this data set, we resort to the synthesis of some
Mother distribution to sample our training data from. To this end, assume that sampling a
synthetic cause-effect sample Ŝi := {(x̂ij , ŷij)}nj=1 equals the following generative process:

1. A cause vector (x̂ij)
n
j=1 is sampled from a mixture of Gaussians with c components. The

mixture weights are sampled from U(0, 1), and normalized to sum to one. The mixture
means and standard deviations are sampled from N (0, σ1), and N (0, σ2), respectively,
accepting only positive standard deviations. The cause vector is standardized.

2. A noise vector (ε̂ij)
n
j=1 is sampled from a centered Gaussian, with variance sampled

from U(0, σ3).

1. The source code of our experiments is available at https://github.com/lopezpaz/causation_
learning_theory.

2. The Tübingen cause-effect pairs data set can be downloaded at https://webdav.tuebingen.mpg.de/

cause-effect/.
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3. The mapping mechanism f̂i is a spline fitted using an uniform grid of df elements
from min((x̂ij)

n
j=1) to max((x̂ij)

n
j=1) as inputs, and df normally distributed outputs.

4. An effect vector is built as (ŷij := f̂i(x̂ij) + ε̂ij)
n
j=1, and standardized.

5. Return the cause-effect sample Ŝi := {(x̂ij , ŷij)}nj=1.

To choose a θ = (c, σ1, σ2, σ3, df ) that best resembles the unlabeled test data, we minimize
the distance between the embeddings of N synthetic pairs and the Tübingen samples

arg min
θ

∑
i

min
1≤j≤N

‖ν(Si)− ν(Ŝj)‖22,

over c, df ∈ {1, . . . , 10}, and σ1, σ2, σ3 ∈ {0, 0.5, 1, . . . , 5}, where the Ŝj is sampled using the
generative process described above, the Si are the Tübingen cause-effect pairs, and ν is as
in (5). This strategy can be thought of as transductive learning, since we have access to the
test inputs (but not their underlying causal relation) at the training time.

We set n = 1000, and N = 10, 000. Using the generative process described above, and
the best found parameter vector θ = (3, 2, 2, 2, 5), we construct the synthetic training data

{{ν({(x̂ij , ŷij)}nj=1),+1)}Ni=1,

{ν({(ŷij , x̂ij)}nj=1),−1)}Ni=1},

where {(x̂ij , ŷij)}nj=1 = Ŝi, and train our classifier on it. Figure 1 plots the classification
accuracy of RCC, IGCI (Daniusis et al., 2012), and ANM (Mooij et al., 2014) versus the
fraction of decisions that the algorithms are forced to make out of the 82 scalar Tüebingen
cause-effect pairs. To compare these results to other lower-performing methods, refer to
Janzing et al. (2012). Overall, RCC surpasses the state-of-the-art in these data, with a
classification accuracy of 81.61% when inferring the causal directions on all pairs. The
confidence of RCC is computed using the random forest’s output class probabilities.

4.2 ChaLearn’s “Fast Causation Coefficient” Challenge

We tested RCC at the ChaLearn’s Fast Causation Coefficient challenge (Guyon, 2014). We
trained a Gradient Boosting Classifier (GBC), with hyper-parameters chosen via a 4-fold
cross validation, on the featurizations (5) of the training data. In particular, we built two
separate classifiers: a first one to distinguish between causal and non-causal pairs (i.e., X−Y
vs {X → Y,X ← Y }), and a second one to distinguish between the two possible causal
directions on the causal pairs (i.e., X → Y vs X ← Y ). The final causation coefficient for a
given sample Si was computed as

score(Si) = p1(Si) · (2 · p2(Si)− 1),

where p1(x) and p2(x) are the class probabilities output by the first and the second GBCs,
respectively. We found it easier to distinguish between causal and non-causal pairs than to
infer the correct direction on the causal pairs.

RCC ranked third in the ChaLearn’s “Fast Causation Coefficient Challenge” competition,
and was awarded the prize to the fastest running code (Guyon, 2014). At the time of the
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Figure 1: Accuracy of RCC, IGCI and ANM on the Tübingen cause-effect pairs, as a function
of decision rate. The grey area depicts accuracies not statistically significant.

competition, we obtained a bidirectional AUC of 0.73 on the test pairs in two minutes
of test-time (Guyon, 2014). On the other hand, the winning entry of the competition,
which made use of hand-engineered features, took a test-time of 30 minutes, and achieved a
bidirectional AUC of 0.82. Interestingly, the performance of IGCI on the 20, 000 training
pairs is barely better than random guessing. The computational complexity of the additive
noise model (usually implemented as two Gaussian Process regressions followed by two
kernel-based independence tests) made it unfeasible to compare it on this data set.

5. Conclusions and Future Research

To conclude, we proposed to learn how to perform causal inference between pairs of random
variables from observational data, by posing the task as a supervised learning problem. In
particular, we introduced an effective and efficient featurization of probability distributions,
based on kernel mean embeddings and random Fourier features. Our numerical simulations
support the conjecture that patterns revealing causal relationships can be learnt from data.

In light of our encouraging results, we would like to mention four exciting research
directions. First, the proposed ideas can be used to learn other domain-general statistics,
such as measures of dependence (Lopez-Paz et al., 2013). Second, it is important to develop
techniques to visualize and interpret the causal features learned by our classifiers. This
direction is particularly essential for causal inference as it provides a data-dependent way of
discovering new hypothesis on underlying causal mechanism. Third, RCC can be extended to
operate not only on pairs, but also sets of random variables, and eventually reconstruct causal
DAGs from multivariate data. Finally, one may adapt the distributional learning theory of
Szabó et al. (2014) to analyze our randomized, classification setting. For preliminary results
on the last two points, we refer the reader to (Lopez-Paz et al., 2015).
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Information-geometric approach to inferring causal directions. Artificial Intelligence, 2012.

D. Janzing, B. Steudel, N. Shajarisales, and B. Schölkopf. Justifying information-geometric causal
inference. arXiv prepring arXiv:1402.2499, 2014.

S. Kpotufe, E. Sgouritsa, D. Janzing, and B. Schölkopf. Consistency of causal inference under the
additive noise model. ICML, 2013.

D. Lopez-Paz, P. Hennig, and B. Schölkopf. The Randomized Dependence Coefficient. NIPS, 2013.

D. Lopez-Paz, K. Muandet, B. Schölkopf, and I. Tolstikhin. Towards a learning theory of causation.
ICML, 2015.

J. M. Mooij, J. Peters, D. Janzing, J. Zscheischler, and B. Schölkopf. Distinguishing cause from effect
using observational data: methods and benchmarks. arXiv preprint arXiv:1412.3773, 2014.

K. Muandet, K. Fukumizu, F. Dinuzzo, and B. Schölkopf. Learning from distributions via support
measure machines. NIPS, 2012.

K. Muandet, K. Fukumizu, B. Sriperumbudur, A. Gretton, and B. Schölkopf. Kernel mean estimation
and Stein effect. ICML, 2014.

J. Peters, Joris M. M., D. Janzing, and B. Schölkopf. Causal discovery with continuous additive
noise models. JMLR, 2014.

A. Rahimi and B. Recht. Random features for large-scale kernel machines. NIPS, 2007.

H. Reichenbach. The direction of time. Dover, 1956.

W. Rudin. Fourier analysis on groups. Wiley, 1962.

B. Schölkopf, D. Janzing, J. Peters, E. Sgouritsa, K. Zhang, and J. M. Mooij. On causal and
anticausal learning. In ICML, 2012.

A. J. Smola, A. Gretton, L. Song, and B. Schölkopf. A Hilbert space embedding for distributions. In
ALT. Springer-Verlag, 2007.

B. K. Sriperumbudur, A. Gretton, K. Fukumizu, B. Schölkopf, and G. Lanckriet. Hilbert space
embeddings and metrics on probability measures. JMLR, 2010.
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Abstract

In this paper we provide theoretical support for the so-called “Sigmoidal Gaussian Cox
Process” approach to learning the intensity of an inhomogeneous Poisson process on a d-
dimensional domain. This method was proposed by Adams, Murray and MacKay (ICML,
2009), who developed a tractable computational approach and showed in simulation and
real data experiments that it can work quite satisfactorily. The results presented in the
present paper provide theoretical underpinning of the method. In particular, we show how
to tune the priors on the hyper parameters of the model in order for the procedure to
automatically adapt to the degree of smoothness of the unknown intensity, and to achieve
optimal convergence rates.

Keywords: inhomogeneous Poisson process, Bayesian intensity learning, Gaussian pro-
cess prior, optimal rates, adaptation to smoothness

1. Introduction

Inhomogeneous Poisson processes are widely used models for count and point data in a
variety of applied areas. A typical task in applications is to learn the underlying intensity
of a Poisson process from a realised point pattern. In this paper we consider nonparametric
Bayesian approaches to this problem. These do not assume a specific parametric form of the
intensity function and produce posterior distributions which do not only give an estimate
of the intensity, for example through the posterior mean or mode, but also give a measure
of the remaining uncertainty through the spread of the posterior.

Several papers have explored nonparametric Bayesian approaches in this setting. An
early reference is Møller et al. (1998), who study log-Gaussian priors. Gugushvili and Spreij
(2013) recently considered Gaussian processes combined with different, non-smooth link
functions. Kernel mixtures priors are considered in Kottas and Sansó (2007). Spline-based
priors are used in DiMatteo et al. (2001) and Belitser et al. (2013).

The present study is motivated by a method that is not covered by earlier theoretical
papers, namely the method of Adams et al. (2009). These authors presented the first
approach that is also computationally fully nonparametric in the sense that it does not
involve potentially inaccurate finite-dimensional approximations. The method involves a
prior on the intensity that is a random multiple of a transformed Gaussian process (GP).

c©2015 Alisa Kirichenko and Harry van Zanten.
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Both the hyper parameters of the GP and the multiplicative constant are endowed with
priors as well, resulting in a hierarchical Bayes procedure (details in Section 2.3). Simulation
experiments and real data examples in Adams et al. (2009) show that the method can give
very satisfactory results.

The aim of this paper is to advance the theoretical understanding of the method of
Adams et al. (2009), which they termed “Sigmoidal Gaussian Cox Process” (SGCP). It is
by now well known both from theory and practice that nonparametric Bayesian methods
need to be tuned very carefully to produce good results. An unfortunate choice of the prior
or incorrectly tuned hyper parameters can easily result in procedures that give misleading
results or that make sub-optimal use of the information in the training data. See for
instance the by now classical reference Diaconis and Freedman (1986), or the more recent
paper van der Vaart and van Zanten (2011) and the references therein.

A challenge in this problem (and in nonparametric function learning in general) is to
devise a procedure that avoids overfitting and underfitting. The difficulty is that the appro-
priate degree of “smoothing” depends on the (unknown) regularity of the intensity function
that produces the data. Indeed, intuitively it is clear that if the function is very smooth then
to learn the intensity at a certain location we can borrow more information from neighbor-
ing points than if it is very rough. Ideally we want to have a procedure that automatically
uses the appropriate degree of smoothing, that is, that adapts to regularity.

To address this issue theoretically it is common to take an asymptotic point of view.
Specifically, we assume that we have n independent sets of training data, produced by
Poisson processes on the d-dimensional domain S = [0, 1]d (say), with the same intensity
function λ0 : S → [0,∞). We aim to construct the learning procedure such that we achieve
an optimal learning rate, irrespective of the regularity level of the intensity. In the problem
at hand it is known that if λ0 has regularity β > 0, then the best rate that any procedure
can achieve is of the order n−β/(d+2β). This can be made precise in the minimax framework,
for instance. For a fixed estimation or learning procedure, one can determine the largest
expected loss that is incurred when the true function generating the data is varied over
a ball of functions with fixed regularity β, say. This will depend on n and quantifies the
worst-case rate of convergence for that fixed estimator for β-regular truths. The minimax
rate is obtained by minimising this over all possible estimators. So it is the best convergence
rate that any procedure can achieve, uniformly over a ball of functions with fixed regularity
β. See, for example, Tsybakov (2009) for a general introduction to the minimax approach
and Kutoyants (1998) or Reynaud-Bouret (2003) for minimax results in the context of the
Poisson process model that we consider in this paper.

Note that the smoothness degree is unknown to us, so we can not use it in the construc-
tion of the procedure, but still we want that the posterior contracts around λ0 at the rate
n−β/(d+2β), as n → ∞, if λ0 is β-smooth. In this paper we prove that with appropriate
priors on the hyper parameters, the SGCP approach of Adams et al. (2009) attains this
optimal rate (up to a logarithmic factor). It does so for every regularity level β > 0, so it
is fully rate-adaptive.

Technically the paper uses the mathematical framework for studying contraction rates
for Gaussian and conditionally Gaussian priors as developed in van der Vaart and van Zanten
(2008a) and van der Vaart and van Zanten (2009). We also use an extended version of a
general result for Bayesian inference for 1-dimensional Poisson processes from Belitser et al.
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(2013). On a general level the line of reasoning is similar to that of van der Vaart and van
Zanten (2009). However, due to the presence of a link function and a random multiplicative
constant in the SGCP model (see Section 2 ahead) the results of the latter paper do not
apply in the present setting and additional mathematical arguments are required to prove
the desired results.

The paper is organised as follows. In Section 2 we describe the Poisson process ob-
servation model and the SGCP prior model, which together determine a full hierarchical
Bayesian model. The main result about the performance of the SGCP approach is presented
and discussed in Section 3. Mathematical proofs are given in Section 4. In Section 5 we
make some concluding remarks.

2. The SGCP Model

In this section we describe the observation model and the SGCP prior model for the intensity.

2.1 Observation Model

We assume we observe n independent copies of an inhomogeneous Poisson process on the
d-dimensional unit cube S = [0, 1]d (adaptation to other domains is straightforward). We
denote these observed data by N1, . . . , Nn. Formally every N i is a counting measure on sub-
sets of S. The object of interest is the underlying intensity function. This is a (integrable)
function λ : [0, 1]d → [0,∞) with the property that given λ, every N j is a random counting
measure on [0, 1]d such that N j(A) and N j(B) are independent if the sets A,B ⊂ [0, 1]d are
disjoint and the number of points N j(B) falling in the set B has a Poisson distribution with
mean

∫
B λ(s) ds. If we want to stress that the probabilities and expectations involving the

observations N j depend on λ, we use the notations Pλ and Eλ, respectively. We note that
instead of considering observations from n independent Poisson processes with intensity λ,
one could equivalently consider observations from a single Poisson process with intensity
nλ.

2.2 Prior Model

The SGCP model introduced in Adams et al. (2009) postulates a-priori that the intensity
function λ is of the form

λ(s) = λ∗σ(g(s)), s ∈ S, (2.1)

where λ∗ > 0 is an upper bound on λ, g is a GP indexed by S and σ is the sigmoid, or
logistic function on the real line, defined by σ(x) = (1 + e−x)−1. In the computational
section of Adams et al. (2009) g is modeled as a GP with squared exponential covariance
kernel and zero mean, with a prior on the length scale parameter. The hyper parameter λ∗

is endowed with an independent gamma prior.
In the mathematical results presented in this paper we allow a bit more flexibility in the

choice of the covariance kernel of the GP, the link function σ and the priors on the hyper
parameters. We assume that g is a zero-mean, homogenous GP with covariance kernel given
in spectral form by

Eg(s)g(t) =

∫
e−i〈ξ,`(t−s)〉µ(ξ) dξ, s, t ∈ S, (2.2)
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where ` > 0 is an (inverse) length scale parameter and µ is a spectral density on Rd such
that the map a 7→ µ(aξ) on (0,∞) is decreasing for every ξ ∈ Rd and that satisfies∫

eδ||ξ||µ(dξ) <∞ (2.3)

for some δ > 0 (the Euclidean inner product and norm are denoted by 〈·, ·〉 and ‖ · ‖,
respectively). Note that, in particular, the centered Gaussian spectral density satisfies this
condition and corresponds to the squared exponential kernel

Eg(s)g(t) = e−`
2‖t−s‖2 .

We endow the length scale parameter ` with a prior with density p` on [0,∞), for which we
assume the bounds, for positive constants C1, D1, C2, D2, nonnegative constants p, q, and
every sufficiently large x > 0,

C1x
p exp(−D1x

d logq x) 6 p`(x) 6 C2x
p exp(−D2x

d logq x). (2.4)

This condition is, for instance, satisfied if `d has a gamma distribution, which is a common
choice in practice. Note however that the technical condition (2.4) is only a condition on
the tail of the prior on `. On the upper bound λ∗ we put a prior satisfying an exponential
tail bound. Specifically, we use a positive, continuous prior density pλ∗ on [0,∞) such that
for some c0, C0, κ > 0, ∫ ∞

λ0

pλ∗(x) dx 6 C0e
−c0λκ0 (2.5)

for all λ0 > 0. Note that this condition is fulfilled if we place a gamma prior on λ∗. Finally,
we use a strictly increasing, infinitely smooth link function σ : R → (0, 1) in (2.1) that
satisfies

|
√
σ(x)−

√
σ(y)| 6 c|x− y| (2.6)

for all x, y ∈ R. This condition is in particular fulfilled for the sigmoid function employed
by Adams et al. (2009). It holds for other link functions as well, for instance for the cdf of
the standard normal distribution.

2.3 Full Hierarchical Model

With the assumptions made in the preceding sections in place, the full hierarchical specifi-
cation of the prior and observation model can then be summarised as follows:

` ∼ p` (satisfying (2.4))

λ∗ ∼ pλ∗ (satisfying (2.5))

g | `, λ∗ ∼ GP with kernel given by (2.2)–(2.3)

λ | g, `, λ∗ ∼ defined by (2.1), with smooth σ satisfying (2.6)

N1, . . . , Nn |λ, g, `, λ∗ ∼ independent Poisson processes with intensity λ.

Note that under the prior, several quantities are, by construction, independent. Specifically,
` and λ∗ are independent, and g and λ∗ are independent.
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The main results of the paper concern the posterior distribution of the intensity function
λ, that is, the conditional λ |N1, . . . , Nn. Throughout we will denote the prior on λ by Π
and the posterior by Π(· |N1, . . . , Nn). In this setting Bayes’ formula asserts that

Π(λ ∈ B |N1, . . . , Nn) =

∫
B p(N

1, . . . , Nn |λ) Π(dλ)∫
p(N1, . . . , Nn |λ) Π(dλ)

, (2.7)

where the likelihood is given by

p(N1, . . . , Nn |λ) =
n∏
i=1

e
∫
S λ(x)N

i(dx)−
∫
S(λ(x)−1) dx

(see, for instance, Kutoyants, 1998).

3. Main Result

Consider the prior and observations model described in the preceding section and let
Π(· |N1, . . . , Nn) be the corresponding posterior distribution of the intensity function λ.

The following theorem describes how quickly the posterior distribution contracts around
the true intensity λ0 that generates the data. The rate of contraction depends on the
smoothness level of λ0. This is quantified by assuming that λ0 belongs to the Hölder space
Cβ[0, 1]d for β > 0. By definition a function on [0, 1]d belongs to this space if it has partial
derivatives up to the order bβc and if the bβcth order partial derivatives are all Hölder
continuous of the order β − bβc. Here bβc denotes the greatest integer strictly smaller
than β. The rate of contraction is measured in the L2-distance between the square root of
intensities. This is the natural statistical metric in this problem, as it can be shown that
in this setting the Hellinger distance between the models with intensity functions λ1 and
λ2 is equivalent to min{‖

√
λ1−

√
λ2‖2, 1} (see Belitser et al., 2013). Here ‖f‖2 denotes the

L2-norm of a function on S = [0, 1]d, that is, ‖f‖22 =
∫
S f

2(s) ds.

Theorem 1 Suppose that λ0 ∈ Cβ[0, 1]d for some β > 0 and that λ0 is strictly positive.
Then for all sufficiently large M > 0,

Eλ0Π(λ : ‖
√
λ−

√
λ0‖2 >Mn−β/(d+2β) logρ n|N1, . . . , Nn)→ 0 (3.1)

as n→∞, for some ρ > 0.

The theorem asserts that if the intensity λ0 that generates the data is β-smooth, then,
asymptotically, all the posterior mass is concentrated in (Hellinger) balls around λ0 with
a radius that is up to a logarithmic factor of the optimal order n−β/(d+2β). Since the
procedure does not use the knowledge of the smoothness level β, this indeed shows that the
method is rate-adaptive, that is, the rate of convergence adapts automatically to the degree
of smoothness of the true intensity. Let us mention once again that the conditions of the
theorem are in particular fulfilled if in (2.1), λ∗ is taken gamma, σ is the sigmoid (logistic)
function, and g is a squared exponential GP with length scale `, with `d a gamma variable.
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4. Proof of Theorem 1

To prove the theorem we employ an extended version of a result from Belitser et al. (2013)
that gives sufficient conditions for having (3.1) in the case d = 1, cf. their Theorem 1.
Adaptation to the case of a general d ∈ N is straightforward. To state the result we
need some (standard) notation and terminology. For a set of positive functions F we write√
F = {

√
f, f ∈ F}. For ε > 0 and a norm ‖·‖ on F , let N(ε,F , ||·||) be the minimal number

of balls of radius ε with respect to norm ‖ · ‖ needed to cover F . The uniform norm ‖f‖∞
of a function f on S is defined, as usual, as ‖f‖∞ = sups∈S |f(s)|. The space of continuous
function on S is denoted by C(S). As usual, a ∧ b = min{a, b} and a ∨ b = max{a, b}.

Let Π now be a general prior on the intensity function λ and let Π(· |N1, . . . , Nn) be
the corresponding posterior (2.7).

Theorem 2 Assume that λ0 is bounded away from 0. Suppose that for positive sequences
δn, δn → 0 such that n(δn ∧ δn)2 →∞ as n→∞ and constants c1, c2 > 0, it holds that for
all L > 1, there exist subsets Fn ⊂ C(S) and a constant c3 such that

1−Π(Fn) 6 e−Lnδ
2
n , (4.1)

Π(λ : ||λ− λ0||∞ 6 δn) > c1e
−nc2δ2n , (4.2)

logN(δn,
√
Fn, ‖ · ‖2) 6 c3nδ

2
n. (4.3)

Then for εn = δn ∨ δn and all sufficiently large M > 0,

Eλ0Π(λ : ‖
√
λ−

√
λ0‖2 >Mεn|N1, . . . Nn)→ 0 (4.4)

as n→∞.

We note that this theorem has a form that is commonly encountered in the literature
on contraction rates for nonparametric Bayes procedures. The so-called “prior mass condi-
tion” (4.2) requires that the prior puts sufficient mass near the true intensity function λ0
generating the data. The “remaining mass condition” (4.1) and the “entropy condition”
(4.3) together require that “most” of the prior mass should be concentrated on so-called
“sieves” Fn that are not too large in terms of their metric entropy. The sieves grow as
n→∞ and in the limit they capture all the posterior mass.

In the subsequent subsections we will show that the prior defined in Section 2.3 fulfills the
conditions of this theorem, for δn = n−β/(2β+d)(log n)k1 and δn = L1n

−β/(2β+d)(log n)(d+1)/2+2k1 ,
with L1 > 0 and k1 = ((1 + d) ∨ q)/(2 + d/β). The proofs build on earlier work, especially
from van der Vaart and van Zanten (2009), in which results like (4.1)–(4.3) have been de-
rived for GP’s like g. Here we extend and adapt these results to deal with the additional
link function σ and the prior on the maximum intensity λ∗.

4.1 Prior Mass Condition

In this section we show that with λ∗, σ and g as specified in Section 2.3 and λ0 ∈ Cβ(S),
we have

P(‖λ∗σ(g)− λ0‖∞ 6 δn) > c1e
−nc2δ2n (4.5)
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for constants c1, c2 > 0 and δn as defined above.

The link function σ is strictly increasing and smooth, hence it has a smooth inverse
σ−1 : (0, 1)→ R. Define the function w0 on S by

w0(s) = σ−1
( λ0(s)

2‖λ0‖∞

)
, s ∈ S,

so that λ0 = 2‖λ0‖∞σ(w0). Since the function λ0 is positive and continuous on the compact
set S, it is bounded away from 0 on S, say λ0 > a > 0. It follows that λ0(s)/2‖λ0‖∞ varies
in the compact interval [a/2||λ0||∞, 1/2] as s varies in S, hence w0 inherits the smoothness
of λ0, that is, w0 ∈ Cβ(S).

Now observe that for ε > 0,

P(‖λ∗σ(g)− λ0‖∞ 6 2ε)

= P(‖(λ∗ − 2‖λ0‖∞)σ(g) + 2‖λ0‖∞(σ(g)− σ(w0))‖∞ 6 2ε)

> P(|λ∗ − 2‖λ0‖∞| 6 ε)P(‖σ(g)− σ(w0)‖∞ 6 ε/2‖λ0‖∞).

Since λ∗ has a positive, continuous density the first factor on the right is bounded from
below by a constant times ε. Since the function

√
σ is Lipschitz by assumption, the second

factor is bounded from below by P(‖g −w0‖∞ 6 cε) for a constant c > 0. By Theorem 3.1
in van der Vaart and van Zanten (2009) we have the lower bound

P(‖g − w0‖∞ 6 δn) > e−nδ
2
n ,

with δn as specified above. The proof of (4.5) is now easily completed.

4.2 Construction of Sieves

Let H` be the RKHS of the GP g with covariance (2.2) and let H`
1 be its unit ball (see

van der Vaart and van Zanten, 2008b for background on these notions). Let B1 be the unit
ball in C[0, 1]d relative to the uniform norm. Define

Fn =
⋃
λ6λn

λσ(Gn),

where

Gn =

[
Mn

√
rn
γn

Hrn
1 + εnB1

]
∪

 ⋃
a6γn

(MnHa
1) + εnB1

 ,
and λn, Mn, γn, rn and εn are sequences to be determined later. In the next two subsections
we study the metric entropy of the sieves Fn and the prior mass of their complements.

4.3 Entropy

Since
√
σ is bounded and Lipschitz we have, for a, b ∈ [0, λn], some c > 0 and f, g ∈ Gn,

‖
√
aσ(f)−

√
bσ(g)‖∞ 6 |

√
a−
√
b|+ c

√
λn‖f − g‖∞.
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Since |
√
a−
√
b| ≤

√
|a− b| for a, b > 0, it follows that for ε > 0,

N(2ε
√
λn,
√
Fn, ‖ · ‖2) 6 N(ε

√
λn, [0, λn],

√
| · |)N(ε/c,Gn, ‖ · ‖∞),

and hence

logN(2ε
√
λn,
√
Fn, ‖ · ‖2) . log

(1

ε

)
+ logN(ε/c,Gn, ‖ · ‖∞).

By formula (5.4) from van der Vaart and van Zanten (2009),

logN(3εn,Gn, ‖ · ‖∞) 6 Krdn

(
log

d1/4M
3/2
n
√

2τrn

ε
3/2
n

)1+d

+ 2 log
2Mn

√
||µ||

εn
,

for ‖µ‖ the total mass of the spectral measure µ, τ2 the second moment of µ, a constant
K > 0, γn = εn/(2τ

√
dMn), rn > A for some constant A > 0, and given that the following

relations hold:
d1/4M3/2

n

√
2τrn > 2ε3/2n , Mn

√
||µ|| > εn. (4.6)

By substituting η̄n = εn
√
λn we get that for some constants K1 and K2,
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√
Fn, ‖ · ‖2) . K1r

d
n

(
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3/4
n M

3/2
n d1/4

√
2τrn

η̄
3/2
n
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+K2 log
λ
1/2
n Mn

η̄n
,

when Mn > 1. In terms of η̄ the conditions (4.6) can be rewritten as

d1/4M3/2
n λ3/4n

√
2τrn > 2η̄3/2n , Mnλ

1/2
n

√
||µ|| > η̄n. (4.7)

So we conclude that we have the entropy bound

logN(η̄n,
√
Fn, ‖ · ‖2) . nη̄2n

for sequences λn, Mn, rn and η̄n satisfying (4.7) and

K1r
d
n

(
log

λ
3/4
n M

3/2
n d1/4

√
2τrn

η̄
3/2
n

)1+d

< nη̄2n, K2 log
λ
1/2
n Mn

η̄n
< nη̄2n. (4.8)

4.4 Remaining Mass

By conditioning we have

P(λ∗σ(g) 6∈ Fn) =

∫ ∞
0

P(λσ(g) 6∈ Fn)pλ∗(λ) dλ

6
∫ λn

0
P(λσ(g) 6∈ Fn)pλ∗(λ) dλ+

∫ ∞
λn

pλ∗(λ) dλ.

By (2.5) the second term is bounded by a constant times exp(−c0λκn). For the first term,
note that for λ 6 λn we have

λ−1
⋃

λ′6λn

λ′σ(Gn) ⊃ σ(Gn),

2916



Optimal Poisson Intensity Learning with GP’s

hence P(λσ(g) 6∈ Fn) 6 P(g 6∈ Gn). From (5.3) in van der Vaart and van Zanten (2009) we
obtain the bound

P(g 6∈ Gn) 6
K3r

p−d+1
n e−D2rdn logq rn

logq rn
+ e−M

2
n/8,

for some K3 > 0, εn < ε0 for a small constant ε0 > 0, and Mn, rn and εn satisfying

M2
n > 16K4r

d
n(log(rn/εn))1+d, rn > 1, (4.9)

where K4 is some large constant. It follows that P(g 6∈ Gn) is bounded above by a multiple
of exp (−Lnη̃2n) for a given constant L and η̃n = λnεn, provided Mn, rn, γn and εn satisfy
(4.9) and

D2r
d
n logq rn > 2Lnη̃2n, rp−d+1

n 6 eLnη̃
2
n , M2

n > 8Lnη̃2n. (4.10)

Note that in terms of η̃n, (4.9) can be rewritten as

M2
n > 16K4r

d
n(log(rnλn/η̃n))1+d, rn > 1. (4.11)

We conclude that if (4.11),(4.10) holds and

c0λ
κ
n > Lnη̃2n, (4.12)

then
P(λ∗σ(g 6∈ Fn)) . e−Lnη̃

2
n .

4.5 Completion of the Proof

In the view of the preceding it only remains to show that η̃n, η̄n, rn, Mn > 1 and λn can
be chosen such that relations (4.7), (4.8), (4.10), (4.11) and (4.12) hold.

One can see that it is true for η̃n = δn and η̄n = δn described in the theorem, with rn,
Mn, λn as follows:

rn = L2 n
1

2β+d (log n)
2k1
d ,

Mn = L3 n
d

2(2β+d) (log n)
d+1
2

+2k1 ,

λn = L4 n
d

κ(2β+d) (log n)
4k1
κ

for some large constants L2, L3, L4 > 0.

5. Concluding Remarks

We have shown that the SGCP approach to learning intensity functions proposed by Adams
et al. (2009) enjoys very favorable theoretical properties, provided the priors on the hyper
parameters are chosen appropriately. The result shows there is some flexibility in the
construction of the prior. The squared exponential GP may be replaced by other smooth
stationary processes, other link functions may be chosen, and there is also a little room
in the choice of the priors on the length scale and the multiplicative parameter. This
flexibility is limited, however, and although our result only gives upper bounds on the
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contraction rate, results like those of Castillo (2008) and van der Vaart and van Zanten
(2011) lead us to believe that one might get sub-optimal performance when deviating too
much from the conditions that we have imposed. Strictly speaking the matter is open
however and additional research is necessary to make this belief precise and to describe the
exact boundaries between good and sub-optimal behaviours.

We expect that a number of generalizations of our results are possible. For instance,
it should be possible to obtain generalizations to anisotropic smoothness classes and priors
as considered in Bhattacharya et al. (2014), and classes of analytic functions as studied in
van der Vaart and van Zanten (2009). These generalizations take considerable additional
technical work however and are therefore not worked out in this paper. We believe they
would not change the general message of the paper.
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Abstract

This paper describes the winning solution of team National Taiwan University for track 1 of
KDD Cup 2013. The track 1 in KDD Cup 2013 considers the paper-author identification
problem, which is to identify whether a paper is truly written by an author. First, we
conduct feature engineering to transform the various types of provided text information
into 97 features. Second, we train classification and ranking models using these features.
Last, we combine our individual models to boost the performance by using results on the
internal validation set and the official Valid set. Some effective post-processing techniques
have also been proposed. Our solution achieves 0.98259 MAP score and ranks the first
place on the private leaderboard of the Test set.
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1. Introduction

In recent years, different open platforms such as Microsoft Academic Search,1 Google
Scholar,2 and DBLP3 have been constructed for providing various papers and authors in-
formation for the research community. One of the main challenges of providing this service
is, by collecting the information from different sources on the Internet, author profiles may
be incorrectly assigned to papers that are not written by them. This situation could be
caused by author-name ambiguity, the same name shared by different authors, and the
wrong paper-author information from the source. The research problem to address this
challenge is called paper-author identification, which is to identify which papers are truly
written by an author.

We briefly review existing approaches for this problem. Some have modeled it as a link
prediction problem in social networks. For example, Sun et al. (2011) introduce Hetero-
geneous Bibliographic Network, which contains multiple types of nodes, including authors,
papers, and topics. The links among these nodes represent different relations between au-
thors and papers. Then several topological features could be extracted from the network
to assist supervised learning techniques for link prediction. Sun et al. (2011) systematically
extract some heterogeneous-network features and demonstrate that they are more effective
than traditional homogeneous-network features.

Sun et al. (2012) generalize the concept of heterogeneous bibliographic networks to
general heterogeneous networks. Their model leverages the interaction between different
types of nodes to mine more semantic information of the network. Yang et al. (2012)
apply probabilistic approaches and explore the temporal information on the network. Their
experimental results on co-authorship prediction demonstrate the effectiveness. Lee and
Adorna (2012) modify a heterogeneous bibliographic network by highlighting important
relations in the network. Kuo et al. (2013) further study the heterogeneous network under
the unsupervised settings with aggregate statistics. Besides the link prediction problem,
the heterogeneous network has also been applied to other related problems, such as citation
prediction (Sun et al., 2011; Yu et al., 2012).

Another problem related to paper-author identification is authorship contribution (Juola,
2006; Stamatatos, 2009). The goal of authorship contribution is to infer the characteristics
of authors from given texts. Then we can distinguish the texts written by different authors.

KDD Cup is currently one of the most important data mining competitions. In 2013,
track 1 of KDD Cup considers a problem of paper-author identification. The data set is
provided by Microsoft Academic Search. Participants are given thousands of authors and
their publications. However, for any author, some papers may be wrongly assigned to
him/her. Therefore, the goal of this competition is to identify which paper is truly written
by an author from the given publications.

The paper describes the winning solution of team National Taiwan University. Our
approach treats the problem as a binary classification or ranking problem. Therefore,
we conduct feature engineering transforming the given text information into features and
then apply the state-of-art binary classification and ranking algorithms. Last, we ensemble

1. http://academic.research.microsoft.com/

2. http://scholar.google.com.tw/

3. http://dblp.uni-trier.de/
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several classification models and conduct a post-processing procedure to further boost the
performance. According to the announced results, our approach achieves the best result
with 0.98259 MAP score.

The paper is organized as follows. Section 2 introduces the track 1 problem of KDD
Cup 2013. Section 3 outlines the framework of our approaches. Section 4 describes the
approaches to transform the given text information into meaningful features. Section 5
discusses the models that we used. Section 6 describes how we combine different models
and post-process the combined result to boost the performance. Finally, we conclude and
discuss potential issues in Section 7.

Our implementation is available at https://github.com/kdd-cup-2013-ntu/track1.
A preliminary version of the paper appeared in the KDD Cup 2013 Workshop (Li et al.,
2013).

2. Track 1 of KDD Cup 2013

The data set of track 1 of KDD Cup 2013 (Roy et al., 2013) is provided by Microsoft
Academic Search. To address the paper-author identification problem, Microsoft Academic
Search provides an interface allowing authors to confirm or delete the papers in their pro-
files. Confirmation means authors acknowledge they are the authors of the given paper;
in contrast, deletion means authors claim that they are not the authors of the given pa-
pers (Roy et al., 2013). The data set contains the information about authors and their
confirmed/deleted papers. Based on author IDs, the organizers split the data set to three
parts, including Train, Valid, and Test sets.

The Train set (Train.csv) contains 3,739 authors. For each author, the AuthorId,
ConfirmedPaperIds, and DeletedPaperIds are provided. The Valid set (Valid.csv) of 1,486
authors, each with an associated sequence of assigned paper IDs without confirmation or
deletion, is for public leaderboard evaluation. The answers (confirmation/deletion) in the
Valid set were released two weeks before the end of the competition. Participants were
allowed to refine their algorithms based on the released answers of the Valid set, and were
required to submit their models one week before the end of the competition. After the
submission, the Test set (Test.csv) of 2,245 authors was used for private leaderboard
evaluation.

In addition to the Train set, the following information is also provided.

• Author.csv contains author names and their affiliations.

• Paper.csv contains paper titles, years, conference IDs, journal IDs, and keywords.

• PaperAuthor.csv contains paper IDs, author IDs, author names, and affiliations.

• Journal.csv contains short names, full names, and home page information of jour-
nals.

• Conference.csv contains short names, full names, and home page information of
conferences.
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# of authors # of papers
# of confirmed # of deleted

papers papers

Train.csv 3, 739 224, 459 224, 459 108, 794

Valid.csv 1, 486 86, 755 41, 024 47, 081

Test.csv 2, 245 129, 427 – –

Paper.csv – 2, 257, 249 – –

Author.csv 247, 203 – – –

PaperAuthor.csv 2, 143, 148 2, 258, 482 – –

Table 1: Statistics of the given files.

Mean Std. Median Min Max Q1 Q3

Train.csv Confirmed 33.02 52.72 15 1 860 5 38

Train.csv Deleted 30.08 107.34 6 1 2933 2 21

Train.csv All 63.09 124.81 28 2 2977 11 68

Valid.csv Confirmed 32.32 56.66 14 1 1324 5 38

Valid.csv Deleted 27.79 78.12 5 1 1872 2 22

Valid.csv All 60.22 103.15 28 2 2048 11 69

Test.csv All 60.45 100.68 28 2 1371 11 68

Table 2: Statistics on the number of papers per author in the data set, where Q1 and Q3

are the first and third quartiles, respectively.

Unfortunately, the provided additional data are noisy and have missing values. For in-
stance, PaperAuthor.csv contains the relations of authors and papers, but papers may be
incorrectly assigned to an author. More statistics of the data are provided in Tables 1 and 2.

The goal of the competition is to predict which given papers are written by the given
author. To be more specific, given confirmation and deletion records of authors as the
training data (Train.csv), participants of the competition must predict which papers in
the given paper list of each author in the test data (Test.csv) are truly written by him or
her. The evaluation criterion is mean average precision (MAP), which is commonly used
for ranking problems. Before answers of the Valid set were released, each team was allowed
to submit their results on the Valid set five times per day and MAP scores were shown on
the public leaderboard. During the last week of the competition, each team was allowed to
submit multiple results on the Test set, and select one result for the final standing.

At National Taiwan University, we organized a course for KDD Cup 2013. Our members
include three instructors, three TAs, and 18 students. The students were split into six
sub-teams. Every week, each sub-team presented their progress and discussed with other
sub-teams. The TAs helped to build an internal competition environment such that each
sub-team could try their ideas before submitting their results to the competition website.
Following the competition rules, the whole team share a single account for submitting
results. According to the announced results, our approach achieves the best result on the
Test set with 0.98259 MAP score.
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Feature generation

Individual models

Combining models

Post-processing

Figure 1: The framework of our approach.

3. Framework

This section first provides the framework of our system. Then we discuss the self-split
internal validation set from the Train set. The internal validation is not only useful for off-
line validating the model performance and combining different models, but also important
for avoiding over-fitting the Valid set.

3.1 System Overview

We mentioned in Section 1 that we take a supervised learning approach. Our system can
be divided into four stages: generating features, training individual models, combining
different models, and post-processing as shown in Figure 1. The framework is similar to the
one proposed in Yu et al. (2010), which is effective in data-mining applications.

In the first stage, we transform Train.csv into a binary classification training set. For
each author in Train.csv, the list of confirmed papers and deleted papers are provided
as described in Section 2. For each paper on the list, we can generate a corresponding
author-paper pair, and each pair is treated as a training instance. The confirmation of an
author-paper pair is a training instance with label 1; the deletion of of an author-paper pair
is a training instance with label -1. We explore different approaches to generate features,
which capture various aspects of the given text information.

In the second stage, we mainly employ three models, including Random Forests, Gradi-
ent Boosting Decision Tree and LambdaMART. For each individual model, to avoid over-
fitting, we carefully conduct the parameter selection by using the internal validation set.
In the third stage, we combine the three different models by using results on the internal
validation set and the official Valid set. In the last stage, we post-process the combined
result to further improve the performance by exploiting duplicated information which is not
fully utilized by the models.

3.2 Validation Set

A validation set independent from the training set is useful for evaluating models. Given that
the answers of the official Valid set are not available in the early stage of the competition,
we construct an internal validation set for verifying our models. It is also useful to avoid
over-fitting leaderboard results on the Valid set. In this competition, official Train, Valid
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and Test sets are generated by first randomly shuffling authors, and then separate them
into three parts with ratio 5:2:3 respectively. Therefore, we randomly split the Train set to
have 2,670 authors as the internal training set and 1,069 authors as the internal validation
set. In our experiments, the MAP score on the internal validation set is usually consistent
with the one computed by five-fold cross validation on the official Train set.

4. Feature Engineering

To determine the confirmation or deletion of each author-paper pair, we treat each author-
paper pair in Train.csv as a training instance with label 1 or -1 that represents confirmation
or deletion, respectively. We then generate 97 features for each instance and apply the learn-
ing algorithms described in Section 5. Subsequently, in describing the feature generation
for each author-paper pair, we refer to the author and the paper as the target author and
the target paper, respectively.

In this section, we describe our approaches of transforming the given information into
features. For the full feature list, please refer to the Appendix.

4.1 Preprocessing

Since many features are based on string matching, we conduct simple preprocessing to clean
the data. We first replace the Latin alphabet with the English alphabet, such as replacing
ó with o; we also delete some Greek alphabet letters, such as π. Then, we remove stop
words in affiliations, titles and keywords, where the stop-word list is obtained from the
NLTK package (Bird et al., 2009). Finally, we convert all characters into lowercase before
comparison.

4.2 Features Using Author Information

This type of features stems from user profiles, such as user names or affiliations. Based on
the information we try to capture, these features can be classified into the following three
groups.

4.2.1 Confirmation of Author Profiles

An intuitive method to confirm that a paper is written by a given author is to check
whether the name appears in the author section of the paper. However, a more careful
setting is to check also the consistency of other information such as affiliations. In the
competition, author affiliations are provided in Author.csv and PaperAuthor.csv. One
basic assumption about Author.csv and PaperAuthor.csv is that Author.csv contains
the author profiles maintained by Microsoft Academic Search, while the author information
in PaperAuthor.csv is extracted from the paper without confirmation. The assumption
is based on our observation on the given files as well as the online system. When there
exists a conflict between Author.csv and PaperAuthor.csv, the author information in the
online system is usually the same as that in Author.csv. Therefore, we generate features
by comparing author names and affiliations between Author.csv and PaperAuthor.csv.
The comparisons are done by string matching, and various string distances are used as
features, including Jaro distance (Jaro, 1989, 1995), Levenshtein distance (Levenshtein,
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1966), Jaccard distance (Jaccard, 1901a,b) (of words) and character match ratio. These
features are simple but useful; for example, by using only the affiliation Levenshtein distance
as a feature, we can achieve 0.94 MAP score on the Valid set.

An issue in author-name matching is to handle abbreviated names, which are very
common in PaperAuthor.csv. In contrast, author names in Author.csv are usually in a
complete format. The string distance between an abbreviated name and a full name may
be large even if the two names are the same. Two different approaches are used to overcome
the problem. The first one is to convert all names into an abbreviated format before the
comparison; in our approach, the conversion is done by retaining only the last name and
first character of first and middle names. The second approach is to split the author name
into first, last and middle names, and compare each of them separately. The two approaches
are applied independently to obtain different features.

Another challenge of name matching comes from the inconsistency of the name order.
There are two main name orders in the provided data, the Western order and the Eastern
order. The Western order means that given names precede surnames; in contrast, the
Eastern order means that surnames precede given names. While most of the names are
in the Western order, names in the Eastern order also frequently appear to cause failed
comparisons. Although it is possible to check the name order and transform the Eastern-
order names to Western-order ones before comparisons, such checking might be difficult
and is prone to error. Instead, two different features are generated for the same distance
measure. One assumes that names from Author.csv and PaperAuthor.csv are in the same
name order. The other assumes that names are in the opposite order, so the name order in
Author.csv is changed before string comparisons. Specifically, the order change is done by
exchanging the first word and the last word in the name. However, this setting may wrongly
consider two different author names as the same; for example, Xue Yan (PID:1224852)
and Yan Xue (PID:482431) are considered as the same person in the generation of the
second feature. Fortunately, because the number of Eastern-order name is relatively small
in the data set, our approach still improves the overall performance.

4.2.2 Coauthor Name Matching

Features matching coauthor names are inspired by observing the data set: in many deleted
papers, there exist coauthors with names similar to the target author. For example, two
authors (174432 and 1363357) of the deleted paper 5633 are the same as the target author
Li Zhang. Therefore, having such coauthors is an important trait of deleted papers. To
capture the information, we take the minimum string distance of names between the target
author and his/her coauthors as a feature. Similar to the feature generation in Section 4.2.1,
we also need to address the issue of abbreviated names and name orders.

Another problem for matching coauthor names is to decide names for comparison.
For a given author identifier, corresponding names may appear in both Author.csv and
PaperAuthor.csv. In fact, multiple names under the same identifier may appear in
PaperAuthor.csv. These names may be different because of abbreviations, typos or even
parsing errors of the Microsoft system. For example, author 1149778 is Dariusz Adam
Ceglarek in Author.csv, while it corresponds to Dariusz Ceglarek and D. Ceglarek
under paper 770630 in PaperAuthor.csv. Besides, some authors in PaperAuthor.csv do
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not appear in Author.csv. To handle the problem, multiple features are generated, where
each feature is computed by using different combinations of name sources. For instance,
the target author name could be from Author.csv and PaperAuthor.csv, and coauthor
names could be from PaperAuthor.csv. Then the distances of all possible combinations
of the author and each coauthor names from different sources are computed. We select
the minimum distance among all possible combinations to represent the name distance be-
tween the author and his/her coauthors. We give some examples to illustrate this type
of features. One of the features is the maximal Jaro distance between the target author
and all coauthors in the target paper. The list of coauthors is from the information in
PaperAuthor.csv. To extract useful information from the names, we consider different
forms of names for computing the distance: full name, abbreviated name, first name, last
name and name under the order change (see Section 4.2.1). We also employ other distance
measures to obtain more features; see a complete list in Appendix A.1

4.2.3 Author Consistency

Understandably, information in the data set should be consistent across papers and au-
thors. Author-consistency features try to measure such information in author profiles. In
particular, we measure the coauthor-affiliation consistency and research-topic consistency
as features. Affiliation consistency is based on the assumption that authors with the same
affiliation are more likely to co-work on a paper; therefore, we compute the affiliation string
distance as well as the number of coauthors with the same affiliation as the target author.
Similar to coauthor name matching, the affiliation may come from different sources, so we
compute multiple features.

Research-topic consistency assumes that the author should work on related topics across
different papers. Although the research topic or field information is not given in the data set,
we infer it from the paper titles and keywords. Therefore, we compute the title and keyword
similarity between the target paper and other papers of the target author as features.

4.2.4 Missing Value Handling

Missing values cause difficulties in conducting string matching. A common situation in
comparing author affiliations or author names is that both strings are empty. The resulting
zero string distance wrongly indicates an identical match. As a result, papers with missing
values tend to be ranked higher in prediction. To overcome this problem, we consider values
other than zero in calculating the distance. If both strings for comparison are empty, we
define their Jaro distance as 0.5, Jaccard distance as 0.5 and Levenshtein distance as the
average length of the field. Besides, we use some indicators as features; examples include
the number of coauthors without affiliation information.

4.3 Features Using Publication Time

Publication-time features are related to the publication year provided in Paper.csv. The
intuition of these features is that an author can be active in a specific period, and papers
written outside this period are likely authored by others. We include several features to
capture the publication-time information, such as the exact publication year, publication-
time span and publication year differences with other papers of the target author.
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Determining whether the provided year is valid is an issue to resolve before we can
generate year features. In the data set, some papers’ publication years such as 0, -1, and
800190 are obviously invalid. Besides, experiments on the internal validation set show
that excluding publication years earlier than 1800 A.D. improves the overall performance.
Therefore, we set the valid interval to be between 1800 A.D. and 2013 A.D. and ignore
publication years outside the interval.

Removing invalid publication years incurs the missing value problem. To fill the missing
year values, we utilize the publication-year information of coauthors. The basic concept is
to replace a missing value with the average of the mean publication years of all coauthors
of the paper. This average, however, is not computable because coauthors may also have
missing information on publication years. An iterative process is used to solve the problem
as follows. First, papers with invalid years are ignored and mean of available publication
years is calculated for each author. The mean value is then used to fill the missing value
of the author. These new values can be incorporated to calculate the new mean value
of the publication years. Therefore, the mean publication years and missing values are
computed alternatively until convergence. We list the procedure as follows. Please refer to
our implementation for detailed steps.

1. Let P be the set of papers with valid years, and mP be the map that maps each
paper p ∈ P to its publication year.

2. Let A be the set of authors of P and mA be the map that maps each author a ∈ A
to his/her mean publication year calculated based on mP .

3. Let P ′ be the set of papers with invalid years, and mP ′ be the map that maps each
paper p ∈ P ′ to the average of mean publication years of its authors in ma. If the
paper p ∈ P ′ does not have any author in A, the publication year is assigned to 0
in mP ′ .

4. Let mP ′′ = mP ′ .

5. Let A′ be the set of authors having papers in P ∪ P ′, and mA′ be the map that
maps each author a ∈ A′ to his/her mean publication year calculated from mP and
mP ′ .

6. Update mP ′ by mapping p ∈ P ′ to the average of mean publication year of its
authors according to mA′ .

7. If the mean squared differences between years of mp′ and mp′′ is smaller than a given
threshold, any zero entry of mp′ is replaced by the mean year of mp and mp′ . Then
stop the procedure and return P ′ and mP ′ .

8. Let mP ′′ = mP ′ and go to step 5.

4.4 Features Using Heterogeneous Bibliographic Networks

Sun et al. (2011) introduce the concept of Heterogeneous Bibliographic Network to capture
the different relations between authors and papers, and demonstrate the effectiveness of
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link prediction. In this competition, finding whether a paper is written by a given author
becomes predicting a link between an author and a paper. According to our study, the
relationship between authors and their publications, or coauthors is very useful for linking
prediction. This observation is consistent with the claim in Sun et al. (2011). Because such
information can be captured by Heterogeneous Bibliographic Network, and by computing
certain structures of the network as features, we can obtain the relation from the network
to improve the prediction accuracy.

Heterogeneous Bibliographic Network is a graph G = (V,E), where V is the vertex set
and E is the edge set. According to the given data, the vertex set V = P ∪ A ∪ C ∪ J
contains the set of papers P, the set of authors A, the set of conferences C and the set
of journals J . The set E consists of two kinds of edges. Based on PaperAuthor.csv, if
author ai writes paper pj , then we create the edge eij ; based on Papers.csv, if paper pm
belongs to conference cn or journal jn, then we create the edge emn. Note that, because
information in PaperAuthor.csv may be incorrect, some links are wrongly generated in the
network.

After generating the network, we could extract basic features, such as the number of
publications of an author, and the number of total coauthors of an author.

To utilize the network structure, we further define the “path” to describe node relation-
ship. Given the paper-author pair (pi, aj), a length-k meta path is defined as (pi ↔ v1 ↔
· · · ↔ vk−1 ↔ aj), where v1, · · · , vk−1 ∈ V and ↔ means two nodes are connected by an
edge. Various paths of the graph are extracted as features. In Appendix A.3, we list all
kinds of meta paths used to generate features. Although these paths are extracted from
the graph structure, they have clear physical meaning and can be interpreted easily. For
example, the sixth feature on the list corresponds to the size of the following meta-path set:
Smn = {(pm ↔ j ↔ p̄ ↔ an)}, where (pm, an) are given and length-3 meta paths capture
all papers of author an published in the same journal j as pm. Take the eighteenth feature
as another example. Under given (pm, an), this feature indicates the number of different
pj ’s on meta paths (an ↔ pm ↔ ai ↔ pj). It captures the total number of papers written
by coauthors in the target paper.

Further, given an author pair (ai, aj), a length-k pseudo path is defined as (ai ∼ a1 ∼
· · · ∼ ak−1 ∼ aj), where a1, · · · , ak−1 ∈ A. Because there is no edge between two author
nodes in our network, ∼ is a pseudo edge. If author node aj is reachable from ai on the
network by traversing non-author nodes, then we consider there is a pseudo edge between ai
and aj . In other words, the pseudo edge describes the possible co-authorship between two
authors. By considering the pseudo paths, we can grasp different co-authorship information.
The second feature in Appendix A.3 uses the pseudo-edge information directly by computing
the number of neighboring ai’s of the target author an. This means the number of coauthors
of the target author. The pseudo edge is also used implicitly by many other features.
For example, the sixteenth feature in Appendix A.3 relies on pseudo edges to identify the
coauthors of the target author and then computes the average number of papers of the
coauthors.
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5. Models

After generating features, we apply classification and ranking methods to train the data set.
To enhance the diversity, we explore tree-based classifiers and linear classifiers. The tree-
based algorithms including Random Forests (Breiman, 2001), Gradient Boosting Decision
Tree (Friedman, 2002), and LambdaMart (Wu et al., 2010). The linear classifier we have
studied is RankSVM (Herbrich et al., 2000). However, because RankSVM does not make
any improvement in the ensemble stage as described in the Section 6, it is not used in
generating our final results.

5.1 Random Forests

Random Forests is a tree-based learning method introduced by Breiman (2001). The algo-
rithm constructs multiple decision trees using randomly sub-sampled features and instances.
For prediction, the output is by averaging the results of individual trees. The use of multi-
ple trees reduces the variance of prediction, so Random Forests is robust and useful in this
competition.

We use the implementation in the scikit-learn package (Pedregosa et al., 2011). The
package provides a parallel module to significantly speed up the tree building process.
Note that the scikit-learn implementation combines classifiers by averaging probabilistic
predictions instead of a voting mechanism in Breiman (2001). To construct each tree in the
forest, the same number of training samples as in the original training set are sampled with
replacement. Thus, the expected number of training instances for each tree is 1 − 1

e times
the original training set size, while some instances sampled more than once have higher
weights.

In this competition, the variance may influence the standing on the leaderboard sig-
nificantly. For example, with different random seeds and fewer trees, the performance of
Random Forests can vibrate from 0.981 to 0.985 on the Valid set. On the public leaderboard,
the scores of top 20 places are from 0.98130 to 0.98554. Moreover, the improvement on the
Valid set by changing the random seed may not be consistent with the result on the self-
split internal validation set. Therefore, changing the random seeds may cause over-fitting.
Our experiments show that using more trees leads to better and consistent validation scores
on both Valid set and the internal validation set due to lower variance. Because of the
time limit, we use a subset of 55 features,4 12, 000 trees and a fixed random seed 1 in our
Random Forests model after some trials. In addition to the number of trees, we also tune
the minimal number of training samples in a leaf of each decision tree. This setting achieves
0.983340 MAP score on the Valid set. The parameters we have used are listed in Table 5.1.
For unlisted parameters, we use the default values in Pedregosa et al. (2011).

5.2 Gradient Boosting Decision Tree

Gradient Boosting Decision Tree (GBDT) (Friedman, 2002), also called MART, is a tree-
based learning algorithm. The goal of GBDT is using (y,x), where x is the known feature
vector and y is the corresponding label, to find a classifier H∗(x) to minimize the expected

4. Because some features take more time for generation and debugging, we only use 55 stable ones to train
the final Random Forests model.
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Parameter Value

Number of trees 12, 000
Minimal number of samples in a leaf 10

Table 3: Tuned parameters for Random Forests.

value of the given error function err(y,H(x)). Therefore, the target classifier is defined as

H∗(x) = arg min
H(x)

Ey,x[err(y,H(x))].

From the functional gradient descent perspective (Friedman, 2002), we could approximate
H∗(x) by combining several “weak” classifiers ht(x) as follows,

HT (x) =

T∑
t=0

αtht(x),

where T + 1 is the number of weak classifiers. Then we can boost the performance in an
iterative manner. After we train an initial classifier h0, for each iteration t, where t ≥ 1, we
solve the following optimization problem,

(ht(x), αt) = arg min
h(x),α

N∑
i=1

err(yi, Ht−1(xi) + αh(xi)),

where αt is a scalar and N is the number of training instances. Then the update rule is
Ht(x) = Ht−1(x) + αtht(x). The GBDT is one variant of the functional gradient descent
algorithm. The base (weak) classifier used in GBDT is the regression tree with constant
predictions; that is, for each leaf node L, the prediction is 1

|L|
∑

(xi,yi)∈L yi. To avoid over-
fitting, we usually use a learning rate η to shrink the effect of αt. Therefore, the update
rule becomes Ht(x) = Ht−1(x) + ηαtht(x).

Compared with Random Forests, a GBDT model is built sequentially and it combines
built trees to generate a powerful learner by an iterative boosting way under the functional
gradient descent perspective. We use the same package scikit-learn (Pedregosa et al., 2011).
The error function of GBDT implemented in Pedregosa et al. (2011) is to optimize “de-
viance” which is same as the objective of logistic regression. The main disadvantage of
GBDT is that it cannot be trained in parallel, so we only use 300 trees to build the final
ensemble model of GBDT. This is much smaller than 12,000 for Random Forests. The
tuned parameters are listed in Table 4 while the unlisted parameters are set to the default
values. With the tuned parameters, the GBDT model could achieve 0.983046 MAP score
on the Valid set.

5.3 LambdaMart

We choose LambdaMART (Wu et al., 2010) because of its recent success on Yahoo! Learning
to Rank Challenge (Chapelle and Chang, 2011). LambdaMART is the combination of
GBDT (Friedman, 2002) and LambdaRank (Burges et al., 2006). Burges et al. (2006)
propose to use a utility function whose derivative is the gradient of a typical pairwise
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Parameter Value

Number of trees 300
Learning Rate 0.08
Tree Depth 5
Minimal number of samples in a leaf 9

Table 4: Tuned parameters for Gradient Boosting Decision Tree.

Parameter Value

Number of trees 1, 000
Minimal sample ratio in a leaf 0.01
Number of leaves 32
Ratio of sampled instances 0.3

Table 5: Tuned parameters for LambdaMART.

error function times the difference of the desired evaluation criterion, such as NDCG, by
exchanging the ranking order of a pair (i, j). In contrast, GBDT (MART) aims to model
the gradient in each iteration. Therefore, the main advantage of LambdaMART is that it
uses LambdaRank gradients of the proposed utility function in GBDT to consider highly
non-smooth ranking metrics. We use the implementation in the JForests (Ganjisaffar et al.,
2011), which optimizes the NDCG metric. The detailed parameters are listed in Table 5.
Compared with Random Forests and Gradient Boosting Decision Tree, LambdaMART is
a more aggressive ranking algorithm. To avoid over-fitting, we train 10 LambdaMART
models with random seeds from 0 to 9, and average the output confidence scores. With
the listed parameters and the bagging approach, the LambdaMART model could achieve
0.983047 MAP score on the Valid set.

5.4 RankSVM

Besides the above tree-based models, we also explore the commonly-used RankSVM (Her-
brich et al., 2000), which is extended from standard support vector machines (Vapnik, 1998).
Given the author a and two papers pi and pj , RankSVM aims to predict pi with a higher
score than pj , if pi is written by the author a while pj is not. By defining a set of pairs of
the author a as

Pa ≡ {(pi, pj) | pi is written by a while pj is not}.

We consider the following L1-loss SVM,

min
w

1

2
wTw + C

∑
a∈A

∑
(i,j)∈Pa

max(0, 1−wT (xi − xj)),

where 1
2wTw is the regularization term and C is the regularization parameter. Due to

the efficiency issue, we only study linear rather than kernel RankSVM. We consider the
implementation in Lee and Lin (2014), which optimizes the L2-loss instead. The best
parameter in our study is C = 0.001, which results in 0.97911 MAP score on the Valid set.
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5.5 Summary

We summarize the results of the four studied algorithms in Table 6.

Algorithm MAP Score

Random Forests 0.983340
Gradient Boosting Decision Tree 0.983046
LambdaMart 0.983047
RankSVM 0.979110

Table 6: The results of four studied algorithms on the Valid set (public leaderboard).

6. Ensemble and Post-Processing

To further boost our performance, we ensemble results of different models and conduct a
post-processing procedure.

6.1 Ensemble

In many past competitions, such as Netflix and KDD Cup, winners have shown that an
ensemble of individual models may significantly improve the prediction results (Tösscher
et al., 2009; Yu et al., 2010; Wu et al., 2012). The main reason is that the diversification of
models compensates the weakness of each model. Existing approaches to ensemble classifiers
are based on some optimization techniques (Burges et al., 2005) because they often aim to
combine a large number of models.

In our system, we calculate a simple weighted average after scaling the decision values
of each model to be between 0 and 1. Because only four models described in Section 5
were built, we search a grid of weights to find the best setting rather than applying more
complicated optimization techniques.

To see the performance under a setting of weights, we check the results on the internal
validation set and the official Valid set. Specifically, we train four models on the internal
training set, and predict on the internal validation set. Then we combine the results by
adjusting weights to seek for improvements. Similarly, we train four models on the Train
set (internal training set + internal validation set) and predict on the Valid set. Then we
check whether results are further improved. The final weights are 0 for RankSVM (unused),
1 for both Gradient Boosting Decision Tree and LambdaMART, and 5 for Random Forests.

Based on the MAP scores reported in Section 5 and the weights for ensemble, tree-based
models are more effective than the linear model in this task. This situation is similar to
some ranking tasks discussed in Chapelle and Chang (2011).

6.2 Post-Processing

In post-processing stage, we remove the duplicates in the data to boost the performance.
The duplicates include the paper-author pairs and paper ids.
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6.2.1 Duplicated Paper-Author Pairs

In Section 4.4, we describe the concept of Heterogeneous Bibliographic Network. Even if
there is an edge between the author node a and the paper node p, a may not be the author
of p because of the incorrect information in PaperAuthor.csv. To get confidence on each
link, we observe from PaperAuthor.csv that there are some duplicated paper-author pairs.
For example, lines 147,035 and 147,036 record the same author-paper pair. We observe
that duplicates highly correlate with the confirmation. Therefore, we let the number of
duplicates be the weight of the edge between a paper and an author. We use weighted
edges in two ways. First, we add a feature to illustrate the number of duplicates before
the training procedure to obtain models described in Section 5. Second, according to the
number of duplicates, we divide the given papers of each author into two groups: those
having more than one duplicate and those having only one. Then in our prediction, we
rank the first group before the second. For each group, we rank its members according to
their decision values.

6.2.2 Duplicated Paper ID

In the Test set, the assigned papers of an author may contain duplicates. For example,
author 100 has five papers 1, 2, 2, 3 and 4 to be ranked, and confirmed papers are 1, 2, 2
and 4. According to the algorithm provided by the competition organizer for calculating
MAP, only one of these duplicated paper IDs will be calculated in MAP. Therefore, the list
1, 2, 4, 3, 2 has a higher MAP than the list 1, 2, 2, 4, 3 because the second paper with ID
2 is treated as a deleted paper in the evaluation algorithm. Based on this observation, we
put all duplicated paper IDs to the end of the ranked list as deleted papers.

7. Discussion and Conclusion

In this section, we discuss some issues related to our approach and/or the KDD Cup com-
petition. We investigate the feature importance reported by Random Forests in Table 7
because of its best performance among all the single models we used. The two most im-
portant features are related to the number of duplicates, which justifies the validity of
post-processing in Section 6.2. The next two are about the affiliation consistency. Their
high ranks support our observation that some mis-assignments are caused by similar names
in different institutes. The features ranked next are about the name similarity between the
target author and co-authors with different affiliations. Note that for these features, first
name and last name are not exchanged. These features are also related to name ambiguity.
If the name of the target author is the same or almost the same as a co-author of the same
paper, usually the assignment is wrong.

We discuss some potential issues and difficulties for applying our method to Microsoft
Academic Search or any other real online systems in practice. One potential drawback of
our method in terms of scalability is the feature generation step, which may have superlinear
time complexity. In particular, several coauthor name-matching features require computing
the string distances between the target author and all coauthors, and each author may
have several different names depending on the number of publications the author has. The
computation time will be a serious issue when an author has many publications, and a
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Rank Feature
Average Standard

Rank Feature
Average Standard

Importance Deviation Importance Deviation

1 A.3.4 0.143027 0.003299 29 A.1.2.5 0.004102 0.000057

2 A.3.28 0.124315 0.001593 30 A.1.2.15 0.003954 0.000051

3 A.1.1.4 0.10853 0.002038 31 A.1.2.16 0.003909 0.00003

4 A.1.1.2 0.096152 0.001749 32 A.3.3 0.003824 0.000104

5 A.1.2.12 0.077095 0.000913 33 A.3.8 0.00374 0.000008

6 A.1.2.6 0.072966 0.00107 34 A.1.2.19 0.003506 0.000105

7 A.1.2.17 0.051346 0.001337 35 A.1.2.20 0.003265 0.000115

8 A.1.2.7 0.040475 0.000919 36 A.1.2.21 0.002957 0.000112

9 A.1.2.13 0.031379 0.000694 37 A.1.3.1 0.002922 0.00003

10 A.1.2.23 0.02523 0.000957 38 A.2.18 0.002588 0.000003

11 A.1.2.3 0.020658 0.000323 39 A.1.2.9 0.002302 0.000121

12 A.1.2.24 0.020075 0.000416 40 A.3.5 0.002172 0.000005

13 A.1.3.4 0.017408 0.000343 41 A.1.3.2 0.001948 0.000008

14 A.1.3.5 0.014549 0.000255 42 A.1.2.18 0.0019 0.00003

15 A.1.3.3 0.012566 0.000331 43 A.1.3.11 0.001681 0.000003

16 A.1.2.4 0.012349 0.000673 44 A.1.3.8 0.001638 0.000024

17 A.1.3.7 0.011437 0.0003 45 A.1.3.10 0.001531 0.000033

18 A.3.2 0.009053 0.000096 46 A.1.3.9 0.001498 0.00004

19 A.1.2.22 0.008349 0.000331 47 A.1.2.11 0.001468 0.000005

20 A.3.1 0.006641 0.000031 48 A.1.3.12 0.001289 0.000001

21 A.3.27 0.006436 0.000095 49 A.3.29 0.000965 0.000084

22 A.3.26 0.006392 0.000127 50 A.1.1.5 0.000917 0.00003

23 A.3.25 0.00527 0.000022 51 A.1.3.13 0.000789 0.000003

24 A.1.1.3 0.00514 0.00009 52 A.1.2.8 0.000284 0.000006

25 A.1.2.14 0.004899 0.000062 53 A.3.6 0 0

26 A.1.3.6 0.004572 0.000085 54 A.3.12 0 0

27 A.3.7 0.004355 0.000043 55 A.3.11 0 0

28 A.1.2.10 0.004185 0.000005

Table 7: Mean and standard deviation of feature importance by training Random Forests
with ten different random seeds.
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paper has many authors. This situation is very common in fields such as high-energy
physics. Note that feature computation is also an important issue in the prediction stage
because a real-time response for the system is required. Another drawback of our method
is that it cannot be updated in an incremental manner. Instead, whenever the data set
is updated, features must be recomputed and the model must be retrained. To adapt the
proposed system for real applications, acceleration for feature computation such as using
an indexing structure (Jin et al., 2005) or conducting name grouping (Cohen et al., 2003)
is necessary.

Another issue for our system (and maybe systems of other teams in this competition)
is the cost effectiveness. While we use 97 different features in our final system to achieve
0.98259 MAP, we can achieve around 0.94 MAP by using one single name-matching (string
distance) feature. The 0.04 MAP gain comes at a high cost in both training and testing,
but whether this gain enhances users’ satisfaction remains to be further investigated.

The last issue is about the data. We discussed in Section 4 that some duplicates author-
paper pairs and duplicated IDs appear in the data. Although the features considering
duplicates are useful in the competition, they might not be effective in practice. The cause
of duplicates may be because that the system crawls data from different sources without
conducting any data cleaning. If this hypothesis holds, then the number of duplicates can
represent certain confidence supported by different sources and our approaches might still
be valid and useful in practice. If it does not, the cause of duplicates and the usefulness of
the proposed approaches remain to be further studied.

We also discuss the potential future work of our approaches. In Section 4.2.3, we assume
the coauthor-affiliation consistency and research-topic consistency. In practice, it is common
that an author works on more than one research topic and co-works with different institutes.
Further, the affiliations and research topics of an author may change along with time.
Therefore, how to model different research topics and time information into features is a
topic worth studying.

In conclusion, we introduce the approaches of team National Taiwan University for
track 1 of KDD Cup 2013. We successfully transform the given text information into
several useful features and propose techniques to address the issue of noisy texts for making
features robust. We then apply several state-of-the-art algorithms on the generated features.
To further improve the performance, we conduct a simple weighted-average ensemble and
a post-processing procedure by utilizing some duplicated information. During each stage,
we cautiously use the internal validation or the official Valid set to potentially avoid the
over-fitting issue. This step is crucial for us to get the best performance on the private
leaderboard for predicting data in the Test set. A detailed summary of our approach is in
Figure 2.
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Appendix A. Feature List

Since our team members are divided into several sub-groups internally, some features are
repeatedly generated. For these features, we denote the n times repeats by (*n) at the end
of the description.

A.1 Features Using Author Information

A.1.1 Confirmation of Author Profile

1. The Levenshtein distance between the names of the target author in Author.csv and
PaperAuthor.csv.

2. The Levenshtein distance between the affiliations of the target author in Author.csv

and PaperAuthor.csv (*2).

3. The ratio of matched substring between the names of the target author in Author.csv

and PaperAuthor.csv.

4. The ratio of matched substring between the affiliations of the target author in Author.csv

and PaperAuthor.csv.

5. The ratio of matched substring between the abbreviated names of the target author in
Author.csv and PaperAuthor.csv.

A.1.2 Coauthor Name Matching

1. The maximum Jaro distances between the target author’s name and each coauthor’s
name. The names are from PaperAuthor.csv under the target paper.

2. The maximum Jaro distances between the last names of the target author and each
coauthor. The names are from PaperAuthor.csv under the target paper.

3. The maximum Jaro distances between the target author’s name and each coauthor’s
name. The names are from PaperAuthor.csv under the target paper. Coauthors having
the same affiliation with the target author are ignored during the comparison.

4. The minimum Levenshtein distances between the target author’s name and each coau-
thor’s name. The names are from PaperAuthor.csv under the target paper. Coauthors
that are in the same affiliation of the target author are ignored during comparison.

5. The number of authors having the same name as the target author in the entire data
set.

6. The maximum Jaro distances between the abbreviated names of the target author and
each coauthor. The names are from PaperAuthor.csv under the target paper. Coau-
thors that are in the same affiliation of target author are ignored during comparison.
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7. The minimum among Levenshtein distances between the abbreviated names of the target
author and each coauthor. The names are from PaperAuthor.csv under the target
paper. Coauthors that are in the same affiliation of target author are ignored during
comparison.

8. The minimum substring matched ratios between the target author’s last name and each
coauthor’s last name. The author’s name is form Author.csv, and coauthors’ names
are from PaperAuthor.csv under the target paper. Coauthors that are in the same
affiliation of target author are ignored during comparison.

9. The minimum substring matched ratios between the target author’s first name and each
coauthor’s first name. The author’s name is form Author.csv, and coauthors’ names
are from PaperAuthor.csv under the target paper. Coauthors that are in the same
affiliation of target author are ignored during comparison.

10. The minimum substring matched ratios between the target author’s reversed name and
each coauthor’s name. Middle name is ignored, and the target author’s first name and
last name are exchanged before comparison. The author’s name is form Author.csv,
and coauthors’ names are from PaperAuthor.csv under the target paper. Coauthors
that are in the same affiliation of target author are ignored during comparison.

11. The minimum substring matched ratios between the target author’s middle name and
each coauthor’s middle name. The author’s name is form Author.csv, and coauthors’
names are from PaperAuthor.csv under the target paper. Coauthors that are in the
same affiliation of target author are ignored during comparison.

12. The maximum Jaro distances between the target author’s last name and each coauthor’s
last name. The names are from PaperAuthor.csv under the target paper. Coauthors
in the same affiliation as the target author are ignored during comparison.

13. The maximum Jaro distances between the target author’s first name and each coauthor’s
first name. The names are from PaperAuthor.csv under the target paper. Coauthors
in the same affiliation as the target author are ignored during comparison.

14. The maximum Jaro distances between the target author’s name and each coauthor’s
name. Middle name is ignored, and the target author’s first name and last name are
exchanged before comparison. The names are from PaperAuthor.csv under the tar-
get paper. Coauthors in the same affiliation as the target author are ignored during
comparison.

15. The maximum Jaro distances between the abbreviated names of the target author and
each coauthor. Middle name is ignored, and the target author’s first name and last name
are exchanged before abbreviation. The names are from PaperAuthor.csv under the
target paper. Coauthors in the same affiliation as the target author are ignored during
comparison.

16. The maximum Jaro distances between the abbreviated names of the target author and
each coauthor. Middle name is ignored, and the coauthor’s first name and last name
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are exchanged before abbreviation. The names are from PaperAuthor.csv under the
target paper. Coauthors in the same affiliation as the target author are ignored during
comparison.

17. The minimum Levenshtein distances between the target author’s last name and each
coauthor’s last name. The names are from PaperAuthor.csv under the target paper.
Coauthors in the same affiliation as the target author are ignored during comparison.

18. The minimum Levenshtein distances between the target author’s first name and each
coauthor’s first name. The names are from PaperAuthor.csv under the target paper.
Coauthors in the same affiliation as the target author are ignored during comparison.

19. The minimum Levenshtein distances between the target author’s name and each coau-
thor’s name. Middle name is ignored, and the target author’s first name and last name
are exchanged before comparison. The names are from PaperAuthor.csv under the
target paper. Coauthors in the same affiliation as the target author are ignored during
comparison.

20. The minimum Levenshtein distances between the abbreviated names of the target author
and each coauthor. Middle name is ignored, and the target author’s first name and last
name are exchanged before abbreviation. The names are from PaperAuthor.csv under
the target paper. Coauthors in the same affiliation as the target author are ignored
during comparison.

21. The minimum Levenshtein distances between the abbreviated names of the target author
and each coauthor. Middle name is ignored, and the coauthor’s first name and last name
are exchanged before abbreviation. The names are from PaperAuthor.csv under the
target paper. Coauthors in the same affiliation as the target author are ignored during
comparison.

22. The maximum of affiliation Jaro distances times name Levenshtein distances between
target author and coauthors. Both author name and affiliation are from PaperAuthor.csv.

23. The maximum Jaro distances between the target author’s name and each coauthor’s
name. The name of target author is from Author.csv, and that of coauthors are from
PaperAuthor.csv under the target paper. Coauthors that are in the same affiliation of
target author are ignored during comparison.

24. The minimum Levenshtein distances between the target author’s name and each coau-
thor’s name. The name of target author is from Author.csv, and that of coauthors
are from PaperAuthor.csv under the target paper. Coauthors that are in the same
affiliation of target author are ignored during comparison.

A.1.3 Author Consistency

1. The maximum Jaro distance between the affiliation of the target author and affiliations
of coauthors in the paper. The affiliations are from Author.csv.
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2. The maximum Levenshtein distance between the affiliation of the target author and
affiliations of coauthors in the paper. The affiliations are from Author.csv.

3. The maximum Jaro distance between the affiliation of the target author and affiliations
of coauthors in the paper. The affiliations are from PaperAuthor.csv under the target
paper.

4. The minimum Levenshtein distance between the affiliation of the target author and
affiliations of coauthors in the paper. The affiliations are from PaperAuthor.csv under
the target paper.

5. The maximum Jaro distance between the affiliation of the target author and affiliations
of coauthors in the paper. The affiliations are from PaperAuthor.csv under all papers
published by a given author.

6. The maximum Levenshtein distance between the affiliation of the target author and
affiliations of coauthors in the paper. The affiliations are from PaperAuthor.csv under
all papers published by a given author.

7. The maximum Jaccard distance between the affiliation of the target author and affili-
ations of coauthors in the paper. The affiliations are from PaperAuthor.csv under all
papers published by a given author.

8. The number of coauthors in the same affiliation as the target author. The affiliations
are from PaperAuthor.csv under the target paper.

9. The number of authors with no affiliation information in PaperAuthor.csv under the
target paper.

10. The percentage of authors with no affiliation information in PaperAuthor.csv under
the target paper.

11. Maximum paper title Jaro distance of the target paper and papers written by the author.

12. Minimum paper title Levenshtein distance of the target paper and papers written by
the author.

13. Maximum keywords Jaccard distance of the target paper and papers written by the
author.

A.2 Features Using Publication Time

1. Earliest publication year of the author (*2).

2. Latest publication year of the author (*3).

3. Publication year of the paper, and the invalid year is replaced by 0 (*3).

4. Indicator to see if the publication year of the paper is missing.

5. Publication year after filling missing value.
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6. Mean publication year of all papers of the author.

7. Standard deviation of publication year of all papers of the author.

8. Mean publication year of the authors’ papers in the same conference as the target paper.

9. Standard deviation of the publication year of the authors’ papers in the same conference
as the target paper.

10. Mean publication year of the authors’ papers in the same journal as the target paper.

11. Standard deviation of the publication year of the authors’ papers in the same journal as
the target paper.

12. Mean publication year of all papers in the same conference as the target paper.

13. Standard deviation of the publication year of all papers in the same conference as the
target paper.

14. Mean publication year of all papers in the same journal as the target paper.

15. Standard deviation of the publication year of all papers in the same journal as the target
paper.

16. The difference between target author’s the latest publication year and the earliest pub-
lication year.

17. The difference between the target paper’s publication year and the median of the pub-
lication year of all the papers of the target author.

18. The maximum publication-year difference between the target paper and papers of the
target author.

A.3 Features Using Heterogeneous Bibliographic Network

1. Total number of papers published by the target author (*3).

2. Total number of coauthors of the target author (*4).

3. Number of authors of the target paper (*3).

4. Number of occurrences of the (PID,AID) pairs in PaperAuthor.csv (*2, and used for
post processing).

5. Number of papers the author published in the conference of the target paper (*3).

6. Number of papers the author published in the journal of the target paper (*3).

7. Number of conference papers of the author (*2).

8. Percentage of conference papers of the author.

9. Number of conferences the author has papers in.
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10. Number of journal papers of the author (*2).

11. Percentage of journal papers of the author.

12. Number of journals the author has papers in.

13. Average paper number of the author in conferences he/she has published in.

14. Average paper number of the author in journals he/she has published in.

15. Total number of papers written by coauthors of the target author.

16. Average paper number of coauthors of the target author.

17. The variance of paper number of coauthors of the target author.

18. Total number of papers written by coauthors in the target paper.

19. Average paper number of coauthors in the target paper.

20. The variance of paper number of coauthors in the target paper.

21. Indicator of journal papers.

22. Indicator of conference papers.

23. The difference between the number of conference papers and journal papers written by
the target author.

24. The number of coauthors in the paper that have coauthored other papers with the target
author.

25. The percentage of papers that are coauthored with at least one of the coauthors of the
target paper.

26. Maximum number of coauthored papers with coauthors of the target paper.

27. Maximum percentage of coauthored papers (with respect to total number of papers
written by the target author) with coauthors of the target paper.

28. Number of coauthors that appear more than once under the target paper in PaperAuthor.csv.

29. Indicator of whether the paper has only one author.

30. Number of papers published by the author which has duplicated (PID, AID) in PaperAuthor.csv.

31. Number of coauthored papers of the target author with all the coauthors of the target
paper.

32. Number of coauthored papers of the target author with all the coauthors of the target
paper, divided by the total number of coauthored papers of the target author with each
coauthor of the target paper.
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33. Number of coauthored papers of the target author with all the coauthors of the target
paper (excluding the target paper).

34. Number of coauthored papers of the target author with all the coauthors of the target
paper, divided by total number of coauthored papers of the target author with all
coauthors of the target paper (excluding the target paper).

35. Total number of coauthored papers of the target author with all possible coauthors (*2).

36. Average number of coauthored papers of the target author with each coauthor of the
target paper (*2).

37. Number of coauthored papers of the target author with all the coauthors of the target
paper.
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Abstract

Similarity measures for comparing clusterings is an important component, e.g., of evaluat-
ing clustering algorithms, for consensus clustering, and for clustering stability assessment.
These measures have been studied for over 40 years in the domain of exclusive hard cluster-
ings (exhaustive and mutually exclusive object sets). In the past years, the literature has
proposed measures to handle more general clusterings (e.g., fuzzy/probabilistic clusterings).
This paper provides an overview of these new measures and discusses their drawbacks. We
ultimately develop a corrected-for-chance measure (13AGRI) capable of comparing exclu-
sive hard, fuzzy/probabilistic, non-exclusive hard, and possibilistic clusterings. We prove
that 13AGRI and the adjusted Rand index (ARI, by Hubert and Arabie) are equivalent
in the exclusive hard domain. The reported experiments show that only 13AGRI could
provide both a fine-grained evaluation across clusterings with different numbers of clus-
ters and a constant evaluation between random clusterings, showing all the four desirable
properties considered here. We identified a high correlation between 13AGRI applied to
fuzzy clusterings and ARI applied to hard exclusive clusterings over 14 real data sets from
the UCI repository, which corroborates the validity of 13AGRI fuzzy clustering evaluation.
13AGRI also showed good results as a clustering stability statistic for solutions produced
by the expectation maximization algorithm for Gaussian mixture. Implementation and
supplementary figures can be found at http://sn.im/25a9h8u.

Keywords: overlapping, fuzzy, probabilistic, clustering evaluation

1. Introduction

Clustering is a task that aims to determine a finite set of categories (clusters) to de-
scribe a data set according to similarities/dissimilarities among its objects (Kaufman and
Rousseeuw, 1990; Everitt et al., 2001). Several clustering algorithms are published every
year, which makes developing of effective measures to compare clusterings indispensable
(Vinh et al., 2009, 2010). Clustering algorithm A is commonly considered better than B
for a given data set X if A produces clusterings that are more similar (according to a sim-
ilarity measure1 for clustering) to a reference solution for X than those produced by B.
Similarity measures are also used for consensus clustering, clustering stability assessment,
and even for quantifying information loss (Strehl and Ghosh, 2003; Monti et al., 2003; Yu

1. Note that a dissimilarity/distance measure can always be cast into a similarity measure. For comparison
purposes, we transformed dissimilarity/distance measures into similarity measures in this work.

c©2015 Danilo Horta and Ricardo J. G. B. Campello.
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et al., 2007; Beringer and Hllermeier, 2007; Vinh and Epps, 2009). A consensus clustering
technique aims to find a high-quality clustering solution by combining several (potentially
poor) solutions obtained from different methods, algorithm initializations, or perturbations
of the same data set. This combination is achieved by producing a solution that shares
the most information, quantified by a similarity measure, with the original solutions (Strehl
and Ghosh, 2003). In the context of clustering stability assessment, the method used to
generate a set of clustering solutions is considered stable if the set shows low variation,
which is considered a desirable quality (Kuncheva and Vetrov, 2006). One can apply a
clustering algorithm several times to subsamples of the original data set for any numbers
of clusters, producing a set of clusterings for each number of clusters. The number of clus-
ters for which the set of solutions is less diverse is considered a good estimate of the true
number of clusters (Borgelt and Kruse, 2006; Vinh and Epps, 2009). Another interesting
application of similarity measures is in the quantification of information loss (Beringer and
Hllermeier, 2007). To increase efficiency (e.g., in the context of data stream clustering), one
can first map the data into a low-dimensional space and cluster the transformed data. If
the transformation is almost lossless, the clustering structures in the two spaces should be
highly similar; a similarity measure can be used to assess this.

Several established measures are suitable for comparing exclusive hard clusterings
(EHCs) (Albatineh et al., 2006; Meila, 2007; Vinh et al., 2009, 2010), i.e., clusterings in
which each object exclusively belongs to one cluster. Examples of popular measures are
the Rand index (RI) (Rand, 1971), adjusted Rand index (ARI) (Hubert and Arabie, 1985),
Jaccard index (JI) (Jaccard, 1908), mutual information (Strehl and Ghosh, 2003), and vari-
ation of information (VI) (Meila, 2005). Bcubed (BC) (Bagga and Baldwin, 1998; Amigó
et al., 2009) is a measure for evaluating coreferences (e.g., a set of pronouns referring to the
same noun in a paragraph) in the natural language processing field. Coreferences can also
be viewed as EHCs (Cardie and Wagstaf, 1999), and BC satisfies some (frequently regarded
as) desirable properties that most well-known EHC measures do not (Amigó et al., 2009).
Thus, we also include BC in this work. There are other important clustering types, e.g.,
fuzzy/probabilistic clustering2 (FC), non-exclusive hard clustering (NEHC), and possibilis-
tic clustering (PC) (Campello, 2010; Anderson et al., 2010), that are not assessed using
well-established measures but that would benefit from the tasks discussed above.

Various EHC measure generalizations have recently appeared in the literature (Borgelt
and Kruse, 2006; Campello, 2007; Anderson et al., 2010; Campello, 2010) to fill this gap.
Unfortunately, all these measures exhibit critical problems that hinder their applicability.
The RI fuzzy version by Campello (2007) does not attain its maximum (i.e., 1) whenever
two identical solutions are compared, which makes it difficult to convey the similarity of
the compared solutions. The same issue is exhibited by other RI generalizations (Borgelt
and Kruse, 2006; Ceccarelli and Maratea, 2008; Rovetta and Masulli, 2009; Brouwer, 2009;
Anderson et al., 2010; Quere and Frelicot, 2011). Moreover, most of the proposed measures
are not corrected for randomness, i.e., they do not provide a constant average evaluation

2. The usage of “fuzzy” or “probabilistic” depends on the interpretation of the object membership degrees
given by the solution. Fuzzy c-means (Bezdek, 1981) and expectation maximization (EM) (Dempster
et al., 1977) give a fuzzy and a probabilistic interpretation, respectively, although the solutions they
produce come from the same domain of clusterings. We will hereafter call it fuzzy clustering in both
cases for simplicity.
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over sets of independently generated clusterings (constant baseline for short). In practice
this means that theses measures tend to favor clusterings with certain numbers of clusters
(Vinh et al., 2009, 2010), whether the compared solutions are similar or not. Additionally,
several of the measures have a low sensitivity to differences in solution quality, where close
evaluation values can result from comparing very similar or very different solutions.

Biclustering is also an important type of clustering solution, which is usually represented
by a set of pairs C , {(Ce1 , Cc1), (Ce2 , C

c
2), . . . , (Cek, C

c
k)}. Each pair (Cer , C

c
r) has two non-

empty sets of objects of different types. In gene expression analysis, Cer could be the set
of genes related to the experimental conditions in Ccr (Madeira and Oliveira, 2004). In
subspace clustering, Cer could be the set of objects related to the object features in Ccr
(Patrikainen and Meila, 2006; Günnemann et al., 2011). We do not consider this type of
clustering henceforth as it would overly extend the length and complexity of this work.
Moreover, a biclustering can always be converted to an NEHC (Patrikainen and Meila,
2006), which is one of the scenarios we investigate here.

We first develop an RI generalization, called the frand index (13FRI),3 to handle FCs.
We then develop the adjusted frand index (13AFRI) by correcting 13FRI for randomness.
Although the assumed randomness model is apparently unrelated to that assumed for ARI
(Hubert and Arabie, 1985), we prove that 13AFRI and ARI are different formulations of the
same measure in the EHC domain. Finally, we also extend the 13FRI and 13AFRI measures
to the more general domain of PCs (which include the NEHC, FC, and EHC solutions as
special cases, Section 3), resulting in the grand index (13GRI) and adjusted grand index
(13AGRI), respectively.

We defined four clearly desirable properties that a good similarity measure should dis-
play. Under this framework, our proposed measures are empirically compared in two ex-
periments with 32 others, out of which 28 are measures proposed in the past recent years
to handle more general clusterings than EHCs. Several of the measures could not distin-
guish among solutions that are close to from those that are far from the reference solution
according to the number of clusters in the first experiment. 13AGRI presented an evident,
desirable sensitivity over the ranges of the numbers of clusters. In the second experiment,
13AGRI was the only measure that exhibited a constant baseline for all scenarios of ran-
domly generated exclusive hard, fuzzy, non-exclusive hard, and possibilistic clusterings.

We applied 13AGRI and ARI to evaluate fuzzy c-means (Bezdek, 1981) and k-means
(MacQueen, 1967) solutions, respectively, over 14 real data sets from UCI repository (New-
man and Asuncion, 2010). We argue that the high correlation found between 13AGRI and
ARI evaluations is an indication of the 13AGRI evaluation appropriateness for FCs. 13AGRI
is also assessed as a stability statistic for FCs produced by the expectation maximization
for Gaussian mixture (EMGM) (Dempster et al., 1977) algorithm.

The remainder of the paper is organized as follows. Section 2 discusses evaluation of
similarity measures and establishes four desirable properties. Section 3 sets the background
of the work and reviews the measures proposed in the past years to tackle more general
clusterings than EHCs. Section 4 presents the 13FRI measure for handling FCs, devel-
ops a corrected-for-chance version of 13FRI named 13AFRI, and explains why 13FRI and

3. The number 13 is a reminder of the publication year of the measure (2013). We use a reminder in front
of each measure acronym, except for RI, ARI, JI, and BC. This helps us identify the recently proposed
measures.
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13AFRI are not suitable for comparing every type of PC. Section 5 proposes the 13GRI and
13AGRI measures by addressing the issue that prevented 13FRI and 13AFRI from being
appropriately applied to PCs. Section 6 deduces the asymptotic computational complexity
of 13FRI, 13AFRI, 13GRI, and 13AGRI and introduces an efficient algorithm to calculate
the expectations used by 13AFRI and 13AGRI. Section 7 presents four experiments, the
first two to empirically evaluate the measures according to the four desirable properties.
First experiment (Section 7.1) assesses how the measures behave when comparing solutions
produced by clustering algorithms with reference solutions across a range of the numbers
of clusters. Second experiment (Section 7.2) assesses the ability of the measures to provide
unbiased evaluations in several scenarios. Third experiment (Section 7.3) compares 13AGRI
and ARI evaluations of fuzzy and exclusive hard clusterings in 14 real data sets. Fourth
experiment (Section 7.4) uses 13AGRI as a stability statistic for FC assessment in five real
data sets. Section 8 discusses the criteria adopted to evaluate and compare the measures.
Section 9 concludes the work, and Appendix proves some properties of our measures.

2. Desirable Measure Properties

Evaluating a measure for comparing clusterings is a difficult task. Partly because different
applications may require different perspectives regarding the similarity between clusterings,
and partly because there is no universally accepted set of properties that a measure for
comparing clusterings must have. It is often the case that a measure is modified to comply
with a set of desirable properties but, as a side effect, loses another set of desirable properties
that it previously had. This is the case of variation of information (Meila, 2005) and its
corrected-for-chance version developed in (Vinh et al., 2009, 2010), where the latter gives
away the metric property to gain the property of displaying constant baseline evaluations for
randomly generated solutions. There is even a result stating that no “sensible” measure for
comparing clusterings will simultaneously satisfy three desirable properties (Meila, 2005).

In order to evaluate the usefulness of our proposed measure, we compare ours with the
ones found in the literature over four clearly desirable properties. These properties have
been chosen because they are appealing from a practical perspective and together they
can unveil flaws of several existing measures according to well established intuitions. The
properties are defined as follows:

• Maximum. A measure is told to obey this property if it attains its known maximum
value whenever two equivalent solutions are compared. The maximum has to be
invariant to the data set as well.

• Discriminant. A good measure must be able to detect the best solution among a
given set of solutions.

• Contrast. A good measure must provide progressively better (or worse) evaluations
for progressively better (or worse) solutions.

• Baseline. A measure that has a predetermined expected value over randomly gener-
ated solutions is told to have the baseline property (also, adjusted for chance).

It is a common practice to have the maximum equal to 1 and the baseline value equal to 0,
such that having the maximum property means that the measure attains 1 when comparing
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two equivalent solutions and having the baseline property means that comparing randomly
generated solutions tend to give evaluations close to zero.

A measure having a known maximum that is always attained when two equivalent
solutions are compared provides an objective goal (i.e., producing a clustering that attains
that score) and ensures the user that a better solution can be found when the evaluation
is lower than the maximum. Comparisons between evaluations of clusterings generated
from different data sets may be misguided because of different extents to which variation is
possible when the measure does not have a fixed maximum (Luo et al., 2009). As mentioned
by Vinh et al. (2010), the fact that all of the 22 different pair counting based measures
discussed in (Albatineh et al., 2006) are normalized to have a known maximum further
stresses the particular interest of the clustering community in this property.

A measure may not attain its predefined maximum for the ideal solution, but still might
be able to detect the best solution among a set of non-ideal solutions. This elicits the
measure as having the discriminant property. This property definition naturally prompts
the question “How can I know that a given solution is better than another one?” that the
measure tries to answer in the first place. However, there is one situation where the answer
is unquestionable: any reasonable measure should evaluate the ideal solution (i.e., the one
equivalent to the reference solution) as being superior to the others. If a measure somehow
evaluates a given solution better than the reference one, it is clearly flawed as a similarity
measure.

We propose the contrast property because we observed in preliminary experiments that
some measures would give flat evaluations over solutions progressively farther from the
reference one. This behavior can be problematic when such a measure is used for assessing
clustering algorithms with similar accuracy, as the measure might not be sensible enough
to capture any difference.

The contrast property is also related to the useful range of a measure (Fowlkes and
Mallows, 1983; Wu et al., 2009; Vinh et al., 2010). A measure can have known upper and
lower bounds but its evaluations can be spread out only over a small fraction of that range
in practice. As an example, for a given number of objects n, RI attains the maximum 1
for two equivalent clusterings and the minimum 0 when comparing a clustering having one
cluster and a clustering having n clusters. However, it has been reported that RI provides
evaluations almost always above 0.5, even when comparing randomly generated clusterings
(Fowlkes and Mallows, 1983; Wu et al., 2009). Knowing beforehand the useful range (i.e.,
the range within which the evaluations will fall for real applications) certainly increases the
intuitiveness of the measure.

The maximum property can be mathematically proved for each measure, but the other
properties can only be experimentally assessed and/or disproved. The discriminant and
contrast properties are somewhat subjective, but a measure that evaluates the ideal solution
worse than another solution clearly does not comply with those properties. The baseline
property does not specify a particular model for randomly generating solutions (and we
believe that specifying one would be artificial). We thus empirically evaluate the measures
regarding this property over different models of randomly generating solutions.
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U/V V1,: V2,: · · · VkV,: Sums

U1,: N1,1 N1,2 · · · N1,kV N1,+

U2,: N2,1 N2,2 · · · N2,kV N2,+
...

...
...

. . .
...

...
UkU,: NkU,1 NkU,2 · · · NkU,kV NkU,+

Sums N+,1 N+,2 · · · N+,kV N+,+

Table 1: Contingency table.

3. Background and Related Work

Let X , {x1, x2, . . . , xn} be a data set with n objects. A clustering solution with k clusters
can be represented by a matrix U , [Ur,i] ∈ Rk·n, where Ur,i expresses the membership
degree of xi to the rth cluster and U satisfies the following properties:

0 ≤ Ur,i ≤ 1 (∀r ∈ N1,k and ∀i ∈ N1,n), (1a)

0 <
∑n

i=1 Ur,i (∀r ∈ N1,k), and (1b)

0 <
∑k

r=1 Ur,i (∀i ∈ N1,n). (1c)

We say that U ∈ Mp , {U ∈ Rk·n | satisfies Equations (1)} is a possibilistic clustering
(PC). By adding more constraints, three other clustering types emerge: U ∈ Mf , {U ∈
Mp |

∑k
r=1 Ur,i = 1 ∀i} is a fuzzy/probabilistic clustering (FC), U ∈ Mneh , {U ∈

Mp | Ur,i ∈ {0, 1} ∀r, i} is a non-exclusive hard clustering (NEHC), and U ∈ Meh ,
Mf ∩Mneh is an exclusive hard clustering (EHC) (Campello, 2010; Anderson et al., 2010).
Note that Meh ⊂ Mf, Meh ⊂ Mneh, Mf ⊂ Mp, and Mneh ⊂ Mp (Figure 1). Set Mp of all
PCs covers the other sets, and a measure for this domain is applicable to virtually every
type of clustering present in the literature.

nehMM
f

Mp

Figure 1: Venn diagram representing the relationship between clustering domains.

We believe that the most popular measures for comparing EHCs are those based on pair
counting, including ARI and JI. A common approach to compute these measures begins
by obtaining a contingency matrix (Albatineh et al., 2006). Let U and V be two EHCs
with kU and kV clusters, respectively, of the same data set of n objects. Table 1 defines
their contingency table, where N = UVT is the contingency matrix and Nr,t is the number
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of objects that simultaneously belong to the rth cluster of U and tth cluster of V. The
marginal totals N+,t =

∑kU
r=1 Nr,t and Nr,+ =

∑kV
t=1 Nr,t yield the cluster sizes and the

grand total N+,+ =
∑kU,kV

r,t=1 Nr,t = n yields the number of objects in the data set. The
contingency matrix is then used to calculate the pairing variables a (the number of object
pairs in the same cluster in both U and V), b (the number of object pairs in the same cluster
in U but in different clusters in V), c (the number of object pairs in different clusters in
U but in the same cluster in V), and d (the number of object pairs in different clusters in
both U and V) (Jain and Dubes, 1988; Albatineh et al., 2006):

a =

kU,kV∑
r,t=1

(
Nr,t

2

)
=

1

2

kU,kV∑
r,t=1

N2
r,t −

N+,+

2
, (2a)

b =

kU∑
r=1

(
Nr,+

2

)
− a =

1

2

kU∑
r=1

N2
r,+ −

1

2

kU,kV∑
r,t=1

N2
r,t, (2b)

c =

kV∑
t=1

(
N+,t

2

)
− a =

1

2

kV∑
t=1

N2
+,t −

1

2

kU,kV∑
r,t=1

N2
r,t, and (2c)

d =

(
N+,+

2

)
− (a+ b+ c) =

1

2
N2

+,+ −
1

2
(

kU∑
r=1

N2
r,+ +

kV∑
t=1

N2
+,t) +

1

2

kU,kV∑
r,t=1

N2
r,t. (2d)

Albatineh et al. (2006) list 22 measures based on pair counting defined solely using a,
b, c, and d. For example, JI and RI are respectively defined as

JI(U,V) , a/(a+ b+ c) and (3)

RI(U,V) , (a+ d)/(a+ b+ c+ d). (4)

ARI is defined as (Hubert and Arabie, 1985)4

ARI(U,V) ,
a− (a+c)(a+b)

a+b+c+d
(a+c)+(a+b)

2 − (a+c)(a+b)
a+b+c+d

. (5)

As an alternative to the contingency matrix, one can define the pairing variables by
employing the co-association matrices JU , UTU and JV , VTV (Zhang et al., 2012).
When U and V are EHCs, the above definition amounts to

JU
i,j =

{
1 if ∃r such that Ur,i = 1 and Ur,j = 1

0 otherwise
. (6)

The pairing variables can be rewritten as5

a =
∑

i<j JU
i,jJ

V
i,j , b =

∑
i<j JU

i,j(1− JV
i,j),

c =
∑

i<j(1− JU
i,j)J

V
i,j , and d =

∑
i<j(1− JU

i,j)(1− JV
i,j).

(7)

4. Equation (5) in (Hubert and Arabie, 1985) for ARI is defined by combinations. However, it is equivalent
to Equation (5) defined here, as a =

∑kU,kV
r,t=1

(
Nr,t
2

)
, a+ b =

∑kU
r=1

(
Nr,+

2

)
, and a+ c =

∑kV
t=1

(
N+,t

2

)
.

5.
∑
i<j is a shorthand for

∑n−1
i=1

∑n
j=i+1.
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BC is based on bcubed precision (BCP) and bcubed recall (BCR) (Amigó et al., 2009):

BCP(U,V) ,
1

n

n∑
i=1

∑n
j=1 JU

i,jJ
V
i,j∑n

j=1 JU
i,j

and (8a)

BCR(U,V) ,
1

n

n∑
i=1

∑n
j=1 JU

i,jJ
V
i,j∑n

j=1 JV
i,j

. (8b)

BC is defined by default as:

BC(U,V) , 2 · BCP(U,V) · BCR(U,V)

BCP(U,V) + BCR(U,V)
.

3.1 Similarity Measures for Clustering

Table 2 provides an overview of recently proposed measures designed to handle more general
solutions than EHCs. For each measure, this table shows the clustering types for which it
was designed and the approach used in its formulation.

03VI, 03MI, and 05MI are three measures based on information theory (Mackay, 2003).
Let U and V be two FCs with kU and kV clusters, respectively. The joint probability P(r, t)
of an object belonging to both the rth cluster in U and tth cluster in V is defined by dividing
the contingency matrix N by n, i.e. P(r, t) , Nr,t/n. The mutual information between U
and V is defined as:

I(U,V) ,
kU,kV∑
r,t=1

P(r, t) log

(
P(r, t)

P(r, ·)P(·, t)

)
,

where P(r, ·) ,
∑kV

t=1 P(r, t) and P(·, t) ,
∑kU

r=1 P(r, t) are the marginals. The entropy
associated with U is

H(U) ,
kU∑
r=1

P(r, ·) log (P(r, ·)) .

The 03VI, 03MI, and 05MI measures are defined as:

03VI(U,V) , H(U) + H(V)− 2I(U,V),

03MI(U,V) , I(U,V)/
√

H(U)H(V), and

05MI(U,V) , 2I(U,V)/(H(U) + H(V)).

We assume base two for log(·) in the experiments (Section 7).
07CRI was developed based on a set-theoretic formulation of pairing variables. Let U

and V be two EHCs. Let R be the set of unordered object pairs belonging to the same
cluster in U, and let T be the set of unordered object pairs belonging to the same cluster
in V. The usual cardinality |R ∩ T | yields the pairing variable a; using the same approach,
variables b, c, and d can be defined by their sets. Fuzzy versions of the pairing variables
were then defined by replacing the usual set operations with counterparts from fuzzy set
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Measure EHC FC NEHC PC Based on

03VI (Meila, 2003)
* * Information theory03MI (Strehl and Ghosh, 2003)

05MI (Fred and Jain, 2005)

07CRI (Campello, 2007)
* * * * Fuzzy sets (a, b, c, d)

07CARI

08BRIp (Borgelt, 2007)
* * JU (a, b, c, d)

08BRIm

09EBC (Amigó et al., 2009) * * Precision/Recall

09CRI (Ceccarelli and Maratea, 2009)
* * * * Ṅ (a, b, c, d)†

09CARI

09HI (Hullermeier and Rifqi, 2009) * * * * Dist. (U:,i and U:,j)

09RI (Rovetta and Masulli, 2009) * * JU (ad hoc)

09BRI (Brouwer, 2009)
* * * * JU (ad hoc)

09BARI

10QRIp (Quere et al., 2010)
* * * * JU (a, b, c, d)

10QRIm

10ARI (Anderson et al., 2010)

* * * * N (a, b, c, d)?
10AARI
10ARIn
10AARIn

10CSI (Campello, 2010) * * ad hoc

10CF (Campello, 2010)
* * * * Edit distance

10CFn

11ARInm (Anderson et al., 2011)
* * * * N (a, b, c, d)?

11AARInm

11MD (Wang, 2010) * * JU (ad hoc)

11D2 (Wang, 2010) * * Hamming distance

12DB (Wang, 2012) * * Information theory

† The contingency matrix N used is not the same as the original one. Ceccarelli and Maratea
(2009) it defined as Ṅr,t ,

∑n
i=1(Ur,i + Vt,i)

α. We adopt α , 1 for simplicity.
? Measures 10ARIn, 10AARIn, 11ARInm, and 11AARInm use a normalized contingency

matrix N̂.

Table 2: General similarity measures.
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theory (Campello, 2007). Plugging the new versions of a, b, c, and d into Equations (4) and
(5) resulted in 07CRI and 07CARI, respectively, where U and V are PCs.

08BRIp and 08BRIm are RI generalizations based on the definitions of a, b, c, and d
given by Equations (7), where an arbitrary t-norm (from fuzzy set theory) replaces the
multiplication operator used to compute JU = UTU, JV = VTV, and variables a, b, c, and
d. We adopted the well-known product t-norm (>prod(x, y) , xy) and minimum t-norm
(>min(x, y) , min{x, y}) to define 08BRIp and 08BRIm, respectively.

09EBC is based on the redefinitions of BCP and BCR (Equations 8):

EBCP(U,V) ,
1

n

n∑
i=1

∑n
j=1 min{JU

i,j , J
V
i,j}∑n

j=1 JU
i,j

and (9a)

EBCR(U,V) ,
1

n

n∑
i=1

∑n
j=1 min{JU

i,j , J
V
i,j}∑n

j=1 JV
i,j

. (9b)

Equations (8) and (9) are equivalent when U and V are EHCs. 09EBC is defined by default
as:

09EBC(U,V) , 2 · EBCP(U,V) · EBCR(U,V)

EBCP(U,V) + EBCR(U,V)
,

for NEHCs U and V.
09CRI and 09CARI are based on a reformulation of contingency matrix N, where the

sum operator replaces the multiplication operator (i.e., Ṅr,t ,
∑n

i=1(Ur,i + Vt,i)), and the
subsequent pairing variable calculation uses an equivalent formulation (in the EHC domain)
to that in Equations (2) (Equations (14), (15), (16), and (21) in (Ceccarelli and Maratea,
2009)). 09CRI and 09CARI are obtained by plugging these new pairing variables into
Equations (4) and (5), respectively.

09HI is based on similarity calculations between the columns of U and V. Let RU
i,j ,

1−‖U:,i−U:,j‖ and RV
i,j , 1−‖V:,i−V:,j‖ for all i, j be the similarities between the columns

of U and V, where ‖ · ‖ is a norm that yields values in [0, 1].6 The degree of concordance
between the distances from U and V defines the measure: 09HI(U,V) , 1 −

∑
i<j |RU

i,j −
RV
i,j |/(n(n− 1)/2).

09RI is based on the co-association matrices JU and JV. The 09RI formulation given in
Equation (7) of (Rovetta and Masulli, 2009) is incorrect, and Rovetta, S. kindly provided
the correct formulation by personal communication, which we repeat here. Given JU = UTU
and JV = VTV, the following variables are computed: π ,

∑
i<j JU

i,jJ
V
i,j , σU ,

∑
i<j JU

i,j ,

and σV ,
∑

i<j JV
i,j . The 09RI measure is then given by 1 + (2π − σU − σV)/

(
n
2

)
.

09BRI and 09BARI are based on the pairing variables defined in Equations (7). For
example, variable a was defined as (

∑n
i,j=1 J̇U

i,j J̇
V
i,j−n)/2, where the co-association matrices

used are normalized: J̇U
i,j ,

∑kU
r=1(Ur,iUr,j)/(‖U:,i‖e‖U:,j‖e).7 Plugging these new variables

into Equations (4) and (5) yields 09BRI and 09BARI, respectively.
10QRIp and 10QRIm are derived from 08BRIp and 08BRIm, respectively, by normal-

izing JU and JV such that all diagonal terms equal 1, and letting U and V be PCs. The

6. We adopted the usual Euclidean norm in the experiments.
7. ‖ · ‖e is the usual Euclidean norm.
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rationale behind this normalization is that a diagonal term JU
i,i should always provide the

maximum, as it somehow represents the degree to which object xi is in the same cluster as
itself.

The 10ARI and 10AARI pairing variables are defined using the original formulation
N = UVT and Equations (2). Equations (4) and (5) are then applied to yield 10ARI and
10AARI, respectively. Anderson et al. (2010) noticed that at least 10ARI does not provide
evaluations confined in the interval [0, 1] (as RI does) for general PCs. They thus proposed
the use of a normalized contingency matrix N̂ ,

(
n/N+,+

)
N to have N̂+,+ = n to alleviate

the above issue. We denote the normalized versions of 10ARI and 10AARI by 10ARIn and
10AARIn, respectively.

It has been observed that 10ARIn and 10AARIn do not attain their maxima whenever
two equivalent solutions8 are compared (Anderson et al., 2011). 11ARInm and 11AARInm
were then defined to address this issue as:

11ARInm(U,V) , 10ARIn(U,V)/max{10ARIn(U,U), 10ARIn(V,V)} and

11AARInm(U,V) , 10AARIn(U,V)/max{10AARIn(U,U), 10AARIn(V,V)}.

The 10CSI measure was designed to handle non-exclusive and exclusive hard clusterings.
Let JU = UTU and JV = VTV be the co-association matrices, and let U+,i and V+,i be
the number of clusters to which object xi belongs, according to the respective solutions.
The agreement and disagreement between U and V according to the relative placement of
objects xi and xj are defined by 10CSI as:

agi,j , min{JU
i,j , J

V
i,j}+ min{U+,i,V+,i}+ min{U+,j ,V+,j} − 2 and

dgi,j , |J
U
i,j − JV

i,j |+ |U+,i −V+,i|+ |U+,j −V+,j |

10CSI is given by
∑

i<j a
g
i,j/
∑

i<j(a
g
i,j + dgi,j), which reduces to JI in the EHC domain.

The 10CF and 10CFn measures largely differ from the others because they are not pair-
based nor based on information theory. 10CF and 10CFn are somehow related to the edit
distance commonly used to define the compatibility degree between two strings of text (Lev-
enshtein, 1966). Campello (2010) defined the fuzzy transfer distance FTD(U,V) between
two PCs U and V as the minimum amount of membership degrees that must be given to
and/or removed from the objects of U (V) to make this clustering equivalent to V (U). We
define here 10CF as 10CF(U,V) , 1− FTD(U,V) such that it yields values in the interval
(−∞, 1] and attains 1 iff U and V are equivalent clusterings (Campello, 2010). 10CFn is
1 minus the normalized version of FTD: 10CFn(U,V) , 1 − FTD(U,V)/(nmax{kU, kV}).
10CFn(U,V) lies in the interval [0, 1] (Campello, 2010).

Let U and V be two NEHCs with kU and kV clusters, respectively. The 11MD and 11D2
measures are defined as:

11MD(U,V) , 1− 1

n

n∑
i=1

∑n
j=1 |JU

i,j − JV
i,j |∑n

j=1 max{JU
i,j , J

V
i,j}

and

11D2(U,V) , 1− 1

n2

n∑
i,j=1

|JU
i,j − JV

i,j |,

8. Clusterings U and V are equivalent iff (i) they have the same number of clusters and (ii) V can always
be transformed into U by row permutations.
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where
∑n

i,j=1 |JU
i,j − JV

i,j | is the Hamming distance when U and V are EHCs.

Let AU be the adjacency matrix of U defined as:

AU
i,j ,

{
1 ∃r : Ur,iUr,j = 1

0 otherwise
.

The normalized disconnectivity of U is given by default as (Wang, 2012):

NDisc(U) , 2(1− 1

n2

n∑
i,j=1

AU
i,j).

Let R be a (possibly degenerate) clustering resulting from the intersection between the
clusters of NEHCs U and V:

R(r+(t−1)∗kU),i , Ur,iVt,i.

The 12DB measure is defined by default as:

12DB(U,V) , 2 ·NDisc(R)−NDisc(U)−NDisc(V).

3.2 Discussion

Some authors extended pair-based measures by simply letting U and V be representations of
other clustering types (i.e., others than EHC types) in the definition of contingency matrix N
(e.g., Ceccarelli and Maratea, 2009; Anderson et al., 2010) or co-association matrices JU and
JV (e.g., Borgelt and Kruse, 2006; Borgelt, 2007; Quere and Frelicot, 2011), and computing
a, b, c, and d based on Equations (2) or Equations (7). However, the pairing variable
equations were deduced by assuming that U and V are EHCs. Without a more principled
explanation, we believe there is no reason to expect that using the same definitions would
grant meaningful values to a, b, c, and d in more general circumstances. Consider the
following identical EHCs:

U , V ,

(
1.0 0.0
0.0 1.0

)
. (10)

We have a = 0, b = 0, c = 0, and d = 1, according to the definitions given by Equations
(2) and Equations (7). There is only one pair of objects, and the objects are not clustered
together in both solutions. Now let

V̇ ,

(
0.9 0.0
0.1 1.0

)
(11)

be an FC very similar to V. Comparing U and V̇, we now have a = −0.09, b = 0.1,
c = 0.09, and d = 0.9, according to Equations (2), and a = 0, b = 0, c = −0.1, and d = 0.9,
according to Equations (7). It is hard to assign a meaningful interpretation when a pairing
variable yields a negative value. Moreover, the obtained values are no longer equivalent to
each other. This result shows that the application of Equations (2) and (7) in more general
settings must indeed be accompanied by a good justification.
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None of the measures 03VI, 03MI, 05MI, 07CRI, 07CARI, 08BRIp, 08BRIm, 09CRI,
09CARI, 09RI, 09BRI, 09BARI, 10QRIp, 10QRIm, 10ARI, 10AARI, 10ARIn, 10AARIn,
10CF, 11ARInm, and 12DB attain their maxima 1 whenever two equivalent solutions are
compared, as Section 7.1 shows. This makes interpreting the evaluation provided by these
measures difficult. Moreover, there is no reason to expect that ARI generalizations (i.e.,
07CARI, 09CARI, 09BARI, 10AARI, 10AARIn, and 11AARInm) are corrected for random-
ness in others than in EHC scenarios simply because the original ARI has this property for
EHCs (this belief is confirmed in the experiments in Section 7.2). The formulations upon
which these generalized measures are based were deduced by assuming that the compared
solutions are EHCs.

4. Frand Index

Given two FCs U (with kU clusters) and V (with kV clusters) of n objects, 13FRI recasts
each into two n-by-n matrices to retain only the essential information and to facilitate the
comparison. Let IkU be the kU-by-kU identity matrix and 1kU be the kU-by-kU matrix with
1 in each entry. Define the matrices

JU , UTU and (12a)

SU , UT(1kU − IkU)U. (12b)

Matrices JU and SU provide all pairwise information between objects for 13FRI with respect
to U. Let JV and SV be the corresponding matrices for V. 13FRI compares JU and SU with
JV and SV to measure how much U and V agree with the membership assignment of each
object pair. Let us elaborate these matrices.

JU
i,j and SU

i,j can be interpreted in several ways. For EHCs, JU
i,j = 1 (implying SU

i,j = 0)

means that objects xi and xj belong to the same cluster in solution U, and JU
i,j = 0 (implying

SU
i,j = 1) means that they belong to different clusters in U. In the EHC domain, JU is the

same matrix as that defined in Equation (6), and SU
i,j = 1− JU

i,j .

Another interpretation can be provided for JU and SU in the FC domain. If one con-
siders that an FC U produces probabilities of objects pertaining to clusters (e.g., as in EM
solutions), i.e., Ur,i is the probability of object xi belonging to the rth cluster, JU

i,j gives
the probability of objects xi and xj belonging to the same cluster according to U, and
SU
i,j = 1 − JU

i,j gives the probability that they belong to different clusters according to U,
assuming independence.

We also allow JU and SU to be defined for PCs in general (Section 5). Let us thus
consider two other interpretations for JU and SU in the PC domain. Letting U be an
NEHC, JU

i,j is the number of times xi and xj belong to the same cluster in U, and SU
i,j is the

number of times xi and xj belong to different clusters in U. If U is a more general PC, we
can say that JU

i,j is the possibility of xi and xj belonging to the same cluster in U, and SU
i,j

is the possibility of xi and xj belonging to different clusters in U.

Despite the above multitude of interpretations, we understand that JU
i,j represents a

degree of truthiness for the sentence “xi and xj belong to the same cluster”, whereas SU
i,j

yields a degree of falseness to the same sentence, according to the solution U. This reasoning
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led us to redefine the pairing variables a, b, c, and d as follows:

ȧ ,
∑
i<j

min{JU
i,j , J

V
i,j}, (13a)

ḃ ,
∑
i<j

min{JU
i,j −min{JU

i,j , J
V
i,j}, SV

i,j −min{SU
i,j ,S

V
i,j}}, (13b)

ċ ,
∑
i<j

min{JV
i,j −min{JU

i,j , J
V
i,j}, SU

i,j −min{SU
i,j ,S

V
i,j}}, and (13c)

ḋ ,
∑
i<j

min{SU
i,j ,S

V
i,j}. (13d)

Variables ȧ and ḋ measure the agreement between U and V with respect to the truthiness
and falseness of sentence “xi and xj belong to the same cluster” for each pair of objects xi
and xj ; ḃ and ċ measure the disagreement. For EHCs U and V, min{JU

i,j , J
V
i,j} = 1 means

that xi and xj are clustered together in both clusterings. Conversely, min{SU
i,j ,S

V
i,j} = 1

means that xi and xj belong to different clusters in both clusterings. In both cases, ȧ + ḋ
increases by 1. JU

i,j 6= JV
i,j means that there is a disagreement between U and V regarding

the pairing of xi and xj ; it implies that min{JU
i,j , J

V
i,j} = min{SU

i,j , S
V
i,j} = 0 and increments

ḃ+ ċ by 1. This behavior recalls the descriptive definition of a, b, c, and d given in Section
3. Comparing the definitions in Equations (7) with those in Equations (13), a = ȧ, b = ḃ,
c = ċ, and d = ḋ when comparing EHCs. Consequently, our similarity measure

13FRI(U,V) ,
ȧ+ ḋ

ȧ+ ḃ+ ċ+ ḋ
(14)

reduces to RI when U and V are EHCs.

Now, consider the more general context where U and V are FCs. We defined ȧ + ḋ
(ḃ + ċ) to measure to what extent U and V agree (disagree) with each other regarding
the object pairings. For example, the min operator in min{SU

i,j , S
V
i,j} appears to provide a

reasonable notion to what extent the solutions agree that xi and xj should not be clustered
together. When the elements of JU and JV (or SU and SV) simultaneously show high or low
values, there is a strong compatibility between U and V. This is reflected by how 13FRI
was defined.

One may ask why ḃ (and similarly for ċ) was not defined as ḃ ,
∑

i<j min{JU
i,j , S

V
i,j}.

The reason is that the amount min{JU
i,j , J

V
i,j} has already been used from JU

i,j and JV
i,j to

establish the agreement between JU
i,j and JV

i,j in ȧ. Suppose that JU
i,j = SU

i,j = JV
i,j = SV

i,j = x.

Let ȧi,j , min{JU
i,j , J

V
i,j}, and analogously define ḃi,j , ċi,j , and ḋi,j . Without the subtractions

in Equations (13b) and (13c), each variable ȧ, ḃ, ċ, and ḋ would be increased by x (i.e.,
ȧi,j = ḃi,j = ċi,j = ḋi,j = x), meaning that U and V would have only 50% agreement
regarding the placement of xi and xj , instead of 100%. This does not happen with the
original formulation because all the information regarding the placement of xi and xj has
been used in the definition of ȧi,j and ḋi,j , and then nothing is left to the definition of ḃi,j
and ċi,j . Figure 2 represents the values JU

i,j + SU
i,j = 2x and JV

i,j + SV
i,j = 2x by box heights.

Parallel line orientations define the two types of filled areas regarding the information used
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from the co-association matrices to determine ȧi,j and ḋi,j . There is no space in the boxes
(i.e., unused information) to fill regarding variables ḃi,j and ċi,j .

a

d

J
i,j

V

Si,j
V

S
i,j

U

J
i,j

U

i,j i,j

i,j i,j

a

d

x/2

x

3x/2

2x

0

Figure 2: Graphical representation of a 13FRI evaluation where ḃi,j = ċi,j = 0.

The 13FRI measure yields values in the continuous interval [0, 1]. It attains the maxi-
mum 1 whenever equivalent solutions are compared9 and attains the minimum 0 only when
U and V are EHCs and one of them has one cluster and the other has n clusters (Propo-
sition 1 in Appendix). However, this last scenario is extreme and has little practical value
(Vinh et al., 2009, 2010), making low 13FRI evaluations nearly impossible in practice. It
is desirable that the entire interval [0, 1] be useful, for better intuitiveness. This can be
achieved by a similarity measure that takes values close to a constant α (α can always be
turned into zero by a non-linear transformation: subtracting α from the evaluation and
multiplying the result by a β that makes the maximum equals 1) when comparing random
solutions (constant baseline). When a constant baseline exists and the user knows its value
beforehand, one can compare the obtained evaluation to the baseline value and be more
confident in his conclusions. The next section shows how 13FRI can be adjusted to assume
values close to zero for randomly generated solutions.

4.1 Adjustment for Randomness

Suppose a measure assigns x to the similarity between two FCs U and V. How can we
determine if x is not just a value from the random fluctuation inherent to the measure?
A popular approach addresses this issue by subtracting the measure expectation from the
measure and normalizing the result to 1 as a maximum (Hubert and Arabie, 1985; Albatineh
et al., 2006; Vinh et al., 2009, 2010):

ASM(U,V) ,
SM(U,V)− E[SM]U,V
max{SM} − E[SM]U,V

, (15)

where SM is any similarity measure, E[SM]U,V is its expectation given U and V, max{SM}
is the maximum of SM, and ASM is its adjusted version. ASM assumes values in the range
(−∞, 1], and a positive value indicates that the similarity between U and V is greater than
what one would expect from randomly chosen solutions. As Section 7.2 indicates for our
corrected measures, this adjustment for chance can also make the measure unbiased in the
number of clusters (Vinh et al., 2009, 2010).

To correct a measure for randomness, it is necessary to specify a null model according
to which solutions are generated (Vinh et al., 2009, 2010). Given two FCs U and V, our

9. Note that JU
i,j and SU

i,j are independent of U row permutations. If U and V are equivalent clusterings,

we have JU
i,j = JV

i,j and SU
i,j = SV

i,j ∀i < j. It implies that ḃ = ċ = 0 and 13FRI(U,V) = 1.
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null model simultaneously produces two solutions from independent random permutations
of the U and V columns. Let π1, π2, . . . , πn! be every possible permutation of the numbers
in N1,n, and define the function Γπl(U) , [U:,πl(1) U:,πl(2) . . . U:,πl(n)] that applies
permutation πl to matrix U.10 A particular permutation πl of U is chosen with probability
P(πl) , 1/n!, and the permutations of U and V are considered independent events. We
thus define P(πl, πq) , 1/(n!n!). The expectation of 13FRI according to our null model
given U and V is

E[13FRI]U,V =
1

n!n!

n!∑
l,q=1

13FRI(Γπl(U),Γπq(V)). (16)

Let ȧ(JU, JV) ,
∑

i<j min{JU
i,j , J

V
i,j} and ḋ(SU,SV) ,

∑
i<j min{SU

i,j ,S
V
i,j}. Because ȧ+ ḃ+

ċ + ḋ is a constant for the proposed null model (Corollary 1 in Appendix), we rewrite the
expectation

E[13FRI]U,V = (ȧ+ ḃ+ ċ+ ḋ)−1(E[ȧ]U,V + E[ḋ]U,V), (17)

where

E[ȧ]U,V =
1

n!n!

n!∑
l,q=1

ȧ(JΓπl (U), JΓπq (V))

=
1

n!n!

n!∑
l,q=1

∑
i1<j1

min{JU
πl(i1),πl(j1), J

V
πq(i1),πq(j1)}

=
2(n− 2)!

n!n!

n!∑
q=1

∑
i1<j1

∑
i2<j2

min{JU
i2,j2 , J

V
πq(i1),πq(j1)}

=
2(n− 2)!2(n− 2)!

n!n!

∑
i1<j1

∑
i2<j2

∑
i3<j3

min{JU
i2,j2 , J

V
i3,j3}

=
4

n2(n− 1)2

∑
i1<j1

∑
i2<j2

∑
i3<j3

min{JU
i2,j2 , J

V
i3,j3}

=
2

n(n− 1)

∑
i2<j2

∑
i3<j3

min{JU
i2,j2 , J

V
i3,j3} (18)

and, analogously,

E[ḋ]U,V =
2

n(n− 1)

∑
i2<j2

∑
i3<j3

min{SU
i2,j2 , S

V
i3,j3}. (19)

Following the framework of Equation (15), the adjusted frand index is

13AFRI(U,V) ,
13FRI(U,V)− E[13FRI]U,V

1− E[13FRI]U,V
. (20)

10. U:,i is the ith column of U.
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13AFRI attains its maximum 1 in the same way as 13FRI (i.e., whenever two equivalent
clusterings are compared) and is 0 when the measure equals its expected value, under
the null model. 13AFRI can display negative evaluations, which mean that the compared
clusterings are more dissimilar than expected if they were independently generated. Its
minimum is not fixed anymore and is given by −E[SM]U,V/(max{SM} − E[SM]U,V).

Given two EHCs U and V, we have 13AFRI(U,V) = ARI(U,V) (Proposition 3 in
Appendix). In other words, 13AFRI reduces to ARI in the EHC domain. This indicates
the appropriateness of the null model for 13AFRI, which can also be further extended to
PCs (as Section 5 shows).

4.2 Discussion

13FRI could also be applied to PCs. In this case, however, 13FRI would not provide
reasonable evaluations in some scenarios where per-object membership totals (i.e., column-
wise sums of the clustering matrix) varies among solutions. Let U be an FC and recall that
an FC is also a PC. The result of multiplying U by a scalar x ∈ (0, 1) is also a PC matrix,
where the per-object membership total of each object is decreased. Notice that we have
13FRI(U,U) = 13FRI(U, xU) = 13AFRI(U,U) = 13AFRI(U, xU) = 1 for any x ∈ (0, 1].
This happens because JxU

i,j = min{JU
i,j , J

xU
i,j } and SxU

i,j = min{SU
i,j ,S

xU
i,j }, making variables ḃ

and ċ (Equations 13b and 13c) equal to zero.

Let us analyze another problematic scenario by considering the following matrices:

U ,

(
0.8 0.4
0.4 0.8

)
and V ,

(
0.6 0.4
0.4 0.6

)
.

Note that U is a PC more general than an FC. We have JU
1,2 = 0.64, SU

1,2 = 0.8, JV
1,2 = 0.48,

and SV
1,2 = 0.52. The heights of the first and second boxes in Figure 3 correspond to the

values JU
1,2+SU

1,2 = 1.44 and JV
1,2+SV

1,2 = 1, respectively. The boxes are divided by horizontal

dashed lines, creating two parts that correspond to the JU
1,2 and SU

1,2 (JV
1,2 and SV

1,2) values.

The values of ȧ = 0.48 and ḋ = 0.52 are illustrated by the filled areas, and the remaining
variables ḃ and ċ equal zero. There is an empty space of height JU

1,2+SU
1,2−(JV

1,2+SV
1,2) = 0.44

in the first box, which 13FRI ignores. We could increase JU
1,2 and SU

1,2 by any amount that
13FRI would still yield the same score. A reasonable measure for PCs should decrease the
score proportionally to the unmatched amount. The next section proposes modifying 13FRI
to address this issue.

5. Grand Index

Let TU , JU + SU and M , max{TU,TV}.11 A new variable

ė , max
{∑
i<j

(
Mi,j − TU

i,j

)
,
∑
i<j

(
Mi,j − TV

i,j

)}
(21)

11. M = max{TU,TV} means that Mi,j = max{TU
i,j ,T

V
i,j} for all i, j.
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Figure 3: Graphical representation of the problem using 13FRI when the compared clus-
tering matrices have different column-wise sums.

is introduced in 13FRI to give rise to the grand index:

13GRI(U,V) ,
ȧ+ ḋ

ȧ+ ḃ+ ċ+ ḋ+ ė
. (22)

Given two objects xi and xj , Mi,j −TU
i,j describes how much TV

i,j exceeds TU
i,j . In Figure 3,

Mi,j −TV
i,j = 0.44, which equals the height of the empty space in the first box. Proposition

5 in Appendix allows us to rewrite Equation (22) as

13GRI(U,V) =

∑
i<j min{JU

i,j , J
V
i,j}+

∑
i<j min{SU

i,j ,S
V
i,j}

max{
∑

i<j TU
i,j ,
∑

i<j TV
i,j}

.

If U and V are FCs, TU
i,j = TV

i,j = 1, ȧ+ḃ+ċ+ḋ+ė = max{
∑

i<j TU
i,j ,
∑

i<j TV
i,j} = n(n−1)/2,

and 13GRI reduces to 13FRI. As in 13FRI, 13GRI attains its maximum 1 whenever the
compared PCs U and V are equivalent solutions.12

Adopting the same null model proposed in Section 4.1, and realizing that ȧ+ ḃ+ ċ+ ḋ+ ė
is constant for this model (Corollary 2 in Appendix), we have E[13GRI]U,V = (ȧ+ ḃ+ ċ+
ḋ+ ė)−1(E[ȧ]U,V + E[ḋ]U,V). The adjusted 13GRI is then given by

13AGRI(U,V) ,
13GRI(U,V)− E[13GRI]U,V

1− E[13GRI]U,V
. (23)

Similarly to 13AFRI, 13AGRI attains its maximum 1 in the same way as 13GRI and is
0 when the measure equals its expected value. Section 7.2 shows that 13AGRI can indeed
exhibit a constant baseline close to zero for randomly generated EHC, FC, NEHC, and PC
solutions, even when the null model is clearly violated.

6. Computational Complexity and Implementation

Let IkU be the kU-by-kU identity matrix and 1kU the kU-by-kU matrix with 1 in each entry.
There are O(n2kU) computational steps to calculate JU = UTU and SU = UT(1kU − IkU)U,

12. As in the 13FRI case, we have JU
i,j = JV

i,j and SU
i,j = SV

i,j ∀i < j whenever U and V are equivalent

clusterings. Thus, TU
i,j = TV

i,j ∀i < j, making ȧ and ḋ the only possible non-null terms.
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and O(n2) steps to calculate M = max{TU,TV}. Variables ȧ, ḃ, ċ, ḋ, and ė require O(n2)
steps because of the pairwise summations

∑
i<j in their formulas (Equations 13 and 21).

13FRI and 13GRI thus require O(n2(kU + kV)) operations. Calculation of EHC pair-based
measures generally requires O(nkUkV) steps due to the contingency matrix N = UVT

computation. The possibly higher 13FRI and 13GRI complexity is the price one may have
to pay for a more general measure.

Equations (18) and (19) might suggest that 13AFRI (and 13AGRI) requires O(n4)
computational steps, making its computation infeasible for most practical scenarios. For-
tunately, the min operator allows us to reduce the computational complexity of Equations
(18) and (19) to O(n2 log n) steps. To examine how that can be accomplished, suppose
that JU

1,2 ≤ JV
i,j for all i < j (i, j ∈ N1,n) as a special case and as a didactic example. We

have
∑

i<j min{JU
1,2, J

V
i,j} = JU

1,2n(n− 1)/2 computable in constant time, reducing the total
computational cost. Let us consider the general case for calculating E[ȧ]U,V (Equation 18).
Define

1i2,j2i1,j1
,

{
1 if JU

i1,j1
≤ JV

i2,j2

0 otherwise
.

Equation (18) can be rewritten as

n(n− 1)

2
E[ȧ]U,V =

∑
i1<j1

∑
i2<j2

min{JU
i1,j1 , J

V
i2,j2}1

i2,j2
i1,j1

+
∑
i2<j2

∑
i1<j1

min{JU
i1,j1 , J

V
i2,j2}(1− 1i2,j2i1,j1

)

=
∑
i1<j1

JU
i1,j1

∑
i2<j2

1i2,j2i1,j1
+
∑
i2<j2

JV
i2,j2

∑
i1<j1

(1− 1i2,j2i1,j1
). (24)

The calculation of E[ḋ]U,V (Equation 19) is analogous; the only difference lies in using SU

and SV instead of JU and JV.

The above strategy can be applied efficiently by first rearranging the upper triangular
parts of JU and JV into vectors x and y, respectively, and sorting the resulting vectors.13

Algorithm 1 shows an implementation of the above strategy, where the first and second
terms of the right-hand side of Equation (24) are calculated by the loops in Steps 7 and 15,
respectively.

The most demanding step of Algorithm 1 in terms of computational time is Step 4,
which sorts two vectors of size n(n− 1)/2 in O(n2 log n) steps using, for example, the heap
sort algorithm. 13AGRI and 13AFRI thus require O(n2(kU + kV + log n)) computational
steps.

7. Experiments

It is a common practice to compare the accuracy of clustering algorithms by measuring how
similar their resulting clusterings are to a reference solution. The algorithm that generated
clusterings more similar to the reference solution is then regarded as the most accurate.

13. The upper triangular part of JU
i,j can be rearranged as follows: xπ(i,j) , JU

i,j (∀i < j), where π(i, j) ,
j − i+

∑i−1
t=1(n− t) = j − i(1 + i)/2 + n(i− 1).

2967



Horta and Campello

Algorithm 1 Compute E[ȧ]U,V

1: Represent the upper triangular part of JU into vector x
2: Represent the upper triangular part of JV into vector y
3: m← n(n− 1)/2 {size of vectors x and y}
4: Sort x and y in increasing order
5: E[ȧ]U,V ← 0
6: i, j ← m,m
7: while i > 0 do
8: while j > 0 and xi ≤ yj do
9: j ← j − 1

10: end while
11: E[ȧ]U,V ← E[ȧ]U,V + (m− j) ∗ xi
12: i← i− 1
13: end while
14: i, j ← m,m
15: while j > 0 do
16: while i > 0 and xi > yj do
17: i← i− 1
18: end while
19: E[ȧ]U,V ← E[ȧ]U,V + (m− i) ∗ yj
20: j ← j − 1
21: end while
22: E[ȧ]U,V ← E[ȧ]U,V/m

A measure must somehow adequately evaluate the similarity between the compared solu-
tions. Section 7.1 follows this idea and compares 34 measures by applying them to evaluate
solutions with different numbers of clusters produced by different clustering algorithms.
This comparison is done by considering the first three properties proposed in Section 2:
maximum, discriminant, and contrast. Synthetic data sets were generated according to the
cluster types that these algorithms search for (e.g., it is well-known that k-means (Mac-
Queen, 1967) tends to produce spherical-like clusters), and the reference solution for each
data set was defined by applying the corresponding clustering algorithm with a well-tuned
initial solution. In this scenario is then expected that the dissimilarity between the gener-
ated and reference solutions will reflect the difference in the numbers of clusters.

In a different scenario, Section 7.2 compares the measures when evaluating randomly
generated solutions, by assessing the measures according to the baseline property proposed
in Section 2. A measure should display a uniform evaluation across the range of numbers
of clusters because any resemblance between the compared solutions is only due to chance.

Section 7.3 assesses the 13AGRI evaluation validity for FCs in 14 real data sets, and
Section 7.4 uses 13AGRI as a stability statistic for estimating the number of clusters in five
real data sets.

Because 13GRI (13AGRI) is more general and becomes equivalent to 13FRI (13AFRI)
when applied to FCs, we only show the results of 13GRI (13AGRI).
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7.1 Measuring the Similarity Between Clusterings

We evaluated the measures in four synthetic data sets (Figures 4), each suitable for one of the
following clustering types: EHC, FC, NEHC, and PC. The DEHC data set (Figure 4(a)) has
nine well-separated clusters, whereas the DFC data set (Figure 4(b)) has nine overlapping
clusters. In both data sets, the clusters were generated using Gaussian distributions with
equal variances and no correlation between the attributes. The DNEHC data set (Figure
4(c)) has four clusters, but they reduce to two clusters when projected to a single axis.14 We
generated the DPC data set (Figure 4(d)) to resemble a synthetic one (Zhang and Leung,
2004) with noise added.
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Figure 4: Data set for each clustering type.

Different clustering algorithms were employed for each data set, appropriate for the
corresponding clustering type as follows: k-means for DEHC, fuzzy c-means (FCM) and
expectation maximization for Gaussian mixtures (EMGM) (Dempster et al., 1977) for DFC,
SUBCLU (Kailing et al., 2004) for DNEHC, and improved possibilistic c-means 2 (IPCM2)
(Zhang and Leung, 2004) for DPC. The FCM and IPCM2 exponent m was set to 2 (which
is commonly adopted in the literature), the SUBCLU parameter minpts was set to 5, and
the Euclidean norm was adopted; this same configuration was used in all the experiments
reported in this work. The reference solution for the combination of data set and clustering
algorithm (i.e., (DEHC, k-means), (DFC, FCM), (DFC, EMGM), (DNEHC, SUBCLU),
and (DPC, IPCM2)) was produced by applying the clustering algorithm with the right
number of clusters (or a well-tuned epsilon for SUBCLU), and the result was analyzed to
ensure that the solution could be considered ideal in the clustering space sought by the
corresponding algorithm. For example, we applied k-means to DEHC with k = 9 clusters,
using the means of the Gaussian distributions (used to generate the clusters) as the initial
centroids. The final solution had virtually the same initial centroids, corroborating the
validity of the obtained solution.

It is worth noting that we are not suggesting that the considered clustering algorithms
are not suitable for the data sets to which they have not been applied to. For example, FCM
can easily find the clustering structure in DEHC, as well as IPCM2 can find the clustering
structure in DFC. What is most important is that the data set has a clustering structure
suitable for the clustering algorithm being applied.

14. The other data sets could have a similar interpretation as well. However, we only consider subspaces in
this specific data set.
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Figure 5: EHC measure evaluations of k-means solutions for the DEHC data set.

The algorithms k-means, FCM, EMGM, and IPCM2 were applied 30 times for each
number of clusters k ∈ {2, 3, . . . ,

√
n} (the literature commonly adopts the upper threshold√

n as a rule of thumb (Pal and Bezdek, 1995; Pakhira et al., 2005)), and SUBCLU was
applied 30 times for each epsilon in the range {0.1, 0.2, . . . , 5.0}. The measures were applied
to each solution, and only the highest (which means “the best”) values attained in each k
or epsilon for a given measure were retained to generate the plots in Figures 5, 6, 7, 8, and
9. We opted to plot the highest values instead of averages because we are interested in the
solutions that are as close as possible to the reference one, for a given number of clusters
(or epsilon), and to make the results as independent as possible to the stochastic nature
of the algorithms. Measures showing the same values were joined and represented by a
single curve, and multiple figures for the same experiments were plotted for visualization
purposes.

Figure 5 shows that most generalized measures displayed the same results as RI or ARI,
when evaluating EHCs. This is expected because most of these measures were defined
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Figure 6: FC measure evaluations of FCM solutions for the DFC data set.

by extending the variables behind the RI or ARI formulations. For example, the 07CRI
measure is a fuzzy version of RI in which the pairing variables a, b, c, and d were defined
using fuzzy sets. When applied to EHCs, 07CRI reduces to RI (Campello, 2007). RI, 09HI,
10CFn, 12DB, and the measures that showed the same results as RI were weakly affected by
a positive difference between the obtained and the true numbers of clusters. RI is equal to 1
and 0.94 for the solutions with 9 and 30 clusters, respectively, which represents less than 10%
of its total range [0, 1]. This weak responsiveness to the number of clusters makes it difficult
to decide whether the solution at hand is really good or not (weak contrast property). 09CRI
exhibited an increasing evaluation across the numbers of clusters, and 09CARI produced
scores close to zero only. In fact, 09CARI resulted in evaluations close to zero for each
scenario in this section. Conversely, JI, ARI, BC, 09EBC, 10CSI, 11MD, and the measures
that showed the same results as ARI (including 13AGRI proposed here) exhibited a steady
decrease for high numbers of clusters. We believe that this more prominent responsiveness
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to differences in the clusterings is more intuitively appealing. 10CF (Figure 5(c)) attained
the maximum 1 for the right number of clusters.
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Figure 7: FC measure evaluations of EMGM solutions for the DFC data set.

Figure 6 shows FC measure evaluations of FCM solutions for the DFC data set. Only
13AGRI and 11AARInm provided both the maximum value 1 for the true number of clusters
and showed steady decreasing evaluations over the positive increase in the difference between
the obtained and true numbers of clusters. 09HI was 1 for the true number of clusters, but it
showed an asymptotic-like curve for high numbers of clusters. 03VI, 08BRIp, 09RI, 09CRI,
09CARI, 10ARI, and 10ARIn could not indicate the reference solution.

Figure 7 displays EMGM solution evaluations for the DFC data set. 07CRI, 08BRIp,
08BRIm, 09CRI, 09CARI, 09RI, 09BRI, 10QRIp, 10QRIm, 10ARI, 10ARIn, and 11ARInm
could not indicate the true number of clusters. 09HI, 10CFn, 11AARInm, 13GRI, and
13AGRI attained their maxima 1 for the right number of clusters. However, 10CFn and
13GRI showed little to no evaluation change over the solutions with number of clusters
greater than k∗ = 9 (low contrast). 10CF attained 0.92 for the right number of clusters.
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Figure 8: NEHC measure evaluations of SUBCLU solutions for the DNEHC data set.

Figure 8, in which NEHCs are evaluated, shows only the range {0.1, 0.2, . . . , 2.1} of
epsilons, as the results from 1.4 to 5.0 are identical. The reference solution has 8 clusters:
4 from data on the plane, 2 from data projected onto the x axis, and 2 from data projected
onto the y axis (Figure 4(c)). Figure 8(b) indicates the number of clusters found for each
epsilon. SUBCLU generates the reference solution only for the epsilons from 0.4 to 1.0 (we
know this by inspection), and most measures yield the highest score in this interval. 07CRI,
09CRI, 10ARI, and 10AARI judged the solution with an epsilon equal to 0.1 to be the best
one. Most of the measures identified the correct solutions, but only 09EBC, 09HI, 10CSI,
10CF, 10CFn, 11AARInm, 11MD, 11D2, 13GRI, and 13AGRI attained their maxima 1 for
these solutions. 11AARInm and 13AGRI rapidly approached zero for non-optimal epsilons.

In Figure 9, 13GRI and 13AGRI exhibited a steep fall in the evaluations and a peak 1
at the true number of clusters. The DPC data set has only 3 clusters, while the others have
9 (DEHC and DFC) or 8 (DNEHC) clusters. A steeper curve is therefore expected. 07CRI,
09HI, 09BRI, 10QRIp, 10QRIm, 10ARI, 10ARIn, and 11ARInm provided high evaluations
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Figure 9: PC measure evaluations of IPCM2 solutions for the DPC data set.

for a wide range of numbers of clusters. Measures 10ARI and 09CARI could not discriminate
between the solutions, and 09CRI could not indicate the true number of clusters. 10CFn
showed an increasing evaluation for solutions with number of clusters greater than k = 5.
10CF indicated the right number of clusters in Fig 9(c), though not evaluating it as the
maximum 1 (it was evaluated as 0.92).

Table 3 summarizes the results by indicating with “k∗” the measures that identified
the reference clustering (discriminant property) and “1” the measures that attained their
maxima for the reference solution (maximum property). 09HI, 10CFn, 11AARInm, 13GRI,
and 13AGRI are the only measures that displayed the above properties for each scenario.
However, 09HI, 10CFn, and 13GRI presented a poor sensitivity to solution variations in
most of the cases (e.g., Figures 5(a) and 5(b)), and 10CFn showed an increasing evaluation
for progressively worse solutions (Figure 9(a)). 11AARInm and 13AGRI identified the
reference solution, attained their maxima 1 for the reference clustering, and were sensitive
to the difference in the numbers of clusters in all scenarios.
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Measures EHC FCFCM FCEMGM NEHC PC

JI k∗/1 - - - -
RI k∗/1 - - - -
ARI k∗/1 - - - -
BC k∗/1 - - - -
03MI k∗/1 k∗/· k∗/· - -
05MI k∗/1 k∗/· k∗/· - -
03VI k∗/1 ·/· k∗/· - -
07CRI k∗/1 k∗/· ·/· ·/· k∗/·
07CARI k∗/1 k∗/· k∗/· ·/· k∗/·
08BRIp k∗/1 ·/· ·/· - -
08BRIm k∗/1 k∗/· ·/· - -
09EBC k∗/1 - - k∗/1 -
09CRI ·/· ·/· ·/· ·/· ·/·
09CARI ·/· ·/· ·/· ·/· ·/·
09HI k∗/1 k∗/1 k∗/1 k∗/1 k∗/1
09RI k∗/1 ·/· ·/· - -
09BRI k∗/1 k∗/· ·/· k∗/· k∗/·
09BARI k∗/1 k∗/· k∗/· k∗/· k∗/·
10QRIp k∗/1 k∗/· ·/· k∗/· k∗/·
10QRIm k∗/1 k∗/· ·/· k∗/· k∗/·
10ARI k∗/1 ·/· ·/· ·/· ·/·
10AARI k∗/1 k∗/· k∗/· ·/· k∗/1
10ARIn k∗/1 ·/· ·/· ·/· k∗/1
10AARIn k∗/1 k∗/· k∗/· ·/· k∗/1
10CSI k∗/1 - - k∗/1 -
10CF k∗/1 k∗/· k∗/· k∗/1 k∗/·
10CFn k∗/1 k∗/1 k∗/1 k∗/1 k∗/1
11ARInm k∗/1 k∗/1 ·/· ·/· k∗/1
11AARInm k∗/1 k∗/1 k∗/1 k∗/1 k∗/1
11MD k∗/1 - - k∗/1 -
11D2 k∗/1 - - k∗/1 -
13GRI k∗/1 k∗/1 k∗/1 k∗/1 k∗/1
13AGRI k∗/1 k∗/1 k∗/1 k∗/1 k∗/1
12DB k∗/1 - - ·/· -
“k∗” means that the measure identified the reference clustering, and
“1” means that the measure attained its maximum 1 for the identified
reference clustering. A cell with “-” denotes that the measure was not
developed for the corresponding clustering type.

Table 3: Maximum and discriminant properties displayed by measures.
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7.2 Comparing Randomly Generated Clusterings

The experiment in this section is based on a previously published one (Vinh et al., 2009,
2010) that assessed the ability of proposed EHC measures (based on information theory) to
yield a constant baseline for randomly generated solutions. For a particular clustering type
(EHC, FC, NEHC, or PC), random model (uniform, beta, unbalanced, or unbalanced-beta),
2-tuple (n, k∗), and k ∈ {2, 3, . . . , 2k∗}, we generated 30 clustering pairs with n objects.
Each pair contains a clustering with k clusters (representing an obtained solution) and a
clustering with k∗ clusters (representing a reference solution). We used four combinations of
the number of objects and the true number of clusters: (n = 25, k∗ = 5), (n = 100, k∗ = 5),
(n = 50, k∗ = 10), and (n = 200, k∗ = 10). The random models used to generate the
clusterings depended on the clustering type as follows:

• For EHC, we generated clusterings for both the uniform and unbalanced models.
In the uniform model, each object was uniformly assigned to one cluster. In the
unbalanced model, each object was assigned to one cluster according to the following
distribution: p1 , 0.1/k and pj , pj−1 + α s.t.

∑k
j=1 pj = 1 (it implies that α =

1.8/(k(k − 1))), where pj is the probability of assigning an object to the jth cluster;

• For FC, we generated clusterings for the uniform, beta, and uniform-beta models. Let
Xu
r be a random variable distributed according to the uniform distribution U(0, 1).

For the uniform model, object xi has a degree of membership to the rth cluster
distributed according to Xu

r /(X
u
1 +Xu

2 + · · ·+Xu
k ), where k is the number of clusters.

For the beta model, we uniformly draw ri ∈ N1,k for each object xi to indicate to
which cluster xi probably has the highest degree of membership. Formally, let Xb

r and
Y b be two random variables distributed according to the beta distributions Be(1, 5)
and Be(5, 1), respectively. Object xi has a degree of membership to the rth cluster
(r 6= ri) distributed according to Xb

r/(X
b
1 + · · ·+Xb

ri−1 +Y b+Xb
ri+1 + · · ·+Xb

k) and to

the rith cluster distributed according to Y b/(Xb
1 + · · ·+Xb

ri−1 +Y b+Xb
ri+1 + · · ·+Xb

k).

The unbalanced-beta is equal to the beta model except that ri , 1, such that the first
cluster will have most of the membership;

• For NEHC, we generated clusterings for both the uniform and unbalanced models. In
the uniform model, each object xi was uniformly assigned to ki ∈ N1,k clusters, where
ki was uniformly drawn. In the unbalanced model, each object xi was assigned to
ki ∈ N1,k clusters according to the following method. Object xi is assigned to a cluster
according to the distribution p as in the EHC unbalanced model. The distribution
p is then adjusted such that the cluster already drawn (say, the jth cluster) will not
be selected again for xi (i.e., pj ← 0) and normalized to sum 1. The second cluster
is randomly selected according to the resulting p. This process is repeated until xi is
assigned to ki clusters;

• For PC, we generated clusterings for the uniform, beta, and uniform-beta models.
The distributions used are similar to those used for FC. The only difference is the
absence of normalizing denominators in their definitions.
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Cluster (EHC,Un) (FC,UBe) (NEHC,Un) (PC,UBe)

1st 2 10.2 22 15.9
2nd 11 10.4 53 16.4
3rd 20 11.4 64 17.0
4th 29 11.7 73 19.0
5th 38 56.2 74 83.3

Table 4: Object-to-cluster membership sums for clustering samples having n = 100 objects
and k∗ = 5 clusters.
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Figure 10: Average evaluations for (EHC,U , n = 25, k∗ = 5).
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We denote a particular experimental setting using a 4-tuple. For example, (EHC,U , n =
25, k∗ = 5) refers to an EHC set generated according to the uniform model, where each clus-
tering has 25 objects. The solutions of (EHC,U , n = 25, k∗ = 5) were arranged in 30 EHC
pairs for each k ∈ {2, 3, . . . , 10}. Each pair contains an EHC with k clusters and an EHC
with k∗ clusters. Thus, the set (EHC,U , n = 25, k∗ = 5) has 30 ·9 = 270 pairs of clusterings.
The measures were then applied to evaluate the similarity between the two clusterings of
each EHC pair, and the average evaluation for each k ∈ {2, 3, . . . , 10} was calculated and
plotted in Figure 10. Similarly, Figures 11, 12, and 13 refer to the experimental settings
(FC,U , n = 100, k∗ = 5), (NEHC,U , n = 50, k∗ = 10), and (PC,Be, n = 200, k∗ = 10),
respectively. The remaining figures are not shown here to avoid cluttering but can be found
in the supplementary material: http://sn.im/25a9h8u. Those figures will be referred here
when appropriate.

Figures 10(a) and 10(b) show that 11 measures exhibited the same averages as RI and
that six measures displayed the same averages as ARI, respectively. RI and JI (to a lesser
extent) do not show a constant baseline (Hubert and Arabie, 1985; Albatineh et al., 2006),
and this behavior is again observed in Figures 10(a) and 10(b). The 13GRI and 13AGRI
measures showed the same averages as RI and ARI, respectively, because of their equivalence
in the EHC context (Corollaries 4 and 5 in Appendix). 10CF attained a peak at k = k∗

clusters in Figure 10(c) for randomly generated clusterings. BC, 09EBC, 11MD, ARI, and
the measures with similar values to ARI are the only ones that showed a constant baseline.
The others showed a tendency to favor solutions with a high or low numbers of clusters.

Figure 11 shows the results for the experimental setting (FC,U , n = 100, k∗ = 5).
03MI, 05MI, 07CARI, 09BARI, and 13AGRI displayed a constant baseline close to zero in
Figure 11(b). 07CRI, 08BRIm, and 10QRIm (Figure 11(a)) also showed constant baselines,
although not close to zero. These three measures were neither formally adjusted for chance
nor based on a measure that was. Moreover, 07CRI, 08BRIm, and 10QRIm showed a low
variance for a wide range of numbers of clusters in Figure 6. This leads us to suspect that the
uniform behavior presented in Figure 11(a) is due to a poor sensitivity to solution variations.
09BRI and 10QRIp exhibited in Figure 11(b) a monotonically decreasing curve with low
variation in values, as well as 10AARI and 10AARIn in Figure 11(a). 11AARInm produced
values greater than its supposed maximum 1 and showed a counterintuitive behavior in
Figure 11(c). 10CF, 11ARInm, and 13GRI showed a peak at k = k∗ for randomly generated
clusterings.

07CARI, 09BARI, and 13AGRI are the only measures that displayed an approximately
constant baseline close to zero in Figure 12, corresponding to the results for (NEHC,U , n =
50, k∗ = 10). As for 10QRIm in Figure 11(a), the 10QRIp measure had a constant baseline
in Figure 12(a) probably due to a low sensitivity in solution discrimination, as it is not
adjusted for chance and is based on a measure (RI) known to be biased. The same cannot
be said about 13AGRI, as it compares the solutions against a null model and exhibited a
strong sensitivity in all experiments in Section 7.1. 10AARI showed in Figure 12(b) values
greater than 1 for most solutions. 10CF (Figure 12(e)) and 13GRI (Figure 12(b)) again
showed a peak at k = k∗ for randomly generated solutions. 10ARI and 11AARInm (Figure
12(d)) produced highly irregular evaluations. 11AARInm produced −∞ (overflow) for k = 2
due to near-zero division.

2978

http://sn.im/25a9h8u


Comparing Hard and Overlapping Clusterings

2 3 4 5 6 7 8 9 10
number of clusters

0.0

0.2

0.4

0.6

0.8

1.0

cl
us

te
rin

g 
si

m
ila

rit
y

08BRIp
09CRI
09RI
10ARI
10ARIn
07CRI
10AARI
10AARIn
09HI
08BRIm
10QRIm
10CFn

(a)

2 3 4 5 6 7 8 9 10
number of clusters

0.0

0.2

0.4

0.6

0.8

1.0

cl
us

te
rin

g 
si

m
ila

rit
y

11ARInm
13GRI
09BRI
10QRIp
07CARI
03MI
05MI
09BARI
13AGRI
03VI

(b)

2 3 4 5 6 7 8 9 10
number of clusters

14

12

10

8

6

4

2

0

2

cl
us

te
rin

g 
si

m
ila

rit
y 

(1
1A

AR
In

m
)

130

120

110

100

90

80

70

60

50

cl
us

te
rin

g 
si

m
ila

rit
y 

(1
0C

F)

(c)

Figure 11: Average evaluations for (FC,U , n = 100, k∗ = 5).

Figure 13 illustrates the results for (PC,Be, n = 200, k∗ = 10). 09BRI, 09BARI,
10QRIp, 10QRIm, and 13AGRI showed constant baselines, and the constant baselines of
13AGRI and 09BARI were close to zero. 10CF (Figure 13(d)) and 13GRI (Figure 13(b))
again scored random clusterings with k = k∗ as better solutions. 10AARI and 11AARInm
displayed highly unexpected values (Figure 13(c)).

Table 5 denotes which measures showed the baseline property. The italic n’s refer to
measures that provided constant baselines in the experiments corresponding to Figures 10,
11, 12, and 13 but not for all the remaining experiments. For example, BC and 09EBC
showed unbiased evaluations in Figure 10(b) but not in the experiment (EHC,Un, n =
100, k∗ = 5) reported in the supplementary material.

Most measures could not provide an unbiased evaluation. They usually tend to favor
random solutions with high or low numbers of clusters or show a peak in evaluating random
solutions with the same number of clusters as the reference one. This behavior is undesir-
able, as the compared solutions were independently generated. Only 09BARI and 13AGRI
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Figure 12: Average evaluations for (NEHC,U , n = 50, k∗ = 10).
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Figure 13: Average evaluations for (PC,Be, n = 200, k∗ = 10).

presented an approximately constant (and close to zero) baseline in all scenarios. The null
model of 13AGRI is clearly violated in each scenario, which suggests that adjusting 13GRI
is not just a theoretical adornment but a true correction that makes practical clustering
comparisons fairer. Recall that, contrary to 13AGRI, 09BARI did not assign the maximum
score 1 to the perfect solutions for all but the EHC scenario in the previous section.

7.3 13AGRI Evaluation Validity for FCs

We applied the k-means and FCM algorithms 30 times for each number of clusters k ∈
{2, 3, . . . , 20} to the UCI data sets (Newman and Asuncion, 2010) shown in Table 6. 13AGRI
evaluated the best clustering (according to the respective algorithm’s cost function) for each
number of clusters using the known classification as the reference solution; the reference
solution is thus an EHC. 13AGRI provides the same evaluation as ARI for k-means solutions
since k-means produces EHCs (Corollary 5 in Appendix). FCM is regarded as the fuzzy
version of k-means, both search for spherical-like clusters, and FCM tends to k-means when
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Measures EHC FC NEHC PC Measures EHC FC NEHC PC

JI n - - - 09BARI y y y y
RI n - - - 10QRIp n n n n
ARI y - - - 10QRIm n n n n
BC n - - - 10ARI n n n n
03MI n y - - 10AARI y n n n
05MI n y - - 10ARIn n n n n
03VI n n - - 10AARIn y n n n
07CRI n n y n 10CSI n - n -
07CARI y n y n 10CF n n n n
08BRIp n n - - 10CFn n n n n
08BRIm n n - - 11ARInm n n n n
09EBC n - n - 11AARInm y n n n
09CRI n n n n 11MD n - n -
09CARI - - - - 11D2 n - n -
09HI n n n n 13GRI n n n n
09RI n n - - 13AGRI y y y y
09BRI n n n n 12DB n - n -

Table 5: Did the similarity measure display approximately constant baselines?

FCM exponent m approaches 1 (Yu et al., 2004). Thus, their solutions are often similar
in the sense that converting an FCM solution into an EHC (by assigning the objects to
the clusters for which they have the highest membership degrees) results in a clustering in
which the relative assignment of objects is similar to the relative assignment of objects in
the solution produced by k-means (i.e., when objects xi and xj are assigned to the same
cluster in one solution, they are often assigned to the same cluster in the other solution).
This section examines whether 13AGRI produces similar evaluations for solutions generated
by k-means and FCM. If this is the case, we can be more confident in the validity of 13AGRI
FC evaluations since 13AGRI and ARI are equivalent in the EHC domain.

For each data set, Table 7 displays the Pearson correlations between 13AGRI evaluations
of the solutions produced by k-means and of the solutions produced by FCM across the
number of clusters in {2, 3, . . . , 20}. Five correlations were higher than 0.9, and more than
a half were higher than 0.7. Figures 14(a) and 14(b) depict 13AGRI evaluations for the
data sets on which the correlations attained the three highest and three lowest values,
respectively. Figure legends display the corresponding data set, clustering type, and the
number of classes in the a priori classification. Because the reference solutions are EHCs,
13AGRI almost always provided higher scores when evaluating EHC solutions than when
evaluating FC solutions. The lowest correlations seem to have been obtained in the data sets
for which the algorithms could not find good clusterings. For these data sets, the similarity
between the found solutions and the reference one mostly fluctuates across the numbers
of clusters as (we conjecture) there is no ideal number of clusters at which a peak on the

1. The original data set has 16 objects with missing attributes. We adopted the k-nearest neighbor algorithm
with Euclidean distance for imputation (Hastie et al., 1999) and used the resulting data set.
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Name # Objects # Attributes # Classes

Breast cancer w. d. (bcw-d) 569 30 2
Breast cancer w. o. (bcw-o)1 699 9 2
Synthetic control chart (chart) 600 60 6
Ecoli data set (ecoli) 336 7 7
Glass identification (glass) 214 9 6
Haberman (haberman) 306 3 2
Image segmentation (img) 210 19 7
Ionosphere (ion) 351 34 2
Iris (iris) 150 4 3
Pima indians diabetes (pima) 768 8 2
Connectionist bench (sonar) 208 60 2
SPECT heart (heart) 267 22 2
Vehicle silhouettes (vehicle) 846 18 4
Wine (wine) 178 13 3

Table 6: UCI data sets.

evaluation curve would be found. K-means and FCM produced rather poor solutions for
the haberman and sonar data sets according to 13AGRI. 13AGRI evaluations indicate that
k-means could uncover some structure in the chart data set because a 13AGRI score (also
an ARI score) of 0.5 is a considerable one according to our experience. However, there was
not a distinctive solution across the numbers of clusters. 13AGRI indicates the FC solution
with three clusters as the most similar to the reference one for the chart data set.

To further investigate the behavior of 13AGRI for the chart solutions, we reduced the
chart dimensionality by projecting the 60-dimensional data to the first nine principal compo-
nents (Jolliffe, 2002) explaining 90% of the variance. We identified two pairs of classes with
high degree of overlap (namely, classes decreasing trend with downward shift and increasing
trend with upward shift (Alcock, 1999)) by projecting the data onto several planes. We
joined the classes decreasing trend with downward shift and increasing trend with upward
shift, resulting in a classification (used as the reference clustering) with four classes. The
Pearson correlation between 13AGRI evaluations is now 0.91 using the same experimental
configuration as above. Figure 15 shows the evaluations for k-means and FCM solutions.
13AGRI provided high evaluations for k-means solutions with three and four clusters, while
13AGRI suggests that the best FCM solution is the one with three clusters.

Results indicate that 13AGRI when applied to FCs behaves similarly to 13AGRI (i.e.,
ARI) when applied to EHCs, particularly when the solutions uncover some data set struc-
ture. Considering that ARI is one of the most trusted similarity measures, the results
corroborate the 13AGRI evaluation validity for FCs.

7.4 Clustering Stability Assessment

We applied EMGM to subsamples of the top five data sets from the previous section (i.e.,
bcw-d, iris, wine, bcw-o, and img) 100 times for each number of clusters k ∈ {2, . . . , 20},
generating 100 Gaussian mixtures for each number of clusters and data set; these Gaussian
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bcw-d iris wine bcw-o img ecoli ion

0.99 0.99 0.98 0.98 0.91 0.89 0.83

vehicle glass pima heart haberman chart sonar

0.75 0.70 0.69 0.60 0.23 0.02 -0.45

Table 7: Correlation between 13AGRI evaluations of hard exclusive and fuzzy clusterings.
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Figure 14: 13AGRI evaluations that exhibited the three highest (a) and the three lowest
correlations (b).
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Figure 15: 13AGRI evaluations for the processed chart data set.
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bcw-d bcw-o wine iris img

0.94 0.90 0.85 0.67 0.59

Table 8: Correlation between 13AGRI evaluation and stability statistic.

mixtures are different explanations for the phenomenon that produced the data set. We
calculated a probabilistic clustering U (also known as FC) of the whole data set for each
Gaussian mixture such that Ur,i is the probability of xi belonging to the rth cluster (i.e.,
to the rth Gaussian mixture component). 13AGRI compared each of the

(
100
2

)
probabilistic

clustering pairs for each number of clusters and data set, and the average was taken as
the stability statistic (the less diverse the solution set, the higher the stability statistic)
for the corresponding number of clusters and data set. Subsamples were generated by
randomly selecting 80% of the data set objects, without replacement, as in (Monti et al.,
2003). Algorithm 2 describes how stability assessment can be used to estimate the number
of clusters and to select a promising clustering of a set of solutions.

Algorithm 2 Stability assessment

Require: Data set X.
1: for i ∈ {1, 2, . . . , 100} do
2: Si ← Randomly draw 80% of the objects from X, without reposition.
3: end for
4: for k ∈ {2, 3, . . . , 20} do
5: for i ∈ {1, 2, . . . , 100} do
6: Apply EMGM to Si finding a Gaussian mixture with k components.
7: Ui ← Calculate the probabilistic clustering of the whole data set using the found

Gaussian mixture.
8: end for
9: tk ←

∑
i<j 13AGRI(Ui,Uj)/

(
100
2

)
{stability statistic}

10: Vk ← argmaxUi{
∑

j 6=i 13AGRI(Ui,Uj)} {clustering set prototype}
11: end for
12: k

′ ← argmaxk∈{2,...,20}{tk} {estimated number of clusters}
13: U

′ ← Vk
′
; {estimated best clustering}

Table 8 shows the Pearson correlations between stability statistic (defined by Step 9)
values and 13AGRI evaluations (similarity between prototype Vk, Step 10, and the reference
clustering) for different number of clusters. The high correlations indicate that the stability
statistic, which can be used in real scenarios, approximately follows the 13AGRI evaluation
that depends on a reference solution.

Figure 16 depicts 13AGRI evaluation for each clustering set prototype (Step 10 in Algo-
rithm 2) and data set. We generated the error bar for a given k ∈ {2, . . . , 20} and data set as
follows. Let tk be the stability statistic for the set of clusterings with k clusters each (Step
9). Error bar was calculated to take 0 for the more stable clustering set (highest stability
statistic) and 0.1 for the least stable clustering set, for visualization purposes. Thus, the
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error bar value corresponding to the set of clusterings with k clusters is

tk −min{t2, t3, . . . , t20}
max{t2, t3, . . . , t20} −min{t2, t3, . . . , t20}

× 0.1.
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(a) Data set: bcw-d (k∗ = 2).
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(b) Data set: bcw-o (k∗ = 2).
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(c) Data set: wine (k∗ = 3).
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(d) Data set: iris (k∗ = 3).
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(e) Data set: img (k∗ = 7).

Figure 16: 13AGRI evaluations with error bars indicating clustering set instability.

Stability statistic precisely estimated the correct number of clusters for bcw-d (Figure
16(a)) and bcw-o (Figure 16(b)) data sets. The top two stable clustering sets in iris are the
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ones with two and three clusters. Iris data set is classified in three classes (namely, setosa,
versicolour, and virginica). However, it is well-known that the versicolour and virginica
classes have a high degree of overlap and are frequently considered a single cluster (Wu and
Yang, 2005), which corroborate the validity of the stability statistic. Although not being
able to indicate the exact number of clusters, the lowest instability values for wine and img
are around the correct number of clusters. In general, the near the number of clusters of
the clustering set to the ideal one, the more stable the clustering set tends to be. These
good preliminary results demonstrate that 13AGRI deserves further investigations on its
applicability to the estimation of the number of clusters for FCs.

8. Discussion

Sections 7.1 and 7.2 empirically explored the four measure properties proposed in Section 2.
Section 7.1 investigated the maximum, discriminant, and contrast properties by applying the
measures to gradually different solutions. The hypothesis was that the similarity between
the found clustering and the reference one is highly correlated to the difference in the number
of clusters (epsilons in the case of SUBCLU) between the compared solutions, given that
the solutions are produced by clustering algorithms capable of finding the ideal solution.
One can understand the difference between the number of clusters given to the algorithm
and the number of clusters of the reference solution as how far the domain of solutions
of the corresponding algorithm is to the reference clustering. It is expected that a good
measure should translate that difference in terms of evaluations. Section 7.1 showed that
several of the measures did not follow the above hypothesis or did so in a very loose way,
showing almost flat evaluations over the number of clusters. Moreover, several measures
could not discriminate the best solution (03VI, 07CRI, 07CARI, 08BRIp, 08BRIm, 09CRI,
09CARI, 09RI, 09BRI, 10QRIp, 10QRIm, 10ARI, 10AARI, 10ARIn, 10AARIn, 11ARInm,
and 12DB) for at least one of the clustering domains considered. We believe that this result
by itself is enough for considering those measures unsuitable for the clustering domains they
have failed. Section 7.1 concluded that 03MI, 05MI, 09BARI, and 10CF (beside the ones
that have failed for the discriminant property) did not show the maximum property, and
several measures were poorly sensitive to different solution qualities (poor contrast).

The baseline property was investigated in Section 7.2. In particular, we aimed to find
out what measures were able to perform unbiased evaluations over different numbers of
clusters. We concluded that only 09BARI and 13AGRI showed the baseline property for
every clustering domain. By correcting 13GRI for chance, we were striving to build a mea-
sure that can capture the similarity between two solutions irrespectively to their numbers
of clusters. We thus implicitly assumed that the number of clusters is not per se an indica-
tion of the similarity between clusterings (Section 7.2) but only a factor that delineates the
domain of solutions (Section 7.1).

The correction-for-chance property implemented for 13AGRI, and that other measures
displayed in Section 7.2 for certain scenarios, can also be understood as a way to stretch
out the measure such that its useful range lies between the constant baseline and the
maximum. As a matter of fact, one is not usually interested in very poor solutions (i.e.,
the ones that are far from the reference) (Meila, 2012), and those would receive negative
or close to zero evaluations by 13AGRI and other adjusted measures. The correction-for-
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chance thus increases the interpretability of the results by stressing what one should expect
from clusterings whose evaluations lie below, close to, or above the baseline.

9. Conclusions

This paper discussed the importance of similarity measures in evaluating clustering algo-
rithms, consensus clustering, clustering stability assessment, and quantifying information
loss. These and other applications led to a recent interest in measures (especially pair-based
ones) capable of comparing more general clusterings than the exclusive hard ones (usual
partitions of an object set). We provided an overview of 28 measures proposed in the past
10 years for this task and discussed some of their issues. We showed that several of these
measures do not attain the maximum whenever two equivalent solutions are compared and
that most measures are biased toward clusterings with certain numbers of clusters. More-
over, several of the discussed measures are based on equations that were originally developed
specifically for and by assuming the exclusive hard domain. Some measures thus exhibited
unexpected behavior in experiments involving more general scenarios.

We proposed the 13FRI measure that can be used to compare fuzzy/probabilistic and
exclusive hard clusterings. Based on a null model we proposed, according to which cluster-
ings are generated, and following the framework employed by Hubert and Arabie (1985) to
adjust the Rand index, 13AFRI was proposed as a corrected-for-chance version of 13FRI. We
then extended 13FRI and 13AFRI to handle more general clusterings, namely possibilistic
clusterings (including exclusive hard, fuzzy/probabilistic, and non-exclusive hard cluster-
ings), yielding 13GRI and 13AGRI, respectively. The computational complexity analysis
showed that our measures are practical.

In the first experiment involving four clustering algorithms of different natures, we
observed that some measures could not identify the best solutions, and that several could
not provide a fine-grained evaluation across the range of the numbers of clusters, whereas
13AGRI always attained its maximum 1 for the true number of clusters and displayed a
steep, discriminative evaluation curve with a clear peak at the true number of clusters
for each data set. We assessed the capability of the measures to provide an unbiased
evaluation for randomly generated solutions with different numbers of clusters in the second
experiment. A fair measure should assign a uniform evaluation across the range of the
numbers of clusters, as each generated solution is independent of the reference one (Vinh
et al., 2010). This is the case of the well-known adjusted Rand index (ARI) (Hubert and
Arabie, 1985) for the exclusive hard domain. Only 13AGRI and 09BARI (Brouwer, 2009) (a
recently proposed measure) displayed such an evaluation for all considered scenarios, which
include the exclusive hard context; however, 09BARI could not attain its maximum 1 at the
true number of clusters for all but the hard exclusive domain in the first experiment. The
other measures exhibited a preference for certain solutions, which is attributable solely to
their evaluation mechanisms. While the randomness model for 13AGRI incorporates some
assumptions about the clusterings, those generated in our experiments clearly do not follow
such a requirement. Even so, 13AGRI could provide uniform evaluations close to zero in
the experiments with randomly generated solutions.

Two more experiments involving 14 real data sets and the algorithms k-means (Mac-
Queen, 1967), fuzzy c-means (FCM) (Bezdek, 1981), and expectation maximization for

2988



Comparing Hard and Overlapping Clusterings

Gaussian mixtures (Dempster et al., 1977) were performed to assess the validity of 13AGRI
evaluations in the fuzzy domain, arguably the most important domain after the exclusive
hard one, and to investigate 13AGRI’s applicability to the estimation of the number of
clusters without (of course) any knowledge about the true data structure. We argue that
the evaluations of the solutions produced by k-means and FCM for the same data set should
be similar, and this behavior presented by 13AGRI is even more important for its validity
because 13AGRI and the trusted ARI measures are equivalent when applied to solutions
generated by k-means. The stability statistic based on 13AGRI defined in our last exper-
iment showed good results indicating that 13AGRI can also be successfully applied to the
estimation of the number of clusters in the probabilistic domain.

We proved that 13AGRI and ARI are equivalent in the exclusive hard domain. This
is reassuring because (i) ARI is one of the most trusted similarity measures (Steinley,
2004; Albatineh et al., 2006), and (ii) the null model of 13AGRI was developed for general
possibilistic clusterings (including exclusive hard clusterings as a special case). As future
work, we think that 13AGRI deserves a further investigation on its conceptual properties,
specially those generally taken as useful for similarity measures for clustering, such as cluster
homogeneity sensibility, cluster completeness, and metric axioms compliance (Meila, 2007;
Amigó et al., 2009).
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Appendix A.

Proposition 1 Let U and V be two FCs such that 13FRI(U,V) = 0, n > 1, and 1 ≤
kU, kV ≤ n. It implies that U and V are EHCs and that kU = 1 and kV = n or kU = n and
kV = 1, which unambiguously determine U and V.

Proof Realize from Equations (12) that
∑kU

r=1 Ur,l = 1 ∀l implies SU
i,j = 1 − JU

i,j . To

have 13FRI(U,V) = 0, it must be the case that ȧ = ḋ = 0 (Equation 14), which implies
that min{JU

i,j , J
V
i,j} = min{1 − JU

i,j , 1 − JV
i,j} = 0 ∀i < j (Equations 13a and 13d). Hence,

JU
i,j , J

V
i,j ∈ {0, 1} and JU

i,j 6= JV
i,j for all i < j.

We first prove by contradiction that U cannot have a column i and a row r for which
Ur,i ∈ (0, 1) (the same holds for V). Assuming that the ith column of U has Ur,i ∈ (0, 1)
for an r ∈ N1,kU , we have kU > 1 and at least two elements of U:,i have values in the

open interval (0, 1) because
∑kU

t=1 Ut,i = 1. Without loss of generality, assume that i = 1
(the columns of U and V can always be simultaneously permuted without changing the
measure). We know that UT

:,1U:,j = JU
1,j = 0 ∀j ∈ N2,n because UT

:,1U:,j cannot yield 1.

Thus, JV
1,j = 1 ∀j ∈ N2,n. This implies that the columns of V are all identical and each one

has the element 1, resulting in kV = 1 because of the constraint
∑n

j=1 Vt,j > 0 ∀t. We thus

have JV
i1,j1

= 1 ∀i1 < j1 and JU
i2,j2

= 0 ∀i2 < j2. The last equality only holds with constraint
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∑n
j=1 Ut,j > 0 ∀t if each row of U has exactly one value greater than zero. The property∑kU
t=1 Ut,j = 1 ∀j of FCs and the assumption kU ≤ n then require each column of U to have

exactly one value greater than zero (and to have kU = n rows), which is the value 1. This
violates the assumption that Ur,i ∈ (0, 1), which implies that U (and V) must be a matrix
with only zeros and ones.

Suppose n = 2. If columns 1 and 2 of U are identical, columns 1 and 2 of V are different
because we have already proven that JU

i,j 6= JV
i,j . This only can happen for kU = 1 and

kV = 2 (remember the properties of an FC). Now, suppose that n > 2 and, without loss of
generality, that U:,1 and U:,2 are identical and that V:,1 and V:,2 are different. If a column
i > 2 of U differs from columns 1 and 2 of U, we conclude that columns 1 and 2 of V are
equal to column i of V. However, this implies that columns 1 and 2 of V are equal, and, as
we known, they are not. Consequently, all columns of U must be identical and all columns
of V must be different. This can only happen for kU = 1 and kV = n, which proves the
proposition.

Proposition 2 Given two EHCs U and V, we have 13FRI(U,V) = RI(U,V).

Proof Realize that ȧ, ḃ, ċ, and ḋ (Equations 13) are equivalent to a, b, c, and d (Equations
7) by assigning the values 0 and 1 to JU

i,j and JV
i,j .

Proposition 3 Given two EHCs U and V, we have 13AFRI(U,V) = ARI(U,V).

Proof Both ARI and 13AFRI use the framework of Equation (15). The expectation of
ARI given U and V is E[ARI]U,V = (E[a]U,V + E[d]U,V)/(a+ b+ c+ d) (Hubert and Arabie,
1985). We must therefore only show that E[a]U,V = E[ȧ]U,V and E[d]U,V = E[ḋ]U,V, since
a = ȧ, b = ḃ, c = ċ, and d = ḋ by Proposition 2. Let JU = UTU, JV = VTV, and N = UVT.
Because U and V are EHCs, we can rewrite min{JU

i,j , J
V
i,j} = JU

i,jJ
V
i,j . Both

∑
i<j JU

i,j and∑kU
r=1

(Nr,+
2

)
count the number of unordered object pairs in the same cluster in U. We thus

have

E[ȧ]U,V =
2

n(n− 1)

∑
i1<j1

JU
i1,j1

∑
i2<j2

JV
i2,j2

=

kU∑
r=1

(
Nr,+

2

) kV∑
t=1

(
N+,t

2

)/(n
2

)
= E[a]U,V (Equation (2) in (Hubert and Arabie, 1985)).
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Because JU
i,j = 1− SU

i,j for EHCs, we have

E[ḋ]U,V =
2

n(n− 1)

∑
i1<j1

∑
i2<j2

(1− JU
i1,j1)(1− JV

i2,j2)

=

(
n

2

)
−
∑
i1<j1

JU
i1,j1 −

∑
i2<j2

JV
i2,j2

+
∑
i1<j1

∑
i2<j2

JU
i1,j1JV

i2,j2

/(n
2

)

=

(
n

2

)
−

kU∑
r=1

(
Nr,+

2

)
−

kV∑
t=1

(
N+,t

2

)

+

kU∑
r=1

(
Nr,+

2

) kV∑
t=1

(
N+,t

2

)/(n
2

)
= E[d]U,V (Equation (3) in (Hubert and Arabie, 1985) multiplied by

(
n

2

)
and

then subtracted by E[a]U,V).

Proposition 4 Given two PCs U and V, we have ȧ+ ḃ+ ċ+ ḋ =
∑

i<j min{TU
i,j ,T

V
i,j}.

Proof Let

ȧi,j , min{JU
i,j , J

V
i,j},

ḃi,j , min{JU
i,j −min{JU

i,j , J
V
i,j}, SV

i,j −min{SU
i,j ,S

V
i,j}},

ċi,j , min{JV
i,j −min{JU

i,j , J
V
i,j}, SU

i,j −min{SU
i,j ,S

V
i,j}}, and

ḋi,j , min{SU
i,j ,S

V
i,j}.

We prove the proposition by showing that

ȧi,j + ḃi,j + ċi,j + ḋi,j = min{TU
i,j ,T

V
i,j}. (25)

Table 9 shows the six rank combinations between the values of the pairs (JU
i,j , J

V
i,j), (SU

i,j ,S
V
i,j),

and (TU
i,j ,T

V
i,j), covering all possible scenarios. Equation (25) is true for each scenario. For

conciseness, let us show the proof for Combinations 1 and 3 only.
Assuming Combination 1, we have ȧi,j = JV

i,j , ḃi,j = 0, ċi,j = 0, and

ḋi,j = SV
i,j , and Equation (25) is true. Assuming Combination 3, we have

ȧi,j = JV
i,j , ḃi,j = min{JU

i,j − JV
i,j ,S

V
i,j − SU

i,j}, ċi,j = 0, and ḋi,j = SU
i,j . Note that

TU
i,j < TV

i,j ⇒ JU
i,j + SU

i,j < JV
i,j + SV

i,j ⇒ JU
i,j − JV

i,j < SV
i,j − SU

i,j . Thus, ḃi,j = JU
i,j − JV

i,j , and
Equation (25) is true.
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# (JU
i,j , J

V
i,j) (SU

i,j , S
V
i,j) (TU

i,j ,T
V
i,j)

1 JU
i,j ≥ JV

i,j SU
i,j ≥ SV

i,j TU
i,j ≥ TV

i,j

2 JU
i,j ≥ JV

i,j SU
i,j < SV

i,j TU
i,j ≥ TV

i,j

3 JU
i,j ≥ JV

i,j SU
i,j < SV

i,j TU
i,j < TV

i,j

4 JU
i,j < JV

i,j SU
i,j ≥ SV

i,j TU
i,j ≥ TV

i,j

5 JU
i,j < JV

i,j SU
i,j ≥ SV

i,j TU
i,j < TV

i,j

6 JU
i,j < JV

i,j SU
i,j < SV

i,j TU
i,j < TV

i,j

Table 9: Rank combinations.

Corollary 1 If U and V are two FCs with n columns each, we have TU
i,j = TV

i,j = 1 and

the sum ȧ+ ḃ+ ċ+ ḋ = n(n− 1)/2.

Proposition 5 Given two PCs U and V, we have ȧ + ḃ + ċ + ḋ + ė =
max{

∑
i<j TU

i,j ,
∑

i<j TV
i,j}.

Proof Let M , max{TU,TV}. If TU
i,j ≥ TV

i,j , then min{TU
i,j ,T

V
i,j} + Mi,j − TV

i,j = TU
i,j .

If TU
i,j < TV

i,j , then min{TU
i,j ,T

V
i,j} + Mi,j − TV

i,j = TU
i,j as well. Thus,

TU
i,j = min{TU

i,j ,T
V
i,j} + Mi,j − TV

i,j , and the same reasoning works for TV
i,j =

min{TU
i,j ,T

V
i,j} + Mi,j − TU

i,j . We know that ȧ + ḃ + ċ + ḋ =
∑

i<j min{TU
i,j ,T

V
i,j}

by Proposition 4. If
∑

i<j TU
i,j ≥

∑
i<j TV

i,j , we have ė =
∑

i<j(Mi,j − TV
i,j) and

ȧ+ ḃ+ ċ+ ḋ+ ė =
∑

i<j TU
i,j ; otherwise, ȧ+ ḃ+ ċ+ ḋ+ ė =

∑
i<j TV

i,j .

Corollary 2 The sum ȧ+ ḃ+ ċ+ ḋ+ ė is constant over all simultaneous permutations of
the columns of U and V because they do not alter the sums

∑
i<j TU

i,j and
∑

i<j TV
i,j.

Corollary 3 13FRI (13AFRI) and 13GRI (13AGRI) are equivalent when applied to FCs
because max{

∑
i<j TU

i,j ,
∑

i<j TV
i,j} = n(n− 1)/2 = ȧ+ ḃ+ ċ+ ḋ.

Corollary 4 Given two EHCs U and V, we have 13GRI(U,V) = RI(U,V) because of
Proposition 2 and Corollary 3.

Corollary 5 Given two EHCs U and V, we have 13AGRI(U,V) = ARI(U,V) because of
Proposition 3 and Corollary 3.
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Abstract

Matrix completion, i.e., the exact and provable recovery of a low-rank matrix from a small
subset of its elements, is currently only known to be possible if the matrix satisfies a
restrictive structural constraint—known as incoherence—on its row and column spaces. In
these cases, the subset of elements is assumed to be sampled uniformly at random.

In this paper, we show that any rank-r n-by-n matrix can be exactly recovered from
as few as O(nr log2 n) randomly chosen elements, provided this random choice is made
according to a specific biased distribution suitably dependent on the coherence structure
of the matrix: the probability of any element being sampled should be at least a constant
times the sum of the leverage scores of the corresponding row and column. Moreover, we
prove that this specific form of sampling is nearly necessary, in a natural precise sense; this
implies that many other perhaps more intuitive sampling schemes fail.

We further establish three ways to use the above result for the setting when leverage
scores are not known a priori. (a) We describe a provably-correct sampling strategy for
the case when only the column space is incoherent and no assumption or knowledge of the
row space is required. (b) We propose a two-phase sampling procedure for general matrices
that first samples to estimate leverage scores followed by sampling for exact recovery.
These two approaches assume control over the sampling procedure. (c) By using our
main theorem in a reverse direction, we provide an analysis showing the advantages of
the (empirically successful) weighted nuclear/trace-norm minimization approach over the
vanilla un-weighted formulation given non-uniformly distributed observed elements. This
approach does not require controlled sampling or knowledge of the leverage scores.

Keywords: matrix completion, coherence, leverage score, nuclear norm, weighted nuclear
norm
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1. Introduction

Low-rank matrix completion has been the subject of much recent study due to its appli-
cation in myriad tasks: collaborative filtering, dimensionality reduction, clustering, non
negative matrix factorization and localization in sensor networks. Clearly, the problem is
ill-posed in general; correspondingly, analytical work on the subject has focused on the joint
development of algorithms, and sufficient conditions under which such algorithms are able
to recover the matrix.

While they differ in scaling/constant factors, all existing sufficient conditions (Candès
and Recht, 2009; Candès and Tao, 2010; Recht, 2011; Keshavan et al., 2010; Gross, 2011;
Jain et al., 2013; Negahban and Wainwright, 2012)—with a couple of exceptions we describe
in Section 2—require that (a) the subset of observed elements should be uniformly randomly
chosen, independent of the values of the matrix elements, and (b) the low-rank matrix be
“incoherent” or “not spiky”—i.e., its row and column spaces should be diffuse, having low
inner products with the standard basis vectors. Under these conditions, the matrix has been
shown to be provably recoverable—via methods based on convex optimization (Candès and
Recht, 2009), alternating minimization (Jain et al., 2013), iterative thresholding (Cai et al.,
2010), etc.—using as few as Θ(nr log n) observed elements for an n× n matrix of rank r.

Actually, the incoherence assumption is required because of the uniform sampling: co-
herent matrices are those which have most of their mass in a relatively small number of
elements. By sampling entries uniformly and independently at random, most of the mass
of a coherent low-rank matrix will be missed; this could (and does) throw off most existing
methods for exact matrix completion. One could imagine that if the sampling is adapted
to the matrix, roughly in a way that ensures that elements with more mass are more likely
to be observed, then it may be possible for existing methods to recover the full matrix.

In this paper, we show that the incoherence requirement can be eliminated completely,
provided the sampling distribution is dependent on the matrix to be recovered in the right
way. Specifically, we have the following results.

1. If the probability of an element being observed is proportional to the sum of the
corresponding row and column leverage scores (which are local versions of the standard
incoherence parameter) of the underlying matrix, then an arbitrary rank-r matrix
can be exactly recovered from Θ(nr log2 n) observed elements with high probability,
using nuclear norm minimization (Theorem 2 and Corollary 3). In the case when
all leverage scores are uniformly bounded from above, our results reduce to existing
guarantees for incoherent matrices using uniform sampling. Our sample complexity
bound Θ(nr log2 n) is optimal up to a single factor of log2 n, since the degrees of
freedom in an n × n matrix of rank r is in general in the order of nr. Moreover, we
show that to complete a coherent matrix, it is necessary (in certain precise sense) to
sample according to the leverage scores as above (Theorem 6).

2. For a matrix whose column space is incoherent and row space is arbitrarily coherent,
our results immediately lead to a provably correct sampling scheme which requires no
prior knowledge of the leverage scores of the underlying matrix and has near optimal
sample complexity (Corollary 4).
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3. We provide numerical evidence that a two-phase adaptive sampling strategy, which
assumes no prior knowledge about the leverage scores of the underlying matrix, can
perform on par with the optimal sampling strategy in completing coherent matrices,
and significantly outperforms uniform sampling (Section 4). Specifically, we consider
a two-phase sampling strategy whereby given a fixed budget of m samples, we first
draw a fixed proportion of samples uniformly at random, and then draw the remaining
samples according to the leverage scores of the resulting sampled matrix.

4. As a corollary of our main theorem, we are able to obtain the first exact recovery
guarantee for the weighted nuclear norm minimization approach, which can be viewed
as adjusting the leverage scores to align with the given sampling distribution. Our
results provide a strategy for choosing the weights when non-uniformly distributed
samples are given so as to order-wise reduce the sample complexity of the weighted
approach to that of the standard unweighted formulation (Theorem 7). Our theorem
quantifies the benefit of the weighted approach, thus providing theoretical justification
for its good empirical performance observed in Srebro and Salakhutdinov (2010);
Foygel et al. (2011); Negahban and Wainwright (2012).

These results provide a deeper and more general theoretical understanding of the relation
between the sampling procedure and the matrix coherence/leverage-score structure, and
how they affect the recovery performance. While in practice one may not have complete
control over the sampling procedure, or exact knowledge of the matrix leverage scores,
partial control and knowledge are often possible, and we believe our theory provides useful
approximations and insights. We expect that the ideas and results in this paper will serve
as the foundation for developing algorithms for more general settings and applications.

Our theoretical results are achieved by a new analysis based on concentration bounds
involving the weighted `∞,2 matrix norm, defined as the maximum of the appropriately
weighted row and column norms of the matrix. This differs from previous approaches that
use `∞ or unweighted `∞,2 norm bounds (Gross, 2011; Recht, 2011; Chen, 2015). In some
sense, using the weighted `∞,2-type bounds is natural for the analysis of low-rank matrix
recover/approximation when the observations are in the form of entries of rows/columns of
the matrix, because the rank is a property of the rows and columns of the matrix rather
than its individual elements, and the weighted norm captures the relative importance of the
rows/columns. Therefore, our techniques based on the `∞,2 norm might be of independent
interest beyond the specific settings and algorithms considered here.

1.1 Organization

In Section 2 we briefly survey the relevant literature. We present our main results for
coherent matrix completion in Section 3. In Section 4 we propose a two-phase algorithm
that requires no prior knowledge about the underlying matrix’s leverage scores. In Section 5
we provide guarantees for weighted nuclear norm minimization. The paper concludes with
a discussion of future work in Section 6. We provide the proofs of the main theorems in the
appendix.
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2. Related Work

There is now a vast body of literature on matrix completion, and an even bigger body of
literature on matrix approximations; we restrict our literature review here to papers that
are most directly related.

Completion of incoherent and row-coherent matrices: The first algorithm and theoreti-
cal guarantees for exact low-rank matrix completion appeared in Candès and Recht (2009);
there it was shown that nuclear norm minimization works when the low-rank matrix is in-
coherent, and the sampling is uniform random and independent of the matrix. Subsequent
works have refined provable completion results for incoherent matrices under the uniform
random sampling model, both via nuclear norm minimization (Candès and Tao, 2010; Recht,
2011; Gross, 2011; Chen, 2015), and other methods like SVD followed by local descent (Ke-
shavan et al., 2010) and alternating minimization (Jain et al., 2013), etc. The setting with
sparse errors and additive noise is also considered (Candès and Plan, 2010; Chandrasekaran
et al., 2011; Chen et al., 2013; Candès et al., 2011; Negahban and Wainwright, 2012).

The recent work in Krishnamurthy and Singh (2013) considers matrix completion when
the row space is allowed to be coherent but the column space is still required to be inco-
herent with parameter µ0. Their proposed adaptive sampling algorithm selects columns to
observe in their entirety and requires a total of O(µ0r

3/2n log(2r/δ)) observed elements with
a success probability 1− δ, which is superlinear in r. A corollary of our results guarantees
a sample complexity that is linear in r in this row-coherent setting. The sample complexity
was recently improved to O(µ0rn log2(r2/δ)) in Krishnamurthy and Singh (2014).

Matrix approximations via sub-sampling: Weighted sampling methods have been widely
considered in the related context of matrix sparsification, where one aims to approximate
a given large dense matrix with a sparse matrix. The strategy of element-wise matrix
sparsification was introduced in Achlioptas and McSherry (2007). They propose and provide
bounds for the `2 element-wise sampling model, where elements of the matrix are sampled
with probability proportional to their squared magnitude. These bounds were later refined
in Drineas and Zouzias (2011). Alternatively, Arora et al. (2006) propose the `1 element-
wise sampling model, where elements are sampled with probabilities proportional to their
magnitude. This model was further investigated in Achlioptas et al. (2013) and argued to
be almost always preferable to `2 sampling.

Closely related to the matrix sparsification problem is the matrix column selection prob-
lem, where one aims to find the “best” k column subset of a matrix to use as an approx-
imation. State-of-the-art algorithms for column subset selection (Boutsidis et al., 2009;
Mahoney, 2011) involve randomized sampling strategies whereby columns are selected pro-
portionally to their statistical leverage scores—the squared Euclidean norms of projections
of the canonical unit vectors on the column subspaces. The statistical leverage scores
of a matrix can be approximated efficiently, faster than the time needed to compute an
SVD (Drineas et al., 2012). Statistical leverage scores are also used extensively in statis-
tical regression analysis for outlier detection (Chatterjee and Hadi, 1986). More recently,
statistical leverage scores were used in the context of graph sparsification under the name of
graph resistance (Spielman and Srivastava, 2011). The sampling distribution we use for the
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matrix completion guarantees of this paper is elemen-wise and based on statistical leverage
scores. As shown both theoretically (Theorem 6) and empirically (Section 4.1), sampling
as such outperforms both `1 and `2 element-wise sampling, at least in the context of matrix
completion.

Weighted sampling in compressed sensing: This paper is similar in spirit to recent work
in compressed sensing which shows that sparse recovery guarantees traditionally requiring
mutual incoherence can be extended to systems which are only weakly incoherent, without
any loss of approximation power, provided measurements from the sensing basis are sub-
sampled according to their coherence with the sparsity basis. This notion of local coherence
sampling seems to have originated in Rauhut and Ward (2012) in the context of sparse
orthogonal polynomial expansions, and has found applications in uncertainty quantifica-
tion (Yang and Karniadakis, 2013), interpolation with spherical harmonics (Burq et al.,
2012), and MRI compressive imaging (Krahmer and Ward, 2014).

3. Main Results

The results in this paper hold for what is arguably the most popular approach to matrix
completion: nuclear norm minimization. If the true matrix is M with its (i, j)-th element
denoted by Mij , and the set of observed elements is Ω, this method estimates M via the
optimum of the convex program:

min
X

‖X‖∗

s.t. Xij = Mij for (i, j) ∈ Ω.
(1)

where the nuclear norm ‖ · ‖∗ of a matrix is the sum of its singular values.1

We focus on the setting where matrix elements are revealed according an underlying
probability distribution. To introduce the distribution of interest, we first need a definition.

Definition 1 (Leverage Scores) For an n1 × n2 real-valued matrix M of rank r whose
rank-r SVD is given by UΣV >, its (normalized) leverage scores—µi(M) for any row i, and
νj(M) for any column j—are defined as

µi(M) : =
n1

r

∥∥∥U>ei∥∥∥2

2
, i = 1, 2, . . . , n1,

νj(M) : =
n2

r

∥∥∥V >ej∥∥∥2

2
, j = 1, 2, . . . , n2,

(2)

where ei denotes the i-th standard basis element with appropriate dimension.2

Note that the leverage scores are non-negative, and are functions of the column and row
spaces of the matrix M . Since U and V have orthonormal columns, we always have re-
lationship

∑
i µi(M)r/n1 =

∑
j νj(M)r/n2 = r. The standard incoherence parameter µ0

1. This becomes the trace norm for positive-definite matrices. It is now well-recognized to be a convex
surrogate for the rank function (Fazel, 2002).

2. In the matrix sparsification literature (Drineas et al., 2012; Boutsidis et al., 2009) and beyond, the

leverage scores of M often refer to the un-normalized quantities
∥∥U>ei∥∥2

and
∥∥V >ej∥∥2

.
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of M used in the previous literature corresponds to a global upper bound on the leverage
scores:

µ0 ≥ max
i,j
{µi(M), νj(M)}.

Therefore, the leverage scores can be considered as the localized versions of the standard
incoherence parameter.

We are ready to state our main result, the theorem below.

Theorem 2 Let M = (Mij) be an n1 × n2 matrix of rank r, and suppose that its elements
Mij are observed only over a subset of elements Ω ⊂ [n1]×[n2]. There is a universal constant
c0 > 0 such that, if each element (i, j) is independently observed with probability pij, and
pij satisfies

pij ≥ min

{
c0

(µi(M) + νj(M)) r log2(n1 + n2)

min{n1, n2}
, 1

}
, (3)

pij ≥
1

min{n1, n2}10
,

then M is the unique optimal solution to the nuclear norm minimization problem (1) with
probability at least 1− 5(n1 + n2)−10.

We will refer to the sampling strategy (3) as leveraged sampling. Note that the expected
number of observed elements is

∑
i,j pij , and this satisfies

∑
i,j

pij ≥ max

c0
r log2(n1 + n2)

min{n1, n2}
∑
i,j

(µi(M) + νj(M)) ,
∑
i,j

1

min{n1, n2}10


= 2c0 max {n1, n2} r log2(n1 + n2),

which is independent of the leverage scores, or indeed any other property of the matrix.
Hoeffding’s inequality implies that the actual number of observed elements sharply concen-
trates around its expectation, leading to the following corollary:

Corollary 3 Let M = (Mij) be an n1 × n2 matrix of rank r. Draw a subset Ω of its
elements by leveraged sampling according to the procedure described in Theorem 2. There is
a universal constant c0 > 0 such that the following holds with probability at least 1−10(n1 +
n2)−10: the number m of revealed elements is bounded by

|Ω| ≤ 3c0 max {n1, n2} r log2(n1 + n2)

and M is the unique optimal solution to the nuclear norm minimization program (1).

We now provide comments and discussion.
(A) Roughly speaking, the condition given in (3) ensures that elements in important

rows/columns (indicated by large leverage scores µi and νj) of the matrix should be observed
more often. Note that Theorem 2 only stipulates that an inequality relation hold between
pij and {µi(M), νj(M)}. This allows for there to be some discrepancy between the sampling
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distribution and the leverage scores. It also has the natural interpretation that the more
the sampling distribution {pij} is “aligned” to the leverage score pattern of the matrix, the
fewer observations are needed.

(B) Sampling based on leverage scores provides close to the optimal number of sampled
elements required for exact recovery (when sampled with any distribution). In particular,
recall that the number of degrees of freedom of an n× n matrix of rank r is 2nr(1− r/2n),
and knowing the leverage scores of the matrix reduces the degrees of freedom by 2n in
the worst case. Hence, regardless of how the elements are sampled, a minimum of Θ(nr)
elements is required to recover the matrix. Theorem 2 matches this lower bound, with an
additional O(log2(n)) factor.

(C) Our work improves on existing results even in the case of uniform sampling and
uniform incoherence. Recall that the original work of Candès and Recht (2009), and sub-
sequent works (Candès and Tao, 2010; Recht, 2011; Gross, 2011) give recovery guarantees
based on two parameters of the matrix M ∈ Rn×n (assuming its SVD is UΣV >): (a) the
(above-defined) incoherence parameter µ0, which is a uniform bound on the leverage scores,

and (b) a joint incoherence parameter µstr defined by ‖UV >‖∞ =
√

rµstr
n2 . With these def-

initions, the current state of the art states that if the sampling probability is uniform and
satisfies

pij ≡ p ≥ c
max{µ0, µstr}r log2 n

n
, ∀i, j,

where c is a constant, then M will be the unique optimum of (1) with high probability.
A direct corollary of our work improves on this result, by removing the need for extra
constraints on the joint incoherence; in particular, it is easy to see that our theorem implies

that a uniform sampling probability of p ≥ cµ0r log2 n
n —that is, with no µstr—guarantees

recovery of M with high probability. Note that µstr can be as high as µ0r, for example,
in the case when M is positive semi-definite; our corollary thus removes this sub-optimal
dependence on the rank and on the incoherence parameter. This improvement was recently
observed in Chen (2015).

3.1 Knowledge-Free Completion for Row Coherent Matrices

Theorem 2 immediately yields a useful result in scenarios where only the row space of a
matrix is coherent and one has control over the sampling of the matrix. This setting is
considered by Krishnamurthy and Singh (2013).

Suppose the column space of M ∈ Rn×n is incoherent with maxi µi(M) ≤ µ0 and the
row space is arbitrary (we consider square matrix for simplicity). For a number 0 < δ < 1
to be prescribed by the user, We choose each row of M with probability 10µ0r

n log 2r
δ , and

observe all the elements of the chosen rows. We then compute the leverage scores {ν̃j}
of the space spanned by these rows, and use them as estimates for νj(M), the leverage
scores of M . Based on these estimates, we can perform leveraged sampling according to (3)
and then use nuclear norm minimization to recover M . Note that this procedure does not
require any prior knowledge about the leverage scores of M . The following corollary shows
that the procedure is provably correct and exactly recovers M with high probability, using
a near-optimal number of samples.
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Corollary 4 For any number 0 < δ < 1 and some universal constants c0, c1 > 0, the
following holds. With probability at least 1 − δ, the above procedure computes the column
leverage scores of M exactly, i.e., ν̃j = νj(M),∀j ∈ [n]. If we set δ = 4n−10, and further
sample a set Ω of elements of M with probabilities

pij = min

{
c0

(µ0 + ν̃j)r log2 n

n
, 1

}
, ∀i, j,

then with probability at least 1 − 10n−10, M is the unique optimal solution to the nuclear
norm minimization program (1), and we use a total of at most c1µ0rn log2 n samples.

The algorithm proposed in Krishnamurthy and Singh (2013) requires a sample com-
plexity of O(µ0r

3/2n log(2r/δ)) (and guarantees a success probability of 1 − δ). Our re-
sult in the corollary above removes the sub-optimal r3/2 factor in the sample complexity.
Very recently Krishnamurthy and Singh (2014) provide a new sample complexity bound
O(µ0rn log2(r2/δ)) using the same algorithm from their previous paper. We note that our
sampling strategy is different from theirs: we sample entire rows of M , whereas they sample
entire columns.

3.2 Necessity of Leveraged Sampling

In this subsection, we show that the leveraged sampling in (3) is necessary for completing
a coherent matrix in a certain precise sense. For simplicity, we restrict ourselves to square
matrices in Rn×n. Suppose each element (i, j) is observed independently with probability
pij . We consider a family of sampling probabilities {pij} with the following property.

Definition 5 (Location Invariance) {pij} is said to be location-invariant with respect to
the matrix M if the following are satisfied: (1) For any two rows i 6= i′ that are identical,
i.e., Mij = Mi′j for all j, we have pij = pi′j for all j; (2) For any two columns j 6= j′ that
are identical, i.e., Mij = Mij′ for all i, we have pij = pij′ for all i.

In other words, {pij} is location-invariant with respect to M if identical rows (or
columns) of M have identical sampling probabilities. We consider this assumption very
mild, and it covers the leveraged sampling as well as many other typical sampling schemes,
including:

• uniform sampling, where pij ≡ p,

• element-wise magnitude sampling, where pij ∝ |Mij | (`1 sampling) or pij ∝ M2
ij (`2

sampling), and

• row/column-wise magnitude sampling, where pij ∝ f
(
‖Mi·‖2 , ‖M·j‖2

)
for some (usu-

ally coordinate-wise non-decreasing) function f : R2
+ 7→ [0, 1].

Given two n-dimensional vectors ~µ = (µ1, . . . , µn) and ~ν = (ν1, . . . , νn), we use Mr (~µ, ~ν)
to denote the set of rank-r matrices whose leverage scores are bounded by ~µ and ~ν; that is,

Mr (~µ, ~ν) :=
{
M ∈ Rn×n : rank(M) = r;µi(M) ≤ µi, νj(M) ≤ νj ,∀i, j

}
.

We have the following results.
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Theorem 6 Suppose n ≥ r ≥ 2. Given any 2r numbers a1, . . . , ar and b1, . . . , br with
r
4 ≤

∑r
k=1

1
ak
,
∑r

k=1
1
bk
≤ r and 2

r ≤ ak, bk ≤ 2n
r , ∀k ∈ [r], there exist two n-dimensional

vectors ~µ and ~ν and the corresponding set Mr (~µ, ~ν) with the following properties:

1. For each i, j ∈ [n], µi = ak and νj = bk′ for some k, k′ ∈ [r]. That is, the values of
the leverage scores are given by {ak} and {bk′}.

2. There exists a matrix M (0) ∈ Mr (~µ, ~ν) for which the following holds. If {pij} is
location-invariant w.r.t. M (0), and for some (i0, j0),

pi0j0 ≤
µi0 + νj0

4n
· r log

(
2n

(µi0 ∨ νj0)r

)
, 3 (4)

then with probability at least 1
4 , the following conclusion holds: There are infinitely

many matrices M (1) 6= M (0) in Mr (~µ, ~ν) such that {pij} is location-invariant w.r.t.
M (1), and

M
(0)
ij = M

(1)
ij , ∀(i, j) ∈ Ω.

3. If we replace the condition (4) with

pi0j0 ≤
µi0 + νj0

4n
· r log

(n
2

)
, (5)

then the conclusion above holds with probability at least 1
n .

In other words, if (4) holds, then with probability at least 1/4, no method can distinguish
between M (0) and M (1); similarly, if (5) holds, then with probability at least 1/n no method
succeeds. We shall compare these results with Theorem 2, which guarantees that if we use
leveraged sampling,

pij ≥ c0
µi + νj
n

· r log n, ∀i, j

for some universal constant c0, then for any matrix M (0) in Mr (~µ, ~ν), the nuclear norm
minimization approach (1) recovers M (0) from its observed elements with failure probability
no more than 1

n . Therefore, under the setting of Theorem 6, leveraged sampling is suffi-
cient and necessary for matrix completion up to one logarithmic factor for a target failure
probability 1

n (or up to two logarithmic factors for a target failure probability 1
4).

Admittedly, the setting covered by Theorem 6 has several restrictions on the sampling
distributions and the values of the leverage scores. Nevertheless, we believe this result
captures some essential difficulties in recovering general coherent matrices, and highlights
how the sampling probabilities should relate in a specific way to the leverage score structure
of the underlying object.

4. A Two-Phase Sampling Procedure

We have seen that one can exactly recover an arbitrary n×n rank-r matrix using Θ(nr log2 n)
elements if sampled in accordance with the leverage scores. In practical applications of

3. We use the notation a ∨ b = max{a, b}.
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matrix completion, even when the user is free to choose how to sample the matrix elements,
she may not be privy to the leverage scores {µi(M), νj(M)}. In this section we propose a
two-phase sampling procedure, described below and in Algorithm 1, which assumes no a
priori knowledge about the matrix leverage scores, yet is observed to be competitive with
the “oracle” leveraged sampling distribution (3).

Suppose we are given a total budget of m samples. The first step of the algorithm is
to use the first β fraction of the budget to estimate the leverage scores of the underlying
matrix, where β ∈ [0, 1]. Specifically, take a set of indices Ω sampled uniformly without
replacement4 such that |Ω| = βm, and let PΩ(·) be the sampling operator which maps the
matrix elements not in Ω to 0. Take the rank-r SVD of PΩ(M), Ũ Σ̃Ṽ >, where Ũ , Ṽ ∈ Rn×r
and Σ̃ ∈ Rr×r, and then use the leverage scores µ̃i := µi(Ũ Σ̃Ṽ >) and ν̃j := νj(Ũ Σ̃Ṽ >) as
estimates for the column and row leverage scores of M . Now as the second step, generate
the remaining (1 − β)m samples of the matrix M by sampling without replacement with
distribution

p̃ij ∝
(µ̃i + ν̃j)r log2(2n)

n
. (6)

Let Ω̃ denote the new set of samples. Using the combined set of samples PΩ∪Ω̃(M) as

constraints, run the nuclear norm minimization program (1). Let M̂ be the optimum of
this program.

This approach of adjusting the sampling distribution based on leverage scores is relevant
whenever we have some freedom in choosing the observed entries. For example, many
recommendation systems do actively solicit users’ opinions on some items chosen by the
system, e.g., by asking them to fill out a survey or to choose from a list of items. While
our assumptions are not strictly satisfied in practice, they are useful approximations and
provide guidance for designing/analyzing practical systems. For example, in many systems
there exist popular items that are viewed/rated by a large number of users, and ”heavy”
users that view/rate a large number of items. Our row-wise sampling procedure discussed
in Section 3.1 can be viewed as an approximation of such settings.

To understand the performance of the two-phase algorithm, assume that the initial set
of m1 = βm samples PΩ(M) are generated uniformly at random. If the underlying matrix

4. Note that sampling without replacement has lesser failure probability than the equivalent binomial
sampling with replacement (Recht, 2011).

Algorithm 1 Two-phase sampling for coherent matrix completion

input Rank parameter r, sample budget m, and parameter β ∈ [0, 1]
Step 1: Obtain the initial set Ω by sampling uniformly without replacement such that
|Ω| = βm. Compute best rank-r approximation to PΩ(M), Ũ Σ̃Ṽ >, and its leverage scores
{µ̃i} and {ν̃j}.
Step 2: Generate set of (1− β)m new samples Ω̃ by sampling without replacement with
distribution (6). Set

M̂ = arg min
X
‖X‖∗ s.t PΩ∪Ω̃(X) = PΩ∪Ω̃(M).

output Completed matrix M̂ .
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Figure 1: Performance of Algorithm 1 for power-law matrices: We consider rank-5 matrices of the
form M = DUV >D, where elements of the matrices U and V are generated indepen-
dently from a Gaussian distribution N (0, 1) and D is a diagonal matrix with Dii = 1

iα .
Higher values of α correspond to more non-uniform leverage scores and less incoherent
matrices. The above simulations are run with two-phase parameter β = 2/3. Leveraged
sampling (3) gives the best results of successful recovery using roughly 10n log(n) sam-
ples for all values of α in accordance with Theorem 2. Surprisingly, sampling according
to (6) with estimated leverage scores has almost the same sample complexity for α ≤ 0.7.
Uniform sampling and sampling proportional to element and element squared perform
well for low values of α, but their performance degrades quickly for α > 0.6.

M is incoherent, then already the algorithm will recover M if m1 = Θ(nr log2(2n)). On
the other hand, if M is highly coherent, having almost all energy concentrated on just a
few elements, then the estimated leverage scores (6) from uniform sampling in the first step
will be poor and hence the recovery algorithm suffers. Between these two extremes, there
is reason to believe that the two-phase sampling procedure will provide a better estimate
to the underlying matrix than if all m elements were sampled uniformly. Indeed, numeri-
cal experiments suggest that the two-phase procedure can indeed significantly outperform
uniform sampling for completing coherent matrices.

4.1 Numerical Experiments

We now study the performance of the two-phase sampling procedure outlined in Algorithm 1
through numerical experiments. For this, we consider rank-5 matrices of size 500 × 500 of
the form M = DUV >D, where the elements of the matrices U and V are i.i.d. Gaussian
N (0, 1) and D is a diagonal matrix with power-law decay, Dii = i−α, 1 ≤ i ≤ 500. We refer
to such constructions as power-law matrices. The parameter α adjusts the leverage scores
(and hence the coherence level) of M with α = 0 being maximal incoherence µ0 = Θ(1)
and α = 1 corresponding to maximal coherence µ0 = Θ(n).

Figure 1 plots the number of samples required for successful recovery (y-axis) for dif-
ferent values of α (x-axis) and β = 2/3 using Algorithm 1 with the initial samples Ω
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Figure 2: We consider power-law matrices with parameter α = 0.5 and α = 0.7. (a): This plot
shows that Algorithm 1 successfully recovers coherent low-rank matrices with fewest
samples (≈ 10n log(n)) when the proportion of initial samples drawn from the uniform
distribution is in the range β ∈ [0.5, 0.8]. In particular, the sample complexity is signifi-
cantly lower than that for uniform sampling (β = 1). Note the x-axis starts at 0.1. (b):
Even by drawing 90% of the samples uniformly and using the estimated leverage scores
to sample the remaining 10% samples, one observes a marked improvement in the rate
of recovery.

taken uniformly at random. Successful recovery is defined as when at least 95% of trials
have relative errors in the Frobenius norm ‖M − M̂‖F /‖M‖F not exceeding 0.01. To put
the results in perspective, we plot it in Figure 1 against the performance of pure uniform
sampling, as well as other popular sampling distributions from the matrix sparsification lit-
erature (Achlioptas and McSherry, 2007; Achlioptas et al., 2013; Arora et al., 2006; Drineas
and Zouzias, 2011), namely, in step 2 of the algorithm, sampling proportional to element
(p̃ij ∝ |M̃ij |) and sampling proportional to element squared (p̃ij ∝ M̃2

ij), as opposed to

sampling from the distribution (6). In all cases, the estimated matrix M̃ is constructed
from the rank-r SVD of PΩ(M), M̃ = Ũ Σ̃Ṽ >. Performance of nuclear norm minimization
using samples generated according to the “oracle” distribution (3) serves as baseline for the
best possible recovery, as theoretically justified by Theorem 2. We use the Augmented La-
grangian Method (ALM) based solver in Lin et al. (2009) to solve the convex optimization
program (1).

Figure 1 suggests that the two-phase algorithm performs comparably to the theoretically
optimal leverage scores-based distribution (3), despite not having access to the underlying
leverage scores, in the regime of mild to moderate coherence. While the element-wise
sampling strategies perform comparably for low values of α, the number of samples for
successful recovery increases quickly for α > 0.6. Completion from purely uniformly sampled
elements requires significantly more samples at higher values of α.

Choosing β: Recall that the parameter β in Algorithm 1 is the fraction of uniform
samples used to estimate the leverage scores. Figure 2(a) plots the number of samples
required for successful recovery (y-axis) as β (x-axis) varies from 0 to 1 for different values of
α. Setting β = 1 reduces to purely uniform sampling, and for small values of β, the leverage
scores estimated in (6) will be far from the actual leverage scores. Then, as expected, the
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Figure 3: Scaling of sample complexity of Algorithm 1 with n. We consider power-law matrices with
α = 0.5 in plot (a) and 0.7 in plot (b). We set β = 2/3 for this set of simulations. The
plots suggest that the sample complexity of Algorithm 1 scales roughly as Θ(n log(n)).

sample complexity goes up for β near 0 and β = 1. We find the algorithm performs
well for a wide range of β, and setting β ≈ 2/3 results in the lowest sample complexity.
Surprisingly, even taking β = 0.9 as opposed to pure uniform sampling β = 1 results in
a significant decrease in the sample complexity; see Figure 2(b) for more details. That is,
even budgeting just a small fraction of samples to be drawn from the estimated leverage
scores can significantly improve the success rate in low-rank matrix recovery as long as the
underlying matrix is not completely coherent. In applications like collaborative filtering,
this would imply that incentivizing just a small fraction of users to rate a few selected
movies according to the estimated leverage score distribution obtained by previous samples
has the potential to greatly improve the quality of the recovered matrix of preferences.

In Figure 3 we compare the performance of the two-phase algorithm for different values
of the matrix dimension n, and notice for each n a phase transition occurring at Θ(n log(n))
samples. In Figure 4 we consider the scenario where the samples are noisy and compare
the performance of Algorithm 1 to uniform sampling and the theoretically-optimal lever-
aged sampling from Theorem 2. Specifically we assume that the samples are generated
from M + Z where Z is a Gaussian noise matrix. We consider two values for the noise

σ
def
= ‖Z‖F /‖M‖F : σ = 0.1 and σ = 0.2. The figures plot relative error in Frobenius norm

(y-axis), vs total number of samples m (x-axis). These plots demonstrate the robustness of
the algorithm to noise and once again show that sampling with estimated leverage scores
can be as good as sampling with exact leverage scores for matrix recovery using nuclear
norm minimization for α ≤ 0.7.

The empirical results in this section demonstrate the advantage of the two-phase algo-
rithm over uniform sampling. It is an interesting future problem to provide rigorous analysis
on the sample complexity of the algorithm. We note that there is an Ω(n2) lower bound on
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Figure 4: Performance of Algorithm 1 with noisy samples: We consider power-law matrices (with
α = 0.5 in plot (a) and α = 0.7 in plot (b)), perturbed by a Gaussian noise matrix Z with
‖Z‖F /‖M‖F = σ. The plots consider two different noise levels, σ = 0.1 and σ = 0.2.
We compare two-phase sampling (Algorithm 1) with β = 2/3, sampling from the exact
leverage scores, and uniform sampling. Algorithm 1 has relative error almost as low as
the leveraged sampling without requiring any a priori knowledge of the low-rank matrix,
while uniform sampling suffers dramatically.

the sample complexity for algorithms using passive sampling when the underlying matrix
is maximally coherent (Krishnamurthy and Singh, 2014).

5. Weighted Nuclear Norm Minimization

Theorem 2 suggests that the performance of nuclear norm minimization will be better if
the set of observed elements is aligned with the leverage scores of the matrix. Interestingly,
Theorem 2 can also be used in a reverse way: one may adjust the leverage scores to align
with a given set of observed elements. Here we demonstrate an application of this idea in
quantifying the benefit of weighted nuclear norm minimization when the revealed elements
are distributed non-uniformly.

Suppose the underlying matrix of interest is incoherent. In many applications, we do
not have the freedom to choose which elements to observe. Instead, the revealed elements
are given to us, and distributed non-uniformly among the rows and columns. As observed
in Srebro and Salakhutdinov (2010), standard unweighted nuclear norm minimization (1) is
inefficient in this setting. They propose to instead use weighted nuclear norm minimization
for low-rank matrix completion:

X̂ = arg min
X∈Rn1×n2

‖RXC‖∗

s.t. Xij = Mij , for (i, j) ∈ Ω,
(7)

where R = diag(R1, R2, . . . , Rn1) ∈ Rn1×n1 and C = diag(C1, C2, . . . , Cn2) ∈ Rn2×n2 are
user-specified diagonal weight matrices with positive diagonal elements.

3012



Completing Any Low-rank Matrix, Provably

We now provide a theoretical guarantee for this method, and quantify its advantage
over unweighted nuclear norm minimization. Our analysis is based on the observation that
weighted nuclear norm minimization can be viewed as a way of scaling the rows and columns
of the underlying matrix so that its leverage scores are adjusted to reflect the given non-
uniform sampling distributions. Suppose M ∈ Rn1×n2 has rank r and satisfies the standard
incoherence condition maxi,j {µi(M), νj(M)} ≤ µ0. Let bxc denote the largest integer not
exceeding x. Under this setting, we can apply Theorem 2 to establish the following:

Theorem 7 Without loss of generality, assume R1 ≤ R2 ≤ · · · ≤ Rn1 and C1 ≤ C2 ≤
· · · ≤ Cn2. There exists a universal constant c0 such that M is the unique optimum to (7)
with probability at least 1− 5(n1 + n2)−10 provided that for all i, j, pij ≥ 1

min{n1,n2}10 and

pij≥c0

 R2
i∑bn1/(µ0r)c

i′=1 R2
i′

+
C2
j∑bn2/(µ0r)c

j′=1 C2
j′

log2 n. (8)

This theorem is proved by drawing a connection between the weighted nuclear norm
formulation (7) and the leverage scores (2) of the target matrix. Define the scaled matrix
M̄ := RMC. Observe that the weighted program (7) is equivalent to first solving the
following unweighted problem with scaled observations

X̄ = arg min
X
‖X‖∗

s.t. Xij = M̄ij , for (i, j) ∈ Ω,
(9)

and then rescaling the solution X̄ to return X̂ = R−1X̄C−1. In other words, through
the use of the weighted nuclear norm, we convert the problem of completing M to that of
completing the scaled matrix M̄ . This leads to the following observation, which underlines
the proof of Theorem 7:

If we can choose the weights R and C in such a way that the leverage scores
of scaled matrix M̄ , denoted as µ̄i := µi(M̄), ν̄j := νi(M̄), i, j ∈ [n], are aligned
with the given non-uniform observations in a way that roughly satisfies the re-
lation (3), then we gain in sample complexity compared to the unweighted ap-
proach.

We now quantify this observation more precisely for a particular class of matrix completion
problems.

5.1 Comparison to Unweighted Nuclear Norm.

Assume for simplicity n1 = n2 = n and n/(µ0r) is an integer. Suppose the sampling
probabilities have a product form: pij = pr

ip
c
j , with pr

1 ≤ pr
2 ≤ · · · ≤ pr

n and pc
1 ≤ pc

2 ≤

· · · ≤ pc
n. If we choose Ri =

√
1
np

r
i

∑
j′ p

c
j′ and Cj =

√
1
np

c
j

∑
i′ p

r
i′—which is suggested by

the condition (8)—Theorem 7 asserts that the following set of conditions are sufficient for
recovery of M with high probability:

pc
j ·

µ0r

n

n/(µ0r)∑
i=1

pr
i

 &
µ0r

n
log2 n, ∀j; pr

i ·

µ0r

n

n/(µ0r)∑
j=1

pc
j

 &
µ0r

n
log2 n, ∀i. (10)
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We can compare the above condition to the condition for the unweighted approach: by
Theorem 2, the unweighted nuclear norm minimization formulation (1) recovers M if

pr
i · pc

j &
µ0r

n
log2 n, ∀i, j. (11)

Therefore, the weighted nuclear norm approach succeeds under less restrictive conditions:
the condition (11) for the unweighted approach requires a lower bound on minimum sam-
pling probability over the rows and columns, whereas the condition (10) for the weighted ap-
proach involves the average sampling probability of the n/(µ0r) least sampled rows/columns.
This benefit is most significant precisely when the observed samples are very non-uniformly
distributed.

We provide a concrete example of the gain of weighting in Section E.

Our theoretical results are consistent with the empirical study in Srebro and Salakhutdi-
nov (2010); Foygel et al. (2011), which demonstrate the advantage of the weighted approach
with the weights R and C chosen as above (using the empirical sampling distribution). We
remark that Theorem 7 is the first exact recovery guarantee for weighted nuclear norm
minimization. It provides a theoretical explanation, complementary to those in Srebro and
Salakhutdinov (2010); Foygel et al. (2011); Negahban and Wainwright (2012), for why the
weighted approach is advantageous over the unweighted approach for non-uniform observa-
tions. It also serves as a testament to the power of Theorem 2 as a general result on the
relationship between sampling and the coherence/leverage score structure of a matrix.

In Theorem 7 and the discussion above we assume the underlying matrixM is incoherent.
Clearly, one can still use the weighted nuclear norm approach when M is coherent: as long
as the weights are chosen such that the leverage scores of the scaled matrix M̄ are aligned
with the distributions of the revealed entries, Theorem 2 can be applied and we expect
improvements of the recovery performance using the weighted approach. How to choose the
weights in this setting, and how it affects the performance, are left to future work.

6. Conclusion

In this paper we study the problem of matrix completion with no assumptions on the
incoherence of the underlying matrix. We show that if the sampling of entries suitably
depends on leverage scores of the matrix, then it can be recovered from O(nr log2(n))
entries using nuclear norm minimization. We further establish the necessity of leverage
score sampling within the class of location invariant sampling distributions. Based on these
results, we present a new two-phase sampling algorithm which does not require knowledge of
underlying structure of the matrix and provide simulation results to verify its performance.
As a corollary of our main theorem, we provide exact recovery guarantees for the weighted
nuclear norm minimization approach when the observed entries are given and distributed
non-uniformly.

It is an interesting open problem to provide rigorous theoretical analysis of the number
of samples needed by the two-phase sampling algorithm. It is also of interest to develop
and analyze algorithms that sample with more stages and iteratively improve the leverage
score estimates. More generally, it is useful to develop and study other methods for esti-
mating/adjusting the leverage scores and tuning the sampling procedure. Extending the
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results in this paper to other low-rank recovery settings and applications will be of great
value.
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Appendix A. Proof of Theorem 2

We prove our main result Theorem 2 in this section. The overall outline of the proof is a
standard convex duality argument. The main difference in establishing our results is that,
while other proofs relied on bounding the `∞ norm of certain random matrices, we instead
bound the weighted `∞,2, norm (to be defined).

The high level road map of the proof is a standard one: by convex analysis, to show that
M is the unique optimal solution to (1), it suffices to construct a dual certificate Y obeying
certain sub-gradient optimality conditions. One of the conditions requires the spectral norm

‖Y ‖ to be small. Previous work bounds ‖Y ‖ by the the `∞ norm ‖Y ′‖∞ :=
∑

i,j

∣∣∣Y ′ij∣∣∣ of a

certain matrix Y ′, which gives rise to the standard and joint incoherence conditions involving
uniform bounds by µ0 and µstr. Here, we derive a new bound using the weighted `∞,2 norm
of Y ′, which is the maximum of the weighted row and column norms of Y ′. These bounds
lead to a tighter bound of ‖Y ‖ and hence less restrictive conditions for matrix completion.

We now turn to the details. To simplify the notion, we prove the results for square
matrices (n1 = n2 = n). The results for non-square matrices are proved in exactly the same
fashion. In the sequel by with high probability (w.h.p.) we mean with probability at least
1 − n−20. The proof below involves no more than 5n10 random events, each of which will
be shown to hold with high probability. It follows from the union bound that all the events
simultaneously hold with probability at least 1− 5n−10, which is the success probability in
the statement of Theorem 2.

A few additional notations are needed. We drop the dependence of µi(M) and νj(M) on
M and simply use µi and νj . We use c and its derivatives (c′, c0, etc.) for universal positive
constants, which may differ from place to place. The inner product between two matrices is
given by 〈Y,Z〉 = trace(Y >Z). Recall that U and V are the left and right singular vectors
of the underlying matrix M . We need several standard projection operators for matrices.
The projections PT and PT⊥ are given by

PT (Z) := UU>Z + ZV V > − UU>V ZZ>

and PT⊥(Z) := Z − PT (Z). PΩ(Z) is the matrix with (PΩ(Z))ij = Zij if (i, j) ∈ Ω
and zero otherwise, and PΩc(Z) := Z − PΩ(Z). As usual, ‖z‖2 is the `2 norm of the
vector z, and ‖Z‖F and ‖Z‖ are the Frobenius norm and spectral norm of the matrix
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Z, respectively. For a linear operator R on matrices, its operator norm is defined as
‖R‖op = supX∈Rn×n ‖R(X)‖F / ‖X‖F . For each 1 ≤ i, j ≤ n, we define the random
variable δij := I ((i, j) ∈ Ω), where I(·) is the indicator function. The matrix operator
RΩ : Rn×n 7→ Rn×n is defined as

RΩ(Z) =
∑
i,j

1

pij
δij

〈
eie
>
j , Z

〉
eie
>
j . (12)

A.1 Optimality Condition

Following our proof road map, we now state a sufficient condition for M to be the unique
optimal solution to the optimization problem (1). This is the content of Proposition 8 below
(proved in Section A.7 to follow).

Proposition 8 Suppose pij ≥ 1
n10 . The matrix M is the unique optimal solution to (1) if

the following conditions hold.

1. ‖PTRΩPT − PT ‖op ≤
1
2 .

2. There exists a dual certificate Y ∈ Rn×n which satisfies PΩ(Y ) = Y and

(a)
∥∥PT (Y )− UV >

∥∥
F
≤ 1

4n5 ,

(b) ‖PT⊥(Y )‖ ≤ 1
2 .

A.2 Validating the Optimality Condition

We begin by proving that Condition 1 in Proposition 8 is satisfied under the conditions of
Theorem 2. This is done in the following lemma, which is proved in Section A.8 to follow.
The lemma shows that RΩ is close to the identity operator on T .

Lemma 9 If pij ≥ min{c0
(µi+νj)r

n log n, 1} for all (i, j) and a sufficiently large c0, then
w.h.p.

‖PTRΩPT − PT ‖op ≤
1

2
. (13)

A.3 Constructing the Dual Certificate

It remains to construct a matrix Y (the dual certificate) that satisfies Condition 2 in Propo-
sition 8. We do this using the golfing scheme (Gross, 2011; Candès et al., 2011). Set
k0 := 20 log n. For each k = 1, . . . , k0, let Ωk ⊆ Rn×n be a random set of matrix elements
such that for each (i, j), P [(i, j) ∈ Ωk] = qij := 1− (1−pij)1/k0 , independently of all others.

We may assume that the set Ω of observed elements is generated as Ω =
⋃k0
k=1 Ωk, which is

equivalent to the original Bernoulli sampling model. Let W0 := 0 and for k = 1, . . . , k0,

Wk := Wk−1 +RΩk
PT (UV > − PTWk−1), (14)

where the operator RΩk
is given by

RΩk
(Z) =

∑
i,j

1

qij
I ((i, j) ∈ Ωk)

〈
eie
>
j , Z

〉
eie
>
j .
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The dual certificate is given Y := Wk0 . Clearly PΩ(Y ) = Y by construction. The proof of
Theorem 2 is completed if we show that under the condition in the theorem, Y satisfies
Conditions 2(a) and 2(b) in Proposition 8 w.h.p.

A.4 Concentration Properties

The key step in our proof is to show that Y satisfies Condition 2(b) in Proposition 8, i.e.,
we need to bound ‖PT⊥(Y )‖ . Here our proof departs from existing ones, as we establish
concentration bounds on this quantity in terms of (an appropriately weighted version of)
the `∞,2 norm, which we now define. The µ(∞, 2)-norm of a matrix Z ∈ Rn×n is defined as

‖Z‖µ(∞,2) := max

max
i

√
n

µir

∑
b

Z2
ib,max

j

√
n

νjr

∑
a

Z2
aj

 ,

which is the maximum of the weighted column and row norms of Z. We also need the
µ(∞)-norm of Z, which is a weighted version of the matrix `∞ norm. This is given as

‖Z‖µ(∞) := max
i,j
|Zij |

√
n

µir

√
n

νjr
.

which is the weighted element-wise magnitude of Z. We now state three new lemmas
concerning the concentration properties of these norms. The first lemma is crucial to our
proof; it bounds the spectral norm of (RΩ − I)Z in terms of the µ(∞, 2) and µ(∞) norms
of Z. This obviates the intermediate lemmas required by previous approaches (Candès and
Tao, 2010; Gross, 2011; Recht, 2011; Keshavan et al., 2010) which use the `∞ norm of Z.

Lemma 10 Suppose Z is a fixed n×n matrix. For some universal constant c > 1, we have
w.h.p.

‖(RΩ − I)Z‖ ≤ c

max
i,j

∣∣∣∣Zijpij
∣∣∣∣ log n+

√√√√√max

max
i

n∑
j=1

Z2
ij

pij
,max

j

n∑
i=1

Z2
ij

pij

 log n

 .

If pij ≥ min{c0
(µi+νj)r

n log n, 1} for all (i, j) and a sufficiently large constant c0, then we
further have w.h.p.

‖(RΩ − I)Z‖ ≤ c
√
c0

(
‖Z‖µ(∞) + ‖Z‖µ(∞,2)

)
.

The next two lemmas further control the µ(∞, 2) and µ(∞) norms of a matrix after certain
random transformation.

Lemma 11 Suppose Z is a fixed n× n matrix. If pij ≥ min{c0
(µi+νj)r

n log n, 1} for all i, j
and a sufficiently large constant c0, then w.h.p.

‖(PTRΩ − PT )Z‖µ(∞,2) ≤
1

2

(
‖Z‖µ(∞) + ‖Z‖µ(∞,2)

)
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Lemma 12 Suppose Z is a fixed n× n matrix. If pij ≥ min{c0
(µi+νj)r

n log n, 1} for all i, j
and a sufficiently large constant c0, then w.h.p.

‖(PTRΩ − PT )Z‖µ(∞) ≤
1

2
‖Z‖µ(∞) .

We prove Lemmas 10–12 in Section A.8. Equipped with the three lemmas above, we are
now ready to validate that Y satisfies Condition 2 in Proposition 8.

A.5 Validating Condition 2(a)

Set ∆k = UV > − PT (Wk) for k = 1, . . . , k0; note that ∆k0 = UV > − PT (Y ). By definition
of Wk, we have

∆k = (PT − PTRΩk
PT ) ∆k−1. (15)

Note that Ωk is independent of ∆k−1 and qij ≥ pij/k0 ≥ c′0(µi + νj)r log(n)/n under the
condition in Theorem 2. Applying Lemma 9 with Ω replaced by Ωk , we obtain that w.h.p.

‖∆k‖F ≤ ‖PT − PTRΩk
PT ‖ ‖∆k−1‖F ≤

1

2
‖∆k−1‖F .

Applying the above inequality recursively with k = k0, k0 − 1, . . . , 1 gives

∥∥∥PT (Y )− UV >
∥∥∥
F

= ‖∆k0‖F ≤
(

1

2

)k0 ∥∥∥UV >∥∥∥
F
≤ 1

4n6
·
√
r ≤ 1

4n5
,

where we use our definition of k0 and
∥∥UV >∥∥

F
=
√
r in the second inequality.

A.6 Validating Condition 2(b)

By definition, Y can be rewritten as Y =
∑k0

k=1RΩk
PT∆k−1. It follows that

‖PT⊥(Y )‖ =

∥∥∥∥∥PT⊥
k0∑
k=1

(RΩk
PT − PT ) ∆k−1

∥∥∥∥∥ ≤
k0∑
k=1

‖(RΩk
− I) ∆k−1‖ .

We apply Lemma 10 with Ω replaced by Ωk to each summand in the last RHS to obtain
w.h.p.

‖PT⊥(Y )‖ ≤ c
√
c0

k0∑
k=1

‖∆k−1‖µ(∞) +
c
√
c0

k0∑
k=1

‖∆k−1‖µ(∞,2) . (16)

We bound each summand in the last RHS. Applying (k−1) times (15) and Lemma 12 (with
Ω replaced by Ωk), we have w.h.p.

‖∆k−1‖µ(∞) =
∥∥(PT − PTRΩk−1

PT
)

∆k−2

∥∥
µ(∞)

≤
(

1

2

)k−1 ∥∥∥UV >∥∥∥
µ(∞)

.
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for each k. Similarly, repeatedly applying (15), Lemma 11 and the inequality we just proved
above, we obtain w.h.p.

‖∆k−1‖µ(∞,2) (17)

=
∥∥(PT − PTRΩk−1

PT
)

∆k−2

∥∥
µ(∞,2)

(18)

≤1

2
‖∆k−2‖µ(∞) +

1

2
‖∆k−2‖µ(∞,2) (19)

≤
(

1

2

)k−1 ∥∥∥UV >∥∥∥
µ(∞)

+
1

2
‖∆k−2‖µ(∞,2) (20)

≤k
(

1

2

)k−1 ∥∥∥UV >∥∥∥
µ(∞)

+

(
1

2

)k−1

‖UV ‖µ(∞,2) . (21)

It follows that w.h.p.

‖PT⊥(Y )‖ ≤ c
√
c0

k0∑
k=1

(k + 1)

(
1

2

)k−1 ∥∥∥UV >∥∥∥
µ(∞)

+
c
√
c0

k0∑
k=1

(
1

2

)k−1 ∥∥∥UV >∥∥∥
µ(∞,2)

(22)

≤ 6c
√
c0

∥∥∥UV >∥∥∥
µ(∞)

+
2c
√
c0

∥∥∥UV >∥∥∥
µ(∞,2)

. (23)

Note that for all (i, j), we have
∣∣∣(UV >)ij∣∣∣ =

∣∣e>i UV >ej∣∣ ≤√µir
n

√
νjr
n ,
∥∥e>i UV >∥∥2

=
√

µir
n

and
∥∥UV >ej∥∥2

=
√

νjr
n . Hence

∥∥UV >∥∥
µ(∞)

≤ 1 and
∥∥UV >∥∥

µ(∞,2)
= 1. We conclude that

‖PT⊥(Y )‖ ≤ 6c
√
c0

+
2c
√
c0
≤ 1

2

provided that the constant c0 in Theorem 2 is sufficiently large. This completes the proof
of Theorem 2.

A.7 Proof of Proposition 8 (Optimality Condition)

Proof Consider any feasible solution X to (1) with PΩ(X) = PΩ(M). Let G be an n× n
matrix which satisfies ‖PT⊥G‖ = 1, and 〈PT⊥G,PT⊥(X −M)〉 = ‖PT⊥(X −M)‖∗. Such G
always exists by duality between the nuclear norm and spectral norm. Because UV >+PT⊥G
is a sub-gradient of the function f(Z) = ‖Z‖∗ at Z = M , we have

‖X‖∗ − ‖M‖∗ ≥
〈
UV > + PT⊥G,X −M

〉
. (24)

But 〈Y,X −M〉 = 〈PΩ(Y ), PΩ(X −M)〉 = 0 since PΩ(Y ) = Y . It follows that

‖X‖∗ − ‖M‖∗ ≥
〈
UV > + PT⊥G− Y,X −M

〉
= ‖PT⊥(X −M)‖∗ +

〈
UV > − PTY,X −M

〉
− 〈PT⊥Y,X −M〉

≥ ‖PT⊥(X −M)‖∗ −
∥∥∥UV > − PTY ∥∥∥

F
‖PT (X −M)‖F − ‖PT⊥Y ‖ ‖PT⊥(X −M)‖∗

≥ 1

2
‖PT⊥(X −M)‖∗ −

1

4n5
‖PT (X −M)‖F ,
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where in the last inequality we use conditions 2a and 2b in the proposition. Using Lemma 13
below, we obtain

‖X‖∗ − ‖M‖∗ ≥
1

2
‖PT⊥(X −M)‖∗ −

1

4n5
·
√

2n5 ‖PT⊥(X −M)‖∗ >
1

8
‖PT⊥(X −M)‖∗ .

The RHS is strictly positive for all X with PΩ(X −M) = 0 and X 6= M . Otherwise we
must have PT (X −M) = X −M and PTPΩPT (X −M) = 0, contradicting the assumption
‖PTRΩPT − PT ‖op ≤

1
2 . This proves that M is the unique optimum.

Lemma 13 If pij ≥ 1
n10 for all (i, j) and ‖PTRΩPT − PT ‖op ≤

1
2 , then we have

‖PTZ‖F ≤
√

2n5 ‖PT⊥(Z)‖∗ , ∀Z ∈ {Z
′ : PΩ(Z ′) = 0}. (25)

Proof Define the operator R
1/2
Ω : Rn×n 7→ Rn×n by

R
1/2
Ω (Z) :=

∑
i,j

1
√
pij
δij

〈
eie
>
j , Z

〉
eie
>
j .

Note that R
1/2
Ω is self-adjoint and satisfies R

1/2
Ω R

1/2
Ω = RΩ. Hence we have∥∥∥R1/2

Ω PT (Z)
∥∥∥
F

=
√
〈PTRΩPTZ,PTZ〉

=
√
〈(PTRΩPT − PT )Z,PT (Z)〉+ 〈PT (Z), PT (Z)〉

≥
√
‖PT (Z)‖2F − ‖PTRΩPT − PT ‖ ‖PT (Z)‖2F

≥ 1√
2
‖PT (Z)‖F ,

where the last inequality follows from the assumption ‖PTRΩPT − PT ‖op ≤
1
2 . On the other

hand, PΩ(Z) = 0 implies 0 = R
1/2
Ω (Z) = R

1/2
Ω PT (Z) +R

1/2
Ω PT⊥(Z) and thus∥∥∥R1/2

Ω PT (Z)
∥∥∥
F

=
∥∥∥−R1/2

Ω PT⊥(Z)
∥∥∥
F
≤
(

max
i,j

1
√
pij

)
‖PT⊥(Z)‖F ≤ n

5 ‖PT⊥(Z)‖F .

Combining the last two display equations gives

‖PT (Z)‖F ≤
√

2n5 ‖PT⊥(Z)‖F ≤
√

2n5 ‖PT⊥(Z)‖∗ .

A.8 Proof of Technical Lemmas

We prove the four technical lemmas that are used in the proof of our main theorem. The
proofs use the matrix Bernstein inequality given as Theorem 16 in Section F. We also make
frequent use of the following facts: for all i and j, we have max

{µir
n ,

νjr
n

}
≤ 1 and

(µi + νj)r

n
≥
∥∥∥PT (eie

>
j )
∥∥∥2

F
. (26)

We also use the shorthand a ∧ b := min{a, b}.
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A.8.1 Proof of Lemma 9

For any matrix Z, we can write

(PTRΩPT − PT )(Z) =
∑
i,j

(
1

pij
δij − 1

)〈
eie
>
j , PT (Z)

〉
PT (eie

>
j ) =:

∑
i,j

Sij(Z).

Note that E [Sij ] = 0 and Sij ’s are independent of each other. For all Z and (i, j), we have

Sij = 0 if pij = 1. On the other hand, when pij ≥ c0
(µi+νj)r logn

n , then it follows from (26)
that

‖Sij(Z)‖F ≤
1

pij

∥∥∥PT (eie
>
j )
∥∥∥2

F
‖Z‖F ≤ max

i,j

{
1

pij

(µi + νj)r

n

}
‖Z‖F ≤

1

c0 log n
‖Z‖F .

Putting together, we have that ‖Sij‖ ≤ 1
c0 logn under the condition of the lemma. On the

other hand, we have∥∥∥∥∥∥
∑
i,j

E
[
S2
ij(Z)

]∥∥∥∥∥∥
F

=

∥∥∥∥∥∥
∑
i,j

E

[(
1

pij
δij − 1

)2 〈
eie
>
j , PT (Z)

〉〈
eie
>
j , PT (eie

>
j )
〉
PT (eie

>
j )

]∥∥∥∥∥∥
F

≤
(

max
i,j

1− pij
pij

∥∥∥PT (eie
>
j )
∥∥∥2

F

)∥∥∥∥∥∥
∑
i,j

〈
eie
>
j , PT (Z)

〉
PT (eie

>
j )

∥∥∥∥∥∥
F

≤ max
i,j

{
1− pij
pij

(µi + νj)r

n

}
‖PT (Z)‖F ,

This implies
∥∥∥∑i,j E

[
S2
ij

]∥∥∥ ≤ 1
c0 logn under the condition of the lemma. Applying the

Matrix Bernstein inequality (Theorem 16), we obtain ‖PTRΩPT − PT ‖ =
∥∥∥∑i,j Sij

∥∥∥ ≤ 1
2

w.h.p. for sufficiently large c0.

A.8.2 Proof of Lemma 10

We can write (RΩ − I)Z as the sum of independent matrices:

(RΩ − I)Z =
∑
i,j

(
1

pij
δij − 1

)
Zijeie

>
j =:

∑
i,j

Sij .

Note that E[Sij ] = 0. For all (i, j), we have Sij = 0 if pij = 1, and

‖Sij‖ ≤
1

pij
|Zij | .

Moreover, we have∥∥∥∥∥∥E
∑
i,j

S>ijSij

∥∥∥∥∥∥ =

∥∥∥∥∥∥
∑
i,j

Z2
ijeie

>
j eje

>
i E
(

1

pij
δij − 1

)2
∥∥∥∥∥∥ = max

i

n∑
j=1

1− pij
pij

Z2
ij .
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The quantity
∥∥∥E [∑i,j SijS

>
ij

]∥∥∥ is bounded by maxj
∑n

i=1(1− pij)Z2
ij/pij in a similar way.

The first part of the lemma then follows from the matrix Bernstein inequality (Theorem 16).

If pij ≥ 1 ∧ c0(µi+νj)r logn
n ≥ 1 ∧ 2c0

√
µir
n ·

νjr
n log n, we have for all i and j,

‖Sij‖ log n ≤ (1− I(pij = 1))
1

pij
|Zij | log n ≤ 1

c0
‖Z‖µ(∞) ,

n∑
i=1

1− pij
pij

Z2
ij log n ≤ 1

c0
‖Z‖2µ(∞,2) ,

n∑
j=1

1− pij
pij

Z2
ij log n ≤ 1

c0
‖Z‖2µ(∞,2) .

The second part of the lemma follows again from applying the matrix Bernstein inequality.

A.8.3 Proof of Lemma 11

Let X = (PTRΩ − PT )Z. By definition we have

‖X‖µ(∞,2) = max
a,b

{√
n

µar
‖Xa·‖2 ,

√
n

νbr
‖X·b‖2

}
,

where Xa· and X·b are the a-th row and b-th column of of X, respectively. We bound each

term in the maximum. Observe that
√

n
νbr
X·b can be written as the sum of independent

column vectors:√
n

νbr
X·b =

∑
i,j

(
1

pij
δij − 1

)
Zij

(
PT (eie

>
j )eb

)√ n

νbr
=:
∑
i,j

Sij ,

where E [Sij ] = 0. To control ‖Sij‖2 and
∥∥∥E [∑i,j S

>
ijSij

]∥∥∥, we first need a bound for∥∥∥PT (eie
>
j )eb

∥∥∥
2
. If j = b, we have

∥∥∥PT (eie
>
j )eb

∥∥∥
2

=

∥∥∥∥UU>ei + (I − UU>)ei

∥∥∥V >eb∥∥∥2

2

∥∥∥∥
2

≤
√
µir

n
+

√
νbr

n
, (27)

where we use the triangle inequality and the definition of µi and νb . Similarly, if j 6= b, we
have ∥∥∥PT (eie

>
j )eb

∥∥∥
2

=
∥∥∥(I − UU>)eie

>
j V V

>eb

∥∥∥
2
≤
∣∣∣e>j V V >eb∣∣∣ . (28)

Now note that ‖Sij‖2 ≤ (1− I(pij = 1)) 1
pij
|Zij |

√
n
νbr

∥∥∥PT (eie
>
j )eb

∥∥∥
2
. Using the bounds (27)

and (28), we obtain that for j = b,

‖Sij‖2 ≤ (1− I(pij = 1))
1

pib
|Zib|

√
n

νbr
·
(√

µir

n
+
νbr

n

)
≤ 2

c0

√
µirνbr
n2 log n

|Zib| ≤
2

c0 log n
‖Z‖µ(∞) ,
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where we use pib ≥ 1∧ c0µir logn
n and pib ≥ 1∧ c0

√
µir
n

νbr
n log n in the second inequality. For

j 6= b, we have

‖Sij‖2 ≤ (1− I(pij = 1))
1

pij
|Zij |

√
n

νbr
·
√
νjr

n

√
νbr

n
≤ 2

c0 log n
‖Z‖µ(∞) ,

where we use pij ≥ 1 ∧ c0

√
µir
n

νjr
n log n. We thus obtain ‖Sij‖2 ≤

2
c0 logn ‖Z‖µ(∞) for all

(i, j).
On the other hand, note that∣∣∣E [∑i,jS

>
ijSij

]∣∣∣ =

∣∣∣∣∑i,jE
[(

1

pij
δij − 1

)
2

]
Z2
ij

∥∥∥PT (eie
>
j )eb

∥∥∥2

2
· n
νbr

∣∣∣∣
=
(∑

j=b,i +
∑

j 6=b,i

) 1− pij
pij

Z2
ij

∥∥∥PT (eie
>
j )eb

∥∥∥2

2
· n
νbr

.

Applying (27), we can bound the first sum by∑
j=b,i

≤
∑
i

1− pib
pib

Z2
ib · 2

(µir
n

+
νbr

n

)
· n
νbr
≤ 2

c0 log n

n

νbr
‖Z·b‖22 ≤

2

c0 log n
‖Z‖2µ(∞,2) ,

where we use pib ≥ 1 ∧ c0(µi+νb)r
n log n in the second inequality. The second sum can be

bounded using (28): ∑
j 6=b,i

≤
∑
j 6=b,i

1− pij
pij

Z2
ij

∣∣∣e>j V V >eb∣∣∣2 n

νbr

=
n

νbr

∑
j 6=b

∣∣∣e>j V V >eb∣∣∣2∑
i

1− pij
pij

Z2
ij

(a)

≤ n

νbr

∑
j 6=b

∣∣∣e>j V V >eb∣∣∣2
(

1

c0 log n

∑
i

Z2
ij

n

νjr

)

≤
(

1

c0 log n
‖Z‖2µ(∞,2)

)
n

νbr

∑
j 6=b

∣∣∣e>j V V >eb∣∣∣2
(b)

≤ 1

c0 log n
‖Z‖2µ(∞,2) ,

where we use pij ≥ 1 ∧ c0νjr logn
n in (a) and

∑
j 6=b

∣∣∣e>j V V >eb∣∣∣2 ≤ ∥∥V V >eb∥∥2

2
≤ νbr

n in (b).

Combining the bounds for the two sums, we obtain
∥∥∥E [∑i,j S

>
ijSij

]∥∥∥ ≤ 3
c0 logn ‖Z‖

2
µ(∞,2) .

We can bound
∥∥∥E [∑i,j SijS

>
ij

]∥∥∥ in a similar way. Applying the Matrix Bernstein inequality

in Theorem 16, we have w.h.p.∥∥∥∥√ n

νbr
X·b

∥∥∥∥
2

=
∥∥∥∑i,jSij

∥∥∥
2
≤ 1

2

(
‖Z‖µ(∞) + ‖Z‖µ(∞,2)

)
for c0 sufficiently large. Similarly we can bound

∥∥∥√ n
µar

Xa·

∥∥∥
2

by the same quantity. We

take a union bound over all a and b to obtain the desired results.
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A.8.4 Proof of Lemma 12

Fix a matrix index (a, b) and let wab =
√

µar
n

νbr
n . We can write

[(PTRΩ − PT )Z]ab

√
n

µar

√
n

νbr
=
∑
i,j

(
1

pij
δij − 1

)
Zij

〈
eie
>
j , PT (eae

>
b )
〉 1

wab
=:
∑
i,j

sij ,

which is the sum of independent zero-mean variables. We first compute the following bound:∣∣∣〈eie>j , PT (eae
>
b )
〉∣∣∣

=
∣∣∣e>i UU>eae>b ej + e>i (I − UU>)eae

>
b V V

>ej

∣∣∣
=



∣∣e>a UU>ea + e>a (I − UU>)eae
>
b V V

>eb
∣∣ ≤ µar

n + νbr
n , i = a, j = b,∣∣e>a (I − UU>)eae

>
b V V

>ej
∣∣ ≤ ∣∣e>b V V >ej∣∣ , i = a, j 6= b,∣∣e>i UU>eae>b (I − V V >)eb
∣∣ ≤ ∣∣e>i UU>ea∣∣ , i 6= a, j = b,∣∣e>i UU>eae>b V V >ej∣∣ ≤ ∣∣e>i UU>ea∣∣ ∣∣e>b V V >ej∣∣ , i 6= a, j 6= b,

(29)

where we use the fact that the matrices I − UU> and I − V V > have spectral norm at
most 1. We proceed to bound |sij | . Note that

|sij | ≤ (1− I(pij = 1))
1

pij
· |Zij | ·

∣∣∣〈eie>j , PT (eae
>
b )
〉∣∣∣ · 1

wab
.

We distinguish four cases. When i = a and j = b, we use (29) and pab ≥ 1∧ c0(µa+νb)r log2(n)
n

to obtain |sij | ≤ |Zij | / (wijc0 log n) ≤ ‖Z‖µ(∞) / (c0 log n) . When i = a and j 6= b, we
apply (29) to get

|sij | ≤ (1− I(pij = 1))
|Zaj |
paj

·
√
νbr

n

νjr

n
·
√

n

µar

n

νbr

(a)

≤ |Zaj | ·
√

n

µar

n

νjr

1

c0 log n
≤
‖Z‖µ(∞)

c0 log n
,

where (a) follows from paj ≥ min
{
c0
νjr logn

n , 1
}
. In a similar fashion, we can show that the

same bound holds when i 6= a and j = b. When i 6= a and j 6= b, we use (29) to get

|sij | ≤ (1− I(pij = 1))
|Zij |
pij
·
√
µir

n

µar

n

√
νbr

n

νjr

n
·
√

n

µar

n

νbr

(b)

≤ |Zij | ·
√

n

µir

n

νjr

1

c0 log n
≤
‖Z‖µ(∞)

c0 log n
,

where (b) follows from pij ≥ 1∧ c0

√
µir
n

νjr
n log n and max

{√
µir
n ,
√

νjr
n

}
≤ 1. We conclude

that |sij | ≤ ‖Z‖µ(∞) / (c0 log n) for all (i, j).
On the other hand, note that∣∣∣∣∣∣E

∑
i,j

s2
ij

∣∣∣∣∣∣ =
∑
i,j

E

[(
1

pij
δij − 1

)2
]
Z2
ij

w2
ab

〈
eie
>
j , PT (eae

>
b )
〉2

=
∑

i=a,j=b

+
∑

i=a,j 6=b
+

∑
i 6=a,j=b

+
∑

i 6=a,j 6=b
.

3024



Completing Any Low-rank Matrix, Provably

We bound each of the four sums. By (29) and pab ≥ 1∧ c0(µa+νb)r logn
n ≥ 1∧ c0(µa+νb)2r2 logn

2n2 ,
we have ∑

i=a,j=b

≤ 1− pab
pabw

2
ab

Z2
ab

(µar
n

+
νbr

n

)2
≤

2 ‖Z‖2µ(∞)

c0 log n
.

By (29) and pajw
2
ab ≥ w2

ab ∧
(
c0w

2
aj
νbr
n log n

)
, we have

∑
i=a,j 6=b

≤
∑
,j 6=b

1− paj
pajw2

ab

Z2
aj

∣∣∣e>b V V >ej∣∣∣ ≤ ‖Z‖2µ(∞)

c0 log n
· n
νbr

∑
j 6=b

∣∣∣e>b V V >ej∣∣∣ ,
which implies

∑
i=a,j 6=b ≤ ‖Z‖

2
µ(∞) /(c0 log n). Similarly we can bound

∑
i 6=a,j=b by the

same quantity. Finally, by (29) and pij ≥ 1 ∧
(
c0
µir
n

νjr
n log n

)
, we have

∑
i 6=a,j 6=b

≤ 1

w2
ab

∑
i 6=a,j 6=b

(1− pij)Z2
ij

pij
·
∣∣∣e>i UU>ea∣∣∣ ∣∣∣e>b V V >ej∣∣∣

≤
‖Z‖2µ(∞)

c0 log n
· 1

w2
ab

∑
i 6=a

∣∣∣e>i UU>ea∣∣∣∑
j 6=b

∣∣∣e>b V V >ej∣∣∣ ,
which implies

∑
i 6=a,j 6=b ≤ ‖Z‖

2
µ(∞) /(c0 log n). Combining pieces, we obtain∣∣∣E [∑ijs

2
ij

]∣∣∣ ≤ 5 ‖Z‖2µ(∞) /(c0 log n).

Applying the Bernstein inequality (Theorem 16), we conclude that

∣∣∣∣[(PTRΩPT − PT )Z]ab

√
n

µar

√
n

νbr

∣∣∣∣ =

∣∣∣∣∣∣
∑
i,j

sij

∣∣∣∣∣∣ ≤ 1

2
‖Z‖µ(∞)

w.h.p. for c0 sufficiently large. The desired result follows from a union bound over all (a, b).

Appendix B. Proof of Corollary 4

Recall the setting: for each row of M , we pick it with some probability p and observe all
its elements. We need a simple lemma. Let J ⊆ [n] be the (random) set of the indices of
the row picked, and PJ(Z) be the matrix that is obtained from Z by zeroing out the rows
outside J . Recall that UΣV > is the SVD of M .

Lemma 14 If µi(M) := n
r

∥∥U>ei∥∥2 ≤ µ0 for all i ∈ [n], and p ≥ 10µ0rn log 2r
δ , then with

probability at least 1− δ, ∥∥∥U>PJ(U)− Ir×r
∥∥∥ ≤ 1

2
,

where Ir×r is the identity matrix in Rr×r.
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Proof Define the random variable ηj := I(i ∈ J) for i = 1, 2, . . . , n, where I(·) is the
indicator function. Note that

U>PJ(U)− Ir×r = U>PJ(U)− U>U =
n∑
i=1

S(i) :=
n∑
i=1

(
1

p
ηi − 1

)
U>eie

>
i U.

The matrices {S(i)} are mutually independent and satisfy E
[
S(i)

]
= 0,

∥∥S(i)

∥∥ ≤ 1
p

∥∥U>ei∥∥2

2
≤

µ0r
pn , and∥∥∥∥∥E

[
n∑
i=1

S(i)S
>
(i)

]∥∥∥∥∥ =

∥∥∥∥∥E
[

n∑
i=1

S>(i)S(i)

]∥∥∥∥∥ =
1− p
p

∥∥∥∥∥
n∑
i=1

U>eie
>
i UU

>eie
>
i U

∥∥∥∥∥
=

1− p
p

∥∥∥∥∥U>
(

n∑
i=1

eie
>
i

∥∥∥U>ei∥∥∥2

2

)
U

∥∥∥∥∥
≤ 1

p

∥∥∥∥∥
n∑
i=1

eie
>
i

∥∥∥U>ei∥∥∥2

2

∥∥∥∥∥
=

1

p
max
i

∥∥∥U>ei∥∥∥2

2
≤ µ0r

pn
.

Note that S(i) are r × r matrices. It follows from the matrix Bernstein (Theorem 16) that

when p ≥ 10µ0r
n log 2r

δ , we have

P
{∥∥∥U>PJ(U)− Ir×r

∥∥∥ ≥ 1

2

}
≤ 2r exp

(
−(1/2)2/2
µ0r
6pn + µ0r

pn

)
≤ δ.

Note that
∥∥U>PJ(U)− Ir×r

∥∥ ≤ 1
2 implies that U>PJ(U) is invertible, which further

implies PJ(U) ∈ Rn×r has rank-r. The rows picked are PJ(M) = PJ(U)ΣV >, which thus
have full rank-r and their row space must be the same as the row space of M . Therefore,
the leverage scores {ν̃j} of these rows are the same as the row leverage scores {νj(M)} of
M . Also note that we must have µ0 ≥ 1. Setting δ and sampling Ω as described in the
corollary and applying Theorem 2, we are guaranteed to recover M exactly with probability
at least 1− 9n−10. The total number of elements we have observed is

pn+
∑
i,j

pij = 10µ0r log

(
2r

4n−10

)
+ c0(µ0rn+ rn) log2 n ≤ c1µ0rn log2 n

for some sufficiently large universal constant c1, and by Hoeffding’s inequality, the actual
number of observations is at most two times the expectation with probability at least 1−n−10

provided c0 is sufficiently large. The corollary follows from the union bound.

Appendix C. Proof of Theorem 6

We prove the theorem assuming
∑r

k=1
1
ak

=
∑r

k=1
1
bk

= r; extension to the general setting
in the theorem statement will only affect the pre-constant in (4) by a factor of at most 2.
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For each k ∈ [r], let sk := 2n
akr

, tk := 2n
bkr

. We assume the sk’s and tk’s are all integers.

Under the assumption on ak and bk, we have 1 ≤ sk, tk ≤ n and
∑r

k=1 sk =
∑r

k=1 tk = n.

Define the sets Ik :=
{∑r−1

l=1 sl + i : i ∈ [sk]
}

and Jk :=
{∑r−1

l=1 tl + j : j ∈ [tk]
}

; note that⋃r
k=1 Ik =

⋃r
k=1 Jk = [n]. The vectors ~µ and ~ν are given by

µi = ak, ∀k ∈ [r], i ∈ Ik,
νj = bk, ∀k ∈ [r], j ∈ Jk.

It is clear that ~µ and ~ν satisfy the property 1 in the statement of the theorem.
Let the matrix M (0) be given by M (0) = AB>, where A,B ∈ Rn×r are specified below.

• For each k ∈ [r], we set

Aik =

√
1

sk

for all i ∈ Ik. All other elements of A are set to zero. Therefore, the k-th column of A

has sk non-zero elements equal to
√

1
sk

, and the columns of A have disjoint supports.

• Similarly, for each k ∈ [r] , we set

Bjk =

√
1

tk

for all j ∈ Jk. All other elements of B are set to zero.

Observe that A is an orthonormal matrix, so

µi

(
M (0)

)
=
n

r
‖Ai·‖22 =

n

r
· 1

sk
=
ak
2

=
µi
2
≤ µi, ∀k ∈ [r], i ∈ Ik, .

A similar argument shows that νj
(
M (0)

)
≤ νj ,∀j ∈ [n]. Hence M (0) ∈Mr (~µ, ~ν). We note

that M (0) is a block diagonal matrix with r blocks where the k-th block has size sk × tk,
and

∥∥M (0
∥∥
F

=
√
r.

Consider the i0 and j0 in the statement of the theorem. There must exit some k1, k2 ∈ [r]
such that i0 ∈ Ik1 and j0 ∈ Jk2 . Assume w.l.o.g. that sk1 ≥ tk2 . then

pi0j0 ≤
µi0 + νj0

4n
· r log

(
1

η

)
=
ak1 + bk2

4n
· r log

(
1

η

)
=

log (1/η)

4sk1
+

log (1/η)

4tk2
≤ log (1/η)

2tk2
,

where η =
µi0r

2n = 1
sk1

in part 2 of the theorem and η = 2
n in part 3. Because {pij} is

location-invariant w.r.t. M (0), we have

pij = pi0j0 ≤
log (1/η)

2tk2
, ∀i ∈ Ik1 , j ∈ Jk2 .

Let Wi := |({i} × Jk2) ∩ Ω| be the number of observed elements on {i}×Jk2 . Note that
for each i ∈ Ik1 , we have

P [Wi = 0] =
∏
j∈Jk2

(1− pij) ≥
(

1− log(1/η)

2tk2

)tk2
≥ exp (log η) = η,
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where we use 1−x ≥ e−2x, ∀0 ≤ x ≤ 1
2 in the second inequality. Therefore, there must exist

i∗ ∈ Ik1 for which there is no observed element in {i∗} × Jk2 with probability

P [Wi∗ = 0, ∃i∗ ∈ Ik1 ] = 1− P [Wi ≥ 1, ∀i ∈ Ik1 ]

≥ 1− (1− η)sk1 ≥ 1− e−ηsk1 ≥ 1

2
ηsk1 ≥

{
1
2 , η =

µi0r

4n
1
n , η = n

2 .

These are the probabilities that appear in part 2 and part 3 of the theorem statement,
respectively.

Now choose a number s̄ ≥ sk1 . Let M (1) = ĀB>, where B is the same as before and Ā
is given by

Āik =

{√
1
s̄ , i = i∗, k = k2

Aik, otherwise.

By varying s̄ we can construct infinitely many such M (1). Clearly M (1) is rank-r. Observe
that M (1) differs from M (0) only in the elements with indices in {i∗} × Jk2 , which are not
observed, so

M
(0)
ij = M

(1)
ij , ∀(i, j) ∈ Ω.

Also observe that any {pij} that is location-invariant w.r.t.M (0) is also location-invariant
w.r.t. M (1). The following lemma guarantees that M (1) ∈ Mr (~µ, ~ν), which completes the
proof of the theorem.

Lemma 15 The matrix M (1) constructed above satisfies

µi

(
M (1)

)
≤ 2µi

(
M (0)

)
, ∀i ∈ [n],

νj

(
M (1)

)
= νj

(
M (0)

)
, ∀j ∈ [n].

Proof Note that by the definition, the leverage scores of a rank-r matrix M with SVD
M = UΣV > can be expressed as

µi (M) =
n

r

∥∥∥U>ei∥∥∥2

2
=
n

r

∥∥∥UU>ei∥∥∥2

2
=
n

r

∥∥Pcol(M)(ei)
∥∥2

2
,

where col(M) denotes the column space of M and Pcol(M)(·) is the Euclidean projection
onto the column space of M . A similar relation holds for the row leverage scores and the
row space of M . In other words, the column/row leverage scores of a matrix are determined
by its column/row space. Because M (0) and M (1) have the same row space (which is the
span of the columns of B), the second set of equalities in the lemma hold.

It remains to prove the first set of inequalities for the column leverage scores. If k1 = k2,
then the columns of Ā have unit norms and are orthogonal to each other. Using the above
expression for the leverage scores, we have

µi

(
M (1)

)
=
n

r

∥∥∥ĀĀ>ei∥∥∥2

2
=
n

r

∥∥∥Ā>ei∥∥∥2

2
=
n

r

∥∥∥A>ei∥∥∥2

2
= µi

(
M (0)

)
.

If k1 6= k2, we may assume without loss of generality that k1 = 1, k2 = 2 and i∗ = 1. In the
sequel we use Āi to denote the i-th columns of Ā. We now construct two vectors α̃ and β̃
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which have the same span with Ā1 and Ā2. Define two vectors α, β ∈ Rn, such that the first
s1 elements of α and the {s1 + 1, . . . , s1 + s2}-th elements of β are one, the first element of
β is

√
s2
s̄ , and all other elements of α and β are zero. Clearly α =

√
s1Ā1 and β =

√
s2Ā2,

so span(α, β) = span(Ā1, Ā2). We next orthogonalize α and β by letting ᾱ = α and

β̄ = β − 〈α, β〉
‖α‖2

α = β −
√
s2

s1

√
s̄
α =



(s1−1)
√
s2

s1
√
s̄

, i = 1

−
√
s2

s1
√
s̄
, i = 2, . . . , s1

1, i = s1 + 1, . . . , s1 + s2

0, i = s1 + s2 + 1, . . . , n.

Note that span(ᾱ, β̄) = span(α, β) and
〈
ᾱ, β̄

〉
= 0. Simple calculation shows that ‖ᾱ‖22 =

‖α‖22 = s1 and
∥∥β̄∥∥2

2
=
(
s1−1
s1s̄

+ 1
)
s2. Finally, we normalize ᾱ and β̄ by letting α̃ = ᾱ/ ‖ᾱ‖

and β̃ = β̄/
∥∥β̄∥∥. It is clear that span(α̃, β̃) = span(Ā1, Ā2), and

〈
α̃, Āk

〉
=
〈
β̃, Āk

〉
=

0,∀k = 3, . . . , r.

Now consider the matrix Ã ∈ Rn×r obtained from Ā by replacing the first two columns
of Ā with α̃ and β̃, respectively. Because col(Ã) = col(Ā) = col(M (1)), we have

µi

(
M (1)

)
=
n

r

∥∥∥Pcol(Ã) (ei)
∥∥∥2
.

But the columns of Ã have unit norms and are orthogonal to each other. It follows that

µi

(
M (1)

)
=
n

r

∥∥∥ÃÃ>ei∥∥∥2
=
n

r

∥∥∥Ã>ei∥∥∥2
.

For s1 + s2 < i ≤ n, since s̄ ≥ s1 we have
∥∥∥Ã>ei∥∥∥2

=
∥∥Ā>ei∥∥2

=
∥∥A>ei∥∥2

so µi
(
M (1)

)
=

µi
(
M (0)

)
. For i ∈ [s1 + s2], we have

∥∥∥Ã>ei∥∥∥2
= α̃2

i + β̃2
i =


1
s1

+ (s1−1)2

s1(s1−1)+s21s̄
≤ 2

s1
= 2

∥∥A>ei∥∥2
, i = 1

1
s1

+ 1
s1(s1−1)+s21s̄

≤ 2
s1

= 2
∥∥A>ei∥∥2

, i = 2, . . . , s1

s1s̄
(s1−1+s1s̄)s2

≤ 1
s2

=
∥∥A>ei∥∥2

, i = s1 + 1, . . . , s1 + s2.

This means

µi

(
M (1)

)
≤ 2n

r

∥∥∥A>ei∥∥∥2
= 2µi(M

(0)), ∀i ∈ [s1 + s2],

which completes the proof of the lemma.

Appendix D. Proof of Theorem 7

Suppose the rank-r SVD of M̄ is Ū Σ̄V̄ >; so Ū Σ̄V̄ > = RMC = RUΣV >C. By definition,
we have

µ̄ir

n
=
∥∥PŨ (ei)

∥∥2

2
,
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where PŨ (·) denotes the projection onto the column space of Ũ , which is the same as the
column space of RU . This projection has the explicit form

PŨ (ei) = RU
(
U>R2U

)−1
U>Rei.

It follows that

µ̄ir

n
=

∥∥∥∥RU (U>R2U
)−1

U>Rei

∥∥∥∥2

2

= R2
i e
>
i U

(
U>R2U

)−1
U>ei

≤ R2
i [σr (RU)]−2

∥∥∥U>ei∥∥∥2

2

≤ R2
i

µ0r

n
[σr (RU)]−2 , (30)

where σr(·) denotes the r-th singular value and the last inequality follows from the standard
incoherence assumption maxi,j{µi, νj} ≤ µ0. We now bound σr (RU). Since RU has rank r,
we have

σ2
r (RU) = min

‖x‖=1
‖RUx‖22 = min

‖x‖=1

n∑
i=1

R2
i

∣∣∣e>i Ux∣∣∣2 . (31)

If we let zi :=
∣∣e>i Ux∣∣2 for each i ∈ [n], then zi satisfies

n∑
i=1

zi = ‖Ux‖22 = ‖x‖22 = 1

and by the standard incoherence assumption,

zi ≤
∥∥∥U>ei∥∥∥2

2
‖x‖22 ≤

µ0r

n
.

Therefore, the value of the minimization (31) is lower-bounded by the optimal value of the
following program

min
z∈Rn

n∑
i=1

R2
i zi

s.t.
n∑
i=1

zi = 1, 0 ≤ zi ≤
µ0r

n
, i = 1, . . . , n.

(32)

From the theory of linear programming, we know the minimum is achieved at an extreme
point z∗ of the feasible set. Such an extreme point z∗ satisfies z∗i ≥ 0, ∀i and n linear
equalities

n∑
i=1

z∗i = 1,

z∗i = 0, for i ∈ I1,

z∗i =
µ0r

n
, for i ∈ I2
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for some index sets I1 and I2 such that I1 ∩ I2 = φ, |I1|+ |I2| = n− 1. It is easy to see that

we must have |I2| =
⌊
n
µ0r

⌋
. Since R1 ≤ R2 ≤ . . . ≤ Rn, the minimizer z∗ has the form

z∗i =


µ0r
n , i = 1, . . . ,

⌊
n
µ0r

⌋
,

1−
⌊
n
µ0r

⌋
· µ0rn , i =

⌊
n
µ0r

⌋
+ 1,

0, i =
⌊
n
µ0r

⌋
+ 2, . . . , n,

and the value of the minimization (32) is at least

bn/(µ0r)c∑
i=1

R2
i

µ0r

n
.

This proves that σ2
r (RU) ≥ µ0r

n

∑bn/(µ0r)c
i=1 R2

i . Combining with (30), we obtain that

µ̄ir

n
≤ R2

i∑bn/(µ0r)c
i′=1 R2

i

,
ν̄jr

n
≤

C2
j∑bn/(µ0r)c

j′=1 C2
j′

;

the proof for ν̄j is similar. Applying Theorem 2 to the equivalent problem (9) with the
above bounds on µ̄i and ν̄j proves the theorem.

Appendix E. Weighted vs Unweighted Nuclear Norm Minimization for
Non-uniform Sampling

In this section we provide a concrete example of the gain of weighting under the setting of
Section 5.1, where the observed entries are given and distributed non-uniformly. Suppose M
is an n-by-n matrix with rank r, and its incoherence parameter satisfies µ0r = c, where c
is a numerical constant. We assume the sampling probabilities have the form pr

i = pc
i =

min{γ i
0.15 logn
n0.65 , 1} for i = 1, 2, . . . , n; here the minimization ensures pr

ip
c
j is a probability.

Note that the parameter γ determines the expected number of samples
∑

i,j p
r
ip

c
j . For the

condition (11) for the unweighted approach to hold, we need γ2 & n0.3, and thus the the
expected number of samples is at least∑

i,j

pr
ip

c
j ≥

∑
i,j

γ
i0.15

n0.65
· γ j

0.15

n0.65
= Ω(n1.3),

where we use the estimate
∑n

i=1 i
0.15 = Θ(n1.15). On the other hand, the condition (10)

for the weighted approach is satisfied as long as γ2 & n0.15, so the the expected number of
samples satisfies ∑

i,j

pr
ip

c
j ≤

∑
i,j

γ
i0.15

n0.65
· γ j

0.15

n0.65
· log2 n = O(n1.15 log2 n)

when γ2 = Θ(n0.15). Therefore, the number of samples required by the condition (10) for
the weighted approach is order-wise smaller than the unweighted counterpart (11). Note
that the conditions (10) and (11) are the best known sufficient conditions for exact matrix
completion using the weighted and unweighted approaches, respectively, so the comparison
above suggests a significant gain in sample complexity using the weighted approach.
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Appendix F. Matrix Bernstein Inequality

Theorem 16 (Tropp 2012) Let X1, . . . , XN ∈ Rn1×n2 be independent zero mean random
matrices. Suppose

max

{∥∥∥∥∥E
N∑
k=1

XkX
>
k

∥∥∥∥∥ ,
∥∥∥∥∥E

N∑
k=1

X>k Xk

∥∥∥∥∥
}
≤ σ2

and ‖Xk‖ ≤ B almost surely for all k. Then we have

P

{∥∥∥∥∥
N∑
k=1

Xk

∥∥∥∥∥ ≥ t
}
≤ (n1 + n2) exp

(
−t2/2

Bt/3 + σ2

)
As a consequence, for any c > 0, we have∥∥∥∥∥

N∑
k=1

Xk

∥∥∥∥∥ ≤ 2
√
cσ2 log(n1 + n2) + cB log(n1 + n2). (33)

with probability at least 1− (n1 + n2)−(c−1).
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Abstract
Spectral learning algorithms have recently become popular in data-rich domains, driven
in part by recent advances in large scale randomized SVD, and in spectral estimation
of Hidden Markov Models. Extensions of these methods lead to statistical estimation
algorithms which are not only fast, scalable, and useful on real data sets, but are also
provably correct. Following this line of research, we propose four fast and scalable spectral
algorithms for learning word embeddings – low dimensional real vectors (called Eigenwords)
that capture the “meaning” of words from their context. All the proposed algorithms
harness the multi-view nature of text data i.e. the left and right context of each word, are
fast to train and have strong theoretical properties. Some of the variants also have lower
sample complexity and hence higher statistical power for rare words. We provide theory
which establishes relationships between these algorithms and optimality criteria for the
estimates they provide. We also perform thorough qualitative and quantitative evaluation
of Eigenwords showing that simple linear approaches give performance comparable to or
superior than the state-of-the-art non-linear deep learning based methods.
Keywords: spectral learning, CCA, word embeddings, NLP

1. Introduction

In recent years there has been immense interest in learning embeddings for words from
large amounts of raw text1. Word embeddings map each word in text to a ‘k’ dimensional
(∼ 50) real valued vector. They are typically learned in a totally unsupervised manner by
exploiting the co-occurrence structure of words in unlabeled text. Ideally these embeddings
should capture a rich variety of information about that word, including topic, part of speech,

∗. This work was done when PSD was a graduate student at the University of Pennsylvania.
1. This paper is based in part on work in (Dhillon et al., 2011),(Dhillon et al., 2012b).
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word features such as animacy, sentiment, gender, whether the numbers are years or small
numbers, and the direction of sentiment (happy vs. sad).

The importance of word embeddings has been amplified by the fact that over the past
decade there has been increased interest in using unlabeled data to supplement the la-
beled data in semi-supervised learning. Semi-supervised learning reduces data sparsity and
gives improved generalization accuracies in high dimensional domains like NLP. Approaches
like (Ando and Zhang, 2005; Suzuki and Isozaki, 2008) have been empirically very successful,
achieving excellent accuracies on a variety of NLP tasks. However, it is often difficult to
adapt these approaches to use in conjunction with an existing supervised NLP system as
they enforce a particular choice of model.

An increasingly popular alternative is to learn representational embeddings for words
from a large collection of unlabeled data, either using a generative model or an artificial
neural network, and to use these embeddings to augment the feature set of a supervised
learner, thereby improving the performance of a state-of-the-art NLP system such as a
sentiment analyzer, parser or part of speech tagger.

Word embeddings have proven useful and have given state-of-the-art performance on
many natural language processing tasks e.g. syntactic parsing (Täckström et al., 2012;
Parikh et al., 2014), POS Tagging (Dhillon et al., 2012b; Huang et al., 2013), dependency
parsing (Bansal et al., 2014; Koo et al., 2008; Dhillon et al., 2012a), sentiment analy-
sis (Dhillon et al., 2012b), chunking (Turian et al., 2010; Dhillon et al., 2011), Named Entity
Recognition (NER) (Turian et al., 2010; Dhillon et al., 2011), word analogies (Mikolov et al.,
2013a,b) and word similarity (Huang et al., 2012) to name a few.

These NLP systems use labeled data to learn a model, but there is often only a limited
amount of labeled text available for these tasks. (This is less of a problem for English, but
other languages often have very little labeled data.) Thus, word embeddings, which can be
learned from large amounts of unlabeled data, provide a highly discriminative set of features
which enable the supervised learner to perform better.

As mentioned earlier, embedding methods produce features in low dimensional spaces,
unlike the traditional approach of working in the original high dimensional vocabulary space
with only one dimension “on” at a given time.

Broadly speaking, embedding methods fall into two categories:

1. Clustering based word embeddings: Clustering methods, often hierarchical, are used
to group distributionally similar words based on their contexts. The two dominant
approaches are Brown Clustering (Brown et al., 1992) and (Pereira et al., 1993). As
recently shown, HMMs can also be used to induce a multinomial distribution over
possible clusters (Huang and Yates, 2009).

2. Dense embeddings: These embeddings are dense, low dimensional and real-valued.
Each dimension of these embeddings captures latent information about a combination
of syntactic and semantic word properties. They can either be induced using neural
networks like C&W embeddings (Collobert and Weston, 2008), Hierarchical log-linear
(HLBL) embeddings (Mnih and Hinton, 2007), word2vec embeddings (Mikolov et al.,
2013a,b) or by eigen-decomposition of the word co-occurrence matrix, e.g. Latent
Semantic Analysis/Latent Semantic Indexing (LSA/LSI) (Dumais et al., 1988).
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The most classic and successful algorithm for learning word embeddings is Latent Se-
mantic Analysis (LSA) (Landauer et al., 2008), which works by performing SVD on the
word by document matrix.

Unfortunately, the state-of-the-art embedding methods suffer from a number of short-
comings: 1). They are slow to train (especially, the Deep Learning based approaches (Col-
lobert and Weston, 2008; Mnih and Hinton, 2007). Recently, (Mikolov et al., 2013a,b) have
proposed neural network based embeddings which avoid using the hidden layers which are
typical in Deep Learning. This, coupled with good engineering allows their embeddings to
be trained in minutes. 2). Are sensitive to the scaling of the embeddings (especially `2
based approaches like LSA/PCA). 3). Learn a single embedding for a given word type;
i.e. all the occurrences of the word “bank” will have the same embedding, irrespective of
whether the context of the word suggests it means “a financial institution” or “a river bank.”
Recently, (Huang et al., 2012) have proposed context specific word embeddings, but their
Deep Learning based approach is slow and can not scale to large vocabularies.

In this paper we provide spectral algorithms (based on eigen-decomposition) for learning
word embeddings, as they have been shown to be fast and scalable for learning from large
amounts of unlabeled data (Turney and Pantel, 2010), have a strong theoretical grounding,
and are guaranteed to converge to globally optimal solutions (Hsu et al., 2009). Particularly,
we are interested in Canonical Correlation Analysis (CCA) (Hotelling, 1935) based methods
since:

1. Unlike PCA or LSA based methods, they are scale invariant and

2. Unlike LSA, they can capture multi-view information. In text applications the left
and right contexts of the words provide a natural split into two views which is totally
ignored by LSA as it throws the entire context into a bag of words while constructing
the term-document matrix.

We propose a variety of dense embeddings; they learn real-valued word embeddings by
performing Canonical Correlation Analysis (CCA) (Hotelling, 1935) between the past and
future views of the data. All our embeddings have a number of common characteristics and
address the shortcomings of the current state-of-the-art embeddings. In particular, they are:

1. Fast, scalable and scale invariant.

2. Provide better sample complexity2 for rare words.

3. Can induce context-specific embeddings i.e. different embeddings for “bank” based on
whether it means “a financial institution” or “a river bank.”

4. Have strong theoretical foundations.

Most importantly, in this paper we show that simple linear methods based on eigen-
decomposition of the context matrices at the simplest level give accuracies comparable to or
better than state-of-the-art highly non-linear deep learning based approaches like (Collobert
and Weston, 2008; Mnih and Hinton, 2007; Mikolov et al., 2013a,b).

2. In the sense that relative statistical efficiency is better.

3037



Dhillon, Foster and Ungar

The remainder of the paper is organized as follows. In the next section we give a brief
overview of CCA, which forms the core of our method. The following section describes our
four proposed algorithms. After a brief description of context-specific embeddings and of
the efficient SVD method we use, we present a set of systematic studies. These studies eval-
uate our CCA variants and alternatives including those derived from deep neural networks,
including C&W, HLB, SENNA, and word2vec on problems in POS tagging, word similar-
ity, generalized sentiment classification, NER, cross-lingual WSD and semantic & syntactic
analogies.

2. Brief Review: Canonical Correlation Analysis (CCA)

CCA (Hotelling, 1935) is the analog to Principal Component Analysis (PCA) for pairs of
matrices. PCA computes the directions of maximum covariance between elements in a
single matrix, whereas CCA computes the directions of maximal correlation between a pair
of matrices. Like PCA, CCA can be cast as an eigenvalue problem on a covariance matrix,
but can also be interpreted as deriving from a generative mixture model (Bach and Jordan,
2005). See (Hardoon et al., 2004) for a review of CCA with applications to machine learning.

More specifically, given n i.i.d samples from two sets of multivariate data
Dz = {z1, . . . , zn} ∈ Rm1 and Dw = {w1, . . . , wn} ∈ Rm2 where pairs (z1, w1) have
correspondence and so on, CCA tries to find a pair of linear transformations φz ∈ Rm1×k

and φw ∈ Rm2×k, (where k ≤ m1 ≤ m2) such that the correlation between the projection of
z onto φz and w onto φw is maximized. This can be expressed as the following optimization
problem:

max
φz ,φw

φ>z Czwφw√
φ>z Czzφz

√
φ>wCwwφw

,

where Czw (=
∑n

i=1(zi − µz)
>(wi − µw)), Cww (=

∑n
i=1(wi − µw)>(wi − µw)), and Czz

(=
∑n

i=1(zi − µz)>(zi − µz)), are the sample covariance matrices and µ(·) are the sample
means.

The above optimization problem can be solved via simple eigendecomposition (e.g. using
eig() function in MATLAB or R). The left and right canonical correlates (φz, φw) are the
‘k’ principal eigenvectors corresponding to the λ1 ≥, . . . ,≥ λk eigenvalues of the following
equations:

C−1zz CzwC−1wwCwzφz = λφz,

C−1wwCwzC
−1
zz Czwφw = λφw.

There is an equivalent formulation of CCA which allows us to compute the solution via
SVD of Czz

−1/2CzwCww
−1/2. (See the appendix for proof.)

Czz
−1/2CzwCww

−1/2 = φzΛφ
>
w , (1)

where (φz,φw) are the left and right singular vectors and Λ is the diagonal matrix of singular
values. Finally, the CCA projections are gotten by “de-whitening”3 as φz

proj = C
−1/2
zz φz

and φw
proj = C

−1/2
ww φw.

3. One way to think about CCA is as “whitening” the covariance matrix. Whitening is a decorrelation
transformation that transforms a set of random variables with an arbitrary covariance matrix into a set
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For most of the embeddings proposed in this paper, the SVD formulation (Equation 1)
is preferred since it requires fewer multiplications of large sparse matrices which is an ex-
pensive operation. Hence, we define the operation (φz

proj ,φw
proj) ≡ CCA(Z, W), where

Z (∈ Rn×m1) and W (∈ Rn×m2) are the matrices constructed from the data Dz and Dw
respectively.

2.1 Suitability of CCA for Learning Word Embeddings

Recently, (Foster et al., 2008) showed that CCA can exploit multi-view nature of the data
and provide sufficient conditions for CCA to achieve dimensionality reduction without losing
predictive power. They assume that the data was generated by the model shown in Figure 1.
The two assumptions that they make are that 1) Each of the two views are independent
conditional on a k-dimensional hidden state ~ and that 2) The two views provide a redundant
estimate of the hidden state ~.

These two assumptions are generalization of the assumptions made by co-training (Blum
and Mitchell, 1998) (Figure 2), as co-training conditions on the observed labels y and not
on a more flexible representation i.e. a hidden state ~.

Figure 1: Multi-View Assumption. Grey color indicates that the state is hidden.

Figure 2: Co-training Assumption.

In text and Natural Language Processing (NLP) applications, its typical to assume a
Hidden Markov Model (HMM) as the data generating model (Jurafsky and Martin, 2000).
Its easy to see that a Hidden Markov Model (HMM) satisfies the multi-view assumption.
Hence, the left and right context of a given word provides two natural views and one could
use CCA to estimate the hidden state ~.

of new random variables whose covariance is the identity matrix i.e. they are uncorrelated. De-whitening,
on the other hand, transforms the set of random variables to have a covariance matrix that is not an
identity matrix.
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Furthermore, as mentioned earlier, CCA is scale invariant and provides a natural scaling
(inverse or square root of the inverse of the auto-covariance matrix, depending on whether we
use Eigen-decomposition or SVD formation) for the observations. If we further use the SVD
formulation, then it also allows us to harness the recent advances in large scale randomized
SVD (Halko et al., 2011), which allows the embeddings learning algorithms to be fast and
scalable.

The invariance of CCA to linear data transformations allows proofs that keeping the
dominant singular vectors (those with largest singular values) will faithfully capture any
state information (Kakade and Foster, 2007). Also, CCA extends more naturally than LSA
to sequences of words4. Remember that LSA uses “bags of words,” which are good for
capturing topic information, but fail for problems like part of speech (POS) tagging which
need sequence information.

Finally, as we show in the next section the CCA formulation can be naturally extended
to a two step procedure that, while equivalent in the limit of infinite data, gives higher
accuracies for finite corpora and provides better sample complexity.

So, in summary we estimate a hidden state associated with words by computing the dom-
inant canonical correlations between target words and the words in their immediate context.
The main computation, finding the singular value decomposition of a scaled version of the
co-occurrence matrix of counts of words with their contexts, can be done highly efficiently.
Use of CCA also allows us to prove theorems about the optimality of our reconstruction of
the state.

In the next section we show how to efficiently compute a vector that characterizes each
word type by using the left singular values of the above CCA to map from the word space
(size v) to the state space (size k). We call this mapping the eigenword dictionary for
words, as it associates with every word a vector that captures that word’s syntactic and
semantic attributes. As will be made clear below, the eigenword dictionary is arbitrary up
to a rotation, but captures the information needed for any linear model to predict properties
of the words such as part of speech or word sense.

3. Problem Formulation

Our goal is to estimate a vector for each word type that captures the distributional properties
of that word in the form of a low dimensional representation of the correlation between that
word and the words in its immediate context.

More formally, assume a document (in practice a concatenation of a large number of
documents) consisting of n tokens {w1, w2, ..., wn}, each drawn from a vocabulary of v
words. Define the left and right contexts of each token wi as the h words to the left or right
of that token. The context sits in a very high dimensional space, since for a vocabulary
of size v, each of the 2h words in the combined context requires an indicator function of
dimension v. The tokens themselves sit in a v dimensional space of words which we want to
project down to a k dimensional state space. We call the mapping from word types to their
latent vectors the eigenword dictionary.

4. It is important to note that it is possible to come up with PCA variants which take sequence information
into account.
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For a set of documents containing n tokens, define L,R ∈ Rn×vh as the matrices speci-
fying the left and right contexts of the tokens, and W ∈ Rn×v as the matrix of the tokens
themselves. In W, we represent the presence of the jth word type in the ith position in a
document by setting matrix element wij = 1. L and R are similar, but have columns for
each word in each position in the context. (For example, in the sentence “I ate green apples
yesterday.”, for a context of size h = 2, the left context of “green” would be “I ate” and the
right context would be “apples yesterday” and the third row of W would have a “1” in the
column corresponding to the word “green.”)

Define the complete context matrix C as the concatenation [L R]. Thus, for a trigram
representation with vocabulary size v words, history size h = 1, C has 2v columns – one for
each possible word to the left of the target word and one for each possible word to the right
of the target word.

W>C then contains the counts of how often each word w occurs in each context c, the
matrix C>C gives the covariance of the contexts, and W>W, the word covariance matrix,
is a diagonal matrix with the counts of each word on the diagonal5.

All the matrices i.e. L, R, W and C, are instantiations of the underlying multivariate
random variables l, r, w and c of dimensions vh, vh, v and 2vh respectively. We define these
multivariate random variables as we will operate on them to prove the theoretical properties
of some of our algorithms.

We want to find a vector representation of each of the v word types such that words
that are distributionally similar (ones that have similar contexts) have similar state vectors.
We will do this using Canonical Correlation Analysis (CCA) (Hotelling, 1935; Hardoon
and Shawe-Taylor, 2008), by taking the CCA between the combined left and right contexts
C = [L R] and their associated tokens, W.

3.1 One Step CCA (OSCCA)

Using the above, we can define a “One step CCA” (OSCCA), procedure to estimate the
eigenword dictionary as follows:

(φw,φc) = CCA(W,C), (2)

where the v × k matrix φw contains the eigenword dictionary that characterizes each of the
v words in the vocabulary using a k dimensional vector. More generally, the “state” vectors
S for the n tokens can be estimated either from the context as Cφc or (trivially) from the
tokens themselves as Wφw. Its important to note that both these estimation procedures
give a redundant estimate of the same hidden “state.”

The left canonical correlates found by OSCCA give an optimal approximation to the
state of each word, where “optimal” means that it gives the linear model of a given size,
k that is best able to estimate labels that depend linearly on state, subject to only using
the word and not its context. The right canonical correlates similarly give optimal state
estimates given the context.

5. Due to the Zipfian nature of the word distribution, we will pretend that the means are all in fact zero
and refer to these matrices as covariance matrices, when in fact they are second moment matrices.
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OSCCA, as defined in Equation 2 thus gives an efficient way to calculate the eigenword
dictionary φw for a set of v words given the context and associated word matrices from a
corpus.

3.1.1 Theoretical Properties

We now discuss how well the hidden state can be estimated from the target word. (A similar
result can be derived for estimating hidden state from the context.) The state estimated is
arbitrary up to any linear transformation, so all our comments address our ability to use
the state to estimate some label which depends linearly on the state.

Keeping the dominant singular vectors in φw and φc provides two different bases for the
estimated state. Each is optimal in its own way, as explained below.

The following Theorem 1 shows that the left canonical correlates give an optimal ap-
proximation to the state of each word (in the sense of being able to estimate an emission or
label y for each state), subject to only using the word and not its context.

Theorem 1 Let {wi, ci, yi} (∈ Rv × Rhv × R) for i = 1 . . . n be n observations of random
variables drawn i.i.d. from some distribution (pdf or pmf) D(w, c, y). We call the pair
(y1 . . . yn, β) a linear context problem if

1. yi is a linear function of the context (i.e. yi = α>ci).

2. β>wi is the best linear estimator of yi given wi, namely β minimizes
∑n

i=1(yi−β>wi)2
and

3. Var(yi) ≤ 1.

Let (φw, φc) ≡ CCA(W, C) where W and C are the matrices constructed from {w}ni=1 and
{c}ni=1 respectively. Also, let φw

i be the ith left singular vector. Then, for all ε > 0 there
exists a k such that for any linear context problem (y1 . . . yn, β), there exists a γ ∈ Rk such
that ŷi =

∑k
j=1 γjφ

ji
w is a good approximation to yi in the sense that

∑n
i=1(ŷi− β>wi)2 ≤ ε.

Please see Appendix A for the proof.

To understand the above theorem, note that we would have liked to have a linear regres-
sion predicting some label y from the original data w. However, the original data is very
high (‘v’) dimensional. Instead, we can first use CCA to map high dimensional vectors w
to lower dimensional vectors φw, from which y can be predicted. For example with a few
labeled examples of the form (w, y), we can recover the γi parameters using linear regression.
The φw subspace is guaranteed to hold a good approximation. A special case of interest
occurs when estimating a label z (= α>c) plus zero mean noise. In this case, one can pick
y = E(z) and proceed as above. This effectively extends the theorem to the case where the
mapping from c to y is random, not deterministic.

Note that if we had used covariance rather than correlation as done by LSA/PCA then
in the worst case, the key singular vectors for predicting state could be those with arbitrarily
small singular values. This corresponds to the fact that for principle component regression
(PCR), there is no guarantee that the largest principle components will prove predictive of
an associated label.
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One can think of Theorem 1 as implicitly estimating a k-dimensional hidden state from
the observed w. This hidden state can be used to estimate y. Note that for Theorem 1, the
state estimate is “trivial” in the sense that because it comes from the words, not the context,
every occurrence of each word must give the same state estimate. This is attractive in that
it associates a latent vector with every word type, but limiting in that it does not allow
for any word ambiguity. The right canonical vectors allow one to estimate state from the
context of a word, giving different state estimates for the same word in different contexts, as
is needed for word sense disambiguation. We relegate that discussion to later in the paper,
when we discuss induction of context-specific word embeddings. For now, we focus on the
simpler use of left canonical covariates to map each word type to a k dimensional vector.

4. Efficient Eigenwords with Better Sample Complexity

OSCCA is optimal only in the limit of infinite data. In practice, data is, of course, always
limited. In languages, lack of data comes about in two ways. Some languages are resource
poor; one just does not have that many tokens of them (especially languages that lack a
significant written literature). Even for most modern languages, many of the individual
words in them are quite rare. Due to the Zipfian distribution of words, many words do not
show up very often. A typical year’s worth of Wall Street Journal text only has “lasagna” or
“backpack” a handful of times and “ziti” at most once or twice. To overcome these issues we
propose a two-step procedure which gives rise to two algorithms, Two Step CCA (TSCCA)
and Low-Rank Multi-View Learning (LR-MVL) that have better sample complexity for rare
words.

4.1 Two Step CCA (TSCCA) for Estimating Eigenword Dictionary

We now introduce our two step procedure TSCCA of computing an eigenword dictionary
and show theoretically that it gives better estimates than the OSCCA method described in
the last section.

In the two-step method, instead of taking the CCA between the combined context [L R]
and the words W, we first take the CCA between the left and right contexts and use the
result of that CCA to estimate the state S (an empirical estimate of the true hidden state
~) of all the tokens in the corpus from their contexts. Note that we get partially redundant
state estimates from the left context and from the right context; these are concatenated to
make combined state estimate. This will contain some redundant information, but will not
lose any of the differences in information from the left and right sides. We then take the
CCA between S and the words W to get our final eigenword dictionary. This is summarized
in Algorithm 1. The first step, the CCA between L and R, must produce at least as many
canonical components as the second step, which produces the final output.

The two step method requires fewer tokens of data to get the same accuracy in estimating
the eigenword dictionary because its final step estimates fewer parameters O(vk) than the
OSCCA does O(v2).

Before stating the theorem, we first explain this intuitively. Predicting each word as a
function of all other word combinations that can occur in the context is far sparser than
predicting low dimensional state from context, and then predicting word from state. Thus,
for relatively infrequent words, OSCCA should have significantly lower accuracy than the
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Algorithm 1 Two step CCA
1: Input: L,W,R
2: (φl,φr) = CCA(L,R)
3: S = [Lφl Rφr]
4: (φs,φw) = CCA(S,W)
5: Output: φw, the eigenword dictionary

two step version. Phrased differently, mapping from context to state and then from state
to word (TSCCA) gives a more parsimonious model than mapping directly from context to
word (OSCCA).

The relative ability of OSCCA to estimate hidden state compared to that of TSCCA
can be summarized as follows:

Theorem 2 Given a matrix of words, W and their associated left and right contexts, L and
R with vocabulary size v, context size h, and corpus of n tokens. Consider a linear estimator
built on the state estimates estimated by either TSCCA or OSCCA, then the ratio of their
squared prediction errors (i.e. relative statistical efficiency) is h+k

hv .

Please see Appendix A for the proof.

Since the corpora we care about (i.e. text and language corpora) usually have vh � h+ k,
the TSCCA procedure will in expectation correctly estimate hidden state with a much
smaller number of components k than the one step procedure. Or, equivalently, for an esti-
mated hidden state of given size k, TSCCA will correctly estimate more of the hidden state
components.

As mentioned earlier, words have a Zipfian distribution so most words are rare. For
such rare words, if one does a CCA between them and their contexts, one will have very
few observations, and hence will get a low quality estimate of their eigenword vector. If, on
the other hand, one first estimates a state vector for the rare words, and then does a CCA
between this state vector and the context, the rare words can be thought of as borrowing
strength from more common distributionally similar words. For example, “umbrage” (56,020)
vs. “annoyance” (777,061) or “unmeritorious” (9,947) vs. “undeserving” (85,325). The
numbers in parentheses are the number of occurrences of these words in the Google n-gram
collection used in some of our experiments.

4.2 Low Rank Multi-View Learning (LR-MVL)

The context around a word, consisting of the h words to the right and left of it, sits in a high
dimensional space, since for a vocabulary of size v, each of the h words in the context requires
an indicator function of dimension v. So, we propose an algorithm Low Rank Multi-View
Learning (LR-MVL), where we work in the k dimensional space to begin with.

The key move in LR-MVL is to project the hv-dimensional L and R matrices down to
a k dimensional state space before performing the first CCA. This is where it differs from
TSCCA. Thus, all eigenvector computations are done in a space that is v/k times smaller
than the original space. Since a typical vocabulary contains at least 100, 000 words, and we
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use state spaces of order k ≈ 100 dimensions, this gives a 1,000-fold reduction in the size of
calculations that are needed.

LR-MVL iteratively updates the real-valued state of a token Zt, till convergence. Since,
the state is always real-valued, this also allows us to replace the projected left and right
contexts with exponential smooths (weighted average of the previous (or next) token’s state
i.e. Zt−1 (or Zt+1) and previous (or next) token’s smoothed state i.e. St−1 (or St+1).),
of them at a few different time scales. One could use a mixture of both very short and
very long contexts which capture short and long range dependencies as required by NLP
problems as NER, Chunking, WSD etc. Since exponential smooths are linear, we preserve
the linearity of our method.

We now describe the LR-MVL algorithms.

4.2.1 The LR-MVL Algorithms

Based on our theory (described in next subsection), various algorithms are possible for LR-
MVL. We provide two algorithms, Algorithms 2, 3 (without and with exponential smooths).

Algorithm 2 LR-MVL Algorithm - Learning from Large amounts of Unlabeled Data (no
exponential smooths).
1: Input: Token sequence Wn×v, state space size k.
2: Initialize the eigenfeature dictionary φw to random values N (0, 1).
3: repeat
4: Project the left and right context matrices Ln×vh and Rn×vh down to ‘k’ dimensions and

compute CCA between them. [φl,φr]=CCA(Lφh
w, Rφh

w). //φh
w is the stacked version of φw

matrix as many times as the context length ‘h.’
5: Normalize φ(k)

l and φ(k)
r . //Divide each row by the maximum absolute value in that row

(Scales between -1 and +1).
6: Compute a second CCA between the estimated state and the word itself [φw,φc]=CCA(W,

[Lφh
wφ

(k)
l , Rφh

wφ
(k)
r ]).

7: Compute the change in φw from the previous iteration
8: until |∆φh

w| < ε

9: Output: φl, φr, φw .

A few iterations (∼ 10) of the above algorithms are sufficient to converge to the solution6.

4.2.2 Theoretical Properties of LR-MVL

We now present the theory behind the LR-MVL algorithms; particularly we show that the
reduced rank matrix φw allows a significant data reduction while preserving the informa-
tion in our data and the estimated state does the best possible job of capturing any label
information that can be inferred by a linear model.

The key difference from TSCCA is that we can initialize the state of each word randomly
and work in a low (k) dimensional space from the beginning, iteratively refine the state till
convergence and still we can recover the eigenword dictionary φw.

6. Though the optimization problem and our iterative procedure are non-convex, empirically we did not
face any issues with convergence.
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Algorithm 3 LR-MVL Algorithm - Learning from Large amounts of Unlabeled Data (with
exponential smooths).
1: Input: Token sequence Wn×v, state space size k, smoothing rates αj

2: Initialize the eigenfeature dictionary φw to random values N (0, 1).
3: repeat
4: Set the state Zt (1 < t ≤ n) of each token wt to the eigenword vector of the corre-

sponding word.
Zt = (φw : w = wt)

5: Smooth the state estimates before and after each token to get a pair of views for each
smoothing rate αj .
S
(l,j)
t = (1− αj)S(l,j)

t−1 + αjZt−1 // left view L

S
(r,j)
t = (1− αj)S(r,j)

t+1 + αjZt+1 // right view R.
where the tth rows of L and R are, respectively, concatenations of the smooths S(l,j)

t

and S(r,j)
t for each of the α(j)s.

6: Find the left and right canonical correlates, which are the eigenvectors φl and φr of
(L>L)−1L>R(R>R)−1R>Lφl = λφl.
(R>R)−1R>L(L>L)−1L>Rφr = λφr.

7: Project the left and right views on to the space spanned by the top k left and right
CCAs respectively

Xl = Lφ
(k/2)
l and Xr = Rφ

(k/2)
r

where φ(k)
l , φ(k)

r are matrices composed of the singular vectors of φl, φr with the k
largest magnitude singular values. Estimate the state for each word wt as the union
of the left and right estimates: Z = [Xl, Xr]

8: Compute a second CCA between the estimated state and the word itself
[φw,φz]=CCA(W, Z).

9: Normalize φw. //Divide each row by the maximum absolute value in that row (Scales
between -1 and +1).

10: Compute the change in φw from the previous iteration.
11: until |∆φw| < ε
12: Output: φkl , φ

k
r , φw .

As earlier, let L be an n×hv matrix giving the words in the left context of each of the n
tokens, where the context is of length h, R be the corresponding n×hv matrix for the right
context, and W be an n × v matrix of indicator functions for the words themselves. Note
that L, R and W are the observed instantiations of the corresponding multivariate random
variables l, r and w.

The theory of LR-MVL hinges on four assumptions which are described in detail in the
appendix. Basically, they entail that there exists a k dimensional linear hidden state for l,
r and w and that they come from a HMM with rank k observation and transition matrices.
It’s further assumed that the pairwise expected correlations between l, r and w, also have
rank k.
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Lemma 3 Define φw as the left singular vectors:

φw ≡ CCA(w, [l r])left.

where CCA(z, w) is defined as in Equation 1 but using population covariance matrices i.e.
Czw = E(z>w), Czz = E(z>z) and Cww = E(w>w).
Under assumptions 2, 3 and 1A(in appendix) such that if (φl,φr) ≡ CCA(l, r) then

φw = CCA(w, [lφl rφr])left.

Please see Appendix A for the proof.
Lemma 3 shows that instead of finding the CCA between the full context and the words,

we can take the CCA between the Left and Right contexts, estimate a k dimensional state
from them, and take the CCA of that state with the words and get the same result. Lemma
3 is similar to Theorem 2, except that it does not provide ratios of the estimated state sizes.

Let φhw denote a matrix formed by stacking h copies of φw on top of each other. Right
multiplying l or r by φhw projects each of the words in that context into the k-dimensional
reduced rank space.

The following theorem addresses the core of the LR-MVL algorithm, showing that there
is an φw which gives the desired dimensionality reduction. Specifically, it shows that the
previous lemma also holds in the reduced rank space.

Theorem 4 Under assumptions 1, 1A and 2 (in appendix) there exists a unique matrix φw
such that if

(φhl ,φ
h
r ) ≡ CCA(lφhw, rφ

h
w),

then
φw = CCA(w, [lφhwφ

h
l rφhwφ

h
r ])left,

where φhw is the stacked form of φw.

Please see Appendix A for the proof7.
Because of the Zipfian distribution of words, many words are rare or even unique. So, just

as in the case of TSCCA, CCA between the rare words and context will not be informative,
whereas finding the CCA between the projections of left and right contexts gives a good
state vector estimate even for unique words. One can then fruitfully find the CCA between
the contexts and the estimated state vector for their associated words.

5. Generating Context Specific Embeddings

Once we have estimated the CCA model using any of our algorithms (i.e. OSCCA, TSCCA,
LR-MVL), it can be used to generate context specific embeddings for the tokens from train-
ing, development and test sets (as described in Algorithm 4). These embeddings could be

7. It is worth noting that our matrix φw corresponds to the matrix Û used by (Hsu et al., 2009; Siddiqi et al.,
2010). They showed that U is sufficient to compute the probability of a sequence of words generated by
an HMM, our φw provides a more statistically efficient estimate of U than their Û, and hence can also
be used to estimate the sequence probabilities.
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further supplemented with other baseline features and used in a supervised learner to predict
the label of the token.

Algorithm 4 Inducing Context Specific Embeddings for Train/Dev/Test Data
1: Input: Model (φk

l , φ
k
r , φw) output from above algorithm and Token sequences Wtrain, (Wdev,

Wtest)
2: Project the left and right views L and R onto the space spanned by the top k left and right

CCAs respectively. If algorithm is Algorithm 3, then, smooth L and R first.
Xl = Lφk

l and Xr = Rφk
r

and the words onto the eigenfeature dictionary Xw = W trainφw

3: Form the final embedding matrix Xtrain:embed by concatenating these three estimates of state
Xtrain:embed = [Xl Xw Xr]

4: Output: The embedding matrices Xtrain:embed, (Xdev:embed, Xtest:embed) with context-
specific representations for the tokens.

Note that we can get context “oblivious” embeddings i.e. one embedding per word type,
just by using the eigenfeature dictionary φw. Later in the experiments section we show that
this approach of inducing context specific embeddings gives results which are similar to a
simpler alternative of just using the context “oblivious” embeddings but augmenting them
with the embeddings of the words in a window of 2 around the current word before using
them in a classifier.

6. Efficient Estimation

As mentioned earlier, CCA can be done by taking the singular value decomposition of a
matrix. For small matrices, this can be done using standard functions in e.g. MATLAB, but
for very large matrices (e.g. for vocabularies of tens or hundreds of thousands of words), it is
important to take advantage of the recent advances in SVD algorithms. For our experiments
we use the method of (Halko et al., 2011), which uses random projections to compute SVD
of large matrices.

The key idea is to find a lower dimensional basis for A, and to then compute the singular
vectors in that lower dimensional basis. The initial basis is generated randomly, and taken
to be slightly larger than the eventual basis. If A is v×hv, and we seek a state of dimension
k, we start with a hv × (k + l) matrix Ω of random numbers, where l is number of “extra”
basis vectors between 0 and k. We then project A onto this matrix and take the SVD
decomposition of the resulting matrix (A ≈ ÛΛ̂V̂>).

Since AΩ is v × (k + l), this is much cheaper than working on the original matrix A.
We keep the largest k components of U and of V, which form a left and a right basis for A
respectively.

This procedure is repeated for a few (∼ 5) iterations. The algorithm is summarized in
Algorithm 5. The runtime of the procedure for projecting a matrix of size m × p down to
a size m × k where p � k is O(mpk) floating point operations, which in our case becomes
O(v2hk).

(Halko et al., 2011) prove a number of nice properties of the above algorithm. In partic-
ular, they guarantee that the algorithm, even without the extra iterations in steps 3 and 6
produces an approximation whose error is bounded by a small polynomial factor times the
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Algorithm 5 Randomized singular value decomposition
1: Input: Matrix A of size v × hv, the desired hidden state dimension k, and the number

of “extra” singular vectors, l
2: Generate a hv × (k + l) random matrix Ω
3: for i =1:5 do
4: M = AΩ.
5: [Q,R]=QR(M) //Find v × (k + l) orthogonal matrix Q.
6: B = Q>A
7: Ω = B
8: end for
9: Find the SVD of B. [Û, Λ̂, V̂>] =SVD(B), and keep the k components of Û with the

largest singular values.
10: Ã = QÛ. //Compute the rank-k projection.
11: Output: The rank-k approximation Ã. (Similar procedure can be repeated to get the

right singular values and the corresponding projections.)

size of the largest singular value whose singular vectors are not part of the approximation,
σk+1. They also show that using a small number of “extra” singular vectors (l) results in a
substantial tightening of the bound, and that the extra iterations, which correspond to power
iteration, drive the error bound exponentially quickly to one times the largest non-included
singular value, σk+1 and also provide better separation between the singular values.

7. Evaluating Eigenwords

In this section we provide qualitative and quantitative evaluation of the various eigenword
algorithms.

The state estimates for words capture a wide range of information about them that can
be used to predict part of speech, linguistic features, and meaning. Before presenting a more
quantitative evaluation of predictive accuracy, we present some qualitative results showing
how word states, when projected in appropriate directions usefully characterize the words.

We compare our approach against several state-of-the-art word embeddings:

1. Turian Embeddings (C&W and HLBL) (Turian et al., 2010).

2. SENNA Embeddings (Collobert et al., 2011).

3. word2vec Embeddings (Mikolov et al., 2013a,b).

We also compare against simple PCA/LSA embeddings and other model based ap-
proaches wherever applicable.

We downloaded the Turian embeddings (C&W and HLBL), from http://metaoptimize.
com/projects/wordreprs and use the best ‘k’ reported in the paper (Turian et al., 2010)
i.e. k=200 and 100 respectively. SENNA embeddings were downloaded from http://ronan.
collobert.com/senna/. word2vec code was downloaded from https://code.google.com/
p/word2vec/. Since they made the code available we could train them on the exact same
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corpora, had the exact same context window and vocabulary size as the eigenword em-
beddings. The PCA baseline used is similar to the one that has recently been proposed
by (Lamar et al., 2010) except that here we are interested in supervised accuracy and not
the unsupervised accuracy as in that paper.

In the results presented below (qualitative and quantitative), we trained all the algo-
rithms (including eigenwords) on Reuters RCV1 corpus (Rose et al., 2002) for uniformity of
comparison8. Case was left intact and we did not do any other “cleaning” of data. Tokeniza-
tion was performed using NLTK tokenizer (Bird and Loper, 2004). RCV1 corpus contains
Reuters newswire from Aug ’96 to Aug ’97 and containing about 215 million tokens after
tokenization.

Unless otherwise stated, we consider a fixed window of two words (h=2) on either side
of a given word and a vocabulary of 100,000 most frequent words for all the algorithms9, in
order to ensure fairness of comparison.

Eigenword algorithms are robust to the dimensionality of hidden space (k), so we did not
tune it and fixed it at 200. For other algorithms, we report results using their best hidden
space dimensionality.

Our theory and CCA in general (Bach and Jordan, 2005) rely on normality assump-
tions10, however the words follow Zipfian (heavy tailed) distribution. So, we took the
square root of the word counts in the context matrices (i.e. W>C) before running OS-
CCA, TSCCA and LR-MVL(I). This squishes the word distributions and makes them look
more normal (Gaussian). This idea is not novel and dates back in statistics to Anscombe
Transform (Anscombe, 1948) and has precedents even in word representation learning liter-
ature (Turney and Pantel, 2010).

We ran LR-MVL(I) and LR-MVL(II) for 5 iterations and only used one exponential
smooth of 0.5 for LR-MVL(II). Table 1 shows the details of all the embeddings used in our
experiments.

8. Qualitative Evaluation of OSCCA

To illustrate the sorts of information captured in our state vectors, we present a set of
figures constructed by projecting selected small sets of words onto the space spanned by the
second and third largest principal components of their eigenword dictionary values, which
are simply the left canonical correlates calculated from Equation 2. (The first principle
component generally just separates the selected words from other words, and so is less
interesting here.)

Figure 3 shows plots for three different sets of words. The left column uses the eigen-
word dictionary learned using OSCCA (CCA(W, C), where C=[L R] with h=2 on either
side) (the other eigenword algorithms gave similar results), while the right column uses the
corresponding latent vectors derived using PCA on the same data. In all cases, the 200-

8. word2vec, PCA and Turian (C&W and HLBL) embeddings are all trained on Reuters RCV1, but SENNA
embeddings (training code not available) were trained on a larger Wikipedia corpus.

9. Turian (C&W and HLBL), SENNA embeddings had much bigger vocabulary sizes of 268,000 and 130,000,
though they also use a window of 2 as context.

10. CCA can be thought of as least squares regression (Please see the proof of Theorem 2 in Appendix A.)
and hence has error terms distributed normally.
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Embedding Unlabeled Data
Trained

Window size Vocab. Size Hidden
State
Size

Availability

C&W (Turian) Reuters RCV1
cleaned and lower-
cased (See Turian
et al. 2010.)

2 268,810 200 Only Em-
beddings
available
(No Code).

HLBL (Turian) Reuters RCV1
cleaned and lower-
cased (See Turian
et al. 2010.)

2 268,810 100 Only Em-
beddings
available
(No Code).

SENNA Wikipedia (much
larger than RCV1)
(See Collobert
et al. 2011.)

2 130,000 50 Only Em-
beddings
available
(No Code).

Word2vec (SK-
Continuous Skip-
gram) & (CB-
Continuous Bag-of-
words)

Reuters RCV1 un-
cleaned and case in-
tact

2 100,000 200 Code avail-
able

Eigenwords Reuters RCV1 un-
cleaned and case in-
tact

2 100,000 200 Code
and Em-
beddings
available

Table 1: Details of various embeddings used in the experiments. Note: Eigenwords and
Word2vec provide the most controlled comparison.

dimensional vectors have been projected onto two dimensions (using a second PCA) so that
they can be visualized.

The PCA algorithm differs from CCA based (eigenword) algorithms in that it does not
whiten the matrices via (C−1/2zz and C

−1/2
ww ) before performing SVD. In other words, the

PCA algorithm just operates on W>C. If one considers a word and its two grams to the
left and right as a document, then its equivalent to the Latent Semantic Analysis (LSA)
algorithm.

The results for various (handpicked) semantic categories are shown in Figure 3 and 4.
The top row shows a small set of randomly selected nouns and verbs. Note that for

CCA, nouns are on the left, while verbs are on the right. Words that are of similar or
opposite meaning (e.g. “agree” and “disagree”) are distributionally similar, and hence close.
The corresponding plot for PCA shows some structure, but does not give such a clean
separation. This is not surprising; predicting the part of speech of words depends on the
exact order of the words in their context (as we capture in CCA); a PCA-style bag-of-words
can’t capture part of speech well.

The bottom row in Figure 3 shows names of numbers or the numerals representing
numbers and years. Numbers that are close to each other in value tend to be close in the
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Center Word OSCCA NN PCA NN
market markets, trade, currency,

sector, activity.
dollar, economy, govern-
ment, sector, industry.

company firm, group, giant, opera-
tor, maker.

government, group, dol-
lar, following, firm.

Ltd Limited, Bhd, Plc, Co,
Inc.

Corp, Plc, Inc, name, sys-
tem.

President Governor, secretary,
Chairman, leader, Direc-
tor.

Commerce, General, fuel,
corn, crude.

Nomura Daiwa, UBS, HSBC,
NatWest, BZW.

Chrysler, Sun, Delta, Bre-
X, Renault.

jump drop, fall, rise, decline,
climb.

surge, stakes, slowdown,
participation, investing.

rupee peso, zloty, crown, pound,
franc.

crown, CAC-40, FTSE,
Nikkei, 30-year.

Table 2: Nearest Neighbors of OSCCA and PCA word embeddings.

plot, thus suggesting that state captures not just classifications, but also more continuous
hidden features.

The plots in Figure 4 show a similar trend i.e., eigenword embeddings are able to provide
a clear separation between different syntactic/semantic categories and capture a rich set of
features characterizing the words, whereas PCA mostly just squishes them together.

Table 2 shows the five nearest neighbors for a few representative words using OSCCA
and PCA. As can be seen, the OSCCA based nearest neighbors capture subtle semantic and
syntactic cues e.g Japanese investment bank (Nomura) having another Japanese investment
bank (Daiwa) as the nearest neighbor, whereas the PCA nearest neighbors are more noisy
and capture mostly syntactic aspects of the word.

9. Quantitative Evaluation

This section describes the performance (accuracy and richness of representation) of various
eigenword algorithms. We evaluate the quality of the eigenword dictionary by using it in a
supervised learning setting to predict a wide variety of labels that can be attached to words.

We perform experiments for a variety of NLP tasks including, Word Similarity, Sentiment
Classification, Named Entity Recognition (NER), chunking, Google semantic and syntactic
analogy tasks and Word Sense Disambiguation (WSD) to demonstrate the richness of the
state learned by eigenwords and that they perform comparably or better than other state-
of-the-art approaches. For these tasks, we report results using the best eigenwords for
compactness, though all the four algorithms gave similar performances.

However, before we proceed to do that, we compare OSCCA against TSCCA, LR-MVL(I)
and LR-MVL(II) embeddings on a set of Part of Speech (POS) tagging problems for different
languages, looking at how the predictive accuracy scales with corpus size for predictions on
a fixed vocabulary. These results use small corpora and demonstrate that TSCCA, LR-
MVL(I) and LR-MVL(II) perform better for rarer words.
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Figure 3: Projections onto two dimension of selected words in different categories using both
OSCCA (left) and PCA (Right). Top to bottom: 1). (Nouns vs Verbs): house,
home, dog, truck, boat, word, river, cat, car, sleep, eat, push, drink, listen, carry,
talk, disagree, agree. 2). (Eateries vs vehicles): apples, pears, plums, oranges,
peaches, fruit, cake, pie, dessert, truck, boat, car, motorcycle. 3). (Numerals vs
letter numbers vs years): one, two, three, four, five, six, seven, eight, nine, ten, 1,
2,. . ., 10, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006,
2007, 2008, 2009.

3053



Dhillon, Foster and Ungar

−2 −1 0 1 2 3

−
2

−
1

0
1

2

PC 1

P
C

 2

his
her

myyour

drink
eat

sleep

friday
tuesdaymonday

wednesda

−0.20 −0.15 −0.10 −0.05 0.00

−
0

.1
0

−
0

.0
5

0
.0

0
0

.0
5

0
.1

0

PC 1

P
C

 2 his her

my
yourdrinkeatsleepfridaytuesdamondawednesda

−2 −1 0 1 2

−
2

−
1

0
1

2

PC 1

P
C

 2

he

his

they

we

our

them

she

him

you

her

us

i

hers

−0.8 −0.6 −0.4 −0.2 0.0 0.2

−
0

.2
0

.0
0

.2
0

.4
0

.6

PC 1

P
C

 2 he

his

theywe

ourthem
she

him

you

herusihers

−3 −2 −1 0 1 2

−
2

−
1

0
1

2

PC 1

P
C

 2

pressure

poundsbarrels
miles

man
woman

wifelawyer
sonfather

tons

mother
brother

tension

daughter

acres

degrees
husband

doctorboygirl

sister

stress

boss

inches

meters

citizen

farmer

teacher

temperature

guy

gravity

density

uncle

viscosity

bytes

permeability

0.00 0.05 0.10 0.15

−
0

.1
5

−
0

.1
0

−
0

.0
5

0
.0

0

PC 1

P
C

 2

pressure pounds
barrels

miles

manwomanwifelawyersonfathertonsmotherbrothertensiondaughter
acresdegreeshusbanddoctorboygirlsisterstressbossinchesmeterscitizenfarmerteachertemperatureguygravitydensityuncleviscositybytespermeability

Figure 4: Projections onto two dimension of selected words in different categories using
both OSCCA (left) and PCA (Right). Top to bottom: 1). (Weekdays vs verbs vs
pronouns): monday, tuesday, wednesday, sunday, friday, eat, drink, sleep, his, her,
my, your. 2). (Different kinds of pronouns): i, you, he, she, they, we, us, them,
him, her, our, his, hers. 3). (Nouns vs Adjectives vs Units of measurement ):
man, woman boy, girl, lawyer, doctor, guy, farmer, teacher, citizen, mother, wife,
father, son, husband, brother, daughter, sister, boss, uncle, pressure, temperature,
permeability, density, stress, viscosity, gravity, tension, miles, pounds, degrees,
inches, barrels, tons, acres, meters, bytes.
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Language Number of POS tags Number of tokens
English 17 100311
Danish 25 100238

Bulgarian 12 100489
Portuguese 22 100367

Table 3: Description of the POS tagging data sets

9.1 Part of Speech (POS) Tagging

In this experiment we compare the performance of various eigenword algorithms on the
task of non-disambiguating POS tagging for four languages; i.e., each word type has a
single POS tag. Table 2 provides statistics on all the corpora used, namely: the Wall Street
Journal portion of the Penn treebank (Marcus et al., 1993) (we consider the 17 tags of (PTB
17) (Smith and Eisner, 2005)), the Bosque subset of the Portuguese Floresta Sinta(c)tica
Treebank (Afonso et al., 2002), the Bulgarian BulTreeBank (Simov et al., 2002) (with only
the 12 coarse tags), and the Danish Dependency Treebank (DDT) (Kromann, 2003).

Note the corpora range widely in size; English has ∼ 1 million tokens whereas Danish
only has ∼ 100k tokens. To address this data imbalance we kept only the first ∼ 100k tokens
of the larger corpora so as to perform a uniform evaluation across all corpora.

The goal of this experiment is see to how the eigenword dictionary estimates for the
word types (for a fixed vocabulary) improve with increased training data.

Theorem 2 implies that the difference between OSCCA and TSCCA/LR-MVL(I)/LR-
MVL(II) should be more pronounced at smaller sample sizes, where the errors are higher
and that they should have similar predictive power in the limit of large training data. We
therefore evaluate the performance of the methods on varying data sizes ranging from 5k to
the entire 100k tokens.

When varying the unlabeled data from 5k to 100k we made sure that they had the exact
same vocabulary to assure that the performance improvement is not coming from word types
not present in the 5k tokens but present in the total 100k. This gives a clear picture of the
effect of varying training set size.

To evaluate the predictive accuracy of the descriptors learned using different amounts
of unlabeled data, we learn a multi-class logistic regression to predict the POS tag of each
type. We trained using 80% of the word types chosen randomly and then tested on the
remaining 20% types. This procedure was repeated 10 times. Note that our train and test
sets do not contain any of the same word types11.

The accuracy of using OSCCA, TSCCA, LR-MVL(I), LR-MVL(II) and PCA features
in a supervised learner are shown in Figure 5 for the task of POS tagging. As can be seen
from the results, eigenword embeddings are significantly better (5% significance level in a
paired t-test) than the PCA-based supervised learner. Among the eigenwords, TSCCA,
LR-MVL(I) and LR-MVL(II) are significantly better than OSCCA for small amounts of
data and, as predicted by theory, the two become comparable in accuracy as the amount of
unlabeled data used to learn the CCAs becomes large.

11. As noted, we are doing non-disambiguating POS tagging so that each word type has a single POS tag,
so if the same word type occurred in both the training and testing data, a learning algorithm that just
memorized the training set would perform reasonably well.
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Figure 5: Plots showing accuracy as a function of number of tokens used to train the
PCA/eigenwords for various languages. Note: The results are averaged over
10 random, 80 : 20 splits of word types.

9.2 Word Similarity Task (WordSim-353)

A standard data set for evaluating vector-space models is the WordSim-353 data set (Finkel-
stein et al., 2001), which consists of 353 pairs of nouns. Each pair is presented without
context and associated with 13 to 16 human judgments on similarity and relatedness on a
scale from 0 to 10. For example, (professor, student) received an average score of 6.81, while
(professor, cucumber) received an average score of 0.31.

For this task, it is interesting to see how well the cosine similarity between the word
embeddings correlates with the human judgment of similarity between the same two words.
The results in Table 4 show the Spearman’s correlation between the cosine similarity of the
respective word embeddings and the human judgments.

As can be seen, eigenwords are statistically significantly (computed using resampled
bootstrap) better than all embeddings except SENNA.
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Model ρ× 100
PCA 30.25

Turian (C&W) 28.08
Turian (HLBL) 35.24

SENNA 44.32
word2vec (SK) 42.73
word2vec (CB) 42.97

eigenwords (OSCCA) 43.00
eigenwords (TSCCA) 44.85

eigenwords (LR-MVL(I)) 43.83
eigenwords (LR-MVL(II)) 37.92

Table 4: Table showing the Spearman correlation between the word embeddings based sim-
ilarity and human judgment based similarity. Note that the numbers for word2vec
are different from the ones reported elsewhere, which is due to the fact that we
considered a 100,000 vocabulary and a context window of 2 just like eigenwords,
in order to make a fair comparison.

9.3 Sentiment Classification

It is often useful to group words into semantic classes such as colors or numbers, profession-
als or disciplines, happy or sad words, words of encouragement or discouragement, and, of
course, words indicating positive or negative sentiment. Substantial effort has gone into cre-
ating hand-curated words that can be used to capture a variety of opinions about different
products, papers, or people. To pick one example, (Teufel, 2010) contains dozens of carefully
constructed lists of words that she uses to categorize what authors say about other scientific
papers. Her categories include “problem nouns” (caveat, challenge, complication, contradic-
tion,. . . ), “comparison nouns” (accuracy, baseline, comparison, evaluation,. . . ), “work nouns”
(account, analysis, approach,. . . ) as well as more standard sets of positive, negative, and
comparative adjectives.

Psychologists, in particular, have created many such hand curated lists of words, such
as the widely used LIWC collection (Pennebaker et al., 2001), which has a heterogeneous
set of word lists ranging from “positive emotion” to “pronouns,” “swear words” and “body
parts.” In the example below, we use words from a more homogeneous psychology collection,
a set of five dimensions that have been identified in positive psychology under the acronym
PERMA (Seligman, 2011):

• Positive emotion (aglow, awesome, bliss, . . . ),

• Engagement (absorbed, attentive, busy, . . . ),

• Relationships (admiring, agreeable, . . . ),

• Meaning (aspire, belong, . . . )

• Achievement (accomplish, achieve, attain, . . . ).
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Word sets Number of observations
Class I Class II

Positive emotion or not 81 162
Meaningful life or not 246 46
Achievement or not 159 70
Engagement or not 208 93
Relationship or not 236 204

Table 5: Description of the data sets used. All the data was collected from the PERMA
lexicon.

For each of these five categories, we have both positive words – ones that connote,
for example, achievement, and negative words, for example, un-achievement (amateurish,
blundering, bungling, . . . ). We would hope (and we show below that this is in fact true),
that we can use eigenwords not only to distinguish between different PERMA categories,
but also to address the harder task of distinguishing between positive and negative terms
in the same category. (The latter task is harder because words that are opposites, such as
“large” and “small,” often are distributionally similar.)

The description of the PERMA data sets is given in Table 5 and Table 6 shows results
for the five PERMA categories. As earlier, we used logistic regression for the supervised
binary classification.

As can be seen from the plots, the eigenwords perform significantly (5% significance level
in a paired t-test) better than all other embeddings in 3/5 cases and for the remaining 2
cases they perform significantly better than all embeddings except word2vec.

9.4 Named Entity Recognition (NER) & Chunking

In this section we present the experimental results of eigenwords on Named Entity Recog-
nition (NER) and chunking. For the previous evaluation tasks we were performing classifi-
cation of individual words in isolation, however NER and chunking tasks involve assigning
tasks to running text. This allows us to induce context specific embeddings i.e. a different
embedding for a word based on its context.

9.4.1 Datasets and Experimental Setup

For the NER experiments we used the data from CoNLL 2003 shared task and for chunk-
ing experiments we used the CoNLL 2000 shared task data12 with standard training, de-
velopment and testing set splits. The CoNLL ’03 and the CoNLL ’00 data sets had
∼ 204K/51K/46K and ∼ 212K/− /47K tokens respectively for Train/Dev./Test sets.
Named Entity Recognition (NER): We use the same set of baseline features as used

by (Zhang and Johnson, 2003; Turian et al., 2010) in their experiments. The detailed list of
features is as below:

• Current Word wi; Its type information: all-capitalized, is-capitalized, all-digits and so
on; Prefixes and suffixes of wi

12. More details about the data and competition are available at http://www.cnts.ua.ac.be/conll2003/
ner/ and http://www.cnts.ua.ac.be/conll2000/chunking/.
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• Word tokens in window of 2 around the current word i.e. d = (wi−2, wi−1, wi, wi+1, wi+2);
and capitalization pattern in the window.

• Previous two predictions yi−1 and yi−2 and conjunction of d and yi−1

• Embedding features (eigenwords, C&W, HLBL, Brown etc.) in a window of 2 around
the current word including the current word (when applicable).

Following (Ratinov and Roth, 2009) we use a regularized averaged perceptron model with
the above set of baseline features for the NER task. We also used their BILOU text chunk
representation and fast greedy inference, as it was shown to give superior performance.

We also augment the above set of baseline features with gazetteers, as is standard practice
in NER experiments. We also benchmark the performance of eigenwords on MUC7 out-of-
domain dataset which had 59K words. MUC7 uses a different annotation and has some
different Named Entity types that are not present in the CoNLL ’03 dataset, so it provides
a good test bed for eigenwords. As earlier, we performed the same preprocessing for this
dataset as done by (Turian et al., 2010).
Chunking: For our chunking experiments we use a similar base set of features as above:

• Current Word wi and word tokens in window of 2 around the current word i.e. d =
(wi−2, wi−1, wi, wi+1, wi+2);

• POS tags ti in a window of 2 around the current word.

• Word conjunction features wi∩wi+1, i ∈ {−1, 0} and Tag conjunction features ti∩ti+1,
i ∈ {−2,−1, 0, 1} and ti ∩ ti+1 ∩ ti+2, i ∈ {−2,−1, 0}.

• Embedding features in a window of 2 around the current word including the current
word (when applicable).

Since the CoNLL ’00 chunking data does not have a development set, we randomly sampled
1000 sentences from the training data (8936 sentences) for development. So, we trained our
chunking models on 7936 training sentences and evaluated their F1 score on the 1000 devel-
opment sentences and used a CRF13 as the supervised classifier. We tuned the magnitude
of the `2 regularization penalty in CRF on the development set. The regularization penalty
that gave best performance on development set was 2. Finally, we trained the CRF on the
entire (“original”) training data i.e. 8936 sentences.

9.4.2 Results

The results for NER and chunking are shown in Tables 7 and 8, respectively, which show
that eigenwords perform significantly better than state-of-the-art competing methods on
both NER and chunking tasks.

9.5 Cross Lingual Word Sense Disambiguation: SEMEVAL 2013

In cross-lingual word sense disambiguation (WSD) tasks, ambiguous English words are given
in context as input, and translations of these words into one or more target languages are

13. http://www.chokkan.org/software/crfsuite/
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F1-Score
Embedding/Model Dev. Set Test Set MUC7
Baseline

No Gazetteers

90.03 84.39 67.48
Brown 1000 clusters 92.32 88.52 78.84
Turian (C&W) 92.46 87.46 75.51
Turian (HLBL) 92.00 88.13 75.25
SENNA - 88.67 -
word2vec (SK) 92.54 89.40 76.21
word2vec (CB) 92.08 89.20 76.55
eigenwords (OSCCA) 92.94 89.67 79.85
eigenwords (TSCCA) 93.19 89.99 80.99
eigenwords (LR-MVL(I)) 92.82 89.85 78.60
eigenwords (LR-MVL(II)) 92.73 89.87 78.71
Brown, 1000 clusters

With Gazetteers

93.25 89.41 82.71
Turian (C&W) 92.98 88.88 81.44
Turian (HLBL) 92.91 89.35 79.29
SENNA - 89.59 -
word2vec (SK) 92.99 89.69 79.55
word2vec (CB) 92.93 89.89 79.94
eigenwords (OSCCA) 93.21 90.28 81.59
eigenwords (TSCCA) 93.96 90.59 82.42
eigenwords (LR-MVL(I)) 93.50 90.33 81.15
eigenwords (LR-MVL(II)) 93.49 90.10 80.34

Table 7: NER Results. Note: F1-score= Harmonic Mean of Precision and Recall. Note
that the numbers reported for eigenwords here are different than those in (Dhillon
et al., 2011) as we use a different vocabulary size and different dimensionality than
there.

Embedding/Model Test Set F1-Score
Baseline 93.79
Brown 3200 Clusters 94.11
Turian (HLBL) 94.00
Turian (C&W) 94.10
SENNA 93.94
word2vec (SK) 94.02
word2vec (CB) 94.16
eigenwords (OSCCA) 94.02
eigenwords (TSCCA) 94.23
eigenwords (LR-MVL(I)) 93.97
eigenwords (LR-MVL(II)) 94.13

Table 8: Chunking Results. Note that the numbers reported for eigenwords here are different
than those in (Dhillon et al., 2011) as we use a different vocabulary size and different
dimensionality than there.
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produced as output. This can be seen in contrast with more traditional monolingual WSD
tasks, in which word senses are instead chosen from a pre-determined sense inventory such
as WordNet (Fellbaum, 1998). By framing the problem in a multilingual setting, several
important issues are addressed at once. First, by using foreign words rather than human-
defined sense labels to resolve ambiguities, WSD systems can more directly be integrated
into machine translation and multilingual information retrieval systems, two major areas of
application. Moreover, such systems are generalizable to any languages for which sufficient
parallel data exists, and do not require the manual construction of sense inventories or
sense-tagged corpora for training.

9.5.1 Task Description

We focus on the SemEval 2013 cross-lingual WSD task (Lefever and Hoste, 2013), for which
20 English nouns were chosen for disambiguation. This was framed as an unsupervised
task, in which the only provided training data was a sentence-aligned subset of the Europarl
parallel corpus (Koehn, 2005). Six languages were included: the source language, English,
and the five target languages, namely Spanish, Dutch, German, Italian, and French.

To evaluate a system’s output, its answers were compared against the gold standard
translations, and corresponding precision and recall scores were computed.

Two evaluation schemes were used in this Semeval task: a Best evaluation metric and
an Out-of-Five evaluation metric. For the Best metric, systems could propose multiple
sense labels, but the resulting scores were divided by the number of guesses. For the Out-
of-Five metric, systems could propose up to five translations without penalty. Further
details about this task’s evaluation metric can be found in Section 4.1 of Lefever and Hoste
(2013).

9.5.2 System Description

Our baseline system was an adaptation of the layer one (L1) classifier described in Section
2 of Rudnick et al. (2013), which was one of the top-scoring systems in the SemEval 2013
cross-lingual WSD task. This system used a maximum entropy model trained on monolin-
gual features from the English source text, incorporating words, lemmas, parts of speech,
etc. within a small window of the ambiguous word being classified (Please see Figure 1 of
Rudnick et al. (2013) for a detailed list of features). Training instances were extracted pro-
grammatically from the provided Europarl subcorpus, using the code made publicly available
on the group’s GitHub repository14.

The MEGA Model Optimization Package (MegaM) (Daumé III, 2004) and its NLTK
interface (Bird et al., 2009) were used for training the models and producing output for the
test sentences.

Using the L1 classifier as a starting point, we began by making two minor modifications
to make the system more amenable to further changes. First, regularization was introduced
in the form of a Gaussian prior by setting the sigma parameter in NLTK’s MegaM interface
to a nonzero value. Second, “always-on” features were enabled, allowing the classifier to
explicitly model the prior probabilities of each output label. Building on this system, we
then introduced a variety of embeddings to accompany the existing lexical features. Each

14. https://github.com/hltdi/semeval2013
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Best Spanish Dutch German Italian French
Most-Frequent Baseline 23.23 20.66 17.43 20.21 25.74
Original L1 System 28.67 21.37 20.64 23.34 27.75
C&W 29.76 25.17 22.47 23.59 30.20
HLBL 28.34 24.60 22.35 23.13 29.54
SENNA 30.78 24.06 22.39 25.28 30.13
Word2Vec (CB) 29.59 25.07 22.73 23.34 30.23
Word2Vec (SK) 29.34 25.04 22.49 23.64 30.09
eigenwords (OSCCA) 30.10 24.58 22.79 24.53 30.37
eigenwords (TSCCA) 30.76 24.56 22.68 24.61 30.55
eigenwords (LR-MVL(I)) 30.36 24.51 22.92 24.17 30.30
eigenwords (LR-MVL(II)) 30.72 24.83 22.97 24.85 30.39

Table 9: Best metric F-scores averaged over the twenty English test words.

class of features was included independently of the others in a separate experiment to allow
for a direct comparison of the results.

9.5.3 Results

Our experiments were performed using the trial and test data sets from the SemEval 2010
competition, which were released as the trial data for the SemEval 2013 competition. Since
the same ambiguous English nouns were tested in both competitions, few changes to the
training process were required. The SemEval 2010 trial data was used to select appropriate
regularization parameters, and the SemEval 2010 test data was used for the final evaluations.

We used the most frequent translation of an ambiguous word in the training corpus to
obtain a baseline score for the Best evaluation metric, and the five most frequent transla-
tions to obtain a baseline score for the Out-of-Five evaluation metric. These scores are
presented alongside the results of the original L1 classifier and its extensions in Tables 9 and
10. All reported scores are macro averages of the F-scores for the twenty test words from
the SemEval 2010 test data. The best score in each category is bolded for emphasis.

We observe that in all cases, the top-scoring system includes some form of vector word
embeddings, indicating that these features indeed provide useful information beyond the lexi-
cal features from which they are derived. Moreover, the systems using eigenword embeddings
outperform the other systems in a majority of cases for both the Best and Out-of-Five
evaluation metrics.

9.5.4 Context Specific Embeddings?

The embeddings that we used above for the tasks of NER, Chunking and cross-lingual WSD
were the context “oblivious” embeddings i.e. we just used the φw matrix. As described in
Section 5 one could induce context specific embeddings also, which help in disambiguating
polysemous words. However it turns out that for the tasks of NER, Chunking and WSD
they did not give any additional improvement in accuracy. This is due to the fact that in
addition to the embedding of the current word we also use the embeddings of words in a
window of 2 around the current word as features. They serve as a proxy for the context
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Out-of-Five Spanish Dutch German Italian French
Most-Frequent Baseline 53.07 43.59 38.86 42.63 51.36
Original L1 System 60.93 46.12 43.40 51.89 57.91
C&W 62.07 48.81 45.06 55.42 63.21
HLBL 61.11 47.25 44.51 55.16 61.19
SENNA 62.88 49.15 45.22 55.92 62.28
Word2Vec (CB) 62.32 48.74 45.51 56.04 62.64
Word2Vec (SK) 61.97 48.35 45.42 56.04 62.55
eigenwords (OSCCA) 62.46 49.85 46.34 56.36 62.98
eigenwords (TSCCA) 62.99 49.53 46.60 55.91 63.37
eigenwords (LR-MVL(I)) 62.81 49.63 47.03 56.40 63.12
eigenwords (LR-MVL(II)) 63.05 49.58 46.86 56.23 63.51

Table 10: Out-of-Five metric F-scores averaged over the twenty English test words.

specific embeddings and capture similar discriminative context information as the context
specific embeddings do. However, if one only uses the embeddings of the current word
as features, then context specific embeddings give improved performance compared to the
context oblivious embeddings and the improvement is similar to using the context oblivious
embeddings and the embeddings of words in a window of 2 around that word as features.

9.6 Google Semantic and Syntactic Relations Task

(Mikolov et al., 2013a,b) present new syntactic and semantic relation data sets composed of
analogous word pairs. The syntactic relations dataset contains word pairs that are different
syntactic forms of a given word e.g. write : writes :: eat : eats There are nine such different
kinds of relations: adjective-adverb, opposites, comparative, superlative, present participle,
nation-nationality, past tense, plural nouns and plural verbs

The semantic relations dataset contains pairs of tuples of word relations that follow a
common semantic relation e.g. in Athens : Greece :: Canberra : Australia, where the two
given pairs of words follow the country-capital relation. There are three other such kinds of
relations: country-currency, man-woman, city-in-state and overall 8869 such pairs of words.
The task here is to find a word d that best fits the following relationship: a : b :: c : d
given a, b and c. They use the vector offset method, which assumes that the words can
be represented as vectors in vector space and computes the offset vector: yd = ea − eb + ec
where ea, eb and ec are the vector embeddings for the words a, b and c. Then, the best
estimate of d is the word in the entire vocabulary whose embedding has the highest cosine
similarity with yd. Note that this is a hard problem as it is a v class problem, where v is
the vocabulary size.

Table 11 shows the performance of various embeddings for semantic and syntactic relation
tasks. Here, as earlier, we trained eigenwords on a Reuters RCV1 with a window size of
2, however as can be seen it performed significantly better compared to all the embeddings
except word2vec. We conjectured that it could be due to the fact that we were taking too
small a context window which mostly captures syntactic information, which was sufficient
for the earlier tasks. So, we experimented with a window size of 10 with the hope that

3064



Eigenwords: Spectral Word Embeddings

a broader context window should be able to capture semantic and topic information. For
this configuration, the eigenwords’ performance was comparable to word2vec and as we had
intuited most of the improvement in performance took place on the semantic relation task 15.

Embedding/Model Semantic
Relation

Syntactic
Relation

Total Accu-
racy

Turian (C&W) 1.41 2.20 1.84
Turian (HLBL) 3.33 13.21 8.80
SENNA 9.33 12.35 10.98
eigenwords (Window size= 2) (Best) 12.41 30.27 22.28
word2vec (Window size= 10) (SK) 33.91 32.81 33.30
word2vec (Window size= 10) (CB) 31.05 36.21 33.90
eigenwords (Window size= 10) (OSCCA) 34.79 31.01 32.70
eigenwords (Window size= 10) (TSCCA) 6.06 10.19 8.34
eigenwords (Window size= 10) (LR-MVL(I)) 35.43 32.12 33.60
eigenwords (LR-MVL(II)) 5.41 19.20 13.03

Table 11: Accuracies for Semantic, Syntactic Relation Tasks and total accuracies.

9.6.1 Which Eigenword Embeddings to Use?

We proposed four algorithms for learning word embeddings and from a practitioners point
of view it is natural to ask: Which embedding do I use for my supervised NLP task? Based
on the experiments and our experience we found that OSCCA = TSCCA > LR-MVL (I) >
LR-MVL(II). In other words, OSCCA and TSCCA work remarkably well out-of-the-box and
are robust to the choice of the hidden state dimensionality (k) or the context size (h). Also,
since they are not iterative algorithms, they are faster to run than the LR-MVL algorithms.
LR-MVL(I) trails the OSCCA and TSCCA algorithms only slightly (not significantly) in
terms of performance and sometimes gave better performance than them e.g. on the Google
analogy tasks.

The LR-MVL algorithms are different in spirit than OSCCA and TSCCA as they involve
an iterative procedure. Unfortunately, since the algorithms involve a CCA operation, they
are non-convex and hence there are no convergence guarantees. It might be possible to
borrow some theoretical machinery from the alternating minimization literature (Netrapalli
et al., 2013) to get convergence bounds, but it is beyond the scope of this paper and we
leave it for future work. That said, empirically we never faced any issues regarding multiple
local-optima, convergence or matrix inversions. We repeated the process 20 times and both
the LR-MVL algorithms gave similar answers.

We found the LR-MVL(II) algorithm to be the least robust and highly sensitive to the
values and amounts of smooths used. Its behavior can be explained by its genesis and
our motivation for proposing it. LR-MVL(II)) is based on modeling language data using
time-series models (in fact exponential smoothing is an ARIMA(0,1,1) process). So, from
a modeling perspective LR-MVL(II) has a mature story but still empirically it performs
worse than simpler models like OSCCA and TSCCA. This, itself sheds some light on the
task of word embedding learning in that simple models work really well and are hard to

15. Note that here TSCCA’s performance is significantly worse than other algorithms. This should not be
entirely surprising as the theoretical analysis of TSCCA assumes squared loss and those guarantees need
not hold after performing vector arithmetic.
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beat. Perhaps, its so because the text data is not fully amenable to exponential smoothing,
like financial or economic time series data and too small or too big smooths scramble the
signal provided by the Zipfian distributed words. Also, since it performs smoothing on one
document at a time and is iterative, it can be significantly slower to run.

10. Conclusion & Future Work

In this paper we made two main contributions. First, we proposed four algorithms for
learning word embeddings (eigenwords) which are fast to train, have strong theoretical
properties, can induce context specific embeddings and have better sample complexity for
rare words. All the algorithms had a Canonical Correlation Analysis (CCA) style eigen-
decomposition at their core. We performed a thorough evaluation of eigenwords learned
using these algorithms, and showed that they were comparable to or better than other state-
of-the-art algorithms when used as features in a set of NLP classification tasks. Eigenwords
are able to capture nuanced syntactic and semantic information about the words. They
also have a clearer theoretical foundation than the competing algorithms, which allows us
to bound their error rate in recovering the true hidden state under linearity assumptions.

Second, we showed that linear models help us attain state-of-the-art performance on
text applications and there is no need to move to more complex non-linear models, e.g.
Deep Learning based models. In addition, spectral learning methods are highly scalable
and parallelizable and can incorporate the latest advances in numerical linear algebra as
black-box routines.

There are many open avenues for future research building on the above spectral methods.

1. Our word embeddings are based on modeling individual words based on their contexts;
it will be interesting to induce embeddings for entire phrases or sentences. There are
multiple possibilities here. One could directly model phrases by considering a phrase
as a “unit” rather than a word, perhaps taking the context of a word or phrase from
connected elements in a dependency or constituency parse tree. Another possibility is
to learn embeddings for individual words but then combine them in some manner to
get an embedding for a phrase or a sentence; some relevant work on this problem has
been done by (Socher et al., 2012, 2013).

2. Closely related is the idea of semantic composition. Recent advances in spectral learn-
ing for tree structures e.g. (Dhillon et al., 2012a; Cohen et al., 2012) may be able to
be extended to provide scalable principled alternative methods to the recursive neural
networks of (Socher et al., 2012, 2013).

3. Also it will be fruitful to study embeddings where the contexts are left and right
dependencies of a word rather than the neighboring words in the surface structure of
the sentence. This might give more precise embeddings with smaller data sets.

4. It will also be interesting to incorporate more domain knowledge into the learning of
eigenwords. For example, one could envision using ontologies like WordNet (Fellbaum,
1998) as priors in an otherwise data-driven embedding learning.
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Appendix A.

CCA by SVD. Proof of Equation 1:
Proof Assuming W is the n × v word matrix and C is the n × hv context matrix where
n is the number of tokens in the corpus, h is the context size and v is the vocabulary
size. Further Cwc = W>C, Ccc = C>C and Cww = W>W. The CCA objective is to
find vectors φw and φc such that the linear combinations sw = φ>wW and scc = φ>c C are
maximally correlated i.e.

max
φw,φc

φw
>Cwcφc√

φw
>Cwwφw

√
φc
>Cccφc

.

This is equivalent to
max
φw,φc

φw
>Cwcφc,

subject to unit-norm constraints φw>Cwwφw = I and φc>Cccφc = I.
Then, performing full SVD on Cww and Ccc, we get

Cww = VwΛwV>w ,

Ccc = VcΛcV
>
c ,

where V>wVw = Iv×v and V>c Vc = Ihv×hv.
Define change of basis as

uw = Λ−1/2w V>wW,

ucc = Λ−1/2c V>c C,

Now, in this new transformed basis:
E[u>wuw] = Λ

−1/2
w V>wWV>wΛwVwVwΛ

−1/2
w = Iv×v and similarly E[u>ccucc] = Ihv×hv, as

desired.
Transform the coefficients φw and φc, so that sw and scc can be expressed as linear

combination in the new basis:

sw = φ>wW = g>φwuw

scc = φ>c C = g>φcucc

where gφw = ΛwVwφw and gφc = ΛcVcφc.
So, the CCA optimization problem can be cast as the following maximization criteria

max
gφw ,gφc

g>φwDwcgφc

subject to unit-norm constraints g>φwgφw = I and g>φcgφc = I, where Dwc = Λ
−1/2
w V>wCwcVcΛ

−1/2
c .

The solution to above is nothing but the SVD of Dwc.
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Finally, we can construct the original coefficient matrices φw and φc as φw = VwΛ
−1/2
w Gφw

and φc = VcΛ
−1/2
c Gφc , where Gφw and Gφc are the matrices corresponding to the vectors

gφw and gφc respectively.
Now, in our case Cww = W>W is the diagonal word occurrence matrix with the words

counts in the corpus on the diagonal, so Λ
−1/2
w is nothing but C

−1/2
ww and Vw = I.

The context matrix Ccc = C>C, though is not diagonal but it can be approximated by
its diagonal. One could also approximate it as a diagonal matrix plus its first order Tay-
lor’s expansion, but it would make the resulting matrix substantially more dense and hence
the computations intense. In our experiments we found no improvement in prediction ac-
curacy by adding the first order Taylor’s term, so we approximate Ccc just by its diagonal.

Proof of Theorem 1:
Proof Without loss of generality, we can assume that W and C have been transformed
to their canonical correlations coordinate space. So V ar(W) is the identity and V ar(C) is
the identity, and the Cov(W,C) is a diagonal with non-increasing values ρi on the diagonal
(namely the correlations / singular values). We can write α and β in this coordinate system.
By orthogonality we now have βi = ρiαi. So, E(Y − βW)2 is simply

∑
(αi − βiρi)2. Which

is
∑
α2
i (1 − ρ2i ). Our estimator will then have γi = βi for i smaller than k and γi = 0

otherwise. Hence (Ŷ − β>W)2 =
∑∞

i=k+1 β
2
i .

So if we pick k to include all terms which have ρi ≥
√
ε our error will be less than

ε
∑∞

i=k+1 α
2
i ≤ ε.

Proof of Theorem 2:
Proof The key is that CCA can be understood using the same machinery as is used for
analyzing linear regression. In this context we want to recover the word of length v given
its context which can be expressed in terms of regression. For a more in-depth discussion
of how CCA relates to regression, see (Glahn, 1968), for example. Thus, consider the case
of predicting a vector y of length v (the word) from a vector x (the context, which is of
dimension 2hv in the one step CCA case and dimension 2k in the two step CCA). We
consider the linear model

y = xβ + ε.

Note that, we are predicting only one dimension of our v-dimensional vector y at a time.
We want to understand the variance of our prediction of a word given the context. As

is typical in regression, we calculate a standard error for each coefficient in our contexts,
≈ O( 1√

n
). In the one step CCA, X = [L R], and running a regression we will get a

prediction error on order of hvn , but since we have v such y’s we get a total prediction error
on the order of hv

2

n .
For the two-step case we take X = [LφL RφR]. As mentioned earlier, note that now

we are working with about 2k predictors instead of 2hv predictors. If we knew the true φL
and φR, and thus the true subspace covered by our predictors, the regression error would
be on the order of kvn (again, since there are v entries in our vector y). Instead, we have an
estimation of φL and φR. If these were computed on infinite amounts of data (and hence
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we would be arbitrarily close to the true subspace)–we would be done. However since they
come from a sample, we are using φ̂L and φ̂R which are approximation to the ideal φL and
φR. So our task is to understand the error introduced by this sample approximation of the
true CCA. First, we develop some notation and concepts found in (Stewart, 1990).

Consider two subspaces V and V̂ and respective matrices containing an orthonormal
basis for these subspaces V and V̂. Let γ1, γ2, . . . be the singular values of the matrix V>V̂,
then define

θi = cos−1 γi,

and define the canonical angle matrix Θ = diag(θ1, . . . , θk).
These values of Θ capture the effect of using estimated singular vectors, V̂ to form an

underlying subspace, as compared to the true subspace formed by the true singular vectors V
stemming from infinite data. The largest canonical angle captures the largest angle between
any two vectors- one from the perturbed subspace and one from the true subspace. The
second largest canonical angle captures the second largest angle between any two vectors
given that they are orthogonal to the original two, and so on. In this proof we will only make
use of the largest canonical angle to provide a loose upper bound on the error stemming
from the imperfect estimation of the true subspace.

Now, consider a matrix Â = A + E and take the thin singular value decomposition of
A and Â (and here we take the liberty of applying diag in a block matrix sense)

A = [U1U2]diag(Λ1,Λ2)[V1V2]>

Â = [Û1Û2]diag(Λ̂1, Λ̂2)[V̂1V̂2]>

In our case we have that λi = 0 for all λi ∈ Λ2.
From (Stewart and Sun, 1990), we have that

max{|| sin Θ||2, || sin Ψ||2} ≤ c||E||2, (3)

for some constant c where here Θ is the matrix of canonical angles formed from the subspaces
of U and Û, and Ψ is the matrix of canonical angles formed between the subspaces of V
and V̂. Note that since Θ and Ψ are diagonal matrices the induced norms || · ||2 recover the
largest canonical angle of each subspace, and hence we can simultaneously derive an upper
bound for the largest canonical angle of either subspace.

We have now developed the machinery we need to analyze the two step CCA.
Without loss of generality, assume that L>L = R>R = I (Even if it is not, we can always

rotate L and R such that L>L = R>R = I and since PCA/CCA are only identifiable up to
a rotation, we would get the same answer.), then ultimately we are interested in projection
onto the subspace spanned by B = [LU1 RV1]. Note that because of our assumption
the projection onto LU1 is LU1U>1 L> and similarly for RV1. Furthermore, note from our
assumptions that LU1 forms an orthonormal basis for the space spanned by LU1 (since

(LU1)>(LU1) = U>1 L>LU1 = I,

and similarly for LÛ1, RV1, and RV̂1).
Lastly, and critically, the singular values of U>1 L>LÛ1 are identical to those of U>1 Û1

(similarly for RV1 etc.) and so from above we have that the matrix of canonical angles
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between the subspaces LU1 and LÛ1 are identical to Θ, the matrix of canonical angles
between U1 and Û1, and likewise the matrix of canonical angles between the subspaces
RV1 and RV̂1 are identical to Ψ, the matrix of canonical angles between V1 and V̂1, and
thus the maximal angle enjoys the same bound derived above. If we can get a handle on
the spectral norm of E, which will come directly from random matrix theory, then we can
bound the largest canonical angle of our two subspaces.

We know that E is a random matrix of iid Gaussian entries with variance 1
n , and that the

largest singular value of a matrix is the spectral norm of the matrix. From random matrix
theory we know that the square of the spectral norm of E is O(

√
hv√
n

), from say (Rudelson
and Vershynin, 2010).

The strategy will be to divide the variance in the prediction of y into two separate parts.
First the variance that comes from predicting using the incorrect subspace, and then the
variance from regression (as stated above) if we had the correct subspace.

Let X̂ = [Lφ̂L Rφ̂R] (i.e. the incorrect subspace) and X = [LφL RφR] (the true
version). To get a handle on predicting with the incorrect subspace (we will consider the
subspaces LφL and RφR separately here, but note that from (3) the angles between the
subspaces and their respective perturbed subspaces are bounded by a common bound) we
note that, for the regression of Y on X we have

β|X̂ =
Cov(Y, X̂)

Var(X̂)
,

and

β|X =
Cov(Y,X)

Var(X)
,

and

Cov(Y,X) = Cov(Y, X̂),

so trivially,

β|X̂ = β|X ∗ Var(X)

VarX̂

= β|X ∗ Var(X)

Var(X) + Var(X− X̂)
.

Let ŷ be the the estimate of y from the true subspace, and ˆ̂y be the estimate from the
perturbed subspace. For the first part of our strategy, bounding the error that comes from
predicting with the incorrect subspace, we want to bound E(ŷ − ˆ̂y)2.
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We have, [
ŷ − ˆ̂y

]2
=
[
β|X ∗ x− β|X̂ ∗ x

]2
,

=
[
(β|X− β|X̂) ∗ x

]2
,

=

[(
β|X− β|X Var(X)

Var(X) + Var(X− X̂)

)
∗ x

]2
,

=

[
β|X

(
1− Var(X)

Var(X) + Var(X− X̂)

)
∗ x

]2
,

=

[
β|X ∗ x

(
Var(X− X̂)

Var(X) + Var(X− X̂)

)]2
,

=

[
ŷ ∗

(
Var(X− X̂)

Var(X) + Var(X− X̂)

)]2
. (4)

Because we are working with a ratio of variances instead of actual variances, then without
loss of generality we can set Var(X̂) = 1 for all predictors.

Now, we don’t really care what the exact ‘true’ X’s are (formed with the true singular
vectors), because we only care about predicting y and not actually recovering the true β’s
associated with our SVD. This means we do not suffer from the usual constraints imposed
on the erratic behavior of singular vectors. Usually one must handle this kind of error
with respect to the entire subspace since singular vectors are highly unstable. In our case,
however, we are free to compare to any ‘true’ vectors we like from the correct subspace, as
long as they span the entire true subspace (and nothing more).

We will define a theoretical set of predictors to compare with, then. We are doing this
to obtain an upper bound for the total possible variance of Var(x − x̂) for any acceptable
set of x’s in the true underlying subspace (where we take acceptable to mean that the x’s
span the true subspace and nothing more).

We handle each subspace LÛ1 and RV̂1 separately. The construction is to take our first
vector and choose a vector from the true subspace that lies such that the angle between the
two vectors is the maximal canonical angle between the true and perturbed subspaces.

We proceed to our second predictor and choose a vector from the true subspace such the
second ‘true’ predictor is orthogonal to the first. Note that the angle between our second
observed x̂ and the second chosen x is at most the maximal canonical angle by assumption.
Again, because we don’t care about the β’s associated with our true singular vectors, but
only about prediction quality of our perturbed subspace, we need not be worried that our
chosen vectors might not be the true singular vectors. We continue in this manner until we
have expired all of our predictors from both sets of spaces.

We know from above that the sine of the maximal angle of of both sets of subspaces is
O
(√

hv√
n

)
and so we have that the maximal variation

Var(X− X̂)

Var(X̂)
∼ O

(√
hv√
n

)
,
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and so from 4 we have

E(ŷ − ˆ̂y)2 = E

[
ŷ ∗O

(√
hv√
n

)]2
≈ O

(
hv

n
∗ 1

v

)
= O

(
h

n

)
.

We have v of these to predict, so we have a total error attributable to subspace estima-
tion on the order of hvn . Adding regression error as we did from above, which is on the order
of kv

n we get a total error of (h+k)v
n . We recall that the error from the one step CCA is on

the order of hv
2

n which yields an error ratio of h+khv .

Proof of Lemma 3 and Theorem 4:
Proof Our goal is to find a v×k matrix φw that maps each of the v words in the vocabulary
to a k-dimensional state vector. We will show that the φw we find preserves the information
in our data and allows a significant data reduction.

Let L be an n× hv matrix giving the words in the left context of each of the n tokens,
where the context is of length h, R be the corresponding n×hv matrix for the right context,
and W be an n × v matrix of indicator functions for the words themselves. Also, let l, r
and w be the underlying multivariate random variables from which the “observed” matrices
L, R and W were generated by the data generating process.

We will use three assumptions at various points in our proof:

Assumption 1 l, r and w come from a rank k HMM i.e it has a rank k observation matrix
and a rank k transition matrix both of which have the same domain.

For example, if the dimension of the hidden state is k and the vocabulary size is v then the
observation matrix, which is k × v, has rank k. This rank condition is similar to the one
used by (Siddiqi et al., 2010).

Assumption 1A 1 For the three views, l, r and w assume that there exists a k dimensional
“hidden state ~”, such that E(l|~) = ~β>l and E(r|~) = ~β>r and E(w|~) = ~β>w where all
β’s are of rank k.

This assumption actually follows from the previous one.

Assumption 2 ρ(l, w), ρ(l, r) and ρ(w, r) all have rank k, where ρ(a, b) is the expected
correlation between the random vectors a and b.

This is a rank condition similar to that in (Hsu et al., 2009).

Assumption 3 ρ([l r], w) has k distinct singular values.

This assumption just makes the proof a little cleaner, since if there are repeated singular
values, then the singular vectors are not unique. Without it, we would have to phrase results
in terms of subspaces with identical singular values.

We also need to define the CCA function that computes the left and right singular vectors
for a pair of matrices:
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Definition 1 (CCA) Compute the CCA between multivariate random vectors z and x.
Let φz be a matrix containing the d largest singular vectors for z (sorted from the largest
on down) and likewise for x. Define the function CCA(z, x) ≡ [φz,φx]. When we want
just one of these φ’s, we will use CCA(z, x)left = φz for the left singular vectors and
CCA(z, x)right = φx for the right singular vectors.

Note that the resulting singular vectors, [φz,φx] can be used to give two redundant
estimates, zφz and xφx of the “hidden” state relating z and x, if such a hidden state exists.

Lemma 3 Define φw by the following right singular vectors:

CCA([l r], w)right ≡ φw.

Under assumptions 2, 3 and 1A, such that if CCA(l, r) ≡ [φl,φr] then we have

CCA([lφl rφr], w)right = φw.

This lemma shows that instead of finding the CCA between the full context and the
words, we can take the CCA between the Left and Right contexts, estimate a k dimensional
state from them, and take the CCA of that state with the words and get the same result.
Proof:
Proof By Assumption 1A, we see that:

E(lβl|~) = ~β>l βl,

and
E(rβr|~) = ~β>r βr,

Since, again by assumption 1Aboth of the β matrices have full rank, β>l βl is a k × k
matrix of rank k, and likewise for β>r βr. So

E(β>r r
>lβl|~) = β>r βr~>~βLβ>r ,

i.e.,
β>r E(r>l)βl = β>r βrE(~>~)βlβ

>
l ,

since β>r βr, E(~>~) and β>l βl are all k × k full rank matrices, βr and βl span the same
subspace as the singular values of the CCA between l and r since by Assumption 2 they
also have rank k. Similar arguments hold when relating l with w and when relating r with
w. Thus if CCA([l r], w) ≡ [φl, φr],

CCA(lφl, rφr)right = CCA([lβl rβr], w)right,

(where we have used Assumption 3 to ensure that not only are the subspaces the same, but
that the actual singular vectors are the same.)

Finally by Assumption 3 we know that the rank of CCA([l r], w)right is k, we see that

CCA([lβl rβr], w)right = CCA([l r], w)right.
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Calling this common equality φw yields our result.

Let φhw denote a matrix formed by stacking h copies of φw on top of each other. Right
multiplying l or r by φhw projects each of the words in that context into the k-dimensional
reduced rank space.

The following theorem addresses the core of the LR-MVL(II) algorithm, showing that
there is an φw which gives the desired dimensionality reduction. Specifically, it shows that
the previous lemma also holds in the reduced rank space.

Theorem 4 Under assumptions 1, 2 and 3 there exists a unique matrix φw such that if

[φhl ,φ
h
r ] ≡ CCA(lφhw, rφ

h
w),

then
φw = CCA([lφhwφ

h
l rφhwφ

h
l ], w)right,

where φhw is the stacked form of φw.

Proof: We start by noting that Assumption 1 implies Assumption 1A. Thus, the previous
lemma follows. So, we know

CCA([l r], w)right = CCA([lφl rφr], w)right.

Let’s define this common quantity as φw. This φw has the property that the rank of
CCA(wφw, ~)left is the same as CCA(w, ~)left where ~ is the hidden state process asso-
ciated with our data. Hence anything which is not in the domain of φw won’t have any
correlation with ~ and hence no correlation with other observed states. So l and lφhw have
the same “information” (predictive power of a linear estimator based on them). More pre-
cisely, [φhwφ

h
l ,φ

h
wφ

h
r ] = CCA(l, r). Putting this together with the first equation gives the

desired result.
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Abstract

We study reproducing kernels, and associated reproducing kernel Hilbert spaces (RKHSs)
H over infinite, discrete and countable sets V . In this setting we analyze in detail the
distributions of the corresponding Dirac point-masses of V . Illustrations include certain
models from neural networks: An Extreme Learning Machine (ELM) is a neural network-
configuration in which a hidden layer of weights are randomly sampled, and where the
object is then to compute resulting output. For RKHSs H of functions defined on a
prescribed countable infinite discrete set V , we characterize those which contain the Dirac
masses δx for all points x in V . Further examples and applications where this question
plays an important role are: (i) discrete Brownian motion-Hilbert spaces, i.e., discrete
versions of the Cameron-Martin Hilbert space; (ii) energy-Hilbert spaces corresponding to
graph-Laplacians where the set V of vertices is then equipped with a resistance metric; and
finally (iii) the study of Gaussian free fields.

Keywords: Gaussian reproducing kernel Hilbert spaces, sampling in discrete systems,
resistance metric, graph Laplacians, discrete Green’s functions

1. Introduction

A reproducing kernel Hilbert space (RKHS) is a Hilbert space H of functions on a pre-
scribed set, say V , with the property that point-evaluation for functions f ∈H is continu-
ous with respect to the H -norm. They are called kernel spaces, because, for every x ∈ V ,
the point-evaluation for functions f ∈H , f (x) must then be given as a H -inner product
of f and a vector kx, in H ; called the kernel.

The RKHSs have been studied extensively since the pioneering papers by Aronszajn
(1943; 1948). They further play an important role in the theory of partial differential oper-
ators (PDO); for example as Green’s functions of second order elliptic PDOs (Nelson, 1957;
Haeseler et al., 2014). Other applications include engineering, physics, machine-learning
theory (Kulkarni and Harman, 2011; Smale and Zhou, 2009; Cucker and Smale, 2002),
stochastic processes (Alpay and Dym, 1993; Alpay et al., 1993; Alpay and Dym, 1992; Al-
pay et al., 2013, 2014), numerical analysis, and more (Lin and Brown, 2004; Ha Quang et al.,

c©2015 Palle Jorgensen and Feng Tian.



Jorgensen and Tian

2010; Zhang et al., 2012; Lata and Paulsen, 2011; Vuletić, 2013; Schramm and Sheffield,
2013; Hedenmalm and Nieminen, 2014; Shawe-Taylor and Cristianini, 2004; Schlkopf and
Smola, 2001). But the literature so far has focused on the theory of kernel functions defined
on continuous domains, either domains in Euclidean space, or complex domains in one or
more variables. For these cases, the Dirac δx distributions do not have finite H -norm. But
for RKHSs over discrete point distributions, it is reasonable to expect that the Dirac δx
functions will in fact have finite H -norm.

An illustration from neural networks: An Extreme Learning Machine (ELM) is a neural
network configuration in which a hidden layer of weights are randomly sampled (Rasmussen
and Williams, 2006), and the object is then to determine analytically resulting output layer
weights. Hence ELM may be thought of as an approximation to a network with infinite
number of hidden units.

Here we consider the discrete case, i.e., RKHSs of functions defined on a prescribed
countable infinite discrete set V . We are concerned with a characterization of those RKHSs
H which contain the Dirac masses δx for all points x ∈ V . Of the examples and applications
where this question plays an important role, we emphasize three: (i) discrete Brownian
motion-Hilbert spaces, i.e., discrete versions of the Cameron-Martin Hilbert space; (ii)
energy-Hilbert spaces corresponding to graph-Laplacians; and finally (iii) RKHSs generated
by binomial coefficients. We show that the point-masses have finite H -norm in cases (i)
and (ii), but not in case (iii).

Our setting is a given positive definite function k on V × V , where V is discrete. We
study the corresponding RKHS H (= H (k)) in detail. Our main results are Theorems 1,
2, and 3 which give explicit answers to the question of which point-masses from V are in
H . Applications include Corollaries 29, 41, 46, 48, 52, and 53.

The paper is organized as follows: Section 2 leads up to our characterization (Theorem
1) of point-masses which have finite H -norm. It is applied in Sections 3 and 4 to a variety
of classes of discrete RKHSs. Section 3 deals with samples from Brownian motion, and
from the Brownian bridge process, and binomial kernels, and with kernels on sets V × V
which arise as restrictions to sample-points. Section 4 covers the case of infinite network
of resistors. By this we mean an infinite graph with assigned resistors on its edges. In
this family of examples, the associated RKHSs vary with the assignment of resistors on the
edges in G, and are computed explicitly from a resulting energy form. Our result Corollary
46 states that, for the network models, all point-masses have finite energy. Furthermore, we
compute the value, and we study V as a metric space w.r.t. the corresponding resistance
metric. These results, in turn, have direct implications (Corollaries 48, 52 and 55) for the
family of Gaussian free fields associated with our infinite network models.

A positive definite kernel k is said to be universal (Steinwart, 2002; Caponnetto et al.,
2008) if, every continuous function, on a compact subset of the input space, can be uniformly
approximated by sections of the kernel, i.e., by continuous functions in the RKHS. In
Theorem 3 we show that for the RKHSs from kernels kc in electrical network G of resistors,
this universality holds. The metric in this case is the resistance metric on the vertices of G,
determined by the assignment of a conductance function c on the edges in G.

Infinite vs finite graphs. We study “large weighted graphs” (vertices V , edges E, and
weights as functions assigned on the edges E), and our motivation derives from learning
where “learning” is understood broadly to include (machine) learning of suitable probability
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distribution, i.e., meaning learning from samples of training data. Other applications of an
analysis of weighted graphs include statistical mechanics, such as infinite spin models, and
large digital networks. It is natural to ask then how one best approaches analysis on “large”
systems. We propose an analysis via infinite weighted graphs. This is so even if some of
the questions in learning theory may in fact refer to only “large” finite graphs.

One reason for this (among others) is that statistical features in such an analysis are
best predicted by consideration of probability spaces corresponding to measures on infinite
sample spaces. Moreover the latter are best designed from consideration of infinite weighted
graphs, as opposed to their finite counterparts. Examples of statistical features which are
relevant even for finite samples is long-range order; i.e., the study of correlations between
distant sites (vertices), and related phase-transitions, e.g., sign-flips at distant sites. In
designing efficient learning models, it is important to understand the possible occurrence
of unexpected long-range correlations; e.g., correlations between distant sites in a finite
sample.

A second reason for the use of infinite sample-spaces is their use in designing efficient
sampling procedures. The interesting solutions will often occur first as vectors in an infinite-
dimensional reproducing-kernel Hilbert space RKHS. Indeed, such RKHSs serve as powerful
tools in the solution of a kernel-optimization problems with penalty terms. Once an optimal
solution is obtained in infinite dimensions, one may then proceed to study its restrictions
to suitably chosen finite subgraphs.

In general when reproducing kernels and their Hilbert spaces are used, one ends up with
functions on a suitable set, and so far we feel that the dichotomy discrete vs continuous
has not yet received sufficient attention. After all, a choice of sampling points in relevant
optimization models based on kernel theory suggests the need for a better understanding
of point masses as they are accounted for in the RKHS at hand. In broad outline, this is a
leading theme in our paper.

2. Discrete RKHSs

Definition 1 Let V be a countable and infinite set, and F (V ) the set of all finite subsets
of V . A function k : V × V → C is said to be positive definite, if∑∑

(x,y)∈F×F

k (x, y) cxcy ≥ 0 (1)

holds for all coefficients {cx}x∈F ⊂ C, and all F ∈ F (V ).

Definition 2 Fix a set V , countable infinite.

1. For all x ∈ V , set
kx := k (·, x) : V → C (2)

as a function on V .

2. Let H := H (k) be the Hilbert-completion of the span {kx : x ∈ V }, with respect to
the inner product 〈∑

cxkx,
∑

dyky

〉
H

:=
∑∑

cxdyk (x, y) (3)
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modulo the subspace of functions of zero H -norm. H is then a reproducing kernel
Hilbert space (HKRS), with the reproducing property:

〈kx, ϕ〉H = ϕ (x) , ∀x ∈ V, ∀ϕ ∈H . (4)

Note. The summations in (3) are all finite. Starting with finitely supported summa-
tions in (3), the RKHS H = H (k) is then obtained by Hilbert space completion. We
use physicists’ convention, so that the inner product is conjugate linear in the first
variable, and linear in the second variable.

3. If F ∈ F (V ), set HF = closed span{kx}x∈F ⊂ H , (closed is automatic if F is
finite.) And set

PF := the orthogonal projection onto HF . (5)

4. For F ∈ F (V ), set
KF := (k (x, y))(x,y)∈F×F (6)

as a #F ×#F matrix.

Remark 3 It follows from the above that reproducing kernel Hilbert spaces (RKHS) arise
from a given positive definite kernel k, a corresponding pre-Hilbert form; and then a Hilbert-
completion. The question arises: “What are the functions in the completion?” Now, before
completion, the functions are as specified in Definition 2, but the Hilbert space completions
are subtle; they are classical Hilbert spaces of functions, not always transparent from the
naked kernel k itself. Examples of classical RKHSs: Hardy spaces or Bergman spaces (for
complex domains), Sobolev spaces and Dirichlet spaces (Okoudjou et al., 2013; Strichartz
and Teplyaev, 2012; Strichartz, 2010) (for real domains, or for fractals), band-limited L2

functions (from signal analysis), and Cameron-Martin Hilbert spaces from Gaussian pro-
cesses (in continuous time domain).

Our focus here is on discrete analogues of the classical RKHSs from real or complex
analysis. These discrete RKHSs in turn are dictated by applications, and their features are
quite different from those of their continuous counterparts.

Definition 4 The RKHS H = H (k) is said to have the discrete mass property (H is

called a discrete RKHS), if δx ∈ H , for all x ∈ V . Here, δx (y) =

{
1 if x = y

0 if x 6= y
, i.e., the

Dirac mass at x ∈ V .

Lemma 5 Let F ∈ F (V ), x1 ∈ F . Assume δx1 ∈H . Then

PF (δx1) (·) =
∑
y∈F

(
K−1
F δx1

)
(y) ky (·) . (7)

Proof Show that
δx1 −

∑
y∈F

(
K−1
F δx1

)
(y) ky (·) ∈H ⊥

F . (8)

The remaining part follows easily from this.
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(The notation (HF )⊥ stands for orthogonal complement, also denoted H 	 HF ={
ϕ ∈H

∣∣ 〈f, ϕ〉H = 0, ∀f ∈HF

}
.)

Lemma 6 Using Dirac’s bra-ket, and ket-bra notation (for rank-one operators), the orthog-
onal projection onto HF is

PF =
∑
y∈F

∣∣ky 〉〈 k∗y∣∣ ; (9)

where

k∗x :=
∑
y∈F

(
K−1
F

)
yx
ky (10)

is the dual vector to kx, for all x ∈ V .

Proof Let k∗x be specified as in (10), then

〈k∗x, kz〉H =
∑
y∈F

〈(
K−1
F

)
yx
ky, kz

〉
H

=
∑
y∈F

(
K−1
F

)
xy
〈ky, kz〉H

=
∑
y∈F

(
K−1
F

)
xy

(KF )yz = δx,z,

i.e., k∗x is the dual vector to kx, for all x ∈ V .

For f ∈H , and F ∈ F (V ), we have∑
y∈F

∣∣ky 〉〈 k∗y∣∣ f =
∑
y∈F

〈
k∗y, f

〉
H
ky

=
∑∑

(y,z)∈F×F

(
K−1
F

)
z,y
〈kz, f〉H

= PF f.

This yields the orthogonal projection realized as stated in (9).

Now, applying (9) to δx1 , we get

PF (δx1) =
∑
y∈F

〈
k∗y, δx1

〉
H
ky

=
∑
y∈F

(∑
z∈F

(
K−1
F

)
yz
〈kz, δx1〉H

)
ky

=
∑
y∈F

(∑
z∈F

(
K−1
F

)
yz
δx1 (z)

)
ky

=
∑
y∈F

(
K−1
F δx1

)
(y) ky,
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where (
K−1
F δx1

)
(y) :=

∑
z∈F

(
K−1
F

)
yz
δx1 (z) .

This verifies (7).

Remark 7 Note a slight abuse of notations: We make formally sense of the expressions for
PF (δx) in (7) even in the case when δx might not be in H . For all finite F , we showed that
PF (δx) ∈ H . But for δx be in H , we must have the additional boundedness assumption
(18) satisfied; see Theorem 1.

Lemma 8 Let F ∈ F (V ), x1 ∈ F , then(
K−1
F δx1

)
(x1) = ‖PF δx1‖

2
H . (11)

Proof Setting ζ(F ) := K−1
F (δx1), we have

PF (δx1) =
∑
y∈F

ζ(F ) (y) kF (·, y)

and for all z ∈ F ,∑
z∈F

ζ(F ) (z)PF (δx1) (z)︸ ︷︷ ︸
ζ(F )(x1)

=
∑
F

∑
F

ζ(F ) (z) ζ(F ) (y) kF (z, y) (12)

= ‖PF δx1‖
2
H .

By Lemma 6, the LHS of (12) is given by

‖PF δx1‖
2
H = 〈PF δx1 , δx1〉H

=
∑
y∈F

(
K−1
F δx1

)
(y) 〈ky, δx1〉H

=
(
K−1
F δx1

)
(x1) = K−1

F (x1, x1) .

Corollary 9 If δx1 ∈H (see Theorem 1), then

sup
F∈F (V )

(
K−1
F δx1

)
(x1) = ‖δx1‖

2
H . (13)

The following condition is satisfied in some examples, but not all:

Corollary 10 ∃F ∈ F (V ) s.t. δx1 ∈HF ⇐⇒

K−1
F ′ (δx1) (x1) = K−1

F (δx1) (x1)

for all F ′ ⊃ F .

3084



Discrete Reproducing Kernel Hilbert Spaces

Corollary 11 (Monotonicity) If F and F ′ are in F (V ) and F ⊂ F ′, then(
K−1
F δx1

)
(x1) ≤

(
K−1
F ′ δx1

)
(x1) (14)

and

lim
F↗V

(
K−1
F δx1

)
(x1) = ‖δx1‖

2
H . (15)

Proof By (11), (
K−1
F δx1

)
(x1) = ‖PF δx1‖

2
H .

Since HF ⊂HF ′ , we have PFPF ′ = PF , so

‖PF δx1‖
2
H = ‖PFPF ′δx1‖

2
H ≤ ‖PF ′δx1‖

2
H

i.e., (
K−1
F δx1

)
(x1) ≤

(
K−1
F ′ δx1

)
(x1) .

So (14) follows; and the limit in (15) is monotone.

Theorem 1 Given V , k : V × V → R positive definite (p.d.). Let H = H (k) be the cor-
responding RKHS. Assume V is countable and infinite. Then the following three conditions
(i)-(iii) are equivalent; x1 ∈ V is fixed:

(i) δx1 ∈H ;

(ii) ∃Cx1 <∞ such that for all F ∈ F (V ), the following estimate holds:

|ξ (x1)|2 ≤ Cx1
∑∑
F×F

ξ (x)ξ (y) k (x, y) (16)

(iii) For F ∈ F (V ), set

KF = (k (x, y))(x,y)∈F×F (17)

as a #F ×#F matrix. Then

sup
F∈F (V )

(
K−1
F δx1

)
(x1) <∞. (18)

Proof (i)⇒(ii) For ξ ∈ l2 (F ), set

hξ =
∑
y∈F

ξ (y) ky (·) ∈HF .

Then 〈δx1 , hξ〉H = ξ (x1) for all ξ.
Since δx1 ∈H , then by Schwarz:∣∣〈δx1 , hξ〉H ∣∣2 ≤ ‖δx1‖2H ∑∑

F×F
ξ (x)ξ (y) k (x, y) . (19)
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But 〈δx1 , ky〉H = δx1,y =

{
1 y = x1

0 y 6= x1

; hence 〈δx1 , hξ〉H = ξ (x1), and so (19) implies (16).

(ii)⇒(iii) Recall the matrix

KF := (〈kx, ky〉)(x,y)∈F×F

as a linear operator l2 (F )→ l2 (F ), where

(KFϕ) (x) =
∑
y∈F

KF (x, y)ϕ (y) , ϕ ∈ l2 (F ) . (20)

By (16), we have

ker (KF ) ⊂
{
ϕ ∈ l2 (F ) : ϕ (x1) = 0

}
. (21)

Equivalently,

ker (KF ) ⊂ {δx1}
⊥ (22)

and so δx1

∣∣∣
F
∈ ker (KF )⊥ = ran (KF ), and ∃ ζ(F ) ∈ l2 (F ) s.t.

δx1

∣∣∣
F

=
∑
y∈F

ζ(F ) (y) k (·, y)︸ ︷︷ ︸
=:hF

. (23)

Claim. PF (δx1) = hF , where PF = projection onto HF ; see (5) and Lemma 5. (See Figure
1.) Indeed, we only need to prove that δx1 − hF ∈H 	HF , i.e.,

〈δx1 − hF , kz〉H = 0, ∀z ∈ F. (24)

But, by (23),

LHS(24) = δx1,z −
∑
y∈F

k (z, y) ζ(F ) (y) = 0.

This proves the claim.

If F ⊂ F ′, F, F ′ ∈ F (V ), then HF ⊂ HF ′ , and PFPF ′ = PF by easy facts for
projections. Hence

‖PF δx1‖
2
H ≤ ‖PF ′δx1‖

2
H , hF := PF (δx1)

and

lim
F↗V

‖δx1 − hF ‖H = 0.

(iii)⇒(i) Follows from Lemma 8 and Corollary 9.

Corollary 12 The numbers
(
ζ(F ) (y)

)
y∈F in (23) satisfies

ζ(F ) (x1) =
∑∑

(y,z)∈F×F

ζ(F ) (y) ζ(F ) (z) k (y, z) . (25)

3086



Discrete Reproducing Kernel Hilbert Spaces

0

δx1

hF
ℋF

Figure 1: hF := PF (δx1)

Proof Multiply (23) by ζ(F ) (z) and carry out the summation.

Remark 13 To see that (23) is a solution to a linear algebra problem, with F = {xi}ni=1,
note that (23) ⇐⇒

k (x1, x1) k (x1, x2) · · · k (x1, xn)
k (x2, x1) k (x2, x2) · · · k (x2, xn)

...
. . .

. . .
...

...
. . .

. . .
...

k (xn, x1) k (xn, x2) · · · k (xn, xn)




ζ(F ) (x1)

ζ(F ) (x2)
...

ζ(F ) (xn−1)

ζ(F ) (xn)

 =


1
0
...
0
0

 (26)

We now resume the general case of k given and positive definite on V × V .

Corollary 14 We have
ζ(F ) (x1) = ‖PF (δx1)‖2H (27)

where
PF (δx1) =

∑
y∈F

ζ(F ) (y) ky (·) (28)

and
ζ(F ) = K−1

N (δx1) , N := #F. (29)

Proof It follows from (26) that∑
j

k (xi, xj) ζ
(F ) (xj) = δ1,i

and so multiplying by ζ(F ) (i), and summing over i, gives∑
i

∑
j

k (xi, xj) ζ
(F ) (xi) ζ

(F ) (xj)︸ ︷︷ ︸
=‖PF (δx1)‖2

H

= ζ(F ) (x1) .
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Corollary 15 We have

(i)

PF (δx1) = ζ(F ) (x1) kx1 +
∑

y∈F\{x1}

ζ(F ) (y) ky (30)

where ζF solves (26), for all F ∈ F (V );

(ii)

‖PF (δx1)‖2H = ζ(F ) (x1) (31)

and so in particular:

(iii)

0 < ζ(F ) (x1) ≤ ‖δx1‖
2
H (32)

Proof Formula (31) follows from the definition of ζ(F ) as a solution to the matrix problem
KNζ

(F ) = δx1 , but we may also prove (31) directly from

PF (δx1) =
∑
y

ζ(F ) (y) ky . (33)

Apply 〈·, δx1〉H to both sides in (33), we get

〈δx1 , PF (δx1)〉H︸ ︷︷ ︸
‖PF (δx1)‖2

H

= ζ(F ) (x1)

since PF = P ∗F = P 2
F ; i.e., a projection in the RKHS H = HV of k.

Example 1 (#F = 2) Let F = {x1, x2}, KF = (kij)
2
i,j=1, where kij := k (xi, xj). Then

(26) reads [
k11 k12

k21 k22

] [
ζF (x1)
ζF (x2)

]
=

[
1
0

]
. (34)

Set D := det (KF ) = k11k22 − k12k21, then:

ζF (x1) =
k22

D
, ζF (x2) = −k21

D
.

Example 2 Let V = {x1, x2, . . .} be an ordered set. Set Fn := {x1, . . . , xn}. Note that with

Dn = det (KFn) = det
(

(k (xi, xj))
n
i,j=1

)
, and (35)

D′n−1 = (1, 1) minor of KFn = det
(

(k (xi, xj))
n
i,j=2

)
; (36)

then

ζ(Fn) (x1) =
D′n−1

Dn
=
(
K−1
Fn
δx1
)

(x1) . (37)
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Corollary 16 We have

1

k (x1, x1)
≤ k (x2, x2)

D2
≤ · · · ≤

D′n−1

Dn
≤ · · · ≤ ‖δx1‖

2
H .

Proof Follows from (37), and if F ⊂ F ′ are two finite subsets, then

‖PF (δx1)‖2H ≤ ‖PF ′ (δx1)‖2H ≤ ‖δx1‖
2
H .

Let k : V × V → R be as specified above. Let H = H (k) be the RKHS. We set F (V ):=
all finite subsets of V ; and if x ∈ V is fixed, Fx (V ) := {F ∈ F (V ) | x ∈ F}.

For F ∈ F (V ), let KF be the #F ×#F matrix given by (k (x, y))(x,y)∈F×F . Following
Karlin and Ziegler (1996), we say that k is strictly positive iff detKF > 0 for all F ∈ F (V ).

Set DF := detKF . If x ∈ V , and F ∈ Fx (V ), set K ′F := the minor in KF obtained by
omitting row x and column x, see Figure 2.

x

x

x

x

Figure 2: The (x, x) minors, KF → K ′F .

Corollary 17 Suppose k : V × V → R is strictly positive. Let x ∈ V . Then

δx ∈H ⇐⇒ sup
F∈Fx(V )

D′F
DF

<∞. (38)

2.1 Unbounded Containment in RKHSs

Definition 18 Let K and H be two Hilbert spaces. We say that K is unboundedly
contained in H if there is a dense subspace K0 ⊂ K such that K0 ⊂H ; and the inclusion
operator, with K0 as its dense domain, is closed, i.e.,

K
incl
↪→ H , dom (incl) = K0.

Let k : V ×V → R be a p.d. kernel, and let H be the corresponding RKHS. Set K = l2 (V ),
and

K0 = span {δx | x ∈ V } . (39)
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Proposition 19 If δx ∈H for ∀x ∈ V , then l2 (V ) is unboundedly contained in H .

Proof Recall that H is the RKHS defined for a fixed p.d. kernel k : V × V → R. Let kx
be the vector in H , given by kx (y) = k (x, y), s.t.

f (x) = 〈kx, f〉H , ∀f ∈H . (40)

To finish the proof we will need:

Lemma 20 The following equation

〈δx, ky〉H = δx,y (41)

holds if δx ∈H for ∀x ∈ V .

Proof (41) is immediate from (40).

Lemma 21 On
span {kx | x ∈ V } ⊂H (42)

define Mkx := δx, then by Lemma 20, M extends to be a well defined operator M : H →
l2 (V ) with dense domain (42). We have

〈k,Mf〉l2(V ) = 〈k, f〉H , ∀k ∈ span {δx} , ∀f ∈ dom (M) . (43)

Proof By linearity, it is enough to prove that

〈δx, δy〉l2 = 〈δx, ky〉H (44)

holds for ∀x, y ∈ V . But (44) follows immediate from Lemma 20.

Corollary 22 If L : l2 (V )→H denotes the inclusion mapping with

dom (L) = span {δx : x ∈ V } ,

then we conclude that
L ⊂M∗, and M ⊂ L∗. (45)

Since dom (M) is dense in H , it follows that L∗ has dense domain; and that therefore L
is closable.

Remark 23 This also completes the proof of Proposition 19.

Corollary 24 Suppose k : V ×V → R is as given, and that H = RKHS (k). Let L be the
densely defined inclusion mapping l2 (V )→H . Then L∗L is selfadjoint with dense domain
in l2 (V ); and LL∗ is selfadjoint with dense domain in H . Moreover, the following polar
decomposition holds:

L = U (L∗L)1/2 = (LL∗)1/2 U (46)

where U is a partial isometry l2 (V )→H .
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3. Point-masses in Concrete Models

Suppose V ⊂ D ⊂ Rd where V is countable and discrete, but D is open. In this case, we
get two kernels: k on D × D, and kV := k

∣∣
V×V on V × V by restriction. If x ∈ V , then

k
(V )
x (·) = k (·, x) is a function on V , while kx (·) = k (·, x) is a function on D.

This means that the corresponding RKHSs are different, HV vs H , where HV = a
RKHS of functions on V , and H = a RKHS of functions on D.

Lemma 25 HV is isometrically contained in H via k
(V )
x 7−→ kx, x ∈ V .

Proof If F ⊂ V is a finite subset, and ξ = ξF is a function on F , then∥∥∥∑
x∈F

ξ (x) k(V )
x

∥∥∥
HV

=
∥∥∥∑

x∈F
ξ (x) kx

∥∥∥
H
.

The desired result follows from this.

We are concerned with cases of kernels k : D ×D → R with restriction kV : V × V → R,
where V is a countable discrete subset of D. Typically, for x ∈ V , we may have (restriction)
δx
∣∣
V
∈HV , but δx /∈H ; indeed this happens for the kernel k of standard Brownian motion:

D = R+;
V = an ordered subset 0 < x1 < x2 < · · · < xi < xi+1 < · · · , V = {xi}∞i=1.
In this case, we compute HV , and we show that δxi

∣∣
V
∈ HV ; while for Hm = the

Cameron-Martin Hilbert space, we have δxi /∈Hm.
Also note that δx1 has a different meaning with reference to HV vs Hm. In the first case,

it is simply δx1 (y) =

{
1 y = x1

0 y ∈ V \ {x1}
. In the second case, δx1 is a Schwartz distribution.

We shall abuse notation, writing δx in both cases.
In the following, we will consider restriction to V ×V of a special continuous p.d. kernel

k on R+ × R+. It is k (s, t) = s ∧ t = min (s, t). Before we restrict, note that the RKHS of
this k is the Cameron-Martin Hilbert space of function f on R+ with distribution derivative
f ′ ∈ L2 (R+), and

‖f‖2H :=

∫ ∞
0

∣∣f ′ (t)∣∣2 dt <∞. (47)

For details, see below.

Remark 26 (Application) The Hilbert space given by ‖·‖2H in (47) is called the Cameron-
Martin Hilbert space, and, as noted, it is the RKHS of k : R+ × R+ → R : k (s, t) := s ∧ t.
Now pick a discrete subset V ⊂ R+; then Lemma 25 states that the RKHS of the V × V
restricted kernel, k(V ) is isometrically embedded into H , i.e., setting

J (V )
(
k(V )
x

)
= kx, ∀x ∈ V ; (48)

J (V ) extends by “closed span” to an isometry HV
J(V )

−−−→ H . It further follows from the
lemma, that the range of J (V ) may have infinite co-dimension.

Note that PV := J (V )
(
J (V )

)∗
is the projection onto the range of J (V ). The ortho-

complement is as follow:

H 	HV =
{
ψ ∈H

∣∣ ψ (x) = 0, ∀x ∈ V
}
. (49)
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Example 3 Let k and k(V ) be as in (48), and set V := πZ+, i.e., integer multiples of π.
Then easy generators of wavelet functions (Bratteli and Jorgensen, 2002) yield non-zero
functions ψ on R+ such that

ψ ∈H 	HV . (50)

More precisely,

0 <

∫ ∞
0

∣∣ψ′ (t)∣∣2 dt <∞, (51)

where ψ′ is the distribution (weak) derivative; and

ψ (nπ) = 0, ∀n ∈ Z+. (52)

An explicit solution to (50)-(52) is

ψ (t) =

∞∏
n=1

cos

(
t

2n

)
=

sin t

t
, ∀t ∈ R. (53)

From this, one easily generates an infinite-dimensional set of solutions.

3.1 Brownian Motion

Consider the covariance function of standard Brownian motion Bt, t ∈ [0,∞), i.e., a Gaus-
sian process {Bt} with mean zero and covariance function

E (BsBt) = s ∧ t = min (s, t) . (54)

We now show that the restriction of (54) to V × V for an ordered subset (we fix such a set
V ):

V : 0 < x1 < x2 < · · · < xi < xi+1 < · · · (55)

has the discrete mass property (Definition 4).
Set HV = RKHS(k

∣∣
V×V ),

kV (xi, xj) = xi ∧ xj . (56)

We consider the set Fn = {x1, x2, . . . , xn} of finite subsets of V , and

Kn = k(Fn) =


x1 x1 x1 · · · x1

x1 x2 x2 · · · x2

x1 x2 x3 · · · x3
...

...
...

...
...

x1 x2 x3 · · · xn

 = (xi ∧ xj)ni,j=1 . (57)

We will show that condition (iii) in Theorem 1 holds for kV . For this, we must compute all
the determinants, Dn = det (KF ) etc. (n = #F ), see Corollary 17.

Lemma 27

Dn = det
(

(xi ∧ xj)ni,j=1

)
= x1 (x2 − x1) (x3 − x2) · · · (xn − xn−1) . (58)
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Proof Induction. In fact,
x1 x1 x1 · · · x1

x1 x2 x2 · · · x2

x1 x2 x3 · · · x3
...

...
...

...
...

x1 x2 x3 · · · xn

 ∼

x1 0 0 · · · 0
0 x2 − x1 0 · · · 0
0 0 x3 − x2 · · · 0
...

...
...

. . .
...

0 · · · 0 · · · xn − xn−1

 ,

unitary equivalence in finite dimensions.

Lemma 28 Let

ζ(n) := K−1
n (δx1) (·) (59)

be as in (11), so that

‖PFn (δx1)‖2HV
= ζ(n) (x1) . (60)

Then,

ζ(1) (x1) =
1

x1

ζ(n) (x1) =
x2

x1 (x2 − x1)
, for n = 2, 3, . . . ,

and

‖δx1‖
2
HV

=
x2

x1 (x2 − x1)
.

Proof A direct computation shows the (1, 1) minor of the matrix K−1
n is

D′n−1 = det
(

(xi ∧ xj)ni,j=2

)
= x2 (x3 − x2) (x4 − x3) · · · (xn − xn−1) (61)

and so

ζ(1) (x1) =
1

x1
, and

ζ(2) (x1) =
x2

x1 (x2 − x1)

ζ(3) (x1) =
x2 (x3 − x2)

x1 (x2 − x1) (x3 − x2)
=

x2

x1 (x2 − x1)

ζ(4) (x1) =
x2 (x3 − x2) (x4 − x3)

x1 (x2 − x1) (x3 − x2) (x4 − x3)
=

x2

x1 (x2 − x1)

...

The result follows from this, and from Corollary 9.
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Corollary 29 PFn (δx1) = PF2 (δx1), ∀n ≥ 2. Therefore,

δx1 ∈H
(F2)
V := span{k(V )

x1 , k
(V )
x2 } (62)

and

δx1 = ζ(2) (x1) k(V )
x1 + ζ(2) (x2) k(V )

x2 (63)

where

ζ(2) (xi) = K−1
2 (δx1) (xi) , i = 1, 2.

Specifically,

ζ(2) (x1) =
x2

x1 (x2 − x1)
(64)

ζ(2) (x2) =
−1

x2 − x1
; (65)

and

‖δx1‖
2
HV

=
x2

x1 (x2 − x1)
. (66)

Proof Follows from the lemma. Note that

ζn (x1) = ‖PFn (δx1)‖2H

and ζ(1) (x1) ≤ ζ(2) (x1) ≤ · · · , since Fn = {x1, x2, . . . , xn}. In particular, 1
x1
≤ x2

x1(x2−x1) ,

which yields (66).

Remark 30 We showed that δx1 ∈ HV , V = {x1 < x2 < · · · } ⊂ R+, with the restriction
of s ∧ t = the covariance kernel of Brownian motion.

The same argument also shows that δxi ∈HV when i > 1. We only need to modify the
index notation from the case of the proof for δx1 ∈HV . The details are sketched below.

Fix V = {xi}∞i=1, x1 < x2 < · · · , then

PFn (δxi) =

{
0 if n < i− 1∑n

s=1

(
K−1
Fn
δxi
)

(xs) kxs if n ≥ i

and

‖PFn (δxi)‖
2
H =


0 if n < i− 1

1
xi−xi−1

if n = i
xi+1−xi−1

(xi−xi−1)(xi+1−xi) if n > i

Conclusion.

δxi ∈ span
{
k(V )
xi−1

, k(V )
xi , k

(V )
xi+1

}
, and (67)

‖δxi‖
2
H =

xi+1 − xi−1

(xi − xi−1) (xi+1 − xi)
. (68)
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Corollary 31 Let V ⊂ R+ be countable. If xa ∈ V is an accumulation point (from V ),
then ‖δa‖HV

=∞.

Remark 32 This computation will be revisited in Section 4, in a much wider context.

Example 4 An illustration for 0 < x1 < x2 < x3 < x4:

PF (δx3) =
∑
y∈F

ζ(F ) (y) ky (·)

ζ(F ) = K−1
F δx3 .

That is, 
x1 x1 x1 x1

x1 x2 x2 x2

x1 x2 x3 x3

x1 x2 x3 x4


︸ ︷︷ ︸

(KF (xi,xj))4i,j=1


ζ(F ) (x1)

ζ(F ) (x2)

ζ(F ) (x3)

ζ(F ) (x4)

 =


0
0
1
0



and

ζ(F ) (x3) =
x1 (x2 − x1) (x4 − x2)

x1 (x2 − x1) (x3 − x2) (x4 − x3)

=
x4 − x2

(x3 − x2) (x4 − x3)
= ‖δx3‖

2
H .

Example 5 (Sparse sample-points) Let V = {xi}∞i=1, where

xi =
i (i− 1)

2
, i ∈ N.

It follows that xi+1 − xi = i, and so

‖δxi‖
2
H =

xi+1 − xi
(xi − xi−1) (xi+1 − xi)

=
2i− 1

(i− 1) i
−−−→
i→∞

0.

We conclude that ‖δxi‖H −−−→i→∞
0 if the set V = {xi}∞i=1 ⊂ R+ is sparse.

Now, some general facts:

Lemma 33 Let k : V × V → C be p.d., and let H be the corresponding RKHS. If x1 ∈ V ,
and if δx1 has a representation as follows:

δx1 =
∑
y∈V

ζ(x1) (y) ky , (69)

then

‖δx1‖
2
H = ζ(x1) (x1) . (70)
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Proof Substitute both sides of (69) into 〈δx1 , ·〉H where 〈·, ·〉H denotes the inner product
in H .

Example 6 (Application) Suppose V = ∪nFn, Fn ⊂ Fn+1, where each Fn ∈ F (V ), then
if x1 ∈ Fn, we have

PFn (δx1) =
∑
y∈Fn

〈
x1,K

−1
Fn
y
〉
l2
ky (71)

and

‖PFn (δx1)‖2H =
〈
x1,K

−1
Fn
x1

〉
l2

=
(
K−1
Fn
δx1
)

(x1) (72)

and the expression ‖PFn (δx1)‖2H is monotone in n, i.e.,

‖PFn (δx1)‖2H ≤
∥∥PFn+1 (δx1)

∥∥2

H
≤ · · · ≤ ‖δx1‖

2
H

with

sup
n∈N
‖PFn (δx1)‖2H = lim

n→∞
‖PFn (δx1)‖2H = ‖δx1‖

2
H .

Question 34 Let k : Rd × Rd → R be positive definite, and let V ⊂ Rd be a countable
discrete subset, e.g., V = Zd. When does k

∣∣
V×V have the discrete mass property?

Examples of the affirmative, or not, will be discussed below.

3.2 Discrete RKHS from Restrictions

Let D := [0,∞), and k : D ×D → R, with

k (x, y) = x ∧ y = min (x, y) .

Restrict to V := {0} ∪ Z+ ⊂ D, i.e., consider

k(V ) = k
∣∣
V×V .

H (k): Cameron-Martin Hilbert space, consisting of functions f ∈ L2 (R) s.t.∫ ∞
0

∣∣f ′ (x)
∣∣2 dx <∞, f (0) = 0.

HV := H (kV ). Note that

f ∈H (kV )⇐⇒
∑
n

|f (n)− f (n+ 1)|2 <∞.

Lemma 35 We have δn = 2kn − kn+1 − kn−1.
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Proof Introduce the discrete Laplacian ∆, where

(∆f) (n) = 2f (n)− f (n− 1)− f (n+ 1) ,

then ∆kn = δn, and

〈2kn − kn+1 − kn−1, km〉HV
= 〈δn, km〉HV

= δn,m.

Remark 36 The same argument as in the proof of the lemma shows ( mutatis mutandis)
that any ordered discrete countable infinite subset V ⊂ [0,∞) yields

HV := H
(
k
∣∣
V×V

)
as a RKHS which is discrete in that (Definition 4) if V = {xi}∞i=1, xi ∈ R+, then δxi ∈HV ,
∀i ∈ N.

Proof Fix vertices V = {xi}∞i=1,

0 < x1 < x2 < · · · < xi < xi+1 <∞, xi →∞. (73)

Assign conductance

ci,i+1 = ci+1,i =
1

xi+1 − xi

(
=

1

dist

)
(74)

Let

(∆f) (xi) =

(
1

xi+1 − xi
+

1

xi − xi−1

)
f (xi)

− 1

xi − xi−1
f (xi−1)− 1

xi+1 − xi
f (xi+1) (75)

Equivalently,

(∆f) (xi) = (ci,i+1 + ci,i−1) f (xi)− ci,i−1f (xi−1)− ci,i+1f (xi+1) . (76)

Remark 37 The most general graph-Laplacians will be discussed in detail in Section 4
below.

Then, with (76) we have:
∆kxi = δxi

where k (·, ·) = restriction of s ∧ t from [0,∞)× [0,∞) to V × V ; and therefore

δxi = (ci,i+1 + ci,i−1) kxi − ci,i+1kxi+1 − ci,i−1kxi−1 ∈HV (77)

as the right-side in the last equation is a finite sum. Note that now the RKHS is

HV =

{
f : V → C

∣∣ ∞∑
i=1

ci,i+1 |f (xi+1)− f (xi)|2 <∞

}
.
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3.3 Brownian Bridge

Let D := (0, 1) = the open interval 0 < t < 1, and set

kbridge (s, t) := s ∧ t− st; (78)

then (78) is the covariance function for the Brownian bridge Bbri (t), i.e.,

Bbri (0) = Bbri (1) = 0 (79)

0.2 0.4 0.6 0.8 1.0

-0.05

0.05

0.10

Figure 3: Brownian bridge Bbri (t), a simulation of three sample paths of the Brownian
bridge.

Bbri (t) = (1− t)B
(

t

1− t

)
, 0 < t < 1; (80)

where B (t) is Brownian motion; see Lemma 25.
The corresponding Cameron-Martin space is now

Hbri =
{
f on [0, 1] ; f ′ ∈ L2 (0, 1) , f (0) = f (1) = 0

}
(81)

with

‖f‖2Hbri
:=

∫ 1

0

∣∣f ′ (s)∣∣2 ds <∞. (82)

If V = {xi}∞i=1, x1 < x2 < · · · < 1, is the discrete subset of D, then we have for
Fn ∈ F (V ), Fn = {x1, x2, · · · , xn},

KFn = (kbridge (xi, xj))
n
i,j=1 , (83)

see (78), and
detKFn = x1 (x2 − x1) · · · (xn − xn−1) (1− xn) . (84)

As a result, we get δxi ∈H
(bri)
V for all i, and

‖δxi‖
2

H
(bri)
V

=
xi+1 − xi−1

(xi+1 − xi) (xi − xi−1)
.

Note limxi→1 ‖δxi‖
2

H
(bri)
V

=∞.
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3.4 Binomial RKHS

Definition 38 Let V = Z+ ∪ {0}; and

kb (x, y) :=

x∧y∑
n=0

(
x

n

)(
y

n

)
, (x, y) ∈ V × V.

where
(
x
n

)
= x(x−1)···(x−n+1)

n! denotes the standard binomial coefficient from the binomial
expansion.

Let H = H (kb) be the corresponding RKHS. Set

en (x) =

{(
x
n

)
if n ≤ x

0 if n > x.
(85)

Lemma 39 (Alpay and Jorgensen, 2015)

(i) en (·) ∈H , n ∈ V ;

(ii) {en}n∈V is an orthonormal basis (ONB) in the Hilbert space H .

(iii) Set Fn = {0, 1, 2, . . . , n}, and

PFn =
n∑
k=0

|ek 〉〈 ek| (86)

or equivalently

PFnf =

n∑
k=0

〈ek, f〉H ek . (87)

then,

(iv) Formula (87) is well defined for all functions f : V → C, f ∈ Func (V ).

(v) Given f ∈ Func (V ); then

f ∈H ⇐⇒
∞∑
k=0

|〈ek, f〉H |
2 <∞; (88)

and, in this case,

‖f‖2H =
∞∑
k=0

|〈ek, f〉H |
2 .

Fix x1 ∈ V , then we shall apply Lemma 39 to the function f1 = δx1 (in Func (V )),

f1 (y) =

{
1 if y = x1

0 if y 6= x1.
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Theorem 2 We have

‖PFn (δx1)‖2H =
n∑

k=x1

(
k

x1

)2

.

The proof of the theorem will be subdivided in steps; see below.

Lemma 40 (Alpay and Jorgensen, 2015)

(i) For ∀m,n ∈ V , such that m ≤ n, we have

δm,n =

n∑
j=m

(−1)m+j

(
n

j

)(
j

m

)
. (89)

(ii) For all n ∈ Z+, the inverse of the following lower triangle matrix is this: With (see
Figure 4)

L(n)
xy =

{(
x
y

)
if y ≤ x ≤ n

0 if x < y
(90)

we have: (
L(n)

)−1

xy
=

{
(−1)x−y

(
x
y

)
if y ≤ x ≤ n

0 if x < y.
(91)

Notation: The numbers in (91) are the entries of the matrix
(
L(n)

)−1
.

Proof In rough outline, (ii) follows from (i).

L(n) =



1 0 0 0 · · · · · · 0 · · · 0 0
1 1 0 0 · · · · · · 0 · · · 0 0

1 2 1 0
...

...
...

1 3 3 1
. . .

...
...

...
...

...
...

...
. . .

...
...

...
...

...
...

... 1 0
...

...

1 · · ·
(
x
y

) (
x
y+1

)
· · · ∗ 1

. . .
...

...
...

...
...

...
. . . 0

...
...

...
...

... 1 0
1 · · ·

(
n
y

) (
n
y+1

)
· · · · · · · · · · · · n 1



Figure 4: The matrix Ln is simply a truncated Pascal triangle, arranged to fit into a lower
triangular matrix.
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Corollary 41 Let kb, H , and n ∈ Z+ be as above with the lower triangle matrix Ln. Set

Kn (x, y) = kb (x, y) , (x, y) ∈ Fn × Fn, (92)

i.e., an (n+ 1)× (n+ 1) matrix.

(i) Then Kn is invertible with

K−1
n =

(
Ltrn
)−1

(Ln)−1 ; (93)

an (upper triangle)× (lower triangle) factorization.

(ii) For the diagonal entries in the (n+ 1)× (n+ 1) matrix K−1
n , we have:

〈
x,K−1

n x
〉
l2

=

n∑
k=x

(
k

x

)2

Conclusion: Since
‖PFn (δx1)‖2H =

〈
x1,K

−1
n x1

〉
H

(94)

for all x1 ∈ Fn, we get

‖PFn (δx1)‖2H =
n∑

k=x1

(
k

x1

)2

= 1 +

(
x1 + 1

x1

)2

+

(
x1 + 2

x1

)2

+ · · ·+
(
n

x1

)2

; (95)

and therefore,

‖δx1‖
2
H =

∞∑
k=x1

(
k

x1

)2

=∞.

In other words, no δx is in H .

4. Infinite Network of Resistors

Here we introduce a family of positive definite kernels k : V × V → R, defined on infinite
sets V of vertices for a given graph G = (V,E) with edges E ⊂ V × V \(diagonal).

There is a large literature dealing with analysis on infinite graphs (Jorgensen and Pearse,
2010, 2011, 2013; Okoudjou and Strichartz, 2005; Boyle et al., 2007; Cho and Jorgensen,
2011).

Our main purpose here is to point out that every assignment of resistors on the edges
E in G yields a p.d. kernel k, and an associated RKHS H = H (k) such that

δx ∈H , for all x ∈ V . (96)

Definition 42 Let G = (V,E) be as above. Assume

1. (x, y) ∈ E ⇐⇒ (y, x) ∈ E;
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2. ∃c : E → R+ (a conductance function = 1 / resistance) such that

(i) c(xy) = c(yx), ∀ (xy) ∈ E;

(ii) for all x ∈ V , #
{
y ∈ V | c(xy) > 0

}
<∞; and

(iii) ∃o ∈ V s.t. for ∀x ∈ V \ {o}, ∃ edges (xi, xi+1)n−1
0 ∈ E s.t. xo = 0, and xn = x;

called connectedness.

Given G = (V,E), and a fixed conductance function c : E → R+ as specified above, we
now define a corresponding Laplace operator ∆ = ∆(c) acting on functions on V , i.e., on
Func (V ) by

(∆f) (x) =
∑
y∼x

cxy (f (x)− f (y)) . (97)

Let H be the Hilbert space defined as follows: A function f on V is in H iff f (o) = 0,
and

‖f‖2H :=
1

2

∑∑
(x,y)∈E
⊂V×V

cxy |f (x)− f (y)|2 <∞. (98)

Lemma 43 (Jorgensen and Pearse, 2010) For all x ∈ V \ {o}, ∃vx ∈H s.t.

f (x)− f (o) = 〈vx, f〉H , ∀f ∈H (99)

where

〈h, f〉H =
1

2

∑∑
(x,y)∈E

cxy

(
h (x)− h (y)

)
(f (x)− f (y)) , ∀h, f ∈H . (100)

(The system {vx} is called a system of dipoles.)

Proof Let x ∈ V \ {o}, and use (97) together with the Schwarz-inequality to show that

|f (x)− f (o)|2 ≤
∑
i

1

cxixi+1

∑
i

cxixi+1 |f (xi)− f (xi+1)|2 .

An application of Riesz’ lemma then yields the desired conclusion.

Note that vx = v
(c)
x depends on the choice of base point o ∈ V , and on conductance

function c; see (i)-(ii) and (98).

Now set

k(c) (x, y) = 〈vx, vy〉H , ∀ (xy) ∈ (V \ {o})× (V \ {o}) . (101)

It follows from a theorem that k(c) is a Green’s function for the Laplacian ∆(c) in the sense
that

∆(c)k(c) (x, ·) = δx (102)

where the dot in (102) is the dummy-variable in the action. Note that the solution to (102)
is not unique.
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Lemma 44 (Jorgensen and Pearse, 2011) Let G = (V,E), and conductance function
c : E → R+ be a s specified above; then k(c) in (101) is positive definite, and the cor-
responding RKHS H

(
k(c)
)

is the Hilbert space introduced in (98) and (100), called the
energy-Hilbert space.

Proof See Jorgensen et al. (2010; 2011; 2013).

Proposition 45 Let x ∈ V \ {o}, and let c : E → R+ be specified as above. Let H =
H (kc) be the corresponding RKHS. Then δx ∈H , and

‖δx‖2H =
∑
y∼x

c(xy) =: c (x) . (103)

Proof We study the finite matrices, defined for ∀F ∈ F (V ), by

KF (x, y) = kc (x, y) , (x, y) ∈ F × F. (104)

Fix x ∈ V \ {o}, and pick F ∈ F (V ) such that

{x} ∪ {y ∈ V | y ∼ x} ⊂ F, (105)

see Figure 5; an interior point:

x

y1

����

��

��

F
F

Figure 5: Neighborhood of x, see Definition 42 (ii). An interior point x.

Let F ∈ F (V ) be as in (104) and in Figure 5, and let ∆ = ∆(c) be the Laplace operator
(97), then for all (x, y) ∈ F × F , we have:〈

x,K−1
F y

〉
l2

= 〈δx,∆δy〉l2
= (∆δy) (x)

=


c (x) if y = x; see (103)

−c(xy) if y ∼ x
0 for all other values of y

(106)
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In particular,

sup
F∈F (V )

(KF δx) (x) <∞;

and in fact,

‖δx‖2H = c (x) , for all x ∈ V \ {o},

as claimed in the Proposition.

The last step in the present proof uses the equivalence (i)⇔(ii)⇔(iii) from Theorem 1
above.

Finally, we note that the assertion in (106) follows from

∆vx = δx − δo, ∀x ∈ V \ {o} . (107)

And (107) in turn follows from (99), (97) and a straightforward computation.

Corollary 46 Let G = (V,E) and conductance c : E → R+ be as specified above. Let
∆ = ∆(c) be the corresponding Laplace operator. Let H = H (kc) be the RKHS. Then

〈δx, f〉H = (∆f) (x) (108)

and

δx = c (x) vx −
∑
y∼x

cxyvy (109)

holds for all x ∈ V .

Proof Since the system {vx} of dipoles in (99) span a dense subspace in H , it is enough
to verify (108) when f = vy for y ∈ V \ {o}. But in this case, (108) follows from (102) and
(106).

Corollary 47 Let G = (V,E), and conductance c : E → R+ be as before; let ∆(c) be

the Laplace operator, and H
(c)
E the energy-Hilbert space in Definition 42 (Equation (98)).

Let k(c) (x, y) = 〈vx, vy〉HE
be the kernel from (101), i.e., the Green’s function of ∆(c).

Then the two Hilbert spaces HE, and H
(
k(c)
)

= RKHS
(
k(c)
)
, are naturally isometrically

isomorphic via vx 7−→ k
(c)
x where k

(c)
x = k(c) (x, ·) for all x ∈ V .

Proof Let F ∈ F (V ), and let ξ be a function on F ; then∥∥∥∑
x∈F

ξ (x) k(c)
x

∥∥∥2

H (k(c))
=

∑∑
F×F

ξ (x)ξ (y) k(c) (x, y)

=
(101)

∑∑
F×F

ξ (x)ξ (y) 〈vx, vy〉HE

=
∥∥∥∑

x∈F
ξ (x) vx

∥∥∥2

HE

.
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The remaining steps in the proof of the Corollary now follows from the standard com-
pletion from dense subspaces in the respective two Hilbert spaces HE and H

(
k(c)
)
.

In the following we show how the kernels k(c) : V × V → R from (101) in Lemma 43 are
related to metrics on V ; so called resistance metrics (Jorgensen and Pearse, 2010; Alpay
et al., 2013).

Corollary 48 Let G = (V,E), and conductance c : E → R+ be as above; and let k(c) (x, y) :=
〈vx, vy〉HE

be the corresponding Green’s function for the graph Laplacian ∆(c).

Then there is a metric R
(
= R(c) = the resistance metric

)
, such that

k(c) (x, y) =
R(c) (o, x) +R(c) (o, y)−R(c) (x, y)

2
(110)

holds on V × V . Here the base-point o ∈ V is chosen and fixed s.t.

〈Vx, f〉HE
= f (x)− f (o) , ∀f ∈HE , ∀x ∈ V. (111)

Proof Set
R(c) (x, y) = ‖vx − vy‖2HE

. (112)

We proved (Jorgensen and Pearse, 2010) that R(c) (x, y) in (112) indeed defines a metric on
V ; the so called resistance metric. It represents the voltage-drop from x to y when 1 Amp
is fed into (G, c) at the point x, and then extracted at y.

The verification of (110) is now an easy computation, as follows:

R(c) (o, x) +R(c) (o, y)−R(c) (x, y)

2

=
‖vx‖2HE

+ ‖vy‖2HE
− ‖vx − vy‖2HE

2
= 〈vx, vy〉HE

= k(c) (x, y) by (101).

Proposition 49 In the two cases: (i) B (t), Brownian motion on 0 < t <∞; and (ii) the
Brownian bridge Bbri (t), 0 < t < 1, from Section 3 (Figure 3), the corresponding resistance
metric R is as follows:

(i) If V = {xi}∞i=1 ⊂ (0,∞), x1 < x2 < · · · , then

R
(V )
B (xi, xj) = |xi − xj | . (113)

(ii) If W = {xi}∞i=1 ⊂ (0, 1), 0 < x1 < x2 < · · · < 1, then

R
(W )
bridge (xi, xj) = |xi − xj | · (1− |xi − xj |) . (114)

In the completion w.r.t. the resistance metric R
(W )
bridge, the two endpoints x = 0 and

x = 1 are identified.
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4.1 Gaussian Processes

Definition 50 A Gaussian realization of an infinite graph-network G = (V,E), with pre-
scribed conductance function c : E → R+, and dipoles (vcx)x∈V \{o}, is a Gaussian process
(Xx)x∈V on a probability space (Ω,F ,P), where Ω is a sample space; F a sigma-algebra of
events, and P a probability measure s.t., for ∀F ∈ F (V ), the random variables (Xx)x∈F ,
are jointly Gaussian with

E (Xx) =

∫
Ω
XxdP = 0 (115)

and covariance

E (XxXy) = k(c) (x, y) =
〈
v(c)
x , v(c)

y

〉
HE

; (116)

i.e., the covariance matrix (E (XxXy))(x,y)∈F×F is

KF (x, y) := k(c) (x, y) on F × F. (117)

Lemma 51 (Jorgensen and Pearse, 2010) For all G = (V,E), and c : E → R+, as
specified, Gaussian realizations exist; they are called Gaussian free fields.

Corollary 52 Let G = (V,E), c : E → R+ be as above; and let (Xx)x∈V be an associated
Gaussian free field. Then the point Dirac-masses (δx)x∈V have Gaussian realizations

δ̃x = c (x)Xx −
∑
y∼x

cxyXy, ∀x ∈ V. (118)

Corollary 53 Let G = (V,E), and c : E → R+ be as above. Let {Xx}x∈V be the corre-
sponding Gaussian free field, i.e., with correlation

E (XxXy) = k(c) (x, y) =
〈
v(c)
x , v(c)

y

〉
HE

(119)

where the dipoles {v(c)
x } ⊂HE are computed w.r.t. a chosen (and fixed) based-point o ∈ V ,

i.e., 〈
v(c)
x , f

〉
HE

= f (x)− f (o) , ∀f ∈HE , x ∈ V. (120)

Finally, let R(c) (x, y) be the corresponding resistance metric on V . Then

E (XxXz) + E (XzXy) ≤ E (XxXy) +R(c) (o, z) (121)

holds for all vertices x, y, z ∈ V ; see Figure 6.

Proof Use Corollary 48, and (112). We have

‖vx − vy‖2H ≤ ‖vx − vz‖
2
H + ‖vz − vy‖2H ,

and (121) now follows from (116).
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x

z

o

y

Figure 6: Covariance vs resistance distance R(c) (o, z) for three vertices x, y, z ∈ V .

4.2 Metric Completion

The next theorem illustrates a connection between the universal property of a kernel in a
RKHS H , on the one hand, and the distribution of the Dirac point-masses δx, on the other.
We make “distribution” precise by the quantity E (x) := ‖δx‖2H , the energy of the point-
mass at the vertex point x. We introduce a metric completion M , and the universal property
of the RKHS H asserts that the functions from H are continuous and 1/2-Lipschitz on M ,
and that they approximate every continuous function on M in the uniform norm. Recall,
the vertex set V is equipped with its resistance metric. The universal property here refers to
the corresponding metric completion M of the discrete vertex set. In the interesting cases
(see e.g., Example 7), M is a continuum; in the case of the example below, the boundary
of V is a Cantor set. One expects the value of E (x) to go to infinity as x approaches the
boundary M , and this is illustrated in the example; with an explicit formula for E (x).

Of special interest is the class of networks (V,E) where the resistance metric R (on the
given vertex vertex-set V ) is bounded; see (ii) in Theorem 3 below. This class of networks,
for which the diameter of V measured in the resistance metric R is bounded, includes
networks having lots of edges with resistors occurring in parallel (Jorgensen and Pearse,
2011).

Theorem 3 Let G = (V,E), c : E → R+ be as above, and let R(c) : V × V → R+ be the
resistance-metric in (112). Let M be the metric completion of

(
V,R(c)

)
. Then:

(i) For every f ∈H , the function

V 3 x 7−→ f (x) ∈ C (122)

extends by closure to a uniformly continuous function f̃ : M 7→ C.

(ii) If R(c) is assumed bounded, then the RKHS H is an algebra under point-wise product:

(f1f2) (x) = f1 (x) f2 (x) , fi ∈H , i = 1, 2, x ∈ V. (123)

(iii) If M is compact, then {f̃ | f ∈H } is dense in C (M) in the uniform norm.
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Proof The assertions in (i) follow from the following two estimates:

Let f ∈H , then

|f (x)− f (y)|2 ≤ ‖f‖2H R(c) (x, y) , ∀x, y ∈ V ; (124)

and

|f (x)| ≤ |f (o)|+R(c) (o, x)
1
2 . (125)

The estimates in (124)-(125), in turn, follow from Corollaries 47 and 48.

To prove (ii), we compute the energy-norm of the product f1 ·f2 where fi ∈H , i = 1, 2;
and we use Corollary 47:∑

x

∑
y

cxy |f1 (x) f2 (x)− f1 (y) f2 (y)|2

=
∑
x

∑
y

cxy |(f1 (x)− f1 (y)) f2 (x) + f1 (y) (f2 (x)− f2 (y))|2

≤
∑
x

∑
y

cxy

(
|f1 (x)− f1 (y)|2 + |f2 (x)− f2 (y)|2

)
·
(
|f2 (x)|2 + |f1 (y)|2

)
(by Schwarz inside)

≤
(
‖f1‖2∞ + ‖f2‖2∞

)
·
(
‖f1‖2H + ‖f2‖2H

)
;

and we note that the right-side is finite subject to the assumption in (ii).

Proof of (iii): We are assuming here that M is compact, and we shall apply the Stone-
Weierstrass theorem to the subalgebra{

f̃
∣∣ f ∈H

}
⊂ C (M) . (126)

Indeed, the conditions for Stone-Weierstrass are satisfied: The functions on LHS in (126)
form an algebra, by (ii), closed under complex conjugation; and it separates points in M
by Corollary 48.

Example 7 (The binary tree) Let A = {0, 1}, and M :=
∏

NA the infinite Cartesian
product, as a Cantor space. Set V := all finite words:

V =
⋃
n∈N

{
(α1, α2, · · · , αn)

∣∣ αi ∈ {0, 1}} ; (127)

and set l ((α1, α2, · · · , αn)) =: n.

For ω = (ωk)
∞
1 ∈M , set

ω
∣∣
n

:= (ω1, ω2, · · · , ωn) ∈ V. (128)

For two points ω, ω′ ∈M , we shall need the number

l
(
ω ∩ ω′

)
= sup

{
n : ω

∣∣
n

= ω′
∣∣
n

}
. (129)
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Let r : N→ R+ be given such that

r (∅) = 0,
∑
n∈N

r (n) <∞. (130)

For conductance function c : E → R+, set

cα,(αt) =
1

r (l (α))
, ∀α ∈ V, t ∈ {0, 1} . (131)

One checks that, when (130) holds, then

lim
n,m→∞

R(c)
(
ω
∣∣
n
, ω
∣∣
m

)
= 0.

Consider the graph G2 = (V,E) where the edges are “lines” between α and (αt), where
t ∈ {0, 1}. See Figure 7.

Lemma 54 With the settings above, the metric completion R̃(c) w.r.t. the resistance metric
on V is as follows: For ω, ω′ ∈M (see Figure 9),

R̃(c)
(
ω, ω′

)
= 2

∞∑
n=l(ω∩ω′)

r (n) . (132)

Let H be the corresponding energy-Hilbert space ' the RKHS of kc. For α ∈ V , let δα be
the Dirac-mass at the vertex point α. Then

‖δα‖2H =
2

r (l (α))
+

1

r (l (α)− 1)
. (133)

(See Figure 8.)

Proof To see this, note that α has the three neighbors sketched in Figure 7, i.e., α∗, (α0),
and (α1), where α∗ is the one-truncated word,

R̃(c)
(
ω, ω′

)
= 2

∞∑
n=l(ω∩ω′)

r (n) . (134)

One checks that when (130) is assumed, then the conditions in point (iii) of the theorem
are satisfied.

Corollary 55 Now return to the discrete restriction of Brownian motion in Section 3.1.
Set V = {x1, x2, x3, · · · } where the points {xi}∞i=1 are prescribed such that x1 < x2 < · · · <
xi < xi+1 < · · · . We turn V into a weighted graph G as follows: The edges E in G are
nearest neighbors; and we define a conductance function c : E → R+ by setting

cxixi+1 :=
1

xi+1 − xi
, (135)
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α*

α

(α0)

(α1)

Figure 7: Edges in G2.
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Figure 8: Histogram for ‖δα‖2H as vertices α ∈ V approach the boundary. See (133), and
note ‖δα‖2H →∞ as α→M .
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ϕ

V M

ω⋂ω ' ω

ω '

0 2 3 4 n

Figure 9: The binary tree and its boundary, the Cantor-set.

and Laplace operator,

(∆f) (xi) =
1

xi+1 − xi
(f (xi)− f (xi+1)) +

1

xi − xi−1
(f (xi)− f (xi−1)) . (136)

Then the RKHS associated with the Green’s function of ∆ in (136) agrees with that from
the kernel construction in Section 3.1, i.e., the discrete Cameron-Martin Hilbert space.

Proof Immediate from the previous Proposition and its corollaries.
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Abstract

The vector autoregressive (VAR) model is a powerful tool in learning complex time series
and has been exploited in many fields. The VAR model poses some unique challenges
to researchers: On one hand, the dimensionality, introduced by incorporating multiple
numbers of time series and adding the order of the vector autoregression, is usually much
higher than the time series length; On the other hand, the temporal dependence structure
naturally present in the VAR model gives rise to extra difficulties in data analysis. The
regular way in cracking the VAR model is via “least squares” and usually involves adding
different penalty terms (e.g., ridge or lasso penalty) in handling high dimensionality. In this
manuscript, we propose an alternative way in estimating the VAR model. The main idea
is, via exploiting the temporal dependence structure, formulating the estimating problem
to a linear program. There is instant advantage of the proposed approach over the lasso-
type estimators: The estimation equation can be decomposed to multiple sub-equations
and accordingly can be solved efficiently using parallel computing. Besides that, we also
bring new theoretical insights into the VAR model analysis. So far the theoretical results
developed in high dimensions (e.g., Song and Bickel, 2011 and Kock and Callot, 2015) are
based on stringent assumptions that are not transparent. Our results, on the other hand,
show that the spectral norms of the transition matrices play an important role in estima-
tion accuracy and build estimation and prediction consistency accordingly. Moreover, we
provide some experiments on both synthetic and real-world equity data. We show that
there are empirical advantages of our method over the lasso-type estimators in parameter
estimation and forecasting.

Keywords: transition matrix, multivariate time series, vector autoregressive model,
double asymptotic framework, linear program

1. Introduction

The vector autoregressive (VAR) model plays a fundamental role in analyzing multivariate
time series data and has many applications in numerous academic fields. The VAR model
is heavily used in finance (Tsay, 2005), econometrics (Sims, 1980), and brain imaging data
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analysis (Valdés-Sosa et al., 2005). For example, in understanding the brain connectivity
network, multiple resting-state functional magnetic resonance imaging (rs-fMRI) data are
obtained by consecutively scanning the same subject for approximately a hundred times or
more. This naturally produces a high dimensional dependent data and a common strategy
in handling such data is via building a vector autoregressive model (see Qiu et al., and the
references therein).

This manuscript considers estimating the VAR model. Our focus is on the stationary
vector autoregression with the order (or called lag) p and Gaussian noises. More specifically,
let random vectors X1, . . . , XT be from a stochastic process (Xt)

∞
t=−∞. Each Xt is a d-

dimensional random vector and satisfies that

Xt =

p∑
k=1

AT
kXt−k + Zt, Zt ∼ Nd(0,Ψ),

where A1, . . . , Ap are called the transition matrices and (Zt)
∞
t=−∞ are independent multi-

variate Gaussian noises. Via assuming det(Id−
∑p

k=1A
T
kz

k) 6= 0 for all z ∈ C with modulus
not greater than one, we then have the process is stationary (check, for example, Section
2.1 in Lütkepohl, 2005) and Xt ∼ Nd(0,Σ) for some covariance matrix Σ depending on
{Ak, k = 1, . . . , p} and Ψ.

There are in general three main targets in analyzing an VAR model. One is to es-
timate the transition matrices A1, . . . , Ap. These transition matrices reveal the temporal
dependence in the data sequence and estimating them builds a fundamental first step in
forecasting. Moreover, the zero and nonzero entries in the transition matrices directly in-
corporate the Granger non-causalities and causalities with regard to the stochastic sequence
(see, for example, Corollary 2.2.1 in Lütkepohl, 2005). Another one of interest is the error
covariance Ψ, which reveals the contemporaneous interactions among d time series. Finally,
by merely treating the temporal dependence as another measure of the data dependence
(in parallel to the mixing conditions, Bradley, 2005), it is also of interest to estimate the
covariance matrix Σ.

This manuscript focuses on estimating the transition matrices A1, . . . , Ap, while noting
that the techniques developed here can also be exploited to estimate the covariance matrix
Σ and the noise covariance Ψ. We first review the methods developed so far in transition
matrix estimation. Let A = (AT

1 , . . . , A
T
p )T ∈ Rdp×d be the combination of the transition

matrices. Given X1, . . . , XT , the perhaps most classic method in estimating A is least
squares minimization (Hamilton, 1994)

ÂLSE = argmin
M∈Rdp×d

‖Ỹ −MTX̃‖2F, (1)

where ‖ · ‖F is the matrix Frobenius norm, Ỹ = (Xp+1, . . . , XT ) ∈ Rd×(T−p), and X̃ =
{(XT

p , . . . , X
T
1 )T, . . . , (XT

T−1, . . . , X
T
T−p)

T} ∈ R(dp)×(T−p). However, a fatal problem in (1) is
that the product of the order of the autoregression p and the number of time series d is
frequently larger than the time series length T . Therefore, the model has to be constrained
to enforce identifiability. A common strategy is to add sparsity on the transition matrices
so that the number of nonzero entries is less than T . Built on this assumption, there
has been a large literature discussing adding different penalty terms to (1) for regularizing
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the estimator: From the ridge-penalty to the lasso-penalty and more non-concave penalty
terms. In the following we list the major efforts. Hamilton (1994) discussed the use of
the ridge-penalty ‖M‖2F in estimating the transition matrices. Hsu et al. (2008) proposed
to add the L1-penalty in estimating the transition matrices, inducing a sparse output.
Several extensions to transition matrix estimation in the VAR model include: Wang et al.
(2007) exploited the L1-penalty in simultaneously estimating the regression coefficients and
determining the number of lags in a linear regression model with autoregressive errors. In
detecting causality, Haufe et al. (2008) transferred the problem to estimating transition
matrices in an VAR model and advocated using a group-lasso penalty for inducing joint
sparsity among a whole block of coefficients. In studying the graphical Granger causality
problem, Shojaie and Michailidis (2010) exploited the VAR model and proposed to estimate
the coefficients using a truncated weighted L1-penalty. Song and Bickel (2011) exploited
the L1 penalty in a complicated VAR model and aimed to select the variables and lags
simultaneously.

The theoretical properties of the L1-regularized estimator have been analyzed in Bento
et al. (2010), Nardi and Rinaldo (2011), Song and Bickel (2011), and Kock and Callot
(2015) under the assumption that the matrix A is sparse, i.e., the number of nonzero
entries in A is much less than the dimension of parameters pd2. Nardi and Rinaldo (2011)
provided both subset and parameter estimation consistency results under a relatively low
dimensional settings with d = o(n1/2). Bento et al. (2010) studied the problem of estimating
supports sets of the transition matrices in the high dimensional settings and proposed an
“irrepresentable condition” similar as what is proposed in the linear regression model (Zou,
2006; Zhao and Yu, 2006; Meinshausen and Bühlmann, 2006; Wainwright, 2009). It is for
the L1 regularized estimator to attain the support set selection consistency. In parallel,
Song and Bickel (2011) and Kock and Callot (2015) studied the parameter estimation and
support set selection consistency of the L1-regularized estimator in high dimensions.

In this paper, we propose a new approach to estimate the transition matrix A. Different
from the line of lasso-based estimation procedures, which are built on penalizing the least
square term, we exploit the linear programming technique and the proposed method is
very fast to solve via parallel computing. Moreover, we do not need A to be exactly
sparse and allow it to be only “weakly sparse”. The main idea is to estimate A using
the relationship between A and the marginal and lag 1 autocovariance matrices (such a
relationship is referred to as the Yule-Walker equation). We thus formulate the estimation
procedure to a linear program, while adding the ‖ · ‖max (element-wise supremum norm)
for model identifiability. Here we note that the proposed procedure can be considered as
a generalization of the Dantzig selector (Candes and Tao, 2007) to the linear regression
model with multivariate response. Indeed, our proposed method can also be exploited in
conducting multivariate regression (Breiman and Friedman, 1997).

The proposed method enjoys several advantages compared to the existing ones: (i)
Computationally, our method can be formulated into d linear programs and can be solved in
parallel. Similar ideas have been used in learning high dimensional linear regression (Candes
and Tao, 2007; Bickel et al., 2009) and graphical models (Yuan, 2010; Cai et al., 2011). (ii)
In the model-level, our method allows A to be only weakly sparse. (iii) Theoretically, so
far the analysis on lasso-type estimators (Song and Bickel, 2011; Kock and Callot, 2015)
depends on certain regularity conditions, restricted eigenvalue conditions on the design
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matrix for example, which are not transparent and do not explicitly reveal the role of
temporal dependence in it. In contrast, we provide explicit nonasymptotic analysis, and
our analysis highlights the spectral norm ‖A‖2 in estimation accuracy, which is inspired by
some recent developments (Loh and Wainwright, 2012). Moreover, for exact sign recovery,
our analysis does not need the “irrepresentable condition” which is usually required in the
analysis of lasso-type estimators (Bento et al., 2010).

The major theoretical results are briefly stated as follows. We adopt a double asymptotic
framework where d is allowed to increase with T . We call a matrix s-sparse if there are
at most s nonzero elements on each of its column. Under mild conditions, we provide the
explicit rates of convergence of our estimator Â based on the assumption that A is s-sparse
(Cai et al., 2011). In particular, for lag 1 time series, we show that

‖Â−A‖1 = OP

{
s‖A‖1

1− ‖A‖2

(
log d

T

)1/2
}
, ‖Â−A‖max = OP

{
‖A‖1

1− ‖A‖2

(
log d

T

)1/2
}
,

where ‖ · ‖max and ‖ · ‖q represent the matrix elementwise absolute maximum norm (Lmax

norm) and induced Lq norm (detailed definitions will be provided in §2). Using the Lmax

norm consistency result, we further provide the sign recovery consistency of the proposed
method. This result is of self interest and sheds light to detecting Granger causality. We
also provide the prediction consistency results based on the L1 consistency result and show
that element-wise error in prediction can be controlled. Here for simplicity we only provide
the results when A is exactly sparse and defer the presentation of the results for weakly
sparse matrix to Section 4.

The rest of the paper is organized as follows. In Section 2, we briefly review the vector
autoregressive model. In Section 3, we introduce the proposed method for estimating the
transition matrices of the vector autoregressive model. In Section 4, we provide the main
theoretical results. In Section 5, we apply the new method to both synthetic and real equity
data for illustrating its effectiveness. More discussions are provided in the last section.
Detailed technical proofs are provided in the appendix1.

2. Background

In this section, we briefly review the vector autoregressive model. Let M = (Mjk) ∈ Rd×d
and v = (v1, ..., vd)

T ∈ Rd be a matrix and an vector of interest. We denote vI to be the
subvector of v whose entries are indexed by a set I ⊂ {1, . . . , d}. We also denote MI,J to be
the submatrix of M whose rows are indexed by I and columns are indexed by J . We denote
MI,∗ to be the submatrix of M whose rows are indexed by I, M∗,J to be the submatrix of
M whose columns are indexed by J . For 0 < q <∞, we define the L0, Lq, and L∞ vector
(pseudo-)norms to be

‖v‖0 :=
d∑
j=1

I(vj 6= 0), ‖v‖q :=
( d∑
j=1

|vj |q
)1/q

, and ‖v‖∞ := max
1≤j≤d

|vj |,

1. Some of the results in this paper were first stated without proof in a conference version (Han and Liu,
2013).
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where I(·) is the indicator function. Letting M be a matrix, we denote the matrix Lq, Lmax,
and Frobenius norms to be

‖M‖q := max
‖v‖q=1

‖Mv‖q, ‖M‖max := max
jk
|Mjk|, and ‖M‖F :=

(∑
j,k

|Mjk|2
)1/2

.

We denote 1d = (1, . . . , 1)T ∈ Rd. Let σ1(M) ≥ · · · ≥ σd(M) be the singular values of M .
Let p ≥ 1 be an integer. A lag p vector autoregressive process can be elaborated as

follows: Let (Xt)
∞
t=−∞ be a stationary sequence of random vectors in Rd with mean 0 and

covariance matrix Σ. We say that (Xt)
∞
t=−∞ follow a lag p vector autoregressive model if

and only if they satisfy

Xt =

p∑
k=1

AT
kXt−k + Zt (t ∈ Z). (2)

Here A1, . . . , Ap are called transition matrices. We denote A = (AT
1 , . . . , A

T
p )T to be the

combination of the transition matrices. We assume that Zt are independently and identically
generated from a Gaussian distribution Nd(0,Ψ). Moreover, Zt and (Xs)s<t are independent
for any t ∈ Z. We pose an additional assumption that det(Id −

∑p
k=1A

T
kz

k) 6= 0 for all
z ∈ C with modulus not greater than one. This guarantees that the sequence is stationary
and we have, for any t ∈ Z, Xt follows a Gaussian distribution Nd(0,Σ),

We denote Σi(·) to be an operator on the process (Xt)
∞
t=−∞. In particular, we define

Σi{(Xt)} = Cov(X0, Xi). It is easy to see that Σ0{(Xt)} = Σ. If the lag of the vector
autoregressive model is 1 (i.e., Xt = AT

1Xt−1 + Zt, for any t ∈ Z), by simple calculation we
have the so called “Yule-Walker Equation”

Σi{(Xt)} = Σ0{(Xt)}(A1)
i, (3)

which further implies that

A1 = [Σ0{(Xt)}]−1 · Σ1{(Xt)}.

The results for lag 1 vector autoregressive model can be extended to the lag p vector
autoregressive model by appropriately redefining the random vectors. In detail, the autore-
gressive model with lag p shown in (2) can be reformulated as an autoregressive model with
lag 1

X̃t = ÃTX̃t−1 + Z̃t, (4)

where

X̃t =


Xt+p−1
Xt+p−2

...
Xt

 , Ã =


A1 Id 0 . . . 0
...

. . . · · · · · ·
...

Ap−1 0 0 . . . Id
Ap 0 0 . . . 0

 , Z̃t =


Zt+p−1

0
...
0

 . (5)

Here Id ∈ Rd×d is the identity matrix, X̃t ∼ Ndp(0, Σ̃) for t = 1, . . . , T , and Z̃t ∼ Ndp(0, Ψ̃)

with Σ̃ = Cov(X̃t) and Ψ̃ = Cov(Z̃t). Therefore, we also have

Ã = [Σ0{(X̃t)}]−1 · Σ1{(X̃t)}. (6)

This is similar to the relationship for the lag 1 vector autoregressive model.
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3. Methods and Algorithms

We provide a new formulation to estimate A1, . . . , Ap for the vector autoregressive model.
Let X1, . . . , XT be from a lag p vector autoregressive process (Xt)

∞
t=−∞ and we denote

X̃t = (XT
t+p−1, . . . , X

T
t )T for t = 1, . . . , T − p + 1. We denote S and S1 to be the marginal

and lag 1 sample covariance matrices of (X̃t)
T−p+1
t=1

S :=
1

T − p+ 1

T−p+1∑
t=1

X̃tX̃
T
t , S1 :=

1

T − p

T−p∑
t=1

X̃tX̃
T
t+1. (7)

Using the connection between Ã and Σ0{(X̃t)},Σ1{(X̃t)} shown in (6), we know that a
good estimator Ω̌ of Ã shall satisfy that

‖Σ0{(X̃t)}Ω̌− Σ1{(X̃t)}‖ (8)

is small enough with regard to a certain matrix norm ‖ · ‖. Moreover, using the fact that
A = (AT

1 , . . . , A
T
p )T = Ã∗,J , where J = {1, . . . , d}, by (8) we have that a good estimate Ǎ of

A shall satisfy

‖Σ0{(X̃t)}Ǎ− [Σ1{(X̃t)}]∗,J‖ (9)

is small enough.
Motivated by (9), we estimate A1, . . . , Ap via replacing Σ0{(X̃t) and [Σ1{(X̃t)}]∗,J with

their empirical versions. For formulating the estimation equation to a linear program, we use
the Lmax norm. Accordingly, we end in solving the following convex optimization program

Ω̂ = argmin
M∈Rdp×d

∑
jk

|Mjk|, subject to ‖SM − (S1)∗,J‖max ≤ λ0, (10)

where λ0 > 0 is a tuning parameter. In (10), the constraint part aims to find an estimate
that approximates the true parameter well, and combined with the minimization part, aims
to induce certain sparsity. Let Ω̂∗,j = β̂j , it is easy to see that (10) can be decomposed to

many subproblems and each β̂j can be solved by

β̂j = argmin
v∈Rdp

‖v‖1, subject to ‖Sv − (S1)∗,j‖∞ ≤ λ0. (11)

Accordingly, compared to the lasso-type procedures, the proposed method can be solved in
parallel and therefore is computationally more efficient.

Once Ω̂ is obtained, the estimator of the transition matrix Ak can then be written as

Âk = Ω̂Jk,∗, (12)

where we denote Jk = {j : d(k − 1) + 1 ≤ j ≤ dk}.
We now show that the optimization in (11) can be formulated into a linear program.

Recall that any real number a takes the decomposition a = a+−a−, where a+ = a ·I(a ≥ 0)
and a− = −a · I(a < 0). For any vector v = (v1, . . . , vd)

T ∈ Rd, let v+ = (v+1 , . . . , v
+
d )T and

v− = (v−1 , . . . , v
−
d )T. We denote v ≥ 0 if v1, . . . , vd ≥ 0 and v < 0 if v1, . . . , vd < 0, v1 ≥ v2
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if v1− v2 ≥ 0, and v1 < v2 if v1− v2 < 0. Letting v = (v1, . . . , vd)
T, the problem in (11) can

be further relaxed to the following problem

β̂j = argmin
v+,v−

1T
d (v+ + v−),

subject to ‖Sv+ − Sv− − (S1)∗,j‖∞ ≤ λ0, v+ ≥ 0, v− ≥ 0. (13)

To minimize 1T
d (v+ + v−), v+ or v− can not be both nonzero. Therefore, the solution to

(13) is exactly the solution to (11). The optimization in (13) can be written as

β̂j = argmin
v+,v−

1T
d (v+ + v−),

subject to Sv+ − Sv− − (S1)∗,j ≤ λ01d,
−Sv+ + Sv− + (S1)∗,j ≤ λ01d,

v+ ≥ 0, v− ≥ 0.

This is equivalent to

β̂j = argmin
ω

1T
2dω, subject to θ +Wω ≥ 0, ω ≥ 0, (14)

where

ω =

(
v+

v−

)
, θ =

[
(S1)∗,j + λ01d
−(S1)∗,j + λ01d

]
, W =

(
−S S
S −S

)
.

The optimization (14) is a linear program. We can solve it using the simplex algorithm
(Murty, 1983).

4. Theoretical Properties

In this section, under the double asymptotic framework, we provide the nonasymptotic rates
of convergence in parameter estimation under the matrix L1 and Lmax norms.

We first present the rates of convergence of the estimator Ω̂ in (10) under the vector
autoregressive model with lag 1. This result allows us to sharply characterize the impact
of the temporal dependence of the time series on the obtained rate of convergence. In
particular, we show that the rate of convergence is closely related to the L1 and L2 norms
of the transition matrix A1, where ‖A1‖2 is the key part in characterizing the impact
of temporal dependence on estimation accuracy. Secondly, we present the sign recovery
consistency result of our estimator. Compared to the lasso-type estimators, our result does
not require the irrepresentable condition. These results are combined together to show that
we have the prediction consistency, i.e., the term ‖A1XT − Â1XT ‖ goes to zero with regard
to certain norms ‖ · ‖. The application to lag p > 1 case is left for future studies.

We start with some additional notation. Let Md ∈ R be a quantity which may scale
with the time series length and dimension (T, d). We define the set of square matrices in
Rd×d, denoted by M(q, s,Md), as

M(q, s,Md) :=
{
M ∈ Rd×d : max

1≤j≤d

d∑
i=1

|Mij |q ≤ s,‖M‖1 ≤Md

}
.
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For q = 0, the classM(0, s,Md) contains all the s-sparse matrices with bounded L1 norms.
There are two general remarks about the model M(q, s,Md): (i) M(q, s,Md) can be

considered as the matrix version of the vector “weakly sparse set” explored in Raskutti
et al. (2011) and Vu and Lei (2012). Such a way to define the weakly sparse set of matrices
is also investigated in Cai et al. (2011). (ii) For the exactly sparse matrix set,M(0, s,Md),
the sparsity level s here represents the largest number of nonzero entries in each column
of the matrix. In contrast, the sparsity level s′ exploited in Kock and Callot (2015) is the
total number of nonzero entries in the matrix. We must have s′ ≥ s and regularly s′ � s
(means s/s′ → 0).

The next theorem presents the L1 and Lmax rates of convergence of our estimator under
the vector autoregressive model with lag 1.

Theorem 1 Suppose that (Xt)
T
t=1 are from a lag 1 vector autoregressive process (Xt)

∞
t=−∞

as described in (2). We assume the transition matrix A1 ∈M(q, s,Md) for some 0 ≤ q < 1.
Let Â1 be the optimum to (10) with the tuning parameter

λ0 =
32‖Σ‖2 maxj(Σjj)

minj(Σjj)(1− ‖A‖2)
(2Md + 3)

(
log d

T

)1/2

.

For T ≥ 6 log d+1 and d ≥ 8, we have, with probability no smaller than 1− 14d−1,

‖Â1 −A1‖1 ≤ 4s

{
32‖Σ−1‖1 maxj(Σjj)‖Σ‖2

minj(Σjj)(1− ‖A1‖2)
(2Md + 3)

(
log d

T

)1/2
}1−q

. (15)

Moreover, with probability no smaller than 1− 14d−1,

‖Â1 −A1‖max ≤
64‖Σ−1‖1 maxj(Σjj)‖Σ‖2

minj(Σjj)(1− ‖A1‖2)
(2Md + 3)

(
log d

T

)1/2

. (16)

In the above results, Σ is the marginal covariance matrix of Xt.

It can be observed that, similar to the lasso and Dantzig selector (Candes and Tao,
2007; Bickel et al., 2009), the tuning parameter λ0 here depends on the variance term Σ.
In practice, same as most preceded developments (see, for example, Song and Bickel, 2011),
we can use a data-driven way to select the tuning parameter. In this manuscript we explore
using cross-validation to choose λ0 with the best prediction accuracy. In Section 5 we
will show that the procedure of selecting the tuning parameter via cross-validation gives
reasonable results.

Here A1 is assumed to be at least weakly sparse and belong to the setM(q, s,Md). This
is merely for the purpose of model identifiability. Otherwise, we will have multiple global
optima in the optimization problem.

The obtained rates of convergence in Theorem 1 depend on both Σ and A1 with ‖A1‖2
characterizing the temporal dependence. In particular, the estimation error is related to the
spectral norm of the transition matrix A1. Intuitively, this is because ‖A1‖2 characterizes
the data dependence of X1, . . . , XT , and accordingly intrinsically characterizes how much
information there is in the data. If ‖A1‖2 is larger, then there is less information we can

3122



Estimation of VAR Models

exploit in estimating A1. Technically, ‖A1‖2 determines the rate of convergence of S and
S1 to their population counterparts. We refer to the proofs of Lemmas 1 and 2 for details.

In the following, we list two examples to provide more insights about the results in
Theorem 1.

Example 1 We consider the case where Σ is a strictly diagonal dominant (SDD) matrix
(Horn and Johnson, 1990) with the property

δi := |Σii| −
∑
j 6=i
|Σij | ≥ 0, (i = 1, . . . , d).

This corresponds to the cases where the d entries in any Xt with t ∈ {1, . . . , T} are weakly
dependent. In this setting, Ahlberg and Nilson (1963) showed that

‖Σ−1‖1 = ‖Σ−1‖∞ ≤
{

min
i

(
|Σii| −

∑
j 6=i
|Σij |

)}−1
= max

i
(δ−1i ). (17)

Moreover, by algebra, we have

‖Σ‖2 ≤ ‖Σ‖1 = max
i

(
|Σii|+

∑
j 6=i
|Σij |

)
≤ 2 max

i
(|Σii|). (18)

Equations (17) and (18) suggest that, when maxi(Σii) is upper bounded, and both mini(Σii)
and δi are lower bounded by a fixed constant, we have both ‖Σ−1‖1 and ‖Σ‖2 are upper
bounded, and the obtained rates of convergence in (15) and (16) can be simplified as

‖Â1 −A1‖1 = OP

s{ Md

1− ‖A1‖2

(
log d

T

)1/2
}1−q

 ,
‖Â1−A1‖max = OP

{
Md

1− ‖A1‖2

(
log d

T

)1/2
}
.

Example 2 We can generalize the “entry-wise weakly dependent” structure in Example 1
to a “block-wise weakly dependent” structure. More specifically, we consider the case where
Σ = (Σb

jk) with blocks Σb
jk ∈ Rdj×dk (1 ≤ j ≤ K) is a strictly block diagonal dominant

(SBDD) matrix with the property

δbi = ‖(Σb
ii)
−1‖−1∞ −

∑
j 6=i
‖Σb

ij‖∞ > 0 (i = 1, . . . ,K).

In this case, Varah (1975) showed that

‖Σ−1‖1 = ‖Σ−1‖∞ ≤
{

min
i

(
‖(Σb

ii)
−1‖−1∞ −

∑
j 6=i
‖Σb

ij‖∞
)}−1

= max{(δbi )−1}.

Moreover, we have

‖Σ‖2 ≤ ‖Σ‖1 ≤ max
i

(‖(Σb
ii)
−1‖−1∞ + ‖Σb

ii‖∞).
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Accordingly, generally (‖(Σb
ii)
−1‖−1∞ + ‖Σb

ii‖∞) is in the scale of maxi(di)� d, and when δbi
are lower bounded and the condition number of Σ is upper bounded, we have the obtained
rates of convergence can be simplified as

‖Â1 −A1‖1 = OP

s{Md ·maxi(di)

1− ‖A1‖2

(
log d

T

)1/2
}1−q

 ,
‖Â1−A1‖max = OP

{
Md ·maxi(di)

1− ‖A1‖2

(
log d

T

)1/2
}
.

We then continue to the results of feature selection. If we have A1 ∈M(0, s,Md), from
the element-wise Lmax norm convergence, a sign recovery result can be obtained. In detail,
let Ă1 be a truncated version of Â1 with level γ

(Ă1)ij = (Â1)ijI{|(Â1)ij | ≥ γ}. (19)

The following corollary shows that Ă1 recovers the sign of A1 with overwhelming probability.

Corollary 1 Suppose that the conditions in Theorem 1 hold and A1 ∈ M(0, s,Md). If we
choose the truncation level

γ =
64‖Σ−1‖1 maxj(Σjj)‖Σ‖2

minj(Σjj)(1− ‖A1‖2)
(2Md + 3)

(
log d

T

)1/2

in (19) and with the assumption that

min
{(j,k):(A1)jk 6=0}

|(A1)jk| ≥ 2γ,

we have, with probability no smaller than 1 − 14d−1, sign(A1) = sign(Ă1). Here for any
matrix M , sign(M) is a matrix with each element representing the sign of the corresponding
entry in M .

Here we note that Corollary 1 sheds lights to detecting Granger causality. For any
two processes {yt} and {zt}, Granger (1969) defined the causal relationship in principle as
follows: Provided that we know everything in the universe, {yt} is said to cause {zt} in
Granger’s sense if removing the information about {ys}s≤t from the whole knowledge base
built by time t will increase the prediction error about zt. It is known that the noncausalities
are determined by the transition matrices in the stable VAR process (Lütkepohl, 2005).
Therefore, detecting the nonzero entries of A1 consistently means that we can estimate the
Granger-causality network consistently.

We then turn to evaluate the prediction performance of the proposed method. Given a
new data point XT+1 in the time point T+1, based on (Xt)

T
t=1, the next corollary quantifies

the distance between XT+1 and Â1XT in terms of L∞ norm.

Corollary 2 Suppose that the conditions in Theorem 1 hold and let

Ψmax := max
i

(Ψii) and Σmax := max
i

(Σii).
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Then for the new data point XT+1 at time point T + 1 and any constant α > 0, with
probability greater than

1− 2(dα/2−1
√
π/2 · α log d})−1 − 14d−1,

we have

‖XT+1 − ÂT
1XT ‖∞ ≤ (Ψmax · α log d)1/2+

4s

{
32‖Σ−1‖1 maxj(Σjj)‖Σ‖2

minj(Σjj)(1− ‖A1‖2)
(2Md + 3)

(
log d

T

)1/2
}1−q

· (Σmax ·α log d)1/2, (20)

where Â1 is calculated based on (Xt)
T
t=1.

Here we note that the first term in the right-hand side of Equation (20), (Ψmax ·α log d)1/2, is
present due to the diverges of the new data point from its mean caused by an unpredictable
noise perturb term ZT+1 ∼ Nd(0,Ψ). This term is unable to be canceled out even if we
have almost infinite data points. The second term in the right-hand side of Equation (20)
depends on the estimation accuracy of Â1 to A1 and will converge to zero under certain
conditions. In other words, the term

‖AT
1XT − ÂT

1XT ‖∞ → 0,

converges to zero in probability as n, d→∞.
Although A1 is in general asymmetric, there exist cases such that a symmetric transition

matrix is more of interest. It is known that the off-diagonal entries in the transition matrix
represent the influence of one state on the others and such influence might be symmetric or
not. Weiner et al. (2012) provided several examples where a symmetric transition matrix
is more appropriate for modeling the data.

If we can further suppose that the transition matrix A1 is symmetric, we can use this
information and obtain a new estimator Ā1 as

(Ā1)jk = (Ā1)kj := (Â1)jkI(|(Â1)jk| ≤ |(Â1)kj |) + (Â1)kjI(|(Â1)kj | ≤ |(Â1)jk|).

In other word, we always pick the entry with smaller magnitudes. Then using Theorem 1,
we have ‖Ā1−A1‖1 and ‖Ā1−A1‖∞ can be upper bounded by the same number presented
in the right-hand side of (15). In this case, because both A1 and Ā1 are symmetric, we
have ‖Ā1−A1‖2 ≤ ‖Ā1−A1‖1 = ‖Ā1−A1‖∞. We then proceed to quantify the prediction
accuracy under L2 norm in the next corollary.

Corollary 3 Suppose that the conditions in Theorem 1 hold and A1 is a symmetric matrix.
Then for the new data point XT+1 at time point T+1, with probability greater than 1−18d−1,
we have

‖XT+1 − ĀT
1XT ‖2 ≤

√
2‖Ψ‖2 log d+

√
tr(Ψ) +

4s

{
32‖Σ−1‖1 maxj(Σjj)‖Σ‖2

minj(Σjj)(1− ‖A1‖2)
(2Md+3)

(
log d

T

)1/2
}1−q

· {
√

2‖Σ‖2 log d+
√

tr(Σ)}. (21)

Based on Corollary 3, we have, similar as what is discussed in Corollary 2, the term
‖AT

1XT−ÂT
1XT ‖2 will vanish when the second term in the left-hand side of (21) can converge

to zero.
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5. Experiments

We conduct numerical experiments on both synthetic and real data to illustrate the effec-
tiveness of our proposed method compared to the competing ones, as well as obtain more
insights on the performance of the proposed method. In the following we consider the three
competing methods:

• (i) The least square estimation using a ridge-penalty (The method in Hamilton, 1994,
by adding a ridge-penalty ‖M‖2F to the least squares loss function in Equation 1).

• (ii) The least square estimation using an L1 penalty (The method in Hsu et al., 2008,
by adding an L1 penalty

∑
ij |Mij | to Equation 1).

• (iii) Our method (The estimator described in Equation 10).

Here we consider including the procedure discussed in Hamilton (1994) because it is a
commonly explored baseline and shows how bad the classic procedure can be when the
dimension is high. We only consider the competing procedure proposed in Hsu et al. (2008)
because this is the only method that is specifically designed for the same simple VAR as
what we study. We do not consider other aforementioned procedures (e.g., Haufe et al.,
2008; Shojaie and Michailidis, 2010) because they are designed for more specific models with
more assumptions. We use the R package “glmnet” (Friedman et al., 2010) for implementing
the lasso method in Hsu et al. (2008), and the simplex algorithm for implementing ours.

5.1 Cross-Validation Procedure

We start with an introduction to how to conduct cross-validation for choosing the lag p and
the tuning parameter λ in the algorithm outlined in Section 3.

For the time series (Xt)
T
t=−∞ and a specific time point t0 of interest, if both p and λ are

assumed to be unknown, the proposed cross-validation procedure is as follows.

1. We set all possible choices of (p, λ) to be a grid. We set n1 and n2 to be two numbers
(representing the length of training data and the number of replicates).

2. For each Xt among Xt0−1, . . . , Xt0−n2 , the estimates Ât1(p, λ), . . . , Âtp(p, λ) are cal-
culated based on the training data Xt−1, . . . , Xt−n1 and any choice of (p, λ). We
set the prediction error at time t, denoted as Errt(p, λ), to be Errt(p, λ) := ‖Xt −∑p

k=1 Â
t
k(p, λ)TXt−k‖2.

3. We take an average over the prediction errors and denote

Err(p, λ) :=
1

n2

t0−1∑
t=t0−n2

Errt(p, λ)

.

4. We choose the (p, λ) over the grid such that Err(p, λ) is minimized.

In case when p is predetermined, the above procedure can be easily modified to focus
only on selecting λ with p to be the determined value.
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(a) band (b) cluster (c) hub

(d) random (e) scale-free

Figure 1: Five different transition matrix patterns used in the experiments. Here gray
points represent the zero entries and black points represent nonzero entries.

5.2 Synthetic Data Analysis

In this subsection, we compare the performance of our method with the ridge and lasso
methods using synthetic data under multiple settings. We also study the impact of transi-
tion matrices’ spectral norms on estimation accuracy, and how the computation time and
memory usage of all methods scale with the number of lags.

5.2.1 Performance Comparison: Lag p = 1

This section focuses on vector autoregressive model described in (2) with lag one. We
compare our method to the competing ones on several synthetic data sets. We consider the
settings where the time series length T varies from 50 to 100 and the dimension d varies
from 50 to 200.

We create the transition matrix A1 according to five different patterns: band, cluster,
hub, random, and scale-free. Typical realizations of these patterns are illustrated in Figure
1 and are generated using the “flare” package in R (Li et al., 2015). In those plots, the gray
points represent the zero entries and the black points represent the nonzero entries. We
then rescale A1 such that we have ‖A1‖2 = 0.5. Once A1 is obtained, we generate Σ using
two models. First is the simple setting with Σ to be diagonal

Σ = 2‖A1‖2Id. (22)
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ridge method lasso method our method

d T LF L2 L1 LF L2 L1 LF L2 L1

50 100 2.71 0.52 2.47 2.34 0.50 1.54 2.08 0.49 0.58
(0.028) (0.023) (0.103) (0.064) (0.029) (0.161) (0.045) (0.006) (0.039)

100 50 4.21 0.64 3.54 5.52 0.75 3.13 3.26 0.52 1.03
(0.026) (0.024) (0.136) (0.075) (0.024) (0.211) (0.052) (0.017) (0.321)

200 100 7.28 0.76 6.26 6.36 0.64 2.77 4.26 0.50 0.69
(0.031) (0.018) (0.132) (0.057) (0.015) (0.112) (0.045) (0.003) (0.035)

Table 1: Comparison of estimation performance of three methods with diagonal covariance
matrix over 1,000 replications. The standard deviations are presented in the paren-
theses. Here LF, L2, and L1 represent the Frobenius, L2, and L1 matrix norms
respectively. The pattern of the transition matrix is “band”.

The second is the complex setting where Σ is of Toeplitz form

Σi,i = 1, Σi,j = ρ|i−j| for some ρ ∈ (0, 1) and i, j = 1, . . . , d.

We then calculate the covariance matrix Ψ of the Gaussian noise vector Zt as Ψ = Σ −
AT

1ΣA1. With A1,Σ, and Ψ, we simulate a time series (X1, . . . , XT )T ∈ RT×d according to
the model described in (2).

We construct 1, 000 replicates and compare the three methods described above. The
averaged estimation errors under different matrix norms are illustrated in Tables 1 to 10.
The standard deviations of the estimation errors are provided in the parentheses. The
tuning parameters for the three methods are selected using the cross-validation procedure
outlined in Section 5.1 with n1 = T/2, n2 = T/2, and the lag p predetermined to be 1.

Tables 1 to 10 show that our method nearly uniformly outperforms the methods in Hsu
et al. (2008) and Hamilton (1994) under different norms (Frobenius, L2, and L1 norms).
In particular, the improvement over the method in Hsu et al. (2008) tends to be more
significant when the dimension d is larger. Our method also has averagely slightly less
standard deviations compared to the method in Hsu et al. (2008), but overall the difference
is not significant. The method in Hamilton (1994) has worse performance than the other
two methods. This verifies that it is not appropriate to handle very high dimensional data.

5.2.2 Synthetic Data: Lag p ≥ 1

In this section, we further compare the performance of the three competing methods under
the settings of possibly multiple lags, with the number of lags known.

In detail, we choose p to be from 1 to 9, the time series length T = 100, and the dimension
d = 50. The transition matrices A1, . . . , Ap are created according to “hub” or “scale-free”
pattern, and then rescaled such that ‖Ai‖2 = 0.1 for i = 1, . . . , p. The error covariance
matrix Ψ is set to be identity for simplicity. Under this multiple lags setting, we then
calculate the covariance matrix of X̃t, i.e., Σ̃ defined in (5), by solving a discrete Lyapunov
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ridge method lasso method our method

d T LF L2 L1 LF L2 L1 LF L2 L1

50 100 2.48 0.44 2.40 2.12 0.43 1.56 1.48 0.49 0.69
(0.034) (0.024) (0.110) (0.055) (0.032) (0.119) (0.020) (0.011) (0.026)

100 50 3.74 0.58 3.46 5.24 0.67 3.16 2.27 0.50 0.66
(0.031) (0.022) (0.121) (0.084) (0.025) (0.223) (0.002) (0.001) (0.002)

200 100 6.80 0.72 6.26 5.82 0.55 2.80 3.02 0.49 0.77
(0.025) (0.021) (0.188) (0.058) (0.014) (0.109) (0.024) (0.010) (0.047)

Table 2: Comparison of estimation performance of three methods with diagonal covariance
matrix over 1,000 replications. The standard deviations are presented in the paren-
theses. Here LF, L2, and L1 represent the Frobenius, L2, and L1 matrix norms
respectively. The pattern of the transition matrix is “cluster”.

ridge method lasso method our method

d T LF L2 L1 LF L2 L1 LF L2 L1

50 100 2.41 0.42 2.37 1.96 0.38 1.48 1.16 0.41 1.05
(0.033) (0.027) (0.102) (0.06) (0.039) (0.141) (0.115) (0.058) (0.092)

100 50 3.49 0.55 3.44 5.06 0.63 3.11 1.86 0.50 1.40
(0.034) (0.023) (0.143) (0.088) (0.032) (0.214) (0.118) (0.016) (0.138)

200 100 6.61 0.69 6.24 5.48 0.52 2.75 2.12 0.50 1.26
(0.035) (0.017) (0.133) (0.062) (0.019) (0.147) (0.046) (0.006) (0.031)

Table 3: Comparison of estimation performance of three methods with diagonal covariance
matrix over 1,000 replications. The standard deviations are presented in the paren-
theses. Here LF, L2, and L1 represent the Frobenius, L2, and L1 matrix norms
respectively. The pattern of the transition matrix is “hub”.
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ridge method lasso method our method

d T LF L2 L1 LF L2 L1 LF L2 L1

50 100 2.60 0.48 2.45 2.21 0.43 1.53 1.73 0.44 0.73
(0.031) (0.027) (0.102) (0.061) (0.030) (0.143) (0.051) (0.026) (0.034)

100 50 4.10 0.61 3.53 5.44 0.71 3.09 3.07 0.48 1.21
(0.025) (0.020) (0.136) (0.077) (0.024) (0.224) (0.066) (0.024) (0.177)

200 100 7.01 0.74 6.27 6.03 0.58 2.79 3.54 0.44 0.95
(0.024) (0.019) (0.179) (0.048) (0.011) (0.163) (0.036) (0.026) (0.079)

Table 4: Comparison of estimation performance of three methods with diagonal covariance
matrix over 1,000 replications. The standard deviations are presented in the paren-
theses. Here LF, L2, and L1 represent the Frobenius, L2, and L1 matrix norms
respectively. The pattern of the transition matrix is “random”.

ridge method lasso method our method

d T LF L2 L1 LF L2 L1 LF L2 L1

50 100 2.48 0.44 2.40 2.09 0.41 1.51 1.44 0.41 0.98
(0.032) (0.025) (0.098) (0.059) (0.033) (0.154) (0.075) (0.052) (0.108)

100 50 3.60 0.56 3.43 5.14 0.64 3.11 2.16 0.46 1.36
(0.034) (0.023) (0.133) (0.085) (0.031) (0.188) (0.130) (0.043) (0.115)

200 100 6.65 0.70 6.26 5.57 0.51 3.29 2.51 0.42 2.49
(0.034) (0.017) (0.143) (0.065) (0.014) (0.274) (0.249) (0.050) (0.108)

Table 5: Comparison of estimation performance of three methods with diagonal covariance
matrix over 1,000 replications. The standard deviations are presented in the paren-
theses. Here LF, L2, and L1 represent the Frobenius, L2, and L1 matrix norms
respectively. The pattern of the transition matrix is “scale-free”.
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ridge method lasso method our method

d T LF L2 L1 LF L2 L1 LF L2 L1

50 100 2.47 0.51 2.25 2.10 0.45 1.32 1.82 0.47 0.57
(0.031) (0.033) (0.101) (0.066) (0.035) (0.131) (0.084) (0.014) (0.044)

100 50 3.98 0.67 3.31 5.22 0.74 2.81 3.15 0.51 1.04
(0.029) (0.033) (0.107) (0.083) (0.032) (0.174) (0.114) (0.063) (0.529)

200 100 6.92 0.79 5.96 5.82 0.61 2.44 3.79 0.48 0.67
(0.033) (0.028) (0.142) (0.060) (0.023) (0.134) (0.078) (0.006) (0.034)

Table 6: Comparison of estimation performance of three methods on data generated with
Toeplitz covariance matrix (ρ = 0.5), over 1,000 replications. The standard devi-
ations are presented in the parentheses. Here LF, L2, and L1 represent the Frobe-
nius, L2, and L1 matrix norms respectively. The pattern of the transition matrix
is “band”.

ridge method lasso method our method

d T LF L2 L1 LF L2 L1 LF L2 L1

50 100 2.32 0.42 2.25 2.01 0.39 1.42 1.46 0.47 0.69
(0.041) (0.029) (0.114) (0.066) (0.030) (0.124) (0.027) (0.019) (0.037)

100 50 3.61 0.57 3.33 5.08 0.65 3.01 2.47 0.47 1.02
(0.034) (0.029) (0.124) (0.087) (0.031) (0.212) (0.075) (0.031) (0.155)

200 100 6.63 0.70 6.13 5.58 0.54 2.59 2.96 0.48 0.79
(0.038) (0.020) (0.162) (0.069) (0.019) (0.153) (0.027) (0.013) (0.046)

Table 7: Comparison of estimation performance of three methods on data generated with
Toeplitz covariance matrix (ρ = 0.5), over 1,000 replications. The standard devi-
ations are presented in the parentheses. Here LF, L2, and L1 represent the Frobe-
nius, L2, and L1 matrix norms respectively. The pattern of the transition matrix
is “cluster”.
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ridge method lasso method our method

d T LF L2 L1 LF L2 L1 LF L2 L1

50 100 2.27 0.40 2.22 1.85 0.36 1.34 1.16 0.39 1.01
(0.039) (0.037) (0.099) (0.067) (0.041) (0.157) (0.124) (0.062) (0.102)

100 50 3.37 0.54 3.26 4.94 0.61 2.96 1.86 0.50 1.37
(0.041) (0.034) (0.125) (0.102) (0.033) (0.222) (0.120) (0.017) (0.104)

200 100 6.46 0.67 6.19 5.24 0.50 2.54 2.13 0.49 1.24
(0.042) (0.024) (0.168) (0.071) (0.025) (0.162) (0.107) (0.023) (0.042)

Table 8: Comparison of estimation performance of three methods on data generated with
Toeplitz covariance matrix (ρ = 0.5), over 1,000 replications. The standard devi-
ations are presented in the parentheses. Here LF, L2, and L1 represent the Frobe-
nius, L2, and L1 matrix norms respectively. The pattern of the transition matrix
is “hub”.

ridge method lasso method our method

d T LF L2 L1 LF L2 L1 LF L2 L1

50 100 2.49 0.45 2.34 2.15 0.41 1.44 1.74 0.44 0.74
(0.036) (0.029) (0.104) (0.071) (0.032) (0.139) (0.058) (0.033) (0.043)

100 50 4.02 0.60 3.42 5.34 0.70 2.96 3.07 0.47 1.21
(0.029) (0.024) (0.123) (0.092) (0.028) (0.207) (0.085) (0.027) (0.192)

200 100 6.89 0.72 6.13 5.87 0.56 2.65 3.54 0.43 0.97
(0.028) (0.022) (0.164) (0.057) (0.016) (0.174) (0.052) (0.019) (0.091)

Table 9: Comparison of estimation performance of three methods on data generated with
Toeplitz covariance matrix (ρ = 0.5), over 1,000 replications. The standard devi-
ations are presented in the parentheses. Here LF, L2, and L1 represent the Frobe-
nius, L2, and L1 matrix norms respectively. The pattern of the transition matrix
is “random”.
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ridge method lasso method our method

d T LF L2 L1 LF L2 L1 LF L2 L1

50 100 2.36 0.42 2.27 2.00 0.38 1.36 1.42 0.37 0.89
(0.036) (0.033) (0.094) (0.064) (0.033) (0.136) (0.068) (0.056) (0.108)

100 50 3.49 0.55 3.29 5.03 0.63 2.96 2.21 0.42 1.29
(0.039) (0.029) (0.124) (0.100) (0.027) (0.212) (0.149) (0.050) (0.131)

200 100 6.52 0.67 6.18 5.36 0.49 3.06 2.55 0.39 2.44
(0.041) (0.019) (0.165) (0.070) (0.013) (0.219) (0.364) (0.062) (0.134)

Table 10: Comparison of estimation performance of three methods on data generated with
Toeplitz covariance matrix (ρ = 0.5), over 1,000 replications. The standard
deviations are presented in the parentheses. Here LF, L2, and L1 represent the
Frobenius, L2, and L1 matrix norms respectively. The pattern of the transition
matrix is “scale-free”.

equation ÃTΣ̃Ã − Σ̃ + Ψ̃ = 0. This is via using the Matlab command “dlyapchol”. With
{Ai}pi=1, Σ̃, and Ψ determined, we simulate a time series (X1, . . . , XT )T ∈ RT×d according
to the model described in (2) (with lag p ≥ 1).

The estimation error is calculated by measuring the difference of (AT
1 , . . . , A

T
p )T and

(ÂT
1 , . . . , Â

T
p )T with regard to different matrix norms (LF, L2, and L1 norms). We conduct

1, 000 simulations and compare the averaged performance of three competing methods. The
calculated averaged estimation errors are illustrated in Tables 11 and 12. The standard devi-
ations of the estimation errors are provided in the parentheses. Here the tuning parameters
are selected in the same way as before. Tables 11 and 12 confirms that our method still
outperforms the competing two methods.

5.2.3 Synthetic Data: Impact of Transition Matrices’ Spectral Norms

In this section we illustrate the effects of the transition matrices’ spectral norms on esti-
mation accuracy. To this end, we study the settings in Section 5.2. More specifically, we
set lag p = 1, the dimension d and the sample size T to be d = 50 and T = 100. The
transition matrix A1 is created according to different patterns (“band”, “cluster”, “hub”,
“scale-free”, and “random”), and then rescaled such that ‖A1‖2 = κ, where κ is from 0.05 to
0.9. Covariance matrix Σ is set to be of the form (22), and Ψ is accordingly determined by
stationary condition. We select the tuning parameters using the cross-validation procedure
as before. The estimation errors are then plotted against κ and shown in Figure 2.

Figure 2 illustrates that the estimation error is an increasing function of the spectral
norm ‖A1‖2. This demonstrates that the spectral norms of the transition matrices play an
important role in estimation accuracy and justifies the theorems in Section 4.
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ridge method lasso method our method

p LF L2 L1 LF L2 L1 LF L2 L1

1 6.93 2.50 7.35 1.83 0.52 1.36 0.25 0.11 0.23
(0.012) (0.094) (0.377) (0.039) (0.017) (0.128) (0.014) (0.016) (0.002)

3 9.13 2.89 15.96 2.52 0.59 2.18 0.45 0.18 0.70
(0.129) (0.092) (0.249) (0.085) (0.016) (0.116) (0.023) (0.004) (0.003)

5 5.57 1.57 11.73 2.75 0.61 3.19 0.58 0.23 1.23
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

7 4.27 1.14 10.92 2.90 0.60 3.44 0.72 0.31 1.83
(0.010) (0.041) (0.152) (0.026) (0.025) (0.183) (0.077) (0.067) (0.222)

9 3.59 0.90 10.17 2.98 0.61 4.11 0.70 0.30 2.11
(0.026) (0.023) (0.219) (0.061) (0.004) (0.201) (0.000) (0.000) (0.000)

Table 11: Comparison of estimation performance of three methods over 1,000 replications
under multiple lag settings. The standard deviations are presented in the paren-
theses. Here LF, L2, and L1 represent the Frobenius, L2, and L1 matrix norms
respectively. The pattern of the transition matrix is “hub”.

ridge method lasso method our method

p LF L2 L1 LF L2 L1 LF L2 L1

1 6.93 2.51 7.39 1.83 0.53 1.35 0.30 0.12 0.24
(0.116) (0.093) (0.340) (0.041) (0.018) (0.129) (0.045) (0.016) (0.039)

3 9.14 3.00 15.97 2.53 0.60 2.19 0.46 0.17 0.57
(0.133) (0.099) (0.219) (0.090) (0.020) (0.094) (0.058) (0.007) (0.083)

5 5.58 1.57 11.66 2.77 0.60 2.97 0.62 0.23 0.93
(0.002) (0.002) (0.018) (0.001) (0.002) (0.076) (0.012) (0.002) (0.078)

7 4.28 1.14 10.97 2.90 0.60 3.34 0.69 0.24 1.29
(0.014) (0.042) (0.164) (0.031) (0.020) (0.131) (0.041) (0.005) (0.078)

9 3.62 0.90 10.25 3.01 0.61 3.42 0.87 0.30 1.79
(0.024) (0.023) (0.267) (0.058) (0.003) (0.112) (0.078) (0.012) (0.198)

Table 12: Comparison of estimation performance of three methods over 1,000 replications
under multiple lag settings. The standard deviations are presented in the paren-
theses. Here LF, L2, and L1 represent the Frobenius, L2, and L1 matrix norms
respectively. The pattern of the transition matrix is “scale-free”.

3134



Estimation of VAR Models

0.0 0.2 0.4 0.6 0.8

0
.0

0
.5

1
.0

1
.5

2
.0

Estimation Error v.s Spectral Norm of A1

Spectral norm of A1

E
s
ti
m

a
ti
o
n
 e

rr
o
r

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●
●
●
●

●

●

●

●

● band

cluster

hub

scale−free

random

Figure 2: Estimation errors of A1 (in L1 norm) plotted against spectral norms of A1.

5.2.4 Computation Time and Memory Usage

This section is devoted to show the computation time and memory usage of our method.
First, we show the advantage of our method in terms of saving the computation time.
A major advantage of our method over the two competing methods is that our method
can be easily parallelly computed, and hence has the potential to save the computation
time. We illustrate this point with a figure and two tables using the computation time as
a function of the number of available cores. All experiments are conducted on a 2816-core
Westmere/Ivybridge 2.67/2.5GHz Linux server with 17T memory, a cluster system with
batch scheduling.

We first focus on the lag p = 1 case. In detail, we set the time series length T = 100
and the dimension d = 50. The transition matrix A1 is created according to the pattern
“random”, and then rescaled such that ‖A1‖2 = 0.5. The covariance matrix Σ is generated
as in (22), and Ψ is generated by stationary condition. We then solve (11) using parallel
computing based on 1 to 50 cores.

Figure 3 shows the computation time. It illustrates that, in terms of saving the com-
putation time, under this specific setting, we have: (i) Our method outperforms the ridge
method even if we do not parallelly compute it; (ii) When there are no less than 8 cores,
our method outperforms the lasso method. Here the ridge method is very slow because it
involves calculating the inverse of a large matrix.

To further study the advantage of parallel computing when the number of lags, p, grows,
we provide another experiment focusing on models with varying lags. More specifically, we
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Figure 3: Computation time v.s number of available cores. The computation time for the
ridge and lasso methods are 5.843s and 0.153s, which do not change with number
of available cores. The computation time here is the averaged elapsed time (in
seconds) of 100 replicates of a single experiment.
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lasso method our method (with # of available cores)

p N/A 1 5 10 20 30 40 50

1 0.260 1.277 0.261 0.132 0.067 0.048 0.033 0.029
2 0.664 2.732 0.553 0.280 0.141 0.098 0.073 0.059
3 1.034 8.945 1.792 0.897 0.455 0.299 0.230 0.181
4 1.538 18.278 3.695 1.844 0.920 0.620 0.466 0.366
5 1.946 35.609 7.130 3.890 1.781 1.189 0.870 0.719

Table 13: A comparison of computation time with increasing number of lags p: lasso method
v.s our method. The computation time for the lasso method does not change with
number of available cores. The computation time here is the averaged elapsed
time (in seconds) of 100 replicates of a single experiment.

set the time series length T = 100 and the dimension d = 50. The transition matrices
A1, . . . , Ap are created according to the pattern “random”, and then rescaled such that

‖Ai‖2 = 0.1 for i = 1, . . . , p. The error covariance matrix Ψ and the covariance matrix Σ̃
are generated in the same way as in Section 5.2.2. With {Ai}pi=1, Σ̃, and Ψ determined, we
simulate a time series (X1, . . . , XT )T ∈ RT×d according to the model described in (2). We
then solve (11) using parallel computing based on 1 to 50 cores.

Table 13 lists the averaged elapsed time of 100 replicates of one single experiment. Here
for each replication, the parameters (A1, . . . , Ap,Ψ, Σ̃) in the experiment are regenerated.
It illustrates that, in terms of saving the computation time, under this specific setting, we
have: (i) When there is only one core, the lasso method outperforms our method. But
when there are no less than 20 cores, our method outperforms the lasso method for all lags
p = 1, 2, 3, 4, 5; (ii) As p grows, the advantage of parallel computing will be less significant
(The ratio of computation time between our method at the maximum number of available
cores and the lasso method tends to increase). We also observe from Table 13 that: (iii)
The computation time of our method is approximately increasing quadratically with regard
to the lag p, while the computation time of the lasso method is approximately increasing
linearly with regard to the lag p.

Similarly, to study the advantage of parallel computing when the dimension d grows,
we provide an experiment focusing on models with varying dimensions. We consider the
settings where the length T = 100, the lag p = 1, and the dimension d varies from 10 to 200.
The transition matrix A1 is created according to the pattern “random”, and then rescaled
such that ‖A1‖2 = 0.5. The covariance matrix Σ is generated as in (22), and Ψ is generated
by stationary condition. We then solve (11) using parallel computing based on 1 to 200
cores.

Similar to Table 13, Table 14 lists the computation time. It illustrates that, in terms of
saving the computation time, under this specific setting, we have: (i) When there is only one
core, the lasso method outperforms our method. But when using the maximum number of
cores (i.e., d cores), our method outperforms the lasso method for all lags p = 1, 2, 3, 4, 5; (ii)
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lasso method our method (with # of available cores)

d N/A 1 5 10 20 50 100 200

10 0.022 0.074 0.015 0.008 N/A N/A N/A N/A
20 0.048 0.265 0.055 0.027 0.014 N/A N/A N/A
50 0.153 1.164 0.234 0.120 0.061 0.027 N/A N/A
100 0.468 6.354 1.281 0.649 0.318 0.131 0.067 N/A
200 2.320 21.503 4.304 2.157 1.111 0.448 0.219 0.108

Table 14: A comparison of computation time with increasing dimension d: lasso method v.s
our method. The computation time for the lasso method does not change with
number of available cores. The computation time here is the averaged elapsed
time (in seconds) of 100 replicates of a single experiment.

As d grows, the advantage of parallel computing will be more significant (The ratio between
our method at the maximum number of available cores and the lasso method decreases).

Tables 13 and 14 illustrate that, when p or d grows, the advantage of parallel computing
becomes less or more significant respectively. Such results are reasonable because (3.4)
can be decomposed to at most d subproblems in a columnwise way, and solved in parallel.
As the dimension d grows, the maximum number of decomposed subproblems accordingly
grows, and hence the gain in parallel computing will be more significant. In comparison, as
p grows (while d is fixed), the maximum number of subproblems does not grow, and hence
the advantage of parallel computing is less significant.

Secondly, we show the memory usage of our method. By converting the time series
from VAR(1) to VAR(p) or increasing the dimension d, the memory usage increases. For
investigating the memory usage, we conduct an empirical study. Specifically, first, we
choose the lag p to be 1, 2, . . . , 9, the time series length T = 100, and the dimension d = 50.
Transition matrices A1, . . . , Ap are created according to the “random” pattern, and then
rescaled such that ‖Ai‖2 = 0.1 for i = 1, . . . , p. Ψ is set as Id for simplicity. With {Ai}pi=1

and Ψ, we simulate a time series (X1, . . . , XT )T ∈ RT×d according to (2) with lag p ≥ 1.
The first two rows in Table 15 reports the averaged memory usage of 100 replicates of one
single experiment in megabytes (Mb). Here for each replication, the parameters in the
experiment are regenerated.

Secondly, we choose the lag p = 1, the time series length T = 100, the dimension d = 50,
and the transition matrix A1 to be created according to the “random” pattern, and then
rescaled such that ‖A1‖2 = 0.1. Ψ is set as Id for simplicity. With A1 and Ψ, we simulate
a time series (X1, . . . , XT )T ∈ RT×d according to (2). The second two rows in Table 15
reports the memory usage.

Table 15 shows that, under this setting, the memory usage is approximately increasing
linearly with regard to p; On the other hand, the memory usage is approximately increasing
quadratically with regard to d, and this pattern becomes clearer when d is larger.
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Lag of model (p) 1 2 3 4 5 6 7 8 9

Mem. Use (Mb) 5.566 8.724 11.862 14.999 18.135 21.272 24.406 27.540 30.673

Dimension (d) 10 20 30 40 50 75 100 150 200

Mem. Use (Mb) 1.649 2.235 3.083 4.194 5.566 10.150 16.390 33.754 57.678

Table 15: Memory usage v.s lag of model and dimension: The result shown below is the
averaged memory usage (in Mb) of 100 replicates of one single experiment, with
the lag p changing from 1 to 9 or dimension changing from 10 to 200. The pattern
of the transition matrices {Ai}pi=1 is “random”.

5.3 Real Data

We further compare the three methods on the equity data collected from Yahoo! Finance.
The task is to predict the stock prices. We collect the daily closing prices for 91 stocks that
are consistently in the S&P 100 index between January 1, 2003 and January 1, 2008. This
gives us altogether 1,258 data points, each of which corresponds to the vector of closing
prices on a trading day.

We first provide comparison on averaged prediction errors for using different lag p on
this data set. Let E = (Et,j) ∈ R1258×91 with Et,j denoting the closing price of the stock
j on day t. We screen out all the stocks with low marginal standard deviations and only
keep 50 stocks which vary the most. We center the data so that the marginal mean of each
time series is zero. The resulting data matrix is denoted by Ē ∈ R1258×50. We apply the
three methods on Ē with different lag p changing from 1 to 9. To evaluate the performance
of the three methods, for t = 1248, . . . , 1257, we select the data set ĒJt,∗, where we have
Jt = {j : t − 100 ≤ j ≤ t − 1}, as the training set. Then for each p and λ, based on the
training set ĒJt,∗, we calculate the transition matrix estimates Ât1(p, λ), . . . , Âtp(p, λ). We
then use the obtained estimates to predict the stock price in day t. The averaged prediction
error for each specific λ and p is calculated as

Err(p, λ) =
1

10

10∑
t=1

‖Ēt,∗ −
p∑

k=1

Âtk(p, λ)TĒt−k,∗‖2.

In Table 16, we present the minimized averaged prediction errors minλ Err(p, λ) for the
three methods with different lag p. The standard deviations of the prediction errors are
presented in the parentheses. Our method outperforms the two competing methods in terms
of prediction accuracy.

Secondly, we provide the prediction error on day t = 1258 based on the selected (p, λ)
using cross-validation. By observing Table 16, we select the lag p = 1 and the corresponding
λ for our method. The prediction error is 7.62 for our method. In comparison, the lasso
method and ridge method have the prediction errors 11.11 and 11.94 separately.

3139



Han, Lu, and Liu

lag ridge method lasso method our method

p=1 17.68 (2.49) 15.67 (2.74) 11.88 (3.34)
p=2 15.63 (3.01) 15.69 (2.84) 12.01 (3.41)
p=3 15.17 (3.53) 15.76 (2.83) 12.04 (3.42)
p=4 14.90 (3.69) 15.68 (2.76) 12.02 (3.41)
p=5 14.73 (3.66) 15.62 (2.55) 12.08 (3.29)
p=6 14.58 (3.57) 15.51 (2.58) 12.09 (3.15)
p=7 14.42 (3.49) 15.45 (2.59) 12.21 (3.16)
p=8 14.36 (3.42) 15.40 (2.57) 12.25 (3.16)
p=9 14.20 (3.31) 15.28 (2.46) 12.24 (3.06)

Table 16: The optimized averaged prediction errors for the three methods on the equity
data, under different lags p from 1 to 9. The standard deviations are present in
the parentheses. The smallest prediction error within each column is bolded.

6. Discussions

Estimation of the vector autoregressive model is an interesting problem and has been in-
vestigated for a long time. This problem is intrinsically linked to the regression problem
with multiple responses. Accordingly (penalized) least squares estimates, which has the
maximum likelihood interpretation behind it, look like reasonable solutions. However, high
dimensionality brings significantly new challenges and viewpoints to this classic problem.
In parallel to the Dantzig selector proposed by Candes and Tao (2007) in cracking the or-
dinary linear regression model, we advocate borrowing the strength of the linear program
in estimating the VAR model. As has been repeatedly stated in the main text, this new
formulation brings some advantages over the least square estimates. Moreover, our theo-
retical analysis brings new insights into the problem of transition matrix estimation, and
we highlight the role of ‖A1‖2 in evaluating the estimation accuracy of the estimator.

In the main text we do not discuss estimating the covariance matrix Σ and Ψ. Lemma
1 builds the Lmax convergence result for estimating Σ. If we further suppose that the
covariance matrix Σ is sparse in some sense, then we can exploit the well developed results
in covariance matrix estimation (including “banding”, Bickel and Levina, 2008b, “tapering”,
Cai et al., 2010, and “thresholding”, Bickel and Levina, 2008a) to estimate the covariance
matrix Σ and establish the consistency result with regard to the matrix L1 and L2 norms.
With both Σ and A estimated by some constant estimator Σ̂, an estimator Ψ̂ of Ψ can be
obtained under the VAR model (with lag one) as

Ψ̂ = Σ̂− ÂT
1 Σ̂Â1,

and a similar estimator can be built for lag p VAR model using the augmented formulation
shown in Equation (4).

In this manuscript we focus on the stationary vector autoregressive model and our
method is designed for such stationary process. The stationary requirement is a common
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assumption in analysis and is adopted by most recent works, for example, Kock and Callot
(2015) and Song and Bickel (2011). We notice that there are works in handling unstable
VAR models, checking for example Song et al. (2014) and Kock (2012). We would like
to explore this problem in the future. Another unexplored region is how to determine
the order (lag) of the vector autoregression aside from using the cross-validation approach.
There have been results in this area (e.g., Song and Bickel, 2011) and we are also interested
in finding whether the linear program can also be exploited in determining the order of the
VAR model.
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Appendix A. Proofs of Main Results

In this section we provide the proofs of the main results in the manuscript.

A.1 Proof of Theorem 1

Before proving the main result in Theorem 1, we first establish several lemmas. In the
sequel, because we only focus on the lag 1 autoregressive model, for notation simplicity, in
Σi({(Xt)}) we remove {(Xt)} and simply denote the lag i covariance matrix to be Σi.

The following lemma describes the Lmax rate of convergence S to Σ. This result gener-
alizes the upper bound derived when data are independently generated (see, for example,
Bickel and Levina, 2008a).

Lemma 1 Letting S be the marginal sample covariance matrix defined in (7), when T ≥
max(6 log d, 1), we have, with probability no smaller than 1− 6d−1,

‖S − Σ‖max ≤
16‖Σ‖2 maxj(Σjj)

minj(Σjj)(1− ‖A1‖2)

{(
6 log d

T

)1/2

+ 2

(
1

T

)1/2
}
.

Proof [Proof] For any j, k ∈ {1, 2, . . . , d}, we have

P(|Sjk − Σjk| > η) = P

(∣∣∣∣∣ 1

T

T∑
t=1

Xtj Xtk − Σjk

∣∣∣∣∣ > η

)
.
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Letting Yt = {Xt1(Σ11)
−1/2, . . . , Xtd(Σdd)

−1/2}T for t = 1, . . . , T and ρjk = Σjk(ΣjjΣkk)
−1/2,

we have

P(|Sjk − Σjk| > η) = P

{∣∣∣∣∣ 1

T

T∑
t=1

YtjYtk − ρjk

∣∣∣∣∣ > η(ΣjjΣkk)
−1/2

}

= P

{∣∣∣∣∣
∑T

t=1(Ytj + Ytk)
2 −

∑T
t=1(Ytj − Ytk)2

4T
− ρjk

∣∣∣∣∣ > η(ΣjjΣkk)
−1/2

}

≤ P

{∣∣∣∣∣ 1

T

T∑
t=1

(Ytj + Ytk)
2 − 2(1 + ρjk)

∣∣∣∣∣ > 2η(ΣjjΣkk)
−1/2

}

+ P

{∣∣∣∣∣ 1

T

T∑
t=1

(Ytj − Ytk)2 − 2(1− ρjk)

∣∣∣∣∣ > 2η(ΣjjΣkk)
−1/2

}
. (23)

Using the property of Gaussian distribution, we have (Y1j+Y1k, . . . , YTj+YTk)
T ∼ NT (0, Q)

for some positive definite matrix Q. In particular, we have

|Qil| = |Cov(Yij+Yik, Ylj+Ylk)|= |Cov(Yij , Ylj)+Cov(Yij , Ylk)+Cov(Yik, Ylk)+Cov(Yik, Ylj)|

≤ 1

minj(Σjj)
|Cov(Xij , Xlj) + Cov(Xij , Xlk) + Cov(Xik, Xlk) + Cov(Xik, Xlj)|

≤ 4

minj(Σjj)
‖Σl−i‖max ≤

8‖Σ‖2‖A1‖|l−i|2

minj(Σjj)
,

where the last inequality follows from (3).

Therefore, using the matrix norm inequality,

‖Q‖2 ≤ max
1≤i≤T

T∑
l=1

|Qil| ≤
8‖Σ‖2

minj(Σjj)(1− ‖A1‖2)
.

Then applying Lemma 3 to (23), we have

P

{∣∣∣∣∣ 1

T

T∑
t=1

(Ytj + Ytk)
2 − 2(1 + ρjk)

∣∣∣∣∣ > 2η(ΣjjΣkk)
−1/2

}

≤ 2 exp

[
−T

2

{
ηminj(Σjj)(1− ‖A1‖2)

16‖Σ‖2(ΣjjΣkk)1/2
− 2T−1/2

}2
]

+ 2 exp

(
−T

2

)
. (24)

Using a similar argument, we have

P

{∣∣∣∣∣ 1

T

T∑
t=1

(Ytj − Ytk)2 − 2(1− ρjk)

∣∣∣∣∣ > 2η(ΣjjΣkk)
−1/2

}

≤ 2 exp

[
−T

2

{
ηminj(Σjj)(1− ‖A1‖2)

16‖Σ‖2(ΣjjΣkk)1/2
− 2T−1/2

}2
]

+ 2 exp

(
−T

2

)
. (25)
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Combining (24) and (25), then applying the union bound, we have

P(‖S−Σ‖max>η)

≤ 3d2 exp

(
−T

2

)
+3d2 exp

−T
2

{
ηminj(Σjj)(1− ‖A1‖2)

16‖Σ‖2 maxj(Σjj)
−2

(
1

T

)−1/2}2
 .

The proof thus completes by choosing η as the described form.

In the next lemma we try to quantify the difference between S1 and Σ1 with respect to
the matrix Lmax norm. Remind that Σ1{(Xt)} is simplified to be Σ1.

Lemma 2 Letting S1 be the lag 1 sample covariance matrix, when T ≥ max(6 log d+ 1, 2),
we have, with probability no smaller than 1− 8d−1,

‖S1 − Σ1‖max ≤
32‖Σ‖2 maxj(Σjj)

minj(Σjj)(1− ‖A1‖2)

{(
3 log d

T

)1/2

+

(
2

T

)1/2
}
.

Proof [Proof] We have, for any j, k ∈ {1, 2, . . . , d},

P(|(S1)jk − (Σ1)jk| > η) = P

(∣∣∣∣∣ 1

T − 1

T−1∑
t=1

XtjX(t+1)k − (Σ1)jk

∣∣∣∣∣ > η

)
.

Letting Yt = {Xt1(Σ11)
−1/2, . . . , Xtd(Σdd)

−1/2}T and ρjk = (Σ1)jk(ΣjjΣkk)
−1/2, we have

P(|(S1)jk − (Σ1)jk| > η) = P

{∣∣∣∣∣ 1

T − 1

T−1∑
t=1

YtjY(t+1)k − ρjk

∣∣∣∣∣ > η(ΣjjΣkk)
−1/2

}

= P

[∣∣∣∣∣
∑T−1

t=1 {Ytj + Y(t+1)k}2 −
∑T−1

t=1 {Ytj − Y(t+1)k}2

4(T − 1)
− ρjk

∣∣∣∣∣ > η(ΣjjΣkk)
−1/2

]

≤ P

[∣∣∣∣∣
∑T−1

t=1 {Ytj + Y(t+1)k}2

T − 1
− 2(1 + ρjk)

∣∣∣∣∣ > 2η(ΣjjΣkk)
−1/2

]

+ P

[∣∣∣∣∣
∑T−1

t=1 {Ytj − Y(t+1)k}2

T − 1
− 2(1− ρjk)

∣∣∣∣∣ > 2η(ΣjjΣkk)
−1/2

]
. (26)

Using the property of Gaussian distribution, we have {Y1j + Y2k, . . . , Y(T−1)j + YTk}T ∼
NT−1(0, Q), for some positive definite matrix Q. In particular, we have

|Qil| = |Cov{Yij + Y(i+1)k, Ylj + Y(l+1)k}|
= |Cov(Yij , Ylj) + Cov{Yij , Y(l+1)k}+ Cov{Y(i+1)k, Ylj}+ Cov{Y(i+1)k, Y(l+1)k}|

≤ 1

minj(Σjj)
|Cov(Xij , Xlj)+Cov{Xij , X(l+1)k}+Cov{X(i+1)k, Xlj}+Cov{X(i+1)k, X(l+1)j}|

≤ 2‖Σl−i‖max + ‖Σl+1−i‖max + ‖Σl−1−i‖max

minj(Σjj)

≤ ‖Σ‖2(2‖A1‖|l−i|2 + ‖A1‖|l+1−i|
2 + ‖A1‖|l−1−i|2 )

minj(Σjj)
.
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Therefore, using the matrix norm inequality,

‖Q‖2 ≤ max
1≤i≤(T−1)

T−1∑
l=1

|Qil| ≤
8‖Σ‖2

minj(Σjj)(1− ‖A1‖2)
.

Then applying Lemma 3 to (26), we have

P

[∣∣∣∣∣ 1

T − 1

T−1∑
t=1

{Ytj + Y(t+1)k}2 − 2(1 + ρjk)

∣∣∣∣∣ > 2η(ΣjjΣkk)
−1/2

]
≤

2 exp

[
−(T − 1)

2

{
ηminj(Σjj)(1− ‖A1‖2)

16‖Σ‖2(ΣjjΣkk)1/2
−2(T − 1)−1/2

}2
]

+2 exp

(
−T − 1

2

)
. (27)

Using a similar technique, we have

P

[∣∣∣∣∣ 1

T − 1

T−1∑
t=1

{Ytj − Y(t+1)k}2 − 2(1− ρjk)

∣∣∣∣∣ > 2η(ΣjjΣkk)
−1/2

]
≤

2 exp

[
−(T − 1)

2

{
ηminj(Σjj)(1− ‖A1‖2)

16‖Σ‖2(ΣjjΣkk)1/2
−2(T − 1)−1/2

}2
]

+2 exp

(
−T − 1

2

)
. (28)

Combining (27) and (28), and applying the union bound across all pairs (j, k), we have

P(‖S1 − Σ1‖max > η) ≤

4d2 exp

[
−(T−1)

2

{
ηminj(Σjj)(1− ‖A1‖2)

16‖Σ‖2 maxj(Σjj)
−2(T−1)−1/2

}2
]

+4d2 exp

(
−T−1

2

)
.

Finally noting that when T ≥ 3, we have 1/(T − 1) < 2/T . The proof thus completes by
choosing η as stated.

Using the above two technical lemmas, we can then proceed to the proof of the main
results in Theorem 1.

Proof [Proof of Theorem 1] With Lemmas 1 and 2, we proceed to prove Theorem 1.
We first denote

ζ1 =
16‖Σ‖2 maxj(Σjj)

minj(Σjj)(1− ‖A1‖2)

{(
6 log d

T

)1/2

+ 2

(
1

T

)1/2
}
,

ζ2 =
32‖Σ‖2 maxj(Σjj)

minj(Σjj)(1− ‖A1‖)2

{(
3 log d

T

)1/2

+

(
2

T

)1/2
}
.

Using Lemmas 1 and 2, we have, with probability no smaller than 1− 14d−1,

‖S − Σ‖max ≤ ζ1, ‖S1 − Σ1‖max ≤ ζ2.
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We firstly prove that population quantity A1 is a feasible solution to the optimization
problem in (10) with probability no smaller than 1− 14d−1

‖SA1 − S1‖max = ‖SΣ−1Σ1 − S1‖max

= ‖SΣ−1ΣT
1 − Σ1 + Σ1 − S1‖max

≤ ‖(SΣ−1 − Id)Σ1‖max + ‖Σ1 − S1‖max

≤ ‖(S − Σ)Σ−1Σ1‖max + ζ2

≤ ζ1‖A1‖1 + ζ2

≤ λ0.

The last inequality holds by using the condition that d ≥ 8 implies that 1/T ≤ log d/(2T ).
Therefore, A1 is feasible in the optimization equation, by checking the equivalence between
(10) and (11), we have ‖Ω̂‖1 ≤ ‖A1‖1 with probability no smaller than 1− 14d−1. We then
have

‖Ω̂−A1‖max = ‖Ω̂− Σ−1Σ1‖max

= ‖Σ−1(ΣΩ̂− Σ1)‖max

= ‖Σ−1(ΣΩ̂− S1 + S1 − Σ1)‖max

= ‖Σ−1(ΣΩ̂− SΩ̂ + SΩ̂− S1) + Σ−1(S1 − Σ1)‖max

≤ ‖(Id − Σ−1S)Ω̂‖max + ‖Σ−1(SΩ̂− S1)‖max + ‖Σ−1(S1 − Σ1)‖max

≤ ‖Σ−1‖1‖(Σ− S)Ω̂‖max + ‖Σ−1‖1‖SΩ̂− S1‖max + ‖Σ−1‖1‖S1 − Σ1‖max

≤ ‖Σ−1‖1(‖A1‖1ζ1 + λ0 + ζ2)

= 2λ0‖Σ−1‖1.

Let λ1 be a threshold level and we define

s1 = max
1≤j≤d

d∑
i=1

min {|(A1)ij |/λ1, 1} , Tj = {i : |(A1)ij | ≥ λ1} .

We have, with probability no smaller than 1− 14d−1, for all j ∈ {1, . . . , d},

‖Ω̂∗,j − (A1)∗,j‖1 ≤ ‖Ω̂T c
j ,j
‖1 + ‖(A1)T c

j ,j
‖1 + ‖Ω̂Tj ,j − (A1)Tj ,j‖1

= ‖Ω̂∗,j‖1 − ‖Ω̂Tj ,j‖1 + ‖(A1)T c
j ,j
‖1 + ‖Ω̂Tj ,j − (A1)Tj ,j‖1

≤ ‖(A1)∗,j‖1 − ‖Ω̂Tj ,j‖1 + ‖(A1)T c
j ,j
‖1 + ‖Ω̂Tj ,j − (A1)Tj ,j‖1

≤ 2‖(A1)T c
j ,j
‖1 + 2‖Ω̂Tj ,j − (A1)Tj ,j‖1

≤ 2‖(A1)T c
j ,j
‖1 + 4λ0‖Σ−1‖1|Tj |

≤ (2λ1 + 4λ0‖Σ−1‖1)s1.

Suppose maxj
∑d

i=1 |(A1)ij |q ≤ s and setting λ1 = 2λ0‖Σ−1‖1, we have

λ1s1 = max
1≤j≤d

d∑
i=1

min{|(A1)ij |, λ1} ≤ λ1 max
1≤j≤d

d∑
i=1

min {|(A1)ij |q/λq1, 1} ≤ λ
1−q
1 s.
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Therefore, we have

‖Ω̂∗,j − (A1)∗,j‖1≤ 4λ1s1 ≤ 4λ1−q1 s = 4s(2λ0‖Σ−1‖1)1−q.

Noting that when the lag of the time series p = 1, by definition in (12), we have Ω̂ = Â1.
This completes the proof.

A.2 Proof of the Rest Results

Proof [Proof of Corollary 1] Corollary 1 directly follows from Theorem 1, so its proofs
is omitted.

Proof [Proof of Corollary 2] Using the generating model described in Equation (2), we
have

‖XT+1 − ÂT
1XT ‖∞ =‖(AT

1 − ÂT
1 )XT + ZT+1‖∞

≤‖AT
1 − ÂT

1‖∞‖XT ‖∞ + ‖ZT+1‖∞
=‖A1 − Â1‖1‖XT ‖∞ + ‖ZT+1‖∞

Using Lemma 4 in Appendix B, we have

P(‖XT ‖∞ ≤ (Σmax·α log d)1/2, ‖ZT+1‖∞ ≤ (Ψmax·α log d)1/2) ≥ 1−2(dα/2−1
√
π/2 · α log d})−1.

This, combined with Theorem 1, gives Equation (20).

Proof [Proof of Corollary 3] Similar as the proof in Corollary 2, we have

‖XT+1 − ĀT
1XT ‖2 =‖(AT

1 − ĀT
1 )XT + ZT+1‖2

≤‖A1 − Ā1‖2‖XT ‖2 + ‖ZT+1‖2.

For any Gaussian random vector Y ∼ Nd(0, Q), we have Y =
√
QY0 where Y0 ∼ Nd(0, Id).

Using the concentration inequality for Lipschitz functions of standard Gaussian random
vector (see, for example, Theorem 3.4 in Massart, 2007), we have

P(|‖Y ‖2 − E‖Y ‖2| ≥ t) =P(|‖
√
QY0‖2 − E‖

√
QY0‖2| ≥ t)

≤2 exp

(
− t2

2‖Q‖2

)
. (29)

Here the inequality exploits the fact that for any vectors x, y ∈ Rd,

|‖
√
Qx‖2 − ‖

√
Qy‖2| ≤ ‖

√
Q(x− y)‖2 ≤ ‖

√
Q‖2‖x− y‖2,

and accordingly the function x→ ‖
√
Qx‖2 has the Lipschitz norm no greater than

√
‖Q‖2.

Using Equation (29), we then have

P(‖XT ‖2 ≤
√

2‖Σ‖2 log d+ E‖XT ‖2, ‖ZT+1‖2 ≤
√

2‖Ψ‖2 log d+ E‖ZT+1‖2) ≥ 1− 4d−1.
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Finally, we have
(E‖Y ‖2)2 ≤ E‖Y ‖22 = tr(Q).

Combined with Theorem 1 and the fact that ‖A1− Ā1‖2 ≤ ‖A1− Ā1‖1, we have the desired
result.

Appendix B. Supporting Lemmas

Lemma 3 (Negahban and Wainwright, 2011) Suppose that Y ∼ NT (0, Q) is a Gaus-
sian random vector. We have, for η > 2T−1/2,

P
{∣∣‖Y ‖22 − E(‖Y ‖22)

∣∣ > 4Tη‖Q‖2
}
≤ 2 exp

{
−T (η − 2T−1/2)2/2

}
+ 2 exp(−T/2).

Proof [Proof] This can be proved by first using the concentration inequality for the Lips-
chitz functions ‖Y ‖2 of Gaussian random variables Y . Then combining with the result

‖Y ‖22 − E(‖Y ‖22) ≤ (‖Y ‖2 − E‖Y ‖2) · (‖Y ‖2 + E‖Y ‖2),

we have the desired concentration inequality.

Lemma 4 Suppose that Z = (Z1, . . . , Zd)
T ∈ Nd(0, Q) is a Gaussian random vector. Let-

ting Qmax := maxi(Qii), we have

P{‖Z‖∞ > (Qmax · α log d)1/2} ≤
(
dα/2−1

√
π/2 · α log d

)−1
.

Proof [Proof] Simply using the Gaussian tail probability, we have

P(‖Z‖∞ > t) ≤
d∑
i=1

P(|Zi| ·Q−1/2ii > t ·Q−1/2ii ) ≤
d∑
i=1

2 exp(−t2/2Qii)
t ·Q−1/2ii ·

√
2π
≤ 2d exp(−t2/2Qmax)

t ·Q−1/2max ·
√

2π
.

Taking t = (Qmax · α log d)1/2 into the upper equation, we have the desired result.
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Abstract
Global convergence of an online (stochastic) limited memory version of the Broyden-Fletcher-
Goldfarb-Shanno (BFGS) quasi-Newton method for solving optimization problems with stochastic
objectives that arise in large scale machine learning is established. Lower and upper bounds
on the Hessian eigenvalues of the sample functions are shown to suffice to guarantee that the
curvature approximation matrices have bounded determinants and traces, which, in turn, permits
establishing convergence to optimal arguments with probability 1. Experimental evaluation on a
search engine advertising problem showcase reductions in convergence time relative to stochastic
gradient descent algorithms.

Keywords: quasi-Newton methods, large-scale optimization, stochastic optimization

1. Introduction

Many problems in Machine Learning can be reduced to the minimization of a stochastic objec-
tive defined as an expectation over a set of random functions (Bottou and Le Cun (2005); Bottou
(2010); Shalev-Shwartz and Srebro (2008); Mokhtari and Ribeiro (2014b)). Specifically, consider
an optimization variable w ∈ Rn and a random variable θ ∈ Θ ⊆ Rp that determines the choice
of a function f(w,θ) : Rn×p → R. Stochastic optimization problems entail determination of the
argument w∗ that minimizes the expected value F (w) := Eθ[f(w,θ)],

w∗ := argmin
w

Eθ[f(w,θ)] := argmin
w

F (w). (1)

We refer to f(w,θ) as the random or instantaneous functions and to F (w) := Eθ[f(w,θ)] as the
average function. A canonical class of problems having this form are support vector machines
(SVMs) that reduce binary classification to the determination of a hyperplane that separates points
in a given training set; see, e.g., (Vapnik (2000); Bottou (2010); Boser et al. (1992)). In that case, θ
denotes individual training samples, f(w,θ) the loss of choosing the hyperplane defined by w, and
F (w) := Eθ[f(w,θ)] the mean loss across all elements of the training set. The optimal argument
w∗ is the optimal linear classifier.

Numerical evaluation of objective function gradients ∇wF (w) = Eθ[∇wf(w,θ)] is intractable
when the cardinality of Θ is large, as is the case, e.g., when SVMs are trained on large sets. This
motivates the use of algorithms relying on stochastic gradients that provide gradient estimates based
on small data subsamples. For the purpose of this paper stochastic optimization algorithms can be
divided into three categories: Stochastic gradient descent (SGD) and related first order methods,
stochastic Newton methods, and stochastic quasi-Newton methods.

SGD is the most popular method used to solve stochastic optimization problems (Bottou (2010);
Shalev-Shwartz et al. (2011); Zhang (2004)). However, as we consider problems of ever larger
dimension their slow convergence times have limited their practical appeal and fostered the search
for alternatives. In this regard, it has to be noted that SGD is slow because of the use of gradients
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as descent directions which leads to poor curvature approximation in ill-conditioned problems. The
golden standard to deal with these ill-conditioned functions in a deterministic setting is Newton’s
method. However, unbiased stochastic estimates of Newton steps can’t be computed in general.
This fact limits the application of stochastic Newton methods to problems with specific structure
(Birge et al. (1994); Zargham et al. (2013)).

If SGD is slow to converge and stochastic Newton can’t be used in general, the remaining alter-
native is to modify deterministic quasi-Newton methods that speed up convergence times relative to
gradient descent without using Hessian evaluations (Dennis and Moré (1974); Powell (1976); Byrd
et al. (1987); Nocedal and Wright (1999)). This has resulted in the development of the stochastic
quasi-Newton methods known as online (o) Broyden-Fletcher-Goldfarb-Shanno (BFGS) (Schrau-
dolph et al. (2007); Bordes et al. (2009)), regularized stochastic BFGS (RES) (Mokhtari and Ribeiro
(2014a)), and online limited memory (oL)BFGS (Schraudolph et al. (2007)) which occupy the middle
ground of broad applicability irrespective of problem structure and conditioning. All three of these
algorithms extend BFGS by using stochastic gradients both as descent directions and constituents
of Hessian estimates. The oBFGS algorithm is a direct generalization of BFGS that uses stochastic
gradients in lieu of deterministic gradients. RES differs in that it further modifies BFGS to yield
an algorithm that retains its convergence advantages while improving theoretical convergence guar-
antees and numerical behavior. The oLBFGS method uses a modification of BFGS to reduce the
computational cost of each iteration.

An important observation here is that in trying to adapt to the changing curvature of the
objective, stochastic quasi-Newton methods may end up exacerbating the problem. Indeed, since
Hessian estimates are stochastic, it is possible to end up with almost singular Hessian estimates.
The corresponding small eigenvalues then result in a catastrophic amplification of the noise which
nullifies progress made towards convergence. This is not a minor problem. In oBFGS this possibility
precludes convergence analyses and may result in erratic numerical behavior (Mokhtari and Ribeiro
(2014a)). As a matter of fact, the main motivation for the introduction of RES is to avoid this
catastrophic noise amplification so as to retain smaller convergence times while ensuring that optimal
arguments are found with probability 1 (Mokhtari and Ribeiro (2014a)). Generally, stochastic
quasi-Newton methods whose Hessian approximations have bounded eigenvalues converge to optimal
arguments (Sunehag et al. (2009)). However valuable, the convergence guarantees of RES and the
convergence time advantages of oBFGS and RES are tainted by an iteration cost of order O(n2) and
O(n3), respectively, which precludes their use in problems where n is very large. In deterministic
settings this problem is addressed by limited memory (L)BFGS (Liu and Nocedal (1989)) which
can be easily generalized to develop the oLBFGS algorithm (Schraudolph et al. (2007)). Numerical
tests of oLBFGS are promising but theoretical convergence characterizations are still lacking. The
main contribution of this paper is to show that oLBFGS converges with probability 1 to optimal
arguments across realizations of the random variables θ. This is the same convergence guarantee
provided for RES and is in marked contrast with oBFGS, which fails to converge if not properly
regularized. Convergence guarantees for oLBFGS do not require such measures.

We begin the paper with brief discussions of deterministic BFGS (Section 2) and LBFGS (Section
2.1) and the introduction of oLBFGS (Section 2.2). The fundamental idea in BFGS and oLBFGS
is to continuously satisfy a secant condition while staying close to previous curvature estimates.
They differ in that BFGS uses all past gradients to estimate curvature while oLBFGS uses a fixed
moving window of past gradients. The use of this window reduces memory and computational cost
(Appendix A). The difference between LBFGS and oLBFGS is the use of stochastic gradients in lieu
of their deterministic counterparts. Note that choosing large mini-batch for computing stochastic
gradients reduces the variance of stochastic approximation and decreases the gap between LBFGS
and oLBFGS, however, increases the computational cost of oLBFGS. Therefore, picking a suitable
mini-batch size is an important step in the implementation of oLBFGS.

Convergence properties of oLBFGS are then analyzed (Section 3). Under the assumption that
the sample functions f(w,θ) are strongly convex we show that the trace and determinant of the
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Hessian approximations computed by oLBFGS are upper and lower bounded, respectively (Lemma
3). These bounds are then used to limit the range of variation of the ratio between the Hessian
approximations’ largest and smallest eigenvalues (Lemma 4). In turn, this condition number limit
is shown to be sufficient to prove convergence to the optimal argument w∗ with probability 1 over
realizations of the sample functions (Theorem 6). This is an important result because it ensures that
oLBFGS doesn’t suffer from the numerical problems that hinder oBFGS. We complement this almost
sure convergence result with a characterization of the convergence rate which is shown to be at least
O(1/t) in expectation (Theorem 7). It is fair to emphasize that, different from the deterministic
case, the convergence rate of oLBFGS is not better than the convergence rate of SGD. This is not
a limitation of our analysis. The difference between stochastic and regular gradients introduces a
noise term that dominates convergence once we are close to the optimum, which is where superlinear
convergence rates manifest. In fact, the same convergence rate would be observed if exact Hessians
were available. The best that can be proven of oLBFGS is that the convergence rate is not worse
than that of SGD. Given that theoretical guarantees only state that the curvature correction does
not exacerbate the problem’s condition it is perhaps fairer to describe oLBFGS as an adaptive
reconditioning strategy instead of a stochastic quasi-Newton method. The latter description refers
to the genesis of the algorithm. The former is a more accurate description of its actual behavior.

To show the advantage of oLBFGS we use it to train a logistic regressor to predict the click
through rate in a search engine advertising problem (Section 4). The logistic regression uses a
heterogeneous feature vector with 174,026 binary entries that describe the user, the search, and the
advertisement (Section 4.1). Being a large scale problem with heterogeneous data, the condition
number of the logistic log likelihood objective is large and we expect to see significant advantages of
oLBFGS relative to SGD. This expectation is fulfilled. The oLBFGS algorithm trains the regressor
using less than 1% of the data required by SGD to obtain similar classification accuracy. (Section
4.3). We close the paper with concluding remarks (Section 5).

Notation Lowercase boldface v denotes a vector and uppercase boldface A a matrix. We use
‖v‖ to denote the Euclidean norm of vector v and ‖A‖ to denote the Euclidean norm of matrix A.
The trace of A is written as tr(A) and the determinant as det(A). We use I for the identity matrix of
appropriate dimension. The notation A � B implies that the matrix A−B is positive semidefinite.
The operator Ex[·] stands in for expectation over random variable x and E[·] for expectation with
respect to the distribution of a stochastic process.

2. Algorithm Definition

Recall the definitions of the sample functions f(w,θ) and the average function F (w) := Eθ[f(w,θ)].
We assume the sample functions f(w,θ) are strongly convex for all θ. This implies the objective
function F (w) := Eθ[f(w,θ)], being an average of the strongly convex sample functions, is also
strongly convex. We define the gradient s(w) := ∇F (w) of the average function F (w) and assume
that it can be computed as

s(w) := ∇F (w) = Eθ[∇f(w,θ)]. (2)

Since the function F (w) is strongly convex, gradients s(w) are descent directions that can be used
to find the optimal argument w∗ in (1). Introduce then a time index t, a step size εt, and a positive
definite matrix B−1t � 0 to define a generic descent algorithm through the iteration

wt+1 = wt − εt B−1t s(wt) = wt − εt dt. (3)

where we have also defined the descent step dt = B−1t s(wt). When B−1t = I is the identity matrix,
(3) reduces to gradient descent. When Bt = H(wt) := ∇2F (wt) is the Hessian of the objective
function, (3) defines Newton’s algorithm. In this paper we focus on quasi-Newton methods whereby
we attempt to select matrices Bt close to the Hessian H(wt). Various methods are known to select
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matrices Bt, including those by Broyden e.g., Broyden et al. (1973); Davidon, Fletcher, and Powell
(DFP) e.g., Fletcher (2013); and Broyden, Fletcher, Goldfarb, and Shanno (BFGS) e.g., Byrd et al.
(1987); Powell (1976). We work with the matrices Bt used in BFGS since they have been observed
to work best in practice (see Byrd et al. (1987)).

In BFGS, the function’s curvature Bt is approximated by a finite difference. Let vt denote the
variable variation at time t and rt the gradient variation at time t which are respectively defined as

vt := wt+1 −wt, rt := s(wt+1)− s(wt). (4)

We select the matrix Bt+1 to be used in the next time step so that it satisfies the secant condition
Bt+1vt = rt. The rationale for this selection is that the Hessian H(wt) satisfies this condition
for wt+1 tending to wt. Notice however that the secant condition Bt+1vt = rt is not enough to
completely specify Bt+1. To resolve this indeterminacy, matrices Bt+1 in BFGS are also required
to be as close as possible to the previous Hessian approximation Bt in terms of differential entropy
(see Mokhtari and Ribeiro (2014a)). These conditions can be resolved in closed form leading to the
explicit expression,

Bt+1 = Bt +
rtr

T
t

vTt rt
− Btvtv

T
t Bt

vTt Btvt
. (5)

While the expression in (5) permits updating the Hessian approximations Bt+1, implementation of
the descent step in (3) requires its inversion. This can be avoided by using the Sherman-Morrison
formula in (5) to write

B−1t+1 = ZTt B−1t Zt + ρt vtv
T
t , (6)

where we defined the scalar ρt and the matrix Zt as

ρt :=
1

vTt rt
, Zt := I− ρtrtvTt . (7)

The updates in (5) and (6) require the inner product of the gradient and variable variations to be
positive, i.e., vTt rt > 0. This is always true if the objective F (w) is strongly convex and further
implies that B−1t+1 stays positive definite if B−1t � 0, (Nocedal and Wright (1999)).

Each BFGS iteration has a cost of O(n2) arithmetic operations. This is less than the O(n3) of
each step in Newton’s method but more than the O(n) cost of each gradient descent iteration. In
general, the relative convergence rates are such that the total computational cost of BFGS to achieve
a target accuracy is smaller than the corresponding cost of gradient descent. Still, alternatives to
reduce the computational cost of each iteration are of interest for large scale problems. Likewise,
BFGS requires storage and propagation of the O(n2) elements of B−1t , whereas gradient descent
requires storage of O(n) gradient elements only. This motivates alternatives that have smaller
memory footprints. Both of these objectives are accomplished by the limited memory (L)BFGS
algorithm that we describe in the following section.

2.1 LBFGS: Limited Memory BFGS

As it follows from (6), the updated Hessian inverse approximation B−1t depends on B−1t−1 and the

curvature information pairs {vt−1, rt−1}. In turn, to compute B−1t−1, the estimate B−1t−2 and the

curvature pair {vt−2, rt−2} are used. Proceeding recursively, it follows that B−1t is a function of the
initial approximation B−10 and all previous t curvature information pairs {vu, ru}t−1u=0. The idea in
LBFGS is to restrict the use of past curvature information to the last τ pairs {vu, ru}t−1u=t−τ . Since
earlier iterates {vu, ru} with u < t− τ are likely to carry little information about the curvature at
the current iterate wt, this restriction is expected to result in a minimal performance penalty.

For a precise definition, pick a positive definite matrix B−1t,0 as the initial Hessian inverse approx-
imation at step t. Proceed then to perform τ updates of the form in (6) using the last τ curvature
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information pairs {vu, ru}t−1u=t−τ . Denoting as B−1t,u the curvature approximation after u updates are

performed we have that the refined matrix approximation B−1t,u+1 is given by [cf. (6)]

B−1t,u+1 = ZTt−τ+u B−1t,u Zt−τ+u + ρt−τ+u vt−τ+u v
T
t−τ+u, (8)

where u = 0, . . . , τ − 1 and the constants ρt−τ+u and rank-one plus identity matrices Zt−τ+u are
as given in (7). The inverse Hessian approximation B−1t to be used in (3) is the one yielded after
completing the τ updates in (8), i.e., B−1t = B−1t,τ . Observe that when t < τ there are not enough
pairs {vu, ru} to perform τ updates. In such case we just redefine τ = t and proceed to use the
t = τ available pairs {vu, ru}t−1u=0 .

Implementation of the product B−1t s(wt) in (3) for matrices B−1t = B−1t,τ obtained from the

recursion in (8) does not need explicit computation of the matrix B−1t,τ . Although the details are not
straightforward, observe that each iteration in (8) is similar to a rank-one update and that as such
it is not unreasonable to expect that the product B−1t s(wt) = B−1t,τ s(wt) can be computed using τ
recursive inner products. Assuming that this is possible, the implementation of the recursion in (8)
doesn’t need computation and storage of prior matrices B−1t−1. Rather, it suffices to keep the τ most

recent curvature information pairs {vu, ru}t−1u=t−τ , thus reducing storage requirements from O(n2)
to O(τn). Furthermore, each of these inner products can be computed at a cost of n operations
yielding a total computational cost of O(τn) per LBFGS iteration. Hence, LBFGS decreases both
the memory requirements and the computational cost of each iteration from the O(n2) required
by regular BFGS to O(τn). We present the details of this iteration in the context of the online
(stochastic) LBFGS that we introduce in the following section.

2.2 Online (Stochastic) Limited Memory BFGS

To implement (3) and (8) we need to compute gradients s(wt). This is impractical when the
number of functions f(w,θ) is large, as is the case in most stochastic problems of practical interest
and motivates the use of stochastic gradients in lieu of actual gradients. Consider a given set of L
realizations θ̃ = [θ1; ...;θL] and define the stochastic gradient of F (w) at w given samples θ̃ as

ŝ(w, θ̃) :=
1

L

L∑
l=1

∇f(w,θl). (9)

In oLBFGS we use stochastic gradients ŝ(w, θ̃) for descent directions and curvature estimators. In
particular, the descent iteration in (3) is replaced by the descent iteration

wt+1 = wt − εt B̂−1t ŝ(wt, θ̃t) = wt − εtd̂t, (10)

where θ̃t = [θt1; ...;θtL] is the set of samples used at step t to compute the stochastic gradient

ŝ(wt, θ̃t) as per (9) and the matrix B̂−1t is a function of past stochastic gradients ŝ(wu, θ̃u) with
u ≤ t instead of a function of past gradients s(wu) as in (3). As we also did in (3) we have defined

the stochastic step d̂t := B̂−1t ŝ(wt, θ̃t) to simplify upcoming discussions.

To properly specify B̂−1t we define the stochastic gradient variation r̂t at time t as the difference
between the stochastic gradients ŝ(wt+1, θ̃t) and ŝ(wt, θ̃t) associated with subsequent iterates wt+1

and wt and the common set of samples θ̃t [cf. (4)],

r̂t := ŝ(wt+1, θ̃t)− ŝ(wt, θ̃t). (11)

Observe that ŝ(wt, θ̃t) is the stochastic gradient used at time t in (10) but that ŝ(wt+1, θ̃t) is
computed solely for the purpose of determining the stochastic gradient variation. The perhaps more
natural definition ŝ(wt+1, θ̃t+1)− ŝ(wt, θ̃t) for the stochastic gradient variation, which relies on the
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stochastic gradient ŝ(wt+1, θ̃t+1) used at time t+1 in (10) is not sufficient to guarantee convergence;
see e.g.,(Mokhtari and Ribeiro (2014a)).

To define the oLBFGS algorithm we just need to provide stochastic versions of the definitions
in (7) and (8). The scalar constants and identity plus rank-one matrices in (7) are redefined to the
corresponding stochastic quantities

ρ̂t−τ+u =
1

vTt−τ+ur̂t−τ+u
and Ẑt−τ+u = I− ρ̂t−τ+ur̂t−τ+uvTt−τ+u, (12)

whereas the LBFGS matrix B−1t = B−1t,τ in (8) is replaced by the oLBFGS Hessian inverse approxi-

mation B̂−1t = B̂−1t,τ which we define as the outcome of τ recursive applications of the update,

B̂−1t,u+1 = ẐTt−τ+u B̂−1t,u Ẑt−τ+u + ρ̂t−τ+u vt−τ+u vTt−τ+u, (13)

where the initial matrix B̂−1t,0 is given and the time index is u = 0, . . . , τ −1. The oLBFGS algorithm

is defined by the stochastic descent iteration in (10) with matrices B̂−1t = B̂−1t,τ computed by τ
recursive applications of (13). Except for the fact that they use stochastic variables, (10) and (13)

are identical to (3) and (8). Thus, as is the case in (3), the Hessian inverse approximation B̂−1t in
(13) is a function of the initial Hessian inverse approximation B−1t,0 and the τ most recent curvature

information pairs {vu, r̂u}t−1u=t−τ . Likewise, when t < τ there are not enough pairs {vu, r̂u} to
perform τ updates. In such case we just redefine τ = t and proceed to use the t = τ available pairs
{vu, r̂u}t−1u=0 . We also point out that the update in (13) necessitates r̂Tuvu > 0 for all time indexes
u. This is true as long as the instantaneous functions f(w,θ) are strongly convex with respect to
w as we show in Lemma 2.

The equations in (10) and (13) are used conceptually but not in practical implementations.
For the latter we exploit the structure of (13) to rearrange the terms in the computation of the

product B̂−1t ŝ(wt, θ̃t). To see how this is done consider the recursive update for the Hessian inverse

approximation B̂−1t in (13) and make u = τ − 1 to write

B̂−1t = B̂−1t,τ =
(
ẐTt−1

)
B̂−1t,τ−1

(
Ẑt−1

)
+ ρ̂t−1 vt−1 vTt−1. (14)

Equation (14) shows the relation between the Hessian inverse approximation B̂−1t and the (τ − 1)st

updated version of the initial Hessian inverse approximation B̂−1t,τ−1 at step t. Set now u = τ − 2 in

(13) to express B̂−1t,τ−1 in terms of B̂−1t,τ−2 and substitute the result in (14) to rewrite B̂−1t as

B̂−1t =
(
ẐTt−1Ẑ

T
t−2

)
B̂−1t,τ−2

(
Ẑt−2Ẑt−1

)
+ ρ̂t−2

(
ẐTt−1

)
vt−2 vTt−2

(
Ẑt−1

)
+ ρ̂t−1 vt−1 vTt−1.

(15)

We can proceed recursively by substituting B̂−1t,τ−2 for its expression in terms of B̂−1t,τ−3 and in the

result substitute B̂−1t,τ−3 for its expression in terms of B̂−1t,τ−3 and so on. Observe that a new summand
is added in each of these substitutions from which it follows that repeating this process τ times yields

B̂−1t =
(
ẐTt−1 . . . Ẑ

T
t−τ

)
B̂−1t,0

(
Ẑt−τ . . . Ẑt−1

)
+ ρ̂t−τ

(
ẐTt−1 . . . Ẑ

T
t−τ+1

)
vt−τv

T
t−τ

(
Ẑt−τ+1 . . . Ẑt−1

)
+ · · ·+ ρ̂t−2

(
ẐTt−1

)
vt−2v

T
t−2

(
Ẑt−1

)
+ ρ̂t−1vt−1v

T
t−1. (16)

The important observation in (16) is that the matrix Ẑt−1 and its transpose ẐTt−1 are the first and

last product terms of all summands except the last, that the matrices Ẑt−2 and its transpose ẐTt−2
are second and penultimate in all terms but the last two, and so on. Thus, when computing the
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oLBFGS step d̂t := B̂−1t ŝ(wt, θ̃t) the operations needed to compute the product with the next to
last summand of (16) can be reused to compute the product with the second to last summand
which in turn can be reused in determining the product with the third to last summand and so
on. This observation compounded with the fact that multiplications with the identity plus rank
one matrices Ẑt−1 requires O(n) operations yields an algorithm that can compute the oLBFGS step

d̂t := B̂−1t ŝ(wt, θ̃t) in O(τn) operations.
We summarize the specifics of such computation in the following proposition where we consider

the computation of the product B̂−1t p with a given arbitrary vector p.

Proposition 1 Consider the oLBFGS Hessian inverse approximation B̂−1t = B̂−1t,τ obtained after τ
recursive applications of the update in (13) with the scalar sequence ρ̂t−τ+u and identity plus rank-one

matrix sequence Ẑt−τ+u as defined in (12) for given variable and stochastic gradient variation pairs
{vu, ru}t−1u=t−τ . For a given vector p = p0 define the sequence of vectors pk through the recursion

pu+1 = pu − αur̂t−u−1 for u = 0, . . . , τ − 1, (17)

where we also define the constants αu := ρ̂t−u−1v
T
t−u−1pu. Further define the sequence of vectors

qk with initial value q0 = B̂−1t,0pτ and subsequent elements

qu+1 = qu + (ατ−u−1 − βu)vt−τ+u for u = 0, . . . , τ − 1, (18)

where we define constants βu := ρ̂t−τ+ur̂
T
t−τ+uqu. The product B̂−1t p equals qτ , i.e., B̂−1t p = qτ .

Proof See Appendix A.

The reorganization of computations described in Proposition 1 has been done for the deterministic
LBFGS method in, e.g., (Nocedal and Wright (1999)). We have used the same technique here
for computing the descent direction of oLBFGS and have shown the result and derivations for
completeness. In any event, Proposition 1 asserts that it is possible to reduce the computation of
the product B̂−1t p between the oLBFGS Hessian approximation matrix and arbitrary vector p to
the computation of two vector sequences {pu}τ−1u=0 and {qu}τ−1u=0. The product B̂−1t p = qτ is given
by the last element of the latter sequence. Since determination of each of the elements of each
sequence requires O(n) operations and the total number of elements in each sequence is τ the total

operation cost to compute both sequences is of order O(τn). In computing B̂−1t p we also need to

add the cost of the product q0 = B̂−1t,0pτ that links both sequences. To maintain overall computation
cost of order O(τn) this matrix has to have a sparse or low rank structure. A common choice in

LBFGS, that we adopt for oLBFGS, is to make B̂−1t,0 = γ̂tI. The scalar constant γ̂t is a function of
the variable and stochastic gradient variations vt−1 and r̂t−1, explicitly given by

γ̂t =
vTt−1r̂t−1

r̂Tt−1r̂t−1
=

vTt−1r̂t−1

‖r̂t−1‖2
. (19)

with the value at the first iteration being γ̂0 = 1. The scaling factor γ̂t attempts to estimate one of
the eigenvalues of the Hessian matrix at step t and has been observed to work well in practice; see
e.g., Liu and Nocedal (1989); Nocedal and Wright (1999). Further observe that the cost of computing

γ̂t is of order O(n) and that since B̂−1t,0 is diagonal cost of computing the product q0 = B̂−1t,0pτ is
also of order O(n). We adopt the initialization in (19) in our subsequent analysis and numerical
experiments.

The computation of the product B̂−1t p using the result in Proposition 1 is summarized in algo-
rithmic form in the function in Algorithm 1. The function receives as arguments the initial matrix
B̂−1t,0 , the sequence of variable and stochastic gradient variations {vu, r̂u}t−1u=t−τ and the vector p to

produce the outcome q = qτ = B̂−1t p. When called with the stochastic gradient p = ŝ(wt, θ̃t), the
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Algorithm 1 Computation of oLBFGS step q = B̂−1t p when called with p = ŝ(wt, θ̃t).

1: function q = qτ = oLBFGS Step
(
B̂−1t,0 , p = p0, {vu, r̂u}t−1u=t−τ

)
2: for u = 0, 1, . . . , τ − 1 do {Loop to compute constants αu and sequence pu}
3: Compute and store scalar αu = ρ̂t−u−1v

T
t−u−1pu

4: Update sequence vector pu+1 = pu − αur̂t−u−1. [cf. (17)]
5: end for
6: Multiply pτ by initial matrix: q0 = B̂−1t,0pτ
7: for u = 0, 1, . . . , τ − 1 do {Loop to compute constants βu and sequence qu}
8: Compute scalar βu = ρ̂t−τ+ur̂

T
t−τ+uqu

9: Update sequence vector qu+1 = qu + (ατ−u−1 − βu)vt−τ+u [cf. (18)]
10: end for {return q = qτ}

function outputs the oLBFGS step d̂t := B̂−1t ŝ(wt, θ̃t) needed to implement the oLBFGS descent
step in (10). The core of Algorithm 1 is given by the loop in steps 2-5 that computes the constants
αu and sequence elements pu as well as the loop in steps 7-10 that computes the constants βu and
sequence elements qu. The two loops are linked by the initialization of the second sequence with the
outcome of the first which is performed in Step 6. To implement the first loop we require τ inner
products in Step 4 and τ vector summations in Step 5 which yield a total of 2τn multiplications.
Likewise, the second loop requires τ inner products and τ vector summations in steps 9 and 10,
respectively, which yields a total cost of also 2τn multiplications. Since the initial Hessian inverse
approximation matrix B̂−1t,0 is diagonal the cost of computation B̂−1t,0pτ in Step 6 is n multiplications.
Thus, Algorithm 1 requires a total of (4τ + 1)n multiplications which affirms the complexity cost of
order O(τn) for oLBFGS.

For reference, oLBFGS is also summarized in algorithmic form in Algorithm 2. As with any
stochastic descent algorithm the descent iteration is implemented in three steps: the acquisition of
L samples in Step 2, the computation of the stochastic gradient in Step 3, and the implementation
of the descent update on the variable wt in Step 6. Steps 4 and 5 are devoted to the computation
of the oLBFGS descent direction d̂t. In Step 4 we initialize the estimate B̂t,0 = γ̂tI as a scaled
identity matrix using the expression for γ̂t in (19) for t > 0. The value of γt = γ0 for t = 0 is left
as an input for the algorithm. We use γ̂0 = 1 in our numerical tests. In Step 5 we use Algorithm
1 for efficient computation of the descent direction d̂t = B̂−1t ŝ(wt, θ̃t). Step 7 determines the value
of the stochastic gradient ŝ(wt+1, θ̃t) so that the variable variations vt and stochastic gradient

variations r̂t become available for the computation of the curvature approximation matrix B̂−1t . In
Step 8 the variable variation vt and stochastic gradient variation r̂t are computed to be used in the
next iteration. We analyze convergence properties of this algorithm in Section 3 and develop an
application to search engine advertisement in Section 4.

3. Convergence Analysis

For the subsequent analysis it is convenient to define the instantaneous objective function associated
with samples θ̃ = [θ1, . . . ,θL] as

f̂(w, θ̃) :=
1

L

L∑
l=1

f(w,θl). (20)

The definition of the instantaneous objective function f̂(w, θ̃) in association with the fact that
F (w) := Eθ[f(w,θ)] implies that

F (w) = Eθ[f̂(w, θ̃)]. (21)
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Algorithm 2 oLBFGS

Require: Initial value w0. Initial Hessian approximation parameter γ̂0 = 1.
1: for t = 0, 1, 2, . . . do
2: Acquire L independent samples θ̃t = [θt1, . . . ,θtL]

3: Compute stochastic gradient: ŝ(wt, θ̃t) =
1

L

L∑
l=1

∇wf(wt,θtl) [cf. (9)]

4: Initialize Hessian inverse estimate as B̂−1
t,0 = γ̂tI with γ̂t =

vTt−1r̂t−1

r̂Tt−1r̂t−1
for t > 0 [cf (19)]

5: Compute descent direction with Algorithm 1: d̂t = oLBFGS Step
(
B̂−1
t,0 , ŝ(wt, θ̃t), {vu, r̂u}t−1

u=t−τ

)
6: Descend along direction d̂t: wt+1 = wt − εtd̂t [cf. (10)]

7: Compute stochastic gradient: ŝ(wt+1, θ̃t) =
1

L

L∑
l=1

∇wf(wt+1,θtl) [cf. (9)]

8: Variations vt = wt+1 −wt [variable, cf. (4)] r̂t = ŝ(wt+1, θ̃t)− ŝ(wt, θ̃t) [stoch. gradient, cf.(11)]
9: end for

Our goal here is to show that as time progresses the sequence of variable iterates wt approaches the
optimal argument w∗. In proving this result we make the following assumptions.

Assumption 1 The instantaneous functions f̂(w, θ̃) are twice differentiable and the eigenvalues

of the instantaneous Hessian Ĥ(w, θ̃) = ∇2
wf̂(w, θ̃) are bounded between constants 0 < m̃ and

M̃ <∞ for all random variables θ̃,

m̃I � Ĥ(w, θ̃) � M̃I. (22)

Assumption 2 The second moment of the norm of the stochastic gradient is bounded for all w.
i.e., there exists a constant S2 such that for all variables w it holds

Eθ

[
‖ŝ(wt, θ̃t)‖2

∣∣wt

]
≤ S2. (23)

Assumption 3 The step size sequence is selected as nonsummable but square summable, i.e.,

∞∑
t=0

εt =∞, and

∞∑
t=0

ε2t <∞. (24)

Assumptions 2 and 3 are customary in stochastic optimization. The restriction imposed by
Assumption 2 is intended to limit the random variation of stochastic gradients. If the variance of
their norm is unbounded it is possible to have rare events that derail progress towards convergence.
The condition in Assumption 3 balances descent towards optimal arguments – which requires a
slowly decreasing step size – with the eventual elimination of random variations – which requires
rapidly decreasing step sizes. An effective step size choice for which Assumption 3 holds is to make
εt = ε0T0/(T0 + t), for given parameters ε0 and T0 that control the initial step size and its speed of
decrease, respectively. Assumption 1 is stronger than usual and specific to oLBFGS. Observe that
considering the linearity of the expectation operator and the expression in (21) it follows that the

Hessian of the average function can be written as ∇2
wF (w) = H(w) = Eθ[Ĥ(w, θ̃)]. Combining this

observation with the bounds in (22) we conclude that there are constants m ≥ m̃ and M ≤ M̃ such
that

m̃I � mI � H(w) �MI � M̃I. (25)

The bounds in (25) are customary in convergence proofs of descent methods. For the results here
the stronger condition spelled in Assumption 1 is needed. This assumption in necessary to guarantee
that the inner product r̂Tt vt > 0 is positive as we show in the following lemma.
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Lemma 2 Consider the stochastic gradient variation r̂t defined in (11) and the variable variation
vt defined in (4). Let Assumption 1 hold so that we have lower and upper bounds m̃ and M̃ on the
eigenvalues of the instantaneous Hessians. Then, for all steps t the inner product of variable and
stochastic gradient variations r̂Tt vt is bounded below as

m̃‖vt‖2 ≤ r̂Tt vt . (26)

Furthermore, the ratio of stochastic gradient variation squared norm ‖r̂t‖2 = r̂Tt r̂t to inner product
of variable and stochastic gradient variations is bounded as

m̃ ≤ r̂Tt r̂t
r̂Tt vt

=
‖r̂t‖2

r̂Tt vt
≤ M̃. (27)

Proof See Appendix B.

According to Lemma 2, strong convexity of instantaneous functions f̂(w, θ̃) guaranties positive-
ness of the inner product vTt r̂t as long as the variable variation is not identically null. In turn, this
implies that the constant γ̂t in (19) is nonnegative and that, as a consequence, the initial Hessian

inverse approximation B̂−1t,0 is positive definite for all steps t. The positive definiteness of B̂−1t,0 in
association with the positiveness of the inner product of variable and stochastic gradient variations
vTt r̂t > 0 further guarantees that all the matrices B̂−1t,u+1, including the matrix B̂−1t = B̂−1t,τ in par-
ticular, that follow the update rule in (13) stay positive definite – see Mokhtari and Ribeiro (2014a)
for details. This proves that (10) is a proper stochastic descent iteration because the stochastic
gradient ŝ(wt, θ̃t) is moderated by a positive definite matrix. However, this fact alone is not enough

to guarantee convergence because the minimum and maximum eigenvalues of B̂−1t could become ar-
bitrarily small and arbitrarily large, respectively. To prove convergence we show this is not possible
by deriving explicit lower and upper bounds on these eigenvalues.

The analysis is easier if we consider the matrix B̂t – as opposed to B̂−1t . Consider then the
update in (13), and use the Sherman-Morrison formula to rewrite as an update that relates B̂t,u+1

to B̂t,u,

B̂t,u+1 = B̂t,u −
B̂t,uvt−τ+uv

T
t−τ+uB̂t,u

vTt−τ+uB̂t,uvt−τ+u
+

r̂t−τ+ur̂
T
t−τ+u

vTt−τ+ur̂t−τ+u
, (28)

for u = 0, . . . , τ − 1 and B̂t,0 = 1/γ̂tI as per (19). As in (13), the Hessian approximation at step t

is B̂t = B̂t,τ . In the following lemma we use the update formula in (28) to find bounds on the trace

and determinant of the Hessian approximation B̂t.

Lemma 3 Consider the Hessian approximation B̂t = B̂t,τ defined by the recursion in (28) with

B̂t,0 = γ̂−1t I and γ̂t as given by (19). If Assumption 1 holds true, the trace tr(B̂t) of the Hessian

approximation B̂t is uniformly upper bounded for all times t ≥ 1,

tr
(
B̂t

)
≤ (n+ τ)M̃. (29)

Likewise, if Assumption 1 holds true, the determinant det(B̂t) of the Hessian approximation B̂t is
uniformly lower bounded for all times t

det
(
B̂t

)
≥ m̃n+τ

[(n+ τ)M̃ ]τ
. (30)

Proof See Appendix C.

3160



Global Convergence of Online Limited Memory BFGS

Lemma 3 states that the trace and determinants of the Hessian approximation matrix B̂t = B̂t,τ

are bounded for all times t ≥ 1. For time t = 0 we can write a similar bound that takes into account
the fact that the constant γt that initializes the recursion in (28) is γ0 = 1. Given that we are
interested in an asymptotic convergence analysis, this bound in inconsequential. The bounds on the
trace and determinant of B̂t are respectively equivalent to bounds in the sum and product of its
eigenvalues. Further considering that the matrix B̂t is positive definite, as it follows from Lemma
2, these bounds can be further transformed into bounds on the smalls and largest eigenvalue of B̂t.
The resulting bounds are formally stated in the following lemma.

Lemma 4 Consider the Hessian approximation B̂t = B̂t,τ defined by the recursion in (28) with

B̂t,0 = γ̂−1t I and γ̂t as given by (19). Define the strictly positive constant 0 < c := m̃n+τ/[(n +

τ)M̃ ]n+τ−1 and the finite constant C := (n + τ)M̃ < ∞. If Assumption 1 holds true, the range of

eigenvalues of B̂t is bounded by c and C for all time steps t ≥ 1, i.e.,

m̃n+τ

[(n+ τ)M̃ ]
n+τ−1 I =: cI � B̂t � CI := (n+ τ)M̃ I. (31)

Proof See Appendix D.

The bounds in Lemma 4 imply that their respective inverses are bounds on the range of the
eigenvalues of the Hessian inverse approximation matrix B̂−1t . Specifically, the minimum eigenvalue
of the Hessian inverse approximation B̂−1t is larger than 1/C and the maximum eigenvalue of B̂−1t
does not exceed 1/c, or, equivalently,

1

C
I � B̂−1t � 1

c
I . (32)

We further emphasize that the bounds in (32), or (31) for that matter, limit the conditioning of B̂−1t
for all realizations of the random samples {θ̃t}∞t=0, irrespective of the particular random draw. Having

matrices B̂−1t that are strictly positive definite with eigenvalues uniformly upper bounded by 1/c

leads to the conclusion that if ŝ(wt, θ̃t) is a descent direction, the same holds true of B̂−1t ŝ(wt, θ̃t).
The stochastic gradient ŝ(wt, θ̃t) is not a descent direction in general, but we know that this is true

for its conditional expectation E[ŝ(wt, θ̃t)
∣∣wt] = ∇F (wt). Hence, we conclude that B̂−1t ŝ(wt, θ̃t)

is an average descent direction since E[B̂−1t ŝ(wt, θ̃t)
∣∣wt] = B̂−1t ∇F (wt). Stochastic optimization

methods whose displacements wt+1−wt are descent directions on average are expected to approach
optimal arguments. We show that this is true of oLBFGS in the following lemma.

Lemma 5 Consider the online Limited memory BFGS algorithm as defined by the descent iteration
in (10) with matrices B̂−1t = B̂−1t,τ obtained after τ recursive applications of the update in (13)

initialized with B̂−1t,0 = γ̂tI and γ̂t as given by (19). If Assumptions 1 and 2 hold true, the sequence
of average function values F (wt) satisfies

E
[
F (wt+1)

∣∣wt

]
− F (w∗) ≤ F (wt)− F (w∗)− εt

C
‖∇F (wt)‖2 +

MS2ε2t
2c2

. (33)

Proof See Appendix E.

Setting aside the term MS2ε2t/2c
2 for the sake of argument, (88) defines a supermartingale rela-

tionship for the sequence of objective function errors F (wt)−F (w∗). This implies that the sequence
εt‖∇F (wt)‖2/C is almost surely summable which, given that the step sizes εt are nonsummable
as per (24), further implies that the limit infimum lim inft→∞ ‖∇F (wt)‖ of the gradient norm
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‖∇F (wt)‖ is almost surely null. This latter observation is equivalent to having lim inft→∞ F (wt)−
F (w∗) = 0 with probability 1 over realizations of the random samples {θ̃t}∞t=0. Therefore, a
subsequence of the sequence of objective function errors F (wt) − F (w∗) converges to null al-
most surely. Moreover, according to the result of supermartingale convergence theorem, the limit
limt→∞ F (wt)−F (w∗) of the nonnegative objective function errors F (wt)−F (w∗) almost surely ex-
ists. This observation in conjunction with the fact that a subsequence of the sequence F (wt)−F (w∗)
converges almost surely to null implies that the whole sequence of F (wt)−F (w∗) converges almost
surely to zero. Considering the strong convexity assumption this result implies almost sure con-
vergence of the whole sequence of ‖wt − w∗‖2 to null. The term MS2ε2t/2c

2 is a relatively minor
nuisance that can be taken care of with a technical argument that we present in the proof of the
following theorem.

Theorem 6 Consider the online Limited memory BFGS algorithm as defined by the descent itera-
tion in (10) with matrices B̂−1t = B̂−1t,τ obtained after τ recursive applications of the update in (13)

initialized with B̂−1t,0 = γ̂tI and γ̂t as given by (19). If Assumptions 1-3 hold true the limit of the

squared Euclidean distance to optimality ‖wt −w∗‖2 converges to zero almost surely, i.e.,

Pr
[

lim
t→∞

‖wt −w∗‖2 = 0
]

= 1, (34)

where the probability is over realizations of the random samples {θ̃t}∞t=0.

Proof See Appendix F.

Theorem 6 establishes convergence of the oLBFGS algorithm summarized in Algorithm 2. The
lower and upper bounds on the eigenvalues of B̂t derived in Lemma 4 play a fundamental role in the
proofs of the prerequisite Lemma 5 and Theorem 6 proper. Roughly speaking, the lower bound on
the eigenvalues of B̂t results in an upper bound on the eigenvalues of B̂−1t which limits the effect of
random variations on the stochastic gradient ŝ(wt, θ̃t). If this bound does not exist – as is the case,
e.g., of regular stochastic BFGS – we may observe catastrophic amplification of random variations of
the stochastic gradient. The upper bound on the eigenvalues of B̂t, which results in a lower bound
on the eigenvalues of B̂−1t , guarantees that the random variations in the curvature estimate B̂t do
not yield matrices with arbitrarily small norm. If this bound does not hold, it is possible to end up
halting progress before convergence as the stochastic gradient is nullified by multiplication with an
arbitrarily small eigenvalue.

The result in Theorem 6 is strong because it holds almost surely over realizations of the random
samples {θ̃t}∞t=0 but not stronger than the same convergence guarantees that hold for SGD. We
complement the convergence result in Theorem 6 with a characterization of the expected convergence
rate that we introduce in the following theorem.

Theorem 7 Consider the online Limited memory BFGS algorithm as defined by the descent itera-
tion in (10) with matrices B̂−1t = B̂−1t,τ obtained after τ recursive applications of the update in (13)

initialized with B̂−1t,0 = γ̂tI and γ̂t as given by (19). Let Assumptions 1 and 2 hold, and further
assume that the step size sequence is of the form εt = ε0/(t + T0) with the parameters ε0 and T0
satisfying the inequality 2mε0T0/C > 1. Then, the difference between the expected optimal objective
E [F (wt)] and the optimal objective F (w∗) is bounded as

E [F (wt)]− F (w∗) ≤ C0

T0 + t
, (35)

where the constant C0 is defined as

C0 := max

{
ε20 T

2
0CMS2

2c2(2mε0T0 − C)
, T0 (F (w0)− F (w∗))

}
. (36)
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Proof See Appendix G.

Theorem 7 shows that under specified assumptions the expected error in terms of the objective
value after t oLBFGS iterations is of order O(1/t). As is the case of Theorem 6, this result is not
better than the convergence rate of conventional SGD. As can be seen in the proof of Theorem 7,
the convergence rate is dominated by the noise term introduced by the difference between stochastic
and regular gradients. This noise term would be present even if exact Hessians were available and
in that sense the best that can be proven of oLBFGS is that the convergence rate is not worse
than that of SGD. Given that theorems 6 and 7 parallel the theoretical guarantees of SGD it is
perhaps fairer to describe oLBFGS as an adaptive reconditioning strategy instead of a stochastic
quasi-Newton method. The latter description refers to the genesis of the algorithm, but the former is
more accurate description of its behavior. Do notice that while the convergence rate doesn’t change,
improvements in convergence time are significant as we illustrate with the numerical experiments
that we present in the next section.

4. Search Engine Advertising

We apply oLBFGS to the problem of predicting the click-through rate (CTR) of an advertisement
displayed in response to a specific search engine query by a specific visitor. In these problems we
are given meta information about an advertisement, the words that appear in the query, as well as
some information about the visitor and are asked to predict the likelihood that this particular ad
is clicked by this particular user when performing this particular query. The information specific
to the ad includes descriptors of different characteristics such as the words that appear in the title,
the name of the advertiser, keywords that identify the product, and the position on the page where
the ad is to be displayed. The information specific to the user is also heterogeneous and includes
gender, age, and propensity to click on ads. To train a classifier we are given information about past
queries along with the corresponding click success of the ads displayed in response to the query. The
ad metadata along with user data and search words define a feature vector that we use to train a
logistic regressor that predicts the CTR of future ads. Given the heterogeneity of the components
of the feature vector we expect a logistic cost function with skewed level sets and consequent large
benefits from the use of oLBFGS.

4.1 Feature Vectors

For the CTR problem considered here we use the Tencent search engine data set Sun (2012). This
data set contains the outcomes of 236 million (236× 106) searches along with information about the
ad, the query, and the user. The information contained in each sample point is the following:

• User profile: If known, age and gender of visitor performing query.

• Depth: Total number of advertisements displayed in the search results page.

• Position: Position of the advertisement in the search page.

• Impression: Number of times the ad was displayed to the user who issued the query.

• Query: The words that appear in the user’s query.

• Title: The words that appear in the title of ad.

• Keywords: Selected keywords that specify the type of product.

• Ad ID: Unique identifier assigned to each specific advertisement.
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Nonzero components

Feature type Total components Maximum (observed/structure) Mean (observed)

Age 6 1 (structure) 1.0

Gender 3 1 (structure) 1.0

Impression 3 1 (structure) 1.0

Depth 3 1 (structure) 1.0

Position 3 1 (structure) 1.0

Query 20,000 125 (observed) 3.0

Title 20,000 29 (observed) 8.8

Keyword 20,000 16 (observed) 2.1

Advertiser ID 5,184 1 (structure) 1.0

Advertisement ID 108,824 1 (structure) 1.0

Total 174,026 148 (observed) 20.9

Table 1: Components of the feature vector for prediction of advertisements click-through rates. For
each feature class we report the total number of components in the feature vector as well
as the maximum and average number of nonzero components.

• Advertiser ID: Unique identifier assigned to each specific advertiser.

• Clicks: Number of times the user clicked on the ad.

From this information we create a set of feature vectors {xi}Ni=1, with corresponding labels
yi ∈ {−1, 1}. The label associated with feature vector xi is yi = 1 if the number of clicks in the ad
is more than 0. Otherwise the label is yi = −1. We use a binary encoding for all the features in
the vector xi. For the age of the user we use the six age intervals (0, 12], (12, 18], (18, 24], (24, 30],
(30, 40], and (40,∞) to construct six indicator entries in xi that take the value 1 if the age of the
user is known to be in the corresponding interval. E.g., a 21 year old user has an age that falls in the
third interval which implies that we make [xi]3 = 1 and [xi]k = 0 for all other k between 1 and 6. If
the age of the user is unknown we make [xi]k = 0 for all k between 1 and 6. For the gender of the
visitors we use the next three components of xi to indicate male, female, or unknown gender. For
a male user we make [xi]7 = 1, for a female user [xi]8 = 1, and for visitors of unknown gender we
make [xi]9 = 1. The next three components of xi are used for the depth feature. If the the number
of advertisements displayed in the search page is 1 we make [xi]10 = 1, if 2 different ads are shown
we make [xi]11 = 1, and for depths of 3 or more we make [xi]12 = 1. To indicate the position of
the ad in the search page we also use three components of xi. We use [xi]13 = 1, [xi]14 = 1, and
[xi]15 = 1 to indicate that the ad is displayed in the first, second, and third position, respectively.
Likewise we use [xi]16, [xi]17 and [xi]18 to indicate that the impression of the ad is 1, 2 or more than
3.

For the words that appear in the query we have in the order of 105 distinct words. To reduce
the number of elements necessary for this encoding we create 20,000 bags of words through random
hashing with each bag containing 5 or 6 distinct words. Each of these bags is assigned an index
k. For each of the words in the query we find the bag in which this word appears. If the word
appears in the kth bag we indicate this occurrence by setting the k+ 18th component of the feature
vector to [xi]k+18 = 1. Observe that since we use 20,000 bags, components 19 through 20,018 of
xi indicate the presence of specific words in the query. Further note that we may have more than
one xi component different from zero because there may be many words in the query, but that the
total number of nonzero elements is much smaller than 20,000. On average, 3.0 of these elements of
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the feature vector are nonzero. The same bags of words are used to encode the words that appear
in the title of the ad and the product keywords. We encode the words that appear in the title of
the ad by using the next 20, 000 components of vector xi, i.e. components 20, 019 through 40, 018.
Components 40, 019 through 60, 018 are used to encode product keywords. As in the case of the
words in the search just a few of these components are nonzero. On average, the number of non-
zero components of feature vectors that describe the title features is 8.8. For product keywords the
average is 2.1. Since the number of distinct advertisers in the training set is 5, 184 we use feature
components 60, 019 through 65202 to encode this information. For the kth advertiser ID we set
the k + 60, 018th component of the feature vector to [xi]k+60,018 = 1. Since the number of distinct
advertisements is 108, 824 we allocate the last 108, 824 components of the feature vector to encode
the ad ID. Observe that only one out of 5, 184 advertiser ID components and one of the 108, 824
advertisement ID components are nonzero.

In total, the length of the feature vector is 174,026 where each of the components are either 0
or 1. The vector is very sparse. We observe a maximum of 148 nonzero elements and an average
of 20.9 nonzero elements in the training set – see Table 1. This is important because the cost of
implementing inner products in the oLBFGS training of the logistic regressor that we introduce in
the following section is proportional to the number of nonzero elements in xi.

4.2 Logistic Regression of Click-Through Rate

We use the training set to estimate the CTR with a logistic regression. For that purpose let x ∈ Rn
be a vector containing the features described in Section 4.1, w ∈ Rn a classifier that we want to
train, and y ∈ −1, 1 an indicator variable that takes the value y = 1 when the ad presented to the
user is clicked and y = −1 when the ad is not clicked by the user. We hypothesize that the CTR,
defined as the probability of observing y = 1, can be written as the logistic function

CTR(x;w) := P
[
y = 1

∣∣x;w
]

=
1

1 + exp
(
− xTw

) . (37)

We read (37) as stating that for a feature vector x the CTR is determined by the inner product
xTw through the given logistic transformation.

Consider now the training set S = {(xi, yi)}Ni=1 which contains N realizations of features xi
and respective click outcomes yi and further define the sets S1 := {(xi, yi) ∈ S : yi = 1} and
S−1 := {(xi, yi) ∈ S : yi = −1} containing clicked and unclicked advertisements, respectively. With
the data given in S we define the optimal classifier w∗ as a maximum likelihood estimate (MLE) of
w given the model in (37) and the training set S. This MLE can be found as the minimizer of the
log-likelihood loss

w∗ := argmin
λ

2
‖w‖2 +

1

N

N∑
i=1

log
(

1 + exp
(
− yixTi w

))
= argmin

λ

2
‖w‖2 +

1

N

[ ∑
xi∈S1

log
(

1 + exp(−xTi w)
)

+
∑

xi∈S−1

log
(

1 + exp(xTi w)
) ]

, (38)

where we have added the regularization term λ‖w‖2/2 to disincentivize large values in the weight
vector w∗; see e.g., Ng (2004).

The practical use of (37) and (38) is as follows. We use the data collected in the training set S
to determine the vector w∗ in (38). When a user issues a query we concatenate the user and query
specific elements of the feature vector with the ad specific elements of several candidate ads. We
then proceed to display the advertisement with, say, the largest CTR. We can interpret the set S as
having been acquired offline or online. In the former case we want to use a stochastic optimization
algorithm because computing gradients is infeasible – recall that we are considering training samples
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Figure 1: Illustration of Negative log-likelihood value for oLBFGS and SGD after processing certain
amount of feature vectors. The accuracy of oLBFGS is better than SGD after processing
a specific number of feature vectors.

with a number of elements N in the order of 106. The performance metric of interest in this case is
the logistic cost as a function of computational time. If elements of S are acquired online we update
w whenever a new vector becomes available so as to adapt to changes in preferences. In this case
we want to exploit the information in new samples as much as possible. The correct metric in this
case is the logistic cost as a function of the number of feature vectors processed. We use the latter
metric for the numerical experiments in the following section.

4.3 Numerical Results

Out of the 236 × 106 in the Tencent data set we select 106 sample points to use as the training
set S and 105 sample points to use as a test set T . To select elements of the training and test
set we divide the first 1.1 × 106 sample points of the complete data set in 105 consecutive blocks
with 11 elements. The first 10 elements of the block are assigned to the training set and the 11th
element to the test set. To solve for the optimal classifier we implement SGD and oLBFGS by
selecting feature vectors xi at random from the training set S. In all of our numerical experiments
the regularization parameter in (38) is λ = 10−6. The step sizes for both algorithms are of the form
εt = ε0T0/(T0 + t). We set ε0 = 10−2 and T0 = 104 for oLBFGS and ε0 = 10−1 and T0 = 106 for
SGD. For SGD the sample size in (9) is set to L = 20 whereas for oLBFGS it is set to L = 100. The
values of parameters ε0, T0, and L are chosen to yield best convergence times in a rough parameter
optimization search. Observe the relatively large values of L that are used to compute stochastic
gradients. This is necessary due to the extreme sparsity of the feature vectors xi that contain an
average of only 20.9 nonzero out 174,026 elements. Even when considering L = 100 vectors they are
close to orthogonal. The size of memory for oLBFGS is set to τ = 10. With L = 100 features with
an average sparsity of 20.9 nonzero elements and memory τ = 10 the cost of each oLBFGS iteration
is in the order of 2.1× 104 operations.

Figure 1 illustrates the convergence path of SGD and oLBFGS on the advertising training set.
We depict the value of the log likelihood objective in (38) evaluated at w = wt where wt is the
classifier iterate determined by SGD or oLBFGS. The horizontal axis is scaled by the number of
feature vectors L that are used in the evaluation of stochastic gradients. This results in a plot of
log likelihood cost versus the number Lt of feature vectors processed. To read iteration indexes
from Figure 1 divide the horizontal axis values by L = 100 for oLBFGS and L = 20 for SGD. The
curvature correction of oLBFGS results in significant reductions in convergence time. For way of
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illustration observe that after processing Lt = 3×104 feature vectors the objective value achieved by
oLBFGS is F (wt) = 0.65, while for SGD it still stands at F (wt) = 16 which is a meager reduction
from the random initialization point at which F (w0) = 30. In fact, oLBFGS converges to the
minimum possible log likelihood cost F (wt) = 0.65 after processing 1.7× 104 feature vectors. This
illustration hints that oLBFGS makes better use of the information available in feature vectors.

To corroborate that the advantage of oLBFGS is not just an artifact of the structure of the log
likelihood cost in (38) we process 2× 104 feature vectors with SGD and oLBFGS and evaluate the
predictive accuracy of the respective classifiers on the test set. As measures of predictive accuracy we
adopt the frequency histogram of the predicted click through rate CTR(x;w) for all clicked ads and
the frequency histogram of the complementary predicted click through rate 1 − CTR(x;w) for all
the ads that were not clicked. To do so we separate the test set by defining the set T1 := {(xi, yi) ∈
T : yi = 1} of clicked ads and the set T−1 := {(xi, yi) ∈ T : yi = −1} of ads in the test set that
were not clicked. For a given classifier w we compute the predicted probability CTR(xi;w) for each
of the ads in the clicked set T1. We then consider a given interval [a, b] and define the frequency
histogram of the predicted click through rate as the fraction of clicked ads for which the prediction
CTR(xi;w) falls in [a, b],

H1(w; a, b) :=
1

#(T1)

∑
(xi,yi)∈T1

I
{

CTR(xi;w) ∈ [a, b]
}
, (39)

where #(T1) denotes the cardinality of the set T1. Likewise, we consider the ads in the set T−1 that
were not clicked and compute the prediction 1−CTR(xi;w) on the probability of the ad not being
clicked. We then consider a given interval [a, b] and define the frequency histogram H−1(w; a, b) as
the fraction of unclicked ads for which the prediction 1− CTR(xi;w) falls in [a, b],

H−1(w; a, b) :=
1

#(T−1)

∑
(xi,yi)∈T−1

I
{

1− CTR(xi;w) ∈ [a, b]
}
. (40)

The histogram H1(w; a, b) in (39) allows us to study how large the predicted probability CTR(xi;w)
is for the clicked ads. Conversely, the histogram H−1(w; a, b) in (40) gives an indication of how large
the predicted probability 1−CTR(xi;w) is for the unclicked ads. An ideal classifier is one for which
the frequency counts in H1(w; a, b) accumulate at CTR(xi;w) = 1 and for which H−1(w; a, b) ac-
cumulates observations at 1−CTR(xi;w) = 1. This corresponds to a classifier that predicts a click
probability of 1 for all ads that were clicked and a click probability of 0 for all ads that were not
clicked.

Fig. 2(a) shows the histograms of predicted click through rate CTR(x;w) for all clicked ads by
oLBFGS and SGD classifiers after processing 2× 104 training sample points. oLBFGS classifier for
88% of test points in T1 predicts CTR(x;w) in the interval [0, 0.1] and the classifier computed by
SGD estimates the click through rate CTR(x;w) in the same interval for 37% of clicked ads in the
test set. These numbers shows the inaccurate click through rate predictions of both classifiers for the
test points with label y = 1. Although, SGD and oLBFGS classifiers have catastrophic performances
in predicting click through rate CTR(x;w) for the clicked ads in the test set, they perform well in
estimating complementary predicted click through rate 1−CTR(x;w) for the test points with label
y = −1. This observation implied by Fig. 2(b) which shows the histograms of complementary
predicted click through rate 1− CTR(x;w) for all not clicked ads by oLBFGS and SGD classifiers
after processing 2×104 training sample points. As it shows after processing 2×104 sample points of
the training set the predicted probability 1−CTR(x;w) by the SGD classifier for 38.8% of the test
points are in the interval [0.9, 1], while for the classifier computed by oLBFGS 97.3% of predicted
probability 1− CTR(x;w) are in the interval [0.9, 1] which is a significant performance.
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(a) Histogram H1(w; a, b), [cf. (39)].
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(b) Histogram H−1(w; a, b), [cf. (40)].

Figure 2: Performance of classifier after processing 2× 104 feature vectors with SGD and oLBFGS
for the cost in (38). Histograms for: (a) predicted click through rate CTR(x;w) for all
clicked ads; and (b) complementary predicted click through rate 1 − CTR(x;w) for all
unclicked ads. For an ideal classifier that predicts a click probability CTR(x;w) = 1 for
all clicked ads and a click probability CTR(x;w) = 0 for all unclicked ads the frequency
counts in H1(w; a, b) and H−1(w; a, b) would accumulate in the [0.9, 1] bin. Neither SGD
nor oLBFGS compute acceptable classifiers because the number of clicked ads in the test
set is very small and predicting CTR(x;w) = 0 for all ads is close to the minimum of (38).

The reason for the inaccurate predictions of both classifiers is that most elements in the training
set S are unclicked ads. Thus, the minimizer w∗ of the log likelihood cost in (38) is close to a
classifier that predicts CTR(x;w∗) ≈ 0 for most ads. Indeed, out of the 106 elements in the training
set, 94.8% of them have labels yi = −1 and only the remaining 5.2× 104 feature vectors correspond
to clicked ads. To overcome this problem we replicate observations with labels yi = 1 to balance
the representation of both labels in the training set. Equivalently, we introduce a constant γ and
redefine the log likelihood objective in (38) to give a larger weight to feature vectors that correspond
to clicked ads,

w∗ = argmin
λ

2
‖w‖2 +

1

M

[
γ
∑

xi∈S1

log
(

1 + exp(−xTi w)
)

+
∑

xi∈S−1

log
(

1 + exp(xTi w)
)]
, (41)

where we defined M := γ#(S1) + #(S−1) to account for the replication of clicked featured vectors
that is implicit in (41). To implement SGD and oLBFGS in the weighted log function in (41) we
need to bias the random choice of feature vector so that vectors in S1 are γ times more likely to
be selected than vectors in S2. Although our justification to introduce γ is to balance the types
of feature vectors, γ is just a tradeoff constant to increase the percentage of correct predictions for
clicked ads – which is close to zero in Figure 2 – at the cost of reducing the accuracy of correct
predictions of unclicked ads – which is close to one in Figure 2.

We repeat the experiment of processing 2× 104 feature vectors that we summarized in Figure 2
but now we use the objective cost in (41) instead of the cost in (38). We set γ = 18.2 which makes
replicated clicked ads as numerous as unclicked ads. The resulting SGD and oLBFGS histograms
of the predicted click through rates for all clicked ads and complementary predicted click through
rates for all unclicked ads are shown in Figure 3. In particular, Figure 3(a) shows the histograms of
predicted click through rate CTR(x;w) for all clicked ads after processing 2× 104 training sample
points. The modification of the log likelihood cost increases the accuracy of the oLBFGS classifier
which is now predicting a click probability CTR(x;w) ∈ [0.9, 1] for 54.7% of the ads that were indeed
clicked. There is also improvement for the SGD classifier but the prediction is much less impressive.
Only 15.5% of the clicked ads are associated with a click probability prediction in the interval
[0.9, 1]. This improvement is at the cost of reducing the complementary predicted click through
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(b) Histogram H−1(w; a, b), [cf. (40)].

Figure 3: Performance of classifier after processing 2× 104 feature vectors with SGD and oLBFGS
for the cost in (41). Histograms for: (a) predicted click through rate CTR(x;w) for all
clicked ads; and (b) complementary predicted click through rate 1 − CTR(x;w) for all
unclicked ads. For an ideal classifier that predicts a click probability CTR(x;w) = 1 for
all clicked ads and a click probability CTR(x;w) = 0 for all unclicked ads the frequency
counts in H1(w; a, b) and H−1(w; a, b) would accumulate in the [0.9, 1] bin. The classifier
computed by oLBFGS is much more accurate than the one computed by SGD.

rate 1 − CTR(x;w) for the ads that were indeed not clicked. However, the classifier computed by
oLBFGS after processing 2× 104 feature vectors still predicts a probability 1−CTR(x;w) ∈ [0.9, 1]
for 46.3% of the unclicked ads. The corresponding frequency for the SGD classifier is 10.8%.

Do note that the relatively high prediction accuracies in Figure 3 are a reflection of sample bias
to some extent. Since ads were chosen for display because they were deemed likely to be clicked
they are not a completely random test set. Still, the point to be made here is that oLBFGS succeeds
in finding an optimal classifier when SGD fails. It would take the processing of about 106 feature
vectors for SGD to achieve the same accuracy of oLBFGs.

5. Conclusions

An online limited memory version of the (oL)BFGS algorithm was studied for solving strongly
convex optimization problems with stochastic objectives. Almost sure convergence was established
by bounding the traces and determinants of curvature estimation matrices under the assumption
that sample functions have well behaved Hessians. The convergence rate of oLBFGS was further
determined to be at least of order O(1/t) in expectation. This rate is customary of stochastic
optimization algorithms which are limited by their ability to smooth out the noise in stochastic
gradient estimates. A detailed comparison between oLBFGS and SGD for training a logistic regressor
in a large scale search engine advertising problem was also presented. The numerical tests show that
oLBFGS trains the regressor using less than 1% of the data required by SGD to obtain similar
classification accuracy.
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Appendix A. Proof of Proposition 1

We begin by observing that the pu sequence in (17) is defined so that we can write pu+1 = Ẑt−u−1pu
with p0 = p. Indeed, use the explicit expression for Ẑt−u−1 in (12) to write the product Ẑt−u−1pu
as

Ẑt−u−1pu =
(
I− ρ̂t−u−1r̂t−u−1vTt−u−1

)
pu = pu − αur̂t−u−1 = pu+1, (42)

where the second equality follows from the definition αu := ρ̂t−u−1v
T
t−u−1pu and the third equality

from the definition of the pu sequence in (17).
Recall now the oLBFGS Hessian inverse approximation expression in (16). It follows that for

computing the product B̂−1t p we can multiply each of the τ + 1 summands in the right hand side of
(16) by p = p0. Implementing this procedure yields

B̂−1t p =
(
ẐTt−1. . .Ẑ

T
t−τ

)
B̂−1t,0

(
Ẑt−τ . . .Ẑt−1

)
p0 + ρ̂t−τ

(
ẐTt−1. . .Ẑ

T
t−τ+1

)
vt−τv

T
t−τ

(
Ẑt−τ+1. . .Ẑt−1

)
p0

+ · · ·+ ρ̂t−2

(
ẐTt−1

)
vt−2v

T
t−2

(
Ẑt−1

)
p0 + ρ̂t−1vt−1v

T
t−1p0. (43)

The fundamental observation in (43) is that all summands except the last contain the product

Ẑt−1p0. This product cannot only be computed efficiently but, as shown in (42), is given by

p1 = Ẑt−1p0. A not so fundamental, yet still important observation, is that the last term can be
simplified to ρ̂t−1vt−1v

T
t−1p0 = α0vt−1 given the definition of α0 := ρ̂t−1v

T
t−1p0. Implementing

both of these substitutions in (43) yields

B̂−1t p =
(
ẐTt−1. . .Ẑ

T
t−τ

)
B̂−1t,0

(
Ẑt−τ . . .Ẑt−2

)
p1 + ρ̂t−τ

(
ẐTt−1. . .Ẑ

T
t−τ+1

)
vt−τv

T
t−τ

(
Ẑt−τ+1. . .Ẑt−2

)
p1

+ · · ·+ ρ̂t−2

(
ẐTt−1

)
vt−2v

T
t−2p1 + α0vt−1. (44)

The structure of (44) is analogous to the structure of (43). In all terms except the last two we require

determination of the product Ẑt−2p1, which, as per (42) can be computed with 2n multiplications

and is given by p2 = Ẑt−2p1. Likewise, in the second to last term we can simplify the product
ρ̂t−2vt−2v

T
t−2p1 = α1vt−2 using the definition α1 = ρ̂t−2v

T
t−2p1. Implementing these substitutions

in (44) yields an expression that is, again, analogous. In all of the resulting summands except the

last three we need to compute the product Ẑt−3p2, which is given by p3 = Ẑt−3p2 and in the third
to last term we can simplify the product ρ̂t−3vt−3v

T
t−3p2 = α2vt−3. Repeating this process keeps

yielding terms with analogous structure and, after τ − 1 repetitions we simplify (44) to

B̂−1t p =
(
ẐTt−1. . .Ẑ

T
t−τ+1Ẑ

T
t−τ

)
B̂−1t,0pτ +

(
ẐTt−1. . .Ẑ

T
t−τ+1

)
ατ−1vt−τ + . . .+ ẐTt−1α1vt−2 + α0vt−1.

(45)

In the first summand in (45) we can substitute the definition of the first element of the qu sequence

q0 := B̂−1t,0pτ . More important, observe that the matrix ẐTt−1 is the first factor in all but the last

summand. Likewise, the matrix ẐTt−2 is the second factor in all but the last two summands and, in

general, the matrix ẐTt−u is the uth factor in all but the last u summands. Pulling these common

factors recursively through (45) it follows that B̂−1t pt can be equivalently written as

B̂−1t p = α0vt−1 + ẐTt−1

[
α1vt−2 + ẐTt−2

[
. . .
[
ατ−2vt−τ+1 + ẐTt−τ+1

[
ατ−1vt−τ + ẐTt−τq0

]]
. . .

]]
.

(46)

To conclude the proof we just need to note that the recursive definition of qu in (18) is a computation
of the nested elements of (46). To see this consider the innermost element of (46) and use the
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definition of β0 := ρ̂t−τ r̂
T
t−τq0 to conclude that ατ−1vt−τ + ẐTt−τq0 is given by

ατ−1vt−τ + ẐTt−τq0 = ατ−1vt−τ + q0 − ρ̂t−τvt−τ r̂Tt−τq0 = q0 + (ατ−1 − β0)vt−τ = q1 (47)

where in the last equality we use the definition of q1 [cf. (18). Substituting this simplification into
(46) eliminates the innermost nested term and leads to

B̂−1t p = α0vt−1 + ẐTt−1

[
α1vt−2 + ẐTt−2

[
. . .
[
ατ−2vt−τ+1 + ẐTt−τ+1q1

]
. . .

]]
. (48)

Mimicking the computations in (47) we can see that the innermost term in (48) is ατ−2vt−τ+1 +

ẐTt−τ+1q1 = q2 and obtain an analogous expression that we can substitute for q3 and so on. Re-

peating this process τ − 2 times leads to the last term being B̂−1t p = α0vt−1 + ẐTt−1qτ−1 which we

can write as α0vt−1 + ẐTt−1qτ−1 = qτ by repeating the operations in (47). This final observation

yields B̂−1t p = qτ .

Appendix B. Proof of Lemma 2

As per (22) in Assumption 1 the eigenvalues of the instantaneous Hessian Ĥ(w, θ̃) are bounded by
m̃ and M̃ . Thus, for any given vector z it holds

m̃‖z‖2 ≤ zT Ĥ(w, θ̃)z ≤ M̃‖z‖2. (49)

For given wt and wt+1 define the mean instantaneous Hessian Ĝt as the average Hessian value along
the segment [wt,wt+1]

Ĝt =

∫ 1

0

Ĥ
(
wt + τ(wt+1 −wt), θ̃t

)
dτ. (50)

Consider now the instantaneous gradient ŝ(wt + τ(wt+1 −wt), θ̃t) evaluated at wt + τ(wt+1 −wt)

and observe that its derivative with respect to τ is ∂ŝ
(
wt+τ(wt+1−wt), θ̃t

)
/∂τ = Ĥ(wt+τ(wt+1−

wt), θ̃t)(wt+1 −wt). Then according to the fundamental theorem of calculus∫ 1

0

Ĥ
(
wt + τ(wt+1 −wt) , θ̃t

)
(wt+1 −wt) dτ = ŝ(wt+1, θ̃t)− ŝ(wt, θ̃t). (51)

Using the definitions of the mean instantaneous Hessian Ĝt in (50) as well as the definitions of the
stochastic gradient variations r̂t and variable variations vt in (11) and (4) we can rewrite (51) as

Ĝtvt = r̂t. (52)

Invoking (49) for the integrand in (50), i.e., for Ĥ(w, θ̃) = Ĥ
(
wt + τ(wt+1 −wt), θ̃

)
, it follows that

for all vectors z the mean instantaneous Hessian Ĝt satisfies

m̃‖z‖2 ≤ zT Ĝtz ≤ M̃‖z‖2. (53)

The claim in (26) follows from (52) and (53). Indeed, consider the ratio of inner products r̂Tt vt/v
T
t vt

and use (52) and the first inequality in (53) to write

r̂Tt vt
vTt vt

=
vTt Ĝtvt
vTt vt

≥ m̃. (54)

It follows that (26) is true for all times t.
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To prove (27) we operate (52) and (53). Considering the ratio of inner products r̂Tt r̂t/r̂
T
t vt and

observing that (52) states Ĝtvt = r̂t, we can write

r̂Tt r̂t
r̂Tt vt

=
vTt Ĝ

2
tvt

vTt Ĝtvt
(55)

Since the mean instantaneous Hessian Ĝt is positive definite according to (53), we can define zt =

Ĝ
1/2
t vt. Substituting this observation into (55) we can conclude

r̂Tt r̂t
r̂Tt vt

=
zTt Ĝtzt
zTt zt

. (56)

Observing (56) and the inequalities in (53), it follows that (27) is true.

Appendix C. Proof of Lemma 3

We begin with the trace upper bound in (29). Consider the recursive update formula for the Hessian

approximation B̂t as defined in (28). To simplify notation we define s as a new index such that
s = t− τ + u. Introduce this simplified notation in (28) and compute the trace of both sides. Since
traces are linear function of their arguments we obtain

tr
(
B̂t,u+1

)
= tr

(
B̂t,u

)
− tr

(
B̂t,uvsv

T
s B̂t,u

vTs B̂t,uvs

)
+ tr

(
r̂sr̂

T
s

vTs r̂s

)
. (57)

Recall that the trace of a matrix product is independent of the order of the factors to conclude that
the second summand of (57) can be simplified to

tr
(
B̂t,uvsv

T
s B̂t,u

)
= tr

(
vTs B̂t,uB̂t,uvs

)
= vTs B̂t,uB̂t,uvs =

∥∥∥B̂t,uvs

∥∥∥2 , (58)

where the second equality follows because vTs B̂t,uB̂t,uvs is a scalar and the second equality by

observing that the term vTs B̂t,uB̂t,uvs is the inner product of the vector B̂t,uvs with itself. Use the
same procedure for the last summand of (57) so as to write tr(r̂sr̂

T
s ) = r̂Ts r̂s = ‖r̂s‖2. Substituting

this latter observation as well as (58) into (57) we can simplify the trace of B̂t,u+1 to

tr
(
B̂t,u+1

)
= tr

(
B̂t,u

)
− ‖B̂t,uvs‖2

vTs B̂t,uvs
+
‖r̂s‖2

r̂Ts vs
. (59)

The second term in the right hand side of (59) is negative because, as we have already shown, the

matrix B̂t,u is positive definite. The third term is the one for which we have derived the bound that

appears in (27) of Lemma 2. Using this two observations we can conclude that the trace of B̂t,u+1

can be bounded as
tr
(
B̂t,u+1

)
≤ tr

(
B̂t,u

)
+ M̃. (60)

By considering (60) as a recursive expression for u = 0, . . . τ − 1, we can conclude that

tr
(
B̂t,u

)
≤ tr

(
B̂t,0

)
+ uM̃. (61)

To finalize the proof of (29) we need to find a bound for the initial trace tr(B̂t,0). To do so we

consider the definition B̂t,0 = I/γ̂t with γ̂t as given by (19). Using this definition of B̂t,0 as a scaled

identity it follows that we can write the trace of B̂t,0 as

tr
(
B̂t,0

)
= tr

(
I

γ̂t

)
=

n

γ̂t
. (62)
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Substituting the definition of γ̂t into the rightmost side of (19) it follows that for all times t ≥ 1,

tr
(
B̂t,0

)
= n

r̂Tt−1r̂t−1

vTt−1r̂t−1
= n

‖r̂t−1‖2

vTt−1r̂t−1
. (63)

The term ‖r̂t−1‖2/vTt−1r̂t−1 in (75) is of the same form of the rightmost term in (59). We can then,
as we did in going from (59) to (60) apply the bound that we provide in (27) of Lemma 2 to conclude
that for all times t ≥ 1

tr
(
B̂t,0

)
≤ nM̃. (64)

Substituting (64) into (61) and pulling common factors leads to the conclusion that for all times
t ≥ 1 and indices 0 ≤ u ≤ τ it holds

tr
(
B̂t,u

)
≤ (n+ u)M̃. (65)

The bound in (29) follows by making u = τ in (65) and recalling that, by definition, B̂t = B̂t,τ .

For time t = 0 we have γ̂t = γ̂0 = 1 and (75) reduces to tr(B̂t,0) = n while (65) reduces to

tr(B̂t,τ ) ≤ (1 + τ)M̃ . Furthermore, for t < τ we make B̂t = B̂t,t instead of B̂t = B̂t,τ . In this

case the bound in (65) can be tightened to tr(B̂t,τ ) ≤ (n+ t)M̃ . Given that we are interested in an
asymptotic convergence analysis, these bounds are inconsequential.

We consider now the determinant lower bound in (30). As we did in (57) begin by considering
the recursive update in (28) and define s as a new index such that s = t− τ +u to simplify notation.

Compute the determinant of both sides of (28), factorize B̂t,u on the right hand side, and use the
fact that the determinant of a product is the product of the determinants to conclude that

det
(
B̂t,u+1

)
= det

(
B̂t,u

)
det

(
I− vs(B̂t,uvs)

T

vTs B̂t,uvs
+

B̂−1t,ur̂sr̂
T
s

r̂Ts vs

)
. (66)

To simplify the right hand side of (66) we should first know that for any vectors u1, u2, u3 and
u4, we can write det(I + u1u

T
2 + u3u

T
4 ) = (1 + uT1 u2)(1 + uT3 u4) − (uT1 u4)(uT2 u3) – see, e.g., Li

and Fukushima (2001), Lemma 3.3). Setting u1 = vs, u2 = B̂t,uvs/v
T
s B̂t,uvs, u3 = B̂−1t,ur̂s and

u4 = r̂s/r̂
T
s vs, implies that det(I + u1u

T
2 + u3u

T
4 ) is equivalent to the last term in the right hand

side of (66). Applying these substitutions implies that (1 + uT1 u2) = 1 − vTs B̂t,uvs/vsB̂t,uvs = 0
and uT1 u4 = −vTs r̂s/r̂Ts vs = −1. Hence, the term det(I + u1u

T
2 + u3u

T
4 ) can be simplified as uT2 u3.

By this simplification we can write the right hand side of (66) as

det

[
I− vs(B̂t,uvs)

T

vTs B̂t,uvs
+

B̂−1t,ur̂sr̂
T
s

r̂Ts vs

]
=

(
B̂t,uvs

)T
vTs B̂t,uvs

B̂−1t,ur̂s. (67)

To further simplify (67) write (B̂t,uvs)
T = vTs B̂

T
t,u and observer that since B̂t,u is symmetric we

have B̂T
t,uB̂

−1
t,u = B̂t,uB̂

−1
t,u = I. Therefore,

det

[
I− vs(B̂t,uvs)

T

vTi B̂t,uvs
+

B̂−1t,ur̂sr̂
T
s

r̂Ts vs

]
=

r̂Ts vs

vTs B̂t,uvs
. (68)

Substitute the simplification in (68) for the corresponding factor in (66). Further multiply and divide
the right hand side by the nonzero norm ‖vs‖ and regroup terms to obtain

det
(
B̂t,u+1

)
= det

(
B̂t,u

) r̂Ts vs
‖vs‖

‖vs‖
vTs B̂t,uvs

. (69)
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To bound the third factor in (69) observe that the largest possible value for the normalized quadratic

form vTs B̂t,uvs/‖vs‖2 occurs when vs is an eigenvector of B̂t,u associated with its largest eigenvalue.

In such case the value attained is precisely the largest eigenvalue of B̂t,u implying that we can write

vTs B̂t,uvs
‖vs‖

≤ λmax

(
B̂t,u

)
. (70)

But to bound the largest eigenvalue λmax(B̂t,u) we can just use the fact that the trace of a matrix

coincides with the sum of its eigenvalues. In particular, it must be that λmax(B̂t,u) ≤ tr(B̂t,u) be-

cause all the eigenvalues of the positive definite matrix B̂t,u are positive. Combining this observation
with the trace bound in (65) leads to

vTs B̂t,uvs
‖vs‖

≤ tr
(
B̂t,u

)
≤ (n+ u)M̃. (71)

We can also bound the second factor in the right hand side of (69) if we reorder the inequality in (26)
of Lemma 2 to conclude that r̂Ts vs/‖vs‖ ≤ m̃. This bound, along with the inverse of the inequality
in (71) substituted in (69) leads to

det
(
B̂t,u+1

)
≥ m̃

nM̃ + uM̃
det
(
B̂t,u

)
. (72)

Apply (72) recursively between indexes u = 0 and u = τ − 1 and further observing that u ≤ τ in all
of the resulting factors it follows that

det
(
B̂t,τ

)
≥
[

m̃

(n+ τ)M̃

]τ
det
(
B̂t,0

)
. (73)

To finalize the derivation of (30) we just need to bound the determinant of the initial curvature

approximation matrix B̂t,0. To do so we consider, again, the definition B̂t,0 = I/γ̂t with γ̂t as given

by (19). Using this definition of B̂t,0 as a scaled identity it follows that we can write the determinant

of B̂t,0 as

det
(
B̂t,0

)
= det

(
I

γ̂t

)
=

1

γ̂nt
. (74)

Substituting the definition of γ̂t into the rightmost side of (74) it follows that for all times t ≥ 1,

det
(
B̂t,0

)
=

(
r̂Tt−1r̂t−1

vTt−1r̂t−1

)n
=

(
‖r̂t−1‖2

vTt−1r̂t−1

)n
. (75)

The term ‖r̂t−1‖2/vTt−1r̂t−1 has lower and upper bounds that we provide in (27) of Lemma 2. Using
the lower bound in (27) it follows that the initial determinant must be such that

det
(
B̂t,0

)
≥ m̃n. (76)

Substituting the upper bound in (76) for the determinant of the initial curvature approximation
matrix in (73) allows us to conclude that for all times t ≥ 1

det
(
B̂t,τ

)
≥ m̃n

[
m̃

(n+ τ)M̃

]τ
. (77)

The bound in (30) follows by making u = τ in (77) and recalling that, by definition, B̂t = B̂t,τ . At

time t = 0 the initialization constant is set to γ̂t = γ̂0 = 1 and (76) reduces to det(B̂t,0) = 1 while

(77) reduces to det(B̂t,τ ) ≤ [m̃/(1 + τ)M̃ ]τ . For t < τ we make B̂t = B̂t,t instead of B̂t = B̂t,τ .

In this case the bound in (65) can be tightened to det(B̂t,τ ) ≤ m̃[m̃n/(1 + τ)M̃ ]τ . As in the case
of the trace, given that we are interested in an asymptotic convergence analysis, these bounds are
inconsequential.
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Appendix D. Proof of Lemma 4

We first prove the upper bound inequality in (31). Let us define λi as the ith largest eigenvalue of

matrix B̂t. Considering the result in Lemma 3 that tr(B̂t) ≤ (n+ τ)M̃ for all steps t ≥ 1, we obtain

that the sum of eigenvalues of the Hessian approximation B̂t satisfy

n∑
i=1

λi = tr
(
B̂t

)
≤ (n+ τ)M̃. (78)

Considering the upper bound for the sum of eigenvalues in (78) and recalling that all the eigenvalues

of the matrix B̂t are positive because B̂t is positive definite, we can conclude that each of the
eigenvalues of B̂t is less than the upper bound for their sum in (78). We then have λi ≤ (n+ τ)M̃
for all i from where the right inequality in (31) follows.

To prove the lower bound inequality in (31) consider the second result of Lemma 3 which provides

a lower bound for the determinant of the Hessian approximation matrix B̂t. According to the
fact that determinant of a matrix is the product of its eigenvalues, it follows that the product of
the eigenvalues of B̂t is bounded below by the lower bound in (30), or, equivalently,

∏n
i=1 λi ≥

m̃n+τ/[(n+ τ)M̃ ]τ . Hence, for any given eigenvalue of B̂t, say λj , we have

λj ≥
1∏n

k=1,k 6=j λk
× m̃n+τ[

(n+ τ)M̃
]τ . (79)

But in the first part of this proof we have already showed that (n+ τ)M̃ is a lower bound for the

eigenvalues of B̂t. We can then conclude that the product of the n − 1 eigenvalues
∏n
k=1,k 6=j λk is

bounded above by [(n+ τ)M̃ ]n−1, i.e.,

n∏
k=1,k 6=j

λk ≤
[
(n+ τ)M̃

]n−1
. (80)

Combining the inequalities in (79) and (80) we conclude that for any specific eigenvalue of B̂t can
be lower bounded as

λj ≥
1[

(n+ τ)M̃
]n−1 × m̃n+τ[

(n+ τ)M̃
]τ . (81)

Since inequality (81) is true for all the eigenvalues of B̂t, the left inequality (31) holds true.

Appendix E. Proof of Lemma 5

The proof is standard in stochastic optimization and provided here for reference. As it follows from
Assumption 1 the eigenvalues of the Hessian H(wt) = Eθ̃[Ĥ(wt, θ̃t)] = ∇2

wF (wt) are bounded
between 0 < m and M < ∞ as stated in (25). Taking a Taylor’s expansion of the function F (w)
around w = wt and using the upper bound in the Hessian eigenvalues we can write

F (wt+1) ≤ F (wt) +∇F (wt)
T (wt+1 −wt) +

M

2
‖wt+1 −wt‖2. (82)

From the definition of the oLBFGS update in (3) we can write the difference of two consecutive

variables wt+1 −wt as −εtB̂−1t ŝ(wt, θ̃t). Making this substitution in (82), taking expectation with
wt given in both sides of the resulting inequality, and observing the fact that when wt is given the
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Hessian approximation B̂−1t is deterministic we can write

E
[
F (wt+1)

∣∣wt

]
≤ F (wt)− εt∇F (wt)

T B̂−1t E
[
ŝ(wt, θ̃t)

∣∣wt

]
+
ε2M

2
E
[∥∥∥B̂−1t ŝ(wt, θ̃t)

∥∥∥2 ∣∣wt

]
.

(83)
We proceed to bound the third term in the right hand side of (83). Start by observing that the
2-norm of a product is not larger than the product of the 2-norms and that, as noted above, with
wt given the matrix B̂−1t is also given to write

E
[∥∥∥B̂−1t ŝ(wt, θ̃t)

∥∥∥2 ∣∣wt

]
≤
∥∥∥B̂−1t ∥∥∥2 E

[∥∥∥ŝ(wt, θ̃t)
∥∥∥2∣∣wt

]
. (84)

Notice that, as stated in (32), 1/c is an upper bound for the eigenvalues of B̂−1t . Further observe that

the second moment of the norm of the stochastic gradient is bounded by E
[
‖ŝ(wt, θ̃t)‖2

∣∣wt

]
≤ S2,

as stated in Assumption 2. These two upper bounds substituted in (84) yield

E
[∥∥∥B̂−1t ŝ(wt, θ̃t)

∥∥∥2 ∣∣wt

]
≤ S2

c2
. (85)

Substituting the upper bound in (85) for the third term of (83) and further using the fact that

E
[
ŝ(wt, θ̃t)

∣∣wt

]
= ∇F (wt) in the second term leads to

E
[
F (wt+1)

∣∣wt

]
≤ F (wt)− εt∇F (wt)

T B̂−1t ∇F (wt) +
ε2tMS2

2c2
. (86)

We now find a lower bound for the second term in the right hand side of (86). As stated in (32),

1/C is a lower bound for the eigenvalues of B̂−1t . This lower bound implies that

∇F (wt)
T B̂−1t ∇F (wt) ≥

1

C
‖∇F (wt)‖2. (87)

By substituting the lower bound in (87) for the corresponding summand in (86) we obtain

E
[
F (wt+1)

∣∣wt

]
≤ F (wt)−

εt
C
‖∇F (wt)‖2 +

MS2ε2t
2c2

. (88)

Subtracting the optimal objective function value F (w∗) from the both sides of (88) follows (33).

Appendix F. Proof of Theorem 6

The proof uses the relationship in the statement (33) of Lemma 5 to build a supermartingale se-
quence. This is also a standard technique in stochastic optimization and provided here for reference.
To construct the supermartingale sequence define the stochastic process αt with values

αt := F (wt)− F (w∗) +
MS2

2c2

∞∑
u=t

ε2u. (89)

Observe that αt is well defined because the
∑∞
u=t ε

2
u <

∑∞
u=0 ε

2
u < ∞ is summable. Further define

the sequence βt with values

βt :=
εt
C
‖∇F (wt)‖2. (90)

Let now Ft be a sigma-algebra measuring αt, βt, and wt. The conditional expectation of αt+1 given
Ft can be written as

E
[
αt+1

∣∣Ft] = E
[
F (wt+1)

∣∣Ft]− F (w∗) +
MS2

2c2

∞∑
u=t+1

ε2u, (91)
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because the term (MS2/2c2)
∑∞
u=t+1 ε

2
u is just a deterministic constant. Substituting (88) of Lemma

5 into (91) and using the definitions of αt in (89) and βt in (90) yields

E
[
αt+1

∣∣αt] ≤ αt − βt. (92)

Since the sequences αt and βt are nonnegative it follows from (92) that they satisfy the conditions
of the supermartingale convergence theorem – see e.g. (Theorem E7.4 in Solo and Kong (1995)) .
Therefore, we conclude that: (i) The sequence αt converges almost surely. (ii) The sum

∑∞
t=0 βt <∞

is almost surely finite. Using the explicit form of βt in (90) we have that
∑∞
t=0 βt <∞ is equivalent

to
∞∑
t=0

εt
C
‖∇F (wt)‖2 <∞, a.s. (93)

Since the sequence of step sizes is nonsummable, for (93) to be true we need to have a vanishing
subsequence embedded in ‖∇F (wt)‖2. By definition, this implies that the limit infimum of the
sequence ‖∇F (wt)‖2 is null almost surely,

lim inf
t→∞

‖∇F (wt)‖2 = 0, a.s. (94)

We transform the gradient bound in (94) into a bound pertaining to the objective function value
optimality F (wt)−F (w∗). To do so, simply observe that the strong convexity of the average function
F implies that for any points z and y

F (y) ≥ F (z) +∇F (z)T (y − z) +
m

2
‖y − z‖2. (95)

For fixed z, the right hand side of (95) is a quadratic function of y whose minimum argument we can
find by setting its gradient to zero. Doing this yields the minimizing argument ŷ = z− (1/m)∇F (z)
implying that for all y we must have

F (y) ≥ F (z) +∇F (z)T (ŷ − z) +
m

2
‖ŷ − z‖2

= F (z)− 1

2m
‖∇F (z)‖2. (96)

Observe that the bound in (96) holds true for all y and z. Setting values y = w∗ and z = wt in
(96) and rearranging the terms yields a lower bound for the squared gradient norm ‖∇F (xt)‖2 as

‖∇F (wt)‖2 ≥ 2m(F (wt)− F (w∗)). (97)

Notice that according to the result in (94) a subsequence of ‖∇F (wt)‖2 converges to null and
lim inft→∞ ‖∇F (wt)‖2 = 0 almost surely. Observing the relationship in (97), we can conclude that
a subsequence of the objective value error F (wt)−F (w∗) sequence converges to null which implies

lim inf
t→∞

F (wt)− F (w∗) = 0, a.s. (98)

Based on the martingale convergence theorem for the sequences αt and βt in relation (92), the
sequence αt almost surely converges to a limit. Consider the definition of αt in (89) and observe that
the sum

∑∞
u=t(γ

u)2 is deterministic and its limit is null. Therefore, the limit limt→∞ F (wt)−F (w∗)
of the nonnegative objective function errors F (wt)− F (w∗) almost surely exists. This observation
in association with the result in (99) implies that the whole sequence of F (wt) − F (w∗) converges
almost surely to zero,

lim
t→∞

F (wt)− F (w∗) = 0, a.s. (99)

The result in (99) holds because the sequence F (wt)−F (w∗) converges almost surely to a limit, while
a subsequence of this sequence converges to zero with probability 1 as stated in (98). Combining
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these two observations, the limit that the whole sequence converges to should be 0. To transform
the objective function optimality bound in (99) into a bound pertaining to the squared distance to
optimality ‖wt−w∗‖2 simply observe that the lower bound m on the eigenvalues of H(w∗) applied
to a Taylor’s expansion around the optimal argument wt implies that

F (wt) ≥ F (w∗) +∇F (w∗)T (wt −w∗) +
m

2
‖wt −w∗‖2. (100)

Notice that the optimal point gradient ∇F (x∗) is null. This observation and rearranging the terms
in (100) imply that

F (wt)− F (w∗) ≥ m

2
‖wt −w∗‖2. (101)

The upper bound in (101) for the squared norm ‖wt − w∗‖2 in association with the fact that the
sequence F (wt)− F (w∗) almost surely converges to null, leads to the conclusion that the sequence
‖wt −w∗‖2 almost surely converges to null. Hence, the claim in (34) is valid.

Appendix G. Proof of Theorem 7

The proof follows along the lines of (Mokhtari and Ribeiro (2014a)) and is presented here for com-
pleteness. Theorem 7 claims that the sequence of expected objective values E [F (wt)] approaches
the optimal objective F (w∗) at a sublinear rate O(1/t). Before proceeding to the proof of Theorem
7 we repeat a technical lemma of (Mokhtari and Ribeiro (2014a)) that provides a sufficient condition
for a sequence ut to exhibit a sublinear convergence rate.

Lemma 8 (Mokhtari and Ribeiro (2014a)) Let a > 1, b > 0 and t0 > 0 be given constants and
ut ≥ 0 be a nonnegative sequence that satisfies the inequality

ut+1 ≤
(

1− a

t+ t0

)
ut +

b

(t+ t0)
2 , (102)

for all times t ≥ 0. The sequence ut is then bounded as

ut ≤
Q

t+ t0
, (103)

for all times t ≥ 0, where the constant Q is defined as

Q := max

[
b

a− 1
, t0u0

]
. (104)

Proof We prove (103) using induction. To prove the claim for t = 0 simply observe that the
definition of Q in (104) implies that

Q := max

[
b

a− 1
, t0u0

]
≥ t0u0, (105)

because the maximum of two numbers is at least equal to both of them. By rearranging the terms
in (105) we can conclude that

u0 ≤
Q

t0
. (106)

Comparing (106) and (103) it follows that the latter inequality is true for t = 0.
Introduce now the induction hypothesis that (103) is true for t = s. To show that this implies

that (103) is also true for t = s + 1 substitute the induction hypothesis us ≤ Q/(s + t0) into the
recursive relationship in (102). This substitution shows that us+1 is bounded as

us+1 ≤
(

1− a

s+ t0

)
Q

s+ t0
+

b

(s+ t0)
2 . (107)
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Observe now that according to the definition of Q in (104), we know that b/(a− 1) ≤ Q because Q
is the maximum of b/(a−1) and t0u0. Reorder this bound to show that b ≤ Q(a−1) and substitute
into (107) to write

us+1 ≤
(

1− a

s+ t0

)
Q

s+ t0
+

(a− 1)Q

(s+ t0)
2 . (108)

Pulling out Q/(s + t0)2 as a common factor and simplifying and reordering terms it follows that
(108) is equivalent to

us+1 ≤
Q
[
s+ t0 − a+ (a− 1)

]
(s+ t0)

2 =
s+ t0 − 1

(s+ t0)
2 Q. (109)

To complete the induction step use the difference of squares formula for (s + t0)2 − 1 to conclude
that [

(s+ t0)− 1
][

(s+ t0) + 1
]

= (s+ t0)2 − 1 ≤ (s+ t0)2. (110)

Reordering terms in (110) it follows that
[
(s + t0) − 1

]
/(s + t0)2 ≤ 1/

[
(s + t0) + 1

]
, which upon

substitution into (109) leads to the conclusion that

us+1 ≤
Q

s+ t0 + 1
. (111)

Eq. (111) implies that the assumed validity of (103) for t = s implies the validity of (103) for
t = s+ 1. Combined with the validity of (103) for t = 0, which was already proved, it follows that
(103) is true for all times t ≥ 0.

Lemma 8 shows that satisfying (102) is sufficient for a sequence to have the sublinear rate of
convergence specified in (103). In the following proof of Theorem 7 we show that if the step size
sequence parameters ε0 and T0 satisfy 2ε0T0/C > 1 the sequence E [F (wt)] − F (w∗) of expected
optimality gaps satisfies (102) with a = 2ε0T0/C, b = ε20T

2
0MS2/2c2 and t0 = T0. The result in (35)

then follows as a direct consequence of Lemma 8.

Proof of Theorem 7: Consider the result in (88) of Lemma 5 and subtract the average function
optimal value F (w∗) from both sides of the inequality to conclude that the sequence of optimality
gaps in the RES algorithm satisfies

E
[
F (wt+1)

∣∣wt

]
− F (w∗) ≤ F (wt)− F (w∗)− εt

C
‖∇F (wt)‖2 +

ε2tMS2

2c2
. (112)

We proceed to find a lower bound for the gradient norm ‖∇F (wt)‖ in terms of the error of the
objective value F (wt) − F (w∗) – this is a standard derivation which we include for completeness,
see, e.g., Boyd and Vandenberghe (2004). As it follows from Assumption 1 the eigenvalues of the
Hessian H(wt) are bounded between 0 < m and M < ∞ as stated in (25). Taking a Taylor’s
expansion of the objective function F (y) around w and using the lower bound in the Hessian
eigenvalues we can write

F (y) ≥ F (w) +∇F (w)T (y −w) +
m

2
‖y −w‖2. (113)

For fixed w, the right hand side of (113) is a quadratic function of y whose minimum argument we can
find by setting its gradient to zero. Doing this yields the minimizing argument ŷ = w−(1/m)∇F (w)
implying that for all y we must have

F (y) ≥ F (w) +∇F (w)T (ŷ −w) +
m

2
‖ŷ −w‖2

= F (w)− 1

2m
‖∇F (w)‖2. (114)
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The bound in (114) is true for all w and y. In particular, for y = w∗ and w = wt (114) yields

F (w∗) ≥ F (wt)−
1

2m
‖∇F (wt)‖2. (115)

Rearrange terms in (115) to obtain a bound on the gradient norm squared ‖∇F (wt)‖2. Further
substitute the result in (112) and regroup terms to obtain the bound

E
[
F (wt+1)

∣∣wt

]
− F (w∗) ≤

(
1− 2mεt

C

)(
F (wt)− F (w∗)

)
+
ε2tMS2

2c2
. (116)

Take now expected values on both sides of (116). The resulting double expectation in the left hand
side simplifies to E

[
E
[
F (wt+1)

∣∣wt

]]
= E [F (wt+1)], which allow us to conclude that (116) implies

that

E [F (wt+1)]− F (w∗) ≤
(

1− 2mεt
C

)(
E [F (wt)]− F (w∗)

)
+
ε2tMS2

2c2
. (117)

Further substituting εt = ε0T0/(T0 + t), which is the assumed form of the step size sequence by
hypothesis, we can rewrite (117) as

E [F (wt+1)]− F (w∗) ≤
(

1− 2mε0T0
(T0 + t)C

)(
E [F (wt)]− F (w∗)

)
+

(
ε0T0
T0 + t

)2
MS2

2c2
. (118)

Given that the product 2mε0T0/C > 1 as per the hypothesis, the sequence E [F (wt+1)] − F (w∗)
satisfies the hypotheses of Lemma 8 with a = 2mε0T0/C, b = ε20T

2
0MS2/2c2. It then follows from

(103) and (104) that (35) is true for the C0 constant defined in (36) upon identifying ut with
E [F (xt+1)] − F (x∗), C0 with Q, and substituting c = 2mε0T0/C, b = ε20T

2
0MS2/2c2 and t0 = T0

for their explicit values.
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Abstract

Semi-supervised learning approaches are trained using the full training (labeled) data and
available testing (unlabeled) data. Demonstrations of the value of training with unlabeled
data typically depend on a smoothness assumption relating the conditional expectation to
high density regions of the marginal distribution and an inherent missing completely at
random assumption for the labeling. So-called covariate shift poses a challenge for many
existing semi-supervised or supervised learning techniques. Covariate shift models allow
the marginal distributions of the labeled and unlabeled feature data to differ, but the
conditional distribution of the response given the feature data is the same. An example of
this occurs when a complete labeled data sample and then an unlabeled sample are obtained
sequentially, as it would likely follow that the distributions of the feature data are quite
different between samples. The value of using unlabeled data during training for the elastic
net is justified geometrically in such practical covariate shift problems. The approach works
by obtaining adjusted coefficients for unlabeled prediction which recalibrate the supervised
elastic net to compromise: (i) maintaining elastic net predictions on the labeled data with
(ii) shrinking unlabeled predictions to zero. Our approach is shown to dominate linear
supervised alternatives on unlabeled response predictions when the unlabeled feature data
are concentrated on a low dimensional manifold away from the labeled data and the true
coefficient vector emphasizes directions away from this manifold. Large variance of the
supervised predictions on the unlabeled set is reduced more than the increase in squared bias
when the unlabeled responses are expected to be small, so an improved compromise within
the bias-variance tradeoff is the rationale for this performance improvement. Performance
is validated on simulated and real data.

Keywords: joint optimization, semi-supervised regression, usefulness of unlabeled data

1. Introduction

Semi-supervised learning is an active research area (Chapelle et al., 2006b; Zhu and Gold-
berg, 2009). Existing theoretical and empirical work typically invokes the missing com-
pletely at random (MCAR) assumption where the inclusion of a label is independent of the
feature data and label. Under MCAR, there is theoretical work, mostly in classification, on
finding borders that pass between dense regions of the data with particular emphasis on the
cluster assumption (Chapelle et al., 2006b), semi-supervised smoothness assumptions (Laf-
ferty and Wasserman, 2007; Azizyan et al., 2013), and manifold assumptions (Hein et al.,

c©2015 Kenneth Joseph Ryan and Mark Vere Culp.
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Figure 1: These feature data with p = 2 are referred to as the “block extrapolation” example
because the unlabeled data “block” the 1st principal component of the labeled
data. It is informative to think about how ridge regression would predict the
unlabeled cases in this example. Favoring shrinking along the 2nd component will
lead to high prediction variability. These block data are the primary working
example throughout Sections 2-5, and it will be demonstrated that our semi-
supervised approach has a clear advantage.

2005; Aswani et al., 2010). Many techniques including manifold regularization (Belkin et al.,
2006) and graph cutting approaches (Wang et al., 2013) were developed to capitalize on
unlabeled information during training, but beneath the surface of nearly all this work is the
implicit or explicit use of MCAR (Lafferty and Wasserman, 2007).

Covariate shift is a different paradigm for semi-supervised learning (Moreno-Torres et al.,
2008). It stipulates that the conditional distribution of the label given the feature data does
not depend on the missingness of a label, but that the feature data distribution may depend
on the missingness of a label. As a consequence, feature distributions can differ between
labeled and unlabeled sets. Attempting to characterize smoothness assumptions between
the regression function and the marginal of X (Azizyan et al., 2013) may not realize the
value of unlabeled data if an implicit MCAR assumption breaks down. Instead, its value
is in shrinking regression coefficients in an ideal direction to optimize the bias-variance
tradeoff on unlabeled predictions. This is a novelty of our research direction.

The proposed approach is ideally suited for applications where the sequential generation
of the labeled and unlabeled data causes covariate shift. Due to either matters of practicality
or convenience the marginal distribution of the labeled feature data is likely to be profoundly
different than that of the unlabeled feature data. Consider applications in drug discovery
where the feature information consists of measurements on compounds and the responses
are compound attributes, e.g., side effects of the drug, overall effect of the drug, or ability
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to permeate the drug (Mente and Lombardo, 2005). Attributes can take years to obtain,
while the feature information can be obtained much faster. As a result, the labeled data are
often measurements on drugs with known attributes while the unlabeled data are usually
compounds with unknown attributes that may potentially become new drugs (marketed
to the public). Other applications mostly in classification include covariate shift problems
(Yamazaki et al., 2007), reject inference problems from credit scoring (Moreno-Torres et al.,
2008), spam filtering and brain computer interfacing (Sugiyama et al., 2007), and gene
expression profiling of microarray data (Gretton et al., 2009). Gretton et al. (2009) further
note that covariate shift occurs often in practice, but is under reported in the machine
learning literature.

Many of the hypothetical examples to come do not conform to MCAR. The Figure 1 fea-
ture data are used to illustrate key concepts as they are developed in this work. Its labeled
and unlabeled partitioning is unlikely if responses are MCAR. The vector of supervised
ridge regression coefficients is proportionally shrunk more along the lower order principal
component directions (Hastie et al., 2009). Such shrinking is toward a multiple of the unla-
beled data centroid in the hypothetical Figure 1 scenario, so ridge regression may not deflate
the variance of the unlabeled predictions enough. Standard methods for tuning parameter
estimation via cross-validation do not account for the distribution of the unlabeled data
either. Thus, supervised ridge regression is at a distinct disadvantage by not accounting for
the unlabeled data during optimization. In general, the practical shortcoming of supervised
regression (e.g., ridge, lasso, or elastic net) is to define regression coefficients that predict
well for any unlabeled configuration. Our main contribution to come is a mathematical
framework for adapting a supervised estimate to the unlabeled data configuration at hand
for improved performance. It also provides interpretable “extrapolation” adjustments to
the directions of shrinking as a byproduct.

Culp (2013) proposed a joint trained elastic net for semi-supervised regression under
MCAR. The main idea was to use the joint training problem that encompasses the S3VM
(Chapelle et al., 2006a) and ψ-learning (Wang et al., 2009) to perform semi-supervised
elastic net regression. The concept was that the unlabeled data should help with decorrela-
tion and variable selection, two known hallmarks of the supervised elastic net extended to
semi-supervised learning (Zou and Hastie, 2005). Culp (2013), however, did not contain a
complete explanation of how exactly the approach used unlabeled data and under what set
of mathematical assumptions it is expected to be useful.

The joint trained elastic net framework is strengthened in this paper to handle covariate
shift. Rigorous geometrical and theoretical arguments are given for when it is expected
to work. Circumstances where the feature data distribution changes by label status is the
primary setting. One could view the unlabeled data as providing a group of extrapola-
tions (or a separate manifold) from the labeled data. Even if responses are MCAR, the
curse of dimensionality stipulates that nearly all predictions from a supervised learner are
extrapolations in higher dimensions (Hastie et al., 2009), so the utility of the proposed
semi-supervised approach is likely to increase with p.

Presentation of major concepts often begins with hypothetical, graphical examples in
p = 2, but is followed by general mathematical treatments of p ≥ 2. The work is written
carefully so that themes extracted from p = 2 generalize. Section 2 provides a conceptual
overview of the general approach with emphasis on the value of unlabeled data in covariate
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shift before diving into the more rigorous mathematics in later sections. The problem is
set-up formally in Section 3. The nature of regularization approaches (e.g., ridge, lasso, and
elastic net) is studied with emphasis on a geometric perspective in Section 4. The geometry
helps articulate realistic assumptions for the theoretical risk results in Section 5, and the
theoretical risk results help define informative simulations and real data tests in Section 6.
In addition, the simulations and real data applications validate the theoretical risk results.
The combined effect is a characterization of when the approach is expected to outperform
supervised alternatives in prediction. Follow-up discussion is in Section 7, and a proof for
each proposition and theorem is in Appendix A.

2. The Value of Unlabeled Data due to Covariate Shift

The purpose of this section is to motivate the proposed approach for covariate shift data
problems. The data are partitioned into the set of the labeled L and unlabeled U observa-
tions with n = |L|+ |U |, and a response variable is recorded only for labeled observations.
Let Y L denote the observed |L| × 1 vector of mean centered, labeled responses and Y U

the |U | × 1 missing, unlabeled responses. If data are sorted by label status, the complete
response vector and n× p model matrix partition to

Y =

(
Y L

Y U

)
X =

(
XL

XU

)
.

The XL data are mean centered and standardized so that XT
LXL is a correlation matrix,

andXU is also scaled using the means and variances of the labeled data. A supervised linear

regression coefficient vector β̂
(SUP)

is trained using only the labeled data: XL and Y L. Our
semi-supervised β̂ is trained with data X and Y L by trading off: (i) supervised predictions

XLβ̂ = XLβ̂
(SUP)

on L with (ii) shrinking XU β̂ towards ~0 on U , and the geometric value of
this type of usage of the unlabeled data is presented in Section 2.1. A deeper presentation
of this Section 2.1 concept is given by Sections 3 and 4. This work also demonstrates its
theoretical performance under the standard linear model. In particular, the true coefficient
vector must encourage shrinking as a good strategy in order for the unlabeled data to be
useful in the proposed fashion. The introduction of this concept here in Section 2.2 precedes
the corresponding mathematical presentation of performance bounds in Section 5.

2.1 Geometric Contribution of Unlabeled Data

The main strategy is to find a linear compromise between: (i) fully supervised prediction
on the labeled data and (ii) predicting close to zero on the unlabeled data. Two examples
of this are given below. In the “collinearity” example, it is possible to achieve both (i)
and (ii). Thus, there is no need for a compromise. In the block extrapolation example, (i)
and (ii) cannot be achieved simultaneously. The compromise is obtained by organizing the
coefficient vector in terms of directions orthogonal to feature data extrapolation directions,
so the predictions corresponding to more extreme unlabeled extrapolations are shrunk more.

Collinearity Example: Suppose p = 2, the two columns of labeled feature data are
collinear with XL1 = XL2, and the unlabeled data are also collinear and orthogonal to

the labeled data with XU1 = −XU2. The ordinary least squares estimator β̂
(OLS)

(i.e., a
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Figure 2: The dashed lines are the 1st and 2nd extrapolation directions for the block extrap-
olation example from Figure 1. The extent of U -extrapolation vector is a larger
multiple of the extent of L-extrapolation vector in the 1st versus the 2nd extrapo-
lation direction, so predictions corresponding to feature vectors on the 1st extrap-
olation direction are shrunk more than those on the 2nd extrapolation direction
under the proposed method.

supervised linear regression estimator) is not unique since rank(XL) = 1, but the semi-
supervised estimator β̂ =

(
XT

L1Y L/2
)
~1 is the unique solution to

min
β
‖Y L −XLβ‖22 + ‖XUβ‖22 . (1)

This β̂ is the ordinary least squares estimator with equal components, so it achieves objec-

tives (i) XLβ̂ = XLβ̂
(OLS)

and (ii) XU β̂ =
(
XT

L1Y L/2
)
XU

~1 = ~0. Optimization Problem
(1) is a special case of the joint training framework to come in Section 3, and our general
semi-supervised approach is based on this type of estimator.

Block Extrapolation Example: These data in Figure 2 include two lines marked
as 1st and 2nd extrapolation directions, and each direction has extent vectors of largest U -
and L-extrapolations (XT

L`1, X
T
Uu1 and XT

L`2, X
T
Uu2). Each L-based extent vector in

Figure 2 is the longest possible of the form XT
L` in a given direction for ` ∈ IR|L| such that

‖`‖22 = 1. Similarly, the U -based extent vectors are the longest possible in a given direction
based on a unit length linear combination of the rows of XU . While precise mathematics
on determining the two extrapolation directions is deferred until Section 4, it also turns out
that the ratio of U - to L-extent vector lengths in the 2nd direction is never bigger than that
in the 1st direction, i.e., ∥∥XT

Uu2

∥∥
2∥∥XT

L`2

∥∥
2

≤
∥∥XT

Uu1

∥∥
2∥∥XT

L`1

∥∥
2

. (2)
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The sought after compromise is struck with semi-supervised estimator β̂ by shrinking a

supervised estimator β̂
(SUP)

with respect to a basis of directions orthogonal to the extrapo-
lation directions. With this in mind, define the decomposition of a supervised estimate

β̂
(SUP)

= ν̃1 + ν̃2, where

ν̃1 is orthogonal to the 1st extrapolation direction (3)

ν̃2 is orthogonal to the 2nd extrapolation direction,

and consider a semi-supervised estimate of the form

β̂ = p1ν̃1 +p2ν̃2, where p1 =

∥∥XT
L`1

∥∥
2∥∥XT

L`1

∥∥
2

+
∥∥XT

Uu1

∥∥
2

and p2 =

∥∥XT
L`2

∥∥
2∥∥XT

L`2

∥∥
2

+
∥∥XT

Uu2

∥∥
2

. (4)

Coefficient shrinking is more focused on the vector orthogonal to the 1st extrapolation
direction because 0 ≤ p1 ≤ p2 ≤ 1 by Inequality (2).

A semi-supervised β̂ from Display (4) was decomposed with regard to a basis orthogonal
to directions of extrapolations from Display (3) so that linear predictions xT0 β̂ at an arbi-
trary feature vector x0 ∈ IR2 are shrunk more heavily when x0 is in directions with larger
extrapolations. To demonstrate this, define a closely related decomposition of a feature
vector

x0 = ν1 + ν2, where

ν1 is on the 1st extrapolation direction (5)

ν2 is on the 2nd extrapolation direction.

Together, Decompositions (4) and (5) result in the semi-supervised prediction

xT0 β̂ = p1ν
T
1 ν̃2 + p2ν

T
2 ν̃1

because νT1 ν̃1 = νT2 ν̃2 = 0 by construction. Thus, with fixed length feature vectors x0 = νi
on the 1st and 2nd extrapolation directions, the 1st direction corresponds to a semi-supervised

prediction xT0 β̂ that is a more heavily shrunken version of its supervised prediction xT0 β̂
(SUP)

whenever p1 < p2.

The supervised estimate β̂ = β̂
(SUP)

results whenever p1 = p2 = 1, by Displays (3)
and (4). Thus, supervised predictions are favored when L-based extrapolations

∥∥XT
L`i
∥∥

2

dominate U -based extrapolations
∥∥XT

Uui
∥∥

2
because pi ≈ 1 follows from Display (4). On

the other hand, predictions near zero are favored when U -based extrapolations dominate
L-based extrapolations (pi ≈ 0). In both cases, the pi regulate the compromise (i) with (ii)
for β̂ term-by-term in each extrapolation direction. A significant contribution of this work
is to provide a rigorous mathematical framework to study semi-supervised linear predictions
for unlabeled extrapolations. In Section 4, directions of extrapolation and relative degrees
of shrinking pi are shown to follow from the joint trained optimization framework.

2.2 Model-based Contributions of Unlabeled Data

Under the linear model (E[Y ] = Xβ and Var(Y ) = σ2I), the coefficient parameter space
partitions into lucky (β, σ2) and unlucky (β, σ2) subsets. Lucky versus unlucky β direc-
tions are not equally likely but depend greatly on the range and shape of the unlabeled
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data manifold and on the model parameter σ2. The general theme is that lucky (unlucky)
β’s are in directions orthogonal (parallel) to the unlabeled feature data manifold, so lower
variability within this manifold implies more lucky β directions where our approach im-
proves performance. A general bound is presented in Section 5 to help understand when
our semi-supervised linear adjustment is guaranteed to outperform its supervised baseline
on unlabeled predictions. Next, the collinearity and block extrapolation examples from
Section 2.1 are revisited to illustrate lucky versus unlucky (or favorable versus unfavorable)
prediction scenarios.

Collinearity Example: This example had p = 2, XL1 = XL2, and XU1 = −XU2. A
lucky β follows with β = (b, b)T for some arbitrary b ∈ IR, since XUβ = ~0 is clearly ideal
for the semi-supervised approach. On the other hand, suppose the true β = (b,−b)T for
some scalar b of large magnitude, and the components of XU1 are all of large magnitude
with the same sign. This is an example of an unlucky β since the truth XUβ = 2bXU1 is
far from the origin ~0 with components of the same sign, so setting XU β̂ = ~0 is less than
ideal. Since XLβ = ~0, the typical supervised linear regression estimators (e.g., ridge, lasso,
and ENET) would predict the XU cases close to ~0 not 2bXU1 and does not fair much better
as a result. The bottom-line is that this unlucky β situation is not handled well by the
conventional wisdom in machine learning of shrinking to optimize the bias-variance tradeoff
(Hastie et al., 2009).

Block Extrapolation Example: This example was the block extrapolation from
Figures 1 and 2. As it turns out, the ridge regression version of the Section 5 bound
simplifies to a function of just β (call it σ2

LB(β)) such that the semi-supervised approach is
guaranteed to outperform the supervised approach whenever σ2 − σ2

LB (β) > 0 at a given
σ2. Next, this bound is used to give a snapshot of parameter space (β, σ2) in the context
of the block extrapolation example, where lucky β correspond to σ2 − σ2

LB (β) > 0 while
unlucky β correspond to σ2 − σ2

LB (β) ≤ 0.
In order to investigate this, take all σ2 ∈ [0, 1] with all possible coefficient vectors

β (ϑ) =

(
sin(ϑ)
cos(ϑ)

)
for ϑ ∈ [0, π]

on the right half of the unit circle. These parameters capture performance trends of an
arbitrary fixed length β in all possible directions by the technical details in Section 5. Curves
in Figure 3(a) are the bound σ2−σ2

LB (β (ϑ)) as a function of ϑ at a given σ2. Lighter (darker)
curves correspond to smaller (larger) values σ2 over an equally spaced grid on the interval
[0, 1], and the corresponding differences between unlabeled root mean-squared errors at the
best supervised (RMSE(SUP)

U ) and semi-supervised (RMSE(SEMI)

U ) tuning parameter settings
are provided in Figure 3(b). If ϑ is uniformly distributed on [0, π], a lucky β is more likely
than an unlucky β, especially as σ2 increases. The center for potentially large improvements
in Figure 3(a) is roughly β (π/4) ≈ (1, 1)T /

√
2. In addition, the unlabeled feature data

centroid XT
U
~1/|U | in Figure 1 is roughly a multiple of (−1, 1)T . Thus, ~1 TXUβ (π/4) ≈ 0.

In other words, lucky β directions encourage shrinking predictions on U . On the other
hand, unlucky β directions encourage large predictions. Take the center for little to no
theoretically guaranteed improvement in Figure 3(a), i.e., β (3π/4) ≈ (1,−1)T /

√
2. In this

case, the true expected response at the unlabeled feature data centroid ~1 TXUβ (3π/4) /|U |
is large because β (3π/4) is roughly a multiple of XT

U
~1/|U |.
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Figure 3: (a) The theoretical bound σ2 − σ2
LB (β(ϑ)) is plotted against ϑ for the block

extrapolation example from Figures 1 and 2. Darker curves correspond to larger
σ2. Interest was in identifying ϑ such that σ2 − σ2

LB (β(ϑ)) > 0, since values
greater than zero highlight the lucky unit length directions β(ϑ) at a given σ2

where our semi-supervised adjustment helps. (b) The corresponding differences
between supervised and semi-supervised root mean squared errors (RMSEs) on
the unlabeled set are displayed.

In general, the proposed approach is well suited for lucky β prediction problems, which
include the following generalization of the Figure 1 block extrapolation example. The
distance between feature data centroids (i.e., between the origin XT

L
~1/|L| = ~0 due to mean

centering and XT
U
~1/|U |) is increased relative to the variation about each centroid and the

true coefficient vector β is not roughly a multiple of XT
U
~1/|U |. One might conjecture lucky

β to occur more often in practice during high-dimensional applications with large p by a
sparsity of effects assumption (i.e., the true β has few non-zero components). For example,
if the unlabeled feature data are concentrated on a low dimensional manifold away from the
labeled data, there are more lucky directions for the true coefficient vector to emphasize
directions away from the unlabeled feature data manifold. Also note that the supervised
RMSEs are no better than semi-supervised in the block example, i.e., no negative differences
in Figure 3(b). In theory, our technique handles unlucky β by defaulting to supervised
predictions; see Remark 1 for how unlucky scenarios are handled empirically in practice.

Remark 1 Nearly all supervised techniques would be challenged by an unlucky β direction
since approaches typically improve predictive performance by shrinking (Hastie et al., 2009)
and thus predicting large responses accurately on a covariate shifted data set is not what
these techniques are designed to do. Supervised learning has a possible advantage over the
proposed semi-supervised method in such situations by simply not shrinking extrapolation
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directions in the unlabeled data, but there is no guarantee here either (i.e., the supervised
technique may still perform much worse). In this work, we do not assume that the response
is generated under a lucky β linear model. Instead, a tuning parameter is used to move the
semi-supervised estimator closer to supervised in such cases to mitigate the losses relative
to supervised for an unlucky β. Cross-validation is used to estimate this parameter in the
results Section 6.

3. A Linear Joint Training Framework

The focus of this paper is the joint trained elastic net(
α̂γ,λ, β̂γ,λ

)
= argmin

α,β
‖Y L −XLβ‖22 + γ1‖XU (α− β)‖22 + γ1γ2 ‖α‖22 + λ1 ‖β‖11 + λ2 ‖β‖22, (6)

where β̂γ,λ is appropriately scaled and λ = (λ1, λ2) ∈ [0,∞]2 and γ = (γ1, γ2) ∈ [0,∞]2 are
tuning parameter vectors. The joint trained elastic net is an example of a joint training opti-
mization framework used in semi-supervised learning (Chapelle et al., 2006b). Comparisons
will be made to the supervised optimization

β̂
(ENET)

λ = arg min
β

‖Y L −XLβ‖22 + λ1 ‖β‖11 + λ2 ‖β‖22 , (7)

which is a partial solution to Joint Optimization (6) whenever γ1 = 0 or γ2 = 0.
Let XUX

T
U = OUDUOTU be the eigendecomposition of this outer product and define

X(γ2) =

(
XL

X
(γ2)
U

)
=

(
XL

√
γ2 (DU + γ2I)−

1
2 OTUXU

)
(8)

for γ2 > 0. Proposition 2 establishes that the reduced problem

β̂γ,λ = arg min
β

‖Y L −XLβ‖22 + γ1

∥∥∥X(γ2)
U β

∥∥∥2

2
+ λ1 ‖β‖11 + λ2 ‖β‖22 (9)

is an alternative to Joint Optimization (6) over (α,β) ∈ IRp × IRp.

Proposition 2 If γ2 > 0, then rank(XU ) = rank
(
X

(γ2)
U

)
and a solution β̂γ,λ to Opti-

mization Problem (9) is a partial solution to Optimization Problem (6).

By Proposition 2, the semi-supervised estimate β̂γ,λ can be computed by an elastic
net subroutine through data augmentation if the user simply inputs the supervised tuning

parameters λ with model matrix

(
XT

L,
√
γ1X

(γ2)
U

T
)T

and response vector
(
Y T
L, ~0

T
)T

(i.e., impute Y U = ~0). The Elastic Net Optimization Problem (7) is convex and can be
solved quickly by the glmnet package in R (Friedman et al., 2010; R Core Team, 2015), so
this helps make our semi-supervised adjustment computationally viable.

MatrixX
(γ2)
U

T
X

(γ2)
U from Optimization Problem (9) has the same eigenvectors asXT

UXU ,

but its eigenvalues homogenize to unity as γ2 → 0. As γ2 → ∞, X
(γ2)
U

T
X

(γ2)
U → XT

UXU ,
and Optimization Problem (9) goes to the semi-supervised extreme

β̂(γ1,∞),λ = arg min
β

‖Y L −XLβ‖22 + γ1 ‖XUβ‖22 + λ1 ‖β‖11 + λ2 ‖β‖22. (10)
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Semi-Supervised Extreme (10) with λ = ~0 and γ1 = 1 was seen earlier in Problem (1)
during the conceptual overview. Finite γ2 > 0 will later be seen to produce intermediate
compromises between Supervised (7) and Semi-Supervised Extreme (10).

4. Geometry of Semi-Supervised Linear Regression

A geometrical understanding of the Joint Trained Elastic Net (6) is developed through the
following logical progression: Section 4.1 joint trained least squares λ = ~0, Section 4.2 joint
trained ridge λ = (0, λ2), Section 4.3 joint trained lasso λ = (λ1, 0), and then Section 4.4
joint trained elastic net regression λ. Last, Section 4.5 provides a gallery of geometrical
examples. The conceptual overview from Section 2.1 lines-up closely with the mathematics
of Section 4.1 and is back-referenced extensively to help the reader make connections. The
ridge, lasso, and elastic net semi-supervised geometries do, to some degree, simply follow
from their well-known supervised properties when combined with the geometrical properties
of joint trained (semi-supervised) least squares. However, an important subtlety is worth
mentioning. This geometry section, especially Sections 4.3 and 4.4, establishes properties
of the Joint Trained Elastic Net (6), and these properties are stated as the assumptions of
Section 5 in order to derive general performance bounds that necessarily apply to the joint
trained elastic net.

4.1 Joint Trained Least Squares

Optimization Problem (9) with λ = ~0 reduces to joint trained least squares

β̂γ = arg min
β

‖Y L −XLβ‖22 + γ1

∥∥∥X(γ2)
U β

∥∥∥2

2
. (11)

Briefly recall the collinearity example from Section 2.1, i.e., p = 2, XL1 = XL2, XU1 =

−XU2, and γ = (1,∞). A supervised β̂
(OLS)

was not unique, but the β̂
(OLS)

with equal
components was the unique semi-supervised Estimator (11). In general, Estimator (11)
is unique whenever γ > ~0 and rank(X) = p. Henceforth, assume rank(XL) = p, so

β̂
(OLS)

=
(
XT

LXL

)−1
XT

LY L is unique during this discussion of joint trained least squares.
Section 4.2 on joint trained ridge regression is tailored for rank(XL) < p.

Figure 4(a) displays the semi-supervised extreme β̂γ1,∞ from the block extrapolation
example for a particular γ1 > 0 based on the calculus of Lagrangian multipliers. For
general p ≥ 2 with γ2 ≥ 0, there exists unique scalars aγ2 , bγ2 such that the ellipsoids

βTX
(γ2)
U

T
X

(γ2)
U β ≤ aγ2 (12)(

β − β̂
(OLS)

)T
XT

LXL

(
β − β̂

(OLS)
)
≥ bγ2 (13)

have the same tangent slope at the point of intersection β̂γ . A novelty of the semi-supervised
approach, that holds for general p ≥ 2, is the use of origin-centered Ellipsoids (12) as opposed
to the multidimensional spheres used in supervised ridge regression.

When γ2 ≈ 0, β̂γ ≈ β̂
(RIDGE)

γ1
=
(
XT

LXL + γ1I
)−1

XT
LY L because Ellipsoids (12) are

roughly spherical. When γ2 is large, β̂γ approximates a point on the semi-supervised
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Figure 4: The Figure 1 block example is revisited. (a) A labeled response Y L that resulted

in the plotted estimate β̂
(OLS)

is part of the assumed labeled data set. Each
estimate on the semi-supervised extreme β̂γ1,∞, like the small white circle at

γ1 = 0.18, is the intersection of an origin-center Ellipse (12) and a β̂
(OLS)

-centered
Ellipse (13) having the same tangent slope at this point of intersection. Similarly,
each ridge estimate, like the small gray circle with λ2 = 5.9, uses origin-centered,
concentric circles instead of Ellipses (12). (b) Paths β̂γ varying γ1 with darker
curves for larger γ2 fill-in all possible compromises between supervised ridge and
the semi-supervised extreme. (c) The semi-supervised extreme β̂γ1,∞ is shrunk

within its bounding parallelogram from supervised β̂
(OLS)

toward the origin as
γ1 →∞.

extreme. For example, take the point along the supervised ridge (semi-supervised extreme)
path indicated by the small gray (white) circle in Figure 4. Paths β̂γ , like those in Figure

4(b), start at β̂
(OLS)

and converge to a point in the null space of XU as γ1 →∞.
The semi-supervised estimator for any γ is

β̂γ =

(
XT

LXL + γ1X
(γ2)
U

T
X

(γ2)
U

)−1

XT
LXLβ̂

(OLS)

=
(
I + γ1M

(γ2)
)−1

β̂
(OLS)

, where M (γ2) =
(
XT

LXL

)−1
X

(γ2)
U

T
X

(γ2)
U .

(14)

An eigenbasis
{(
w

(γ2)
i , τ

(γ2)
i

)}p
i=1

of M (γ2) such that
∥∥∥XLw

(γ2)
i

∥∥∥2

2
= 1 will be used to help

understand how joint trained least squares regression coefficients are shrunk. Proposition 3
establishes that this important eigenbasis is real whether or not matrix M (γ2) is symmetric.

Proposition 3 Any eigenbasis of the possibly non-symmetric matrix M (γ2) is real with

eigenvalues τ
(γ2)
1 ≥ · · · ≥ τ (γ2)

p ≥ 0. Furthermore, τ
(γ2)
i = 0 iff i > rank(XU ).

While
{
w

(γ2)
i

}p
i=1

may be neither orthogonal nor unit length,

β̂
(OLS)

= ĉ
(γ2)
1 w

(γ2)
1 + · · ·+ ĉ(γ2)

p w(γ2)
p (15)
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for some scalars ĉ
(γ2)
i , and by Equations (14) and (15),

β̂γ =

(
1

1 + γ1τ
(γ2)
1

)
ĉ

(γ2)
1 w

(γ2)
1 + · · ·+

(
1

1 + γ1τ
(γ2)
p

)
ĉ(γ2)
p w(γ2)

p . (16)

Equations (15) and (16) generalize Estimator (4) from Section 2.1 to p ≥ 2. The terms
on the right of Equation (15) were previously denoted by the ν̃i from Display (3), and
these terms are weighted by proportions on the right of Equation (16) that were previously

denoted by the pi from Display (4). Eigenvector ĉ
(γ2)
1 w

(γ2)
1 is proportionally shrunk the

most at any fixed γ1 > 0 because its proportion weight 1/
(

1 + γ1τ
(γ2)
1

)
is the smallest.

The bounding parallelogram in Figure 4(c) helps introduce another interpretation of

Equation (16). This parallelogram has opposite corners at the origin and β̂
(OLS)

and sides

parallel to the eigenvectors of M (γ2). The path β̂γ shrinks from β̂
(OLS)

to the origin along

the sides with corner ĉ
(γ2)
2 w

(γ2)
2 as γ1 ∈ [0,∞] increases and does so more closely when τ

(γ2)
1

and τ
(γ2)
2 differ in magnitude. Proposition 4 generalizes this concept to arbitrary γ2 ≥ 0

and p ≥ 2.

Proposition 4 The path β̂γ as a function of γ1 ≥ 0 is bounded within a p-dimensional

parallelotope with corners at each binary linear combination of
{
ĉ

(γ2)
1 w

(γ2)
1 , . . . , ĉ

(γ2)
p w

(γ2)
p

}
.

Furthermore, the terminal point as γ1 →∞ is the corner
∑p

i=1 I{i>rank(XU )}ĉ
(γ2)
i w

(γ2)
i with

indicator I{·}.

The conceptual overview in Section 2.1 made a careful distinction between shrinking re-
gression coefficients β̂ versus shrinking linear predictions xT0 β̂. Vectors ν̃i from Display (3)
were related to coefficient shrinking, whereas νi from Display (5) were the feature vectors

x0 related to prediction shrinking. Mathematically, eigenvectors w
(γ2)
i determine directions

of coefficient shrinking. Since p = 2, the Section 2.1 discussion in-fact concentrated on all

feature vectors w
(γ2)
1

⊥
and w

(γ2)
2

⊥
, and an eigenvector direction of maximum (minimum)

coefficient shrinking was orthogonal to feature vectors of maximum (minimum) prediction
shrinking. Generalizing this story to p > 2 also results in p directions of coefficient shrinking
and p feature vector directions of interpretable prediction shrinking, but the mathematics

has the following subtlety. When p > 2, a direction of coefficient shrinking w
(γ2)
i is orthog-

onal to a p − 1 dimensional vector space w
(γ2)
i

⊥
of feature vectors, so if p − 1 ≥ 2, vector

space w
(γ2)
1

⊥
consists of an infinite number of directions. Proposition 5 below provides a

convenient form for the line in common to all w
(γ2)
j

⊥
with j 6= i for each i ∈ {1, . . . , p} by es-

tablishing a relationship between w
(γ2)
i , w

(γ2)
i

⊥
, and X(γ2) from Equation (8). These p lines

of feature data vectors for arbitrary p ≥ 2 will later be seen to have a clear interpretation
when it comes to prediction shrinking, so we call them extrapolation directions.

Proposition 5 The span
(
X(γ2)TX(γ2)w

(γ2)
i

)
=
⋂
j∈{1,...,p}−{i}w

(γ2)
j

⊥
∀i ∈ {1, . . . , p}.

Henceforth, the line span
(
X(γ2)TX(γ2)w

(γ2)
i

)
is called the ith extrapolation direction ∀i ∈

{1, . . . , p}.
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The ith extrapolation direction necessarily traces out a line because it’s all scalar mul-

tiples of the nonzero vector X(γ2)TX(γ2)w
(γ2)
i . Any feature vector on the ith extrapolation

direction, i.e., x0 ∈
⋂
j∈{1,...,p}−{i}w

(γ2)
j

⊥
from Proposition 5, is of special note. Their

Equation (16) semi-supervised predictions simplify to xT0 β̂γ = ĉ
(γ2)
i /

(
1 + γ1τ

(γ2)
i

)
xT0w

(γ2)
i

and are shrunk more (relative to the corresponding OLS supervised prediction xT0 β̂
(OLS)

=

ĉ
(γ2)
i xT0w

(γ2)
i ) for smaller i ∈ {1, . . . , p} at any fixed γ1 > 0 because τ

(γ2)
1 ≥ · · · ≥ τ (γ2)

p .

Next, the ith extrapolation direction is shown to be one of more (or less) extreme un-
labeled extrapolations. With this in mind, use the indicator function I{·} to define the

positive number κ
(γ2)
i = τ

(γ2)
i + I{i>rank(XU )} and define the vectors

`
(γ2)
i = XLw

(γ2)
i and u

(γ2)
i =

X
(γ2)
U w

(γ2)
i√

κ
(γ2)
i

. (17)

Vectors (17) in the semi-supervised extreme of γ2 =∞ were temporarily denoted by `i and
ui during their more conceptual introduction within Section 2.1 (e.g., Figure 2). It was also
stated previously during this overview that `i and ui were unit length. Proposition 6 is a
generalization.

Proposition 6 If γ2 > 0, vectors
{
`

(γ2)
i

}1

i=p
and

{
u

(γ2)
i

}rank(XU )

i=1
are orthonormal bases

for the column spaces of XL and X
(γ2)
U , and u

(γ2)
i = ~0 if i > rank(XU ).

Section 2.1 also introduced extents of L- and U -extrapolation. Vectors (17) are used to
define these now for each i ∈ {1, . . . , p} as

XT
L`

(γ2)
i Extent of L-Extrapolation (in the ith Direction)

X
(γ2)
U

T
u

(γ2)
i Extent of U -Extrapolation (in the ith Direction), where (18)

span
(
X(γ2)TX(γ2)w

(γ2)
i

)
is the ith Direction of Extrapolation from Proposition 5.

Propositions 7 establishes that the ith extent vectors are in-fact on the ith extrapolation
direction.

Proposition 7 For each i ∈ {1, . . . , p},

XT
L`

(γ2)
i =

1

1 + τ
(γ2)
i

X(γ2)TX(γ2)w
(γ2)
i

X
(γ2)
U

T
u

(γ2)
i =

τ
(γ2)
i

(1 + τ
(γ2)
i )

√
κ

(γ2)
i

X(γ2)TX(γ2)w
(γ2)
i ,

so X(γ2)TX(γ2)w
(γ2)
i , XT

L`
(γ2)
i , and X

(γ2)
U

T
u

(γ2)
i are parallel vectors in IRp.
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Previously defined vectors are now verified to possess fundamental interpretations: (i)
Extent Vectors (18) do indeed measure “extrapolation extents” in a sensible manner, (ii)
Vectors (17) determine shrinking directions for joint trained least squares fits Xβ̂γ , and

(iii) magnitudes of extent vectors regulate the shrinking of regression coefficients β̂γ . These
three interpretations are gleaned by applying Propositions 6 and 7 in conjunction with
well-known properties of orthogonal projection matrices and quadratic forms from linear
algebra. The n× p matrix identity

X(γ2)
(
w

(γ2)
1 · · · w

(γ2)
p

)
=

((
`

(γ2)
1√

κ
(γ2)
1 u

(γ2)
1

)
· · ·

(
`

(γ2)
p√

κ
(γ2)
p u

(γ2)
p

))
(19)

follows from Definitions (17). The right of Equation (19) has orthogonal columns by Propo-
sition 6, and the columns on the left of Equation (19) are eigenvectors with eigenvalue one of

the orthogonal projection matrix X(γ2)
(
X(γ2)TX(γ2)

)−1
X(γ2)T . Therefore, the columns

of Matrix (19) are an orthogonal basis for the eigenspace of X(γ2)
(
X(γ2)TX(γ2)

)−1
X(γ2)T

corresponding to eigenvalue one, because rank
(
X(γ2)

)
= p is a necessary condition for the

joint trained least squares assumption that rank(XL) = p.

Projection matrix X(γ2)
(
X(γ2)TX(γ2)

)−1
X(γ2)T is nonnegative definite, so its main

diagonal block sub matrices based on the L, U data partition are also nonnegative definite.

The nonnegative definite, rank-p, sub matrix XL

(
X(γ2)TX(γ2)

)−1
XT

L has orthonormal

eigenvectors
{
`

(γ2)
i

}1

i=p
corresponding to its nonzero eigenvalues 1/(1 + τ

(γ2)
i ) by Proposi-

tions 6 and 7. Similarly, nonnegative definite sub matrix X
(γ2)
U

(
X(γ2)TX(γ2)

)−1
X

(γ2)
U

T

has orthonormal eigenvectors
{
u

(γ2)
i

}rank(XU )

i=1
corresponding to its nonzero eigenvalues

τ
(γ2)
i /(1+τ

(γ2)
i ). Well-known eigenvector solutions to constrained optimizations of quadratic

forms imply

`
(γ2)
i = arg max

υ∈IR|L|:υTυ=1,υT `
(γ2)
j =0 ∀j>i

υTXL

(
X(γ2)TX(γ2)

)−1
XT

Lυ

u
(γ2)
i = arg max

υ∈IR|U|:υTυ=1,υTu
(γ2)
j =0 ∀j<i

υTX
(γ2)
U

(
X(γ2)TX(γ2)

)−1
X

(γ2)
U

T
υ.

In other words, the unit length weight vectors on the rows of XL (of X
(γ2)
U ) that maximize a

Mahalanobis distance measuring extent of extrapolation subject to orthogonality constraints

are the eigenvectors
{
`

(γ2)
i

}1

i=p
(eigenvectors

{
u

(γ2)
i

}rank(XU )

i=1
) sorted by descending positive

eigenvalues. Proposition 7 also establishes that each eigenvalue

τ
(γ2)
i =

∥∥∥∥X(γ2)
U

T
u

(γ2)
i

∥∥∥∥
2∥∥∥XT

L`
(γ2)
i

∥∥∥
2

(20)
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of the shrinking matrix M (γ2) from Display (14) is a ratio of parallel extent eigenvector
lengths, so the extent of U -extrapolation is larger (smaller) than the corresponding L-extent

in the ith direction of extrapolation if τ
(γ2)
i > 1 (if τ

(γ2)
i < 1).

The joint trained least squares fits vector for all n observations has the form

Xβ̂γ =

p∑
i=1

ĉ
(γ2)
i

(
1

1 + γ1τ
(γ2)
i

)(
`

(γ2)
i√

κ
(γ2)
i /γ2OU (DU + γ2I)

1
2 u

(γ2)
i

)

by Equations (16) and (19) and the reverse of Transformation (8). Thus, eigenvectors `
(γ2)
i

and u
(γ2)
i involved in constructing the ith extrapolation direction with smaller i ∈ {1, . . . , p}

are used to shrink fits more as γ1 is increased. By Equation (16) and Ratios (20), coefficient
vector

β̂γ =

p∑
i=1


∥∥∥XT

L`
(γ2)
i

∥∥∥
2∥∥∥XT

L`
(γ2)
i

∥∥∥
2

+ γ1

∥∥∥∥X(γ2)
U

T
u

(γ2)
i

∥∥∥∥
2

 ĉ
(γ2)
i w

(γ2)
i

is a generalization of Display (4) and balances the degree of coefficient shrinkage by the
relative extents of U - versus L-extrapolations in the ith direction as tuning parameter γ1 is
increased.

The Figure 2 block extrapolation example is now revisited with the notation of Display
(18) and other mathematical developments from this section in mind. Extrapolation di-
rections can always be computed with Proposition 5. When p = 2, the 1st extrapolation

direction is comprised of all vectors orthogonal to w
(γ2)
2 , and the 2nd extrapolation direction

is comprised of all vectors orthogonal to w
(γ2)
1 . Directions and extents in Figure 2 were

all based on the semi-supervised extreme setting γ2 = ∞. In this example, the extent of

U -extrapolation is a larger multiple of the L-extent in the 1st direction, so τ
(γ2)
1 > τ

(γ2)
2 is a

strict inequality. In addition, U -extents have the larger magnitude, so τ
(γ2)
2 > 1 is another

artifact of this particular example. An example of p > 2 is deferred until discussion of
Figure 6 in the examples Section 4.5.

4.2 Joint Trained Ridge Regression

Estimator (9) with λ = (0, λ2) is motivated with augmented labeled data

X
(λ2)
L =

(
XL√
λ2I

)
and Y ?

L =

(
Y L

~0

)
(21)

having p additional rows. The resulting joint trained ridge estimator

β̂γ,(0,λ2) = arg min
β

‖Y L −XLβ‖22 + γ1

∥∥∥X(γ2)
U β

∥∥∥2

2
+ λ2 ‖β‖22

is equivalent to Joint Trained Least Squares (11) given Data (21). Hence,

β̂γ,(0,λ2) =

(
X

(λ2)
L

T
X

(λ2)
L + γ1X

(γ2)
U

T
X

(γ2)
U

)−1(
X

(λ2)
L

T
X

(λ2)
L

)
β̂

(RIDGE)

λ2
, (22)
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Figure 5: Paths of candidate β̂γ,λ for the Figure 1 block example varying γ1 > 0 with
darker curves for larger γ2 > 0 are compared. (a) Joint trained ridge paths at

a fixed λ = (0, 0.1) start at supervised ridge β̂
(RIDGE)

λ2
instead of supervised OLS

β̂
(OLS)

. (b) Similarly, joint trained lasso paths at a fixed λ = (0.01, 0) start at

supervised lasso β̂
(LASSO)

λ1
. However, these continuous paths are not differentiable

at points where the active set changes. (c) The path from (b) with γ2 = 308
is highlighted. Active set changes are marked by bullets •, and the reference
curves based on the right of Equation (23) are also displayed as dashed lines for

i = 1, 2, 3. Each reference curve starts at a β̂
[ji]

λ1
(marked by an open circle ◦)

and terminates at the origin. The actual candidate path always equals one of the

displayed reference curves. It starts at β̂
(LASSO)

λ1
= β̂

[j1]

λ1
when γ1 = 0 and switches

reference curves whenever there is a change in the active set.

because β̂
(RIDGE)

λ2
=

(
X

(λ2)
L

T
X

(λ2)
L

)−1

XT
LY L is the OLS estimator given Data (21). Matrix

X
(λ2)
L

T
X

(λ2)
L = XT

LXL + λ2I with λ2 > 0 is positive definite, so the inverse required to

compute β̂γ,(0,λ2) exists. Estimates (22) for the block extrapolation example come out as

expected in Figure 5(a). Paths start at β̂
(RIDGE)

λ2
with λ2 = 0.1 and converge to the origin.

4.3 Joint Trained Lasso Regression

Supervised Optimization (7) with λ2 = 0 simplifies to β̂
(LASSO)

λ1
= β̂

(ENET)

λ1,0 , a well-understood
technique for incorporating variable selection when p is large and the columns of XL are
linearly independent (Friedman et al., 2010). The goal in this section is to use what is

already known about β̂
(LASSO)

λ1
to provide an understanding of the joint trained lasso β̂γ,(λ1,0)

from Problem (9). Denote the active set of some estimate β̂ by A ⊂ {1, . . . , p}, so
(
β̂
)
A

is its |A| × 1 vector of nonzero components and
(
β̂
)
Ā

= ~0 is (p− |A|)× 1. Also denote its

sign vector by s = sign
((
β̂
)
A

)
and the |L| × |A| sub matrix of X with labeled rows and
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active set columns by XLA. The active set A(SUP) and sign vector s(SUP) of the supervised
lasso at a given λ1 satisfy the constraint

XT
LA(SUP)XLA(SUP)

(
β̂

(LASSO)

λ1

)
A(SUP)

= XT
LA(SUP)Y L − λ1s

(SUP).

Estimates β̂
(LASSO)

λ1
are a differentiable function in λ1 with a finite number of exceptions.

This function is continuous, but not differentiable when the active set changes.
The joint trained lasso β̂γ,(λ1,0) has properties similar to the supervised lasso by Opti-

mization (9), because it’s a lasso estimator with unlabeled imputations Y U = ~0 and modified
X. Unlike joint trained ridge and joint trained least squares from Sections 4.1 and 4.2, the
joint trained lasso coefficients are not always a linear combination of the supervised lasso,
and this complicates its ensuing interpretation. There are 2p + 2p+ 1 active-set/sign-vector
combinations for any p ≥ 2. For example, when p = 2, there are nine combinations, i.e.,
22 = 4 quadrants, 2× 2 = 4 axial directions, and 1 origin. Each active-set/sign-vector com-

bination has a set of reference coefficients
(
β̂

[j]

λ1

)
Aj

=
(
XT

LAjXLAj

)−1 (
XT

LAjY L − λ1sj

)
and

(
β̂

[j]

λ1

)
Āj

= ~0 for j = 1, . . . , 2p + 2p + 1. These reference coefficients have important

properties. First, β̂
[j]

λ1
are independent of XU . Second, there exists a j ∈ {1, . . . , 2p+2p+1}

such that β̂
(LASSO)

λ1
= β̂

[j]

λ1
. Third, sign

((
β̂

[j]

λ1

)
Aj

)
does not necessarily equal sj . Next, the

path of the joint trained lasso as a function of γ1 at a given γ2 is studied. Let the finite set
{ai}ki=1 be the finite values of γ1 where the active set of the joint trained lasso changes and
define a0 = 0 and ak+1 = ∞. Also define the subsequence j1, . . . , jk such that Aji and sji
correspond to the joint trained lasso for any γ1 ∈ [ai−1, ai), so this subsequence tracks the
evolution of the joint trained lasso’s active set and sign vector. Thus, for all γ1 ∈ [ai−1, ai),(

β̂γ,(λ1,0)

)
Aji

=
(
XT

LAji
XLAji + γ1X

(γ2)T

UAji
X

(γ2)
UAji

)−1
XT

LAji
XLAji

(
β̂

[ji]

λ1

)
Aji

, (23)

and shrinking of regression coefficients on the active set looks very much like Display (14).

i 1 2 3 4

Aji {1, 2} {2} {1, 2} ∅
sTji (−1, 1) (0, 1) (1, 1) -

γ1 [0, 0.004) [0.004, 0.008) [0.008,∞) ∞

Table 1: Block extrapolation active-set, sign-vector combinations are listed as a function of
γ1 for the joint trained lasso coefficients β̂γ,λ from Figure 5(c) with λ = (0.01, 0)
and γ2 = 308.

Figure 5(b) plots paths of vectors β̂γ,(λ1,0) by γ2 as a function of γ1 at λ1 = 0.01 for the
block extrapolation example. The semi-supervised path starts at the supervised estimate

β̂
(LASSO)

λ1
when γ1 = 0. Equation (23) establishes a local property of the joint trained lasso.

The approach has the same active set and sign vector as the supervised coefficient for a
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small region γ1 ∈ [0, a1), where a1 > 0. This local property of the joint trained lasso, which
was mathematically verified in this section, is stated as a key assumption while deriving the
general performance bounds in Section 5. An example is the highlighted path with γ2 = 308
from Figure 5(b) shown in Figure 5(c). This candidate path of semi-supervised regression
coefficients visits four active-set, sign-vector combinations as a continuous function of γ1

at given λ1 and γ2. These visited combinations are listed in Table 1 along with their
corresponding values γ1. Figure 5(c) also includes dashed reference curves based on the right
of Equation (23) as a function of γ1 for each non-empty active-set/sign-vector combination
visited by the approach, i.e., i = 1, 2, 3. The candidate semi-supervised estimates follow
along a reference path until the active set changes, and then the path switches to the
reference path with the new active set and sign vector. This continues until the path
terminates at the origin when γ1 =∞.

4.4 Joint Trained Elastic Net Regression

A general view of Problem (9) when all four tuning parameters are finite and positive comes
from stringing concepts from Sections 4.2 and 4.3 together. In particular,(

β̂γ,λ

)
Aji

=

(
X

(λ2)
LAji

T
X

(λ2)
LAji

+ γ1X
(γ2)
UAji

T
X

(γ2)
UAji

)−1(
X

(λ2)
LAji

T
X

(λ2)
LAji

)(
β̂

[ji]

λ

)
Aji

,

where Aji and sji depend on (γ,λ) and

(
β̂

[ji]

λ

)
Aji

= (1 + λ2)

(
X

(λ2)
LAji

T
X

(λ2)
LAji

)−1 (
X

(λ2)T

LAji
Y L − λ1sji

)
.

The order of operations are important: substitute XLAji for XL and then apply Equation

(21) to get X
(λ2)
LAji

, and similarly, XUAji for XU to then get X
(γ2)
UAji

from Equation (8).

Increased γ1 and γ2 puts more emphasis on shrinking unlabeled fits. Increased λ2 and/or
decreased γ2 results in the labeled and/or unlabeled directions being better approximated by
an |Aji |-sphere, and increased λ1 for presumably more stringent variable selection. Cross-
validation often selects the joint trained elastic net with strictly positive lasso λ1 > 0 and
ridge λ2 > 0 tuning parameter values in practical applications, so the joint trained elastic
net is showcased later through its performance on numerical examples (i.e., simulated and
real data sets) in Section 6.

4.5 Geometric Extrapolation Examples

The purpose of this section is learn more about the properties of our semi-supervised adjust-
ment through additional geometrical examples of joint trained least squares from Section
4.1. Recall the joint trained least squares example in Figures 1, 2, and 4 for the heav-
ily studied block extrapolation example. The first row of Figure 6 motivates additional
discussion by simply changing the unlabeled feature data as follows.

• “Pure” – Extrapolations of larger magnitude are roughly in-line with the 2nd principal
component, so supervised and semi-supervised shrinking are in similar directions at
varying degrees.
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Figure 6: An additional geometrical example of joint trained least squares is displayed in
each column. Row 1: Only the unlabeled feature data XU from the “working”
block extrapolation example from Figures 1, 2, and 4 were changed. Row 2:
Ellipses (12) and (13) intersect at a point on the semi-supervised extreme. Row
3: Paths β̂γ are plotted by γ2 varying γ1. The gray circle is the supervised ridge
solution from Figure 4(a).

• “1D” – The unlabeled marginal distribution is more volatile in one dimension x2.

• “Same” – Minor discrepancies arise naturally in empirical distributions when taking
independent samples from the same distribution.

• “Hidden” – Components x1 and x2 have roughly the same marginal distributions in
both sets, but unlabeled extrapolations are hidden in the bivariate distribution of
(x1, x2).

• “Labeled” – Only the labeled feature data deviate substantially from the origin.

Broader sets of candidate β̂γ are entertained in the block, 1D, and same extrapola-
tion examples. On the other hand, directions of extrapolations are roughly the principal
components in the pure, hidden, and labeled extrapolation examples, and these exam-
ples have smaller candidates sets β̂γ as a result. In general, such smaller candidates sets
are expected whenever the semi-supervised eigenvector directions of shrinking based on(
XT

LXL

)−1
X

(γ2)
U

T
X

(γ2)
U are approximately those in supervised ridge regression based on
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τ
(γ2)
i Block Pure 1D Same Hidden Labeled

τ
(γ2)
1 95.1 662.5 11.2 4.2 38.0 0.30

τ
(γ2)
2 22.6 1.3 0.3 1.2 0.1 0.01

Table 2: The eigenvalues of M (γ2) with γ2 =∞ are listed.

XT
LXL, but this does not imply that supervised and semi-supervised ridge techniques are

approximately the same (see Remark 8).

The block and pure examples emphasize profoundly different directions of extrapola-
tion, but have eigenvalues of large magnitude in Table 2. Extrapolations are on separate
manifolds, and the approach shrinks predictions much more in these two examples at a
given γ1 > 0, by Equation (16). The semi-supervised extreme path closely maps the sides
of its bounding parallelogram from Proposition 4 in the pure and hidden examples because

their τ
(γ2)
i in Table 2 are of different orders of magnitude. This phenomena is not present

in the block and same examples when eigenvalues are of the same order of magnitude. The
semi-supervised extreme in the 1D example is of special note. Its labeled feature data are
negatively correlated, so the extreme emphasizes x1 to shrink the influence of the component
x2 which is volatile in the unlabeled data.

Figure 7 is a 3D example. In the semi-supervised extreme, the shrinking matrix M (γ2)

has eigenvalues τ
(γ2)
i = 2090, 21.3, 1.08, so shrinking of regression coefficients is much more

heavily focused in direction w
(γ2)
1 because these eigenvalues differ in magnitude. The 1st di-

rection of extrapolation is based on the other p − 1 = 2 directions of coefficient shrinking

w
(γ2)
2 and w

(γ2)
3 and is defined as the set of all feature vectors that are orthogonal to both of

these directions. The desired effect of using the unlabeled data to shrink unlabeled extrapo-
lations more is achieved through Equation (16) at any γ1 > 0. Semi-supervised predictions

are xT0 β̂
(OLS)

/(1 + γ12090) if x0 is a feature vector on the 1st direction of extrapolation;

xT0 β̂
(OLS)

/(1 +γ121.3) if x0 is on the 2nd direction; and xT0 β̂
(OLS)

/(1 +γ11.08) if x0 is on the

3rd direction. Candidate vectors β̂γ in Figure 7(b) form a curved surface between supervised
and semi-supervised extreme.

Remark 8 Even if supervised and semi-supervised candidate sets β̂ are approximately
equal, semi-supervised training with the unlabeled feature data XU may pick a very dif-
ferent (and hopefully more advantageous) estimate β̂ within the candidate set during cross-
validation. In general, whether or not such apparent “parameter redundancies” exist, we
always advocate the use of supervised regularization (λ 6= ~0) together with semi-supervised
regularization (γ 6= ~0), especially when p is large. Many parameter redundancies noted in
the p = 2 examples are not present in large p applications. If one briefly backs up to the
case of p = 1, all candidate paths from Section 4.1 essentially start on the number line at
the OLS estimate and then shrink to zero. When p = 3, one could overlay β̂γ,(0,λ2) for all

γ ∈ [0,∞]2 at fixed λ2 > 0, and this in-fact adds a distinct layer to the 3D surface in Figure
7(b). The key point is to broaden the choices in an intelligent manner as needed so that a
most desirable β̂ can be selected for the purpose of unlabeled prediction.
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Figure 7: A p = 3 extrapolation data set is displayed. (a) The feature data along with
the three extrapolation directions in the semi-supervised extreme of γ2 =∞ are
plotted. Each direction of extrapolation is a line that equals the intersection of
two planes by Proposition 5. (b) Candidate paths β̂γ by γ2 varying γ1 have a
nonlinear compromise between supervised ridge and the semi-supervised extreme.

5. Performance Bounds

A general sufficient condition is given in this section for when a semi-supervised adjustment
improves expected unlabeled prediction performance for a large class of linear supervised
approaches. Assumption 1 on the class of supervised approaches is a necessary but not
a sufficient condition for the elastic net; this generality was intentional. Assumption 2
characterizes a local property of our semi-supervised adjustment that follows from its Section
4 geometry.

Assumption 1: The supervised estimate β̂
(SUP)

λ is unique for data (XL,Y L) and some
λ. Let φ = {λ,A, s} and q = |A| denote its fixed properties.

Assumption 2: ∃ δ > 0 such that ∀ γ1 ∈ [0, δ) semi-supervised estimates β̂
(φ)

γ1
have

the supervised active set A and sign vector s, and(
β̂

(φ)

γ1

)
A

=
(
I + γ1M

(λ2,∞)
A

)−1 (
β̂

(SUP)

λ

)
A
, where

M
(λ2,γ2)
A =

(
X

(λ2)
LA

T
X

(λ2)
LA

)−1

X
(γ2)
UA

T
X

(γ2)
UA .

Assumptions 1 and 2 always hold for the Joint Trained Optimization Problem (6) when
λ2 > 0 or rank(XL) = p. For example, consider the joint trained lasso example from Figure
5(b) and Table 1. Assumption 1 holds with φ = {(0.01, 0), {1, 2}, (−1, 1)}, and Assumption
2 holds with δ = 0.004 from Table 1.
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Results to come focus on the impact of semi-supervised learning with γ2 = ∞, so

Propositions 3-6 are applied to β̂
(φ)

γ1
andM

(λ2,∞)
A . Let

{(
w

(φ)
i , τ

(φ)
i

)}q
i=1

be an eigenbasis of

M
(λ2,∞)
A such that

∥∥∥X(λ2)
LA w

(φ)
i

∥∥∥2

2
= 1 and

(
β̂

(SUP)

λ

)
A

=
∑q

i=1 ĉ
(φ)
i w

(φ)
i generalize Equation

(15). Assumption 2 implies that Equation (16) generalizes to(
β̂

(φ)

γ1

)
A

=

(
1

1+γ1τ
(φ)
1

)
ĉ

(φ)
1 w

(φ)
1 + · · ·+

(
1

1+γ1τ
(φ)
q

)
ĉ(φ)
q w(φ)

q . (24)

Assume the linear model with E[Y ] = Xβ and Var(Y ) = σ2I and project

βA = c
(φ)
1 w

(φ)
1 + · · ·+ c(φ)

q w(φ)
q . (25)

If small c
(φ)
i correspond to large τ

(φ)
i , a performance improvement on the evaluation function∥∥∥XUA

(
βA −

(
β̂

(φ)

γ1

)
A

)∥∥∥2

2
appears likely by Equations (24) and (25). If τ

(φ)
i is large for

a small subset i ∈ Ω ⊂ {1, . . . , p} and small otherwise, then semi-supervised performance
is expected to be better over a larger percentage of the possible directions for the true
β. Such high performance circumstances occur when a low dimensional manifold of XUA
concentrates away from that of XLA and the true coefficient vector β emphasizes directions
dominated by labeled extrapolations. Assumption 3 helps establish a general transductive
bound for when semi-supervised learning is better than supervised on evaluation function

E
[∥∥∥XU

(
β̂

(φ)

γ1
− β

)∥∥∥2

2

∣∣∣∣φ].
Assumption 3: E

[
ĉ

(φ)
i

∣∣∣φ] = µi <∞ and Var
[
ĉ

(φ)
i

∣∣∣φ] = σ2
i <∞ ∀i ∈ {1, . . . , q}.

Let Ā = {1, . . . , p}−A be the supervised non-active set and defineXU∅β∅ = ~0. Theorem
9 provides a sufficient condition on parameters

(
β, σ2

)
for when semi-supervised outperforms

supervised given the feature data and φ.

Theorem 9 Let Assumptions 1-3 hold. Also, let q ≥ 1, τ
(φ)
1 > 0, and pi

(
τ (φ)

)
=

τ
(φ)2

i σ2
i∑q

j=1 τ
(φ)2

j σ2
j

. If
∑q

i=1 pi
(
τ (φ)

)µi

(
c
(φ)
i +u

(φ)T

i XUĀβĀ/

√
κ

(γ2)
i

)
−µ2

i

σ2
i

 < 1, then

E
[∥∥∥XU

(
β̂

(φ)

γ1
− β

)∥∥∥2

2

∣∣∣∣φ] < E
[∥∥∥XU

(
β̂

(SUP)

λ − β
)∥∥∥2

2

∣∣∣∣φ] .

As stated earlier, Assumptions 1 and 2 hold for the general λ joint trained elastic net
regression of Section 4.4. In the case of λ = ~0 least squares, it is also easily verified that µi =

c
(φ)
i and σ2

i = σ2 for Assumption 3. The mathematical form of the extreme version of joint
trained least squares in Equation (14) is equivalent to that for generalized ridge regression.
Corollary 10 in conjunction with Casella (1980) shows that joint trained least squares is
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Figure 8: The five examples with p = 2 from Figure 6 are revisited. Row 1: Theoretical
bound σ2 − σ2

LB (β(ϑ)) is plotted against ϑ. Darker curves correspond to larger
σ2 ∈ [0, 1]. Row 2: The corresponding differences RMSE(SUP)

U − RMSE(SEMI)

U are
plotted against ϑ.

asymptotically minimax with respect to loss function E
[∥∥∥XU

(
β̂ − β

)∥∥∥2

2

]
as |L| → ∞. In

the case of ridge regression, µi = c
(φ)
i − λ2w

(φ)
i

T
β and σ2

i = w
(φ)
i

T
XT

LXLw
(φ)
i σ2 for any

i ∈ {1, . . . , p} are also straightforward to derive, so Theorem 9 reduces to Corollary 11.

Corollary 10 Joint trained least squares with γ2 = ∞ dominates supervised least squares

in prediction on XU if q ≥ 1 and τ
(φ)
1 > 0.

Corollary 11 The extreme version of joint trained ridge regression dominates supervised

ridge regression in prediction on XU if q ≥ 1, τ
(φ)
1 > 0, and

σ2
LB(β) =

 p∑
i=1

pi

(
τ (φ)

)(
c
(φ)
i −λ2w

(φ)
i

T
β

)(
λ2w

(φ)
i

T
β

)
w

(φ)
i

T
XT
LXLw

(φ)
i


+

< σ2.

The block feature data from Figure 1 were used to construct Figure 3 and introduce the
reader to the semi-supervised ridge bound σ2

LB(β) earlier in Section 2.2. The analog of that
figure for the five examples from Figure 6 is given in this section by Figure 8. A technical
explanation of how these figures were constructed precedes the qualitative discussion of
their interpretations in the next paragraph. First, note that σ2

LB(β(ϑ)) from Corollary 11 is
independent of σ2. It was computed for all β (ϑ) = (sin(ϑ), cos(ϑ))T over a fine grid of ϑ ∈
[0, π], and the σ2

LB(β(ϑ)) were compared to a fine, equally spaced grid of σ2 ∈ [0, 1]. Only
the right half of the unit circle was considered for β because σ2

LB(β(ϑ)) = σ2
LB(β(ϑ + π)).

Also, σ2
LB(rβ(ϑ)) = r2σ2

LB(β(ϑ)), so the same trend results from the scaled parameters
rβ(ϑ) with σ2 ∈ [0, r2]. The ridge parameter was set to the “best” supervised attempt
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of λ
(opt)
2 minimizing E

[∥∥∥XL

(
β(ϑ)− β̂

(RIDGE)

λ2

)∥∥∥2

2

]
. Interest was in identifying ϑ’s when a

semi-supervised adjustment helps, i.e., when σ2 − σ2
LB (β(ϑ)) > 0.

Angles ϑ corresponding to lucky β(ϑ) and to reductions in RMSE due to semi-supervised
learning line-up vertically across the rows of Figure 8 (i.e., ϑ with a positive vertical co-
ordinate in row 1 also have a positive coordinate in row 2 and vice versa). Row 2 is the
magnitude of the improvements, and the examples with the largest magnitude (i.e., the
pure example and the block example from Figure 3(b)) are those with the largest eigen-
values in Table 2 as expected. The labeled example with the smallest improvements also

has the smallest eigenvalues. Direction w
(φ)
2 (eyeballed from the row 1 of Figure 6) should

be compared to row 1 of Figure 8. In each example, the center for potentially large im-

provements is roughly β(ϑ) ∝ w(φ)
2 , and the center for little to no potential improvement

is roughly β(ϑ) ∝ w(φ)
2

⊥
. The generalization to p ≥ 2 in Proposition 12 below extends this

interpretation to that given back in Section 2.2. That is, if β is orthogonal to an unlabeled

manifold, then β̂
(φ)

γ1
has an unlabeled prediction advantage over β̂

(RIDGE)

λ2
, whereas β parallel

to the unlabeled manifold yields no theoretical advantage.

Proposition 12 If τ
(φ)
1 > 0 and βi ∈

⋂
j∈{1,...,p}−{i}w

(φ)
j

⊥
is unit length, then the joint

trained ridge performance bound from Corollary 11 satisfies σ2
LB (βi) ≥ λ2pi

(
τ (φ)

)
for

i ∈ {1, . . . , p} and σ2
LB (βi) ≥ σ2

LB

(
w

(φ)
j /

∥∥∥w(φ)
j

∥∥∥
2

)
if j ≥ i.

Given a lasso estimate β̂
(LASSO)

λ1
, response Y L ∈ YL(φ) =

{
y ∈ IR|L| : β̂

(LASSO)

λ1
has φ

}
,

and the sets YL(φ) partition IR|L| at fixed λ = (λ1, 0). If we additionally assume a normal
theory linear model, Y L|φ has a truncated normal distribution on YL(φ), so means µi and
variances σ2

i also depend on
(
β, σ2

)
. Although the extreme versions of the lasso and elastic

net are intractable, the interpretation of Theorem 9 still applies.

6. Numerical Examples

In this Section, both simulated and real data scenarios are presented for the Joint Trained
Elastic Net (JT-ENET). The simulation is run with both lucky and unlucky β examples.
For the ridge regression version of our estimator, the theoretical bound from Proposition
12 implies that a lucky β is perpendicular to the unlabeled centroid and a unlucky β
is parallel to the unlabeled centroid. The result in Theorem 9 presumably extends the
generality of this concept. The simulation was designed in part to assess whether the notion
of lucky versus unlucky β extends to the JT-ENET. The real data sets provide covariate
shift applications, so the JT-ENET should have some advantage over supervised learning
in terms of a prediction focused objective function on the unlabeled set. It is important to
note that only XL, XU , and Y L were used during training throughout this section.

In all cases, comparisons were made to the supervised elastic net using the R package
glmnet (Friedman et al., 2010; R Core Team, 2015). This particular implementation is
optimized for estimating λ1 + 2λ2 with 10-fold cross validation given λ1/(λ1 + 2λ2). First,
the supervised elastic net was implemented by varying λ1/(λ1 +2λ2) ∈ [0, 1] over an equally
spaced grid of length 57 to optimize parameters λ.
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Second, the semi-supervised JT-ENET was implemented by estimating its parameters
(λ,γ) simultaneously. Calls to the glmnet with data augmentations from Proposition 2
were used for all low-level fittings. Parameter λ1 + 2λ2 was estimated using 10-fold cross-
validation given λ1/(λ1 + 2λ2), γ1, and γ2. Parameter λ1/(λ1 + 2λ2) was optimized over
the grid {0, 0.25, 0.5, 0.75, 1, â}, where â was the optimal supervised setting for this pa-
rameter. Fixed grids γ1 ∈ ν−1 and γ2 ∈ ν were used for the other parameters, where
ν = {0.1, 0.5, 1, 10, 100, 1000, 10000,∞} and ν−1 = {1/r : r ∈ ν}. For K-fold cross-
validation in the semi-supervised setting, the L cases were partitioned into K folds, {Lk}Kk=1.

Let β̂
(−k)

γ,λ be the estimate from labeled data L−Lk and unlabeled data U ∪Lk, and let the

K-fold cross-validated variance be σ̂2
K =

∑K
k=1

∥∥∥Y Lk −XLk β̂
(−k)

γ,λ

∥∥∥2

2
/|L|. The JT-ENET

estimate β̂γ̂,λ̂ minimized σ̂2
3 over the grid for λ1/(λ1 + 2λ2), γ1, and γ2.

Our objective function was the RMSE on the unlabeled set. The RMSE of XU β̂
from XUβ was computed within simulations, but was computed from the withheld re-
sponses Y U in the real data examples. Let ENET and JT-ENET represent this unlabeled
set RMSE for the supervised elastic net and our proposed method using the true β for
the simulations and their empirical versions in real data examples. Percent improvement
%JT-ENET = ENET−JT-ENET

ENET × 100% was used to assess semi-supervised performance.
A baseline comparison to the theoretical best parameter settings for the semi-supervised
technique was also computed in the simulations, and its percent improvement is denoted
by %BEST. Two regression based covariate shift competitors were also applied to the real
data examples: adaptive importance-weighted kernel regularized least-squares (AIWKRLS)
(Sugiyama et al., 2007) and plain kernel regularized least-squares (PKRLS) (Kananmori
et al., 2009). The caret package in R (Kuhn, 2008) was also used to fit the SVM with a
polynomial kernel on the real data examples.

6.1 Simulations

Same and extrapolated feature data distributions were constructed to study three, high-
dimensional scenarios. Each scenario had |L| = |U | = 100, p = 1, 000, true active set

T = {1, . . . , 10}, (XL)ij
i.i.d.∼ N(0, 0.4), and Y L = XLβ + ε with ε ∼ N

(
~0, σ2I

)
. De-

fine indicator vector µ(A) ∈ IRp with entries µj(A) = I{j∈A} for some active set A,

β(unlucky) = 5µ(T )/
√

10, and β(lucky) = 5 (µ(T1)− µ(T2)) /
√

10 with T1 = {1, . . . , 5} and
T2 = {6, . . . , 10}. The three scenarios were

1. Same Distribution: (XU )ij
i.i.d.∼ N(0, 0.4) and β = β(lucky)

2. Extrapolation (Lucky β): (XU )ij
ind∼ N

(
10µj(T ), 0.4

)
and β = β(lucky)

3. Extrapolation (Unlucky β): (XU )ij
ind∼ N

(
10µj(T ), 0.4

)
and β = β(unlucky).

If the truth XUβ is large, any type of shrinking may be detrimental, so shrinking methods
(supervised or semi-supervised) should struggle in the extrapolation scenario with unlucky
β because β = β(unlucky) is parallel to the unlabeled data centroid µ(T ). On the other
hand, β(lucky) ⊥ µ(T ), so shrinking directions of extrapolation is more desirable. There is
an unlucky β direction, but a |T | − 1 or 9-dimensional vector space of lucky β directions.
Setting β = β(lucky) versus β = β(unlucky) is not critical in the same distribution scenario.
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Same Distribution Extrapolation (Lucky β) Extrapolation (Unlucky β)
σ2 ENET %JT-ENET %BEST ENET %JT-ENET %BEST ENET %JT-ENET %BEST

2.5 0.43 19.27 30.67 0.91 18.08 27.58 15.05 −2.55 2.06
0.03 3.41 3.63 0.08 3.50 3.65 0.11 0.83 0.65

5.0 0.69 31.88 46.67 1.25 26.10 38.73 15.19 −1.74 2.90
0.06 4.88 4.43 0.12 4.32 4.43 0.14 0.96 0.86

7.5 0.93 35.36 54.63 1.61 33.49 46.98 15.30 −1.47 4.75
0.09 5.68 4.58 0.17 4.53 4.50 0.21 1.44 1.25

Table 3: Unlabeled root mean squared error performance is summarized on high-
dimensional (p = 1, 000), simulated data sets: supervised elastic net (ENET),
percent improvement over ENET with the joint trained elastic net (%JT-ENET),
and the hypothetical maximum of %JT-ENET based on “cheating” with the “an-
swers” XUβ while picking the point (λ,γ) in the cross-validation grid (%BEST).
Fifty data sets were generated per level combination of scenario (i.e., same, lucky,
and unlucky) and model error variance σ2 = 2.5, 5.0, 7.5. Cell entries are the
sample mean (top) and standard error (bottom).

These probability models were used to conduct simulations studies in the following manner.

Model matrix X was generated once and fixed by scenario, and 50 independent response
vectors Y L were generated from the assumed linear model for each level combination of
scenario = 1, 2, 3 and σ2 = 2.5, 5.0, 7.5. Cross-validation took an average of 3.5 minutes
per data set on a 2.6 GHz Intel Core i7 Power Mac. The supervised ENET is best suited
for the same distribution prediction task, and its RMSEs are smallest in this scenario.
The significant performance advantage due to our semi-supervised adjustment in the same
distribution scenario relates to the curse of dimensionality, because extrapolations are likely
in a high-dimensional empirical distribution. There was also substantial improvement in
the extrapolation with lucky β scenario, while both approaches struggled at extrapolation
with unlucky β.

The %BEST values reported in Table 3 correspond to the best possible points (λ,γ) in
the cross validation grid and provide at least two points of useful discussion. First, values
%BEST increased with σ2, and this is consistent with what one might expect given the
factorization of the bound in Corollary 11. Its left hand side is a nonnegative number that
is independent of σ2, and a semi-supervised improvement is possible when σ2 exceeds this
nonnegative number. The values %BEST in Table 3 supports that a similar concept holds
with the bound in Theorem 9 that applies to the JT-ENET. Second, most points in the
cross validation grid corresponded to negative percent improvements, and some of these are
the largest in magnitude. Thus, while the method of cross validation is not getting the very
best point in the grid, its performance is competitive.

6.2 Real Data Examples

The 10 tests listed in Table 4 were constructed using 8 publicly available data sets and a
simulated toy extrapolation data set. Each is expected to have a covariate shifted empirical
feature data distribution either because the characteristic used to define the labeled set is
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Data Set (n, p) Labeled Set L Response y Data Set Source

Toy Cov. Shift (1200, 1) Training Set sinc(x) + ε Sugiyama et al. (2007)
Auto-MPG (398, 8) P1: Domestics Fuel (mpg) Lichman (2013)
Auto-MPG (398, 8) P2: ≤ 4 Cyl. Fuel (mpg) Lichman (2013)
Heart (462, 8) No History

√
Sys. BP Hastie et al. (2009)

U.S. News (1004, 19) Private Schools SAT.ACT ASA Data Expo ‘95
Auto-Import (205, 24) Low Risk Cars Price Lichman (2013)
Blood Brain (208, 135) Cmpds. 1-52 log(BBB) Kuhn (2008)
Eye (120, 200) Rats 1-30

√
Express Scheetz et al. (2006)

Cookie (72, 700) Training Set Water Osborne et al. (1984)
Ethanol (589, 1037) Sols. 1-294 Ethanol Shen et al. (2013)

Table 4: These ten covariate shift tests are used to establish benchmarks in Table 5.

Data Set p |L| |U | ENET SVM AIWKRLS PKRLS JT-ENET %JT-ENET

Toy Cov. Shift 1 200 1000 0.527 0.186 0.103 0.129 0.169 67.83
Auto-MPG (P1) 8 149 249 5.361 5.272 5.974 8.459 4.341 19.02
Auto-MPG (P2) 8 208 190 8.296 13.478 15.374 39.570 6.723 18.96
Heart 8 192 270 0.789 0.790 0.795 0.802 0.788 0.13
U.S. News 19 640 364 1.738 1.724 1.928 1.918 1.684 3.11
Auto-Import 24 113 92 4995 4223 6292 6376 4201 15.89
Blood Brain 135 52 156 1.684 6.424 0.797 0.815 0.649 61.46
Eye 200 30 90 0.019 0.425 0.027 0.027 0.016 15.79
Cookie 700 40 32 0.388 0.580 1.466 1.309 0.342 11.86
Ethanol 1037 294 295 1.461 1.422 2.626 2.625 1.391 4.79

Table 5: Empirical unlabeled root mean squared errors are listed for the ten covariate shift
tests defined by Table 4 and a field of five competitors: the supervised elastic net
(ENET), a support vector machine (SVM), adaptive importance-weighted ker-
nel regularized least-squares (AIWKRLS), plain kernel regularized least-squares
(PKRLS), and joint trained ENET (JT-ENET). The top performer is in bold.
The final column is percent improvement of JT-ENET over its supervised ENET
alternative with positive values in bold.

associated with other variables in the model matrix, because of the curse of dimensional-
ity, or because the simulated toy data were generated from a model with covariate shift.
Since covariate shift is our focus, randomized subsetting of the data (i.e., MCAR) was not
performed. When p is larger in the blood brain, eye, cookie, and ethanol applications, the
unlabeled set is likely to contain extrapolations. In all cases, the bounds from Section 5
together with the Section 4 geometry of the JT-ENET are at play here behind the scenes.
The U.S. News & World Report data required preprocessing. SAT scores were transformed
to their ACT equivalent, and the new variable with either transformed SAT, ACT, or their
average was used instead. Median imputation was used for all other missing values across
the board. In the Toy Covariate Shift example, we forced λ = ~0 for both the ENET and
JT-ENET to make comparisons consistent with Sugiyama et al. (2007).

3209



Ryan and Culp

RMSEs for the various approaches and the empirical percent improvement for JT-ENET
are reported in Table 5. The JT-ENET appears to have worked in the ideal manner inde-
pendent of what caused the empirical covariate shift. In their toy covariate shift example,
competitors AIWKRLS and PKRLS performed strongly, but their edge went away with
increased p. AIWKRLS and PKRLS are principled on estimating empirical density ratios,
and this can be a challenging task in practical applications with large p. The SVM and
ENET are very close competitors for most of the examples. The results provide further
evidence that the JT-ENET is achieving the goal of out-performing the ENET in covariate
shift problems.

The JT-ENET fit fairly quickly on a 2.6 GHz Intel Core i7 Power Mac. Thus, if the range
of possible improvements is from roughly none to substantial in any given prediction focused
application, the associated computational overhead of the JT-ENET appears worthwhile.
In addition, it is embarrassingly parallel. Just consider the fixed 6× 8× 8 grid search over
(λ1/(λ1 + 2λ2))× γ1× γ2 in our implementation. Effective times can essentially be divided
by 6 if one sends 1× 8× 8 grid searches to each of 6 computers or divided by 48 with grids
of 1× 1× 8 to 48 computers.

7. Discussion

This work provided a clear and succinct mathematical framework for semi-supervised lin-
ear predictions of the unlabeled data. Our joint trained elastic net has two pairs of tuning
parameters: supervised λ = (λ1, λ2) and semi-supervised γ = (γ1, γ2). Adjusting the semi-
supervised parameters has an interpretable, geometrical effect on the unlabeled predictions.
Furthermore, we provided theoretical bounds for when this interpretable adjustment guar-
antees a performance improvement under the standard linear model, and this main theme
of these theoretical results was validated with simulated data. This practical approach was
also competitive with existing approaches throughout a set of challenging, high-dimensional,
real data applications, where the unlabeled data contained extrapolations. Extrapolations
in the unlabeled set are expected to occur often in practice, due to the curse of dimension-
ality with large p or practical constraints that result in covariate shift applications, and
our method is unique among existing approaches in its direct and effective accounting for
these circumstances. Simultaneous estimation of the supervised and semi-supervised tuning
parameters was feasible in the high-dimensional examples we tested.
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Appendix A. Proofs

Proofs of Propositions and Theorems follow.

A.1 Joint Training Framework

Proposition 2 If γ2 > 0, then rank(XU ) = rank
(
X

(γ2)
U

)
and a solution β̂γ,λ to Opti-

mization Problem (9) is a partial solution to Optimization Problem (6).

Proof Clearly, rank (XU ) = rank
(
X

(γ2)
U

)
whenever γ2 > 0 by Equation (8). Based on

Objective (6), the optimal α at any β is α =
(
XT

UXU + γ2I
)−1

XT
UXUβ and does not

depend on γ1 > 0. The derivative with respect to β of the objective is proportional to
−γ1X

T
UXU (α − β) as a function of the unlabeled data, and after plugging-in the optimal

α it simplifies to

−γ1X
T
UXU (α− β) = −γ1X

T
UXU

{(
XT

UXU + γ2I
)−1

XT
UXU − I

}
β

= γ1X
(γ2)
U

T
X

(γ2)
U β, (26)

where X
(γ2)
U

T
X

(γ2)
U = γ2X

T
UXU

(
XT

UXU + γ2I
)−1

used in Equality (26) holds because

γ2X
T
UXU = γ2X

T
U

(
XUX

T
U + γ2I

)−1 (
XUX

T
U + γ2I

)
XU

= X
(γ2)
U

T
X

(γ2)
U

(
XT

UXU + γ2I
)
.

Thus, the optimal β̂γ,λ from Problem (6) must also solve Problem (9) by Identity (26).

A.2 Geometry Results

Proposition 3 Any eigenbasis of the possibly non-symmetric matrix M (γ2) is real with

eigenvalues τ
(γ2)
1 ≥ · · · ≥ τ (γ2)

p ≥ 0. Furthermore, τ
(γ2)
i = 0 iff i > rank(XU ).

Proof Let XT
LXL = OLDLO

T
L be the eigendecomposition, assume rank(XL) = p, and

define the linear transformation
w̃ = D

1/2
L OT

Lw (27)

that changes the coordinate basis to OL and then rescales by D
1/2
L . The symmetric matrix

M̃
(γ2)

= D
−1/2
L OT

LX
(γ2)
U

T
X

(γ2)
U OLD

−1/2
L (28)

has an orthonormal eigenvector decomposition
{(
w̃

(γ2)
i , τ

(γ2)
i

)}p
i=1

, so M (γ2) has the real

eigendecomposition
{(
w

(γ2)
i , τ

(γ2)
i

)}p
i=1

by the reverse of Transformation (27) because

τ
(γ2)
i w̃

(γ2)
i = M̃

(γ2)
w̃

(γ2)
i ⇐⇒ τ

(γ2)
i w

(γ2)
i = M (γ2)w

(γ2)
i .
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Furthermore, τ
(γ2)
i = w̃

(γ2)T

i M̃
(γ2)
w̃

(γ2)
i = w

(γ2)
i

T
X

(γ2)
U

T
X

(γ2)
U w

(γ2)
i = 0 iff τ

(γ2)
i = 0.

Proposition 4 The path β̂γ as a function of γ1 ≥ 0 is bounded within a p-dimensional

parallelotope with corners at each binary linear combination of
{
ĉ

(γ2)
1 w

(γ2)
1 , . . . , ĉ

(γ2)
p w

(γ2)
p

}
.

Furthermore, the terminal point as γ1 →∞ is the corner
∑p

i=1 I{i>rank(XU )}ĉ
(γ2)
i w

(γ2)
i with

indicator I{·}.

Proof Decomposing β̂
(OLS)

in Equation (15) onto the real eigenbasis
{
w

(γ2)
i

}p
i=1

from

Proposition 2 and then applying Equation (14) to establish Equation (16) are the main
steps. Path β̂γ goes to the terminal point as γ1 → ∞ because the probability weights

1/
(

1 + γ1τ
(γ2)
i

)
in Equation (16) have limits of 0 or 1 when τ

(γ2)
i > 0 or τ

(γ2)
i = 0. Next,

consider the set of all vectors within the p-dimensional parallelotope defined by each binary

linear combination of
{
ĉ

(γ2)
i w

(γ2)
i

}p
i=1

and those for the p-dimensional rectangle defined

by each binary linear combination of
{
ĉ

(γ2)
i w̃

(γ2)
i

}p
i=1

, where
{
w̃

(γ2)
i

}p
i=1

are orthonormal

eigenvectors of Matrix (28). Transformation (27) is a bijection from the parallelotope to

the rectangle. This bijective mapping replaces the w
(γ2)
i on the right of Equation (16) with

w̃
(γ2)
i , and so β̂γ 7→D

1/2
L OT

Lβ̂γ is clearly within the rectangle.

Proposition 5 The span
(
X(γ2)TX(γ2)w

(γ2)
i

)
=
⋂
j∈{1,...,p}−{i}w

(γ2)
j

⊥
∀i ∈ {1, . . . , p}.

Henceforth, the line span
(
X(γ2)TX(γ2)w

(γ2)
i

)
is called the ith extrapolation direction ∀i ∈

{1, . . . , p}.
Proof If

{
w̃

(γ2)
i

}p
i=1

are orthonormal eigenvectors of the Symmetric Matrix (28),

w
(γ2)
i

T
XT

LXLw
(γ2)
j = I{i=j} (29)

w
(γ2)
i

T
X

(γ2)
U

T
X

(γ2)
U w

(γ2)
j = I{i=j}τ

(γ2)
i (30)

by Transformation (27). Let ν ∈ span
(
X(γ2)TX(γ2)w

(γ2)
i

)
. Summing Equations (29)

and (30) implies that νTw
(γ2)
j = 0 and hence ν ∈ w

(γ2)
j

⊥
for each j 6= i. Now, let

ν ∈
⋂
j 6=iw

(γ2)
j

⊥
⊆ IRp, so νTw

(γ2)
j = 0 for each j 6= i. There exists a unique sequence

{ak}pk=1 such that ν =
∑p

k=1 akX
(γ2)TX(γ2)w

(γ2)
k by the assumption rank(XL) = p, so

νTw
(γ2)
j = aj

(
1 + τ

(γ2)
j

)
by Equations (29) and (30). Thus, aj = 0 for each j 6= i and

ν ∈ span
(
X(γ2)TX(γ2)w

(γ2)
i

)
.

Proposition 6 If γ2 > 0, vectors
{
`

(γ2)
i

}1

i=p
and

{
u

(γ2)
i

}rank(XU )

i=1
are orthonormal bases

for the column spaces of XL and X
(γ2)
U , and u

(γ2)
i = ~0 if i > rank(XU ).

Proof The orthonormality holds by Definitions (17) and Identities (29) and (30). Note

u
(γ2)
i = ~0 if i > rank(XU ) by Identity (30). The column space result follows from Equation

(19) and the joint trained least squares assumption of rank(XL) = p.
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Proposition 7 For each i ∈ {1, . . . , p},

XT
L`

(γ2)
i =

1

1 + τ
(γ2)
i

X(γ2)TX(γ2)w
(γ2)
i

X
(γ2)
U

T
u

(γ2)
i =

τ
(γ2)
i

(1 + τ
(γ2)
i )

√
κ

(γ2)
i

X(γ2)TX(γ2)w
(γ2)
i ,

so X(γ2)TX(γ2)w
(γ2)
i , XT

L`
(γ2)
i , and X

(γ2)
U

T
u

(γ2)
i are parallel vectors in IRp.

Proof By Definitions (8), (14), and (17),

τ
(γ2)
i w

(γ2)
i = M (γ2)w

(γ2)
i

τ
(γ2)
i XT

LXLw
(γ2)
i = X

(γ2)
U

T
X

(γ2)
U w

(γ2)
i (31)

τ
(γ2)
i XT

L`
(γ2)
i =

√
κ

(γ2)
i X

(γ2)
U

T
u

(γ2)
i (32)(

1 + τ
(γ2)
i

)
XT

L`
(γ2)
i = X(γ2)TX(γ2)w

(γ2)
i . (33)

Hence, Vectors (31)-(33) are parallel, and the stated identities follow from Equations (32)
and (33).

A.3 Performance Bounds

Theorem 9 Let Assumptions 1-3 hold. Also, let q ≥ 1, τ
(φ)
1 > 0, and pi

(
τ (φ)

)
=

τ
(φ)2

i σ2
i∑q

j=1 τ
(φ)2

j σ2
j

. If
∑q

i=1 pi
(
τ (φ)

)µi

(
c
(φ)
i +u

(φ)T

i XUĀβĀ/

√
κ

(γ2)
i

)
−µ2

i

σ2
i

 < 1, then

E
[∥∥∥XU

(
β̂

(φ)

γ1
− β

)∥∥∥2

2

∣∣∣∣φ] < E
[∥∥∥XU

(
β̂

(SUP)

λ − β
)∥∥∥2

2

∣∣∣∣φ] .
Proof Let γ1 ∈ [0, δ) for δ > 0 from Assumption 2, and define u

(φ)
i = XUw

(φ)
i /

√
κ

(φ)
i ,

where κ
(φ)
i = τ

(φ)
i + I{i>rank(XU )} > 0 and hence κ

(φ)
i τ

(φ)
i = τ

(φ)
i

2
. Vectors

{
u

(φ)
i

}q
i=1

are

an orthonormal basis for the column space of XU by Proposition 6, and

XUA

((
β̂

(φ)

γ1

)
A
− βA

)
=

q∑
i=1

(
ĉ
(φ)
i

1+γ1τ
(φ)
i

− c(φ)
i

)
u

(φ)
i

√
κ

(φ)
i (34)

by Equations (24) and (25). Next, define loss function

Q =
∥∥∥XU

(
β̂

(φ)

γ1
− β

)∥∥∥2

2
= Q1 +Q2 +Q3, (35)

where Q1 =

∥∥∥∥∥XUA

((
β̂

(φ)

γ1

)
A
− βA

)∥∥∥∥∥
2

2

, Q2 = −2

((
β̂

(φ)

γ1

)
A
− βA

)T
XT

UAr, Q3 = ‖r‖22,

and r = XUĀβĀ. If γ1 = 0, the supervised estimator β̂
(SUP)

λ follows, so an improvement is
guaranteed if the gradient of E [Q|φ] with respect to γ1 evaluated at γ1 = 0 is negative.
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By Equation (34) and Assumption 3,

E [Q1|φ] =

q∑
i=1

E

[(
ĉ
(φ)
i

1+γ1τ
(φ)
i

− c(φ)
i

)2
∣∣∣∣∣φ
]
κ

(φ)
i

=

q∑
i=1

((
1

1+γ1τ
(φ)
i

)2 (
σ2
i + µ2

i

)
− 2 µi

1+γ1τ
(φ)
i

c
(φ)
i + c

(φ)
i

2

)
κ

(φ)
i , (36)

and the gradient of Equation (36) is

∂E [Q1|φ]

∂γ1
= −2

q∑
i=1

τ
(φ)
i κ

(φ)
i(

1 + γ1τ
(φ)
i

)3

(
σ2
i + µ2

i − c
(φ)
i µi − γ1µic

(φ)
i τ

(φ)
i

)
. (37)

Similarly for the second term Q2 on the right of Equation (35),

E [Q2|φ] = −2

q∑
i=1

(
µi

1 + γ1τ
(φ)
i

− c(φ)
i

)√
κ

(φ)
i u

(φ)T

i r

∂E [Q2|φ]

∂γ1
= 2

q∑
i=1

τ
(φ)
i

√
κ

(φ)
i µi(

1 + γ1τ
(φ)
i

)2u
(φ)T

i r. (38)

The third term Q3 on the right of Equation (35) is constant with respect to γ1 and thus
ignored, and the sum of Scores (37) and (38) with γ1 = 0 is negative whenever

−2

q∑
i=1

τ
(φ)
i κ

(φ)
i

(
σ2
i + µ2

i − c
(φ)
i µi − µiu(φ)T

i r/

√
κ

(φ)
i

)
< 0

q∑
i=1

τ
(φ)2

i

(
µi

(
c

(φ)
i + u

(φ)T

i r/

√
κ

(φ)
i

)
− µ2

i

)
<

q∑
i=1

τ
(φ)2

i σ2
i

q∑
i=1

pi

(
τ (φ)

)(
µi

(
c

(φ)
i + u

(φ)T

i r/

√
κ

(φ)
i

)
− µ2

i

)
/σ2

i < 1.

Proposition 12 If τ
(φ)
1 > 0 and βi ∈

⋂
j∈{1,...,p}−{i}w

(φ)
j

⊥
is unit length, then the joint

trained ridge performance bound from Corollary 11 satisfies σ2
LB (βi) ≥ λ2pi

(
τ (φ)

)
for

i ∈ {1, . . . , p} and σ2
LB (βi) ≥ σ2

LB

(
w

(φ)
j /

∥∥∥w(φ)
j

∥∥∥
2

)
if j ≥ i.

Proof The desired vectors are βj = X
(λ2)
L

T
`

(φ)
i /

∥∥∥∥X(λ2)
L

T
`

(φ)
i

∥∥∥∥
2

by Proposition 5, so

w
(φ)
i

T
βj = I{i=j}/

∥∥∥∥X(λ2)
L

T
`

(φ)
i

∥∥∥∥
2

(39)

by Equation (29). Constraints (39) imply that only term i = j of σ2
LB(βj) can be nonzero.

For any β ∈ IRp, β =
∑p

i=1 c
(φ)
i w

(φ)
i with c

(φ)
i = w

(φ)
i

T
X

(λ2)
L

T
X

(λ2)
L β by Equation (29), so
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c
(φ)
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`

(φ)
j
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2

if β = βj . These facts can help simplify the bound to
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Next, define G =

[
w

(φ)
i

T
w

(φ)
j

]p
i,j=1

as the Gram matrix of vectors w
(φ)
i . Let G(−j)

be the (p − 1) × (p − 1) sub matrix of G obtained by deleting the jth row and column,
and let Gj be the 1 × (p − 1) vector obtained by deleting the jth entry from the jth

row of G. Matrix G(−j) is positive definite by Proposition 3, and it can be shown that(
w

(φ)
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T
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)
= GT
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Gj ≥ 0 by Constraints (39). There-

fore, Bound (40) further reduces to
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For the second part, define νij =
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The result is trivial if Bound (42) is zero, and the difference of Bounds (41) and (42)

σ2
LB(βi)− σ2

LB

(
w

(φ)
j /
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2
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pi
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νij

is no less than the sum of two non-negative terms if Bound (42) is positive and j ≥ i.
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Discovery of causal relations from data is a fundamental objective of several scientific dis-
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number of required experiments, relax common sufficient discovery assumptions in order
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1. Introduction

Discovery of causal relations from data is a fundamental objective of several scientific disci-
plines including computer science, statistics, and applied mathematics (Pearl, 2009; Spirtes
et al., 2000; Neapolitan, 2003; Pearl, 1997). Obtaining data from randomized controlled
experiments, while being essential for the discovery of causality, is very expensive and is
often infeasible or unethical. On the other hand, observational data that is collected with-
out experimental interference of the values of variables is highly abundant and can often
be collected cheaply. Over the last 20 years, many sound algorithms have been proposed
that can use observational data to infer causal relations (Pearl, 2009; Spirtes et al., 2000;
Glymour and Cooper, 1999) and several empirical studies have verified their applicability
and scalability to high-dimensional data (Aliferis et al., 2010a,b). However, observational
data is, in general, insufficient to completely unravel all causal relations among measured
variables, because many causal relations cannot be statistically distinguished with observa-
tional data alone (e.g., multiple graphs in the Markov equivalence class). Therefore, it is
essential to refine discoveries from observational data with limited and targeted experimen-
tal data (Spirtes et al., 2000). This has led to the recent development of several methods
for active learning of causal networks that utilize observational and experimental data in
order to discover causal networks (Tong and Koller, 2001; Murphy, 2001; He and Geng,
2008; Meganck et al., 2006; Hyttinen et al., 2010; Eberhardt et al., 2010; Hyttinen et al.,
2012; Pe’er et al., 2001; Sachs et al., 2005).

The present work is concerned with the problem of discovery of local causal pathways
that only contain direct causes and direct effects of the target variable of interest, rather
than learning the structure of the entire causal network that represents all causal rela-
tions among all measured variables. Knowledge of direct causes and effects is crucial for
understanding the mechanisms of causality, and knowledge of direct causes particularly fa-
cilitates the design of effective interventions. Existing methods for discovery of local causal
pathways fully rely on observational data and can discover causality up to a Markov equiv-
alence class, leaving many causal relations undetermined (Spirtes et al., 2000; Aliferis et al.,
2010a). Thus, experimental/manipulated data is needed to complement the discovery from
observational data. For experimental/manipulated data, we consider here only data from
fully randomized experiments (also known as surgical or edge-breaking). In the present
study, all decisions about edge orientation are based on experimental data exclusively. It
is noteworthy that the problem of local causal pathway discovery from observational and
limited experimental data has not been addressed in the literature previously.

While developing new methods for local causal pathway discovery from observational
and experimental data, we set four objectives. First, to minimize the number of experiments
needed to refine discoveries from observational data. Second, to relax sufficient assumptions
of existing discovery methods in order to take into account multiplicity of local causal path-
ways consistent with the data (Statnikov et al., 2013; Statnikov and Aliferis, 2010). The
latter has potential to reduce the number of false negative and false positives predictions
and improve overall discovery accuracy. Third, to scale to very high-dimensional data with
many thousands of variables. Finally fourth, to achieve sufficiently good structure discovery
performance.

As a result of this work, we introduce new ultra-scalable and experimentally efficient
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local causal pathway discovery methods and conduct a comprehensive evaluation of new
and existing techniques with high-dimensional data with up to 1,000,000 variables. We use
both artificially simulated networks and in-silico gene transcriptional networks that model
the characteristics of real gene expression data. In the latter networks, we focus on discov-
ery of local causal transcriptional pathways of genes. Learning transcriptional pathways is
one of the key problems in biomedicine and is a major component of the efforts to develop
new diagnostics, vaccines and therapies that will diagnose, prevent and treat deadly human
diseases.

The remainder of the paper is organized as follows. Section 2 provides general theory
and background. Section 3 provides an overview and discussion of prior methods for active
learning of causal networks and how these methods were applied in our study. Section 4
introduces new methods for local causal pathway discovery from observational and experi-
mental data. Section 5 describes empirical assessment of methods in artificially simulated
networks and realistic in-silico gene networks of high dimensionality. The paper concludes
with Section 6, which summarizes the main findings and outlines directions for future work.

2. Background and Theory

In this section, general theory and background on causal modeling is provided.

2.1 Notation and Key Definitions

In this paper upper-case letters in italics denote random variables (e.g., A, B, C) and lower-
case letters in italics denote their values (e.g., a, b, c). Upper-case bold letters in italics
denote random variable sets (e.g., X, Y ,Z) and lower-case bold letters in italics denote
their values (e.g., x, y, z). The terms variables and vertices are used interchangeably. If
a graph contains an edge X → Y , then X is a parent of Y and Y is a child of X. An
undirected edge X — Y denotes an adjacency relation between X and Y (i.e., presence of
an edge directly connecting X and Y ). A path p is a set of consecutive edges (indepen-
dent of the direction) without visiting a vertex more than once. A directed path p from
X to Y is a set of consecutive edges with same direction (“→”) connecting X with Y , i.e.
X → ...→ Y . X is an ancestor of Y (and Y is a descendant of X) if there exists a directed
path p from X to Y . A directed cycle is a nonempty directed path that starts and ends
on the same vertex X. We consider in this work two types of graphs: (i) directed graphs
where vertices are connected only with edges “→” and (ii) directed acyclic graphs (DAGs)
without directed cycles and where vertices are connected only with edges “→”.

When the two sets of variables X and Y are conditionally independent given a set of
variables Z in the joint probability distribution P, we denote this as X ⊥ Y |Z. For nota-
tional convenience, conditional dependence is defined as absence of conditional independence
and denoted as X 6⊥ Y |Z. Two sets of variables X and Y are considered independent and
denoted as X ⊥ Y , when X and Y are conditionally independent given an empty set of
variables. Similarly, the dependence of X and Y is defined and denoted as X 6⊥ Y .

We further refer the readers to (Pearl, 2009; Spirtes et al., 2000; Neapolitan, 2003; Gly-
mour and Cooper, 1999) to review the standard definitions of conditional independence,
collider, blocked path, d-separation, and causal sufficiency that are used in this work. Be-
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low we review only several essential definitions:
Definition of local Markov condition: The joint probability distribution P over variables

V satisfies the local Markov condition for a directed acyclic graph (DAG) G =< V ,E > if
and only if for each W in V , W is conditionally independent of all variables in V excluding
descendants of W given parents of W (Richardson and Spirtes, 1999).

Definition of global Markov condition: The joint probability distribution P over vari-
ables V satisfies the global Markov condition for a directed graph G =< V ,E > if and only
if for any three disjoint subsets of variables X, Y , Z from V , if X is d-separated from Y
given Z in G then X is independent of Y given Z in P (Richardson and Spirtes, 1999).

If the underlying graph G is a DAG, then the global Markov condition is equivalent to
the local Markov condition (Richardson and Spirtes, 1999).

Definition of Bayesian network: N =< G,P > is a Bayesian network if the joint proba-
bility distribution P satisfies the local Markov condition for the DAG G.

Next we provide an operational definition of causation and of a causal Bayesian network
and local causal pathway. Notice that the following definition of causation matches the
notion of randomized controlled experiment, which is the de facto standard for assessing
macroscopic causation in the sciences (Pearl, 2009; Spirtes et al., 2000; Neapolitan, 2003;
Glymour and Cooper, 1999).

Definition of causation, direct/indirect causation: Assume that a hypothetical experi-
menter can force a variable X to take specific values (i.e., to manipulate it). We say that
X is a cause of Y (and Y is an effect of X) if the probability distribution of Y changes for
some manipulation of X. X is the direct cause of Y with respect to V , if: (i) X is a cause
of Y , (ii) some manipulation of X would result in changes in the probability distribution
of Y , no matter whether any variable in V \ {X,Y } were manipulated. If X is a direct
cause of Y relative to V , we say that there is a causal chain from X to Y . X is an indirect
cause of Y with respect to V if there is a causal chain from X to Y of length greater than
2 (Pearl, 2009; Spirtes et al., 2000; Neapolitan, 2003; Glymour and Cooper, 1999).

We define causal Markov condition and causal Bayesian network by using the original
definitions with the additional semantics that if there is an edge A→ B in G then A directly
causes B (for all A and B ∈ V) (Spirtes et al., 2000).

Definition of local causal pathway: A local causal pathway of a target variable T is the
set of its parents (direct causes) and children (direct effects) of T in the data-generative
directed graph G =< V ,E >.

Definition of passenger: A passenger is a correlate of a target variable T and is neither
a cause nor an effect of T.

Definition of local causal sufficiency: The variable set V ′ satisfies the local causal suffi-
ciency condition if and only if it contains every common cause of all variables adjacent with
a target variable T in the data-generative directed graph G =< V ,E >.

Next we provide several definitions of the faithfulness condition. This condition is es-
sential for causal discovery from data.

Definition of graph faithfulness: If all and only the conditional independence relations
that are true in P defined over variables V are entailed by the global Markov condition
applied to a directed graph G =< V ,E >, then P and G are graph faithful to one another.

A relaxed version of graph faithfulness is given in the following definition:
Definition of adjacency faithfulness: Given a directed graph G =< V ,E > and a joint
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probability distribution P defined over variables V , P and G are adjacency faithful to one
another if every adjacency relation between X and Y in G implies that X and Y are con-
ditionally dependent given every subset of V \ {X,Y } in P (Ramsey et al., 2006).

The adjacency faithfulness condition can be relaxed to focus on the specific target vari-
able of interest:

Definition of local adjacency faithfulness: Given a directed graph G =< V ,E > and
a joint probability distribution P defined over variables V , P and G are locally adjacency
faithful with respect to T if every adjacency relation between T and X in G implies that T
and X are conditionally dependent given any subset of V \ {T,X} in P (Statnikov et al.,
2013).

It is known that some violations of the adjacency faithfulness condition can be attributed
to violations of the intersection property of probability distributions (Pearl, 1997; Statnikov
et al., 2013). This leads to distributions with variables that contain equivalent information
(Statnikov et al., 2013; Lemeire, 2007). Such violations of the adjacency faithfulness condi-
tion constitute the focus of the paper because they are abundant in real biological networks,
such as transcriptional gene regulatory networks (Statnikov et al., 2013; Statnikov and Alif-
eris, 2010; Dougherty and Brun, 2006), which are commonly investigated in computational
causal discovery. For completeness, we also note that other violations of faithfulness exist
in real biological networks and other real-life distributions, e.g. Simpsons paradox (Spirtes
et al., 2000). While the latter violations may be equally important and not infrequent, they
require a principally different treatment and often discovery techniques to address them are
yet to be discovered; therefore we focus here only on violations due to information equiva-
lencies.

Definition of target information equivalency: Two subsets of variables X and Y from
V are target information equivalent with respect to a variable T iff the following conditions
hold T 6⊥X, T 6⊥ Y , T ⊥X|Y , and T ⊥X|Y (Lemeire, 2007).

For example, consider a joint probability distribution P described by a causal Bayesian
network with graph A→ B → T where A, B, and T are binary random variables that take
values {0, 1}. Given the local Markov condition, the joint probability distribution can be
defined as follows: P (A = 0) = 0.3, P (B = 0|A = 1) = 1.0, P (B = 1|A = 0) = 1.0, P (T =
0|B = 1) = 0.2, P (T = 0|B = 0) = 0.4. It follows that A and B contain equivalent infor-
mation about T and adjacency faithfulness is violated because T ⊥ B|A.

While the above example showed information equivalencies resulting from deterministic
relations, information equivalencies follow from a broader class of distributions with both
deterministic and non-deterministic information equivalencies (e.g., see Figure 1 in Stat-
nikov et al. (2013)).

Finally, we provide a definition of a near-faithfulness condition, which is going to be
one of the sufficient assumptions for the novel causal discovery algorithms described in this
work.

Definition of target information equivalency (TIE) near-faithfulness: A joint probabil-
ity distribution P and a directed graph G =< V ,E > are target information equivalency
(TIE) near-faithful to one another if all violations of faithfulness can be attributed only to
presence of target information equivalency relations in P.

3223



Statnikov, Ma, Henaff, Lytkin, Efstathiadis, Peskin, and Aliferis

Figure 1: Graphical representation of an example TIE near-faithful causal network around
a target variable T . The target variable T is shown in the middle of the network.
Variables that are shown with the same color contain equivalent information
about T . Variables in the local causal pathway of T are X1, X7, X12, X18, and
X21. Local causal discovery techniques that assume faithfulness (e.g., GLL-PC)
will output one variable of each colored group. TIE* will output all subsets
of the union of colored variables such that each subset has one variable from
each colored group. No existing method will precisely determine the correct set
{X1, X7, X12, X18, X21}.

2.2 Local Causal Pathway Discovery from Observational Data in Faithful and
Target Information Equivalency (TIE) Near-faithful Distributions

Prior research has provided sound conditional independence-based algorithms (e.g., GLL-
PC from the Generalized Local Learning (GLL) family) for discovery of local causal pathway
members from observational data under the assumptions of graph faithfulness (or local ad-
jacency faithfulness with causal Markov condition), local causal sufficiency, and correctness
of statistical decisions about dependence and independence (Aliferis et al., 2010a,b). To be
precise, these methods only output the set of direct causes and effects of the target variable,
but do not distinguish which members of the output set are direct causes and which ones are
direct effects. The latter task requires randomized experiments or determination of edge
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orientation through edge-orienting algorithms, temporal order, domain knowledge, or other
post-processing criteria.

When the distribution is TIE near-faithful but not faithful, GLL-PC and other local
causal discovery methods that assume faithfulness may lead to both false positives and
false negatives in their output. Furthermore, false positives may neither be causes nor
effects of the target variable. Consider an example causal network in Figure 1, which rep-
resents a TIE near-faithful distribution. The local causal pathway of the target variable
T consists of five variables: {X1, X7, X12, X18, X21}. Variables that are shown with circles
of the same color contain equivalent information about T . For example, since X1 and X6

contain equivalent information about T , the following relation holds: T ⊥ X1|X6. Thus,
for example, GLL-PC may erroneously eliminate X1 from the output (false negative) and
conclude that X6 is a member of the local causal pathway of T (false positive). In this
distribution, there are 1,620 sets of five variables (= 6 ’blue’ × 5 ’green’ × 6 ’red’ × 3 ’grey’
× 3 ’yellow’ variables) that contain equivalent information about T . Notice that while only
one of these 1,620 five-variable sets constitutes a local causal pathway of T , each of these
five-variable sets can be arbitrarily output by GLL-PC or another local causal discovery
algorithm that requires the same assumptions for soundness as GLL-PC, e.g. algorithms
from (Peña et al., 2007). We say in such cases that there is a multiplicity of local causal
pathways consistent with the data.

To address causal discovery in TIE near-faithful distributions, we have recently intro-
duced two sound and complete algorithms TIE* and iTIE* (Statnikov et al., 2013) (described
in Appendix F). These algorithms utilize conditional independence tests and allow discovery
of all possible local causal pathways consistent with the data. In the example in Figure 1,
these algorithms would identify all equivalency relations and output all 1,620 five-variable
sets that span over variables X1, ..., X23. To further identify direct causes and direct effects
of T in the variables output by the algorithms (the union of all equivalent sets of variables),
one would need to resort to randomized experiments both because of target information
equivalency and statistical indistinguishability of direct causes and effects in the context of
local learning.

Now consider the global network learning methods such as SGS, PC (Spirtes et al., 2000),
IC (Pearl, 2009), MMHC (Tsamardinos et al., 2006a), and LGL (Aliferis et al., 2010b) or
region-based learning methods such as PCD-by-PCD (Yin et al., 2008), that under graph
faithfulness, causal sufficiency, and correctness of statistical decisions can identify not only
adjacency relations but also some edge orientations. The graphs output by these methods
will be in general incomplete with regards to orientation because multiple graphs belong to
the same Markov equivalence class of graphs and thus cannot be distinguished with obser-
vational data alone (Spirtes et al., 2000).

3. Prior Methods and Variants

Because learning a global causal network (that spans all measured variables) is substantially
harder than learning a local causal pathway for a target variable, global methods fail to scale
as the local ones. In order to experimentally test prior methods in high dimensional set-
tings, we also introduce local versions of those that do not affect their soundness or quality.
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Overall, we have considered 58 existing methods/variants spanning three main algorith-
mic families: conditional independence constraint-based structure learning (He and Geng,
2008; Meganck et al., 2006), linear cyclic models (Hyttinen et al., 2010; Eberhardt et al.,
2010; Hyttinen et al., 2012) and Bayesian search-and-score (Pe’er et al., 2001; Sachs et al.,
2005). These methods were chosen because they (i) reflect the current state-of-the-art in
causal discovery, (ii) make use of observational and experimental data to produce directed
causal networks, and (iii) are likely to scale to data of high dimensionality, unlike early
methods for active learning of causal networks such as (Tong and Koller, 2001; Murphy,
2001). We describe the core ideas of each algorithmic family along with various variants
below.

3.1 Conditional Independence Constraint-based Structure Learning

This family includes the ALCBN (Meganck et al., 2006) method and the method due to
He and Geng (He and Geng, 2008). The main idea of these approaches is to learn an undi-
rected1 or partially directed graph from observational data (which represents the Markov
equivalence class of graphs consistent with observational data), and then perform experi-
ments to orient undirected edges. Both methods use the PC algorithm (Spirtes et al., 2000)
to obtain an undirected or partially directed graph from observational data. The methods
then use some decision criterion to select a variable for experimentation/manipulation, with
the goal of maximizing the number of edges that are oriented after the experiment. The AL-
CBN algorithm uses either the mini-max, maxi-min or Laplace decision criteria (Meganck
et al., 2006), whereas the method of He and Geng uses either the maxi-min or maximum
entropy criteria (He and Geng, 2008). Once the variable is selected and manipulated, they
perform a statistical independence test between the manipulated variable and each of its
unoriented adjacencies in the graph, using experimental data. Adjacent variables that are
associated with the manipulated variable are deduced to be direct effects, and all other ad-
jacencies are direct causes (Spirtes et al., 2000). The ALCBN method repeats this process
until all edges in the graph are oriented. The method of He and Geng first partitions the
graph into chain components which are only connected by directed edges and orients each
of these components separately. In addition to original methods, we also explored variants
of these methods that restrict experimentation to the local causal pathway around a vari-
able of interest/target or the chain component containing the variable of interest/target. A
detailed list of all employed 24 methods/variants from this family (denoted as ALCBN and
HE-GENG, accordingly) is given in Table A1 in Appendix A.

3.2 Linear Cyclic Models

This family includes three methods based on linear cyclic models with latent variables (Hyt-
tinen et al., 2010; Eberhardt et al., 2010; Hyttinen et al., 2012). The main idea of these

1. The original methods considered using PC to learn a partially directed graph from observational data
and then using experiments to further orient edges. Since orientation of PC is by design affected by
errors in the adjacency structure, we also included in this work variants of these methods that work from
the undirected graph obtained by PC from observational data.
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approaches is to assume that all relations between variables are linear and can therefore be
represented by an effects matrix. Discovering the causal structure then amounts to find-
ing the coefficients of the effects matrix, which can be obtained by manipulating variables
and deriving linear constraints on the effects. Specifically, these constraints are combined
into a linear system and solved to obtain the coefficients of the effects matrix. Optionally,
assuming faithfulness enables the use of the PC algorithm (Spirtes et al., 2000) on the
manipulated and possibly observational data to learn adjacencies between variables. Non-
adjacent variables imply additional constraints on the effects matrix, which are added to
the linear system. The adjacencies also define an optimal order of variables to manipulate,
which can minimize the number of required experiments. The derivation of constraints on
the effects matrix and solution of the resulting linear system can be performed using any of
the methods proposed by the authors, which we denote as LLC1 (Eberhardt et al., 2010),
LLC2 (Hyttinen et al., 2010) and LLC3 (Hyttinen et al., 2012) (“LLC” stands for “linear,
latents, cyclic”). The resulting effects matrix requires further filtering to obtain edges in
the output graph. We used several approaches recommended by the authors: (i) removing
all edges whose coefficients are less than a small fixed threshold, (ii) estimating the null
distribution of the coefficients by rerunning the algorithm many times on permuted data
and keeping only edges whose coefficients are statistically significant, and (iii) rerunning
the algorithm a number of times on data sampled with replacement and keeping only edges
whose mean coefficients are higher than their standard deviation. While the LLC method
uses data for all variables in the network in order to estimate the effects matrix and produce
the resulting causal graph, we limited the experiments only to variables with univariate as-
sociation with the target (these methods have names beginning with “LLC”). In addition,
we also experimented by limiting input data only for variables with univariate association
with the target (these methods have names beginning with “UNIV-LLC”). A detailed list
of all employed 32 methods/variants from this family is given in Table A2 in Appendix A.

3.3 Bayesian Search-and-score

This family includes the Biolearn method (Pe’er et al., 2001; Sachs et al., 2005). The main
idea of this method is to define a space of candidate models, along with a scoring function
that measures how well each model fits that data. Specifically, the score evaluates the
posterior probability of a graph given the data. If given only observational data, graphs
with the same undirected graph structure and unshielded colliders will have the same score
(Neapolitan, 2003), and thus one can learn at best an equivalence class of graphs. Given
experimental data, a score for each directed graph can be constructed by using the fact that
the score decomposes into the local contributions of each variable. For each variable, only
samples from experimental datasets where the variable was not manipulated were used, and
the contributions of each variable were combined into a global score. This method can yield
different scores for different orientations of the same graph structure, and thus can be used
to evaluate how well directed graphs fit the combination of observed and manipulated data.
Computing scores for all possible directed graphs is exponential in the number of variables,
and thus it is usually not feasible to find the graph with the absolute highest score. There-
fore, heuristics such as Greedy Hill-Climbing are used to limit the search space to a feasible

3227



Statnikov, Ma, Henaff, Lytkin, Efstathiadis, Peskin, and Aliferis

number. This method starts with an initial graph structure (such as the empty graph) and
computes the score for closely related graphs obtained by adding, removing or reversing
different edges. It selects the graph with the highest score, and repeats the procedure until
it has found a local maximum. The entire process is repeated many times (e.g., 500), and
the final model consists of all the edges present in a significant portion (85%) of the graphs.
We used two variants of this method: one with the Normal Gamma scoring function (de-
noted as BIOLEARN.NG) and another one with the BDE scoring function (denoted as
BIOLEARN.BDE).

4. New Methods

Below we provide new algorithms for local causal discovery. These algorithms rely on ob-
servational data for identifying members of the local causal pathway of a target variable;
however all orientation decisions are based on experimental data exclusively. While prior
research has provided theoretically sound approaches for orienting edges from observational
data (e.g., V-structure based orientation in PC algorithm (Spirtes et al., 2000)), the empir-
ical accuracy of these methods is affected by errors in constructing undirected skeleton and
violations of faithfulness. We provide in Appendix D and Table D1 an empirical comparison
of orientation approaches that concludes that significantly higher quality of orientation can
be achieved from experimental data.

4.1 Algorithm ODLP*

In order to facilitate comprehension of the general methodology, we first address the prob-
lem of local causal pathway discovery in faithful distributions. The algorithm ODLP* is
shown in Figure 2.

Theoretical analysis of the algorithm correctness: ODLP* is sound and com-
plete under the sufficient assumptions of (i) local adjacency faithfulness; (ii) causal Markov
condition; (iii) local causal sufficiency; (iv) acyclicity of the data-generative graph; and (v)
correctness of statistical decisions. The proof of correctness relies on a previously estab-
lished theoretical result showing that GLL-PC algorithms can identify members of the local
causal pathway (direct causes and direct effects of the target variable) from observational
data under the above stated assumptions (Aliferis et al., 2010a,b). In principle ODLP* can
call another sound and complete algorithm for identification of local causal pathway mem-
bers in step 1. Notice however, that algorithms for identification of local causal pathway
members (such as GLL-PC) do not differentiate between direct causes and direct effects in
the local causal pathway, and in general this task has to be accomplished with additional
experimental data, as outlined in steps 2 and 3 of ODLP*.

Trace of the ODLP* algorithm : Consider running the ODLP* algorithm on obser-
vational data generated from the causal graph shown in Figure 2. We aim to identify the
local causal pathway of the target variable T. In step 1 of ODLP*, GLL-PC will identify
that variables X1, X2, X3, X4, X5 belong to the local causal pathway of T , however would
not define causal role of any of these variables. If it is possible to manipulate T , we would
do so (step 2.a) and reveal that X4 and X5 change due to manipulation of T , and thus are
direct effects of T (step 2.b); the remaining variables X1, X2, andX3 thus have to be direct

3228



Hybrid Observational and Experimental Local Causal Pathway Discovery

EFFICIENT METHODS FOR LOCAL CAUSAL PATHWAY DISCOVERY 

 

9 

 

manipulation of X4 (step 3.b); therefore X4 is a direct effect of T (step 3.b). When steps 3.a and 3.b are 

applied to other variables in the local causal pathway, we will also find two additional direct causes of T 

(X2 and X3) and one additional direct effect (X5) of T. 

Analysis of the algorithm’s experimental strategy and its efficiency: The experimental strategy 

of ODLP* is efficient because it relies only on single-variable manipulation experiments that are 

expected to generate a small number of samples in order to assess univariate association of the 

manipulated variable with all other variables. Furthermore, the algorithm tries to minimize the number 

of single-variable manipulation experiments and will conduct only one experiment if T can be 

manipulated (step 2.a). If it is not possible to manipulate T (e.g., T is a disease in humans), it will conduct 

the same number of experiments as the number of variables in the output of GLL-PC (set V). In the most 

general case, it is impossible to further reduce this number of experiments because every variable in V 

can potentially be a direct cause of T and has to be confirmed by an experiment. We note that situations 

exist that can lead to additional savings in experiments (e.g., when X, a direct effect of T, is causing Y, 

another direct effect of T, then manipulation of X would also reveal that Y is an effect of T and save an 

experiment) and we do check for them in the algorithm implementation, although they are not 

described in the algorithm pseudo-code in order to help understanding of its basic principles. Finally, it is 

also worthwhile to point out that the ODLP* algorithm can incorporate background knowledge both 

during the stage of learning the local causal pathway members (step 1) and when determining the 

causal role of the involved variables (steps 2 and 3), which can potentially lead to further reducing the 

number of required manipulation experiments.  

We note that ODLP* does not represent a radical departure over previously known algorithms 

(it is a modest extension of preexisting ideas), however it is essential to conceptually describe the much 

more complex and generally applicable algorithm ODLP.  

 

Algorithm ODLP*  
 

· Input: 

× Observational data D
O
, including a target variable T; 

× Experimental protocols/methods to manipulate one variable at a 

time and generate experimental data D
E
 that quantifies response 

of the system to the manipulation. 

· Output: Local causal pathway of T. 
 

1. Apply GLL-PC or another sound and complete method to the 

observational data D
O
 to identify the set of variables V that are 

members of the local causal pathway of T. 

2. If it is possible to manipulate T,  

a. Manipulate T and obtain experimental data D
E
. 

b. Mark all variables in V that change in D
E
 due to manipulation of T 

as “direct effects” and mark remaining variables in V as “direct 

causes”. 

3. Else 

a. Manipulate a variable X in V to obtain experimental data D
E
. 

b. If T changes in D
E
 due to manipulation of X, mark X as a “direct 

cause”; otherwise mark X as a “direct effect”. 

c. Repeat steps 3.a and 3.b for all variables in V. 

4. Return the local causal pathway of T. 
 

X2

X1 X3

X5X4

T

 

 

Figure 2: Pseudo-code of the ODLP* algorithm for faithful distributions. Left: Pseudo-code of the algorithm. Right: 

Graphical representation of an example causal network around a target variable T. Variables are shown with white 

circles, and edges represent direct causal influences. Variables in the local causal pathway of T are X1, X2, X3, X4, and X5. 

 

Figure 2: Pseudo-code of the ODLP* algorithm for faithful distributions. Left: Pseudo-
code of the algorithm. Right: Graphical representation of an example causal
network around a target variable T . Variables are shown with white circles, and
edges represent direct causal influences. Variables in the local causal pathway of
T are X1, X2, X3, X4, and X5.

causes of T (step 2.b). On the other hand, if T cannot be manipulated, we can manipulate
X1 (step 3.a) and observe that T changes due to manipulation of X1 (step 3.b); therefore
X1 is a direct cause of T (step 3.b). If we consider manipulating X4 (step 3.a), we would
observe that T does not change due to manipulation of X4 (step 3.b); therefore X4 is a
direct effect of T (step 3.b). When steps 3.a and 3.b are applied to other variables in the
local causal pathway, we will also find two additional direct causes of T (X2 and X3) and
one additional direct effect (X5) of T .

Analysis of the algorithm’s experimental strategy and its efficiency : The ex-
perimental strategy of ODLP* is efficient because it relies only on single-variable manipula-
tion experiments that are expected to generate a small number of samples in order to assess
univariate association of the manipulated variable with all other variables. Furthermore,
the algorithm tries to minimize the number of single-variable manipulation experiments and
will conduct only one experiment if T can be manipulated (step 2.a). If it is not possible to
manipulate T (e.g., T is a disease in humans), it will conduct the same number of exper-
iments as the number of variables in the output of GLL-PC (set V ). In the most general
case, it is impossible to further reduce this number of experiments because every variable
in V can potentially be a direct cause of T and has to be confirmed by an experiment. We
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note that situations exist that can lead to additional savings in experiments (e.g., when X,
a direct effect of T , is causing Y , another direct effect of T , then manipulation of X would
also reveal that Y is an effect of T and save an experiment) and we do check for them in the
algorithm implementation, although they are not described in the algorithm pseudo-code in
order to help understanding of its basic principles. Finally, it is also worthwhile to point out
that the ODLP* algorithm can incorporate background knowledge both during the stage of
learning the local causal pathway members (step 1) and when determining the causal role
of the involved variables (steps 2 and 3), which can potentially lead to further reducing the
number of required manipulation experiments.

We note that ODLP* does not represent a radical departure over previously known algo-
rithms (it is a modest extension of preexisting ideas), however it is essential to conceptually
describe the much more complex and generally applicable algorithm ODLP.

4.2 Algorithm ODLP

A more general algorithm ODLP shown in Figure 3 addresses the problem of local causal
pathway discovery in TIE near-faithful distributions. This algorithm is specifically designed
for situations when the target variable T can be manipulated.

Theoretical analysis of the algorithm correctness: The following theorem states
correctness of ODLP; the proof is given in Appendix G. Specifically, the theorem shows
that under certain assumptions, ODLP will return all and only members of the true local
causal pathway of a target variable T.

Theorem 1 ODLP is sound under the following sufficient assumptions: (i) TIE near-
faithfulness (as a relaxation of local adjacency faithfulness to allow for target informa-
tion equivalency relations); (ii) causal Markov condition; (iii) local causal sufficiency; (iv)
acyclicity of the data-generative graph; and (v) correctness of statistical decisions.

In non-technical terms, the first two assumptions mean that with the exception of empirical
target information equivalency relations, there is a direct correspondence between the data
and a directed acyclic data-generative graph in terms of statistical relations (specifically,
there is an edge between two variables if and only if they have association in the data condi-
tioned on every subset of other variables). The third assumption means that every common
cause of two or more measured variables is also measured in the dataset. If this assump-
tion is violated, direct causation cannot be discovered by using observational data together
with experiments limited to single-variable manipulations, as demonstrated in Figure 1 of
(Eberhardt et al., 2010). The fourth assumption means that there are no feedback cycles
in the graph. The fifth assumption means that determination of variable (in)dependency
in the population from the available data sample is correct.
Trace of the ODLP algorithm : Consider running ODLP on data generated from the
network in Figure 1. The algorithm aims to identify the local causal pathway of the target
variable T . In step 1, TIE* will find 1,620 local causal pathways of T consistent with the
data. The union of these data-consistent pathways (set V ) will be variables X1, ..., X23

(step 2). Then in step 3, ODLP will form five equivalence clusters of variables based on
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Algorithm ODLP 

 

• Input: 

⋅ Observational data D
O
, including a target variable T; 

⋅ Experimental protocols/methods to manipulate one variable at a time and generate experimental data D
E
 

that quantifies response of the system to the manipulation. 

• Output: Local causal pathway of T. 

 

1. Apply TIE* or iTIE* to the observational data D
O
 to identify all local causal pathways of T consistent with the 

data. 

2. V � Union of all variables that participate in local causal pathways of T consistent with the data (this is a 

draft of the local causal pathway). 

3. Form equivalence clusters over variables in V such that each equivalence cluster contains variables that have 

equivalent information about T (this can be accomplished directly from the output or the operation of TIE* or 

iTIE*). 
 

Identify effects of T 

4. Manipulate T and obtain experimental data D
E
. 

5. Mark all variables in V that change in D
E
 due to manipulation of T as “effects”.  

 

Identify direct and other causes of T 

6. Repeat 

a. If there is an equivalence cluster that contains a single unmarked variable X and all marked variables in 

this cluster (if any) are only passengers and/or effects, then mark X as a “direct cause” and go to step 6. 

b. Select (according to some heuristic function or at random) an unmarked variable X from an equivalence 

cluster. 

c. Manipulate X and obtain experimental data D
E
. 

d. If T does not change in D
E
 due to manipulation of X, mark X as a “passenger” and mark all other non-

effect variables that change in D
E
 due to manipulation of X as “passengers”; otherwise mark X as a 

“cause”. 

7. Until there are no equivalence clusters with unmarked variables. 

8. For every cause X, mark X as a “direct cause” if there exist no other cause in the same equivalence cluster 

that changes due to manipulation of X; otherwise mark X as an “other cause”. 
 

Identify direct effects of T 

9. Repeat 

a. If there is an equivalence cluster that contains a single effect variable X which has neither been marked 

as “other effect” nor as “direct effect” and other effect variables in this cluster (if any) are only other 

effects, then mark X as a “direct effect” and to go step 9. 

b. Select (according to some heuristic function or at random) an effect variable X that has neither been 

marked as “other effect” nor as “direct effect”. 

c. Manipulate X and obtain experimental data D
E
. 

d. Mark all effect variables that change in D
E
 due to manipulation of X and belong to the same equivalence 

cluster as “other effects”. 

10. Until all effect variables are either marked as “other effects” or “direct effects”. 

11. Return the local causal pathway of T, i.e. only direct causes and direct effects of T. 

 

Figure 3: Pseudo-code of the ODLP algorithm for TIE near-faithful distributions. Notice that even though the 

algorithm outputs the local causal pathway of T, during its execution it also discovers the causal role of other 

variables that will provide additional clues about underlying mechanisms. Steps 4, 6.c, 9.c provide an interface of 

the algorithm with the external world through experiments that are conducted by an experimentalist, and are 

shown with dark grey highlighting. 

 

Figure 3: Pseudo-code of the ODLP algorithm for TIE near-faithful distributions. Notice
that even though the algorithm outputs the local causal pathway of T , during its
execution it also discovers the causal role of other variables that will provide ad-
ditional clues about underlying mechanisms. Steps 4, 6.c, 9.c provide an interface
of the algorithm with the external world through experiments that are conducted
by an experimentalist, and are shown with dark grey highlighting.
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information that they provide about the T (the clustering will coincide with the color of
highlighting of variables in Figure 1). In steps 4 and 5 the algorithm will manipulate T
and identify its effects X18, ..., X23. Then the algorithm will proceed to identification of
direct/other causes (“other causes” are defined as causes that are not identified as direct
causes, they could be indirect causes or both direct and indirect causes at the same time) of
T in the candidate set of variables X1, ..., X17. There is no equivalence cluster that satisfies
criterion of step 6.a, so ODLP will proceed to step 6.b and select a variable for manipulation
(for example without loss of generality, X6) in step 6.c. The algorithm will then identify
that X6 is a passenger and so are X3 and X4 (step 6.d). Steps 6.a-6.d will be repeated until
the causal role of every non-effect variable is deciphered. Next, the algorithm will conclude
that X1, X7, and X12 are direct causes of T and X2, X8, and X9 are other causes (step 8).
Then ODLP will proceed to the identification of direct effects and other effects of T in the
set of effects (X18, ..., X23). Similarly, “other effects” are effects that are not identified as
direct effects, they could be indirect effects or both direct and indirect effects at the same
time. There is no equivalence cluster that satisfies criterion of step 9.a, so the algorithm
will proceed to step 9.b and select a variable for manipulation (for example without loss of
generality, X19) in step 9.c. In step 9.d ODLP will identify that X20 is other effect of T and
repeat iterations until all effects are either marked as “other effects” (X19, X20, X22, and
X23) or “direct effects” (X18 and X21). Thus the local causal pathway of T (that consists
of direct causes X1, X7, X12 and direct effects X18, X21) has been identified correctly.

Analysis of the algorithm’s experimental strategy and its efficiency : The
strategy of ODLP relies on single-variable manipulation experiments and usually requires
a small number of samples from each experiment to assess univariate associations of the
manipulated variable with other variables. In general, the number of experiments necessary
for identification of the local causal pathway would be manageable for experimentalists,
although it varies and depends on the structure of the local causal pathway. The number
of experiments for the best and worst case is 1 and |V | + 1, respectively, where the set V
is the union of all variables that participate in local causal pathways of T consistent with
the data. In any case, the number of experiments would be manageable because V in real
distributions, even in high-throughput datasets, is typically between 10 and 200 variables,
as we have observed by running TIE* in > 30 datasets (Statnikov et al., 2013; Statnikov
and Aliferis, 2010).

An important principle behind minimization of experiments is to first manipulate in
step 6.c passengers of T that are causing many other passengers of T . For example, ma-
nipulation of X6 in Figure 1 would lead to changes in X3, X4 but not in T . Therefore, X3,
X4, and X6 are not causes of T . The algorithm can also infer from manipulation of T that
X3, X4, and X6 do not change and thus are not effects of T . Therefore, they are passen-
gers. The algorithm determined the causal role of X3, X4, and X6 by manipulating only
one of these variables. However, the graphical structure is not known when the algorithm
performs experiments, and thus it has to resort to heuristics to manipulate first variables
that are likely to yield savings in experiments. The algorithm uses a partial network-based
heuristic that chooses a variable that has the highest topological order relative to T . The
topological order can be established from constraints learned from experimental data, as
well as from domain knowledge, temporal order information, computational edge orienta-
tion algorithms based on observational data, and other sources. In addition to the above
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Network
Name

Description Construction Methodology
Num.

Variable
Num.
Edges

Num.
Samples
in Obs.
Data

Num.
Samples
in Exp.
Data

Reference

REGED

Resimulated transcriptional gene
regulatory network from gene
expression data of human lung
cancer patients. Variables
represent expression levels of
genes, and target variable
represents lung cancer subtype.

Used a publicly available
microarray gene expression
dataset to learn a network
structure of transcriptional
interactions. Parameterized
the network using non-linear
regression.

1,000 1,148 500 100
Guyon
et al.
(2008)

ECOLI

Resimulated transcriptional gene
regulatory network based on the
current knowledge of regulation
in E.Coli. Variables represent
expression levels of genes.

Used large-scale experimental
data to infer the network
structure, and then used
principles of thermodynamics
and molecular kinetics to
parameterize the network.

1,565 3,648 1000 200

Marbach
et al.

(2009);
Schaffter

et al.
(2011)

YEAST

Resimulated transcriptional gene
regulatory network based on the
current knowledge of regulation
in S. Cerevisiae. Variables
represent expression levels of
genes.

Same as above 4,441 12,873 1000 200

Marbach
et al.

(2009);
Schaffter

et al.
(2011)

P1000

Artificially simulated network,
where the target information
equivalency phenomenon is
present in the local causal
pathway of the target variable.
As a result, the target variable
has multiple 1,620 data-consistent
local causal pathways.

Manually generated graph of
the network and parameterized
using Gaussian distribution.

1,000 51 1000 20 Novel

P1M
Large-scale version of P1000
network with 1,000,000 variables.

Tiled with P1000 as the basic
component with inter-tile
connections.

1,000,000 81,969 1000 20 Novel

Table 1: Description of networks and data used in empirical experiments.
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heuristic, other heuristic functions can be used. We refer interested readers to Appendix
H for more detailed examples explaining ODLP’s experimental strategy and its efficiency.
Similarly, prioritizing manipulation of direct effects in step 9.c allows saving experiments by
avoiding manipulation of indirect effects. Finally, it is also worthwhile to point out that the
ODLP algorithm can incorporate background knowledge both during the stage of drafting
the local causal pathway (step 1) and when determining the causal role of variables (steps
4-10), which can potentially lead to further reducing the number of required experiments.

We also note that in settings when the assumptions of the algorithm are violated and
TIE* outputs false positives, one may choose not to perform step 6.a and always manipulate
a single unmarked variable in the equivalence cluster to ensure that it is indeed the cause.
Otherwise, a false positive variable (e.g., passenger in the equivalence cluster consisting of
one variable) will be erroneously classified as “direct cause” in step 6.a. However, when the
sufficient assumptions of the algorithm hold, step 6.a does not lead to errors and provides
savings in the number of experiments. Similarly, step 9.a can be omitted which leads to
improving robustness in handling false positives but decreasing experimental efficiency.

5. Empirical Experiments

This section describes the data used in the empirical experiments, implementation of dif-
ferent causal discovery algorithms, performance metric and statistical comparison methods,
and results of the empirical experiments.

5.1 Networks and Data

The networks and data used in empirical experiments are summarized in Table 1. The
REGED, ECOLI, and YEAST networks produce resimulated gene expression data that
resembles data from real transcriptional gene regulatory networks. Since these networks
have been previously published (Guyon et al., 2008; Marbach et al., 2009; Schaffter et al.,
2011), we do not describe them in detail here. We will only mention that variables in
ECOLI and YEAST networks (genes) typically have very few (0-2) direct causes (direct
upstream regulators), and some variables (transcription factor genes) have a large number
of direct effects (direct downstream targets) that can even reach low hundreds. This is
consistent with the principles of transcriptional regulation. The P1000 network is intended
i) to resemble data from real transcriptional gene regulatory networks which are generally
very sparse and ii) to demonstrate the effect of multiplicity of causal pathways consistent
with the data, a phenomenon which is omni-present in real biological networks (Statnikov
et al., 2013; Statnikov and Aliferis, 2010; Dougherty and Brun, 2006). This network was
obtained by parameterizing the local causal pathway structure shown in Figure 1 using
linear Gaussian distribution and adding unconnected Gaussian variables, so that the total
number of variables is 1,000. The parameterization of the network is provided in Table
B1 in Appendix B. The P1M network was obtained by “tiling” the P1000 network one
thousand times. The structural and probabilistic properties of individual tiles were similar
to that of P1000, so that the distribution of P1M network resembles the distribution of the
P1000 network. More specifically, one thousand copies (i.e. tiles) of the P1000 network were
generated, each copy with the set of vertices Vi and the set of edges Ei that are copies of
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VP1000 and EP1000, the vertex set and the edge set of the original P1000 network. Then,
the tiles were interconnected with edges between Vi to Vi+1. The vertices that received
inter-tile edges were re-parameterized to preserve their marginal distribution, following the
approach described in (Tsamardinos et al., 2006b). See Figure B1 in Appendix B for
visualization of the fragment of the connected components of the P1M network.

We generated 1,000 samples for the observational datasets for all networks, except for
REGED because this network has been previously used with 500 samples in the international
challenge on Causation and Prediction (Guyon et al., 2008). Prior to running experiments,
we generated experimental datasets by manipulating each variable in every network. The
sample size for experimental datasets was minimized for each network over {20, 100, 200} in
order to be realistic and at least have sufficient power to estimate univariate associations of
manipulated variables with other variables in the network. As a result, we used 100 samples
in REGED, 200 in ECOLI and YEAST, and 20 in P1000 and P1M networks for experimental
datasets. All generated experimental datasets were saved in a working database. Causal
pathway discovery methods could query this database to obtain an experimental dataset
where the variable of interest was manipulated. The decoupling of the two most time
consuming components of experiments, simulation of experimental data and running causal
discovery algorithms, allowed us to setup a robust algorithm evaluation environment (Figure
4). All data for the simulations is available on the manuscript supplemental website: http:
//ccdlab.org/odlp.html.

Since we are focusing here on discovery of local causal pathways, the next step is to
select target variables of interest. The networks REGED, P1000, and P1M have designated
target variables. However, there are no designated targets in YEAST and ECOLI networks.
Therefore, we selected four variables from each network (the number of selected variables
was limited by computational resources of the study) and designated them as targets. These
four variables were selected randomly from the subset of transcription factors (that play
key regulatory role in these networks) such that they represent local causal pathways of
varying sizes for each network. This also allows assessing sensitivity of methods to the size
of the local causal pathway. More details are given in Table 2.

5.2 Local Causal Pathway Discovery Methods and Implementations

In addition to ODLP, we evaluated 58 existing methods/variants for active learning of causal
networks that are described in Section 3. ODLP and conditional independence constraint-
based structure learning methods ALCBN and HE-GENG were implemented in Matlab and
used the implementation of Fisher’s Z test of conditional independence from the Causal Ex-
plorer library (Statnikov et al., 2010). ODLP was run using the iTIE* algorithm to find
all data-consistent local causal pathways, parameter max-k (denoting maximum cardinality
of the conditional test) set to 3, and 0.05 alpha for assessing dependence/independence.
ALCBN and HE-GENG used the implementation of the PC algorithm from the Causal
Explorer library (Statnikov et al., 2010) and were run with maximum cardinality of condi-
tional tests set to 2 and 0.05 alpha for assessing dependence/independence. We tried to run
the algorithms with larger cardinality of conditional tests, but it was not computationally
feasible because PC did not terminate in most cases in less than one month of single-core
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Figure 4: Data generation process/experimental setup. The depicted experimental setup allowed to decouple data 
generation and running of algorithms, therefore providing a robust algorithm evaluation environment. Figure 4: Data generation process/experimental setup. The depicted experimental setup

allowed to decouple data generation and running of algorithms, therefore provid-
ing a robust algorithm evaluation environment.

time. We used the original authors’ R implementations of methods based on linear cyclic
models (obtained directly from the authors) and improved their efficiency in Matlab, e.g. to
solve very large-dimensional sparse linear systems that cannot be solved easily in R due to
current memory restrictions. Finally, we used the original authors’ software implementation
of the Bayesian search-and-score method. Table E1 in Appendix E provides information
and location of publicly available software implementations of the above discovery methods.

5.3 Performance Metrics and Statistical Comparison

Assessment of the performance of algorithms was based on the following metrics: (i) sen-
sitivity, (ii) specificity, and (iii) number of required experiments. Sensitivity and speci-
ficity are metrics to assess the accuracy of structure learning, and they were computed
for the task of discovery of all direct causes and all direct effects of the target variable
T . Sensitivity and specificity range from 0 to 1 (or 0% to 100%), with larger values
denoting better performance. We also combined sensitivity and specificity into a single
metric, the Euclidean distance from the point with sensitivity and specificity equal to

1:

√
(1−sensitivity)2+(1−specificity)2√

2
. The latter metric is referred to as “distance” in the

manuscript and it ranges from 0 to 1 (or 0% to 100%), with larger values denoting worse
performance. In addition to using the raw values for the number of experiments, we also
normalized this metric by dividing it by the number of variables in the local causal path-
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Network
Name

Target Variable T
Num. Variables in
the Local Causal

Pathway of T

Num.
Direct
Causes

of T

Num.
Direct
Effects
of T

REGED
Adenocarcinoma vs. squamous
lung cancer subtype.

15 2 13

ECOLI

Expression levels of gene agaR 8 0 8
Expression levels of gene allR 10 0 10
Expression levels of gene zur 6 0 6
Expression levels of gene lexA 54 0 54

YEAST

Expression levels of gene
YBL005W

30 1 29

Expression levels of gene
YFL044C

15 0 15

Expression levels of gene
YLR014C

31 0 31

Expression levels of gene
YKL112W

300 2 298

P1000 Artificial 5 3 2

P1M Artificial 5 3 2

Table 2: Description of target variables chosen from each network and their local causal
pathways. As mentioned in the manuscript, the small number of direct causes of
the target variables in ECOLI and YEAST networks is representative of these two
networks and principles of transcriptional regulation.

way of T or by the number of variables in the entire network. To test whether the
differences in distance metric between the nominally best performing algorithm and other
algorithms are non-random for a specific local causal pathway discovery task, we used a sta-
tistical permutation-based test adapted from (Menke and Martinez, 2004). We obtained a
null distribution for each comparison task and computed the corresponding p-value. When
the p-values are not statistically significant at 0.05 alpha level after adjusting for multi-
ple comparisons using the methodology of (Benjamini and Hochberg, 1995; Benjamini and
Yekutieli, 2001), the resulting algorithms are deemed to have statistically comparable dis-
tance with the algorithm with best distance value. We refer to such values of distance metric
as ‘optimal’ for a specific local causal pathway discovery task relative to the tested methods.

5.4 Computing Resources and Execution of Experiments

To run the experiments, we used three high-performance computing (HPC) clusters avail-
able to us at the time of experiments. These HPC clusters included: the Asclepius cluster
of the NYU Langone Medical Center, the Bowery cluster of the New York University main
campus, and the BuTina cluster of the New York University Abu Dhabi campus in the
United Arab Emirates. Asclepius had ∼ 1, 000 Intel x86 processing cores and 4TB of RAM
distributed among the cluster’s compute nodes. The Bowery cluster had ∼ 2, 500 cores and
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9TB of RAM total among all the nodes. The BuTina cluster had ∼ 6, 400 latest Intel x86
processing cores with a total of 26TB of RAM.

In addition to distributing the tasks of running various causal pathway discovery algo-
rithms for various networks/target variables among compute cores of the cluster, we also of-
ten divided the individual tasks (of running a single algorithm for a specific network/target)
into many sub-tasks. For example, Biolearn requires running Greedy Hill-Climbing proce-
dure 500 times, all of which can be run independently on individual cores. In many cases,
the independent nature of the sub-tasks enabled linear speedup. In order to complete ex-
ecution of experiments with available resources, we imposed three termination criteria: (i)
30 day single-core time limit for tasks that cannot be easily parallelized; (ii) 3,000 day
multi-core time limit for tasks that can be further parallelized (spread over 100 cores); and
(iii) 48 GB RAM. We used 500-700 cores at a time over 2.5 calendar years. We estimate
that the final results reported here required 800 core-years of computation.

5.5 Results

The detailed results of experiments are provided in Table C1 (for REGED, P1000, and
P1M networks), Table C2 (for ECOLI network), and Table C3 (for YEAST networks) in
Appendix C. These tables provide values of sensitivity, specificity, distance, and number of
experiments for each method and local causal pathway discovery task. As mentioned in the
previous sub-section, in some cases experiments were terminated due to extensive computa-
tional resource requirements or, for Biolearn, failure of the original software implementation
of the method. These cases are marked in the tables with special codes T1, T2, T3, T4,
and the legend is given in Table C1.

Before reporting detailed analysis of the results, it is worth noting that the ODLP algo-
rithm resulted in better performance than any other algorithm when applied to the P1000
dataset. This is partly due to the fact that TIE* and the ODLP algorithm specifically
address local pathway multiplicity, which is present in P1000 dataset. On the other hand,
many other algorithms rely on the PC algorithm, which assumes faithfulness.

Analysis based on the counts of successes/failures: In the following anal-
yses, presented in Figures 5-8, we provide for each method the number of counts of suc-
cesses/failures (according to various metrics) within 11 local causal discovery pathway tasks.

Figure 5 reports for each method the number of local causal pathway discovery tasks
where a method either exceeded available computational resources or its original software
implementation failed to run. ODLP is the only method that was able to run for all 11 local
causal pathway discovery tasks. No other method was able to run for P1M network with
1,000,000 variables. However, within each algorithmic family except for Biolearn, there are
methods that were able to run on the remaining 10 local causal pathway discovery tasks
(represented by a failure number of 1). From ALCBN and HE-GENG families, these are
mostly methods restricted to the local neighborhood of the target variable. From LLC fam-
ily, these are methods that use only variables with significant univariate association with the
target variable. This observation motivates the approach of using local methods for solv-
ing local causal pathway discovery problems. Also, for ALCBN and HE-GENG methods
that discover the global network, the ones that use undirected PC skeleton (ALCBN.S. or

3238



Hybrid Observational and Experimental Local Causal Pathway Discovery

EFFICIENT METHODS FOR LOCAL CAUSAL PATHWAY DISCOVERY 

 

19 
 

ODLP
method

ALCBN 
methods/variants

HE-GENG 
methods/variants

LLC 
methods/variants

BIOLEARN
methods/variants

O
D

LP
A

LC
B

N
.S

.M
IN

IM
A

X
A

LC
B

N
.S

.M
A

X
IM

IN
A

LC
B

N
.S

.L
A

P
LA

C
E

A
LC

B
N

.D
.M

IN
IM

A
X

A
LC

B
N

.D
.M

A
X

IM
IN

A
LC

B
N

.D
.L

A
P

LA
C

E
A

LC
B

N
-L

N
.S

.M
IN

IM
A

X
A

LC
B

N
-L

N
.S

.M
A

X
IM

IN
A

LC
B

N
-L

N
.S

.L
A

P
LA

C
E

A
LC

B
N

-L
N

.D
.M

IN
IM

A
X

A
LC

B
N

-L
N

.D
.M

A
X

IM
IN

A
LC

B
N

-L
N

.D
.L

A
P

LA
C

E
H

E-
G

EN
G

.S
.M

IN
IM

A
X

H
E-

G
EN

G
.S

.E
N

TR
O

P
Y

H
E-

G
EN

G
.D

.M
IN

IM
A

X
H

E-
G

EN
G

.D
.E

N
TR

O
P

Y
H

E-
G

EN
G

-L
C

C
.S

.M
IN

IM
A

X
H

E-
G

EN
G

-L
C

C
.S

.E
N

TR
O

P
Y

H
E-

G
EN

G
-L

C
C

.D
.M

IN
IM

A
X

H
E-

G
EN

G
-L

C
C

.D
.E

N
TR

O
P

Y
H

E-
G

EN
G

-L
N

.S
.M

IN
IM

A
X

H
E-

G
EN

G
-L

N
.S

.E
N

TR
O

P
Y

H
E-

G
EN

G
-L

N
.D

.M
IN

IM
A

X
H

E-
G

EN
G

-L
N

.D
.E

N
TR

O
P

Y
LL

C
1

.T
H

R
LL

C
1

.A
LP

H
A

LL
C

1
.F

D
R

LL
C

2
.T

H
R

LL
C

2
.A

LP
H

A
LL

C
2

.F
D

R
LL

C
3

.T
H

R
LL

C
3

.B
O

O
TS

TR
A

P
LL

C
2

-F
1

.T
H

R
LL

C
2

-F
1

.A
LP

H
A

LL
C

2
-F

1
.F

D
R

LL
C

2
-F

2
.T

H
R

LL
C

2
-F

2
.A

LP
H

A
LL

C
2

-F
2

.F
D

R
LL

C
3

-F
2

.T
H

R
LL

C
3

-F
2

.B
O

O
TS

TR
A

P
U

N
IV

-L
LC

1
.T

H
R

U
N

IV
-L

LC
1

.A
LP

H
A

U
N

IV
-L

LC
1

.F
D

R
U

N
IV

-L
LC

2
.T

H
R

U
N

IV
-L

LC
2

.A
LP

H
A

U
N

IV
-L

LC
2

.F
D

R
U

N
IV

-L
LC

3
.T

H
R

U
N

IV
-L

LC
3

.B
O

O
TS

TR
A

P
U

N
IV

-L
LC

2
-F

1
.T

H
R

U
N

IV
-L

LC
2

-F
1

.A
LP

H
A

U
N

IV
-L

LC
2

-F
1

.F
D

R
U

N
IV

-L
LC

2
-F

2
.T

H
R

U
N

IV
-L

LC
2

-F
2

.A
LP

H
A

U
N

IV
-L

LC
2

-F
2

.F
D

R
U

N
IV

-L
LC

3
-F

2
.T

H
R

U
N

IV
-L

LC
3

-F
2

.B
O

O
TS

TR
A

P
B

IO
LE

A
R

N
.N

G
B

IO
LE

A
R

N
.B

D
E

0

4 4 4

1 1 1 1 1 1 1 1 1

7 7

1 1

7 7

1 1 1 1 1 1 1

5 5

10

11 11

5 5

11 11 11 11 11 11 11 11

1 1 1

2

3 3

1 1

2

3 3 3 3 3

4 4

6 6

 
 
Figure 5: Number of local causal pathways where the algorithm was terminated/failed (out of 11 local causal pathways). Red circles denote methods designed 
for the discovery of local causal pathways. These include our modifications of the original global methods for local learning.  

 
Figure 5: Number of local causal pathways where the algorithm was terminated/failed (out

of 11 local causal pathways). Red circles denote methods designed for the dis-
covery of local causal pathways. These include our modifications of the original
global methods for local learning.

HE-GENG.S.*) fail more often in comparison to the ones that use partially directed global
graph (ALCBN.D.* or HE-GENG.D.*). This is due to the fact that more computation is
needed to determine which variable(s) to manipulate in the completely undirected graph,
and our experiments have a restriction on computational time. It is also worthwhile to
mention that the runtime of ODLP was under 10-15 minutes for all pathways, except for
YEAST pathway for gene YKL112W where it took the algorithm one hour to run because
the underlying local causal pathway was of large size (300 members). Other methods took
orders of magnitude more computing time, e.g. it took ALCBN and HE-GENG of the order
of 10 hours to obtain unoriented PC skeleton, and it took LLC of the order of several days
to derive constraints on the effects matrix and combine them into a linear system. These
run-time estimates are for the major computing components of the core methods, without
bootstrapping/permutations. If the latter techniques are used, the run-time typically in-
creases by more than two orders of magnitude due to a large number of independent runs
of the core method.

Figure 6 reports for each method the number of local causal pathway discovery tasks
where a method achieved optimal value of the distance metric (defined as a distance value
that is not significantly different from the best distance achieved by all method examined,
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Figure 6: Number of local causal pathways discovered by an algorithm with optimal distance (out of 11 local causal pathways).Red circles denote methods 
designed for the discovery of local causal pathways. These include our modifications of the original global methods for local learning. 

 
Figure 6: Number of local causal pathways discovered by an algorithm with optimal dis-

tance (out of 11 local causal pathways).Red circles denote methods designed for
the discovery of local causal pathways. These include our modifications of the
original global methods for local learning.

reflecting accuracy of structural discovery of the pathway). ODLP achieved optimal dis-
tance in eight out of 11 pathways, local versions of ALCBN based on unoriented PC skeleton
achieved optimal distance in six pathways, local versions of HE-GENG based on unoriented
PC skeleton and versions of ALCBN based on unoriented skeleton achieved optimal distance
in five pathways, and some versions of LLC limited to variables univariately associated with
the target achieved optimal distance in four pathways. Other methods achieved optimal
distance in three or fewer pathways.

Figure 7 reports for each method the number of local causal pathway discovery tasks
where a method achieved optimal values of the distance metric and did not perform more
experiments than the number of members in the pathway. Figure 8 provides similar data but
for the number of experiments limited by 10, which is commonly used in biological sciences
for expensive experiments. In both analyses, ODLP and local versions of ALCBN based on
the unoriented PC skeleton succeeded in six out of 11 pathways. Local versions of HE-GENG
also based on the unoriented PC skeleton succeed in five (if the number of experiments is
limited by the number of members in the pathway) or four (if the number of experiments is
limited by 10) pathways. Two versions of LLC limited to variables univariately associated
with the target succeeded in four pathways (if the number of experiments is limited by the
number of members in the pathway). All other methods/variants succeeded in three or
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Figure 7: Number of local causal pathways discovered by an algorithm with optimal distance and with the same or fewer experiments than members of the 
pathway (out of 11 local causal pathways).Red circles denote methods designed for the discovery of local causal pathways. These include our modifications of 
the original global methods for local learning. 

 

Figure 7: Number of local causal pathways discovered by an algorithm with optimal dis-
tance and with the same or fewer experiments than members of the pathway (out
of 11 local causal pathways).Red circles denote methods designed for the dis-
covery of local causal pathways. These include our modifications of the original
global methods for local learning.

fewer pathways.
Table 3 uses data from Figures 5-8 for 58 methods/variants for active learning of causal

networks to assess how the original global network learning methods (N = 28) perform
relative to the methods modified specifically for local learning (N = 30). As can be seen,
method variants modified for local learning fail in significantly fewer pathways, discover
more pathways with optimal distance metric (reflecting structural discovery accuracy), and
also achieve optimal distance metric with small number of experiments in more pathways
than the original global learning methods/variants.

Analysis based on averages: The following analyses in Figures 9-11 visualize values
of various metrics averaged over local causal pathway discovery tasks where all partici-
pating methods have completed and returned results (since we consider different number
pathways from different networks, we first average results within each network and then
over all networks). These analyses provide additional information compared to the counts
of successes/failures because they also quantify the magnitude of successes/failures by re-
porting the average values. However, since only one method (ODLP) has completed on all
11 pathways, we have to a use a subset with 10 pathways (excluding P1M) and focus only
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Figure 8: Number of local causal pathways discovered by an algorithm with optimal distance and with 10 or fewer experiments (out of 11 local causal 
pathways). Red circles denote methods designed for the discovery of local causal pathways. These include our modifications of the original global methods for 
local learning. 

Figure 8: Number of local causal pathways discovered by an algorithm with optimal dis-
tance and with 10 or fewer experiments (out of 11 local causal pathways). Red
circles denote methods designed for the discovery of local causal pathways. These
include our modifications of the original global methods for local learning.

on 24 out of all 59 methods that have completed for all pathways in the considered subset.
Figure 9 shows a bull’s eye plot for the distance metric and the number of experiments

averaged over 10 local causal pathways. Location of the circles corresponds to values of the
distance metric: the closer is circle to the center, the smaller (better) is the distance. The
color of the circles corresponds to the number of experiments: the lighter is color, the more
experiments are required. As can be seen, ODLP and a variant of LLC, UNIV-LLC3.THR,
have the smallest average values of the distance metric, 9.6% and 12%, respectively. ODLP
achieves this result with only 5 experiments, while the result of UNIV-LLC3.THR is based
on 280 experiments. It is fair to note here that the ODLP method specifically optimizes
the number of experiments, while UNIV-LLC3.THR uses experiments for all variables with
significant univariate association with the target variable. An alternative and more detailed
visualization of the data from Figure 9 is given in Figure 10 that shows a plot of distance
versus number of experiments/number of variables in the network averaged over 10 local
causal pathways.

Finally, Figure 11 shows a plot of sensitivity versus specificity averaged over 10 local
causal pathways. A variant of LLC, UNIV-LLC3.THR, is the only method that has larger
sensitivity than ODLP: sensitivity of ODLP and UNIV-LLC3.THR is 86.5% and 88.3%, re-
spectively. However, this small 1.8% increase in sensitivity is accompanied by a significant
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Global Learning Local Learning P-value
Number of methods/variants 28 30 N.A.

Number of local causal
pathways where the method was
terminated/failed

Mean = 6.57
(St. dev. = 3.97)

Mean = 2.13
(St. dev. = 1.68)

6.33× 10−7

Number of local causal
pathways discovered by a
method with optimal distance
(structural accuracy)

Mean = 1.61
(St. dev. = 1.73)

Mean = 3.10
(St. dev. = 1.56)

1.06× 10−3

Number of local causal
pathways discovered by a
method with optimal distance
and with the same or fewer
experiments than members of
the pathway

Mean = 0.57
(St. dev. = 1.03)

Mean = 2.10
(St. dev. = 2.12)

1.09× 10−3

Number of local causal
pathways discovered by a
method with optimal distance
and with 10 or fewer
experiments

Mean = 0.57
(St. dev. = 1.03)

Mean = 1.97
(St. dev. = 1.99)

1.62× 10−3

Table 3: Comparison of performance of local and global learning methods/variants. P-
values were obtained with a two-sample t-test. Statistical significance was assessed
at 5% alpha level.

loss of specificity: specificity of ODLP is 99.97%, while specificity of UNIV-LLC3.THR is
90.4%. Finally, there are no methods that have larger specificity than ODLP.

6. Discussion

Methods for experimentally efficient and accurate discovery of local causal pathways from
data can readily provide significant advances in many fields. For example, they can increase
efficiency of drug discovery, facilitate development of socio-economic policies with desirable
outcomes, or lead to successful marketing campaigns. Prior research has introduced several
methods for active learning of the entire/global causal networks that utilize both observa-
tional and limited experimental data. The current study introduced new methods (termed
ODLP) for discovery of local causal pathways around the target variable of interest us-
ing observational and experimental data, a topic not previously explored in the literature.
Our new methods aim to minimize the number of experiments and also have substantially
less restrictive theoretical assumptions for correctness compared to existing alternatives. An
extensive empirical comparison of ODLP with 58 state-of-the-art methods/variants in high-
dimensional datasets revealed that: (i) ODLP scales to datasets with 1,000,000 variables
unlike comparator methods, which often fail to terminate within reasonable time even on
datasets with of the order of 1,000 variables; (ii) ODLP achieves best local causal pathway
discovery accuracy with minimal number of experiments compared to existing techniques
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Figure 9: Bulls eye plot for the distance metric and the number of experiments averaged
over 10 local causal pathways. Methods are denoted by circles. Location of
the circles corresponds to values of the distance metric: the closer is circle to the
center, the smaller (better) is the distance. Color of the circles corresponds to the
number of experiments: the lighter is color, the more experiments are required.

under the assumption that all variables in the local neighborhood of the target are manip-
ulable; and (iii) ODLP runs orders of magnitude faster than other methods (in most cases
within 10-15 minutes for datasets with thousands of variables). A secondary contribution
of this study is that we introduced local versions of prior methods for active learning of
the entire/global causal networks so that the modified methods scale much better than the
original techniques for this task.

There are several major directions for extending this work. First, further development
of ODLP for situations when the target variable cannot be manipulated (e.g., it is a disease
in humans) and therefore it is challenging to identify effects of the target variable. One
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Figure 10: Distance versus number of experiments/number of variables in the network av-
eraged over 10 local causal pathways. The vertical (z) dimension is used to
produce a jitter plot so that multiple methods that have the same values of
distance and number of experiments/number of variables in the network are not
hidden in the graph. Methods located in the pale red area have smaller (better)
distance than ODLP, and methods located in the pale green area require smaller
number of experiments relative to the number of variables in the network.

possible strategy to solve this problem is to first identify all causes of the target variable
and then identify effects through knowledge gained by manipulation of direct causes of the
target variable. Second, extension of the ODLP method to work when there are hidden
variables and/or feedback cycles. Related to this, the completeness of the algorithm can
be improved by incorporating multi-variable manipulation experiments. Third, utilizing
existing methods for causal orientation from non-experimental data to avoid unnecessary
experiments, to the extent that these methods can produce accurate results in given dis-
tributions. These include both classical independence constraint-based (e.g., v-structure)
techniques (Spirtes et al., 2000; Yin et al., 2008) or newer methods that can orient pairs
of variables (Statnikov et al., 2012; Shimizu et al., 2006; Hoyer et al., 2009; Zhang and
Hyvärinen, 2008; Daniusis et al., 2012; Janzing et al., 2012; Mooij et al., 2010). These
newer methods could uncover the orientation of edges in non-linear (e.g. additive noise
models (Hoyer et al., 2009)) or non-Gaussian (e.g. LinGAM (Shimizu et al., 2006)) cases,
which are common in data from the biomedical domain. Fourth, further modifications of
the existing state-of-the-art methods for active learning of the entire/global networks to
adopt them for local causal pathway discovery task and seek to minimize the number of
experiments. For instance, methods other than the PC algorithm could be implemented as
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Figure 11: Sensitivity versus specificity averaged over 10 local causal pathways. The vertical
(z) dimension is used to produce a jitter plot so that multiple methods that have
the same values of sensitivity and specificity in the network are not hidden in
the graph. Methods located in the pale red area have larger sensitivity than
ODLP. There are no methods that have larger specificity than ODLP.

the starting point for edge orientation. The PC-Stable (Colombo and Maathuis, 2014) and
GES algorithms (Chickering, 2003) might lead to increased accuracy, and Richardson’s CCD
Algorithm (Richardson, 1996) is applicable when acyclicity is not assumed. Finally fifth,
extending the empirical comparison study to real (i.e., non-simulated) high-dimensional
data. Use of real data is challenging because (i) for most large-scale systems the underlying
causal relations are not known, and (ii) obtaining real experimental data is very expensive.
Performing such studies in other domains (e.g., economics, marketing, ecology, etc.) is also
worthwhile.
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Appendix A. List of variants of the ALCBN, HE-GENG, and LLC methods used in this work 
 
Table A1: Conditional independence constraint-based structure learning methods/variants used in this work. Modifications of the original methods that focus on discovery of 
local causality are highlighted. 

ALCBN:  

 First use the PC algorithm to learn an undirected or partially directed global graph from observational data (i.e., graph over all observed variables).  

 Then orient edges by sequentially manipulating variables chosen by some decision criterion. 

Method variant name Method variant description 

1. ALCBN.S.MINIMAX Starting from the undirected graph, use mini-max decision criterion to select variables for manipulation. 

2. ALCBN.S.MAXIMIN Starting from the undirected graph, use maxi-min decision criterion to select variables for manipulation. 

3. ALCBN.S.LAPLACE Starting from the undirected graph, use Laplace decision criterion to select variables for manipulation. 

4. ALCBN.D.MINIMAX Starting from the partially directed graph, use mini-max decision criterion to select variables for manipulation. 

5. ALCBN.D.MAXIMIN Starting from the partially directed graph, use maxi-min decision criterion to select variables for manipulation. 

6. ALCBN.D.LAPLACE Starting from the partially directed graph, use Laplace decision criterion to select variables for manipulation. 

7. ALCBN-LN.S.MINIMAX Same as ALCBN.S.MINIMAX, but select variables for manipulation only from the local causal pathway of the target. 

8. ALCBN-LN.S.MAXIMIN Same as ALCBN.S.MAXIMIN, but select variables for manipulation only from the local causal pathway of the target. 

9. ALCBN-LN.S.LAPLACE Same as ALCBN.S.LAPLACE, but select variables for manipulation only from the local causal pathway of the target. 

10. ALCBN-LN.D.MINIMAX Same as ALCBN.D.MINIMAX, but select variables for manipulation only from the local causal pathway of the target. 

11. ALCBN-LN.D.MAXIMIN Same as ALCBN.D.MAXIMIN, but select variables for manipulation only from the local causal pathway of the target. 

12. ALCBN-LN.D.LAPLACE Same as ALCBN.D.LAPLACE, but select variables for manipulation only from the local causal pathway of the target. 
 

Method of He and Geng (HE-GENG):  

 First use the PC algorithm to learn an undirected or partially directed global graph from observational data (i.e., graph over all observed variables).  

 Then orient edges in each obtained chain component separately by sequentially manipulating variables chosen by some decision criterion.  

Method variant name Method variant description 

1. HE-GENG.S.MINIMAX Starting from the undirected graph, use mini-max decision criterion to select variables for manipulation. 

2. HE-GENG.S.ENTROPY Starting from the undirected graph, use maxi-min entropy decision criterion to select variables for manipulation. 

3. HE-GENG.D.MINIMAX Starting from the partially directed graph, use mini-max decision criterion to select variables for manipulation. 

4. HE-GENG.D.ENTROPY Starting from the partially directed graph, use maximum entropy decision criterion to select variables for manipulation. 

5. HE-GENG-LCC.S.MINIMAX Same as HE-GENG.S.MINIMAX, but select variables for manipulation only from the local chain component of the target. 

6. HE-GENG-LCC.S.ENTROPY Same as HE-GENG.S.ENTROPY, but select variables for manipulation only from the local chain component of the target. 

7. HE-GENG-LCC.D.MINIMAX Same as HE-GENG.D.MINIMAX, but select variables for manipulation only from the local chain component of the target. 

8. HE-GENG-LCC.D.ENTROPY Same as HE-GENG.D.ENTROPY, but select variables for manipulation only from the local chain component of the target. 

9. HE-GENG-LN.S.MINIMAX Same as HE-GENG.S.MINIMAX, but select variables for manipulation only from the local causal pathway of the target. 

10. HE-GENG-LN.S.ENTROPY Same as HE-GENG.S.ENTROPY, but select variables for manipulation only from the local causal pathway of the target. 

11. HE-GENG-LN.D.MINIMAX Same as HE-GENG.D.MINIMAX, but select variables for manipulation only from the local causal pathway of the target. 

12. HE-GENG-LN.D.ENTROPY Same as HE-GENG.D.ENTROPY, but select variables for manipulation only from the local causal pathway of the target. 

Table A1: Conditional independence constraint-based structure learning methods/variants used in this work. Modifications of
the original methods that focus on discovery of local causality are highlighted.
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Table A2: Linear cyclic models-based structure learning methods/variants used in this work. Modifications of the original methods that focus on discovery of local causality are 
highlighted. 
 

LLC:  

 Assume linear relations between variables. These relations can be represented by an “effects matrix” where each element is the coefficient of the linear relation between variables. 

 From each manipulated dataset, derive constraints on the effects matrix which are combined into a linear system (we refer to these constraints as “main constraints”). 

 Additionally assuming faithfulness allows: 
o utilizing PC algorithm on manipulated data and possibly observational data to learn adjacencies between variables. Non-adjacent variables imply additional constraints on the effects matrix 

that are added to the linear system (we refer to these constraints as “0-constraints”). 
o defining an optimal order of variables for manipulation geared towards identification of the effects matrix.  

 Solve the above linear system to identify the effects matrix. 

 Elements in the effects matrix correspond to coefficients of the underlying linear relations. 

 Filter the effects matrix to obtain edges in the output graph using one of the following methods:  
- THR: Obtain edges by applying a threshold of 0.1 on the coefficients of the identified effects matrix. 
- ALPHA: Using 100 data permutations, estimate the null distribution of the coefficients of the effects matrix. Obtain edges by choosing significant coefficients at 5% alpha level. 
- FDR: Using 100 data permutations, estimate the null distribution of the coefficients of the effects matrix. Obtain edges by choosing significant coefficients at 5% FDR level. 
- BOOTSTRAP: Identify effects matrix in 30 datasets sampled from the original data with replacement. Obtain edges by choosing elements of the effects matrix whose mean coefficient over 

resampled datasets is higher than the standard deviation. 

Method variant name Method variant description 

1. LLC1.THR Manipulate all variables associated with the target to obtain manipulated data. Derive main constraints on the effects matrix and solve the linear system using the 
method LLC1. Find edges in graph by method THR. 

2. LLC1.ALPHA Same as LLC1.THR, but use method ALPHA to find edges in graph. 

3. LLC1.FDR Same as LLC1.THR, but use method FDR to find edges in graph. 

4. LLC2.THR Same as LLC1.THR, but use LLC2 method to derive main constraints on the effects matrix and solve the linear system. 

5. LLC2.ALPHA Same as LLC1.THR, but use LLC2 method to derive main constraints on the effects matrix and solve the linear system and method ALPHA to find edges in graph. 

6. LLC2.FDR Same as LLC1.THR, but use LLC2 method to derive main constraints on the effects matrix and solve the linear system and method FDR to find edges in graph. 

7. LLC3.THR Same as LLC1.THR, but use LLC3 method to derive main constraints on the effects matrix and solve the linear system. 

8. LLC3.BOOTSTRAP Same as LLC1.THR, but use LLC3 method to derive main constraints on the effects matrix and solve the linear system and method BOOTSTRAP to find edges in graph. 

9. LLC2-F1.THR Manipulate a random variable to obtain manipulated data. Apply PC algorithm on manipulated data to obtain 0-constraints on the effects matrix. Derive main 
constraints on the effects matrix and solve the linear system using the method LLC2. Determine optimal variable for manipulation. Repeat the above steps until the 
effects matrix has been identified. Find edges in graph by method THR. 

10. LLC2-F1.ALPHA Same as LLC2-F1.THR, but use method ALPHA to find edges in graph. 

11. LLC2-F1.FDR Same as LLC2-F1.THR, but use method FDR to find edges in graph. 

12. LLC2-F2.THR Same as LLC2-F1.THR, but apply PC to both observational and manipulated data to obtain 0-constraints on the effects matrix. 

13. LLC2-F2.ALPHA Same as LLC2-F1.THR, but apply PC to both observational and manipulated data to obtain 0-constraints on the effects matrix and method ALPHA to find edges in 
graph. 

14. LLC2-F2.FDR Same as LLC2-F1.THR, but apply PC to both observational and manipulated data to obtain 0-constraints on the effects matrix and method FDR to find edges in graph. 

15. LLC3-F2.THR Same as LLC2-F1.THR, but apply PC to both observational and manipulated data to obtain 0-constraints on the effects matrix and method LLC3 to derive main 
constraints on the effects matrix and solve the linear system. 

16. LLC3-F2.BOOTSTRAP Same as LLC2-F1.THR, but apply PC to both observational and manipulated data to obtain 0-constraints on the effects matrix, method LLC3 to derive main constraints 
on the effects matrix and solve the linear system, and method BOOTSTRAP to find edges in graph. 

17. UNIV-LLC1.THR 18. UNIV-LLC2.ALPHA 19. UNIV-LLC2-F1.THR 20. UNIV-LLC2-F2.ALPHA Same as above methods without prefix 
“UNIV“, except for using only variables that are 
univariately associated with the target to 
identify the effects matrix. All other variables 
are not considered at all by the method. 

21. UNIV-LLC1.ALPHA 22. UNIV-LLC2.FDR 23. UNIV-LLC2-F1.ALPHA 24. UNIV-LLC2-F2.FDR 

25. UNIV-LLC1.FDR 26. UNIV-LLC3.THR 27. UNIV-LLC2-F1.FDR 28. UNIV-LLC3-F2.THR 

29. UNIV-LLC2.THR 30. UNIV-LLC3.BOOTSTRAP 31. UNIV-LLC2-F2.THR 32. UNIV-LLC3-F2.BOOTSTRAP 

Table A2: Linear cyclic models-based structure learning methods/variants used in this work. Modifications of the original methods
that focus on discovery of local causality are highlighted.

3248



Hybrid Observational and Experimental Local Causal Pathway Discovery

Appendix B. Information about P1000 and P1M Networks

EFFICIENT METHODS FOR LOCAL CAUSAL PATHWAY DISCOVERY 

 

33 
 

Appendix B. Information about P1000 and P1M networks 

 

Table B1: Parameterization of the P1000 network. Data for a given vertex/variable V is a linear combination of its parents and 

Gaussian noise: . The data for vertices without any parents was sampled from 

Gaussian distribution N(0,1) and is not shown in the following table.  

 

Vertex Parent Coefficient 
Noise 

Coefficient  
Vertex Parent Coefficient 

Noise 
Coefficient 

1 2 0.9 0 
 

27 26 0.4 0.1 

2 
40 0.8 0.2 

 
28 17 0.5 0.1 

41 0.8 0.2 
 

29 30 0.1 0.1 

3 6 0.6 0 
 

30 31 0.7 0.2 

4 6 0.8 0 
 

31 32 0.9 0.1 

5 2 0.8 0 
 

32 35 0.6 0.1 

6 2 0.9 0 
 

33 35 0.9 0.2 

7 8 0.9 0 
 

34 35 0.5 0.3 

8 9 1.1 0 
 35 

36 0.1 0.2 

9 39 0.9 0 
 

37 0.6 0.2 

10 9 0.8 0 
 

37 38 0.8 0.2 

11 9 0.7 0 
 

38 39 0.1 0.1 

13 12 0.6 0 
 

40 39 0.5 0.2 

14 13 0.8 0 
 

47 44 0.7 0.3 

15 16 0.7 0 
 

48 45 0.9 0.3 

16 12 0.9 0 
 

49 46 0.1 0.1 

17 15 0.9 0 
 50 

48 0.3 0.2 

18 54 0.7 0.2 
 

49 0.4 0.2 

19 18 0.9 0 
 51 

20 0.9 0.1 

20 19 0.1 0 
 

50 0.4 0.1 

21 54 0.6 0.1 
 52 

20 0.6 0.2 

22 21 0.9 0 
 

53 0.8 0.2 

23 22 0.2 0 
 54  

(T) 

1 0.3 0.1 

24 23 0.4 0.3 
 

7 0.3 0.1 

26 
25 0.9 0.2 

 
12 0.3 0.1 

17 0.6 0.2 
     

 
 

Table B1: Parameterization of the P1000 network. Data for a given vertex/variable V is
a linear combination of its parents and Gaussian noise: V =

∑
p(Coefparentp +

N(0, Coefnoisep)). The data for vertices without any parents was sampled from
Gaussian distribution N(0, 1) and is not shown in the following table.
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Figure B1: A fragment of the P1M network. The little red dot in the middle (in the tile with yellow outline) represents the target 

variable, black dots represent other variables. Only the connected components of the first 100 tiles were shown. 

Figure B1: A fragment of the P1M network. The little red dot in the middle (in the tile
with yellow outline) represents the target variable, black dots represent other
variables. Only the connected components of the first 100 tiles were shown.
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Appendix C. Detailed results of empirical experiments 

 

Table C1: Detailed results of experiments for REGED, P1000, and P1M networks.  
 

 
REGED P1000 P1M 

  

Method Name 
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ODLP 86.7% 100.0% 9.4% 1 100.0% 100.0% 0.0% 18 100.0% 100.0% 0.0% 19   

Explanation of 
termination/ 
failure codes: 
 
T1 = Experiments 
when the 
algorithm was 
terminated after 
30 days of single-
core time limit 
for tasks that 
cannot be easily 
parallelized; 
 

T2 = Experiments 
when the 
algorithm was 
terminated after 
3,000 day multi-
core time limit 
(spread over 100 
cores) for tasks 
that can be easily 
parallelized; 
 

T3 = Experiments 
when the 
authors’ 
implementation 
of the algorithm 
failed for 
unknown reason; 
 
T4 = Experiments 
when the 
algorithm 
required more 
than 48 GB RAM. 
 

 

ALCBN.S.MINIMAX 86.7% 100.0% 9.4% 47 0.0% 99.8% 70.7% 577 T1        

ALCBN.S.MAXIMIN 86.7% 100.0% 9.4% 91 0.0% 99.8% 70.7% 368 T1        

ALCBN.S.LAPLACE 86.7% 100.0% 9.4% 62 0.0% 99.8% 70.7% 442 T1        

ALCBN.D.MINIMAX 26.7% 99.6% 51.9% 0 0.0% 99.8% 70.7% 0 T1        

ALCBN.D.MAXIMIN 26.7% 99.6% 51.9% 0 0.0% 99.8% 70.7% 0 T1        

ALCBN.D.LAPLACE 26.7% 99.6% 51.9% 0 0.0% 99.8% 70.7% 0 T1        

ALCBN-LN.S.MINIMAX 86.7% 100.0% 9.4% 1 0.0% 99.8% 70.7% 1 T1        

ALCBN-LN.S.MAXIMIN 86.7% 100.0% 9.4% 1 0.0% 99.8% 70.7% 1 T1        

ALCBN-LN.S.LAPLACE 86.7% 100.0% 9.4% 1 0.0% 99.8% 70.7% 1 T1        

ALCBN-LN.D.MINIMAX 26.7% 99.6% 51.9% 0 0.0% 99.8% 70.7% 0 T1        

ALCBN-LN.D.MAXIMIN 26.7% 99.6% 51.9% 0 0.0% 99.8% 70.7% 0 T1        

ALCBN-LN.D.LAPLACE 26.7% 99.6% 51.9% 0 0.0% 99.8% 70.7% 0 T1        

HE-GENG.S.MINIMAX 86.7% 100.0% 9.4% 337 0.0% 99.8% 70.7% 32 T1        

HE-GENG.S.ENTROPY 86.7% 100.0% 9.4% 337 0.0% 99.8% 70.7% 32 T1        

HE-GENG.D.MINIMAX 26.7% 99.6% 51.9% 0 0.0% 99.8% 70.7% 0 T1        

HE-GENG.D.ENTROPY 26.7% 99.6% 51.9% 0 0.0% 99.8% 70.7% 0 T1        

HE-GENG-LCC.S.MINIMAX 86.7% 100.0% 9.4% 108 0.0% 99.8% 70.7% 63 T1        

HE-GENG-LCC.S.ENTROPY 86.7% 100.0% 9.4% 108 0.0% 99.8% 70.7% 63 T1        

HE-GENG-LCC.D.MINIMAX 26.7% 99.6% 51.9% 0 0.0% 99.8% 70.7% 0 T1        

HE-GENG-LCC.D.ENTROPY 26.7% 99.6% 51.9% 0 0.0% 99.8% 70.7% 0 T1        

HE-GENG-LN.S.MINIMAX 86.7% 100.0% 9.4% 13 0.0% 99.8% 70.7% 5 T1        

HE-GENG-LN.S.ENTROPY 86.7% 100.0% 9.4% 13 0.0% 99.8% 70.7% 5 T1        

HE-GENG-LN.D.MINIMAX 26.7% 99.6% 51.9% 0 0.0% 99.8% 70.7% 0 T1        

HE-GENG-LN.D.ENTROPY 26.7% 99.6% 51.9% 0 0.0% 99.8% 70.7% 0 T1        

LLC1.THR 86.7% 50.5% 36.3% 540 100.0% 51.1% 34.6% 85 T4        

LLC1.ALPHA 
ALPHA 

6.7% 98.8% 66.0% 540 0.0% 99.9% 70.7% 85 T4        

LLC1.FDR 6.7% 99.7% 66.0% 540 0.0% 100.0% 70.7% 85 T4        

LLC2.THR T1       0.0% 100.0% 70.7% 85 T4        

LLC2.ALPHA T2       T2       T4        

LLC2.FDR T2       T2       T4        

LLC3.THR 0.0% 100.0% 70.7% 540 0.0% 100.0% 70.7% 85 T4        

LLC3.BOOTSTRAP 100.0% 93.8% 4.4% 540 100.0% 69.9% 21.3% 85 T4        

LLC2-F1.THR T1       T1       T1        

LLC2-F1.ALPHA T2       T2       T2        

LLC2-F1.FDR T2       T2       T2        

LLC2-F2.THR T1       T1       T1        

LLC2-F2.ALPHA T2       T2       T2        

LLC2-F2.FDR T2       T2       T2        

LLC3-F2.THR T4       T4       T4        

LLC3-F2.BOOTSTRAP T4       T4       T4        

UNIV-LLC1.THR 80.0% 73.6% 23.4% 540 100.0% 95.0% 3.5% 85 T4        

UNIV-LLC1.ALPHA 6.7% 98.8% 66.0% 540 0.0% 99.5% 70.7% 85 T4        

UNIV-LLC1.FDR 6.7% 99.7% 66.0% 540 0.0% 100.0% 70.7% 85 T4        

UNIV-LLC2.THR 0.0% 100.0% 70.7% 540 100.0% 98.5% 1.1% 85 T4        

UNIV-LLC2.ALPHA T2       60.0% 99.9% 28.3% 85 T4        

UNIV-LLC2.FDR T2       40.0% 100.0% 42.4% 85 T4        

UNIV-LLC3.THR 80.0% 73.8% 23.3% 540 100.00% 93.48% 4.6% 85 T4        

UNIV-LLC3.BOOTSTRAP 13.3% 100.0% 61.3% 540 0.00% 100.00% 70.7% 85 T4        

UNIV-LLC2-F1.THR 0.0% 100.0% 70.7% 4 0.0% 100.0% 70.7% 5 T1        

UNIV-LLC2-F1.ALPHA T2       40.0% 99.1% 42.4% 5 T2        

UNIV-LLC2-F1.FDR T2       0.0% 100.0% 70.7% 5 T2        

UNIV-LLC2-F2.THR T1       0.0% 99.9% 70.7% 2 T1        

UNIV-LLC2-F2.ALPHA T2       40.0% 97.2% 42.5% 2 T2        

UNIV-LLC2-F2.FDR T2       20.0% 99.7% 56.6% 2 T2        

UNIV-LLC3-F2.THR T4       0.0% 100.0% 70.7% 11 T4        

UNIV-LLC3-F2.BOOTSTRAP T4       100.0% 96.8% 2.2% 11 T4        

BIOLEARN.NG T3       0.0% 99.6% 70.7% 85 T3        

BIOLEARN.BDE T3       20.0% 100.0% 56.6% 85 T3        

Table C1: Detailed results of experiments for REGED, P1000, and P1M networks.
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Table C2: Detailed results of experiments for ECOLI network (4 local causal neighborhoods). See Table C1 for explanation of 

termination/failure codes T1, T2, T3, and T4. 

 

 
ECOLI (agaR) ECOLI (allR) ECOLI (zur) ECOLI (lexA) 

Method Name 
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ODLP 87.5% 99.9% 8.8% 1 100.0% 99.9% 0.1% 1 100.0% 99.9% 0.1% 3 90.7% 99.9% 6.6% 1 
ALCBN.S.MINIMAX 87.5% 100.0% 8.8% 264 100.0% 99.9% 0.1% 162 100.0% 99.9% 0.1% 213 90.7% 99.9% 6.6% 4 

ALCBN.S.MAXIMIN 87.5% 100.0% 8.8% 269 100.0% 99.9% 0.1% 436 100.0% 99.9% 0.1% 288 90.7% 99.9% 6.6% 4 

ALCBN.S.LAPLACE 87.5% 100.0% 8.8% 212 100.0% 99.9% 0.1% 143 100.0% 99.9% 0.1% 292 90.7% 99.9% 6.6% 4 

ALCBN.D.MINIMAX 100.0% 100.0% 0.0% 0 100.0% 99.9% 0.1% 0 100.0% 99.9% 0.1% 4 3.7% 98.3% 68.1% 0 

ALCBN.D.MAXIMIN 100.0% 100.0% 0.0% 0 100.0% 99.9% 0.1% 0 100.0% 99.9% 0.1% 4 3.7% 98.3% 68.1% 0 

ALCBN.D.LAPLACE 100.0% 100.0% 0.0% 0 100.0% 99.9% 0.1% 0 100.0% 99.9% 0.1% 3 3.7% 98.3% 68.1% 0 

ALCBN-LN.S.MINIMAX 87.5% 100.0% 8.8% 1 100.0% 99.9% 0.1% 1 100.0% 99.9% 0.1% 1 90.7% 99.9% 6.6% 1 

ALCBN-LN.S.MAXIMIN 87.5% 100.0% 8.8% 1 100.0% 99.9% 0.1% 1 100.0% 99.9% 0.1% 1 90.7% 99.9% 6.6% 1 

ALCBN-LN.S.LAPLACE 87.5% 100.0% 8.8% 1 100.0% 99.9% 0.1% 1 100.0% 99.9% 0.1% 1 90.7% 99.9% 6.6% 1 

ALCBN-LN.D.MINIMAX 100.0% 100.0% 0.0% 0 100.0% 99.9% 0.1% 0 100.0% 99.9% 0.1% 1 3.7% 98.3% 68.1% 0 

ALCBN-LN.D.MAXIMIN 100.0% 100.0% 0.0% 0 100.0% 99.9% 0.1% 0 100.0% 99.9% 0.1% 1 3.7% 98.3% 68.1% 0 

ALCBN-LN.D.LAPLACE 100.0% 100.0% 0.0% 0 100.0% 99.9% 0.1% 0 100.0% 99.9% 0.1% 1 3.7% 98.3% 68.1% 0 

HE-GENG.S.MINIMAX 87.5% 100.0% 8.8% 86 100.0% 99.9% 0.1% 25 T1       T1       

HE-GENG.S.ENTROPY 87.5% 100.0% 8.8% 86 100.0% 99.9% 0.1% 25 T1       T1       

HE-GENG.D.MINIMAX 100.0% 100.0% 0.0% 0 100.0% 99.9% 0.1% 0 100.0% 99.9% 0.1% 74 3.7% 98.3% 68.1% 0 

HE-GENG.D.ENTROPY 100.0% 100.0% 0.0% 0 100.0% 99.9% 0.1% 0 100.0% 99.9% 0.1% 74 3.7% 98.3% 68.1% 0 

HE-GENG-LCC.S.MINIMAX 87.5% 100.0% 8.8% 86 100.0% 99.9% 0.1% 25 T1       T1       

HE-GENG-LCC.S.ENTROPY 87.5% 100.0% 8.8% 86 100.0% 99.9% 0.1% 25 T1       T1       

HE-GENG-LCC.D.MINIMAX 100.0% 100.0% 0.0% 0 100.0% 99.9% 0.1% 0 100.0% 99.9% 0.1% 5 3.7% 98.3% 68.1% 0 

HE-GENG-LCC.D.ENTROPY 100.0% 100.0% 0.0% 0 100.0% 99.9% 0.1% 0 100.0% 99.9% 0.1% 5 3.7% 98.3% 68.1% 0 

HE-GENG-LN.S.MINIMAX 87.5% 100.0% 8.8% 2 100.0% 99.9% 0.1% 6 100.0% 99.9% 0.1% 2 77.8% 99.6% 15.7% 30 

HE-GENG-LN.S.ENTROPY 87.5% 100.0% 8.8% 2 100.0% 99.9% 0.1% 6 100.0% 99.9% 0.1% 2 77.8% 99.6% 15.7% 30 

HE-GENG-LN.D.MINIMAX 100.0% 100.0% 0.0% 0 100.0% 99.9% 0.1% 0 100.0% 99.9% 0.1% 5 3.7% 98.3% 68.1% 0 

HE-GENG-LN.D.ENTROPY 100.0% 100.0% 0.0% 0 100.0% 99.9% 0.1% 0 100.0% 99.9% 0.1% 5 3.7% 98.3% 68.1% 0 

LLC1.THR 0.0% 100.0% 70.7% 82 0.0% 100.0% 70.7% 88 0.0% 100.0% 70.7% 90 0.0% 100.0% 70.7% 147 

LLC1.ALPHA 100.0% 49.8% 35.5% 82 100.0% 50.3% 35.2% 88 100.0% 50.6% 35.0% 90 96.3% 51.7% 34.2% 147 

LLC1.FDR 100.0% 51.3% 34.4% 82 100.0% 51.4% 34.3% 88 100.0% 51.6% 34.2% 90 96.3% 52.8% 33.5% 147 

LLC2.THR T1       T1       T1       T1       

LLC2.ALPHA T2       T2       T2       T2       

LLC2.FDR T2       T2       T2       T2       

LLC3.THR 0.0% 100.0% 70.7% 82 10.0% 100.0% 63.6% 88 0.0% 100.0% 70.7% 90 0.0% 100.0% 70.7% 147 

LLC3.BOOTSTRAP 100.0% 67.2% 23.2% 82 100.0% 72.0% 19.8% 88 100.0% 69.4% 21.7% 90 98.2% 78.6% 15.2% 147 

LLC2-F1.THR T1       T1       T1       T1       

LLC2-F1.ALPHA T2       T2       T2       T2       

LLC2-F1.FDR T2       T2       T2       T2       

LLC2-F2.THR T1       T1       T1       T1       

LLC2-F2.ALPHA T2       T2       T2       T2       

LLC2-F2.FDR T2       T2       T2       T2       

LLC3-F2.THR T4       T4       T4       T4       

LLC3-F2.BOOTSTRAP T4       T4       T4       T4       

UNIV-LLC1.THR 0.0% 100.0% 70.7% 82 0.0% 100.0% 70.7% 88 0.0% 100.0% 70.7% 90 0.0% 100.0% 70.7% 147 

UNIV-LLC1.ALPHA 100.0% 99.7% 0.3% 82 100.0% 99.7% 0.3% 88 100.0% 99.3% 0.5% 90 94.4% 99.5% 3.9% 147 

UNIV-LLC1.FDR 87.5% 100.0% 8.8% 82 100.0% 99.9% 0.1% 88 100.0% 100.0% 0.0% 90 90.7% 100.0% 6.6% 147 

UNIV-LLC2.THR 0.0% 100.0% 70.7% 82 0.0% 100.0% 70.7% 88 0.0% 100.0% 70.7% 90 0.0% 100.0% 70.7% 147 

UNIV-LLC2.ALPHA 100.0% 99.7% 0.3% 82 100.0% 99.7% 0.3% 88 100.0% 99.3% 0.5% 90 94.4% 99.5% 3.9% 147 

UNIV-LLC2.FDR 87.5% 100.0% 8.8% 82 100.0% 99.9% 0.1% 88 100.0% 100.0% 0.0% 90 90.7% 100.0% 6.6% 147 

UNIV-LLC3.THR 100.0% 98.3% 1.2% 82 100.0% 98.6% 1.0% 88 100.0% 98.3% 1.2% 90 87.0% 97.7% 9.3% 147 

UNIV-LLC3.BOOTSTRAP 100.0% 98.0% 1.4% 82 100.0% 98.6% 1.0% 88 100.0% 97.8% 1.5% 90 88.9% 98.3% 8.0% 147 

UNIV-LLC2-F1.THR 0.0% 100.0% 70.7% 5 0.0% 100.0% 70.7% 7 50.0% 99.9% 35.4% 6 0.0% 100.0% 70.7% 12 

UNIV-LLC2-F1.ALPHA 75.0% 99.7% 17.7% 5 100.0% 99.1% 0.6% 7 100.0% 99.7% 0.2% 6 96.3% 96.4% 3.6% 12 

UNIV-LLC2-F1.FDR 62.5% 99.9% 26.5% 5 100.0% 99.8% 0.1% 7 100.0% 99.8% 0.1% 6 72.2% 99.5% 19.7% 12 

UNIV-LLC2-F2.THR 37.5% 99.9% 44.2% 4 0.0% 100.0% 70.7% 6 83.3% 99.8% 11.8% 5 0.0% 100.0% 70.7% 11 

UNIV-LLC2-F2.ALPHA 50.0% 99.8% 35.4% 4 100.0% 99.0% 0.7% 6 100.0% 99.6% 0.3% 5 98.2% 96.3% 2.9% 11 

UNIV-LLC2-F2.FDR 50.0% 99.9% 35.4% 4 100.0% 99.9% 0.1% 6 83.3% 99.8% 11.8% 5 66.7% 99.6% 23.6% 11 

UNIV-LLC3-F2.THR 0.0% 100.0% 70.7% 17 0.0% 100.0% 70.7% 27 0.0% 100.0% 70.7% 32 0.0% 100.0% 70.7% 57 

UNIV-LLC3-F2.BOOTSTRAP 75.0% 98.6% 17.7% 19 70.0% 99.1% 21.2% 25 83.3% 98.1% 11.9% 30 59.3% 97.5% 28.9% 46 

BIOLEARN.NG 75.0% 99.9% 17.7% 82 50.0% 99.9% 35.4% 88 66.7% 99.9% 23.6% 90 90.7% 99.9% 6.6% 147 

BIOLEARN.BDE 0.0% 99.8% 70.7% 82 0.0% 99.9% 70.7% 88 16.7% 99.9% 58.9% 90 50.0% 100.0% 35.4% 147 

Table C2: Detailed results of experiments for ECOLI network (4 local causal neighbor-
hoods). See Table C1 for explanation of termination/failure codes T1, T2, T3,
and T4.
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Table C3: Detailed results of experiments for YEAST network (4 local causal neighborhoods). See Table C1 for explanation of 

termination/failure codes T1, T2, T3, and T4. 
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ODLP 66.7% 99.93% 23.6% 1 66.7% 100.0% 23.6% 1 64.5% 100.0% 25.1% 1 61.0% 99.9% 27.6% 1 
ALCBN.S.MINIMAX T1       T1       T1       61.0% 99.9% 27.6% 1 

ALCBN.S.MAXIMIN T1       T1       T1       61.0% 99.9% 27.6% 1 

ALCBN.S.LAPLACE T1       T1       T1       61.0% 99.9% 27.6% 1 

ALCBN.D.MINIMAX 6.7% 99.7% 66.0% 0 26.7% 99.9% 51.9% 0 35.5% 99.9% 45.6% 21 5.3% 98.0% 67.0% 0 

ALCBN.D.MAXIMIN 6.7% 99.7% 66.0% 0 26.7% 99.9% 51.9% 0 35.5% 99.9% 45.6% 24 5.3% 98.0% 67.0% 0 

ALCBN.D.LAPLACE 6.7% 99.7% 66.0% 0 26.7% 99.9% 51.9% 0 35.5% 99.9% 45.6% 20 5.3% 98.0% 67.0% 0 

ALCBN-LN.S.MINIMAX 66.7% 99.9% 23.6% 1 66.7% 100.0% 23.6% 1 64.5% 100.0% 25.1% 1 61.0% 99.9% 27.6% 1 

ALCBN-LN.S.MAXIMIN 66.7% 99.9% 23.6% 1 66.7% 100.0% 23.6% 1 64.5% 100.0% 25.1% 1 61.0% 99.9% 27.6% 1 

ALCBN-LN.S.LAPLACE 66.7% 99.9% 23.6% 1 66.7% 100.0% 23.6% 1 64.5% 100.0% 25.1% 1 61.0% 99.9% 27.6% 1 

ALCBN-LN.D.MINIMAX 6.7% 99.7% 66.0% 0 26.7% 99.9% 51.9% 0 35.5% 99.9% 45.6% 1 5.3% 98.0% 67.0% 0 

ALCBN-LN.D.MAXIMIN 6.7% 99.7% 66.0% 0 26.7% 99.9% 51.9% 0 35.5% 99.9% 45.6% 1 5.3% 98.0% 67.0% 0 

ALCBN-LN.D.LAPLACE 6.7% 99.7% 66.0% 0 26.7% 99.9% 51.9% 0 35.5% 99.9% 45.6% 1 5.3% 98.0% 67.0% 0 

HE-GENG.S.MINIMAX T1       T1       T1       T1       

HE-GENG.S.ENTROPY T1       T1       T1       T1       

HE-GENG.D.MINIMAX 6.7% 99.7% 66.0% 0 26.7% 99.9% 51.9% 0 35.5% 99.9% 45.6% 44 5.3% 98.0% 67.0% 0 

HE-GENG.D.ENTROPY 6.7% 99.7% 66.0% 0 26.7% 99.9% 51.9% 0 35.5% 99.9% 45.6% 44 5.3% 98.0% 67.0% 0 

HE-GENG-LCC.S.MINIMAX T1       T1       T1       T1       

HE-GENG-LCC.S.ENTROPY T1       T1       T1       T1       

HE-GENG-LCC.D.MINIMAX 6.7% 99.7% 66.0% 0 26.7% 99.9% 51.9% 0 35.5% 99.9% 45.6% 1 5.3% 98.0% 67.0% 0 

HE-GENG-LCC.D.ENTROPY 6.7% 99.7% 66.0% 0 26.7% 99.9% 51.9% 0 35.5% 99.9% 45.6% 1 5.3% 98.0% 67.0% 0 

HE-GENG-LN.S.MINIMAX 70.0% 100.0% 21.2% 13 66.7% 100.0% 23.6% 5 64.5% 100.0% 25.1% 11 23.0% 98.6% 54.5% 99 

HE-GENG-LN.S.ENTROPY 70.0% 100.0% 21.2% 13 66.7% 100.0% 23.6% 5 64.5% 100.0% 25.1% 11 23.0% 98.6% 54.5% 99 

HE-GENG-LN.D.MINIMAX 6.7% 99.7% 66.0% 0 26.7% 99.9% 51.9% 0 35.5% 99.9% 45.6% 2 5.3% 98.0% 67.0% 0 

HE-GENG-LN.D.ENTROPY 6.7% 99.7% 66.0% 0 26.7% 99.9% 51.9% 0 35.5% 99.9% 45.6% 2 5.3% 98.0% 67.0% 0 

LLC1.THR 0.0% 100.0% 70.7% 328 0.0% 100.0% 70.7% 215 0.0% 100.0% 70.7% 220 0.0% 100.0% 70.7% 804 

LLC1.ALPHA T2       T2       T2       T2       

LLC1.FDR T2       T2       T2       T2       

LLC2.THR T1       T1       T1       T1       

LLC2.ALPHA T2       T2       T2       T2       

LLC2.FDR T2       T2       T2       T2       

LLC3.THR T4       T4       T4       T4       

LLC3.BOOTSTRAP T4       T4       T4       T4       

LLC2-F1.THR T1       T1       T1       T1       

LLC2-F1.ALPHA T2       T2       T2       T2       

LLC2-F1.FDR T2       T2       T2       T2       

LLC2-F2.THR T1       T1       T1       T1       

LLC2-F2.ALPHA T2       T2       T2       T2       

LLC2-F2.FDR T2       T2       T2       T2       

LLC3-F2.THR T4       T4       T4       T4       

LLC3-F2.BOOTSTRAP T4       T4       T4       T4       

UNIV-LLC1.THR 0 100.0% 70.7% 328 0.0% 100.0% 70.7% 215 0.0% 100.0% 70.7% 220 0.0% 100.0% 70.7% 804 

UNIV-LLC1.ALPHA 86.7% 92.9% 10.7% 328 93.3% 95.3% 5.8% 215 90.3% 95.4% 7.6% 220 90.0% 84.4% 13.1% 804 

UNIV-LLC1.FDR 86.7% 92.9% 10.7% 328 93.3% 95.3% 5.8% 215 90.3% 95.4% 7.6% 220 90.0% 84.4% 13.1% 804 

UNIV-LLC2.THR 0.0% 100.0% 70.7% 328 0.0% 100.0% 70.7% 215 0.0% 100.0% 70.7% 220 T1       

UNIV-LLC2.ALPHA 70.0% 99.4% 21.2% 328 73.3% 99.7% 18.9% 215 67.7% 99.6% 22.8% 220 T2       

UNIV-LLC2.FDR 53.3% 100.0% 33.0% 328 66.7% 100.0% 23.6% 215 61.3% 100.0% 27.4% 220 T2       

UNIV-LLC3.THR 73.3% 97.8% 18.9% 328 73.3% 98.7% 18.9% 215 83.9% 98.5% 11.5% 220 76.0% 89.5% 18.5% 804 

UNIV-LLC3.BOOTSTRAP 0.0% 100.0% 70.7% 328 60.0% 99.1% 28.3% 215 61.3% 99.4% 27.4% 220 0.0% 100.0% 70.7% 804 

UNIV-LLC2-F1.THR 3.3% 100.0% 68.4% 10 0.0% 100.0% 70.7% 6 0.0% 100.0% 70.7% 8 T1       

UNIV-LLC2-F1.ALPHA 36.7% 99.6% 44.8% 10 93.3% 97.7% 5.0% 6 90.3% 97.7% 7.0% 8 T2       

UNIV-LLC2-F1.FDR 3.3% 100.0% 68.4% 10 66.7% 99.9% 23.6% 6 61.3% 99.8% 27.4% 8 T2       

UNIV-LLC2-F2.THR 3.33% 100.0% 68.4% 9 0.0% 100.0% 70.7% 7 0.0% 100.0% 70.7% 7 T1       

UNIV-LLC2-F2.ALPHA 63.3% 98.2% 26.0% 9 93.3% 97.6% 5.0% 7 90.3% 97.7% 7.0% 7 T2       

UNIV-LLC2-F2.FDR 6.7% 100.0% 66.0% 9 60.0% 99.8% 28.3% 7 64.5% 99.8% 25.1% 7 T2       

UNIV-LLC3-F2.THR T4       0.0% 100.0% 70.7% 63 0.0% 100.0% 70.7% 60 T4       

UNIV-LLC3-F2.BOOTSTRAP T4       26.7% 99.1% 51.9% 63 41.9% 98.6% 41.1% 57 T4       

BIOLEARN.NG T3       T3       T3       T3       

BIOLEARN.BDE T3       T3       T3       T3       

Table C3: Detailed results of experiments for YEAST network (4 local causal neighbor-
hoods). See Table C1 for explanation of termination/failure codes T1, T2, T3,
and T4.
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Appendix D. Assessment of Various Edge Orientation Strategies

To evaluate the accuracy of edge orientation, five orientation methods were tested in two
datasets (REGED and ECOLI). All orientation experiments were conducted on the unori-
ented skeleton discovered by the PC algorithm from observational data. The following five
orientation methods were tested:

(1) observational: Edge orientation was determined using constraint-based orientation
rules specified in the PC algorithm. This orientation method applied on top of the unori-
ented PC skeleton is equivalent to the PC algorithm. Notice that some edges may be left
unoriented.

(2) experimental: This is a classic orientation approach, and it involves manipulating
a variable and assessing its statistical association with the undirected neighbors in order
to determine the orientation. For the implementation of this approach, variables with the
largest number of undirected neighbors were prioritized for manipulation in order to mini-
mize the number of required experiments (Meganck et al., 2006). Specifically the approach
was implemented as follows: (a) Select the vertex with the largest number of undirected
neighbors. Denote this variable as X, and its undirected neighbors Y1, ..., Yi, ...Yn; (b) Ma-
nipulate variable X. (c) For every undirected neighbor Yi, orient edge as X → Yi, if there
is a statistically significant association between X and Yi at α = 0.05. Otherwise, orient
edge as Yi → X; (d) repeat steps (a)-(c) until all edges are oriented.

(3) experimental: For every unoriented edge X −−Y in the skeleton, manipulate X and
assess the association between X and Y , denoted as AXY . Similarly, manipulate Y and
assess the association between X and Y , denoted as AY X . The larger is AXY (or AY X),
the stronger is association. If AXY > AY X , orient edge as X → Y , otherwise orient edge
as Y → X;

(4) observational + experimental: apply observational method (1) and orient the rest
of the unoriented edges with the experimental method (2);

(5) observational + experimental: apply observational method (1) and orient the rest
of the unoriented edges with the experimental method (3).

The results of experiments described above are given in Table D1. The accuracy of
orientation is defined as the number of correctly oriented edges divided by the number of
correctly inferred edges in the skeleton (i.e. evaluated only with respect to correctly in-
ferred edges by the PC algorithm). In both datasets, the observational orientation had an
accuracy that is close to or worse than random (55.2% for REGED and 40.9% for ECOLI).
On the other hand, both experimental orientation methods yielded much higher and non-
random accuracies up to 100% for REGED dataset and up to 91.2% for ECOLI dataset.
Performing observational orientation before experimental orientation reduces the number of
experiments as expected, however this also reduces the accuracy. These results indicate that
although PC orientation is theoretically sound, experimental orientation methods provide
better orientation accuracy.
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Table D1: Comparison of accuracy for various edge orientation methods. 

REGED 
        

Orientation Method 

# of edges 
in the 
gold-

standard 

# of 
edges in 

the 
skeleton 

# of 
correctly 
inferred 
edges in 

the 
skeleton 

# of 
oriented 
edges in 

the 
skeleton 

# of correctly 
inferred edges 
in the skeleton 

that are also 
oriented 

# of 
correctly 
oriented 

edges in the 
skeleton 

# of 
experi-
ments 

Accuracy of 
orientation* 

(1) observational 1148 6324 1137 6073 942 520 0 55.2% 

(2) experimental 1148 6324 1137 6324 1137 1116 645 98.2% 

(3) experimental 1148 6324 1137 6324 1137 1137 1000 100.0% 

(4) observational+experimental 1148 6324 1137 6324 1137 712 143 62.6% 

(5) observational+experimental 1148 6324 1137 6324 1137 715 336 62.9% 

 
ECOLI 

        

Orientation Method 

# of edges 
in the 
gold-

standard 

# of 
edges in 

the 
skeleton 

# of 
correctly 
inferred 
edges in 

the 
skeleton 

# of 
oriented 
edges in 

the 
skeleton 

# of correctly 
inferred edges 
in the skeleton 

that are also 
oriented 

# of 
correctly 
oriented 

edges in the 
skeleton 

# of  
experi-
ments 

Accuracy of 
orientation* 

(1) observational 3632 12091 1660 11964 1595 653 0 40.9% 

(2) experimental 3632 12091 1660 12091 1660 1348 1206 81.2% 

(3) experimental 3632 12091 1660 12091 1660 1514 1565 91.2% 

(4) observational+experimental 3632 12091 1660 12091 1660 718 62 43.3% 

(5) observational+experimental 3632 12091 1660 12091 1660 718 152 43.3% 
 

* Computed only over edges that have been correctly inferred in the skeleton. 

Table D1: Comparison of accuracy for various edge orientation methods.
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Appendix E. Publicly Available Software Implementations of the Core
Methods

Algorithm Implementation  Link to Publicly Available Software 

ODLP* Matlab http://ccdlab.org/odlp.html  

ALCBN - Can be requested from the authors of Meganck et al., 2006 

HE-GENG R http://www.math.pku.edu.cn:8000/people/view.php?uid=heyb&showdetail=1  

LLC R 
LLC1: Can be requested from the authors of Eberhardt et al., 2010 
LLC2: https://docs.google.com/file/d/0B7pSUZzmhZ33VnZjdG8xaUVIZDg/edit?pli=1   
LLC3: https://docs.google.com/file/d/0B7pSUZzmhZ33b1Zfb3l6XzMwQzQ/edit 

BIOLEARN Java http://www.c2b2.columbia.edu/danapeerlab/html/biolearn.html  

 

Table E1: Publicly available software implementation of different algorithms
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Appendix F. Description of the TIE* and iTIE* algorithms

The TIE* and iTIE* algorithms are described in detail in (Statnikov et al., 2013). Before
we review the algorithms below, we note that TIE* and iTIE* were originally introduced for
discovery of all Markov boundaries of the target variable T . However, TIE* is also suitable
for discovery of all local causal pathways of T consistent with the data when it is used
with the Markov boundary induction algorithm Semi-Interleaved HITON-PC; see proof of
Theorem 1 in Appendix G for discussion. Similarly, iTIE* which is derived by modifying
Semi-Interleaved HITON-PC can be also used for discovery of all local causal pathways
of T consistent with the data. When there is no multiplicity of local causal pathways,
TIE* and iTIE* will be equivalent to Semi-Interleaved HITON-PC and will output all and
only members of the true local causal pathway of T . When the multiplicity is present, the
union of Markov boundaries output by TIE* or iTIE* (i.e., all local causal pathways of
T consistent with the data) will contain all variables that constitute the true local causal
pathway of T and other variables that contain equivalent information about T .

Next, we present the generative TIE* algorithm. This generative algorithm describes
a family of related but not identical algorithms which can be seen as instantiations of the
same broad algorithmic principles. The pseudo-code of the TIE* generative algorithm is
provided in Figure F1. On input TIE* receives (i) a dataset D (a sample from distribution
P) for variables V , including a target variable T ; (ii) a single Markov boundary induction
algorithm X; (iii) a procedure Y to generate datasets De from the so-called embedded
distributions that are obtained by removing subsets of variables from the full set of variables
V in the original distribution P; and (iv) a criterion Z to verify Markov boundaries of T .
The inputs X,Y,Z are selected to be suitable for the distribution at hand and should satisfy
admissibility rules stated in (Statnikov et al., 2013) for correctness of the algorithm. The
algorithm outputs all Markov boundaries of T that exist in the distribution P.

To further facilitate understanding of the TIE* algorithm, we provide in Figure F2 a
concrete and specific instantiation of TIE*. Finally, we present in Figure F3 the algorithm
iTIE*.
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Appendix F. Description of the TIE* and iTIE* algorithms 

 
The TIE* and iTIE* algorithms are described in detail in [20]. Before we review the algorithms below, we note that TIE* 
and iTIE* were originally introduced for discovery of all Markov boundaries of the target variable T. However, TIE* is also 
suitable for discovery of all local causal pathways of T consistent with the data when it is used with the Markov 
boundary induction algorithm Semi-Interleaved HITON-PC; see proof of Theorem 1 in Appendix G for discussion. 
Similarly, iTIE* which is derived by modifying Semi-Interleaved HITON-PC can be also used for discovery of all local causal 
pathways of T consistent with the data. When there is no multiplicity of local causal pathways, TIE* and iTIE* will be 
equivalent to Semi-Interleaved HITON-PC and will output all and only members of the true local causal pathway of T. 
When the multiplicity is present, the union of Markov boundaries output by TIE* or iTIE* (i.e., all local causal pathways 
of T consistent with the data) will contain all variables that constitute the true local causal pathway of T and other 
variables that contain equivalent information about T.  
 Next, we present the generative TIE* algorithm. This generative algorithm describes a family of related but not 
identical algorithms which can be seen as instantiations of the same broad algorithmic principles. The pseudo-code of 
the TIE* generative algorithm is provided in Figure F1. On input TIE* receives (i) a dataset D (a sample from distribution 
P) for variables V, including a target variable T; (ii) a single Markov boundary induction algorithm X; (iii) a procedure Y 
to generate datasets De from the so-called embedded distributions that are obtained by removing subsets of variables 
from the full set of variables V in the original distribution P; and (iv) a criterion Z to verify Markov boundaries of T. The 
inputs X, Y, Z are selected to be suitable for the distribution at hand and should satisfy admissibility rules stated in [20] 
for correctness of the algorithm. The algorithm outputs all Markov boundaries of T that exist in the distribution P. 

To further facilitate understanding of the TIE* algorithm, we provide in Figure F2 a concrete and specific 
instantiation of TIE*. Finally, we present in Figure F3 the algorithm iTIE*. 
  

Generative algorithm TIE* 
 

Inputs: 

 dataset D (a sample from distribution P) for variables V, including a target variable T; 

 Markov boundary induction algorithm X; 

 procedure Y to generate datasets from the embedded distributions; 

 criterion Z to verify Markov boundaries of T. 
 

Output: all Markov boundaries of T that exist in P. 
 
1. Use algorithm X to learn a Markov boundary M of T from the dataset D for variables V (i.e., in 

the original distribution P) 
2. Output M 
3. Repeat 
4. Use procedure Y to generate a dataset D

e
 from the embedded distribution by removing a 

subset of variables G from the full set of variables V in the original distribution (also 
denoted as D(V \ G)). 

5. Use algorithm X to learn a Markov boundary Mnew of T from the dataset D
e
 

6. If Mnew is a Markov boundary of T in the original distribution according to criterion Z, 
output Mnew 

7. Until all datasets D
e
 generated by procedure Y have been considered. 

 

Figure F1: TIE* generative algorithm. 

 
Figure F1: TIE* generative algorithm
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An example of instantiated algorithm TIE*  
 

Inputs: dataset D (a sample from distribution P) for variables V, including a target variable T. 
 

Output: all Markov boundaries of T that exist in P. 
 

1. Use algorithm Semi-Interleaved HITON-PC to learn a Markov boundary M of T from the dataset 
D for variables V (i.e., in the original distribution P) 

2. Output M 
3. Repeat 
4. Generate a dataset D

e 
= D(V \ G) from the embedded distribution by removing from the 

full set of variables V in the original distribution the smallest subset G of the so far 
discovered Markov boundaries of T such that: 

(i) G was not considered in the previous iterations of this step, and 
(ii) G does not include any subset of variables that was previously removed from V to 

yield a dataset D
e
 when Mnew was found not to be a Markov boundary of T in the 

original distribution (per step 6) 
5. Use algorithm Semi-Interleaved HITON-PC to learn a Markov boundary Mnew of T from the 

dataset D
e
 (i.e., in the embedded distribution) 

6. If 
newT MM | , then Mnew is a Markov boundary of T in the original distribution and it is 

output by the algorithm 
7. Until all datasets D

e
 generated in step 4 have been considered. 

 

Figure F2: An example of instantiated TIE* algorithm.  

 

Algorithm iTIE* 
 

Input: dataset D (a sample from distribution P) for variables V, including a target variable T. 
 

Output: multiple Markov boundaries of T that exist in P. 
 
  Phase I: Forward 

1. Initialize  with an empty set 
2. Initialize M with an empty set 
3. Initialize the set of eligible variables E  V \ T 
4. Repeat 

5. Y  argmaxXE Association(T,  X) 
6. E  E \ Y 
7. If there is no subset Z Í M such that Z|YT   

then 

8. M  M  Y 
9. Else if Z exists and the following relations hold: YT  , ZT , YT |Z  

10. Record in  that Y and Z contain equivalent information with respect to T  
11. Until E is empty 

 
   Phase II: Backward 

12. For each X  M 
13. If there is a subset Z Í M \ X such that Z|XT   then 

14. M  M \ X 
 

   Phase III: Construction of multiple Markov boundaries 
15. Compute the Cartesian product of target information equivalency relations for subsets of M that 

are stored in  to construct multiple Markov boundaries of T 
16. Output multiple Markov boundaries of T 

 
Figure F3: iTIE* algorithm. 

Figure F2: An example of instantiated TIE* algorithm.
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An example of instantiated algorithm TIE*  
 

Inputs: dataset D (a sample from distribution P) for variables V, including a target variable T. 
 

Output: all Markov boundaries of T that exist in P. 
 

1. Use algorithm Semi-Interleaved HITON-PC to learn a Markov boundary M of T from the dataset 
D for variables V (i.e., in the original distribution P) 

2. Output M 
3. Repeat 
4. Generate a dataset D

e 
= D(V \ G) from the embedded distribution by removing from the 

full set of variables V in the original distribution the smallest subset G of the so far 
discovered Markov boundaries of T such that: 

(i) G was not considered in the previous iterations of this step, and 
(ii) G does not include any subset of variables that was previously removed from V to 

yield a dataset D
e
 when Mnew was found not to be a Markov boundary of T in the 

original distribution (per step 6) 
5. Use algorithm Semi-Interleaved HITON-PC to learn a Markov boundary Mnew of T from the 

dataset D
e
 (i.e., in the embedded distribution) 

6. If 
newT MM | , then Mnew is a Markov boundary of T in the original distribution and it is 

output by the algorithm 
7. Until all datasets D

e
 generated in step 4 have been considered. 

 

Figure F2: An example of instantiated TIE* algorithm.  

 

Algorithm iTIE* 
 

Input: dataset D (a sample from distribution P) for variables V, including a target variable T. 
 

Output: multiple Markov boundaries of T that exist in P. 
 
  Phase I: Forward 

1. Initialize  with an empty set 
2. Initialize M with an empty set 
3. Initialize the set of eligible variables E  V \ T 
4. Repeat 

5. Y  argmaxXE Association(T,  X) 
6. E  E \ Y 
7. If there is no subset Z Í M such that Z|YT   

then 

8. M  M  Y 
9. Else if Z exists and the following relations hold: YT  , ZT , YT |Z  

10. Record in  that Y and Z contain equivalent information with respect to T  
11. Until E is empty 

 
   Phase II: Backward 

12. For each X  M 
13. If there is a subset Z Í M \ X such that Z|XT   then 

14. M  M \ X 
 

   Phase III: Construction of multiple Markov boundaries 
15. Compute the Cartesian product of target information equivalency relations for subsets of M that 

are stored in  to construct multiple Markov boundaries of T 
16. Output multiple Markov boundaries of T 

 
Figure F3: iTIE* algorithm. Figure F3: iTIE* algorithm
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Appendix G. Proof of Correctness of ODLP

Theorem 1 ODLP is sound under the following sufficient assumptions: (i) TIE near-
faithfulness (as a relaxation of local adjacency faithfulness to allow for target informa-
tion equivalency relations); (ii) causal Markov condition; (iii) local causal sufficiency; (iv)
acyclicity of the data-generative graph; and (v) correctness of statistical decisions.

Proof First, we remind the readers that under DAG-faithfulness, the Markov boundary
is unique and consists of children, parents, and spouses of T . i.e., the Markov boundary
contains all members of the local causal pathway of T (consisting of parents and children
of T ), plus spouses that are not children of T . The latter spouses are marginally or con-
ditionally independent of T unlike members of the local causal pathways of T . Under
DAG-faithfulness, the Semi-Interleaved HITON-PC algorithm can discover all members of
the local causal pathway of T (Aliferis et al., 2010a,b). However under TIE near-faithfulness,
this algorithm will output a local causal pathway consistent with the data, which may or
may not contain parents and children of T .

We have previously established that an admissible instantiation of the generative al-
gorithm TIE* can correctly discover all Markov boundaries of the target variable T (see
Theorem 10 in (Statnikov et al., 2013)). When TIE* is instantiated with the Markov bound-
ary inducer Semi-Interleaved HITON-PC, it will identify in step 1 all local causal pathways
of T consistent with the data (Statnikov et al., 2013). The latter requires that members of all
local causal pathways consistent with the data are marginally and conditionally dependent
on T (except for violations of the intersection property that lead to equivalence relations),
which is satisfied given assumptions of this theorem, in particular TIE near-faithfulness.
Therefore, all members of the true local causal pathway will be contained in the output of
TIE* in step 1.

Similarly, it can be shown that iTIE* will identify in step 1 all local causal pathways
consistent with the data (and therefore all members of the true local causal pathway) given
assumptions of this theorem and an additional requirement that all equivalence relations in
the underlying distribution follow from equivalence relations of individual variables. The
latter requirement is one of sufficient assumptions for iTIE* correctness (Statnikov et al.,
2013).

Before we proceed with the remainder of the proof, we examine the contents of equiv-
alence clusters formed in step 3. Given three types of variables of interest (causes, effects,
and passengers) there are the following options for contents of the cluster: (1) causes; (2)
causes and effects; (3) causes and passengers; (4) causes, effects and passengers; (5) effects;
(6) effects and passengers; and (7) passengers. It can be shown by examples that options
(1)-(5) are possible and consistent with assumptions of this theorem. On the other hand,
options (6) and (7) cannot take place in the settings of this theorem.

Next we prove correctness of identification of effects, direct effects, other effects (“other
effects” are effects that are not identified as direct effects, they could be indirect effects
or both direct and indirect effects at the same time), causes, direct causes, other causes
(“other causes” are causes that are not identified as direct causes, they could be indirect
causes or both direct and indirect causes at the same time), and passengers within the vari-
able set V , which is the union of all variables that participate in the local causal pathways
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of T consistent with the data. Given that all members of the true local causal pathway are
contained in the set V , the correct identification of direct effects and direct causes within
the set V implies that ODLP is sound.

Identification of effects and direct/other effects: Based on the assumption of correctness
of statistical decisions and the definition of causation, all effects of T are correctly identified
by performing an experiment on T (step 4) and considering as effects all variables E ⊆ V
that change as a result of that experiment (step 5). Identification of direct/other effects is
performed within the subset E. We distinguish here three cases:

1. An equivalence cluster contains one variable X, which is an effect (step 9.a). Then
X has to be a direct effect. Otherwise, based on causal Markov condition and correctness
of statistical decisions, X will not belong to E because X will be rendered statistically
independent of T conditioned on a subset of variables from any local causal pathway of T
consistent with the data during execution of TIE* in step 1.

2. An equivalence cluster contains multiple variables, out of which only one variable X
(effect) has neither been identified yet as other effect nor as direct effect and all other effect
variables have been identified as other effects (step 9.a). Then, similarly to the previous
case, X has to be a direct effect. Otherwise, a cluster will only have an indirect but no direct
effect which cannot happen based on the assumptions of this theorem and the methodology
of constructing equivalence clusters by utilizing TIE* in steps 1-3.

3. An equivalence cluster contains multiple variables, out of which two or more effect
variables have neither been identified as other effects nor as direct effects. The algorithm
proceeds to execution of steps 9.b-9.d, whose correctness follows from the definition of cau-
sation and the assumption of correctness of statistical decisions.

Identification of causes and direct/other causes: Since we have already identified the set
of effects E, identification of causes (and direct/other causes) is performed within the set
of variables V \E. We distinguish here three cases:

1. An equivalence cluster contains one unmarked variable X (step 6.a). Since X is
unmarked, it is not an effect. Then X has to be a direct cause. Otherwise, based on causal
Markov condition and correctness of statistical decisions, X will not belong to V \ E be-
cause X will be rendered statistically independent of T conditioned on a subset of variables
from any local causal pathway of T consistent with the data during execution of TIE* in
step 1.

2. An equivalence cluster contains multiple variables, out of which only one variable X
has not been marked yet and all other variables have been identified as passengers and/or
effects (step 6.a). Again, since X is unmarked, it is not an effect. Then, similarly to the
previous case, X has to be a direct cause. Otherwise, a cluster will either have only effects
and passengers or effects, passengers, and an indirect cause. None of these cases can happen
based on the assumptions of this theorem and the methodology of constructing equivalence
clusters by utilizing TIE* in steps 1-3.

3. An equivalence cluster contains multiple variables, out of which two or more variables
have not been marked yet. The algorithm proceeds to execution of steps 6.b-6.d, whose
correctness follows from the definition of causation and the assumption of correctness of
statistical decisions.

Identification of passengers: Based on the assumption of correctness of statistical deci-
sions and the definition of causation, passengers are correctly identified in step 6.d. More
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specifically, all variables marked as passengers in that step have been previously unmarked
(and therefore are not effects of T ) and are not on the causal path to T (and therefore are
not causes of T ).
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Appendix H. More on ODLP’s Experimental Strategy and its Efficiency

Consider an example network shown in Figure H1.a. Variables A, B, C, D, and E contain
equivalent information about the target variable T and cannot be distinguished with obser-
vational data. Without any prior knowledge about the causal role of A, B, C, D, and E, we
will first need to manipulate T to determine that none of the above 5 variables is an effect
of T . Therefore, they can be either causes or passengers. If we manipulate C, we will realize
that D and E change but T does not change due to manipulation of C. Therefore, C,D,E
are all passengers and we do not need to manipulate D and E (we saved 2 experiments).
Next we manipulate A and observe that it leads to changes in T (and B, C, D, and E) and
thus it is a cause of T . Finally, we can manipulate B and observe that it leads to changes
only in T and thus it is a direct cause. So, in total we performed 4 experiments (manipulate
T , C, A, and B in order). However, if we did not choose C early on for manipulations,
we could end up doing up to 6 experiments (manipulate T , E, D, C, A, and B in order)
to identify the local causal pathway. In fact, it is not possible to conduct fewer than four
single-variable experiments in this example, and thus the sequence of experiments T , C, A,
B is optimal. The only problem is that we do not know the graphical structure when we
perform experiments, and thus we need to resort to heuristics to manipulate first variables
that are likely to yield savings in experiments (step 6.b of the ODLP algorithm; see Figure
3).

Consider another example network shown in Figure H1.b. Variables A, B, C, D, E,
F , and J contain equivalent information about the target variable T and cannot be distin-
guished with observational data. Assume that we have already manipulated T , A, and B,
and now we are deciding what variable to manipulate next. Manipulation of T , A, and B
provided us with partial information on topological (causal) order of variables. Specifically,
we know that (i) no variable is downstream of T (from manipulating T ), (ii) B, C, D, E,
F , J , and T are downstream of A (from manipulating A), and (iii) D, E, F , J , and T are
downstream of B (from manipulating B). As discussed in the text, one possibility is to use
a partial network-based heuristic that chooses a variable that has the highest topological
order relative to T . As established from constraints learned from experimental data, vari-
able C has the highest topological order and has not been manipulated yet. Manipulation
of C allows to immediately identify the local causal pathway because D, E, F , and J will
change and T will not change due to manipulation of C, thus C, D, E, F , and J are all
passengers. In summary we conducted 4 experiments, while alternative strategies will take
up to 8 experiments. To see the expected efficiency of the above heuristic function, we can
revisit this example and assume that we do not have knowledge to manipulate A and B
first. In this case, we will identify the local causal pathway in 4 experiments with prob-
ability 6.67% using the above heuristic and with probability 2.86% without the heuristic
and performing random selection of variables for manipulation (in step 6.b of the ODLP
algorithm; see Figure 3).
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Figure G1: Two causal networks used to 
illustrate ODLP’s experimental strategy and 
its efficiency. Variables are shown with 
circles, and edges represent direct causal 
influences. The target variable is T. 
Variables that are shown with the same 
color contain the same information about 
the target (they are target information 
equivalent).  

 

 

Figure H1: Two causal networks used to illustrate ODLPs experimental strategy and its
efficiency. Variables are shown with circles, and edges represent direct causal
influences. The target variable is T. Variables that are shown with the same
color contain the same information about the target (they are target information
equivalent).
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Abstract

Numerous machine learning algorithms contain pairwise statistical problems at their core—
that is, tasks that require computations over all pairs of input points if implemented naively.
Often, tree structures are used to solve these problems efficiently. Dual-tree algorithms can
efficiently solve or approximate many of these problems. Using cover trees, rigorous worst-
case runtime guarantees have been proven for some of these algorithms. In this paper,
we present a problem-independent runtime guarantee for any dual-tree algorithm using the
cover tree, separating out the problem-dependent and the problem-independent elements.
This allows us to just plug in bounds for the problem-dependent elements to get runtime
guarantees for dual-tree algorithms for any pairwise statistical problem without re-deriving
the entire proof. We demonstrate this plug-and-play procedure for nearest-neighbor search
and approximate kernel density estimation to get improved runtime guarantees. Under
mild assumptions, we also present the first linear runtime guarantee for dual-tree based
range search.

Keywords: dual-tree algorithms, adaptive runtime analysis, cover tree, expansion con-
stant, nearest neighbor search, kernel density estimation, range search

1. Dual-tree Algorithms

A surprising number of machine learning algorithms have computational bottlenecks that
can be expressed as pairwise statistical problems. By this, we mean computational tasks
that can be evaluated directly by iterating over all pairs of input points. Nearest neighbor
search is one such problem, since for every query point, we can evaluate its distance to
every reference point and keep the closest one. This naively requires O(N) time to answer
a single query in a reference set of size N ; answering O(N) queries subsequently requires
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prohibitive O(N2) time. Kernel density estimation is also a pairwise statistical problem,
since we compute a sum over all reference points for each query point. This again requires
O(N2) time to answer O(N) queries if done directly. The reference set is typically indexed
with spatial data structures to accelerate this type of computation (Finkel and Bentley,
1974; Beygelzimer et al., 2006); these result in O(logN) runtime per query under favorable
conditions.

Building upon this intuition, Gray and Moore (2001) generalized the fast multipole
method from computational physics to obtain dual-tree algorithms. These are extremely
useful when there are large query sets, not just a few query points. Instead of building a tree
on the reference set and searching with each query point separately, Gray and Moore suggest
also building a query tree and traversing both the query and reference trees simultaneously
(a dual-tree traversal, from which the class of algorithms takes its name).

Dual-tree algorithms can be easily understood through the recent framework of Curtin
et al. (2013b): two trees (a query tree and a reference tree) are traversed by a pruning dual-
tree traversal. This traversal visits combinations of nodes from the trees in some sequence
(each combination consisting of a query node and a reference node), calling a problem-
specific Score() function to determine if the node combination can be pruned. If not,
then a problem-specific BaseCase() function is called for each combination of points held
in the query node and reference node. This has significant similarity to the more common
single-tree branch-and-bound algorithms, except that the algorithm must recurse into child
nodes of both the query tree and reference tree.

There exist numerous dual-tree algorithms for problems as diverse as kernel density
estimation (Gray and Moore, 2003), mean shift (Wang et al., 2007), minimum spanning
tree calculation (March et al., 2010), n-point correlation function estimation (March et al.,
2012), max-kernel search (Curtin et al., 2013c), particle smoothing (Klaas et al., 2006),
variational inference (Amizadeh et al., 2012), range search (Gray and Moore, 2001), and
embedding techniques (Van Der Maaten, 2014), to name a few.

Some of these algorithms are derived using the cover tree (Beygelzimer et al., 2006), a
data structure with compelling theoretical qualities. When cover trees are used, dual-tree
all-nearest-neighbor search and approximate kernel density estimation have O(N) runtime
guarantees for O(N) queries (Ram et al., 2009a); minimum spanning tree calculation scales
as O(N logN) (March et al., 2010). Other problems have similar worst-case guarantees
(Curtin and Ram, 2014; March, 2013).

In this work we combine the generalization of Curtin et al. (2013b) with the theoretical
results of Beygelzimer et al. (2006) and others in order to develop a worst-case runtime
bound for any dual-tree algorithm when the cover tree is used.

Section 2 lays out the required background, notation, and introduces the cover tree and
its associated theoretical properties. Readers familiar with the cover tree literature and
dual-tree algorithms (especially Curtin et al., 2013b) may find that section to be review.
Following that, we introduce an intuitive measure of cover tree imbalance, an important
property for understanding the runtime of dual-tree algorithms, in Section 3. This measure
of imbalance is then used to prove the main result of the paper in Section 4, which is a
worst-case runtime bound for generalized dual-tree algorithms. We apply this result to
three specific problems: nearest neighbor search (Section 5), approximate kernel density
estimation (Section 6), and range search / range count (Section 7), showing linear runtime
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Symbol Description
N A tree node
Ci Set of child nodes of Ni

Pi Set of points held in Ni

Dn
i Set of descendant nodes of Ni

Dp
i Set of points contained in Ni and Dn

i

µi Center of Ni

λi Furthest descendant distance from µi

Table 1: Notation for trees. See Curtin et al. (2013b) for details.

bounds for each of those algorithms. Each of these bounds is an improvement on the state-
of-the-art, and in the case of range search, is the first such bound. Despite the intuition
this provides for the scaling properties of all dual-tree algorithms1, it must be kept in mind
that these worst-case bounds only apply to dual-tree algorithms that use the cover tree and
the standard cover tree traversal.

2. Preliminaries

For simplicity, the algorithms considered in this paper will be presented in a tree-independent
context, as in Curtin et al. (2013b), but the only type of tree we will consider is the cover
tree (Beygelzimer et al., 2006), and the only type of traversal we will consider is the cover
tree pruning dual-tree traversal, which we will describe later.

As we will be making heavy use of trees, we must establish notation (taken from Curtin
et al., 2013b). The notation we will be using is defined in Table 1.

2.1 The Cover Tree

The cover tree is a leveled hierarchical data structure originally proposed for the task of
nearest neighbor search by Beygelzimer et al. (2006). Each node Ni in the cover tree is
associated with a single point pi. An adequate description is given in their work (we have
adapted notation slightly):

A cover tree T on a dataset S is a leveled tree where each level is a “cover” for
the level beneath it. Each level is indexed by an integer scale si which decreases
as the tree is descended. Every node in the tree is associated with a point in S.
Each point in S may be associated with multiple nodes in the tree; however, we
require that any point appears at most once in every level. Let Csi denote the
set of points in S associated with the nodes at level si. The cover tree obeys
the following invariants for all si:

1. Dual-tree algorithms using kd-trees and other types of trees have been observed to empirically scale
linearly for tasks that take quadratic time without the use of trees; see the empirical results of Gray and
Moore (2001); March et al. (2010); Vladymyrov and Carreira-Perpinán (2014); Klaas et al. (2006); Gray
and Moore (2003).
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• (Nesting). Csi ⊂ Csi−1. This implies that once a point p ∈ S appears in
Csi then every lower level in the tree has a node associated with p.

• (Covering tree). For every pi ∈ Csi−1, there exists a pj ∈ Csi such that
d(pi, pj) < 2si and the node in level si associated with pj is a parent of the
node in level si − 1 associated with pi.

• (Separation). For all distinct pi, pj ∈ Csi , d(pi, pj) > 2si .

As a consequence of this definition, if there exists a node Ni, containing the point pi
at some scale si, then there will also exist a self-child node Nic containing the point pi at
scale si − 1 which is a child of Ni. In addition, every descendant point of the node Ni is
contained within a ball of radius 2si+1 centered at the point pi; therefore, λi = 2si+1 and
µi = pi (Table 1).

Note that the cover tree may be interpreted as an infinite-leveled tree, with C∞ con-
taining only the root point, C−∞ = S, and all levels between defined as above. Beygelzimer
et al. (2006) find this representation (which they call the implicit representation) easier for
description of their algorithms and some of their proofs. But clearly, this is not suitable for
implementation; hence, there is an explicit representation in which all nodes that have only
a self-child are coalesced upwards (that is, the node’s self-child is removed, and the children
of that self-child are taken to be the children of the node). Figure 1 shows each of the levels
of an example cover tree (in the explicit representation) on a simple six-point dataset.

In this work, we consider only the explicit representation of a cover tree, and do not
concern ourselves with the details of tree construction2.

2.2 Expansion Constant

The explicit representation of a cover tree has a number of useful theoretical properties
based on the expansion constant (Karger and Ruhl, 2002); we restate its definition below.

Definition 1 Let BS(p,∆) be the set of points in S within a closed ball of radius ∆ around
some p ∈ S with respect to a metric d: BS(p,∆) = {r ∈ S : d(p, r) ≤ ∆}. Then, the
expansion constant of S with respect to the metric d is the smallest c ≥ 2 such that

|BS(p, 2∆)| ≤ c|BS(p,∆)| ∀ p ∈ S, ∀ ∆ > 0. (1)

The expansion constant is used heavily in the cover tree literature. It is, in some sense,
a notion of instrinic dimensionality, most useful in scenarios where c is independent of
the number of points in the dataset (Karger and Ruhl, 2002; Beygelzimer et al., 2006;
Krauthgamer and Lee, 2004; Ram et al., 2009a). Note also that if points in S ⊂ H are
being drawn according to a stationary distribution f(x), then c will converge to some finite
value cf as |S| → ∞. To see this, define cf as a generalization of the expansion constant
for distributions. cf ≥ 2 is the smallest value such that∫

BH(p,2∆)
f(x)dx ≤ cf

∫
BH(p,∆)

f(x)dx (2)

2. A batch construction algorithm is given by Beygelzimer et al. (2006), called Construct.
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Figure 1: Example cover tree on six points in R2. (a) Na is centered at p0 with scale 1. (b)
Nb and Nc are centered at p0 and p1, respectively, and have scale 0. (c) Nd and
Ne are centered at p0 and p2, respectively, and have scale −1. The leaves, N0

through N6, are centered at each of the six points, with scale −∞ (and therefore
radius 0). Note that although node Nb in subfigure (b) overlaps node Nc, point
p1 only belongs to Nc, not Nb. Note also that this is only one valid cover tree
that could be built on the data; other configurations are possible; for instance,
selecting a different root point gives different valid cover trees.
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for all p ∈ H and ∆ > 0 such that
∫
BH(p,∆) f(x)dx > 0, and with BH(p,∆) defined as the

closed ball of radius ∆ in the space H.
As a simple example, take f(x) as a uniform spherical distribution inRd: for any |x| ≤ 1,

f(x) is a constant; for |x| > 1, f(x) = 0. It is easy to see that cf in this situation is 2d, and
thus for some dataset S, c must converge to that value as more and more points are added
to S. Closed-form solutions for cf for more complex distributions are less easy to derive;
however, empirical speedup results from Beygelzimer et al. (2006) suggest the existence of
datasets where c is not strongly dependent on d. For instance, the covtype dataset has
54 dimensions but the expansion constant is much smaller than other, lower-dimensional
datasets.

There are some other important observations about the behavior of c. Adding a single
point to S may increase c arbitrarily: consider a set S distributed entirely on the surface
of a unit hypersphere. If one adds a single point at the origin, producing the set S′, then
c explodes to |S′| whereas before it may have been much smaller than |S|. Adding a
single point may also decrease c significantly. Suppose one adds a point arbitrarily close
to the origin to S′; now, the expansion constant will be |S′|/2. Both of these situations
are degenerate cases not commonly encountered in real-world behavior; we discuss them in
order to point out that although we can bound the behavior of c as |S| → ∞ for S from a
stationary distribution, we are not able to easily say much about its convergence behavior.

The expansion constant can be used to show a few useful bounds on various properties
of the cover tree; we restate these results below, given some cover tree built on a dataset S
with expansion constant c and |S| = N :

• Width bound: no cover tree node has more than c4 children (Lemma 4.1, Beygelz-
imer et al., 2006).

• Depth bound: the maximum depth of any node is O(c2 logN) (Lemma 4.3, Beygelz-
imer et al., 2006).

• Space bound: a cover tree has O(N) nodes (Theorem 1, Beygelzimer et al., 2006).

Lastly, we introduce a convenience lemma of our own which is a generalization of the
packing arguments used by Beygelzimer et al. (2006). This is a more flexible version of
their argument.

Lemma 1 Consider a dataset S with expansion constant c and a subset C ⊆ S such that
every two distinct points in C are separated by at least δ. Then, for any point p (which may
or may not be in S), and any radius ρδ > 0:

|BS(p, ρδ) ∩ C| ≤ c2+dlog2 ρe. (3)

Proof The proof is based on the packing argument from Lemma 4.1 in Beygelzimer et al.
(2006). Consider two cases: first, let d(p, pi) > ρδ for any pi ∈ S. In this case, BS(p, ρδ) = ∅
and the lemma holds trivially. Otherwise, let pi ∈ S be a point such that d(p, pi) ≤ ρδ.
Observe that BS(p, ρδ) ⊆ BS(pi, 2ρδ). Also, |BS(pi, 2ρδ)| ≤ c2+dlog2 ρe|BS(pi, δ/2)| by the
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definition of the expansion constant. Because each point in C is separated by δ, the number
of points in BS(p, ρδ)∩C is bounded by the number of disjoint balls of radius δ/2 that can
be packed into BS(p, ρδ). In the worst case, this packing is perfect, and

|BS(p, ρδ)| ≤ |BS(pi, 2ρδ)|
|BS(pi, δ/2)|

≤ c2+dlog2 ρe. (4)

3. Tree Imbalance

It is well-known that imbalance in trees leads to degradation in performance; for instance,
a kd-tree node with every descendant in its left child except one is effectively useless. A
kd-tree full of nodes like this will perform abysmally for nearest neighbor search, and it is
not hard to generate a pathological dataset that will cause a kd-tree of this sort.

This sort of imbalance applies to all types of trees, not just kd-trees. In our situation, we
are interested in a better understanding of this imbalance for cover trees, and thus endeavor
to introduce a more formal measure of imbalance which is correlated with tree performance.
Numerous measures of tree imbalance have already been established; one example is that
proposed by Colless (1982), and another is Sackin’s index (Sackin, 1972), but we aim to
capture a different measure of imbalance that uses the leveled structure of the cover tree.

We already know each node in a cover tree is indexed with an integer level (or scale).
In the explicit representation of the cover tree, each non-leaf node has children at a lower
level. But these children need not be strictly one level lower; see Figure 2. In Figure 2a,
each cover tree node has children that are strictly one level lower; we will refer to this as
a perfectly balanced cover tree. Figure 2b, on the other hand, contains the node Nm which
has two children with scale two less than sm. We will refer to this as an imbalanced cover
tree. Note that in our definition, the balance of a cover tree has nothing to do with differing
number of descendants in each child branch but instead only missing levels.

An imbalanced cover tree can happen in practice, and in the worst cases, the imbalance
may be far worse than the simple graphs of Figure 2. Consider a dataset with a single

Nh NjNi

NdNcNb

Nk

Na

NgNfNe

sa

sa − 1

sa − 2

(a) Balanced cover tree.

Nr Ns

Nn

Nt

Nm

NqNp

sm

sm − 1

sm − 2

(b) Imbalanced cover tree.

Figure 2: Balanced and imbalanced cover trees.
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outlier

Figure 3: Single-outlier cover tree.

Figure 4: A multiple-outlier cover tree.

outlier which is very far away from all of the other points3. Figure 3 shows what happens in
this situation: the root node has two children; one of these children has only the outlier as
a descendant, and the other child has the rest of the points in the dataset as a descendant.
In fact, it is easy to find datasets with a handful of outliers that give rise to a chain-like
structure at the top of the tree: see Figure 4 for an illustration4.

A tree that has this chain-like structure all the way down, which is similar to the kd-tree
example at the beginning of this section, is going to perform horrendously; motivated by
this observation, we define a measure of tree imbalance.

Definition 2 The cover node imbalance In(Ni) for a cover tree node Ni with scale si in
the cover tree T is defined as the cumulative number of missing levels between the node
and its parent Np (which has scale sp). If the node is a leaf (that is, si = −∞), then the
number of missing levels is defined as the difference between sp and smin − 1 where smin is
the smallest scale of a non-leaf node in T . If Ni is the root of the tree, then the cover node
imbalance is 0. Explicitly written, this calculation is

In(Ni) =


sp − si − 1 if Ni is not a leaf and not the root node

max(sp − smin − 1, 0) if Ni is a leaf

0 if Ni is the root node.

(5)

3. Note also that for an outlier sufficiently far away, the expansion constant is N − 1, so we should expect
poor performance with the cover tree anyway.

4. As a side note, this behavior is not limited to cover trees, and can happen to mean-split kd-trees too,
especially in higher dimensions. In addition, for this scenario to arise with cover trees, it must be true
that c ∼ O(N).
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Imbalance

Dataset d N = 5k N = 50k N = 500k

lcdm 3 4.48 5.15 5.24
sdss 4 2.17 2.81 2.97

power 7 5.41 6.46 4.50
susy 18 0.74 0.76 0.86

randu 10 0.23 0.22 0.59
higgs 29 0.99 1.68 1.56

covertype 54 1.322 1.766 2.495
mnist 784 0.99 1.67 2.09

Table 2: Empirically calculated tree imbalances, normalized by N .

This simple definition of cover node imbalance is easy to calculate, and using it, we can
generalize to a measure of imbalance for the full tree.

Definition 3 The cover tree imbalance It(T ) for a cover tree T is defined as the cumula-
tive number of missing levels in the tree. This can be expressed as a function of cover node
imbalances easily:

It(T ) =
∑

Ni∈T

In(Ni). (6)

A perfectly balanced cover tree Tb with no missing levels has imbalance It(Tb) = 0 (for
instance, Figure 2a). A worst-case cover tree Tw which is entirely a chain-like structure with
maximum scale smax and minimum scale smin will have imbalance It(Tw) ∼ N(smax−smin).
Because of this chain-like structure, each level has only one node and thus there are at least
N levels; or, smax − smin ≥ N , meaning that in the worst case the imbalance is quadratic
in N .5

However, for most real-world datasets with the cover tree implementation in mlpack
(Curtin et al., 2013a) and the reference implementation (Beygelzimer et al., 2006), the tree
imbalance is near-linear with the number of points. We have constructed cover trees on N
uniformly subsampled points from a variety of datasets and calculated the imbalance; see
Table 2 for the results. Ten trials were performed for each dataset and each N , and the
mean imbalance is given. These results are normalized with respect to N , for which the
values of 5000, 50000, and 500000 were chosen. The ‘power’, ‘susy’, ‘higgs’, and ‘covertype’
datasets are found in the UCI Machine Learning Repository (Bache and Lichman, 2013), the
‘mnist’ dataset is from LeCun et al. (2000), the ‘lcdm‘ and ‘sdss’ datasets are Sloan Digital
Sky Survey data (Adelman-McCarthy et al., 2008), and the ‘randu’ dataset is randomly-
generated uniformly-distributed data in 10 dimensions. The imbalances on each of these
datasets tend to be near-linear.

Currently, no cover tree construction algorithm specifically aims to minimize imbalance.

5. Note that in this situation, c ∼ N also.
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Algorithm 1 The standard pruning dual-tree traversal for cover trees.

1: Input: query node Nq, set of reference nodes R
2: Output: none

3: smax
r ← maxNr∈R sr

4: if (sq < smax
r ) then

5: {Perform a reference recursion.}
6: for each Nr ∈ R do
7: BaseCase(pq, pr)
8: end for
9: Rr ← {Nr ∈ R : sr = smax

r }
10: Rr−1 ← {C (Nr) : Nr ∈ Rr} ∪ (R \Rr)
11: R′r−1 ← {Nr ∈ Rr−1 : Score(Nq,Nr) 6=∞}
12: recurse with Nq and R′r−1

13: else
14: {Perform a query recursion.}
15: for each Nqc ∈ C (Nq) do
16: R′ ← {Nr ∈ R : Score(Nqc,Nr) 6=∞}
17: recurse with Nqc and R′

18: end for
19: end if

4. General Runtime Bound

Perhaps more interesting than measures of tree imbalance is the way cover trees are actu-
ally used in dual-tree algorithms. Although cover trees were originally intended for nearest
neighbor search (See Algorithm Find-All-Nearest, Beygelzimer et al., 2006), they can be
adapted to a wide variety of problems: minimum spanning tree calculation (March et al.,
2010), approximate nearest neighbor search (Ram et al., 2009b), Gaussian processes poste-
rior calculation (Moore and Russell, 2014), and max-kernel search (Curtin and Ram, 2014)
are some examples. Further, through the tree-independent dual-tree algorithm abstraction
of Curtin et al. (2013b), other existing dual-tree algorithms can easily be adapted for use
with cover trees.

In the framework of tree-independent dual-tree algorithms, all that is necessary to de-
scribe a dual-tree algorithm is a point-to-point base case function (BaseCase()) and a
node-to-node pruning rule (Score()). These functions, which are often very straightfor-
ward, are then paired with a type of tree and a pruning dual-tree traversal to produce a
working algorithm. In later sections, we will consider specific examples.

When using cover trees, the typical pruning dual-tree traversal is an adapted form of
the original nearest neighbor search algorithm (see Find-All-Nearest, Beygelzimer et al.,
2006); this traversal is implemented in both the cover tree reference implementation and in
the more flexible mlpack library (Curtin et al., 2013a). The problem-independent traversal
is given in Algorithm 1 and was originally presented by Curtin and Ram (2014). Initially,
it is called with the root of the query tree and a reference set R containing only the root of
the reference tree.
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This dual-tree recursion is a depth-first recursion in the query tree and a breadth-first
recursion in the reference tree; to this end, the recursion maintains one query node Nq and
a reference set R. The set R may contain reference nodes with many different scales; the
maximum scale in the reference set is smax

r (line 3). Each single recursion will descend either
the query tree or the reference tree, not both; the conditional in line 4, which determines
whether the query or reference tree will be recursed, is aimed at keeping the relative scales
of query nodes and reference nodes close.

Keeping the query and reference scales close is both beneficial for the later theory and
intuitively reasonable: recursing too quickly in the either the query or reference node will
unnecessarily duplicate work. Suppose we recurse many levels down the query tree before
recursing down the reference tree, giving us a set of query nodes we are considering. For
each of these query nodes, we will then need to descend the reference tree. Because these
query nodes are close together (with respect to the reference nodes we are considering,
which are of larger scale and thus further apart), the pruning decisions at each level of
recursion are likely to be the same for each query node. Therefore, recursing too far in the
query tree may cause a large amount of duplicated work. The symmetric argument applies
for recursing too far in the reference tree before recursing in the query tree. This justifies
the approach of keeping the query and reference scales approximately equal.

A query recursion (lines 13–18) is straightforward: for each child Nqc of Nq, the node
combinations (Nqc,Nr) are scored for each Nr in the reference set R. If possible, these
combinations are pruned to form the set R′ (line 17) by checking the output of the Score()

function, and then the algorithm recurses with Nqc and R′.
A reference recursion (lines 4–12) is similar to a query recursion, but the pruning strategy

is significantly more complicated. Given R, we calculate Rr, which is the set of nodes in
R that have scale smax

r . We expand each node in Rr to construct Rr−1: this is the set
of children of all nodes in Rr. This set is then combined with R \ Rr (that is, the set of
references nodes not at scale smax

r ) to produce Rr−1. Each node in Rr−1 is then scored and
pruned if possible, resulting in the pruned reference set R′r−1. The algorithm then recurses
with Nq and R′r−1.

The reference recursion only recurses into the top-level subset of the reference nodes in
order to preserve the separation invariant. It is easy to show that every pair of points held
in nodes in R is separated by at least 2s

max
r :

Lemma 2 For all distinct nodes Ni,Nj ∈ R (in the context of Algorithm 1) which contain
points pi and pj, respectively, d(pi, pj) > 2s

max
r , with smax

r defined as in line 3.

Proof This proof is by induction. If |R| = 1, such as during the first reference recursion,
the result obviously holds. Now consider any reference set R and assume the statement of
the lemma holds for this set R, and define smax

r as the maximum scale of any node in R.
Construct the set Rr−1 as in line 10 of Algorithm 1; if |Rr−1| ≤ 1, then Rr−1 satisfies the
desired property.

Otherwise, take any Ni,Nj in Rr−1, with points pi and pj , respectively, and scales
si and sj , respectively. Clearly, if si = sj = smax

r − 1, then by the separation invariant
d(pi, pj) > 2s

max
r −1.

Now suppose that si < smax
r − 1. This implies that there exists some implicit cover tree

node with point pi and scale smax
r − 1 (as well as an implicit child of this node pi with scale
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smax
r − 2 and so forth until one of these implicit nodes has child pi with scale si). Because

the separation invariant applies to both implicit and explicit representations of the tree, we
conclude that d(pi, pj) > 2s

max
r − 1. The same argument may be made for the case where

sj < smax
r − 1, with the same conclusion.

We may therefore conclude that each point of each node in Rr−1 is separated by 2s
max
r −1.

Note that R′r−1 ⊆ Rr−1 and that R \Rr−1 ⊆ R in order to see that this condition holds for
all nodes in R′r−1.

Because we have shown that the condition holds for the initial reference set and for
any reference set produced by a reference recursion (which will be R at some other level of
recursion), we have shown that the statement of the lemma is true.

Note that in this proof, we have considered the child reference set Rr−1, not the original
reference set R, and shown that with respect to smax

r as defined by R (not Rr−1), all nodes
are separated by 2s

max
r −1. Then, in the frame of the next recursion where R ← Rr−1, the

lemma will hold, as smax
r will then be the maximum scale present in R.

This observation means that the set of points P held by all nodes in R is always a subset
of Csmax

r
. This fact will be useful in our later runtime proofs.

Next, we develop notions with which to understand the behavior of the cover tree dual-
tree traversal when the datasets are of significantly different scale distributions.

If the datasets are similar in scale distribution (that is, inter-point distances tend to
follow the same distribution), then the recursion will alternate between query recursions and
reference recursions. But if the query set contains points which are, in general, much farther
apart than the reference set, then the recursion will start with many query recursions before
reaching a reference recursion. The converse case also holds. We are interested in formalizing
this notion of scale distribution; therefore, define the following dataset-dependent constants
for the query set Sq and the reference set Sr:

• ηq: the largest pairwise distance in Sq

• δq: the smallest nonzero pairwise distance in Sq

• ηr: the largest pairwise distance in Sr

• δr: the smallest nonzero pairwise distance in Sr

These constants are directly related to the aspect ratio of the datasets; indeed, ηq/δq is
exactly the aspect ratio of Sq. Further, let us define and bound the top and bottom levels
of each tree:

• The top scale sTq of the query tree Tq is such that as dlog2(ηq)e− 1 ≤ sTq ≤ dlog2(ηq)e.

• The minimum scale of the query tree Tq is defined as smin
q = dlog2(δq)e.

• The top scale sTr of the reference tree Tr is such that as dlog2(ηr)e − 1 ≤ sTr ≤
dlog2(ηr)e.

• The minimum scale of the reference tree Tr is defined as smin
r = dlog2(δr)e.
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Note that the minimum scale is not the minimum scale of any cover tree node (that
would be −∞), but the minimum scale of any non-leaf node in the tree.

Suppose that our datasets are of a similar scale distribution: sTq = sTr , and smin
q = smin

r .
In this setting we will have alternating query and reference recursions. But if this is not the
case, then we have extra reference recursions before the first query recursion or after the
last query recursion (situations where both these cases happen are possible). Motivated by
this observation, let us quantify these extra reference recursions:

Lemma 3 For a dual-tree algorithm with |Sq| ∼ |Sr| ∼ O(N) using cover trees and the
traversal given in Algorithm 1, the number of extra reference recursions that happen before
the first query recursion is bounded by

min (O(N), log2(ηr/ηq)− 1) . (7)

Proof The first query recursion happens once sq ≥ smax
r . The number of reference re-

cursions before the first query recursion is then bounded as the number of levels in the
reference tree between sTr and sTq that have at least one explicit node. Because there are
O(N) nodes in the reference tree, the number of levels cannot be greater than O(N) and
thus the result holds.

The second bound holds by applying the definitions of sTr and sTq to the expression

sTr − sTq − 1:

sTr − sTq − 1 ≤ dlog2(ηr)e − (dlog2(ηq)e − 1)− 1 (8)

≤ log2(ηr) + 1− log2(ηq) (9)

which gives the statement of the lemma after applying logarithmic identities.

Note that the O(N) bound may be somewhat loose, but it suffices for our later purposes.
Now let us consider the other case:

Lemma 4 For a dual-tree algorithm with |Sq| ∼ |Sr| ∼ O(N) using cover trees and the
traversal given in Algorithm 1, the number of extra reference recursions that happen after
the last query recursion is bounded by

max
(
min

(
O(N log2(δq/δr)), O(N2)

)
, 0
)
. (10)

For convenience, we define a term that encapsulates this bound.

Definition 4 Define θ as a bound on the number of extra reference recursions that happen
after the last query recursion. Then,

θ = max
{

min
(
O(N log2(δq/δr)), O(N2)

)
, 0
}
. (11)
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Proof Our goal here is to count the number of reference recursions after the final query
recursion at level smin

q ; the first of these reference recursions is at scale smax
r = smin

q . Because
query nodes are not pruned in this traversal, each reference recursion we are counting will
be duplicated over the whole set of O(N) query nodes. The first part of the bound follows
by observing that smin

q − smin
r ≤ dlog2(δq)e − dlog2(δr)e − 1 ≤ log2(δq/δr).

The second part follows by simply observing that there are O(N) reference nodes.

These two previous lemmas allow us a better understanding of what happens as the
reference set and query set become different. Lemma 3 shows that the number of extra
recursions caused by a reference set with larger pairwise distances than the query set (ηr
larger than ηq) is modest; on the other hand, Lemma 4 shows that for each extra level in
the reference tree below smin

q , O(N) extra recursions are required. Using these lemmas and
this intuition, we will prove general runtime bounds for the cover tree traversal.

Theorem 1 Given a reference set Sr of size O(N) with an expansion constant cr and a
set of queries Sq of size O(N), a standard cover tree based dual-tree algorithm (Algorithm
1) takes

O
(
c4
r |R∗|χψ(N + It(Tq) + θ)

)
(12)

time, where |R∗| is the maximum size of the reference set R (line 1) during the dual-tree
recursion, χ is the maximum possible runtime of BaseCase(), ψ is the maximum possible
runtime of Score(), and θ is defined as in Lemma 4.

Proof First, split the algorithm into two parts: reference recursions (lines 4–12) and query
recursions (lines 13–18). The runtime of the algorithm is the runtime of a reference recursion
times the total number of reference recursions plus the total runtime of all query recursions.

Consider a reference recursion (lines 4–12). Define R∗ to be the largest set R for any
scale smax

r and any query node Nq during the course of the algorithm; then, it is true that
|R| ≤ |R∗|. The work done in the base case loop from lines 6–8 is thus O(χ|R|) ≤ O(χ|R∗|).
Then, lines 10 and 11 take O(c4

rψ|R|) ≤ O(c4
rψ|R∗|) time, because each reference node has

up to c4
r children. So, one full reference recursion takes O(c4

rψχ|R∗|) time.
Now, note that there are O(N) nodes in Tq. Thus, line 17 is visited O(N) times.

The amount of work in line 16, like in the reference recursion, is bounded as O(c4
rψ|R∗|).

Therefore, the total runtime of all query recursions is O(c4
rψ|R∗|N).

Lastly, we must bound the total number of reference recursions. Reference recursions
happen in three cases: (1) smax

r is greater than the scale of the root of the query tree (no
query recursions have happened yet); (2) smax

r is less than or equal to the scale of the root
of the query tree, but is greater than the minimum scale of the query tree that is not −∞;
(3) smax

r is less than the minimum scale of the query tree that is not −∞.
First, consider case (1). Lemma 3 shows that the number of reference recursions of this

type is bounded by O(N). Although there is also a bound that depends on the sizes of the
datasets, we only aim to show a linear runtime bound, so the O(N) bound is sufficient here.

Next, consider case (2). In this situation, each query recursion implies at least one
reference recursion before another query recursion. For some query node Nq, the exact
number of reference recursions before the children of Nq are recursed into is bounded above
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by In(Nq) + 1: if Nq has imbalance 0, then it is exactly one level below its parent, and
thus there is only one reference recursion. On the other hand, if Nq is many levels below
its parent, then it is possible that a reference recursion may occur for each level in between;
this is a maximum of In(Nq) + 1.

Because each query node in Tq is recursed into once, the total number of reference
recursions before each query recursion is∑

Nq∈Tq

In(Nq) + 1 = It(Tq) +O(N) (13)

since there are O(N) nodes in the query tree.
Lastly, for case (3), we may refer to Lemma 4, giving a bound of θ reference recursions

in this case.
We may now combine these results for the runtime of a query recursions with the total

number of reference recursions in order to give the result of the theorem:

O
(
c4
r |R∗|ψχ (N + It(Tq) + θ)

)
+O

(
c4
r |R∗|ψN

)
∼ O

(
c4
r |R∗|ψχ (N + It(Tq) + θ)

)
. (14)

When we consider the monochromatic case (where Sq = Sr), the results trivially simplify.

Corollary 1 Given the situation of Theorem 1 but with Sq = Sr = S so that cq = cr = c
and Tq = Tr = T , a dual-tree algorithm using the standard cover tree traversal (Algorithm
1) takes

O
(
c4|R∗|χψ (N + It(T ))

)
(15)

time, where |R∗| is the maximum size of the reference set R (line 1) during the dual-
tree recursion, χ is the maximum possible runtime of BaseCase(), and ψ is the maximum
possible runtime of Score().

An intuitive understanding of these bounds is best achieved by first considering the
monochromatic case (this case arises, for instance, in all-nearest-neighbor search). The
linear dependence on N arises from the fact that all query nodes must be visited. The
dependence on the reference tree, however, is encapsulated by the term c4|R∗|, with |R∗|
being the maximum size of the reference set R; this value must be derived for each specific
problem. The poor performance of trees on datasets with large c (or, in the worst case,
c ∼ N) is then captured in both of those terms. These datasets for which trees perform
poorly may also have a high cover tree imbalance It(T ); the linear dependence of runtime
on imbalance is thus sensible for datasets where trees perform well.

The bichromatic case (Sq 6= Sr) is a slightly more complex result which deserves a bit
more attention. The intuition for all terms except θ remain virtually the same.

The term θ captures the effect of query and reference datasets with different widths, and
has one unfortunate corner case: when δq > ηr, then the query tree must be entirely de-
scended before any reference recursion. This results in a bound of the form O(N log(ηr/δr)),
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or O(N2) (see Lemma 4). This is because the reference tree must be descended separately
for each query point.

The quantity |R∗| bounds the amount of work that needs to be done for each recursion.
In the worst case, |R∗| can be N . However, dual-tree algorithms rely on branch-and-bound
techniques to prune away work (lines 11 and 16 in Algorithm 1). A small value of |R∗| will
imply that the algorithm is extremely successful in pruning away work. An (upper) bound
on |R∗| (and the algorithm’s success in pruning work) will depend on the problem and the
data. As we will show, bounding |R∗| is often possible. For many dual-tree algorithms,
χ ∼ ψ ∼ O(1); often, cached sufficient statistics (Moore, 2000) can enable O(1) runtime
implementations of BaseCase() and Score().

These results hold for any dual-tree algorithm regardless of the problem. Hence, the
runtime of any dual-tree algorithm can be bounded no more tightly than O(N) with our
bound, which matches the intuition that answering O(N) queries will take at least O(N)
time. For a particular problem and data, if cr, |R∗|, χ, and ψ are bounded by constants
independent of N and θ is no more than linear in N (for large enough N), then the dual-tree
algorithm for that problem has a runtime linear in N . Our theoretical result separates out
the problem-dependent and the problem-independent elements of the runtime bound, which
allows us to simply plug in the problem-dependent bounds in order to get runtime bounds
for any dual-tree algorithm without requiring an analysis from scratch.

Our results are similar to that of Ram et al. (2009a), but those results depend on a
quantity called the constant of bichromaticity, denoted κ, which has unclear relation to
cover tree imbalance. The dependence on κ is given as c4κ

q , which is not a good bound,
especially because κ may be much greater than 1 in the bichromatic case (where Sq 6= Sr).

The more recent results of Curtin and Ram (2014) are more related to these results,
but they depend on the inverse constant of bichromaticity ν which suffers from the same
problem as κ. Although the dependence on ν is linear (that is, O(νN)), bounding ν is
difficult and it is not true that ν = 1 in the monochromatic case.

The quantity ν corresponds to the maximum number of reference recursions between
a single query recursion, and κ corresponds to the maximum number of query recursions
between a single reference recursion. The respective proofs that use these constants then
apply them as a worst-case measure for the whole algorithm: when using κ, Ram et al.
(2009a) assume that every reference recursion may be followed by κ query recursions; sim-
ilarly, Curtin and Ram (2014) assume that every query recursion may be followed by ν
reference recursions. Here, we have simply used It(Tq) and θ as an exact summation of the
total extra reference recursions, which gives us a much tighter bound than ν or κ on the
running time of the whole algorithm.

Further, both ν and κ are difficult to empirically calculate and require an entire run of
the dual-tree algorithm. On the other hand, bounding It(Tq) (and θ) can be done in one
pass of the tree (assuming the tree is already built). Thus, not only is our bound tighter
when the cover tree imbalance is sublinear in N , it more closely reflects the actual behavior
of dual-tree algorithms, and the constants which it depends upon are straightforward to
calculate.

In the following sections, we will apply our results to specific problems and show the
utility of our bound in simplifying runtime proofs for dual-tree algorithms.
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Algorithm 2 Nearest neighbor search BaseCase()

Input: query point pq, reference point pr, list of candidate neighbors N and distances D

Output: distance d between pq and pr

if d(pq, pr) < D[pq] and BaseCase(pq, pr) not yet called then
D[pq]← d(pq, pr), and N [pq]← pr

end if
return d(pq, pr)

Algorithm 3 Nearest neighbor search Score()

Input: query node Nq, reference node Nr

Output: a score for the node combination (Nq,Nr), or ∞ if the combination should be
pruned

if dmin(Nq,Nr) < B(Nq) then
return dmin(Nq,Nr)

end if
return ∞

5. Nearest Neighbor Search

The standard task of nearest neighbor search can be simply described: given a query
set Sq and a reference set Sr, for each query point pq ∈ Sq, find the nearest neighbor pr
in the reference set Sr. The task is well-studied and well-known, and there exist numerous
approaches for both exact and approximate nearest neighbor search, including the cover
tree nearest neighbor search algorithm due to Beygelzimer et al. (2006). We will consider
that algorithm, but in a tree-independent sense as given by Curtin et al. (2013b); this
means that to describe the algorithm, we require only a BaseCase() and Score() function;
these are given in Algorithms 2 and 3, respectively. The point-to-point BaseCase() function
compares a query point pq and a reference point pr, updating the list of candidate neighbors
for pq if necessary.

The node-to-node Score() function determines if the entire subtree of nodes under the
reference node Nr can improve the candidate neighbors for all descendant points of the
query node Nq; if not, the node combination is pruned. The Score() function depends on
the function dmin(·, ·), which represents the minimum possible distance between any two
descendants of two nodes. Its definition for cover tree nodes is

dmin(Nq,Nr) = d(pq, pr)− 2sq+1 − 2sr+1. (16)

Given a type of tree and traversal, these two functions store the current nearest neighbor
candidates in the array N and their distances in the array D. (See Curtin et al., 2013b,
for a more complete discussion of how this algorithm works and a proof of correctness.)
The Score() function depends on a bound function B(Nq) which represents the maximum
distance that could possibly improve a nearest neighbor candidate for any descendant point
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of the query node Nq. The standard bound function B(Nq) used for cover trees is adapted
from Beygelzimer et al. (2006):

B(Nq) := D[pq] + 2sq+1 (17)

In this formulation, the query node Nq holds the the query point pq, the quantity
D[pq] is the current nearest neighbor candidate distance for the query point pq, and 2sq+1

corresponds to the furthest descendant distance of Nq. For notational convenience in the
following proof, take cqr = max((maxpq∈Sq c

′
r), cr), where c′r is the expansion constant of

the set Sr ∪ {pq}.

Theorem 2 Using cover trees, the standard cover tree pruning dual-tree traversal, and the
nearest neighbor search BaseCase() and Score() as given in Algorithms 2 and 3, respec-
tively, and also given a reference set Sr of size O(N) with expansion constant cr, and a query
set Sq of size O(N), the running time of the algorithm is bounded by O(c4

rc
5
qr(N+It(Tq)+θ))

with It(Tq) and θ defined as in Definition 3 and Lemma 4, respectively.

Proof The running time of BaseCase() and Score() are clearly O(1). Due to Theorem 1,
we therefore know that the runtime of the algorithm is bounded by O(c4

r |R∗|(N+It(Tq)+θ)).
Thus, the only thing that remains is to bound the maximum size of the reference set, |R∗|.

Assume that when R∗ is encountered, the maximum reference scale is smax
r and the

query node is Nq. Every node Nr ∈ R∗ satisfies the property enforced in line 11 that
dmin(Nq,Nr) ≤ B(Nq). Using the definition of dmin(·, ·) and B(·), we expand the equation.
Note that pq is the point held in Nq and pr is the point held in Nr. Also, take p̂r to be the
current nearest neighbor candidate for pq; that is, D[pq] = d(pq, p̂r) and N [pq] = p̂r. Then,

dmin(Nq,Nr) ≤ B(Nq) (18)

d(pq, pr) ≤ d(pq, p̂r) + 2sq+1 + 2sr+1 + 2sq+1 (19)

≤ d(pq, p̂r) + 2(2s
max
r +1) (20)

where the last step follows because sq + 1 ≤ smax
r and sr ≤ smax

r . Define the set of points
P as the points held in each node in R∗ (that is, P = {pr ∈P(Nr) : Nr ∈ R∗}). Then, we
can write

P ⊆ BSr(pq, d(pq, p̂r) + 2(2s
max
r +1)). (21)

Suppose that the true nearest neighbor is p∗r and d(pq, p
∗
r) > 2s

max
r +1. Then, p∗r must

be held as a descendant point of some node in R∗ which holds some point p̃r. Using the
triangle inequality,

d(pq, p̂r) ≤ d(pq, p̃r) ≤ d(pq, p
∗
r) + d(p̃r, p

∗
r) ≤ d(pq, p

∗
r) + 2s

max
r +1. (22)

This gives that P ⊆ BSr∪{pq}(pq, d(pq, p
∗
r) + 3(2s

max
r +1)). The previous step is necessary:

to apply the definition of the expansion constant, the ball must be centered at a point in
the set; now, the center (pq) is part of the set.
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|BSr∪{pq}(pq, d(pq, p
∗
r) + 3(2s

max
r +1))| ≤ |BSr∪{pq}(pq, 4d(pq, p

∗
r))| (23)

≤ c3
qr|BSr∪{pq}(pq, d(pq, p

∗
r)/2)| (24)

which follows because the expansion constant of the set Sr ∪ {pq} is bounded above by cqr.
Next, we know that p∗r is the closest point to pq in Sr ∪ {pq}; thus, there cannot exist a
point p′r 6= pq ∈ Sr ∪ {pq} such that p′r ∈ BSqr(pq, d(pq, p

∗
r)/2) because that would imply

that d(pq, p
′
r) < d(pq, p

∗
r), which is a contradiction. Thus, the only point in the ball is pq,

and we have that |BSr∪{pq}(pq, d(pq, p
∗
r)/2)| = 1, giving the result that |R| ≤ c3

qr in this
case.

The other case is when d(pq, p
∗
r) ≤ 2s

max
r +1, which means that d(pq, p̂r) ≤ 2s

max
r +2. Note

that P ∈ Csmax
r

, and therefore

P ⊆ BSr(pq, d(pq, p
∗
r) + 3(2s

max
r +1)) ∩ Csmax

r
(25)

⊆ BSr(pq, 4(2s
max
r +1)) ∩ Csmax

r
. (26)

Every point in Csmax
r

is separated by at least 2s
max
r . Using Lemma 1 with δ = 2s

max
r and

ρ = 8 yields that |P | ≤ c5
r . This gives the result, because c5

r ≤ c5
qr.

In the monochromatic case where Sq = Sr
6, the bound is O(c9(N + It(T )) because

c = cr = cqr and θ = 0. For well-behaved trees where It(Tq) is linear or sublinear in N ,
this represents the current tightest worst-case runtime bound for nearest neighbor search.

6. Approximate Kernel Density Estimation

Ram et al. (2009a) present a clever technique for bounding the running time of approximate
kernel density estimation based on the properties of the kernel, when the kernel is shift-
invariant and satisfies a few assumptions. We will restate these assumptions and provide
an adapted proof using Theorem 1, which gives a tighter bound.

Approximate kernel density estimation is a common application of dual-tree algorithms
(Gray and Moore, 2003, 2001). Given a query set Sq, a reference set Sr of size N , and a
kernel function K(·, ·), the true kernel density estimate for a query point pq is given as

f∗(pq) =
∑
pr∈Sr

K(pq, pr). (27)

In the case of an infinite-tailed kernel K(·, ·), the exact computation cannot be accel-
erated; thus, attention has turned towards tractable approximation schemes. Two simple
schemes for the approximation of f∗(pq) are well-known: absolute value approximation and
relative value approximation. Absolute value approximation requires that each density es-
timate f(pq) is within ε of the true estimate f∗(pq):

|f(pq)− f∗(pq)| < ε ∀pq ∈ Sq. (28)

6. In the monochromatic case, we do not take a point as its own nearest neighbor, so slight modification of
BaseCase() is necessary. The runtime bound result remains unchanged.
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Relative value approximation is a more flexible approximation scheme; given some pa-
rameter ε, the requirement is that each density estimate is within a relative tolerance of
f∗(pq) :

|f(pq)− f∗(pq)|
|f∗(pq)|

< ε ∀pq ∈ Sq. (29)

Kernel density estimation is related to the well-studied problem of kernel summation,
which can also be solved with dual-tree algorithms (Lee and Gray, 2006, 2009). In both of
those problems, regardless of the approximation scheme, simple geometric observations can
be made to accelerate computation: when K(·, ·) is shift-invariant, faraway points have very
small kernel evaluations. Thus, trees can be built on Sq and Sr, and node combinations can
be pruned when the nodes are far apart while still obeying the error bounds.

In the following two subsections, we will separately consider both the absolute value
approximation scheme and the relative value approximation scheme, under the assumption
of a shift-invariant kernel K(pq, pr) = K(‖pq − pr‖) which is monotonically decreasing and
non-negative. In addition, we assume that there exists some bandwidth h such that K(d)
must be concave for d ∈ [0, h] and convex for d ∈ [h,∞). This assumption implies that
the magnitude of the derivative |K′(d)| is maximized at d = h. These are not restrictive
assumptions; most standard kernels fall into this class, including the Gaussian, exponential,
and Epanechnikov kernels.

6.1 Absolute Value Approximation

A tree-independent algorithm for solving approximate kernel density estimation with ab-
solute value approximation under the previous assumptions on the kernel is given as a
BaseCase() function in Algorithm 4 and a Score() function in Algorithm 5 (a correctness
proof can be found in Curtin et al., 2013b). The list fp holds partial kernel density estimates
for each query point, and the list fn holds partial kernel density estimates for each query
node. At the beginning of the dual-tree traversal, the lists fp and fn, which are both of size
O(N), are each initialized to 0. As the traversal proceeds, node combinations are pruned if
the difference between the maximum kernel value K(dmin(Nq,Nr)) and the minimum kernel
value K(dmax(Nq,Nr)) is sufficiently small (line 3). If the node combination can be pruned,
then the partial node estimate is updated (line 4). When node combinations cannot be
pruned, BaseCase() may be called, which simply updates the partial point estimate with
the exact kernel evaluation (line 3).

After the dual-tree traversal, the actual kernel density estimates f must be extracted.
This can be done by traversing the query tree and calculating f(pq) = fp(pq)+

∑
Ni∈T fn(Ni),

where T is the set of nodes in Tq that have pq as a descendant. Each query node needs to
be visited only once to perform this calculation; it may therefore be accomplished in O(N)
time.

Note that this version is far simpler than other dual-tree algorithms that have been pro-
posed for approximate kernel density estimation (see, for instance, Gray and Moore, 2003);
however, this version is sufficient for our runtime analysis. Real-world implementations,
such as the one found in mlpack (Curtin et al., 2013a), tend to be far more complex.
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Algorithm 4 Approximate kernel density estimation BaseCase()

1: Input: query point pq, reference point pr, list of kernel point estimates f̂p
2: Output: kernel value K(pq, pr)

3: fp(pq)← fp(pq) +K(pq, pr)
4: return K(pq, pr)

Algorithm 5 Absolute-value approximate kernel density estimation Score()

1: Input: query node Nq, reference node Nr, list of node kernel estimates f̂n
2: Output: a score for the node combination (Nq,Nr), or ∞ if the combination should

be pruned

3: if K(dmin(Nq,Nr))−K(dmax(Nq,Nr)) < ε then
4: fn(Nq)← fn(Nq) + |Dp(Nr)| (K(dmin(Nq,Nr)) +K(dmax(Nq,Nr))) / 2
5: return ∞
6: end if
7: return K(dmin(Nq,Nr))−K(dmax(Nq,Nr))

Theorem 3 Assume that K(·, ·) is a kernel with bandwidth h satisfying the assumptions of
the previous subsection. Then, given a query set Sq of size O(N) and a reference set Sr of
size O(N) with expansion constant cr, and using the approximate kernel density estimation
BaseCase() and Score() as given in Algorithms 4 and 5, respectively, with the traversal
given in Algorithm 1, the running time of approximate kernel density estimation for some

error parameter ε is bounded by O(c
8+dlog2 ζe
r (N + It(Tq) + θ)) with ζ = −K′(h)K−1(ε)ε−1,

It(Tq) defined as in Definition 3, and θ defined as in Lemma 4.

Proof It is clear that BaseCase() and Score() both take O(1) time, so Theorem 1 implies
the total runtime of the dual-tree algorithm is bounded by O(c4

r |R∗|(N+It(Tq)+θ)). Thus,
we will bound |R∗| using techniques related to those used by Ram et al. (2009a). The
bounding of |R∗| is split into two sections: first, we show that when the scale smax

r is small
enough, R∗ is empty. Second, we bound R∗ when smax

r is larger.
The Score() function is such that any node in R∗ for a given query node Nq obeys

K(dmin(Nq,Nr))−K(dmax(Nq,Nr)) ≥ ε. (30)

Thus, we are interested in the maximum possible value K(a) − K(b) for a fixed value
of b− a > 0. Due to our assumptions, the maximum value of K′(·) is K′(h); therefore, the
maximum possible value of K(a) − K(b) is when the interval [a, b] is centered on h. This
allows us to say that K(a)−K(b) ≤ ε when (b− a) ≤ (−ε/K′(h)). Note that

dmax(Nq,Nr)− dmin(Nq,Nr) ≤ d(pq, pr) + 2s
max
r +1 − d(pq, pr) + 2s

max
r +1 (31)

≤ 2s
max
r +2. (32)

Therefore, R∗ = ∅ when 2s
max
r +2 ≤ −ε/K′(h), or when smax

r ≤ log2(−ε/K′(h)) − 2.
Consider, then, the case when smax

r > log2(−ε/K′(h)) − 2. Because of the pruning rule,
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for any Nr ∈ R∗, K(dmin(Nq,Nr)) > ε; we may refactor this by applying definitions to
show d(pq, pr) < K−1(ε) + 2s

max
r +1. Therefore, bounding the number of points in the set

BSr(pq,K−1(ε) + 2s
max
r +1) ∩ Csmax

r
is sufficient to bound |R∗|. For notational convenience,

define ω = (K−1(ε)/2s
max
r +1) + 1, and the statement may be more concisely written as

BSr(pq, ω2s
max
r +1) ∩ Csmax

r
.

Using Lemma 1 with δ = 2s
max
r and ρ = 2ω gives |R∗| = c

3+dlog2 ωe
r .

The value ω is maximized when smax
r is minimized. Using the lower bound on smax

r ,
ω is bounded as ω = −2K′(h)K−1(ε)ε−1. Finally, with ζ = −K′(h)K−1(ε)ε−1, we are able

to conclude that |R∗| ≤ c
3+dlog2(2ζ)e
r = c

4+dlog2 ζe
r . Therefore, the entire dual-tree traversal

takes O(c
8+dlog2 ζe
r (N + θ)) time.

The postprocessing step to extract the estimates f(·) requires one traversal of the tree
Tr; the tree has O(N) nodes, so this takes only O(N) time. This is less than the runtime of
the dual-tree traversal, so the runtime of the dual-tree traversal dominates the algorithm’s
runtime, and the theorem holds.

The dependence on ε (through ζ) is expected: as ε→ 0 and the search becomes exact, ζ
diverges both because ε−1 diverges and also because K−1(ε) diverges, and the runtime goes
to the worst-case O(N2); exact kernel density estimation means no nodes can be pruned at
all.

For the Gaussian kernel with bandwidth σ defined by Kg(d) = exp(−d2/(2σ2)), ζ does
not depend on the kernel bandwidth; only the approximation parameter ε. For this kernel,
h = σ and therefore −K′g(h) = σ−1e−1/2. Additionally, K−1

g (ε) = σ
√

2 ln(1/ε). This means

that for the Gaussian kernel, ζ =
√

(−2 ln ε)/(eε2). Again, as ε→ 0, the runtime diverges;
however, note that there is no dependence on the kernel bandwidth σ. To demonstrate
the relationship of runtime to ε, see that for a reasonably chosen ε = 0.05, the runtime is
approximately O(c8.89

r (N +θ)); for ε = 0.01, the runtime is approximately O(c11.52
r (N +θ)).

For very small ε = 0.00001, the runtime is approximately O(c22.15
r (N + θ)).

Next, consider the exponential kernel: Kl(d) = exp(−d/σ). For this kernel, h = 0 (that
is, the kernel is always convex), so then K′l(h) = σ−1. Simple algebraic manipulation gives
K−1
l (ε) = −σ ln ε, resulting in ζ = −K′l(h)K−1

l (ε)ε−1 = ε−1 ln ε. So both the exponential
and Gaussian kernels do not exhibit dependence on the bandwidth.

To understand the lack of dependence on kernel bandwidth more intuitively, consider
that as the kernel bandwidth increases, two things happen: (a) the reference set R becomes
empty at larger scales, and (b) K−1(ε) grows, allowing less pruning at higher levels. These
effects are opposite, and for the Gaussian and exponential kernels they cancel each other
out, giving the same bound regardless of bandwidth.

6.2 Relative Value Approximation

Approximate kernel density estimation using relative-value approximation may be bounded
by reducing the absolute-value approximation algorithm (in linear time or less) to relative-
value approximation. This is the same strategy as performed by Ram et al. (2009a).
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Algorithm 6 Relative-value approximate kernel density estimation Score()

1: Input: query node Nq, reference node Nr, list of node kernel estimates f̂n
2: Output: a score for the node combination (Nq,Nr), or ∞ if the combination should

be pruned

3: if K(dmin(Nq,Nr))−K(dmax(Nq,Nr)) < εKmax then
4: fn(Nq)← fn(Nq) + |Dp(Nr)| (K(dmin(Nq,Nr)) +K(dmax(Nq,Nr))) / 2
5: return ∞
6: end if
7: return K(dmin(Nq,Nr))−K(dmax(Nq,Nr))

First, we must establish a Score() function for relative value approximation. The
difference between Equations 28 and 29 is the division by the term |f∗(pq)|. But we can
quickly bound |f∗(pq)|:

|f∗(pq)| ≥ NK
(

max
pr∈Sr

d(pq, pr)

)
. (33)

This is clearly true: each point in Sr must contribute more than K(maxpr∈Sr d(pq, pr))
to f∗(pq). Now, we may revise the relative approximation condition in Equation 29:

|f(pq)− f∗(pq)| ≤ εKmax (34)

where Kmax is lower bounded by K(maxpr∈Sr d(pq, pr)). Assuming we have some estimate
Kmax, this allows us to create a Score() algorithm, given in Algorithm 6.

Using this, we may prove linear runtime bounds for relative value approximate kernel
density estimation.

Theorem 4 Assume that K(·, ·) is a kernel satisfying the same assumptions as Theorem 3.
Then, given a query set Sq and a reference set Sr both of size O(N), it is possible to perform
relative value approximate kernel density estimation (satisfying the condition of Equation
29) in O(N) time, assuming that the expansion constant cr of Sr is not dependent on N .

Proof It is easy to see that Theorem 3 may be adapted to the very slightly different Score()
rule of Algorithm 6 while still providing an O(N) bound. With that Score() function, the
dual-tree algorithm will return relative-value approximate kernel density estimates satisfying
Equation 29.

We now turn to the calculation of Kmax. Given the cover trees Tq and Tr with root
nodes N R

r and N R
r , respectively, we may calculate a suitable Kmax value in constant time:

Kmax = dmax(N R
q ,N R

r ) = d(pRq , p
R
r ) + 2s

max
q +1 + 2s

max
r +1. (35)

This proves the statement of the theorem.

In this case, we have not shown tighter bounds because the algorithm we have proposed
is not useful in practice. For an example of a better relative-value approximate kernel
density estimation dual-tree algorithm, see the work of Gray and Moore (2003).
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Algorithm 7 Range search BaseCase()

1: Input: query point pq, reference point pr, range sets N [pq] and range [l, u]
2: Output: distance d between pq and pr
3: if d(pq, pr) ∈ [rmin, rmax] and BaseCase(pq, pr) not yet called then
4: S[pq]← S[pq] ∪ {pr}
5: end if
6: return d

Algorithm 8 Range search Score()

1: Input: query node Nq, reference node Nr

2: Output: a score for the node combination (Nq,Nr), or ∞ if the combination should
be pruned

3: if dmin(Nq,Nr) ∈ [l, u] or dmax(Nq,Nr) ∈ [l, u] then
4: return dmin(Nq,Nr)
5: end if
6: return ∞

7. Range Search and Range Count

In the range search problem, the task is to find the set of reference points

S[pq] = {pr ∈ Sr : d(pq, pr) ∈ [l, u]} (36)

for each query point pq, where [l, u] is the given range. The range count problem is practi-
cally identical, but only the size of the set, |S[pq]|, is desired. Our proof works for both of
these algorithms similarly, but we will focus on range search. A BaseCase() and Score()

function are given in Algorithms 7 and 8, respectively (a correctness proof can be found in
Curtin et al., 2013b). The sets N [pq] (for each pq) are initialized to ∅ at the beginning of
the traversal.

In order to bound the running time of dual-tree range search, we require better notions
for understanding the difficulty of the problem. Observe that if the range is sufficiently
large, then for every query point pq, S[pq] = Sr. Clearly, for Sq ∼ Sr ∼ O(N), this cannot
be solved in anything less than quadratic time simply due to the time required to fill each
output array S[pq]. Define the maximum result size for a given query set Sq, reference set
Sr, and range [l, u] as

|Smax| = max
pq∈Sq

|S[pq]|. (37)

Small |Smax| implies an easy problem; large |Smax| implies a difficult problem. For
bounding the running time of range search, we require one more notion of difficulty, related
to how |Smax| changes due to changes in the range [l, u].

Definition 5 For a range search problem with query set Sq, reference set Sr, range [l, u],
and results S[pq] for each query point pq given as

S[pq] = {pr : pr ∈ Sr, l ≤ d(pq, pr) ≤ u}, (38)
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define the α-expansion of the range set S[pq] as the slightly larger set

Sα[pq] = {pr : pr ∈ Sr, (1− α)l ≤ d(pq, pr) ≤ (1 + α)u}. (39)

When the α-expansion of the set Smax is approximately the same size as Smax, then the
problem would not be significantly more difficult if the range [l, u] was increased slightly.
Using these notions, then, we may now bound the running time of range search.

Theorem 5 Given a reference set Sr of size O(N) with expansion constant cr, and a query
set Sq of size O(N), a search range of [l, u], and using the range search BaseCase() and
Score() as given in Algorithms 7 and 8, respectively, with the standard cover tree pruning
dual-tree traversal as given in Algorithm 1, and also assuming that for some α > 0,

|Sα[pq] \ S[pq]| ≤ C ∀ pq ∈ Sq, (40)

the running time of range search or range count is bounded by

O
(
c4
r max

(
c4+β
r , |Smax|+ C

)
(N + It(Nq) + θ)

)
(41)

with θ defined as in Lemma 4, β = dlog2(1 + α−1)e, and Smax as defined in Equation
37.

Proof Both BaseCase() (Algorithm 7) and Score() (Algorithm 8) take O(1) time.
Therefore, using Lemma 1, we know that the runtime of the algorithm is bounded by
O(c4

r |R∗|(N + It(Nq) + θ)). As with the previous proofs, then, our only task is to bound
the maximum size of the reference set, |R∗|.

By the pruning rule, for a query node Nq, the reference set R∗ is made up of reference
nodes Nr that are within a margin of 2sq+1 + 2sr+1 ≤ 2s

max
r +2 of the range [l, u]. Given that

pr is the point in Nr,

pr ∈
(
BSr(pq, u+ 2s

max
r +2) ∩ Csmax

r

)
\
(
BSr(pq, l − 2s

max
r +2) ∩ Csmax

r

)
. (42)

A bound on the number of elements in this set is a bound on |R∗|. First, consider the
case where u ≤ α−12s

max
r +2. Ignoring the smaller ball, take δ = 2s

max
r and ρ = 4(1 + α−1)

and apply Lemma 1 to produce the bound

|R∗| ≤ c4+dlog2(1+α−1)e
r . (43)

Now, consider the other case: u > α−12s
max
r +1. This means

BSr(pq, u+ 2s
max
r +1) \BSr(pq, l − 2s

max
r +1) ⊆ BSr(pq, (1 + α)u) \BSr(pq, (1− α)l). (44)

This set is necessarily a subset of Sα[pq]; by assumption, the number of points in this
set is bounded above by |Smax| + C. We may then conclude that |R∗| ≤ |Smax| + C. By
taking the maximum of the sizes of |R∗| in both cases above, we obtain the statement of
the theorem.
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This bound displays both the expected dependence on cr and |Smax|. As the largest range
set Smax increases in size (with the worst case being Smax ∼ N), the runtime degenerates
to quadratic. But for adequately small Smax the runtime is instead dependent on cr and
the parameter C of the α-expansion of Smax. This situation leads to a simplification.

Corollary 2 For sufficiently small |Smax| and sufficiently small C, the runtime of range
search under the conditions of Theorem 5 simplifies to

O(c8+β
r (N + It(Nq) + θ)). (45)

In this setting we can more easily consider the relation of the running time to α. Consider
α = (1/3); this yields a running time of O(c8(N+θ)). α = (1/7) yields O(c9(N+It(Nq+θ)),
α = (1/15) yields O(c10(N + It(Nq) + θ)), and so forth. As α gets smaller, the exponent
on c gets larger, and diverges as α→ 0.

For reasonable runtime it is necessary that the α-expansion of Smax be bounded. This is
because the dual-tree recursion must retain reference nodes which may contain descendants
in the range set S[pq] for some query pq. The parameter C of the α-expansion allows us to
bound the number of reference nodes of this type, and if α increases but C remains small
enough that Corollary 2 applies, then we are able to obtain tighter running bounds.

8. Conclusion

We have presented a unified framework for bounding the runtimes of dual-tree algorithms
that use cover trees and the standard cover tree pruning dual-tree traversal (Algorithm 1).
In order to produce an understandable bound, we have introduced the notion of cover tree
imbalance; one possible interesting direction of future work is to empirically and theoreti-
cally minimize this quantity by way of modified tree construction algorithms; this is likely
to provide both tighter runtime bounds and also accelerated empirical results.

Our main result, Theorem 1, allows plug-and-play runtime bounding of these algorithms.
We have shown that Theorem 1 is useful for bounding the runtime of nearest neighbor search
(Theorem 2), approximate kernel density estimation (Theorem 3), exact range count, and
exact range search (Theorem 5). With our contribution, bounding a cover tree dual-tree
algorithm is streamlined and only involves bounding the maximum size of the reference set,
|R∗|.
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Abstract

We study a decomposition-based scalable approach to kernel ridge regression, and show
that it achieves minimax optimal convergence rates under relatively mild conditions. The
method is simple to describe: it randomly partitions a dataset of size N into m subsets
of equal size, computes an independent kernel ridge regression estimator for each subset
using a careful choice of the regularization parameter, then averages the local solutions
into a global predictor. This partitioning leads to a substantial reduction in computation
time versus the standard approach of performing kernel ridge regression on all N samples.
Our two main theorems establish that despite the computational speed-up, statistical op-
timality is retained: as long as m is not too large, the partition-based estimator achieves
the statistical minimax rate over all estimators using the set of N samples. As concrete
examples, our theory guarantees that the number of subsets m may grow nearly linearly
for finite-rank or Gaussian kernels and polynomially in N for Sobolev spaces, which in turn
allows for substantial reductions in computational cost. We conclude with experiments on
both simulated data and a music-prediction task that complement our theoretical results,
exhibiting the computational and statistical benefits of our approach.

Keywords: kernel ridge regression, divide and conquer, computation complexity

1. Introduction

In non-parametric regression, the statistician receives N samples of the form {(xi, yi)}Ni=1,
where each xi ∈ X is a covariate and yi ∈ R is a real-valued response, and the samples are
drawn i.i.d. from some unknown joint distribution P over X × R. The goal is to estimate
a function f̂ : X → R that can be used to predict future responses based on observing
only the covariates. Frequently, the quality of an estimate f̂ is measured in terms of the
mean-squared prediction error E[(f̂(X) − Y )2], in which case the conditional expectation
f∗(x) = E[Y | X = x] is optimal. The problem of non-parametric regression is a classi-
cal one, and a researchers have studied a wide range of estimators (see, for example, the
books of Gyorfi et al. (2002), Wasserman (2006), or van de Geer (2000)). One class of
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methods, known as regularized M -estimators (van de Geer, 2000), are based on minimizing
the combination of a data-dependent loss function with a regularization term. The focus
of this paper is a popular M -estimator that combines the least-squares loss with a squared
Hilbert norm penalty for regularization. When working in a reproducing kernel Hilbert
space (RKHS), the resulting method is known as kernel ridge regression, and is widely
used in practice (Hastie et al., 2001; Shawe-Taylor and Cristianini, 2004). Past work has
established bounds on the estimation error for RKHS-based methods (Koltchinskii, 2006;
Mendelson, 2002a; van de Geer, 2000; Zhang, 2005), which have been refined and extended
in more recent work (e.g., Steinwart et al., 2009).

Although the statistical aspects of kernel ridge regression (KRR) are well-understood,
the computation of the KRR estimate can be challenging for large datasets. In a standard
implementation (Saunders et al., 1998), the kernel matrix must be inverted, which requires
O(N3) time and O(N2) memory. Such scalings are prohibitive when the sample size N
is large. As a consequence, approximations have been designed to avoid the expense of
finding an exact minimizer. One family of approaches is based on low-rank approximation
of the kernel matrix; examples include kernel PCA (Schölkopf et al., 1998), the incomplete
Cholesky decomposition (Fine and Scheinberg, 2002), or Nyström sampling (Williams and
Seeger, 2001). These methods reduce the time complexity to O(dN2) or O(d2N), where
d � N is the preserved rank. The associated prediction error has only been studied very
recently. Concurrent work by Bach (2013) establishes conditions on the maintained rank
that still guarantee optimal convergence rates; see the discussion in Section 7 for more
detail. A second line of research has considered early-stopping of iterative optimization
algorithms for KRR, including gradient descent (Yao et al., 2007; Raskutti et al., 2011) and
conjugate gradient methods (Blanchard and Krämer, 2010), where early-stopping provides
regularization against over-fitting and improves run-time. If the algorithm stops after t
iterations, the aggregate time complexity is O(tN2).

In this work, we study a different decomposition-based approach. The algorithm is ap-
pealing in its simplicity: we partition the dataset of size N randomly into m equal sized
subsets, and we compute the kernel ridge regression estimate f̂i for each of the i = 1, . . . ,m
subsets independently, with a careful choice of the regularization parameter. The estimates
are then averaged via f̄ = (1/m)

∑m
i=1 f̂i. Our main theoretical result gives conditions

under which the average f̄ achieves the minimax rate of convergence over the underlying
Hilbert space. Even using naive implementations of KRR, this decomposition gives time
and memory complexity scaling as O(N3/m2) and O(N2/m2), respectively. Moreover, our
approach dovetails naturally with parallel and distributed computation: we are guaranteed
superlinear speedup with m parallel processors (though we must still communicate the func-
tion estimates from each processor). Divide-and-conquer approaches have been studied by
several authors, including McDonald et al. (2010) for perceptron-based algorithms, Kleiner
et al. (2012) in distributed versions of the bootstrap, and Zhang et al. (2013) for parametric
smooth convex optimization problems. This paper demonstrates the potential benefits of
divide-and-conquer approaches for nonparametric and infinite-dimensional regression prob-
lems.

One difficulty in solving each of the sub-problems independently is how to choose the
regularization parameter. Due to the infinite-dimensional nature of non-parametric prob-
lems, the choice of regularization parameter must be made with care (e.g., Hastie et al.,
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2001). An interesting consequence of our theoretical analysis is in demonstrating that, even
though each partitioned sub-problem is based only on the fraction N/m of samples, it is
nonetheless essential to regularize the partitioned sub-problems as though they had all N
samples. Consequently, from a local point of view, each sub-problem is under-regularized.
This “under-regularization” allows the bias of each local estimate to be very small, but it
causes a detrimental blow-up in the variance. However, as we prove, the m-fold averaging
underlying the method reduces variance enough that the resulting estimator f̄ still attains
optimal convergence rate.

The remainder of this paper is organized as follows. We begin in Section 2 by providing
background on the kernel ridge regression estimate and discussing the assumptions that
underlie our analysis. In Section 3, we present our main theorems on the mean-squared
error between the averaged estimate f̄ and the optimal regression function f∗. We provide
both a result when the regression function f∗ belongs to the Hilbert space H associated
with the kernel, as well as a more general oracle inequality that holds for a general f∗. We
then provide several corollaries that exhibit concrete consequences of the results, including
convergence rates of r/N for kernels with finite rank r, and convergence rates of N−2ν/(2ν+1)

for estimation of functionals in a Sobolev space with ν-degrees of smoothness. As we discuss,
both of these estimation rates are minimax-optimal and hence unimprovable. We devote
Sections 4 and 5 to the proofs of our results, deferring more technical aspects of the analysis
to appendices. Lastly, we present simulation results in Section 6.1 to further explore our
theoretical results, while Section 6.2 contains experiments with a reasonably large music
prediction experiment.

2. Background and Problem Formulation

We begin with the background and notation required for a precise statement of our problem.

2.1 Reproducing Kernels

The method of kernel ridge regression is based on the idea of a reproducing kernel Hilbert
space. We provide only a very brief coverage of the basics here, referring the reader to
one of the many books on the topic (Wahba, 1990; Shawe-Taylor and Cristianini, 2004;
Berlinet and Thomas-Agnan, 2004; Gu, 2002) for further details. Any symmetric and
positive semidefinite kernel function K : X × X → R defines a reproducing kernel Hilbert
space (RKHS for short). For a given distribution P on X , the Hilbert space is strictly
contained in L2(P). For each x ∈ X , the function z 7→ K(z, x) is contained with the Hilbert
space H; moreover, the Hilbert space is endowed with an inner product 〈·, ·〉H such that
K(·, x) acts as the representer of evaluation, meaning

〈f,K(x, ·)〉H = f(x) for f ∈ H. (1)

We let ‖g‖H :=
√
〈g, g〉H denote the norm in H, and similarly ‖g‖2 := (

∫
X g(x)2dP(x))1/2

denotes the norm in L2(P). Under suitable regularity conditions, Mercer’s theorem guar-
antees that the kernel has an eigen-expansion of the form

K(x, x′) =

∞∑
j=1

µjφj(x)φj(x
′),
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where µ1 ≥ µ2 ≥ · · · ≥ 0 are a non-negative sequence of eigenvalues, and {φj}∞j=1 is an

orthonormal basis for L2(P).
From the reproducing relation (1), we have 〈φj , φj〉H = 1/µj for any j and 〈φj , φj′〉H = 0

for any j 6= j′. For any f ∈ H, by defining the basis coefficients θj = 〈f, φj〉L2(P) for

j = 1, 2, . . ., we can expand the function in terms of these coefficients as f =
∑∞

j=1 θjφj ,
and simple calculations show that

‖f‖22 =

∫
X
f2(x)dP(x) =

∞∑
j=1

θ2
j , and ‖f‖2H = 〈f, f〉H =

∞∑
j=1

θ2
j

µj
.

Consequently, we see that the RKHS can be viewed as an elliptical subset of the sequence
space `2(N) as defined by the non-negative eigenvalues {µj}∞j=1.

2.2 Kernel Ridge Regression

Suppose that we are given a data set {(xi, yi)}Ni=1 consisting of N i.i.d. samples drawn
from an unknown distribution P over X × R, and our goal is to estimate the function
that minimizes the mean-squared error E[(f(X) − Y )2], where the expectation is taken
jointly over (X,Y ) pairs. It is well-known that the optimal function is the conditional mean
f∗(x) : = E[Y | X = x]. In order to estimate the unknown function f∗, we consider an
M -estimator that is based on minimizing a combination of the least-squares loss defined
over the dataset with a weighted penalty based on the squared Hilbert norm,

f̂ := argmin
f∈H

{
1

N

N∑
i=1

(f(xi)− yi)2 + λ ‖f‖2H
}
, (2)

where λ > 0 is a regularization parameter. When H is a reproducing kernel Hilbert space,
then the estimator (2) is known as the kernel ridge regression estimate, or KRR for short.
It is a natural generalization of the ordinary ridge regression estimate (Hoerl and Kennard,
1970) to the non-parametric setting.

By the representer theorem for reproducing kernel Hilbert spaces (Wahba, 1990), any
solution to the KRR program (2) must belong to the linear span of the kernel functions
{K(·, xi), i = 1, . . . , N}. This fact allows the computation of the KRR estimate to be
reduced to an N -dimensional quadratic program, involving the N2 entries of the kernel
matrix {K(xi, xj), i, j = 1, . . . , n}. On the statistical side, a line of past work (van de Geer,
2000; Zhang, 2005; Caponnetto and De Vito, 2007; Steinwart et al., 2009; Hsu et al., 2012)
has provided bounds on the estimation error of f̂ as a function of N and λ.

3. Main Results and Their Consequences

We now turn to the description of our algorithm, followed by the statements of our main
results, namely Theorems 1 and 2. Each theorem provides an upper bound on the mean-
squared prediction error for any trace class kernel. The second theorem is of “oracle type,”
meaning that it applies even when the true regression function f∗ does not belong to the
Hilbert space H, and hence involves a combination of approximation and estimation error
terms. The first theorem requires that f∗ ∈ H, and provides somewhat sharper bounds on
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the estimation error in this case. Both of these theorems apply to any trace class kernel,
but as we illustrate, they provide concrete results when applied to specific classes of kernels.
Indeed, as a corollary, we establish that our distributed KRR algorithm achieves minimax-
optimal rates for three different kernel classes, namely finite-rank, Gaussian, and Sobolev.

3.1 Algorithm and Assumptions

The divide-and-conquer algorithm Fast-KRR is easy to describe. Rather than solving the
kernel ridge regression problem (2) on all N samples, the Fast-KRR method executes the
following three steps:

1. Divide the set of samples {(x1, y1), . . . , (xN , yN )} evenly and uniformly at random
into the m disjoint subsets S1, . . . , Sm ⊂ X ×R, such that every subset contains N/m
samples.

2. For each i = 1, 2, . . . ,m, compute the local KRR estimate

f̂i := argmin
f∈H

{
1

|Si|
∑

(x,y)∈Si

(f(x)− y)2 + λ ‖f‖2H
}
. (3)

3. Average together the local estimates and output f̄ = 1
m

∑m
i=1 f̂i.

This description actually provides a family of estimators, one for each choice of the regular-
ization parameter λ > 0. Our main result applies to any choice of λ, while our corollaries
for specific kernel classes optimize λ as a function of the kernel.

We now describe our main assumptions. Our first assumption, for which we have two
variants, deals with the tail behavior of the basis functions {φj}∞j=1.

Assumption A For some k ≥ 2, there is a constant ρ < ∞ such that E[φj(X)2k] ≤ ρ2k

for all j ∈ N.

In certain cases, we show that sharper error guarantees can be obtained by enforcing a
stronger condition of uniform boundedness.

Assumption A′ There is a constant ρ <∞ such that supx∈X |φj(x)| ≤ ρ for all j ∈ N.

Assumption A′ holds, for example, when the input x is drawn from a closed interval and
the kernel is translation invariant, i.e. K(x, x′) = ψ(x−x′) for some even function ψ. Given
input space X and kernel K, the assumption is verifiable without the data.

Recalling that f∗(x) : = E[Y | X = x], our second assumption involves the deviations
of the zero-mean noise variables Y − f∗(x). In the simplest case, when f∗ ∈ H, we require
only a bounded variance condition:

Assumption B The function f∗ ∈ H, and for x ∈ X , we have E[(Y − f∗(x))2 | x] ≤ σ2.

When the function f∗ 6∈ H, we require a slightly stronger variant of this assumption. For
each λ ≥ 0, define

f∗λ = argmin
f∈H

{
E
[
(f(X)− Y )2

]
+ λ ‖f‖2H

}
. (4)
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Note that f∗ = f∗0 corresponds to the usual regression function. As f∗ ∈ L2(P), for each
λ ≥ 0, the associated mean-squared error σ2

λ(x) := E[(Y − f∗λ(x))2 | x] is finite for almost
every x. In this more general setting, the following assumption replaces Assumption B:

Assumption B′ For any λ ≥ 0, there exists a constant τλ <∞ such that τ4
λ = E[σ4

λ(X)].

3.2 Statement of Main Results

With these assumptions in place, we are now ready for the statements of our main results.
All of our results give bounds on the mean-squared estimation error E[‖f̄ −f∗‖22] associated
with the averaged estimate f̄ based on an assigning n = N/m samples to each ofmmachines.
Both theorem statements involve the following three kernel-related quantities:

tr(K) :=
∞∑
j=1

µj , γ(λ) :=
∞∑
j=1

1

1 + λ/µj
, and βd =

∞∑
j=d+1

µj . (5)

The first quantity is the kernel trace, which serves a crude estimate of the “size” of the kernel
operator, and assumed to be finite. The second quantity γ(λ), familiar from previous work
on kernel regression (Zhang, 2005), is the effective dimensionality of the kernel K with
respect to L2(P). Finally, the quantity βd is parameterized by a positive integer d that we
may choose in applying the bounds, and it describes the tail decay of the eigenvalues of K.
For d = 0, note that β0 = trK. Finally, both theorems involve a quantity that depends on
the number of moments k in Assumption A:

b(n, d, k) := max

{√
max{k, log(d)}, max{k, log(d)}

n1/2−1/k

}
. (6)

Here the integer d ∈ N is a free parameter that may be optimized to obtain the sharpest
possible upper bound. (The algorithm’s execution is independent of d.)

Theorem 1 With f∗ ∈ H and under Assumptions A and B, the mean-squared error of the
averaged estimate f̄ is upper bounded as

E
[∥∥f̄ − f∗∥∥2

2

]
≤
(

8 +
12

m

)
λ ‖f∗‖2H +

12σ2γ(λ)

N
+ inf
d∈N

{
T1(d) + T2(d) + T3(d)

}
, (7)

where

T1(d) =
8ρ4 ‖f∗‖2H tr(K)βd

λ
, T2(d) =

4 ‖f∗‖2H + 2σ2/λ

m

(
µd+1 +

12ρ4 tr(K)βd
λ

)
, and

T3(d) =

(
Cb(n, d, k)

ρ2γ(λ)√
n

)k
µ0 ‖f∗‖2H

(
1 +

2σ2

mλ
+

4 ‖f∗‖2H
m

)
,

and C denotes a universal (numerical) constant.

Theorem 1 is a general result that applies to any trace-class kernel. Although the
statement appears somewhat complicated at first sight, it yields concrete and interpretable
guarantees on the error when specialized to particular kernels, as we illustrate in Section 3.3.
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Before doing so, let us make a few heuristic arguments in order to provide intuition.
In typical settings, the term T3(d) goes to zero quickly: if the number of moments k
is suitably large and number of partitions m is small—say enough to guarantee that
(b(n, d, k)γ(λ)/

√
n)k = O(1/N)—it will be of lower order. As for the remaining terms,

at a high level, we show that an appropriate choice of the free parameter d leaves the first
two terms in the upper bound (7) dominant. Note that the terms µd+1 and βd are decreas-
ing in d while the term b(n, d, k) increases with d. However, the increasing term b(n, d, k)
grows only logarithmically in d, which allows us to choose a fairly large value without a
significant penalty. As we show in our corollaries, for many kernels of interest, as long as
the number of machines m is not “too large,” this tradeoff is such that T1(d) and T2(d)
are also of lower order compared to the two first terms in the bound (7). In such settings,
Theorem 1 guarantees an upper bound of the form

E
[∥∥f̄ − f∗∥∥2

2

]
= O(1) ·

[
λ ‖f∗‖2H︸ ︷︷ ︸

Squared bias

+
σ2γ(λ)

N︸ ︷︷ ︸
Variance

]
. (8)

This inequality reveals the usual bias-variance trade-off in non-parametric regression; choos-
ing a smaller value of λ > 0 reduces the first squared bias term, but increases the second
variance term. Consequently, the setting of λ that minimizes the sum of these two terms is
defined by the relationship

λ ‖f∗‖2H ' σ2γ(λ)

N
. (9)

This type of fixed point equation is familiar from work on oracle inequalities and local com-
plexity measures in empirical process theory (Bartlett et al., 2005; Koltchinskii, 2006; van de
Geer, 2000; Zhang, 2005), and when λ is chosen so that the fixed point equation (9) holds
this (typically) yields minimax optimal convergence rates (Bartlett et al., 2005; Koltchin-
skii, 2006; Zhang, 2005; Caponnetto and De Vito, 2007). In Section 3.3, we provide detailed
examples in which the choice λ∗ specified by equation (9), followed by application of The-
orem 1, yields minimax-optimal prediction error (for the Fast-KRR algorithm) for many
kernel classes.

We now turn to an error bound that applies without requiring that f∗ ∈ H. In order to
do so, we introduce an auxiliary variable λ̄ ∈ [0, λ] for use in our analysis (the algorithm’s
execution does not depend on λ̄, and in our ensuing bounds we may choose any λ̄ ∈ [0, λ]
to give the sharpest possible results). Let the radius R =

∥∥f∗
λ̄

∥∥
H, where the population

(regularized) regression function f∗
λ̄

was previously defined (4). The theorem requires a few
additional conditions to those in Theorem 1, involving the quantities tr(K), γ(λ) and βd
defined in Eq. (5), as well as the error moment τλ̄ from Assumption B′. We assume that
the triplet (m, d, k) of positive integers satisfy the conditions

βd ≤
λ

(R2 + τ2
λ̄
/λ)N

, µd+1 ≤
1

(R2 + τ2
λ̄
/λ)N

,

m ≤ min

{ √
N

ρ2γ(λ) log(d)
,

N1− 2
k

(R2 + τ2
λ̄
/λ)2/k(b(n, d, k)ρ2γ(λ))2

}
.

(10)
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We then have the following result:

Theorem 2 Under condition (10), Assumption A with k ≥ 4, and Assumption B′, for any
λ̄ ∈ [0, λ] and q > 0 we have

E
[∥∥f̄ − f∗∥∥2

2

]
≤
(

1 +
1

q

)
inf

‖f‖H≤R
‖f − f∗‖22 + (1 + q) EN,m(λ, λ̄, R, ρ) (11)

where the residual term is given by

EN,m(λ, λ̄, R, ρ) : =

((
4 +

C

m

)
(λ− λ̄)R2 +

Cγ(λ)ρ2τ2
λ̄

N
+
C

N

)
, (12)

and C denotes a universal (numerical) constant.

Remarks: Theorem 2 is an oracle inequality, as it upper bounds the mean-squared error in
terms of the error inf

‖f‖H≤R
‖f − f∗‖22, which may only be obtained by an oracle knowing the

sampling distribution P, along with the residual error term (12).
In some situations, it may be difficult to verify Assumption B′. In such scenarios,

an alternative condition suffices. For instance, if there exists a constant κ < ∞ such
that E[Y 4] ≤ κ4, then under condition (10), the bound (11) holds with τ2

λ̄
replaced by√

8 tr(K)2R4ρ4 + 8κ4—that is, with the alternative residual error

ẼN,m(λ, λ̄, R, ρ) : =

((
2 +

C

m

)
(λ− λ̄)R2 +

Cγ(λ)ρ2
√

8 tr(K)2R4ρ4 + 8κ4

N
+
C

N

)
. (13)

In essence, if the response variable Y has sufficiently many moments, the prediction mean-
square error τ2

λ̄
in the statement of Theorem 2 can be replaced by constants related to the

size of
∥∥f∗

λ̄

∥∥
H. See Section 5.2 for a proof of inequality (13).

In comparison with Theorem 1, Theorem 2 provides somewhat looser bounds. It is,
however, instructive to consider a few special cases. For the first, we may assume that
f∗ ∈ H, in which case ‖f∗‖H < ∞. In this setting, the choice λ̄ = 0 (essentially) recovers
Theorem 1, since there is no approximation error. Taking q → 0, we are thus left with the
bound

E‖f̄ − f∗‖22] . λ ‖f∗‖2H +
γ(λ)ρ2τ2

0

N
, (14)

where . denotes an inequality up to constants. By inspection, this bound is roughly
equivalent to Theorem 1; see in particular the decomposition (8). On the other hand, when
the condition f∗ ∈ H fails to hold, we can take λ̄ = λ, and then choose q to balance between
the familiar approximation and estimation errors: we have

E[‖f̄ − f∗‖22] .

(
1 +

1

q

)
inf

‖f‖H≤R
‖f − f∗‖22︸ ︷︷ ︸

approximation

+ (1 + q)

(
γ(λ)ρ2τ2

λ

N

)
︸ ︷︷ ︸
estimation

. (15)

Relative to Theorem 1, the condition (10) required to apply Theorem 2 involves con-
straints on the number m of subsampled data sets that are more restrictive. In particular,
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when ignoring constants and logarithm terms, the quantity m may grow at rate
√
N/γ2(λ).

By contrast, Theorem 1 allows m to grow as quickly as N/γ2(λ) (recall the remarks on
T3(d) following Theorem 1 or look ahead to condition (28)). Thus—at least in our current
analysis—generalizing to the case that f∗ 6∈ H prevents us from dividing the data into finer
subsets.

3.3 Some Consequences

We now turn to deriving some explicit consequences of our main theorems for specific classes
of reproducing kernel Hilbert spaces. In each case, our derivation follows the broad outline
given the the remarks following Theorem 1: we first choose the regularization parameter λ
to balance the bias and variance terms, and then show, by comparison to known minimax
lower bounds, that the resulting upper bound is optimal. Finally, we derive an upper bound
on the number of subsampled data sets m for which the minimax optimal convergence rate
can still be achieved. Throughout this section, we assume that f∗ ∈ H.

3.3.1 Finite-rank Kernels

Our first corollary applies to problems for which the kernel has finite rank r, meaning
that its eigenvalues satisfy µj = 0 for all j > r. Examples of such finite rank kernels
include the linear kernel K(x, x′) = 〈x, x′〉Rd , which has rank at most r = d; and the kernel
K(x, x) = (1+xx′)m generating polynomials of degree m, which has rank at most r = m+1.

Corollary 3 For a kernel with rank r, consider the output of the Fast-KRR algorithm with
λ = r/N . Suppose that Assumption B and Assumptions A (or A′) hold, and that the number
of processors m satisfy the bound

m ≤ c N
k−4
k−2

r2 k−1
k−2 ρ

4k
k−2 log

k
k−2 r

(Assumption A) or m ≤ c N

r2ρ4 logN
(Assumption A′),

where c is a universal (numerical) constant. For suitably large N , the mean-squared error
is bounded as

E
[∥∥f̄ − f∗∥∥2

2

]
= O(1)

σ2r

N
. (16)

For finite-rank kernels, the rate (16) is known to be minimax-optimal, meaning that
there is a universal constant c′ > 0 such that

inf
f̃

sup
‖f∗‖H≤1

E[‖f̃ − f∗‖22] ≥ c′ r
N
, (17)

where the infimum ranges over all estimators f̃ based on observing all N samples (and with
no constraints on memory and/or computation). This lower bound follows from Theorem
2(a) of Raskutti et al. (2012) with s = d = 1.
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3.3.2 Polynomially Decaying Eigenvalues

Our next corollary applies to kernel operators with eigenvalues that obey a bound of the
form

µj ≤ C j−2ν for all j = 1, 2, . . ., (18)

where C is a universal constant, and ν > 1/2 parameterizes the decay rate. We note
that equation (5) assumes a finite kernel trace tr(K) :=

∑∞
j=1 µj . Since tr(K) appears in

Theorem 1, it is natural to use
∑∞

j=1Cj
−2ν as an upper bound on tr(K). This upper bound

is finite if and only if ν > 1/2.
Kernels with polynomial decaying eigenvalues include those that underlie for the Sobolev

spaces with different orders of smoothness (e.g. Birman and Solomjak, 1967; Gu, 2002). As
a concrete example, the first-order Sobolev kernel K(x, x′) = 1 + min{x, x′} generates an
RKHS of Lipschitz functions with smoothness ν = 1. Other higher-order Sobolev kernels
also exhibit polynomial eigendecay with larger values of the parameter ν.

Corollary 4 For any kernel with ν-polynomial eigendecay (18), consider the output of the

Fast-KRR algorithm with λ = (1/N)
2ν

2ν+1 . Suppose that Assumption B and Assumption A
(or A′) hold, and that the number of processors satisfy the bound

m ≤ c

(
N

2(k−4)ν−k
(2ν+1)

ρ4k logkN

) 1
k−2

(Assumption A) or m ≤ c N
2ν−1
2ν+1

ρ4 logN
(Assumption A′),

where c is a constant only depending on ν. Then the mean-squared error is bounded as

E
[∥∥f̄ − f∗∥∥2

2

]
= O

((σ2

N

) 2ν
2ν+1

)
. (19)

The upper bound (19) is unimprovable up to constant factors, as shown by known
minimax bounds on estimation error in Sobolev spaces (Stone, 1982; Tsybakov, 2009); see
also Theorem 2(b) of Raskutti et al. (2012).

3.3.3 Exponentially Decaying Eigenvalues

Our final corollary applies to kernel operators with eigenvalues that obey a bound of the
form

µj ≤ c1 exp(−c2j
2) for all j = 1, 2, . . ., (20)

for strictly positive constants (c1, c2). Such classes include the RKHS generated by the
Gaussian kernel K(x, x′) = exp(−‖x− x′‖22).

Corollary 5 For a kernel with sub-Gaussian eigendecay (20), consider the output of the
Fast-KRR algorithm with λ = 1/N . Suppose that Assumption B and Assumption A (or A′)
hold, and that the number of processors satisfy the bound

m ≤ c N
k−4
k−2

ρ
4k
k−2 log

2k−1
k−2 N

(Assumption A) or m ≤ c N

ρ4 log2N
(Assumption A′),
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where c is a constant only depending on c2. Then the mean-squared error is bounded as

E
[∥∥f̄ − f∗∥∥2

2

]
= O

(
σ2

√
logN

N

)
. (21)

The upper bound (21) is minimax optimal; see, for example, Theorem 1 and Example 2 of
the recent paper by Yang et al. (2015).

3.3.4 Summary

Each corollary gives a critical threshold for the number m of data partitions: as long as m is
below this threshold, the decomposition-based Fast-KRR algorithm gives the optimal rate
of convergence. It is interesting to note that the number of splits may be quite large: each
grows asymptotically with N whenever the basis functions have more than four moments
(viz. Assumption A). Moreover, the Fast-KRR method can attain these optimal conver-
gence rates while using substantially less computation than standard kernel ridge regression
methods, as it requires solving problems only of size N/m.

3.4 The Choice of Regularization Parameter

In practice, the local sample size on each machine may be different and the optimal choice
for the regularization λ may not be known a priori, so that an adaptive choice of the regu-
larization parameter λ is desirable (e.g. Tsybakov, 2009, Chapters 3.5–3.7). We recommend
using cross-validation to choose the regularization parameter, and we now sketch a heuristic
argument that an adaptive algorithm using cross-validation may achieve optimal rates of
convergence. (We leave fuller analysis to future work.)

Let λn be the (oracle) optimal regularization parameter given knowledge of the sampling
distribution P and eigen-structure of the kernel K. We assume (cf. Corollary 4) that there
is a constant ν > 0 such that λn � n−ν as n→∞. Let ni be the local sample size for each
machine i and N the global sample size; we assume that ni �

√
N (clearly, N ≥ ni). First,

use local cross-validation to choose regularization parameters λ̂ni and λ̂n2
i /N

corresponding

to samples of size ni and n2
i /N , respectively. Heuristically, if cross validation is successful,

we expect to have λ̂ni ' n−νi and λ̂n2
i /N
' Nνn−2ν

i , yielding that λ̂2
ni/λ̂n2

i /N
' N−ν . With

this intuition, we then compute local estimates

f̂i := argmin
f∈H

1

ni

∑
(x,y)∈Si

(f(x)− y)2 + λ̂(i) ‖f‖2H where λ̂(i) :=
λ̂2
ni

λ̂n2
i /N

(22)

and global average estimate f̄ =
∑m

i=1
ni
N f̂i as usual. Notably, we have λ̂(i) ' λN in this

heuristic setting. Using formula (22) and the average f̄ , we have

E
[ ∥∥f̄ − f∗∥∥2

2

]
= E

[∥∥∥∥ m∑
i=1

ni
N

(
f̂i − E[f̂i]

)∥∥∥∥2

2

]
+

∥∥∥∥∥
m∑
i=1

ni
N

(
E[f̂i]− f∗

)∥∥∥∥∥
2

2

≤
m∑
i=1

n2
i

N2
E
[∥∥f̂i − E[f̂i]

∥∥2

2

]
+ max
i∈[m]

{∥∥E[f̂i]− f∗
∥∥2

2

}
. (23)
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Using Lemmas 6 and 7 from the proof of Theorem 1 to come and assuming that λ̂n is con-
centrated tightly enough around λn, we obtain ‖E[f̂i]− f∗‖22 = O(λN ‖f∗‖2H) by Lemma 6

and that E[‖f̂i − E[f̂i]‖22] = O(γ(λN )
ni

) by Lemma 7. Substituting these bounds into inequal-
ity (23) and noting that

∑
i ni = N , we may upper bound the overall estimation error

as

E
[ ∥∥f̄ − f∗∥∥2

2

]
≤ O(1) ·

(
λN ‖f∗‖2H +

γ(λN )

N

)
.

While the derivation of this upper bound was non-rigorous, we believe that it is roughly
accurate, and in comparison with the previous upper bound (8), it provides optimal rates
of convergence.

4. Proofs of Theorem 1 and Related Results

We now turn to the proofs of Theorem 1 and Corollaries 3 through 5. This section con-
tains only a high-level view of proof of Theorem 1; we defer more technical aspects to the
appendices.

4.1 Proof of Theorem 1

Using the definition of the averaged estimate f̄ = 1
m

∑m
i=1 f̂i, a bit of algebra yields

E[
∥∥f̄ − f∗∥∥2

2
] = E[

∥∥(f̄ − E[f̄ ]) + (E[f̄ ]− f∗)
∥∥2

2
]

= E[
∥∥f̄ − E[f̄ ]

∥∥2

2
] +
∥∥E[f̄ ]− f∗

∥∥2

2
+ 2E[〈f̄ − E[f̄ ],E[f̄ ]− f∗〉L2(P)]

= E
[∥∥∥∥ 1

m

m∑
i=1

(f̂i − E[f̂i])

∥∥∥∥2

2

]
+
∥∥E[f̄ ]− f∗

∥∥2

2
,

where we used the fact that E[f̂i] = E[f̄ ] for each i ∈ [m]. Using this unbiasedness once
more, we bound the variance of the terms f̂i − E[f̄ ] to see that

E
[∥∥f̄ − f∗∥∥2

2

]
=

1

m
E
[
‖f̂1 − E[f̂1]‖22

]
+ ‖E[f̂1]− f∗‖22

≤ 1

m
E
[
‖f̂1 − f∗‖22

]
+ ‖E[f̂1]− f∗‖22, (24)

where we have used the fact that E[f̂i] minimizes E[‖f̂i − f‖22] over f ∈ H.

The error bound (24) suggests our strategy: we upper bound E[‖f̂1−f∗‖22] and ‖E[f̂1]−
f∗‖22 respectively. Based on equation (3), the estimate f̂1 is obtained from a standard
kernel ridge regression with sample size n = N/m and ridge parameter λ. Accordingly, the
following two auxiliary results provide bounds on these two terms, where the reader should
recall the definitions of b(n, d, k) and βd from equation (5). In each lemma, C represents a
universal (numerical) constant.

Lemma 6 (Bias bound) Under Assumptions A and B, for each d = 1, 2, . . ., we have

‖E[f̂ ]− f∗‖22 ≤ 8λ ‖f∗‖2H +
8ρ4 ‖f∗‖2H tr(K)βd

λ
+

(
Cb(n, d, k)

ρ2γ(λ)√
n

)k
µ0 ‖f∗‖2H . (25)
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Lemma 7 (Variance bound) Under Assumptions A and B, for each d = 1, 2, . . ., we
have

E[‖f̂ − f∗‖22] ≤ 12λ ‖f∗‖2H +
12σ2γ(λ)

n

+

(
2σ2

λ
+ 4 ‖f∗‖2H

)(
µd+1 +

12ρ4 tr(K)βd
λ

+

(
Cb(n, d, k)

ρ2γ(λ)√
n

)k
‖f∗‖22

)
. (26)

The proofs of these lemmas, contained in Appendices A and B respectively, constitute one
main technical contribution of this paper. Given these two lemmas, the remainder of the
theorem proof is straightforward. Combining the inequality (24) with Lemmas 6 and 7
yields the claim of Theorem 1.

Remarks: The proofs of Lemmas 6 and 7 are somewhat complex, but to the best of our
knowledge, existing literature does not yield significantly simpler proofs. We now discuss
this claim to better situate our technical contributions. Define the regularized population
minimizer f∗λ := argminf∈H{E[(f(X)−Y )2] +λ ‖f‖2H}. Expanding the decomposition (24)
of the L2(P)-risk into bias and variance terms, we obtain the further bound

E
[ ∥∥f̄ − f∗∥∥2

2

]
≤ ‖E[f̂1]− f∗‖22 +

1

m
E
[
‖f̂1 − f∗‖22

]
= ‖E[f̂1]− f∗‖22︸ ︷︷ ︸

:=T1

+
1

m

(
‖f∗λ − f∗‖22︸ ︷︷ ︸

:=T2

+E
[
‖f̂1 − f∗‖22

]
− ‖f∗λ − f∗‖

2
2︸ ︷︷ ︸

:=T3

)
= T1 +

1

m
(T2 + T3).

In this decomposition, T1 and T2 are bias and approximation error terms induced by the
regularization parameter λ, while T3 is an excess risk (variance) term incurred by minimizing
the empirical loss.

This upper bound illustrates three trade-offs in our subsampled and averaged kernel
regression procedure:

• The trade-off between T2 and T3: when the regularization parameter λ grows, the
bias term T2 increases while the variance term T3 converges to zero.

• The trade-off between T1 and T3: when the regularization parameter λ grows, the
bias term T1 increases while the variance term T3 converges to zero.

• The trade-off between T1 and the computation time: when the number of machines
m grows, the bias term T1 increases (as the local sample size n = N/m shrinks), while
the computation time N3/m2 decreases.

Theoretical results in the KRR literature focus on the trade-off between T2 and T3, but in
the current context, we also need an upper bound on the bias term T1, which is not relevant
for classical (centralized) analyses.

With this setting in mind, Lemma 6 tightly upper bounds the bias T1 as a function of
λ and n. An essential part of the proof is to characterize the properties of E[f̂1], which is
the expectation of a nonparametric empirical loss minimizer. We are not aware of existing
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literature on this problem, and the proof of Lemma 6 introduces novel techniques for this
purpose.

On the other hand, Lemma 7 upper bounds E[‖f̂1 − f∗‖22] as a function of λ and n.
Past work has focused on bounding a quantity of this form, but for technical reasons, most
work (e.g. van de Geer, 2000; Mendelson, 2002b; Bartlett et al., 2002; Zhang, 2005) focuses
on analyzing the constrained form

f̂i := argmin
‖f‖H≤C

1

|Si|
∑

(x,y)∈Si

(f(x)− y)2, (27)

of kernel ridge regression. While this problem traces out the same set of solutions as that
of the regularized kernel ridge regression estimator (3), it is non-trivial to determine a
matched setting of λ for a given C. Zhang (2003) provides one of the few analyses of the
regularized ridge regression estimator (3) (or (2)), providing an upper bound of the form

E[‖f̂ − f∗‖22] = O(λ + 1/λ
n ), which is at best O( 1√

n
). In contrast, Lemma 7 gives upper

bound O(λ+ γ(λ)
n ); the effective dimension γ(λ) is often much smaller than 1/λ, yielding a

stronger convergence guarantee.

4.2 Proof of Corollary 3

We first present a general inequality bounding the size of m for which optimal convergence
rates are possible. We assume that d is chosen large enough such that we have log(d) ≥ k
and d ≥ N . In the rest of the proof, our assignment to d will satisfy these inequalities. In
this case, inspection of Theorem 1 shows that if m is small enough that(√

log d

N/m
ρ2γ(λ)

)k
1

mλ
≤ γ(λ)

N
,

then the term T3(d) provides a convergence rate given by γ(λ)/N . Thus, solving the ex-
pression above for m, we find

m log d

N
ρ4γ(λ)2 =

λ2/km2/kγ(λ)2/k

N2/k
or m

k−2
k =

λ
2
kN

k−2
k

γ(λ)2 k−1
k ρ4 log d

.

Taking (k − 2)/k-th roots of both sides, we obtain that if

m ≤ λ
2

k−2N

γ(λ)2 k−1
k−2 ρ

4k
k−2 log

k
k−2 d

, (28)

then the term T3(d) of the bound (7) is O(γ(λ)/N).
Now we apply the bound (28) in the case in the corollary. Let us take d = max{r,N}.

Notice that βd = βr = µr+1 = 0. We find that γ(λ) ≤ r since each of its terms is bounded
by 1, and we take λ = r/N . Evaluating the expression (28) with this value, we arrive at

m ≤ N
k−4
k−2

r2 k−1
k−2 ρ

4k
k−2 log

k
k−2 d

.
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If we have sufficiently many moments that k ≥ logN , and N ≥ r (for example, if the basis
functions φj have a uniform bound ρ, then k can be chosen arbitrarily large), then we may

take k = logN , which implies that N
k−4
k−2 = Ω(N), r2 k−1

k−2 = O(r2) and ρ
4k
k−2 = O(ρ4) ; and

we replace log d with logN . Then so long as

m ≤ c N

r2ρ4 logN

for some constant c > 0, we obtain an identical result.

4.3 Proof of Corollary 4

We follow the program outlined in our remarks following Theorem 1. We must first choose

λ on the order of γ(λ)/N . To that end, we note that setting λ = N−
2ν

2ν+1 gives

γ(λ) =

∞∑
j=1

1

1 + j2νN−
2ν

2ν+1

≤ N
1

2ν+1 +
∑

j>N
1

2ν+1

1

1 + j2νN−
2ν

2ν+1

≤ N
1

2ν+1 +N
2ν

2ν+1

∫
N

1
2ν+1

1

u2ν
du = N

1
2ν+1 +

1

2ν − 1
N

1
2ν+1 .

Dividing by N , we find that λ ≈ γ(λ)/N , as desired. Now we choose the truncation
parameter d. By choosing d = N t for some t ∈ R+, then we find that µd+1 . N−2νt and
an integration yields βd . N−(2ν−1)t. Setting t = 3/(2ν − 1) guarantees that µd+1 . N−3

and βd . N−3; the corresponding terms in the bound (7) are thus negligible. Moreover, we
have for any finite k that log d & k.

Applying the general bound (28) on m, we arrive at the inequality

m ≤ c N
− 4ν

(2ν+1)(k−2)N

N
2(k−1)

(2ν+1)(k−2) ρ
4k
k−2 log

k
k−2 N

= c
N

2(k−4)ν−k
(2ν+1)(k−2)

ρ
4k
k−2 log

k
k−2 N

.

Whenever this holds, we have convergence rate λ = N−
2ν

2ν+1 . Now, let Assumption A′ hold.
Then taking k = logN , the above bound becomes (to a multiplicative constant factor)

N
2ν−1
2ν+1 /ρ4 logN as claimed.

4.4 Proof of Corollary 5

First, we set λ = 1/N . Considering the sum γ(λ) =
∑∞

j=1 µj/(µj + λ), we see that for

j ≤
√

(logN)/c2, the elements of the sum are bounded by 1. For j >
√

(logN)/c2, we
make the approximation∑

j≥
√

(logN)/c2

µj
µj + λ

≤ 1

λ

∑
j≥
√

(logN)/c2

µj . N

∫ ∞
√

(logN)/c2

exp(−c2t
2)dt = O(1).

Thus we find that γ(λ) + 1 ≤ c
√

logN for some constant c. By choosing d = N2, we
have that the tail sum and (d + 1)-th eigenvalue both satisfy µd+1 ≤ βd . c−1

2 N−4. As a
consequence, all the terms involving βd or µd+1 in the bound (7) are negligible.
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Recalling our inequality (28), we thus find that (under Assumption A), as long as the
number of partitions m satisfies

m ≤ c N
k−4
k−2

ρ
4k
k−2 log

2k−1
k−2 N

,

the convergence rate of f̄ to f∗ is given by γ(λ)/N '
√

logN/N . Under the boundedness
assumption A′, as we did in the proof of Corollary 3, we take k = logN in Theorem 1. By
inspection, this yields the second statement of the corollary.

5. Proof of Theorem 2 and Related Results

In this section, we provide the proofs of Theorem 2, as well as the bound (13) based on the
alternative form of the residual error. As in the previous section, we present a high-level
proof, deferring more technical arguments to the appendices.

5.1 Proof of Theorem 2

We begin by stating and proving two auxiliary claims:

E
[
(Y − f(X))2

]
= E

[
(Y − f∗(X))2

]
+ ‖f − f∗‖22 for any f ∈ L2(P), and (29a)

f∗λ̄ = argmin
‖f‖H≤R

‖f − f∗‖22 . (29b)

Let us begin by proving equality (29a). By adding and subtracting terms, we have

E
[
(Y − f∗(X))2

]
= E

[
(Y − f∗(X))2

]
+ ‖f − f∗‖22 + 2E[(f(X)− f∗(X))E[Y − f∗(X) | X]]

(i)
= E

[
(Y − f∗(X))2

]
+ ‖f − f∗‖22 ,

where equality (i) follows since the random variable Y − f∗(X) is mean-zero given X = x.
For the second equality (29b), consider any function f in the RKHS that satisfies the

bound ‖f‖H ≤ R. The definition of the minimizer f∗
λ̄

guarantees that

E
[
(f∗λ̄(X)− Y )2

]
+ λ̄R2 ≤ E[(f(X)− Y )2] + λ̄ ‖f‖2H ≤ E[(f(X)− Y )2] + λ̄R2.

This result combined with equation (29a) establishes the equality (29b).

We now turn to the proof of the theorem. Applying Hölder’s inequality yields that∥∥f̄ − f∗∥∥2

2
≤
(

1 +
1

q

)∥∥f∗λ̄ − f∗∥∥2

2
+ (1 + q)

∥∥f̄ − f∗λ̄∥∥2

2

=

(
1 +

1

q

)
inf

‖f‖H≤R
‖f − f∗‖22 + (1 + q)

∥∥f̄ − f∗λ̄∥∥2

2
for all q > 0, (30)

where the second step follows from equality (29b). It thus suffices to upper bound
∥∥f̄ − f∗

λ̄

∥∥2

2
,

and following the deduction of inequality (24), we immediately obtain the decomposition
formula

E
[∥∥f̄ − f∗λ̄∥∥2

2

]
≤ 1

m
E[‖f̂1 − f∗λ̄‖

2
2] + ‖E[f̂1]− f∗λ̄‖

2
2, (31)
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where f̂1 denotes the empirical minimizer for one of the subsampled datasets (i.e. the
standard KRR solution on a sample of size n = N/m with regularization λ). This suggests
our strategy, which parallels our proof of Theorem 1: we upper bound E[‖f̂1 − f∗λ̄‖

2
2] and

‖E[f̂1]− f∗
λ̄
‖22, respectively. In the rest of the proof, we let f̂ = f̂1 denote this solution.

Let the estimation error for a subsample be given by ∆ = f̂ − f∗
λ̄
. Under Assump-

tions A and B′, we have the following two lemmas bounding expression (31), which parallel
Lemmas 6 and 7 in the case when f∗ ∈ H. In each lemma, C denotes a universal constant.

Lemma 8 For all d = 1, 2, . . ., we have

E
[
‖∆‖22

]
≤ 16(λ̄− λ)2R2

λ
+

8γ(λ)ρ2τ2
λ̄

n

+
√

32R4 + 8τ4
λ̄
/λ2

(
µd+1 +

16ρ4 tr(K)βd
λ

+

(
Cb(n, d, k)

ρ2γ(λ)√
n

)k)
. (32)

Denoting the right hand side of inequality (32) by D2, we have

Lemma 9 For all d = 1, 2, . . ., we have

‖E[∆]‖22 ≤
4(λ̄− λ)2R2

λ
+
C log2(d)(ρ2γ(λ))2

n
D2

+
√

32R4 + 8τ4
λ̄
/λ2

(
µd+1 +

4ρ4 tr(K)βd
λ

)
. (33)

See Appendices C and D for the proofs of these two lemmas.

Given these two lemmas, we can now complete the proof of the theorem. If the condi-
tions (10) hold, we have

βd ≤
λ

(R2 + τ2
λ̄
/λ)N

, µd+1 ≤
1

(R2 + τ2
λ̄
/λ)N

,

log2(d)(ρ2γ(λ))2

n
≤ 1

m
and

(
b(n, d, k)

ρ2γ(λ)√
n

)k
≤ 1

(R2 + τ2
λ̄
/λ)N

,

so there is a universal constant C ′ satisfying

√
32R4 + 8τ4

λ̄
/λ2

(
µd+1 +

16ρ4 tr(K)βd
λ

+

(
Cb(n, d, k)

ρ2γ(λ)√
n

)k)
≤ C ′

N
.

Consequently, Lemma 8 yields the upper bound

E[‖∆‖22] ≤ 8(λ̄− λ)2R2

λ
+

8γ(λ)ρ2τ2
λ̄

n
+
C ′

N
.
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Since log2(d)(ρ2γ(λ))2/n ≤ 1/m by assumption, we obtain

E
[
‖f̄ − f∗λ̄‖

2
2

]
≤ C(λ̄− λ)2R2

λm
+
Cγ(λ)ρ2τ2

λ̄

N
+

C

Nm

+
4(λ̄− λ)2R2

λ
+
C(λ̄− λ)2R2

λm
+
Cγ(λ)ρ2τ2

λ̄

N
+

C

Nm
+
C

N
,

where C is a universal constant (whose value is allowed to change from line to line). Sum-
ming these bounds and using the condition that λ ≥ λ̄, we conclude that

E
[
‖f̄ − f∗λ̄‖

2
2

]
≤
(

4 +
C

m

)
(λ− λ̄)R2 +

Cγ(λ)ρ2τ2
λ̄

N
+
C

N
.

Combining this error bound with inequality (30) completes the proof.

5.2 Proof of Bound (13)

Using Theorem 2, it suffices to show that

τ4
λ̄ ≤ 8 tr(K)2‖f∗λ̄‖

4
Hρ

4 + 8κ4. (34)

By the tower property of expectations and Jensen’s inequality, we have

τ4
λ̄ = E[(E[(f∗λ̄(x)− Y )2 | X = x])2] ≤ E[(f∗λ̄(X)− Y )4] ≤ 8E[(f∗λ̄(X))4] + 8E[Y 4].

Since we have assumed that E[Y 4] ≤ κ4, the only remaining step is to upper bound
E[(f∗

λ̄
(X))4]. Let f∗

λ̄
have expansion (θ1, θ2, . . .) in the basis {φj}. For any x ∈ X , Hölder’s

inequality applied with the conjugates 4/3 and 4 implies the upper bound

f∗λ̄(x) =
∞∑
j=1

(µ
1/4
j θ

1/2
j )

θ
1/2
j φj(x)

µ
1/4
j

≤

 ∞∑
j=1

µ
1/3
j θ

2/3
j

3/4 ∞∑
j=1

θ2
j

µj
φ4
j (x)

1/4

. (35)

Again applying Hölder’s inequality—this time with conjugates 3/2 and 3—to upper bound
the first term in the product in inequality (35), we obtain

∞∑
j=1

µ
1/3
j θ

2/3
j =

∞∑
j=1

µ
2/3
j

(
θ2
j

µj

)1/3

≤
( ∞∑
j=1

µj

)2/3
( ∞∑
j=1

θ2
j

µj

)1/3

= tr(K)2/3‖f∗λ̄‖
2/3
H . (36)

Combining inequalities (35) and (36), we find that

E[(f∗λ̄(X))4] ≤ tr(K)2‖f∗λ̄‖
2
H

∞∑
j=1

θ2
j

µj
E[φ4

j (X)] ≤ tr(K)2‖f∗λ̄‖
4
Hρ

4,

where we have used Assumption A. This completes the proof of inequality (34).

6. Experimental Results

In this section, we report the results of experiments on both simulated and real-world data
designed to test the sharpness of our theoretical predictions.
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(a) With under-regularization (b) Without under-regularization

Figure 1: The squared L2(P)-norm between between the averaged estimate f̄ and the op-
timal solution f∗. (a) These plots correspond to the output of the Fast-KRR
algorithm: each sub-problem is under-regularized by using λ ' N−2/3. (b)
Analogous plots when each sub-problem is not under-regularized—that is, with
λ = n−2/3 = (N/m)−2/3 chosen as if there were only a single dataset of size n.

6.1 Simulation Studies

We begin by exploring the empirical performance of our subsample-and-average methods
for a non-parametric regression problem on simulated datasets. For all experiments in
this section, we simulate data from the regression model y = f∗(x) + ε for x ∈ [0, 1],
where f∗(x) := min(x, 1 − x) is 1-Lipschitz, the noise variables ε ∼ N(0, σ2) are normally
distributed with variance σ2 = 1/5, and the samples xi ∼ Uni[0, 1]. The Sobolev space
of Lipschitz functions on [0, 1] has reproducing kernel K(x, x′) = 1 + min{x, x′} and norm
‖f‖2H = f2(0) +

∫ 1
0 (f ′(z))2dz. By construction, the function f∗(x) = min(x, 1− x) satisfies

‖f∗‖H = 1. The kernel ridge regression estimator f̂ takes the form

f̂ =
N∑
i=1

αiK(xi, ·), where α = (K + λNI)−1 y, (37)

and K is the N × N Gram matrix and I is the N × N identity matrix. Since the first-
order Sobolev kernel has eigenvalues (Gu, 2002) that scale as µj ' (1/j)2, the minimax
convergence rate in terms of squared L2(P)-error is N−2/3 (see e.g. Tsybakov (2009); Stone
(1982); Caponnetto and De Vito (2007)).

By Corollary 4 with ν = 1, this optimal rate of convergence can be achieved by Fast-KRR
with regularization parameter λ ≈ N−2/3 as long as the number of partitions m satisfies
m . N1/3. In each of our experiments, we begin with a dataset of size N = mn, which we
partition uniformly at random into m disjoint subsets. We compute the local estimator f̂i
for each of the m subsets using n samples via (37), where the Gram matrix is constructed
using the ith batch of samples (and n replaces N). We then compute f̄ = (1/m)

∑m
i=1 f̂i.
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Figure 2: The mean-square error curves for fixed sample size but varied number of parti-
tions. We are interested in the threshold of partitioning number m under which
the optimal rate of convergence is achieved.

Our experiments compare the error of f̄ as a function of sample size N , the number of
partitions m, and the regularization λ.

In Figure 6.1(a), we plot the error ‖f̄ − f∗‖22 versus the total number of samplesN , where
N ∈ {28, 29, . . . , 213}, using four different data partitionsm ∈ {1, 4, 16, 64}. We execute each
simulation 20 times to obtain standard errors for the plot. The black circled curve (m = 1)
gives the baseline KRR error; if the number of partitions m ≤ 16, Fast-KRR has accuracy
comparable to the baseline algorithm. Even with m = 64, Fast-KRR’s performance closely
matches the full estimator for larger sample sizes (N ≥ 211). In the right plot Figure 6.1(b),
we perform an identical experiment, but we over-regularize by choosing λ = n−2/3 rather
than λ = N−2/3 in each of the m sub-problems, combining the local estimates by averaging
as usual. In contrast to Figure 6.1(a), there is an obvious gap between the performance of
the algorithms when m = 1 and m > 1, as our theory predicts.

It is also interesting to understand the number of partitions m into which a dataset
of size N may be divided while maintaining good statistical performance. According to
Corollary 4 with ν = 1, for the first-order Sobolev kernel, performance degradation should
be limited as long as m . N1/3. In order to test this prediction, Figure 2 plots the mean-
square error ‖f̄ − f∗‖22 versus the ratio log(m)/ log(N). Our theory predicts that even as the
number of partitions m may grow polynomially in N , the error should grow only above some
constant value of log(m)/ log(N). As Figure 2 shows, the point that ‖f̄ − f∗‖2 begins to
increase appears to be around log(m) ≈ 0.45 log(N) for reasonably large N . This empirical
performance is somewhat better than the (1/3) thresholded predicted by Corollary 4, but it
does confirm that the number of partitions m can scale polynomially with N while retaining
minimax optimality.
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N m = 1 m = 16 m = 64 m = 256 m = 1024

212 Error 1.26 · 10−4 1.33 · 10−4 1.38 · 10−4

N/A N/A
Time 1.12 (0.03) 0.03 (0.01) 0.02 (0.00)

213 Error 6.40 · 10−5 6.29 · 10−5 6.72 · 10−5

N/A N/A
Time 5.47 (0.22) 0.12 (0.03) 0.04 (0.00)

214 Error 3.95 · 10−5 4.06 · 10−5 4.03 · 10−5 3.89 · 10−5

N/A
Time 30.16 (0.87) 0.59 (0.11) 0.11 (0.00) 0.06 (0.00)

215 Error
Fail

2.90 · 10−5 2.84 · 10−5 2.78 · 10−5

N/A
Time 2.65 (0.04) 0.43 (0.02) 0.15 (0.01)

216 Error
Fail

1.75 · 10−5 1.73 · 10−5 1.71 · 10−5 1.67 · 10−5

Time 16.65 (0.30) 2.21 (0.06) 0.41 (0.01) 0.23 (0.01)

217 Error
Fail

1.19 · 10−5 1.21 · 10−5 1.25 · 10−5 1.24 · 10−5

Time 90.80 (3.71) 10.87 (0.19) 1.88 (0.08) 0.60 (0.02)

Table 1: Timing experiment giving ‖f̄ − f∗‖22 as a function of number of partitions m and
data size N , providing mean run-time (measured in second) for each number m of
partitions and data size N .

Our final experiment gives evidence for the improved time complexity partitioning pro-
vides. Here we compare the amount of time required to solve the KRR problem using the
naive matrix inversion (37) for different partition sizes m and provide the resulting squared
errors ‖f̄ − f∗‖22. Although there are more sophisticated solution strategies, we believe this
is a reasonable proxy to exhibit Fast-KRR’s potential. In Table 1, we present the results
of this simulation, which we performed in Matlab using a Windows machine with 16GB
of memory and a single-threaded 3.4Ghz processor. In each entry of the table, we give
the mean error of Fast-KRR and the mean amount of time it took to run (with standard
deviation over 10 simulations in parentheses; the error rate standard deviations are an order
of magnitude smaller than the errors, so we do not report them). The entries “Fail” corre-
spond to out-of-memory failures because of the large matrix inversion, while entries “N/A”
indicate that ‖f̄ − f∗‖2 was significantly larger than the optimal value (rendering time im-
provements meaningless). The table shows that without sacrificing accuracy, decomposition
via Fast-KRR can yield substantial computational improvements.

6.2 Real Data Experiments

We now turn to the results of experiments studying the performance of Fast-KRR on the
task of predicting the year in which a song was released based on audio features associated
with the song. We use the Million Song Dataset (Bertin-Mahieux et al., 2011), which
consists of 463,715 training examples and a second set of 51,630 testing examples. Each
example is a song (track) released between 1922 and 2011, and the song is represented as
a vector of timbre information computed about the song. Each sample consists of the pair
(xi, yi) ∈ Rd × R, where xi ∈ Rd is a d = 90-dimensional vector and yi ∈ [1922, 2011] is the
year in which the song was released. (For further details, see Bertin-Mahieux et al. (2011)).
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Figure 3: Results on year prediction on held-out test songs for Fast-KRR, Nyström sam-
pling, and random feature approximation. Error bars indicate standard deviations
over ten experiments.

Our experiments with this dataset use the Gaussian radial basis kernel

K(x, x′) = exp

(
−
‖x− x′‖22

2σ2

)
. (38)

We normalize the feature vectors x so that the timbre signals have standard deviation 1,
and select the bandwidth parameter σ = 6 via cross-validation. For regularization, we set
λ = N−1; since the Gaussian kernel has exponentially decaying eigenvalues (for typical
distributions on X), Corollary 5 shows that this regularization achieves the optimal rate of
convergence for the Hilbert space.

In Figure 3, we compare the time-accuracy curve of Fast-KRR with two approximation-
based methods, plotting the mean-squared error between the predicted release year and
the actual year on test songs. The first baseline is Nyström subsampling (Williams and
Seeger, 2001), where the kernel matrix is approximated by a low-rank matrix of rank r ∈
{1, . . . , 6} × 103. The second baseline approach is an approximate form of kernel ridge
regression using random features (Rahimi and Recht, 2007). The algorithm approximates
the Gaussian kernel (38) by the inner product of two random feature vectors of dimensions
D ∈ {2, 3, 5, 7, 8.5, 10} × 103, and then solves the resulting linear regression problem. For
the Fast-KRR algorithm, we use seven partitions m ∈ {32, 38, 48, 64, 96, 128, 256} to test
the algorithm. Each algorithm is executed 10 times to obtain standard deviations (plotted
as error-bars in Figure 3).

As we see in Figure 3, for a fixed time budget, Fast-KRR enjoys the best performance,
though the margin between Fast-KRR and Nyström sampling is not substantial. In spite of
this close performance between Nyström sampling and the divide-and-conquer Fast-KRR
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Figure 4: Comparison of the performance of Fast-KRR to a standard KRR estimator using
a fraction 1/m of the data.

algorithm, it is worth noting that with parallel computation, it is trivial to accelerate
Fast-KRR m times; parallelizing approximation-based methods appears to be a non-trivial
task. Moreover, as our results in Section 3 indicate, Fast-KRR is minimax optimal in
many regimes. At the same time the conference version of this paper was submitted, Bach
(2013) published the first results we know of establishing convergence results in `2-error for
Nyström sampling; see the discussion for more detail. We note in passing that standard
linear regression with the original 90 features, while quite fast with runtime on the order of
1 second (ignoring data loading), has mean-squared-error 90.44, which is significantly worse
than the kernel-based methods.

Our final experiment provides a sanity check: is the final averaging step in Fast-KRR
even necessary? To this end, we compare Fast-KRR with standard KRR using a fraction
1/m of the data. For the latter approach, we employ the standard regularization λ ≈
(N/m)−1. As Figure 4 shows, Fast-KRR achieves much lower error rates than KRR using
only a fraction of the data. Moreover, averaging stabilizes the estimators: the standard
deviations of the performance of Fast-KRR are negligible compared to those for standard
KRR.

7. Discussion

In this paper, we present results establishing that our decomposition-based algorithm for
kernel ridge regression achieves minimax optimal convergence rates whenever the number
of splits m of the data is not too large. The error guarantees of our method depend on the
effective dimensionality γ(λ) =

∑∞
j=1 µj/(µj + λ) of the kernel. For any number of splits
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m . N/γ(λ)2, our method achieves estimation error decreasing as

E
[
‖f̄ − f∗‖22

]
. λ ‖f∗‖2H +

σ2γ(λ)

N
.

(In particular, recall the bound (8) following Theorem 1). Notably, this convergence rate is
minimax optimal, and we achieve substantial computational benefits from the subsampling
schemes, in that computational cost scales (nearly) linearly in N .

It is also interesting to consider the number of kernel evaluations required to imple-
ment our method. Our estimator requires m sub-matrices of the full kernel (Gram) matrix,
each of size N/m ×N/m. Since the method may use m � N/γ2(λ) machines, in the best
case, it requires at most Nγ2(λ) kernel evaluations. By contrast, Bach (2013) shows that
Nyström-based subsampling can be used to form an estimator within a constant factor of
optimal as long as the number of N -dimensional subsampled columns of the kernel matrix
scales roughly as the marginal dimension γ̃(λ) = N

∥∥diag(K(K + λNI)−1)
∥∥
∞. Conse-

quently, using roughly Nγ̃(λ) kernel evaluations, Nyström subsampling can achieve optimal
convergence rates. These two scalings–namely, Nγ2(λ) versus Nγ̃(λ)—are currently not
comparable: in some situations, such as when the data is not compactly supported, γ̃(λ)
can scale linearly with N , while in others it appears to scale roughly as the true effective
dimensionality γ(λ). A natural question arising from these lines of work is to understand
the true optimal scaling for these different estimators: is one fundamentally better than the
other? Are there natural computational tradeoffs that can be leveraged at large scale? As
datasets grow substantially larger and more complex, these questions should become even
more important, and we hope to continue to study them.
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Appendix A. Proof of Lemma 6

This appendix is devoted to the bias bound stated in Lemma 6. Let X = {xi}ni=1 be short-

hand for the design matrix, and define the error vector ∆ = f̂ − f∗. By Jensen’s inequal-
ity, we have ‖E[∆]‖2 ≤ E[‖E[∆ | X]‖2], so it suffices to provide a bound on ‖E[∆ | X]‖2.
Throughout this proof and the remainder of the paper, we represent the kernel evaluator by
the function ξx, where ξx := K(x, ·) and f(x) = 〈ξx, f〉 for any f ∈ H. Using this notation,
the estimate f̂ minimizes the empirical objective

1

n

n∑
i=1

(
〈ξxi , f〉H − yi

)2
+ λ ‖f‖2H . (39)
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f̂ Empirical KRR minimizer based on n samples
f∗ Optimal function generating data, where yi = f∗(xi) + εi
∆ Error f̂ − f∗
ξx RKHS evaluator ξx := K(x, ·), so 〈f, ξx〉 = 〈ξx, f〉 = f(x)

Σ̂ Operator mapping H → H defined as the outer product Σ̂ := 1
n

∑n
i=1 ξxi⊗ξxi ,

so that Σ̂f = 1
n

∑n
i=1 〈ξxi , f〉 ξxi

φj jth orthonormal basis vector for L2(P)
δj Basis coefficients of ∆ or E[∆ | X] (depending on context), i.e. ∆ =

∑∞
j=1 δjφj

θj Basis coefficients of f∗, i.e. f∗ =
∑∞

j=1 θjφj
d Integer-valued truncation point
M Diagonal matrix with M = diag(µ1, . . . , µd)

Q Diagonal matrix with Q = (Id×d + λM−1)
1
2

Φ n× d matrix with coordinates Φij = φj(xi)

v↓ Truncation of vector v. For v =
∑

j νjφj ∈ H, defined as v↓ =
∑d

j=1 νjφj ; for

v ∈ `2(N) defined as v↓ = (v1, . . . , vd)
v↑ Untruncated part of vector v, defined as v↑ = (vd+1, vd+1, . . .)
βd The tail sum

∑
j>d µj

γ(λ) The sum
∑∞

j=1 1/(1 + λ/µj)

b(n, d, k) The maximum max{
√

max{k, log(d)},max{k, log(d)}/n1/2−1/k}

Table 2: Notation used in proofs

This objective is Fréchet differentiable, and as a consequence, the necessary and sufficient
conditions for optimality (Luenberger, 1969) of f̂ are that

1

n

n∑
i=1

ξxi(〈ξxi , f̂ − f∗〉H − εi) + λf̂ =
1

n

n∑
i=1

ξxi(〈ξxi , f̂〉H − yi) + λf̂ = 0, (40)

where the last equation uses the fact that yi = 〈ξxi , f∗〉H + εi. Taking conditional expecta-
tions over the noise variables {εi}ni=1 with the design X = {xi}ni=1 fixed, we find that

1

n

n∑
i=1

ξxi 〈ξxi ,E[∆ | X]〉+ λE[f̂ | X] = 0.

Define the sample covariance operator Σ̂ := 1
n

∑n
i=1 ξxi ⊗ ξxi . Adding and subtracting λf∗

from the above equation yields

(Σ̂ + λI)E[∆ | X] = −λf∗. (41)

Consequently, we see we have ‖E[∆ | X]‖H ≤ ‖f∗‖H, since Σ̂ � 0.
We now use a truncation argument to reduce the problem to a finite dimensional prob-

lem. To do so, we let δ ∈ `2(N) denote the coefficients of E[∆ | X] when expanded in the
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basis {φj}∞j=1:

E[∆ | X] =
∞∑
j=1

δjφj , with δj = 〈E[∆ | X], φj〉L2(P). (42)

For a fixed d ∈ N, define the vectors δ↓ := (δ1, . . . , δd) and δ↑ := (δd+1, δd+2, . . .) (we
suppress dependence on d for convenience). By the orthonormality of the collection {φj},
we have

‖E[∆ | X]‖22 = ‖δ‖22 = ‖δ↓‖22 + ‖δ↑‖22. (43)

We control each of the elements of the sum (43) in turn.

Control of the term ‖δ↑‖22: By definition, we have

‖δ↑‖22 =
µd+1

µd+1

∞∑
j=d+1

δ2
j ≤ µd+1

∞∑
j=d+1

δ2
j

µj

(i)

≤ µd+1 ‖E[∆ | X]‖2H (ii)≤ µd+1 ‖f∗‖2H , (44)

where inequality (i) follows since ‖E[∆ | X]‖2H =
∑∞

j=1

δ2j
µj

; and inequality (ii) follows from

the bound ‖E[∆ | X]‖H ≤ ‖f∗‖H, which is a consequence of equality (41).

Control of the term ‖δ↓‖22: Let (θ1, θ2, . . .) be the coefficients of f∗ in the basis {φj}. In
addition, define the matrices Φ ∈ Rn×d by

Φij = φj(xi) for i ∈ {1, . . . , n}, and j ∈ {1, . . . , d}

and M = diag(µ1, . . . , µd) � 0 ∈ Rd×d. Lastly, define the tail error vector v ∈ Rn by

vi : =
∑
j>d

δjφj(xi) = E[∆↑(xi) | X].

Let l ∈ N be arbitrary. Computing the (Hilbert) inner product of the terms in equation (41)
with φl, we obtain

−λ θl
µl

= 〈φl,−λf∗〉 =
〈
φl, (Σ̂ + λ)E[∆ | X]

〉
=

1

n

n∑
i=1

〈φl, ξxi〉 〈ξxi ,E[∆ | X]〉+ λ 〈φl,E[∆ | X]〉 =
1

n

n∑
i=1

φl(xi)E[∆(xi) | X] + λ
δl
µl
.

We can rewrite the final sum above using the fact that ∆ = ∆↓ + ∆↑, which implies

1

n

n∑
i=1

φl(xi)E[∆(xi) | X] =
1

n

n∑
i=1

φl(xi)

( d∑
j=1

φj(xi)δj +
∑
j>d

φj(xi)δj

)
Applying this equality for l = 1, 2, . . . , d yields(

1

n
ΦTΦ + λM−1

)
δ↓ = −λM−1θ↓ − 1

n
ΦT v. (45)
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We now show how the expression (45) gives us the desired bound in the lemma. By
defining the shorthand matrix Q = (I + λM−1)1/2, we have

1

n
ΦTΦ + λM−1 = I + λM−1 +

1

n
ΦTΦ− I = Q

(
I +Q−1

(
1

n
ΦTΦ− I

)
Q−1

)
Q.

As a consequence, we can rewrite expression (45) to(
I +Q−1

(
1

n
ΦTΦ− I

)
Q−1

)
Qδ↓ = −λQ−1M−1θ↓ − 1

n
Q−1ΦT v. (46)

We now present a lemma bounding the terms in equality (46) to control δ↓.

Lemma 10 The following bounds hold:∥∥∥λQ−1M−1θ↓
∥∥∥2

2
≤ λ ‖f∗‖2H , and (47a)

E

[∥∥∥∥ 1

n
Q−1ΦT v

∥∥∥∥2

2

]
≤
ρ4 ‖f∗‖2H tr(K)βd

λ
. (47b)

Define the event E :=
{∣∣∣∣∣∣Q−1

(
1
nΦTΦ− I

)
Q−1

∣∣∣∣∣∣ ≤ 1/2
}

. Under Assumption A with mo-
ment bound E[φj(X)2k] ≤ ρ2k, there exists a universal constant C such that

P(Ec) ≤
(

max

{√
k ∨ log(d),

k ∨ log(d)

n1/2−1/k

}
Cρ2γ(λ)√

n

)k
. (48)

We defer the proof of this lemma to Appendix A.1.
Based on this lemma, we can now complete the proof. Whenever the event E holds, we

know that I +Q−1((1/n)ΦTΦ− I)Q−1 � (1/2)I. In particular, we have

‖Qδ↓‖22 ≤ 4
∥∥∥λQ−1M−1θ↓ + (1/n)Q−1ΦT v

∥∥∥2

2

on E , by Eq. (46). Since ‖Qδ↓‖22 ≥ ‖δ↓‖22, the above inequality implies that

‖δ↓‖22 ≤ 4
∥∥∥λQ−1M−1θ↓ + (1/n)Q−1ΦT v

∥∥∥2

2

Since E is X-measurable, we thus obtain

E
[
‖δ↓‖22

]
= E

[
1(E) ‖δ↓‖22

]
+ E

[
1(Ec) ‖δ↓‖22

]
≤ 4E

[
1(E)

∥∥∥λQ−1M−1θ↓ + (1/n)Q−1ΦT v
∥∥∥2

2

]
+ E

[
1(Ec) ‖δ↓‖22

]
.

Applying the bounds (47a) and (47b), along with the elementary inequality (a + b)2 ≤
2a2 + 2b2, we have

E
[
‖δ↓‖22

]
≤ 8λ ‖f∗‖2H +

8ρ4 ‖f∗‖2H tr(K)βd
λ

+ E
[
1(Ec) ‖δ↓‖22

]
. (49)
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Now we use the fact that by the gradient optimality condition (41),

‖E[∆ | X]‖22 ≤ µ0 ‖E[∆ | X]‖2H ≤ µ0 ‖f∗‖2H

Recalling the shorthand (6) for b(n, d, k), we apply the bound (48) to see

E
[
1(Ec) ‖δ↓‖22

]
≤ P(Ec)µ0 ‖f∗‖2H ≤

(
Cb(n, d, k)ρ2γ(λ)√

n

)k
µ0 ‖f∗‖2H

Combining this with the inequality (49), we obtain the desired statement of Lemma 6.

A.1 Proof of Lemma 10

Proof of bound (47a): Beginning with the proof of the bound (47a), we have∥∥∥Q−1M−1θ↓
∥∥∥2

2
= (θ↓)T (M2 + λM)−1θ↓

≤ (θ↓)T (λM)−1θ↓ =
1

λ
(θ↓)TM−1θ↓ ≤ 1

λ
‖f∗‖2H .

Multiplying both sides by λ2 gives the result.

Proof of bound (47b): Next we turn to the proof of the bound (47b). We begin by re-writing
Q−1ΦT v as the product of two components:

1

n
Q−1ΦT v = (M + λI)−1/2

(
1

n
M1/2ΦT v

)
. (50)

The first matrix is a diagonal matrix whose operator norm is bounded:∣∣∣∣∣∣∣∣∣(M + λI)−1/2
∣∣∣∣∣∣∣∣∣ = max

j∈[d]

1√
µj + λ

≤ 1√
λ
. (51)

For the second factor in the product (50), the analysis is a little more complicated. Let
Φ` = (φl(x1), . . . , φl(xn)) be the `th column of Φ. In this case,

∥∥∥M1/2ΦT v
∥∥∥2

2
=

d∑
`=1

µ`(Φ
T
` v)2 ≤

d∑
`=1

µ` ‖Φ`‖22 ‖v‖
2
2 , (52)

using the Cauchy-Schwarz inequality. Taking expectations with respect to the design {xi}ni=1

and applying Hölder’s inequality yields

E[‖Φ`‖22 ‖v‖
2
2] ≤

√
E[‖Φ`‖42]

√
E[‖v‖42].

We bound each of the terms in this product in turn. For the first, we have

E[‖Φ`‖42] = E
[( n∑

i=1

φ2
` (Xi)

)2]
= E

[ n∑
i,j=1

φ2
` (Xi)φ

2
` (Xj)

]
≤ n2E[φ4

` (X1)] ≤ n2ρ4
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since the Xi are i.i.d., E[φ2
` (X1)] ≤

√
E[φ4

` (X1)], and E[φ4
` (X1)] ≤ ρ4 by assumption. Turn-

ing to the term involving v, we have

v2
i =

(∑
j>d

δjφj(xi)

)2

≤
(∑
j>d

δ2
j

µj

)(∑
j>d

µjφ
2
j (xi)

)
by Cauchy-Schwarz. As a consequence, we find

E[‖v‖42] = E
[(
n

1

n

n∑
i=1

v2
i

)2]
≤ n2 1

n

n∑
i=1

E[v4
i ] ≤ n

n∑
i=1

E
[(∑

j>d

δ2
j

µj

)2(∑
j>d

µjφ
2
j (Xi)

)2]

≤ n2E
[
‖E[∆ | X]‖4H

(∑
j>d

µjφ
2
j (X1)

)2]
,

since the Xi are i.i.d. Using the fact that ‖E[∆ | X]‖H ≤ ‖f∗‖H, we expand the second
square to find

1

n2
E[‖v‖42] ≤ ‖f∗‖4H

∑
j,k>d

E
[
µjµkφ

2
j (X1)φ2

k(X1)
]
≤ ‖f∗‖4H ρ

4
∑
j,k>d

µjµk = ‖f∗‖4H ρ
4

(∑
j>d

µj

)2

.

Combining our bounds on ‖Φ`‖2 and ‖v‖2 with our initial bound (52), we obtain the in-
equality

E
[∥∥∥M1/2ΦT v

∥∥∥2

2

]
≤

d∑
l=1

µ`
√
n2ρ4

√√√√n2 ‖f∗‖4H ρ4

(∑
j>d

µj

)2

= n2ρ4 ‖f∗‖2H
(∑
j>d

µj

) d∑
l=1

µ`.

Dividing by n2, recalling the definition of βd =
∑

j>d µj , and noting that tr(K) ≥
∑d

l=1 µ`
shows that

E

[∥∥∥∥ 1

n
M1/2ΦT v

∥∥∥∥2

2

]
≤ ρ4 ‖f∗‖2H βd tr(K).

Combining this inequality with our expansion (50) and the bound (51) yields the claim (47b).

Proof of bound (48): We consider the expectation of the norm of Q−1( 1
nΦTΦ− I)Q−1.

For each i ∈ [n], πi := (φ1(xi), . . . , φd(xi))
T ∈ Rd, then πTi is the i-th row of the matrix

Φ ∈ Rn×d. Then we know that

Q−1

(
1

n
ΦTΦ− I

)
Q−1 =

1

n

n∑
i=1

Q−1(πiπ
T
i − I)Q−1.

Define the sequence of matrices

Ai := Q−1(πiπ
T
i − I)Q−1

Then the matrices Ai = ATi ∈ Rd×d. Note that E[Ai] = 0 and let εi be i.i.d. {−1, 1}-valued
Rademacher random variables. Applying a standard symmetrization argument (Ledoux
and Talagrand, 1991), we find that for any k ≥ 1, we have

E

[∣∣∣∣∣∣∣∣∣∣∣∣Q−1

(
1

n
ΦTΦ− I

)
Q−1

∣∣∣∣∣∣∣∣∣∣∣∣k
]

= E

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣ 1n

n∑
i=1

Ai

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
k
 ≤ 2kE

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣ 1n

n∑
i=1

εiAi

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
k
 . (53)
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Lemma 11 The quantity E
[∣∣∣∣∣∣ 1

n

∑n
i=1 εiAi

∣∣∣∣∣∣k]1/k
is upper bounded by

√
e(k ∨ 2 log(d))

ρ2
∑d

j=1
1

1+λ/µj√
n

+
4e(k ∨ 2 log(d))

n1−1/k

( d∑
j=1

ρ2

1 + λ/µj

)
. (54)

We take this lemma as given for the moment, returning to prove it shortly. Recall the
definition of the constant γ(λ) =

∑∞
j=1 1/(1 + λ/µj) ≥

∑d
j=1 1/(1 + λ/µj). Then using our

symmetrization inequality (53), we have

E
[ ∣∣∣∣∣∣∣∣∣∣∣∣Q−1

(
1

n
ΦTΦ− I

)
Q−1

∣∣∣∣∣∣∣∣∣∣∣∣k ]
≤ 2k

(√
e(k ∨ log(d))

ρ2γ(λ)√
n

+
4e(k ∨ 2 log(d))

n1−1/k
ρ2γ(λ)

)k
≤ max

{√
k ∨ log(d),

k ∨ log(d)

n1/2−1/k

}k (Cρ2γ(λ)√
n

)k
, (55)

where C is a numerical constant. By definition of the event E , we see by Markov’s inequality
that for any k ∈ R, k ≥ 1,

P(Ec) ≤
E
[∣∣∣∣∣∣Q−1

(
1
nΦTΦ− I

)∣∣∣∣∣∣k]
2−k

≤ max

{√
k ∨ log(d),

k ∨ log(d)

n1/2−1/k

}k (2Cρ2γ(λ))√
n

)k
.

This completes the proof of the bound (48).

It remains to prove Lemma 11, for which we make use of the following result, due
to Chen et al. (2012, Theorem A.1(2)).

Lemma 12 Let Xi ∈ Rd×d be independent symmetrically distributed Hermitian matrices.
Then

E
[∣∣∣∣∣∣∣∣∣∣∣∣ n∑

i=1

Xi

∣∣∣∣∣∣∣∣∣∣∣∣k]1/k

≤
√
e(k ∨ 2 log d)

∣∣∣∣∣∣∣∣∣∣∣∣ n∑
i=1

E[X2
i ]

∣∣∣∣∣∣∣∣∣∣∣∣1/2 + 2e(k ∨ 2 log d)

(
E[max

i
|||Xi|||k]

)1/k

.

(56)

The proof of Lemma 11 is based on applying this inequality with Xi = εiAi/n, and then
bounding the two terms on the right-hand side of inequality (56).

We begin with the first term. Note that for any symmetric matrix Z, we have the matrix
inequalities 0 � E[(Z − E[Z])2] = E[Z2]− E[Z]2 � E[Z2], so

E[A2
i ] = E[Q−1(πiπ

T
i − I)Q−2(πiπ

T
i − I)Q−1] � E[Q−1πiπ

T
i Q
−2πiπ

T
i Q
−1].

Instead of computing these moments directly, we provide bounds on their norms. Since
πiπ

T
i is rank one and Q is diagonal, we have

∣∣∣∣∣∣Q−1πiπ
T
i Q
−1
∣∣∣∣∣∣ = πTi (I + λM−1)−1πi =

d∑
j=1

φj(xi)
2

1 + λ/µj
.
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We also note that, for any k ∈ R, k ≥ 1, convexity implies that

( d∑
j=1

φj(xi)
2

1 + λ/µj

)k
=

∑d
l=1 1/(1 + λ/µ`)∑d
l=1 1/(1 + λ/µ`)

d∑
j=1

φj(xi)
2

1 + λ/µj

k

≤
( d∑
l=1

1

1 + λ/µ`

)k 1∑d
l=1 1/(1 + λ/µ`)

d∑
j=1

φj(xi)
2k

1 + λ/µj
,

so if E[φj(Xi)
2k] ≤ ρ2k, we obtain

E
[( d∑

j=1

φj(xi)
2

1 + λ/µj

)k]
≤
( d∑
j=1

1

1 + λ/µj

)k
ρ2k. (57)

The sub-multiplicativity of matrix norms implies
∣∣∣∣∣∣(Q−1πiπ

T
i Q
−1)2

∣∣∣∣∣∣ ≤ ∣∣∣∣∣∣Q−1πiπ
T
i Q
−1
∣∣∣∣∣∣2,

and consequently we have

E
[∣∣∣∣∣∣(Q−1πiπ

T
i Q
−1)2

∣∣∣∣∣∣] ≤ E
[(
πTi (I + λM−1)−1πi

)2] ≤ ρ4

( d∑
j=1

1

1 + λ/µj

)2

,

where the final step follows from inequality (57). Combined with first term on the right-
hand side of Lemma 12, we have thus obtained the first term on the right-hand side of
expression (54).

We now turn to the second term in expression (54). For real k ≥ 1, we have

E[max
i
|||εiAi/n|||k] =

1

nk
E[max

i
|||Ai|||k] ≤

1

nk

n∑
i=1

E[|||Ai|||k]

Since norms are sub-additive, we find that

|||Ai|||k ≤ 2k−1

( d∑
j=1

φj(xi)
2

1 + λ/µj

)k
+2k−1

∣∣∣∣∣∣Q−2
∣∣∣∣∣∣k = 2k−1

( d∑
j=1

φj(xi)
2

1 + λ/µj

)k
+2k−1

(
1

1 + λ/µ1

)k
.

Since ρ ≥ 1 (recall that the φj are an orthonormal basis), we apply inequality (57), to find
that

E[max
i
|||εiAi/n|||k] ≤

1

nk−1

[
2k−1

( d∑
j=1

1

1 + λ/µj

)k
ρ2k + 2k−1

(
1

1 + λ/µ1

)k
ρ2k

]
.

Taking kth roots yields the second term in the expression (54).

Appendix B. Proof of Lemma 7

This proof follows an outline similar to Lemma 6. We begin with a simple bound on ‖∆‖H:
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Lemma 13 Under Assumption B, we have E[‖∆‖2H | X] ≤ 2σ2/λ+ 4 ‖f∗‖2H.

Proof We have

λ E[ ‖f̂‖2H | {xi}ni=1] ≤ E

[
1

n

n∑
i=1

(f̂(xi)− f∗(xi)− εi)2 + λ‖f̂‖2H | {xi}ni=1

]
(i)

≤ 1

n

n∑
i=1

E[ε2
i | xi] + λ ‖f∗‖2H

(ii)

≤ σ2 + λ ‖f∗‖2H ,

where inequality (i) follows since f̂ minimizes the objective function (2); and inequality (ii)
uses the fact that E[ε2

i | xi] ≤ σ2. Applying the triangle inequality to ‖∆‖H along with the
elementary inequality (a+ b)2 ≤ 2a2 + 2b2, we find that

E[‖∆‖2H | {xi}
n
i=1] ≤ 2 ‖f∗‖2H + 2E[‖f̂‖2H | {xi}ni=1] ≤ 2σ2

λ
+ 4 ‖f∗‖2H ,

which completes the proof.

With Lemma 13 in place, we now proceed to the proof of the theorem proper. Recall
from Lemma 6 the optimality condition

1

n

n∑
i=1

ξxi(〈ξxi , f̂ − f∗〉 − εi) + λf̂ = 0. (58)

Now, let δ ∈ `2(N) be the expansion of the error ∆ in the basis {φj}, so that ∆ =
∑∞

j=1 δjφj ,
and (again, as in Lemma 6), we choose d ∈ N and truncate ∆ via

∆↓ :=

d∑
j=1

δjφj and ∆↑ := ∆−∆↓ =
∑
j>d

δjφj .

Let δ↓ ∈ Rd and δ↑ denote the corresponding vectors for the above. As a consequence of
the orthonormality of the basis functions, we have

E[‖∆‖22] = E[‖∆↓‖22] + E[‖∆↑‖22] = E[‖δ↓‖22] + E[‖δ↑‖22]. (59)

We bound each of the terms (59) in turn.
By Lemma 13, the second term is upper bounded as

E[‖∆↑‖22] =
∑
j>d

E[δ2
j ] ≤

∑
j>d

µd+1

µj
E[δ2

j ] = µd+1E[‖∆↑‖2H] ≤ µd+1

(
2σ2

λ
+ 4 ‖f∗‖2H

)
. (60)

The remainder of the proof is devoted the bounding the term E[‖∆↓‖22] in the decompo-
sition (59). By taking the Hilbert inner product of φk with the optimality condition (58),
we find as in our derivation of the matrix equation (45) that for each k ∈ {1, . . . , d}

1

n

n∑
i=1

d∑
j=1

φk(xi)φj(xi)δj +
1

n

n∑
i=1

φk(xi)(∆
↑(xi)− εi) + λ

δk
µk

= 0.
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Given the expansion f∗ =
∑∞

j=1 θjφj , define the tail error vector v ∈ Rn by vi =
∑

j>d δjφj(xi),

and recall the definition of the eigenvalue matrix M = diag(µ1, . . . , µd) ∈ Rd×d. Given the
matrix Φ defined by its coordinates Φij = φj(xi), we have(

1

n
ΦTΦ + λM−1

)
δ↓ = −λM−1θ↓ − 1

n
ΦT v +

1

n
ΦT ε. (61)

As in the proof of Lemma 6, we find that(
I +Q−1

(
1

n
ΦTΦ− I

)
Q−1

)
Qδ↓ = −λQ−1M−1θ↓ − 1

n
Q−1ΦT v +

1

n
Q−1ΦT ε, (62)

where we recall that Q = (I + λM−1)1/2.
We now recall the bounds (47a) and (48) from Lemma 10, as well as the previously

defined event E := {
∣∣∣∣∣∣Q−1

(
1
nΦTΦ− I

)
Q−1

∣∣∣∣∣∣ ≤ 1/2}. When E occurs, the expression (62)
implies the inequality

‖∆↓‖22 ≤ ‖Qδ↓‖22 ≤ 4
∥∥∥−λQ−1M−1θ↓ − (1/n)Q−1ΦT v + (1/n)Q−1ΦT ε

∥∥∥2

2
.

When E fails to hold, Lemma 13 may still be applied since E is measurable with respect to
{xi}ni=1. Doing so yields

E[‖∆↓‖22] = E[1(E) ‖∆↓‖22] + E[1(Ec) ‖∆↓‖22]

≤ 4E
[∥∥∥−λQ−1M−1θ↓ − (1/n)Q−1ΦT v + (1/n)Q−1ΦT ε

∥∥∥2

2

]
+ E

[
1(Ec)E[‖∆↓‖22 | {xi}ni=1]

]
≤ 4E

[∥∥∥∥λQ−1M−1θ↓ +
1

n
Q−1ΦT v − 1

n
Q−1ΦT ε

∥∥∥∥2

2

]
+ P(Ec)

(
2σ2

λ
+ 4 ‖f∗‖2H

)
. (63)

Since the bound (48) still holds, it remains to provide a bound on the first term in the
expression (63).

As in the proof of Lemma 6, we have ‖λQ−1M−1θ↓‖22 ≤ λ ‖f∗‖2H via the bound (47a).
Turning to the second term inside the norm, we claim that, under the conditions of Lemma 7,
the following bound holds:

E
[∥∥(1/n)Q−1ΦT v

∥∥2

2

]
≤
ρ4 tr(K)βd(2σ

2/λ+ 4 ‖f∗‖2H)

λ
. (64)

This claim is an analogue of our earlier bound (47b), and we prove it shortly. Lastly, we
bound the norm of Q−1ΦT ε/n. Noting that the diagonal entries of Q−1 are 1/

√
1 + λ/µj ,

we have

E
[∥∥Q−1ΦT ε

∥∥2

2

]
=

d∑
j=1

n∑
i=1

1

1 + λ/µj
E[φ2

j (Xi)ε
2
i ]

Since E[φ2
j (Xi)ε

2
i ] = E[φ2

j (Xi)E[ε2
i | Xi]] ≤ σ2 by assumption, we have the inequality

E
[∥∥(1/n)Q−1ΦT ε

∥∥2

2

]
≤ σ2

n

d∑
j=1

1

1 + λ/µj
.
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The last sum is bounded by (σ2/n)γ(λ). Applying the inequality (a+b+c)2 ≤ 3a2+3b2+3c2

to inequality (63), we obtain

E
[
‖∆↓‖22

]
≤ 12λ ‖f∗‖2H +

12σ2γ(λ)

n
+

(
2σ2

λ
+ 4 ‖f∗‖2H

)(
12ρ4 tr(K)βd

λ
+ P(Ec)

)
.

Applying the bound (48) to control P(Ec) and bounding E[‖∆↑‖22] using inequality (60)
completes the proof of the lemma.

It remains to prove bound (64). Recalling the inequality (51), we see that∥∥(1/n)Q−1ΦT v
∥∥2

2
≤
∣∣∣∣∣∣∣∣∣Q−1M−1/2

∣∣∣∣∣∣∣∣∣2 ∥∥∥(1/n)M1/2ΦT v
∥∥∥2

2
≤ 1

λ

∥∥∥(1/n)M1/2ΦT v
∥∥∥2

2
. (65)

Let Φ` denote the `th column of the matrix Φ. Taking expectations yields

E
[∥∥∥M1/2ΦT v

∥∥∥2

2

]
=

d∑
l=1

µ`E[〈Φ`, v〉2] ≤
d∑
l=1

µ`E
[
‖Φ`‖22 ‖v‖

2
2

]
=

d∑
l=1

µ`E
[
‖Φ`‖22 E

[
‖v‖22 | X

]]
.

Now consider the inner expectation. Applying the Cauchy-Schwarz inequality as in the
proof of the bound (47b), we have

‖v‖22 =
n∑
i=1

v2
i ≤

n∑
i=1

(∑
j>d

δ2
j

µj

)(∑
j>d

µjφ
2
j (Xi)

)
.

Notably, the second term is X-measurable, and the first is bounded by ‖∆↑‖2H ≤ ‖∆‖
2
H.

We thus obtain

E
[∥∥∥M1/2ΦT v

∥∥∥2

2

]
≤

n∑
i=1

d∑
l=1

µ`E
[
‖Φ`‖22

(∑
j>d

µjφ
2
j (Xi)

)
E[‖∆‖2H | X]

]
. (66)

Lemma 13 provides the bound 2σ2/λ+ 4 ‖f∗‖2H on the final (inner) expectation.
The remainder of the argument proceeds precisely as in the bound (47b). We have

E[‖Φ`‖22 φj(Xi)
2] ≤ nρ4

by the moment assumptions on φj , and thus

E
[∥∥∥M1/2ΦT v

∥∥∥2

2

]
≤

d∑
l=1

∑
j>d

µ`µjn
2ρ4

(
2σ2

λ
+ 4 ‖f∗‖2H

)
≤ n2ρ4βd tr(K)

(
2σ2

λ
+ 4 ‖f∗‖2H

)
.

Dividing by λn2 completes the proof.
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Appendix C. Proof of Lemma 8

As before, we let {xi}ni=1 := {x1, . . . , xn} denote the collection of design points. We begin
with some useful bounds on

∥∥f∗
λ̄

∥∥
H and ‖∆‖H.

Lemma 14 Under Assumptions A and B′, we have

E
[
(E[‖∆‖2H | {xi}

n
i=1])2

]
≤ B4

λ,λ̄ and E[‖∆‖2H] ≤ B2
λ,λ̄, (67)

where
Bλ,λ̄ := 4

√
32‖f∗

λ̄
‖4H + 8τ4

λ̄
/λ2. (68)

See Section C.1 for the proof of this claim.
This proof follows an outline similar to that of Lemma 7. As usual, we let δ ∈ `2(N) be

the expansion of the error ∆ in the basis {φj}, so that ∆ =
∑∞

j=1 δjφj , and we choose d ∈ N
and define the truncated vectors ∆↓ :=

∑d
j=1 δjφj and ∆↑ := ∆ − ∆↓ =

∑
j>d δjφj . As

usual, we have the decomposition E[‖∆‖22] = E[‖δ↓‖22] +E[‖δ↑‖22]. Recall the definition (68)

of the constant Bλ,λ̄ = 4

√
32‖f∗

λ̄
‖4H + 8τ4

λ̄
/λ2. As in our deduction of inequalities (60),

Lemma 14 implies that E[‖∆↑‖22] ≤ µd+1E[‖∆↑‖2H] ≤ µd+1B
2
λ,λ̄

.

The remainder of the proof is devoted to bounding E[‖δ↓‖22]. We use identical notation
to that in our proof of Lemma 7, which we recap for reference (see also Table 2). We define
the tail error vector v ∈ Rn by vi =

∑
j>d δjφj(xi), i ∈ [n], and recall the definitions of the

eigenvalue matrix M = diag(µ1, . . . , µd) ∈ Rd×d and basis matrix Φ with Φij = φj(xi). We
use Q = (I + λM−1)1/2 for shorthand, and we let E be the event that∣∣∣∣∣∣Q−1((1/n)ΦTΦ− I)Q−1

∣∣∣∣∣∣ ≤ 1/2.

Writing f∗
λ̄

=
∑∞

j=1 θjφj , we define the alternate noise vector ε′i = Yi − f∗λ̄(xi). Using this
notation, mirroring the proof of Lemma 7 yields

E[‖∆↓‖22] ≤ E[‖Qδ↓‖22] ≤ 4E

[∥∥∥∥λQ−1M−1θ↓ +
1

n
Q−1ΦT v − 1

n
Q−1ΦT ε′

∥∥∥∥2

2

]
+ P(Ec)B2

λ,λ̄,

(69)

which is an analogue of equation (63). The bound bound (48) controls the probability
P(Ec), so it remains to control the first term in the expression (69). We first rewrite the
expression within the norm as

(λ− λ̄)Q−1M−1θ↓ +
1

n
Q−1ΦT v −

(
1

n
Q−1ΦT ε′ − λ̄Q−1M−1θ↓

)
The following lemma provides bounds on the first two terms:

Lemma 15 The following bounds hold:∥∥∥(λ̄− λ)Q−1M−1θ↓
∥∥∥2

2
≤

(λ̄− λ)2
∥∥f∗

λ̄

∥∥2

H
λ

, (70a)

E

[∥∥∥∥ 1

n
Q−1ΦT v

∥∥∥∥2

2

]
≤
ρ4B2

λ,λ̄
tr(K)βd

λ
, (70b)
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For the third term, we make the following claim.

Lemma 16 Under Assumptions A and B′, we have

E

[∥∥∥∥ 1

n
Q−1ΦT ε′ − λ̄Q−1M−1θ↓

∥∥∥∥2

2

]
≤
γ(λ)ρ2τ2

λ̄

n
. (71)

Deferring the proof of the two lemmas to Sections C.2 and C.3, we apply the inequality
(a+ b+ c)2 ≤ 4a2 + 4b2 + 2c2 to inequality (69), and we have

E[‖∆↓‖22]− P(Ec)B2
λ,λ̄ ≤ E[‖Qδ↓‖22]− P(Ec)B2

λ,λ̄

≤ 16E
[∥∥∥(λ− λ̄)Q−1M−1θ↓

∥∥∥2

2

]
+

16

n2
E
[∥∥Q−1ΦT v

∥∥2

2

]
+

8

n2
E
[∥∥∥Q−1ΦT ε′ − λ̄Q−1M−1θ↓

∥∥∥2

2

]
≤

16(λ̄− λ)2
∥∥f∗

λ̄

∥∥2

H
λ

+
16ρ4B2

λ,λ̄
tr(K)βd

λ
+

8γ(λ)ρ2τ2
λ̄

n
, (72)

where we have applied the bounds (70a) and (70b) from Lemma 17 and the bound (71)

from Lemma 16. Applying the bound (48) to control P(Ec) and recalling that E[
∥∥∆↑

∥∥2

2
] ≤

µd+1B
2
λ,λ̄

completes the proof.

C.1 Proof of Lemma 14

Recall that f̂ minimizes the empirical objective. Consequently,

λE[‖f̂‖2H | {xi}ni=1] ≤ E

[
1

n

n∑
i=1

(f̂(xi)− Yi)2 + λ‖f̂‖2H | {xi}ni=1

]

≤ 1

n

n∑
i=1

E[(f∗λ̄(xi)− Yi)2 | xi] + λ‖f∗λ̄‖
2
H =

1

n

n∑
i=1

σ2
λ̄(xi) + λ‖f∗λ̄‖

2
H

The triangle inequality immediately gives us the upper bound

E[‖∆‖2H | {xi}ni=1] ≤ 2‖f∗λ̄‖
2
H + E[2‖f̂‖2H | {xi}ni=1] ≤ 2

λn

n∑
i=1

σ2
λ̄(xi) + 4‖f∗λ̄‖

2
H.

Since (a+ b)2 ≤ 2a2 + 2b2, convexity yields

E[(E[‖∆‖2H | {xi}
n
i=1])2] ≤ E

( 2

λn

n∑
i=1

σ2
λ̄(Xi) + 4‖f∗λ̄‖

2
H

)2


≤ 8

λ2n

n∑
i=1

E[σ4
λ̄(Xi)] + 32‖f∗λ̄‖

4
H = 32‖f∗λ̄‖

4
H +

8τ4
λ̄

λ2
.

This completes the proof of the first of the inequalities (67). The second of the inequali-
ties (67) follows from the first by Jensen’s inequality.
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C.2 Proof of Lemma 15

Our previous bound (47a) immediately implies inequality (70a). To prove the second upper
bound, we follow the proof of the bound (64). From inequalities (65) and (66), we obtain
that ∥∥(1/n)Q−1ΦT v

∥∥2

2
≤ 1

λn2

n∑
i=1

d∑
l=1

∑
j>d

µ`µjE
[
‖Φ`‖22 φ

2
j (Xi)E[‖∆‖2H | {Xi}ni=1]

]
. (73)

Applying Hölder’s inequality yields

E
[
‖Φ`‖22 φ

2
j (Xi)E[‖∆‖2H | {Xi}ni=1]

]
≤
√

E[‖Φ`‖42 φ4
j (Xi)]

√
E[(E[‖∆‖2H | {Xi}ni=1])2].

Note that Lemma 14 provides the bound B4
λ,λ̄

on the final expectation. By definition of Φ`,

we find that

E[‖Φ`‖42 φ
4
j (xi)] = E

( n∑
k=1

φ2
` (xk)

)2

φ4
j (xi)

 ≤ n2E
[

1

2

(
φ8
` (x1) + φ8

j (x1)
)]
≤ n2ρ8,

where we have used Assumption A with moment 2k ≥ 8, or equivalently k ≥ 4. Thus

E
[
‖Φ`‖22 φ

2
j (Xi)E[‖∆‖2H | {Xi}ni=1]

]
≤ nρ4B2

λ,λ̄. (74)

Combining inequalities (73) and (74) yields the bound (70b).

C.3 Proof of Lemma 16

Using the fact that Q and M are diagonal, we have

E

[∥∥∥∥ 1

n
Q−1ΦT ε′ − λ̄Q−1M−1θ↓

∥∥∥∥2

2

]
=

d∑
j=1

Q−2
jj E

( 1

n

n∑
i=1

φj(Xi)ε
′
i −

λ̄θj
µj

)2
 . (75)

Fréchet differentiability and the fact that f∗
λ̄

is the global minimizer of the regularized
regression problem imply that

E[ξXiε
′
i] + λ̄f∗λ̄ = E

[
ξX
(〈
ξX , f

∗
λ̄

〉
− y
)]

+ λ̄f∗λ̄ = 0.

Taking the (Hilbert) inner product of the preceding display with the basis function φj , we
get

E
[
φj(Xi)ε

′
i −

λ̄θj
µj

]
= 0. (76)

Combining the equalities (75) and (76) and using the i.i.d. nature of {xi}ni=1 leads to

E

[∥∥∥∥ 1

n
Q−1ΦT ε′ − λ̄Q−1M−1θ↓

∥∥∥∥2

2

]
=

d∑
j=1

Q−2
jj var

(
1

n

n∑
i=1

φj(Xi)ε
′
i −

λ̄θj
µj

)

=
1

n

d∑
j=1

Q−2
jj var

(
φj(X1)ε′1

)
. (77)
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Using the elementary inequality var(Z) ≤ E[Z2] for any random variable Z, we have
from Hölder’s inequality that

var(φj(X1)ε′1) ≤ E[φj(X1)2(ε′1)2] ≤
√
E[φj(X1)4]E[σ4

λ̄
(X1)] ≤

√
ρ4
√
τ4
λ̄
,

where we used Assumption B′ to upper bound the fourth moment E[σ4
λ̄
(X1)]. Using the

fact that Q−1
jj ≤ 1, we obtain the following upper bound on the quantity (77):

1

n

d∑
j=1

Q−2
jj var(φj(X1)ε′1) =

1

n

d∑
j=1

var(φj(X1)ε′1)

1 + λ/µj
≤
γ(λ)ρ2τ2

λ̄

n
,

which establishes the claim.

Appendix D. Proof of Lemma 9

At a high-level, the proof is similar to that of Lemma 6, but we take care since the errors
f∗
λ̄
(x)−y are not conditionally mean-zero (or of conditionally bounded variance). Recalling

our notation of ξx as the RKHS evaluator for x, we have by assumption that f̂ minimizes the
empirical objective (39). As in our derivation of equality (40), the Fréchet differentiability
of this objective implies the first-order optimality condition

1

n

n∑
i=1

ξxi 〈ξxi ,∆〉+
1

n

n∑
i=1

(ξxi
〈
ξxi , f

∗
λ̄

〉
− yi) + λ∆ + λf∗λ̄ = 0, (78)

where ∆ := f̂−f∗
λ̄
. In addition, the optimality of f∗

λ̄
implies that E[ξxi(〈ξxi , f∗λ̄〉 − yi)] + λ̄f∗

λ̄
= 0.

Using this in equality (78), we take expectations with respect to {xi, yi} to obtain

E
[

1

n

n∑
i=1

ξXi 〈ξXi ,∆〉+ λ∆

]
+ (λ− λ̄)f∗λ̄ = 0.

Recalling the definition of the sample covariance operator Σ̂ := 1
n

∑n
i=1 ξxi ⊗ ξxi , we arrive

at
E[(Σ̂ + λI)∆] = (λ̄− λ)f∗λ̄ , (79)

which is the analogue of our earlier equality (41).
We now proceed via a truncation argument similar to that used in our proofs of Lem-

mas 6 and 7. Let δ ∈ `2(N) be the expansion of the error ∆ in the basis {φj}, so that
∆ =

∑∞
j=1 δjφj . For a fixed (arbitrary) d ∈ N, define

∆↓ :=
d∑
j=1

δjφj and ∆↑ := ∆−∆↓ =
∑
j>d

δjφj ,

and note that ‖E[∆]‖22 = ‖E[∆↓]‖22 +‖E[∆↑]‖22. By Lemma 14, the second term is controlled
by

‖E[∆↑]‖22 ≤ E[‖∆↑‖22] =
∑
j>d

E[δ2
j ] ≤

∑
j>d

µd+1

µj
E[δ2

j ] = µd+1E[‖∆↑‖2H] ≤ µd+1B
2
λ,λ̄. (80)
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The remainder of the proof is devoted to bounding ‖E[∆↓]‖22. Let f∗
λ̄

have the expansion
(θ1, θ2, . . .) in the basis {φj}. Recall (as in Lemmas 6 and 7) the definition of the matrix
Φ ∈ Rn×d by its coordinates Φij = φj(xi), the diagonal matrix M = diag(µ1, . . . , µd) �
0 ∈ Rd×d, and the tail error vector v ∈ Rn by vi =

∑
j>d δjφj(xi) = ∆↑(xi). Proceeding

precisely as in the derivations of equalities (45) and (61), we have the following equality:

E
[(

1

n
ΦTΦ + λM−1

)
δ↓
]

= (λ̄− λ)M−1θ↓ − E
[

1

n
ΦT v

]
. (81)

Recalling the definition of the shorthand matrix Q = (I + λM−1)1/2, with some algebra we
have

Q−1

(
1

n
ΦTΦ + λM−1

)
= Q+Q−1

(
1

n
ΦTΦ− I

)
,

so we can expand expression (81) as

E
[
Qδ↓ +Q−1

(
1

n
ΦΦT − I

)
δ↓
]

= E
[
Q−1

(
1

n
ΦTΦ + λM−1

)
δ↓
]

= (λ̄− λ)Q−1M−1θ↓ − E
[

1

n
Q−1ΦT v

]
,

or, rewriting,

E[Qδ↓] = (λ̄− λ)Q−1M−1θ↓ − E
[

1

n
Q−1ΦT v

]
− E

[
Q−1

(
1

n
ΦTΦ− I

)
δ↓
]
. (82)

Lemma 15 provides bounds on the first two terms on the right-hand-side of equation (82).
The following lemma provides upper bounds on the third term:

Lemma 17 There exists a universal constant C such that∥∥∥∥E [Q−1

(
1

n
ΦTΦ− I

)
δ↓
]∥∥∥∥2

2

≤ C(ρ2γ(λ) log d)2

n
E
[
‖Qδ↓‖22

]
, (83)

We defer the proof to Section D.1.

Applying Lemma 15 and Lemma 17 to equality (82) and using the standard inequality
(a+ b+ c)2 ≤ 4a2 + 4b2 + 2c2, we obtain the upper bound

∥∥∥E[∆↓]
∥∥∥2

2
≤

4(λ̄− λ)2
∥∥f∗

λ̄

∥∥2

H
λ

+
4ρ4B2

λ,λ̄
tr(K)βd

λ
+
C(ρ2γ(λ) log d)2

n
E
[
‖Qδ↓‖22

]
for a universal constant C. Note that inequality (72) provides a sufficiently tight bound on
the term E

[
‖Qδ↓‖22

]
. Combined with inequality (80), this completes the proof of Lemma 9.
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D.1 Proof of Lemma 17

By using Jensen’s inequality and then applying Cauchy-Schwarz, we find∥∥∥∥E [Q−1

(
1

n
ΦTΦ− I

)
δ↓
]∥∥∥∥2

2

≤
(
E
[∥∥∥∥Q−1

(
1

n
ΦTΦ− I

)
δ↓
∥∥∥∥

2

])2

≤ E

[∣∣∣∣∣∣∣∣∣∣∣∣Q−1

(
1

n
ΦTΦ− I

)
Q−1

∣∣∣∣∣∣∣∣∣∣∣∣2
]
E
[
‖Qδ↓‖22

]
.

The first component of the final product can be controlled by the matrix moment bound
established in the proof of inequality (48). In particular, applying (55) with k = 2 yields a
universal constant C such that

E

[∣∣∣∣∣∣∣∣∣∣∣∣Q−1

(
1

n
ΦTΦ− I

)
Q−1

∣∣∣∣∣∣∣∣∣∣∣∣2
]
≤ C(ρ2γ(λ) log d)2

n
,

which establishes the claim (83).
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Abstract

A relaxed randomized Kaczmarz algorithm is investigated in a least squares regression
setting by a learning theory approach. When the sampling values are accurate and the
regression function (conditional means) is linear, such an algorithm has been well studied
in the community of non-uniform sampling. In this paper, we are mainly interested in
the different case of either noisy random measurements or a nonlinear regression function.
In this case, we show that relaxation is needed. A necessary and sufficient condition on
the sequence of relaxation parameters or step sizes for the convergence of the algorithm in
expectation is presented. Moreover, polynomial rates of convergence, both in expectation
and in probability, are provided explicitly. As a result, the almost sure convergence of the
algorithm is proved by applying the Borel-Cantelli Lemma.

Keywords: learning theory, relaxed randomized Kaczmarz algorithm, online learning,
space of homogeneous linear functions, almost sure convergence

1. Introduction

The Kaczmarz method is an iterative projection algorithm. It was originally proposed
for solving (overdetermined) systems of linear equations, and has been adapted to image
reconstruction, signal processing and numerous other applications.

Given a matrix A ∈ Rm×d and a vector b ∈ Rm, the classical Kaczmarz algorithm
(Kaczmarz, 1937) approximates a solution of the linear systems Ax = b by an iterative
scheme as

xk+1 = xk +
bi − 〈ai, xk〉
‖ai‖2

ai, (1)

where i = k mod m, aTi is the i-th row of the matrix A, and x1 ∈ Rd is an initial vector.
Here 〈 , 〉 is the inner product in Rd and ‖ · ‖ the induced norm.

The convergence of the Kaczmarz algorithm (2) is well understood (Kaczmarz, 1937),
and its convergence rate depends on the order of rows of A. To avoid this dependence,
a randomized Kaczmarz algorithm was considered in (Strohmer and Vershynin, 2009) by
setting the probability of a row to be proportional to its norm. It takes the form

xk+1 = xk +
bp(i) − 〈ap(i), xk〉
‖ap(i)‖2

ap(i), (2)

c©2015 Junhong Lin and Ding-Xuan Zhou.
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where p(i) takes values in {1, . . . ,m} with probability
‖ap(i)‖2

‖A‖2F
with ‖A‖2F =

∑m
i=1

∑d
j=1 a

2
ij

being the Frobenius norm square of A. Exponential convergence rate was proved for the
expected error E‖xk+1 − x‖2 of the randomized Kaczmarz algorithm (2) in (Strohmer and
Vershynin, 2009). When noise exists in the sample value b = Ax + ξ with ξ being a noise
vector, a bound for the expected error was obtained in (Needell, 2010) and divergence was
proved when the variance of ξ is positive. The error bound consists of an exponentially
convergent part and a noise-driven term proportional to the noise level maxi

|ξi|
‖ai‖2 .

The randomized Kaczmarz algorithm (2) was generalized in Chen and Powell (2012) to
a setting with a sequence of independent random measurement vectors {ϕt ∈ Rd}t as

xk+1 = xk +
yk − 〈ϕk, xk〉
‖ϕk‖2

ϕk. (3)

When the measurements have no noise yk = 〈ϕk, x〉, almost sure convergence was proved
and quantitative error bounds were provided in (Chen and Powell, 2012).

When the linear system Ax = b is overdetermined (m > d) and has no solution, the
Kaczmarz algorithm (2) can be modified by introducing a relaxation parameter ηk > 0 in

front of bi−〈ai,xk〉
‖ai‖2 ai and the output sequence {xk} converges to the least squares solution

arg minx∈Rd ‖Ax − b‖2 when limk→∞ ηk = 0. See, e.g., (Zouzias and Freris, 2013) and
references therein.

Setting ψk = 1
‖ϕk‖ϕk ∈ Sd−1 and ỹk = 1

‖ϕk‖yk yields an equivalent form of the scheme

(3) as

xk+1 = xk + {ỹk − 〈ψk, xk〉}ψk.

This form is similar to those in the literature of online learning for least squares regression
and together with the relaxed Kaczmarz method (Zouzias and Freris, 2013) motivates us
to consider the following relaxed randomized Kaczmarz algorithm.

Definition 1 With normalized measurement vectors {ψt ∈ Sd−1}t and sample values {ỹt ∈
R}t, the relaxed randomized Kaczmarz algorithm is defined by

xt+1 = xt + ηt {ỹt − 〈ψt, xt〉}ψt, t = 1, . . . , (4)

where x1 ∈ Rd is an initial vector and {ηt} is a sequence of relaxation parameters or step
sizes.

The purpose of this paper is to provide learning theory analysis for the relaxed random-
ized Kaczmarz algorithm. We shall assume throughout the paper that 0 < ηt ≤ 2 for each
t ∈ N and that the sequence {zt := (ψt, ỹt)}t∈N is independently drawn according to a Borel
probability measure ρ on Z := Sd−1 × R which satisfies E[|ỹ|2] <∞.

Our first goal is to deal with the noisy setting for the randomized Kaczmarz algorithm.
When the sampling process is noisy or nonlinear (to be defined below), we show that {xt}t
converges to some x∗ ∈ Rd in expectation if and only if limt→∞ ηt = 0 and

∑∞
t=1 ηt = ∞.

Moreover, the rate of convergence in expectation cannot be too fast. It tells us that the
relaxation parameter is necessary for the convergence in the noisy setting. When {ηt}t takes
the form ηt = η1t

−θ, we provide convergence rates in expectation and in confidence and

3342



Learning Theory of Randomized Kaczmarz Algorithm

prove the almost sure convergence. Such results were presented in the case of no noise in
(Strohmer and Vershynin, 2009; Chen and Powell, 2012) and are new in the noisy setting.

Our second goal is to give the first almost sure convergence result in online learning for
least squares regression when regularization is not needed. Such a result can be found in
(Tarrés and Yao, 2014) when regularization is imposed, while the convergence in expectation
without regularization was proved in (Ying and Pontil, 2008). We also present the first
consistency result for online learning when the approximation error (to be defined below)
does not tend to zero.

2. Main Results

To introduce our learning theory approach to the relaxed randomized Kaczmarz algorithm
(4), we decompose the probability measure ρ on Z = Sd−1×R into its marginal distribution
ρX on X := Sd−1 and conditional distributions ρ(·|ψ) at ψ ∈ X. The conditional means
define the regression function fρ : X → R as

fρ(ψ) =

∫
R
ỹdρ(ỹ|ψ), ψ ∈ X. (5)

The hypothesis space for the Kaczmarz algorithm (4) consists of homogeneous linear func-
tions

H =
{
fx ∈ L2

ρX
: x ∈ Rd

}
, where fx(ψ) := 〈x, ψ〉, ψ ∈ X. (6)

Definition 2 The sampling process associated with ρ is said to be noise-free if ỹ = fρ(ψ)
almost surely. Otherwise, it is called noisy. It is said to be linear if fρ ∈ H as a function
in L2

ρX
. Otherwise, it is called nonlinear.

The main difference between our analysis in this paper and that in the literature
(Strohmer and Vershynin, 2009; Needell, 2010; Chen and Powell, 2012) lies in the setting
when the sampling process is either noisy or nonlinear. These two situations can be handled
simultaneously by means of the least squares generalization error E(f) =

∫
Z(ỹ − f(ψ))2dρ,

a well developed concept in learning theory. The assumption E[|ỹ|2] < ∞ on ρ ensures
fρ ∈ L2

ρX
and E(fρ) <∞. The noise-free condition can be stated as E(fρ) = 0.

It is well known that the regression function minimizes E(f) among all the square integral
(with respect to ρX) functions f ∈ L2

ρX
, and satisfies

E(f)− E(fρ) = ‖f − fρ‖2L2
ρX

=

∫
X

(f(ψ)− fρ(ψ))2dρX . (7)

Since the hypothesis space H is a finite dimensional subspace of L2
ρX

, the continuous func-
tional E(f) achieves a minimizer

fH = arg min
f∈H
E(f). (8)

From (7) we see that fH is the best approximation of fρ in the subspace H. It is unique as
the orthogonal projection of fρ onto H. It can be written as fH = fx∗ for some x∗ ∈ Rd.
But such a vector x∗ is not necessarily unique.
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The linear condition can be stated as fρ = fH or fρ ∈ H as functions in L2
ρX

. So we
see that the sampling process is noisy or nonlinear if and only if E(fH) > 0. Now we can
state our first main result, to be proved in Section 4, which gives a characterization of the
convergence of {xt}t to some x∗ ∈ Rd in expectation.

Theorem 3 Define the sequence {xt}t by (4). Assume E(fH) > 0. Then we have the limit
limT→∞ Ez1,...,zT ‖xT+1 − x∗‖2 = 0 for some x∗ ∈ Rd if and only if

lim
t→∞

ηt = 0 and
∞∑
t=1

ηt =∞. (9)

In this case, we have
∞∑
T=1

√
Ez1,...,zT ‖xT+1 − x∗‖2 =∞. (10)

Compared with the result on exponential convergence in expectation in the linear case
without noise (Strohmer and Vershynin, 2009), the somewhat negative result (10) tells us
that in the noisy setting the convergence in expectation cannot be as fast as Ez1,...,zT ‖xT+1−
x∗‖2 6= O(T−θ) for any θ > 2. But for θ < 1, such learning rates can be achieved by taking
ηt = η1t

−θ, as shown in the following second main result, to be proved in Section 4.

Theorem 4 Let ηt = η1t
−θ for some θ ∈ (0, 1] and η1 ∈ (0, 1). Define the sequence {xt}t

by (4). Then for some x∗ ∈ Rd we have

Ez1,...,zT ‖xT+1 − x∗‖2 ≤

{
C̃0T

−θ, if θ < 1,

C̃0T
−λrη1 , if θ = 1,

(11)

where C̃0 is a constant independent of T ∈ N (given explicitly in the proof) and λr is the
smallest positive eigenvalue of the covariance matrix CρX of the probability measure ρX
defined by

CρX = EρX [ψψT ] =

∫
X
ψψTdρX . (12)

Our third main result is the following confidence-based estimate for the error which will
be proved in Section 5.

Theorem 5 Assume that for some constant M > 0, |ỹ| ≤ M almost surely. Let θ ∈
[1/2, 1], ηt = η1t

−θ with 0 < η1 < min{1, 1
2λr
}, and 2 ≤ T ∈ N. Then for some x∗ ∈ Rd and

for any 0 < δ < 1, with confidence at least 1− δ we have

‖xT+1 − x∗‖ ≤

{
C̃1T

−θ/2 (log 4
δ

)2
log T, when θ ∈ [1/2, 1),

C̃1T
−λrη1 log 2

δ

√
log T , when θ = 1,

(13)

where C̃1 is a positive constant independent of T or δ (given explicitly in the proof).

Our last main result is about the almost sure convergence of the algorithm, which will
be proved in Section 6.
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Theorem 6 Under the assumptions of Theorem 5, we have for any ε ∈ (0, 1], the following
holds for some x∗ ∈ Rd:

(A) When 1/2 ≤ θ < 1, limt→∞ t
θ(1−ε)/2‖xt+1 − x∗‖ = 0 almost surely.

(B) When θ = 1, limt→∞ t
λrη1(1−ε)‖xt+1 − x∗‖ = 0 almost surely.

Let us demonstrate our setting by two examples without noise considered in the litera-
ture. The first example appeared in (Chen and Powell, 2012).

Example 1 If random measurement vectors {ϕt}∞t=1 are independent and nonzero almost
surely, then {ψk = 1

‖ϕk‖ϕk ∈ Sd−1} are independent.

The second example is from (Strohmer and Vershynin, 2009).

Example 2 Define the random vector ϕ which is a normalized row of a full rank matrix
A ∈ Rm×d, with probabilities as

ϕ =
aj
‖aj‖

with probability
‖aj‖2

‖A‖2F
j = 1, · · · ,m.

It was shown in Strohmer and Vershynin (2009) that the smallest eigenvalue of the covari-
ance matrix is positive:

λmin(E[ϕϕT ]) ≥ 1

‖A‖2F ‖A−1‖2
.

It means r = d and λr ≥ 1
‖A‖2F ‖A−1‖2 .

The third example is on homoskedastic models (Johnston, 1963).

Example 3 In the literature of homoskedastic models, it is assumed that the sample value
{yt}t satisfies yt = 〈x∗, ψt〉 + ξt with {ξt}t being independently drawn according to a zero
mean probability measure ξ. This corresponds to the special case when the conditional
distributions ρ(·|ψ) are given by ρ(·|ψ) = fρ(ψ) + ξ. Our setting induced by ρ is more
general and allows heteroskedastic models.

3. Connections to Learning Theory

The relaxed randomized Kaczmarz algorithm defined by (4) may be rewritten as an online
learning algorithm with output functions from the hypothesis space (6), and our main results
stated in the last section are new even in the online learning literature. To demonstrate
this, we denote the tth output function Ft on X induced by the vector xt to be given by
Ft(ψ) = 〈xt, ψ〉 for ψ ∈ X. Then the iteration relation (4) gives

Ft+1 = Ft + ηt {ỹt − Ft(ψt)} 〈·, ψt〉. (14)

This is a special kernel-based least squares online learning algorithm. Here a (Mercer) kernel
on a metric space X means a function K : X × X → R which is continuous, symmetric
and the matrix (K(xi, xj))

`
i,j=1 is positive semidefinite for any finite subset {xi}`i=1 ⊆ X .
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It generates a reproducing kernel Hilbert space (HK , ‖ · ‖K) by the set of fundamental
functions {K(·, x) : x ∈ X} with the inner product 〈K(·, x),K(·, y)〉K = K(x, y). A least
squares regularized online learning algorithm in HK is defined with {(ψt, ỹt) ∈ X × R}t
drawn independently according to a probability measure on Z = X × R as

Ft+1 = Ft − ηt {(Ft(ψt)− ỹt)K(·, ψt) + λFt} , t = 1, . . . , (15)

where λ ≥ 0 is a regularization parameter. The consistency of the online learning algorithm
(15) is well understood when the approximation error D(λ) tends to zero as λ→ 0.

Definition 7 The approximation error (or regularization error) of the pair (ρ,K) is defined
for λ > 0 as

D(λ) = inf
f∈HK

{
E(f)− E(fρ) + λ‖f‖2K

}
= inf

f∈HK

{
‖f − fρ‖2L2

ρX
+ λ‖f‖2K

}
. (16)

When λ > 0 (with regularization) and limλ→0D(λ) = 0, the error ‖FT+1 − fρ‖2L2
ρX

in

expectation and in confidence was bounded in (Smale and Yao, 2005; Ying and Zhou, 2006;
Smale and Zhou, 2009; Tarrés and Yao, 2014) by means of the decay of D(λ) and T . The
error analysis was done in Ying and Pontil (2008) without regularization (λ = 0) but under
the approximation error condition limλ→0D(λ) = 0. The error ‖FT+1 − fρ‖2K with the
HK-metric was also analyzed when fρ ∈ HK .

If we take the kernel to be the linear one: K(x, y) = 〈x, y〉 with X = Rd, and assume
that the marginal distribution ρX is supported on X = Sd−1, then ψt ∈ Sd−1 almost surely.
Set λ = 0, we see that the relaxed randomized Kaczmarz algorithm expressed in the form
(14) is the least squares online learning algorithm (15) without regularization. So the error
analysis from Ying and Pontil (2008) applies, but the condition limλ→0D(λ) = 0 is required
for the consistency in L2

ρX and even stronger conditions (stronger than fρ ∈ HK) are needed
for the consistency in the HK-metric.

Notice that for the linear kernel, ‖x‖ = ‖〈·, x〉‖K . So the error analysis carried out in this
paper provides bounds for the error ‖FT+1− fH‖K without the condition limλ→0D(λ) = 0.
Such results cannot be found in the literature of online learning. It leads to the problem
of carrying our similar error analysis for more general online learning algorithms associated
with more general kernels. Moreover, the best convergence rate in expectation of the general
kernel-based least squares online learning algorithm is O(T−1/2) in the literature (Smale
and Yao, 2005; Ying and Zhou, 2006; Smale and Zhou, 2009; Tarrés and Yao, 2014; Hu
et al., 2015). Theorem 4 demonstrates that the special online learning algorithm (4) has
convergence rates of type O(T−(1−ε)) for any ε > 0 and even of type O(T−1 log T ) shown in
Theorem 8 below, which is a great improvement.

Note that there is a gap between the negative result (10) and the positive one (11), which
leads to the natural question whether learning rates of type Ez1,...,zT ‖xT+1−x∗‖2 = O(T−θ)
are possible for 1 < θ ≤ 2. We conjecture that this is impossible for a general probability
measure ρ, but a noise condition might help. The case θ = 1 with a slight logarithmic
modification O(T−1 log T ) can be achieved by imposing a minor restriction on the step size
in the following theorem which will be proved in the next section. The authors thank Dr.
Yiming Ying for pointing out this result.
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Theorem 8 Let λr be as in Theorem 4 and ηt = 1
λr(t+t0)

for some t0 ∈ N such that

t0λr ≥ 1. Define the sequence {xt}t by (4). Then for some x∗ ∈ Rd, we have

Ez1,··· ,zT ‖xT+1 − x∗‖2 ≤ C̃3(T + t0)
−1 log T,

where C̃3 is a constant independent of T ∈ N (given explicitly in the proof).

4. Convergence in Expectation

In this section we prove our main results on convergence in expectation. To this end, we
need some preliminary analysis.

Recall the function fH defined by (8). It equals fx∗ for some x∗ ∈ Rd. As the orthogonal
projection of fρ onto the finite dimensional subspace H in the Hilbert space L2

ρX
, it satisfies

〈fρ − fx∗ , fx〉L2
ρX

=

∫
X

(fρ(ψ)− 〈x∗, ψ〉) 〈x, ψ〉dρX(ψ) = 0, ∀x ∈ Rd. (17)

The vector x∗ is not necessarily unique. To see this, we use the covariance matrix
CρX of the measure ρX defined by (12) and denote its eigenvalues to be λ1 ≥ . . . ≥ λr >
λr+1 = . . . = λd = 0 where r ∈ {1, . . . , d} is the rank of CρX . Denote the eigenspace
of CρX associated with the eigenvalue 0 as V0 and the orthogonal projection onto V0 as
P0. Then any vector x∗ + v from the set x∗ + V0 is also a minimizer of E(fx) in Rd, but
fx∗+v = fx∗ = fH as functions in the space L2

ρX
.

The following lemma about the residual vectors {rt = xt − x∗}t is a crucial step in our
analysis in this section.

Lemma 9 Define the sequence {xt}t by (4). Let x∗ ∈ Rd be such that fx∗ = fH. Denote
rt = xt − x∗. Then there holds

Ezt [‖rt+1‖2] = ‖rt‖2 + (−2ηt + η2t )‖frt‖2L2
ρX

+ η2t E(fH), ∀ t ∈ N. (18)

Proof Subtract x∗ from both sides of (4) and take inner products. We see from ‖ψt‖ = 1
that

‖rt+1‖2 = ‖rt‖2 + 2ηt {ỹt − 〈ψt, xt〉} 〈ψt, rt〉+ η2t {ỹt − 〈ψt, xt〉}
2 . (19)

Since xt does not depend on zt, taking expectation with respect to zt, we see from E[ỹt|ψt] =
fρ(ψt) and Ezt {ỹt − 〈ψt, xt〉}

2 = E(fxt) that

Ezt [‖rt+1‖2] = ‖rt‖2 + 2ηtEψt [{fρ(ψt)− 〈ψt, xt〉} 〈ψt, rt〉] + η2t E(fxt).

By (17), we know that the middle term above equals

2ηtEψt [{〈ψt, x∗〉 − 〈ψt, xt〉} 〈ψt, rt〉] = 2ηtEψt [{〈ψt,−rt〉} 〈ψt, rt〉] = −2ηt‖frt‖2L2
ρX
.

Since fx∗ is the orthogonal projection of fρ onto H, there holds E(fxt) = E(fρ) + ‖fρ −
fx∗‖2L2

ρX

+ ‖fx∗ − fxt‖2L2
ρX

= E(fH) + ‖frt‖2L2
ρX

. Then the desired identity (18) follows.
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We are in a position to prove our first main result.

Proof of Theorem 3 Necessity. We first analyze the first two terms of the right hand
side of the identity (18) in Lemma 9. Since 0 < ηt ≤ 2, we have −2ηt + η2t < 0. Observe
from the Schwarz inequality that |frt(ψ)|2 = |〈rt, ψ〉|2 ≤ ‖rt‖2‖ψ‖2 = ‖rt‖2 and thereby
‖frt‖2L2

ρX

≤ ‖rt‖2. It follows that

‖rt‖2 + (−2ηt + η2t )‖frt‖2L2
ρX
≥ ‖rt‖2 + (−2ηt + η2t )‖rt‖2 = (1− ηt)2‖rt‖2.

This together with (18) implies

Ezt [‖rt+1‖2] ≥ (1− ηt)2‖rt‖2 + η2t E(fH). (20)

Then we can proceed with proving the necessity. If limT→∞ Ez1,...,zT ‖xT+1 − x∗‖2 = 0 for
some x∗ ∈ Rd and E(fH) > 0, we know from (20) that limT→∞ ηT = 0. It ensures the
existence of some integer t0 ≥ 2 such that ηt ≤ 1

3 for any t ≥ t0. Since 1 − η ≥ exp {−2η}
for 0 < η ≤ 1

3 , we know that for any t ≥ t0, (1 − ηt)2 ≥ exp {−4ηt}. Combining this with
(20) yields

Ez1,...,zT ‖xT+1 − x∗‖2 ≥ ΠT
t=t0 exp {−4ηt}Ez1,...,zt0−1‖rt0‖2.

But (20) also tells us that Ez1,...,zt0−1‖rt0‖2 ≥ η2t0−1E(fH) > 0. So

Ez1,...,zT ‖xT+1 − x∗‖2 ≥ exp

{
−4

T∑
t=t0

ηt

}
η2t0−1E(fH).

Since limT→∞ Ez1,...,zT ‖xT+1 − x∗‖2 = 0, we must have
∑∞

t=1 ηt = ∞. This proves the
necessity.

Sufficiency. Recall that V0 is the eigenspace of the covariance matrix CρX associated
with the eigenvalue 0 and P0 is the orthogonal projection onto V0. Then ψt is orthogonal to
V0 almost surely for each t. It follows that P0(xt+1) = P0(xt) and thereby P0(xt) = P0(x1)
for each t. Take the vector x∗ to be the minimizer of E(fx) in Rd such that P0(x

∗) = P0(x1).
With this choice, rt is orthogonal to V0 for each t, and belongs to the orthogonal complement
V ⊥0 . Note that the eigenvalues of CρX restricted to the subspace V ⊥0 is at least λr > 0. So
we have

‖frt‖2L2
ρX

=

∫
X
|〈ψ, rt〉|2 dρX =

∫
X
rTt ψψ

T rtdρX = rTt CρXrt (21)

and ‖frt‖2L2
ρX

≥ λr‖rt‖2. The condition limt→∞ ηt = 0 ensures the existence of some t1 ∈ N
such that ηt ≤ 1 for any t ≥ t1. Thus, we see from (18) in Lemma 9 that for t ≥ t1,

Ezt [‖rt+1‖2] ≤ ‖rt‖2 − ηt‖frt‖2L2
ρX

+ η2t E(fH) ≤ (1− ηtλr)‖rt‖2 + η2t E(fH).

Applying this inequality iteratively for t = T, · · · t1 yields

Ez1,...,zT [‖rT+1‖2] ≤ Ez1,...,zt1−1 [‖rt1‖2]
T∏
t=t1

(1− ηtλr) + E(fH)

T∑
t=t1

η2t

T∏
k=t+1

(1− ηkλr), (22)
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where we denote
∏T
k=t+1(1− ηkλr) = 1 for t = T . By the condition

∑∞
t=1 ηt =∞, one has

T∏
t=t1

(1− ηtλr) ≤ exp

{
−λr

T∑
t=t1

ηt

}
→ 0 as T →∞.

Thus for any ε > 0, there exists t2 = t2(ε) ∈ N such that for any T ≥ t2,

Ez1,...,zt1−1 [‖rt1‖2]
T∏
t=t1

(1− ηtλr) ≤ ε.

To deal with the other term of the bound (22) for ‖rT+1‖2, we use the assumption limt→∞ ηt =
0, and find some integer t(ε) ≥ t1 such that ηt ≤ λrε for any t ≥ t(ε). Write

T∑
t=t1

η2t

T∏
k=t+1

(1− ηkλr) =

t(ε)∑
t=t1

η2t

T∏
k=t+1

(1− ηkλr) +
T∑

t=t(ε)+1

η2t

T∏
k=t+1

(1− ηkλr). (23)

The second term of (23) can be bounded as

T∑
t=t(ε)+1

η2t

T∏
k=t+1

(1− ηkλr) = ε
T∑

t=t(ε)+1

ηtλr

T∏
k=t+1

(1− ηkλr)

= ε
T∑

t=t(ε)+1

(1− (1− ηtλr))
T∏

k=t+1

(1− ηkλr)

= ε

1−
T∏

k=t(ε)+1

(1− ηkλr)

 ≤ ε.
To bound the first term of (23), we apply the condition

∑∞
t=1 ηt =∞ again and find some

integer t3 = t3(ε) > t(ε) such that
∑t3

k=t(ε)+1 ηk ≥
1
λr

log t(ε)
ε . Hence

T∑
k=t(ε)+1

ηk ≥
t3∑

k=t(ε)+1

ηk ≥
1

λr
log

t(ε)

ε
, ∀ T ≥ t3.

It thus follows that for each t ∈ {t1, . . . , t(ε)},

T∏
k=t+1

(1− ηkλr) ≤ exp

{
−λr

T∑
k=t+1

ηk

}
≤ exp

−λr
T∑

k=t(ε)+1

ηk

 ≤ ε

t(ε)
.

Combining with the fact ηt ≤ 1 for each t ≥ t1, we see that the first term of (23) can be
bounded as

t(ε)∑
t=t1

η2t

T∏
k=t+1

(1− ηkλr) ≤
ε

t(ε)

t(ε)∑
t=t1

η2t ≤ ε.
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From the above analysis, we know that when T ≥ max{t1, t(ε), t2, t3},

Ez1,...,zT [‖rT+1‖2] ≤ ε+ 2E(fH)ε.

This proves the convergence limT→∞ Ez1,...,zT ‖xT+1 − x∗‖2 = 0 for some x∗ ∈ Rd and the
sufficiency is verified.

From the bound (20), we also see that

Ez1,...,zT ‖xT+1 − x∗‖2 ≥ η2TE(fH), ∀ T ∈ N.

This implies that

∞∑
T=1

√
Ez1,...,zT ‖xT+1 − x∗‖2 ≥

√
E(fH)

∞∑
T=1

ηT =∞.

The proof of Theorem 3 is complete.

In the proof of our second main result, we need some elementary inequalities.

Lemma 10 (a) For ν, a > 0, there holds

exp{−νx} ≤
( a
νe

)a
x−a, ∀x > 0. (24)

(b) Let ν > 0 and q2 ≥ 0. If 0 < q1 < 1, then for any t ∈ N, we have

t−1∑
i=1

i−q2 exp

−ν
t∑

j=i+1

j−q1

 ≤
(

2q1+q2

ν
+

(
1 + q2

ν(1− 2q1−1)e

) 1+q2
1−q1

)
tq1−q2 . (25)

For q1 = 1, we have

t−1∑
i=1

i−q2 exp

−ν
t∑

j=i+1

j−1

 ≤
{

2q2
|ν−q2+1| t

−min{ν,q2−1}, if ν 6= q2 − 1,

2q2t−ν log t, if ν = q2 − 1.
(26)

(c) For any t < T ∈ N and θ ∈ (0, 1], there holds

T∑
k=t+1

k−θ ≥
{

1
1−θ [(T + 1)1−θ − (t+ 1)1−θ], if θ < 1,

log(T + 1)− log(t+ 1), if θ = 1.
(27)

(d) For θ ∈ (0, 1], µ > 0, and T ∈ N, there holds

exp

{
−µ

T∑
t=1

t−θ

}
≤

 exp
{

µ
1−θ

}(
θ
µe

) θ
1−θ

T−θ, if θ < 1,

T−µ, if θ = 1.
(28)

Proof The inequalities in parts (a) and (b) can be found in (Smale and Zhou, 2009, Lemma
2).
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Part (c) can be proved by noting that

T∑
k=t+1

k−θ ≥
T∑

k=t+1

∫ k+1

k
x−θdx =

∫ T+1

t+1
x−θdx.

For part (d), we use the inequality (27) in part (c) to derive

exp

{
−µ

T∑
t=1

t−θ

}
≤

{
exp

{
µ

1−θ

}
exp

{
− µ

1−θT
1−θ
}
, if θ < 1,

T−µ, if θ = 1.

For θ ∈ (0, 1), by applying (24) with ν = µ
1−θ , x = T 1−θ and a = θ

1−θ , we get

exp

{
− µ

1− θ
T 1−θ

}
≤
(
θ

µe

) θ
1−θ

T−θ.

This proves the result.

We can now prove our second main result. This is done by following the estimate (22)
in the proof of Theorem 3.

Proof of Theorem 4 Since η1 < 1, we have ηt < 1 for all t ∈ N. Therefore, we can take
t1 = 1 in (22) and obtain

Ez1,...,zT [‖rT+1‖2] ≤ ‖r1‖2
T∏
t=1

(1− ηtλr) + E(fH)

T∑
t=1

η2t

T∏
k=t+1

(1− ηkλr)

≤ ‖r1‖2 exp

{
−λrη1

T∑
t=1

t−θ

}

+E(fH)η21

T∑
t=1

t−2θ exp

{
−λrη1

T∑
k=t+1

k−θ

}
. (29)

Applying part (d) with µ = λrη1 of Lemma 10, we know that the first term of (29) can be
bounded as

‖r1‖2 exp

{
−λrη1

T∑
t=1

t−θ

}
≤

 ‖r1‖2 exp
{
λrη1
1−θ

}(
θ

λrη1e

) θ
1−θ

T−θ, if θ < 1,

‖r1‖2T−λrη1 , if θ = 1.

Applying part (b) of Lemma 10 with q1 = θ, q2 = 2θ, ν = λrη1, and noting that λrη1 < 1
by η1 ∈ (0, 1) and λr ∈ (0, 1], we know that the second term of (29) can be bounded by E(fH)η21

(
1 + 23θ

λrη1
+
(

1+2θ
λrη1(1−2θ−1)e

) 1+2θ
1−θ
)
T−θ, if θ < 1,

E(fH)η21

(
1 + 4

1−λrη1

)
T−λrη1 , if θ = 1.
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Thus, we get our desired result with C̃0 given by

C̃0 =


‖r1‖2 exp

{
λrη1
1−θ

}(
θ

λrη1e

) θ
1−θ

+E(fH)η21

(
λrη1+23θ

λrη1
+
(

1+2θ
λrη1(1−2θ−1)e

) 1+2θ
1−θ
)
, if θ < 1,

‖r1‖2 + E(fH)η21

(
1 + 4

1−λrη1

)
, if θ = 1.

This completes the proof of Theorem 4.

Remark 11 From the proof of Theorem 4, we see that if E(fH) = 0, then for some x∗ ∈ Rd,
we have

Ez1,...,zT [‖rT+1‖2] ≤ ‖r1‖2
T∏
t=1

(1− ηtλr).

The above argument actually can be used to prove Theorem 8.

Proof of Theorem 8 Since η1 ≤ 1, we have ηt ≤ 1 for all t ∈ N. Thus, we can take t1 = 1
in (22) and obtain

Ez1,...,zT [‖rT+1‖2] ≤ ‖r1‖2
T∏
t=1

(1− ηtλr) + E(fH)

T∑
t=1

η2t

T∏
k=t+1

(1− ηkλr)

= ‖r1‖2
T∏
t=1

(
1− 1

t+ t0

)

+
E(fH)

λ2r

T∑
t=1

1

(t+ t0)2

T∏
k=t+1

(
1− 1

k + t0

)
.

We note that
T∏

k=t+1

(
1− 1

k + t0

)
=

T∏
k=t+1

k + t0 − 1

k + t0
=

t+ t0
T + t0

.

It thus follows that

Ez1,...,zT [‖rT+1‖2] ≤ ‖r1‖2
t0

T + t0
+
E(fH)

λ2r

1

T + t0

T∑
t=1

1

t+ t0
.

With
∑T

t=1
1

t+t0
≤ log T+t0

t0+1 ≤ log T , we get the desired result with C̃3 given by

C̃3 = t0‖r1‖2 +
E(fH)

λ2r
.

This proves Theorem 8.
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5. Confidence-Based Estimates for Convergence

In this section, we prove our third main result, Theorem 5. Recall that V0 is the eigenspace of
the covariance matrix CρX associated with the eigenvalue 0. We choose x∗ as in the proof of
the sufficiency part of Theorem 3. With this choice, rt belongs to the orthogonal complement
V ⊥0 almost surely. Our error analysis is based on the following error decomposition.

5.1 Error Decomposition

For t ∈ N, set the operator Πt
k =

∏t
j=k(I−ηjCρX ) on Rd for k ≤ t and Πt

t+1 = I. Subtracting
x∗ from both sides of (4), we have

rk+1 = (I − ηkCρX )rk + ηkχk, (30)

where

χk = (ỹk − 〈ψk, x∗〉)ψk + (CρX − ψkψ
T
k )rk.

Applying this relationship iteratively for k = t, · · · , 1, we get

rt+1 = Πt
1r1 +

t∑
k=1

ηkΠ
t
k+1χk.

Thus

‖rt+1‖ ≤
∥∥Πt

1r1
∥∥+

∥∥∥∥∥
t∑

k=1

ηkΠ
t
k+1χk

∥∥∥∥∥ . (31)

The first term of the bound (31) is caused by the initial error, which is deterministic
and will be estimated in subsection 5.2. The second term is the sample error depending on
the sample. Since rk is independent of zk, by E[ỹk|ψk] = fρ(ψk) and (17),

E[χk|z1, . . . , zk−1] =

∫
X

(fρ(ψ)− 〈x∗, ψ〉)ψ + (CρX − ψψ
T )rkdρX(ψ) = 0.

It tells us that {ωk := ηkΠ
t
k+1χk}k is a martingale difference sequence. The idea of analyzing

the sample error by properties of martingale difference sequences can be found in the recent
work in (Tarrés and Yao, 2014) to which details about martingale difference sequences are
referred. In particular, we can apply the following Pinelis-Bernstein inequality from (Tarrés
and Yao, 2014) (derived from (Pinelis, 1994, Theorem 3.4)) to estimate the sample error.

Lemma 12 Let {ωk}k be a martingale difference sequence in a Hilbert space. Suppose that
almost surely ‖ωk‖ ≤ B and

∑t
k=1 E[‖ωk‖2|ω1, . . . , ωk−1] ≤ L2

t . Then for any 0 < δ < 1,
the following holds with probability at least 1− δ,

sup
1≤j≤t

∥∥∥∥∥
j∑

k=1

ωk

∥∥∥∥∥ ≤ 2

(
B

3
+ Lt

)
log

2

δ
.

The required bounds B and Lt will be presented in subsections 5.3 and 5.4, respectively.
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5.2 Initial Error

Lemma 13 Let ηk = η1k
−θ with θ ∈ (0, 1] and η1 ∈ (0, 1). Then

‖Πt
1r1‖ ≤

{
C0t
−θ, when θ < 1,

C0t
−λrη1 , when θ = 1,

where

C0 =

 ‖r1‖ exp
{
λrη1
1−θ

}(
θ

λrη1e

) θ
1−θ

, when θ < 1,

‖r1‖, when θ = 1.

Proof By our choice of x∗, we know that r1 belongs to the subspace V ⊥0 . Thus, we have

‖Πt
1r1‖ ≤ ‖Πt

1|V ⊥0 ‖‖r1‖.

Here Πt
1|V ⊥0 denotes the restriction of the self adjoint operator Πt

1 onto V ⊥0 . Since {λl : l =

1, 2, · · · , r} are the eigenvalues of CρX restricted to V ⊥0 , λ1 ≤ 1 and η1 < 1, we have

‖Πt
1|V ⊥0 ‖ = sup

1≤l≤r

t∏
k=1

(1− ηkλl) ≤
t∏

k=1

(1− η1λrk−θ) ≤ exp

{
−λrη1

t∑
k=1

k−θ

}
.

Applying part (d) of Lemma 10, we get our desired result.

5.3 Bounding the Residual Sequence

To bound ωk = ηkΠ
t
k+1χk, we start with a rough bound for ‖rt‖.

Lemma 14 Assume that for some constant M > 0, |ỹ| ≤ M almost surely. Let θ ∈ [0, 1]
and ηt = η1t

−θ with η1 ∈ (0, 1). Then for any t ∈ N, we have almost surely

‖rt‖ ≤

{
C1t

1−θ
2 , when θ ∈ [0, 1),

C1

√
log(et), when θ = 1,

(32)

where C1 is a constant independent of t given by

C1 =

{ √
‖r1‖2+η1(M+‖x∗‖)2

1−θ , when θ ∈ [0, 1),√
‖r1‖2 + η1(M + ‖x∗‖)2, when θ = 1.

Proof Rewrite (19) with xt = x∗ + rt as

‖rt+1‖2 = ‖rt‖2 + 2ηt(ỹt − 〈ψt, x∗〉 − 〈ψt, rt〉)〈ψt, rt〉
+η2t (ỹt − 〈ψt, x∗〉 − 〈ψt, rt〉)2

= ‖rt‖2 + F(〈ψt, rt〉),
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where F : R→ R is a quadratic function given by

F(µ) = Fηt,ỹt,ψt,x∗(µ) = ηt(ηt − 2)µ2 + 2ηt(1− ηt)(ỹt − 〈ψt, x∗〉)µ+ η2t (ỹt − 〈ψt, x∗〉)2.

Note that ηt(ηt − 2) ≤ 0 by 0 < ηt ≤ η1 ≤ 1. A simple calculation shows that

max
x∈R
F(x) = −η

2
t (1− ηt)2(ỹt − 〈ψt, x∗〉)2

ηt(ηt − 2)
+ η2t (ỹt − 〈ψt, x∗〉)2 =

ηt(ỹt − 〈ψt, x∗〉)2

2− ηt
.

Since |ỹt| ≤M almost surely and ‖ψt‖ = 1,

|ỹt − 〈ψt, x∗〉| ≤ |ỹt|+ ‖ψt‖‖x∗‖ ≤M + ‖x∗‖.

Thus,

‖rt+1‖2 ≤ ‖rt‖2 +
ηt(ỹt − 〈ψt, x∗〉)2

2− ηt
≤ ‖rt‖2 + ηt(M + ‖x∗‖)2.

Using this relationship iteratively yields

‖rt+1‖2 ≤ ‖r1‖2 +

t∑
k=1

ηk(M + ‖x∗‖)2 = ‖r1‖2 + η1(M + ‖x∗‖)2
t∑

k=1

k−θ.

Since that

t∑
k=1

k−θ ≤ 1 +
t∑

k=2

∫ k

k−1
x−θdx =

{
t1−θ−θ
1−θ , when θ ∈ [0, 1),

log(et), when θ = 1,

we get

‖rt‖2 ≤

{
‖r1‖2+η1(M+‖x∗‖)2

1−θ t1−θ, when θ ∈ [0, 1),

(‖r1‖2 + η1(M + ‖x∗‖)2) log(et), when θ = 1,

which leads to the desired result.

5.4 Estimating Conditional Variance and Upper Bound

In this subsection, we give bounds for the two terms
∑t

k=1 η
2
kE[‖Πt

k+1χk‖2|z1, . . . , zk−1] and
sup1≤k≤t ‖ηkΠt

k+1χk‖ required in applying the Pinelis-Bernstein inequality.

Lemma 15 Let ηk = η1k
−θ with θ ∈ (0, 1] and η1 ∈ (0, 1). Then almost surely we have

t∑
k=1

η2kE[‖Πt
k+1χk‖2|z1, . . . , zk−1]

≤
t∑

k=1

η21k
−2θ exp

−2η1λr

t∑
j=k+1

j−θ

(E(fH) + ‖rk‖22
)
.

(33)
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Proof Recall that both ψk and rk belong to V ⊥0 almost surely for each k ∈ N. As a result,
χk also belongs to V ⊥0 almost surely for each k. Hence

t∑
k=1

η2kE[‖Πt
k+1χk‖2|z1, . . . , zk−1] ≤

t∑
k=1

η2k‖Πt
k+1|V ⊥0 ‖

2E[‖χk‖2|z1, . . . , zk−1].

Since η1 < 1 and λ1 ≤ 1, we have∥∥∥Πt
k+1|V ⊥0

∥∥∥ = sup
1≤l≤r

t∏
j=k+1

(1− ηjλl) ≤
t∏

j=k+1

(1− ηjλr)

≤ exp

−λr
t∑

j=k+1

ηj

 = exp

−λrη1
t∑

j=k+1

j−θ

 . (34)

Thus,

t∑
k=1

η2kE[‖Πt
k+1χk‖2|z1, . . . , zk−1]

≤
t∑

k=1

η2k exp

−2λrη1

t∑
j=k+1

j−θ

E[‖χk‖2|z1, . . . , zk−1].

(35)

Since rk does not depend on zk, we see from ‖ψk‖ = 1, E[ỹk|ψk] = fρ(ψk) and (17) that

Ezk [〈(ỹk − 〈ψk, x∗〉)ψk, (CρX − ψkψ
T
k )rk〉]

= Ezk [(ỹk − 〈ψk, x∗〉)〈ψk, CρXrk〉]− Ezk [(ỹk − 〈ψk, x∗〉)〈ψk, rk〉‖ψk‖2]
= Eψk [(fρ(ψk)− 〈ψk, x∗〉)〈ψk, CρXrk〉]− Eψk [(fρ(ψk)− 〈ψk, x∗〉)〈ψk, rk〉] = 0.

It thus follows that

E[‖χk‖2|z1, . . . , zk−1] = Ezk [‖χk‖2]
= Ezk [(ỹk − 〈ψk, x∗〉)2] + Ezk [‖(CρX − ψkψ

T
k )rk‖2]

= E(fH) + Ezk〈(CρX − C
2
ρX

)rk, rk〉
≤ E(fH) + ‖rk‖22.

Putting the above bound into (35), we get the desire result.

Lemma 16 Assume that for some constant M > 0, |ỹ| ≤ M almost surely. Let θ ∈ [0, 1]
and ηt = η1t

−θ with η1 ∈ (0, 1). Then for any t ∈ N, we have almost surely

sup
1≤k≤t

‖ηkΠt
k+1χk‖ ≤

{
C2t
−θ max

{
sup1≤k≤t ‖rk‖, 1

}
, when θ < 1,

C2t
−λrη1 max

{
sup1≤k≤t ‖rk‖, 1

}
, when θ = 1,

(36)

where C2 is a constant given by

C2 =

 η1(M + ‖x∗‖+ 2)

(
2θ +

(
θ

eλrη1(1−2θ−1)

) θ
1−θ
)
, when θ < 1,

η1(M + ‖x∗‖+ 2)2λrη1 , when θ = 1.
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Proof Let k ∈ {1, . . . , t}. From the definition of χk, we have

‖χk‖ ≤ (|ỹk|+ ‖ψk‖‖x∗‖)‖ψk‖+ ‖CρX − ψkψ
T
k ‖‖rk‖.

But |ỹk| ≤M , ‖ψk‖ = 1 and ‖CρX‖ ≤ 1. So we have

‖χk‖ ≤M + ‖x∗‖+ 2‖rk‖ ≤ (M + ‖x∗‖+ 2) max{‖rk‖, 1}.

This together with (34) and the fact that χk belongs to V ⊥0 implies

‖ηkΠt
k+1χk‖ ≤ η1k

−θ‖Πt
k+1|V ⊥0 ‖‖χk‖

≤ η1(M + ‖x∗‖+ 2)k−θ‖Πt
k+1|V ⊥0 ‖max{‖rk‖, 1}

≤ η1(M + ‖x∗‖+ 2)k−θ exp

−λrη1
t∑

j=k+1

j−θ

max{‖rk‖, 1}.

What is left is to estimate

Ik := k−θ exp

−λrη1
t∑

j=k+1

j−θ

 .

For θ ∈ [1/2, 1), applying part (c) of Lemma 10 gives

Ik ≤ k−θ exp

{
− λrη1

1− θ
[(t+ 1)1−θ − (k + 1)1−θ]

}
.

If k ≥ t/2, then k−θ ≤ 2θt−θ and thus

Ik ≤ 2θt−θ.

If 1 ≤ k < t/2, then we have k+1 ≤ (t+1)/2 and (t+1)1−θ−(k+1)1−θ ≥ (1−2θ−1)(t+1)1−θ.
It follows that

Ik ≤ exp

{
−λrη1(1− 2θ−1)

1− θ
t1−θ

}
.

Applying part (a) of Lemma 10 with x = t1−θ, ν = λrη1(1−2θ−1)
1−θ and a = θ

1−θ , we get

Ik ≤
(

θ

eλrη1(1− 2θ−1)

) θ
1−θ

t−θ.

For θ = 1, by part (c) of Lemma 10, with λrη1 < 1, we have

Ik ≤ k−1
(
t+ 1

k + 1

)−λrη1
=

(
t

t+ 1
· k + 1

k

)λrη1
t−λrη1kλrη1−1 ≤ 2λrη1t−λrη1 .

From the above analysis, we conclude the desired result.
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5.5 Preliminary Error Analysis

Based on the above estimates, we can apply Lemma 12 to obtain an error bound.

Proposition 17 Under the assumptions of Theorem 5, for some x∗ ∈ Rd and for any
0 < δ < 1 and fixed t ∈ N, with confidence at least 1− δ, we have

‖xt+1 − x∗‖ ≤

{
C̃2t

1
2
−θ log 2

δ , when θ ∈ [13 , 1),

C̃2t
−λrη1

√
log(et) log 2

δ , when θ = 1,
(37)

where C̃2 is a positive constant independent of t or δ (given explicitly in the proof).

Proof To apply the Pinelis-Bernstein inequality to estimate ‖
∑t

k=1 ηkΠ
t
k+1χk‖, we need

bounds B and Lt.
By Lemmas 14 and 16, we have

sup
1≤k≤t

‖ηkΠt
k+1χk‖ ≤

{
C2(C1 + 1)t

1−3θ
2 , when θ < 1,

C2(C1 + 1)t−λrη1
√

log(et), when θ = 1.
(38)

By Lemmas 15 and 14, we get

t∑
k=1

η2kE[‖Πt
k+1χk‖2|z1, . . . , zk−1]

≤

 C3
∑t

k=1 k
−(3θ−1) exp

{
−2λrη1

∑t
j=k+1 j

−θ
}
, when θ ∈ [13 , 1),

C3 log(et)
∑t

k=1 k
−2 exp

{
−2λrη1

∑t
j=k+1 j

−1
}
, when θ = 1,

where
C3 = (E(fH) + C2

1 )η21.

Applying part (b) of Lemma 10 with ν = 2λrη1 < 1, q1 = θ and q2 = 3θ − 1, we have for
θ < 1,

t∑
k=1

k−(3θ−1) exp

−2λrη1

t∑
j=k+1

j−θ


≤

(
24θ−1

2λrη1
+

(
3θ

2λrη1e(1− 2θ−1)

) 3θ
1−θ
)
t1−2θ + t1−3θ,

and for θ = 1,

t∑
k=1

k−2 exp

−2λrη1

t∑
j=k+1

j−1

 ≤ 4

1− 2λrη1
t−2λrη1 + t−2.

Therefore, we get

t∑
k=1

η2kE[‖Πt
k+1χk‖2|z1, . . . , zk−1] ≤

{
C4t

1−2θ, when θ ∈ [13 , 1),
C4t
−2λrη1 log(et), when θ = 1,

(39)
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with

C4 =

 C3

(
24θ−1

2λrη1
+
(

3θ
2λrη1e(1−2θ−1)

) 3θ
1−θ

+ 1

)
, when θ ∈ [13 , 1),

C3
5−2λrη1
1−2λrη1 , when θ = 1.

Applying Lemma 12 to the martingale difference sequence {ωk := ηkΠ
t
k+1χk}k with B

and Lt given by (38) and (39) respectively, we know that with probability at least 1− δ,

sup
1≤j≤t

∥∥∥∥∥
j∑

k=1

ηkΠ
t
k+1χk

∥∥∥∥∥ ≤
{
C5t

1−2θ
2 log 2

δ , when θ ∈ [13 , 1),

C5t
−λrη1

√
log(et) log 2

δ , when θ = 1,

where

C5 = 2
(
C2(C1 + 1)/3 +

√
C4

)
.

Putting this bound into (31) with t replaced by j, and then applying Lemma 13 to bound
the initial error, we get the desired result with C̃2 = C0 + C5 from Lemma 12.

In the above procedure, we have used a rough bound (32) for ‖rt‖. This rough bound
tends to ∞ as t becomes large. In contrast, the bound provided in Proposition 17 tends to
0 (when θ ∈ (1/2, 1]) and is much better. But this bound holds with confidence. We shall
use this refined bound to improve our estimates in the following subsection.

5.6 Improved Error Analysis

In this subsection, we prove our third main result by improving the preliminary confidence-
based error bound in Proposition 17.

Proof of Theorem 5 When θ = 1, our desired bound follows from (37) with C̃1 = 2C̃2.

It remains to prove the case θ ∈ [1/2, 1). Let T ∈ N . Applying Proposition 17 with
t = 1, · · · , T , and taking the union event followed by rescaling, we know that there exists a
subset ZTδ of ZT with measure at least 1− δ such that

‖rt‖ ≤ C6 log
2

δ
log T, ∀ t = 1, . . . , T + 1, (z1, . . . , zT ) ∈ ZTδ , (40)

where C6 = 2C̃2 + ‖r1‖.
Now we turn to the essential part of the proof. Define another martingale difference

sequence {ω̃k}k by multiplying the one in the proof of Proposition 17 by a characteristic
function 1{‖rk‖≤C6 log

2
δ
log T} as

ω̃k = ηkΠ
T
k+1χk1{‖rk‖≤C6 log

2
δ
log T}.

From (36) and the multiplication with the characteristic function 1{‖rk‖≤C6 log
2
δ
log T}, we

have

sup
1≤k≤T

‖ω̃k‖ ≤ C2C6 log

(
2

δ

)
(log T )T−θ. (41)
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Notice that the characteristic function 1{‖rk‖≤C6 log
2
δ
log T} is independent of zk. Also,

from the proof of Lemma 15, we know that for each k ∈ {1, . . . , T},

E[‖Πt
k+1χk‖2|z1, . . . , zk−1] ≤ exp

−λrη1
t∑

j=k+1

j−θ

(E(fH) + ‖rk‖22
)
.

It follows by setting C7 = (E(fH) + C2
6 )η21 that

T∑
k=1

E
[
‖ω̃k‖2 |z1, . . . , zk−1

]
≤ C7

(
log

2

δ
log T

)2 T∑
k=1

k−2θ exp

−2λrη1

T∑
j=k+1

j−θ

 .

Applying part (b) of Lemma 10 yields

T∑
k=1

E
[
‖ω̃k‖2 |z1, . . . , zk−1

]
≤ C7

(
log

2

δ
log T

)2
(

23θ

2λrη1
+

(
1 + 2θ

2λrη1e(1− 2θ−1)

) 1+2θ
1−θ

+ 1

)
T−θ.

Using this bound as LT and (41) as the bound B in Lemma 12, we know that there exists
another subset Z̃Tδ of ZT with measure at least 1− δ such that for every (z1, . . . , zT ) ∈ Z̃Tδ ,
there holds ∥∥∥∥∥

T∑
k=1

ω̃k

∥∥∥∥∥ ≤ C8T
−θ
2

(
log

2

δ

)2

log T,

where

C8 =
2C2C6

3
+ 2
√
C7

(
23θ + 2λrη1

2λrη1
+

(
1 + 2θ

2λrη1e(1− 2θ−1)

) 1+2θ
1−θ
) 1

2

.

This together with (40) tells us that for every (z1, . . . , zT ) ∈ ZTδ ∩ Z̃Tδ , there holds∥∥∥∥∥
T∑
k=1

ηkΠ
T
k+1χk

∥∥∥∥∥ ≤ C8T
−θ
2

(
log

2

δ

)2

log T. (42)

The subset ZTδ ∩ Z̃Tδ has measure at least 1− 2δ. Therefore, we can put (42) into (31), and
apply Lemma 13 to bound the initial error, which proves Theorem 5 for the case θ ∈ [1/2, 1)
after scaling δ to δ/2 and setting the constant C̃1 = C0 + C8.

6. Almost Sure Convergence

In this section, we prove the almost sure convergence of the randomized Kaczmarz algorithm.
Recall that the almost sure convergence of a sequence of random variables {Xn} towards
X means that

P
(

lim
n→∞

Xn = X
)

= 1,
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or equivalently,

lim
n→∞

P
(

sup
k≥n
|Xk −X| > ε

)
= 0 for any ε > 0.

The Borel-Cantelli Lemma (see e.g. (Klenke, 2010)) asserts for a sequence (En)n of
events that if the sum of the probabilities is finite

∑∞
n=1 P(En) < ∞, then the probability

that infinitely many of them occur is 0, that is, P (lim supn→∞En) = P (∩∞n=1 ∪∞k=n En) = 0.
The following lemma is an easy consequence of the Borel-Cantelli Lemma. We give the proof
for completeness.

Lemma 18 Let {Xn} be a sequence of events in some probability space and {εn} be a
sequence of positive numbers satisfying limn→∞ εn = 0. If

∞∑
n=1

P (|Xn −X| > εn) <∞,

then Xn converges to X almost surely.

Proof Since limn→∞ εn = 0, for any ε > 0, there exists some n ∈ N such that for all k ≥ n,
εk < ε. Thus,

P
(

sup
k≥n
|Xk −X| > ε

)
≤ P

( ⋃
k≥n

(|Xk −X| > εk)
)
≤
∑
k≥n

P
(
|Xk −X| > εk

)
.

Letting n→∞, one gets P
(
supk≥n |Xk −X| > ε

)
→ 0. This proves the result.

Now we can apply Lemma 18 to prove our last main result.

Proof of Theorem 6 Set

Λt =

{
t−θ/2 when θ < 1,
t−λrη1 when θ = 1.

By Theorem 5, we have for any t ≥ 2 and 0 < δt < 1,

P

(
Λε−1t ‖xt+1 − x∗‖ > C̃1Λ

ε
t

(
log

4

δt

)2

log t

)
≤ δt.

Choose δt = t−2, and εt = C̃1Λ
ε
t (log 4/δt)

2 log t. Obviously

∞∑
t=2

P
(
Λε−1t ‖xt+1 − x∗‖ > εt

)
≤
∞∑
t=2

δt <∞

and

εt ≤ 4C̃1Λ
ε
t log3(2t)→ 0, as t→∞.

Then our conclusion of Theorem 6 follows from Lemma 18.
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Remark 19 The above method of proof can be used to get a more quantitative estimate for
the almost sure convergence of the Kaczmarz algorithm with noiseless random measurements
(Chen and Powell, 2012). In that setting, ηt ≡ 1, yt = fρ(ψt) and r = d. It was shown in
(Strohmer and Vershynin, 2009; Chen and Powell, 2012) that with q = 1− λr,

E‖xt+1 − x∗‖2 ≤ qt‖r1‖2.

It follows from the Chebyshev inequality that for any ε ∈ (0, 1),

P
(
qt(ε−1)‖xt+1 − x∗‖2 > qtεt2

)
= P

(
‖xt+1 − x∗‖2 > qtt2

)
≤ E[‖xt+1 − x∗‖2]

qtt2
.

Thus, we get

P
(
qt(ε−1)‖xt+1 − x∗‖2 > qtεt2

)
≤ ‖r1‖t−2.

Obviously, qtεt2 → 0 as t→∞, and
∑∞

t=1 ‖r1‖t−2 <∞. Applying Lemma 18 with εt = qtεt2,
we know that for any ε ∈ (0, 1),

lim
t→∞

(1− λr)t(ε−1)‖xt+1 − x∗‖2 = 0 almost surely.

7. Simulations and Discussions

In this section we provide some numerical simulations and further discussions on our error
analysis.

To illustrate our derived convergence rates and compare with the existing literature, we
carry out numerical simulations corresponding to Example 2 with the same data distribu-
tions as in (Needell, 2010): m = 200, d = 100, A ∈ R200×100 is a Gaussian matrix with each
entry drawn independently from the standard normal distribution N(0, 1), and y ∈ R100 is
a Gaussian noise with each component drawn independently from the normal distribution
with mean 0 and standard deviation 0.02. The measurement vectors {ψt = 1

‖ϕt‖ϕt} are

drawn from the normalized rows of A as in Example 2 and {ỹt = yt/‖ϕt‖} with mean
x∗ = 0. We conduct 100 trials for each choice of the relaxation parameter sequences
ηt = 1, ηt = 1/

√
t, ηt = 1/t. In each trial, algorithm (4) is run 100 times with random

Gaussian initial vectors of norm ‖x1‖ = 0.02. Figure 1 depicts the error ‖xt+1 − x∗‖ for
t = 1, . . . , 1500 (averaged with 100 trials and 100 initial vectors). The black line is a plot
with the constant relaxation parameter sequence ηt = 1, which verifies the divergence of the
algorithm, as proved in (Needell, 2010). The blue line is a plot with ηt = 1/

√
t, which hints

a slow convergence of the algorithm. The red line is a plot with ηt = 1/t, which confirms a
faster convergence. The above simulations are consistent with our error analysis.

In this paper, a learning theory approach to the relaxed randomized Kaczmarz algorithm
is presented. It yields new results and observations including a necessary and sufficient
condition (9), stated in Theorem 3, for the convergence in expectation when the sampling
process is noisy or nonlinear. For noise-free and linear sampling processes (that is, E(fH) =
0), we can see from Remark 11 with ηt ≡ 1 that Ez1,...,zT [‖xT+1−x∗‖2] ≤ ‖x1−x∗‖2(1−λr)T .
This exponential convergence result was proved in (Strohmer and Vershynin, 2009) for
Example 2 under the restriction that the matrix A has full column rank, where the number
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Figure 1: Error of the relaxed randomized Kaczmarz algorithm with ηt = 1 (black line),
ηt = 1/

√
t (blue line), and ηt = 1/t (red line)
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1− λr is replaced by a quantity involving ‖A−1‖ = inf{M : M‖Ax‖ ≥ ‖x‖ for all x}. Our
result is more general (valid for underdetermined systems with ‖A−1‖ =∞).

In the framework of Kaczmarz algorithms, we consider online learning algorithms asso-
ciated with the least squares loss. It would be interesting to extend our study to algorithms
associated with more general loss functions (Ying and Zhou, 2006) such as hinge loss, and
to consider error analysis without requiring the approximation error (Ying and Zhou, 2006)
tending to zero.
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Abstract

The matrix-completion problem has attracted a lot of attention, largely as a result of
the celebrated Netflix competition. Two popular approaches for solving the problem are
nuclear-norm-regularized matrix approximation (Candès and Tao, 2009; Mazumder et al.,
2010), and maximum-margin matrix factorization (Srebro et al., 2005). These two proce-
dures are in some cases solving equivalent problems, but with quite different algorithms. In
this article we bring the two approaches together, leading to an efficient algorithm for large
matrix factorization and completion that outperforms both of these. We develop a software
package softImpute in R for implementing our approaches, and a distributed version for
very large matrices using the Spark cluster programming environment

Keywords: matrix completion, alternating least squares, svd, nuclear norm

1. Introduction

We have an m × n matrix X with observed entries indexed by the set Ω; i.e. Ω = {(i, j) :
Xij is observed}. Following Candès and Tao (2009) we define the projection PΩ(X) to be the
m× n matrix with the observed elements of X preserved, and the missing entries replaced
with 0. Likewise P⊥Ω projects onto the complement of the set Ω.

Inspired by Candès and Tao (2009), Mazumder et al. (2010) posed the following convex-
optimization problem for completing X:

minimize
M

H(M) := 1
2‖PΩ(X −M)‖2F + λ‖M‖∗, (1)
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where the nuclear norm ‖M‖∗ is the sum of the singular values of M (a convex relaxation
of the rank). They developed a simple iterative algorithm for solving Problem (1), with the
following two steps iterated till convergence:

1. Replace the missing entries in X with the corresponding entries from the current
estimate M̂ :

X̂ ← PΩ(X) + P⊥Ω (M̂); (2)

2. Update M̂ by computing the soft-thresholded SVD of X̂:

X̂ = UDV T (3)

M̂ ← USλ(D)V T , (4)

where the soft-thresholding operator Sλ operates element-wise on the diagonal matrix
D, and replaces Dii with (Dii−λ)+. With large λ many of the diagonal elements will
be set to zero, leading to a low-rank solution for Problem (1).

For large matrices, step (3) could be a problematic bottleneck, since we need to compute
the SVD of the filled matrix X̂. In fact, for the Netflix problem (m,n) ≈ (400K, 20K),
which requires storage of 8 × 109 floating-point numbers (32Gb in single precision), which
in itself could pose a problem. However, since only about 1% of the entries are observed
(for the Netflix dataset), sparse-matrix representations can be used.

Mazumder et al. (2010) use two tricks to avoid these computational nightmares:

1. Anticipating a low-rank solution, they compute a reduced-rank SVD in step (3); if the
smallest of the computed singular values is less than λ, this gives the desired solution.
A reduced-rank SVD can be computed by using an iterative Lanczos-style method as
implemented in PROPACK (Larsen, 2004), or by other alternating-subspace meth-
ods (Golub and Van Loan, 2012).

2. They rewrite X̂ in (2) as

X̂ =
[
PΩ(X)− PΩ(M̂)

]
+ M̂ ; (5)

The first piece is as sparse as X, and hence inexpensive to store and compute. The
second piece is low rank, and also inexpensive to store. Furthermore, the iterative
methods mentioned in step (1) require left and right multiplications of X̂ by skinny
matrices, which can exploit this special structure.

This softImpute algorithm works very well, and although an SVD needs to be computed
each time step (3) is evaluated, this step can use the previous solution as a warm start. As
one gets closer to the solution, the warm starts tend to be better, and so the final iterations
tend to be faster.

Mazumder et al. (2010) also considered a path of such solutions, with decreasing values
of λ. As λ decreases, the rank of the solutions tend to increase, and at each λ`, the iterative
algorithms can use the solution X̂λ`−1

(with λ`−1 > λ`) as warm starts, padded with some
additional dimensions.
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Rennie and Srebro (2005) consider a different approach. They impose a rank constraint,
and consider the problem

minimize
A,B

F (A,B) :=
1

2
‖PΩ(X −ABT )‖2F +

λ

2

(
‖A‖2F + ‖B‖2F

)
, (6)

where A is m × r and B is n × r. This so-called maximum-margin matrix factorization
(MMMF) criterion1 is not convex in A and B, but it is bi-convex — for fixed B the function
F (A,B) is convex in A, and for fixed A the function F (A,B) is convex in B. Alternating
minimization algorithms (ALS) are often used to minimize Problem (6). Consider A fixed,
and we wish to solve Problem (6) for B. It is easy to see that this problem decouples into
n separate ridge regressions, with each column Xj of X as a response, and the r-columns
of A as predictors. Since some of the elements of Xj are missing, and hence ignored, the
corresponding rows of A are deleted for the jth regression. So these are really separate ridge
regressions, in that the regression matrices are all different (even though they all derive from
A). By symmetry, with B fixed, solving for A amounts to m separate ridge regressions.

There is a remarkable fact that ties the solutions to Problems (6) and (1) (Mazumder
et al., 2010, for example). If the solution to Problem (1) has rank q ≤ r, then it provides a
solution to Problem (6). That solution is

Â = UrSλ(Dr)
1
2

B̂ = VrSλ(Dr)
1
2 ,

(7)

where Ur, for example, represents the sub-matrix formed by the first r columns of U , and
likewise Dr is the top r× r diagonal block of D. Note that for any solution to Problem (6),
multiplying Â and B̂ on the right by an orthonormal r × r matrix R would be an equiv-
alent solution. Likewise, any solution to Problem (6) with rank r ≥ q gives a solution to
Problem (1).

In this paper we propose a new algorithm that profitably draws on ideas used both in
softImpute and MMMF. Consider the two steps (3) and (4). We can alternatively solve the
optimization problem

minimize
A,B

1

2
‖X̂ −ABT ‖2F +

λ

2
(‖A‖2F + ‖B‖2B), (8)

and as long as we use enough columns in A and B, we will have M̂ = ÂB̂T . There are
several important advantages to this approach:

1. Since X̂ is fully observed, the (ridge) regression operator is the same for each column,
and so is computed just once. This reduces the computation of an update of A or B
over ALS by a factor of r.

2. By orthogonalizing the r-column matrices A or B at each iteration, the regressions
are simply matrix multiplies, very similar to those used in the alternating subspace
algorithms for computing the SVD.

1. Actually MMMF also refers to the margin-based loss function that they used, but we will nevertheless use
this acronym.
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3. This quadratic regularization amounts to shrinking the higher-order components more
than the lower-order components, and this tends to offer a convergence advantage over
the previous approach (compute the SVD, then soft-threshold).

4. Just like before, these operations can make use of the sparse plus low-rank property
of X̂.

As an important additional modification, we replace X̂ at each step using the most
recently computed Â or B̂. All combined, this hybrid algorithm tends to be faster than
either approach on their own; see the simulation results in Section 6.1

For the remainder of the paper, we present this softImpute-ALS algorithm in more
detail, and show that it convergences to the solution to Problem (1) for r sufficiently large.
We demonstrate its superior performance on simulated and real examples, including the
Netflix data. We briefly highlight two publicly available software implementations, and
describe a simple approach to centering and scaling of both the rows and columns of the
(incomplete) matrix.

2. Rank-restricted Soft SVD

In this section we consider a complete matrix X, and develop a new algorithm for finding
a rank-restricted SVD. In the next section we will adapt this approach to the matrix-
completion problem. We first give two theorems that are likely known to experts; the
proofs are very short, so we provide them here for convenience.

Theorem 1 Let Xm×n be a matrix (fully observed), and let 0 < r ≤ min(m,n). Consider
the optimization problem

minimize
Z: rank(Z)≤r

Fλ(Z) := 1
2 ||X − Z||

2
F + λ||Z||∗. (9)

A solution is given by

Ẑ = UrSλ(Dr)V
T
r , (10)

where the rank-r SVD of X is UrDrV
T
r and Sλ(Dr) = diag[(σ1 − λ)+, . . . , (σr − λ)+].

Proof We will show that, for any Z the following inequality holds:

Fλ(Z) ≥ fλ(σ(Z)) := 1
2 ||σ(X)− σ(Z)||22 + λ

∑
i

σi(Z), (11)

where, fλ(σ(Z)) is a function of the singular values of Z and σ(X) denotes the vector of
singular values of X, such that σi(X) ≥ σi+1(X) for all i = 1, . . . ,min{m,n}.

To show inequality (11) it suffices to show that:

1
2 ||X − Z||

2
F ≥ 1

2 ||σ(X)− σ(Z)||22,

which follows as an immediate consequence of the well-known Von-Neumann trace inequality
(Mirsky, 1975; Stewart and Sun, 1990):

Tr(XTZ) := 〈X,Z〉 ≤
min{m,n}∑

i=1

σi(X)σi(Y ),
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that provides an upper bound to the trace of the product of two matrices in terms of the
inner product of their singular values.

Observing that

rank(Z) ≤ r ⇐⇒ ‖σ(Z)‖0 ≤ r,

we have established:

min
Z: rank(Z)≤r

(
1
2 ||X − Z||

2
F + λ||Z||∗

)
≥ min

σ(Z):‖σ(Z)‖0≤r

(
1
2 ||σ(X)− σ(Z)||22 + λ

∑
i

σi(Z)

)
(12)

Observe that the optimization problem in the right hand side of (12) is a separable vector
optimization problem. We claim that the optimum solutions of the two problems appearing
in (12) are in fact equal. To see this, let

σ̂(Z) = arg min
σ(Z):‖σ(Z)‖0≤r

(
1
2 ||σ(X)− σ(Z)||22 + λ

∑
i

σi(Z)

)
.

If the SVD of X is given by UDV T , then the choice Ẑ = Udiag(σ̂(Z))V T satisfies

rank(Ẑ) ≤ r and Fλ(Ẑ) = fλ(σ̂(Z))

This shows that:

min
Z: rank(Z)≤r

(
1
2 ||X − Z||

2
F + λ||Z||∗

)
= min

σ(Z):‖σ(Z)‖0≤r

(
1
2 ||σ(X)− σ(Z)||22 + λ

∑
i

σi(Z)

)
(13)

and thus concludes the proof of the theorem.

This generalizes a similar result where there is no rank restriction, and the problem is
convex in Z. For r < min(m,n), Problem (9) is not convex in Z, but the solution can be
characterized in terms of the SVD of X.

The second theorem relates this problem to the corresponding matrix factorization prob-
lem

Theorem 2 Let Xm×n be a matrix (fully observed), and let 0 < r ≤ min(m,n). Consider
the optimization problem

min
Am×r, Bn×r

1

2

∥∥X −ABT
∥∥2

F
+
λ

2

(
‖A‖2F + ‖B‖2F

)
(14)

A solution is given by Â = UrSλ(Dr)
1
2 and B̂ = VrSλ(Dr)

1
2 , and all solutions satisfy

ÂB̂T = Ẑ, where, Ẑ is as given in Problem (10).
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We make use of the following lemma from Srebro et al. (2005); Mazumder et al. (2010),
which we give without proof:

Lemma 1

‖Z‖∗ = min
A,B:Z=ABT

1

2

(
‖A‖2F + ‖B‖2F

)
Proof (of Theorem 2). Using Lemma 1, we have that

min
Am×r, Bn×r

1

2

∥∥X −ABT
∥∥2

F
+
λ

2
‖A‖2F +

λ

2
‖B‖2F

= min
Z:rank(Z)≤r

1

2
‖X − Z‖2F + λ ‖Z‖∗

The conclusions follow from Theorem 1.

Note, in both theorems the solution might have rank less than r.
Inspired by the alternating subspace iteration algorithm (a.k.a. Orthogonal Iterations,

Chapter 8, Golub and Van Loan, 2012) for the reduced-rank SVD, we present Algorithm 2.1,
an alternating ridge-regression algorithm for finding the solution to Problem (9).

Remarks

1. At each step the algorithm keeps the current solution in “SVD” form, by representing
A and B in terms of orthogonal matrices. The computational effort needed to do this
is exactly that required to perform each ridge regression, and once done makes the
subsequent ridge regression trivial.

2. The proof of convergence of this algorithm is essentially the same as that for an
alternating subspace algorithm, a.k.a. Orthogonal Iterations (Chapter 8, Thm 8.2.2;
Golub and Van Loan, 2012) (without shrinkage).

3. In principle step (7) is not necessary, but in practice it cleans up the rank nicely.

4. This algorithm lends itself naturally to distributed computing for very large matrices
X; X can be chunked into smaller blocks, and the left and right matrix multiplies can
be chunked accordingly. See Section 8.

5. There are many ways to check for convergence. Suppose we have a pair of iterates
(U,D2, V ) (old) and (Ũ , D̃2, Ṽ ) (new), then the relative change in Frobenius norm is
given by

∇F =
||UD2V T − ŨD̃2Ṽ T ||2F

||UD2V T ||2F

=
tr(D4) + tr(D̃4)− 2 tr(D2UT ŨD̃2Ṽ TV )

tr(D4)
, (19)

which is not expensive to compute.

6. If X is sparse, then the left and right matrix multiplies can be achieved efficiently by
using sparse matrix methods.
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Algorithm 2.1 Rank-Restricted Soft SVD

1. Initialize A = UD where Um×r is a randomly chosen matrix with orthonormal columns
and D = Ir, the r × r identity matrix.

2. Given A, solve for B:

minimize
B

||X −ABT ||TF + λ||B||2F . (15)

This is a multiresponse ridge regression, with solution

B̃T = (D2 + λI)−1DUTX. (16)

This is simply matrix multiplication followed by coordinate-wise shrinkage.

3. Compute the SVD of B̃D = Ṽ D̃2RT , and let V ← Ṽ , D ← D̃, and B = V D.

4. Given B, solve for A:

minimize
A

||X −ABT ||TF + λ||A||2F . (17)

This is also a multiresponse ridge regression, with solution

Ã = XVD(D2 + λI)−1. (18)

Again matrix multiplication followed by coordinate-wise shrinkage.

5. Compute the SVD of ÃD = ŨD̃2RT , and let U ← Ũ , D ← D̃, and A = UD.

6. Repeat steps (2)–(5) until convergence of ABT .

7. Compute M = XV , and then it’s SVD: M = UDσR
T . Then output U , V ← V R and

Sλ(Dσ) = diag[(σ1 − λ)+, . . . , (σr − λ)+].
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7. Likewise, if X is sparse, but has been column and/or row centered (see Section 9), it
can be represented in “sparse plus low rank” form; once again left and right multipli-
cation of such matrices can be done efficiently.

An interesting feature of this algorithm is that a reduced rank SVD of X is available
from the solution, with the rank determined by the particular value of λ used. The singular
values would have to be corrected by adding λ to each. There is empirical evidence that
this is faster than without shrinkage, with accuracy biased more toward the larger singular
values.

3. The softImpute-ALS Algorithm

Now we return to the case where X has missing values, and the non-missing entries are
indexed by the set Ω. We present Algorithm 3.1 (softImpute-ALS) for solving Problem (6):

minimize
A,B

‖PΩ(X −ABT )‖2F + λ(‖A‖2F + ‖B‖2F ).

where Am×r and Bn×r are each of rank at most r ≤ min(m,n).
The algorithm exploits the decomposition

PΩ(X −ABT ) = PΩ(X) + P⊥Ω (ABT )−ABT . (24)

Suppose we have current estimates for A and B, and we wish to compute the new B̃. We
will replace the first occurrence of ABT in the right-hand side of (24) with the current
estimates, leading to a filled in X∗ = PΩ(X) + P⊥Ω (ABT ), and then solve for B̃ in

minimize
B̃

‖X∗ −AB̃‖2F + λ‖B̃‖2F .

Using the same notation, we can write (importantly)

X∗ = PΩ(X) + P⊥Ω (ABT ) =
(
PΩ(X)− PΩ(ABT )

)
+ABT ; (25)

This is the efficient sparse + low-rank representation for high-dimensional problems; efficient
to store and also efficient for left and right multiplication.

Remarks

1. This algorithm is a slight modification of Algorithm 2.1, where in step 2(a) we use
the latest imputed matrix X∗ rather than X.

2. The computations in step 2(b) are particularly efficient. In (22) we use the current
version of A and B to predict at the observed entries Ω, and then perform a multipli-
cation of a sparse matrix on the left by a skinny matrix, followed by rescaling of the
rows. In (23) we simply rescale the rows of the previous version for BT .

3. After each update, we maintain the integrity of the current solution. By Lemma 1 we
know that the solution to

minimize
A, B :ABT =ÃB̃T

(‖A‖2F + ‖B‖2F ) (26)
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Algorithm 3.1 Rank-Restricted Efficient Maximum-Margin Matrix Factorization:
softImpute-ALS

1. Initialize A = UD where Um×r is a randomly chosen matrix with orthonormal columns
and D = Ir, the r × r identity matrix, and B = V D with V = 0. Alternatively, any
prior solution A = UD and B = V D could be used as a warm start.

2. Given A = UD and B = V D, approximately solve

minimize
B̃

1

2
‖PΩ(X −AB̃T )‖TF +

λ

2
‖B̃‖2F (20)

to update B. We achieve that with the following steps:

(a) Let X∗ =
(
PΩ(X)− PΩ(ABT )

)
+ABT , stored as sparse plus low-rank.

(b) Solve

minimize
B̃

1

2
‖X∗ −AB̃T ‖2F +

λ

2
‖B̃‖2F , (21)

with solution

B̃T = (D2 + λI)−1DUTX∗

= (D2 + λI)−1DUT
(
PΩ(X)− PΩ(ABT )

)
(22)

+(D2 + λI)−1D2BT . (23)

(c) Use this solution for B̃ and update V and D:

i. Compute the SVD decomposition B̃D = ŨD̃2Ṽ T ;

ii. V ← Ũ , and D ← D̃.

3. Given B = V D, solve for A. By symmetry, this is equivalent to step 2, with XT

replacing X, and B and A interchanged.

4. Repeat steps (2)–(3) until convergence.

5. Compute M = X∗V , and then it’s SVD: M = UDσR
T . Then output U , V ← V R

and Dσ,λ = diag[(σ1 − λ)+, . . . , (σr − λ)+].
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is given by the SVD of ÃB̃T = UD2V T , with A = UD and B = V D. Our iterates
maintain this each time A or B changes in step 2(c), with no additional significant
computational cost.

4. The final step is as in Algorithm 2.1. We know the solution should have the form of
a soft-thresholded SVD. The alternating ridge regression might not exactly reveal the
rank of the solution. This final step tends to clean this up, by revealing exact zeros
after the soft-thresholding.

5. In Section 5 we discuss (the lack of) optimality guarantees of fixed points of Algo-
rithm 3.1 (in terms of criterion (1)). We note that the output of softImpute-ALS

can easily be piped into softImpute as a warm start. This typically exits almost
immediately in our R package softImpute.

4. Broader Perspective and Related Work

Block coordinate descent (for example, Bertsekas, 1999) is a classical method in optimization
that is widely used in the statistical and machine learning communities (Hastie et al.,
2009). This is useful especially when the optimization problems associated with each block
is relatively simple. The algorithm presented in this paper is a stylized variant of block
coordinate descent. At a high level vanilla block coordinate descent (which we call ALS)
applied to Problem (6) performs a complete minimization wrt one variable with the other
fixed, before it switches to over the other variable. softImpute-ALS instead, does a partial
minimization of a very specific form. Razaviyayn et al. (2013) study convergence properties
of generalized block-coordinate methods that apply to a fairly large class of problems. The
same paper presents asymptotic convergence guarantees, i.e., the iterates converge to a
stationary point (Bertsekas, 1999). Asymptotic convergence is fairly straightforward to
establish for softimpute-ALS. We also describe global convergence rate guarantees2 for
softimpute-ALS in terms of various metrics of convergence to a stationary point. Perhaps
more interestingly, we connect the properties of the stationary points of the non-convex
Problem (6) to the minimizers of the convex Problem (1), which seems to be well beyond
the scope and intent of Razaviyayn et al. (2013).

Variations of alternating-minimization strategies are popularly used in the context of
matrix completion (Chen et al., 2012; Koren et al., 2009; Zhou et al., 2008). Jain et al.
(2013) analyze the statistical properties of vanilla alternating-minimization algorithms for
Problem (6) with λ = 0, i.e.,

minimize
A,B

‖PΩ(X −ABT )‖2F ,

where, one attempts to minimize the above function via alternating least squares i.e. first
minimizing with respect to A (with B fixed) and vice-versa. They establish statistical
performance guarantees of the alternating strategy under incoherence conditions on the
singular vectors of the underlying low-rank matrix—the assumptions are similar in spirit

2. By global convergence rate, we mean an upper bound on the maximum number of iterations that need
to be taken by an algorithm to reach an ε-accurate first-order stationary point. This rate applies for any
starting point of the algorithm.
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to the work of Candès and Tao (2009); Candès and Recht (2008). However, as pointed
out by Jain et al. (2013), their alternating-minimization methods typically require |Ω| to
be larger than than required by convex optimization based methods (Candès and Recht,
2008). We refer the interested reader to more recent work of Hardt (2014), analyzing the
statistical properties of alternating minimization methods.

The flavor of our present work is in spirit different from that described above (Jain
et al., 2013; Hardt, 2014). Our main goal here is to develop non-convex algorithms for the
optimization of Problem (6) for arbitrary λ and rank r. A special case of our framework
corresponds to the case where Problem (6) is equivalent to Problem (1), for proper choices
of r, λ. In this particular case, we study in Section 5 when our algorithm softImpute-ALS

converges to a global minimizer of Problem (1)—this can be verified by a minor check that
requires computing the low-rank SVD of a matrix that can be written as the sum of a sparse
and low-rank matrix. Thus softImpute-ALS can be thought of a non-convex algorithm
that solves the convex nuclear norm regularized Problem (1). Hence softImpute-ALS

inherits statistical properties of the convex Problem (1) as established in Candès and Tao
(2009); Candès and Recht (2008). We have also demonstrated in Figures 1 and 3 that
softimpute-ALS is much faster than the alternating least squares schemes analyzed in Jain
et al. (2013); Hardt (2014).

Note that the use of non-convex methods to obtain minimizers of convex problems have
been studied in Burer and Monteiro (2005); Journée et al. (2010). The authors study non-
linear optimization algorithms using non-convex matrix factorization formulations to obtain
global minimizers of convex SDPs. The results presented in the aforementioned papers also
requires one to check whether a stationary point is a local minimizer—this typically re-
quires checking the positive definiteness of a matrix of size O(mr + nr)×O(mr + nr) and
can be computationally demanding if the problem size is large. In contrast, the condition
(derived in this paper) that needs to be checked to certify whether softimpute-ALS, upon
convergence, has reached the global solution to the convex optimization Problem (1), is
fairly intuitive and straightforward.

5. Algorithmic Convergence Analysis

In this section we investigate the theoretical properties of the softImpute-ALS algorithm
in the context of Problems (1) and (6).

We show that the softImpute-ALS algorithm converges to a first order stationary point
for Problem (6) at a rate of O(1/K), where K denotes the number of iterations of the
algorithm. We also discuss the role played by λ in the convergence rates. We establish the
limiting properties of the estimates produced by the softImpute-ALS algorithm: properties
of the limit points of the sequence (Ak, Bk) in terms of Problems (1) and (6). We show that
for any r in Problem (6) the sequence produced by the softImpute-ALS algorithm leads to
a decreasing sequence of objective values for the convex Problem (1). A fixed point of the
softImpute-ALS problem need not correspond to the minimum of the convex Problem (1).
We derive simple necessary and sufficient conditions that must be satisfied for a stationary
point of the algorithm to be a minimum for the Problem (1)—the conditions can be verified
by a simple structured low-rank SVD computation.
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We begin the section with a formal description of the updates produced by the al-
gorithm in terms of the original objective function (6) and its majorizers (27) and (28).
Theorem 3 establishes that the updates lead to a decreasing sequence of objective values
F (Ak, Bk) in (6). Section 5.1 (Theorem 4 and Corollary 1) derives the finite-time con-
vergence rate properties of the proposed algorithm softImpute-ALS. Section 5.2 provides
descriptions of the first order stationary conditions for Problem (6), the fixed points of
the algorithm softImpute-ALS and the limiting behavior of the sequence (Ak, Bk), k ≥ 1
as k → ∞. Section 5.3 (Lemma 4) investigates the implications of the updates produced
by softImpute-ALS for Problem (6) in terms of the Problem (1). Section 5.3.1 (Theorem 6)
studies the stationarity conditions for Problem (6) vis-a-vis the optimality conditions for
the convex Problem (1).

The softImpute-ALS algorithm may be thought of as an EM or more generally a MM-
style algorithm (majorization minimization), where every imputation step leads to an upper
bound to the training error part of the loss function. The resultant loss function is minimized
wrt A—this leads to a partial minimization of the objective function wrt A. The process is
repeated with the other factor B, and continued till convergence.

Recall the objective function in Problem (6):

F (A,B) :=
1

2

∥∥PΩ(X −ABT )
∥∥2

F
+
λ

2
‖A‖2F +

λ

2
‖B‖2F .

We define the surrogate functions

QA(Z1|A,B) :=
1

2

∥∥∥PΩ(X − Z1B
T ) + P⊥Ω (ABT − Z1B

T )
∥∥∥2

F
(27)

+
λ

2
‖Z1‖2F +

λ

2
‖B‖2F

QB(Z2|A,B) :=
1

2

∥∥∥PΩ(X −AZT2 ) + P⊥Ω (ABT −AZT2 )
∥∥∥2

F
(28)

+
λ

2
‖A‖2F +

λ

2
‖Z2‖2F .

Consider the function g(ABT ) := 1
2

∥∥PΩ(X −ABT )
∥∥2

F
which is the training error as a

function of the outer-product Z = ABT , and observe that for any Z,Z we have:

g(Z) ≤ 1

2

∥∥∥PΩ(X − Z) + P⊥Ω (Z − Z)
∥∥∥2

F

=
1

2

∥∥∥(PΩ(X) + P⊥Ω (Z)
)
− Z

∥∥∥2

F

(29)

where, equality holds above at Z = Z. This leads to the following simple but important
observations:

QA(Z1|A,B) ≥ F (Z1, B), QB(Z2|A,B) ≥ F (A,Z2), (30)

suggesting that QA(Z1|A,B) is a majorizer of F (Z1, B) (as a function of Z1); similarly,
QB(Z2|A,B) majorizes F (A,Z2). In addition, equality holds as follows:

QA(A|A,B) = F (A,B) = QB(B|A,B). (31)
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We also define X∗A,B = PΩ(X) + P⊥Ω (ABT ). Using these definitions, we can succinctly
describe the softImpute-ALS algorithm in Algorithm 5.1. This is almost equivalent to
Algorithm 3.1, but more convenient for theoretical analysis. It has the orthogonaliza-
tion and redistribution of D̃ in step 3 removed, and step 5 removed. Observe that the

Algorithm 5.1 softImpute-ALS

Inputs: Data matrix X, initial iterates A0 and B0, and k = 0.
Outputs: (A∗, B∗) an estimate of the minimizer of Problem (6)

Repeat until Convergence

1. k ← k + 1.

2. X∗ ← PΩ(X) + P⊥Ω (ABT ) = PΩ(X −ABT ) +ABT

3. A← X∗B(BTB + λI)−1 = arg minZ1
QA(Z1|A,B).

4. X∗ ← PΩ(X) + P⊥Ω (ABT )

5. B ← X∗TA(ATA+ λI)−1 = arg minZ2
QB(Z2|A,B).

softImpute-ALS algorithm can be described as the following iterative procedure:

Ak+1 ∈ arg min
Z1

QA(Z1|Ak, Bk) (32)

Bk+1 ∈ arg min
Z2

QB(Z2|Ak+1, Bk). (33)

We will use the above notation in our proof.
We can easily establish that softImpute-ALS is a descent method, or its iterates never

increase the function value.

Theorem 3 Let {(Ak, Bk)} be the iterates generated by softImpute-ALS. The function
values are monotonically decreasing,

F (Ak, Bk) ≥ F (Ak+1, Bk) ≥ F (Ak+1, Bk+1), k ≥ 1.

Proof Let the current iterate estimates be (Ak, Bk). We will first consider the update in
A, leading to Ak+1, as defined in (32).

min
Z1

QA(Z1|Ak, Bk) ≤ QA(Ak|Ak, Bk) = F (Ak, Bk)

Note that, minZ1 QA(Z1|Ak, Bk) = QA(Ak+1|Ak, Bk), by definition of Ak+1 in (32).
Using (30) we get that QA(Ak+1|Ak, Bk) ≥ F (Ak+1, Bk). Putting together the pieces

we get: F (Ak, Bk) ≥ F (Ak+1, Bk).
Using an argument exactly similar to the above for the update in B we have:

F (Ak+1, Bk) = QB(Bk|Ak+1, Bk) ≥ QB(Bk+1|Ak+1, Bk) ≥ F (Ak+1, Bk+1). (34)
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This establishes that F (Ak, Bk) ≥ F (Ak+1, Bk+1) for all k, thereby completing the proof of
the theorem.

5.1 softImpute-ALS: Rates of Convergence

The previous section derives some elementary properties of the softImpute-ALS algorithm,
namely the updates lead to a decreasing sequence of objective values. We will now derive
some results that inform us about the rate at which the softImpute-ALS algorithm reaches
a stationary point.

We begin with the following lemma, which presents a lower bound on the successive
difference in objective values of F (A,B),

Lemma 2 Let (Ak, Bk) denote the values of the factors at iteration k. We have the fol-
lowing:

F (Ak, Bk)− F (Ak+1, Bk+1) ≥ 1
2

(
‖(Ak −Ak+1)BT

k ‖2F + ‖Ak+1(Bk+1 −Bk)T ‖2F
)

+
λ

2

(
‖Ak −Ak+1‖2F + ‖Bk+1 −Bk‖2F

) (35)

Proof See Section A.1 for the proof.

For any two matrices A and B respectively define A+, B+ as follows:

A+ ∈ arg min
Z1

QA(Z1|A,B), B+ ∈ arg min
Z2

QB(Z2|A,B) (36)

We will consequently define the following:

∆
(
(A,B) ,

(
A+, B+

))
:= 1

2

(
‖(A−A+)BT ‖2F + ‖A+(B −B+)T ‖2F

)
+
λ

2

(
‖A−A+‖2F + ‖B −B+‖2F

) (37)

Lemma 3 ∆ ((A,B) , (A+, B+)) = 0 iff A,B is a fixed point of softImpute-ALS.

Proof See Section A.2, for a proof.

We will use the following notation

ηk :=∆ ((Ak, Bk) , (Ak+1, Bk+1)) (38)

Thus ηk can be used to quantify how close (Ak, Bk) is from a stationary point.

If ηk > 0 it means that Algorithm softImpute-ALS will make progress in improving
the quality of the solution. As a consequence of the monotone decreasing property of the
sequence of objective values F (Ak, Bk) and Lemma 2, we have that, ηk → 0 as k → ∞.
The following theorem characterizes the rate at which ηk converges to zero.
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Theorem 4 Let (Ak, Bk), k ≥ 1 be the sequence generated by the softImpute-ALS algo-
rithm. The decreasing sequence of objective values F (Ak, Bk) converges to F∞ ≥ 0 (say)
and the quantities ηk → 0.

Furthermore, we have the following finite convergence rate of the softImpute-ALS al-
gorithm:

min
1≤k≤K

ηk ≤ (F (A1, B1)− F∞)) /K (39)

Proof See Section A.3

The above theorem establishes a O( 1
K ) convergence rate of softImpute-ALS; in other

words, for any ε > 0, we need at most K = O(1
ε ) iterations to arrive at a point (Ak∗ , Bk∗)

such that ηk∗ ≤ ε, where, 1 ≤ k∗ ≤ K.
Note that Theorem 4 establishes convergence of the algorithm for any value of λ ≥ 0.

We found in our numerical experiments that the value of λ has an important role to play in
the speed of convergence of the algorithm. In the following corollary, we provide convergence
rates that make the role of λ explicit.

The following corollary employs three different distance measures to measure the close-
ness of a point from stationarity.

Corollary 1 Let (Ak, Bk), k ≥ 1 be defined as above. Assume that for all k ≥ 1

`UI � BT
k Bk � `LI, `UI � ATkAk � `LI, (40)

where, `U , `L are constants independent of k.
Then we have the following:

min
1≤k≤K

(
‖(Ak −Ak+1)‖2F + ‖Bk −Bk+1‖2F

)
≤ 2

(`L + λ)

(
F (A1, B1)− F∞

K

)
(41)

min
1≤k≤K

(
‖(Ak −Ak+1)BT

k ‖2F + ‖Ak+1(Bk −Bk+1)T ‖2F
)
≤ 2`U

λ+ `U

(
F (A1, B1)− F∞

K

)
(42)

min
1≤k≤K

(
‖∇Af(Ak, Bk)‖2 + ‖∇Bf(Ak+1, Bk)‖2

)
≤ 2(`U )2

(`L + λ)

(
F (A1, B1)− F∞

K

)
(43)

where, ∇Af(A,B) (respectively, ∇Bf(A,B)) denotes the partial derivative of F (A,B) wrt
A (respectively, B).
Proof See Section A.4.

Inequalities (41)–(43) are statements about different notions of distances between succes-
sive iterates. These may be employed to understand the convergence rate of softImpute-ALS.

Assumption (40) is a minor one. While it may not be straightforward to estimate `U

prior to running the algorithm, a finite value of `U is guaranteed as soon as λ > 0. The
lower bound `L > 0, if both A1 ∈ <m×r, B1 ∈ <n×r have rank r and the rank remains
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the same across the iterates. If the solution to Problem (6) has a rank smaller than r,
then `L = 0, however, this situation is typically avoided since a small value of r leads to
lower computational cost per iteration of the softImpute-ALS algorithm. The constants
appearing as a part of the rates in (41)–(43) are dependent upon λ. The constants are
smaller for larger values of λ. Finally we note that the algorithm does not require any
information about the constants `L, `U appearing as a part of the rate estimates.

5.2 softImpute-ALS: Asymptotic Convergence

In this section we derive some properties of the limiting behavior of the sequence (Ak, Bk),
in particular we examine some elementary properties of the limit points of the sequence
(Ak, Bk).

At the beginning, we recall the notion of first order stationarity of a point A∗, B∗. We
say that A∗, B∗ is said to be a first order stationary point for the Problem (6) if the following
holds:

∇Af(A∗, B∗) = 0, ∇Bf(A∗, B∗) = 0. (44)

An equivalent restatement of condition (44) is:

A∗ ∈ arg min
Z1

QA(Z1|A∗, B∗), B∗ ∈ arg min
Z2

QB(Z2|A∗, B∗), (45)

i.e., A∗, B∗ is a fixed point of the softImpute-ALS algorithm updates.
We now consider uniqueness properties of the limit points of (Ak, Bk), k ≥ 1. Even

in the fully observed case, the stationary points of Problem (6) are not unique in A∗, B∗;
due to orthogonal invariance. Addressing convergence of (Ak, Bk) becomes trickier if two
singular values of A∗B

T
∗ are tied. In this vein we have the following result:

Theorem 5 Let {(Ak, Bk)}k be the sequence of iterates generated by Algorithm 5.1. For
λ > 0, we have:

(a) Every limit point of {(Ak, Bk)}k is a stationary point of Problem (6).

(b) Let B∗ be any limit point of the sequence Bk, k ≥ 1, with Bν → B∗, where, ν is a
subsequence of {1, 2, . . . , }. Then the sequence Aν converges.

Similarly, let A∗ be any limit point of the sequence Ak, k ≥ 1, with Aµ → B∗, where,
µ is a subsequence of {1, 2, . . . , }. Then the sequence Bµ converges.

Proof See Section A.5

The above theorem is a partial result about the uniqueness of the limit points of the sequence
Ak, Bk. The theorem implies that if the sequence Ak converges, then the sequence Bk must
converge and vice-versa. More generally, for every limit point of Ak, the associated Bk
(sub)sequence will converge. The same result holds true for the sequence Bk.

Remark 1 Note that the condition λ > 0 is enforced due to technical reasons so that the
sequence (Ak, Bk) remains bounded. If λ = 0, then A ← cA and B ← 1

cB for any c > 0,
leaves the objective function unchanged. Thus one may take c→∞ making the sequence of
updates unbounded without making any change to the values of the objective function.
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5.3 Implications of softImpute-ALS updates in terms of Problem (1)

The sequence (Ak, Bk) generated by Algorithm (5.1) are geared towards minimizing cri-
terion (6), it is interesting to explore what implications the sequence might have for the
convex Problem (1). In particular, we know that F (Ak, Bk) is decreasing—does this imply
a monotone sequence H(AkB

T
k )? We show below that it is indeed possible to obtain a

monotone decreasing sequence H(AkB
T
k ) with a minor modification. These modifications

are exactly those implemented in Algorithm 3.1 in step 3.
The idea that plays a crucial role in this modification is the following inequality (for a

proof see Mazumder et al. (2010); see also remark 3 in Section 3):

‖ABT ‖∗ ≤ 1
2(‖A‖2F + ‖B‖2F ).

Note that equality holds above if we take a particular choice of A and B given by:

A = UD1/2, B = V D1/2, where, ABT = UDV T (SVD), (46)

is the SVD ofABT . The above observation implies that if (Ak, Bk) is generated by softImpute-ALS

then
F (Ak, Bk) ≥ H(AkB

T
k )

with equality holding if Ak, B
T
k are represented via (46). Note that this re-parametrization

does not change the training error portion of the objective F (Ak, Bk), but decreases the
ridge regularization term—and hence decreases the overall objective value when compared
to that achieved by softImpute-ALS without the reparametrization (46).

We thus have the following Lemma:

Lemma 4 Let the sequence (Ak, Bk) generated by softImpute-ALS be stored in terms of
the factored SVD representation (46). This results in a decreasing sequence of objective
values in the nuclear norm penalized Problem (1):

H(AkB
T
k ) ≥ H(Ak+1B

T
k+1)

with H(AkB
T
k ) = F (Ak, Bk), for all k. The sequence H(AkB

T
k ) thus converges to F∞.

Note that, F∞ need not be the minimum of the convex Problem (1). It is easy to see
this, by taking r to be smaller than the rank of the optimal solution to Problem (1).

5.3.1 A Closer Look at the Stationary Conditions

In this section we inspect the first order stationary conditions of the non-convex Problem (6)
alongside those for the convex Problem (1). We will see that a first order stationary point
of the convex Problem (1) leads to factors (A,B) that are stationary for Problem (6).
However, the converse of this statement need not be true in general. However, given an
estimate delivered by softImpute-ALS (upon convergence) it is easy to verify whether it is
a solution to Problem (1).

Note that Z∗ is the optimal solution to the convex Problem (1) iff:

∂H(Z∗) = PΩ(Z∗ −X) + λ sgn(Z∗) = 0,
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where, sgn(Z∗) is a sub-gradient of the nuclear norm ‖Z‖∗ at Z∗. Using the standard
characterization (Lewis, 1996) of sgn(Z∗) the above condition is equivalent to:

PΩ(Z∗ −X) + λU∗ sgn(D∗)V T
∗ = 0 (47)

where, the full SVD of Z∗ is given by U∗D∗V
T
∗ ; sgn(D∗) is a diagonal matrix with ith

diagonal entry given by sgn(d∗ii), where, d∗ii is the ith diagonal entry of D∗.
If a limit point A∗B

T
∗ of the softImpute-ALS algorithm satisfies the stationarity condi-

tion (47) above, then it is the optimal solution of the convex problem. We note that A∗B
T
∗

need not necessarily satisfy the stationarity condition (47).
(A,B) satisfy the stationarity conditions of softImpute-ALS if the following conditions

are satisfied:

PΩ(ABT −X)B + λA = 0, AT (PΩ(ABT −X)) + λBT = 0,

where, we assume that A,B are represented in terms of (46). This gives us:

PΩ(ABT −X)V + λU = 0, UT (PΩ(ABT −X)) + λV T = 0, (48)

where ABT = UDV T , being the reduced rank SVD i.e. all diagonal entries of D are strictly
positive.

A stationary point of the convex problem corresponds to a stationary point of softImpute-ALS,
as seen by a direct verification of the conditions above. In the following we investigate the
converse: when does a stationary point of softImpute-ALS correspond to a stationary
point of Problem (1); i.e. condition (47)? Towards this end, we make use of the ridged
least-squares update used by softImpute-ALS. Assume that all matrices Ak, Bk have r
rows.

At stationarity i.e. at a fixed point of softImpute-ALS we have the following:

A∗ ∈ arg min
A

1
2‖PΩ(X −ABT

∗ )‖2F +
λ

2

(
‖A‖2F + ‖B∗‖2F

)
(49)

= arg min
A

1
2‖
(
PΩ(X) + P⊥Ω (A∗B

T
∗ )
)
−ABT

∗ ‖2F +
λ

2

(
‖A‖2F + ‖B∗‖2F

)
(50)

B∗ ∈ arg min
B

1
2‖PΩ(X −A∗BT )‖2F +

λ

2

(
‖A∗‖2F + ‖B‖2F

)
(51)

= arg min
B

1
2‖
(
PΩ(X) + P⊥Ω (A∗B

T
∗ )
)
−A∗BT ‖2F +

λ

2

(
‖A∗‖2F + ‖B‖2F

)
(52)

Line (50) and (52) can be thought of doing alternating multiple ridge regressions for the
fully observed matrix PΩ(X) + P⊥Ω (A∗B

T
∗ ).

The above fixed point updates are very closely related to the following optimization
problem:

minimize
Am×r,Bm×r

1
2‖
(
PΩ(X) + P⊥Ω (A∗B

T
∗ )
)
−AB‖2F +

λ

2

(
‖A‖2F + ‖B‖2F

)
(53)

The solution to (53) by Theorem 1 is given by the nuclear norm thresholding operation
(with a rank r constraint) on the matrix PΩ(X) + P⊥Ω (A∗B

T
∗ ):

minimize
Z:rank(Z)≤r

1
2‖
(
PΩ(X) + P⊥Ω (A∗B

T
∗ )
)
− Z‖2F +

λ

2
‖Z‖∗. (54)
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Suppose the convex optimization Problem (1) has a solution Z∗ with rank(Z∗) = r∗.
Then, for A∗B

T
∗ to be a solution to the convex problem the following conditions are sufficient:

(a) r∗ ≤ r

(b) A∗, B∗ must be the global minimum of Problem (53). Equivalently, the outer product
A∗B

T
∗ must be the solution to the fully observed nuclear norm regularized problem:

A∗B
T
∗ ∈ arg min

Z

1
2‖
(
PΩ(X) + P⊥Ω (A∗B

T
∗ )
)
− Z‖2F + λ‖Z‖∗ . (55)

The above condition (55) can be verified fairly easily; and requires doing a low-rank SVD
of the matrix PΩ(X) + P⊥Ω (A∗B

T
∗ ) as a direct application of Algorithm 2.1. This task

is computationally attractive due to the “sparse plus low-rank structure” of the matrix:
PΩ(X) +P⊥Ω (A∗B

T
∗ ) = PΩ(X −A∗BT

∗ ) +A∗B
T
∗ . We summarize the above discussion in the

form of the following theorem, where we assume of course that λ > 0.

Theorem 6 Let Ak ∈ <m×r, Bk ∈ <n×r be the sequence generated by softImpute-ALS and
let (A∗, B∗) denote a limit point of the sequence. Suppose that Problem (1) has a minimizer
with rank at most r. If Z∗ = A∗B

T
∗ solves the fully observed nuclear norm regularized

problem (55), then Z∗ is a solution to the convex Problem (1).

5.4 Computational Complexity and Comparison to ALS

The computational cost of softImpute-ALS can be broken down into three steps. First
consider only the cost of the update to A. The first step is forming the matrix X∗ =
PΩ(X−ABT )+ABT , which requires O(r|Ω|) flops for the PΩ(ABT ) part, while the second
part is never explicitly formed. The matrix B(BTB + λI)−1 requires O(2nr2 + r3) flops to
form; although we keep it in SVD factored form, the cost is the same. The multiplication
X∗B(BTB + λI)−1 requires O(r|Ω| + mr2 + nr2) flops, using the sparse plus low-rank
structure of X∗. The total cost of an iteration is O(2r|Ω|+mr2 + 3nr2 + r3).

As mentioned in Section 1, alternating least squares (ALS) is a popular algorithm for
solving the matrix factorization problem in Equation (6); see Algorithm 5.2. The ALS

algorithm is an instance of block coordinate descent applied to (6).

Recall that the updates for ALS are given by

Ak+1 ∈ arg min
A

F (A,Bk) (56)

Bk+1 ∈ arg min
B

F (Ak, B), (57)

and each row of A and B can be computed via a separate ridge regression. The cost for each
ridge regression is O(|Ωj |r2+r3), so the cost of one iteration is O(2|Ω|r2+mr3+nr3). Hence
the cost of one iteration of ALS is r times more flops than one iteration of softImpute-ALS.
We will see in the next sections that while ALS may decrease the criterion at each iteration
more than softImpute-ALS, it tends to be slower because the cost is higher by a factor O(r).
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Algorithm 5.2 Alternating least squares ALS

Inputs: Data matrix X, initial iterates A0 and B0, and k = 0.
Outputs: (A∗, B∗) = arg minA,B F (A,B)
Repeat until Convergence

for i=1 to m do

Ai ←
(∑

j∈Ωi
BjB

T
j

)−1 (∑
j∈Ωi

XijBj

)
end for
for j=1 to n do

Bj ←
(∑

i∈Ωj
AiA

T
i

)−1 (∑
i∈Ωj

XijAi

)
end for

Dependence of Computational Complexity on Ω: The computational guarantees
derived in Section 5.1 present a worst-case viewpoint of the rate at which softimpute-ALS

converge to an approximate stationary point—the results apply to any data and an arbi-
trary Ω. Tighter rates can be derived under additional assumptions. For example, for the
special case where Ω corresponds to a fully observed matrix, softimpute-ALS becomes Al-
gorithm 2.1. For λ = 0, Algorithm 2.1 with Ω fully observed becomes exactly equivalent to
the Orthogonal Iteration algorithm of Golub and Van Loan (2012). Theorem 8.2.2 in Golub
and Van Loan (2012) shows that the left orthogonal subspace corresponding to A converges
to the left singular subspace of X, under the assumption that σr(X) > σr+1(X)—the rate is

linear3 and depends upon the ratio σr+1(X)
σr(X) . Similar results hold true for the left orthogonal

subspace of B. Since the left subspaces of A and B generated by Algorithm 2.1 with λ > 0
are the same for λ = 0, the same linear rate of convergence holds true for Algorithm 2.1 for
Problem (14).

For a general Ω it is not clear to us if the rates in Section 5.1 can be improved. However,
for a sparse Ω the computational cost of every iteration of softimpute-ALS is significantly
smaller than a dense observation pattern—the practical significance being that a large
number of iterations can be performed at a very low cost.

6. Experiments

In this section we run some timing experiments on simulated and real datasets, and show
performance results on the Netflix and MovieLens data.

6.1 Timing experiments

Figure 1 shows timing results on four datasets. The first three are simulation datasets of
increasing size, and the last is the publicly available MovieLens 100K data. These experi-
ments were all run in R using the softImpute package; see Section 7. Three methods are
compared:

1. ALS— Alternating Least Squares as in Algorithm 5.2;

3. Convergence is measured in terms of the usual notion of distance between subspaces (Golub and Van
Loan, 2012); and it is also assumed that the initialization is not completely orthogonal to the target
subspace, which is typically met in practice due to the presence of round-off errors.
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2. softImpute-ALS — our new approach, as defined in Algorithm 3.1 or 5.1;

3. softImpute — the original algorithm of Mazumder et al. (2010), as layed out in
steps (2)–(4).
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Figure 1: Four timing experiments. Each figure is labelled according to size (m×n), percent-
age of missing entries (NAs), value of λ used, rank r used in the ALS iterations, and
rank of solution found. The first three are simulation examples, with increasing
dimension. The last is the movielens 100K data. In all cases, softImpute-ALS
(blue) wins handily against ALS (orange) and softImpute (green).
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We used an R implementation for each of these in order to make the fairest comparisons.
In particular, algorithm softImpute requires a low-rank SVD of a complete matrix at each
iteration. For this we used the function svd.als from our package, which uses alternating
subspace iterations, rather than using other optimized code that is available for this task.
Likewise, there exists optimized code for regular ALS for matrix completion, but instead we
used our R version to make the comparisons fairer. We are trying to determine how the
computational trade-offs play off, and thus need a level playing field.

Each subplot in Figure 6.1 is labeled according to the size of the problem, the fraction
missing, the value of λ used, the operating rank of the algorithms r, and the rank of the
solution obtained. All three methods involve alternating subspace methods; the first two
are alternating ridge regressions, and the third alternating orthogonal regressions. These
are conducted at the operating rank r, anticipating a solution of smaller rank. Upon
convergence, softImpute-ALS performs step (5) in Algorithm 3.1, which can truncate the
rank of the solution. Our implementation of ALS does the same.

For the three simulation examples, the data are generated from an underlying Gaussian
factor model, with true ranks 50, 100, 100; the missing entries are then chosen at random.
Their sizes are (300, 200), (800, 600) and (1200, 900) respectively, with between 70–90%
missing. The MovieLens 100K data has 100K ratings (1–5) for 943 users and 1682 movies,
and hence is 93% missing.

We picked a value of λ for each of these examples (through trial and error) so that the
final solution had rank less than the operating rank. Under these circumstances, the solution
to the criterion (6) coincides with the solution to (1), which is unique under non-degenerate
situations.

There is a fairly consistent message from each of these experiments. softImpute-ALS

wins handily in each case, and the reasons are clear:

• Even though it uses more iterations than ALS, they are much cheaper to execute (by
a factor O(r)).

• softImpute wastes time on its early SVD, even though it is far from the solution.
Thereafter it uses warm starts for its SVD calculations, which speeds each step up,
but it does not catch up.

6.2 Netflix Competition Data

We used our softImpute package in R to fit a sequence of models on the Netflix competition
data. Here there are 480,189 users, 17,770 movies and a total of 100,480,507 ratings, making
the resulting matrix 98.8% missing. There is a designated test set (the “probe set”), a subset
of 1,408,395 of the these ratings, leaving 99,072,112 for training.

Figure 2 compares the performance of hardImpute (Mazumder et al., 2010) with softImpute-ALS

on these data. hardImpute uses rank-restricted SVDs iteratively to estimate the missing
data, similar to softImpute but without shrinkage. The shrinkage helps here, leading to
a best test-set RMSE of 0.943. This is a 1% improvement over the “Cinematch” score,
somewhat short of the prize-winning improvement of 10%.

Both methods benefit greatly from using warm starts. hardImpute is solving a non-
convex problem, while the intention is for softImpute-ALS to solve the convex problem
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Figure 2: Performance of hardImpute versus softImpute-ALS on the Netflix data.
hardImpute uses a rank-restricted SVD at each step of the imputation, while
softImpute-ALS does shrinking as well. The left panel shows the training and
test error as a function of the rank of the solution—an imperfect calibration in
light of the shrinkage. The right panel gives the test error as a function of the
training error. hardImpute fits more aggressively, and overfits far sooner than
softImpute-ALS. The horizontal dotted line is the “Cinematch” score, the target
to beat in this competition.

(1). This will be achieved if the operating rank is sufficiently large. The idea is to decide on
a decreasing sequence of values for λ, starting from λmax (the smallest value for which the

solution M̂ = 0, which corresponds to the largest singular value of PΩ(X)). Then for each
value of λ, use an operating rank somewhat larger than the rank of the previous solution,
with the goal of getting the solution rank smaller than the operating rank. The sequence
of twenty models took under six hours of computing on a Linux cluster with 300Gb of ram
(with a fairly liberal relative convergence criterion of 0.001), using the softImpute package
in R.

Figure 3 (left panel) gives timing comparison results for one of the Netflix fits, this time
implemented in Matlab. The right panel gives timing results on the smaller MovieLens
10M matrix. In these applications we need not get a very accurate solution, and so early
stopping is an attractive option. softImpute-ALS reaches a solution close to the minimum
in about 1/4 the time it takes ALS.
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Figure 3: Left: timing results on the Netflix matrix, comparing ALS with softImpute-ALS.
Right: timing on the MovieLens 10M matrix. In both cases we see that while
ALS makes bigger gains per iteration, each iteration is much more costly.

7. R Package softImpute

We have developed an R package softImpute for fitting these models (Hastie and Mazumder,
2013), which is available on CRAN. The package implements both softImpute and softImpute-ALS.
It can accommodate large matrices if the number of missing entries is correspondingly large,
by making use of sparse-matrix formats. There are functions for centering and scaling (see
Section 9), and for making predictions from a fitted model. The package also has a function
svd.als for computing a low-rank SVD of a large sparse matrix, with row and/or column
centering. More details can be found in the package Vignette on the first authors web page,
at

http://web.stanford.edu/~hastie/swData/softImpute/vignette.html.

8. Distributed Implementation

We provide a distributed version of softimpute-ALS (given in Algorithm 5.1), built upon
the Spark cluster programming framework.

8.1 Design

The input matrix to be factored is split row-by-row across many machines. The transpose
of the input is also split row-by-row across the machines. The current model (i.e. the
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current guess for A,B) is repeated and held in memory on every machine. Thus the total
time taken by the computation is proportional to the number of non-zeros divided by the
number of CPU cores, with the restriction that the model should fit in memory.

At every iteration, the current model is broadcast to all machines, such that there is
only one copy of the model on each machine. Each CPU core on a machine will process
a partition of the input matrix, using the local copy of the model available. This means
that even though one machine can have many cores acting on a subset of the input data,
all those cores can share the same local copy of the model, thus saving RAM. This saving
is especially pronounced on machines with many cores.

The implementation is available online at http://git.io/sparkfastals with docu-
mentation, in Scala. The implementation has a method named multByXstar, corresponding
to line 3 of Algorithm 5.1 which multiplies X∗ by another matrix on the right, exploiting
the “sparse-plus-low-rank” structure of X∗. This method has signature:

multByXstar(X: IndexedRowMatrix, A: BDM[Double], B: BDM[Double], C:

BDM[Double])

This method has four parameters. The first parameter X is a distributed matrix consisting
of the input, split row-wise across machines. The full documentation for how this matrix is
spread across machines is available online4. The multByXstar method takes a distributed
matrix, along with local matrices A, B, and C, and performs line 3 of Algorithm 5.1 by
multiplying X∗ by C. Similarly, the method multByXstarTranspose performs line 5 of
Algorithm 5.1.

After each call to multByXstar, the machines each will have calculated a portion of A.
Once the call finishes, the machines each send their computed portion (which is small and
can fit in memory on a single machine, since A can fit in memory on a single machine) to
the master node, which will assemble the new guess for A and broadcast it to the worker
machines. A similar process happens for multByXstarTranspose, and the whole process is
repeated every iteration.

8.2 Experiments

We report iteration times using an Amazon EC2 cluster with 10 slaves and one master, of
instance type “c3.4xlarge”. Each machine has 16 CPU cores and 30 GB of RAM. We ran
softimpute-ALS on matrices of varying sizes with iteration runtimes available in Table 1,
setting k = 5. Where possible, hardware acceleration was used for local linear algebraic
operations, via breeze and BLAS.

The popular Netflix prize matrix has 17, 770 rows, 480, 189 columns, and 100, 480, 507
non-zeros. We report results on several larger matrices in Table 1, up to 10 times larger.

9. Centering and Scaling

We often want to remove row and/or column means from a matrix before performing a
low-rank SVD or running our matrix completion algorithms. Likewise we may wish to
standardize the rows and or columns to have unit variance. In this section we present an

4. https://spark.apache.org/docs/latest/mllib-basics.html#indexedrowmatrix
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Matrix Size Number of Nonzeros Time per iteration (s)

106 × 106 106 5

106 × 106 109 6

107 × 107 109 139

Table 1: Running times for distributed softimpute-ALS

algorithm for doing this, in a way that is sensitive to the storage requirement of very large,
sparse matrices. We first present our approach, and then discuss implementation details.

We have a two-dimensional array X = {Xij} ∈ Rm×n, with pairs (i, j) ∈ Ω observed
and the rest missing. The goal is to standardize the rows and columns of X to mean zero
and variance one simultaneously. We consider the mean/variance model

Xij ∼ (µij , σ
2
ij) (58)

with

µij = αi + βj ; (59)

σij = τiγj . (60)

Given the parameters of this model, we would standardized each observation via

X̃ij =
Xij − µij

σij

=
Xij − αi − βj

τiγj
. (61)

If model (58) were correct, then each entry of the standardized matrix, viewed as a
realization of a random variable, would have population mean/variance (0, 1). A conse-
quence would be that realized rows and columns would also have means and variances with
expected values zero and one respectively. However, we would like the observed data to
have these row and column properties.

Our representation (59)–(60) is not unique, but is easily fixed to be so. We can include
a constant µ0 in (59) and then have αi and βj average 0. Likewise, we can have an overall
scaling σ0, and then have log τi and log γj average 0. Since this is not an issue for us, we
suppress this refinement.

We are not the first to attempt this dual centering and scaling. Indeed, Olshen and
Rajaratnam (2010) implement a very similar algorithm for complete data, and discuss
convergence issues. Our algorithm differs in two simple ways: it allows for missing data,
and it learns the parameters of the centering/scaling model (61) (rather than just applying
them). This latter feature will be important for us in our matrix-completion applications;
once we have estimated the missing entries in the standardized matrix X̃, we will want to
reverse the centering and scaling on our predictions.

In matrix notation we can write our model

X̃ = D−1
τ (X−α1T − 1βT )D−1

γ , (62)
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where Dτ = diag(τ1, τ2, . . . , τm), similar for Dγ , and the missing values are represented in
the full matrix as NAs (e.g. as in R). Although it is not the focus of this paper, this centering
model is also useful for large, complete, sparse matrices X (with many zeros, stored in sparse-
matrix format). Centering would destroy the sparsity, but from (62) we can see we can store
it in “sparse-plus-low-rank” format. Such a matrix can be left and right-multiplied easily,
and hence is ideal for alternating subspace methods for computing a low-rank SVD. The
function svd.als in the softImpute package (section 7) can accommodate such structure.

9.1 Method-of-moments Algorithm

We now present an algorithm for estimating the parameters. The idea is to write down four
systems of estimating equations that demand that the transformed observed data have row
means zero and variances one, and likewise for the columns. We then iteratively solve these
equations, until all four conditions are satisfied simultaneously. We do not in general have
any guarantees that this algorithm will always converge except in the noted special cases,
but empirically we typically see rapid convergence.

Consider the estimating equation for the row-means condition (for each row i)

1

ni

∑
j∈Ωi

X̃ij =
1

ni

∑
j∈Ωi

Xij − αi − βj
τiγj

(63)

= 0,

where Ωi = {j|(i, j) ∈ Ω}, and ni = |Ωi| ≤ n. Rearranging we get

αi =

∑
j∈Ωi

1
γj

(Xij − βj)∑
j∈Ωi

1
γj

, i = 1, . . . ,m. (64)

This is a weighted mean of the partial residuals Xij−βj with weights inversely proportional
to the column standard-deviation parameters γj . By symmetry, we get a similar equation
for βj ,

βj =

∑
i∈Ωj

1
τi

(Xij − αi)∑
i∈Ωj

1
τi

, j = 1, . . . , n, (65)

where Ωj = {i|(i, j) ∈ Ω}, and mj = |Ωj | ≤ m.
Similarly, the variance conditions for the rows are

1

ni

∑
j∈Ωi

X̃2
ij =

1

ni

∑
j∈Ωi

(Xij − αi − βj)2

τ2
i γ

2
j

(66)

= 1,

which simply says

τ2
i =

1

ni

∑
j∈Ωi

(Xij − αi − βj)2

γ2
j

, i = 1, . . . ,m. (67)

Likewise

γ2
j =

1

mj

∑
i∈Ωj

(Xij − αi − βj)2

τ2
i

, j = 1, . . . , n. (68)
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The method-of-moments estimators require iterating these four sets of equations (64), (65),
(67), (68) till convergence. We monitor the following functions of the “residuals”

R =
m∑
i=1

 1

ni

∑
j∈Ωi

X̃ij

2

+
n∑
j=1

 1

mj

∑
i∈Ωj

X̃ij

2

(69)

+
m∑
i=1

log2

 1

ni

∑
j∈Ωi

X̃2
ij

+
n∑
j=1

log2

 1

mj

∑
i∈Ωj

X̃2
ij

 (70)

In experiments it appears that R converges to zero very fast, perhaps linear convergence. In
Appendix B we show slightly different versions of these estimators which are more suitable
for sparse-matrix calculations.

In practice we may not wish to apply all four standardizations, but instead a subset.
For example, we may wish to only standardize columns to have mean zero and variance one.
In this case we simply set the omitted centering parameters to zero, and scaling parameters
to one, and skip their steps in the iterative algorithm. In certain cases we have convergence
guarantees:

• Column-only centering and/or scaling. Here no iteration is required; the centering
step precedes the scaling step, and we are done. Likewise for row-only.

• Centering only, no scaling. Here the situation is exactly that of an unbalanced two-
way ANOVA, and our algorithm is exactly the Gauss-Seidel algorithm for fitting
the two-way ANOVA model. This is known to converge, modulo certain degenerate
situations.

For the other cases we have no guarantees of convergence.
We present an alternative sequence of formulas in Appendix B which allows one to

simultaneously apply the transformations, and learn the parameters.

10. Discussion

We have presented a new algorithm for matrix completion, suitable for solving Problem (1)
for very large problems, as long as the solution rank is manageably low. Our algorithm
capitalizes on the different strengths and weakness in each of the popular alternatives:

• ALS has to solve a different regression problem for every row/column, because of their
different amount of missingness, and this can be costly. softImpute-ALS solves a
single regression problem once and simultaneously for all the rows/columns, because
it operates on a filled-in matrix which is complete. Although these steps are typically
not as strong as those of ALS, the speed advantage more than compensates.

• softImpute wastes time in early iterations computing a low-rank SVD of a far-
from-optimal estimate, in order to make its next imputation. One can think of
softImpute-ALS as simultaneously filling in the matrix at each alternating step, as
it is computing the SVD. By the time it is done, it has the the solution sought by
softImpute, but with far fewer iterations.
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softImpute allows for an extremely efficient distributed implementation (Section 8), and
hence can scale to large problems, given a sufficiently large computing infrastructure.
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Appendix A. Proofs from Section 5.1

Here, we gather some proofs and technical details from Section 5.1.

A.1 Proof of Lemma 2

To prove this we begin with the following elementary result concerning a ridge regression
problem:

Lemma 5 Consider a ridge regression problem

H(β) := 1
2‖y −Mβ‖22 +

λ

2
‖β‖22 (71)

with β∗ ∈ arg minβ H(β). Then the following inequality is true:

H(β)−H(β∗) =
1

2
(β − β∗)T (MTM + λI)(β − β∗) = 1

2‖M(β − β∗)‖22 +
λ

2
‖β − β∗‖22

Proof The proof follows from the second order Taylor Series expansion of H(β):

H(β) = H(β∗) + 〈∇H(β∗), β − β∗〉+
1

2
(β − β∗)T (MTM + λI)(β − β∗)

and observing that ∇H(β∗) = 0.
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We will need to obtain a lower bound on the difference F (Ak+1, Bk) − F (Ak, Bk). To-
wards this end we make note of the following chain of inequalities:

F (Ak, Bk) = g(AkB
T
k ) +

λ

2
(‖Ak‖2F + ‖Bk‖2F ) (72)

= QA(Ak|Ak, Bk) (73)

≥ min
Z1

QA(Z1|Ak, Bk) (74)

= QA(Ak+1|Ak, Bk) (75)

≥ g(Ak+1B
T
k ) +

λ

2
(‖Ak+1‖2F + ‖Bk‖2F ) (76)

= F (Ak+1, Bk) (77)

where, Line (73) follows from (31), and (76) follows from (30).
Clearly, from Lines (77) and (72) we have (78)

F (Ak, Bk)− F (Ak+1, Bk) ≥ QA(Ak|Ak, Bk)−QA(Ak+1|Ak, Bk) (78)

= 1
2‖(Ak+1 −Ak)BT

k ‖22 +
λ

2
‖Ak+1 −Ak‖22, (79)

where, (79) follows from (78) using Lemma 5.
Similarly, following the above steps for the B-update we have:

F (Ak, Bk)− F (Ak+1, Bk+1) ≥ 1
2‖Ak+1(Bk+1 −Bk)T ‖22 +

λ

2
‖Bk+1 −Bk‖22. (80)

Adding (79) and (80) we get (35) concluding the proof of the lemma.

A.2 Proof of Lemma 3

Let us use the shorthand ∆ in place of ∆ ((A,B) , (A+, B+)) as defined in (37).
First of all observe that the result (35) can be replaced with (Ak, Bk) ← (A,B) and

(Ak+1, Bk+1)← (A+, B+). This leads to the following:

F (A,B)− F (A+, B+) ≥ 1
2

(
‖(A−A+)BT ‖2F + ‖A+(B+ −B)T ‖2F

)
+
λ

2

(
‖A−A+‖2F + ‖B+ −B‖2F

)
.

(81)

First of all, it is clear that if A,B is a fixed point then ∆ = 0.
Let us consider the converse, i.e., the case when ∆ = 0. Note that if ∆ = 0 then each of

the summands appearing in the definition of ∆ is also zero. We will now make use of the
interesting result (that follows from the Proof of Lemma 2) in (78) and (79) which says:

QA(A|A,B)−QA(A+|A,B) = 1
2‖(A

+ −A)BT ‖22 +
λ

2
‖A+ −A‖22.

Now the right hand side of the above equation is zero (since ∆ = 0) which implies that,
QA(A|A,B)−QA(A+|A,B) = 0. An analogous result holds true for B.

Using the nesting property (34), it follows that F (A,B) = F (A+, B+)—thereby showing
that (A,B) is a fixed point of the algorithm.
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A.3 Proof of Theorem 4

We make use of (35) and add both sides of the inequality over k = 1, . . . ,K, which leads
to:

K∑
i=1

(F (Ak, Bk)− F (Ak+1, Bk+1)) ≥
K∑
k=1

ηk ≥ K( min
K≥k≥1

ηk) (82)

Since, F (Ak, Bk) is a decreasing sequence (bounded below) it converges to F∞ say. It
follows that:

K∑
i=1

(F (Ak, Bk)− F (Ak+1, Bk+1)) = F (A1, B1)− F (AK+1, BK+1)

≤ F (A1, B1)− F∞
(83)

Using (83) along with (82) we have the following convergence rate:

min
1≤k≤K

ηk ≤
(
F (A1, B1)− F (A∞, B∞)

)
/K,

thereby completing the proof of the theorem.

A.4 Proof of Corollary 1

Recall the definition of ηk

ηk = 1
2

(
‖(Ak −Ak+1)BT

k ‖2F + ‖Ak+1(Bk −Bk+1)T ‖2F
)
+
λ

2

(
‖Ak −Ak+1‖2F + ‖Bk −Bk+1‖2F

)
Since we have assumed that

`UI � BT
k Bk � `LI, `UI � ATkAk � `LI, ∀k

we then have:

ηk ≥
(
`L

2
+
λ

2

)
‖Ak −Ak+1‖2F +

(
`L

2
+
λ

2

)
‖Bk −Bk+1‖2F .

Using the above in (82) and assuming that `L > 0, we have the bound:

min
1≤k≤K

(
‖(Ak −Ak+1)‖2F + ‖Bk −Bk+1‖2F

)
≤ 2

(`L + λ)

(
F (A1, B1)− F∞

K

)
(84)

Suppose instead of the proximity measure:(
‖(Ak −Ak+1)‖2F + ‖Bk −Bk+1‖2F

)
,

we use the proximity measure:(
‖(Ak −Ak+1)BT

k ‖2F + ‖Ak+1(Bk −Bk+1)‖2F
)
.

Then observing that:

`U‖(Ak −Ak+1)‖2F ≥ ‖(Ak −Ak+1)BT
k ‖2F , `U‖Bk −Bk+1‖2F ≥ ‖Ak+1(Bk −Bk+1)T ‖2F
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we have:

ηk ≥
(

λ

2`U
+

1

2

)(
‖(Ak −Ak+1)BT

k ‖2F + ‖Ak+1(Bk −Bk+1)‖2F
)
.

Using the above bound in (82) we arrive at a bound which is similar in spirit to (41) but
with a different proximity measure on the step-sizes:

min
1≤k≤K

(
‖(Ak −Ak+1)BT

k ‖2F + ‖Ak+1(Bk −Bk+1)‖2F
)
≤ 2`U

λ+ `U

(
F (A1, B1)− F∞

K

)
(85)

It is useful to contrast results (41) and (42) with the case λ = 0.

min
1≤k≤K

(
‖(Ak −Ak+1)BT

k ‖2F + ‖Ak+1(Bk −Bk+1)‖2F
)
≤


2`U

λ+`U

(
F (A1,B1)−F∞

K

)
λ > 0

2`U
(
F (A1,B1)−F∞

K

)
λ = 0

(86)
The convergence rate with the other proximity measure on the step-sizes have the following
two cases:

min
1≤k≤K

(
‖(Ak −Ak+1)‖2F + ‖Bk −Bk+1‖2F

)
≤


2

(`L+λ)

(
F (A1,B1)−F∞

K

)
λ > 0,

2
`L

(
F (A1,B1)−F∞

K

)
λ = 0.

(87)

The assumption (40) `UI � BT
k Bk and `UI � ATkAk can be interpreted as an upper

bounds to the locally Lipschitz constants of the gradients ofQA(Z|Ak, Bk) andQB(Z|Ak+1, Bk)
for all k:

‖∇QA(Ak+1|Ak, Bk)−∇QA(Ak|Ak, Bk)‖ ≤ `U‖Ak+1 −Ak‖,
‖∇QB(Bk|Ak+1, Bk)−∇QB(Bk+1|Ak+1, Bk)‖ ≤ `U‖Bk+1 −Bk‖.

(88)

The above leads to convergence rate bounds on the (partial) gradients of the function
F (A,B), i.e.,

min
1≤k≤K

(
‖∇Af(Ak, Bk)‖2 + ‖∇Bf(Ak+1, Bk)‖2

)
≤ 2(`U )2

(`L + λ)

(
F (A1, B1)− F∞

K

)
A.5 Proof of Theorem 5

Proof Part (a):
We make use of the convergence rate derived in Theorem 4. As k → ∞, it follows that
ηk → 0. This describes the fate of the objective values F (Ak, Bk), but does not inform us
about the properties of the sequence Ak, Bk. Towards this end, note that if λ > 0, then the
sequence Ak, Bk is bounded and thus has a limit point. Let A∗, B∗ be any limit point of the
sequence Ak, Bk. It follows by a simple subsequence argument that F (Ak, Bk)→ F (A∗, B∗)
and A∗, B∗ is a fixed point of Algorithm 5.1 and in particular a first order stationary point
of Problem (6).
Part (b):
The sequence (Ak, Bk) need not have a unique limit point, however, we show below: for
every subsequence of Bk that converges, the corresponding subsequence of Ak also converges.
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Suppose, Bk → B∗ (along a subsequence k ∈ ν). We will show that the sequence Ak for
k ∈ ν has a unique limit point.

We argue by the method of contradiction. Suppose there are two limit points of Ak, k ∈
ν, namely, A1 and A2 and Ak1 → A1, k1 ∈ ν1 ⊂ ν and Ak2 → A2, k2 ∈ ν2 ⊂ ν with A1 6= A2.

Consider the objective value sequence: F (Ak, Bk). For fixed Bk the update in A from
Ak to Ak+1 results in

F (Ak, Bk)− F (Ak+1, Bk) ≥
λ

2
‖Ak −Ak+1‖2F .

Take k1 ∈ ν1 and k2 ∈ ν2, we have:

F (Ak2 , Bk2)− F (Ak1+1, Bk1) = (F (Ak2 , Bk2)− F (Ak2 , Bk1))

+ (F (Ak2 , Bk1)− F (Ak1+1, Bk1)) (89)

≥ (F (Ak2 , Bk2)− F (Ak2 , Bk1)) +
λ

2
‖Ak2 −Ak1+1‖2F (90)

where Line 90 follows by using Lemma 5. As k1, k2 →∞, Bk2 , Bk1 → B∗ hence,

F (Ak2 , Bk2)− F (Ak2 , Bk1)→ 0, and ‖Ak2 −Ak1+1‖2F → ‖A2 −A1‖2F

However, the lhs of (89) converges to zero, which is a contradiction. This implies that
‖A2 −A1‖2F = 0 i.e. Ak for k ∈ ν has a unique limit point.

Exactly the same argument holds true for the sequence Ak, leading to the conclusion of
the other part of Part (b).

Appendix B. Alternative Computing Formulas for Method of Moments

In this section we present the same algorithm, but use a slightly different representation.
For matrix-completion problems, this does not make much of a difference in terms of com-
putational load. But we also have other applications in mind, where the large matrix X
may be fully observed, but is very sparse. In this case we do not want to actually apply the
centering operations; instead we represent the matrix as a “sparse-plus-low-rank” object, a
class for which we have methods for simple row and column operations.

Consider the row-means (for each row i). We can introduce a change ∆α
i from the old

αoi to the new αi. Then we have∑
j∈Ωi

X̃ij =
∑
j∈Ωi

Xij − αoi −∆α
i − βj

τiγj
(91)

= 0,

where as before Ωi = {j|(i, j) ∈ Ω}. Rearranging we get

∆α
i =

∑
j∈Ωi

X̃o
ij∑

j∈Ωi

1
τiγj

, i = 1, . . . ,m, (92)
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where

X̃o
ij =

Xij − αoi − βj
τiγj

. (93)

Then αi = αoi + ∆α
i . By symmetry, we get a similar equation for ∆β

j ,

Likewise for the variances.

1

ni

∑
j∈Ωi

X̃2
ij =

1

ni

∑
j∈Ωi

(Xij − αi − βj)2

(τi∆τ
i )2γ2

j

(94)

=
1

ni

∑
j∈Ωi

(
X̃o
ij

∆τ
i

)2

(95)

= 1.

Here we modify τi by a multiplicative factor ∆τ
i . Here the solution is

(∆τ
i )2 =

1

ni

∑
j∈Ωi

(X̃o
ij)

2, i = 1, . . . ,m. (96)

By symmetry, we get a similar equation for ∆γ
j ,

The method-of-moments estimators amount to iterating these four sets of equations till
convergence. Now we can monitor the changes via

R =
m∑
i=1

∆α
i

2 +
n∑
j=1

∆β
j

2
+

m∑
i=1

log2 ∆τ
i +

n∑
j=1

log2 ∆γ
j (97)

which should converge to zero.
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Abstract

Dropout is a simple but effective technique for learning in neural networks and other set-
tings. A sound theoretical understanding of dropout is needed to determine when dropout
should be applied and how to use it most effectively. In this paper we continue the explo-
ration of dropout as a regularizer pioneered by Wager et al. We focus on linear classification
where a convex proxy to the misclassification loss (i.e. the logistic loss used in logistic re-
gression) is minimized. We show:

• when the dropout-regularized criterion has a unique minimizer,

• when the dropout-regularization penalty goes to infinity with the weights, and when it remains
bounded,

• that the dropout regularization can be non-monotonic as individual weights increase from 0,
and

• that the dropout regularization penalty may not be convex.

This last point is particularly surprising because the combination of dropout regularization
with any convex loss proxy is always a convex function.

In order to contrast dropout regularization with L2 regularization, we formalize the
notion of when different random sources of data are more compatible with different reg-
ularizers. We then exhibit distributions that are provably more compatible with dropout
regularization than L2 regularization, and vice versa. These sources provide additional
insight into how the inductive biases of dropout and L2 regularization differ. We provide
some similar results for L1 regularization.

Keywords: dropout, inductive bias, learning theory, regularization, feature noising

1. Introduction

Since its prominent role in a win of the ImageNet Large Scale Visual Recognition Challenge
(Hinton, 2012; Hinton et al., 2012; Srivastava et al., 2014), there has been intense interest
in dropout (see the work by Dahl, 2012; Deng et al., 2013; Dahl et al., 2013; Wan et al.,
2013; Wager et al., 2013; Baldi and Sadowski, 2014; Van Erven et al., 2014). Dropout is
a modification of stochastic gradient descent where each update is performed on a reduced
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network created by temporarily removing a random subset of the nodes. This paper studies
the inductive bias of dropout: when one chooses to train with dropout, what prior preference
over models results? We show that dropout training shapes the learner’s search space in
a much different way than L1 or L2 regularization. Our results shed new insight into
why dropout prefers rare features, how the dropout probability affects the strength of
regularization, and how dropout restricts the co-adaptation of weights.

Our theoretical study will concern learning a linear classifier via convex optimization.
The learner wishes to find a parameter vector w so that, for a random feature-label pair
(x, y) ∈ Rn×{−1, 1} drawn from some joint distribution P , the probability that sign(w·x) 6=
y is small. It does this by using training data to try to minimize E(`(yw · x)), where
`(z) = ln(1 + exp(−z)) is the loss function associated with logistic regression.

We have chosen to focus on this problem for several reasons. First, the inductive bias of
dropout is not well understood even in this simple setting. Second, linear classifiers remain
a popular choice for practical problems, especially in the case of very high-dimensional
data. Third, we view a thorough understanding of dropout in this setting as a mandatory
prerequisite to understanding the inductive bias of dropout when applied in a deep learning
architecture. This is especially true when the preference over deep learning models is
decomposed into preferences at each node. In any case, the setting that we are studying
faithfully describes the inductive bias of a deep learning system at its output nodes.

We will borrow the following clean and illuminating description of dropout as artificial
noise due to Wager et al. (2013). An algorithm for linear classification using loss ` and
dropout updates its parameter vector w online, using stochastic gradient descent. Given
an example (x, y), the dropout algorithm independently perturbs each feature i of x: with
probability q, xi is replaced with 0, and, with probability p = 1 − q, xi is replaced with
xi/p. Equivalently, x is replaced by x + ν, where

νi =

{
−xi with probability q
(1/p− 1)xi with probability p = 1− q

before performing the stochastic gradient update step. (Note that, while ν obviously de-
pends on x, if we sample the components of b ∈ {−1, 1/p−1}n independently of one another
and x, by choosing bi = −1 with the dropout probability q, then we may write νi = bixi.)

Stochastic gradient descent is known to converge under a broad variety of conditions
(Kushner and Yin, 1997). Thus, if we abstract away sampling issues as done by Breiman
(2004); Zhang (2004); Bartlett et al. (2006); Long and Servedio (2010), we are led to consider

w∗
def
= argminwE(x,y)∼P,ν(`(yw · (x + ν)))

as dropout can be viewed as a stochastic gradient update of this global objective function.
We call this objective the dropout criterion, and it can be viewed as a risk on the dropout-
induced distribution. (Abstracting away sampling issues is consistent with our goal of
concentrating on the inductive bias of the algorithm. From the point of view of a bias-
variance decomposition, we do not intend to focus on the large-sample-size case, where the
variance is small, but rather to focus on the contribution from the bias where P could be
an empirical sample distribution.)

3404



On the Inductive Bias of Dropout

We start with the observation of Wager et al. (2013) that the dropout criterion may be
decomposed as

E(x,y)∼P,ν(`(yw · (x + ν))) = E(x,y)∼P (`(yw · x)) + regD,q(w), (1)

where regD,q(w) is non-negative, and depends only on the marginal distribution D over
the feature vectors x (along with the dropout probability q), and not on the labels. This
leads naturally to a view of dropout as a regularizer.

A popular style of learning algorithm minimizes an objective function like the RHS of
(1), but where regD,q(w) is replaced by a norm of w. One motivation for algorithms in
this family is to first replace the training error with a convex proxy to make optimization
tractable, and then to regularize using a convex penalty such as a norm, so that the objective
function remains convex.

We show that regD,q(w) formalizes a preference for classifiers that assign a very large
weight to a single feature. This preference is stronger than what one gets from a penalty
proportional to ||w||1. In fact, despite the convexity of the dropout risk, we show that
regD,q(w) is not convex. Therefore that dropout provides a way to realize the inductive
bias arising from a non-convex penalty while still enjoying the benefit of convexity in the
overall objective function (see the plots in Figures 1, 2 and 3). Figure 1 shows the even
more surprising result that the dropout regularization penalty is not even monotonic in the
absolute values of the individual weights.

It is not hard to see that regD,q(0) = 0. Thus, if regD,q(w) is greater than the expected
loss incurred by 0 (which is ln 2), then it might as well be infinity, because dropout will
prefer 0 to w. However, in some cases, dropout never reaches this extreme—it remains
willing to use a models with arbitrarily large parameters, unlike methods that use a convex
penalty. In particular,

regD,q(w1, 0, 0, 0, ..., 0) < ln 2

for all D, no matter how large w1 gets. On the other hand, except for some special cases
(which are detailed in the body of the paper),

regD,q(cw1, cw2, 0, 0, ..., 0)

goes to infinity with c. It follows that regD,q(w) cannot be approximated to within any
factor, constant or otherwise, by a convex function of w.

To get a sense of which sources dropout can be successfully applied to, we compare
dropout with an algorithm that regularizes using L2, by minimizing the L2 criterion:

E(x,y)∼P (`(yw · x)) +
λ

2
||w||22. (2)

Will will use “L2” as a shorthand to refer to an algorithm that minimizes (2). Note that
q, the probability of dropping out an input feature, plays a role in dropout analogous to
λ. In particular, as q goes to zero the examples remain unperturbed and the dropout
regularization has no effect.

Informally, we say that joint probability distributions P and Q separate dropout from L2

if, when the same parameters λ and q are used for both P and Q, then using dropout leads
to a much more accurate hypothesis for P , and using L2 leads to a much more accurate
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hypothesis for Q. This enables us to illustrate the inductive biases of the algorithms through
contrasting sources that either align or are incompatible with the algorithms’ inductive
bias. Comparing with another regularizer helps to restrict these illustrative examples to
“reasonable” sources, which can be handled using the other regularizer. Ensuring that the
same values of the regularization parameter are used for both P and Q controls for the
amount of regularization, and ensures that the difference is due to the model preferences of
the respective regularizers. This style of analysis is new, as far as we know, and may be a
useful tool for studying the inductive biases of other algorithms and in other settings.

Related previous work. Our research builds on the work of Wager et al. (2013), who
analyzed dropout for random (x, y) pairs where the distribution of y given x comes from a
member of the exponential family, and the quality of a model is evaluated using the log-loss.
They pointed out that, in these cases, the dropout criterion can be decomposed into the
original loss and a term that does not depend on y, which therefore can be viewed as a
regularizer. They then proposed an approximation to this dropout regularizer, discussed
its relationship with other regularizers and training algorithms, and evaluated it experi-
mentally. Baldi and Sadowski (2014) exposed properties of dropout when viewed as an
ensemble method (see also Bachman et al., 2014). Van Erven et al. (2014) showed that
applying dropout for online learning in the experts setting leads to algorithms that adapt
to important properties of the input without requiring doubling or other parameter-tuning
techniques, and Abernethy et al. (2014) analyzed a class of methods including dropout by
viewing these methods as smoothers. The impact of dropout on generalization (roughly,
how much dropout restricts the search space of the learner, or, from a bias-variance point of
view, its impact on variance) was studied by Wan et al. (2013) and Wager et al. (2014). The
latter paper considers a variant of dropout compatible with a Poisson source, and shows
that under some assumptions this dropout variant converges more quickly to its infinite
sample limit than non-dropout training, and that the Bayes-optimal predictions are pre-
served under the modified dropout distribution. Our results complement theirs by focusing
on the effect of the original dropout on the algorithm’s bias.

Section 2 defines our notation and characterizes when the dropout criterion has a unique
minimizer. Section 3 presents many additional properties of the dropout regularizer. Sec-
tion 4 formally defines when two distributions separate two algorithms or regularizers. Sec-
tions 5 and 6 give sources over R2 that separate dropout and L2; these exploit the preference
of dropout for hypotheses that concentrate weight on a single feature. Section 7 provides
plots demonstrating that the same distributions separate dropout from L1 regularization.
Section 8 gives a definition of co-adaptation and shows (using plots) that distributions ex-
ploiting dropout’s bias against co-adapted weights can also be used to separate dropout
from L2 and L1 regularization. Sections 9 and 10 give additional separation results using
distributions with many features.

2. Preliminaries

We use w∗ for the optimizer of the dropout criterion, q for the probability that a feature is
dropped out, and p = 1− q for the probability that a feature is kept throughout the paper.
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As in the introduction, if X ⊆ Rn and P is a joint distribution over X × {−1, 1}, define

w∗(P, q)
def
= argminwE(x,y)∼P,ν(`(yw · (x + ν))) (3)

where νi = bixi for b1, ..., bn sampled independently at random from {−1, 1/p − 1} with
Pr(bi = 1/p− 1) = p = 1− q, and `(z) is the logistic loss function:

`(z) = ln(1 + exp(−z)).

For some analyses, an alternative representation of w∗(P, q) will be easier to work with.
Let r1, ..., rn be sampled randomly from {0, 1}, independently of (x, y) and one another,
with Pr(ri = 1) = p. Defining r� x = (x1r1, ..., xnrn), we have the equivalent definition

w∗(P, q) = p argminwE(x,y)∼P,r(`(yw · (r� x))). (4)

To see that they are equivalent, note that

E(`(yw · (x + ν))) = E

(
`

(
yw ·

(
r� x

p

)))
= E(`(y(w/p) · (r� x))).

Although this paper focuses on the logistic loss, the above definitions can be used for any
loss function `(). Since the dropout criterion is an expectation of `(), we have the following
obvious consequence.

Proposition 1 If loss `(·) is convex, then the dropout criterion is also a convex function
of w.

The remainder of the paper focuses on the logistic loss, `(yw ·x) = ln(1+exp(−yw ·x)).
We use v for the optimizer of the L2 regularized criterion:

v(P, λ)
def
= argminwE(x,y)∼P (`(yw · x)) +

λ

2
||w||2. (5)

It is not hard to see that the λ
2 ||w||

2 term implies that v(P, λ) is always well-defined.
On the other hand, w∗(P, q) is not always well-defined, as can be seen by considering any
distribution concentrated on a single example. This motivates the following definition.

Definition 2 Let P be a joint distribution with support contained in Rn × {−1, 1}. A
feature i is perfect modulo ties for P if either yxi ≥ 0 for all x in the support of P , or
yxi ≤ 0 for all x in the support of P .

Put another way, i is perfect modulo ties if there is a linear classifier that only pays attention
to feature i and is perfect on the part of P where xi is nonzero.

Proposition 3 For all finite domains X ⊆ Rn, all distributions P with support in X, and
all q ∈ (0, 1), we have that E(x,y)∼P,r(`(yw · (r� x))) has a unique minimum in Rn if and
only if no feature is perfect modulo ties for P .
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x = (x1, . . . , xn) feature vector in Rn

y label in {−1,+1}
w = (w1, . . . , wn) weight vector in Rn

`(yw · x) loss function, generally the logistic loss: ln(1 + exp(−yw · x))

P , Q source distributions over (x, y) pairs, varies by section

D marginal distribution over x

q feature dropout probability in (0, 1)

p = 1− q probability of keeping a feature

λ L2 regularization parameter

ν = (ν1, . . . , νn) additive dropout noise, νi ∈ {−xi, xi/p− xi}
r = (r1, . . . , rn) multiplicative dropout noise, ri ∈ {0, 1}

� component-wise product: r� x = (r1x1, . . . , rnxn)

w∗(P, q) and w∗ minimizer of dropout criterion: E(`(y w · (x + ν)))

w~ = w∗/p minimizer of expected loss E(`(y w · (r� x)))

v(P, λ) and v minimizer of L2-regularized loss

regD,q(w) regularization due to dropout

J , K criteria to be optimized, varies by sub-section

g(w), g gradients of the current criterion

erP (w) 0-1 classification generalization error of sign(w · x)

Table 1: Summary of notation used throughout the paper.

Proof: Assume for contradiction that feature i is perfect modulo ties for P and some w~

is the unique minimizer of E(x,y)∼P,r(`(yw · (r � x))). Assume w.l.o.g. that yxi ≥ 0 for
all x in the support of P (the case where yxi ≤ 0 is analogous). Increasing w~

i keeps the
loss unchanged on examples where xi = 0 and decreases the loss on the other examples
in the support of P , contradicting the assumption that w~ was a unique minimizer of the
expected loss.

Now, suppose then each feature i has both examples where yxi > 0 and examples where
yxi < 0 in the support of P . Since the support of P is finite, there is a positive lower
bound on the probability of any example in the support. With probability p(1 − p)n−1,
component ri of random vector r is non-zero and the remaining n − 1 components are
all zero. Therefore as wi increases without bound in the positive or negative direction,
E(x,y)∼P,r(`(yw·(r�x))) also increases without bound. Since E(x,y)∼P,r(`(y0·(r�x))) = ln 2,
there is a value M depending only on distribution P and the dropout probability such
that minimizing E(x,y)∼P,r(`(yw · (r� x))) over w ∈ [−M,M ]n is equivalent to minimizing
E(x,y)∼P,r(`(yw·(r�x))) over Rn. Since Pr(x,y)(xi = 0) 6= 1 for all i, {r�x : r ∈ {0, 1}n,x ∈
X} has full rank and therefore E(x,y)∼P,r(`(yw · (r�x))) is strictly convex. Since a strictly
convex function defined on a compact set has a unique minimum, E(x,y)∼P,r(`(yw · (r�x)))
has a unique minimum on [−M,M ]n, and therefore on Rn.

See Table 1 for a summary of the notation used in the paper.
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3. Properties of the Dropout Regularizer

We start by rederiving the regularization function corresponding to dropout training previ-
ously presented by Wager et al. (2013), specialized to our context and using our notation.
The first step is to write `(yw · x) in an alternative way that exposes some symmetries:

`(yw · x) = ln(1 + exp(−yw · x))

= ln

(
exp(y(w · x)/2) + exp(−y(w · x)/2)

exp(y(w · x)/2)

)
= ln

(
exp((w · x)/2) + exp(−(w · x)/2)

exp(y(w · x)/2)

)
. (6)

This then implies

regD,q(w)

= E(`(yw · (x + ν)))−E(`(yw · x))

= E

(
ln

(
exp((w · (x + ν))/2) + exp(−(w · (x + ν))/2)

exp(y(w · (x + ν))/2)
× exp(y(w · x)/2)

exp((w · x)/2) + exp(−(w · x)/2)

))
= E

(
ln

(
exp((w · (x+ν))/2)+exp(−(w · (x+ν))/2)

exp((w · x)/2)+exp(−(w · x)/2)

)
− y(w · ν)/2

)
.

Since E(ν) = 0, we get the following.

Proposition 4 (Wager et al., 2013)

regD,q(w) = E

(
ln

(
exp(w · (x + ν)/2) + exp(−w · (x + ν)/2)

exp((w · x)/2) + exp(−(w · x)/2)

))
. (7)

Using a Taylor expansion, Wager et al. (2013) arrived at the following approximation:

q

2(1− q)
∑
i

w2
iEx

(
x2i

(1 + exp(−w·x
2 ))(1 + exp(w·x2 )

)
. (8)

This approximation suggests two properties: the strength of the regularization penalty
decreases exponentially in the prediction confidence |w · x|, and that the regularization
penalty goes to infinity as the dropout probability q goes to 1. However, w · ν can be
quite large, making a second-order Taylor expansion inaccurate.1 In fact, the analysis in
this section suggests that the regularization penalty does not decrease with the confidence
and that the regularization penalty increases linearly with q = 1− p (Figure 1, Theorem 8,
Proposition 9).

The following propositions show that regD,q(w) satisfies at least some of the intuitive
properties of a regularizer.

Proposition 5 regD,q(0) = 0.

Proposition 6 (Wager et al., 2013) The contribution of each x to the dropout regulariza-
tion penalty (7) is non-negative: for all x,

Eν

(
ln

(
exp((w · (x + ν))/2)+exp(−(w · (x + ν))/2)

exp((w · x)/2) + exp(−(w · x)/2)

))
≥ 0.

1. Wager et al. (2013) experimentally evaluated the accuracy of a related approximation in the case that,
instead of using dropout, ν was distributed according to a zero-mean Gaussian.
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Proof: The proposition follows from Jensen’s Inequality.
The w∗(P, q) vector learned by dropout training minimizes

E(x,y)∼P (`(yw · x)) + regD,q(w).

However, the 0 vector has `(y0 · x) = ln(2) and regD,q(0) = 0, implying:

Proposition 7 regD,q(w
∗) ≤ ln(2).

Thus any regularization penalty greater than ln(2) is effectively equivalent to a regulariza-
tion penalty of ∞.

We now present new results based on analyzing the exact regD,q(w). The next proper-
ties show that the dropout regularizer is emphatically not like other convex or norm-based
regularization penalties in that the dropout regularization penalty always remains bounded
when a single component of the weight vector goes to infinity (see also Figure 1).

Theorem 8 For all dropout probabilities 1− p ∈ (0, 1), all n, all marginal distributions D
over n-feature vectors, and all indices 1 ≤ i ≤ n,

sup
wi

regD,q(0, . . . , 0︸ ︷︷ ︸
i−1

, wi, 0, . . . , 0︸ ︷︷ ︸
n−i

) ≤ PrD(xi 6= 0)(1− p) ln(2) < ln 2.

Proof: Fix arbitrary n, p, i, and D. We have

regD,q(0, . . . , 0︸ ︷︷ ︸
i−1

, wi, 0, . . . , 0︸ ︷︷ ︸
n−i

)

= Ex,ν

(
ln

(
exp(−wi(xi+νi)/2)+exp(wi(xi+νi)/2)

exp(−wixi/2)+exp(wixi/2)

))
.

Fix an arbitrary x in the support of D and examine the expectation over ν for that x.
Recall that xi + νi is 0 with probability 1 − p and is xi/p with probability p, and we will
use the substitution z = |wixi|/2.

Eν

(
ln

(
exp(−wi(xi+νi)2 ) + exp(wi(xi+νi)2 )

exp(−wixi2 ) + exp(wixi2 )

))
(9)

= (1− p) ln(2) + p ln

(
exp(

z

p
) + exp(

−z
p

)

)
− ln (exp(z) + exp(−z)) . (10)

We now consider cases based on whether or not z is 0. When z = 0 (so either wi or xi is 0)
then (10) is also 0.

If z 6= 0 then consider the derivative of (10) w.r.t. z, which is

exp(z/p)− exp(−z/p)
exp(z/p) + exp(−z/p)

− exp(z)− exp(−z)
exp(z) + exp(−z)

.

This derivative is positive since z > 0 and 0 < p < 1. Therefore (10) is bounded by its limit
as z →∞, which is (1− p) ln(2), in this case.

Since (9) is 0 when xi = 0 and is bounded by (1 − p) ln(2) otherwise, the expectation
over x of (9) is bounded PrD(xi 6= 0)(1− p) ln(2), completing the proof.

Since line (10) is derived using a chain of equalities, the same proof ideas can be used
to show that Theorem 8 is tight.
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Figure 1: The p = 1/2 dropout regularization for x = (1, 1) as a function of wi when the
other weights are 0 together with its approximation (8) (left) and as a function
of w1 for different values of the second weight (right).

Proposition 9 Under the conditions of Theorem 8,

lim
wi→∞

regD,q(0, . . . , 0︸ ︷︷ ︸
i−1

, wi, 0, . . . , 0︸ ︷︷ ︸
n−i

) = PrD(xi 6= 0)(1− p) ln(2).

Note that this bound on the regularization penalty depends neither on the range nor
expectation of xi. In particular, it has a far different character than the approximation of
Equation (8).

In Theorem 8 the other weights are fixed at 0 as wi goes to infinity. An additional
assumption implies that the regularization penalty remains bounded even when the other
components are non-zero. Let w be a weight vector such that for all x in the support of
D and dropout noise vectors ν we have |

∑
j 6=iwj(xj + νj)| ≤ M for some bound M (this

implies that |
∑

j 6=iwjxj | ≤M also). Then

regD,q(w) = Ex,ν

((
exp(w·(x+ν)2 )+exp(−w·(x+ν)

2 )

exp(w·x2 )+exp(−w·x
2 )

))

≤ Exi,νi

(
log

(
exp(M−wi(xi+νi)2 +exp(M+wi(xi+νi)

2 )

exp(−M−wixi
2 +exp(−M+wixi

2 )

))

≤M+Exi,νi

(
log

(
exp(−wixi+νi

2 )+exp(wi(xi+νi)2 )

exp(−wixi2 )+exp(wixi2 )

))
. (11)

Using (11) instead of the first line in Theorem 8’s proof gives the following.

Proposition 10 Under the conditions of Theorem 8, if the weight vector w has the property
that |

∑
j 6=iwj(xj + νj)| ≤ M for each x in the support of D and all of its corresponding

dropout noise vectors ν then

sup
ω

regD,q(w1, w2, . . . , wi−1, ω, wi+1, . . . , wn) ≤M + PrD(xi 6= 0)(1− p) ln(2).
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Proposition 10 shows that the regularization penalty starting from a non-zero initial weight
vector remains bounded as any one of its components goes to infinity. On the other hand,
unless M is small, the bound will be larger than the dropout criterion for the zero vector.
This is a natural consequence as the starting weight vector w could already have a large
regularization penalty.

The derivative of (10) in the proof of Theorem 8 implies that the dropout regularization
penalty is monotonic in |wi| when the other weights are zero. Surprisingly, this is does
not hold in general. The dropout regularization penalty due to a single example (as in
Proposition 6) can be written as

Eν

(
ln
(

exp(w·(x+ν)
2 ) + exp(−w·(x+ν)

2 )
))
− ln

(
exp(w·x2 ) + exp(−w·x2 )

)
.

Therefore if increasing a weight makes the second logarithm increase faster than the expec-
tation of the first, then the regularization penalty decreases even as the weight increases.
This happens when the wixi products tend to have the same sign. The regularization
penalty as a function of w1 for the single example x = (1, 1), p = 1/2, and w2 set to various
values is plotted in Figure 1.2 This gives us the following.

Proposition 11 Unlike p-norm regularizers, the dropout regularization penalty regD,q(w)
is not always monotonic in the individual weights.

In fact, the dropout regularization penalty can decrease as weights move up from 0.

Proposition 12 Fix p = 1/2, w2 > 0, and an arbitrary x ∈ (0,∞)2. Let D be the
distribution concentrated on x. Then regD,q(w1, w2) locally decreases as w1 increases from
0.

Proposition 12 is proved in Appendix A.

We now turn to the dropout regularization’s behavior when two weights vary together.
If any features are always zero then their weights can go to ±∞ without affecting either the
predictions or regD,q(w). Two linearly dependent features might as well be one feature.
After ruling out degeneracies like these, we arrive at the following theorem, which is proved
in Appendix B.

Theorem 13 Fix an arbitrary distribution D with support in R2, weight vector w ∈ R2,
and non-dropout probability p. If there is an x with positive probability under D such that
w1x1 and w2x2 are both non-zero and have different signs, then the regularization penalty
regD,q(ωw) goes to infinity as ω goes to ±∞.

The theorem can be straightforwardly generalized to the case n > 2; except in degen-
erate cases, sending two weights to infinity together will lead to a regularization penalty
approaching infinity.

Theorem 13 immediately leads to the following corollary.

2. Setting x = (1, 1) is in some sense without loss of generality as the prediction and dropout regularization
values for any w, x pair are identical to the values for w̃, 1 when each w̃i = wixi.
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Corollary 14 For a distribution D with support in R2, if there is an x with positive prob-
ability under D such that x1 6= 0 and x2 6= 0, then there is a w such that for any q ∈ (0, 1),
the regularization penalty regD,q(ωw) goes to infinity with ω.

For any w ∈ R2 with both components nonzero, there is a distribution D over R2 with
bounded support such that the regularization penalty regD,q(ωw) goes to infinity with ω.

Together Theorems 8 and 13 demonstrate that regD,q(w) is not convex (see also Fig-
ure 1). In fact, regD,q(w) cannot be approximated to within any factor by a convex function,
even if a dependence on n and p is allowed. For example, Theorem 8 shows that, for all
D with bounded support, both regD,q(0, ω) and regD,q(ω, 0) remain bounded as ω goes to
infinity, whereas Theorem 13 shows that there is such a D such that regD,q(ω/2, ω/2) is
unbounded as ω goes to infinity.

Theorem 13 relies on the wixi products having different signs. The following shows
that regD,q(w) does remain bounded when multiple components of w go to infinity if the
corresponding features are compatible in the sense that the signs of wixi are always in
alignment.

Theorem 15 Let w be a weight vector and D be a discrete distribution such that wixi ≥ 0
for each index i and all x in the support of D. The limit of regD,q(ωw) as ω goes to infinity
is bounded by ln(2)(1− p)Px∼D(w · x 6= 0).

The proof of Theorem 15 (which is Appendix C) easily generalizes to alternative condi-
tions where ω → −∞ and/or wixi ≤ 0 for each i ≤ k and x in the support of D.

Taken together Theorems 15 and 13 give an almost complete characterization of when
multiple weights can go to infinity while maintaining a finite dropout regularization penalty.

3.1 Discussion

The bounds in the preceding theorems and propositions suggest several properties of the
dropout regularizer. First, the 1 − p factors indicate that the strength of regularization
grows linearly with dropout probability q = 1 − p. Second, the Px∼D(xi 6= 0) factors
in several of the bounds suggest that weights for rare features are encouraged by being
penalized less strongly than weights for frequent features. This preference for rare features
is sometimes seen in algorithms like the Second-Order Perceptron (Cesa-Bianchi et al.,
2002) and AdaGrad (Duchi et al., 2011). Wager et al. (2013) discussed the relationship
between dropout and these algorithms, based on approximation (8). Empirical results
indicate that dropout performs well in domains like document classification where rare
features can have high discriminative value (Wang and Manning, 2013). The theorems
of this section suggest that the exact dropout regularizer minimally penalizes the use of
rare features. Finally, Theorem 13 suggests that dropout limits co-adaptation by strongly
penalizing large weights if the wixi products often have different signs. On the other hand,
if the wixi products usually have the same sign, then Proposition 12 indicates that dropout
encourages increasing the smaller weights to help share the prediction responsibility. This
intuition is reinforced by Figure 1, where the dropout penalty for two large weights is much
less then a single large weight when the features are highly correlated.
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4. A Definition of Separation

Now we turn to illustrating the inductive bias of dropout by contrasting it with L2 regu-
larization. For this, we will use a definition of separation between pairs of regularizers.

Each regularizer has a regularization parameter that governs how strongly it regularizes.
If we want to describe qualitatively what is preferred by one regularizer over another, we
need to control for the amount of regularization.

Let erP (w) = Pr(x,y)∼P (sign(w · x) 6= y), and recall that w∗ and v are the minimizers
of the dropout and L2-regularized criteria respectively.

Say that sources P andQ C-separate L2 and dropout if there exist q and λ such that both
erP (w

∗(P,q))
erP (v(P,λ))

> C and
erQ(v(Q,λ))
erQ(w∗(Q,q)) > C. Say that indexed families P = {Pα} and Q = {Qα}

strongly separate L2 and dropout if pairs of distributions in the family C-separate them for
arbitrarily large C. We provide strong separations, using both n = 2 and larger n.

5. A Source Preferred by L2

Consider the joint distribution P5 defined as follows3:

x1 x2 y Pr(x, y)

10 −1 1 1/3
1.1 −1 1 1/3
−1 1.1 1 1/3

(12)

This distribution has weight vectors that classify examples perfectly (the green shaded
region in Figure 2). For this distribution, optimizing an L2-regularized criterion leads
to a perfect hypothesis4, while the weight vectors optimizing the dropout criterion make
prediction errors on one-third of the distribution.

The intuition behind this behavior for the distribution described in (12) is that weight
vectors that are positive multiples of (1, 1) classify all of the data correctly. However,
with dropout regularization the (10,−1) and (1.1,−1) data points encourage the second
weight to be negative when the first component is dropped out. This negative push on
the second weight is strong enough to prevent the minimizer of the dropout-regularized
criterion from correctly classifying the (−1, 1.1) data point. Figure 2 illustrates the loss,
dropout regularization, and dropout and L2 criterion for this data source.5

3. Although several of our sources have all positive instances, that is not essential for the construction.
The probability on each (x, y) example can be split evenly between the original (x, y) and its negatively-
labeled counterpart (−x,−y). Note that for any w, both (x, y) and its counterpart (−x,−y) make the
same contribution to both the loss and dropout regularization. After splitting all of the examples, both
labels will be equally represented in the distribution. Furthermore, with such paired examples, convexity
implies that the weight on any non-dropped out bias input will be 0 when the criterion is minimized.

4. Having the labels of this distribution be consistent with a linear threshold function eases discussion, but
is not essential. Adding a fourth inconsistent point with sufficiently small probability would preserve the
property that the L2-regularized criterion leads to a minimum error linear threshold hypothesis while
the error of dropout’s hypothesis is significantly larger.

5. The contours in this and the subsequent figures are not evenly spaced, but chosen to emphasize interesting
aspects of the surfaces while minimizing clutter.
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Figure 2: Using data favoring L2 in (12). The expected loss is plotted in the upper-left, the
dropout regularizer in the upper-right, the L2 regularized criterion as in (5) in the
lower-left and the dropout criterion as in (3) in the lower-right, all as functions
of the weight vector. The Bayes-optimal weight vectors are in the green region,
and “×” marks show the optimizers of the criteria.
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We first show that distribution P5 of (12) is compatible with mild enough L2 regu-
larization. Recall that v(P5, λ) is weight vector found by minimizing the L2 regularized
criterion (5).

Theorem 16 If 0 < λ ≤ 1/50, then erP5(v(P5, λ)) = 0 for the distribution P5 defined
in (12).

In contrast, the w∗(P5, q) minimizing the dropout criterion (3) has error rate at least
1/3.

Theorem 17 If q ≥ 1/3 then erP5(w∗(P5, q)) ≥ 1/3 for the distribution P5 defined in (12).

The proofs of Theorem 16 and 17 are in Appendices D and E.

6. A Source Preferred by Dropout

In this section, consider the joint distribution P6 defined by

x1 x2 y Pr(x, y)

1 0 1 3/7
−1/1000 1 1 3/7

1/10 −1 1 1/7

(13)

The intuition behind this distribution is that the (1, 0) data point encourages a large weight
on the first feature. This means that the negative pressure on the second weight due to
the (1/10,−1) data point is much smaller (especially given its lower probability) than the
positive pressure on the second weight due to the (−1/1000, 1) example. The L2 regularized
criterion emphasizes short vectors, and prevents the first weight from growing large enough
(relative to the second weight) to correctly classify the (1/10,−1) data point. On the other
hand, the first feature is nearly perfect; it only has the wrong sign on the second example
where it is −ε = −1/1000. This means that, in light of Theorem 8 and Proposition 10,
dropout will be much more willing to use a large weight for x1, giving it an advantage for
this source over L2. The plots in Figure 3 illustrate this intuition.

Theorem 18 If 1/100 ≤ λ ≤ 1, then erP6(v(P6, λ)) ≥ 1/7 for the distribution P6 defined
in (13).

In contrast, the minimizer of the dropout criterion is able to generalize perfectly.

Theorem 19 If q ≤ 1/2, then erP6(w∗(P6, q)) = 0 for the distribution P6 defined in (13).

Theorems 18 and 19 are proved in Appendices F and G.

The results in this and the previous section show that the distributions defined in (12)
and (13) strongly separate dropout and L2 regularization. Theorem 19 shows that for
distribution P analyzed in this section erP (w∗(P, q)) = 0 for all q ≤ 1/2 while Theorem 18
shows that for the same distribution erP (v(P, λ) ≥ 1/7 whenever λ ≥ 1/100. In contrast,
when Q is the distribution defined in the previous section, Theorem 16 shows erQ(v(Q,λ)) =
0 whenever λ ≤ 1/50. For this same distribution Q, Theorem 17 shows that erQ(w∗(Q, q)) ≥
1/3 whenever q ≥ 1/3.
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Figure 3: For the source from (13) favoring the dropout, the expected loss is plotted in the
upper-left, the dropout regularizer in the upper-right, the expected loss plus L2

regularization as in (5) in the lower-left and the dropout criterion as in (3) in
the lower-right, all as functions of the weight vector. The Bayes-optimal weight
vectors are in the green region, and “×” marks show the optimizers of the criteria.
Note that the minimizer of the dropout criterion lies outside the middle-right plot
and is shown on the bottom plot (which has a different range and scale than the
others.)
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Figure 4: A plot of the L1 criterion with λ = 0.01 for distributions P5 defined in Section 5
(left) and P6 defined in Section 6 (right). As before, the Bayes optimal classifiers
are denoted by the region shaded in green and the minimizer of the criterion is
denoted with an x.

7. L1 Regularization

In this section, we show that the same P5 and P6 distributions that separate dropout from
L2 regularization also separate dropout from L1 regularization: the algorithm the minimizes

E(x,y)∼P (`(yw · x)) + λ||w||1. (14)

As in Sections 5 and 6, we set λ = 1/100. Figure 4 plots the L1 criterion (14) for the
distributions P5 defined in (12) and P6 defined in (13). Like L2 regularization, L1 regulariza-
tion produces a Bayes-optimal classifier on P5, but not on P6. Therefore the same argument
shows that these distributions also strongly separate dropout and L1 regularization.

8. Dropout and Co-adaptation

Hinton et al. (2012) and Srivastava et al. (2014) give evidence that dropout helps prevent
the co-adaptation of units in neural networks, encouraging individual units to learn simpler
functions of their inputs. In this section we provide a definition of co-adaptation and
illustrate how dropout training can restrict the co-adaptation of weights.

We say that two weights wi and wj are co-adapted in a weight vector w if either alone
increases the loss, but both together decrease the loss. More formally, let “w \ i” denote
vector w modified by replacing wi with 0, and “w \ i, j” denote the resulting vector when
both wi and wj are replaced by 0. If all of:

1. The loss of w is less than the loss of w \ i, j,

2. The loss of w \ i, j is less than the loss of w \ i, and
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3. The loss of w \ i, j is less than the loss of w \ j,

then we say that weights wi and wj are co-adapted in w.

For example, consider the case when features x1 and x2 tend to have the same sign, but
x1 is usually a little bigger than x2 when the label is +, and x2 tends to be larger when the
label is −. Then the difference x1−x2 usually has the same sign as the label, and making w1

large and w2 negative with a similar-magnitude is likely to decrease the loss. This is similar
to constructing the new good feature x1−x2 and giving it large weight. However, if neither
feature x1 nor feature x2 is strongly correlated with the label, then using a large magnitude
weight on just x1 or just x2 is likely to result in many badly misclassified examples, and
greater loss than if w1 and w2 were both set to zero. (Note that similar co-adaptation
situations arise when x1 and x2 have different signs, but their sum tends to have the same
sign, or tends to have the opposite sign, as the label.)

Theorem 13 shows that the dropout regularization penalty goes to infinity as the
opposite-signed weights given to x1 and x2 in the situation described. Furthermore, the
dropout penalty for weight vector w includes terms for the loss of w \ i and w \ j, so if
these grow too large, then w cannot be the minimizer of the dropout criterion. This sug-
gests that dropout training minimizes co-adaptation. The following example gives a more
concrete illustration of this behavior.

Consider the joint distribution P8 defined as follows:

x1 x2 y Pr(x, y)

10 9 1 0.64
9 10 −1 0.32

1.0 −0.35 1 0.03
−0.35 1.0 −1 0.01

(15)

The loss and dropout regularization for P8 are plotted in Figure 5. To obtain small loss,
the hypothesis must give weights a similar large magnitude with w1 positive while w2 is
negative. On the other hand, almost all of the probability is on the first two examples, and
giving the weights different signs satisfies the conditions of Theorem 13 for them, and the
dropout penalty quickly increases. The low probability points will also make the dropout
regularization for weight vectors w = (a, a) go to infinity as a goes to infinity, but the small
probabilities keeps the penalty small until a becomes very large (e.g. for w = (30, 30), the
penalty is still less than 0.4). Omitting these points has a nearly indistinguishable effect on
the first plots: their presence, as well as the different probabilities for the points, will be
more important later, when we introduce the alternative labeling P ′8.

The “checkerboard” pattern of the regularization in Figure 5 shows that common pat-
terns in the data can strongly shape the dropout regularizer, making it discriminate against
certain directions. In Figure 6 we plot the L1, L2, and dropout regularized criteria for
source P8, illustrating that the dropout regularizer forces the weight vector away from the
Bayes optimal region. In fact, the regularization is so strong that both weights are positive
at the minimizer of the dropout criterion.

We can verify that the minimizing v ≈ (2.8,−2.75) for the L2 criterion exhibits co-
adaptation. The loss of v is about 0.06, the loss of v \ 1 ≈ 15, the loss of w \ 2 ≈ 8, and the
loss of v \ 1, 2 = ln 2 ≈ 0.69. The co-adaptation is even more dramatic for the L1 criterion.
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Figure 5: Plots of the loss and p = 1/2 dropout regularization for distribution P8. Note
that the regularization penalty increases quickly when the weights have opposite
signs, but much more slowly when they have the same sign. In the loss plot, the
green region indicates the Bayes optimal classifiers.

On the other hand, the weight vector w∗ ≈ (0.035, 0.014) minimizing the dropout criterion
is not co-adapted. The losses of w∗ \ 1 and w∗ \ 2 are both greater than the loss of w∗, but
both are also less than the loss of w∗ \ 1, 2.

Although minimizing the dropout criterion fails to yield a Bayes optimal weight vector
for P8, the situation reverses when we consider the modified distribution P ′8 with the same
feature vectors and probabilities as P8, but with all all labels set to 1. When all the labels
are positive, the heavier points on the right pull the weight vector in that direction. If it is
pulled far enough, then the (-0.3, 1) point will be misclassified.

Since the dropout regularization penalty depends only on the instance probabilities and
not on the labels, P8 and P ′8 have the same regularization penalty function. The difference
is that P ′8 with its modified labels has low loss when both weights are large, a situation
compatible with the dropout regularization. See Figure 7 for plots of the loss and various
criteria for the modified P ′8 source.

The plots in Figures 6 and 7 show that distributions P8 and P ′8 also strongly separate
dropout from both L2 and L1 regularization. Since the two distributions have the same
marginal distribution over feature vectors (and thus use the same dropout regularization
penalty function), they provide vivid evidence of how dropout shapes the landscape, en-
couraging some directions while heavily penalizing others.

9. A High-Dimensional Source Preferred by L2

In this section we exhibit a source where L2 regularization leads to a perfect predictor while
dropout regularization creates a predictor with a constant error rate.
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Figure 6: Plots of the criteria and their minimizers for the source P8. The L2 and L1 criteria
with λ = 1/100 are plotted on the right, and the p = 1/2 dropout criterion at the
same scale and “zoomed in” are shown on the left. As before, the green region
indicates the Bayes optimal classifiers.
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Figure 7: Plots of the loss and various criteria and minimizers for the source P ′8, the mod-
ification of P8 where all the labels are set to 1. As before, p = 1/2 for dropout,
λ = 1/100 for the other regularizers, and the green region indicates the Bayes
optimal classifiers.
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Consider the source P9 defined as follows. The number n of features is even. All examples
are labeled 1. A random example is drawn as follows: the first feature takes the value 1
with probability 9/10 and −1 otherwise, and a subset of exactly n/2 of the remaining n− 1
features (chosen uniformly at random) takes the value 1, and the remaining n/2−1 of those
first n− 1 features take the value −1.

A majority vote over the last n− 1 features achieves perfect prediction accuracy. This
is despite the first feature (which does not participate in the vote) being more strongly
correlated with the label than any of the voters in the optimal ensemble. Dropout, with
its bias for single good features and discrimination against multiple disagreeing features,
puts too much weight on this first feature. In contrast, L2 regularization leads to the Bayes
optimal classifier by placing less weight on the first feature than on any of the others.

Theorem 20 If λ ≤ 1
30n then the weight vector v(P9, λ) optimizing the L2 criterion has

perfect prediction accuracy: erP9(v(P9, λ)) = 0.

When n > 125, dropout with q = 1/2 fails to find the Bayes optimal hypothesis. In
particular, we have the following theorem.

Theorem 21 If the dropout probability q = 1/2 and the number of features is an even
n > 125 then the weight vector w∗(P9, q) optimizing the dropout criterion has prediction
error rate erP9(w∗(P9, q)) ≥ 1/10.

We conjecture that dropout fails on P9 for all n ≥ 4. As evidence, we analyze the n = 4
case.

Theorem 22 If dropout probability q = 1/2 and the number of features is n = 4 then the
minimizer of the dropout criteria w∗(P9, q) has has prediction error rate erP9(w∗(P9, q)) ≥
1/10.

Theorems 20, 21 and 22 are proved in Appendices H, I and J.

10. A High-Dimensional Source Preferred by Dropout

Define the source P10, which depends on (small) positive real parameters η, α, and β,
as follows. A random label y is generated first, with both of +1 and −1 equally likely.
The features x1, ..., xn are conditionally independent given y. The first feature tends to
be accurate but small: x1 = αy with probability 1 − η, and is −αy with probability η.
The remaining features are larger but less accurate: for 2 ≤ i ≤ n, feature xi is y with
probability 1/2 + β, and −y otherwise.

When η is small enough relative to β, the Bayes’ optimal prediction is to predict with the
first feature. When α is small, this requires concentrating the weight on w1 to outvote the
other features. Dropout is capable of making this one weight large while L2 regularization
is not.

Theorem 23 If q = 1/2, n ≥ 100, α > 0, β = 1/(10
√
n− 1), and η ≤ 1

2+exp(54
√
n)

, then

erP10(w∗(P10, q)) = η.
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Theorem 24 If β = 1/(10
√
n− 1), λ = 1

30n , α < βλ, and n is a large enough even number,
then for any η ∈ [0, 1], erP10(v(P10, λ)) ≥ 3/10.

Theorems 23 and 24 are proved in Appendices K and L.

Let ñ be a large enough even number in the sense of Theorem 24. Let Pη be the distri-
bution defined at the start of Section 10 with number of features n = ñ, β = 1/(10

√
n− 1),

α = 1/(300n
√
n), and 0 < η < 1/(2 + exp(54

√
n)) is a free parameter. Theorem 23 shows

that erPη(w∗(Pη, q)) = η when dropout probability q = 1/2. For this same distribution,
Theorem 24 shows erPη(v(Pη, λ)) ≥ 3/10 when λ = 1/30n. Therefore

erPη(w∗(Pη, 1/2))

erPη(v(P, 1/30ñ))

goes to 0 as η → 0.

The distribution defined at the start of Section 9, which we call Q here, provides con-
trasting behavior when n = ñ. Theorem 21 shows that the error erQ(w∗(Q, 1/2)) ≥ 1/10
while Theorem 20 shows that erQ(v(Q, 1/30ñ) = 0. Therefore the Pη and Q distributions
strongly separate dropout and L2 regularization for parameters q = 1/2 and λ = 1/30n.

11. Conclusions

We have built on the interpretation of dropout as a regularizer in Wager et al. (2013) to prove
several interesting properties of the dropout regularizer. This interpretation decomposes the
dropout criterion minimized by training into a loss term plus a regularization penalty that
depends on the feature vectors in the training set (but not the labels). We started with
a characterization of when the dropout criterion has a unique minimum, and then turn to
properties of the dropout regularization penalty. We verified that the dropout regularization
penalty has some desirable properties of a regularizer: it is 0 at the zero vector, and the
contribution of each feature vector in the training set is non-negative.

On the other hand, the dropout regularization penalty does not behave like standard
regularizers. In particular, we have shown:

1. Although the dropout “loss plus regularization penalty” criterion is convex in the
weights w, the regularization penalty imposed by dropout training is not convex.

2. Starting from an arbitrary weight vector, any single weight can go to infinity while
the dropout regularization penalty remains bounded.

3. In some cases, multiple weights can simultaneously go to infinity while the regular-
ization penalty remains bounded.

4. The regularization penalty can decrease as weights increase from 0 when the features
are correlated.

These are in stark contrast to standard norm-based regularizers that always diverge as any
weight goes to infinity, and are non-decreasing in each individual weight.
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In most cases the dropout regularization penalty does diverge as multiple weights go to
infinity. We characterize when sending two weights to infinity causes the dropout regular-
ization penalty to diverge, and when it will remain finite. In particular, dropout is willing
to put a large weights on multiple features if the wixi products tend to have the same sign.

The form of our analytical bounds suggest that the strength of the regularizer grows
linearly with the dropout probability q, and provide additional support for the claim (Wager
et al., 2013) that dropout favors rare features.

We found it important to check our intuition by working through small examples. To
make this more rigorous we needed a definition of when a source favored dropout regular-
ization over a more standard regularizer like L2. Such a definition needs to deal with the
strength of regularization, a difficulty complicated by the fact that dropout regularization is
parameterized by the dropout probability q ∈ [0, 1] while L2 regularization is parameterized
by λ ∈ [0,∞]. Our solution is to consider pairs of sources P and Q. We then say the pair
separates the dropout and L2 if dropout with a particular parameter q performs better then
L2 with a particular parameter λ on source P , while L2 (with the same λ) performs better
than dropout (with the same q) on source Q. Our definition uses generalization error as
the most natural interpretation of “performs better”.

Sections 5 through 10 are devoted to proving that dropout and L2 are strongly separated
by certain pairs of distributions. Section 7 shows that dropout and L1 regularization are
also strongly separated, and Section 8 describes a separation illustrating dropout’s bias
against co-adaptation of weights. Proving strong separation is non-trivial even after one
finds the right distributions. This is due to several factors: the minimizers of the criteria do
not have closed forms, we wish to prove separation for ranges of the regularization values,
and the binomial distributions induced by dropout are not amenable to exact analysis.
Despite these difficulties, the separation results reinforce the intuition that dropout is more
willing to use a large weight in order to better fit the training data than L2 regularization.
However, if two features often have both the same and different signs (as in Theorem 13)
then dropout is less willing to put even moderate weight on both features.

As a side benefit of these analyses, the plots in Figure 2 and Figure 3 provide a dramatic
illustration of the dropout regularizer’s non-convexity and its preference for making only
a single weight large, and the checkerboard pattern of the dropout regularizer in Figure 5
illustrates its bias against co-adaptation of weights. This is consistent with the insight
provided by Theorems 13 and 15.

Some feature transformations appear to have substantially different effects on dropout
and L2. For example, suppose we replace a boolean feature xi with a batch of features
xi,1, ..., xi,k, and,

• when xi = 0, we set xi,1 = ... = xi,k = 0 and

• when xi = 1, we set xi,j′ = 1 for j′ chosen uniformly at random from {1, ..., k}, and
xi,j = 0 for j 6= j′.

We can think of xi,1, ..., xi,k as a “partition” of xi. This kind of transformation can arise in
document classification when words have alternate spellings, or a single feature represent-
ing a set of synonyms is split into features for the individual words (assuming that each
document uses only one of the synonyms).
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The inductive bias of dropout is apparently not affected by such feature partitioning.
For any weight vector w on the original features, the modified weight vector which copies wi
for each feature in the partition of xi makes the same predictions and has the same dropout
regularization penalty. On the other hand, the L2 regularization penalty increases. If an
algorithm creates k copies of the weight wi to have the same behavior on the modified data,
this increases the penalty arising from this feature by a factor of k, providing an incentive
for the algorithm to use other features instead.

Dropout’s relative affinity with partitioned features could be another basis of separation
with L2. It suggests that dropout might be able to more effectively exploit rare primitive
features, while L2 regularization benefits from having more frequent higher-level features.
This is a potential subject for future research.

Now suppose that, instead of partitioning xi, we set xi,1, ..., xi,k to be k copies of xi.
In this case, an L2-regularized algorithm could split weight wi into k parts, putting weight
wi/k on each copy of xi. This will classify the transformed data the same way as the
original data while reducing the L2 regularization cost of using the feature by a factor of k
(since

∑
j(wi/k)2 = (1/k)w2

i ). Although such feature cloning can also reduce the dropout
regularization penalty (see Figure 1 and Proposition 12), we conjecture that the reduction
is at most an additive constant.

If this conjecture were true, then L2-regularized algorithms make heavier use of du-
plicated features than dropout-regularized algorithms. This in turn suggest that dropout
confers resistance to paying undue attention to groups of mostly redundant features. This
possibility is another potential subject for future research.

The aim of our analysis has been to aid general understanding of what kinds of prob-
lems are well-suited to dropout. A more authoritative idea of whether dropout confers an
advantage in a particular case can be gained experimentally.

Linear classifiers are often learned with a bias term, creating a classifier of the form
sign(w · x − b). Here the bias b is also learned, but not regularized. We have focused on
the case b = 0 to keep the analysis simple, and our constructions can be easily modified so
that the optimal bias is 0 (see footnote 3). The effect of a non-zero bias term on the general
properties in Section 3 can be more subtle, and is a potential subject for future research.

Our analysis is for the logistic regression case corresponding to a single output node. It
would be very interesting to have similar analysis for multi-layer neural networks. However,
dealing with non-convex loss of such networks will be a major challenge. Another open
problem suggested by this work is how the definition of separation can be used to gain
insight about other regularizers and settings.
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Appendix A. Proof of Proposition 12

Proposition 12. Fix p = 1/2, w2 > 0, and an arbitrary x ∈ (0,∞)2. Let D
be the distribution concentrated on x. Then regD,q(w1, w2) locally decreases as
w1 increases from 0.

First, we show that assuming x = (2, 2) is without loss of generality. When D concentrates
all of its probability on a single x, let us denote regD,1/2 by regx,1/2. Since anyplace w1

appears in the expression for regx,1/2, it is multiplied by x1, if we multiply w1 by some
constant c and divide x1 by c, we do not change w1x1, and therefore do not change regx,1/2.
The same holds for w2. Thus

regx,1/2(w) = reg(2,2),1/2(w1x1/2, w2x2/2).

If we change variables and let w̃1 = w1x1/2 and w̃2 = w2x2/2, then since x1 and x2 are both
positive, w̃2 is positive iff w2 is, and regx,1/2(w) is increasing with w1 iff reg(2,2),1/2(w̃) is
increasing with w̃1.

We continue assuming x = (2, 2). It suffices to show ∂regD,q(w1, w2)/∂w1|w1=0 < 0.
This derivative is

3ew2 + e−3w2 − 3e−w2 − e3w2

2(ew2 + e−w2)(e2w2 + e−2w2)
. (16)

The sign depends only on the numerator, which is 0 when w2 = 0. The derivative of the
numerator with respect to w2 is 3ew2−3e−3w2 +3e−w2−3e3w2 , which is negative for w2 > 0,
since ez + e−z is an increasing function in z. Thus the numerator in (16) is decreasing in
w2. Therefore (16) is negative when w2 > 0, and the regularization penalty is (locally)
decreasing as w1 increases from 0.

(Note: Proposition 12 may be generalized with slight modifications to apply whenever
x has two nonzero components. What is needed is that x1w1 and x2w2 have the same sign.
For example, if x1 is negative but x2w2 is positive, then moving w1 from 0 in the negative
direction decreases regD,q(w).)

Appendix B. Proof of Theorem 13

Theorem 13. Fix an arbitrary distributionD with support in R2, weight vector
w ∈ R2, and non-dropout probability p. If there is an x with positive probability
under D such that w1x1 and w2x2 are both non-zero and have different signs,
then the regularization penalty regD,q(ωw) goes to infinity as ω goes to ±∞.

Fix an x satisfying the conditions of the theorem.

regD,q(ωw) ≥ D(x)Eν

(
ln

(
exp(−ωw·(x+ν)

2 ) + exp(ωw·(x+ν)
2 )

exp(−ωw·x2 ) + exp(ωw·x2 )

))

> D(x)Eν

(
ln

(
exp( |ωw·(x+ν)|

2 )

2 exp( |ωw·x|2 )

))

= D(x)Eν

(
− ln(2) +

|ωw · (x + ν)|
2

− |ωw · x|
2

)
. (17)

3427



Helmbold and Long

We now examine the expectation over ν of the term that depends on ν. We assume that
|w1x1| ≥ |w2x2| so |w · x| = |w1x1| − |w2x2|; the other case is symmetrical.

Eν(|ωw · (x + ν)|) = |ω|
(
p2|w · x/p|+ p(1− p)|w1x1/p|+ p(1− p)|w2x2/p|

)
= |ω|

(
p|w · x|+ (1− p)(|w1x1| − |w2x2|+ |w2x2|) + (1− p)|w2x2|

)
= |ω|(|w · x|+ 2(1− p)|w2x2|).

Plugging this into (17) gives:

regD,q(ωw) > D(x) (− ln 2 + (1− p)|ω||w2x2|)

which goes to infinity as ω goes to ±∞.

Appendix C. Proof of Theorem 15

Theorem 15. Let w be a weight vector and D be a discrete distribution such
that wixi ≥ 0 for each index i and all x in the support of D. The limit of
regD,q(ωw) as ω goes to infinity is bounded by ln(2)(1− p)Px∼D(w · x 6= 0).

First note that If w and D are such that w · x = 0 for all x in the support of D, then
regD,q(w) = regD,q(ωw) = 0. We now analyze the general case.

regD,q(ωw) = Ex,ν

(
ln

(
exp(ωw·(x+ν)

2 ) + exp(−ωw·(x+ν)
2 )

exp(ωw·x2 ) + exp(−ωw·x2 )

))

= Ex,ν

(
ln

(
exp(ωw·(x+ν)2 )(1 + exp(−ωw · (x + ν)))

exp(ωw·x2 )(1 + exp(−ωw · x))

))
= Ex,ν

(
(ωw · (x + ν)/2) + ln (1 + exp (−ωw · (x + ν)))

− (ωw · x/2)− ln (1 + exp (−ωwx))
)
. (18)

Of the four terms inside the expectation in Equation (18), the first and third cancel
since the expectation of ν is 0. Therefore:

regD,q(ωw) = Ex

(
Eν

(
ln(1 + exp(−ωw · (x + ν)))− ln(1 + exp(−ωwx))

))
. (19)

Define nez(w,x) to be the number of indices i where wixi 6= 0. We now consider cases
based on nez(w,x).

Whenever nez(w,x) = 0 then both w · x = 0 and w · (x + ν) = 0. Therefore the
contribution of these x to the expectation in (19) is ln(2)− ln(2) = 0.

If nez(w,x) > 0 then w · x > 0 (since each wixi ≥ 0), and the second term of (19)
goes to zero as ω goes to infinity. The first term of (19) also goes to zero, unless all of the
nez(w,x) components where wixi > 0 are dropped out. If they are all dropped out, then
the first term becomes ln(2). The probability that all nez(w,x) non-zero components are
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simultaneously dropped out is (1− p)nez(w,x). With this reasoning we get from (19) that:

lim
ω→∞

regD,q(ωw)

=
n∑
k=1

Px∼D(nez(w,x) = k)
(

ln(2)(1− p)k
)

(20)

≤
n∑
k=1

Px∼D(nez(w,x) = k) (ln(2)(1− p))

= ln(2)(1− p)P(w · x 6= 0)

as desired.

(Note that Equation 20 gives a precise, but more complex expression for the limit.)

Appendix D. Proof of Theorem 16

Theorem 16. If 0 < λ ≤ 1/50, then erP5(v(P5, λ)) = 0 for the distribution P5

defined in (12).

To keep the notation clean let us abbreviate P5 as just P throughout this proof.

By scaling the L2 criterion we can obtain cancellation in the expectation. Let v be
weight vector found by minimizing the following L2 regularized criterion J :

J(w) = 3
(
E(x,y)∼P (`(y(w · x))) + (λ/2)||w||2

)
. (21)

Note the factor of 3 is to simplify the expressions and doesn’t affect the minimizing v.

We will prove Theorem 16 with a series of lemmas.

But first, let’s take some partial derivatives:

∂J

∂w1
=

−10

1 + exp(10w1 − w2)
+

−1.1

1 + exp(1.1w1 − w2)
+

1

1 + exp(−w1 + 1.1w2)
+ 3λw1

(22)

∂J

∂w2
=

1

1 + exp(10w1 − w2)
+

1

1 + exp(1.1w1 − w2)
+

−1.1

1 + exp(−w1 + 1.1w2)
+ 3λw2.

(23)

We will repeatedly use the following basic, well-known, lemma.

Lemma 25 For any convex, differentiable function ψ defined on Rn with a unique mini-
mum w∗, for any w ∈ Rn, if g(w) is the gradient of ψ at w then w∗ is contained in the
closed halfspace whose separating hyperplane goes through w, and whose normal vector is
−g(w); i.e., w∗ · g(w) ≤ w · g(w). Furthermore, if g(w) 6= 0 then w∗ · g(w) < w · g(w).

Now we’re ready to start our analysis of P .

Lemma 26 If 0 ≤ λ, the optimizing v1 is positive.
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Proof: By Lemma 25, it suffices to show that there is a point (0, a2) where both ∂J
∂w1

∣∣
(0,a2)

<

0 and ∂J
∂w2

∣∣
(0,a2)

= 0.

From Equation (22):

∂J

∂w1

∣∣∣∣∣
(0,a2)

=
−11.1

1 + exp(−a2)
+

1

1 + exp(1.1a2)

and each term is decreasing as a2 increases. Since it is negative when a2 = −2, we have
∂J
∂w1

∣∣∣
(0,a2)

< 0 for all a2 > −2. So, to prove the lemma, if suffices to show that there is a

a2 ∈ (−2,∞) such that the other derivative ∂J
∂w2

∣∣∣
(0,a2)

= 0.

From equation (23):

∂J

∂w2

∣∣∣
(0,a2)

=
2

1 + exp(−a2)
+

−1.1

1 + exp(1.1a2)
+ 3λa2

and each term is continuously increasing in a2. When a2 = −2, ∂J
∂w2

∣∣∣
(0,a2)

is negative. On

the other hand, ∂J
∂w2

∣∣
(0,0)

is positive. Therefore for some a2 ∈ (−2, 0) we have ∂J
∂w2

∣∣
(0,a2)

= 0

as desired.

Lemma 27 There is a real a > 0 such that

∂J(w)

∂w1

∣∣∣∣∣
(a,a)

+
∂J(w)

∂w2

∣∣∣∣∣
(a,a)

= 0.

Proof: Applying (22) and (23), we get

b
def
=
∂J(w)

∂w1

∣∣∣∣∣
(a,a)

+
∂J(w)

∂w2

∣∣∣∣∣
(a,a)

=
−9

1 + exp(9a)
+

−0.2

1 + exp(a/10)
+ 6λa.

Since b is negative when a = 0 and is a continuous function of a, and lima→∞ b > ∞, the
lemma holds.

Lemma 28 v1 ≥ v2.

Proof: Let a be the value from Lemma 27, and let g = (g1, g2) be the gradient of J at
(a, a). Lemma 25 implies that v lies in the halfspace through (a, a) in the direction of −g.
Lemma 27 implies that

g1 =
∂J(w)

∂w1

∣∣∣∣∣
(a,a)

= −∂J(w)

∂w2

∣∣∣∣∣
(a,a)

= −g2.

Examination of the derivatives (22) and (23) at (a, a) shows that the first term of (22) is
negative and the first term of (23) is positive while the last three terms match (although
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in a different order). Therefore g1 < 0 and g2 = −g1 is positive. Applying Lemma 25
completes the proof.

Lemma 28 implies that v correctly classifies (10,−1) and (11/10,−1). It remains to
show that v correctly classifies (−1, 11/10), that is, that v1 is not too much bigger than v2.

Lemma 29 If v2 ≥ 0.6 and λ > 0 then v1 < 11v2/10.

Proof: Combining ∂J
∂w1

∣∣∣
v

= 0 with (22), we get

3λv1 =
10

1 + exp(10v1 − v2)
+

1.1

1 + exp(1.1v1 − v2)
+

−1

1 + exp(−v1 + 1.1v2)

and, similarly,

3λv2 =
−1

1 + exp(10v1 − v2)
+

−1

1 + exp(1.1v1 − v2)
+

1.1

1 + exp(−v1 + 1.1v2)
.

Thus

3λ(10v1− 11v2) =
111

1 + exp(10v1 − v2)
+

22

1 + exp(1.1v1 − v2)
− 22.1

1 + exp(−v1 + 1.1v2)
. (24)

Assume for contraction that v1 ≥ 11v2/10. Then 10v1− v2 ≥ 10v2, 1.1v1− v2 ≥ 0.21v2, and
−v1 + 1.1v2 ≤ 0, so

3λ(10v1 − 11v2) ≤
111

1 + exp(10v2)
+

22

1 + exp(0.21v2)
− 11.05.

However, 10v1 − 11v2 ≥ 0 and (since v2 ≥ 0.6) the RHS is negative, giving the desired
contradiction.

Lemma 30 If 0 < λ ≤ 1/50 then v2 ≥ 0.6.

Proof: It suffices to show that there is a point (x, 0.6) where the partial w.r.t. w1 is 0 and
the partial w.r.t w2 is negative.

∂J

∂w1

∣∣∣
(x,0.6)

=
−10

1 + exp(10x− 0.6)
+

−1.1

1 + exp(1.1x− 0.6)
+

1

1 + exp(−x+ 0.66)
+ 3λx

and is increasing in x and λ (assuming x > 0) and becomes positive as x goes to infinity. It
is negative when evaluated at x = 0.6 and λ = 1/50, so for all λ ≤ 1/50 there is an x > 0.6
such that ∂J/∂w+

∣∣
(x,1)

= 0.

∂J

∂w2

∣∣∣
(x,0.6)

=
1

1 + exp(10x− 0.6)
+

1

1 + exp(1.1x− 0.6)
+

−1.1

1 + exp(−x+ 0.66)
+ 1.8λ

and is decreasing in x and increasing in λ. It is negative when x = 0.6 and λ = 1/50, so it
will remain negative for all x > 0.6 and 0 ≤ λ ≤ 1/50, as desired.

So, we have shown that, if λ ≤ 1/50, then all examples are classified correctly by v,
which proves Theorem 16.
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Appendix E. Proof of Theorem 17

Theorem 17. If q ≥ 1/3 then erP5(w∗(P5, q)) ≥ 1/3 for the distribution P5

defined in (12).

Throughout this proof we also abbreviate P5 as just P .
For this subsection, let us define the scaled dropout criterion

J(w) = 3 E(x,y)∼P,r(`(y(w · (r� x)))) (25)

where the components of r are independent samples from a Bernoulli distribution with
parameter p = 1− q > 0. Again, the factor of 3 is to simplify the expectation and doesn’t
change the minimizing w. Let w~ be the minimizer of this J(w), so that Equation (4)
implies that the optimizer w∗ of the dropout criterion is pw~. Note that w∗ classifies an
example correctly if and only if w~ does.

Next, note that we may assume without loss of generality that both components of w~

are positive, since, if either is negative, one of (−1, 1.1) or (1.1,−1) is misclassified and we
are done.

We will prove Theorem 17 by proving that, when q ≥ 1/3, w~ misclassifies (−1, 1.1),
or, equivalently, that w~

1 > (11/10)w~
2 .

First, let us evaluate some partial derivatives. (Note that, if xi is dropped out, the value
of wi does not matter.)

∂J

∂w1
= (1− q)2

(
−10

1 + exp(10w1 − w2)
+

−1.1

1 + exp(1.1w1 − w2)
+

1

1 + exp(−w1 + 1.1w2)

)
(26)

+ (1− q)q
(

−10

1 + exp(10w1)
+

−1.1

1 + exp(1.1w1)
+

1

1 + exp(−w1)

)
∂J

∂w2
= (1− q)2

(
1

1 + exp(10w1 − w2)
+

1

1 + exp(1.1w1 − w2)
+

−1.1

1 + exp(−w1 + 1.1w2)

)
(27)

+ q(1− q)
(

1

1 + exp(−w2)
+

1

1 + exp(−w2)
+

−1.1

1 + exp(1.1w2)

)
.

The following is the key lemma. As before, it is useful since, for any w, if g(w) is
nonzero, then w~ lies in the open halfspace through w whose normal vector is the negative
gradient.

Lemma 31 For all a > 0 and q ≥ 1/3,

∂J

∂w2

∣∣∣∣∣
(a,10a/11)

> 0. (28)

Proof: We have

∂J

∂w2

∣∣∣∣∣
(a,10a/11)

=(1− q)2
(

1

1 + exp(100a/11)
+

1

1 + exp(21a/110)
+
−1.1

2

)

+ q(1− q)
(

2

1 + exp(−10a/11)
+

−1.1

1 + exp(a)

)
.
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Note that this derivative is positive if and only if

f(q, a)

=

(
1

1− q

)
∂J

∂w2

∣∣∣∣∣
(a,10a/11)

=q

(
11

20
+

2

1 + exp(−10a/11)
+

−1

1 + exp(21a/110)
+

−1

1 + exp(100a/11)
+
−11/10

1 + exp(a)

)
+

1

1 + exp(21a/110)
+

1

1 + exp(100a/11)
+
−11

20

is positive, as 0 < q < 1. Note that the terms multiplying q are increasing in a and sum to
0 when a = 0. On the other hand, the terms not multiplied by q are decreasing in a and
turn negative when a is just over 1/4. Thus both parts are positive when a ≤ 1/4. Note
that f(q, a) can be underestimated by underestimating a on the q-terms and overestimating
a on the other terms.

For 1/4 ≤ a ≤ 2,

f(q, a)

≥ q
(

11

20
+

2

1 + exp(−10/44)
+

−1

1 + exp(21/440)
+

−1

1 + exp(100/44)
+

−11/10

1 + exp(1/4)

)
+

1

1 + exp(42/110)
+

1

1 + exp(200/11)
+
−11

20

≥ 0.5q − 0.15

and is positive whenever q ≥ 1/3.
For a ≥ 2,

f(q, a)

≥ q
(

11

20
+

2

1 + exp(−20/11)
+

−1

1 + exp(42/110)
+

−1

1 + exp(200/11)
+
−11/10

1 + exp(2)

)
+
−11

20

≥ 1.7q − 11/20

and is also positive whenever q ≥ 1/3.

Proof of Theorem 17: Let g = (g1, g2) be the gradient of J at (w~
1 , 10w~

1 /11).
Lemma 31 shows g is not 0, so by convexity

w~ · g < (w~
1 , 10w~

1 /11) · g

which implies
w~
2 g2 < (10w~

1 /11) g2.

Since g2 > 0 (Lemma 31), this implies

w~
2 < (10w~

1 /11)

and the (−1, 11/10) example is misclassified by w~, and therefore by w∗, completing the
proof.
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Appendix F. Proof of Theorem 18

Theorem 18. If 1/100 ≤ λ ≤ 1, then erP6(v(P6, λ)) ≥ 1/7 for the distribution
P6 defined in (13).

To keep the notation clean, in this section let us abbreviate P6 simply as P .

As the reader might expect, we will prove Theorem 18 by proving that v fails to correctly
classify (1/10,−1), that is, by proving that v1 < 10v2.

We may assume that v1 > 0, since, otherwise, (1, 0) is misclassified.

To obtain cancellation in the expectation, we work with the scaled L2 criterion

J(w) = 7E(x,y)∼P (`(y(w · x))) + (7λ/2)||w||2. (29)

and let v(P, λ) be the vector minimizing this J , which we often abbreviate as simply v,
leaving it implicitly a function of λ. Note that this scaling of the criteria does not change
the minimizing v.

Taking derivatives,

∂J

∂w1
=

−3

1 + exp(w1)
+

3ε

1 + exp(−εw1 + w2)
+

−0.1

1 + exp(w1/10− w2)
+ 7λw1 (30)

∂J

∂w2
=

−3

1 + exp(−εw1 + w2)
+

1

1 + exp(w1/10− w2)
+ 7λw2. (31)

Lemma 32 If either: λ ≥ 1/100 and a ≥ 1/3, or λ ≥ 1/4 and a ≥ 1/15 then

∂J(w)

∂w1

∣∣∣
(10a,a)

> 0.

Proof: We have

∂J(w)

∂w1

∣∣∣∣∣
(10a,a)

=
−3

(1 + exp(10a))
+

3ε

1 + exp((1− 10ε)a)
+
−1

20
+ 70λa

>
−3

(1 + exp(10a))
+
−1

20
+ 70λa.

Each term of the RHS is non-decreasing in a and λ, and the RHS is positive when either
λ = 1/100 and a = 1/3 or λ = 1/4 and a = 1/15.

To apply this, we want to show that v2 is large enough, which we do next.

Lemma 33 If λ ≤ 1/4 then v2 ≥ 1/3 and if λ ≤ 1 then v2 ≥ 1/15.

Proof: Assume to the contrary that λ ≤ 1/4 but v2 < 1/3. From (31), and using that
v1 > 0, we have

∂J

∂w2

∣∣∣∣∣
v

<
−3

1 + exp(v2)
+

1

1 + exp(−v2)
+ 7λv2, (32)
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x1r1 x2r2 y seven times probability w~ · (r� x) over-estimate

0 0 1 3q +3q2 +q2 0
1 0 1 3(1− q) ∞
0 1 1 3q(1− q) w2

−1/1000 0 1 3q(1− q) 0
−1/1000 1 1 3(1− q)2 w2

0 −1 1 q(1− q) ∞
1/10 0 1 q(1− q) ∞
1/10 −1 1 (1− q)2 ∞

Table 2: Seven times the dropout distribution. The three probability sub-columns corre-
spond to the original examples (1,0), (-1/1000, 1), (1/10, -1), and the final column
is the over-estimate used in Lemma 36.

a bound that is increasing in v2 and λ. Since ∂J
∂w2

∣∣∣
v

= 0, the bound must be positive.

However, when v2 ≤ 1/3 and λ ≤ 1/4, it is negative, giving the desired contradiction.
Since the bound (32) is also negative at v2 = 1/15 and λ = 1, a similar contradiction

proves the other half of the lemma.
Proof: (of Theorem 18): Lemmas 32 and 33 imply that (10v2, v2) is not the minimizing

v (when λ ≥ 1/100), so by convexity,

J(10v2, v1) +
(
(v1, v2)− (10v2, v2)

)
· ∇J(10v2, v2) < J(v1, v2) (33)

(v1− 10v2)
∂J

∂w2

∣∣∣∣∣
(10v2,v2)

< 0. (34)

If 1/100 ≤ λ ≤ 1/4 then Lemma 33 shows that v2 ≥ 1/3 and if 1/4 ≤ λ ≤ 1 then it shows

that v2 ≥ 1/15. In either case, Lemma 32 shows that that ∂J
∂w2

∣∣∣
(10v2,v2)

> 0. Therefore,

v1 < 10v2

and (0.1,−1) is misclassified by v, completing the proof.

Appendix G. Proof of Theorem 19

Theorem 19. If q ≤ 1/2, then erP6(w∗(P6, q)) = 0 for the distribution P6

defined in (13).

In this proof, let us abbreviate P6 with just P , and use ε to denote 1/1000.
For this section, let us define the scaled dropout criterion

J(w) = 7E(x,y)∼P,r(`(y(w · (r� x)))), (35)

where, as earlier, the components of r are independent samples from a Bernoulli distribution
with parameter p = 1−q = 1/2 > 0. (Note that, similarly to before, scaling up the objective
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function by 7 does not change the minimizer of J .) See Table 2 for a tabular representation
of the distribution after dropout. Let w~ be the minimizer of J , so that w∗ = pw~ (see
Equation (4)).

First, let us evaluate some partial derivatives (note that 1− q = (1− q)2 + q(1− q)).

∂J

∂w1
= (1− q)2

(
−3

1 + exp(w1)
+

3ε

1 + exp(−εw1 + w2)
+

−0.1

1 + exp(0.1w1 − w2)

)
(36)

+ (1− q)q
(

−3

1 + exp(w1)
+

3ε

1 + exp(−εw1)
+

−0.1

1 + exp(0.1w1)

)
∂J

∂w2
= (1− q)2

(
−3

1 + exp(−εw1 + w2)
+

1

1 + exp(0.1w1 − w2)

)
(37)

+ q(1− q)
(

−3

1 + exp(w2)
+

1

1 + exp(−w2)

)
.

Let’s get started by showing that w~ correctly classifies (1, 0).

Lemma 34 w~
1 > 0.

Proof: As before, it suffices to show that there is a point (0, a2) where both ∂J
∂w1

∣∣
(0,a2)

< 0

and ∂J
∂w2

∣∣
(0,a2)

= 0.

From Equation (36):

∂J

∂w1

∣∣∣
(0,a2)

= (1− q)2
(
−3

2
+

3ε

1 + exp(a2)
+

−0.1

1 + exp(−a2)

)
+

(1− q)q
2

(−3.1 + 3ε)

which is decreasing in a2, and negative even as a2 approaches −∞ (recalling ε = 1/1000),

so ∂J
∂w1

∣∣∣
(0,a2)

is always negative.

Equation (37) implies

∂J

∂w2

∣∣∣
(0,a2)

= (1− q)2
(

−3

1 + exp(a2)
+

1

1 + exp(−a2)

)
+ q(1− q)

(
−3

1 + exp(a2)
+

1

1 + exp(−a2)

)
.

This is negative when a2 = 0, approaches 1− q as a2 goes to infinity, and is continuous, so

there is a a2 such that ∂J
∂w2

∣∣∣
(0,a2)

= 0. Since ∂J
∂w1

∣∣∣
(0,a2)

< 0, this proves the lemma.

Next, we’ll start to work on showing that w~ correctly classifies (−ε, 1).

Lemma 35 For all a > 1/10,

∂J

∂w1

∣∣∣∣∣
(a/ε,a)

> 0.

Proof: From (36), we have

∂J

∂w1

∣∣∣
(a/ε,a)

=(1− q)2
(

−3

1 + exp(a/ε)
+

3ε

1 + exp(0)
+

−0.1

1 + exp(0.1(a/ε)− a)

)
+ q(1− q)

(
−3

1 + exp(a/ε)
+

3ε

1 + exp(−a)
+

−0.1

1 + exp(a/10ε)

)
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which is positive if a > 1/10 as the positive terms (even with the ε factors) dominate the
negative ones.

Lemma 36
w~
2 > 1/4.

Proof: Assuming w1 ≥ 0, the estimates in Table 2 along with the facts that `(z) is positive
and decreasing show :

J(w) ≥ 3(1− q) ln(1 + exp(−w2)) + 6q ln(2) + q2 ln(2) (38)

which is decreasing in w2. If w~
2 ≤ 1/4, then bound (38) and the fact that w~

1 > 0
(Lemma 34) imply that

J(w~) ≥ 0.69q2 + 2.4q + 1.7.

On the other hand,
J(100, 2) ≤ −1.5q2 + 6q + 0.42,

and the upper bound on J(100, 2) is less than the lower bound on J(w~) when 0 ≤ q ≤ 1/2,
giving the desired contradiction.

Now, we’re ready to show that w~ correctly classifies (−ε, 1).

Lemma 37 εw~
1 < w~

2 .

Proof: Let g be the gradient of J evaluated at (w~
2 /ε, w

~
2 ). Combining Lemmas 35 and

36, g 6= (0, 0), so
w~ · g < (w~

2 /ε, w
~
2 ) · g.

This implies

w~
1

∂J

∂w1

∣∣∣
(w~

2 /ε,w
~
2 )
<
w~
2

ε

∂J

∂w1

∣∣∣
(w~

2 /ε,w
~
2 )
.

Since Lemmas 35 and 36 imply that g(w~
2 /ε, w

~
2 )1 > 0, this completes the proof.

Finally, we are ready to work on showing that (1/10,−1) is correctly classified by w~,
i.e. that w~

1 > 10w~
2 .

Lemma 38 For all a ∈ R,
∂J

∂w1

∣∣∣
(10a,a)

< 0.

Proof: Choose a ∈ R. From (36), we have

∂J

∂w1

∣∣∣
(10a,a)

= q(1− q)
(

−3

1 + exp(10a)
+

3ε

1 + exp(−10εa)
+

−1

10(1 + exp(a))

)
+ (1− q)2

(
−3

1 + exp(10a)
+

3ε

1 + exp(a− 10εa)
+
−1

20

)
≤ (1− q)2

(
6ε+

−1

20

)
< 0

using q ≤ 1/2 and ε = 1/1000.
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Lemma 39 w~
1 > 10w~

2 .

Proof: Let g be the gradient of J evaluated at u = (10w~
2 , w

~
2 ). Lemma 38 implies that

g 6= (0, 0), i.e. that w~
1 6= 10w~

2 . Therefore,

w~ · g < u · g

which, since u2 = w~
2 , implies

w~
1

∂J

∂w1

∣∣∣
u
< 10w~

2

∂J

∂w1

∣∣∣
u
.

Since Lemma 38 implies that ∂J/∂w1

∣∣∣
u
< 0, this in turn implies

w~
1 > 10w~

2 ,

completing the proof.

Now we have all the pieces to prove that dropout succeeds on P .

Proof (of Theorem 19): Lemma 34 implies that (1, 0) is classified correctly by w~, and
therefore by w∗ = pw~. Lemma 37 implies that (−ε, 1) is classified correctly. Lemma 39
implies that (1/10,−1) is classified correctly, completing the proof.

Appendix H. Proof of Theorem 20

Theorem 20. If λ ≤ 1
30n then the weight vector v(P9, λ) optimizing the L2

criterion has perfect prediction accuracy: erP9(v(P9, λ)) = 0.

In this proof, let us abbreviate P9 as just P .

By symmetry and convexity, the optimizing v is of the form (v1, v2, v2, . . . , v2) with the
last n − 1 components being equal. Thus for this distribution minimizing the L2 criterion
is equivalent to minimizing the simpler criterion K(w1, w2) defined by:

K(w1, w2) =
9

10
ln (1 + exp(−w1 − w2)) +

1

10
ln (1 + exp(w1 − w2)) +

λ

2

(
w2
1 + (n− 1)w2

2

)
.

Let (v1, v2) be the minimizing vector of K(), retaining an implicit dependence on n and
λ. We will be making frequent use of the partial derivatives of K:

∂K

∂w1
=

−9

10(1 + exp(w1 + w2))
+

1

10(1 + exp(−w1 + w2))
+ λw1 (39)

∂K

∂w2
=

−9

10(1 + exp(w1 + w2))
+

−1

10(1 + exp(−w1 + w2))
+ (n− 1)λw2. (40)

It suffices to show that 0 ≤ v1 < v2 so that the first feature does not perturb the majority
vote of the others.

To see 0 ≤ v1, notice that ∂K/∂w1

∣∣
(0,w2)

is negative for all w2, including when w2 = v2.
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To prove v1 < v2 we show the existence of a point (a, a) such that

∂K

∂w1

∣∣∣∣∣
(a,a)

= − ∂K
∂w2

∣∣∣∣∣
(a,a)

> 0, (41)

so that Lemma 25 implies that the optimizing (v1, v2) lies above the w1 = w2 diagonal.

w2

w1

(a, a)

−∇K

We have
∂K

∂w1

∣∣∣
(a,a)

=
−9

10(1 + exp(2a))
+

1

20
+ λa

which is increasing in a, negative when a = 0 and goes to infinity with a. It turns positive
at some a < 1.5 (exactly where depends on λ).

On the other hand,

∂K

∂w2

∣∣∣
(a,a)

=
−9

10(1 + exp(2a))
+
−1

20
+ λ(n− 1)a

and is also increasing in a and goes to infinity. However, ∂K/∂w2

∣∣∣
(a,a)

is negative at a = 1.5

whenever 1.5λ(n− 1) ≤ 1/20, which is implied by the premise of the theorem.

Both partial derivatives are negative when a = 0, continuously go to infinity with a,

and ∂K/∂w1

∣∣∣
(a,a)

crosses zero first. From the point where ∂K/∂w1

∣∣∣
(a,a)

crosses zero until

∂K/∂w2

∣∣∣
(a,a)

does, the magnitude of ∂K/∂w1

∣∣∣
(a,a)

is increasing, starting at 0, and the

magnitude of ∂K/∂w2

∣∣∣
(a,a)

is decreasing until it reaches 0. When they meet, Equation (41)

holds, completing the proof.

Appendix I. Proof of Theorem 21

Theorem 21. If the dropout probability q = 1/2 and the number of features
is an even n > 125 then the weight vector w∗(P9, q) optimizing the dropout
criterion has prediction error rate erP9(w∗(P9, q)) ≥ 1/10.

In this proof, we again abbreviate, using P for P9.

The complicated form of the criterion optimized by dropout makes analyzing it difficult.
Here we make use of Jensen’s inequality. However, a straightforward application of it is
fruitless, and a key step is to apply Jensen’s inequality on just half the distribution resulting
from dropout.

3439



Helmbold and Long

Similarly to before, let

J(w) = E(x,y)∼P,r(`(y(w · (r� x)))), (42)

and let w~ minimize J , so that w∗ = pw~.

Again using symmetry and convexity, the last n− 1 components of the optimizing w~

are equal, so w~ is of the form (w~
1 , w

~
2 , w

~
2 , . . . , w

~
2 ).

Lemma 40 The minimizing w~
1 of (42) is positive.

Proof: Let P̃, r be the marginal distribution of the last n−1 components after dropout and
x̃ denote these last n− 1 components of the dropped-out feature vector. Then, recalling y
is always 1 in our distribution (and p is the probability that the first feature is not dropped
out),

∂J(w)

∂w1
= E(r2,...,rn)

(
9p

10
E

x̃∼P̃,r(`
′(w · (1, x̃)))− p

10
E

x̃∼P̃,r(`
′(w · (−1, x̃)))

)
which is negative whenever w1 = 0, since `′() is negative and the two inner expectations
become identical when w1 = 0. Therefore the optimizing w~

1 is positive.

To show that dropout fails, we want to show that w~
1 > w~

2 , i.e. that w~
1 ≤ w

~
2 leads to

a contradiction, so we begin to explore the consequences of w~
1 ≤ w

~
2 .

Lemma 41 If q = 1/2 and w~
1 ≤ w

~
2 then w~

2 > 4/9.

Proof: Assume to the contrary that w~
1 ≤ w

~
2 ≤ 4/9.

Using Jensen’s inequality,

J(w~) ≥ `(E(x,y)∼P,r(y(w~ · x)))

and the inner expectation is 8w~
1 /20 + w~

2 /2 ≤ 9w~
2 /10 as w~

1 ≤ w~
2 . Therefore, since

w~
2 ≤ 4/9,

J(w~) ≥ `(0.4) > 0.51.

However,

J(2.1, 0, 0, . . . , 0) =
ln(2)

2
+

9 ln(1 + e−2.1)

20
+

ln(1 + e2.1)

20
< 0.51

contradicting the optimality of w~.

Lemma 42 If q = 1/2 and w~
1 ≤ w

~
2 then J(w~) ≥ Ek∼B(n,1/2)`(w

~
2 (k− (n/2)+1)) where

B(n, 1/2) is the binomial distribution.

Proof: Consider the modified distribution P1 over (x, y) examples where y is always 1, x2,
..., xn are uniformly distributed over the the vectors with n/2 ones and (n/2)− 1 negative
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ones (as in P ), but x1 is always one. Since 0 < w~
1 ≤ w

~
2 and the label y = 1 under P and

P1,

J(w~) = E(x,y)∼P,r(`(w
~ · x))

> E(x,y)∼P1,r(`(w
~ · x))

= E(x,y)∼P1,r

(
`
(
w~
2 (1 · (x� r))

))
= E(x,y)∼P1,r

(
`
(
w~
2 (x · r)

))
.

Every x in the support of P1 has exactly (n/2)+1 components that are 1, and the remaining
(n/2) − 1 components are −1. Call a component a success if it is either −1 and dropped
out or 1 and not dropped out. Now, x · r is exactly 1− (n/2) plus the number of successes.
Furthermore, the number of successes is distributed according to the binomial distribution
B(n, 1/2). Therefore

E(x,y)∼P1,r(w
~
2 (x · r)) = Ek∼B(n,1/2)(`(w

~
2 (k − (n/2) + 1)))

giving the desired bound.

Lemma 43 For even n ≥ 6, Ek∼B(n,1/2)(`(w
~
2 (k − (n/2) + 1))) ≥ 1

3`
(
w~
2 −

w~
2

√
2n

4

)
.

Proof: Let α =
∑n/2−1

i=0

(
n
i

)
, so α is slightly less than 2n−1.

Ek∼B(n,1/2)(`(w
~
2 (k − (n/2) + 1))) =

1

2n

∑
k

(
n

k

)
`(w~

2 (k + 1− (n/2)))

>
α

2n

n/2−1∑
k=0

1

α

(
n

k

)
`(w~

2 (1 + k − (n/2)))

>
α

2n
`

n/2−1∑
k=0

1

α

(
n

k

)
w~
2 (1 + k − (n/2))


where the last step uses Jensen’s inequality. Continuing,

Ek∼B(n,1/2)(`(w
~
2 (k − (n/2) + 1))) >

α

2n
`

w~
2 +

w~
2

α

n/2−1∑
k=0

(
n

k

)
(k − (n/2))

 .

Equation (5.18) of Concrete Mathematics (Graham et al., 1989) and the bound
(
n
n/2

)
≥

2n√
2n

give

n/2−1∑
k=0

(
n

k

)
(k − (n/2)) =

−n
4

(
n

n/2

)
≤ −
√

2n 2n−1

4
.
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Therefore, recalling that α < 2n−1 and noting α/2n > 1/3 when n ≥ 6,

Ek∼B(n,1/2)(`(w
~
2 (k − (n/2) + 1))) >

α

2n
`

(
w~
2 −

w~
2

α

2n−1
√

2n

4

)

>
1

3
`

(
w~
2 −

w~
2

√
2n

4

)
.

We now have the necessary tools to prove Theorem 21.
Proof: (of Theorem 21) If w~

1 > w~
2 then the first feature will dominate the majority

vote of the others and the optimizing w~ has prediction error rate 1/10 . We now assume
to the contrary that w~

1 ≤ w
~
2 . When n > 125 and w~

2 ≥ 4/9 (from Lemma 41) we have

w~
2 −

w~
2

√
2n

4
≤ −1.31

and `(w~
2 −

w~
2

√
2n

4 ) > 1.54.
Lemmas 42 and 43 now imply that J(w~)>0.51, but (as in Lemma 41) J(2.1, 0, . . . 0)<

0.51, contradicting the optimality of w~.
Many of the approximations used to prove Theorem 21 are quite loose, resulting in large

values of n being needed to obtain the contradiction. For this class of distributions and
q = 1/2 we conjecture that optimizing the dropout criterion fails to produce the Bayes
optimal hypothesis for every even n ≥ 4.

Appendix J. Proof of Theorem 22

Theorem 22. If dropout probability q = 1/2 and the number of features is
n = 4 then the minimizer of the dropout criteria w∗(P9, q) has has prediction
error rate erP9(w∗(P9, q)) ≥ 1/10.

In this proof, let us also refer to P9 as just P and let w~ be the minimizer of (42).
As before, the optimizing w~ has the form (w~

1 , w
~
2 , w

~
2 , w

~
2 ) by symmetry and convexity.

Recalling that the label y is always 1 under distribution P , we can use the equivalent
criterion

K(w1, w2) = E(x,y)∼P,r(`(y(w · x))) = E(x,y)∼P,r

(
`

(
w1x1r1 + w2

4∑
i=2

xiri

))
.

This expectation can be written with 12 terms, one for each pairing of the three possible
x1r1 values with the four possible

∑4
i=2 xiri ∈ {−1, 0, 1, 2} values (see Table 3).

Taking them in order, we have

K(w1, w2) =
9

160
` (w1 + 2w2) +

27

160
` (w1 + w2) +

27

160
` (w1) +

9

160
` (w1 − w2)

+
10

160
` (2w2) +

30

160
` (w2) +

30

160
` (0) +

10

160
` (w2)

+
1

160
` (−w1 + 2w2) +

3

160
` (−w1 + w2) +

3

160
` (−w1) +

1

160
` (−w1 − w2) .
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x1r1 probability
∑4

i=2 xiri probability

1 9/20 2 1/8
0 1/2 1 3/8
-1 1/20 0 3/8

-1 1/8

Table 3: Probabilities of x1r1 and
∑4

i=2 xiri values assuming dropout probability q = 1/2.

w2

w1

(a, a)

∇K = (−c, c)

−∇K = (c,−c)

Figure 8: If ∇K at some (a, a) is (−c, c) for some c > 0 then w~
1 > w~

2 .

So, when p = q = 1/2, the derivatives are:

∂K

∂w1

=
1

160

(
−9

1 + exp(w1 + 2w2)
+

−27

1 + exp(w1 + w2)
+

−27

1 + exp(w1)
+

−9

1 + exp(w1 − w2)

+
1

1 + exp(−w1 + 2w2)
+

3

1 + exp(−w1 + w2)
+

3

1 + exp(−w1)
+

1

1 + exp(−w1 − w2)

)
,

∂K

∂w2

=
1

160

(
−18

1 + exp(w1 + 2w2)
+

−27

1 + exp(w1 + w2)
+

9

1 + exp(w1 − w2)

+
−20

1 + exp(2w2)
+

−30

1 + exp(w2)
+

10

1 + exp(−w2)

+
−2

1 + exp(−w1 + 2w2)
+

−3

1 + exp(−w1 + w2)
+

1

1 + exp(−w1 − w2)

)
.

If w~
1 > w~

2 , then dropout will have prediction error rate 1/10 as w~
1 will dominate the

vote of the other three components. We show that w~
1 > w~

2 by proving that there is a
point (a, a) in weight space such that the gradient at (a, a) is of the form (−c, c) for some
c > 0 (see Figure 8).
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The derivatives when evaluated at (a, a) are:

∂K

∂w1

∣∣∣∣∣
(a,a)

=
1

160

(
−9

1 + exp(3a)
+

−27

1 + exp(2a)
+

−26

1 + exp(a)
− 3 +

3

1 + exp(−a)
+

1

1 + exp(−2a)

)

and

∂K

∂w2

∣∣∣∣∣
(a,a)

=
1

160

(
−18

1 + exp(3a)
+

−47

1 + exp(2a)
+

−32

1 + exp(a)
+ 3 +

10

1 + exp(−a)
+

1

1 + exp(−2a)

)
.

Note that both of these derivatives are increasing in a, positive for large a, and negative
when a = 0. At a = 2 ln(2), derivative ∂K/∂w1

∣∣
(a,a)

is still negative, while ∂K/∂w1

∣∣
(a,a)

has turned positive, so ∂K/∂w1

∣∣
(a,a)

crosses 0 first. The continuity of the partial derivatives

now implies the existence of an (a, a) where ∇K has the form (−c, c), completing the proof.

Appendix K. Proof of Theorem 23

Theorem 23. If q = 1/2, n ≥ 100, α > 0, β = 1/(10
√
n− 1), and η ≤

1
2+exp(54

√
n)

, then erP10(w∗(P10, q)) = η.

For this subsection, let P = P10 and define the scaled dropout criterion

J(w) = E(x,y)∼P,r(`(yw · (r� x))),

where, as earlier, the components of r are independent samples from a Bernoulli distribution
with parameter p = 1− q = 1/2 > 0. Let w~ be the minimizer of J , so that w∗ = pw~.

Note that, by symmetry, the contribution to J from the cases where y is −1 and 1
respectively are the same, so the value of J is not affected if we clamp y at 1. Let us use
this form to express J , and let D be the marginal distribution of feature vector x conditioned
on the label y = 1.

Let B = {2, ..., n}. By symmetry, w~
i is identical for all i ∈ B so w~ is the minimum

of J over weight vectors satisfying this constraint. Let K(w1, w2) = J(w1, w2, ..., w2); note
that w~

1 , w
~
2 minimizes K defined by

K(w1, w2) = Ex∼D,r(`(w1r1x1 + w2

∑
i∈B

rixi)).

To prove Theorem 23, it suffices to show that

w~
1 > (n− 1)w~

2 /α > 0, (43)
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since when (43) holds, w~ always outputs x1.

We have

∂K

∂w1
=

1

2
Ex∼D,r

(
−x1

1 + exp(w1x1 + w2
∑

i∈B rixi)

)
(44)

∂K

∂w2
= Ex∼D,r

( −
∑

i∈B rixi

1 + exp(w1r1x1 + w2
∑

i∈B rixi)

)
. (45)

(Note that, in (44), we have marginalized out r1.)

Lemma 44 w~
2 > 0.

As before, it suffices to show that there is a point (a1, 0) where both ∂K
∂w2

∣∣
(a1,0)

< 0 and
∂K
∂w1

∣∣
(a1,0)

= 0. From equation (45),

∂K

∂w2

∣∣
(a1,0)

= Ex∼D,r

( −
∑

i∈B rixi

1 + exp(a1r1x1)

)
< 0

for all real a1.

Now, evaluating (44), dividing into cases based on x1, we get

∂K

∂w1

∣∣
(a1,0)

= (η/2)

(
α

1 + exp(−αa1)

)
+ ((1− η)/2)

(
−α

1 + exp(αa1)

)
.

This approaches −α((1 − η)/2) as a1 approaches −∞, and it approaches αη/2 as a1 ap-
proaches ∞. Since it is a continuous function of a1, there must be a value of a1 such that
∂K
∂w1

∣∣
(a1,0)

= 0. Putting this together with ∂K
∂w2

∣∣
(a1,0)

< 0 completes the proof.

To show the sufficient inequalities (43), it will be useful to prove an upper bound on w~
2 .

(This upper bound will make it easier to show, informally, that w~
1 is needed.) In order

to bound the size of w~
2 , we will prove a lower bound on K in terms of w2. For this, we

want to show that, if w2 is too large, then the algorithm will pay too much when it makes
large-margin errors. For this, we need a lower bound on the probability of a large-margin
error. For this, we can adapt an analysis that provided a lower bound on the probability of
an error from (Helmbold and Long, 2012).

To simplify the proof, we will first provide a lower bound on the dropout risk in terms
of the risk without dropout. We will actually prove something somewhat more general, for
possible future reference.

Lemma 45 Let r and x be independent, RN -valued random variables; let φ be convex
function of a scalar real variable. Then

Er,x

(
φ

(∑
i

xiri

))
≥ Ex

(
φ

(∑
i

xiEr(ri)

))
.
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Proof: Since x and r are independent,

Er,x(φ(
∑
i

xiri))

= Ex(Er(φ(
∑
i

xiri)))

≥ Ex(φ(Er(
∑
i

xiri))) (by Jensen’s Inequality)

= Ex(φ(
∑
i

xiEr(ri))),

completing the proof.

Now, it is enough to lower bound the probability of a large-margin error with respect
to the original distribution. Recall B = {2, . . . , n}.

Lemma 46 Pr

(
1

n− 1

∑
i∈B

xi < −2β

)
≥ 3

10
.

Proof: If Z is a standard normal random variable and R is a binomial (`, p) random variable
with p ≤ 1/2, then for `(1− p) ≤ j ≤ `p, Slud’s inequality (Slud, 1977) gives

Pr(R ≥ j) ≥ Pr

(
Z ≥ j − `p√

`p(1− p)

)
, (46)

as worked out in Lemma 23 of (Helmbold and Long, 2012).

Now, we have

Pr

(
1

n− 1

∑
i∈B

xi < −2β

)
= Pr

(∑
i∈B

xi/2 < −(n− 1)β

)

= Pr

(∑
i∈B

(xi + 1)/2 < (n− 1)/2− (n− 1)β

)

= Pr

(∑
i∈B

zi < (n− 1)(1/2− β)

)

where the zi’s are independent {0, 1}-valued variables with Pr(zi = 1) = 1/2 +β. Let z̄i be
1− zi, so

∑
i∈B z̄i is a Binomial (n− 1, 1/2− β) random variable. Furthermore,

Pr

(∑
i∈B

zi < (n− 1)(1/2− β)

)
= Pr

(∑
i∈B

z̄i > (n− 1)− (n− 1)(1/2− β)

)

= Pr

(∑
i∈B

z̄i > (n− 1)(1/2 + β)

)
.
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Using (46) with j = (n− 1)(1/2 + β), ` = (n− 1), and p = 1/2− β gives:

Pr

(∑
i∈B

z̄i > (n− 1)(1/2 + β)

)
≥ Pr

(
Z ≥ (n− 1)(1/2 + β)− (n− 1)(1/2− β)√

(n− 1)(1/4− β2)

)

= Pr

(
Z ≥ 2(n− 1)β√

(n− 1)(1/4− β2)

)
.

Since β = 1/(10
√
n) and n ≥ 100, this implies

Pr

(
1

n− 1

∑
i∈B

xi < −2β

)
≥ Pr (Z ≥ 1/2) .

Since the density of Z is always at most 1/
√

2π, we have

Pr

(
1

n− 1

∑
i∈B

xi < −2β

)
≥ Pr(Z ≥ 0)−Pr(Z ∈ (0, 1/2)) >

1

2
− 1

2
√

2π
> 3/10,

completing the proof.
Now we are ready for the lower bound on the dropout risk in terms of w2.

Lemma 47 For all w1,

K(w1, w2) >
w2

√
n− 1

67
.

Proof: Considering only the case in which x1 is dropped out (i.e. r1 = 0), we have

K(w1, w2) ≥
1

2
E

(
`

(
w2

∑
i

rixi

))
.

Applying Lemma 45, we get

K(w1, w2) ≥
1

2
E

(
`

(
(w2/2)

∑
i∈B

xi

))
.

Since ` is non-increasing and non-negative, we have

K(w1, w2) ≥
1

2
`(−w2β(n− 1))Pr

(
1

n− 1

∑
i∈B

xi < −2β

)
,

and applying Lemma 46 gives

K(w1, w2) ≥
3`(−w2β(n− 1))

20
.

Since `(z) > −z, we have

K(w1, w2) ≥
3w2β(n− 1)

20
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and, using β = 1
10
√
n−1 , we get

K(w1, w2) ≥
3w2

√
n− 1

200
,

completing the proof.

Lemma 48 w~
2 < 27√

n−1 .

Proof: Note that

K(w, 0) = `(0)/2 + (1/2)(η`(−αw) + (1− η)`(αw)),

is increasing in η so that

K(w~
1 , w

~
2 ) ≤ K(5/α, 0) < `(0)/2 + 1/35 (47)

since η < 1/100.
On the other hand, Lemma 47 gives

K(w~
1 , w

~
2 ) >

w2

√
n− 1

67
.

Solving for w~
2 completes the proof.

Lemma 49 For all 0 < u < 27√
n−1 , we have

∂K

∂w1

∣∣
((n−1)u/α,u) < 0.

Proof: From (44), we have

2
∂K

∂w1

∣∣
(nu/α,u)

= Ex∼D,r

(
−x1

1 + exp((n− 1)ux1/α+ u
∑

i∈B rixi)

)
= ηEx∼D,r

(
α

1 + exp(−(n− 1)u+ u
∑

i∈B rixi)

)
+ (1− η)Ex∼D,r

(
−α

1 + exp((n− 1)u+ u
∑

i∈B rixi)

)
< ηα+ (1− η)Ex∼D,r

(
−α

1 + exp((n− 1)u+ u
∑

i∈B rixi)

)
< α

(
η +

−(1− η)

1 + exp(2(n− 1)u)

)
(since

∑
i∈B rixi ≤ n− 1)

< α

(
η +

−(1− η)

1 + exp(54
√
n− 1

)
(since u < 27/

√
n− 1)

< 0

since η ≤ 1/(2 + exp(54
√
n)), completing the proof.

Recall that, to prove Theorem 23, since we already showed w~
2 > 0, all we needed was

to show that αw~
1 > (n− 1)w~

2 . We do this next.
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Lemma 50 αw~
1 > (n− 1)w~

2 .

Proof: Let g be the gradient of J evaluated at u = ((n− 1)w~
2 /α,w

~
2 ). Lemmas 48 and 49

implies that g 6= (0, 0). By convexity

w~ · g < u · g

which, since u2 = w~
2 , implies

w~
1 g1 < (n− 1)w~

2 g1/α.

Since, by Lemmas 48 and 49, g1 < 0,

w~
1 > (n− 1)w~

2 /α

completing the proof.

Appendix L. Proof of Theorem 24

Theorem 24. If β = 1/(10
√
n− 1), λ = 1

30n , α < βλ, and n is a large enough
even number, then for any η ∈ [0, 1], erP10(v(P10, λ)) ≥ 3/10.

In this proof, let us also abbreviate P10 with P and use J to denote the L2 regularized
criterion in Equation (5) specialized for the distribution of this P .

As before, the contribution to the L2 criterion from the cases where y is −1 and 1
respectively are the same, so the value of the criterion is not affected if we clamp y at 1.
Furthermore, we leave the dependency on λ implicit and (since the source is fixed) use the
more succinct v for v(P, λ).

Also, if, as before, we let B = {2, ..., n}, then by symmetry, vi is identical for all i ∈ B
so v is the minimum of J over weight vectors satisfying this constraint. Let K(w1, w2) =
J(w1, w2, ..., w2) so that (v1, v2) minimizes K. Recall that D is the marginal distribution of
x under P conditioned on y = 1.

K(w1, w2) = Ex∼D

(
`

(
w1x1 + w2

∑
i∈B

xi

))
+
λ

2
(w2

1 + (n− 1)w2
2).

Lemma 46, together with the fact that |x1| = α, implies that,

αv1 < 2β(n− 1)v2 (48)

suffices to prove Theorem 24, so we set this as our subtask.
We have

∂K

∂w1
= Ex∼D

(
−x1

1 + exp(w1x1 + w2
∑

i∈B xi)

)
+ λw1 (49)

∂K

∂w2
= Ex∼D

( −
∑

i∈B xi

1 + exp(w1x1 + w2
∑

i∈B xi)

)
+ λ(n− 1)w2. (50)

First, we need a rough bound on v1.
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Lemma 51 |v1| ≤ α
λ < β.

Proof: The second inequality follows from the constraint on α. From (49), we get

|v1| ≤
1

λ
Ex∼D

(∣∣∣∣ x1
1 + exp(v1x1 + v2

∑
i∈B xi)

∣∣∣∣)
and the facts |x1| ≤ α and 0 < 1

1+exp(v1x1+v2
∑
i∈B xi)

≤ 1 then imply |v1| ≤ α/λ.

Lemma 52 For large enough n,

Pr

(∑
i∈B

xi ∈ [β(n− 1), 3β(n− 1)]

)
≥ 1

13
.

Proof: Let Φ(z) = Pr(Z ≤ z) for a standard normal random variable Z and let S =∑
i∈B xi. Note that E(xi) = 2β, var(xi) = 1−4β2, and the third moment E(|xi−E(xi)|3) =

1 − 16β4. The Berry-Esseen inequality (DasGupta, 2008, Theorem 11.1) relates binomial
distributions to the normal distribution using these moments, and directly implies that

sup
z

∣∣∣∣∣Pr

(
S

n− 1
− 2β ≤

√
1− 4β2

n− 1
× z

)
− Φ(z)

∣∣∣∣∣ ≤ C(1− 16β4)

(1− 4β2)3/2
√
n− 1

<
1√
n− 1

where the last inequality follows from the facts that the Berry-Esseen global constant C ≤
0.8 and β < 1/10.

Using the change of variable s =
√

(1− 4β2)(n− 1) z + 2β(n− 1) this can be restated:

sup
s

∣∣∣∣∣Pr (S ≤ s)− Φ

(
s− 2β(n− 1)√
(1− 4β2)(n− 1)

)∣∣∣∣∣ ≤ 1√
n− 1

,

so

Pr(S ∈ [β(n− 1), 3β(n− 1)])

≥ Prz∈N(0,1)

(
z ∈

[
−β
√

n− 1

1− 4β2
, β

√
n− 1

1− 4β2

])
− 2√

n− 1

≥ Prz∈N(0,1)

(
z ∈

[
−1

10
,

1

10

])
− 2√

n− 1

≥ 1

13
,

for large enough n.

Recent work shows that the Berry-Esseen constant C is less then 1/2, this allows us to
replace the 2

√
n− 1 with 1/

√
n− 1, but it still requires n on the order of 150,000 to get

the 1/13 bound. Reducing the bound to 1/50 would make n as small as 300 sufficient.

Next, we need a rough bound on v2.

Lemma 53 v2 ≥ 1
n−1 .
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Proof: From (50), we have

v2 =
1

λ(n− 1)
Ex∼D

( ∑
i∈B xi

1 + exp(v1x1 + v2
∑

i∈B xi)

)
.

If we denote
∑

i∈B xi by S, then

v2 =
1

λ(n− 1)
Ex∼D

(
S

1 + exp(v1x1 + v2S)

)
.

Since, for all odd6 s > 0

Pr(S = s)

Pr(S = −s)
=

(
1 + 2β

1− 2β

)s

so Pr(S = −s) = Pr(S = s)
(
1−2β
1+2β

)s
. Analyzing the contributions of s and −s together

we have

v2λ(n− 1)

=
n−1∑
s=1

Pr(S = s)
(

(1− η)
s

1 + exp(v1α+ v2s)
+ η

s

1 + exp(−v1α+ v2s)

+

(
(1− η)

−s
1 + exp(v1α− v2s)

+ η
−s

1 + exp(−v1α− v2s)

)(
1− 2β

1 + 2β

)s )
.

Recalling that |v1| ≤ α/λ (Lemma 51), and using the minimizing value in this range for
each term gives

v2λ(n− 1)

≥
n−1∑
s=1

Pr(S = s)

(
s

1 + exp(α2/λ+ v2s)
+

(
−s

1 + exp(−α2/λ− v2s)

)(
1− 2β

1 + 2β

)s)

=

n−1∑
s=1

Pr(S = s)s

1− exp(α2/λ+ v2s)
(
1−2β
1+2β

)s
1 + exp(α2/λ+ v2s)


≥

n−1∑
s=1

Pr(S = s)s

(
1− exp(α2/λ+ v2s− 4βs)

1 + exp(α2/λ+ v2s)

)
.

6. S is the sum of an odd number of ±1’s, and thus cannot be even.
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Assume for contradiction that v2 < 1/(n− 1). Then,

v2λ(n− 1)

≥
n−1∑
s=1

Pr(S = s)s

(
1− exp(α2/λ+ s/(n− 1)− 4βs)

1 + exp(α2/λ+ s/(n− 1))

)

≥
n−1∑
s=1

Pr(S = s)s

(
1− exp(s/(n− 1)− 3βs)

1 + exp(β2λ+ s/(n− 1))

)
(since α ≤ βλ)

≥
n−1∑
s=1

Pr(S = s)s

(
1− exp(−2βs)

1 + exp(β2λ+ s/(n− 1))

)
(for large enough n)

≥
∑

s∈[β(n−1),3β(n−1)]

Pr(S = s)s

(
1− exp(−2βs)

1 + exp(β2λ+ s/(n− 1))

)
,

since each term is positive. Taking the worst-case among [β(n − 1), 3β(n − 1)] for each
instance of s, and applying Lemma 52, we get

v2 ≥
1

λ(n− 1)
× 1

13
× β(n− 1)

(
1− exp(−2β2(n− 1))

1 + exp(β2λ+ 3β)

)
=

30
√
n− 1

130

(
1− exp(−1/50)

1 + exp(3/(10
√
n− 1) + 1/(3000n(n− 1)))

)
. (51)

Thus v2 = Ω(
√
n− 1), which, for large enough n, contradicts our assumption that v2 <

1/(n− 1), completing the proof.
Not that even with the many approximations made, Inequality (51) gives the desired

contradiction at n = 60. Even when the weaker bound of 1/50 discussed following Lemma 52
is used, n = 145 still suffices to give the desired contradiction.

Now we’re ready to put everything together.

Proof (of Theorem 24): Recall that, by Lemma 46, if v1 < 2β(n− 1)v2, then

erP (v(P, λ)) ≥ 3/10.

Lemma 51 gives v1 < β. Lemma 53 implies (n − 1)v2 ≥ 1. Therefore v1 < β(n − 1)v2,
completing the proof.

Using the 1/50 version of Lemma 52 leads to a proof of the theorem for all even n ≥ 300.
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Abstract

We consider the problem of approximating and learning disjunctions (or equivalently,
conjunctions) on symmetric distributions over {0, 1}n. Symmetric distributions are distri-
butions whose PDF is invariant under any permutation of the variables. We prove that
for every symmetric distribution D, there exists a set of nO(log (1/ε)) functions S, such that
for every disjunction c, there is function p, expressible as a linear combination of functions
in S, such that p ε-approximates c in `1 distance on D or Ex∼D[|c(x) − p(x)|] ≤ ε. This
implies an agnostic learning algorithm for disjunctions on symmetric distributions that
runs in time nO(log (1/ε)). The best known previous bound is nO(1/ε4) and follows from
approximation of the more general class of halfspaces (Wimmer, 2010). We also show that
there exists a symmetric distribution D, such that the minimum degree of a polynomial
that 1/3-approximates the disjunction of all n variables in `1 distance on D is Ω(

√
n).

Therefore the learning result above cannot be achieved via `1-regression with a polynomial
basis used in most other agnostic learning algorithms.

Our technique also gives a simple proof that for any product distribution D and every
disjunction c, there exists a polynomial p of degree O(log (1/ε)) such that p ε-approximates
c in `1 distance on D. This was first proved by Blais et al. (2008) via a more involved
argument.

Keywords: agnostic learning, symmetric distribution, polynomial approximation, regres-
sion, disjunction, conjunction, DNF, decision tree

1. Introduction

The goal of an agnostic learning algorithm for a concept class C is to produce, for any
distribution on examples, a hypothesis h whose error on a random example from the dis-
tribution is close to the best possible by a concept from C. This model reflects a common
empirical approach to learning, where few or no assumptions are made on the process that
generates the examples and a limited space of candidate hypothesis functions is searched in
an attempt to find the best approximation to the given data.

∗. Corresponding author.
†. Work done while the author was at IBM Research - Almaden.
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Feldman and Kothari

Agnostic learning of disjunctions (or, equivalently, conjunctions) is a fundamental ques-
tion in learning theory and a key step in learning algorithms for other concept classes such
as DNF formulas and decision trees. Algorithms for this problem, such as the Set Covering
Machine (Marchand and Shawe-Taylor, 2002), are also used in practical applications. There
is no known efficient algorithm for the problem, in fact the fastest algorithm that does not
make any distributional assumptions runs in 2Õ(

√
n) time (Kalai et al., 2008). Polynomial-

time learnability is only known when the examples are very close to being consistent with
some disjunction (Awasthi et al., 2010).

While the problem appears to be hard, strong hardness results are known only if the
hypothesis is restricted to be a disjunction or a linear threshold function (Ben-David et al.,
2003; Bshouty and Burroughs, 2006; Feldman et al., 2009, 2012), or for learning using `1-
regression (Klivans and Sherstov, 2010). Weaker, quasi-polynomial lower bounds are known
assuming hardness of learning sparse parities with noise (see Section 5) and, very recently,
hardness of refuting random SAT formulas (Daniely and Shalev-Shwartz, 2014). It is also
well-known that distribution-independent agnostic learning of disjunctions implies PAC
learning of DNF expressions (Kearns et al., 1994). Finally, agnostic learning of disjunctions
is known to be closely related to the problem of differentially-private release of answers to
conjunctive queries (Gupta et al., 2011).

We consider this problem with an additional assumption that example points are dis-
tributed according to a symmetric or a product distribution. Symmetric and product dis-
tributions are two incomparable classes of distributions that generalize the well-studied
uniform distribution. Theoretical study of learning over symmetric distributions was first
done by Wimmer (2010) who gave nO(1/ε4) time agnostic learning algorithm for the class
of halfspaces. Agnostic learning of disjunctions over symmetric distributions on {0, 1}n
also arises naturally in the well-studied problem of privately releasing answers to all short
conjunction queries with low average error (Feldman and Kothari, 2014).

1.1 Our Results

We prove that disjunctions (and conjunctions) are learnable agnostically over any sym-
metric distribution in time nO(log(1/ε)). This matches the well-known upper bound for the
uniform distribution. Our proof is based on `1-approximation of any disjunction by a linear
combination of functions from a fixed set of functions. Such approximation directly gives
an agnostic learning algorithm via `1-regression based approach introduced by Kalai et al.
(2008).

A natural and commonly used set of basis functions is the set of all monomials on {0, 1}n
of some bounded degree. It is easy to see that on product distributions with constant
bias, disjunctions longer than some constant multiple of log(1/ε) are ε-close to the constant
function 1. Therefore, polynomials of degree O(log(1/ε)) suffice for `1 (or `2) approximation
on such distributions. This simple argument does not work for general product distributions.
However it was shown by Blais et al. (2008) that the same degree (up to a constant factor)
still suffices in this case. Their argument is based on the analysis of noise sensitivity under
product distributions and implies additional interesting results.
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Interestingly, it turns out that low-degree polynomials cannot be used to obtain the same
result for all symmetric distributions: we show that there exists a symmetric distribution
for which disjunctions are no longer `1-approximated by low-degree polynomials.

Theorem 1 There exists a symmetric distribution D such that for c = x1 ∨ x2 ∨ · · · ∨ xn,
any polynomial p that satisfies Ex∼D[|c(x)− p(x)|] ≤ 1/3 is of degree Ω(

√
n).

To prove this, we consider the standard linear program to find the coefficients of a degree
r polynomial that minimizes pointwise error with the disjunction c. The key idea is to
observe that an optimal point for the dual can be used to obtain a distribution on which
the `1 error of the best fitting polynomial p for c is same as the value of minimum pointwise
error of any degree r polynomial with respect to c. When c is a symmetric function, one
can further observe that the distribution so obtained is in fact symmetric. Combined with
the degree lower bound for uniform approximation by polynomials by Klivans and Sherstov
(2010), we obtain the result. The details of the proof appear in Section 3.1.

Our approximation for general symmetric distributions is based on a proof that for the
special case of the uniform distribution on Sr (the points from {−1, 1}n with Hamming
weight r), low-degree polynomials still work, namely, for any disjunction c, there is a poly-
nomial p of degree at most O(log (1/ε)) such that the `1 error Ex∼Sr [|c(x) − p(x)|] ≤ ε.

Theorem 2 For r ∈ {0, . . . , n}, let Sr denote the set of points in {0, 1}n that have exactly
r 1’s and let Dr denote the uniform distribution on Sr. For every disjunction c and ε > 0,
there exists a polynomial p of degree at most O(log (1/ε)) such that EDr [|c(x)− p(x)|] ≤ ε.

This result can be easily converted to a basis for approximating disjunctions over arbitrary
symmetric distributions. All we need is to partition the domain {0, 1}n into layers as
∪0≤r≤nSr and use a (different) polynomial for each layer. Formally, the basis now contains
functions of the form IND(r) · χ, where IND is the indicator function of being in layer of
Hamming weight r and χ is a monomial of degree O(log(1/ε)). We note that a related
strategy, of constructing a collection of functions, one for each layer of the cube was used
by Wimmer (2010) to give an nO(1/ε4) time agnostic learning algorithm for the class of
halfspaces on symmetric distributions. However, his proof technique is based on an involved
use of representation theory of the symmetric group and is not related to ours.

Our proof technique also gives a simpler proof for the result of Blais et al. (2008) that
implies approximation of disjunction by low-degree polynomials on all product distributions.

Theorem 3 For any disjunction c and product distribution D on {0, 1}n, there is a poly-
nomial p of degree O(log (1/ε)) such that Ex∼D[|c(x)− p(x)|] ≤ ε.

1.2 Applications

Theorem 2 together with a standard application of `1 regression (Kalai et al., 2008) yields
an agnostic learning algorithm for the class of disjunctions running in time nO(log(1/ε)).

Corollary 4 There is an algorithm that agnostically learns the class of disjunctions on
arbitrary symmetric distributions on {0, 1}n in time nO(log (1/ε)).
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This learning algorithm was extended to the class of all coverage functions, and then applied
to the well-studied problem of privately releasing answers to all short conjunction queries
with low average error (Feldman and Kothari, 2014).

It was shown by Kalai et al. (2009) and Feldman (2010) that agnostic learning of con-
junctions over a distribution D in time T (n, 1/ε) implies learning of DNF formulas with
s terms over D in time poly(n, 1/ε) · T (n, (4s/ε)). Further, under the same conditions
distribution-specific agnostic boosting (Kalai and Kanade, 2009; Feldman, 2010) implies
that there exists an agnostic learning algorithm for decision trees with s leaves running in
time poly(n, 1/ε) · T (n, s/ε). Therefore we obtain quasi-polynomial learning algorithms for
DNF formulas and decision trees over symmetric distributions.

Corollary 5 1. DNF formulas with s terms are PAC learnable with error ε in time
nO(log(s/ε)) over all symmetric distributions;

2. Decision trees with s leaves are agnostically learnable with excess error ε in time
nO(log(s/ε)) over all symmetric distributions.

We also observe that any algorithm that agnostically learns the class of disjunction on
the uniform distribution in time no(log (

1
ε
)) would yield a faster algorithm for the notoriously

hard problem of Learning Sparse Parities with Noise. This is implicit in prior work (Kalai
et al., 2008; Feldman, 2012) and we provide additional details in Section 5.

Dachman-Soled et al. (2015) recently showed that `1 approximation by polynomials
is necessary and sufficient condition for agnostic learning over a product distribution (at
least in the statistical query framework of Kearns (1998)). Our agnostic learning algorithm
(Theorem 4) and lower bound for polynomial approximation (Theorem 1) demonstrate that
this equivalence does not hold for non-product distributions.

2. Preliminaries

We use {0, 1}n to denote the n-dimensional Boolean hypercube. Let [n] denote the set
{1, 2, . . . , n}. For S ⊆ [n], we denote by ORS : {0, 1}n → {0, 1}, the monotone Boolean
disjunction on variables with indices in S, that is, for any x ∈ {0, 1}n, ORS(x) = 0⇔ ∀i ∈
S xi = 0.

One can define norms and errors with respect to any distribution D on {0, 1}n. Thus,
for f : {0, 1}n → R, we write the `1 and `2 norms of f as ‖f‖1 = Ex∼D[|f(x)|] and
‖f‖2 =

√
E[f(x)2] respectively. The `1 and `2 error of f with respect to g are given by

‖f − g‖1 and ‖f − g‖2 respectively.

2.1 Agnostic Learning

The agnostic learning model is formally defined as follows (Haussler, 1992; Kearns et al.,
1994).

Definition 6 Let F be a class of Boolean functions and let D be any fixed distribution on
{0, 1}n. For any distribution P over {0, 1}n×{0, 1}, let opt(P,F) be defined as: opt(P,F) =
inff∈F E(x,y)∼P [|y−f(x)|]. An algorithm A, is said to agnostically learn F on D if for every
excess error ε > 0 and any distribution P on {0, 1}n×{0, 1} such that the marginal of P on
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{0, 1}n is D, given access to random independent examples drawn from P, with probability
at least 2

3 , A outputs a hypothesis h : {0, 1}n → [0, 1], such that E(x,y)∼P [|h(x) − y|] ≤
opt(P,F) + ε.

It is easy to see that given a set of t examples {(xi, yi)}i≤t and a set of m functions
φ1, φ2, . . . , φm finding coefficients α1, . . . , αm which minimize

∑
i≤t

∣∣∣∣∣∣
∑
j≤m

αjφj(x
i)− yi

∣∣∣∣∣∣
can be formulated as a linear program. This LP is referred to as Least-Absolute-Error
(LAE) LP or Least-Absolute-Deviation LP, or `1 linear regression. As observed by Kalai
et al. (2008), `1 linear regression gives a general technique for agnostic learning of Boolean
functions.

Theorem 7 Let C be a class of Boolean functions, D be distribution on {0, 1}n and φ1, φ2, . . . , φm :
{0, 1}n → R be a set of functions that can be evaluated in time polynomial in n. Assume
that there exists ∆ such that for each f ∈ C, there exist reals α1, α2, . . . , αm such that

E
x∼D

∣∣∣∣∣∣
∑
i≤m

αiφi(x)− f(x)

∣∣∣∣∣∣
 ≤ ∆.

Then there is an algorithm that for every ε > 0 and any distribution P on {0, 1}n × {0, 1}
such that the marginal of P on {0, 1}n is D, given access to random independent examples
drawn from P, with probability at least 2/3, outputs a function h such that

E
(x,y)∼P

[|h(x)− y|] ≤ ∆ + ε.

The algorithm uses O(m/ε2) examples, runs in time polynomial in n, m, 1/ε and returns a
linear combination of φi’s.

The output of this LP is not necessarily a Boolean function but can be converted to a
Boolean function with disagreement error of ∆+2ε using “h(x) ≥ θ” function as a hypothesis
for an appropriately chosen θ (Kalai et al., 2008).

3. `1 Approximation on Symmetric Distributions

In this section, we show how to approximate the class of all disjunctions on any symmetric
distribution by a linear combination of a small set of basis functions.

As discussed above, polynomials of degree O(log (1/ε)) can ε-approximate any disjunc-
tion in `1 distance on any product distribution. This is equivalent to using low-degree
monomials as basis functions. We first show that this basis would not suffice for approxi-
mating disjunctions on symmetric distributions. Indeed, we construct a symmetric distri-
bution on {0, 1}n, on which, any polynomial that approximates the monotone disjunction
c = x1 ∨ x2 ∨ · · · ∨ xn within `1 error of 1/3 must be of degree Ω(

√
n).
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3.1 Lower Bound on `1 Approximation by Low-Degree Polynomials

In this section we give the proof of Theorem 1.

Proof [of Thm. 1] Let d : [n] → {0, 1} be the predicate corresponding to the disjunction
x1 ∨ x2 ∨ · · · ∨ xn, that is, d(0) = 0 and d(i) = 1 for each i > 0.

Consider a natural linear program to find a univariate polynomial f of degree at most
d such that ‖d− f‖∞ = max0≤i≤n |d(i)− f(i)| is minimized:

min ε

s.t. ε ≥ |d(m)−
r∑
i=0

αi ·mi| ∀ m ∈ {0, . . . , n}

αi ∈ R ∀ i ∈ {0, . . . , r}.

This program (and its dual) often comes up in proving polynomial degree lower bounds
for various function classes (for example, Sherstov, 2009). If {α0, α1, . . . , αn} is a solution
for the program above that has value ε then f(m) =

∑r
i=0 αim

i is a degree r polynomial
that approximates d within an error of at most ε at every point in {0, . . . , n}. Klivans and
Sherstov (2010) show that there exists an r∗ = Θ(

√
n), such that the optimal value of the

program above for r = r∗ is ε∗ ≥ 1/3. Standard manipulations can be used to produce the
dual of the program:

max

n∑
m=0

βm · d(m)

s.t.
n∑

m=0

βm ·mi = 0 ∀ i ∈ {0, . . . , r}

n∑
m=0

|βm| ≤ 1

βm ∈ R ∀ m ∈ {0, . . . , n}.

Let β∗ = {β∗m}m∈{0,...,n} denote an optimal solution for the dual program with r = r∗.
Then, by strong duality, the value of the dual is also ε∗. Observe that

∑n
m=0 |β∗m| = 1,

since otherwise we can scale up all the β∗m by the same factor and increase the value of the
program while still satisfying the constraints.

Let ρ : {0, . . . , n} → [0, 1] be defined by ρ(m) = |β∗m|. Then ρ can be viewed as
a density function of a distribution on {0, . . . , n} and we use it to define a symmetric
distribution D on {−1, 1}n as follows: D(x) = ρ(w(x))/

(
n

w(x)

)
, where w(x) =

∑n
i=1 xi is

the Hamming weight of point x. We now show that any polynomial p of degree r∗ satisfies

Ex∼D[|c(x)− p(x)|] ≥ 1/3.

We now extract a univariate polynomial fp that approximates d on the distribution with
the density function ρ using p. Let pavg : {−1, 1}n → R be obtained by averaging p over
every layer. That is, pavg(x) = Ez∼Dw(x)

[p(z)], where w(x) denotes the Hamming weight
of x. It is easy to check that since c is symmetric, pavg is at least as close to c as p in `1
distance.
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Further, pavg is a symmetric function computed by a multivariate polynomial of degree
at most r∗ on {0, 1}n. Thus, the function fp(m) that gives the value of pavg on points of
Hamming weight m can be computed by a univariate polynomial of degree r∗. Further,

E
x∼D

[|c(x)− p(x)|] ≥ E
x∼D

[|c(x)− pavg(x)|] = E
m∼ρ

[|d(m)− fp(m)|].

Let us now estimate the error of fp w.r.t d on the distribution ρ. Using the fact that fp
is of degree at most r∗ and thus

∑n
m=0 fp(m) · βm = 0 (enforced by the dual constraints),

we have:

E
m∼ρ

[|d(m)− fp(m)|] ≥ E
m∼ρ

[(d(m)− fp(m)) · sign(β∗m)]

=

n∑
m=0

d(m) · β∗m −
n∑

m=0

fp(m) · β∗m

= ε∗ − 0 = ε∗ ≥ 1/3.

Thus, the degree of any polynomial that approximates c on the distribution D with error
of at most 1/3 is Ω(

√
n).

3.2 Upper Bound

In this section, we describe how to approximate disjunctions on any symmetric distribution
by using a linear combination of functions from a set of small size. Recall that Sr denotes
the set of all points from {0, 1}n with weight r.

As we have seen above, symmetric distributions can behave very differently when com-
pared to (constant bounded) product distributions. However, for the special case of the
uniform distribution on Sr, denoted by Dr, we show that for every disjunction c, there is a
polynomial of degree O(log (1/ε)) that ε-approximates it in `1 distance on Dr. As described
in Section 1.1, one can stitch together polynomial approximations on each Sr to build a set
of basis functions S such that every disjunction is well approximated by some linear com-
bination of functions in S. Thus, our goal is now reduced to constructing approximating
polynomials on Dr.
Proof [of Thm. 2] We first assume that c is monotone and without loss of generality c =
x1∨· · ·∨xk. We will also prove a slightly stronger claim that EDr [|c(x)−p(x)|] ≤ EDr [(c(x)−
p(x))2] ≤ ε in this case. Let d : {0, . . . , k} → {0, 1} be the predicate associated with the

disjunction, that is d(i) = 1 whenever i ≥ 1. Note that c(x) = d
(∑

i∈[k] xi

)
. Therefore

our goal is to find a univariate polynomial f that approximates d and then substitute

pf (x) = f
(∑

i∈[k] xi

)
. This substitution preserves the total degree of the polynomial. We

break our construction into several cases based on the relative magnitudes of r, k and ε.

If k ≤ 2 ln (1/ε), then the univariate polynomial that exactly computes the predicate d
satisfies the requirements. Thus assume that k > 2 ln(1/ε). If r > n − k, then, c always
takes the value 1 on Sr and thus the constant polynomial 1 achieves zero error. If on the
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other hand, if r ≥ (n/k) ln (1/ε), then,

Pr
x∼Dr

[c(x) = 0] =

(
n−k
r

)(
n
r

) =

r−1∏
i=0

(
1− k

n− i

)
≤ (1− k/n)r ≤ e−kr/n ≤ ε.

In this case, the constant polynomial 1 achieves an `22 error of at most Prx∼Dr [c(x) = 0] ·1 ≤
ε. Finally, observe that r ≤ (n/k) ln (1/ε) and k > 2 ln(1/ε) implies r ≤ n/2. Thus, for the
remaining part of the proof, assume that r < min{n− k, (n/k) ln (1/ε), n/2}.

Consider the univariate polynomial f : {0, . . . , k} → R of degree t (for some t to be
chosen later) that computes the predicate d exactly on {0, . . . , t}. This polynomial is given
by

f(w) = 1− 1

t!

t∏
i=1

(w − i) =

{
1−(wt ) for w > t

1 for 0<w≤t
0 for w=0

Let

δj = Pr
x∼Dr

[|{i | xi = 1}| = j] =

(
n−k
r−j
)
·
(
k
j

)(
n
r

) .

The `22 error of pf (x) on c satisfies,

||pf − c||22 = E
x∼Dr

[(c(x)− pf (x))2] =
k∑

j=t+1

δj ·
(
j

t

)2

.

We denote the RHS of this equality by ‖d− f‖22.
We first upper bound δj as follows:

δj =

(
n−k
r−j
)
·
(
k
j

)(
n
r

) =
(n− k)!

(n− k − r + j)!(r − j)!
· k!

(k − j)!j!
· (n− r)!r!

n!

=
1

j!
· r!

(r − j)!
· k!

(k − j)!
· (n− r)!

n!
· (n− k)!

(n− k − r + j)!

≤ 1

j!
· (rk)j · (n− k) · (n− k − 1) · · · (n− k − r + j + 1)

n · (n− 1) · · · (n− r + 1)

≤ 1

j!
· (n ln (1/ε))j · 1

(n− r + j) · (n− r + j − 1) · · · (n− r + 1)
,

where, in the second to last inequality, we used that r < n/k ln (1/ε) to conclude that
rk ≤ (n ln (1/ε)). Now, r < n/2 and thus (n− r + 1) > n/2. Therefore,

δj ≤
2j · (n ln (1/ε))j

nj · j!
=

(2 ln (1/ε))j

j!
,

and thus:

‖d− f‖22 ≤
k∑

j=t+1

(
j

t

)2 (2 ln (1/ε))j

j!
.

Set t = 8e2 ln (1/ε). Using j! > (j/e)j > (t/e)j for every j ≥ t+ 1, we obtain:
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‖d− f‖22 ≤
k∑

j=t+1

22j ·
(

2 ln (1/ε)

8e ln (1/ε)

)j
≤ ε ·

∞∑
j=t+1

1/ej ≤ ε. (1)

To see that EDr [|c(x)− p(x)|] ≤ EDr [(c(x)− p(x))2] we note that in all cases and for all
x, |p(x)− c(x)| is either 0 or ≥ 1. This completes the proof of the monotone case.

We next consider the more general case when c = x1 ∨ x2 ∨ · · · ∨ xk1 ∨ x̄k1+1 ∨ x̄k1+2 ∨
· · ·∨ x̄k1+k2 . Let c1 = x1∨x2∨· · ·∨xk1 and c2 = x̄k1+1∨ x̄k1+2∨· · ·∨ x̄k1+k2 and k = k1+k2.
Observe that c = 1− (1− c1) · (1− c2) = c1 + c2 − c1c2.

Let p1 be a polynomial of degree O(log (1/ε)) such that ‖c1 − p1‖1 ≤ ‖c1 − p1‖22 ≤ ε/3.
Note that if we swap 0 and 1 in {0, 1}n then c2 will be equal to a monotone disjunction
c̄2 = xk1+1∨xk1+2∨· · ·∨xk1+k2 and Dr will become Dn−r. Therefore by the argument for the
monotone case, there exists a polynomial p̄2 of degreeO(log (1/ε)) such that ‖c̄2−p̄2‖1 ≤ ε/3.
By renaming the variables back we will obtain a polynomial p2 of degree O(log (1/ε)) such
that ‖c2 − p2‖1 ≤ ‖c2 − p2‖22 ≤ ε/3. Now let p = p1 + p2 − p1p2. Clearly the degree of p is
O(log (1/ε)). We now show that ‖c− p‖1 ≤ ε:

E
x∼Dr

[|c(x)− p(x)|] = E
x∼Dr

[|(1− c(x))− (1− p(x))|]

= E
x∼Dr

[|(1− c1)(1− c2)− (1− p1)(1− p2)|]

= E
x∼Dr

[|(1− c1)(p2 − c2) + (1− c2)(p1 − c1)− (c1 − p1)(c2 − p2)|]

≤ E
x∼Dr

[|(1− c1)(p2 − c2)|] + E
x∼Dr

[|(1− c2)(p1 − c1)|] + E
x∼Dr

[|(c1 − p1)(c2 − p2)|]

≤ E
x∼Dr

[|p2 − c2|] + E
x∼Dr

[|p1 − c1|] +
√

E
x∼Dr

[(c1 − p1)2] E
x∼Dr

[(c2 − p2)2]

≤ ε/3 + ε/3 + ε/3 = ε.

4. Polynomial Approximation on Product Distributions

In this section, we show that for every product distribution D =
∏
i∈[n]Di, every ε > 0 and

every disjunction (or conjunction) c of length k, there exists a polynomial p : {0, 1}n → R
of degree O(log (1/ε)) such that p ε-approximates c in `1 distance on D.
Proof [of Thm. 3] First, we note that without loss of generality we can assume that the
disjunction c is equal to x1∨x2∨· · ·∨xk for some k ∈ [n]. We can assume monotonicity since
we can convert negated variables to un-negated variables by swapping the roles of 0 and 1 for
that variable. The obtained distribution will remain product after this operation. Further
we can assume that k = n since variables with indices i > k do not affect probabilities of
variables with indices ≤ k or the value of c(x).

We first note that we can assume that Prx∼D[x = 0k] > ε since, otherwise, the constant
polynomial 1 gives the desired approximation. Let µi = Prxi∼Di [xi = 1]. Since c is a
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symmetric function, its value at any x ∈ {0, 1}k depends only on the Hamming weight of
x that we denote by w(x). Thus, we can equivalently work with the univariate predicate
d : {0, 1, . . . , k} → {0, 1}, where d(i) = 1 for i > 0 and d(0) = 0.

As in the proof of Theorem 2, we will approximate d by a univariate polynomial f and
then use the polynomial pf (x) = f(w(x)) to approximate c.

Let f : {0, 1, . . . , k} → R be the univariate polynomial of degree t that matches d on all
points in {0, 1, . . . , t}. Thus,

f(w) = 1− 1

t!
·
t∏
i=1

(w − i) =

{
1−(wt ) for w > t

1 for 0<w≤t
0 for w=0

We have,

E
x∼Dr

[(c(x)− pf (x))2] =
k∑
j=0

Pr
x∼D

[w(x) = j] · |d(j)− f(j)|

and we denote the RHS of this equation by ‖d− f‖1.
Then:

‖d− f‖1 =
k∑

j=t+1

Pr
D

[w(x) = j] · |1− f(j)|

=
k∑

j=t+1

Pr
D

[w(x) = j] ·
(
j

t

)
. (2)

Let us now estimate PrD[w(x) = j].

Pr
D

[w(x) = j] =
∑

S⊆[n], |S|=j

∏
i∈S

µi ·
∏
i/∈S

(1− µi)

≤
∑

S⊆[n], |S|=j

∏
i∈S

µi

Observe that in the expansion of (
∑k

i=1 µi)
j , the term

∏
i∈S µi occurs exactly j! times.

Thus, ∑
S⊆[n], |S|=j

∏
i∈S

µi ≤
(
∑k

i=1 µi)
j

j!
.

Set µavg = 1
k

∑k
i=1 µi. We have:

ε ≤ Pr
x∼D

[x = 0k] =
k∏
i=1

(1− µi) ≤

(
1− 1

k
·
k∑
i=1

µi

)k
= (1− µavg)k.

Thus, µavg = c/k for some c ≤ 2 ln (1/ε) whenever k ≥ k0 where k0 is some universal
constant. In what follows, assume that k ≥ k0. (Otherwise, we can use the polynomial of
degree equal to k that exactly computes the predicate d on all points).
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We are now ready to upper bound the error ‖d− f‖1. From Equation (2), we have:

‖d− f‖1 =

k∑
j=t+1

Pr
D

[w(x) = j] ·
(
j

t

)
≤

k∑
j=t+1

(
∑k

i=1 µi)
j

j!
·
(
j

t

)

≤
k∑

j=t+1

(
j

t

)
· (2 ln(1/ε))j

j!

Setting t = 4e2 ln (1/ε) and using the calculation from Equation (1) in the proof of Thm. 2,
we obtain that the error ‖d− f‖1 ≤ ε.

5. Agnostic Learning of Disjunctions

Combining Thm. 7 with the results of the previous section (and the discussion in Section
1.1), we obtain an agnostic learning algorithm for the class of all disjunctions on product
and symmetric distributions running in time nO(log (1/ε)).

Corollary 8 (Cor. 4, restated) There is an algorithm that agnostically learns the class
of disjunctions on any product or symmetric distribution on {0, 1}n with excess error of at
most ε in time nO(log (1/ε)).

We now remark that any algorithm that agnostically learns the class of disjunctions (or

conjunctions) on n inputs on the uniform distribution on {0, 1}n in time no(log (
1
ε
)) would

yield a faster algorithm for the notoriously hard problem of Learning Sparse Parities with
Noise(SLPN). The reduction is based on the technique implicit in the work of Kalai et al.
(2008) and Feldman (2012).

For S ⊆ [n], we use χS to denote the parity of inputs with indices in S. Let U denote
the uniform distribution on {0, 1}n. We say that random examples of a Boolean function
f have noise of rate η if the label of a random example equals f(x) with probability 1− η
and 1− f(x) with probability η.

Problem 1 (Learning Sparse Parities with Noise) For η ∈ (0, 1/2) and k ≤ n the
problem of learning k-sparse parities with noise η is the problem of finding (with probability
at least 2/3) the set S ⊆ [n],|S| ≤ k, given access to random examples with noise of rate η
of parity function χS.

The fastest known algorithm for learning k-sparse parities with noise η is a recent break-
through result of Valiant (2012) which runs in time O(n0.8kpoly( 1

1−2η )) .
Kalai et al. (2008) and Feldman (2012) prove hardness of agnostic learning of majorities

and conjunctions, respectively, based on correlation of concepts in these classes with parities.
We state below this general relationship between correlation with parities and reduction to
SLPN given by Feldman et al. (2013).

Lemma 9 Let C be a class of Boolean functions on {0, 1}n. Suppose, there exist γ > 0
and k ∈ N such that for every S ⊆ [n], |S| ≤ k, there exists a function, fS ∈ C, such
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that |Ex∼U [fS(x)χS(x)]| ≥ γ(k). If there exists an algorithm A that learns the class C
agnostically with excess error ε in time T (n, 1ε ) then, there exists an algorithm A′ that
learns k-sparse parities with noise η < 1/2 in time poly(n, 1

(1−2η)γ(k)) + 2T (n, 2
(1−2η)γ(k)).

The correlation between a disjunction and a parity is easy to estimate.

Lemma 10 For any S ⊆ [n], |Ex∼U [ORS(x)χS(x)]| = 1
2|S|−1 .

We thus immediately obtain the following corollary.

Theorem 11 Suppose there exists an algorithm that learns the class of Boolean disjunc-
tions over the uniform distribution agnostically with excess error of ε > 0 in time T (n, 1ε ).
Then there exists an algorithm that learns k-sparse parities with noise η < 1

2 in time

poly(n, 2
k−1

1−2η ) + 2T (n, 2
k−1

1−2η ). In particular, if T (n, 1ε ) = no(log (1/ε)), then, there exists an

algorithm to solve k-SLPN in time no(k).

Thus, any algorithm that is asymptotically faster than the one from Cor. 4 yields a faster
algorithm for k-SLPN.
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Abstract

SnFFT is an easy to use software library written in the Julia language to facilitate Fourier
analysis on the symmetric group (set of permutations) of degree n, denoted Sn and make it
more easily deployable within statistical machine learning algorithms. Our implementation
internally creates the irreducible matrix representations of Sn, and efficiently computes fast
Fourier transforms (FFTs) and inverse fast Fourier transforms (iFFTs). Advanced users can
achieve scalability and promising practical performance by exploiting various other forms
of sparsity. Further, the library also supports the partial inverse Fourier transforms which
utilizes the smoothness properties of functions by maintaining only the first few Fourier
coefficients. Out of the box, SnFFT currently offers two non-trivial operations for functions
defined on Sn, namely convolution and correlation. While the potential applicability of
SnFFT is fairly broad, as an example, we show how it can be used for clustering ranked
data, where each ranking is modeled as a distribution on Sn.

Keywords: permutations, Fourier analysis, fast Fourier transform, Julia

1. Introduction

Over the last few years, there has been a growing interest in the analysis of data given
(or expressed) as a probability distribution over permutations. The set of all possible
permutations of n elements constitutes a group called the symmetric group, denoted Sn.
Several recent solutions to ranking problems, hard combinatorial problems, multi-target
tracking and feature point matching tasks (in computer vision) have used harmonic analysis
on Sn to derive more efficient algorithms (Huang et al., 2009; Kondor, 2010; Pachauri
et al., 2012). While the idea of generalizing the Fourier transform to non-commutative
groups is well established in the Mathematics literature, an easy to use and accessible
software library will facilitate the adoption of such concepts within machine learning. In
this paper, we describe a Julia based open source library which implements the Fourier
transform (and associated functionality) for harmonic analysis of functions defined on Sn.
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The implementation can use a multi-core cluster (when available) without any need for
low-level message passing interface (MPI) programming.

Harmonic analysis on Sn is defined via the notion of representations. A matrix valued
function ρ : Sn → Cdρ×dρ is said to be a dρ dimensional representation of the symmetric
group if ρ(σ2)ρ(σ1) = ρ(σ2σ1) for any pair of permutations σ1, σ2 ∈ Sn. A representation
ρ is said to be reducible if there exists a unitary basis transformation which simultaneously
block diagonalizes each ρ(σ) matrix into a direct sum of lower dimensional representations.
If ρ is not reducible, then it is said to be irreducible. Irreducible representations or irreps are
the elementary building blocks of all of Sn’s representations. A complete set of inequivalent
irreducible representations are denoted by R. The Fourier transform of a function f : Sn →
C is then defined as the sequence of matrices

f̂(ρ) =
∑
σ∈Sn

f(σ)ρ(σ) ρ ∈ R. (1)

The inverse transform is

f(σ) =
1

n!

∑
ρ∈R

dρ tr
[
f̂(ρ)ρ(σ)−1

]
σ ∈ Sn. (2)

Much of the practical interest in Fourier transform can be attributed to various inter-
esting properties of irreps, such as conjugacy and unitarity.

1.1 The Irreducible Representation of Sn
There are several ways to construct irreducible representation of Sn (Sagan, 2001). One such
representation is called Young’s orthogonal representation (YOR). The YOR matrices are
real and unitary and therefore orthogonal. To benefit from the computational advantages of
orthogonal matrices, SnFFT uses YOR internally. In the online documentation, we provide
a short review of the technical background relevant for constructing YORs.

2. SnFFT Toolkit

SnFFT is implemented in a high-level programming language called Julia (provided un-
der a MIT license). The most important features of the toolkit are accessibility, exten-
sibility, and performance. The toolkit and the required documentation is available at:
https://github.com/GDPlumb/SnFFT.jl/.

Accessibility. We placed a great deal of emphasis on the ease of use of the toolkit.
This will allow a non-specialist (in harmonic analysis) to utilize the functionality of this
library within standard machine learning algorithms, when analyzing data on Sn. In par-
ticular, the full functionality of SnFFT is available simply by loading the package “SnFFT”
through Julia’s built in package manager. The SnFFT user manual provides many examples
demonstrating the syntax for accessing the various features of SnFFT and gives a high level
overview of the key properties of YOR matrices and the Fourier transform. The minimalist
design and coding consistency makes SnFFT easy to use and modify.
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Extensibility. Interoperability is a key component of Julia — it allows easy access to
various pre-existing high quality and mature libraries written in many other languages with
minimal additional overhead. Therefore, various machine learning libraries can be easily
incorporated into SnFFT projects. For example, C and Fortran functions can be called
directly from SnFFt projects without any “glue” code.

SnFFT allows access to external libraries written in languages such as Python, Java,
and R, by easily passing the data to these libraries.

Finally, Julia code can be called directly from C/C++. As a result, SnFFT can be used
seamlessly within existing machine learning tools as needed.

Parallelism. SnFFT inherits the parallelism offered by the Julia platform. It allows
a multi-processing environment to run a code on multiple processes in separate memory
domains concurrently. SnFFT uses empirically derived rules to determine the trade-off be-
tween synchronization overhead for multithread computation and single thread sequential
computation and proceeds with the best option. In our implementation, SnFFT functions
are designed to use all worker processes that a user makes available to Julia. This setup
allows the user to analyze the data on a single process, on multiple processes on a local
machine, or via multiple processes spread across a cluster with essentially no change to the
user code beyond initially making the processes available.

Sparsity. For various practical applications, we encounter problems where n is greater
than 15. Even storing such data is problematic as n! is ∼ 1 trillion. Unless one exploits the
smoothness/sparsity properties of f , computation will be intractable. But notice that often,
problems exhibit interesting sparsity patterns (Kueh et al., 1999); for example, the Fourier
transform of functions on homogeneous spaces of Sn are usually band-limited in the sense
that their Fourier transform is identically zero except for a small set of Fourier matrices.
SnFFT is designed to utilize such patterns, making it very efficient. Specifically, the function
sn fft bl() is implemented to offer significant efficiency benefits when the user a priori
knows the band-limited form of f . For problems with unknown sparsity pattern, the special
function sn fft sp() first determines the sparsity structure of f and then proceeds to the
actual FFT calculation. Partial inverse Fourier transform is also supported in SnFFT which
is important to induce smoothness in f . In particular, function sn ifft p() can be used
to approximate f using just first few Fourier coefficients of the full Fourier transform.

2.1 Related Libraries

An existing library, Snob described by (Kondor, 2006), motivated the work presented here
and offers some of SnFFT’s functionality but support for band-limited behavior of functions
is limited in (Kondor, 2006). Further, our Julia implementation gives seamless access to
both single and multiple processes and is easier to modify and extend. We believe that such
parallelization features will be useful for scalability and integration within machine learning
applications.
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3. Example: Fourier Domain Features for Clustering Ranks

Consider a ranking dataset composed of N examples where the ith instance (i = 1, · · · , N),
is a permutation σi ∈ Sn of n items, listed in order of preference. Given such data, we
want to identify groups of examples with similar preferences, which may be helpful for
a downstream preference behavior study or rank prediction applications, e.g., (Crammer
et al., 2001). Various probabilistic models for ranking are popular in the research community
such as Mallows model (Murphy and Martin, 2003), which nicely capture the variability in
the observations when the observed rankings are noisy or incomplete (Busse et al., 2007).

Typically, the ith instance is represented as a function fi(σ) = e−γd(σi,σ)

Zγ
on Sn. Here,

γ is the spread parameter, d(., .) is a valid distance metric on permutations, and Zγ is
the normalization constant. The clustering problem seeks to partition the dataset into K
clusters to minimize the following objective:

arg min
C1,...,CK

K∑
k=1

∑
1≤i,j≤N :(i,j)∈Ck

‖fi − fj‖2 . (3)

A geometric view of functions defined on Sn as embedded in the space [0, 1]n! quickly
becomes intractable and hard to interpret. On the other hand, the seminal work of (Diaco-
nis, 1988) explains how the Fourier coefficients precisely encode the structural properties of
the distributions on Sn. Following ideas described in (Diaconis, 1988), recently, (Clémençon
et al., 2011) introduced a Fourier space formulation equivalent to (3)

=
1

n!

∑
ρ∈R

dρ

K∑
k=1

∑
1≤i,j≤N :(i,j)∈Ck

‖f̂i(ρ)− f̂j(ρ)‖2HS(dρ) . (4)

Further, they used a specialized feature selection procedure for clustering the induced
spectral features as in (Witten and Tibshirani, 2010) and showed that frequently one only
needs a few spectral features to explain the clustering choices. In SnFFT, only a few lines
of code are needed to compute the Fourier transforms, convert them into a data matrix,
and pass the data matrix to R’s sparcl library to perform this clustering. The details of
the process can be found in the code of example clustering().

The foregoing example shows that SnFFT is fairly flexible and can be used with ad-
vanced machine learning libraries for data analysis on Sn. Some example applications which
may benefit directly in the short term include multi-object tracking (identity management
problem) (Kondor et al., 2007), event based modeling for longitudinal measurements (Huang
and Alexander, 2012) and deriving image associations for structure from motion (Pachauri
et al., 2014). Some of these applications are described in more detail in the documentation.
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Abstract

We provide a tight sample complexity bound for learning bounded-norm linear predictors
with respect to the squared loss. Our focus is on an agnostic PAC-style setting, where no
assumptions are made on the data distribution beyond boundedness. This contrasts with
existing results in the literature, which rely on other distributional assumptions, refer to
specific parameter settings, or use other performance measures.

Keywords: sample complexity, squared loss, linear predictors, distribution-free learning

1. Introduction

In machine learning and statistics, the squared loss is the most commonly used loss for
measuring real-valued predictions: Given a prediction p and actual target value y, it is
defined as `(p, y) = (p− y)2. It is intuitive, has a convenient analytical form, and has been
extremely well-studied.

In this paper, we concern ourselves with learning bounded-norm linear predictors with
respect to the squared loss, in an agnostic PAC learning framework. Formally, for some
fixed parameters X,Y,B, we assume the existence of an unknown distribution over {x ∈
Rd : ‖x‖ ≤ X} × {y ∈ R : |y| ≤ Y }, from which we are given a training set S = {xi, yi}mi=1

of m i.i.d. examples, consisting of pairs of instances x and target values y. Given a linear
predictor x 7→ 〈w,x〉, its risk with respect to the squared loss is defined as

R(w) = E [(〈w,x〉 − y)2],

where the expectation is with respect to x, y. Our goal is to find a linear predictor w from
the hypothesis class of norm-bounded linear predictors,

W = {w : ‖w‖ ≤ B},

such that its excess risk
R(w)− min

w∈W
R(w)

with respect to the best possible predictor inW is as small as possible. We focus here on the
expected excess risk (over the randomness of the training set and algorithm), and study what
is the optimal bound on the excess risk one can obtain—also known as a sample complexity

c©2015 Ohad Shamir.
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bound—and how it is affected by the problem parameters X,Y,B, d and the sample size m,
uniformly over any distribution. Since X and B are invariant to simultaneous scaling (if we
re-scale each x by some factor c, and re-scale each linear predictor w by 1/c, all predictions
remain the same), we will assume without loss of generality that X = 1.

There is a huge literature on learning with the squared loss, with many tight and elegant
risk bounds under various assumptions. However, for the framework defined above, there
does not appear to be an explicit and self-contained analysis. Much of the existing work
(some examples include Hsu et al. (2014); Koltchinskii (2011); Lecué and Mendelson (2014);
Tsybakov (2003); Anthony and Bartlett (1999); Lee et al. (1998); Zhang (2005); Audibert
and Catoni (2011)) focuses on risk upper bounds, but not lower bounds showing the limits
of attainable performance. Moreover, most existing work considers settings different than
ours in one or more of the following aspects:

• Additional Distributional Assumptions: In our agnostic setting, we make no assump-
tions on the data distribution except boundedness. In contrast, most existing work
relies on additional assumptions. Perhaps the most common assumption is a well-
specified model, under which there exists a fixed w ∈ Rd such that y = 〈w,x〉 + ξ,
where ξ is a zero-mean noise term (such as Tsybakov (2003)). Other works impose
additional conditions on the distribution of x (for example, that the covariance ma-
trix of x is well behaved, such as Hsu et al. (2014)), or consider a fixed design setting
where the data instances x are not sampled i.i.d.. These assumptions usually lead to
excess risk bounds which scale (at least in finite dimensions) as dY 2/m, independent
of the norm bound B. However, as we will see later, this is not the behavior in our
setting.

• Bounds not on the excess risk: Many of the existing results are not on the excess risk,
but rather on E[‖w−w∗‖2] or E[(〈w,x〉 − 〈w∗,x〉)2], where w∗ = arg minw∈W R(w)
(such as Koltchinskii (2011); Lecué and Mendelson (2014)). The former measure is
relevant for parameter estimation, while the latter measure can be shown to equal
the excess risk when w∗ = arg minw∈Rd R(w) (in other words, B =∞, see Lemma 2
below). However, when we deal with the hypothesis class of norm-bounded predictors,
then the excess risk can be larger by an arbitrary factor1. Therefore, upper bounds on
these measures do not imply upper bounds on the excess risk in our setting. We remark
that in our distribution-free setting, we must constrain the hypothesis class, since if
our hypothesis class contains all linear predictors (B = ∞), then the lower bounds
below imply that non-trivial learning is impossible with any sample size (regardless
of the dimension d).

• Bounded Functions: Many learning theory results for the squared loss (such as those
based on fat-shattering techniques, see Lee et al. (1998); Anthony and Bartlett (1999))
assume that the predictor functions and target values are bounded in some fixed

1. For example, consider a distribution on (x, y) such that (x, y) = (1, 1) with probability 1, and W = {w :
w ∈ [−1/2, 1/2]}. Then clearly, w∗ = 1/2, and E[(wx− w∗x)2] = E[(w − w∗)2] = (1/2− w)2. However,
the excess risk equals (w − 1)2 − (1/2 − 1)2 = w2 − 2w + 3/4 = (1/2 − w)2 + (1/2 − w). This is larger
than the excess risk by an additive factor of (1/2−w), and a multiplicative factor of 1

1/2−w
—arbitrarily

large if w is close to w∗ = 1/2.
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interval (such as [-1,+1]). In our setting, this would correspond to assuming B, Y ≤ 1.
Other results (such as Bartlett and Mendelson (2003)) assume Lipschitz loss functions,
which is not satisfied for the squared loss. One notable exception is Srebro et al.
(2010), which analyzes smooth and strongly-convex losses (such as the squared loss)
and provide tight sample complexity bounds. However, their results apply either when
the functions are bounded by 1, or when d is extremely large or infinite dimensional. In
contrast, we provide more general results which hold for any d and when the functions
are not necessarily bounded by 1.

• Collapsing Problem Parameters Together: Some works, such as Srebro et al. (2010),
implicitly take Y to equal the largest possible prediction, supw,x |〈w,x〉| = B, and give
results only in terms of B. However, we will see that B and Y affect the excess risk
in a different manner, and it is thus important to discern between them. Moreover, B
and Y can often have very different magnitudes. For example, in learning problems
where the instances x tend to be sparse, we may want to have the norm bound B of
the predictor to scale with the dimension d, while the bound on the target values Y
remain a fixed constant.

2. Main Result

Our main result is the following lower bound on the attainable excess risk:

Theorem 1 There exists a universal constant c, such that for any dimension d, sample size
m, target value bound Y , predictor norm bound B ≥ 2Y , and for any algorithm returning
a linear predictor ŵ, there exists a data distribution such that

E[R(ŵ)−R(w∗)] ≥ c min

{
Y 2,

B2 + dY 2

m
,
BY√
m

}
,

where w∗ = arg minw:‖w‖≤B R(w), and the expectation is with respect to the training set
and the (possible) randomness of the algorithm.

Based on existing results in the literature, this bound has essentially matching upper bounds,
up to logarithmic factors:

• Using the trivial zero predictor ŵ = 0, we are guaranteed that R(ŵ) − R(w∗) ≤
R(ŵ) = E[(〈0,x〉 − y)2] = E[y2] ≤ Y 2.

• Using the Vovk-Azoury-Warmuth forecaster (Vovk (2001); Azoury and Warmuth
(2001)) and a standard online-to-batch conversion technique (see for instance Shalev-
Shwartz (2012), corollary 5.2), we have an algorithm for which

E[R(ŵ)−R(w∗)] ≤ O
(
B2 + dY 2 log(1 +m/d)

m

)
.

• Alternatively, by corollary 3 in Srebro et al. (2010) 2, using mirror descent with
an online-to-batch conversion gives us an algorithm for which E[R(ŵ) − R(w∗)] ≤

2. Where L̄∗ ≤ Y 2 and H = 2 for the squared loss.
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O
(

BY√
m

+ B2

m

)
. In the regime where this bound is smaller than Y 2, it can be verified

that BY/
√
m is the dominant term, in which case we get an O(BY/

√
m) bound.

Taking the best of these algorithmic approaches, we get the minimum of these upper bounds,
i.e. we can find a predictor ŵ for which

E[R(ŵ)−R(w∗)] ≤ O

(
min

{
Y 2,

B2 + dY 2 log
(
1 + m

d

)
m

,
BY√
m

})
.

We conjecture that the same bound, perhaps up to log-factors, can be shown for empirical
risk minimization (i.e. given a training set {(xi, yi)}mi=1, return ŵ = minw:‖w‖≤B

1
m

∑m
i=1(〈w,xi〉−

yi)
2).
This result has some interesting consequences: First, it implies that even when d = 1

(i.e. a one-dimensional problem), there is a non-trivial dependence on the norm bound B.
This is in contrast to results under the well-specified model or other common distributional
assumptions, which lead to upper bounds independent of B. Second, it shows that in a
finite-dimensional setting, although the squared loss (〈w,x〉 − y)2 may appear symmetric
with respect to y and 〈w,x〉, the attainable excess risk is actually much more sensitive to
the bound Y on |y| than to the bound B on |〈w,x〉|, due to the d factor. For example, if Y
is a constant, then B can be as large as the dimension d without affecting the leading term
of the excess risk. Third, in the context of online learning, it implies that the Vovk-Azoury-
Warmuth forecaster is essentially optimal in our setting and for a finite-dimensional regime,
in terms of its dependence on both d and B (the lower bounds in Vovk (2001); Singer et al.
(2002) do not show an explicit dependence on B).

3. Proof of Thm. 1

The proof of our main result consist of two separate lower bounds, each of which uses
a different construction. The theorem follows by combining them and performing a few
simplifications.

We begin by recalling the following result, which follows from the well-known orthogo-
nality principle:

Lemma 2 Let R(w) = E[(〈w,x〉 − y)2], where the expectation is over x, y, and let w∗ =
arg minw:‖w‖≤B R(w). Then for any w : ‖w‖ ≤ B, it holds that

R(w)−R(w∗) ≥ E[(〈w,x〉 − 〈w∗,x〉)2],

with equality when B =∞.

Proof For any w ∈ Rd, define the linear function fw : Rd → R by fw(x) = 〈w,x〉. Then
{fw(·) : ‖w‖ ≤ B} corresponds to a closed convex set in the L2 function space defined
via the inner product 〈f, g〉 = Ex[f(x)g(x)] and norm ‖f‖2 = Ex[f2(x)]. Moreover, letting
η(x) = E[y|x], we have

R(w)−R(w∗) = E[(〈w,x〉 − y)2]− E[(〈w,x〉 − y)2]

= E[(fw(x)− η(x))2]− E[(fw∗(x)− η(x))2]

= ‖fw − η‖2 − ‖fw∗ − η‖2.
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Moreover,

E[(〈w,x〉 − 〈w∗,x〉)2] = E[〈w −w∗,x〉2] = ‖fw−w∗‖2 = ‖fw − fw∗‖2.

Therefore, the inequality in the lemma can be written as

‖fw − η‖2 − ‖fw∗ − η‖2 ≥ ‖fw − fw∗‖2,

or equivalently

‖fw − fw∗‖2 + ‖fw∗ − η‖2 ≤ ‖fw − η‖2. (1)

To see why this inequality hold, recall that the set of linear functionals (which includes fw
and fw∗) form a linear subspace in L2. Moreover, fw∗ is the projection of η on the set
{fw : ‖w‖ ≤ B}: To see this, note that

w∗ = arg min
w:‖w‖≤B

E[(〈w,x〉 − y)2

= arg min
w:‖w‖≤B

E
[
E
[
(〈w,x〉 − y)2|x

]]
= arg min

w:‖w‖≤B
E
[
〈w,x〉2 − 2E [〈w, yx〉|x] + E[y2|x] | x

]
= arg min

w:‖w‖≤B
E
[
〈w,x〉2 − 2〈w,E[y|x]x〉+ Ey[y|x]2 | x

]
= arg min

w:‖w‖≤B
E
[
(〈w,x〉 − η(x))2

]
,

(where in the fourth equality we used the fact that adding and subtracting terms indepen-
dent of w does not change the argmin), and therefore fw∗ = arg minfw:‖w‖≤B ‖fw − η‖2.
When B =∞, then fw∗ is simply the projection of η on the linear sub-space of linear func-
tionals, hence (1) holds with equality by the Pythagorean theorem (see figure 1). When
B <∞, then fw∗ is the projection of η on a constrained convex subset of this linear space,
and we only have an inequality.

Our first construction provides an excess risk lower bound even when we deal with
one-dimensional problems:

Theorem 3 There exists a universal constant c, such that for any sample size m, tar-
get value bound Y , predictor norm bound B ≥ 2Y , and any algorithm returning a linear
predictor ŵ, there exists a data distribution in d = 1 dimensions such that

E[R(ŵ)−R(w∗)] ≥ cmin

{
Y 2,

B2

m

}
.

The expectation is with respect to the training set and the (possible) randomness of the
algorithm.

Proof Let α, γ be small positive parameters in (0, 1] to be chosen later, such that α > γ,
and consider the following two distributions over (x, y):
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𝐵 = ∞ 𝐵 < ∞

𝐴
= 𝜋𝑟2𝑓𝐰∗

𝐴
= 𝜋𝑟2𝑓𝐰

𝐴
= 𝜋𝑟2𝜂

𝐴
= 𝜋𝑟2𝑓𝐰∗𝐴

= 𝜋𝑟2
𝑓𝐰

𝐴
= 𝜋𝑟2𝜂

Figure 1: Illustration of inequality in the proof of Lemma 2. The rectangle represents the
subspace of linear functionals, and the dotted circle in the right figure represents
the convex subset {fw : ‖w‖ ≤ B}.

• Distribution D0: y = Y w.p. 1; x =

{
Y/B w.p. α

0 w.p. 1− α
.

• Distribution D1: y = Y w.p. 1; x =


1 w.p. γ

Y/B w.p. α− γ
0 w.p. 1− α

.

Note that since B ≥ 2Y , |x| ≤ 1, so these are indeed valid distributions. Intuitively, in both
distributions x is small most of the time, but under D1 it can occasionally have a “large”
value of 1. Unless the sample size is large enough, it is not possible to distinguish between
these two distributions, and this will lead to an excess risk lower bound.

Let E0 and E1 denote expectations with respect to D0 and D1 respectively. Let

w∗0 = B

denote the optimal predictor under D0, and let

w∗1 =
E1[yx]

E1[x2]
=

(Y 2/B)(α− γ) + Y γ

(Y 2/B2)(α− γ) + γ
= B

Y 2(α− γ) +BY γ

Y 2(α− γ) +B2γ

denote the optimal predictor under D1. Note that since B ≥ 2Y , we have w∗1 ≤ w∗0, and
moreover,

(w∗1 − w∗0)2 = B2

(
Y 2(α− γ) +BY γ

Y 2(α− γ) +B2γ
− 1

)2

= B4γ2
(

Y −B
Y 2α+ (B2 − Y 2)γ

)2

≥ B4γ2
(

Y −B
Y 2α+B2γ

)2

. (2)

By Yao’s minimax principle, it is sufficient to show that when choosing either D0 or
D1 uniformly at random, and generating a dataset according to that distribution, any
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deterministic algorithm attains the lower bound in the theorem. Using Lemma 2, and the
notation Pr0 (respectively Pr1) to denote probabilities with respect to D0 (respectively D1),
we have

E[R(ŵ)−R(w∗)] =
1

2

(
E0[(ŵx− w∗0x)2] + E1[(ŵx− w∗1x)2]

)
≥ 1

2

Y 2α

B2

(
E0[(ŵ − w∗0)2] + E1[(ŵ − w∗1)2]

)
≥ 1

2

Y 2α

B2

(
w∗1 − w∗0

2

)2(
Pr0

(
ŵ <

w∗0 + w∗1
2

)
+ Pr1

(
ŵ ≥ w∗0 + w∗1

2

))
=

1

2

Y 2α

B2

(
w∗1 − w∗0

2

)2(
1−

(
Pr0

(
ŵ ≥ w∗0 + w∗1

2

)
− Pr1

(
ŵ ≥ w∗0 + w∗1

2

)))
≥ 1

2

Y 2α

B2

(
w∗1 − w∗0

2

)2(
1−

∣∣∣∣Pr0

(
ŵ ≥ w∗0 + w∗1

2

)
− Pr1

(
ŵ ≥ w∗0 + w∗1

2

)∣∣∣∣) ,
where in the second inequality we used the fact that w∗1 ≤ w∗0. By Pinsker’s inequality,
since ŵ is a deterministic function of the training set S, this is at least

1

8

Y 2α

B2
(w∗1 − w∗0)2

(
1−

√
1

2
Dkl(p0(S)||p1(S))

)
,

where Dkl is the Kullback-Leibler divergence, and p0 (respectively p1) is the probability
measure of the sample with respect to D0 (respectively D1). Since S is composed of m i.i.d.
instances, and the target value y is fixed under both distributions, we can invoke the chain
rule and rewrite this as

1

8

Y 2α

B2
(w∗1 − w∗0)2

(
1−

√
m

2
Dkl(p0(x)||p1(x))

)
.

To simplify the bound, we use the following fact (see for instance Gibbs and Su (2002),
Theorem 5):

Lemma 4 For any probability distributions p, q over the same discrete sample space, it
holds that Dkl(p||q) is upper bounded by the χ2 divergence between p and q, which equals∑

a
(p(a)−q(a))2

q(a) .

Using this lemma, we have

Dkl(p0(x)||p1(x)) ≤ γ2

γ
+

γ2

α− γ
= γ

(
1 +

γ

α− γ

)
.

Plugging this back, as well as the value of (w∗1 −w∗0)2 from (2), we get an excess loss lower
bound on the form

1

8
Y 2αB2γ2

(
Y −B

Y 2α+B2γ

)2
(

1−

√
m

2
γ

(
1 +

γ

α− γ

))
,

We now consider two cases:
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• If m ≤ B2/Y 2, we pick α = 1 and γ = 1/3m, and get that the expression above is at
least

Y 2

72

B2

m2

(
B − Y

Y 2 +B2/3m

)2
(

1−

√
1

6

(
1 +

1/3m

1− 1/3m

))

=
Y 2

72

(
B(B − Y )

mY 2 +B2/3

)2
(

1−

√
1

6

(
1 +

1

3m− 1

))

≥ Y 2

72

(
B(B − Y )

(B2/Y 2)Y 2 +B2/3

)2
(

1−

√
1

6

(
1 +

1

3m− 1

))

≥ Y 2

72

(
B(B − Y )

(1 + 1/3)B2

)2
(

1−

√
1

6

(
1 +

1

2

))

≥ 0.003 Y 2

(
B − Y
B

)2

= 0.003 Y 2

(
1− Y

B

)2

≥ 0.003 Y 2

(
1− 1

2

)2

,

where we used the assumption that B ≥ 2Y .

• If m > B2/Y 2, we pick α = B2/(Y 2m) and γ = 1/3m and get that the expression
above is at least

1

8

B4

m

1

9m2

(
B − Y

B2/m+B2/3m

)2
(

1−

√
1

6

(
1 +

1/3m

(B2/Y 2 − 1/3)/m

))

≥ 1

72

(B − Y )2

m(1 + 1/3)2

(
1−

√
1

6

(
1 +

1/3

4− 1/3

))

≥ 0.004
(B − Y )2

m
≥ 0.004

(B −B/2)2

m
= 0.001

B2

m
,

where we used the assumption that B ≥ 2Y .

Combining the two cases, we get an excess risk lower bound of c min
{
Y 2, B

2

m

}
for some

universal constant c.

Our second construction provides a different type of bound, which quantifies a depen-
dence on the dimension d:

Theorem 5 There exists a universal constant c, such that for any dimension d, sample
size m, target value bound Y , predictor norm bound B and any algorithm returning a linear
predictor ŵ, there exists a data distribution in d dimensions such that

E[R(ŵ)−R(w∗)] ≥ c min

{
Y 2, B2,

dY 2

m
,
BY√
m

}
.

The expectation is with respect to the training set and the (possible) randomness of the
algorithm.
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Proof By Yao’s minimax principle, it is sufficient to display a randomized choice of data
distributions, with respect to which the expected excess error of any deterministic algorithm
attains the lower bound in the theorem. In the sequel, we use E to denote expectation with
respect to the random choice of data distribution, as well as the random drawing of a
training set from the distribution.

In particular, fix some d′ ≤ d to be chosen later, let σ ∈ {−1,+1}d′ be chosen uniformly
at random, and consider the distribution Dσ (indexed by σ) over examples (x, y), defined
as follows: x is chosen uniformly at random among the first d′ standard basis vectors.
Conditioned on x = ei, y is chosen to equal Y with probability 1

2 (1 + σib), where b =

min{1/2,
√
d′/6m}, and −Y otherwise.

A simple calculation shows that the optimum w∗ = arg minw:‖w‖≤B R(w) is such that

∀ i ∈ {1, . . . , d′}, w∗i = σi min{Y b,B/
√
d′}.

Therefore, using Lemma 2 and the notation 1A as the indicator function for the event A:

E [R(ŵ)−R(w∗)] ≥ E
[
Ex[(〈ŵ,x〉 − 〈w∗,x〉)2]

]
=

1

d′

d′∑
i=1

E[(ŵi −w∗i )2]

≥ 1

d′

d′∑
i=1

E[(w∗i )21ŵiw∗i≤0]

=
1

d′

(
min{Y b,B/

√
d′}
)2 d′∑

i=1

Pr(ŵiw
∗
i ≤ 0).

Since σi is uniformly distributed on {−1,+1}, and has the same sign as w∗i , this equals

1

d′

(
min{Y b,B/

√
d′}
)2 d′∑

i=1

1

2
(Pr(ŵi ≥ 0|σi < 0) + Pr(ŵi ≤ 0|σi > 0))

≥ 1

2d′

(
min{Y b,B/

√
d′}
)2 d′∑

i=1

(1− Pr(ŵi ≤ 0|σi < 0) + Pr(ŵi ≤ 0|σi > 0))

≥ 1

2d′

(
min{Y b,B/

√
d′}
)2 d′∑

i=1

(1− |Pr(ŵi ≤ 0|σi < 0)− Pr(ŵi ≤ 0|σi > 0)|)

Using Pinsker’s inequality and the fact that ŵ is a deterministic function of the training
set S, this is at least

1

2d′

(
min{Y b,B/

√
d′}
)2 d′∑

i=1

(
1−

√
1

2
Dkl (p(S|σi > 0)||p(S|σi < 0))

)
, (3)

where Dkl is the Kullback-Leibler (KL) divergence, and p is the probability measure of the
sample. Since the training set is composed of m i.i.d. instances, we can use the chain rule
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and get that this divergence equals mDkl (p((x, y)|σi > 0)||p((x, y)|σi < 0)). Moreover, we
note that

p((x, y)|σi) = p(x = ei)p((x, y)|σi,xi = ei) + p(x 6= ei)p((x, y)|σi,x 6= ei)

=
1

d′
p((x, y)|σi,x = ei) +

(
1− 1

d′

)
p((x, y)|σi,x 6= ei),

and therefore, by joint convexity of the KL-divergence3

Dkl(p((x, y)|σi > 0)||p(x, y)|σi < 0))

≤ 1

d′
Dkl (p((x, y)|σi > 0,x = ei)||p((x, y)|σi < 0,x = ei))

+

(
1− 1

d′

)
Dkl (p((x, y)|σi > 0,x 6= ei)||p((x, y)|σi < 0,x 6= ei)) .

Since the distribution of y is independent of σi, conditioned on x 6= ei, this equals

1

d′
Dkl (p(y|σi > 0,x = ei)||p(y|σi < 0,x = ei)) . (4)

The divergence in this equation is simply the KL divergence between two Bernoulli random
variables, one with parameter 1

2 (1 + b), and the other with parameter 1
2 (1− b). We now

use Lemma 4 to upper bound (4) by

b2

d′

(
1

1
2(1 + b)

+
1

1
2(1− b)

)
=

2b2

d′

(
1

1 + b
+

1

1− b

)
≤ 2b2

d′

(
1 +

1

1/2

)
=

6b2

d′
,

where we used the fact that b ∈ [0, 1/2]. Summarizing the discussion so far, we showed that

Dkl (p(S|σi < 0)||p(S|σi > 0)) = m Dkl (p((x, y)|σi < 0)||p((x, y)|σi > 0)) =
6mb2

d′
.

Plugging this back into (3), we get that the excess risk is lower bounded by

1

2d′

(
min{Y b,B/

√
d′}
)2 d′∑

i=1

(
1−

√
3mb2

d′

)
=
(

min{Y b,B/
√
d′}
)2 1

2

(
1−

√
3mb2

d′

)

≥
(

min{Y b,B/
√
d′}
)2 1

2

(
1−

√
3m(d′/6m)

d′

)
≥ 0.14

(
min{Y b,B/

√
d′}
)2

= 0.14

(
min

{
Y min

{
1

2
,

√
d′

6m

}
,
B√
d′

})2

= 0.14 min

{
1

4
Y 2,

d′Y 2

6m
,
B2

d′

}
.

3. Specifically, we’re using the fact that by Jensen’s inequality, for any probability distributions p1, p2, q1, q2
and λ ∈ [0, 1], it holds that DKL((1−λ)p1 +λp2||(1−λ)q1 +λq2) ≤ (1−λ)DKL(p1||q1) +λDKL(p2||q2).
See also Cover and Thomas (2006), theorem 2.7.2.
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Now, recall that d′ is a free parameter of value at most d. We now distinguish between two
cases:

• If d >
√

6mB/Y , then we pick d′ = d
√

6mB/Y e, and get that the expression above
is at least

0.14 min

{
1

4
Y 2,

B2

d′

}
≥ 0.14 min

{
1

4
Y 2,

B2

max
{

1, 2
√

6mB
Y

}}

= 0.14 min

{
1

4
Y 2, B2,

BY

2
√

6m

}
.

• If d ≤
√

6mB/Y , we pick d′ = d, and note that d′Y 2

6m ≤ B2

d in this case. Therefore,
the expression above is at least

0.14 min

{
1

4
Y 2,

dY 2

6m

}
Combining the two cases, we get that a lower bound of the form

c min

{
Y 2, B2,

dY 2

m
,
BY√
m

}
,

where c is a universal constant.

With Thm. 3 and Thm. 5 at hand, we now turn to prove our main result:
Proof [Proof of Thm. 1] Taking the maximum of Thm. 3 and Thm. 5, and using the fact
that B ≥ 2Y , we get a lower bound of

cmax

{
min

{
Y 2,

B2

m

}
, min

{
Y 2,

dY 2

m
,
BY√
m

}}
for some constant c. If m ≤ (B2/Y 2), this is at least Y 2, and otherwise it is

cmax

{
B2

m
, min

{
dY 2

m
,
BY√
m

}}
≥ c

2

(
B2

m
+ min

{
dY 2

m
,
BY√
m

})
≥ c

2
min

{
B2 + dY 2

m
,
BY√
m

}
.

Combining the two cases, the result follows.
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Abstract

This work establishes distribution-free upper and lower bounds on the minimax label com-
plexity of active learning with general hypothesis classes, under various noise models. The
results reveal a number of surprising facts. In particular, under the noise model of Tsy-
bakov (2004), the minimax label complexity of active learning with a VC class is always
asymptotically smaller than that of passive learning, and is typically significantly smaller
than the best previously-published upper bounds in the active learning literature. In high-
noise regimes, it turns out that all active learning problems of a given VC dimension have
roughly the same minimax label complexity, which contrasts with well-known results for
bounded noise. In low-noise regimes, we find that the label complexity is well-characterized
by a simple combinatorial complexity measure we call the star number. Interestingly, we
find that almost all of the complexity measures previously explored in the active learning
literature have worst-case values exactly equal to the star number. We also propose new
active learning strategies that nearly achieve these minimax label complexities.

Keywords: active learning, selective sampling, sequential design, adaptive sampling,
statistical learning theory, margin condition, Tsybakov noise, sample complexity, minimax
analysis

1. Introduction

In many machine learning applications, in the process of training a high-accuracy classifier,
the primary bottleneck in time and effort is often the annotation of the large quantities
of data required for supervised learning. Active learning is a protocol designed to reduce
this cost by allowing the learning algorithm to sequentially identify highly-informative data
points to be annotated. In the specific protocol we study below, called pool-based active
learning, the learning algorithm is initially given access to a large pool of unlabeled data
points, which are considered inexpensive and abundant. It is then able to select any un-
labeled data point from the pool and request its label. Given the label of this point, the
algorithm can then select another unlabeled data point to be labeled, and so on. This inter-
active process continues for some prespecified number of rounds, after which the algorithm
must halt and produce a classifier. This contrasts with passive learning, where the data
points to be labeled are chosen at random. The hope is that, by sequentially selecting the
data points to be labeled, the active learning algorithm can direct the annotation effort to-
ward only the highly-informative data points, given the information already gathered from
previously-labeled data, and thereby reduce the total number of labels required to produce
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a classifier capable of predicting the labels of new instances with a desired level of accuracy.
This active learning protocol has been used in practice for a variety of learning problems,
often with significant reductions in the time and effort required for data annotation (see
Settles, 2012, for a survey of several such applications).

This article studies the theoretical capabilities of active learning, regarding the number
of label requests sufficient to learn a classifier to a desired error rate, known as the label
complexity. There is now a substantial literature on this subject (see Hanneke, 2014, for
a survey of known results), but on the important question of optimal performance in the
general setting, the gaps present in the literature are quite substantial in some cases. In
this work, we address this question by carefully studying the minimax performance. Specif-
ically, we are interested in the minimax label complexity, defined as the smallest (over the
choice of active learning algorithm) worst-case number of label requests sufficient for the
active learning algorithm to produce a classifier of a specified error rate, in the context of
various noise models (e.g., Tsybakov noise, bounded noise, agnostic noise, etc.). We derive
upper and lower bounds on the minimax label complexity for several noise models, which
reveal a variety of interesting and (in some cases) surprising observations. Furthermore,
in establishing the upper bounds, we propose a novel active learning strategy, which often
achieves significantly smaller label complexities than the active learning methods studied
in the prior literature.

1.1 The Prior Literature on the Theory of Active Learning

Before getting into the technical details, we first review some background information about
the prior literature on the theory of active learning. This will also allow us to introduce the
key contributions of the present work.

The literature on the theory of active learning began with studies of the realizable
case, a setting in which the labels are assumed to be consistent with some classifier in a
known hypothesis class, and have no noise (Cohn, Atlas, and Ladner, 1994; Freund, Seung,
Shamir, and Tishby, 1997; Dasgupta, 2004, 2005). In this simple setting, Dasgupta (2005)
supplied the first general analysis of the label complexity of active learning, applicable
to arbitrary hypothesis classes. However, Dasgupta (2005) found that there are a range
of minimax label complexities, depending on the structure of the hypothesis class, so that
even among hypothesis classes of roughly the same minimax sample complexities for passive
learning, there can be widely varying minimax label complexities for active learning. In
particular, he found that some hypothesis classes (e.g., interval classifiers) have minimax
label complexity essentially no better than that of passive learning, while others have a
minimax label complexity exponentially smaller than that of passive learning (e.g., threshold
classifiers). Furthermore, most nontrivial hypothesis classes of interest in learning theory
seem to fall into the former category, with minimax label complexities essentially no better
than passive learning. Fortunately, Dasgupta (2005) also found that in some of these hard
cases, it is still possible to show improvements over passive learning under restrictions on
the data distribution.

Stemming from these observations, much of the literature on active learning in the real-
izable case has focused on describing various special conditions under which the label com-
plexity of active learning is significantly better than that of passive learning: for instance,
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by placing restrictions on the marginal distribution of the unlabeled data (e.g., Dasgupta,
Kalai, and Monteleoni, 2005; Balcan, Broder, and Zhang, 2007; El-Yaniv and Wiener, 2012;
Balcan and Long, 2013; Hanneke, 2014), or abandoning the minimax approach by express-
ing the label complexity with an explicit dependence on the optimal classifier (e.g., Das-
gupta, 2005; Balcan, Hanneke, and Vaughan, 2010; Hanneke, 2009b, 2012). In the general
case, such results have been abstracted into various distribution-dependent (or sometimes
data-dependent) complexity measures, such as the splitting index (Dasgupta, 2005), the
disagreement coefficient (Hanneke, 2007b, 2009b), the extended teaching dimension growth
function (Hanneke, 2007a), and the related version space compression set size (El-Yaniv
and Wiener, 2010, 2012; Wiener, Hanneke, and El-Yaniv, 2015). For each of these, there are
general upper bounds (and in some cases, minimax lower bounds) on the label complexities
achievable by active learning methods in the realizable case, expressed in terms of the com-
plexity measure. By expressing bounds on the label complexity in terms of these quantities,
the analysis of label complexities achievable by active learning in the realizable case has
been effectively reduced to the problem of bounding one of these complexity measures. In
particular, these complexity measures are capable of exhibiting a range of behaviors, corre-
sponding to the range of label complexities achievable by active learning. For certain values
of the complexity measures, the resulting bounds reveal significant improvements over the
minimax sample complexity of passive learning, while for other values, the resulting bounds
are essentially no better than the minimax sample complexity of passive learning.

Moving beyond these initial studies of the realizable case, the more-recent literature
has developed active learning algorithms that are provably robust to label noise. This ad-
vance was initiated by the seminal work of Balcan, Beygelzimer, and Langford (2006, 2009)
on the A2 (Agnostic Active) algorithm, and continued by a number of subsequent works
(e.g., Dasgupta, Hsu, and Monteleoni, 2007; Balcan, Broder, and Zhang, 2007; Castro and
Nowak, 2006, 2008; Hanneke, 2007a, 2009a,b, 2011, 2012; Minsker, 2012; Koltchinskii, 2010;
Beygelzimer, Dasgupta, and Langford, 2009; Beygelzimer, Hsu, Langford, and Zhang, 2010;
Hsu, 2010; Ailon, Begleiter, and Ezra, 2012; Hanneke and Yang, 2012). When moving into
the analysis of label complexity in noisy settings, the literature continues to follow the
same intuition from the realizable case: that is, that there should be some active learning
problems that are inherently hard, sometimes no better than passive learning, while others
are significantly easier, with significant savings compared to passive learning. As such, the
general label complexity bounds proven in noisy settings have tended to follow similar pat-
terns to those found in the realizable case. In some scenarios, the bounds reflect interesting
savings compared to passive learning, while in other scenarios the bounds do not reflect
any improvements at all. However, unlike the realizable case, these upper bounds on the
label complexities of the various proposed methods for noisy settings lacked complementary
minimax lower bounds showing that they were accurately describing the fundamental capa-
bilities of active learning in these settings. For instance, in the setting of Tsybakov noise,
there are essentially only two types of general lower bounds on the minimax label complex-
ity in the prior literature: (1) lower bounds that hold for all nontrivial hypothesis classes of
a given VC dimension, which therefore reflect a kind of best-case scenario (Hanneke, 2011,
2014), and (2) lower bounds inherited from the realizable case (which is a special case of
Tsybakov noise). In particular, both of these lower bounds are always smaller than the
minimax sample complexity of passive learning under Tsybakov noise. Thus, although the
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upper bounds on the label complexity of active learning in the literature are sometimes no
better than the minimax sample complexity of passive learning, the existing lower bounds
are unable to confirm that active learning truly cannot outperform passive learning in these
scenarios. This gap in our understanding of active learning with noise has persisted for a
number of years now, without really receiving a good explanation for why the gap exists
and how it might be closed.

In the present work, we show that there is a very good reason for why better lower
bounds have not been discovered in general for the noisy case. For certain ranges of the
noise parameters (corresponding to the high-noise regime), these simple lower bounds are
actually tight (up to certain constant and logarithmic factors): that is, the upper bounds
can actually be reduced to nearly match these basic lower bounds. Proving this surprising
fact requires the introduction of a new type of active learning strategy, which selects its
queries based on both the structure of the hypothesis class and the estimated variances of the
labels. In particular, in these high-noise regimes, we find that all hypothesis classes of the
same VC dimension have essentially the same minimax label complexities (up to logarithmic
factors), in stark contrast to the well-known differentiation of hypothesis classes observed
in the realizable case by Dasgupta (2005).

For the remaining range of the noise parameters (the low-noise regime), we argue that
the label complexity takes a value sometimes larger than this basic lower bound, yet still
typically smaller than the known upper bounds. In this case, we further argue that the
minimax label complexity is well-characterized by a simple combinatorial complexity mea-
sure, which we call the star number. In particular, these results reveal that for nonextremal
parameter values, the minimax label complexity of active learning under Tsybakov noise
with any VC class is always smaller than that of passive learning, a fact not implied by any
results in the prior literature.

We further find that the star number can be used to characterize the minimax label
complexities for a variety of other noise models. Interestingly, we also show that almost
all of the distribution-dependent or data-dependent complexity measures from the prior
literature on the label complexity of active learning are exactly equal to the star number
when maximized over the choice of distribution or data set (including all of those mentioned
above). Thus, the star number represents a unifying core concept within these disparate
styles of analysis.

1.2 Our Contributions

We summarize a few of the main contributions and interesting implications of this work.

• We develop a general noise-robust active learning strategy, which unlike previously-
proposed general methods, selects its queries based on both the structure of the hy-
pothesis class and the estimated variances of the labels.

• We obtain the first near-matching general distribution-free upper and lower bounds
on the minimax label complexity of active learning, under a variety of noise models.

• In many cases, the upper bounds significantly improve over the best upper bounds
implied by the prior literature.
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• The upper bounds for Tsybakov noise always reflect improvements over the minimax
sample complexity of passive learning (for non-extremal noise parameter values), a
feat not previously known to be possible.

• In high-noise regimes of Tsybakov noise, our results imply that all hypothesis classes
of a given VC dimension have roughly the same minimax label complexity (up to
logarithmic factors), in contrast to well-known results for bounded noise. This fact is
not implied by any results in the prior literature.

• We express our upper and lower bounds on the label complexity in terms of a simple
combinatorial complexity measure, which we refer to as the star number.

• We show that for any hypothesis class, almost every complexity measure proposed to
date in the active learning literature has worst-case value exactly equal to the star
number, thus unifying the disparate styles of analysis in the active learning literature.
We also prove that the doubling dimension is bounded if and only if the star number
is finite.

• For most of the noise models studied here, we exhibit examples of hypothesis classes
spanning the gaps between the upper and lower bounds, thus demonstrating that the
gaps cannot generally be reduced (aside from logarithmic factors) without introducing
additional complexity measures.

• We prove a separation result for Tsybakov noise vs the Bernstein class condition,
establishing that the respective minimax label complexities can be significantly dif-
ferent. This contrasts with passive learning, where they are known to be equivalent
up to a logarithmic factor.

The algorithmic techniques underlying the proofs of the most-interesting of our upper
bounds involve a combination of the disagreement-based strategy of Cohn, Atlas, and Lad-
ner (1994) (and the analysis thereof by Hanneke, 2011, and Wiener, Hanneke, and El-Yaniv,
2015), along with a repeated-querying technique of Kääriäinen (2006), modified to account
for variations in label variances so that the algorithm does not waste too many queries
determining the optimal classification of highly-noisy points; this modification represents
the main algorithmic innovation in this work. In a supporting role, we also rely on auxiliary
lemmas on the construction of ε-nets and ε-covers based on random samples, and the use of
these to effectively discretize the instance space. The mathematical techniques underlying
the proofs of the lower bounds are largely taken directly from the literature. Most of the
lower bounds are established by a combination of a technique originating with Kääriäinen
(2006) and refined by Beygelzimer, Dasgupta, and Langford (2009) and Hanneke (2011,
2014), and a technique of Raginsky and Rakhlin (2011) for incorporating a complexity
measure into the lower bounds.

We note that, while the present work focuses on the distribution-free setting, in which
the marginal distribution over the instance space is unrestricted, our results reveal that
low-noise settings can still benefit from distribution-dependent analysis, as expected given
the aforementioned observations by Dasgupta (2005) for the realizable case. For instance,
under Tsybakov noise, it is often possible to obtain stronger upper bounds in low-noise

3491



Hanneke and Yang

regimes under assumptions restricting the distribution of the unlabeled data (see e.g., Bal-
can, Broder, and Zhang, 2007). We leave for future work the important problem of charac-
terizing the minimax label complexity of active learning in the general case for an arbitrary
fixed marginal distribution over the instance space.

1.3 Outline

The rest of this article is organized as follows. Section 2 introduces the formal setting
and basic notation used throughout, followed in Section 3 with the introduction of the
noise models studied in this work. Section 4 defines a combinatorial complexity measure
– the star number – in terms of which we will express the label complexity bounds below.
Section 5 provides statements of the main results of this work: upper and lower bounds on
the minimax label complexities of active learning under each of the noise models defined
in Section 3. That section also includes a discussion of the results, and a brief sketch
of the arguments underlying the most-interesting among them. Section 6 compares the
results from Section 5 to the known results on the minimax sample complexity of passive
learning, revealing which scenarios yield improvements of active over passive. Next, in
Section 7, we go through the various results on the label complexity of active learning
from the literature, along with their corresponding complexity measures (most of which are
distribution-dependent or data-dependent). We argue that all of these complexity measures
are exactly equal to the star number when maximized over the choice of distribution or
data set. This section also relates the star number to the well-known concept of doubling
dimension, in particular showing that the doubling dimension is bounded if and only if the
star number is finite.

We note that the article is written with the intention that it be read in-order; for
instance, while Appendix B contains proofs of the results in Section 5, those proofs refer to
quantities and results introduced in Sections 6 and 7 (which follow Section 5, but precede
Appendix B).

2. Definitions

The rest of this paper makes use of the following formal definitions. There is a space X ,
called the instance space. We suppose X is equipped with a σ-algebra BX , and for simplicity
we will assume {{x} : x ∈ X} ⊆ BX . There is also a set Y = {−1,+1}, known as the label
space. Any measurable function h : X → Y is called a classifier. There is an arbitrary set
C of classifiers, known as the hypothesis class. To focus on nontrivial cases, we suppose
|C| ≥ 3 throughout.

For any probability measure P over X × Y and any x ∈ X , define η(x;P ) = P(Y =
+1|X = x) for (X,Y ) ∼ P , and let f?P (x) = sign(2η(x;P ) − 1) denote the Bayes optimal
classifier,1 where sign(t) = +1 if t ≥ 0, and sign(t) = −1 if t < 0. Define the error rate of
a classifier h with respect to P as erP (h) = P ((x, y) : h(x) 6= y).

1. Since conditional probabilities are only defined up to probability zero differences, there can be multiple
valid functions η(·;P ) and f?P , with any two such functions being equal with probability one. As such,
we will interpret statements such as “f?P ∈ C” to mean that there exists a version of f?P contained in C,
and similarly for other claims and conditions for f?P and η(·;P ).
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In the learning problem, there is a target distribution PXY over X × Y, and a data
sequence (X1, Y1), (X2, Y2), . . ., which are independent PXY -distributed random variables.
However, in the active learning protocol, the Yi values are initially “hidden” until individ-
ually requested by the algorithm (see below). We refer to the sequence X1, X2, . . . as the
unlabeled data sequence.2 We will sometimes denote by P the marginal distribution of PXY
over X : that is, P(·) = PXY (· × Y).

In the pool-based active learning protocol,3 we define an active learning algorithm A as
an algorithm taking as input a budget n ∈ N∪{0}, and proceeding as follows. The algorithm
initially has access to the unlabeled data sequence X1, X2, . . .. If n > 0, the algorithm may
then select an index i1 ∈ N and request to observe the label Yi1 . The algorithm may then
observe the value of Yi1 , and if n ≥ 2, then based on both the unlabeled sequence and
this new observation Yi1 , it may select another index i2 ∈ N and request to observe Yi2 .
This continues for a number of rounds at most n (i.e., it may request at most n labels),
after which the algorithm must halt and produce a classifier ĥn. More formally, an active
learning algorithm is defined by a random sequence {it}∞t=1 in N, a random variable N in
N, and a random classifier ĥn, satisfying the following properties. Each it is conditionally
independent from {(Xi, Yi)}∞i=1 given {ij}t−1

j=1, {Yij}t−1
j=1, and {Xi}∞i=1. The random variable

N always has N ≤ n, and for any k ∈ {0, . . . , n}, 1[N = k] is independent from {(Xi, Yi)}∞i=1

given {ij}kj=1, {Yij}kj=1, and {Xi}∞i=1. Finally, ĥn is independent from {(Xi, Yi)}∞i=1 given

N , {ij}Nj=1, {Yij}Nj=1, and {Xi}∞i=1.
We are now ready for the definition of our primary quantity of study: the minimax label

complexity. In the next section, we define several well-known noise models as specifications
of the set D referenced in this definition.

Definition 1 For a given set D of probability measures on X × Y, ∀ε ≥ 0, ∀δ ∈ [0, 1], the
minimax label complexity (of active learning) under D with respect to C, denoted ΛD(ε, δ),
is the smallest n ∈ N ∪ {0} such that there exists an active learning algorithm A with
the property that, for every PXY ∈ D, the classifier ĥn produced by A(n) based on the
(independent PXY -distributed) data sequence (X1, Y1), (X2, Y2), . . . satisfies

P
(

erPXY

(
ĥn

)
− inf
h∈C

erPXY (h) > ε

)
≤ δ.

If no such n exists, we define ΛD(ε, δ) =∞.

Following Vapnik and Chervonenkis (1971); Anthony and Bartlett (1999), we say a
collection of sets T ⊆ 2X shatters a sequence S ∈ X k (for k ∈ N) if {A ∩ S : A ∈ T } = 2S .

2. Although, in practice, we would expect to have access to only a finite number of unlabeled samples,
we expect this number would often be quite large (as unlabeled samples are considered inexpensive and
abundant in many applications). For simplicity, and to focus the analysis purely on the number of labels
required for learning, we approximate this scenario by supposing an inexhaustible source of unlabeled
samples. We leave open the question of the number of unlabeled samples sufficient to obtain the minimax
label complexity; in particular, we expect the number of such samples used by the methods obtaining
our upper bounds to be quite large indeed.

3. Although technically we study the pool-based active learning protocol, all of our results apply equally
well to the stream-based (selective sampling) model of active learning (in which the algorithm must
decide whether or not to request the label Yi before observing any Xj with j > i or requesting any Yj
with j > i).
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The VC dimension of T is then defined as the largest k ∈ N ∪ {0} such that there exists
S ∈ X k shattered by T ; if no such largest k exists, the VC dimension is defined to be ∞.
Overloading this terminology, the VC dimension of a set H of classifiers is defined as the
VC dimension of the collection of sets {{x : h(x) = +1} : h ∈ H}. Throughout this article,
we denote by d the VC dimension of C. We are particularly interested in the case d < ∞,
in which case C is called a VC class.

For any set H of classifiers, define DIS(H) = {x ∈ X : ∃h, g ∈ H s.t. h(x) 6= g(x)},
the region of disagreement of H. Also, for any classifier h, any r ≥ 0, and any probability
measure P on X , define BP (h, r) = {g∈C :P (x :g(x) 6=h(x))≤r}, the r-ball centered at h.

Before proceeding, we introduce a few additional notational conventions that help to
simplify the theorem statements and proofs. For any R-valued functions f and g, we write
f(x) . g(x) (or equivalently g(x) & f(x)) to express the fact that there is a universal
finite numerical constant c > 0 such that f(x) ≤ cg(x). For any x ∈ [0,∞], we define
Log(x) = max{ln(x), 1}, where ln(0) = −∞ and ln(∞) = ∞. For simplicity, we define
∞

Log(∞) = ∞, but in any other context, we always define 0 · ∞ = 0, and also define a
0 = ∞

for any a > 0. For any function φ : R→ R, we use the notation “limγ→0 φ(γ)” to indicating
taking the limit as γ approaches 0 from above: i.e., γ ↓ 0. For a, b ∈ R, we denote
a ∧ b = min{a, b} and a ∨ b = max{a, b}. Finally, we remark that some of the claims below
technically require additional qualifications to guarantee measurability of certain quantities
(as is typically the case in empirical process theory); see Blumer, Ehrenfeucht, Haussler, and
Warmuth (1989); van der Vaart and Wellner (1996, 2011) for some discussion of this issue.
For simplicity, we do not mention these issues in the analysis below; rather, we implicitly
qualify all of these results with the condition that C is such that all of the random variables
and events arising in the proofs are measurable.

3. Noise Models

We now introduce the noise models under which we will study the minimax label complexity
of active learning. These are defined as sets of probability measures on X×Y, corresponding
to specifications of the set D in Definition 1.

• (Realizable Case) Define RE as the collection of PXY for which f?PXY ∈ C and
2η(·;PXY )− 1 = f?PXY (·) (almost everywhere w.r.t. P).

• (Bounded Noise) For β ∈ [0, 1/2), define BN(β) as the collection of joint distributions
PXY over X × Y such that f?PXY ∈ C and

P (x : |η(x;PXY )− 1/2| ≥ 1/2− β) = 1.

• (Tsybakov Noise) For a ∈ [1,∞) and α ∈ (0, 1), define TN(a, α) as the collection of
joint distributions PXY over X × Y such that f?PXY ∈ C and ∀γ > 0,

P (x : |η(x;PXY )− 1/2| ≤ γ) ≤ a′γα/(1−α),

where a′ = (1− α)(2α)α/(1−α)a1/(1−α).
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• (Bernstein Class Condition) For a ∈ [1,∞) and α ∈ [0, 1], define BC(a, α) as the
collection of joint distributions PXY over X × Y such that, ∃hPXY ∈ C for which
∀h ∈ C,

P(x : h(x) 6= hPXY (x)) ≤ a(erPXY (h)− erPXY (hPXY ))α.

• (Benign Noise) For ν ∈ [0, 1/2], define BE(ν) as the collection of all joint distributions
PXY over X × Y such that f?PXY ∈ C and erPXY (f?PXY ) ≤ ν.

• (Agnostic Noise) For ν ∈ [0, 1], define AG(ν) as the collection of all joint distributions
PXY over X × Y such that infh∈C erPXY (h) ≤ ν.

It is known that RE ⊆ BN(β) ⊆ BC(1/(1 − 2β), 1), and also that RE ⊆ TN(a, α) ⊆
BC(a, α). Furthermore, TN(a, α) is equivalent to the conditions in BC(a, α) being satisfied
for all classifiers h, rather than merely those in C (Mammen and Tsybakov, 1999; Tsy-
bakov, 2004; Boucheron, Bousquet, and Lugosi, 2005). All of RE, BN(β), and TN(a, α) are
contained in

⋃
ν<1/2 BE(ν), and in particular, BN(β) ⊆ BE(β).

The realizable case is the simplest setting studied here, corresponding to the “optimistic
case” of Vapnik (1998) or the PAC model of Valiant (1984). The bounded noise model has
been studied under various names (e.g., Massart and Nédélec, 2006; Giné and Koltchinskii,
2006; Kääriäinen, 2006; Koltchinskii, 2010; Raginsky and Rakhlin, 2011); it is sometimes
referred to as Massart’s noise condition. The Tsybakov noise condition was introduced
by Mammen and Tsybakov (1999) in a slightly stronger form (in the related context of
discrimination analysis) and was distilled into the form stated above by Tsybakov (2004).
There is now a substantial literature on the label complexity under this condition, both for
passive learning and active learning (e.g., Mammen and Tsybakov, 1999; Tsybakov, 2004;
Bartlett, Jordan, and McAuliffe, 2006; Koltchinskii, 2006; Balcan, Broder, and Zhang, 2007;
Hanneke, 2011, 2012, 2014; Hanneke and Yang, 2012). However, in much of this literature,
the results are in fact established under the weaker assumption given by the Bernstein
class condition (Bartlett, Mendelson, and Philips, 2004), which is known to be implied by
the Tsybakov noise condition (Mammen and Tsybakov, 1999; Tsybakov, 2004). For passive
learning, it is known that the minimax sample complexities under Tsybakov noise and under
the Bernstein class condition are equivalent up to a logarithmic factor. Interestingly, our
results below imply that this is not the case for active learning. The benign noise condition
(studied by Hanneke, 2009b) requires only that the Bayes optimal classifier be contained
within the hypothesis class, and that the Bayes error rate be at most the value of the
parameter ν. The agnostic noise condition (sometimes called adversarial noise in related
contexts) is the weakest of the noise assumptions studied here, and admits any distribution
for which the best error rate among classifiers in the hypothesis class is at most the value of
the parameter ν. This model has been widely studied in the literature, for both passive and
active learning (e.g., Vapnik and Chervonenkis, 1971; Vapnik, 1982, 1998; Kearns, Schapire,
and Sellie, 1994; Kalai, Klivans, Mansour, and Servedio, 2005; Balcan, Beygelzimer, and
Langford, 2006; Hanneke, 2007b,a; Awasthi, Balcan, and Long, 2014).

4. A Combinatorial Complexity Measure

There is presently a substantial literature on distribution-dependent bounds on the label
complexities of various active learning algorithms. These bounds are expressed in terms of a
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variety of interesting complexity measures, designed to capture the behavior of each of these
particular algorithms. These measures of complexity include the disagreement coefficient
(Hanneke, 2007b), the reciprocal of the splitting index (Dasgupta, 2005), the extended
teaching dimension growth function (Hanneke, 2007a), and the version space compression
set size (El-Yaniv and Wiener, 2010, 2012). These quantities have been studied and bounded
for a variety of learning problems (see Hanneke, 2014, for a summary). They each have many
interesting properties, and in general can exhibit a wide variety of behaviors, as functions of
the distribution over X (and in some cases, the distribution over X ×Y) and ε, or in some
cases, the data itself. However, something remarkable happens when we maximize each of
these complexity measures over the choice of distribution (or data set): they all become
equal to a simple and easy-to-calculate combinatorial quantity (see Section 7 for proofs of
these equivalences). Specifically, consider the following definition.4

Definition 2 Define the star number s as the largest integer s such that there exist distinct
points x1, . . . , xs ∈ X and classifiers h0, h1, . . . , hs ∈ C with the property that ∀i ∈ {1, . . . , s},
DIS({h0, hi}) ∩ {x1, . . . , xs} = {xi}; if no such largest integer exists, define s =∞.

For any set H of functions X → Y, any t ∈ N, x1, . . . , xt ∈ X , and h0, h1, . . . , ht ∈ H,
we will say {x1, . . . , xt} is a star set for H, witnessed by {h0, h1, . . . , ht}, if ∀i ∈ {1, . . . , t},
DIS({h0, hi}) ∩ {x1, . . . , xt} = {xi}. For brevity, in some instances below, we may sim-
ply say that {x1, . . . , xt} is a star set for H, indicating that ∃h0, h1, . . . , ht ∈ H such
that {x1, . . . , xt} is a star set for H, witnessed by {h0, h1, . . . , ht}. We may also say that
{x1, . . . , xt} is a star set for H centered at h0 ∈ H if ∃h1, . . . , ht ∈ H such that {x1, . . . , xt}
is a star set for H, witnessed by {h0, h1, . . . , ht}. For completeness, we also say that {} (the
empty sequence) is a star set for H (witnessed by {h0} for any h0 ∈ H), for any nonempty
H. In these terms, the star number of C is the maximum possible cardinality of a star set
for C, or ∞ if no such maximum exists.

The star number can equivalently be described as the maximum possible degree in the
data-induced one-inclusion graph for C (see Haussler, Littlestone, and Warmuth, 1994),
where the maximum is over all possible data sets and nodes in the graph.5 To relate this to
the VC dimension, one can show that the VC dimension is the maximum possible degree
of a hypercube in the data-induced one-inclusion graph for C (maximized over all possible
data sets). From this, it is clear that s ≥ d. Indeed, any set {x1, . . . , xk} shatterable by C
is also a star set for C, since some h0 ∈ C classifies all k points −1, and for each xi, some
hi ∈ C has hi(xi) = +1 while hi(xj) = −1 for every j 6= i (where hi is guaranteed to exist
by shatterability of the set). On the other hand, there is no general upper bound on s in
terms of d, and the gap between s and d can generally be infinite.

4. A similar notion previously appeared in a lower-bound argument of Dasgupta (2005), including a kind
of distribution-dependent version of the “star set” idea. Indeed, we explore these connections formally
in Section 7, where we additionally prove this definition is exactly equivalent to a quantity studied
by Hanneke (2007a) (namely, the distribution-free version of the extended teaching dimension growth
function), and has connections to several other complexity measures in the literature.

5. The maximum degree in the one-inclusion graph was recently studied in the context of teaching com-
plexity by Fan (2012). However, using the data-induced one-inclusion graph of Haussler, Littlestone,
and Warmuth (1994) (rather than the graph based on the full space X ) can substantially increase the
maximum degree by omitting certain highly-informative points.
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4.1 Examples

Before continuing, we briefly go through a few simple example calculations of the star
number. For the class of threshold classifiers on R (i.e., C = {x 7→ 21[t,∞)(x)− 1 : t ∈ R}),
we have s = 2, as {x1, x2} is a star set for C centered at 21[t,∞)−1 if and only if x1 < t ≤ x2,
and any set {x1, x2, x3} cannot be a star set for C centered at any given 21[t,∞)−1 since, of
the (at least) two of these points on the same side of t, any threshold classifier disagreeing
with 21[t,∞)−1 on the one further from t must also disagree with 21[t,∞)−1 on the one closer
to t. In contrast, for the class of interval classifiers on R (i.e., C = {x 7→ 21[a,b](x) − 1 :
−∞ < a ≤ b < ∞}), we have s = ∞, since for any distinct points x0, x1, . . . , xs ∈ R,
{x1, . . . , xs} is a star set for C witnessed by {21[x0,x0] − 1, 21[x1,x1] − 1, . . . , 21[xs,xs] − 1}.
It is an easy exercise to verify that we also have s = ∞ for the classes of linear separators
on Rk (k ≥ 2) and axis-aligned rectangles on Rk (k ≥ 1), since the above construction
for interval classifiers can be embedded into these spaces, with the star set lying within a
lower-dimensional manifold in Rk (see Dasgupta, 2004, 2005; Hanneke, 2014).

As an intermediate case, where s has a range of values, consider the class of intervals of
width at least w ∈ (0, 1) (i.e., C = {x 7→ 21[a,b](x)−1 : −∞ < a ≤ b <∞, b−a ≥ w}), for the
space X = [0, 1]. In this case, we can show that b2/wc ≤ s ≤ b2/wc+2, as follows. We may
note that letting k = b2/(w+ε)c+1 (for ε > 0), and taking xi = (w+ε)(i−1)/2 for 1 ≤ i ≤ k,
we have that {x1, . . . , xk} is a star set for C, witnessed by {21[−2w,−w]−1, 21[x1−w/2,x1+w/2]−
1, . . . , 21[xk−w/2,xk+w/2]−1}. Thus, taking ε→ 0 reveals that s ≥ b2/wc. On the other hand,
for any k′ ∈ N with k′ > 2, and points x1, . . . , xk′ ∈ [0, 1], suppose {x1, . . . , xk′} is a star set
for C witnessed by {h0, h1, . . . , hk′}. Without loss of generality, suppose x1 ≤ x2 ≤ · · · ≤ xk′ .
First suppose h0 classifies all of these points −1. Note that, for any i ∈ {3, . . . , k′}, since
the interval corresponding to hi−1 has width at least w and contains xi−1 but not xi−2 or

xi, we have xi − xi−1 > max{0, w − (xi−1 − xi−2)}. Thus, 1 ≥
∑k′

i=2 xi − xi−1 > x2 − x1 +∑k′

i=3 max{0, w − (xi−1 − xi−2)} ≥ (k′ − 2)w −
∑k′−1

i=3 xi − xi−1 = (k′ − 2)w − (xk′−1 − x2),
so that xk′−1 − x2 > (k′ − 2)w − 1. But xk′−1 − x2 ≤ 1, so that k′ < 2/w + 2. Since
k′ is an integer, this implies k′ ≤ b2/wc + 2. For the remaining case, if h0 classifies some
xi as +1, then let xi0 = min{xi : h0(xi) = +1} and xi1 = max{xi : h0(xi) = +1}. Note
that, if i0 > 1, then for any x < xi0−1, any h ∈ C with h(xi0) = h(x) = +1 6= h0(x) must
have h(xi0−1) = +1 6= h0(xi0−1), so that {x, xi0−1} ⊆ DIS({h, h0}). Therefore, @xi < xi0−1

(since otherwise DIS({hi, h0}) ∩ {x1, . . . , xk′} = {xi} would be violated), so that i0 ≤ 2.
Symmetric reasoning implies i1 ≥ k′ − 1. Similarly, if ∃x ∈ (xi0 , xi1), then any h ∈ C with
h(x) = −1 6= h0(x) must have either h(xi0) = −1 6= h0(xi0) or h(xi1) = −1 6= h0(xi1), so
that either {x, xi0} ⊆ DIS({h, h0}) or {x, xi1} ⊆ DIS({h, h0}). Therefore, @xi ∈ (xi0 , xi1)
(since again, DIS({hi, h0})∩{x1, . . . , xk′} = {xi} would be violated), so that i1 ∈ {i0, i0+1}.
Combined, these facts imply k′ ≤ i1 + 1 ≤ i0 + 2 ≤ 4 ≤ b2/wc + 2. Altogether, we have
s ≤ b2/wc+ 2.

5. Main Results

We are now ready to state the main results of this article: upper and lower bounds on
the minimax label complexities under the above noise models. For the sake of making the
theorem statements more concise, we abstract the dependence on logarithmic factors in
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several of the upper bounds into a simple “polylog(x)” factor, meaning a value . Logk(x),
for some k ∈ [1,∞) (in fact, all of these results hold with values of k ≤ 4); the reader is
referred to the proofs for a description of the actual logarithmic factors this polylog function
represents, along with tighter expressions of the upper bounds. The formal proofs of all of
these results are included in Appendix B.

Theorem 3 For any ε ∈ (0, 1/9), δ ∈ (0, 1/3),

max

{
min

{
s,

1

ε

}
, d,Log

(
min

{
1

ε
, |C|

})}
. ΛRE(ε, δ) . min

{
s,
d

ε
,

sd

Log(s)

}
Log

(
1

ε

)
.

Theorem 4 For any β ∈ [0, 1/2), ε ∈ (0, (1− 2β)/24), δ ∈ (0, 1/24],

1

(1− 2β)2
max

{
min

{
s,

1− 2β

ε

}
βLog

(
1

δ

)
, d

}
. ΛBN(β)(ε, δ) .

1

(1− 2β)2
min

{
s,

(1− 2β)d

ε

}
polylog

(
d

εδ

)
.

Theorem 5 For any a ∈ [4,∞), α ∈ (0, 1), ε ∈ (0, 1/(24a1/α)), and δ ∈ (0, 1/24],
if 0 < α ≤ 1/2,

a2

(
1

ε

)2−2α(
d+ Log

(
1

δ

))
. ΛTN(a,α)(ε, δ) . a2

(
1

ε

)2−2α

d · polylog

(
d

εδ

)
and if 1/2 < α < 1,

a2

(
1

ε

)2−2α

max

{
min

{
s,

1

a1/αε

}2α−1

Log

(
1

δ

)
, d

}
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ε

)2−2α
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d
,

1

a1/αε
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(
d

εδ

)
.

Theorem 6 For any a ∈ [4,∞), α ∈ (0, 1), ε ∈ (0, 1/(24a1/α)), and δ ∈ (0, 1/24],
if 0 ≤ α ≤ 1/2,

a2

(
1

ε

)2−2α(
d+ Log

(
1

δ

))
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,

and if 1/2 < α ≤ 1,
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1

ε
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max

{
min

{
s,

1

a1/αε

}2α−1

Log

(
1

δ

)
, d

}

. ΛBC(a,α)(ε, δ) . a2

(
1

ε

)2−2α

min

{
s,

1

aεα
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)
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Theorem 7 For any ν ∈ [0, 1/2), ε ∈ (0, (1− 2ν)/24), and δ ∈ (0, 1/24],

ν2

ε2

(
d+ Log

(
1

δ

))
+ min

{
s,

1

ε

}
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)
.
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Theorem 8 For any ν ∈ [0, 1/2), ε ∈ (0, (1− 2ν)/24), and δ ∈ (0, 1/24],

ν2

ε2

(
d+ Log

(
1

δ

))
+ min

{
s,

1

ε

}
. ΛAG(ν)(ε, δ) . min
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s,

1
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}(
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ε2
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)
d · polylog

(
1

εδ

)
.

5.1 Remarks on the Main Results

We sketch the main innovations underlying the active learning algorithms achieving these
upper bounds in Section 5.2 below. Sections 6 and 7 then provide detailed and thorough
comparisons of each of these results to those in the prior literature on passive and active
learning. For now, we mention a few noteworthy observations and comments regarding
these theorems.

5.1.1 Comparison to the Previous Best Known Results

Aside from Theorems 6 and 8, each of the above results offers some kind of refinement over
the previous best known results on the label complexity of active learning. Some of these
refinements are relatively mild, such as those for the realizable case and bounded noise.
However, our refinements under Tsybakov noise and benign noise are far more significant.
In particular, perhaps the most surprising and interesting of the above results are the upper
bounds in Theorem 5, which can be considered the primary contribution of this work.

As discussed above, the prior literature on noise-robust active learning is largely rooted
in the intuitions and techniques developed for the realizable case. As indicated by The-
orem 3, there is a wide spread of label complexities for active learning problems in the
realizable case, depending on the structure of the hypothesis class. In particular, when
s <∞, we have O(Log(1/ε)) label complexity in the realizable case, representing a nearly-
exponential improvement over passive learning, which has Θ̃(1/ε) dependence on ε. On the
other hand, when s = ∞, we have Ω(1/ε) minimax label complexity for active learning,
which is the same dependence on ε as known for passive learning (see Section 6). Thus, for
active learning in the realizable case, some hypothesis classes are “easy” (such as thresh-
old classifiers), offering strong improvements over passive learning, while others are “hard”
(such as interval classifiers), offering almost no improvements over passive.

With the realizable case as inspiration, the results in the prior literature on general
noise-robust active learning have all continued to reflect these distinctions, and the label
complexity bounds in those works continue to exhibit this wide spread. In the case of
Tsybakov noise, the best general results in the prior literature (from Hanneke and Yang,

2012; Hanneke, 2014) correspond to an upper bound of roughly a2
(

1
ε

)2−2α
min

{
s, 1
aεα

}
d ·

polylog
(

1
εδ

)
(after converting those complexity measures into the star number via the results

in Section 7 below). When s < ∞, this has dependence Θ̃(ε2α−2) on ε, which reflects a
strong improvement over the Θ̃(εα−2) minimax sample complexity of passive learning for
this problem (see Section 6). On the other hand, when s = ∞, this bound is Θ̃(εα−2), so
that as in the realizable case, the bound is no better than that of passive learning for these
hypothesis classes. Thus, the prior results in the literature continue the trend observed in
the realizable case, in which the “easy” hypothesis classes admit strong improvements over
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passive learning, while the “hard” hypothesis classes have a bound that is no better than
the sample complexity of passive learning.

With this as background, it comes as quite a surprise that the upper bounds in Theo-
rem 5 are always smaller than the corresponding minimax sample complexities of passive
learning, in terms of their asymptotic dependence on ε for 0 < α < 1. Specifically, these
upper bounds reveal a label complexity Õ(ε2α−2) when s <∞, and Õ(ε2α−2 ∨ (1/ε)) when
s = ∞. Comparing to the Θ̃(εα−2) minimax sample complexity of passive learning, the
improvement for active learning is by a factor of Θ̃(ε−α) when s < ∞, and by a factor of
Θ̃(ε−min{α,1−α}) when s = ∞. As a further surprise, when 0 < α ≤ 1/2 (the high-noise
regime), we see that the distinctions between active learning problems of a given VC di-
mension essentially vanish (up to logarithmic factors), so that the familiar spread of label
complexities from the realizable case is no longer present. Indeed, in this latter case, all
hypothesis classes with finite VC dimension exhibit the strong improvements over passive
learning, previously only known to hold for the “easy” hypothesis classes (such as threshold
classifiers): that is, Õ(ε2α−2) label complexity.

Further examining these upper bounds, we see that the spread of label complexities
between “easy” and “hard” hypothesis classes increasingly re-emerges as α approaches 1,
beginning with α = 1/2. This transition point is quite sensible, since this is precisely the
point at which the label complexity has dependence on ε of Θ̃(1/ε), which is roughly the
same as the minimax label complexity of the “hard” hypothesis classes in the realizable
case, which is, after all, included in TN(a, α). Thus, as α increases above 1/2, the “easy”
hypothesis classes (with s <∞) exhibit stronger improvements over passive learning, while
the “hard” hypothesis classes (with s =∞) continue to exhibit precisely this Θ̃

(
1
ε

)
behavior.

In either case, the label complexity exhibits an improvement in dependence on ε compared
to passive learning for the same α value. But since the label complexity of passive learning
decreases to Θ̃

(
1
ε

)
as α→ 1, we naturally have that for the “hard” hypothesis classes, the

gap between the passive and active label complexities shrinks as α approaches 1. In contrast,
the “easy” hypothesis classes exhibit a gap between passive and active label complexities
that becomes more pronounced as α approaches 1 (with a near-exponential improvement
over passive learning exhibited in the limiting case, corresponding to bounded noise).

This same pattern is present, though to a lesser extent, for benign noise. In this case,
the best general results in the prior literature (from Dasgupta, Hsu, and Monteleoni, 2007;

Hanneke, 2007a, 2014) correspond to an upper bound of roughly min
{
s, 1
ν+ε

}(
ν2

ε2
+ 1
)
d ·

polylog
(

1
εδ

)
(again, after converting those complexity measures into the star number via

the results in Section 7 below). When s <∞, the dependence on ν and ε is roughly Θ̃
(
ν2

ε2

)
(aside from logarithmic factors and constants, and for ν > ε). However, when s = ∞, this
dependence becomes roughly Θ̃

(
ν
ε2

)
, which is the same as in the minimax sample complexity

of passive learning (see Section 6). Thus, for these results in the prior literature, we again
see that the “easy” hypothesis classes have a bound reflecting improvements over passive
learning, while the bound for the “hard” hypothesis classes fail to reflect any improvements
over passive learning at all.

In contrast, consider the upper bound in Theorem 7. In this case, when ν ≥
√
ε (again,

the high-noise regime), for all hypothesis classes with finite VC dimension, the dependence

on ν and ε is roughly Θ̃
(
ν2

ε2

)
. Again, this makes almost no distinction between “easy”
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hypothesis classes (with s < ∞) and “hard” hypothesis classes (with s = ∞), and instead
always exhibits the strongest possible improvements (up to logarithmic factors), previously
only known to hold for the “easy” classes (such as threshold classifiers): namely, reduction in
label complexity by roughly a factor of 1/ν compared to passive learning. The improvements
in this case are typically milder than we found in Theorem 5, but noteworthy nonetheless.
Again, as ν decreases below

√
ε, the distinction between “easy” and “hard” hypothesis

classes begins to re-emerge, with the harder classes maintaining a Θ̃
(

1
ε

)
dependence (roughly

equivalent to the realizable-case label complexity for these classes), while the easier classes

continue to exhibit the Θ̃
(
ν2

ε2

)
behavior, approaching O

(
polylog

(
1
ε

))
as ν shrinks.

5.1.2 The Dependence on δ

One remarkable fact about ΛRE(ε, δ) is that there is no significant dependence on δ in
the optimal label complexity for the given range of δ.6 Note that this is not the case in
noisy settings, where the lower bounds have an explicit dependence on δ. In the proofs,
this dependence on δ is introduced via randomness of the labels. However, as argued by
Kääriäinen (2006), a dependence on δ is sometimes still required in ΛD(ε, δ), even if we
restrict D to those PXY ∈ AG(ν) inducing deterministic labels: that is, η(x;PXY ) ∈ {0, 1}
for all x.

5.1.3 Spanning the Gaps

All of these results have gaps between the lower and upper bounds. It is interesting to note
that one can construct examples of hypothesis classes spanning these gaps, for Theorems
3, 4, 5, and 7 (up to logarithmic factors). For instance, for sufficiently large d and s and
sufficiently small ε and δ, these upper bounds are tight (up to logarithmic factors) in the case
where C = {x 7→ 21S(x)− 1 : S ⊆ {1, . . . , s}, |S| ≤ d}, for X = N (taking inspiration from
a suggested modification by Hanneke, 2014, of the proof of a related result of Raginsky and
Rakhlin, 2011). Likewise, these lower bounds are tight (up to logarithmic factors) in the case
that X = N and C = {x 7→ 21S(x)− 1 : S ∈ 2{1,...,d} ∪ {{i} : d+ 1 ≤ i ≤ s}}.7 Thus, these
upper and lower bounds cannot be significantly refined (without loss of generality) without
introducing additional complexity measures to distinguish these cases. For completeness,
we include proofs of these claims in Appendix D. It immediately follows from this (and
monotonicity of the respective noise models in C) that the upper and lower bounds in
Theorems 3, 4, 5, and 7 are each sometimes tight in the case s = ∞, as limiting cases of
the above constructions: that is, the upper bounds are tight (up to logarithmic factors) for
C = {x 7→ 21S(x)− 1 : S ⊆ N, |S| ≤ d}, and the lower bounds are tight (up to logarithmic
factors) for C = {x 7→ 21S(x) − 1 : S ∈ 2{1,...,d} ∪ {{i} : d + 1 ≤ i < ∞}}. It is interesting
to note that the above space C for which the upper bounds are tight can be embedded in
a variety of hypothesis classes in common use in machine learning (while maintaining VC

6. We should expect a more significant dependence on δ near 1, since one case easily prove that ΛRE(ε, δ)→
0 as δ → 1.

7. Technically, for Theorems 4 and 7, we require slightly stronger versions of the lower bound to establish
tightness for β or ν near 0: namely, adding the lower bound from Theorem 3 to these lower bounds.
The validity of this stronger lower bound follows immediately from the facts that RE ⊆ BN(β) and
RE ⊆ BE(ν).
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dimension . d and star number . s): for instance, in the case of s = ∞, this is true of
linear separators in R3d and axis-aligned rectangles in R2d. It follows that the upper bounds
in these theorems are tight (up to logarithmic factors) for each of these hypothesis classes.

5.1.4 Separation of TN(a, α) and BC(a, α)

Another interesting implication of these results is a separation between the noise models
TN(a, α) and BC(a, α) not previously noted in the literature. Specifically, if we consider
any class C comprised of only the s + 1 classifiers in Definition 2, then one can show8 that
(for s ≥ 3), for any α ∈ (0, 1], a ∈ [4,∞), ε ∈ (0, 1/(4a1/α)), and δ ∈ (0, 1/16],

ΛBC(a,α)(ε, δ) & a2

(
1

ε

)2−2α

min

{
s,

1

aεα

}
Log

(
1

δ

)
.

In particular, when s > 1
aεα , we have ΛBC(a,α)(ε, δ) & aεα−2Log(1/δ), which is larger

than the upper bound on ΛTN(a,α)(ε, δ). Furthermore, when s = ∞, this lower bound has
asymptotic dependence on ε that is Ω(εα−2), which is the same dependence found in the
sample complexity of passive learning, up to a logarithmic factor (see Section 6 below).
Comparing this to the upper bounds in Theorem 5, which exhibit asymptotic dependence
on ε as ΛTN(a,α)(ε, δ) = Õ(εmin{2α−1,0}−1) when s = ∞, we see that for this class, any
α ∈ (0, 1) has ΛTN(a,α)(ε, δ) � ΛBC(a,α)(ε, δ). One reason this separation is interesting is
that most of the existing literature on active learning under TN(a, α) makes use of the noise
condition via the fact that it implies P(x : h(x) 6= f?PXY (x)) ≤ a(erPXY (h)−erPXY (f?PXY ))α

for all h ∈ C: that is, TN(a, α) ⊆ BC(a, α). This separation indicates that, to achieve
the optimal performance under TN(a, α), one needs to consider more-specific properties of
this noise model, beyond those satisfied by BC(a, α). Another reason this separation is
quite interesting is that it contrasts with the known results for passive learning, where (as
we discuss in Section 6 below) the sample complexities under these two noise models are
equivalent (up to an unresolved logarithmic factor).

5.1.5 Gaps in Theorems 6 and 8, and Related Open Problems

We conjecture that the dependence on d and s in the upper bounds of Theorem 6 can be
refined in general (where presently it is linear in sd). More specifically, we conjecture that
the upper bound can be improved to

ΛBC(a,α)(ε, δ) . a2

(
1

ε

)2−2α

min

{
s,

d

aεα

}
polylog

(
1

εδ

)
,

though it is unclear at this time as to how this might be achieved. The above example
(separating BC(a, α) from TN(a, α)) indicates that we generally cannot hope to reduce the
upper bound on the label complexity for BC(a, α) much beyond this.

As for whether the form of the upper bound on ΛAG(ν)(ε, δ) in Theorem 8 can generally
be improved to match the form of the upper bound for ΛBE(ν)(ε, δ), this remains a fascinat-
ing open question. We conjecture that at least the dependence on d and s can be improved
to some extent (where presently it is linear in ds).

8. Specifically, this follows by taking ζ = a
2
(4ε)α, β = 1

2
− 2
a4α

ε1−α, and k = min {s− 1, b1/ζc} in Lemma 26
of Appendix A.2, and noting that the resulting set of distributions RR(k, ζ, β) is contained in BC(a, α)
for this C.
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5.1.6 Minutiae

We note that the restrictions to the ranges of ε and δ in the above results are required only
for the lower bounds (aside from δ ∈ (0, 1], ε > 0), as are the restrictions to the ranges of
the parameters a, α, and ν, aside from the constraints in the definitions in Section 3; the
upper bounds are proven without any such restrictions in Appendix B. Also, several of the
upper bounds above (e.g., Theorems 5 and 7) are slightly looser (by logarithmic factors)
than those actually proven in Appendix B, which are typically stated in a different form
(e.g., with factors of dLog

(
1
ε

)
+ Log

(
1
δ

)
, rather than simply d · polylog

(
1
εδ

)
). We state

the weaker results here purely to simplify the theorem statements, referring the interested
reader to the proofs for the refined versions. However, aside from Theorem 3, we believe it
is possible to further optimize the logarithmic factors in all of these upper bounds.

We additionally note that we can also obtain results by the subset relations between the
noise models. For instance, since RE ⊆ BN(β) ⊆ BE(β) ⊆ AG(β), in the case β is close to
0 we can increase the lower bounds in Theorems 4, 7, and 8 based on the lower bound in
Theorem 3: that is, for ν ≥ β ≥ 0,

ΛAG(ν)(ε, δ) ≥ ΛBE(ν)(ε, δ) ≥ ΛBN(β)(ε, δ) ≥ ΛRE(ε, δ) & max

{
min

{
s,

1

ε

}
, d

}
.

Similarly, since RE is contained in all of the noise models studied here, Log
(
min

{
1
ε , |C|

})
can also be included as a lower bound in each of these results. Likewise, in the cases that a is
very large or α is very close to 0, we can get a more informative upper bound in Theorem 5
via Theorem 7, since TN(a, α) ⊆ BE(1/2). For simplicity, in most of the above theorems,
we have not explicitly included the various compositions of the above results that can be
obtained in this way (with only a few exceptions).

5.2 The Strategy behind Theorems 5 and 7

The upper bounds in Theorems 5 and 7 represent the main results of this work, and along
with the upper bound in Theorem 4, are based on a general argument with essentially three
main components. The first component is a more-sophisticated variant of a basic approach
introduced to the active learning literature by Kääriäinen (2006): namely, reduction to
the realizable case via repeatedly querying for the label at a point in X until its Bayes
optimal classification can be determined (based on a sequential probability ratio test, as
studied by Wald, 1945, 1947). Of course, in the present model of active learning, repeatedly
requesting a label Yi yields no new information beyond requesting Yi once, since we are
not able to resample from the distribution of Yi given Xi (as Kääriäinen, 2006, does). To
resolve this, we argue that it is possible to partition the space X into cells, in a way such
that f?PXY is nearly constant in the vast majority of cells (without direct knowledge of f?PXY
or P); this is essentially a data-dependent approximation to the recently-discovered finite
approximability property of VC classes (Adams and Nobel, 2012). Given this partition, for
a given point Xi, we can find many other points Xj in the same cell of the partition as Xi,
and request labels for these points until we can determine what the majority label for the
cell is. We show that, with high probability, this value will equal f?PXY (Xi), so that we can
effectively use these majority labels in an active learning algorithm for the realizable case.
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However, we note that in the case of TN(a, α), if we simply apply this repeated querying
strategy to random P-distributed samples, the resulting label complexity would be too large,
and we would sometimes expect to exhaust most of the queries determining the optimal
labels in very noisy regions (i.e., in cells of the partition where η(·;PXY ) is close to 1/2
on average). This is because Tsybakov’s condition allows that such regions can have non-
negligible probability, and the number of samples required to determine the majority value
of a ±1 random variable becomes unbounded as its mean approaches zero. However, we can
note that it is also less important for the final classifier ĥ to agree with f?PXY on these high-
noise points than it is for low-noise points, since classifying them opposite from f?PXY has

less impact on the excess error rate erPXY (ĥ)−erPXY (f?PXY ). Therefore, as the second main
component of our active learning strategy, we take a tiered approach to learning, effectively
shifting the distribution P to favor points in cells with average η(·;PXY ) value further from
1/2. We achieve this by discarding a point Xi if the number of queries exhausted toward
determining the majority label in its cell of the partition becomes excessively large, and
we gradually decrease this threshold as the data set grows, so that the points making it
through this filter have progressively less and less noisy labels. By choosing ĥ to agree
with the inferred f?PXY classification of every point passing this filter, and combining this
with the standard analysis of learning in the realizable case (Vapnik, 1982, 1998; Blumer,
Ehrenfeucht, Haussler, and Warmuth, 1989), this allows us to provide a bound on the
fraction of points in X at a given level of noisiness (i.e., |η(·;PXY ) − 1/2|) on which the
produced classifier ĥ disagrees with f?PXY , such that this bound decreases as the noisiness
decreases (i.e., as |η(·;PXY )−1/2| increases). Furthermore, by discarding many of the points
in high-noise regions without exhausting too many label requests trying to determine their
f?PXY classifications, we are able to reduce the total number of label requests needed to
obtain ε excess error rate.

Already these two components comprise the essential strategy that achieves these upper
bounds in the case of s = ∞. However, to obtain the stated dependence on s in these
bounds when s < ∞, we need to introduce a third component: namely, using the inferred
values of f?PXY (Xi) in the context of an active learning algorithm for the realizable case.
For this, we specifically use the disagreement-based strategy of Cohn, Atlas, and Ladner
(1994) (known as CAL), which processes the unlabeled data in sequence, and requests to
observe the classification f?PXY (Xi) if and only if Xi is in the region of disagreement of
the set of classifiers in C consistent with all previously-observed f?PXY (Xj) values. Using
a modification of a recent analysis of this algorithm by Wiener, Hanneke, and El-Yaniv
(2015) (applied to each tier of label-noise separately), combined with the results below (in
Section 7.3) relating the complexity measure used in that analysis to the star number, we
obtain the dependence on s stated in the above results.

6. Comparison to Passive Learning

The natural baseline for comparison in active learning is the passive learning protocol, in
which the labeled data are i.i.d. samples with common distribution PXY : that is, the input
to the passive learning algorithm is (X1, Y1), . . . , (Xn, Yn). In this context, the minimax
sample complexity of passive learning, denoted MD(ε, δ), is defined as the smallest n ∈
N ∪ {0} for which there exists a passive learning rule mapping (X1, Y1), . . . , (Xn, Yn) to
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a classifier ĥ : X → Y such that, for any PXY ∈ D, with probability at least 1 − δ,
erPXY (ĥ)− infh∈C erPXY (h) ≤ ε.

Clearly ΛD(ε, δ) ≤ MD(ε, δ) for any D, since for every passive learning algorithm
A, there is an active learning algorithm that requests Y1, . . . , Yn and then runs A with
(X1, Y1), . . . , (Xn, Yn) to determine the returned classifier. One of the main interests in the
theory of active learning is determining the size of the gap between these two complexities,
for various sets D. For the purpose of this comparison, we now review several results known
to hold forMD(ε, δ), for various sets D. Specifically, the following bounds are known to hold
for any choice of hypothesis class C, and for β, a, α, ν, ε, and δ as in the respective theorems
from Section 5 (Vapnik and Chervonenkis, 1971; Vapnik, 1982, 1998; Blumer, Ehrenfeucht,
Haussler, and Warmuth, 1989; Ehrenfeucht, Haussler, Kearns, and Valiant, 1989; Haussler,
Littlestone, and Warmuth, 1994; Massart and Nédélec, 2006; Hanneke, 2014).

• 1
ε

(
d+ Log

(
1
δ

))
.MRE(ε, δ) . 1

ε

(
dLog

(
1

max{ε,δ}

)
+ Log

(
1
δ

))
.

• 1
(1−2β)ε

(
d+ Log

(
1
δ

))
.MBN(β)(ε, δ) .

1
(1−2β)ε

(
dLog

(
1−2β
ε

)
+ Log

(
1
δ

))
.

• a
ε2−α

(
d+ Log

(
1
δ

))
.MTN(a,α)(ε, δ) ≤MBC(a,α) .

a
ε2−α

(
dLog

(
1
aεα

)
+ Log

(
1
δ

))
.

• ν+ε
ε2

(
d+ Log

(
1
δ

))
.MBE(ν)(ε, δ) ≤MAG(ν)(ε, δ) .

ν+ε
ε2

(
dLog

(
1
ν+ε

)
+ Log

(
1
δ

))
.

Let us compare these to the results for active learning in Section 5 on a case-by-case
basis. In the realizable case, we observe clear improvements of active learning over passive
learning in the case s � d

ε (aside from logarithmic factors). In particular, based on the
upper and lower bounds for both passive and active learning, we may conclude that s <
∞ is necessary and sufficient for the asymptotic dependence on ε to satisfy ΛRE(ε, ·) =
o(MRE(ε, ·)); specifically, when s < ∞, ΛRE(ε, ·) = O(Log(MRE(ε, ·))), and when s = ∞,
ΛRE(ε, ·) = Θ(MRE(ε, ·)). For bounded noise, we have a similar asymptotic behavior. When
s < ∞, again ΛBN(β)(ε, ·) = O(polylog(MBN(β)(ε, ·))), and when s = ∞, ΛBN(β)(ε, ·) =

Θ̃(MBN(β)(ε, ·)). In terms of the constants, to obtain improvements over passive learning

(aside from the effects of logarithmic factors), it suffices to have s � (1−2β)d
ε , which is

somewhat smaller (depending on β) than was sufficient in the realizable case.

Under Tsybakov’s noise condition, every α ∈ (0, 1/2] shows an improvement in the upper
bounds for active learning over the lower bound for passive learning by a factor of roughly

1
aεα (aside from logarithmic factors). On the other hand, when α ∈ (1/2, 1), if s < d

a1/αε
, the

improvement of active upper bounds over the passive lower bound is by a factor of roughly
1
aεα

(
d
s

)2α−1
, while for s ≥ d

a1/αε
, the improvement is by a factor of roughly 1

a
1−α
α ε1−α

(again,

ignoring logarithmic factors in both cases). In particular, for any α∈(0, 1), when s <∞, the
asymptotic dependence on ε satisfies ΛTN(a,α)(ε, ·) = Θ̃

(
εαMTN(a,α)(ε, ·)

)
, and when s =∞,

the asymptotic dependence on ε satisfies ΛTN(a,α)(ε, ·) = Θ̃
(
εmin{α,1−α}MTN(a,α)(ε, ·)

)
. In

either case, we have that for any α ∈ (0, 1), ΛTN(a,α)(ε, ·) = o(MTN(a,α)(ε, ·)).
For the Bernstein class condition, the gaps in the upper and lower bounds of Theorem 6

render unclear the necessary and sufficient conditions for ΛBC(a,α)(ε, ·) = o(MBC(a,α)(ε, ·)).
Certainly s <∞ is a sufficient condition for this, in which case the improvements are by a
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factor of roughly 1
aεα . However, in the case of s =∞, the upper bounds do not reveal any

improvements over those given above for MBC(a,α)(ε, δ). Indeed, the example given above
in Section 5 reveals that, in some nontrivial cases, ΛBC(a,α)(ε, δ) &MBC(a,α)(ε, δ)/Log(1/ε),
in which case any improvements would be, at best, in the constant and logarithmic factors.
Note that this example also presents an interesting contrast between active and passive
learning, since it indicates that in some cases ΛBC(a,α)(ε, δ) and ΛTN(a,α)(ε, δ) are quite
different, while the above bounds for passive learning reveal thatMBC(a,α)(ε, δ) is equivalent
to MTN(a,α)(ε, δ) up to constant and logarithmic factors.

In the case of benign noise, comparing the above bounds for passive learning to The-
orem 7, we see that (aside from logarithmic factors) the upper bound for active learning
improves over the lower bound for passive learning by a factor of roughly 1

ν when ν ≥
√
ε.

When ν <
√
ε, if s > d

ε , the improvements are by a factor of roughly ν+ε
ε , and if s ≤ d

ε ,

the improvements are by roughly a factor of min
{

1
ν ,

(ν+ε)d
ε2s

}
(again, ignoring logarithmic

factors). However, as has been known for this noise model for some time (Kääriäinen, 2006),
there are no gains in terms of the asymptotic dependence on ε for fixed ν. However, if we con-
sider νε such that ε ≤ νε = o(1), then for s <∞ we have ΛBE(νε)(ε, ·) = Θ̃(νεMBE(νε)(ε, ·)),
and for s =∞ we have ΛBE(νε)(ε, ·) = Õ

(
max

{
νε,

ε
νε

}
MBE(νε)(ε, ·)

)
.

Finally, for agnostic noise, similarly to the Bernstein class condition, the gaps between
the upper and lower bounds in Theorem 8 render unclear precisely what types of improve-
ments we can expect when s > 1

ν+ε , ranging from the lower bound, which has the behavior
described above for ΛBE(ν), to the upper bound, which reflects no improvements over pas-

sive learning in this case. When s < 1
ν+ε , the upper bound for active learning reflects an

improvement over the lower bound for passive learning by roughly a factor of 1
(ν+ε)s (aside

from logarithmic factors). It remains an interesting open problem to determine whether the
stronger improvements observed for benign noise generally also hold for agnostic noise.

We conclude this section with a remark on the logarithmic factors in the above upper
bounds. It is known that the terms of the form “dLog(x)” in each of the above upper bounds
for passive learning can be refined to replace x with the maximum of the disagreement
coefficient (see Section 7.1 below) over the distributions in D (Giné and Koltchinskii, 2006;
Hanneke and Yang, 2012; Hanneke, 2014). Therefore, based on the results in Section 7.1
relating the disagreement coefficient to the star number, we can replace these “dLog(x)”
terms with “dLog(s∧x)”. In the case of BN(β), Massart and Nédélec (2006) and Raginsky
and Rakhlin (2011) have argued that, at least in some cases, this logarithmic factor can
also be included in the lower bounds. It is presently not known whether this is the case for
the other noise models studied here.

7. Connections to the Prior Literature on Active Learning

As mentioned, there is already a substantial literature bounding the label complexities of
various active learning algorithms under various noise models. It is natural to ask how
the results in the prior literature compare to those stated above. However, as most of the
prior results are PXY -dependent, the appropriate comparison is to the worst-case values of
those results: that is, maximizing the bounds over PXY in the respective noise model. This
section makes this comparison. In particular, we will see that the label complexity upper
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bounds above for RE, BN(β), TN(a, α), and BE(ν) all show some improvements over the
known results, with the last two of these showing the strongest improvements.

The general results in the prior literature each express their label complexity bounds
in terms of some kind of complexity measure. There are now several such complexity
measures in use, each appropriate for studying some family of active learning algorithms
under certain noise models. Most of these quantities are dependent on the distribution PXY
or the data, and their definitions are quite diverse. For some pairs of them, there are known
inequalities loosely relating them, while other pairs have defied attempts to formally relate
the quantities. The dependence on PXY in the general results in the prior literature is
typically isolated to the various complexity measures they are expressed in terms of. Thus,
the natural first step is to characterize the worst-case values of these complexity measures,
for any given hypothesis class C. Plugging these worst-case values into the original bounds
then allows us to compare to the results stated above.

In the process of studying the worst-case behaviors of these complexity measures, we also
identify a very interesting fact that has heretofore gone unnoticed: namely, that almost all
of the complexity measures in the relevant prior literature on the label complexity of active
learning are in fact equal to the star number when maximized over the choice of distribution
or data set. In some sense, this fact is quite surprising, as this seemingly-eclectic collection
of complexity measures includes disparate definitions and interpretations, corresponding to
entirely distinct approaches to the analysis of the respective algorithms these quantities are
used to bound the label complexities of. Thus, this equivalence is interesting in its own
right; additionally, it plays an important role in our proofs of the main results above, since
it allows us to build on these diverse techniques from the prior literature when establishing
these results.

Each subsection below is devoted to a particular complexity measure from the prior
literature on active learning, each representing an established technique for obtaining label
complexity bounds. Together, they represent a summary of the best-known general results
from the prior literature relevant to our present discussion. In each case, we show the
equivalence of the worst-case value of the complexity measure to the star number, and
then combine this fact with the known results to obtain the corresponding bounds on the
minimax label complexities implicit in the prior literature. In each case, we then compare
this result to those obtained above.

We additionally study the doubling dimension, a quantity which has been used to bound
the sample complexity of passive learning, and can be used to provide a loose bound on
the label complexity of certain active learning algorithms. Below we argue that, when
maximized over the choice of distribution, the doubling dimension can be upper and lower
bounded in terms of the star number. One immediate implication of these bounds is that
the doubling dimension is bounded if and only if the star number is finite.

Our findings on the relations of these various complexity measures to the star number
are summarized in Table 1.

7.1 The Disagreement Coefficient

We begin with, what is perhaps the most well-studied complexity measure in the active
learning literature: the disagreement coefficient (Hanneke, 2007b, 2009b).
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Technique Source Relation to s

disagreement coefficient (Hanneke, 2007b) sup
P
θP (ε) = s ∧ 1

ε

splitting index (Dasgupta, 2005) sup
h,P

lim
τ→0

⌊
1

ρh,P (ε;τ)

⌋
= s ∧

⌊
1
ε

⌋
teaching dimension (Hanneke, 2007a) XTD(C,m) = s ∧m
version space compression (El-Yaniv and Wiener, 2010) max

h∈C
max
U∈Xm

n̂h(U) = s ∧m

doubling dimension (Li and Long, 2007) sup
h,P

Dh,P (ε)∈ [1, O(d)] log
(
s ∧ 1

ε

)
Table 1: Many complexity measures from the literature are related to the star number.

Definition 9 For any r0 ≥ 0, any classifier h, and any probability measure P over X , the
disagreement coefficient of h with respect to C under P is defined as

θh,P(r0) = sup
r>r0

P (DIS (BP (h, r)))

r
∨ 1.

Also, for any probability measure PXY over X×Y, letting P denote the marginal distribution
of PXY over X , and letting h∗PXY denote a classifier with erPXY (h∗PXY ) = infh∈C erPXY (h)

and infh∈C P(x : h(x) 6= h∗PXY (x)) = 0,9 define the disagreement coefficient of the class C
with respect to PXY as θPXY (r0) = θh∗PXY ,P

(r0).

The disagreement coefficient is used to bound the label complexities of a family of
active learning algorithms, described as disagreement-based. This line of work was initiated
by Cohn, Atlas, and Ladner (1994), who propose an algorithm effective in the realizable
case. That method was extended to be robust to label noise by Balcan, Beygelzimer,
and Langford (2006, 2009), which then inspired a slew of papers studying variants of this
idea; the interested reader is referred to Hanneke (2014) for a thorough survey of this
literature. The general-case label complexity analysis of disagreement-based active learning
(in terms of the disagreement coefficient) was initiated in the work of Hanneke (2007b,
2009b), and followed up by many papers since then (e.g., Dasgupta, Hsu, and Monteleoni,
2007; Hanneke, 2009a, 2011, 2012; Koltchinskii, 2010; Hanneke and Yang, 2012), as well as
many works characterizing the value of the disagreement coefficient under various conditions
(e.g., Hanneke, 2007b; Friedman, 2009; Balcan, Hanneke, and Vaughan, 2010; Wang, 2011;
Balcan and Long, 2013; Hanneke, 2014); again, see Hanneke (2014) for a thorough survey
of the known results on the disagreement coefficient.

To study the worst-case values of the label complexity bounds expressed in terms of the
disagreement coefficient, let us define

ˆ̂θ(ε) = sup
PXY

θPXY (ε).

In fact, a result of Hanneke (2014, Theorem 7.4) implies that ˆ̂θ(ε) = supP suph∈C θh,P(ε),

so that this would be an equivalent way to define ˆ̂θ(ε), which can sometimes be simpler to

9. See Hanneke (2012) for a proof that such a classifier always exists (though not necessarily in C).
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work with. We can now express the bounds on the minimax label complexity implied by
the best general results to date in the prior literature on disagreement-based active learning
(namely, the results of Hanneke, 2011; Dasgupta, Hsu, and Monteleoni, 2007; Koltchinskii,
2010; Hanneke and Yang, 2012; Hanneke, 2014), summarized as follows (see the survey
of Hanneke, 2014, for detailed descriptions of the best-known logarithmic factors in these
results).

• ΛRE(ε, δ) . ˆ̂θ(ε)d · polylog
(

1
εδ

)
.

• ΛBN(β)(ε, δ) .
1

(1−2β)2
ˆ̂θ(ε/(1− 2β))d · polylog

(
1
εδ

)
.

• ΛTN(a,α)(ε, δ) . a2
(

1
ε

)2−2α ˆ̂θ(aεα)d · polylog
(

1
εδ

)
.

• ΛBC(a,α)(ε, δ) . a2
(

1
ε

)2−2α ˆ̂θ(aεα)d · polylog
(

1
εδ

)
.

• ΛBE(ν)(ε, δ) .
(
ν2

ε2
+ 1
)

ˆ̂θ(ν + ε)d · polylog
(

1
εδ

)
.

• ΛAG(ν)(ε, δ) .
(
ν2

ε2
+ 1
)

ˆ̂θ(ν + ε)d · polylog
(

1
εδ

)
.

In particular, these bounds on ΛTN(a,α)(ε, δ), ΛBC(a,α)(ε, δ), ΛBE(ν)(ε, δ), and ΛAG(ν)(ε, δ)
are the best general-case bounds on the label complexity of active learning in the prior liter-
ature (up to logarithmic factors), so that any improvements over these should be considered
an interesting advance in our understanding of the capabilities of active learning methods.

To compare these results to those stated in Section 5, we need to relate ˆ̂θ(ε) to the star
number. Interestingly, we find that these quantities are equal (for ε = 0). Specifically, the
following result describes the relation between these two quantities; its proof is included in
Appendix C.1. This connection also plays a role in the proofs of some of our results from
Section 5.

Theorem 10 ∀ε ∈ (0, 1], ˆ̂θ(ε) = s ∧ 1
ε and ˆ̂θ(0) = s.

With this result in hand, we immediately observe that several of the upper bounds from

Section 5 offer refinements over those stated in terms of ˆ̂θ(·) above. For simplicity, we do
not discuss differences in the logarithmic factors here. Specifically, the upper bound on

ΛRE(ε, δ) in Theorem 3 refines that stated here by replacing the factor ˆ̂θ(ε)d = min
{
sd, dε

}
with the sometimes-smaller factor min

{
s, dε
}

. Likewise, the upper bound on ΛBN(β)(ε, δ)

in Theorem 4 refines the result stated here, again by replacing the factor ˆ̂θ(ε/(1− 2β))d =

min
{
sd, (1−2β)d

ε

}
with the sometimes-smaller factor min

{
s, (1−2β)d

ε

}
. On the other hand,

Theorem 5 offers a much stronger refinement over the result stated above. Specifically,
in the case α ≤ 1/2, the upper bound in Theorem 5 completely eliminates the factor of
ˆ̂θ(aεα) from the upper bound on ΛTN(a,α)(ε, δ) stated here (i.e., replacing it with a universal
constant). For the case α > 1/2, the upper bound on ΛTN(a,α)(ε, δ) in Theorem 5 replaces

this factor of ˆ̂θ(aεα) = min
{
s, 1
aεα

}
with the factor min

{
s
d ,

1
a1/αε

}2α−1
, which is always

smaller (for small ε and large d). The upper bounds on ΛBC(a,α)(ε, δ) and ΛAG(ν)(ε, δ) in
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Theorems 6 and 8 are equivalent to those stated here; indeed, this is precisely how these
results are obtained in Appendix B. We have conjectured above that at least the dependence
on d and s can be refined, analogous to the refinements for the realizable case and bounded
noise noted above. However, we do obtain refinements for the bound on ΛBE(ν)(ε, δ) in

Theorem 7, replacing the factor of
(
ν2

ε2
+ 1
)

ˆ̂θ(ν + ε)d =
(
ν2

ε2
+ 1
)

min
{
sd, d

ν+ε

}
in the

upper bound here with a factor ν2

ε2
d + min

{
s, dε
}

, which is sometimes significantly smaller
(for ε� ν � 1 and large d).

7.2 The Splitting Index

Another, very different, approach to the design and analysis of active learning algorithms
was proposed by Dasgupta (2005): namely, the splitting approach. In particular, this
technique has the desirable property that it yields distribution-dependent label complexity
bounds for the realizable case which, even when the marginal distribution P is held fixed,
(almost) imply near-minimax performance. The intuition behind this technique is that the
objective in the realizable case (achieving error rate at most ε) is typically well-approximated
by the related objective of reducing the diameter of the version space (set of classifiers
consistent with the observed labels) to size at most ε. From this perspective, at any given
time, the impediments to achieving this objective are clearly identifiable: pairs of classifiers
{h, g} in C consistent with all labels observed thus far, yet with P(x : h(x) 6= g(x)) > ε.
Supposing we have only a finite number of such classifiers (which can be obtained if we
first replace C by a fine-grained finite cover of C), we can then estimate the usefulness of
a given point Xi by the number of these pairs it would be guaranteed to eliminate if we
were to request its label (supposing the worse of the two possible labels); by “eliminate,” we
mean that at least one of the two classifiers will be inconsistent with the observed label. If
we always request labels of points guaranteed to eliminate a large fraction of the surviving
ε-separated pairs, we will quickly arrive at a version space of diameter ε, and can then
return any surviving classifier. Dasgupta (2005) further applies this strategy in tiers, first
eliminating at least one classifier from every 1

2 -separated pair, then repeating this for the
remaining 1

4 -separated pairs, and so on. This allows the label complexity to be localized,
in the sense that the surviving ∆-separated pairs we need to eliminate will be composed
of classifiers within distance 2∆ of f?PXY (or the representative thereof in the initial finite
cover of C). The analysis of this method naturally leads to the following definition from
Dasgupta (2005).

For any finite set Q ⊆ {{h, g} : h, g ∈ C} of unordered pairs of classifiers in C, for any
x ∈ X and y ∈ Y, let Qyx = {{h, g} ∈ Q : h(x) = g(x) = y}, and define

Split(Q, x) = |Q| −max
y∈Y
|Qyx|.

This represents the number of pairs guaranteed to be eliminated (as described above) by
requesting the label at a point x. The splitting index is then defined as follows.

Definition 11 For any ρ,∆, τ ∈ [0, 1], a set H ⊆ C is said to be (ρ,∆, τ)-splittable under a
probability measure P over X if, for all finite Q ⊆ {{h, g} ⊆ H : P(x : h(x) 6= g(x)) ≥ ∆},

P(x : Split(Q, x) ≥ ρ|Q|) ≥ τ.
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For any classifier h : X → Y, any probability measure P over X , and any ε, τ ∈ [0, 1], the
splitting index is defined as

ρh,P(ε; τ) = sup {ρ ∈ [0, 1] : ∀∆ ≥ ε,BP(h, 4∆) is (ρ,∆, τ)-splittable under P} .

Dasgupta (2005) proves a bound on the label complexity of a general active learning
algorithm based on the above strategy, in the realizable case, expressed in terms of the
splitting index. Specifically, for any τ > 0, letting ρ = ρf?PXY ,P

(ε/4; τ), Dasgupta (2005)

finds that for that algorithm to achieve error rate at most ε with probability at least 1− δ,
it suffices to use a number of label requests

d

ρ
polylog

(
d

εδτρ

)
. (1)

The τ argument to ρh,P(ε; τ) captures the trade-off between the number of label requests
and the number of unlabeled samples available, with smaller τ corresponding to the scenario
where more unlabeled data are available, and a larger value of ρh,P(ε; τ). Specifically,

Dasgupta (2005) argues that Õ
(
d
τρ

)
unlabeled samples suffice to achieve the above result.

In our present model, we suppose an abundance of unlabeled data, and as such, we are
interested in the behavior for very small τ . However, note that the logarithmic factors in
the above bound have an inverse dependence on τ , so that taking τ too small can potentially
increase the value of the bound. It is not presently known whether or not this is necessary
(though intuitively it seems not to be). However, for the purpose of comparison to our
results in Section 5, we will ignore this logarithmic dependence on 1/τ , and focus on the
leading factor. In this case, we are interested in the value lim

τ→0
ρh,P(ε; τ). Additionally, to

convert (1) into a distribution-free bound for the purpose of comparison to the results in
Section 5, we should minimize this value over the choice of P and h ∈ C. Formally, we are
interested in the following quantity, defined for any ε ∈ [0, 1].

ˆ̂ρ(ε) = inf
P

inf
h∈C

lim
τ→0

ρh,P (ε; τ).

In particular, in terms of this quantity, the maximum possible value of the bound (1) for a
given hypothesis class C is at least

d

ˆ̂ρ(ε/4)
polylog

(
d

εδ

)
.

To compare this to the upper bound in Theorem 3, we need to relate 1
ˆ̂ρ(ε)

to the star

number. Again, we find that these quantities are essentially equal (as ε → 0), as stated in
the following theorem.

Theorem 12 ∀ε ∈ (0, 1],
⌊

1
ˆ̂ρ(ε)

⌋
= s ∧

⌊
1
ε

⌋
.

The proof of this result is included in Appendix C.2. We note that the inequalities

s ∧
⌊

1
ε

⌋
≤
⌊

1
ˆ̂ρ(ε)

⌋
≤
⌊

1
ε

⌋
were already implicit in the original work of Dasgupta (2005,

Corollary 3 and Lemma 1). For completeness (and to make the connection explicit), we
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include these arguments in the proof given in Appendix C.2, along with our proof that⌊
1

ˆ̂ρ(ε)

⌋
≤ s (which was heretofore unknown).

Plugging this into the above bound, we see that the maximum possible value of the
bound (1) for a given hypothesis class C is at least

min

{
sd,

d

ε

}
polylog

(
d

εδ

)
.

Note that the upper bound in Theorem 3 refines this by reducing the first term in the “min”
from sd to simply s.

Dasgupta (2005) also argues for a kind of lower bound in terms of the splitting index,
which was reformulated as a lower bound on the minimax label complexity (for a fixed
P) in the realizable case by Balcan and Hanneke (2012); Hanneke (2014). In our present
distribution-free style of analysis, the implication of that result is the following lower bound.

ΛRE(ε, δ) &
1

ˆ̂ρ(4ε)
.

Based on Theorem 12, we see that the min
{
s, 1
ε

}
term in the lower bound of Theorem 3

follows immediately from this lower bound. For completeness, in Appendix B, we directly
prove this term in the lower bound, based on a more-direct argument than that used to
establish the above lower bound. We note, however, that Dasgupta (2005, Corollary 3) also
describes a technique for obtaining lower bounds, which is essentially equivalent to that used
in Appendix B to obtain this term (and furthermore, makes use of a distribution-dependent
version of the “star” idea).

The upper bounds of Dasgupta (2005) have also been extended to the bounded noise
setting. In particular, Balcan and Hanneke (2012) and Hanneke (2014) have proposed vari-
ants of the splitting approach, which are robust to bounded noise. They have additionally
bounded the label complexities of these methods in terms of the splitting index. Similarly
to the above discussion of the realizable case, the worst-case values of these bounds for any
given hypothesis class C are larger than those stated in Theorem 4 by factors related to the
VC dimension (logarithmic factors aside). We refer the interested readers to these sources
for the details of those bounds.

7.3 The Teaching Dimension

Another quantity that has been used to bound the label complexity of certain active learning
methods is the extended teaching dimension growth function. This quantity was introduced
by Hanneke (2007a), inspired by analogous notions used to tightly-characterize the query
complexity of Exact learning with membership queries (Hegedüs, 1995; Hellerstein, Pil-
laipakkamnatt, Raghavan, and Wilkins, 1996). The term teaching dimension takes its name
from the literature on Exact teaching (Goldman and Kearns, 1995), where the teaching di-
mension characterizes the minimum number of well-chosen labeled data points sufficient to
guarantee that the only classifier in C consistent with these labels is the target function.
Hegedüs (1995) extends this to target functions not contained in C, in which case the ob-
jective is simply to leave at most one consistent classifier in C; he refers to the minimum
number of points sufficient to achieve this as the extended teaching dimension, and argues
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that this quantity can be used to characterize the minimum number of membership queries
by a learning algorithm sufficient to guarantee that the only classifier in C consistent with
the returned labels is the target function (which is the objective in Exact learning).

Hanneke (2007a) transfers this strategy to the statistical setting studied here (where the
objective is only to obtain excess error rate ε with probability 1 − δ, rather than exactly
identifying a target function). That work introduces empirical versions of the teaching
dimension and extended teaching dimension, and defines distribution-dependent bounds on
these quantities. It then proves upper and lower bounds on the label complexity in terms
of these quantities. For our present purposes, we will be most-interested in a particular
distribution-free upper bound on these quantities, called the extended teaching dimension
growth function, also introduced by Hanneke (2006, 2007a). Since both this quantity and
the star number are distribution-free, they can be directly compared.

We introduce these quantities formally as follows. For any m ∈ N∪{0} and S ∈ Xm, and
for any h : X → Y, define the version space VS,h = {g ∈ C : ∀x ∈ S, g(x) = h(x)} (Mitchell,
1977). For any m ∈ N and U ∈ Xm, let C[U ] denote an arbitrary subset of classifiers in C
such that, ∀h ∈ C, |C[U ] ∩ VU ,h| = 1: that is, C[U ] contains exactly one classifier from each
equivalence class in C induced by the classifications of U . For any classifier h : X → Y,
define

TD(h,C[U ],U) = min{t ∈ N ∪ {0} : ∃S ∈ U t s.t. |VS,h ∩ C[U ]| ≤ 1},
the empirical teaching dimension of h on U with respect to C[U ]. Any S ∈

⋃
t U t with |VS,h∩

C[U ]| ≤ 1 is called a specifying set for h on U with respect to C[U ]; thus, TD(h,C[U ],U) is
the size of a minimal specifying set for h on U with respect to C[U ]. Equivalently, S ∈

⋃
t U t

is a specifying set for h on U with respect to C[U ] if and only if DIS(VS,h) ∩ U = ∅. Also
define TD(h,C,m) = max

U∈Xm
TD(h,C[U ],U), TD(C,m) = max

h∈C
TD(h,C,m) (the teaching

dimension growth function), and XTD(C,m) = max
h:X→Y

TD(h,C,m) (the extended teaching

dimension growth function).
Hanneke (2007a) proves two upper bounds on the label complexity of active learning

relevant to our present discussion. They are summarized as follows (see the original source
for the precise logarithmic factors).10

• ΛRE(ε, δ) . XTD
(
C,
⌈

1
ε

⌉)
d · polylog

(
d
εδ

)
.

• ΛAG(ν)(ε, δ) .
(
ν2

ε2
+ 1
)

XTD
(
C,
⌈

1
ν+ε

⌉)
d · polylog

(
d
εδ

)
.

Since BE(ν) ⊆ AG(ν), we have the further implication that

ΛBE(ν)(ε, δ) .

(
ν2

ε2
+ 1

)
XTD

(
C,
⌈

1

ν + ε

⌉)
d · polylog

(
d

εδ

)
.

Additionally, by a refined argument of Hegedüs (1995), the ideas of Hanneke (2007a) can
be applied (see Hanneke, 2006, 2009b) to show that

ΛRE(ε, δ) .
XTD(C, dd/εe)

log2(XTD(C, dd/εe))
d · polylog

(
d

εδ

)
.

10. Here we have simplified the arguments m to the XTD(C,m) instances compared to those of Han-
neke (2007a), using monotonicity of m 7→ XTD(C,m), combined with the basic observation that
XTD(C,mk) ≤ XTD(C,m)k for any integer k ≥ 1.
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To compare these bounds to the results stated in Section 5, we will need to relate the
quantity XTD(C,m) to the star number. Although it may not be obvious from a superficial
reading of the definitions, we find that these quantities are exactly equal (as m→∞). Thus,
the extended teaching dimension growth function is simply an alternative way of referring
to the star number (and vice versa), as they define the same quantity.11 This equivalence
is stated formally in the following theorem, the proof of which is included in Appendix C.3.

Theorem 13 ∀m ∈ N, XTD(C,m) = TD(C,m) = min{s,m}.

We note that the inequalities min{s,m} ≤ TD(C,m) ≤ XTD(C,m) ≤ m follow readily
from previously-established facts about the teaching dimension. For instance, Fan (2012)
notes that the teaching dimension of any class is at least the maximum degree of its one-
inclusion graph; applying this fact to C[U ] and maximizing over the choice of U ∈ Xm,
this maximum degree becomes min{s,m} (by definition of s). However, the inequality
XTD(C,m) ≤ s and the resulting fact that XTD(C,m) = TD(C,m) are apparently new.

In fact, in the process of proving this theorem, we establish another remarkable fact:
that every minimal specifying set is a star set. This is stated formally in the following
lemma, the proof of which is also included in Appendix C.3.

Lemma 14 For any h : X → Y, m ∈ N, and U ∈ Xm, every minimal specifying set for h
on U with respect to C[U ] is a star set for C ∪ {h} centered at h.

Using Theorem 13, we can now compare the results above to those in Section 5. For sim-
plicity, we will not discuss the differences in logarithmic factors here. Specifically, Theorem 3

refines these results on ΛRE(ε, δ), replacing a factor of min
{

XTD(C,d1/εe)d, XTD(C,dd/εe)d
log(XTD(C,dd/εe))

}
≈ min

{
sd, dε ,

sd
log(s) ,

d2

ε log(d/ε)

}
implied by the above results with a factor of min

{
s, dε ,

sd
log(s)

}
,

thus reducing the first term in the “min” by a factor of d (though see below, as Wiener,
Hanneke, and El-Yaniv, 2015, have already shown this to be possible, directly in terms of
XTD(C,m)). Theorem 13 further reveals that the above bound on ΛAG(ν)(ε, δ) is equivalent
(up to logarithmic factors) to that stated in Theorem 8. However, the bound on ΛBE(ν)(ε, δ)

in Theorem 7 refines that implied above, replacing a factor
(
ν2

ε2
+ 1
)

XTD
(
C,
⌈

1
ν+ε

⌉)
d ≈(

ν2

ε2
+ 1
)

min
{
sd, d

ν+ε

}
with a factor ν2

ε2
d + min

{
s, dε
}

, which can be significantly smaller

for ε� ν � 1 and large d.
Hanneke (2006, 2007a) also proves a lower bound on the label complexity of active

learning in the realizable case, based on the following modification of the extended teaching
dimension. For any set H ⊆ C, classifier h : X → Y, m ∈ N, U ∈ Xm, and δ ∈ [0, 1], define
the partial teaching dimension as

XPTD(h,H[U ],U , δ) = min{t ∈ N ∪ {0} : ∃S ∈ U t s.t. |VS,h ∩H[U ]| ≤ δ|H[U ]|+ 1},

and let XPTD(H,m, δ) = max
h:X→Y

max
U∈Xm

XPTD(h,H[U ],U , δ). Hanneke (2006, 2007a) proves

ΛRE(ε, δ) ≥ max
H⊆C

XPTD

(
H,
⌈

1− ε
ε

⌉
, δ

)
.

11. In this sense, the star number is not really a new quantity to the active learning literature, but rather a
simplified definition for the already-familiar extended teaching dimension growth function.
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The following result relates this quantity to the star number.

Theorem 15 ∀m ∈ N, ∀δ ∈ [0, 1/2],

d(1− 2δ) min{s,m}e ≤ max
H⊆C

XPTD(H,m, δ) ≤
⌈(

1− δ

1 + δ

)
min{s,m}

⌉
.

The proof is in Appendix C.3. Note that, combined with the lower bound of Hanneke
(2006, 2007a), this immediately implies the part of the lower bound in Theorem 3 involving
s. In Appendix B, we provide a direct proof for this term in the lower bound, based on an
argument similar to that of Hanneke (2007a).

7.3.1 The Version Space Compression Set Size

More-recently, El-Yaniv and Wiener (2010, 2012); Wiener, Hanneke, and El-Yaniv (2015)
have studied a quantity n̂h(U) (for a sequence U ∈

⋃
mXm and classifier h), termed the

minimal version space compression set size, defined as the size of the smallest subsequence
S ⊆ U for which VS,h = VU ,h.12

It is easy to see that, when h ∈ C, the version space compression set size is equivalent
to the empirical teaching dimension: that is, ∀h ∈ C,

n̂h(U) = TD(h,C[U ],U).

To see this, note that since |VU ,h∩C[U ]| = 1, any S ⊆ U with VS,h = VU ,h has |VS,h∩C[U ]| =
1, and hence is a specifying set for h on U with respect to C[U ]. On the other hand, for
any S ⊆ U , we (always) have VS,h ⊇ VU ,h, so that if |VS,h ∩ C[U ]| ≤ 1, then VS,h ∩ C[U ] ⊇
VU ,h ∩ C[U ] and |VS,h ∩ C[U ]| ≥ |VU ,h ∩ C[U ]| = 1 ≥ |VS,h ∩ C[U ]|, which together imply
VS,h ∩ C[U ] = VU ,h ∩ C[U ]; thus, VS,h ⊆ {g ∈ C : ∀x ∈ U , g(x) = h(x)} = VU ,h ⊆ VS,h, so
that VS,h = VU ,h: that is, S is a version space compression set. Thus, in the case h ∈ C, any
version space compression set S is a specifying set for h on U with respect to C[U ] and vice
versa. That n̂h(U) = TD(h,C[U ],U) ∀h ∈ C follows immediately from this equivalence.

In particular, combined with Theorem 13, this implies that ∀m ∈ N,

max
U∈Xm

max
h∈C

n̂h(U) = TD(C,m) = min{s,m}. (2)

Letting n̂m = n̂f?PXY
({X1, . . . , Xm}), Wiener, Hanneke, and El-Yaniv (2015) have shown

that, in the realizable case, for the CAL active learning algorithm (proposed by Cohn, Atlas,
and Ladner, 1994) to achieve error rate at most ε with probability at least 1− δ, it suffices
to use a budget n of any size at least

max
1≤m≤Mε,δ

n̂m · polylog

(
1

εδ

)
,

where Mε,δ .
1
ε

(
dLog

(
1
ε

)
+ Log

(
1
δ

))
is a bound on the sample complexity of passive learn-

ing by returning an arbitrary classifier in the version space (Vapnik, 1982, 1998; Blumer,

12. The quantity studied there is defined slightly differently, but is easily seen to be equivalent to this
definition.
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Ehrenfeucht, Haussler, and Warmuth, 1989). They further provide a distribution-dependent
bound (to remove the dependence on the data here) based on confidence bounds on n̂m (anal-
ogous to the aforementioned distribution-dependent bounds on the empirical teaching di-
mension studied by Hanneke, 2007a). For our purposes (distribution-free, data-independent
bounds), we can simply take the maximum over possible data sets and possible f?PXY func-
tions, so that the above bound becomes

max
x1,x2,...∈X

max
h∈C

max
1≤m≤Mε,δ

n̂h({x1, . . . , xm})polylog

(
1

εδ

)
= TD (C,Mε,δ) polylog

(
1

εδ

)
. TD

(
C,
⌊
d

ε

⌋)
polylog

(
1

εδ

)
.

Combining this with (2), we find that the label complexity of CAL in the realizable case is
at most

min

{
s,
d

ε

}
polylog

(
1

εδ

)
,

which matches the upper bound on the minimax label complexity from Theorem 3 up to
logarithmic factors.

7.4 The Doubling Dimension

Another quantity of interest in the learning theory literature is the doubling dimension,
also known as the local metric entropy (LeCam, 1973; Yang and Barron, 1999; Gupta,
Krauthgamer, and Lee, 2003; Bshouty, Li, and Long, 2009). Specifically, for any set H
of classifiers, a set of classifiers G is an ε-cover of H (with respect to the P(DIS({·, ·}))
pseudometric) if

sup
h∈H

inf
g∈G
P(x : g(x) 6= h(x)) ≤ ε.

LetN (ε,H,P) denote the minimum cardinality |G| over all ε-covers G ofH, or elseN(ε,H,P)
=∞ if no finite ε-cover of H exists. The doubling dimension (at h) is defined as follows.

Definition 16 For any ε ∈ (0, 1], any probability measure P over X , and any classifier h,
define

Dh,P (ε) = max
r≥ε

log2 (N (r/2,BP (h, r), P )) .

The quantity Dε = Df?PXY
,P(ε) is known to be useful in bounding the sample complexity

of passive learning. Specifically, Li and Long (2007); Bshouty, Li, and Long (2009) have

shown that there is a passive learning algorithm achieving sample complexity .
Dε/4
ε +

1
ε log

(
1
δ

)
for PXY ∈ RE. Furthermore, though we do not go into the details here, by a

combination of the ideas from Dasgupta (2005), Balcan, Beygelzimer, and Langford (2009),
and Hanneke (2007b), it is possible to show that a certain active learning algorithm achieves
a label complexity . 4DεDε ·polylog( 1

εδ ) for PXY ∈ RE, though this is typically a very loose
upper bound.

To our knowledge, the question of the worst-case value of the doubling dimension for a
given hypothesis class C has not previously been explored in the literature (though there is
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an obvious O(d log(1/ε)) upper bound derivable from the literature on covering numbers).
Here we obtain upper and lower bounds on this worst-case value, expressed in terms of
the star number. While this relation generally has a wide range (roughly a factor of d), it
does have the interesting implication that the doubling dimension is bounded if and only
if s < ∞. Specifically, we have the following theorem, the proof of which is included in
Appendix C.4.

Theorem 17 ∀ε ∈ (0, 1/4], max
{
d,Log

(
s ∧ 1

ε

)}
. sup

P
sup
h∈C

Dh,P (ε) . dLog
(
s ∧ 1

ε

)
.

One can show that the gap between the upper and lower bounds on supP suph∈CDh,P (ε)
in this result cannot generally be improved by much without sacrificing generality or in-
troducing additional quantities. Specifically, for the class C discussed in Appendix D.2, we
have supP suph∈CDh,P (ε) ≤ supP log2(N (ε/2,C, P )) . max

{
d,Log

(
s ∧ 1

ε

)}
, so that the

lower bound above is sometimes tight to within a universal constant factor. For the class
C discussed in Appendix D.1, based on a result of Raginsky and Rakhlin (2011, Lemma
4), one can show supP suph∈CDh,P (ε) & dLog

(
s
d ∧

1
ε

)
, so that the above upper bound is

sometimes tight, aside from a small difference in the logarithmic factor (dividing s by d).
Interestingly, in the process of proving the upper bound in Theorem 17, we also establish

the following inequality relating the doubling dimension and the disagreement coefficient,
holding for any classifier h, any probability measure P over X , and any ε ∈ (0, 1].

Dh,P(ε) ≤ 2d log2

(
22e2θh,P(ε)

)
.

This inequality may be of independent interest, as it enables comparisons between results
in the literature expressed in terms of these quantities. For instance, it implies that in the
realizable case, the passive learning sample complexity bound of Bshouty, Li, and Long
(2009) is no larger than that of Giné and Koltchinskii (2006) (aside from constant factors).

8. Conclusions

In this work, we derived upper and lower bounds on the minimax label complexity of active
learning under several noise models. In most cases, these new bounds offer refinements
over the best results in the prior literature. Furthermore, in the case of Tsybakov noise,
we discovered the heretofore-unknown fact that the minimax label complexity of active
learning with VC classes is always smaller than that of passive learning. We expressed
each of these bounds in terms of a simple combinatorial complexity measure, termed the
star number. We further found that almost all of the distribution-dependent and sample-
dependent complexity measures in the prior active learning literature are exactly equal to
the star number when maximized over the choice of distribution or data set.

The bounds derived here are all distribution-free, in the sense that they are expressed
without dependence or restrictions on the marginal distribution P over X . They are also
worst-case bounds, in the sense that they express the maximum of the label complexity
over the distributions in the noise model D, rather than expressing a bound on the label
complexity achieved by a given algorithm as a function of PXY . As observed by Dasgupta
(2005), there are some cases in which smaller label complexities can be achieved under
restrictions on the marginal distribution P, and some cases in which there are achievable
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label complexities which exhibit a range of values depending on PXY (see also Balcan,
Hanneke, and Vaughan, 2010; Hanneke, 2012, for further exploration of this). Our results
reveal that in some cases, such as Tsybakov noise with α ≤ 1/2, these issues might typically
not be of much significance (aside from logarithmic factors). However, in other cases,
particularly when s =∞, the issue of expressing distribution-dependent bounds on the label
complexity is clearly an important one. In particular, the question of the minimax label
complexity of active learning under the restrictions of the above noise models that explicitly
fix the marginal distribution P remains an important and challenging open problem. In
deriving such bounds, the present work should be considered a kind of guide, in that we
should restrict our focus to deriving distribution-dependent label complexity bounds with
worst-case values that are never worse than the distribution-free bounds proven here.

Appendix A. Preliminary Lemmas

Before presenting the proofs of the main results above, we begin by introducing some basic
lemmas, which will be useful in the main proofs below.

A.1 ε-nets and ε-covers

For a collection T of measurable subsets of X , a value ε ≥ 0, and a probability measure
P on X , we say a set N ⊆ X is an ε-net of P for T if N ∩ A 6= ∅ for every A ∈ T with
P(A) > ε (Haussler and Welzl, 1987). Also, a finite set H of classifiers is called an ε-cover
of C (under the P(DIS({·, ·})) pseudometric) if supg∈C minh∈H P(x : h(x) 6= g(x)) ≤ ε.

The following lemma bounds the probabilities and empirical probabilities of sets in a
collection in terms of each other. This result is based on the work of Vapnik and Chervo-
nenkis (1974) (see also Vapnik, 1982, Theorem A.3); this version is taken from Bousquet,
Boucheron, and Lugosi (2004, Theorem 7), in combination with the VC-Sauer Lemma
(Vapnik and Chervonenkis, 1971; Sauer, 1972) and a union bound.

Lemma 18 For any collection T of measurable subsets of X , letting k denote the VC
dimension of T , for any δ ∈ (0, 1), for any integer m > k, for any probability measure P
over X , if X ′1, . . . , X

′
m are independent P-distributed random variables, then with probability

at least 1− δ, it holds that ∀A ∈ T , letting P̂(A) = 1
m

∑m
i=1 1A(X ′i),

P(A) ≤ P̂(A) + 2

√
P(A)

kLog
(

2em
k

)
+ Log

(
8
δ

)
m

and P̂(A) ≤ P(A) + 2

√
P̂(A)

kLog
(

2em
k

)
+ Log

(
8
δ

)
m

.

In particular, with a bit of algebra, this implies the following corollary.

Corollary 19 There exists a finite universal constant c0 ≥ 1 such that, for any collection
T of measurable subsets of X , letting k denote the VC dimension of T , for any ε, δ ∈ (0, 1),
for any integer m ≥ c0

ε

(
kLog

(
1
ε

)
+ Log

(
1
δ

))
, for any probability measure P over X , if

X ′1, . . . , X
′
m are independent P-distributed random variables, then with probability at least

1− δ, it holds that ∀A ∈ T , letting P̂(A) = 1
m

∑m
i=1 1A(X ′i),
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• P̂(A) ≤ 3
4ε =⇒ P(A) < ε,

• P(A) ≤ 1
2ε =⇒ P̂(A) < 3

4ε.

Proof Let E(m) = 4
kLog( 2em

k )+Log( 8
δ )

m , and note that for m ≥ c0
ε

(
kLog

(
1
ε

)
+ Log

(
1
δ

))
,

E(m) ≤ 4ε

c0

kLog
(

2ec0
kε

(
kLog

(
1
ε

)
+ Log

(
1
δ

)))
+ Log

(
8
δ

)
kLog

(
1
ε

)
+ Log

(
1
δ

) (3)

If kLog
(

1
ε

)
≥ Log

(
1
δ

)
, then

kLog

(
2ec0

kε

(
kLog

(
1

ε

)
+ Log

(
1

δ

)))
+ Log

(
8

δ

)
≤ kLog

(
4ec0

ε
Log

(
1

ε

))
+ Log

(
8

δ

)
≤ kLog

(
4ec0

ε2

)
+ Log

(
8

δ

)
≤ 2kLog

(
1

ε

)
+ kLog(4ec0) + Log(8) + Log

(
1

δ

)
≤ Log

(
32e3c0

)(
kLog

(
1

ε

)
+ Log

(
1

δ

))
.

Otherwise, if kLog
(

1
ε

)
< Log

(
1
δ

)
, then

kLog

(
2ec0

kε

(
kLog

(
1

ε

)
+ Log

(
1

δ

)))
+ Log

(
8

δ

)
≤ kLog

(
4ec0

kε
Log

(
1

δ

))
+ Log

(
8

δ

)
≤ kLog

(
4ec0

ε

)
+ kLog

(
1

k
Log

(
1

δ

))
+ Log

(
8

δ

)
,

and since x 7→ xLog
(

1
xLog

(
1
δ

))
is nondecreasing for x > 0, and k ≤ kLog

(
1
ε

)
≤ Log

(
1
δ

)
,

the above is at most

kLog

(
4ec0

ε

)
+ Log

(
1

δ

)
+ Log

(
8

δ

)
≤ kLog

(
1

ε

)
+ kLog(4ec0) + Log(8) + 2Log

(
1

δ

)
≤ Log

(
32e2c0

)(
kLog

(
1

ε

)
+ Log

(
1

δ

))
.

In either case, we have that the right hand side of (3) is at most 4ε
c0

Log
(
32e3c0

)
. In

particular, taking c0 =214 suffices to make 4
c0

Log
(
32e3c0

)
≤ 1

64 , so that (3) implies E(m)≤ ε
64 .

Lemma 18 implies that with probability at least 1− δ, every A ∈ T has

P(A) ≤ P̂(A) +
√
P(A)E(m)

and

P̂(A) ≤ P(A) +

√
P̂(A)E(m).

Solving these quadratic expressions in
√
P(A) and

√
P̂(A), respectively, we have

P(A) ≤ P̂(A) +
1

2
E(m) +

1

2

√
E(m)2 + 4E(m)P̂(A) (4)
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and

P̂(A) ≤ P(A) +
1

2
E(m) +

1

2

√
E(m)2 + 4E(m)P(A). (5)

Therefore, if P̂(A) ≤ 3
4ε, then (4) implies

P(A) ≤ 3

4
ε+

1

2
E(m) +

1

2

√
E(m)2 + 3E(m)ε

≤

(
3

4
+

1

128
+

1

2

√
1

642
+

3

64

)
ε <

(
3

4
+

1

128
+

1

8

)
ε < ε,

and likewise, if P(A) ≤ 1
2ε, then (5) implies

P̂(A) ≤ 1

2
ε+

1

2
E(m) +

1

2

√
E(m)2 + 2E(m)ε

≤

(
1

2
+

1

128
+

1

2

√
1

642
+

1

32

)
ε <

(
1

2
+

1

128
+

1

8

)
ε <

3

4
ε.

We will be interested in applying these results to the collection of sets {DIS({h, g}) :
h, g ∈ C}. For this, the following lemma of Vidyasagar (2003, Theorem 4.5) will be useful.

Lemma 20 The VC dimension of the collection {DIS({h, g}) : h, g ∈ C} is at most 10d.

Together, these results imply the following lemma (see also Vapnik and Chervonenkis,
1974; Vapnik, 1982; Blumer, Ehrenfeucht, Haussler, and Warmuth, 1989; Haussler and
Welzl, 1987).

Lemma 21 There exists a finite universal constant c ≥ 1 such that, for any ε, δ ∈ (0, 1),
for any integer m ≥ c

ε

(
dLog

(
1
ε

)
+ Log

(
1
δ

))
, for any probability measure P over X , if

X ′1, . . . , X
′
m are independent P-distributed random variables, then with probability at least

1 − δ, it holds that ∀h, g ∈ C, if (g(X ′1), . . . , g(X ′m)) = (h(X ′1), . . . , h(X ′m)), then P(x :
g(x) 6= h(x)) ≤ ε.
In particular, this implies that with probability at least 1− δ, letting C[(X ′1, . . . , X

′
m)] be as

in Section 7.3, C[(X ′1, . . . , X
′
m)] is an ε-cover of C (under the P(DIS({·, ·})) pseudometric),

and {X ′1, . . . , X ′m} is an ε-net of P for {DIS({h, g}) : h, g ∈ C}.

Proof Let c0 be as in Corollary 19, and let k denote the VC dimension of {DIS({h, g}) :
h, g ∈ C}. Corollary 19 implies that, if m ≥ c0

ε

(
kLog

(
1
ε

)
+ Log

(
1
δ

))
, then there is an event

E of probability at least 1−δ, on which every h, g ∈ C with
∑m

t=1 1DIS({h,g})(X
′
t) = 0 satisfy

P(DIS({h, g})) < ε; in particular, this proves that on the event E, {X ′1, . . . , X ′m} is an ε-net
of P for {DIS({h, g}) : h, g ∈ C}. Furthermore, by definition of C[(X ′1, . . . , X

′
m)], for every

h ∈ C, ∃g ∈ C[(X ′1, . . . , X
′
m)] with

∑m
t=1 1DIS({h,g})(X

′
t) = 0, which (on the event E) there-

fore also satisfies P(DIS({h, g})) < ε. Thus, on the event E, C[(X ′1, . . . , X
′
m)] is an ε-cover of

C (under the P(DIS({·, ·})) pseudometric). To complete the proof, we note that Lemma 20
implies k ≤ 10d, so that by choosing c = 10c0, the condition m ≥ c0

ε

(
kLog

(
1
ε

)
+ Log

(
1
δ

))
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will be satisfied for any m ≥ c
ε

(
dLog

(
1
ε

)
+ Log

(
1
δ

))
.

Based on this result, it is straightforward to construct an ε-net of P for {DIS({h, g}) :
h, g ∈ C} of size . d

εLog
(

1
ε

)
, based on a relatively small number of random samples.

Specifically, we have the following lemma.

Lemma 22 There exists a finite universal constant c′ ≥ 1 such that, for any probability
measure P on X , if X ′1, X

′
2, . . . are independent P-distributed random variables, then ∀ε, δ ∈

(0, 1), for any integers m ≥ c′d
ε Log

(
1
ε

)
and ` ≥ c′

ε

(
dLog

(
1
ε

)
+ Log

(
1
δ

))
, defining Ni =

{X ′m(i−1)+1, . . . , X
′
mi} for each i ∈ {1, . . . , dlog2(2/δ)e}, letting

î = argmin
i∈{1,...,dlog2(2/δ)e}

max


mdlog2(2/δ)e+`∑

j=mdlog2(2/δ)e+1

1DIS({h,g})(X
′
j) :

h, g ∈ C,
mi∑

j=m(i−1)+1

1DIS({h,g})(X
′
j) = 0

,
and N̂ = Nî, with probability at least 1− δ, N̂ is an ε-net of P for {DIS({h, g}) : h, g ∈ C}.

Proof Let k denote the VC dimension of the collection of sets {DIS({h, g}) : h, g ∈ C}.
Letting c0 be as in Corollary 19, taking c′ ≥ 10c0, we have ` ≥ c0

ε

(
10dLog

(
1
ε

)
+ Log

(
2
δ

))
,

which is at least c0
ε

(
kLog

(
1
ε

)
+ Log

(
2
δ

))
by Lemma 20. Therefore, Corollary 19 implies

there exists an event E′ of probability at least 1− δ/2 such that, on E′, ∀h, g ∈ C,

mdlog2(2/δ)e+`∑
mdlog2(2/δ)e+1

1DIS({h,g})(X
′
j) ≤

3

4
ε` =⇒ P(DIS({h, g})) ≤ ε, (6)

P(DIS({h, g})) ≤ ε

2
=⇒

mdlog2(2/δ)e+`∑
mdlog2(2/δ)e+1

1DIS({h,g})(X
′
j) ≤

3

4
ε`. (7)

Let c be as in Lemma 21. Taking c′ ≥ 6c, we have m ≥ 2c
ε

(
dLog

(
2
ε

)
+ Log (2)

)
, so

that Lemma 21 implies that, for each i ∈ {1, . . . , dlog2(2/δ)e}, Ni is an ε
2 -net of P for

{DIS({h, g}) : h, g ∈ C} with probability at least 1/2. Since the Ni sets are independent,
there is an event E of probability at least 1 − (1 − 1/2)dlog2(2/δ)e ≥ 1 − δ/2, on which
∃i∗ ∈ {1, . . . , dlog2(2/δ)e} such that Ni∗ is an ε

2 -net of P for {DIS({h, g}) : h, g ∈ C}. In
particular, this implies that on E,

sup

P(DIS({h, g})) : h, g ∈ C,
mi∗∑

j=m(i∗−1)+1

1DIS({h,g})(X
′
j) = 0

 ≤ ε

2
. (8)
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Therefore, on the event E′ ∩ E, we have

max


mdlog2(2/δ)e+`∑

j=mdlog2(2/δ)e+1

1DIS({h,g})(X
′
j) : h, g ∈ C,

mî∑
j=m(̂i−1)+1

1DIS({h,g})(X
′
j) = 0


≤ max


mdlog2(2/δ)e+`∑

j=mdlog2(2/δ)e+1

1DIS({h,g})(X
′
j) : h, g ∈ C,

mi∗∑
j=m(i∗−1)+1

1DIS({h,g})(X
′
j) = 0

 ≤ 3

4
ε`,

where the first inequality is by definition of î, and the second inequality is by a combination
of (8) with (7). Therefore, by (6), on the event E′ ∩ E, we have

max

P(DIS({h, g})) : h, g ∈ C,
mî∑

j=m(̂i−1)+1

1DIS({h,g})(X
′
j) = 0

 ≤ ε,
or equivalently, Nî is an ε-net of P for {DIS({h, g}) : h, g ∈ C}. To complete the proof, we
take c′ = max{10c0, 6c}, and note that the event E′ ∩E has probability at least 1− δ by a
union bound.

There are also variants of the above two lemmas applicable to sample compression
schemes. Specifically, the next lemma is due to Littlestone and Warmuth (1986); Floyd and
Warmuth (1995).

Lemma 23 There exists a finite universal constant c̃ ≥ 1 such that, for any collection
T of measurable subsets of X , any n ∈ N ∪ {0}, and any function φn : X n → T , for any
ε, δ ∈ (0, 1), for any integer m ≥ c̃

ε

(
nLog

(
1
ε

)
+ Log

(
1
δ

))
, for any probability measure P over

X , if X ′1, . . . , X
′
m are independent P-distributed random variables, then with probability at

least 1−δ, it holds that every i1, . . . , in ∈ {1, . . . ,m} with i1 ≤ · · · ≤ in and {X ′1, . . . , X ′m}∩
φn(X ′i1 , . . . , X

′
in

) = ∅ has P
(
φn(X ′i1 , . . . , X

′
in

)
)
≤ ε: that is, {X ′1, . . . , X ′m} is an ε-net of P

for {φn(X ′i1 , . . . , X
′
in

) : i1, . . . , in ∈ {1, . . . ,m}, i1 ≤ · · · ≤ in}.

This implies the following result.

Lemma 24 There exists a finite universal constant c̃′ ≥ 1 such that, for any collection T
of measurable subsets of X , any n ∈ N, and any function φn : X n × Yn → T , for any
probability measure P on X , if X ′1, X

′
2, . . . are independent P-distributed random variables,

then for any ε, δ ∈ (0, 1), for any integers m ≥ c̃′n
ε Log

(
1
ε

)
and ` ≥ c̃′

ε

(
nLog

(
m
n

)
+ Log

(
1
δ

))
,

defining Ni = {X ′m(i−1)+1, . . . , X
′
mi} for each i ∈ {1, . . . , dlog2(2/δ)e}, letting

î = argmin
i∈{1,...,dlog2(2/δ)e}

max


mdlog2(2/δ)e+`∑

j=mdlog2(2/δ)e+1

1φn(X′i1
,...,X′in ,y1,...,yn)(X

′
j) : y1, . . . , yn ∈ Y,

m(i− 1) < i1 ≤ · · · ≤ in ≤ mi,
mi∑

j=m(i−1)+1

1φn(X′i1
,...,X′in ,y1,...,yn)(X

′
j) = 0

 ∪ {0},
3522



Minimax Analysis of Active Learning

and N̂=Nî, with probability at least 1−δ, N̂ is an ε-net of P for {φn(X ′i1 , . . . , X
′
in
, y1, . . . , yn)

: m(̂i− 1) < i1 ≤ · · · ≤ in ≤ mî, y1, . . . , yn ∈ Y}.

Proof Let c̃ be as in Lemma 23, define c̃′ = max {8c̃, 128}, and letm and ` be as described in
the lemma statement. Noting that 2c̃

ε

(
nLog

(
2
ε

)
+ Log

(
2n+1

))
≤ 8c̃n

ε Log
(

1
ε

)
, we have that

m ≥ 2c̃
ε

(
nLog

(
2
ε

)
+ Log

(
2n+1

))
. Thus, by Lemma 23, for each i ∈ {1, . . . , dlog2(2/δ)e}

and y1, . . . , yn ∈ Y, with probability at least 1 − 2−n−1,
{
X ′m(i−1)+1, . . . , X

′
mi

}
is an ε

2 -

net of P for
{
φn(X ′i1 , . . . , X

′
in
, y1, . . . , yn) : m(i− 1) < i1 ≤ · · · ≤ in ≤ mi

}
. By a union

bound, this holds simultaneously for all y1, . . . , yn ∈ Y with probability at least 1
2 . In

particular, since the
{
X ′m(i−1)+1, . . . , X

′
mi

}
subsequences are independent over values of

i, we have that there is an event E of probability at least 1 −
(

1
2

)dlog2(2/δ)e ≥ 1 − δ
2 , on

which ∃i∗ ∈ {1, . . . , dlog2(2/δ)e} such that
{
X ′m(i∗−1)+1, . . . , X

′
mi∗

}
is an ε

2 -net of P for{
φn(X ′i1 , . . . , X

′
in
, y1, . . . , yn) : m(i∗ − 1) < i1 ≤ · · · ≤ in ≤ mi∗, y1, . . . , yn ∈ Y

}
.

For any i ∈ {1, . . . , dlog2(2/δ)e}, any i1, . . . , in ∈ {m(i− 1) + 1, . . . ,mi} with i1 ≤ · · · ≤
in, and any y1, . . . , yn ∈ Y, Chernoff bounds (applied under the conditional distribution
given X ′i1 , . . . , X

′
in

) and the law of total probability imply that, with probability at least
1− exp {−ε`/32}, if P

(
φn(X ′i1 , . . . , X

′
in
, y1, . . . , yn)

)
≤ ε

2 , then

mdlog2(2/δ)e+`∑
j=mdlog2(2/δ)e+1

1φn(X′i1
,...,X′in ,y1,...,yn)(X

′
j) ≤

3

4
ε`,

while if P
(
φn(X ′i1 , . . . , X

′
in
, y1, . . . , yn)

)
> ε, then

mdlog2(2/δ)e+`∑
j=mdlog2(2/δ)e+1

1φn(X′i1
,...,X′in ,y1,...,yn)(X

′
j) >

3

4
ε`.

The number of distinct nondecreasing sequences (i1, . . . , in) ∈ {m(i − 1) + 1, . . . ,mi}n is(
n+m−1

n

)
≤
(

2em
n

)n
. Therefore, by a union bound, there exists an event E′ of probability at

least

1− 2n
(

2em

n

)n
dlog2(2/δ)e exp {−ε`/32} ,

on which this holds for every such y1, . . . , yn, i, i1, . . . , in. Noting that

32

ε
Log

(
2ndlog2(2/δ)e

(
2em

n

)n 2

δ

)
≤ 128

ε

(
nLog

(m
n

)
+ Log

(
1

δ

))
≤ `,

we have that E′ has probability at least 1− δ
2 .

In particular, defining for each i ∈ {1, . . . , dlog2(2/δ)e},

p̂i = max


mdlog2(2/δ)e+`∑

j=mdlog2(2/δ)e+1

1φn(X′i1
,...,X′in ,y1,...,yn)(X

′
j) : y1, . . . , yn ∈ Y,

m(i− 1) < i1 ≤ · · · ≤ in ≤ mi,
mi∑

j=m(i−1)+1

1φn(X′i1
,...,X′in ,y1,...,yn)(X

′
j) = 0

 ∪ {0},
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we have that, on E∩E′, p̂i∗ ≤ 3
4ε`. Furthermore, for every i ∈ {1, . . . , dlog2(2/δ)e} for which{

X ′m(i−1)+1, . . . , X
′
mi

}
is not an ε-net of P for

{
φn(X ′i1 , . . . , X

′
in
, y1, . . . , yn) : m(i − 1) <

i1 ≤ · · · ≤ in ≤ mi, y1, . . . , yn ∈ Y
}

, by definition ∃i1, . . . , in ∈ {m(i − 1) + 1, . . . ,mi}
with i1 ≤ · · · ≤ in, and y1, . . . , yn ∈ Y, such that P

(
φn(X ′i1 , . . . , X

′
in
, y1, . . . , yn)

)
> ε while∑mi

j=m(i−1)+1 1φn(X′i1
,...,X′in ,y1,...,yn)(X

′
j) = 0; thus, on the event E′,

mdlog2(2/δ)e+`∑
j=mdlog2(2/δ)e+1

1φn(X′i1
,...,X′in ,y1,...,yn)(X

′
j) >

3

4
ε`

for this choice of i1, . . . , in, y1, . . . , yn. In particular, this implies that p̂i >
3
4ε`. Altogether,

we have that on the event E∩E′, any such i has p̂î ≤ p̂i∗ ≤
3
4ε` < p̂i, so that î 6= i. Therefore,

on the event E∩E′,
{
X ′
m(̂i−1)+1

, . . . , X ′
mî

}
is an ε-net of P for

{
φn(X ′i1 , . . . , X

′
in
, y1, . . . , yn) :

m(̂i− 1) < i1 ≤ · · · ≤ in ≤ mî, y1, . . . , yn ∈ Y
}

.

To complete the proof, we note that the event E ∩ E′ has probability at least 1− δ by
a union bound.

A.2 Lower Bound Constructions for Noisy Settings

Fix any ζ ∈ (0, 1], β ∈ [0, 1/2), and k ∈ N with k ≤ 1/ζ. Let Xk = {x1, . . . , xk+1} be any
k + 1 distinct elements of X (assuming |X | ≥ k + 1), and let Ck = {x 7→ 21{xi}(x) − 1 :
i ∈ {1, . . . , k}}, a set of functions mapping X to {−1,+1}. Let Pk,ζ be a probability
measure over X with Pk,ζ({xi}) = ζ for each i ∈ {1, . . . , k}, and Pk,ζ({xk+1}) = 1− ζk. For
each t ∈ {1, . . . , k}, let P ′k,ζ,t denote the probability measure over X × Y having marginal
distribution Pk,ζ over X , such that if (X,Y ) ∼ P ′k,ζ,t, then every i ∈ {1, . . . , k} has P(Y =
21{xt}(X)− 1|X = xi) = 1− β, and furthermore P(Y = −1|X = xk+1) = 1. Finally, define

RR′(k, ζ, β) =
{
P ′k,ζ,t : t ∈ {1, . . . , k}

}
. Raginsky and Rakhlin (2011) prove the following

result (see the proof of their Theorem 2).13

Lemma 25 For ζ, β, k as above, if k ≥ 2 and Ck ⊆ C, then for any δ ∈ (0, 1/4),

ΛRR′(k,ζ,β)((ζ/2)(1− 2β), δ) ≥
βk ln

(
1
4δ

)
3(1− 2β)2

.

This has the following immediate implication for general X and C. Fix any ζ ∈ (0, 1]
and β ∈ [0, 1/2), let k ∈ N ∪ {0} satisfy k ≤ min {s− 1, b1/ζc}, and let x1, . . . , xk+1 and
h0, h1, . . . , hk be as in Definition 2. Let Pk,ζ be as above (for this choice of x1, . . . , xk+1),
and for each t ∈ {1, . . . , k}, let Pk,ζ,t denote the probability measure over X × Y having

13. Technically, the proof of Raginsky and Rakhlin (2011, Theorem 2) relies on a lemma (their Lemma
4), with various conditions on both k and a parameter “d” in their construction. However, one can
easily verify that the conclusions of that lemma continue to hold (in fact, with improved constants)
in our special case (corresponding to d = 1 and arbitrary k ∈ N) by defining Mk,1 = {0, 1}k1 in their
construction.
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marginal distribution Pk,ζ over X , such that if (X,Y ) ∼ Pk,ζ,t, then every i ∈ {1, . . . , k}
has P(Y = ht(X)|X = xi) = 1 − β, and furthermore P(Y = ht(X)|X = xk+1) = 1. Define
RR(k, ζ, β) = {Pk,ζ,t : t ∈ {1, . . . , k}}. We have the following result.

Lemma 26 For k, ζ, β as above, for any δ ∈ (0, 1/4),

ΛRR(k,ζ,β)((ζ/2)(1− 2β), δ) ≥
β(k − 1) ln

(
1
4δ

)
3(1− 2β)2

.

Proof First note that if k ≤ 1, then the lemma trivially holds (since ΛRR(k,ζ,β)(·, ·) ≥ 0).
For this same reason, the result also trivially holds if β = 0. Otherwise, suppose k ≥ 2 and
β > 0, and fix any n less than the right hand side of the above inequality. Let A be any
active learning algorithm, and consider the following modification A′ of A. For any given
sequence X1, X2, . . . of unlabeled data, A′(n) simulates the execution of A(n), except that
when A(n) would request the label Yi of a point Xi in the sequence, A′(n) requests the
label Yi, but proceeds as A(n) would if the label value had been −Yih0(Xi) instead of Yi.
When the simulation of A(n) concludes, if ĥ is its return value, A′(n) instead returns the
function x 7→ ĥ′(x) = −ĥ(x)h0(x).

Now fix a probability measure P ′k,ζ,t ∈ RR′(k, ζ, β) minimizing the probability that

erP ′k,ζ,t(ĥ
′) − infh∈Ck erP ′k,ζ,t(h) ≤ (ζ/2)(1 − 2β) when A′ is run with PXY = P ′k,ζ,t, and let

(X,Y ) ∼ P ′k,ζ,t. Note that the marginal distribution of P ′k,ζ,t over X is Pk,ζ , that for any
i ∈ {1, . . . , k}, P(−Y h0(X) = ht(X)|X = xi) = P(Y = 21{xt}(X) − 1|X = xi) = 1 − β,
and that P(−Y h0(X) = ht(X)|X = xk+1) = P(Y = −1|X = xk+1) = 1. In particular, this
implies (X,−Y h0(X)) ∼ Pk,ζ,t. Therefore, running the active learning algorithm A′(n) with
a sequence (X1, Y1), (X2, Y2), . . . of independent P ′k,ζ,t-distributed samples, the algorithm

behaves as A(n) would under Pk,ζ,t, except that its returned classifier is ĥ′ instead of ĥ.
Next, note that

erP ′k,ζ,t(ĥ
′) = P(−ĥ(X)h0(X) 6= Y )

= E[P(ĥ(X) 6= −Y |X)1[h0(X) = 1] + P(ĥ(X) 6= Y |X)1[h0(X) = −1]]

= P(ĥ(X) 6= −Y h0(X)) = erPk,ζ,t(ĥ),

and furthermore

inf
h∈Ck

erP ′k,ζ,t(h) = erP ′k,ζ,t(21{xt} − 1) = βζk = erPk,ζ,t(ht) = inf
h∈C

erPk,ζ,t(h).

Thus, if erPk,ζ,t(ĥ)− infh∈C erPk,ζ,t(h) ≤ (ζ/2)(1− 2β), then we must also have erP ′k,ζ,t(ĥ
′)−

infh∈Ck erP ′k,ζ,t(h) ≤ (ζ/2)(1 − 2β). Since n <
βk ln( 1

4δ )
3(1−2β)2 , Lemma 25 implies that (for this

choice of P ′k,ζ,t) A′(n) achieves the latter guarantee with probability strictly less than 1− δ,
and therefore the corresponding Pk,ζ,t ∈ RR(k, ζ, β) is such that A(n) has probability

strictly less than 1− δ of achieving erPk,ζ,t(ĥ)− infh∈C erPk,ζ,t(h) ≤ (ζ/2)(1−2β). Since this
argument applies to any active learning algorithm A, the result follows.
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A.3 Finite Approximation of VC Classes

For a given probability measure P over X , Adams and Nobel (2012) have proven that for
any τ > 0, if d <∞, there exist disjoint measurable sets A1, . . . , Ak (for some k ∈ N) with⋃
iAi = X such that, ∀h ∈ C, P (

⋃
{Ai : ∃x, y ∈ Ai s.t. h(x) 6= h(y)}) < τ : that is, every

h ∈ C is constant on all of the sets Ai, except a few of them whose total probability is
at most τ . This property has implications for bracketing behavior in VC classes, and was
proven in the context of establishing uniform laws of large numbers for VC classes under
stationary ergodic processes (see also Adams and Nobel, 2010; van Handel, 2013).

For our purposes, this result has the appealing feature that it allows one to effectively
discretize the space X by partitioning it into subsets, with the guarantee that with high
probability over the random choice of a point x, any other point y in the same cell in
the partition as x will have f?PXY (x) = f?PXY (y), for any PXY ∈

⋃
ν∈[0,1/2) BE(ν). However,

before we can make use of this property, we must first address the fact that the construction
of these sets Ai by Adams and Nobel (2012) requires a strong dependence on P, to the
extent that it is not obvious that this dependence can be supplanted by a data-dependent
construction. However, it turns out that if we relax the requirement that the classifiers be
constant in these cells, instead settling for being nearly-constant, then it is straightforward
to construct a partition A1, . . . , Ak satisfying the requirement. Specifically, we have the
following result.

Lemma 27 Fix any τ, δ ∈ (0, 1), and let mτ,δ =
⌈
c
τ

(
dLog

(
1
τ

)
+Log

(
1
δ

))⌉
(for c as in

Lemma 21). For any probability measure P over X , for any independent P-distributed ran-
dom variables X ′1, . . . , X

′
mτ,δ

, with probability at least 1−δ, letting Cτ,δ = C[(X ′1, . . . , X
′
mτ,δ

)]
(as defined in Section 7.3), the collection of disjoint sets

Jτ,δ =


⋂

g∈C[(X′1,...,X
′
mτ,δ

)]

Xg : ∀g ∈ Cτ,δ,Xg ∈ {{x : g(x) = +1}, {x : g(x) = −1}}


is a partition of X with the property that, ∀h ∈ C,∑

A∈Jτ,δ

min
y∈Y
P(x ∈ A : h(x) = y) ≤ τ,

and ∀ε > 0, ∀h ∈ C,

P
(⋃{

A ∈ Jτ,δ : min
y∈Y
P(x ∈ A : h(x) = y) > εP(A)

})
≤ τ

ε
.

Proof By Lemma 21, with probability at least 1− δ, Cτ,δ is a τ -cover of C. Furthermore,
note that for every g ∈ Cτ,δ and every A ∈ Jτ,δ, either every x ∈ A has g(x) = +1 or every
x ∈ A has g(x) = −1 (i.e., g is constant on A). Therefore, ∀h ∈ C,∑

A∈Jτ,δ

min
y∈Y
P(x ∈ A : h(x) = y) ≤

∑
A∈Jτ,δ

min
g∈Cτ,δ

P(x ∈ A : h(x) 6= g(x))

≤ min
g∈Cτ,δ

∑
A∈Jτ,δ

P(x ∈ A : h(x) 6= g(x)) = min
g∈Cτ,δ

P(x : h(x) 6= g(x)) ≤ τ.
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The final claim follows by Markov’s inequality, since on the above event, ∀ε > 0, ∀h ∈ C,

P
(⋃{

A ∈ Jτ,δ : min
y∈Y
P(x ∈ A : h(x) = y) > εP(A)

})
= P

(⋃{
A ∈ Jτ,δ : P(A) > 0,min

y∈Y
P(x ∈ A : h(x) = y) > εP(A)

})
= P

(⋃{
A ∈ Jτ,δ : P(A) > 0,min

y∈Y

P(x ∈ A : h(x) = y)

P(A)
> ε

})
≤ 1

ε

∑
A∈Jτ,δ

P(A) min
y∈Y

P(x ∈ A : h(x) = y)

P(A)
=

1

ε

∑
A∈Jτ,δ

min
y∈Y
P(x ∈ A : h(x) = y) ≤ τ

ε
.

Appendix B. Proofs for Results in Section 5

This section provides proofs of the main results of this article.

B.1 The Realizable Case

We begin with the particularly-simple case of Theorem 3.
Proof of Theorem 3 The lower bounds proportional to d and Log

(
min

{
1
ε , |C|

})
are due

to Kulkarni, Mitter, and Tsitsiklis (1993) (lower bound in terms of the covering numbers)
in conjunction with Kulkarni (1989); Kulkarni, Mitter, and Tsitsiklis (1993) (lower bounds
on the worst-case covering numbers). Specifically, Kulkarni, Mitter, and Tsitsiklis (1993)
study the problem of learning from arbitrary binary-valued queries. Since active learning
receives binary responses in the binary classification setting, it is a special case of this type of
algorithm. In particular, for any probability measure P over X , and ε ∈ (0, 1), letN (ε,C,P)
denote the minimum cardinality |H| over all ε-covers H of C (under the P(DIS({·, ·}))
pseudometric), or else N (ε,C,P) = ∞ if no finite ε-cover of C exists. Then the lower
bound of Kulkarni, Mitter, and Tsitsiklis (1993, Theorem 3) implies that, ∀ε, δ ∈ (0, 1/2),

ΛRE(ε, δ) ≥ sup
P
dlog2 ((1− δ)N (2ε,C,P))e . (9)

Furthermore, the construction in the proof of Kulkarni, Mitter, and Tsitsiklis (1993, Lemma
2) implies that supP N (2ε,C,P) ≥ min

{⌊
1
4ε

⌋
, |C|

}
, so that combined with (9), we have

ΛRE(ε, δ) ≥
⌈

log2

(
(1− δ) min

{⌊
1

4ε

⌋
, |C|

})⌉
.

For δ ∈ (0, 1/3) and ε ∈ (0, 1/8), and since |C| ≥ 3 (by assumption, intended to focus on non-
trivial cases to simplify the expressions), the right hand side is at least 1

4Log
(
min

{
1
ε , |C|

})
.

Furthermore, if d < 162, this already implies that for any ε ∈ (0, 1/3) and δ ∈ (0, 1/3),
ΛRE(ε, δ) ≥ 1

4 ln(3) ≥ d
648 . Otherwise, in the case that d ≥ 162, Kulkarni (1989, Proposi-

tion 3) proves that, if ε ∈ (0, 1/9), supP N (2ε,C,P) ≥ exp
{

2
(

1
2 − 4ε

)2
d
}
≥ exp {d/162}.
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Combined with (9), this implies that for ε ∈ (0, 1/9) and δ ∈ (0, 1/3), if d ≥ 162, then

ΛRE(ε, δ) ≥
⌈

log2

(
2

3
ed/162

)⌉
≥ d

162
log2(e)− log2

(
3

2

)
≥ d

162
log2

(
2e

3

)
≥ d

189
.

Thus, regardless of the value of d, we have ΛRE(ε, δ) ≥ d
648 .

For the final part of the proof of the lower bound, a lower bound proportional to s ∧ 1
ε

may be credited to Dasgupta (2005, 2004). It can be proven as follows. Let x1, . . . , xs and
h0, h1, . . . , hs be as in Definition 2, let t = s ∧

⌈
1−ε
ε

⌉
, and let us restrict the discussion to

those t+ 1 distributions PXY ∈ RE such that the marginal distribution P of PXY over X is
uniform on {x1, . . . , xt}, and f?PXY ∈ {h0, h1, . . . , ht}. Then for any active learning algorithm
A, for any n ≤ t/2, let Qi denote the (possibly random) set of (at most n) points Xi that
A(n) requests the labels of, given that f?PXY = hi (for i ∈ {0, . . . , t}), and let ĥi denote the
classifier returned by A(n) in this case. Since the marginal distribution of PXY over X is
fixed to P for all t+ 1 of these PXY distributions, we may consider the sequence X1, X2, . . .
of i.i.d. P-distributed random variables to be identical over these t + 1 possible choices of
PXY , without affecting the distributions of Qi and ĥi (see Kallenberg, 2002). Thus, we may
note that ĥi = ĥ0 whenever xi /∈ Q0, since xi /∈ Q0 implies that all of the labels observed
by the algorithm are identical to those that would be observed if f?PXY = h0 instead of

f?PXY = hi. Now, if it holds that P
(
P
(
x : ĥ0(x) 6= h0(x)

)
> ε
)
≤ δ, then since every xi

with i ≤ t has P({xi}) > ε, we have that P
(
∀i ∈ {1, . . . , t}, ĥ0(xi) = h0(xi)

)
≥ 1− δ. But

if this holds, then it must also be true that

max
i∈{1,...,t}

P
(
P(x : ĥi(x) 6= hi(x)) > ε

)
≥ 1

t

t∑
i=1

P
(
P(x : ĥi(x) 6= hi(x)) > ε

)
≥ 1

t

t∑
i=1

P
(
ĥi(xi) = h0(xi)

)
=

1

t
E

[
t∑
i=1

1

[
ĥi(xi) = h0(xi)

]]

≥ 1

t
E

[
t∑
i=1

1 [xi /∈ Q0]1
[
ĥi(xi) = h0(xi)

]]
=

1

t
E

[
t∑
i=1

1 [xi /∈ Q0]1
[
ĥ0(xi) = h0(xi)

]]

≥ 1

t
E

[
1

[
∀i ∈ {1, . . . , t}, ĥ0(xi) = h0(xi)

] t∑
i=1

1 [xi /∈ Q0]

]

≥ 1

t
E
[
1

[
∀i ∈ {1, . . . , t}, ĥ0(xi) = h0(xi)

]
(t− n)

]
=
t− n
t

P
(
∀i ∈ {1, . . . , t}, ĥ0(xi) = h0(xi)

)
≥ t− n

t
(1− δ) ≥ 1− δ

2
≥ 1

3
> δ.

Thus, when n ≤ t/2, at least one of these t + 1 distributions PXY (all of which are in
RE) has P (erPXY (A(n)) > ε) > δ. Since this argument holds for any A, we have that
ΛRE(ε, δ) > t/2 = 1

2 min
{
s,
⌈

1−ε
ε

⌉}
≥ 4

9 min
{
s, 1
ε

}
. Combined with the lower bounds

proportional d and Log
(
min

{
1
ε , |C|

})
established above, this completes the proof of the

lower bound in Theorem 3.
The proof of the upper bound is in three parts. The first part, establishing the d

εLog
(

1
ε

)
upper bound, is a straightforward application of Lemma 22. The second part, establishing
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the sd
Log(s)Log

(
1
ε

)
upper bound, is directly based on techniques of Hanneke (2007a); Hegedüs

(1995). Finally, and most involved, is the third part, establishing the sLog
(

1
ε

)
upper bound.

This part is partly based on a recent technique of Wiener, Hanneke, and El-Yaniv (2015)
for analyzing disagreement-based active learning (which refines an earlier technique of El-
Yaniv and Wiener, 2010, 2012). Here, we modify this technique by using an ε-net in
place of random samples, thereby refining logarithmic factors, and entirely eliminating the
dependence on δ in the label complexity.

Fix any ε, δ ∈ (0, 1). We begin with the d
εLog

(
1
ε

)
upper bound. Let m =

⌈
c′d
ε Log

(
1
ε

)⌉
and ` =

⌈
c′

ε

(
dLog

(
1
ε

)
+ Log

(
1
δ

))⌉
, for c′ as in Lemma 22. Define

î = argmin
i∈{1,...,dlog2(2/δ)e}

max
h,g∈C:∑mi

j=m(i−1)+1 1DIS({h,g})(Xj)=0

mdlog2(2/δ)e+`∑
j=mdlog2(2/δ)e+1

1DIS({h,g})(Xj).

Consider an active learning algorithm which, given a budget n ∈ N, requests the labels Yt for

t ∈
{
m
(
î− 1

)
+ 1, . . . ,m

(
î− 1

)
+ min {m,n}

}
, and returns any classifier ĥn ∈ C with∑m(̂i−1)+min{m,n}

t=m(̂i−1)+1
1

[
ĥn(Xt) 6= Yt

]
= 0 if such a classifier exists (and otherwise returns an

arbitrary classifier). Note that, for PXY ∈ RE,
∑m(̂i−1)+min{m,n}

t=m(̂i−1)+1
1

[
f?PXY (Xt) 6= Yt

]
= 0

with probability one, and since f?PXY ∈ C, ĥn will have
∑m(̂i−1)+min{m,n}

t=m(̂i−1)+1
1

[
ĥn(Xt) 6= Yt

]
=

0 with probability one. Furthermore, this implies
∑m(̂i−1)+min{m,n}

t=m(̂i−1)+1
1

[
ĥn(Xt) 6=f?PXY (Xt)

]
=

0 with probability one. Additionally, Lemma 22 implies that, with probability at least 1−δ,
the set

{
Xt : t ∈

{
m
(
î− 1

)
+ 1, . . . ,mî

}}
is an ε-net of P for {DIS({h, g}) : h, g ∈ C}.

Since both ĥn, f
?
PXY ∈ C, this implies that if n ≥ m, then with probability at least 1 − δ,

P
(

DIS
({
ĥn, f

?
PXY

}))
≤ ε. Since PXY ∈ RE, erPXY

(
ĥn

)
= P

(
DIS

({
ĥn, f

?
PXY

}))
.

Thus, if n ≥ m, then with probability at least 1 − δ, erPXY

(
ĥn

)
≤ ε. Since this holds for

any PXY ∈ RE, we have established that ΛRE(ε, δ) ≤ m ≤ 2c′d
ε Log

(
1
ε

)
. This also completes

the proof of the entire upper bound in Theorem 3 in the case s = ∞; for this reason, for
the remainder of the proof below, we restrict our attention to the case s <∞.

Next, we turn to proving the sd
Log(s)Log

(
1
ε

)
upper bound, based on a technique of

Hanneke (2007a); Hegedüs (1995) (see also Hellerstein, Pillaipakkamnatt, Raghavan, and
Wilkins, 1996 for related ideas), except using an ε-net in place of the random samples used by

Hanneke (2007a). Let m and î be as above, and denote U=
{
Xt : t∈

{
m
(
î−1

)
+1, . . . ,mî

}}
.

The technique is based on using a general algorithm for Exact learning with membership
queries, treating U as the instance space, and C[U ] as the concept space (where C[U ] is
as defined in Section 7.3). Specifically, for any finite set V ⊆ C and any x ∈ X , let
hmaj(V )(x) = argmaxy∈Y |{h ∈ V : h(x) = y}| (breaking ties arbitrarily); hmaj(V ) is called
the majority vote classifier. In this context, the following algorithm is due to Hegedüs
(1995) (see Section 7.3 for the definition of “specifying set”).

3529



Hanneke and Yang

Memb-Halving-2
Input: label budget n
Output: classifier ĥn

0. V ← C[U ], t← 0
1. While |V | ≥ 2 and t < n
2. ĥ← hmaj(V )

3. Let k = TD(ĥ,C[U ],U)
4. Let {Xj1 , . . . , Xjk}∈Uk be a minimal specifying set for ĥ on U with respect to C[U ]
5. Repeat
6. Let ĵ = argmin

j∈{j1,...,jk}
|{g ∈ V : g(Xj) = ĥ(Xj)}|

7. Request the label Yĵ , let t← t+ 1
8. V ← {h ∈ V : h(Xĵ) = Yĵ}
9. Until ĥ(Xĵ) 6= Yĵ or |V | ≤ 1 or t = n

10. Return any ĥn in V (or ĥn arbitrary if V = ∅)

Fix any PXY ∈ RE, and note that we have f?PXY ∈ C, so that ∃h∗ ∈ C[U ] with
h∗(x) = f?PXY (x), ∀x ∈ U . Since Yj = f?PXY (Xj) for every j with probability one in this
case, we have that with probability one the set V will be nonempty in Step 10, so that
ĥn is chosen from V ; in particular, we have h∗(Xj) = Yj for every Xj ∈ U , and hence
h∗ ∈ V in Step 10. Furthermore, when this is the case, Hegedüs (1995) proves that, letting
XTD(C[U ],U) = max

h:X→Y
TD(h,C[U ],U) (see Section 7.3), if

n ≥ 2
XTD(C[U ],U)

1 ∨ log2(XTD(C[U ],U))
log2(|C[U ]|),

then the classifier ĥn returned by Memb-Halving-2 satisfies ĥn = h∗, so that ĥn(x) =
f?PXY (x) for every x ∈ U .14 Since XTD(C[U ],U) ≤ XTD(C,m), and Theorem 13 implies
XTD(C,m) = s∧m ≤ s, and since Log(XTD(C[U ],U)) ≤ 1∨ log2(XTD(C[U ],U)) and x 7→

x
Log(x) is nondecreasing on N ∪ {0}, and the VC-Sauer Lemma (Vapnik and Chervonenkis,

1971; Sauer, 1972) implies |C[U ]| ≤
(
em
d

)d
, we have that for any n ≥ 2 sd

Log(s) log2

(
em
d

)
, if

∀j, f?PXY (Xj) = Yj , then ĥn(x) = f?PXY (x) for every x ∈ U . Thus, for n ≥ 2 sd
Log(s) log2

(
em
d

)
,

with probability one the classifier ĥn returned by Memb-Halving-2 has ĥn(x) = f?PXY (x)
for every x ∈ U . Furthermore, as proven above, with probability at least 1−δ, U is an ε-net
of P for {DIS({h, g}) : h, g ∈ C}. Thus, since f?PXY , ĥn ∈ C, by a union bound we have

that for any n ≥ 2 sd
Log(s) log2

(
em
d

)
, with probability at least 1− δ, P(DIS({f?PXY , ĥn})) ≤ ε.

Since PXY ∈ RE, this implies erPXY (ĥn) = P(DIS({f?PXY , ĥn})) ≤ ε as well. Thus, since
this reasoning holds for any PXY ∈ RE, we have established that

ΛRE(ε, δ) ≤ 2
sd

Log(s)
log2

(em
d

)
≤ 16Log

(
2ec′

) sd

Log(s)
Log

(
1

ε

)
.

14. The two cases not covered by the theorem of Hegedüs (1995) are the case |C[U ]| = 1, for which the
algorithm returns the sole element of C[U ] (which must agree with f?PXY on U) without requesting any
labels, and the case |C[U ]| = 2, for which one can easily verify that XTD(C[U ],U) = 1 and that the
algorithm returns a classifier with the claimed property after requesting exactly one label.
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Finally, we establish the sLog
(

1
ε

)
upper bound, as follows. Note that, since |C| ≥ 2, we

must have s ≥ 1. Fix any PXY ∈ RE. Let T = {DIS(VS,h) : S ∈
⋃
m∈NXm, h a classifier},

and for each x1, . . . , xs ∈ X and y1, . . . , ys ∈ Y, define

φs(x1, . . . , xs, y1, . . . , ys) = DIS({g ∈ C : ∀i ≤ s, g(xi) = yi}) ∈ T .

Let c̃′ be as in Lemma 24, and define δ′ = δ/ (2dlog2(1/ε)e), ` = d2c̃′(sLog(3c̃′)+Log(1/δ′))e,
m = d2c̃′se, and j̃ = d(2mdlog2(2/δ′)e+ 2`)/εe. Consider the following algorithm.

Algorithm 0
Input: label budget n
Output: classifier ĥn

0. V0 ← C, j̄0 = 0
1. For k = 1, 2, . . . , bn/mc
2. If |{j ∈ {j̄k−1 + 1, . . . , j̄k−1 + j̃} : Xj ∈ DIS(Vk−1)}| < mdlog2(2/δ′)e+ `

3. Return any ĥn ∈ Vk−1 (or an arbitrary classifier ĥn if Vk−1 = ∅)
4. Let jk,1, . . . , jk,mdlog2(2/δ′)e+` denote the mdlog2(2/δ′)e+ ` smallest indices in the set

{j ∈ {j̄k−1 + 1, . . . , j̄k−1 + j̃} : Xj ∈ DIS(Vk−1)} (in increasing order)
5. Let j̄k = jk,mdlog2(2/δ′)e+`
6. For each i ∈ N, let

Ii =

(i1, . . . , is, y1, . . . , ys) ∈ Ns × Ys : m(i− 1) < i1 ≤ · · · ≤ is ≤ mi,

mi∑
t=m(i−1)+1

1φs(Xjk,i1
,...,Xjk,is

,y1,...,ys)(Xjk,t) = 0


7. Let

îk = argmin
i∈{1,...,dlog2(2/δ′)e}

max
(i1,...,is,y1,...,ys)∈Ii

mdlog2(2/δ′)e+`∑
t=mdlog2(2/δ′)e+1

1φs(Xjk,i1
,...,Xjk,is

,y1,...,ys)(Xjk,t)

8. Request the label Yjk,t for each t ∈
{
m
(
îk − 1

)
+ 1, . . . ,mîk

}
9. Let Vk ←

{
g ∈ Vk−1 : ∀t ∈

{
m
(
îk − 1

)
+ 1, . . . ,mîk

}
, g(Xjk,t) = Yjk,t

}
10. Return any ĥn ∈ Vbn/mc

Fix any k ∈ {1, . . . , bn/mc}. In the event that Vk−1 is defined, let

Mk =
∣∣{j ∈ {j̄k−1 + 1, . . . , j̄k−1 + j̃

}
: Xj ∈ DIS(Vk−1)

}∣∣ .
By a Chernoff bound (applied under the conditional distribution given Vk−1 and j̄k−1)
and the law of total probability (integrating out Vk−1 and j̄k−1), there is an event E′k of
probability at least 1− δ′, on which, if Vk−1 is defined and satisfies

P(DIS(Vk−1)) ≥ 2j̃−1
(
mdlog2(2/δ′)e+ `

)
, (10)
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then Mk ≥ (1/2)j̃P(DIS(Vk−1)) ≥ mdlog2(2/δ′)e + `, in which case the algorithm will
execute Steps 4-9 for this particular value of k, and in particular, the set Vk is defined.

In this case, denote Uk =
{
Xjk,t : t ∈

{
m
(
îk − 1

)
+ 1, . . . ,mîk

}}
, which is well-defined in

this case.

Next note that, on the event that Vk−1 is defined, the Mk samples{
Xj : j ∈

{
j̄k−1 + 1, . . . , j̄k−1 + j̃

}
, Xj ∈ DIS(Vk−1)

}
are conditionally independent given Vk−1, j̄k−1, and Mk, each having conditional distribu-
tion P(·|DIS(Vk−1)). Thus, applying Lemma 24 under the conditional distribution given
Vk−1, j̄k−1, and Mk, combined with the law of total probability (integrating out Vk−1, j̄k−1,
and Mk), we have that there exists an event Ek of probability at least 1 − δ′, on which, if
Vk−1 is defined, and Mk ≥ mdlog2(2/δ′)e+ `, then Uk is a 1

2 -net of P(·|DIS(Vk−1)) for{
φs(Xjk,i1

, . . . , Xjk,is
, y1, . . . , ys) : m

(
îk − 1

)
+ 1 < i1 ≤ · · · ≤ is ≤ mîk, y1, . . . , ys ∈ Y

}
.

(11)
Together, we have that on Ek ∩ E′k, if Vk−1 is defined and satisfies (10), then Uk is a 1

2 -net
of P(·|DIS(Vk−1)) for the collection (11).

In particular, Theorem 13 implies that, for any x1, . . . , xm ∈ Xm and classifier f ∈ C,
∃i1, . . . , is ∈ {1, . . . ,m} such that {g ∈ C : ∀j ≤ s, g(xij ) = f(xij )} = {g ∈ C : ∀i ≤
m, g(xi) = f(xi)} (see the discussion in Section 7.3.1), and since the left hand side is
invariant to permutations of the ij values, without loss of generality we may take i1 ≤ · · · ≤
is. This implies that on Ek ∩ E′k, if Vk−1 is defined and satisfies (10), then ∃i′1, . . . , i′s ∈{
m
(
îk − 1

)
+ 1, . . . ,mîk

}
with i′1 ≤ · · · ≤ i′s such that

φs(Xjk,i′1
, . . . , Xjk,i′s

, f(Xjk,i′1
), . . . , f(Xjk,i′s

))

= DIS
({
g ∈ C : ∀t ∈

{
m
(
îk − 1

)
+ 1, . . . ,mîk

}
, g(Xjk,t) = f(Xjk,t)

})
= DIS(VUk,f ),

so that

DIS(VUk,f ) ∈{
φs(Xjk,i1

, . . . , Xjk,is
, y1, . . . , ys) : m

(
îk − 1

)
< i1 ≤ · · · ≤ is ≤ mîk, y1, . . . , ys ∈ Y

}
.

But we certainly have DIS(VUk,f ) ∩ Uk = ∅. Thus, by the 1
2 -net property, on the event

Ek ∩ E′k, if Vk−1 is defined and satisfies (10), then every f ∈ C has

P
(

DIS(VUk,f )
∣∣∣DIS(Vk−1)

)
≤ 1

2
. (12)

Also note that, since PXY ∈ RE, we have f?PXY ∈ C, and furthermore that there is an event
E of probability one, on which ∀j, Yj = f?PXY (Xj). In particular, on E, if Vk−1 and Vk are

defined, then Vk = VUk,f?PXY
∩ Vk−1, which implies DIS(Vk) = DIS

(
VUk,f?PXY

∩ Vk−1

)
⊆
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DIS(Vk−1). Thus, applying (12) with f = f?PXY , we have that on the event E ∩Ek ∩E′k, if
Vk−1 is defined and satisfies (10), then Vk is defined and satisfies

P(DIS(Vk)) = P(DIS(Vk)|DIS(Vk−1))P(DIS(Vk−1))

≤ P
(

DIS
(
VUk,f?PXY

) ∣∣∣DIS(Vk−1)
)
P(DIS(Vk−1)) ≤ 1

2
P(DIS(Vk−1)).

Now suppose bn/mc ≥ dlog2(1/ε)e. Applying the above to every k ≤ dlog2(1/ε)e, we
have that there exist events E′k and Ek for each k ∈ {1, . . . , dlog2(1/ε)e}, each of probability

at least 1−δ′, such that on the event E∩
⋂dlog2(1/ε)e
k=1 E′k∩Ek, every k ∈ {1, . . . , dlog2(1/ε)e}

with Vk−1 defined either has P(DIS(Vk−1)) < 2j̃−1 (mdlog2(2/δ′)e+ `) or else Vk is de-
fined and satisfies P(DIS(Vk)) ≤ 1

2P(DIS(Vk−1)). Since V0 = C is defined, by induction

we have that on the event E ∩
⋂dlog2(1/ε)e
k=1 E′k ∩ Ek, either some k ∈ {1, . . . , dlog2(1/ε)e}

has Vk−1 defined and satisfies P(DIS(Vk−1)) < 2j̃−1 (mdlog2(2/δ′)e+ `), or else every k ∈
{1, . . . , dlog2(1/ε)e} has Vk defined and satisfying P(DIS(Vk)) ≤ 1

2P(DIS(Vk−1)). In partic-
ular, in this latter case, since P(DIS(V0)) ≤ 1, by induction we have P(DIS(Vdlog2(1/ε)e)) ≤
2−dlog2(1/ε)e ≤ ε.

Also note that 2j̃−1 (mdlog2(2/δ′)e+ `) ≤ ε. Thus, denoting by k̂ the largest k ≤ bn/mc
for which Vk is defined (which also implies Vk is defined for every k ∈ {0, . . . , k̂}), on the

event E ∩
⋂dlog2(1/ε)e
k=1 E′k ∩Ek, either some k ≤ (k̂+ 1)∧ dlog2(1/ε)e has P(DIS(Vk−1)) < ε,

so that (since k 7→ Vk is nonincreasing for k ≤ k̂) P(DIS(Vk̂)) ≤ P(DIS(Vk−1)) < ε, or

else k̂ ≥ dlog2(1/ε)e, so that P(DIS(Vk̂)) ≤ P(DIS(Vdlog2(1/ε)e)) ≤ ε. Thus, on the event

E∩
⋂dlog2(1/ε)e
k=1 E′k∩Ek, in any case we have P(DIS(Vk̂)) ≤ ε. Furthermore, by the realizable

case assumption, we have f?PXY ∈ V0, and if f?PXY ∈ Vk−1 in Step 9, then (on the event
E) f?PXY ∈ Vk as well. Thus, by induction, on the event E, f?PXY ∈ Vk̂. In particular, this

also implies Vk̂ 6= ∅ on E, so that there exist valid choices of ĥn in Vk̂ upon reaching the

“Return” step (Step 3, if k̂ < bn/mc, or Step 10, if k̂ = bn/mc). Thus, ĥn ∈ Vk̂ as well on

E, so that on the event E we have
{
x : ĥn(x) 6= f?PXY (x)

}
⊆ DIS(Vk̂). Therefore, on the

event E ∩
⋂dlog2(1/ε)e
k=1 E′k ∩ Ek, we have

erPXY (ĥn) = P
(
x : ĥn(x) 6= f?PXY (x)

)
≤ P

(
DIS

(
Vk̂
))
≤ ε.

Finally, by a union bound, the event E ∩
⋂dlog2(1/ε)e
k=1 E′k ∩ Ek has probability at least

1− dlog2(1/ε)e2δ′ = 1− δ. Noting that the above argument holds for any PXY ∈ RE, and
that the condition bn/mc ≥ dlog2(1/ε)e is satisfied for any n ≥ 9c̃′sLog(1/ε), this completes
the proof that ΛRE(ε, δ) ≤ 9c̃′sLog(1/ε) . sLog(1/ε).

B.2 The Noisy Cases

To extend the above ideas to noisy settings, we make use of a novel modification of a
technique of Kääriäinen (2006). We first partition the data sequence into three parts. For
m ∈ N, let X1

m = X3(m−1)+1, X2
m = X3(m−1)+2, and let X3

m = X3m and Y 3
m = Y3m;
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also denote X1 = {X1
m}∞m=1, X2 = {X2

m}∞m=1, X3 = {X3
m}∞m=1, Y3 = {Y 3

m}∞m=1, and Z =
{(Xm, Ym)}∞m=1. Additionally, it will simplify some of the proofs to further partition X3

and Y3, as follows. Fix any bijection φ : N2 → N, and for each m, ` ∈ N, let X3
m,` = X3

φ(m,`)

and Y 3
m,` = Y 3

φ(m,`).

Fix values ε, δ ∈ (0, 1), and let γ̂ε be a value in [ε/2, 1]. Let kε = dlog2(8/γ̂ε)e, and for
each k ∈ {2, . . . , kε}, define

m̃k =

⌈
16 max{c, 8}kε

2kε

(
dLog

(
2kε
ε

)
+ Log

(
64kε
δ

))⌉
,

for c as in Lemma 21. Also define m̃kε+1 =0, m̃=m̃2. and qε,δ = 2+
⌈
22kε+4 ln

(
32m̃22kε+3

δ

)⌉
.

Also, for each m ∈ {1, . . . , m̃}, define k̃m = max {k ∈ {2, . . . , kε} : m ≤ m̃k} and let q̃m =

23+2k̃m ln(32m̃qε,δ/δ). Fix a value τ = δε
512m̃ . Let Jτ,δ/2 be as in Lemma 27, applied to

the sequence X ′m = X1
m; to simplify notation, in this section we abbreviate J = Jτ,δ/2.

Also, for each x ∈ X , denote by J(x) the (unique) set A ∈ J with x ∈ A, and for each
m ∈ {1, . . . , m̃}, we abbreviate Jm = J(X2

m). Now consider the following algorithm.

Algorithm 1
Input: label budget n
Output: classifier ĥn

0. V0 ← C, t← 0, m← 0
1. While t < n and m < m̃
2. m← m+ 1
3. If X2

m ∈ DIS(Vm−1)
4. Run Subroutine 1 with arguments (n− t,m);

let (q, y) be the returned values; let t← t+ q
5. If y 6= 0 and ∃h ∈ Vm−1 with h(X2

m) = y
6. Let Vm ← {h ∈ Vm−1 : h(X2

m) = y}
7. Else let Vm ← Vm−1

8. Else let Vm ← Vm−1

9. Return any ĥn ∈ Vm

Subroutine 1
Input: label budget n, data point index m
Output: query counter q, value y

0. σm,0 ← 0, q ← 0, `m,0 ← 0
1. Repeat
2. Let `m,q+1 ← min{` > `m,q : X3

m,` ∈ Jm} (or `m,q+1 ← 1 if this set is empty)

3. Request the label Y 3
m,`m,q+1

; let σm,q+1 ← σm,q + Y 3
m,`m,q+1

; let q ← q + 1

4. If |σm,q| ≥ 3
√

2q ln(32m̃qε,δ/δ)
5. Return (q, sign(σm,q))
6. Else if q ≥ min{n, q̃m}
7. Return (q, 0)
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In this algorithm, the first part of the data (namely, X1) is used to partition the space via
Lemma 27, so that each cell of the partition has f?PXY nearly-constant within it (assuming
f?PXY ∈ C). The second part, X2, is used to simulate a commonly-studied active learning
algorithm for the realizable case (namely, the algorithm of Cohn, Atlas, and Ladner, 1994),
with two significant modifications. First, instead of directly requesting the label of a point,
we use samples from the third part of the data (i.e., X3) that co-occur in the same cell of the
partition as the would-be query point, repeatedly requesting for labels from that cell and
using the majority vote of these returned labels in place of the label of the original point.
Second, we discard a point X2

m if we cannot identify a clear majority label within a certain
number of queries, which decreases as the algorithm runs. Since this second modification
often ends up rejecting more samples in cells with higher noise rates than those with lower
noise rates, this effectively alters the marginal distribution over X , shifting the distribution
to favor less-noisy regions.

For the remainder of Appendix B.2, we fix an arbitrary probability measure PXY over
X ×Y with f?PXY ∈ C, and as usual, we denote by P(·) = PXY (· ×Y) the marginal of PXY
over X . For any x ∈ X , define γx =

∣∣η(x;PXY )− 1
2

∣∣, and define

γε = sup {γ ∈ (0, 1/2] : γP(x : γx ≤ γ) ≤ ε/2} .

Also, for the remainder of Appendix B.2, we suppose γ̂ε is chosen to be in the range [ε/2, γε].
For each A ∈ J , define

yA = argmax
y∈Y

P
(
x ∈ A : f?PXY (x) = y

)
= sign

(∫
A
f?PXY dP

)
,

and if P(A) > 0, define η(A;PXY ) = PXY (A × {1}|A × Y) (i.e., the average value of
η(x;PXY ) over x ∈ A), and let γA =

∣∣η(A;PXY )− 1
2

∣∣. For completeness, for any A ∈ J
with P(A) = 0, define η(A;PXY ) = 1/2 and γA = 0. Additionally, for each n ∈ N∪{∞} and
m ∈ N, let (q̂n,m, ŷn,m) denote the return values of Subroutine 1 when run with arguments
(n,m).

Denote by E1 the X1-measurable event of probability at least 1 − δ/2 implied by
Lemma 27, on which every h ∈ C has∑

A∈J
min
y∈Y
P (x ∈ A : h(x) = y) ≤ τ (13)

and ∀γ > 0,

P
(⋃{

A ∈ J : min
y∈Y
P (x ∈ A : h(x) = y) > γP(A)

})
≤ τ

γ
. (14)

We now proceed to characterize the behaviors of Subroutine 1 and Algorithm 1 via the
following sequence of lemmas.

Lemma 28 There exists a (X1,X2,X3)-measurable event E0 of probability 1, on which
∀m ∈ {1, . . . , m̃}, P(Jm) > 0 and |{` ∈ N : X3

m,` ∈ Jm}| =∞.
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Proof For each m, since each A ∈ J with P(A) = 0 has P(X2
m ∈ A) = 0, and J

has finite size, a union bound implies P(P(Jm) = 0) = 0. The strong law of large num-
bers (applied under the conditional distribution given Jm) and the law of total probability
implies that 1

`

∑`
j=1 1Jm(X3

m,j) → P(Jm) with probability 1, so that when P(Jm) > 0,∑`
j=1 1Jm(X3

m,j)→∞. Finally, a union bound implies

P
(
∃m ≤ m̃ : P(Jm) = 0 or |{` ∈ N : X3

m,` ∈ Jm}| <∞
)

≤
m̃∑
m=1

P (P(Jm) = 0) + P
(
P(Jm) > 0 and |{` ∈ N : X3

m,` ∈ Jm}| <∞
)

= 0.

Lemma 29 There exists a (X1,X2)-measurable event E2 of probability at least 1 − τm̃ ≥
1− δ/512 such that, on E1 ∩ E2, every m ∈ {1, . . . , m̃} has f?PXY (X2

m) = yJm.

Proof Noting that, on E1, (13) implies that

P
(
x : f?PXY (x) 6= yJ(x)

)
=
∑
A∈J
P
(
x ∈ A : f?PXY (x) 6= yA

)
=
∑
A∈J

min
y∈Y
P
(
x ∈ A : f?PXY (x) = y

)
≤ τ,

the result follows by a union bound.

Lemma 30 There exists a (X1,X2)-measurable event E3 of probability at least 1− 128τ
ε m̃ ≥

1 − δ/4 such that, on E1 ∩ E3, every m ∈ {1, . . . , m̃} has P
(
x ∈ Jm : f?PXY (x) 6= yJm

)
≤

ε
128P(Jm).

Proof Noting that, on E1, (14) implies that

P
(
x : P

(
x′ ∈ J(x) : f?PXY (x′) 6= yJ(x)

)
>

ε

128
P(J(x))

)
= P

(⋃{
A ∈ J : P

(
x′ ∈ A : f?PXY (x′) 6= yA

)
>

ε

128
P(A)

})
= P

(⋃{
A ∈ J : min

y∈Y
P
(
x′ ∈ A : f?PXY (x′) = y

)
>

ε

128
P(A)

})
≤ 128τ

ε
,

the result follows by a union bound.

Lemma 31 ∀A ∈ J ,

PXY (A× {yA}) ≥
1

2
P(A) +

∫
A
γxP(dx)− P

(
x ∈ A : f?PXY (x) 6= yA

)
.
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Proof Any A ∈ J has

PXY (A× {yA}) ≥
∫
A
1[f?PXY (x) = yA]

(
1

2
+ γx

)
P(dx)

≥
∫
A

(
1

2
+ γx

)
P(dx)− P

(
x ∈ A : f?PXY (x) 6= yA

)
=

1

2
P(A) +

∫
A
γxP(dx)− P

(
x ∈ A : f?PXY (x) 6= yA

)
.

Lemma 32 On the event E0 ∩ E1 ∩ E3, every m ∈ {1, . . . , m̃} with γJm > ε/128 has
PXY (Jm × {yJm}) > PXY (Jm × {−yJm}), and every m ∈ {1, . . . , m̃} with

∫
Jm
γxP(dx) >

(ε/2)P(Jm) has∫
Jm

γxP(dx) ≥ γJmP(Jm) ≥ 63

64

∫
Jm

γxP(dx) >
63

128
εP(Jm). (15)

Proof Jensen’s inequality implies we always have γAP(A) ≤
∫
A γxP(dx). In particular,

this implies that any A ∈ J with P(A) > 0 and P(x ∈ A : f?PXY (x) 6= yA) ≤ ε
128P(A) and

γA > ε/128 has
∫
A γxP(dx)− P(x ∈ A : f?PXY (x) 6= yA) ≥ γAP(A)− P(x ∈ A : f?PXY (x) 6=

yA) > (ε/128)P(A)−(ε/128)P(A) = 0, so that Lemma 31 implies PXY (A×{yA}) > 1
2P(A),

and therefore PXY (A × {yA}) > PXY (A × {−yA}). Since Lemmas 28 and 30 imply that,
on E0 ∩ E1 ∩ E3, for every m ∈ {1, . . . , m̃}, P(Jm) > 0 and P(x ∈ Jm : f?PXY (x) 6= yJm) ≤
ε

128P(Jm), we have established the first claim in the lemma statement.

For the second claim, the first inequality follows by Jensen’s inequality. For the second
inequality, note that any A ∈ J has γAP(A) ≥ PXY (A×{yA})− 1

2P(A), so that Lemma 31
implies γAP(A) ≥

∫
A γxP(dx)−P(x ∈ A : f?PXY (x) 6= yA). Therefore, since Lemma 30 im-

plies that, on E1 ∩ E3, every m ∈ {1, . . . , m̃} has P(x ∈ Jm : f?PXY (x) 6= yJm) ≤ ε
128P(Jm),

we have that on E1 ∩ E3, any m ∈ {1, . . . , m̃} with
∫
Jm
γxP(dx) > (ε/2)P(Jm) has

P(x ∈ Jm : f?PXY (x) 6= yJm) ≤ 1
64

∫
Jm
γxP(dx), so that γJmP(Jm) ≥

∫
Jm
γxP(dx) − P(x ∈

Jm : f?PXY (x) 6= yJm) ≥ 63
64

∫
Jm
γxP(dx). The final inequality then follows by the assump-

tion that
∫
Jm
γxP(dx) > (ε/2)P(Jm).

Lemma 33 On E1, ∀γ > (1/4)γε,

P
(⋃
{A ∈ J : γA ≤ γ}

)
≤ 3P(x : γx < 4γ),

and ∀γ ∈ (0, (1/4)γε],

P
(⋃
{A ∈ J : γA ≤ γ}

)
≤ 3ε

2γε
.
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Proof By Markov’s inequality, for any γ > 0, any A ∈ J with
∫
A γxP(dx) ≤ γP(A) must

have P(x ∈ A : γx ≥ 2γ) ≤ 1
2P(A), which implies P(x ∈ A : γx < 2γ) ≥ 1

2P(A). Therefore,

P
(⋃{

A ∈ J :

∫
A
γxP(dx) ≤ γP(A)

})
≤ P

(⋃{
A ∈ J : P(x ∈ A : γx < 2γ) ≥ 1

2
P(A)

})
≤ 2P(x : γx < 2γ), (16)

where the last inequality is due to Markov’s inequality.

Also, for every γ > 0, since γAP(A) ≥ PXY (A× {yA})− 1
2P(A),

P
(⋃
{A ∈ J : γA ≤ γ}

)
= P

(⋃
{A ∈ J : γAP(A) ≤ γP(A)}

)
≤ P

(⋃{
A ∈ J : PXY (A× {yA})−

1

2
P(A) ≤ γP(A)

})
.

Lemma 31 implies PXY (A× {yA})− 1
2P(A) ≥

∫
A γxP(dx)− P(x ∈ A : f?PXY (x) 6= yA), so

that the above is at most

P
(⋃{

A ∈ J :

∫
A
γxP(dx) ≤ γP(A) + P(x ∈ A : f?PXY (x) 6= yA)

})
.

By a union bound, this is at most

P
(⋃{

A ∈ J :

∫
A
γxP(dx) ≤ 2γP(A)

})
+ P

(⋃{
A ∈ J : P(x ∈ A : f?PXY (x) 6= yA) > γP(A)

})
. (17)

On E1, (14) implies that

P
(⋃{

A ∈ J : P(x ∈ A : f?PXY (x) 6= yA) > γP(A)
})
≤ τ

γ
<

ε

8γ
.

Furthermore, by (16),

P
(⋃{

A ∈ J :

∫
A
γxP(dx) ≤ 2γP(A)

})
≤ 2P(x : γx < 4γ).

Using these two inequalities to bound the two terms in (17), we have that

P
(⋃
{A ∈ J : γA ≤ γ}

)
≤ 2P(x : γx < 4γ) +

ε

8γ
.

By definition of γε, if γ > (1/4)γε, we must have 4γP(x : γx < 4γ) ≥ γεP(x : γx ≤ γε) ≥
ε/2, so that ε

8γ ≤ P(x : γx < 4γ), which implies

2P(x : γx < 4γ) +
ε

8γ
≤ 3P(x : γx < 4γ),
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which establishes the first claim. On the other hand, if 0 < γ ≤ (1/4)γε, we have 4γP(x :
γx < 4γ) ≤ ε/2, so that 2P(x : γx < 4γ) ≤ ε

4γ , which implies

2P(x : γx < 4γ) +
ε

8γ
≤ 3ε

8γ
.

This establishes the second claim, since (combined with monotonicity of probabilities) it
implies

P
(⋃
{A ∈ J : γA ≤ γ}

)
≤ P

(⋃
{A ∈ J : γA ≤ (1/4)γε}

)
≤ 3ε

2γε
.

Lemma 34 On E1, ∀h ∈ C,

erPXY (h)− erPXY (f?PXY ) ≤ 5τ +

∫
1[h(x) 6= f?PXY (x)]2γJ(x)P(dx).

Proof For any h ∈ C, we generally have

erPXY (h)− erPXY (f?PXY ) =

∫
1[h(x) 6= f?PXY (x)]2γxP(dx).

For each A ∈ J , let yhA = argmaxy∈Y P(x : h(x) = y). ∀x ∈ X , 1[h(x) 6= f?PXY (x)]2γx ≤ 1.
Therefore,∫

1[h(x) 6= f?PXY (x)]2γxP(dx) ≤ P
(
x : h(x) 6= yhJ(x) or f?PXY (x) 6= yJ(x)

)
+

∫
{
x:h(x)=yh

J(x)
,f?PXY

(x)=yJ(x)

} 1[yhJ(x) 6= yJ(x)]2γxP(dx). (18)

By a union bound,

P
(
x : h(x) 6= yhJ(x) or f?PXY (x) 6= yJ(x)

)
≤ P

(
x : h(x) 6= yhJ(x)

)
+ P

(
x : f?PXY (x) 6= yJ(x)

)
.

Furthermore, on E1, (13) implies the right hand side is at most 2τ . Combining this with
(18) implies

erPXY (h)−erPXY (f?PXY ) ≤ 2τ+

∫
{
x:h(x)=yh

J(x)
,f?PXY

(x)=yJ(x)

} 1[yhJ(x) 6= yJ(x)]2γxP(dx). (19)

Also,∫
{
x:h(x)=yh

J(x)
,f?PXY

(x)=yJ(x)

} 1[yhJ(x) 6= yJ(x)]2γxP(dx)

=
∑

A∈J :yhA 6=yA

∫
{
x∈A:h(x)=yhA,f

?
PXY

(x)=yA

} 2γxP(dx) ≤
∑

A∈J :yhA 6=yA

∫
{
x∈A:f?PXY

(x)=yA

} 2γxP(dx).
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Since f?PXY (x) = sign(2η(x;PXY )− 1) for every x ∈ X , any measurable C ⊆ X has

PXY
(
(x, y) : x ∈ C, y = f?PXY (x)

)
=

∫
C

(
1

2
+ γx

)
P(dx).

Therefore, for each A ∈ J ,

γAP(A) ≥ PXY (A× {yA})−
1

2
P(A) ≥ PXY

({
x ∈ A : f?PXY (x) = yA

}
× {yA}

)
− 1

2
P(A)

=

∫
{
x∈A:f?PXY

(x)=yA

}
(

1

2
+ γx

)
P(dx)− 1

2
P(A)

=

∫
{
x∈A:f?PXY

(x)=yA

} γxP(dx)− 1

2
P
(
x ∈ A : f?PXY (x) 6= yA

)
.

Therefore,∑
A∈J :yhA 6=yA

∫
{
x∈A:f?PXY

(x)=yA

} 2γxP(dx) ≤
∑

A∈J :yhA 6=yA

P
(
x ∈ A : f?PXY (x) 6= yA

)
+ 2γAP(A).

On E1, (13) implies that the right hand side is at most

τ +
∑

A∈J :yhA 6=yA

2γAP(A).

Combining this with (19), we have that on E1,

erPXY (h)− erPXY (f?PXY ) ≤ 3τ +
∑

A∈J :yhA 6=yA

2γAP(A). (20)

For each A ∈ J and x ∈ A, if yhA 6= yA, then either h(x) 6= f?PXY (x) holds, or else one of

h(x) 6= yhA or f?PXY (x) 6= yA holds. Thus, any A ∈ J with yhA 6= yA has

P(A) ≤
∫
A

(
1
[
h(x) 6= f?PXY (x)

]
+ 1

[
h(x) 6= yhA

]
+ 1

[
f?PXY (x) 6= yA

])
P(dx)

= P
(
x ∈ A : h(x) 6= yhA

)
+ P

(
x ∈ A : f?PXY (x) 6= yA

)
+

∫
A
1
[
h(x) 6= f?PXY (x)

]
P(dx).

Combined with (20), this implies that on E1,

erPXY (h)− erPXY (f?PXY )

≤ 3τ +
∑

A∈J :yhA 6=yA

2γA

(
P
(
x ∈ A : h(x) 6= yhA

)
+ P

(
x ∈ A : f?PXY (x) 6= yA

)
+

∫
A
1
[
h(x) 6= f?PXY (x)

]
P(dx)

)
.
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Since 2γA ≤ 1, the right hand side is at most

3τ +
∑
A∈J
P
(
x ∈ A : h(x) 6= yhA

)
+
∑
A∈J
P
(
x ∈ A : f?PXY (x) 6= yA

)
+

∑
A∈J :yhA 6=yA

2γA

∫
A
1
[
h(x) 6= f?PXY (x)

]
P(dx),

and on E1, (13) implies this is at most

5τ +
∑

A∈J :yhA 6=yA

2γA

∫
A
1
[
h(x) 6= f?PXY (x)

]
P(dx)

≤ 5τ +
∑
A∈J

∫
A
1
[
h(x) 6= f?PXY (x)

]
2γAP(dx) = 5τ +

∫
1
[
h(x) 6= f?PXY (x)

]
2γJ(x)P(dx).

Lemma 35 There is a Z-measurable event E4 of probability at least 1− δ/32 such that, on⋂4
j=0Ej, ∀k ∈ {2, . . . , kε}, ∀m ∈ {m̃k+1+1, . . . , m̃k}, ∀n ∈ N∪{∞}, ŷn,m ∈ {0, f?PXY (X2

m)},

q̂n,m ≤
⌈

8
max{γ2

Jm
,2−2k} ln

(
32m̃qε,δ

δ

)⌉
, and if γJm ≥ 2−k then ŷ∞,m = f?PXY (X2

m).

Proof Since q̂n,m ≤ q̂∞,m, and ŷn,m = 0 whenever q̂n,m < q̂∞,m, it suffices to show the
claims hold for q̂∞,m and ŷ∞,m for each m ∈ {1, . . . , m̃}.

For each m ∈ {1, . . . , m̃}, let `m,1, `m,2, . . . denote the increasing infinite subsequence of
values ` ∈ N with X3

m,` ∈ Jm, guaranteed to exist by Lemma 28 on E0; also, for each q ∈ N,

define σm,q =
∑q

j=1 Y
3
m,`m,j

. Note that these definitions of `m,q and σm,q agree with those
defined in Subroutine 1 for each q ≤ q̂∞,m. Let E4 denote the event that E0 occurs and
that ∀m ∈ {1, . . . , m̃}, ∀q ∈ {1, . . . , qε,δ},

|σm,q − q(2η(Jm;PXY )− 1)| ≤

√
2q ln

(
32m̃qε,δ

δ

)
. (21)

For each m ∈ {1, . . . , m̃} and q ∈ {1, . . . , qε,δ}, Lemma 28 and Hoeffding’s inequality imply
that (21) holds with conditional probability (given Jm) at least 1 − δ/(32m̃qε,δ). The law
of total probability and a union bound over values of m and q then imply that E4 has
probability at least 1− δ/32.

Now fix any k ∈ {2, . . . , kε} and m ∈ {m̃k+1 + 1, . . . , m̃k}. Since k̃m = k, the condition

in Step 6 guarantees q̂∞,m ≤
⌈
22k+3 ln

(
32m̃qε,δ

δ

)⌉
. Furthermore, if γJm ≥ 2−k, then for

q =

⌈
8

γ2
Jm

ln

(
32m̃qε,δ

δ

)⌉
,

we have

2qγm ≥ 4

√
2q ln

(
32m̃qε,δ

δ

)
.
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In particular, recalling that 2qγJm = |q(2η(Jm;PXY )− 1)|, we have

|q(2η(Jm;PXY )− 1)| ≥ 4

√
2q ln

(
32m̃qε,δ

δ

)
. (22)

Since qε,δ ≥
⌈
22k+3 ln

(
32m̃qε,δ

δ

)⌉
≥ q, the event E4 implies that (21) holds, so that

σm,q ≥ q(2η(Jm;PXY )− 1)−

√
2q ln

(
32m̃qε,δ

δ

)
.

Thus, if q(2η(Jm;PXY )−1) ≥ 4

√
2q ln

(
32m̃qε,δ

δ

)
, the condition in Step 4 will imply q̂∞,m ≤

q, and since q ≤ q̃m, that ŷ∞,m ∈ Y. Likewise, (21) implies

σm,q ≤ q(2η(Jm;PXY )− 1) +

√
2q ln

(
32m̃qε,δ

δ

)
,

so that q(2η(Jm;PXY )−1) ≤ −4

√
2q ln

(
32m̃qε,δ

δ

)
would also suffice to imply q̂∞,m ≤ q and

ŷ∞,m ∈ Y via the condition in Step 4. Thus, since (22) implies one of these two conditions

holds, we have that on E4, if γJm ≥ 2−k then q̂∞,m ≤
⌈

8
γ2
Jm

ln
(

32m̃qε,δ
δ

)⌉
and ŷ∞,m ∈ Y.

It remains only to show that ŷ∞,m ∈ {0, f?PXY (X2
m)}. This clearly holds if the return

value originates in Step 7, so we need only consider the case where Subroutine 1 reaches
Step 5. Due to the condition in Step 6, this cannot occur for a value of q > qε,δ (since
q̃m ≤ q̃1 ≤ qε,δ), so let us consider any value of q ∈ {1, . . . , qε,δ}, and suppose |σm,q| ≥

3

√
2q ln

(
32m̃qε,δ

δ

)
. On the event E4, (21) implies that if σm,q ≥ 3

√
2q ln

(
32m̃qε,δ

δ

)
, then

q(2η(Jm;PXY ) − 1) ≥ σm,q −
√

2q ln
(

32m̃qε,δ
δ

)
≥ 2

√
2q ln

(
32m̃qε,δ

δ

)
> 0, and likewise

if σm,q ≤ −3

√
2q ln

(
32m̃qε,δ

δ

)
, then q(2η(Jm;PXY ) − 1) ≤ σm,q +

√
2q ln

(
32m̃qε,δ

δ

)
≤

−2

√
2q ln

(
32m̃qε,δ

δ

)
< 0; thus, since |2η(Jm;PXY )−1| = 2γJm , if |σm,q| ≥ 3

√
2q ln

(
32m̃qε,δ

δ

)
,

then

γJm ≥

√
2

q
ln

(
32m̃qε,δ

δ

)
(23)

and sign(2η(Jm;PXY )− 1) = sign(σm,q). In particular, since q ≤ qε,δ ≤ 22kε+5 ln
(

32m̃qε,δ
δ

)
,

this implies

γJm ≥

√
2

qε,δ
ln

(
32m̃qε,δ

δ

)
≥ 2−kε−2 > ε/128.

Therefore, Lemma 32 implies that on
⋂4
j=0Ej , sign(2η(Jm;PXY ) − 1) = yJm ; combined

with the above, this implies sign(σm,q) = yJm . Furthermore, Lemma 29 implies that on
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⋂4
j=0Ej , yJm = f?PXY (X2

m), so that sign(σm,q) = f?PXY (X2
m). In particular, recall that if

ŷ∞,m ∈ Y, then |σm,q̂∞,m | ≥ 3

√
2q̂∞,m ln

(
32m̃qε,δ

δ

)
. Thus, since the condition in Step 6 im-

plies q̂∞,m ≤ q̃m ≤ qε,δ, we have that on
⋂4
j=0Ej , if ŷ∞,m ∈ Y, then ŷ∞,m = f?PXY (X2

m). This

completes the proof that ŷ∞,m ∈ {0, f?PXY (X2
m)} on

⋂4
j=0Ej . Since we established above

that ŷ∞,m ∈ Y if γJm ≥ 2−k on E4, this also completes the proof that ŷ∞,m = f?PXY (X2
m)

when γJm ≥ 2−k on
⋂4
j=0Ej .

Lemma 36 There exists an (X1,X2)-measurable event E5 of probability at least 1 − δ/64
such that, on E5, for every k ∈ {2, . . . , kε} with P

(⋃{
A∈J : γA∈

[
2−k, 21−k]}) ≥ 2k−3ε/kε,∣∣∣{m ∈ {1, . . . , m̃k} : γJm ∈

[
2−k, 21−k

]}∣∣∣ ≥ (1/2)m̃kP
(⋃{

A ∈ J : γA ∈
[
2−k, 21−k

]})
.

Proof Fix any k ∈ {2, . . . , kε}. First, note that a Chernoff bound (under the conditional
distribution given J) implies that, with conditional probability (given J) at least

1− exp

{
−m̃k

8
P
(⋃{

A ∈ J : γA ∈
[
2−k, 21−k

]})}
,

we have∣∣∣{m ∈ {1, . . . , m̃k} : γJm ∈
[
2−k, 21−k

]}∣∣∣ ≥ m̃k

2
P
(⋃{

A ∈ J : γA ∈
[
2−k, 21−k

]})
. (24)

If P
(⋃{

A ∈ J : γA ∈
[
2−k, 21−k]}) ≥ 2k−3ε/kε, then

exp

{
−m̃k

8
P
(⋃{

A ∈ J : γA ∈
[
2−k, 21−k

]})}
≤ exp

{
−8kε

2kε
Log

(
64kε
δ

)
2k−3ε/kε

}
= exp

{
−Log

(
64kε
δ

)}
=

δ

64kε
.

Thus, by the law of total probability, there is an event G5(k) of probability at least
1 − δ/(64kε) such that, on G5(k), if P

(⋃{
A ∈ J : γA ∈

[
2−k, 21−k]}) ≥ 2k−3ε/kε, then

(24) holds. This holds for all k ∈ {2, . . . , kε} on the event E5 =
⋂kε
k=2G5(k), which has

probability at least 1− δ/64 by a union bound.

We are now ready to apply the above results to characterize the behavior of Algorithm
1. For simplicity, we begin with the case of an infinite budget n, so that the algorithm
proceeds until m = m̃; later, we discuss sufficient finite sizes of n to retain this behavior.

Lemma 37 Consider running Algorithm 1 with budget ∞. On the event
⋂4
j=0Ej, ∀k ∈

{2, . . . , kε}, ∀m ∈ {1, . . . , m̃k}, f?PXY ∈ Vm and

Vm ⊆
{
h ∈ C : ∀m′ ≤ m with γJm′ ≥ 2−k, h(X2

m′) = f?PXY (X2
m′)
}
.
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Proof Fix any k ∈ {2, . . . , kε}. We proceed by induction. The claim is clearly satisfied
for V0 = C. Now take as the inductive hypothesis that, for some m ∈ {1, . . . , m̃k}, f?PXY ∈
Vm−1 ⊆

{
h ∈ C : ∀m′ ≤ m− 1 with γJm′ ≥ 2−k, h(X2

m′) = f?PXY (X2
m′)
}

.

If X2
m /∈ DIS(Vm−1), then we have Vm = Vm−1, so that f?PXY ∈ Vm as well. Furthermore,

since f?PXY ∈ Vm−1, the fact that X2
m /∈ DIS(Vm−1) implies that every h ∈ Vm has h(X2

m) =

f?PXY (X2
m). Therefore,

Vm = Vm−1 ∩
{
h ∈ C : h(X2

m) = f?PXY (X2
m)
}

⊆
{
h ∈ C : ∀m′ ≤ m− 1 with γJm′ ≥ 2−k, h(X2

m′) = f?PXY (X2
m′)
}

∩
{
h ∈ C : h(X2

m) = f?PXY (X2
m)
}

⊆
{
h ∈ C : ∀m′ ≤ m with γJm′ ≥ 2−k, h(X2

m′) = f?PXY (X2
m′)
}
.

Next, consider the case that X2
m ∈ DIS(Vm−1). Lemma 35 implies that on

⋂4
j=0Ej ,

ŷ∞,m ∈ {0, f?PXY (X2
m)}. If ŷ∞,m = 0, then Vm = Vm−1, so that f?PXY ∈ Vm by the inductive

hypothesis. Furthermore, since k ≤ k̃m, Lemma 35 implies that on
⋂4
j=0Ej , if γJm ≥ 2−k

then ŷ∞,m 6= 0; thus, if ŷ∞,m = 0, we have γJm < 2−k, so that

Vm = Vm−1 ⊆
{
h ∈ C : ∀m′ ≤ m− 1 with γJm′ ≥ 2−k, h(X2

m′) = f?PXY (X2
m′)
}

=
{
h ∈ C : ∀m′ ≤ m with γJm′ ≥ 2−k, h(X2

m′) = f?PXY (X2
m′)
}
.

On the other hand, if ŷ∞,m = f?PXY (X2
m), then since f?PXY ∈ Vm−1 by the inductive

hypothesis, the condition in Step 5 will be satisfied, so that we have Vm =
{
h ∈ Vm−1 :

h(X2
m) = f?PXY (X2

m)
}

. In particular, this implies f?PXY ∈ Vm as well, and combined with

the inductive hypothesis, we have

Vm = Vm−1 ∩
{
h ∈ C : h(X2

m) = f?PXY (X2
m)
}

⊆
{
h ∈ C : ∀m′ ≤ m with γJm′ ≥ 2−k, h(X2

m′) = f?PXY (X2
m′)
}
.

The result follows by the principle of induction.

In particular, this implies the following result.

Lemma 38 There exists an event E6 of probability at least 1−δ/64 such that, on
⋂6
j=0Ej,

the classifier ĥ∞ produced by Algorithm 1 with budget∞ has erPXY (ĥ∞)−erPXY (f?PXY ) ≤ ε.

Proof Fix any k ∈ {2, . . . , kε} and let ˆ̀
k =

⌈
(1/2)m̃kP

(⋃{
A ∈ J : γA ∈

[
2−k, 21−k]})⌉.

Note that

ˆ̀
k ≥

8ckεP
(⋃{

A∈J : γA ∈
[
2−k, 21−k]})

2kε

(
dLog

(
8kεP

(⋃{
A∈J : γA ∈

[
2−k, 21−k]})

2kε

)

+ Log

(
64kε
δ

))
,
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for c as in Lemma 21. Let m̂k = min
{
m ∈ N :

∑m
m′=1 1[2−k,21−k](γJm′ ) = ˆ̀

k

}
∪ {∞}. Note

that, if m̂k <∞, then the sequence
{
X2
m : 1 ≤ m ≤ m̂k, γJm ∈

[
2−k, 21−k]} is conditionally

i.i.d. (given J and m̂k), with conditional distributions P
(
·
∣∣∣⋃{A ∈ J : γA ∈

[
2−k, 21−k]}).

Applying Lemma 21 to these samples implies that there exists an event of conditional
probability (given J and m̂k) at least 1 − δ/(64kε) on which, if we have m̂k < ∞ and

P
(⋃{

A ∈ J : γA ∈
[
2−k, 21−k]}) > 2kε

8kε
, then letting

Hk =
{
h ∈ C : ∀m ≤ m̂k with γJm ∈

[
2−k, 21−k

]
, h(X2

m) = f?PXY (X2
m)
}
,

every h ∈ Hk has

P
(
x : h(x) 6= f?PXY (x)

∣∣∣γJ(x) ∈
[
2−k, 21−k

])
≤ 2kε

8kεP (
⋃
{A ∈ J : γA ∈ [2−k, 21−k]})

,

which implies

P
(
x : h(x) 6= f?PXY (x) and γJ(x) ∈

[
2−k, 21−k

])
≤ 2kε

8kε
.

By the law of total probability and a union bound, there exists an event E6 of probability
at least 1− δ/64 on which this holds for every k ∈ {2, . . . , kε}.

Lemma 37 implies that, on
⋂4
j=0Ej , ∀k ∈ {2, . . . , kε},

Vm̃ ⊆ Vm̃k ⊆
{
h ∈ C : ∀m ≤ m̃k with γJm ≥ 2−k, h(X2

m) = f?PXY (X2
m)
}
.

Lemma 36 implies that, on E5, ∀k ∈ {2, . . . , kε}, if P
(⋃{

A ∈ J : γA ∈
[
2−k, 21−k]}) > 2kε

8kε
,

then
∣∣{m ∈ {1, . . . , m̃k} : γJm ∈

[
2−k, 21−k]}∣∣ ≥ (1/2)m̃kP

(⋃{
A ∈ J : γA ∈

[
2−k, 21−k]}),

so that m̂k ≤ m̃k. In particular, this implies m̂k <∞ and{
h ∈ C : ∀m ≤ m̃k with γJm ≥ 2−k, h(X2

m) = f?PXY (X2
m)
}
⊆ Hk.

Combining the above three results, we have that on
⋂6
j=0Ej , for every k ∈ {2, . . . , kε} with

P
(⋃{

A ∈ J : γA ∈
[
2−k, 21−k]}) > 2kε

8kε
, Vm̃ ⊆ Hk, and therefore every h ∈ Vm̃ has

P
(
x : h(x) 6= f?PXY (x) and γJ(x) ∈

[
2−k, 21−k

])
≤ 2kε

8kε
.

Furthermore, for every k ∈ {2, . . . , kε} with P
(⋃{

A ∈ J : γA ∈
[
2−k, 21−k]}) ≤ 2kε

8kε
, we

also have that every h ∈ Vm̃ satisfies

P
(
x : h(x) 6= f?PXY (x) and γJ(x) ∈

[
2−k, 21−k

])
≤ P

(⋃{
A ∈ J : γA ∈

[
2−k, 21−k

]})
≤ 2kε

8kε
.
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Combined with Lemma 34, we have that on
⋂6
j=0Ej , every h ∈ Vm̃ has

erPXY (h)− erPXY (f?PXY ) ≤ 5τ +

∫
1
[
h(x) 6= f?PXY (x)

]
2γJ(x)P(dx)

≤ 5τ + 21−kεP
(
x : h(x) 6= f?PXY (x) and γJ(x) ≤ 2−kε

)
+

kε∑
k=2

22−kP
(
x : h(x) 6= f?PXY (x) and γJ(x) ∈

[
2−k, 21−k

])
≤ 5τ + 21−kεP

(⋃{
A ∈ J : γA ≤ 2−kε

})
+

kε∑
k=2

22−k 2kε

8kε
. (25)

Next, note that
∑kε

k=2 22−k 2kε
8kε

= (kε − 1) ε
2kε
≤ ε

2 . Furthermore, since 2−kε ≤ γ̂ε/8 < γε/4,
Lemma 33 implies that, on E1,

P
(⋃{

A ∈ J : γA ≤ 2−kε
})
≤ 3ε

2γε
.

Plugging these facts into (25) reveals that, on
⋂6
j=0Ej , ∀h ∈ Vm̃,

erPXY (h)− erPXY (f?PXY ) ≤ 5τ + 21−kε 3ε

2γε
+
ε

2
≤ 5τ +

3

8
ε+

ε

2
≤ 453

512
ε < ε.

The result follows by noting that, when the budget is set to ∞, Algorithm 1 definitely
reaches m = m̃ before halting, so that ĥ∞ ∈ Vm̃.

The only remaining question is how many label requests the algorithm makes in the
process of producing this ĥ∞, so that taking a budget n of at least this size is equivalent to
having an infinite budget. This question is addressed by the following sequence of lemmas.

Lemma 39 Consider running Algorithm 1 with budget ∞. There exists an event E7 of
probability at least 1− δ/64 such that, on E1 ∩ E7, ∀k ∈ {2, . . . , kε},∣∣∣{m ∈ {1, . . . , m̃k} : γJm ≤ 21−k, X2

m ∈ DIS(Vm−1)
}∣∣∣

≤ 17 max

{
P
(
x : γx < 23−k

)
,
ε

2γ̂ε

}
m̃k.

Proof Fix any k ∈ {2, . . . , kε}. By a Chernoff bound (applied under the conditional given
J) and the law of total probability, there is an event G7(k) of probability at least 1− δ

64kε
,

on which∣∣∣{m ∈ {1, . . . , m̃k} : γJm ≤ 21−k
}∣∣∣ ≤ log2

(
64kε
δ

)
+ 2eP

(⋃{
A ∈ J : γA ≤ 21−k

})
m̃k.

Lemma 33 implies that, on E1,

P
(⋃{

A ∈ J : γA ≤ 21−k
})
≤ max

{
3P
(
x : γx < 23−k

)
,

3ε

2γε

}
.
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Therefore, on E1 ∩G7(k),∣∣∣{m ∈ {1, . . . , m̃k} : γJm ≤ 21−k, X2
m ∈ DIS(Vm−1)

}∣∣∣ ≤ ∣∣∣{m ∈ {1, . . . , m̃k} : γJm ≤ 21−k
}∣∣∣

≤ log2

(
64kε
δ

)
+ 6emax

{
P
(
x : γx < 23−k

)
,
ε

2γε

}
m̃k. (26)

Furthermore, since γ̂ε ≤ γε, and

ε

2γ̂ε
m̃k ≥

64

2kε γ̂ε
Log

(
64kε
δ

)
≥ 4Log

(
64kε
δ

)
≥ 2 log2

(
64kε
δ

)
,

(26) is at most(
6e+

1

2

)
max

{
P
(
x : γx < 23−k

)
,
ε

2γ̂ε

}
m̃k ≤ 17 max

{
P
(
x : γx < 23−k

)
,
ε

2γ̂ε

}
m̃k.

Defining E7 =
⋂kε
k=2G7(k), a union bound implies E7 has probability at least 1− δ/64, and

the result follows.

Lemma 40 Consider running Algorithm 1 with budget ∞. There exists an event E8 of
probability at least 1−δ/64 such that, on E8∩

⋂4
j=0Ej, ∀k̄ ∈ {3, . . . , kε}, ∀k ∈ {2, . . . , k̄−1},∣∣{m ∈ {1, . . . , m̃k} : X2

m ∈ DIS(Vm−1)
}∣∣

≤ 6emax

{
P
(
x : γx < 22−k̄

)
,
ε

2γε

}
m̃k

+ 91c̃

(
21+k̄−k + Log

(
64c

ε

))(
6sLog

(
128c

ε

)
+ Log

(
1

δ

))
,

for c as in Lemma 21 and c̃ as in Lemma 23.

Proof The claim trivially holds if s = ∞, so for the remainder of the proof we suppose
s <∞. Fix any k̄ ∈ {3, . . . , kε} and k ∈ {2, . . . , k̄ − 1}, and note that∣∣{m ∈ {1, . . . , m̃k} : X2

m ∈ DIS(Vm−1)
}∣∣

≤
∣∣∣{m ∈ {1, . . . , m̃k} : γJm ≤ 2−k̄, X2

m ∈ DIS(Vm−1)
}∣∣∣

+
∣∣∣{m ∈ {1, . . . , m̃k} : γJm ≥ 2−k̄, X2

m ∈ DIS(Vm−1)
}∣∣∣ . (27)

We proceed to bound each term on the right hand side. A Chernoff bound (applied under
the conditional distribution given J) and the law of total probability imply that, on an

event G
(i)
8 (k̄, k) of probability at least 1− δ

256k2
ε
,∣∣∣{m ∈ {1, . . . , m̃k} : γJm ≤ 2−k̄, X2

m ∈ DIS(Vm−1)
}∣∣∣

≤ log2

(
256k2

ε

δ

)
+ 2eP

(⋃{
A ∈ J : γA ≤ 2−k̄

})
m̃k,
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and Lemma 33 implies that, on E1, this is at most

log2

(
256k2

ε

δ

)
+ 6emax

{
P
(
x : γx < 22−k̄

)
,
ε

2γε

}
m̃k.

Now we turn to bounding the second term on the right hand side of (27). We proceed
in two steps, noting that monotonicity of m 7→ DIS(Vm) implies∣∣∣{m ∈ {1, . . . , m̃k} : γJm ≥ 2−k̄, X2

m ∈ DIS(Vm−1)
}∣∣∣

≤
∣∣∣{m ∈ {1, . . . , m̃k̄} : γJm ≥ 2−k̄, X2

m ∈ DIS(Vm−1)
}∣∣∣

+
∣∣∣{m ∈ {m̃k̄ + 1, . . . , m̃k} : γJm ≥ 2−k̄, X2

m ∈ DIS(Vm̃k̄)
}∣∣∣ . (28)

We start with the first term on the right of (28). Let L =
∣∣∣{m ∈ {1, . . . , m̃k̄} : γJm ≥ 2−k̄

}∣∣∣,
and let `1, . . . , `L denote the increasing subsequence of values ` ∈ {1, . . . , m̃k̄} with γJ` ≥
2−k̄. Also, let j̃k̄ = max {1, dlog2 (m̃k̄/(s + Log(1/δ)))e}, let M0 = 0, and for each j ∈ N, let

Mj =

⌈
c̃2j
(
sLog

(
2j
)

+ Log

(
256k2

ε j̃k̄
δ

))⌉
,

for c̃ as in Lemma 23. Let V ?
0 = C, and for each i ≤ L, let

V ?
i =

{
h ∈ C : ∀j ∈ {1, . . . , i}, h(X2

`j
) = f?PXY (X2

`j
)
}
.

Let φs be the function mapping any U ∈ X s to the set DIS({h ∈ C : ∀x ∈ U , h(x) =
f?PXY (x)}). Fix any j ∈ N. By Theorem 13, if Mj ≤ L, then there exist i1, . . . , is ∈
{1, . . . ,Mj} such that {h ∈ C : ∀r ∈ {1, . . . , s}, h(X2

`ir
) = f?PXY (X2

`ir
)} = V ?

Mj
(see the dis-

cussion in Section 7.3.1). In particular, for this choice of i1, . . . , is, we have φs(X
2
`i1
, . . . , X2

`is
)

= DIS(V ?
Mj

); furthermore, since φs is permutation-invariant, we can take i1 ≤ · · · ≤ is

without loss of generality. Also note that X2
`1
, . . . , X2

`Mj∧L
are conditionally independent

(given L and J), each with conditional distribution P
(
·
∣∣∣⋃{A ∈ J : γA ≥ 2−k̄

})
. Since

(when Mj ≤ L) {X2
`1
, . . . , X2

`Mj
} ∩ φs(X2

`i1
, . . . , X2

`is
) = {X2

`1
, . . . , X2

`Mj
} ∩ DIS(V ?

Mj
) = ∅,

Lemma 23 (applied under the conditional distribution given L and J) and the law of total

probability imply that, on an event G
(ii)
8 (k̄, k, j) of probability at least 1− δ

256k2
ε j̃k̄

, if Mj ≤ L,

then
P
(

DIS(V ?
Mj

)
∣∣∣⋃{

A ∈ J : γA ≥ 2−k̄
})
≤ 2−j . (29)

Furthermore, this clearly holds for j = 0 as well. Since P
(

DIS
(
V ?
i−1

) ∣∣∣⋃{A∈J : γA≥2−k̄
})

is nonincreasing in i, for every j ≥ 0 with Mj < L, and every i ∈ {Mj + 1, . . . ,Mj+1 ∧ L},
on G

(ii)
8 (k̄, k, j), P

(
DIS

(
V ?
i−1

) ∣∣∣⋃{A ∈ J : γA ≥ 2−k̄
})
≤ 2−j . Since every j ≥ j̃k̄ has

Mj ≥ m̃k̄ ≥ L, this holds simultaneously for every j with Mj < L on
⋂j̃k̄−1
j=1 G

(ii)
8 (k̄, k, j).

Now note that, conditioned on J and L,{
1DIS(V ?i−1)

(
X2
`i

)
− P

(
DIS

(
V ?
i−1

) ∣∣∣⋃{
A ∈ J : γA ≥ 2−k̄

})}L
i=1
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is a martingale difference sequence with respect to X2
`1
, . . . , X2

`L
. Therefore, Bernstein’s

inequality for martingales (e.g., McDiarmid, 1998, Theorem 3.12), applied under the con-
ditional distribution given J and L, along with the law of total probability, imply that

there exists an event G
(iii)
8 (k̄, k) of probability at least 1− δ

256k2
ε

such that, on G
(iii)
8 (k̄, k)∩⋂j̃k̄−1

j=1 G
(ii)
8 (k̄, k, j),

L∑
i=1

1DIS(V ?i−1)

(
X2
`i

)
≤ log2

(
256k2

ε

δ

)
+ 2e

j̃k̄−1∑
j=0

2−j(Mj+1 −Mj)

≤ log2

(
256k2

ε

δ

)
+ 4e+ 4ec̃

(
sLog

(
2j̃k̄
)

+ Log

(
256k2

ε j̃k̄
δ

))
j̃k̄

≤ 8ec̃

(
sj̃k̄ + Log

(
256k2

ε

δ

))
j̃k̄.

By Lemma 37, on
⋂4
j=0Ej , ∀m ∈ {1, . . . , m̃k̄},

Vm ⊆
{
h ∈ C : ∀m′ ≤ m with γJm′ ≥ 2−k̄, h(X2

m′) = f?PXY (X2
m′)
}
.

In particular, this implies V`i−1 ⊆ V ?
i−1 for all i ≤ L. Therefore, on

⋂4
j=0Ej ∩G

(iii)
8 (k̄, k) ∩⋂j̃k̄−1

j=1 G
(ii)
8 (k̄, k, j),

∣∣∣{m ∈ {1, . . . , m̃k̄} : γJm ≥ 2−k̄, X2
m ∈ DIS(Vm−1)

}∣∣∣ =

L∑
i=1

1DIS(V`i−1)

(
X2
`i

)
≤

L∑
i=1

1DIS(V ?i−1)

(
X2
`i

)
≤ 8ec̃

(
sj̃k̄ + Log

(
256k2

ε

δ

))
j̃k̄. (30)

Next, we turn to bounding the second term on the right hand side of (28). A Chernoff
bound (applied under the conditional distribution given Vm̃k̄ and J) and the law of total

probability imply that there is an event G
(iv)
8 (k̄, k) of probability at least 1− δ

256k2
ε
, on which

∣∣∣{m ∈ {m̃k̄ + 1, . . . , m̃k} : γJm ≥ 2−k̄, X2
m ∈ DIS(Vm̃k̄)

}∣∣∣
≤ log2

(
256k2

ε

δ

)
+ 2eP

(
DIS

(
Vm̃k̄

)
∩
⋃{

A ∈ J : γA ≥ 2−k̄
})

m̃k. (31)

Also, by a Chernoff bound (applied under the conditional distribution given J), with prob-
ability at least

1− exp
{
−(1/8)P

(⋃{
A ∈ J : γA ≥ 2−k̄

})
m̃k̄

}
,

we have

L ≥ (1/2)m̃k̄P
(⋃{

A ∈ J : γA ≥ 2−k̄
})

. (32)
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If P
(⋃{

A ∈ J : γA ≥ 2−k̄
})
≥ 8

m̃k̄
Log

(
256kε
δ

)
, then

exp
{
−(1/8)P

(⋃{
A ∈ J : γA ≥ 2−k̄

})
m̃k̄

}
≤ δ

256kε
.

Thus, by the law of total probability, there is an eventG
(v)
8 (k̄) of probability at least 1− δ

256kε
,

on which, if P
(⋃{

A ∈ J : γA ≥ 2−k̄
})
≥ 8

m̃k̄
Log

(
256kε
δ

)
, then (32) holds. Let

ĵ = max
{
j ∈

{
0, 1, . . . , j̃k̄ − 1

}
: Mj ≤ (1/2)m̃k̄P

(⋃{
A ∈ J : γA ≥ 2−k̄

})}
,

and note that

ĵ ≥

log2

 m̃k̄P
(⋃{

A ∈ J : γA ≥ 2−k̄
})

4c̃
(

2sLog
(

2j̃k̄
)

+ Log
(

256k2
ε

δ

))
 . (33)

(29) implies that on
⋂j̃k̄−1
j=1 G

(ii)
8 (k̄, k, j), if (32) holds, we have

P
(

DIS (V ?
L )
∣∣∣⋃{

A ∈ J : γA ≥ 2−k̄
})
≤ 2−ĵ .

Furthermore, Lemma 37 implies that, on
⋂4
j=0Ej , Vm̃k̄ ⊆ V ?

L . Altogether, on
⋂4
j=0Ej ∩

G
(v)
8 (k̄) ∩

⋂j̃k̄−1
j=1 G

(ii)
8 (k̄, k, j), if P

(⋃{
A ∈ J : γA ≥ 2−k̄

})
≥ 8

m̃k̄
Log

(
256kε
δ

)
, then

P
(

DIS
(
Vm̃k̄

)
∩
⋃{

A ∈ J : γA ≥ 2−k̄
})
≤ 2−ĵP

(⋃{
A ∈ J : γA ≥ 2−k̄

})
≤ 8c̃

m̃k̄

(
2sLog

(
2j̃k̄
)

+ Log

(
256k2

ε

δ

))
,

where the last inequality is by (33). Otherwise, if P
(⋃{

A∈J :γA≥2−k̄
})

< 8
m̃k̄

Log
(

256kε
δ

)
,

then in any case we have

P
(

DIS
(
Vm̃k̄

)
∩
⋃{

A ∈ J : γA ≥ 2−k̄
})
≤ P

(⋃{
A ∈ J : γA ≥ 2−k̄

})
<

8

m̃k̄

Log

(
256kε
δ

)
≤ 8c̃

m̃k̄

(
2sLog

(
2j̃k̄
)

+ Log

(
256k2

ε

δ

))
.

Combined with (31), this implies that on
⋂4
j=0Ej∩G

(iv)
8 (k̄, k)∩G(v)

8 (k̄)∩
⋂j̃k̄−1
j=1 G

(ii)
8 (k̄, k, j),∣∣∣{m ∈ {m̃k̄ + 1, . . . , m̃k} : γJm ≥ 2−k̄, X2

m ∈ DIS(Vm̃k̄)
}∣∣∣

≤ log2

(
256k2

ε

δ

)
+ 16ec̃

m̃k

m̃k̄

(
2sLog

(
2j̃k̄
)

+ Log

(
256k2

ε

δ

))
≤ 32ec̃

m̃k

m̃k̄

(
sj̃k̄ + Log

(
256k2

ε

δ

))
≤ 64ec̃2k̄−k

(
sj̃k̄ + Log

(
256k2

ε

δ

))
.
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Plugging this and (30) into (28), we have that on
⋂4
j=0Ej∩G

(iii)
8 (k̄, k)∩G(iv)

8 (k̄, k)∩G(v)
8 (k̄)∩⋂j̃k̄−1

j=1 G
(ii)
8 (k̄, k, j),∣∣∣{m ∈ {1, . . . , m̃k} : γJm ≥ 2−k̄, X2

m ∈ DIS(Vm−1)
}∣∣∣

≤ 8ec̃

(
sj̃k̄ + Log

(
256k2

ε

δ

))
j̃k̄ + 64ec̃2k̄−k

(
sj̃k̄ + Log

(
256k2

ε

δ

))
= 8ec̃

(
23+k̄−k + j̃k̄

)(
sj̃k̄ + Log

(
256k2

ε

δ

))
.

Combined with the above result bounding the first term in (27), we have that on
⋂4
j=0Ej ∩

G
(i)
8 (k̄, k) ∩G(iii)

8 (k̄, k) ∩G(iv)
8 (k̄, k) ∩G(v)

8 (k̄) ∩
⋂j̃k̄−1
j=1 G

(ii)
8 (k̄, k, j),∣∣{m ∈ {1, . . . , m̃k} : X2

m ∈ DIS(Vm−1)
}∣∣

≤ log2

(
256k2

ε

δ

)
+ 6emax

{
P
(
x : γx < 22−k̄

)
,
ε

2γε

}
m̃k

+ 8ec̃
(

23+k̄−k + j̃k̄

)(
sj̃k̄ + Log

(
256k2

ε

δ

))
≤ 6emax

{
P
(
x : γx < 22−k̄

)
,
ε

2γε

}
m̃k + (1 + 8ec̃)

(
23+k̄−k + j̃k̄

)(
sj̃k̄ + Log

(
256k2

ε

δ

))
.

(34)

Noting that s ≥ d, a bit of algebra reveals that

m̃k̄

s + Log(1/δ)
≤ 32ckε

ε
Log

(
128k2

ε

ε

)
≤ 29ck2

ε

ε3/2
,

so that

j̃k̄ ≤ log2

(
210ck2

ε

ε3/2

)
≤ 3

2
Log

(
210ck2

ε

ε3/2

)
,

and therefore

(1 + 8ec̃)
(

23+k̄−k + j̃k̄

)(
sj̃k̄ + Log

(
256k2

ε

δ

))
≤ (1 + 8ec̃)

(
23+k̄−k +

3

2
Log

(
210ck2

ε

ε3/2

))(
3

2
sLog

(
210ck2

ε

ε3/2

)
+ Log

(
256k2

ε

δ

))
≤ (1 + 8ec̃)

(
23+k̄−k +

3

2
Log

(
210ck2

ε

ε3/2

))(
3

2
sLog

(
216ck4

ε

ε3/2

)
+ Log

(
1

δ

))
.

Furthermore, since kε ≤
√

32/ε, this is at most

(1 + 8ec̃)

(
23+k̄−k +

3

2
Log

(
215c

ε5/2

))(
3

2
sLog

(
226c

ε7/2

)
+ Log

(
1

δ

))
≤ 91c̃

(
21+k̄−k + Log

(
64c

ε

))(
6sLog

(
128c

ε

)
+ Log

(
1

δ

))
.
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Plugging this into (34), we have that on
⋂4
j=0Ej ∩ G

(i)
8 (k̄, k) ∩ G(iii)

8 (k̄, k) ∩ G(iv)
8 (k̄, k) ∩

G
(v)
8 (k̄) ∩

⋂j̃k̄−1
j=1 G

(ii)
8 (k̄, k, j),

∣∣{m ∈ {1, . . . , m̃k} : X2
m ∈ DIS(Vm−1)

}∣∣
≤ 6emax

{
P
(
x : γx < 22−k̄

)
,
ε

2γε

}
m̃k

+ 91c̃

(
21+k̄−k + Log

(
64c

ε

))(
6sLog

(
128c

ε

)
+ Log

(
1

δ

))
. (35)

Letting

E8 =

kε⋂
k̄=3

G(v)
8 (k̄) ∩

k̄−1⋂
k=2

G
(i)
8 (k̄, k) ∩G(iii)

8 (k̄, k) ∩G(iv)
8 (k̄, k) ∩

j̃k̄−1⋂
j=1

G
(ii)
8 (k̄, k, j)

 ,

we have that (35) holds for all k̄ ∈ {3, . . . , kε} and k ∈ {2, . . . , k̄ − 1} on the event E8 ∩⋂4
j=0Ej . A union bound implies that E8 has probability at least

1−
kε∑
k̄=3

 δ

256kε
+

k̄−1∑
k=2

3
δ

256k2
ε

+

j̃k̄−1∑
j=1

δ

256k2
ε j̃k̄


≥ 1− δ

256
−

kε∑
k̄=3

(k̄ − 2)
δ

64k2
ε

≥ 1− δ

256
− δ

128
> 1− δ

64
.

We can now state a sufficient size on the budget n so that, with high probability,
Algorithm 1 reaches m = m̃, so that the returned ĥn is equivalent to the ĥ∞ classifier from
Lemma 38, which therefore satisfies the same guarantee on its error rate.

Lemma 41 There exists a finite universal constant c̄ ≥ 1 such that, on the event
⋂8
j=0Ej,

for any k̄ ∈ {2, . . . , kε}, for any n of size at least

c̄1[k̄ > 2]22k̄

(
sLog

(
1

ε

)
+ Log

(
1

δ

))
Log

(
d

εδ

)
Log

(
1

ε

)
+ c̄

kε∑
k=k̄

max

{
P
(
x : γx < 23−k

)
,
ε

γ̂ε

}
2k

ε

(
dLog

(
1

ε

)
+ Log

(
1

δ

))
Log

(
d

εδ

)
Log

(
1

γ̂ε

)
,

(36)

running Algorithm 1 with budget n results in at most n label requests, and the returned
classifier ĥn satisfies erPXY (ĥn) − erPXY (f?PXY ) ≤ ε. Furthermore, the event

⋂8
j=0Ej has

probability at least 1− δ.
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Proof The value of t keeps the running total of the number of label requests made by the
algorithm after each call to Subroutine 1. Furthermore, within each execution of Subroutine
1, the value t+ q represents the running total of the number of label requests made by the
algorithm so far. Since the n − t budget argument to Subroutine 1 ensures that it halts
(in Step 6) if ever t+ q = n, and since the first condition in Step 1 of Algorithm 1 ensures
that Algorithm 1 halts if ever t = n, we are guaranteed that the algorithm never requests
a number of labels larger than the budget n.

We will show that taking n of the stated size suffices for the result by showing that this
size suffices to reproduce the behavior of the infinite budget execution of Algorithm 1. Due
to the condition m < m̃ in Step 1 of Algorithm 1, the final value of t obtained when running
Algorithm 1 with budget ∞ may be expressed as

m̃∑
m=1

q̂∞,m1DIS(Vm−1)

(
X2
m

)
.

Lemma 35 implies that, on
⋂8
j=0Ej , this is at most

m̃∑
m=1

⌈
8

max{γ2
Jm
, 2−2k̃m}

ln

(
32m̃qε,δ

δ

)⌉
1DIS(Vm−1)

(
X2
m

)
≤

m̃∑
m=1

k̃m∑
k=2

1

[
γJm ≤ 21−k

]
22k+4 ln

(
32m̃qε,δ

δ

)
1DIS(Vm−1)

(
X2
m

)
.

The summation in this last expression is over all m ∈ {1, . . . , m̃} and k ∈ {2, . . . , kε} such
that k ≤ k̃m, which is equivalent to those m ∈ {1, . . . , m̃} and k ∈ {2, . . . , kε} such that
m ≤ m̃k. Therefore, exchanging the order of summation, this expression is equal to

kε∑
k=2

m̃k∑
m=1

1

[
γJm ≤ 21−k

]
22k+4 ln

(
32m̃qε,δ

δ

)
1DIS(Vm−1)

(
X2
m

)
=

kε∑
k=2

22k+4 ln

(
32m̃qε,δ

δ

) ∣∣∣{m ∈ {1, . . . , m̃k} : γJm ≤ 21−k, X2
m ∈ DIS(Vm−1)

}∣∣∣ . (37)

Fix any value k̄ ∈ {2, . . . , kε}. For any k ∈
{
k̄, . . . , kε

}
, Lemma 39 implies that, on

⋂8
j=0Ej ,

∣∣∣{m ∈ {1, . . . , m̃k} : γJm ≤ 21−k, X2
m ∈ DIS(Vm−1)

}∣∣∣
≤ 17 max

{
P
(
x : γx < 23−k

)
,
ε

2γ̂ε

}
m̃k.
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This implies

kε∑
k=k̄

22k+4 ln

(
32m̃qε,δ

δ

) ∣∣∣{m ∈ {1, . . . , m̃k} : γJm ≤ 21−k, X2
m ∈ DIS(Vm−1)

}∣∣∣
≤

kε∑
k=k̄

22k+9 ln

(
32m̃qε,δ

δ

)
max

{
P
(
x : γx < 23−k

)
,
ε

2γ̂ε

}
m̃k

≤
kε∑
k=k̄

max

{
P
(
x : γx < 23−k

)
,
ε

2γ̂ε

}
2k+17ckε

ε

(
dLog

(
2kε
ε

)
+Log

(
64kε
δ

))
Log

(
32m̃qε,δ

δ

)

≤
kε∑
k=k̄

max

{
P
(
x : γx < 23−k

)
,
ε

2γ̂ε

} 2k+25cLog
(

1
γ̂ε

)
ε

(
dLog

(
64

ε

)
+Log

(
1

δ

))
Log

(
32cd

εδ

)
,

(38)

where this last inequality is based on the fact that kε ≤
√

32/ε, combined with some simple
algebra. If k̄ > 2, for any k ∈

{
2, . . . , k̄ − 1

}
, Lemma 40 implies that, on

⋂8
j=0Ej ,∣∣∣{m ∈ {1, . . . , m̃k} : γJm ≤ 21−k, X2

m ∈ DIS(Vm−1)
}∣∣∣

≤ 6emax

{
P
(
x : γx < 22−k̄

)
,
ε

2γε

}
m̃k

+ 91c̃

(
21+k̄−k + Log

(
64c

ε

))(
6sLog

(
128c

ε

)
+ Log

(
1

δ

))
.

This implies

k̄−1∑
k=2

22k+4 ln

(
32m̃qε,δ

δ

) ∣∣∣{m ∈ {1, . . . , m̃k} : γJm ≤ 21−k, X2
m ∈ DIS(Vm−1)

}∣∣∣
≤

k̄−1∑
k=2

22k+9 ln

(
32m̃qε,δ

δ

)
max

{
P
(
x : γx < 22−k̄

)
,
ε

2γε

}
m̃k

+
k̄−1∑
k=2

22k+11c̃ ln

(
32m̃qε,δ

δ

)(
21+k̄−k + Log

(
64c

ε

))(
6sLog

(
128c

ε

)
+ Log

(
1

δ

))
.

Since

k̄−1∑
k=2

22km̃k ≤
k̄−1∑
k=2

2k+8ckε
ε

(
dLog

(
2kε
ε

)
+ Log

(
64kε
δ

))

≤ 2k̄+8ckε
ε

(
dLog

(
2kε
ε

)
+ Log

(
64kε
δ

))
≤ 2k̄+12cLog(1/γ̂ε)

ε

(
dLog

(
64

ε

)
+ Log

(
1

δ

))

3554



Minimax Analysis of Active Learning

and

k̄−1∑
k=2

22k

(
21+k̄−k + Log

(
64c

ε

))
≤ 22k̄

(
2 + Log

(
64c

ε

))
≤ 22k̄+1Log

(
64c

ε

)
,

we have that

k̄−1∑
k=2

22k+4 ln

(
32m̃qε,δ

δ

) ∣∣∣{m ∈ {1, . . . , m̃k} : γJm ≤ 21−k, X2
m ∈ DIS(Vm−1)

}∣∣∣
≤ 29 ln

(
32m̃qε,δ

δ

)
max

{
P
(
x : γx < 22−k̄

)
,
ε

2γε

} k̄−1∑
k=2

22km̃k

+ 211c̃ ln

(
32m̃qε,δ

δ

)(
6sLog

(
128c

ε

)
+ Log

(
1

δ

)) k̄−1∑
k=2

22k

(
21+k̄−k + Log

(
64c

ε

))

≤ 29 ln

(
32m̃qε,δ

δ

)
max

{
P
(
x : γx < 22−k̄

)
,
ε

2γε

} 2k̄+12cLog
(

1
γ̂ε

)
ε

(
dLog

(
64

ε

)
+ Log

(
1

δ

))
+ 211c̃ ln

(
32m̃qε,δ

δ

)(
6sLog

(
128c

ε

)
+ Log

(
1

δ

))
22k̄+1Log

(
64c

ε

)

≤ max

{
P
(
x : γx < 22−k̄

)
,
ε

2γε

} 2k̄+25cLog
(

1
γ̂ε

)
ε

(
dLog

(
64

ε

)
+ Log

(
1

δ

))
Log

(
32cd

εδ

)
+ 22k̄+16c̃

(
6sLog

(
128c

ε

)
+ Log

(
1

δ

))
Log

(
64c

ε

)
Log

(
32cd

εδ

)
.

Plugging this and (38) into (37) reveals that, on
⋂8
j=0Ej , if k̄ > 2,

m̃∑
m=1

q̂∞,m1DIS(Vm−1)

(
X2
m

)
≤ max

{
P
(
x : γx < 22−k̄

)
,
ε

2γε

} 2k̄+25cLog
(

1
γ̂ε

)
ε

(
dLog

(
64

ε

)
+ Log

(
1

δ

))
Log

(
32cd

εδ

)
+ 22k̄+16c̃

(
6sLog

(
128c

ε

)
+ Log

(
1

δ

))
Log

(
64c

ε

)
Log

(
32cd

εδ

)

+

kε∑
k=k̄

max

{
P
(
x : γx < 23−k

)
,
ε

2γ̂ε

} 2k+25cLog
(

1
γ̂ε

)
ε

(
dLog

(
64

ε

)
+Log

(
1

δ

))
Log

(
32cd

εδ

)
.

≤ c̄22k̄

(
sLog

(
1

ε

)
+ Log

(
1

δ

))
Log

(
d

εδ

)
Log

(
1

ε

)
+ c̄

kε∑
k=k̄

max

{
P
(
x : γx < 23−k

)
,
ε

γ̂ε

}
2k

ε

(
dLog

(
1

ε

)
+ Log

(
1

δ

))
Log

(
d

εδ

)
Log

(
1

γ̂ε

)
,
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for an appropriate finite universal constant c̄ ≥ 1. Furthermore, if k̄ = 2, (38) and (37)
already imply that, on

⋂8
j=0Ej ,

m̃∑
m=1

q̂∞,m1DIS(Vm−1)

(
X2
m

)
≤ c̄

kε∑
k=k̄

max

{
P
(
x : γx < 23−k

)
,
ε

γ̂ε

}
2k

ε

(
dLog

(
1

ε

)
+ Log

(
1

δ

))
Log

(
d

εδ

)
Log

(
1

γ̂ε

)
,

again for c̄ ≥ 1 chosen appropriately large.

Therefore, for a choice of c̄ as above, on
⋂8
j=0Ej , for any k̄ ∈ {2, . . . , kε}, the final value

of t obtained when running Algorithm 1 with budget ∞ is at most (36). Since running
Algorithm 1 with a finite budget n only returns a different ĥn from the ĥ∞ returned by the
infinite-budget execution if t would exceed n in the infinite-budget execution, this implies
that taking any n of size at least (36) suffices to produce identical output to the infinite-
budget execution, on the event

⋂8
j=0Ej : that is, ĥn = ĥ∞. Therefore, since Lemma 38

implies that, on
⋂8
j=0Ej , erPXY (ĥ∞)− erPXY (f?PXY ) ≤ ε, we conclude that for n of size at

least (36), on
⋂8
j=0Ej , erPXY (ĥn)− erPXY (f?PXY ) ≤ ε.

Finally, by a union bound, the event
⋂8
j=0Ej has probability at least

1− 0− δ

2
− δ

512
− δ

4
− δ

32
− 4

δ

64
> 1− δ.

We can obtain the upper bounds for Theorems 4, 5, and 7 from Section 5 by straightfor-
ward applications of Lemma 41. Note that, due to the choice of γ̂ε in each of these proofs,
Algorithm 1 is not adaptive to the noise parameters. It is conceivable that this dependence
can be removed by a model selection procedure (see Balcan and Hanneke, 2012; Hanneke,
2011, for discussions related to this). However, we do not discuss this further here, leaving
this important issue for future work. The upper bounds for Theorems 6 and 8 are based on
known results for other algorithms in the literature, though the lower bound for Theorem 6
is new here. The remainder of this section provides the details of these proofs.

Proof of Theorem 4 Fix any β ∈ [0, 1/2), ε, δ ∈ (0, 1), and PXY ∈ BN(β). Any
γ < 1/2 − β has P(x : γx ≤ γ) = 0, and since we always have γε ≥ ε/2, we must have
γε ≥ max{1/2−β, ε/2}. We may therefore take γ̂ε = max{1/2−β, ε/2}. Therefore, taking
k̄ = kε in Lemma 41, the first term in (36) is at most

210c̄

(1− 2β)2

(
sLog

(
1

ε

)
+ Log

(
1

δ

))
Log

(
d

εδ

)
Log

(
1

ε

)
,

while the second term in (36) is at most

c̄max

{
P (x : γx < γ̂ε) ,

ε

γ̂ε

}
16

γ̂εε

(
dLog

(
1

ε

)
+ Log

(
1

δ

))
Log

(
d

εδ

)
Log

(
1

γ̂ε

)
.
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Since P (x : γx < 1/2− β) = 0 < ε
1/2−β and P (x : γx < ε/2) ≤ 1 < 2 = ε

ε/2 , we have that

P (x : γx < γ̂ε) <
ε
γ̂ε

, so that the above is at most

64c̄

(1− 2β)2

(
dLog

(
1

ε

)
+ Log

(
1

δ

))
Log

(
d

εδ

)
Log

(
2

(1− 2β) ∨ ε

)
.

Therefore, recalling that s ≥ d, since Lemma 41 implies that, with any budget n at least the
size of the sum of these two terms, Algorithm 1 produces a classifier ĥn with erPXY (ĥn)−
erPXY (f?PXY ) ≤ ε with probability at least 1 − δ, and requests a number of labels at most
n, we have that

ΛBN(β)(ε, δ) ≤
210c̄

(1− 2β)2

(
sLog

(
1

ε

)
+ Log

(
1

δ

))
Log

(
d

εδ

)
Log

(
1

ε

)
+

64c̄

(1− 2β)2

(
dLog

(
1

ε

)
+ Log

(
1

δ

))
Log

(
d

εδ

)
Log

(
2

(1− 2β) ∨ ε

)
.

1

(1− 2β)2

(
sLog

(
1

ε

)
+ Log

(
1

δ

))
Log

(
d

εδ

)
Log

(
1

ε

)
.

On the other hand, Giné and Koltchinskii (2006) have shown that for the passive
learning method of empirical risk minimization, producing a classifier ȟn satisfying ȟn =
argminh∈C

∑n
m=1 1[h(Xm) 6= Ym], if n is of size at least

č

(1− 2β)ε

(
dLog

(
θPXY

(
ε

1− 2β

))
+ Log

(
1

δ

))
,

for an appropriate finite universal constant č, then with probability at least 1− δ, we have
erPXY (ȟn) − erPXY (f?PXY ) ≤ ε. Therefore, since Theorem 10 implies θPXY (ε/(1 − 2β)) ≤
θPXY ((ε/(1− 2β)) ∧ 1) ≤ min

{
s, 1−2β

ε ∨ 1
}

, it follows that

ΛBN(β)(ε, δ) .
1

(1− 2β)ε

(
dLog

(
min

{
s,

1− 2β

ε

})
+ Log

(
1

δ

))
.

Together, these two bounds on ΛBN(β)(ε, δ) imply the following upper bound, simply by
choosing whichever of these two methods has the smaller corresponding bound for the
given values of ε, δ, β, d, and s.

ΛBN(β)(ε, δ) . min


1

(1−2β)2

(
sLog

(
1
ε

)
+ Log

(
1
δ

))
Log

(
d
εδ

)
Log

(
1
ε

)
1

(1−2β)ε

(
dLog

(
min

{
s, 1−2β

ε

})
+ Log

(
1
δ

)) .

The statement of the upper bound in Theorem 4 represents a relaxation of this, in that it is
slightly larger (in the logarithmic factors), the intention being that it is a simpler expression
to state. To arrive at this relaxation, we note that sLog

(
1
ε

)
+ Log

(
1
δ

)
≤ sLog

(
1
εδ

)
, and

dLog
(

min
{
s, 1−2β

ε

})
+ Log

(
1
δ

)
≤ dLog

(
1
εδ

)
Log

(
d
εδ

)
Log

(
1
ε

)
, so that the above is at most

1

(1− 2β)2
min

{
s,

(1− 2β)d

ε

}
Log

(
d

εδ

)
Log

(
1

εδ

)
Log

(
1

ε

)
.

3557



Hanneke and Yang

Next, we turn to establishing the lower bound. Fix ε ∈ (0, (1 − 2β)/24) and δ ∈
(0, 1/24]. First note that taking ζ = 2ε

1−2β and k = min {s− 1, b1/ζc} in Lemma 26, we
have RR(k, ζ, β) ⊆ BN(β), so that Lemma 26 implies

ΛBN(β)(ε, δ) ≥ ΛRR(k,ζ,β)(ε, δ) = ΛRR(k,ζ,β)((ζ/2)(1− 2β), δ) ≥
β(k − 1) ln

(
1
4δ

)
3(1− 2β)2

≥ min

{
s− 2,

1− 2ζ

ζ

}
β ln

(
1
4δ

)
3(1− 2β)2

=
β

(1− 2β)2
min

{
s− 2,

1− 2β − 4ε

2ε

}
ln

(
1

4δ

)
.

≥ β

8(1− 2β)2
min

{
s− 2,

1− 2β

ε

}
Log

(
1

δ

)
. (39)

Additionally, based on techniques of Kääriäinen (2006); Beygelzimer, Dasgupta, and
Langford (2009); Hanneke (2011), the recent article of Hanneke (2014) contains the following
lower bound (in the proof of Theorem 4.3 there), for ε ∈ (0, (1− 2β)/24) and δ ∈ (0, 1/24].

ΛBN(β)(ε, δ) ≥ max

{
2

⌊
1− (1− 2β)2

2(1− 2β)2
ln

(
1

8δ(1− 2δ)

)⌋
,
d− 1

6

⌊
1− (1− 2β)2

2(1− 2β)2
ln

(
9

8

)⌋}
≥ max

{
2

⌊
β

(1− 2β)2
Log

(
1

8δ

)⌋
,
d− 1

6

⌊
β

10(1− 2β)2

⌋}
.

If β
(1−2β)2 Log

(
1
8δ

)
≥ 1, then 2

⌊
β

(1−2β)2 Log
(

1
8δ

)⌋
≥ β

(1−2β)2 Log
(

1
8δ

)
≥ β

3(1−2β)2 Log
(

1
δ

)
,

so that ΛBN(β)(ε, δ) & β
(1−2β)2 Log

(
1
δ

)
. Otherwise, if β

(1−2β)2 Log
(

1
8δ

)
< 1, then since

RE ⊆ BN(β), and |C| ≥ 2 implies d ≥ 1 > β
(1−2β)2 Log

(
1
8δ

)
, Theorem 3 (proven above)

implies we still have ΛBN(β)(ε, δ) ≥ ΛRE(ε, δ) & β
(1−2β)2 Log

(
1
δ

)
in this case. When d = 1,

these observations further imply ΛBN(β) & dβ
(1−2β)2 . On the other hand, if d > 1, and if

β
10(1−2β)2 ≥ 1, then d−1

6

⌊
β

10(1−2β)2

⌋
≥ d

240
β

(1−2β)2 , so that ΛBN(β)(ε, δ) &
dβ

(1−2β)2 . Otherwise,

if β
10(1−2β)2 < 1, then since RE ⊆ BN(β), Theorem 3 implies we still have ΛBN(β)(ε, δ) ≥

ΛRE(ε, δ) & d & dβ
(1−2β)2 in this case as well. If β > 1/4, then dβ

(1−2β)2 ≥ d
4(1−2β)2 & d

(1−2β)2 ,

so that ΛBN(β)(ε, δ) &
d

(1−2β)2 . Otherwise, if β ≤ 1/4, then 1
(1−2β)2 ≤ 4, so that Theorem 3

implies ΛBN(β)(ε, δ) ≥ ΛRE(ε, δ) & d & d
(1−2β)2 . Altogether, we have that

ΛBN(β)(ε, δ) &
1

(1− 2β)2
max

{
βLog

(
1

δ

)
, d

}
. (40)

When s ≤ 2, min
{
s, 1−2β

ε

}
≤ 2, so that (40) trivially implies

ΛBN(β)(ε, δ) &
1

(1− 2β)2
max

{
min

{
s,

1− 2β

ε

}
βLog

(
1

δ

)
, d

}
. (41)

Otherwise, when s ≥ 3, we have s− 2 ≥ s/3, so that min
{
s− 2, 1−2β

ε

}
≥ 1

3 min
{
s, 1−2β

ε

}
.

Combined with (39) and (40), this implies (41) holds in this case as well.
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Proof of Theorem 5 We begin with the upper bounds. Fix any a ∈ [1,∞), α ∈ (0, 1),

ε, δ ∈ (0, 1), and PXY ∈ TN(a, α). For any γ ≤
(
ε

2a′

)1−α
, by definition of TN(a, α), we have

γP (x : γx ≤ γ) ≤ a′γ1/(1−α) ≤ ε/2. Therefore, since we always have γε ≥ ε/2, we have

γε ≥ max
{(

ε
2a′

)1−α
, ε2

}
, so that we can take γ̂ε = max

{(
ε

2a′

)1−α
, ε2

}
.

Therefore, taking k̄ = 2 in Lemma 41 implies that, with any budget n of size at least

c̄

kε∑
k=2

max

{
min

{
a′2(3−k)α/(1−α), 1

}
,
ε

γ̂ε

}
2k

ε

(
dLog

(
1

ε

)
+ Log

(
1

δ

))
Log

(
d

εδ

)
Log

(
1

γ̂ε

)
,

(42)
Algorithm 1 produces a classifier ĥn with erPXY (ĥn) − erPXY (f?PXY ) ≤ ε with probability
at least 1− δ, and requests a number of labels at most n. This implies ΛTN(a,α)(ε, δ) is at
most (42).

First note that

kε∑
k=2

ε

γ̂ε

2k

ε
≤ 21+kε

γ̂ε
=

2dlog2(16/γ̂ε)e

γ̂ε
≤ 32

γ̂2
ε

≤ 32 min
{(

2a′
)2−2α

ε2α−2, 4ε−2
}

= 32 min
{

(2− 2α)2−2α(2α)2αa2ε2α−2, 4ε−2
}
≤ 128 min

{
a2ε2α−2, ε−2

}
. (43)

Furthermore, since ε−2<a2ε2α−2 only if ε>a−1/α, this is at most 128 min
{
a2ε2α−2, a1/αε−1

}
.

Also, for α ≥ 1/2, letting k(a,α) =
⌈
log2

(
8 (a′)(1−α)/α

)⌉
, we have k(a,α) ≥ 2. Additionally,

for α ≥ 1/2, 2k
1−2α
1−α is nonincreasing in k. In particular, if k(a,α) = 2, then

kε∑
k=2

min
{
a′2(3−k)α/(1−α), 1

} 2k

ε
≤

kε∑
k=k(a,α)

8a′

ε
2(k−3) 1−2α

1−α ≤ 8kε
ε

(a′)
1−α
α .

Otherwise, if k(a,α) ≥ 3, then

kε∑
k=2

min
{
a′2(3−k)α/(1−α), 1

} 2k

ε
≤

k(a,α)−1∑
k=2

2k

ε
+

kε∑
k=k(a,α)

8a′

ε
2(k−3) 1−2α

1−α .

≤ 16

ε
(a′)

1−α
α +

8(kε − 2)

ε
(a′)

1−α
α =

8kε
ε

(a′)
1−α
α .

Furthermore, since (1− α)
1−α
α ≤ 1, we have

8kε
ε

(a′)
1−α
α =

8kε
ε

(1− α)
1−α
α (2α)a1/α ≤ 16kε

ε
a1/α.

Therefore, in either case, when α ≥ 1/2, (42) is at most

c̄
(

16kεa
1/αε−1 + 128a1/αε−1

)(
dLog

(
1

ε

)
+ Log

(
1

δ

))
Log

(
d

εδ

)
Log

(
1

γ̂ε

)
≤ 767c̄

a1/α

ε

(
dLog

(
1

ε

)
+ Log

(
1

δ

))
Log

(
d

εδ

)
Log2

(
1

ε

)
,
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which is therefore an upper bound on ΛTN(a,α)(ε, δ) in this case.

Otherwise, if α ≤ 1/2, then 2k
1−2α
1−α is nondecreasing in k, so that

kε∑
k=2

min
{
a′2(3−k)α/(1−α), 1

} 2k

ε
≤

kε∑
k=2

8a′2(k−3) 1−2α
1−α

1

ε
≤ (kε − 1)8a′2(kε−3) 1−2α

1−α
1

ε

≤ (kε − 1)8a′
(

2

γ̂ε

) 1−2α
1−α 1

ε
≤ (kε − 1)8a′2

1−2α
1−α

(
2a′
)1−2α

(
1

ε

)2−2α

≤ (kε − 1)32

(
a′

ε

)2−2α

= (kε − 1)32(1− α)2−2α(2α)2αa2ε2α−2 ≤ (kε − 1)32a2ε2α−2.

Therefore, (42) is at most

c̄
(
(kε − 1)32a2ε2α−2 + 128a2ε2α−2

)(
dLog

(
1

ε

)
+ Log

(
1

δ

))
Log

(
d

εδ

)
Log

(
1

γ̂ε

)
≤ 832c̄a2ε2α−2

(
dLog

(
1

ε

)
+ Log

(
1

δ

))
Log

(
d

εδ

)
Log2

(
1

ε

)
.

In particular, this implies ΛTN(a,α)(ε, δ) is at most this large when α ≤ 1/2. Furthermore,
this completes the proof of the upper bound for the cases where either α ≤ 1/2, or α ≥ 1/2
and s

d ≥
1

a1/αε
.

Next, consider the remaining case that α ≥ 1/2 and s
d < 1

a1/αε
. In particular, this

requires that s <∞, and since s ≥ d, that ε < a−1/α. In this case, let us take

k̄ = 3 +

⌈
(1− α) log2

(
kεa
′

8ε

dLog
(

1
ε

)
+ Log

(
1
δ

)
sLog

(
1
ε

)
+ Log

(
1
δ

))⌉ .
Since s ≥ d, we have

sLog( 1
ε)+Log( 1

δ )
dLog( 1

ε)+Log( 1
δ )
≤ sLog( 1

ε)
dLog( 1

ε)
= s

d , so that, since s
d < 1

a1/αε
, we have

sLog( 1
ε)+Log( 1

δ )
dLog( 1

ε)+Log( 1
δ )
< 1

a1/αε
. A bit of algebra reveals that, in this case, k̄ ≥ 2. Therefore, in this

case, Lemma 41 implies that, with any budget n of size at least

c̄22k̄

(
sLog

(
1

ε

)
+ Log

(
1

δ

))
Log

(
d

εδ

)
Log

(
1

ε

)
+

c̄

kε∑
k=k̄

max

{
min

{
a′2(3−k)α/(1−α), 1

}
,
ε

γ̂ε

}
2k

ε

(
dLog

(
1

ε

)
+ Log

(
1

δ

))
Log

(
d

εδ

)
Log

(
1

γ̂ε

)
,

(44)

Algorithm 1 produces a classifier ĥn with erPXY (ĥn) − erPXY (f?PXY ) ≤ ε with probability
at least 1− δ, and requests a number of labels at most n. This implies ΛTN(a,α)(ε, δ) is at
most (44).
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Now note that

22k̄

(
sLog

(
1

ε

)
+ Log

(
1

δ

))
≤ 256

(
kεa
′

8ε

dLog
(

1
ε

)
+ Log

(
1
δ

)
sLog

(
1
ε

)
+ Log

(
1
δ

))2−2α(
sLog

(
1

ε

)
+ Log

(
1

δ

))

≤ 1024a2

(
1

ε

)2−2α
(
sLog

(
1
ε

)
+ Log

(
1
δ

)
dLog

(
1
ε

)
+ Log

(
1
δ

))2α−1(
dLog

(
1

ε

)
+ Log

(
1

δ

))
Log2−2α

(
1

ε

)
.

Also, since α ≥ 1/2, 2k
1−2α
1−α is nonincreasing in k, so that

kε∑
k=k̄

a′2(3−k)α/(1−α) 2k

ε

(
dLog

(
1

ε

)
+ Log

(
1

δ

))
≤ 8a′kε

ε
2(k̄−3) 1−2α

1−α

(
dLog

(
1

ε

)
+ Log

(
1

δ

))
≤ 8a′kε

ε

(
kεa
′

8ε

dLog
(

1
ε

)
+ Log

(
1
δ

)
sLog

(
1
ε

)
+ Log

(
1
δ

))1−2α(
dLog

(
1

ε

)
+ Log

(
1

δ

))

≤ 256a2

(
1

ε

)2−2α
(
sLog

(
1
ε

)
+ Log

(
1
δ

)
dLog

(
1
ε

)
+ Log

(
1
δ

))2α−1(
dLog

(
1

ε

)
+ Log

(
1

δ

))
Log2−2α

(
1

ε

)
.

Furthermore, by (43),

c̄

kε∑
k=k̄

ε

γ̂ε

2k

ε

(
dLog

(
1

ε

)
+ Log

(
1

δ

))
≤ 128a2

(
1

ε

)2−2α(
dLog

(
1

ε

)
+ Log

(
1

δ

))

≤ 128a2

(
1

ε

)2−2α
(
sLog

(
1
ε

)
+ Log

(
1
δ

)
dLog

(
1
ε

)
+ Log

(
1
δ

))2α−1(
dLog

(
1

ε

)
+ Log

(
1

δ

))
Log2−2α

(
1

ε

)
.

Therefore, since Log
(

1
γ̂ε

)
≤ Log

(
2
ε

)
≤ 2Log

(
1
ε

)
, (44) is at most

211c̄a2

(
1

ε

)2−2α
(
sLog

(
1
ε

)
+ Log

(
1
δ

)
dLog

(
1
ε

)
+ Log

(
1
δ

))2α−1(
dLog

(
1

ε

)
+Log

(
1

δ

))
Log

(
d

εδ

)
Log3−2α

(
1

ε

)
.

(45)
The upper bound for the case α ≥ 1/2 and s

d < 1
a1/αε

then follows by further relaxing

this (purely to simplify the theorem statement), noting that Log3−2α
(

1
ε

)
≤ Log2

(
1
ε

)
, and

sLog( 1
ε)+Log( 1

δ )
dLog( 1

ε)+Log( 1
δ )
≤ s

d .

Next, we turn to establishing the lower bound. Fix any a ∈ [4,∞), α ∈ (0, 1), δ ∈
(0, 1/24], and ε ∈

(
0, 1/(24a1/α)

)
. For this range of values, the recent article of Hanneke

(2014) proves a lower bound of

ΛTN(a,α)(ε, δ) & a2

(
1

ε

)2−2α(
d+ Log

(
1

δ

))
,
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based on techniques of Kääriäinen (2006); Beygelzimer, Dasgupta, and Langford (2009);
Hanneke (2011). It remains only to establish the remaining term in the lower bound for
the case when α > 1/2, via Lemma 26. In the cases that s ≤ 2, this term is implied by
the above a2ε2α−2Log

(
1
δ

)
lower bound. For the remainder of the proof, suppose s ≥ 3 and

α > 1/2. Let

k = min

{
s− 1,

⌊
(a′)

α−1
α

ε

⌋
,

⌊
a′

ε
4−

1
1−α

⌋}
,

β = 1
2 −

(
kε
a′

)1−α
, and ζ = 2ε

1−2β ; note that ζ ∈ (0, 1], β ∈ [0, 1/2), and 2 ≤ k ≤
min{s−1, b1/ζc}; in particular, the fact that k ≤ b1/ζc is established by concavity of

the x 7→ (a′)α−1

εα x1−α function, which equals x at both x = 0 and x = x0 = (a′)
α−1
α

ε ; since
this function is 1/ζ at x = k, and 0 < k ≤ x0, concavity of the function implies 1/ζ ≥ k,
and integrality of k implies b1/ζc ≥ k as well. Also note that any PXY ∈ RR(k, ζ, β) has a
marginal distribution P such that

P (x : |η(x;PXY )− 1/2| ≤ 1/2− β) = kζ = kε
2

1− 2β

= a′ (1/2− β)
1

1−α
2

1− 2β
= a′ (1/2− β)

α
1−α .

Since every point x in the support of Pk,ζ has either |η(x;PXY ) − 1/2| = 1/2 − β or
|η(x;PXY )−1/2|=1/2, this implies that any γ∈ [1/2−β, 1/2) has P(x : |η(x;PXY )−1/2|≤γ)

= P (x : |η(x;PXY )− 1/2| ≤ 1/2− β) = a′ (1/2− β)α/(1−α) ≤ a′γα/(1−α), while any γ ≥
1/2 always has P (x : |η(x;PXY )− 1/2| ≤ γ) = 1 ≤ a′γα/(1−α). Furthermore, any γ ∈
(0, 1/2 − β) has P(x : |η(x;PXY ) − 1/2| ≤ γ) = 0 ≤ a′γα/(1−α). Thus, PXY ∈ TN(a, α)
as well. Since this holds for every PXY ∈ RR(k, ζ, β), this implies RR(k, ζ, β) ⊆ TN(a, α).
Therefore, Lemma 26 implies

ΛTN(a,α)(ε, δ) ≥ ΛRR(k,ζ,β)(ε, δ) = ΛRR(k,ζ,β)((ζ/2)(1− 2β), δ)

≥
β(k − 1) ln

(
1
4δ

)
3(1− 2β)2

&
β(k − 1)

(1− 2β)2
Log

(
1

δ

)
. (46)

Finally, note that

β(k − 1)

(1− 2β)2
=

(
1

2
−
(
kε

a′

)1−α
)

1

4

(
a′

kε

)2−2α

(k − 1) ≥ 1

16

(
a′

ε

)2−2α

k2α−2(k − 1)

≥ 1

32

(
a′

ε

)2−2α

(k − 1)2α−1 ≥ a2

64

(
1

ε

)2−2α

(k − 1)2α−1. (47)

Since a ≥ 4,(
a′
)α−1

α = a′
(
a′
)−1/α

= a′(1− α)−1/α(2α)−1/(1−α)a
− 1
α(1−α)

≤ a′(1− α)−1/α(2α)−1/(1−α)4
− 1
α(1−α) = a′

(
41/α(1− α)(1−α)/α(2α)

)−1/(1−α)
.
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One can easily verify that 41/α(1 − α)(1−α)/α(2α) ≥ 6 for α ∈ (1/2, 1) (with minimum

achieved at α = 3/4), so that a′
(
41/α(1− α)(1−α)/α(2α)

)−1/(1−α)≤a′6−1/(1−α)≤a′4−1/(1−α).

Thus, (a′)
α−1
α

ε ≤ a′

ε 4−
1

1−α , so that the third term in the definition of k is redundant. There-
fore, (47) is at least

a2

64

(
1

ε

)2−2α

min

{
s− 2,

(a′)
α−1
α

ε
− 2

}2α−1

≥ a2

64

(
1

ε

)2−2α

min

{
s− 2,

1

2a1/αε
− 2

}2α−1

≥ a2

64

(
1

ε

)2−2α

min

{
s

3
,

1

3a1/αε

}2α−1

≥ a2

192

(
1

ε

)2−2α

min

{
s,

1

a1/αε

}2α−1

.

Plugging this into (46) completes the proof.

As an aside, we note that it is possible to improve the logarithmic factors in the upper
bound in Theorem 5. One clear refinement comes from using (45) directly (rather than
relaxing the factor depending on s). We can further reduce the bound by another logarithmic

factor when α is bounded away from 1/2 by noting that the summations of terms 2(k−3) 1−2α
1−α

in the above proof are geometric in that case. We also note that, for very large values of a,
the bounds (proven below) for ΛBE(1/2)(ε, δ) may be more informative than those derived
above.
Proof of Theorem 6 The technique leading to Lemma 41 does not apply to BC(a, α),
since we are not guaranteed f?PXY ∈ C for PXY ∈ BC(a, α). We therefore base the upper
bounds in Theorem 6 directly on existing results in the literature, in combination with
Theorem 10. Thus, the proof of this upper bound does not provide any new insights on
improving the design of active learning algorithms for distributions in BC(a, α). Rather, it
merely re-expresses the known results, in terms of the star number instead of a distribution-
dependent complexity measure. The lower bounds are directly inherited from Theorem 5.

Fix any a ∈ [1,∞), α ∈ [0, 1], and ε, δ ∈ (0, 1). Following the work of Hanneke (2009a,
2011) and Koltchinskii (2010), the recent work of Hanneke and Yang (2012) studies an
algorithm proposed by Hanneke (2012) (a modified variant of the A2 algorithm of Balcan,
Beygelzimer, and Langford, 2006, 2009), and shows that there exists a finite universal
constant c̊ ≥ 1 such that, for any PXY ∈ BC(a, α), for any budget n of size at least

c̊a2

(
1

ε

)2−2α

θPXY (aεα)

(
dLog (θPXY (aεα)) + Log

(
Log(1/ε)

δ

))
Log

(
1

ε

)
, (48)

the algorithm produces a classifier ĥn with erPXY (ĥn)−infh∈C erPXY (h) ≤ ε with probability
at least 1−δ/4, and requests a number of labels at most n (see also Hanneke, 2009b,a, 2011,
2012, 2014; Koltchinskii, 2010, for similar results for related methods). By Theorem 10,
when aεα ≤ 1, (48) is at most

c̊a2

(
1

ε

)2−2α

min

{
s,

1

aεα

}(
dLog

(
min

{
s,

1

aεα

})
+ Log

(
Log(1/ε)

δ

))
Log

(
1

ε

)
, (49)

which is therefore an upper bound on ΛBC(a,α)(ε, δ). We can also extend this to the case
aεα > 1 as follows. Vapnik and Chervonenkis (1971); Vapnik (1982, 1998) have proven that
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the sample complexity of passive learning satisfies

MAG(1)(ε, δ) .
1

ε2

(
dLog

(
1

ε

)
+ Log

(
1

δ

))
.

In the case aεα > 1, this is at most

a

(
1

ε

)2−α(
dLog

(
1

ε

)
+ Log

(
1

δ

))
= a2

(
1

ε

)2−2α

min

{
s,

1

aεα

}(
dLog

(
1

ε

)
+ Log

(
1

δ

))
≤ a2

(
1

ε

)2−2α

min

{
s,

1

aεα

}(
dLog

(
min

{
s,

1

aεα

})
+ Log

(
Log(1/ε)

δ

))
Log

(
1

ε

)
.

Therefore, since ΛAG(1)(ε, δ) ≤MAG(1)(ε, δ) and BC(a, α) ⊆ AG(1), we may conclude that,
regardless of whether aεα is greater than or less than 1, we have that ΛBC(a,α)(ε, δ) is
bounded by a value proportional to (49). To match the form of the upper bound stated in

Theorem 6, we can simply relax this, noting that dLog
(
min

{
s, 1
aεα

})
+ Log

(
Log(1/ε)

δ

)
≤

2dLog
(

1
ε

)
+ Log

(
1
δ

)
≤ 2dLog

(
1
εδ

)
.

Next, turning to the lower bound, recall that TN(a, α) ⊆ BC(a, α), so that ΛTN(a,α)(ε, δ)
≤ ΛBC(a,α)(ε, δ) (Mammen and Tsybakov, 1999; Tsybakov, 2004). Thus, the lower bound
in Theorem 5 (proven above) for ΛTN(a,α)(ε, δ) also applies to ΛBC(a,α)(ε, δ).

Proof of Theorem 7 Again, we begin with the upper bound. Fix any ν ∈ [0, 1/2],
ε, δ ∈ (0, 1), and PXY ∈ BE(ν). The case ν = 0 is already addressed by the upper bound
in Theorem 3; we therefore focus the remainder of the proof on the case of ν > 0. For
(X,Y ) ∼ PXY , any x ∈ X has 1 − 2P(Y 6= f?PXY (X)|X = x) = 2γx. Therefore, for any
γ ∈ [0, 1/2), any x ∈ X with γx ≤ γ has P(Y 6= f?PXY (X)|X = x) ≥ 1/2−γ. Thus, Markov’s
inequality implies

P(x : γx ≤ γ) ≤ P(x : P(Y 6= f?PXY (X)|X = x) ≥ 1/2−γ) ≤ 2

1− 2γ
erPXY (f?PXY ) ≤ 2ν

1− 2γ
.

(50)

In particular, this implies that for γ ≤ ε
4ν+2ε , γP(x : γx ≤ γ) ≤ 2νγ

1−2γ ≤
2ν/(2ν+ε)

1−ε/(2ν+ε)
ε
2 = ε

2 .

Thus, γε ≥ ε
4ν+2ε . We can therefore take γ̂ε = max

{
ε

4ν+2ε ,
ε
2

}
.

Also note that any γ ≥ 0 has P(x : γx ≤ γ) ≤ 1, so that together with (50), we have
P(x : γx ≤ γ) ≤ 2ν

1−min{2γ,1−2ν} . Now taking k̄ = 2, Lemma 41 implies that, with any
budget n of size at least

c̄

kε∑
k=2

max

{
2ν

1−min {24−k, 1− 2ν}
,
ε

γ̂ε

}
2k

ε

(
dLog

(
1

ε

)
+ Log

(
1

δ

))
Log

(
d

εδ

)
Log

(
1

γ̂ε

)
,

(51)
Algorithm 1 produces a classifier ĥn with erPXY (ĥn)− erPXY (f?PXY ) ≤ ε with probability at
least 1− δ, and requests a number of labels at most n. This implies ΛBE(ν)(ε, δ) is at most
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(51). Now note that
kε∑
k=2

ε

γ̂ε

2k

ε
≤ 1

γ̂ε
21+kε ≤ 512

(
ν + ε

ε

)2

. (52)

Next, we have

kε∑
k=2

2ν

1−min {24−k, 1− 2ν}
2k

ε
≤ 28

ε
+

kε∑
k=5

2ν

1− 24−k
2k

ε
≤ 28

ε
+

kε∑
k=5

4ν

ε
2k

≤ 28

ε
+

4ν

ε
21+kε ≤ 28

ε
+

128ν

εγ̂ε
≤ 28

ε
+ 512

(
ν + ε

ε

)2

.

Therefore, (51) is at most

210c̄

((
ν + ε

ε

)2

+
1

ε

)(
dLog

(
1

ε

)
+ Log

(
1

δ

))
Log

(
d

εδ

)
Log

(
1

γ̂ε

)

≤ 2103c̄

((
ν + ε

ε

)2

+
1

ε

)(
dLog

(
1

ε

)
+ Log

(
1

δ

))
Log

(
d

εδ

)
Log

(
ν + ε

ε

)
. (53)

Next, consider taking k̄ = 5. Lemma 41 implies that, with any budget n of size at least

210c̄

(
sLog

(
1

ε

)
+ Log

(
1

δ

))
Log

(
d

εδ

)
Log

(
1

ε

)
+ c̄

kε∑
k=5

max

{
2ν

1− 24−k ,
ε

γ̂ε

}
2k

ε

(
dLog

(
1

ε

)
+ Log

(
1

δ

))
Log

(
d

εδ

)
Log

(
1

γ̂ε

)
, (54)

Algorithm 1 produces a classifier ĥn with erPXY (ĥn)− erPXY (f?PXY ) ≤ ε with probability at
least 1− δ, and requests a number of labels at most n. This implies ΛBE(ν)(ε, δ) is at most
(54). As above, we have

kε∑
k=5

2ν

1− 24−k
2k

ε
≤ 512

(
ν + ε

ε

)2

.

Combined with (52), this implies (54) is at most

210c̄

(
sLog

(
1

ε

)
+ Log

(
1

δ

))
Log

(
d

εδ

)
Log

(
1

ε

)
+ 210c̄

(
ν + ε

ε

)2(
dLog

(
1

ε

)
+ Log

(
1

δ

))
Log

(
d

εδ

)
Log

(
1

γ̂ε

)
≤ 210c̄

(
sLog

(
1

ε

)
+ Log

(
1

δ

))
Log

(
d

εδ

)
Log

(
1

ε

)
+ 2103c̄

(
ν + ε

ε

)2(
dLog

(
1

ε

)
+ Log

(
1

δ

))
Log

(
d

εδ

)
Log

(
ν + ε

ε

)
. (55)

In particular, when
(
sLog

(
1
ε

)
+ Log

(
1
δ

))
Log

(
1
ε

)
< 3

ε

(
dLog

(
1
ε

)
+ Log

(
1
δ

))
Log

(
ν+ε
ε

)
, this

is smaller than (53). Thus, the minimum of these two expressions upper bounds ΛBE(ν)(ε, δ).
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To simplify the expression of this bound into the form given in the statement of The-
orem 7, we note that dLog

(
1
ε

)
+ Log

(
1
δ

)
≤ dLog

(
1
εδ

)
, sLog

(
1
ε

)
+ Log

(
1
δ

)
≤ sLog

(
1
εδ

)
,

Log
(
ν+ε
ε

)
≤ Log

(
1
ε

)
,
(
ν+ε
ε

)2 ≤ 4max{ν,ε}2
ε2

≤ 4
(
ν2

ε2
+ 1
)

, and d ≤ min
{
s, dε
}

, so that the

minimum of (53) and (55) is at most

2123c̄

((
ν2

ε2
+ 1

)
d+ min

{
s,
d

ε

})
Log

(
d

εδ

)
Log

(
1

εδ

)
Log

(
1

ε

)
≤ 2133c̄

(
ν2

ε2
d+ min

{
s,
d

ε

})
Log

(
d

εδ

)
Log

(
1

εδ

)
Log

(
1

ε

)
.

This completes the proof of the upper bound.

Next, we turn to establishing the lower bound. Fix ν ∈ [0, 1/2), ε ∈ (0, (1 − 2ν)/24),
and δ ∈ (0, 1/24]. Based on the works of Kääriäinen (2006); Hanneke (2007a); Beygelzimer,
Dasgupta, and Langford (2009), the recent article of Hanneke (2014) contains the following
lower bound (in the proof of Theorem 4.3 there), letting γ = 12ε

ν+12ε .

ΛBE(ν)(ε, δ) ≥ max

{
2

⌊
1− γ2

2γ2
ln

(
1

8δ(1− 2δ)

)⌋
,
d− 1

6

⌊
1− γ2

2γ2
ln

(
9

8

)⌋}
≥ max

{
2

⌊
1− γ2

2γ2
ln

(
1

8δ

)⌋
,
d− 1

6

⌊
1− γ2

17γ2

⌋}
(56)

If 1−γ2

2γ2 ln
(

1
8δ

)
≥ 1, then 2

⌊
1−γ2

2γ2 ln
(

1
8δ

)⌋
≥ 1−γ2

2γ2 ln
(

1
8δ

)
, so that (56) implies ΛBE(ν)(ε, δ) &

1−γ2

γ2 Log
(

1
δ

)
. Otherwise, if 1−γ2

2γ2 ln
(

1
8δ

)
< 1, then since RE ⊆ BE(ν), and |C| ≥ 2 implies

d ≥ 1 > 1−γ2

2γ2 ln
(

1
8δ

)
, Theorem 3 (proven above) implies ΛBE(ν)(ε, δ) ≥ ΛRE(ε, δ) & d &

1−γ2

γ2 Log
(

1
δ

)
in this case as well. If d = 1, these observations further imply ΛBE(ν)(ε, δ) &

d1−γ2

γ2 . On the other hand, if d ≥ 2, and if 1−γ2

17γ2 ≥ 1, then d−1
6

⌊
1−γ2

17γ2

⌋
≥ d

408
1−γ2

γ2 , so

that (56) implies ΛBE(ν)(ε, δ) & d1−γ2

γ2 . Otherwise, if 1−γ2

17γ2 < 1, then since RE ⊆ BE(ν),

Theorem 3 implies we still have ΛBE(ν)(ε, δ) ≥ ΛRE(ε, δ) & d & d1−γ2

γ2 in this case as well.
Altogether, we have that

ΛBE(ν)(ε, δ) &
1− γ2

γ2
max

{
d,Log

(
1

δ

)}
&

1− γ2

γ2

(
d+ Log

(
1

δ

))
. (57)

When ν ≥ 12ε, γ ≤ 1/2, so that (57) implies

ΛBE(ν)(ε, δ) &
1

γ2

(
d+ Log

(
1

δ

))
=

(
ν + 12ε

12ε

)2(
d+ Log

(
1

δ

))
&
ν2

ε2

(
d+ Log

(
1

δ

))
.

Otherwise, if ν < 12ε, then

1− γ2

γ2
=

(1− γ)(1 + γ)

γ2
=

(
ν + 12ε

12ε

)2( ν

ν + 12ε

)(
ν + 24ε

ν + 12ε

)
≥ ν

ν + 12ε
≥ ν

12ε
≥ ν2

144ε2
.

(58)
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Therefore, if ν < 12ε, (57) implies that ΛBE(ν)(ε, δ) &
ν2

ε2

(
d+ Log

(
1
δ

))
in this case as well.

It remains only to establish the final term in the lower bound. For this, we simply note that
RE ⊆ BE(ν), so that Theorem 3 implies ΛBE(ν)(ε, δ) ≥ ΛRE(ε, δ) & min

{
s, 1
ε

}
. Combining

these results implies

ΛBE(ν)(ε, δ) & max

{
ν2

ε2

(
d+ Log

(
1

δ

))
,min

{
s,

1

ε

}}
&
ν2

ε2

(
d+ Log

(
1

δ

))
+ min

{
s,

1

ε

}
.

Examining the proof of the lower bound for ΛBE(ν)(ε, δ), we note that this argument
also establishes a slightly stronger lower bound in the case ε > ν. Specifically, if we use
the expression just left of the right-most inequality in (58), rather than the right-most
expression, we find that we can add a term ν

εLog
(

1
δ

)
to the stated lower bound. This term

can be larger than the stated term ν2

ε2
Log

(
1
δ

)
when ε > ν. Additionally, since RE ⊆ BE(ν),

we can of course also add a term d to the stated lower bound, which again would increase
the bound when ε > ν.
Proof of Theorem 8 Again, we begin with the upper bounds. As with the proof of
Theorem 6, we cannot use the technique leading to Lemma 41; we turn instead to a simple
combination of an upper bound from the literature, combined with Theorem 10.

Fix any ν ∈ [0, 1] and ε, δ ∈ (0, 1). Following the work of Hanneke (2007b); Dasgupta,
Hsu, and Monteleoni (2007); Koltchinskii (2010), the recent work of Hanneke (2014) studies
a modified variant of the A2 algorithm of Balcan, Beygelzimer, and Langford (2006, 2009),
showing that there exists a finite universal constant c̈ ≥ 1 such that, for any PXY ∈ AG(ν),
for any budget n of size at least

c̈θPXY (ν + ε)

(
ν2

ε2
+ Log

(
1

ε

))(
dLog (θPXY (ν + ε)) + Log

(
Log(1/ε)

δ

))
, (59)

the algorithm produces a classifier ĥn with erPXY (ĥn)−infh∈C erPXY (h) ≤ ε with probability
at least 1 − δ, and requests a number of labels at most n (see also Dasgupta, Hsu, and
Monteleoni, 2007; Beygelzimer, Dasgupta, and Langford, 2009, for similar results for related
methods). By Theorem 10,

θPXY (ν+ε) = θPXY ((ν+ε)∧1) ≤ min

{
s,

1

(ν + ε)∧1

}
≤ min

{
s,

2

ν + ε

}
≤ 2 min

{
s,

1

ν + ε

}
,

while Log (θPXY (ν + ε)) ≤ Log
(

min
{
s, 1
ν+ε

}
∨ 1
)

= Log
(

min
{
s, 1
ν+ε

})
. Therefore, (59)

is at most

2c̈min

{
s,

1

ν + ε

}(
ν2

ε2
+ Log

(
1

ε

))(
dLog

(
min

{
s,

1

ν + ε

})
+ Log

(
Log(1/ε)

δ

))
,

which is therefore an upper bound on ΛAG(ν)(ε, δ). To match the form of the upper

bound stated in Theorem 8, we can relax this by noting that dLog
(

min
{
s, 1
ν+ε

})
+

Log
(

Log(1/ε)
δ

)
≤ 2dLog

(
1
ε

)
+Log

(
1
δ

)
≤ 2dLog

(
1
εδ

)
, while ν2

ε2
+Log

(
1
ε

)
≤
(
ν2

ε2
+ 1
)

Log
(

1
ε

)
.
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To prove the lower bound in Theorem 8, we note that BE(ν) ⊆ AG(ν) for ν ∈ [0, 1/2),
so that ΛBE(ν)(ε, δ) ≤ ΛAG(ν)(ε, δ). Thus, the lower bound on ΛBE(ν)(ε, δ) in Theorem 7
(proven above) also applies to ΛAG(ν)(ε, δ).

Appendix C. Proofs for Results in Section 7

This section provides proofs of the equivalences between complexity measures stated in
Section 7.

C.1 The Disagreement Coefficient

Here we present the proof of Theorem 10. First, we have a helpful lemma, which allows us
to restrict focus to finitely discrete probability measures. Let Π denote the set of probability
measures P on X such that ∃m ∈ N and a sequence {zi}mi=1 in X for which P({zi : i ∈
{1, . . . ,m}}) = 1.

Lemma 42 If s <∞, then ∀ε ∈ (0, 1], ˆ̂θ(ε) = sup
P∈Π

sup
h∈C

θh,P(ε).

Proof Suppose s <∞, and fix any ε ∈ (0, 1]. Since PXY ranges over all probability mea-

sures over X ×Y in the definition of ˆ̂θ(ε), including all those in RE with marginal P over X
contained in Π (in which case, θPXY (ε)=θf?PXY ,P

(ε)), we always have supP∈Π suph∈C θh,P (ε)

≤ ˆ̂θ(ε). Thus, it suffices to show that we also have supP∈Π suph∈C θh,P(ε) ≥ ˆ̂θ(ε).

The result trivially holds if ˆ̂θ(ε) = 1, since every P and h have θh,P(ε) ≥ 1. To address

the nontrivial case, suppose ˆ̂θ(ε) > 1. Fix any γ1, γ2, γ3 ∈ (0, 1). Fix any PXY with
θPXY (ε) > 1, and as usual denote P(·) = PXY (· × Y). Also let h∗PXY be as in Definition 9,

so that θPXY (ε) = θh∗PXY ,P
(ε). Let rε ∈ (ε, 1] be such that 1

rε
P(DIS(BP(h∗PXY , rε))) ≥

(1 − γ1)θPXY (ε) (which exists, by the definition of the supremum, combined with the fact
that 1 < θPXY (ε) ≤ 1/ε < ∞). Also let h ∈ C have P(x : h(x) 6= h∗PXY (x)) ≤ γ3rε, which
exists by the definition of h∗PXY .

Let m =
⌈

8
γ2

2r
2
ε

(
10dLog

(
8e
γ2

2r
2
ε

)
+ Log(24)

)⌉
, which is a finite natural number, since

d ≤ s < ∞. It follows from Lemma 20 and Lemma 18 that, for X ′1, . . . , X
′
m inde-

pendent P-distributed random variables, with probability at least 2/3, every g ∈ C has
1
m

∑m
i=1 1DIS({h,g})(X

′
i) ≤ P(x : h(x) 6= g(x)) + γ2rε ≤ P(x : h∗PXY (x) 6= g(x)) + (γ3 + γ2)rε.

Furthermore, by Hoeffding’s inequality, we also have that with probability at least 2/3,
1
m

∑m
i=1 1DIS(BP (h∗PXY

,rε))(X
′
i) ≥ P(DIS(BP(h∗PXY , rε)))− γ2rε. By a union bound, both of

these events happen with probability at least 1/3. In particular, this implies ∃z1, . . . , zm ∈ X
such that, letting P̂ be the probability measure with P̂(A) = 1

m

∑m
i=1 1A(zm) for all mea-

surable A ⊆ X , we have, ∀g ∈ C, P̂(DIS({h, g})) ≤ P(DIS({h∗PXY , g})) + (γ3 + γ2)rε, and

furthermore P̂(DIS(BP(h∗PXY , rε))) ≥ P(DIS(BP(h∗PXY , rε))) − γ2rε. This further implies
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that BP(h∗PXY , rε) ⊆ BP̂(h, (1 + γ3 + γ2)rε), and thus

P̂(DIS(BP̂(h, (1 + γ3 + γ2)rε))) ≥ P̂(DIS(BP(h∗PXY , rε))) ≥ P(DIS(BP(h∗PXY , rε)))− γ2rε

≥ (1− γ1)θPXY (ε)rε − γ2rε ≥ (1− γ1 − γ2)θPXY (ε)rε.

Therefore,

θh,P̂(ε) ≥
P̂(DIS(BP̂(h, (1 + γ3 + γ2)rε)))

(1 + γ3 + γ2)rε
≥ 1− γ1 − γ2

1 + γ3 + γ2
θPXY (ε).

Noting that P̂({z1, . . . , zm}) = 1, so that P̂ ∈ Π, since PXY was arbitrary, we have estab-
lished that ∀PXY , ∃P ∈ Π and h ∈ C such that θh,P (ε) ≥ 1−γ1−γ2

1+γ3+γ2
θPXY (ε). Since this holds

for any choices of γ1, γ2, γ3 ∈ (0, 1), taking the limits as γ1 → 0, γ3 → 0, and γ2 → 0, we

have supP∈Π suph∈C θh,P (ε) ≥ ˆ̂θ(ε).

In fact, it is easy to show (based on the first part of the proof below) that the “s <∞”
constraint is unnecessary in Lemma 42, though this is not important for our purposes. We
are now ready for the proof of Theorem 10.

Proof of Theorem 10 First, we prove ˆ̂θ(ε) ≥ s ∧ 1
ε . Toward this end, let {xi}si=1 and

{hi}si=0 be as in Definition 2, and let m = s ∧
⌈

1
ε

⌉
. Let P be a probability measure on

X with P({xi}) = 1/m for each i ∈ {1, . . . ,m}. In particular, this implies that every
i ∈ {1, . . . ,m} has P(x : hi(x) 6= h0(x)) = 1/m, so that hi ∈ BP(h0, 1/m). Since clearly
h0 ∈ BP(h0, 1/m) as well, and every i ∈ {1, . . . ,m} has xi ∈ DIS({hi, h0}), every r > 1/m
has P(DIS(BP(h0, r))) = P({xi : i ∈ {1, . . . ,m}}) = 1. Therefore, letting PXY be the
distribution in RE with f?PXY = h0 and marginal P over X ,

ˆ̂θ(ε) ≥ θPXY (ε) = θh0,P(ε) ≥ P(DIS(BP(h0,max{1/m, ε})))
max{1/m, ε}

=
1

max{1/m, ε}
= m ∧ 1

ε
= s ∧ 1

ε
.

Next, we prove that ˆ̂θ(ε) ≤ s∧ 1
ε . That ˆ̂θ(ε) ≤ 1

ε follows directly from the definition, and

the fact that probabilities are at most 1: that is, any P and h have supr>ε
P(DIS(BP (h,r)))

r ≤
supr>ε

1
r = 1

ε . Therefore, it remains only to show that ˆ̂θ(ε) ≤ s when s < 1
ε . Furthermore,

Lemma 42 implies that it suffices to show that supP∈Π suph∈C θh,P(ε) ≤ s in this case.
Toward this end, suppose s < 1

ε . We first stratify the set Π based on the size of the support,
defining, for each m ∈ N, Πm = {P ∈ Π : ∃z1, . . . , zm ∈ X s.t. P({z1, . . . , zm}) = 1}. Thus,
Πm is the set of probability measures on X for which the support of the probability mass
function has cardinality at most m.

We now proceed by induction on m. As a base case, fix any m ≤ s, any classifier h, and
any P ∈ Πm, and let z1, . . . , zm ∈ X be such that P({z1, . . . , zm}) = 1. For any r ∈ [1/s, 1],
P(DIS(BP(h, r)))/r ≤ 1/r ≤ s. Furthermore (following an argument of Hanneke, 2014), for
any r ∈ (ε, 1/s), for any g ∈ C with P(x : g(x) 6= h(x)) ≤ r, every z ∈ X with P({z}) > r
has P(x : g(x) 6= h(x)) < P({z}), so that g(z) = h(z); thus, z /∈ DIS(BP(h, r)). We there-
fore have that P(DIS(BP(h, r))) ≤ P(x : P({x}) ≤ r) =

∑m
i=1 1 [P({zi}) ≤ r]P({zi}) ≤
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r|{i ∈ {1, . . . ,m} : P({zi}) ≤ r}|. Therefore, P(DIS(BP (h,r)))
r ≤ |{i ∈ {1, . . . ,m} : P({zi}) ≤

r}| ≤ m ≤ s, so that (since s ≥ 1, due to the assumption that |C| ≥ 2), we have θh,P(ε) ≤ s.
Now take as an inductive hypothesis that, for some m ∈ N with m > s, we have

sup
P∈Πm−1

sup
h∈C

θh,P(ε) ≤ s.

Fix any h ∈ C, r > ε, and P ∈ Πm, and let z1, . . . , zm ∈ X be such that P({z1, . . . , zm}) = 1.
If ∃i, j ∈ {1, . . . ,m} with i 6= j and zi = zj , or if some j ∈ {1, . . . ,m} has P({zj}) = 0, then
since either of these has P({zk : k ∈ {1, . . . ,m} \ {j}}) = 1, we would also have P ∈ Πm−1,
so that θh,P(ε) ≤ s by the inductive hypothesis. To handle the remaining nontrivial cases,
suppose the z1, . . . , zm are all distinct, and mini∈{1,...,m} P({zi}) > 0. Furthermore, note
that, since m > s, {z1, . . . , zm} cannot be a star set for C.

We now consider three cases. First, consider the case that ∃k ∈ {1, . . . ,m} with zk /∈
DIS(BP(h, r)). In this case, define a probability measure P ′ over X such that, for any
measurable A ⊆ X \ {zk}, P ′(A) = P ′(A ∪ {zk}) = P(A)/(1 − P({zk})). Note that this
is a well-defined probability measure, since m ≥ 2 and mini∈{1,...,m} P({zi}) > 0, so that
P(X \ {zk}) = 1 − P({zk}) > 0. Also note that (since h ∈ BP(h, r)) any g ∈ BP(h, r) has
g(zk) = h(zk), so that P ′(x : g(x) 6= h(x)) = P(x : g(x) 6= h(x))/(1 − P({zk})) ≤ r/(1 −
P({zk})). Therefore, BP ′(h, r/(1 − P({zk}))) ⊇ BP(h, r), and since zk /∈ DIS(BP(h, r)),
P ′(DIS(BP ′(h, r/(1−P({zk}))))) ≥ P ′(DIS(BP(h, r))) = P(DIS(BP(h, r)))/(1−P({zk})).
Thus,

P(DIS(BP(h, r))) ≤ (1− P({zk}))P ′(DIS(BP ′(h, r/(1− P({zk}))))). (60)

Noting that P ′({zi : i ∈ {1, . . . ,m} \ {k}}) = P({z1, . . . , zm} \ {zk})/(1 − P({zk})) =
1, we have that P ′ ∈ Πm−1. Therefore, by the inductive hypothesis and the fact that
r/(1− P({zk})) > r > ε,

P ′
(

DIS

(
BP ′

(
h,

r

1− P({zk})

)))
≤ θh,P ′(ε)

r

1− P({zk})

≤ sup
P∈Πm−1

sup
h′∈C

θh′,P (ε)
r

1− P({zk})
≤ sr

1− P({zk})
.

Combined with (60), this further implies that P(DIS(BP(h, r))) ≤ (1 − P({zk}))sr/(1 −
P({zk})) = sr.

Next, consider a second case, where {z1, . . . , zm} ⊆ DIS(BP(h, r)), and ∃j, k∈{1, . . . ,m}
with j 6= k such that, ∀g ∈ BP(h, r), g(zk) 6= h(zk) ⇒ g(zj) 6= h(zj). In this case,
define a probability measure P ′ over X such that, for any measurable A ⊆ X \ {zj , zk},
P ′(A) = P(A), P ′(A∪{zj}) = P(A), and P ′(A∪{zk}) = P ′(A∪{zj , zk}) = P(A∪{zj , zk}):
in other words, P ′ has a probability mass function x 7→ P ′({x}) equal to x 7→ P({x})
everywhere, except that P ′({zj}) = 0 and P ′({zk}) = P({zj}) + P({zk}). Note that,
for any g ∈ BP(h, r) with g(zk) = h(zk), P ′(x : g(x) 6= h(x)) = P(x : g(x) 6= h(x)) −
1[g(zj) 6= h(zj)]P({zj}) ≤ P(x : g(x) 6= h(x)) ≤ r. Furthermore, any g ∈ BP(h, r) with
g(zk) 6= h(zk) also has g(zj) 6= h(zj), so that P ′(x : g(x) 6= h(x)) = P(x : g(x) 6= h(x)) ≤
r. Therefore, BP ′(h, r) ⊇ BP(h, r). Since zj , zk ∈ DIS(BP(h, r)), this further implies
that zj , zk ∈ DIS(BP ′(h, r)). Therefore, by definition of P ′ and monotonicity of measures,
P ′(DIS(BP ′(h, r))) = P(DIS(BP ′(h, r))) ≥ P(DIS(BP(h, r))). Noting that P ′({zi : i ∈
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{1, . . . ,m} \ {j}) = P({z1, . . . , zm}) = 1, we have P ′ ∈ Πm−1, and therefore (by the
inductive hypothesis), P ′(DIS(BP ′(h, r))) ≤ θh,P ′(ε)r ≤ supP∈Πm−1

suph′∈C θh′,P (ε)r ≤ sr.
Thus, since we established above that P(DIS(BP(h, r))) ≤ P ′(DIS(BP ′(h, r))), we have that
P(DIS(BP(h, r))) ≤ sr.

Finally, consider a third case (the complement of the first two), in which {z1, . . . , zm} ⊆
DIS(BP(h, r)), but @j, k ∈ {1, . . . ,m} with j 6= k such that, ∀g ∈ BP(h, r), g(zk) 6=
h(zk) ⇒ g(zj) 6= h(zj). In particular, note that the first condition (which is, in fact,
redundant, but included for clarity) implies P(DIS(BP(h, r))) = 1. In this case, since
(as above) {z1, . . . , zm} is not a star set for C, ∃i ∈ {1, . . . ,m} such that ∀g ∈ C with
g(zi) 6= h(zi), ∃j ∈ {1, . . . ,m} \ {i} with g(zj) 6= h(zj) as well; fix any such i ∈ {1, . . . ,m}.
Since {z1, . . . , zm} ⊆ DIS(BP(h, r)), we have zi ∈ DIS(BP(h, r)). Thus, we may let
gi ∈ BP(h, r) be such that gi(zi) 6= h(zi), and let j ∈ {1, . . . ,m} \ {i} be such that
gi(zj) 6= h(zj) (which exists, by our choice of i). Let P ′ be a probability measure over
X such that, for all measurable A ⊆ X \ {zi, zj}, P ′(A) = P(A), P ′(A ∪ {zi}) = P(A),
and P ′(A∪ {zj}) = P ′(A∪ {zi, zj}) = P(A∪ {zi, zj}): in other words, P ′ has a probability
mass function x 7→ P ′({x}) equal to x 7→ P({x}) everywhere, except that P ′({zi}) = 0
and P ′({zj}) = P({zi}) + P({zj}). Note that, for any measurable set A ⊆ X with
{zi, zj} ⊆ A, P ′(A) = P(A). In particular, since {zi, zj} ⊆ DIS({gi, h}), P ′(DIS({gi, h})) =
P(DIS({gi, h})) ≤ r, so that gi ∈ BP ′(h, r), and therefore (since h ∈ BP ′(h, r) as well)
{zi, zj} ⊆ DIS(BP ′(h, r)). Furthermore, for any k ∈ {1, . . . ,m} \ {i, j}, by the prop-
erty characterizing this third case, and since zk ∈ DIS(BP(h, r)), ∃g ∈ BP(h, r) with
g(zk) 6= h(zk) and g(zj) = h(zj), so that P ′(DIS({g, h})) = P(DIS({g, h}) \ {zi}) ≤
P(DIS({g, h})) ≤ r (i.e., g ∈ BP ′(h, r)), and therefore (since h ∈ BP ′(h, r) as well)
zk ∈ DIS(BP ′(h, r)) as well. Altogether, we have that {z1, . . . , zm} ⊆ DIS(BP ′(h, r)).
Therefore, since {zi, zj} ⊆ DIS(BP ′(h, r)), the definition of P ′ implies P ′(DIS(BP ′(h, r))) =
P(DIS(BP ′(h, r))) ≥ P({z1, . . . , zm}) = 1 = P(DIS(BP(h, r))). Noting that P ′({zk : k ∈
{1, . . . ,m} \ {i}}) = P({z1, . . . , zm}) = 1, we have that P ′ ∈ Πm−1, and therefore (by the
inductive hypothesis), P ′(DIS(BP ′(h, r))) ≤ θh,P ′(ε)r ≤ supP∈Πm−1

suph′∈C θh′,P (ε)r ≤ sr.
Since P ′(DIS(BP ′(h, r))) = 1 = P(DIS(BP(h, r))), we have that P(DIS(BP(h, r))) ≤ sr as
well.

Thus, in all three cases, we have that P(DIS(BP(h, r))) ≤ sr. Since this holds for every
r > ε, and |C| ≥ 2 implies s ≥ 1, we have that θh,P(ε) ≤ s. Since this holds for every h ∈ C
and P ∈ Πm, we have established that supP∈Πm suph∈C θh,P(ε) ≤ s, which completes the
inductive step. It follows by the principle of induction that supP∈Πm suph∈C θh,P(ε) ≤ s for
every m ∈ N, and therefore, since Π =

⋃
m Πm, supP∈Π suph∈C θh,P(ε) ≤ s.

The claim that ˆ̂θ(0) = s follows as a limiting case, due to continuity of the supremum
from below. Specifically, fix any sequence {An}∞n=1 of nonempty subsets of R. For each
m ∈ N,

⋃
nAn ⊇ Am, so sup

⋃
nAn ≥ supAm (allowing the supremum to take the value ∞

where appropriate), and since this holds for every such m, we have sup
⋃
nAn ≥ supn supAn

Furthermore, ∀a ∈
⋃
nAn, ∃m ∈ N s.t. a ∈ Am, so that supn supAn ≥ supAm ≥ a, and

therefore (since this holds for every such a) supn supAn ≥ sup
⋃
nAn. Thus, sup

⋃
nAn =

supn supAn. In particular, taking (for each n ∈ N)

An =

{P(DIS(BP(h∗PXY , r)))

r
∨ 1 : r > 1/n,PXY ∈ AG(1)

}
,

3571



Hanneke and Yang

(where, as usual, P(·) = PXY (· × Y) denotes the marginal of PXY over X ), and noting

that sup
⋃
nAn = ˆ̂θ(0) and ∀n ∈ N, supAn = ˆ̂θ(1/n), we have that ˆ̂θ(0) = supn

ˆ̂θ(1/n) =
supn s ∧ n = s.

C.2 The Splitting Index

Here we present the proof of Theorem 12. First, we introduce a quantity related to ˆ̂ρ(ε),
but slightly simpler. For ε, τ ∈ (0, 1] and any probability measure P over X , define

ρ̄P(ε; τ) = sup {ρ ∈ [0, 1] : C is (ρ, ε, τ)-splittable under P} ,

and let

ρ̄(ε) = inf
P

lim
τ→0

ρ̄P (ε; τ).

In the arguments below, we will see that b1/ρ̄(ε)c =
⌊
1/ ˆ̂ρ(ε)

⌋
, so that it suffices to work

with this simpler quantity. We begin with a lemma which allows us to restrict our focus (in
part of the proof) to finitely discrete probability measures. Recall the definition of Π from
Appendix C.1 above.

Lemma 43 If d <∞, then ∀ε ∈ (0, 1], ρ̄(ε) ≥ lim
γ→0

inf
P∈Π

lim
τ→0

ρ̄P ((1− γ)ε; τ).

Proof Suppose d <∞, and fix any ε ∈ (0, 1]. Fix arbitrary values γ1, γ2 ∈ (0, 1), and let

m =

⌈
8

γ2
2ε

2

(
10dLog

(
8e

γ2
2ε

2

)
+ Log(24)

)⌉
,

which is a finite natural number. Fix any probability measure P over X , and any τ ∈
(0, 1/(3m)), and note that τ ′ 7→ ρ̄P(ε;τ ′) is nonincreasing, so that ρ̄P(ε; τ)≤ limτ ′→0 ρ̄P(ε; τ ′).
For brevity, denote ρ̄ = ρ̄P(ε; τ). Since C is not (γ1 + ρ̄, ε, τ)-splittable under P, let Q ⊆
{{f, g} ⊆ C : P(x : f(x) 6= g(x)) ≥ ε} be a finite set such that

P (x : Split(Q, x) ≥ (γ1 + ρ̄) |Q|) < τ.

Let X ′1, . . . , X
′
m be independent P-distributed random variables. Lemmas 18 and 20

imply that, with probability at least 2/3, ∀f, g ∈ C,∣∣∣∣∣P(x : f(x) 6= g(x))− 1

m

m∑
i=1

1
[
f(X ′i) 6= g(X ′i)

]∣∣∣∣∣ ≤ γ2ε.

Furthermore, by a union bound, with probability at least 1−mP(x :Split(Q, x)≥(γ1+ρ̄) |Q|)
> 1 − mτ > 1 − m(1/(3m)) = 2/3, every i ∈ {1, . . . ,m} has Split(Q,X ′i) < (γ1 +
ρ̄)|Q|. By a union bound, both of the above events occur with probability at least 1/3.
In particular, this implies ∃z1, . . . , zm ∈ X such that, letting P̂ denote the probability
measure with P̂(A) = 1

m

∑m
i=1 1A(zm) for all measurable A ⊆ X , we have, ∀f, g ∈ C,∣∣∣P(x : f(x) 6= g(x))− P̂(x : f(x) 6= g(x))

∣∣∣ ≤ γ2ε, and P̂(x : Split(Q, x) ≥ (γ1 + ρ̄)|Q|) = 0.
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For any {f, g} ∈ Q, we have P̂(x : f(x) 6= g(x)) ≥ P(x : f(x) 6= g(x))− γ2ε ≥ (1− γ2)ε.
Therefore, C is not (γ1 + ρ̄, (1 − γ2)ε, τ ′)-splittable under P̂ for any τ ′ > 0, which implies
limτ ′→0 ρ̄P̂((1− γ2)ε; τ ′) ≤ γ1 + ρ̄P(ε; τ). Since P̂ ∈ Π, we have

inf
P∈Π

lim
τ ′→0

ρ̄P ((1− γ2)ε; τ ′) ≤ γ1 + ρ̄P(ε; τ) ≤ γ1 + lim
τ ′→0

ρ̄P(ε; τ ′).

Since this holds for any γ1 ∈ (0, 1), taking the limit as γ1 → 0 implies

inf
P∈Π

lim
τ ′→0

ρ̄P ((1− γ2)ε; τ ′) ≤ lim
τ ′→0

ρ̄P(ε; τ ′).

Furthermore, since this holds for any γ2 ∈ (0, 1) and any P, we have

lim
γ2→0

inf
P∈Π

lim
τ ′→0

ρ̄P ((1− γ2)ε; τ ′) ≤ inf
P

lim
τ ′→0

ρ̄P (ε; τ ′) = ρ̄(ε).

We are now ready for the proof of Theorem 12.

Proof of Theorem 12 We first establish that s ∧
⌊

1
ε

⌋
≤
⌊

1
ˆ̂ρ(ε)

⌋
for any ε ∈ (0, 1]. The

proof of this fact was implicitly established in the original work of Dasgupta (2005, Corollary
3), but we include the argument here for completeness. Let {xi}si=1 and {hi}si=0 be as in
Definition 2, and let m = s ∧

⌊
1
ε

⌋
. Let ∆ = 1/m, and note that ∆ ≥ 1/

⌊
1
ε

⌋
≥ ε. As

in the proof of Theorem 10, let P be a probability measure on X with P({xi}) = 1/m
for each i ∈ {1, . . . ,m}. Thus, every i ∈ {1, . . . ,m} has P(x : hi(x) 6= h0(x)) = ∆, so
that hi ∈ BP(h0,∆) ⊆ BP(h0, 4∆), and the finite set Q = {{h0, hi} : i ∈ {1, . . . ,m}}
satisfies Q ⊆ {{f, g} ⊆ BP(h0, 4∆) : P(x : f(x) 6= g(x)) ≥ ∆}. In particular, since
P(X \ {x1, . . . , xm}) = 0, and every i ∈ {1, . . . ,m} has Split(Q, xi) = 1 = 1

m |Q|, we have
P
(
x : Split(Q, x) > 1

m |Q|
)

= 0. Thus, for any ρ > 1
m , and any τ > 0, BP(h0, 4∆) is not

(ρ,∆, τ)-splittable. Therefore, ˆ̂ρ(ε) ≤ limτ→0 ρh0,P(ε; τ) ≤ 1
m , which implies 1

ˆ̂ρ(ε)
≥ m; since

m ∈ N, it follows that
⌊

1
ˆ̂ρ(ε)

⌋
≥ m.

Next, we prove that
⌊

1
ˆ̂ρ(ε)

⌋
≤ s ∧

⌊
1
ε

⌋
for any ε ∈ (0, 1]. Since, for every h ∈ C, every

probability measure P over X , and every ∆ ≥ ε, every finite Q ⊆ {{f, g} ⊆ BP(h, 4∆) :
P(x : f(x) 6= g(x)) ≥ ∆} also has Q ⊆ {{f, g} ⊆ C : P(x : f(x) 6= g(x)) ≥ ε}, we have

ρ̄(ε) ≤ ˆ̂ρ(ε). Thus, it suffices to show
⌊

1
ρ̄(ε)

⌋
≤ s ∧

⌊
1
ε

⌋
.

That ρ̄(ε) ≥ ε was established by Dasgupta (2005, Lemma 1); we repeat the argument
here for completeness. Fix any probability measure P over X and any ε, τ ∈ (0, 1] with
τ < ε. Fix any finite set Q ⊆ {{f, g} ⊆ C : P(x : f(x) 6= g(x)) ≥ ε}. If Q = ∅, then trivially
P(x : Split(Q, x) ≥ ε|Q|) = 1 ≥ τ . Otherwise, if Q 6= ∅, letting X ∼ P,

E[Split(Q,X)] ≥ E

 ∑
{f,g}∈Q

1[f(Z) 6= g(Z)]

 =
∑
{f,g}∈Q

P(x : f(x) 6= g(x)) ≥ |Q|ε.

Furthermore, since Split(Q, x) ≤ |Q|,

E[Split(Q,X)]

= E [1[Split(Q,X) ≥ (ε− τ)|Q|]Split(Q,X)] + E [1[Split(Q,X) < (ε− τ)|Q|]Split(Q,X)]

< P (x : Split(Q, x) ≥ (ε− τ)|Q|) |Q|+ (ε− τ)|Q|.
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Together, these inequalities imply

|Q|ε < P (x : Split(Q, x) ≥ (ε− τ)|Q|) |Q|+ (ε− τ)|Q|.

Subtracting (ε− τ)|Q| from both sides and dividing by |Q|, we have

τ < P (x : Split(Q, x) ≥ (ε− τ)|Q|) .

Since this holds for any such Q, we have that C is ((ε− τ), ε, τ)-splittable under P, so that
ρ̄P(ε; τ) ≥ ε− τ . Since this holds for every choice of P, we have that

ρ̄(ε) = inf
P

lim
τ→0

ρ̄P(ε; τ) ≥ lim
τ→0

ε− τ = ε,

from which it immediately follows that
⌊

1
ρ̄(ε)

⌋
≤
⌊

1
ε

⌋
.

It remains only to show that
⌊

1
ρ̄(ε)

⌋
≤ s. In particular, since this trivially holds when

s = ∞, for the remainder of the proof we suppose s < ∞. As argued in Section 4, we
have d ≤ s, so that this also implies d < ∞. Thus, Lemma 43 implies that ρ̄(ε) ≥
limγ→0 infP∈Π limτ→0 ρ̄P((1−γ)ε; τ). Therefore, if we can establish that, for every ε ∈ (0, 1]
and P ∈ Π, limτ→0 ρ̄P(ε; τ) ≥ 1/s, then we would have that for every ε ∈ (0, 1],⌊

1

ρ̄(ε)

⌋
≤ 1

ρ̄(ε)
≤ lim

γ→0
sup
P∈Π

1

limτ→0 ρ̄P((1− γ)ε; τ)
≤ s,

which would thereby complete the proof.
Toward this end, fix any ε ∈ (0, 1], and for each P ∈ Π, denote τP = min{P({x}) :

x ∈ X ,P({x}) > 0}; in particular, note that (since P ∈ Π) 0 < τP ≤ 1, and therefore
also that, ∀ε ∈ (0, 1], limτ→0 ρ̄P(ε; τ) ≥ ρ̄P(ε; τP) (in fact, they are equal). Furthermore,
denoting supp(P) = {x ∈ X : P({x}) > 0}, every x ∈ supp(P) has P({x}) ≥ τP , while
P(X \ supp(P)) = 0. Thus, for any finite Q ⊆ {{f, g} ⊆ C : P(x : f(x) 6= g(x)) ≥ ε}, and
any ρ ∈ [0, 1], P(x : Split(Q, x) ≥ ρ|Q|) ≥ τP if and only if maxx∈supp(P) Split(Q, x) ≥ ρ|Q|.
Furthermore, since P(X \ supp(P)) = 0, for any ε ∈ (0, 1], every {f, g} ⊆ C with P(x :
f(x) 6= g(x)) ≥ ε must have DIS({f, g}) ∩ supp(P) 6= ∅. Thus, defining

ρ̊P = sup

{
ρ ∈ [0, 1] : ∀ finite Q ⊆ {{f, g} ⊆ C : DIS({f, g}) ∩ supp(P) 6= ∅},

max
x∈supp(P)

Split(Q, x) ≥ ρ|Q|
}
,

we have ρ̊P ≤ ρ̄P(ε; τP) for all ε ∈ (0, 1] (in fact, they are equal for ε ≤ τP). Thus, it
suffices to show that infP∈Π ρ̊P ≥ 1/s. Now partition the set Π by the sizes of the supports,
defining, for each m ∈ N, Πm = {P ∈ Π : |supp(P)| = m} (this is slightly different from the
definition used in the proof of Theorem 10). Note that, for any P ∈ Π, the value of ρ̊P is
entirely determined by supp(P). Thus, defining, ∀m ∈ N with m ≤ |X |,

ρ̊m = inf
Xm⊆X :|Xm|=m

sup

{
ρ ∈ [0, 1] : ∀ finite Q ⊆ {{f, g} ⊆ C : DIS({f, g}) ∩ Xm 6= ∅},

max
x∈Xm

Split(Q, x) ≥ ρ|Q|
}
,
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we have infP∈Πm ρ̊P ≥ ρ̊m (in fact, they are equal). Thus, since Π =
⋃
m∈N Πm, we have

infP∈Π ρ̊P = infm∈N:m≤|X | infP∈Πm ρ̊P ≥ infm∈N:m≤|X | ρ̊m. Therefore, it suffices to show
that ρ̊m ≥ 1/s for all m ∈ N with m ≤ |X |.

We proceed by induction on m ∈ N with m ≤ |X |, combined with a nested inductive
argument on Q. As base cases (for induction on m), consider any m ≤ s. Fix any Xm ⊆ X
with |Xm| = m (noting that m ≤ s implies m ≤ |X |, since s ≤ |X | immediately follows
from Definition 2). Also fix any finite set Q ⊆ {{f, g} ⊆ C : DIS({f, g}) ∩ Xm 6= ∅}.
Since ∀{f, g} ∈ Q, ∃x ∈ Xm such that f(x) 6= g(x), the pigeonhole principle implies
∃x ∈ Xm with |{{f, g} ∈ Q : f(x) 6= g(x)}| ≥ |Q|/|Xm| = |Q|/m. For this x, we have
Split(Q, x) ≥ |{{f, g} ∈ Q : f(x) 6= g(x)}| ≥ (1/m)|Q| ≥ (1/s)|Q|. Since this holds for any
such choice of Q and Xm, we have that ρ̊m ≥ 1/s.

If |X | = s, this completes the proof. Otherwise, take as an inductive hypothesis that,
for some m ∈ N with s < m ≤ |X |, ρ̊m−1 ≥ 1/s. Fix any Xm ⊆ X with |Xm| = m. We
now introduce a nested inductive argument on Q (based on the partial ordering induced by
the subset relation). As a base case, if Q = ∅, then trivially maxx∈Xm Split(Q, x) = 0 =
(1/s)|Q|. Now take as a nested inductive hypothesis that, for some nonempty finite set Q ⊆
{{f, g} ⊆ C : DIS({f, g}) ∩ Xm 6= ∅}, for every strict subset R ⊂ Q, maxx∈Xm Split(R, x) ≥
(1/s)|R|.

First, consider the case in which ∃x ∈ Xm such that x /∈
⋃
{f,g}∈Q DIS({f, g}). In this

case, every {f, g} ∈ Q has DIS({f, g}) ∩ (Xm \ {x}) = DIS({f, g}) ∩ Xm 6= ∅, so that Q ⊆
{{f, g} ⊆ C : DIS({f, g})∩(Xm\{x}) 6= ∅}. Therefore, since |Xm\{x}| = m−1, by definition
of ρ̊m−1 we have maxx′∈Xm Split(Q, x′) ≥ maxx′∈Xm\{x} Split(Q, x′) ≥ ρ̊m−1|Q|. Combined
with the inductive hypothesis (for m), this implies maxx′∈Xm Split(Q, x′) ≥ (1/s)|Q|.

Now consider the remaining case, in which ∀x∈Xm, ∃{fx, gx}∈Q with x∈DIS({fx, gx}).
Since {fx, gx} /∈ Qyx for every y ∈ Y and x ∈ Xm, we have maxx∈Xm Split(Q, x) ≥ 1. We
proceed by a kind of set-covering argument, as follows. For each x ∈ Xm, denote yx =
argmaxy∈Y |Q

y
x| (breaking ties arbitrarily), and denote Sx = {x′ ∈ Xm : {fx, gx} /∈ Q

yx′
x′ }.

Let z1 be any element of Xm. Then, for integers i ≥ 2, inductively define zi as any element
of Xm \

⋃i−1
j=1 Szj , up until the smallest index i ∈ N for which Xm \

⋃i
j=1 Szi = ∅; denote by I

this smallest i with Xm \
⋃i
j=1 Szi = ∅. Note that, since {fx, gx} /∈ Qyxx (and hence x ∈ Sx)

for each x ∈ Xm, every zi is distinct, which further implies that I ≤ m (and in particular,
that I exists). Furthermore, since any i ∈ {1, . . . , I} and x ∈ Xm with {fx, gx} = {fzi , gzi}
have Sx = Szi , and therefore x ∈ Szi , @j > i with zj = x. Thus, we also have that
{fzi , gzi} 6= {fzj , gzj} for every i, j ∈ {1, . . . , I} with i 6= j.

Now let i1 = I, and for integers k ≥ 2, inductively define

ik = max

i ∈ {1, . . . , ik−1 − 1} :

Szi \ i−1⋃
j=1

Szj

 \ k−1⋃
j=1

Szij 6= ∅

 ,

up to the smallest index k ∈ N with
{
i∈{1, . . . , ik − 1} :

(
Szi\

⋃i−1
j=1 Szj

)
\
⋃k
j=1 Szij 6=∅

}
=

∅; denote by K this final value of k (which must exist, since ik+1 ∈ N is defined and
strictly smaller than ik for any k for which this set is nonempty; in particular, 1 ≤ K ≤
I). Finally, let x1 = zi1 , and for each k ∈ {1, . . . ,K}, let xk denote any element of(
Szik \

⋃ik−1
j=1 Szj

)
\
⋃k−1
j=1 Szij , which is nonempty by definition of ik.
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We first establish, by induction, that
⋃K
k=1 Szik = Xm. By construction, we have⋃I

i=1 Szi = Xm. Furthermore, for any i ∈ {1, . . . , I}, if
⋃
j≤i Szj ∪

⋃
1≤k≤K:ik≥i+1 Szik =

Xm, then either i ∈ {i1, . . . , iK}, in which case
⋃
j<i Szj ∪

⋃
1≤k≤K:ik≥i Szik =

⋃
j≤i Szj ∪⋃

1≤k≤K:ik≥i+1 Szik = Xm, or else i /∈ {i1, . . . , iK}, which (by definition of the ik se-

quence) implies Szi ⊆
⋃i−1
j=1 Szj ∪

⋃
1≤k≤K:ik≥i+1 Szik , so that

⋃
j<i Szj ∪

⋃
1≤k≤K:ik≥i Szik =⋃

j<i Szj ∪
⋃

1≤k≤K:ik≥i+1 Szik =
⋃
j≤i Szj ∪

⋃
1≤k≤K:ik≥i+1 Szik = Xm. By induction, we

have that
⋃K
k=1 Szik =

⋃
j<1 Szj ∪

⋃
1≤k≤K:ik≥1 Szik = Xm. In other words, ∀x ∈ Xm,

∃k(x) ∈ {1, . . . ,K} with {fzik(x)
, gzik(x)

} /∈ Qyxx .

In particular, letting R = Q \ {{fzik , gzik} : k ∈ {1, . . . ,K}}, we have that ∀x ∈ Xm,

{fzik(x)
, gzik(x)

} ∈ (Q \R) \ (Qyxx \R) while Qyxx \R ⊆ Q \R, so that |Q \R| − |Qyxx \R| ≥ 1.

Therefore, ∀x ∈ Xm,

Split(R, x) = |R| −max
y∈Y
|Ryx| ≤ |R| − |Ryxx | = |R| − |R ∩Qyxx |

= (|Q| − |Q \R|)− (|Qyxx | − |Qyxx \R|) = (|Q| − |Qyxx |)− (|Q \R| − |Qyxx \R|)
≤ |Q| − |Qyxx | − 1 = |Q| −max

y∈Y
|Qyx| − 1 = Split(Q, x)− 1. (61)

Since K ≥ 1, we may note that R is a strict subset of Q, so that the (nested) inductive
hypothesis implies that maxx∈Xm Split(R, x) ≥ (1/s)|R|. Combined with (61), this implies

max
x∈Xm

Split(Q, x) ≥ max
x∈Xm

Split(R, x) + 1 ≥ (1/s)|R|+ 1. (62)

Next, we argue that K ≤ s, by proving that {x1, . . . , xK} is a star set for C. By definition
of zI , we have zI ∈ Xm\

⋃I−1
j=1 Szj ⊆ Xm\

⋃K
k=2 Szik . Furthermore, zI ∈ SzI , so that zI ∈ SzI \⋃K

k=2 Szik . Since x1 = zi1 = zI , we have x1 ∈ Szi1 \
⋃K
k=2 Szik . Also, for each k ∈ {2, . . . ,K},

by definition, xk ∈
(
Szik \

⋃ik−1
j=1 Szj

)
\
⋃k−1
j=1 Szij ⊆

(
Szik \

⋃K
j=k+1 Szij

)
\
⋃k−1
j=1 Szij =

Szik \
⋃

1≤j≤K:j 6=k Szij . Therefore, every k ∈ {1, . . . ,K} has xk ∈ Szik \
⋃

1≤j≤K:j 6=k Szij .

In particular, for every k ∈ {1, . . . ,K}, since xk ∈ Szik , we have {fzik , gzik} /∈ Q
yxk
xk , so

that ∃hk ∈ {fzik , gzik} with hk(xk) 6= yxk . Furthermore, for every j ∈ {1, . . . ,K} \ {k},
since xj /∈ Szik , we have {fzik , gzik} ∈ Q

yxj
xj , so that fzik (xj) = gzik (xj) = yxj , and in

particular, hk(xj) = yxj . Also, since we have chosen x1 = zi1 , so that x1 ∈ DIS({fzi1 , gzi1}),
∃h0 ∈ {fzi1 , gzi1} with h0(x1) 6= h1(x1): that is, h0(x1) = yx1 . Thus, since fzi1 (xj) =
gzi1 (xj) = yxj for every j ∈ {2, . . . ,K}, we have that h0(xk) = yxk for every k ∈ {1, . . . ,K}.
Altogether, we have that every k ∈ {1, . . . ,K} has hk(xk) 6= h0(xk), while every j ∈
{1, . . . ,K} \ {k} has hk(xj) = h0(xj). In other words, ∀k ∈ {1, . . . ,K}, DIS({h0, hk}) ∩
{x1, . . . , xK} = {xk}: that is, {x1, . . . , xK} is a star set for C, witnessed by {h0, h1, . . . , hK}.
In particular, this implies K ≤ s.

Therefore, since |Q \R| = K (by distinctness of the pairs {fzi , gzi} argued above), (62)
implies

max
x∈Xm

Split(Q, x) ≥ (1/s)|R|+ K

s
= (1/s)(|R|+ |Q \R|) = (1/s)|Q|.

By the principle of induction (on Q), we have maxx∈Xm Split(Q, x) ≥ (1/s)|Q| for every
finite set Q ⊆ {{f, g} ⊆ C : DIS({f, g}) ∩ Xm 6= ∅}. Since this holds for any choice of
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Xm with |Xm| = m, we have ρ̊m ≥ 1/s. By the principle of induction (on m), we have
established that ρ̊m ≥ 1/s for every m ∈ N with m ≤ |X |, which completes the proof of the
theorem.

C.3 The Teaching Dimension

Here we give the proofs of results from Section 7.3. We first prove that every minimal
specifying set is a star set (Lemma 14). In fact, we establish a slightly stronger claim here
(which also applies to local minima), stated formally as follows.

Lemma 44 Fix any h : X → Y, m ∈ N, U ∈ Xm, and any specifying set S for h on U
with respect to C[U ]. If ∀x ∈ S, S \ {x} is not a specifying set for h on U with respect to
C[U ], then S is a star set for C ∪ {h} centered at h.

Proof Fix an arbitrary sequence U = {x1, . . . , xm} ∈ Xm and any h : X → Y. Let
t ≥ TD(h,C[U ],U), and let i1, . . . , it ∈ {1, . . . ,m} be such that S = {xi1 , . . . , xit} is a
specifying set for h on U with respect to C[U ]. First note that, if ∃j ∈ {1, . . . , t} such
that every g ∈ VS\{xij },h has g(xij ) = h(xij ) (which includes the case VS\{xij },h = ∅), then

VS\{xij },h = VS,h, so that |VS\{xij },h ∩ C[U ]| = |VS,h ∩ C[U ]| ≤ 1; thus, S \ {xij} is also a

specifying set for h on U with respect to C[U ].
Therefore, if S is such that ∀j ≤ t, S \ {xij} is not a specifying set for h on U with

respect to C[U ], then ∀j ∈ {1, . . . , t}, ∃hj ∈ VS\{xij },h with hj(xij ) 6= h(xij ); noting that

“hj ∈ VS\{xij },h” is equivalent to saying “hj(xik) = h(xik) for every k ∈ {1, . . . , t} \ {j},”
this precisely matches the definition of a star set in Section 4: that is, we have proven that
{xi1 , . . . , xit} is a star set for C∪{h}, witnessed by {h, h1, . . . , ht}, and hence centered at h.

Proof of Lemma 14 Lemma 14 follows immediately from Lemma 44 by noting that,
for any minimal specifying set S for h on U with respect to C[U ], ∀x ∈ S, |S \ {x}| <
TD(h,C[U ],U), so that S \ {x} cannot possibly be a specifying set for h on U with respect
to C[U ].

We are now ready for the proof of Theorem 13.
Proof of Theorem 13 Fix any m ∈ N. First, note that for {xi}si=1 and {hi}si=0 as in
Definition 2, letting U = {x1, . . . , xmin{s,m}}, for any positive integer i ≤ min{s,m}, any
subsequence S ⊆ U with xi /∈ S has {h0, hi} ⊆ VS,h0 . Thus, since xi ∈ U , and h0(xi) 6=
hi(xi), we have |VS,h0 ∩ C[U ]| ≥ 2. Since this is true for every such i ≤ min{s,m}, every
S ⊆ U without {x1, . . . , xmin{s,m}} ⊆ S has |VS,h0∩C[U ]| ≥ 2. Therefore, TD(h0,C[U ],U) ≥
min{s,m}. Thus, by the definitions of XTD and TD, monotonicity of maximization in the
set maximized over, and monotonicity of t 7→ TD(C, t),15 we have

XTD(C,m) ≥ TD(C,m) ≥ TD(C,min{s,m}) ≥ TD(h0,C[U ],U) ≥ min{s,m}.

15. ∀S ∈ X t, ∀x ∈ S, ∀h, TD(h,C[S ∪ {x}], S ∪ {x}) = TD(h,C[S], S). Thus, TD(C, t + 1) =
maxh∈C maxS∈X t maxx∈X TD(h,C[S ∪ {x}], S ∪ {x}) ≥ maxh∈C maxS∈X t maxx∈S TD(h,C[S ∪ {x}], S ∪
{x}) = maxh∈C maxS∈X t TD(h,C[S], S) = TD(C, t).
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Furthermore, it follows immediately from the definition that XTD(C,m) ≤ m. Note that
this completes the proof in the case that s ≥ m. To address the remaining case, for the
remainder of the proof, we suppose s ≤ m, and focus on establishing XTD(C,m) ≤ s.

For this, we proceed by induction on m, taking as a base case the fact that XTD(C, s) ≤
s, which trivially follows from the definition of XTD. Now take as an inductive hypothesis
that for some m > s, we have XTD(C,m− 1) ≤ s. Fix any sequence Um = {x1, . . . , xm} ∈
Xm, and h : X → Y, and denote Um−1 = {x1, . . . , xm−1}. Let t ∈ N ∪ {0} and S ∈ U tm−1

be such that S is a minimal specifying set for h on Um−1 with respect to C[Um−1]. If
|S| ≥ TD(h,C[Um],Um), then since S is a minimal specifying set for h on Um−1 with respect
to C[Um−1], we have |S| = TD(h,C[Um−1],Um−1) ≤ XTD(C,m − 1) ≤ s by the inductive
hypothesis; thus, in this case we have TD(h,C[Um],Um) ≤ |S| ≤ s. On the other hand,
suppose |S| < TD(h,C[Um],Um). In this case, since S is a specifying set for h on Um−1 with
respect to C[Um−1], we have DIS(VS,h)∩Um ⊆ (DIS(VS,h)∩Um−1)∪{xm} = {xm}. But since
|S| < TD(h,C[Um],Um), S cannot be a specifying set for h on Um with respect to C[Um],
so that DIS(VS,h) ∩ Um 6= ∅. Therefore, DIS(VS,h) ∩ Um = {xm}. In particular, this implies
that S∪{xm} is a specifying set for h on Um with respect to C[Um], and in particular, must
be a minimal such specifying set, since |S∪{xm}| = |S|+1 ≤ TD(h,C[Um],Um). Therefore,
Lemma 14 implies that S∪{xm} is a star set for C∪{h} centered at h. If h ∈ C, this already
implies that |S ∪ {xm}| ≤ s; furthermore, we can argue that this remains the case even if
h /∈ C, as follows. Since xm ∈ DIS(VS,h), we have VS∪{xm},h 6= ∅, so that ∃g0 ∈ C such that
∀x ∈ S ∪{xm}, g0(x) = h(x). Therefore, S ∪{xm} is also a star set for C centered at g0, so
that |S∪{xm}| ≤ s. In particular, since S∪{xm} is a minimal specifying set for h on Um with
respect to C[Um], we have |S ∪ {xm}| = TD(h,C[Um],Um), so that TD(h,C[Um],Um) ≤ s
in this case as well. Thus, in either case, we have TD(h,C[Um],Um) ≤ s. Maximizing over
the choice of h and {x1, . . . , xm}, we have XTD(C,m) ≤ s, which completes the inductive
step. The result now follows by the principle of induction.

Next, we prove Theorem 15.
Proof of Theorem 15 Fix any m ∈ N and δ ∈ [0, 1]. Let {xi}si=1 and {hi}si=0 be as
in Definition 2, and let U = {x1, . . . , xmin{s,m}} and G = {hi : i ∈ {0, . . . ,min{s,m}}.
As in the proof of Theorem 13, for any positive integer i ≤ min{s,m}, any subsequence
S ⊆ U with xi /∈ S has {h0, hi} ⊆ VS,h0 . Thus, since xi ∈ U for every i ≤ min{s,m}, and
every hi realizes a distinct classification of U (i ≤ min{s,m}), we have |VS,h0 ∩ G[U ]| ≥
|{i ∈ {1, . . . ,min{s,m}} : xi /∈ S}| + 1 ≥ min{s,m} − |S| + 1. In particular, to have
|VS,h0∩G[U ]| ≤ δ|G[U ]|+1 = δ(min{s,m}+1)+1, we must have |S| ≥ (1−δ) min{s,m}−δ.
Therefore, XPTD(h0,G[U ],U , δ) ≥ (1 − δ) min{s,m} − δ. By definition of XPTD(H,m, δ)
and the fact that G ⊆ C, and since t 7→ XPTD(H, t, δ) is nondecreasing (since ∀S ∈ X t,
∀x ∈ S, ∀h, XPTD(h,H[S ∪ {x}], S ∪ {x}, δ) = XPTD(h,H[S], S, δ)), this further implies

max
H⊆C

XPTD(H,m, δ) ≥ XPTD(G,m, δ) ≥ XPTD(G,min{s,m}, δ)

≥ XPTD(h0,G[U ],U , δ) ≥ (1− δ) min{s,m} − δ ≥ (1−2δ) min{s,m},

where this last inequality is due to the assumption that |C| ≥ 3 (Section 2), which implies
s ≥ 1. Since XPTD(·,m, δ) ∈ N ∪ {0}, this further implies maxH⊆C XPTD(H,m, δ) ≥
d(1− 2δ) min{s,m}e when δ ≤ 1/2.
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To establish the right inequality, fix any H ⊆ C, let U ∈ Xm and h : X → Y be such
that XPTD(h,H[U ],U , δ) = XPTD(H,m, δ), and let S ⊆ U be a minimal specifying set for

h on U with respect to H[U ]. If δ = 0 or |S| < 1+δ
δ , then |S| − 1 <

(
1− δ

1+δ

)
|S| ≤ |S|,

so that XPTD(h,H[U ],U , δ) ≤ |S| =
⌈(

1− δ
1+δ

)
|S|
⌉
. Otherwise, suppose δ > 0 and

|S| ≥ 1+δ
δ , and let k =

⌊
|S|/

⌊
δ

1+δ |S|
⌋⌋

, and note that k ≥ 1. Let R1, . . . , Rk denote

disjoint subsequences of S with each |Ri| =
⌊

δ
1+δ |S|

⌋
, which must exist since minimality of S

guarantees that its elements are distinct. Note that, for each i ∈ {1, . . . , k}, (VS\Ri,h\VS,h)∩
H[U ] is the set of classifiers g inH[U ] with DIS({g, h})∩(S\Ri) = ∅ but DIS({g, h})∩Ri 6= ∅;
in particular, for any i, j ∈ {1, . . . , k} with i 6= j, since Rj ⊆ S \ Ri and Ri ⊆ S \ Rj ,
(VS\Ri,h \ VS,h) ∩H[U ] and (VS\Rj ,h \ VS,h) ∩H[U ] are disjoint. Thus, since H[U ] ⊇ (VS,h ∩
H[U ]) ∪

⋃k
i=1(VS\Ri,h \ VS,h) ∩H[U ], we have

|H[U ]| ≥

∣∣∣∣∣(VS,h ∩H[U ]) ∪
k⋃
i=1

(VS\Ri,h \ VS,h) ∩H[U ]

∣∣∣∣∣
= |VS,h ∩H[U ]|+

k∑
i=1

∣∣(VS\Ri,h \ VS,h) ∩H[U ]
∣∣≥ k∑

i=1

∣∣(VS\Ri,h \ VS,h) ∩H[U ]
∣∣

≥ k min
i∈{1,...,k}

∣∣(VS\Ri,h \ VS,h) ∩H[U ]
∣∣ .

Thus, letting i∗ = argmini∈{1,...,k}
∣∣(VS\Ri,h\VS,h) ∩H[U ]

∣∣, we have
∣∣(VS\Ri∗ ,h\VS,h) ∩H[U ]

∣∣
≤ 1

k |H[U ]|. Furthermore, since S is a specifying set for h on U with respect to H[U ],
|VS,h ∩H[U ]| ≤ 1, so that (since VS,h ⊆ VS\Ri∗ ,h)∣∣VS\Ri∗ ,h ∩H[U ]

∣∣ =
∣∣((VS\Ri∗ ,h \ VS,h) ∩H[U ]

)
∪ (VS,h ∩H[U ])

∣∣
=
∣∣(VS\Ri∗ ,h \ VS,h) ∩H[U ]

∣∣+ |VS,h ∩H[U ]| ≤ 1

k
|H[U ]|+ 1.

Also, since
1

k
≤ 1⌊

1+δ
δ

⌋ ≤ 1
1+δ
δ − 1

= δ,

this implies |VS\Ri∗ ,h ∩ H[U ]| ≤ δ|H[U ]| + 1, so that XPTD(h,H[U ],U , δ) ≤ |S \ Ri∗ |.
Furthermore, since Ri∗ ⊆ S, |S \Ri∗ | = |S| − |Ri∗ | = |S| −

⌊
δ

1+δ |S|
⌋

=
⌈(

1− δ
1+δ

)
|S|
⌉
.

Thus, for any δ ∈ [0, 1] and regardless of the size of |S|, we have XPTD(h,H[U ],U , δ) ≤⌈(
1− δ

1+δ

)
|S|
⌉
. Furthermore, since S is a minimal specifying set for h on U with respect

to H[U ], we have |S| ≤ XTD(H,m) ≤ XTD(C,m), and Theorem 13 implies XTD(C,m) =

min{s,m}. Therefore, XPTD(h,H[U ],U , δ) ≤
⌈(

1− δ
1+δ

)
min{s,m}

⌉
. Maximizing the left

hand side over the choice of h, H, and U completes the proof.

C.4 The Doubling Dimension

We now present the proof of Theorem 17
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Proof of Theorem 17 For the lower bound, fix any ε ∈ (0, 1], and take {xi}si=1 and {hi}si=0

as in Definition 2, and let m = s∧
⌊

1
ε

⌋
. Let P be a probability measure on X with P({xi}) =

1/m for each i ∈ {1, . . . ,m}. Thus, {h0, h1, . . . , hm} ⊆ BP(h0, 1/m). Furthermore, for any
i ∈ {0, . . . ,m} and any classifier g with P(x : g(x) 6= hi(x)) ≤ 1/(2m), we must have
g(xj) = hi(xj) for every j ∈ {1, . . . ,m}. Therefore, any 1

2m -cover of BP(h0, 1/m) must
contain classifiers g0, . . . , gm with ∀i ∈ {0, . . . ,m}, ∀j ∈ {1, . . . ,m}, gi(xj) = hi(xj). Thus,
since each hi (with i ≤ m) realizes a distinct classification of {x1, . . . , xm}, it follows that
N (1/(2m),BP(h0, 1/m),P) ≥ m+ 1. Noting that 1/m ≥ ε, we have that

sup
P

sup
h∈C

Dh,P (ε)≥Dh0,P(ε)≥ log2

(
N
(

1

2m
,BP

(
h0,

1

m

)
,P
))
≥ log2(m+ 1)≥ log2

(
s ∧ 1

ε

)
.

For the remaining term in the lower bound (i.e., d), we modify an argument of Kulkarni
(1989, Proposition 3). If d < 5, then d . Log

(
s ∧ 1

ε

)
, so that the lower bound follows

from the above. Otherwise, suppose d ≥ 5. We first let {x′1, . . . , x′d} denote a set of d
points in X shattered by C, and we let G denote the set of classifiers g ∈ C[{x′1, . . . , x′d}]
with g(x′d) = −1 and

∑d−1
i=1 1[g(x′i) = +1] =

⌊
d−1

4

⌋
. For any g ∈ G, note that, if H is a

classifier sampled uniformly at random from G, a Chernoff bound (for sampling without
replacement) implies

P

(
d−1∑
i=1

1[H(x′i) = g(x′i)] ≥
d− 1

8

)
≤ exp

{
−d− 1

48

}
.

Thus, there are at most |G| exp
{
−d−1

48

}
elements h ∈ G with

∑d−1
i=1 1[h(x′i) = g(x′i)] ≥ d−1

8 .
Now take H0 = {}, and take as an inductive hypothesis that, for some positive integer
k < 1 + exp

{
d−1
48

}
, there is a set Hk−1 ⊆ G with |Hk−1| = k − 1 such that ∀h, g ∈ Hk−1

with h 6= g,
∑d−1

i=1 1[h(x′i) = g(x′i)] <
d−1

8 . Since |Hk−1| · |G| exp
{
−d−1

48

}
< |G|, ∃gk ∈ G

such that ∀h ∈ Hk−1,
∑d−1

i=1 1[h(x′i) = gk(x
′
i)] <

d−1
8 . Thus, defining Hk = Hk−1 ∪ {gk}

extends the inductive hypothesis. By induction, this establishes the existence of a setH ⊆ G
with |H| ≥ exp

{
d−1
48

}
such that ∀h, g ∈ H with h 6= g,

∑d−1
i=1 1[h(x′i) = g(x′i)] <

d−1
8 . Fix

any ε ∈ (0, 1/4] and let P denote a probability measure over X with P({x′i}) = 4ε
d−1 for

each i ∈ {1, . . . , d− 1}, and P({x′d}) = 1− 4ε. Note that any h, g ∈ G with
∑d−1

i=1 1[h(x′i) =
g(x′i)] <

d−1
8 have P(x : h(x) 6= g(x)) > d−1

4
4ε
d−1 = ε. Thus, H is an ε-packing under

the L1(P) pseudometric. Recall that this implies |H| ≤ N (ε/2, G,P) (Kolmogorov and
Tikhomirov, 1959, 1961). Furthermore, note that any g ∈ G has P(x : g(x) = +1) =⌊
d−1

4

⌋
4ε
d−1 ≤ ε. Thus, letting h− ∈ C be such that ∀i ∈ {1, . . . , d}, h−(x′i) = −1 (which

exists, by shatterability of x′1, . . . , x
′
d), we have G ⊆ BP(h−, ε). Therefore, N (ε/2, G,P) ≤

N (ε/2,BP(h−, ε),P). Altogether, we have that

d .
d− 1

48
log2(e) ≤ log2(|H|) ≤ log2 (N (ε/2,BP(h−, ε),P)) ≤ Dh−,P(ε) ≤ sup

P
sup
h∈C

Dh,P (ε).

For the upper bound, fix any h ∈ C, any probability measure P over X , and any
ε ∈ (0, 1], and fix any value r ∈ [ε, 1]. Recall that any maximal subset Gr ⊆ BP(h, r) of
classifiers in BP(h, r) with minf,g∈Gr:f 6=g P(x : f(x) 6= g(x)) > r/2 (called a maximal (r/2)-
packing of BP(h, r)) is also an (r/2)-cover of BP(h, r) (see e.g., Kolmogorov and Tikhomirov,
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1959, 1961). Thus, we have that N
(
r
2 ,BP(h, r),P

)
≤ |Gr|, for any such set Gr. Let

m =
⌈

4
r ln(|Gr|)

⌉
, and let X1, X2, . . . , Xm be independent P-distributed random variables.

Let E1 denote the event that ∀f, g ∈ Gr with f 6= g, ∃i ∈ {1, . . . ,m} with f(Xi) 6= g(Xi).
For any f, g ∈ Gr with f 6= g, P(∃i ∈ {1, . . . ,m} : f(Xi) 6= g(Xi)) = 1− (1− P(x : f(x) 6=
g(x)))m > 1 − (1 − r/2)m > 1 − e−mr/2 ≥ 1 − 1/|Gr|2. Therefore, by a union bound,
P(E1) > 1 −

(|Gr|
2

)
1
|Gr|2 ≥

1
2 . In particular, note that on the event E1, the elements of Gr

realize distinct classifications of the sequence (X1, . . . , Xm), so that (since Gr ⊆ BP(h, r))
|Gr| is upper bounded by the number of distinct classifications of (X1, . . . , Xm) realized by
classifiers in BP(h, r). Furthermore, since all classifiers in BP(h, r) agree on the classification
of any points Xi /∈ DIS(BP(h, r)), and BP(h, r) ⊆ C, we have that |Gr| is upper bounded by
the number of distinct classifications of {X1, . . . , Xm}∩DIS(BP(h, r)) realized by classifiers
in C.

By a Chernoff bound, on an event E2 of probability at least 1/2,

|{X1, . . . , Xm} ∩DIS(BP(h, r))| ≤ 1 + 2eP(DIS(BP(h, r)))m.

By the definition of the disagreement coefficient, this is at most 1 + 2eθh,P(r)rm ≤ 1 +
2e + 8eθh,P(r) ln(|Gr|), which, if |Gr| ≥ 3, is at most 11eθh,P(r) ln(|Gr|). By a union
bound, the event E1 ∩ E2 has probability strictly greater than 0. Thus, letting m′ =
d11eθh,P(r) ln(|Gr|)e, there exists a sequence x1, . . . , xm′ ∈ X such that |Gr| is at most the
max of 2 and the number of distinct classifications of {x1, . . . , xm′} realized by classifiers in

C. In the case |Gr| ≥ 3, this latter value is at most
(
em′

d

)d
≤
(

22e2θh,P (r) ln(|Gr|)
d

)d
by the

VC-Sauer lemma (Vapnik and Chervonenkis, 1971; Sauer, 1972).
Taking the logarithm, we have that

ln(|Gr|) ≤ max

{
ln(2), d ln

(
22e2θh,P(r)

)
+ d ln

(
ln(|Gr|)

d

)}
,

which implies (see e.g., Vidyasagar, 2003, Corollary 4.1)

ln(|Gr|) < max
{

1, 2d ln
(
22e2θh,P(r)

)}
= 2d ln

(
22e2θh,P(r)

)
.

Dividing both sides by ln(2), altogether we have that

Dh,P(ε) = sup
r∈[ε,1]

log2

(
N
(r

2
,BP(h, r),P

))
≤ sup

r∈[ε,1]
log2 (|Gr|)

≤ sup
r∈[ε,1]

2d log2

(
22e2θh,P(r)

)
= 2d log2

(
22e2θh,P(ε)

)
.

In particular, by Theorem 10, this is at most 2d log2

(
22e2

(
s ∧ 1

ε

))
, so that maximizing the

left hand side over the choice of h ∈ C and P completes the proof.

Appendix D. Examples Spanning the Gaps

In this section, taking d and s as fixed values in N (with d ≥ 3 and s ≥ 4d), and taking
X = N, we establish that the upper bounds in Theorems 3, 4, 5, and 7 are all tight
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(up to universal constant and logarithmic factors) when we take C = {x 7→ 21S(x) − 1 :
S ⊆ {1, . . . , s}, |S| ≤ d}, and that the lower bounds in these theorems are all tight (up to
logarithmic factors) when we take C = {x 7→ 21S(x)−1 : S ∈ 2{1,...,d}∪{{i} : d+1 ≤ i ≤ s}}.
One can easily verify that, in both cases, the VC dimension is indeed d, and the star number
is indeed s.

D.1 The Upper Bounds are Sometimes Tight

We begin with the upper bounds. In this case, take

C = {x 7→ 21S(x)− 1 : S ⊆ {1, . . . , s}, |S| ≤ d}. (63)

For this hypothesis class, we argue that the lower bounds can be increased to match the
upper bounds (up to logarithmic factors). We begin with a general lemma.

For each i ∈ {1, . . . , d}, let Xi = {bs/dc(i− 1) + 1, . . . , bs/dci}, Ci = {x 7→ 21{t}(x)−1 :
t ∈ Xi} ∪ {x 7→ −1}, and let Di be a finite nonempty set of probability measures Pi
on X × Y such that Pi(Xi × Y) = 1 (i.e., with marginal over X supported only on Xi).
Let D =

{
1
d

∑d
i=1 Pi : ∀i ∈ {1, . . . , d}, Pi ∈ Di

}
. Note that for any choices of Pi ∈ Di for

each i ∈ {1, . . . , d}, letting P = 1
d

∑d
i=1 Pi, we have that ∀i ∈ {1, . . . , d}, ∀x ∈ Xi with

Pi({x} × Y) > 0,

P ({(x,+1)}|{x} × Y) =
P ({(x,+1)})
P ({x} × Y)

=
1
d

∑d
j=1 Pj({(x,+1)})

1
d

∑d
j=1 Pj({x} × Y)

=
Pi({(x,+1)})
Pi({x} × Y)

= Pi({(x,+1)}|{x} × Y),

so that the conditional distribution of Y given X = x (for (X,Y ) ∼ P ) is specified by the
conditional of Y ′ given X ′ = x for (X ′, Y ′) ∼ Pi, for the value i with x ∈ Xi. Furthermore,
since any x ∈ Xi has P ({x} × Y) = 0 if and only if Pi({x} × Y) = 0, without loss we may
define P ({(x,+1)}|{x}×Y) = Pi({(x,+1)}|{x}×Y) for any such x. For each i ∈ {1, . . . , d}
and ε, δ ∈ (0, 1), let Λi(ε, δ) denote the minimax label complexity under Di with respect to
Ci (i.e., the value of ΛDi(ε, δ) when C = Ci). The value ΛD(ε, δ) remains defined as usual
(i.e., with respect to the set C specified in (63)).

Lemma 45 Fix any γ∈(2/d, 1), ε∈(0, γ/4), and δ∈
(

0, γ
4−γ

)
. If min

i∈{1,...,d}
Λi((4/γ)ε, γ)≥2,

then

ΛD(ε, δ) ≥ (γ/4)d min
i∈{1,...,d}

Λi((4/γ)ε, γ).

Proof Fix any n ∈ N with n < (γ/4)dmini∈{1,...,d} Λi((4/γ)ε, γ). Denote n′ =
⌈

n
(γ/2)d

⌉
, and

note that n′ ≤ n and n′ < mini∈{1,...,d} Λi((4/γ)ε, γ). For each i ∈ {1, . . . , d}, let Pi ∈ Di,
and denote g∗i = argming∈Ci erPi(g) (breaking ties arbitrarily). We will later optimize over

the choice of these Pi. Also let g∗ =
∑d

i=1 g
∗
i 1Xi , the classifier that predicts with g∗i on

each respective Xi set; note that, since each g∗i classifies at most one point as +1, we have
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g∗ ∈ C. Denote P = 1
d

∑d
i=1 Pi. Let ĥP denote the (random) classifier produced by A(n)

when PXY = P . Note that if
∑d

i=1 1

[
erPi

(
ĥP

)
− erPi (g∗i ) > (4/γ)ε

]
> (γ/4)d, then

erP

(
ĥP

)
− inf
h∈C

erP (h) =
1

d

d∑
i=1

erPi

(
ĥP

)
− inf
h∈C

1

d

d∑
i=1

erPi(h)

≥ 1

d

d∑
i=1

erPi

(
ĥP

)
− 1

d

d∑
i=1

erPi (g∗) =
1

d

d∑
i=1

(
erPi

(
ĥP

)
− erPi (g∗i )

)
≥ 1

d

d∑
i=1

1

[
erPi

(
ĥP

)
− erPi (g∗i ) > (4/γ)ε

]
(4/γ)ε > ε.

Therefore,

P
(

erP

(
ĥP

)
− inf
h∈C

erP (h) > ε

)
≥ P

(
d∑
i=1

1

[
erPi

(
ĥP

)
− erPi (g∗i ) > (4/γ)ε

]
> (γ/4)d

)

= 1− P

(
d∑
i=1

1

[
erPi

(
ĥP

)
− erPi (g∗i ) > (4/γ)ε

]
≤ (γ/4)d

)

= 1− P

(
d∑
i=1

(
1− 1

[
erPi

(
ĥP

)
− erPi (g∗i ) > (4/γ)ε

])
≥ (1− γ/4)d

)

≥ 1− 1

(1− γ/4)d

d∑
i=1

(
1− P

(
erPi

(
ĥP

)
− erPi (g∗i ) > (4/γ)ε

))
= − γ

4− γ
+

4

4− γ
1

d

d∑
i=1

P
(

erPi

(
ĥP

)
− erPi (g∗i ) > (4/γ)ε

)
, (64)

where the second inequality is due to Markov’s inequality and linearity of expectations.
Now we note that there is a simple reduction from the problem of learning with Ci under

Pi to the problem of learning with C under P . Specifically, for a given i.i.d. Pi-distributed
sequence (Xi1, Yi1), (Xi2, Yi2), . . ., we can construct i.i.d. P -distributed random variables
(X ′1, Y

′
1), (X ′2, Y

′
2), . . ., as follows. For each j ∈ {1, . . . , d} \ {i}, let (Xj1, Yj1), (Xj2, Yj2), . . .

be independent and Pj-distributed, and independent over j, and all independent from the
(Xit, Yit) sequence. Let j1, j2, . . . be independent Uniform({1, . . . , d}) random variables
(also independent from the above sequences). Then for each t ∈ N, let rt =

∑t
s=1 1[js = jt],

and define (X ′t, Y
′
t ) = (Xjtrt , Yjtrt). One can easily verify that this these (X ′t, Y

′
t ) are

independent and P -distributed. Now we can construct an active learning algorithm for the
problem of learning with Ci under Pi, given the budget n′ ≤ n, as follows. We execute
the algorithm A(n). If at any time it requests the label Y ′t of some X ′t in the sequence
such that jt 6= i, then we simply use the value Y ′t = Yjtrt (which, for the purpose of this
reduction, is considered an accessible quantity). Otherwise, if A(n) requests the label Y ′t of
some X ′t in the sequence such that jt = i, then our algorithm will request the label Yirt and
provide that as the value of Y ′t to be used in the execution of A(n). If at any time A(n)
has already requested n′ labels Y ′t such that jt = i, and attempts to request another label
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Y ′t with jt = i, our algorithm simply returns an arbitrary classifier, and this is considered a
“failure” event. Otherwise, upon termination of A(n), our algorithm halts and returns the
classifier A(n) produces. Note that this is a valid active learning algorithm for the problem
of learning Ci under Pi with budget n′, since the algorithm requests at most n′ labels from
the Pi-distributed sequence. In particular, in this reduction, we are thinking of the samples
(X ′t, Y

′
t ) with jt 6= i as simply part of the internal randomness of the learning algorithm.

Let ĥ′P,i denote the classifier returned by the algorithm constructed via this reduction.

Furthermore, if we consider also the classifier ĥP,i returned by A(n) when run (unmodified)
on the P -distributed sequence (X ′1, Y

′
1), (X ′2, Y

′
2), . . ., and denote by n′P,i the number of

labels Y ′t with jt = i that this unmodified A(n) requests, then on the event that n′P,i ≤ n′,
we have ĥ′P,i = ĥP,i. Additionally, let nP,i denote the number of labels Yt requested by
A(n) with Xt ∈ Xi (when A(n) is run with the sequence {(Xt, Yt)}∞t=1), and note that the
sequences {(X ′t, Y ′t )}∞t=1 and {(Xt, Yt)}∞t=1 are distributionally equivalent, so that (ĥP,i, n

′
P,i)

and (ĥP , nP,i) are distributionally equivalent as well. Therefore,

P
(

erPi

(
ĥP

)
− erPi(g

∗
i ) > (4/γ)ε

)
≥ P

(
erPi

(
ĥP

)
− erPi(g

∗
i ) > (4/γ)ε and nP,i ≤ n′

)
= P

(
erPi

(
ĥP,i

)
− erPi(g

∗
i ) > (4/γ)ε and n′P,i ≤ n′

)
= P

(
erPi

(
ĥ′P,i

)
− erPi(g

∗
i ) > (4/γ)ε and n′P,i ≤ n′

)
= P

(
erPi

(
ĥ′P,i

)
− erPi(g

∗
i ) > (4/γ)ε

)
− P

(
erPi

(
ĥ′P,i

)
− erPi(g

∗
i ) > (4/γ)ε and n′P,i > n′

)
≥ P

(
erPi

(
ĥ′P,i

)
− erPi(g

∗
i ) > (4/γ)ε

)
− P

(
n′P,i > n′

)
= P

(
erPi

(
ĥ′P,i

)
− erPi(g

∗
i ) > (4/γ)ε

)
− P

(
nP,i > n′

)
≥ P

(
erPi

(
ĥ′P,i

)
− erPi(g

∗
i ) > (4/γ)ε

)
−

E[nP,i]

n′
,

where this last inequality is due to Markov’s inequality.
Applying this to every i ∈ {1, . . . , d}, this implies

1

d

d∑
i=1

P
(

erPi

(
ĥP

)
− erPi (g∗i ) > (4/γ)ε

)
≥ − 1

dn′

d∑
i=1

E[nP,i] +
1

d

d∑
i=1

P
(

erPi

(
ĥ′P,i

)
− erPi (g∗i ) > (4/γ)ε

)
.

By linearity of the expectation, 1
dn′
∑d

i=1 E[nP,i] = 1
dn′E

[∑d
i=1 nP,i

]
≤ n

dn′ ≤
γ
2 , so that the

above is at least

−γ
2

+
1

d

d∑
i=1

P
(

erPi

(
ĥ′P,i

)
− erPi (g∗i ) > (4/γ)ε

)
.

Plugging this into (64), we have that

P
(

erP

(
ĥP

)
− inf
h∈C

erP (h) > ε

)
≥ − 3γ

4− γ
+

4

4− γ
1

d

d∑
i=1

P
(

erPi

(
ĥ′P,i

)
− erPi(g

∗
i ) > (4/γ)ε

)
.
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The above strategy, producing ĥ′P,i, is a valid active learning algorithm (with budget n′)
for any choices of the probability measures Pj , j ∈ {1, . . . , d} \ {i}. We may therefore con-
sider its behavior if we choose these at random. Specifically, for any probability measure Π\i

over ×j 6=iDj , let {P̃j,Π\i}j 6=i ∼ Π\i, and for any Pi ∈ Di, let P̃Π\i,Pi
= 1

dPi + 1
d

∑
j 6=i P̃j,Π\i .

Then ĥ′
P̃

Π\i,Pi
,i

is the output of a valid active learning algorithm (with budget n′); in par-

ticular, here we are considering the P̃j,Π\i as internal random variables to the algorithm
(along with their corresponding (Xjt, Yjt) samples used in the algorithm, which are now
considered conditionally independent given {P̃j,Π\i}j 6=i, where each (Xjt, Yjt) has condi-

tional distribution P̃j,Π\i): that is, random variables that are independent from the data
sequence (Xi1, Yi1), (Xi2, Yi2), . . .. Now note that, since n′ < Λi((4/γ)ε, γ),

max
Pi∈Di

P
(

erPi

(
ĥ′
P̃

Π\i,Pi
,i

)
− inf
g∈Ci

erPi(g) > (4/γ)ε

)
> γ. (65)

For any given sequence P1, . . . , Pd, with Pj ∈ Di for each j ∈ {1, . . . , d}, for every

i ∈ {1, . . . , d}, denote ψi(Pi, {Pj}j 6=i) = P
(

erPi

(
ĥ′P,i

)
− infg∈Ci erPi(g) > (4/γ)ε

)
, where

P = 1
d

∑d
j=1 Pj as above. Then, by the law of total probability, (65) may be restated as

max
Pi∈Di

E
[
ψi

(
Pi,
{
P̃j,Π\i

}
j 6=i

)]
> γ.

Since this holds for every choice of Π\i, we have that

inf
Π\i

max
Pi∈Di

E
[
ψi

(
Pi,
{
P̃j,Π\i

}
j 6=i

)]
≥ γ.

Since each Dj is finite, by the minimax theorem (von Neumann, 1928; von Neumann and
Morgenstern, 1944), for each i ∈ {1, . . . , d}, there exists a probability measure Πi over Di
such that, if P̃i ∼ Πi (independent from every {P̃j,Π\i}j 6=i), then

inf
Π\i

E
[
ψi

(
P̃i,
{
P̃j,Π\i

}
j 6=i

)]
= inf

Π\i
max
Pi∈Di

E
[
ψi

(
Pi,
{
P̃j,Π\i

}
j 6=i

)]
.

In particular, taking these {P̃i}di=1 to be independent, we have that ∀i ∈ {1, . . . , d},

E
[
ψi

(
P̃i,
{
P̃j

}
j 6=i

)]
≥ inf

Π\i
E
[
ψi

(
P̃i,
{
P̃j,Π\i

}
j 6=i

)]
=inf

Π\i
max
Pi∈Di

E
[
ψi

(
Pi,
{
P̃j,Π\i

}
j 6=i

)]
≥γ.

Thus,

sup
Pi∈Di:

i∈{1,...,d}

d∑
i=1

ψi(Pi, {Pj}j 6=i) ≥ E

[
d∑
i=1

ψi

(
P̃i,
{
P̃j

}
j 6=i

)]
=

d∑
i=1

E
[
ψi

(
P̃i,
{
P̃j

}
j 6=i

)]
≥ γd.

Altogether, we have that

sup
Pi∈Di:

i∈{1,...,d}

P
(

erP

(
ĥP

)
− inf
h∈C

erP (h) > ε

)
≥ − 3γ

4− γ
+

4

4− γ
1

d
sup
Pi∈Di:

i∈{1,...,d}

d∑
i=1

ψi (Pi, {Pj}j 6=i)

≥ − 3γ

4− γ
+

4γ

4− γ
=

γ

4− γ
> δ.
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Since this holds for any active learning algorithmA and n<(γ/4)dmini∈{1,...,d}Λi((4/γ)ε, γ),
the lemma follows.

With this lemma in hand, we can now plug in various sets Di to obtain lower bounds
for learning with this set C under various noise models. In particular, we can make use
of the constructions of lower bounds on Λi(ε, δ) given in the proofs of the theorems in
Section 5, noting that the VC dimension of Ci is 1, and the star number of Ci is bs/dc.
Note that, in the case d . 1, the lower bounds in each of these theorems already match
their respective upper bounds up to constant and logarithmic factors (using the lower bound
from Theorem 3 as a lower bound on ΛBN(β)(ε, δ) for β near 0). We may therefore suppose
d ≥ 32 for the remainder of this subsection.

D.1.1 The Realizable Case

For the realizable case, for each i ∈ {1, . . . , d} and t ∈ {1, . . . , bs/dc}, let Pit be a uniform
distribution on {bs/dc(i − 1) + 1, . . . , bs/dc(i − 1) + t} ⊆ Xi, and let Di denote the set of
probability measures Pi in RE having marginal over X among {Pit : 1 ≤ t ≤ bs/dc} and
having f?Pi ∈ Ci. Noting that the star number of Ci is bs/dc and that Xi is a (maximal) star
set for Ci, and recalling that the first term in the “max” in the lower bound of Theorem 3
was proven in Appendix B.1 under the uniform marginal distribution on the first t elements
of a maximal star set (for an appropriate value of t, of size at least 1 and at most the star
number), we have that for ε ∈

(
0, 1

9·16

)
,

Λi(16ε, 1/4) & min

{
s

d
,
1

ε

}
.

Therefore, Lemma 45 (with γ=1/4) implies that for D=
{

1
d

∑d
i=1Pi :∀i∈{1, . . . , d}, Pi∈Di

}
,

∀δ ∈
(
0, 1

15

)
,

ΛD(ε, δ) & min

{
s,
d

ε

}
.

Furthermore, for each choice of P1, . . . , Pd (with each Pi ∈ Di), by construction, every i ∈
{1, . . . , d} has at most one x ∈ Xi with Pi({(x,+1)}|{x}×Y) = 1, and every other x′ in Xi
has Pi({(x′,+1)}|{x′}×Y) = 0. Therefore, since P ({(x,+1)}|{x}×Y) = Pi({(x,+1)}|{x}×
Y) for every x ∈ Xi, for P = 1

d

∑d
j=1 Pj , we have that there are at most d points x in

⋃d
i=1Xi

with P ({(x,+1)}|{x} × Y) = 1, and all other points x in
⋃d
i=1Xi have P ({(x,+1)}|{x} ×

Y) = 0. In particular, this implies that for (X,Y ) ∼ P , P(f?P (X) 6= Y |X ∈
⋃d
i=1Xi) = 0.

Since we also have that ∀t ∈ N \
⋃d
i=1Xi, P ({t} × Y) = 0, we can take f?P (x) = −1 for

every x ∈ X \
⋃d
i=1Xi while guaranteeing erP (f?P ) = 0. Since

⋃d
i=1Xi ⊆ {1, . . . , s}, we also

have that f?P ∈ C. Together, these facts imply P ∈ RE. Thus, D ⊆ RE, which implies
ΛRE(ε, δ) ≥ ΛD(ε, δ), so that

ΛRE(ε, δ) & min

{
s,
d

ε

}
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as well. Since the upper bound in Theorem 3 is within a factor proportional to Log(1/ε) of
this,16 this establishes that the upper bound is sometimes tight to within a factor propor-
tional to Log(1/ε).

D.1.2 Bounded Noise

In the case of bounded noise, fix any β ∈ (0, 1/2) and any ε ∈ (0, (1 − 2β)/(256e)). Take
ζ = 32eε

1−2β and k = min {bs/dc − 1, b1/ζc}, and for each i ∈ {1, . . . , d}, let Di be defined as
the set RR(k, ζ, β) in Lemma 26, as applied to the hypothesis class Ci with {x1, . . . , xk+1} =
{bs/dc(i− 1) + 1, . . . , bs/dc(i− 1) + k + 1}, h0 = −1, and hj = 21{bs/dc(i−1)+j}−1 for each
j ∈ {1, . . . , k}. Then Lemma 26 implies

Λi(16eε, 1/(4e)) ≥ β(k − 1)

3(1− 2β)2
&

β

(1− 2β)2
min

{
s

d
,
1− 2β

ε

}
.

Furthermore, recall from the definition of RR(k, ζ, β) in Section A.2 that Di is a finite
set of probability measures, and every Pi ∈ Di has Pi((X \ {x1, . . . , xk+1}) × Y) = 0. In
particular, note that {x1, . . . , xk+1} ⊆ Xi in this case. Furthermore, every Pi ∈ Di has
∀x ∈ {x1, . . . , xk}, Pi({(x,+1)}|{x} × Y) ∈ {β, 1 − β}, and at most one x ∈ {x1, . . . , xk}
has Pi({(x,+1)}|{x} × Y) = 1− β, while Pi({(xk+1,+1)}|{xk+1} × Y) = 0. Thus, for any
choices of Pi ∈ Di for each i ∈ {1, . . . , d}, the probability measure P = 1

d

∑d
i=1 Pi satisfies

the property that, ∀x ∈ X with P ({x} ×Y) > 0, P ({(x,+1)}|{x} ×Y) ∈ {0, β, 1− β}, and
there are at most d values x ∈ X with P ({x} × Y) > 0 and P ({(x,+1)}|{x} × Y) = 1− β.
In particular, this implies that without loss, we can take f?P ∈ C, and furthermore that P ∈
BN(β). Thus, for the set D =

{
1
d

∑d
i=1 Pi : ∀i ∈ {1, . . . , d}, Pi ∈ Di

}
, we have D ⊆ BN(β).

Lemma 45 (with γ = 1/(4e)) then implies that ∀δ ∈
(

0, 1
16e−1

)
,

ΛBN(β)(ε, δ) ≥ ΛD(ε, δ) & d min
i∈{1,...,d}

Λi(16eε, 1/(4e)) &
β

(1− 2β)2
min

{
s,

(1− 2β)d

ε

}
.

For β bounded away from 0, the upper bound in Theorem 4 is within a polylog
(
d
εδ

)
factor of

this, so that this establishes that the upper bound is sometimes tight to within logarithmic
factors when β is bounded away from 0. Furthermore, since RE ⊆ BN(β), the above result
for sometimes-tightness of the upper bound in the realizable case implies that the upper
bound in Theorem 4 is also sometimes tight to within logarithmic factors for any β near 0.

D.1.3 Tsybakov Noise

For the case of Tsybakov noise, the tightness (up to logarithmic factors) of the upper bound
for α ≤ 1/2 is already established by the lower bound for that case in Theorem 5. Thus,
it remains only to consider α ∈ (1/2, 1). Fix any values a ∈ [4,∞), α ∈ (1/2, 1), and
ε ∈

(
0, 1/(211a1/α)

)
, let a′ be as in the definition of TN(a, α), and let

k = min

{⌊ s
d

⌋
− 1,

⌊
(a′)

α−1
α

64ε

⌋
,

⌊
a′

64ε
4−

1
1−α

⌋}
,

16. Note that, although sd
Log(s)

can sometimes be much smaller than s ∧ d
ε
, we always have s ∧ d

ε
.

sd
Log(s)

Log
(

1
ε

)
, so that this s ∧ d

ε
lower bound does not contradict the sd

Log(s)
Log

(
1
ε

)
upper bound.
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β = 1
2 −

(
k64ε
a′

)1−α
, and ζ = 128ε

1−2β . Note that ζ ∈ (0, 1), β ∈ [1/4, 1/2), and 2 ≤ k ≤
min {bs/dc − 1, b1/ζc} (following the arguments from the proof of Theorem 5, with ε re-
placed by 64ε). Furthermore, ∀i ∈ {1, . . . , d}, let Di be the set RR(k, ζ, β) in Lemma 26, as
applied to the class Ci, with {x1, . . . , xk+1} = {bs/dc(i− 1) + 1, . . . , bs/dc(i− 1) + k + 1},
h0 = −1, and hj = 21{bs/dc(i−1)+j} − 1 for each j ∈ {1, . . . , k}. Thus, by Lemma 26,

Λi(64ε, 1/16) ≥ β(k − 1) ln(4)

3(1− 2β)2
&
( ε
a′

)2α−2
k2α−1

& a2

(
1

ε

)2−2α

min

{
s

d
,
(a′)

α−1
α

ε
,
a′

ε
4−

1
1−α

}2α−1

& a2

(
1

ε

)2−2α

min

{
s

d
,

1

a1/αε

}2α−1

,

where this last inequality relies on the fact (established in the proof of Theorem 5) that

(a′)
α−1
α ≤ a′4−

1
1−α .

We note that any Pi ∈ Di has Pi((X \{bs/dc(i−1)+1, . . . , bs/dc(i−1)+k+1})×Y) = 0.
Without loss of generality, suppose each Pi ∈ Di has η(x;Pi) = 0 for every x ∈ X \
{bs/dc(i− 1) + 1, . . . , bs/dc(i− 1) + k + 1}. As in the proof of the lower bound in Theo-
rem 5, we note that any Pi ∈ Di has Pi((x, y) : |η(x;Pi)−1/2| ≤ t) ≤ a′tα/(1−α) for every t >
0, and furthermore that f?Pi(·) = sign(2η(·;Pi)− 1), which has at most one x with f?Pi(xi) =
+1 (by definition of RR(k, ζ, β) in Section A.2). This further implies that, for any choices
of Pi ∈ Di for each i ∈ {1, . . . , d}, the probability measure P = 1

d

∑d
i=1 Pi has support for

its marginal over X only in
⋃d
i=1 {bs/dc(i− 1) + 1, . . . , bs/dc(i− 1) + k + 1}, and for each

i ∈ {1, . . . , d}, ∀x ∈ {bs/dc(i− 1) + 1, . . . , bs/dc(i− 1) + k + 1}, η(x;P ) = η(x;Pi), while
we may take η(x;P ) = 0 for every x /∈

⋃d
i=1 {bs/dc(i− 1) + 1, . . . , bs/dc(i− 1) + k + 1}.

Therefore, f?P has at most d points x ∈
⋃d
i=1Xi with f?P (x) = +1, and f?P (x) = −1 for all

other x ∈ X : that is, f?P ∈ C. Additionally, since the supports of the marginals of the Pi
distributions over X are disjoint, we have that ∀t > 0,

P ((x, y) : |η(x;P )− 1/2| ≤ t) =
1

d

d∑
i=1

Pi ((x, y) : |η(x;P )− 1/2| ≤ t)

=
1

d

d∑
i=1

Pi ((x, y) : |η(x;Pi)− 1/2| ≤ t) ≤ 1

d

d∑
i=1

a′tα/(1−α) = a′tα/(1−α).

Thus, the set D =
{

1
d

∑d
i=1 Pi : ∀i ∈ {1, . . . , d}, Pi ∈ Di

}
satisfies D ⊆ TN(a, α). Combined

with the fact that each set Di is finite (by the definition of RR(k, ζ, β) in Section A.2),
Lemma 45 (with γ = 1/16) implies that ∀δ ∈

(
0, 1

63

)
,

ΛTN(a,α)(ε, δ) ≥ ΛD(ε, δ) & d min
i∈{1,...,d}

Λi(64ε, 1/16) & a2

(
1

ε

)2−2α

min

{
s

d
,

1

a1/αε

}2α−1

d.

Since this is within logarithmic factors of the upper bound of Theorem 5, this establishes
that the upper bound is sometimes tight to within logarithmic factors (for sufficiently small
values of ε).
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D.1.4 Benign Noise

We can establish that the upper bound in Theorem 7 is sometimes tight by reduction from
the above problems. Specifically, since RE ⊆ BE(ν) for every ν ∈ [0, 1/2), for the above
choice of C we have that ∀ν ∈ [0, 1/2], ∀ε ∈

(
0, 1

9·16

)
, ∀δ ∈

(
0, 1

15

)
,

ΛBE(ν)(ε, δ) ≥ ΛRE(ε, δ) & min

{
s,
d

ε

}
.

Furthermore, the lower bound in Theorem 7 already implies that ∀ε ∈
(
0, 1−2ν

24

)
, ∀δ ∈(

0, 1
24

]
,

ΛBE(ν)(ε, δ) &
ν2

ε2
d.

Together, we have that ∀ν ∈ [0, 1/2), ∀ε ∈
(
0, 1−2ν

9·16

)
, ∀δ ∈

(
0, 1

24

]
,

ΛBE(ν)(ε, δ) & max

{
ν2

ε2
d,min

{
s,
d

ε

}}
&
ν2

ε2
d+ min

{
s,
d

ε

}
.

Thus, the upper bound in Theorem 7 is sometimes tight to within logarithmic factors.

D.2 The Lower Bounds are Sometimes Tight

We now argue that the lower bounds in Theorems 3, 4, 5, and 7 are sometimes tight (up
to logarithmic factors). First we have a general lemma. Let X1 ⊂ X and X2 = X \ X1, and
let C1,C2 be hypothesis classes such that ∀i ∈ {1, 2}, ∀h ∈ Ci, ∀x ∈ X \ Xi, h(x) = −1.
Further suppose that ∀i ∈ {1, 2}, the all-negative classifier x 7→ h−(x) = −1 is in Ci. For
each i ∈ {1, 2} and γ ∈ [0, 1], let Di(γ) be a nonempty set of probability measures on
X × Y such that ∀Pi ∈ Di(γ), Pi(Xi × Y) = 1; further suppose ∀γ, γ′ ∈ [0, 1] with γ ≤ γ′,
Di(γ) ⊇ Di(γ′). Also, for each i ∈ {1, 2}, γ, δ ∈ [0, 1], and ε > 0, let Λi,γ(ε, δ) denote the
minimax label complexity under Di(γ) with respect to Ci (i.e., the value of ΛDi(γ)(ε, δ) when
C = Ci). Let D = {γP1 + (1− γ)P2 : P1 ∈ D1(γ), P2 ∈ D2(1− γ), γ ∈ [0, 1]}.

Lemma 46 For C = C1 ∪ C2, ∀ε, δ ∈ (0, 1),

ΛD(ε, δ) ≤ 2 sup
γ∈[0,1]

max

{
Λ1,(γ−ε/8)∨0

(
ε

2(γ + ε/8)
,
δ

3

)
,Λ2,(1−γ−ε/8)∨0

(
ε

2(1− γ + ε/8)
,
δ

3

)}
.

Proof For each i ∈ {1, 2} and γ ∈ [0, 1], let Aγ,i be an active learning algorithm such that,

for any integer n ≥ Λi,γ

(
ε

2(γ+ε/8) ,
δ
3

)
, if PXY ∈ Di(γ), then with probability at least 1−δ/3,

the classifier ĥ produced by Aγ,i(n) satisfies erPXY (ĥ) − infh∈Ci erPXY (h) ≤ ε
2(γ+ε/8) ; such

an algorithm is guaranteed to exist by the definition of Λi,γ(·, ·).
Now suppose PXY ∈ D, so that PXY = γP1 + (1− γ)P2 for some γ ∈ [0, 1], P1 ∈ D1(γ),

and P2 ∈ D2(1− γ). Let (X1, Y1), (X2, Y2), . . . be the data sequence, as usual (i.i.d. PXY ).
Consider an active learning algorithm A defined as follows. We first split the sequence of
indices into three subsequences: i0,k = 2k− 1 for k ∈ N, i1,1, i1,2, . . . is the increasing subse-
quence of indices i such that i/2 ∈ N and Xi ∈ X1, and i2,1, i2,2, . . . is the remaining increas-
ing subsequence (i.e., indices i such that i/2 ∈ N and Xi ∈ X2). Given a budget n ∈ N, A(n)
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proceeds as follows. First, we let m =
⌈

128
ε2

ln
(

12
δ

)⌉
, γ1 = max

{
1
m

∑m
k=1 1X1(Xi0,k)− ε

16 , 0
}

,

and γ2 = max
{

1
m

∑m
k=1 1X2(Xi0,k)− ε

16 , 0
}

. By Hoeffding’s inequality and a union bound,
with probability at least 1− δ/3, ∀i ∈ {1, 2},

PXY (Xi × Y)− ε

8
≤ γi ≤ PXY (Xi × Y). (66)

Denote by H this event.
Next, for each j ∈ {1, 2}, if the subsequence ij,1, ij,2, . . . is infinite, then run Aγj ,j(bn/2c)

with the data subsequence {X(j)
k }

∞
k=1 = {Xij,k}∞k=1; if the algorithm Aγj ,j requests the label

for an index k (i.e., corresponding to X
(j)
k ), then A(n) requests the corresponding label Yij,k

and provides this value to Aγj ,j as the label of X
(j)
k . Let ĥj denote the classifier returned

by this execution of Aγj ,j(bn/2c). On the other hand, if the subsequence ij,1, ij,2, . . . is

finite (or empty), then we let ĥj denote an arbitrary classifier. Finally, let A(n) return the

classifier ĥ = ĥ11X1 + ĥ21X2 . In particular, note that this method requests at most n labels,
since all labels are requested by one of the Aγj ,j algorithms, each of which requests at most
bn/2c labels.

For this method, we have that

erPXY (ĥ)− inf
h∈C

erPXY (h) = γerP1(ĥ1) + (1− γ)erP2(ĥ2)− inf
h∈C

(γerP1(h) + (1− γ)erP2(h))

≤ γ
(

erP1(ĥ1)− inf
h∈C

erP1(h)

)
+ (1− γ)

(
erP2(ĥ2)− inf

h∈C
erP2(h)

)
.

For each j ∈ {1, 2}, since every h ∈ C\Cj has h(x) = h−(x) for every x ∈ Xj , and h− ∈ Cj ,
we have that infh∈C erPj (h) = infh∈Cj erPj (h). Thus, the above implies

erPXY (ĥ)− inf
h∈C

erPXY (h) ≤ γ
(

erP1(ĥ1)− inf
h∈C1

erP1(h)

)
+(1−γ)

(
erP2(ĥ2)− inf

h∈C2

erP2(h)

)
.

(67)
If γ = 0, then with probability one, every Xi ∈ X2, and {(Xi2,k , Yi2,k)}∞k=1 is an infinite

i.i.d. P2-distributed sequence. Furthermore, 1 − ε/8 < γ2 = 1 − ε/16 < 1, so that PXY ∈
D2(γ2). Thus, if n ≥ 2Λ2,1−ε/8

(
ε

2(1+ε/8) ,
δ
3

)
, then we also have n ≥ Λ2,γ2

(
ε

2(γ2+ε/8) ,
δ
3

)
(by

monotonicity of D2(·) and the label complexity), so that with probability at least 1− δ/3,
erP2(ĥ2)− infh∈C2 erP2(h) ≤ ε

2(γ2+ε/8) = ε
2(1+ε/16) <

ε
2 (here we are evaluating the label com-

plexity guarantee of Aγ2,2 under the conditional distribution given γ2, and then invoking
the law of total probability and intersecting with the above probability-one event). Com-
bined with (67), this implies erPXY (ĥ) − infh∈C erPXY (h) < ε

2 . If γ = 1, then a symmetric

argument implies that if n ≥ 2Λ1,1−ε/8

(
ε

2(1+ε/8) ,
δ
3

)
, then with probability at least 1− δ/3,

erPXY (ĥ)− infh∈C erPXY (h) < ε
2 .

Otherwise, suppose 0 < γ < 1. Note that, on the event H, γ − ε/8 ≤ γ1 ≤ γ and
1−γ−ε/8 ≤ γ2 ≤ 1−γ, so that D1(γ1) ⊆ D1((γ−ε/8)∨0) and D2(γ2) ⊆ D2((1−γ−ε/8)∨0),
and hence that

Λ1,γ1

(
ε

2(γ1 + ε/8)
,
δ

3

)
≤ Λ1,(γ−ε/8)∨0

(
ε

2(γ + ε/8)
,
δ

3

)
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and

Λ2,γ2

(
ε

2(γ2 + ε/8)
,
δ

3

)
≤ Λ2,(1−γ−ε/8)∨0

(
ε

2(1− γ + ε/8)
,
δ

3

)
.

In this case, by the strong law of large numbers, with probability one, ∀j ∈ {1, 2}, the
sequence ij,1, ij,2, . . . exists and is infinite. Since the support of the marginal of Pj over
X is contained within Xj , and X1 and X2 are disjoint, we may observe that (Xij,1 , Yij,1),
(Xij,2 , Yij,2), . . . are independent Pj-distributed random variables. In particular, if

n ≥ 2 max

{
Λ1,(γ−ε/8)∨0

(
ε

2(γ + ε/8)
,
δ

3

)
,Λ2,(1−γ−ε/8)∨0

(
ε

2(1− γ + ε/8)
,
δ

3

)}
,

then (by the label complexity guarantee of Aγj ,j applied under the conditional distribu-
tion given γj , combined with the law of total probability, and intersecting with the above
probability-one event) there are events H1 and H2, each of probability at least 1 − δ/3,
such that on the event H ∩ H1, erP1(ĥ1) − infh∈C1 erP1(h) ≤ ε

2(γ1+ε/8) ≤
ε

2γ , and on the

event H ∩ H2, erP2(ĥ2) − infh∈C2 erP2(h) ≤ ε
2(γ2+ε/8) ≤

ε
2(1−γ) . Therefore, on the event

H ∩ H1 ∩ H2, the right hand side of (67) is at most γ ε
2γ + (1 − γ) ε

2(1−γ) = ε, so that

erPXY (ĥ) − infh∈C erPXY (h) ≤ ε. By a union bound, the probability of H ∩H1 ∩H2 is at
least 1− δ. Since this holds for any PXY ∈ D, the result follows.

We can now apply this result with various choices of the sets D1(γ) and D2(γ) to obtain
upper bounds for the above space C, matching the lower bounds proven above for various
noise models. Specifically, consider X = N, X1 = {1, . . . , d}, X2 = {d+1, d+2, . . .}, C1 =
{x 7→ 21S(x)− 1 : S ⊆ {1, . . . , d}}, and C2 =

{
x 7→ 21{t}(x)−1 : t ∈ {d+1, d+2, . . . , s}

}
∪

{x 7→ −1}. Note that C1 and C2 satisfy the requirements specified above, and also that
the VC dimension of C1 is d and the star number of C1 is d, while the VC dimension of C2

is 1 and the star number of C2 is s − d. Furthermore, take C = {x 7→ 21S(x) − 1 : S ∈
2{1,...,d} ∪ {{i} : d + 1 ≤ i ≤ s}}, and note that this satisfies C = C1 ∪ C2, and C has VC
dimension d and star number s.

D.2.1 The Realizable Case

For the realizable case, we can in fact show that that lower bound in Theorem 3 is sometimes
tight up to universal constant factors. Specifically, let Di denote the set of all Pi ∈ RE
with Pi(Xi × Y) = 1, for each i ∈ {1, 2}. For every γ ∈ [0, 1] and i ∈ {1, 2}, define
Di(γ) = Di. In particular, note that for any P ∈ RE, for any measurable A ⊆ X × Y,
P (A) = P (X1 × Y)P (A|X1 × Y) + P (X2 × Y)P (A|X2 × Y). Furthermore, note that any
i ∈ {1, 2} with P (Xi×Y) > 0 has P (·×Y|Xi×Y) supported only in Xi, and has P (·|Xi×Y) ∈
RE, so that P (·|Xi×Y) ∈ Di. Thus, P ∈ D = {γP1+(1−γ)P2 : P1 ∈ D1, P2 ∈ D2, γ ∈ [0, 1]}.
Therefore, RE ⊆ D. Together with Lemma 46, this implies ∀ε, δ ∈ (0, 1),

ΛRE(ε, δ) ≤ ΛD(ε, δ) ≤ 2 max

{
Λ1,0

(
ε

2(1 + ε/8)
,
δ

3

)
,Λ2,0

(
ε

2(1 + ε/8)
,
δ

2

)}
≤ 2 max

{
Λ1,0

(
ε

3
,
δ

3

)
,Λ2,0

(
ε

3
,
δ

2

)}
,
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for Λi,0(·, ·) defined as above.

Now note that, since every P1 ∈ D1 has P1(· × Y) supported only in X1, and P1 ∈ RE,
and since C1 contains classifiers realizing all 2d distinct classifications of X1, ∃hP1 ∈ C1 with
erP1(hP1) = 0; thus, without loss, we can take f?P1

= hP1 , so that P1 is in the realizable case
with respect to C1. In particular, since there are only d points in X1, if we consider the
active learning algorithm that (given a budget n ≥ d) simply requests Yi for exactly one i
s.t. Xi = x, for each x ∈ X1 for which ∃Xi = x, and then returns any classifier ĥ consistent
with these labels, if PXY ∈ D1, with probability one every x ∈ X1 with PXY ({x} × Y) > 0
has some Xi = x, so that erPXY (ĥ) = 0. Noting that this algorithm requests at most d
labels, we have that ∀ε, δ ∈ (0, 1),

Λ1,0

(
ε

3
,
δ

3

)
≤ d.

Similarly, since every P2 ∈ D2 has P2(· × Y) supported only in X2, and P2 ∈ RE, f?P2

is either equal −1 with P2-probability one, or else ∃x ∈ {d + 1, . . . , s} with f?P2
(x) = +1;

in either case, ∃hP2 ∈ C2 with erP2(hP2) = 0; thus, without loss, we can take f?P2
= hP2 ,

so that P2 is in the realizable case with respect to C2. Now consider an active learning
algorithm that first calculates the empirical frequency P̂({x}) = 1

m

∑m
i=1 1[Xi = x] for each

x ∈ {d + 1, . . . , s} among the first m =
⌈

34

2ε4
ln
(

3(s−d)
δ

)⌉
unlabeled data points. Then,

for each x ∈ {d + 1, . . . , s}, if P̂({x}) > (1 − ε/3)ε/3, the algorithm requests Yi for the
first i ∈ N with Xi = x (supposing the budget n has not yet been reached). If any
requested value Yi equals +1, then for the x ∈ {d + 1, . . . , s} with Xi = x, the algorithm
returns the classifier x′ 7→ 21{x}(x

′)− 1. Otherwise, the algorithm returns the all-negative

classifier: x′ 7→ −1. Denote by ĥ the classifier returned by the algorithm. By Hoeffding’s
inequality and a union bound, with probability at least 1 − δ/3, every x ∈ {d + 1, . . . , s}
has P̂({x}) ≥ PXY ({x} × Y) − (ε/3)2. Also, if PXY ∈ RE, then with probability one,
every Yi = f?PXY (Xi). Therefore, if PXY ∈ D2, on these events, every x ∈ {d + 1, . . . , s}
with PXY ({x} × Y) > ε/3 will have a label Yi with Xi = x requested by the algorithm
(supposing sufficiently large n), which implies ĥ(x) = f?PXY (x). Since f?PXY has at most
one x ∈ X2 with f?PXY (x) = +1, and if such an x exists it must be in {d + 1, . . . , s},
if any requested Yi = +1, we have erPXY (ĥ) = 0, and otherwise either no x ∈ X2 has
f?PXY (x) = +1 or else the one such x has PXY ({x} × Y) ≤ ε/3; in either case, we have

erPXY (ĥ) = PXY ({x : f?PXY (x) = +1}×Y) ≤ ε/3. Thus, regardless of whether the algorithm

requests a Yi with value +1, we have erPXY (ĥ) ≤ ε/3. By a union bound for the two events,
we have that P(erPXY (ĥ) > ε/3) ≤ δ/3 (given a sufficiently large n). Furthermore, there

are at most min
{
s− d, 1

(1−ε/3)ε/3

}
points x ∈ {d + 1, . . . , s} with P̂({x}) > (1 − ε/3)ε/3,

and therefore at most this many labels Yi are requested by the algorithm. Thus, a budget
n of at least this size suffices for this guarantee. Since this holds for every PXY ∈ D2, we
have that

Λ2,0

(
ε

3
,
δ

3

)
≤ min

{
s− d, 1

(1− ε/3)ε/3

}
. min

{
s,

1

ε

}
.
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Altogether, we have that ∀ε, δ ∈ (0, 1),

ΛRE(ε, δ) . max

{
min

{
s,

1

ε

}
, d

}
.

Thus, the lower bound in Theorem 3 is tight up to universal constant factors in this case.17

D.2.2 Bounded Noise

To prove that the lower bound in Theorem 4 is sometimes tight, fix any β ∈ (0, 1/2), and
let Di denote the set of all Pi ∈ BN(β) with Pi(Xi × Y) = 1, for each i ∈ {1, 2}. For all
γ ∈ [0, 1] and i ∈ {1, 2}, define Di(γ) = Di. As above, note that for any P ∈ BN(β), for
any measurable A ⊆ X × Y, P (A) = P (X1 × Y)P (A|X1 × Y) + P (X2 × Y)P (A|X2 × Y).
Furthermore, any i ∈ {1, 2} with P (Xi × Y) > 0 has P (· × Y|Xi × Y) supported only on
Xi, and since η(x;P (·|Xi × Y)) = η(x;P ) for every x ∈ Xi, we have P (·|Xi × Y) ∈ BN(β),
so that P (·|Xi × Y) ∈ Di. Thus, P ∈ D = {γP1 + (1− γ)P2 : P1 ∈ D1, P2 ∈ D2, γ ∈ [0, 1]}.
Therefore, BN(β) ⊆ D. Together with Lemma 46, this implies ∀ε, δ ∈ (0, 1),

ΛBN(β)(ε, δ) ≤ ΛD(ε, δ) ≤ 2 max

{
Λ1,0

(
ε

3
,
δ

3

)
,Λ2,0

(
ε

3
,
δ

3

)}
,

for Λi,0(·, ·) defined as above.

Now note that, for each i ∈ {1, 2}, since every Pi ∈ Di has Pi ∈ BN(β), we have f?Pi ∈ C.
Furthermore, since every h ∈ C \ Ci has h(x) = −1 for every x ∈ Xi, and the all-negative
function x 7→ −1 is contained in Ci, and since Pi(Xi × Y) = 1, without loss we can take
f?Pi ∈ Ci (i.e., there is a version of f?Pi contained in Ci). Together with the condition
on η(·;Pi) from the definition of BN(β), this implies each Pi satisfies the bounded noise
condition (with parameter β) with respect to Ci.

Since this is true of every P1 ∈ D1, and the star number and VC dimension of C1 are
both equal d, the upper bound in Theorem 4 implies ∀ε ∈ (0, (1− 2β)/8), δ ∈ (0, 1/8],

Λ1,0

(
ε

3
,
δ

3

)
.

1

(1− 2β)2
d · polylog

(
d

εδ

)
.

Similarly, since every P2 ∈ D2 satisfies the bounded noise condition (with parameter β)
with respect to C2, and the star number of C2 is s − d ≤ s while the VC dimension of C2

is 1, the upper bound in Theorem 4 implies ∀ε ∈ (0, (1− 2β)/8), δ ∈ (0, 1/8],

Λ2,0

(
ε

3
,
δ

3

)
.

1

(1− 2β)2
min

{
s,

1− 2β

ε

}
polylog

(
1

εδ

)
.

Altogether, we have that

ΛBN(β)(ε, δ) .
1

(1− 2β)2
max

{
min

{
s,

1− 2β

ε

}
, d

}
polylog

(
d

εδ

)
.

17. The term Log
(
min

{
1
ε
, |C|

})
in the lower bound is dominated by the other terms in this example, so

that this upper bound is still consistent with the existence of this term in the lower bound.
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For β bounded away from 0, this is within logarithmic factors of the lower bound in Theo-
rem 4, so that we may conclude that the lower bound is sometimes tight to within logarith-
mic factors in this case. Furthermore, when β is near 0, it is within logarithmic factors of the
lower bound in Theorem 3, which is also a lower bound on ΛBN(β)(ε, δ) since RE ⊆ BN(β);
thus, this inherited lower bound on ΛBN(β)(ε, δ) is also sometimes tight to within logarithmic
factors when β is near 0.

D.2.3 Tsybakov Noise

The case of Tsybakov noise is slightly more involved than the above. In this case, fix
any a ∈ [1,∞), α ∈ (0, 1). Since the upper bound in Theorem 5 already matches the
lower bound up to logarithmic factors when α ∈ (0, 1/2], it suffices to focus on the case
α ∈ (1/2, 1). In this case, for γ ∈ (0, 1], let Di(γ) denote the set of all Pi ∈ TN(a/γ1−α, α)
with Pi(Xi × Y) = 1, for each i ∈ {1, 2}. Also let Di(0) denote the set of all probability
measures Pi with Pi(Xi × Y) = 1, for each i ∈ {1, 2}. Again, for any P ∈ TN(a, α), P (·) =
P (X1×Y)P (·|X1×Y) +P (X2×Y)P (·|X2×Y), and for any i ∈ {1, 2} with P (Xi×Y) > 0,
P (· × Y|Xi × Y) is supported only in Xi, and η(·;P (·|Xi × Y)) = η(·;P ) on Xi, so that for
any t > 0,

P
(
{x : |η(x;P (·|Xi × Y))− 1/2| ≤ t} × Y

∣∣∣Xi × Y)
=

1

P (Xi × Y)
P ({x ∈ Xi : |η(x;P )− 1/2| ≤ t} × Y)

≤ 1

P (Xi × Y)
a′tα/(1−α) = (1− α)(2α)α/(1−α)

(
a

P (Xi × Y)1−α

)1/(1−α)

tα/(1−α).

Also, since f?P ∈ C, and η(·;P (·|Xi×Y)) = η(·;P ) on Xi, we can take f?P (·|Xi×Y)(x) = f?P (x)
for every x ∈ Xi, so that there exists a version of f?P (·|Xi×Y) contained in C. Together,

these imply that P (·|Xi × Y) ∈ Di(P (Xi × Y)). We therefore have that ∀P ∈ TN(a, α),
P = γP1 + (1 − γ)P2 for some γ ∈ [0, 1], P1 ∈ D1(γ), and P2 ∈ D2(1 − γ): that is,
TN(a, α) ⊆ D, for D as in Lemma 46 (with respect to these definitions of Di(·)). Therefore,
Lemma 46 implies that ∀ε, δ ∈ (0, 1),

ΛTN(a,α)(ε, δ) ≤ ΛD(ε, δ)

. sup
γ∈[0,1]

max

{
Λ1,(γ−ε/8)∨0

(
ε

2(γ + ε/8)
,
δ

3

)
,Λ2,(1−γ−ε/8)∨0

(
ε

2(1− γ + ε/8)
,
δ

3

)}
. (68)

First note that, for the case γ ≤ ε/4, we trivially have

Λ1,(γ−ε/8)∨0

(
ε

2(γ + ε/8)
,
δ

3

)
≤ Λ1,0

(
ε

2(γ + ε/4)
,
δ

3

)
≤ Λ1,0

(
1,
δ

3

)
= 0,

and similarly for the case γ ≥ 1− ε/4, we have Λ2,(1−γ−ε/8)∨0

(
ε

2(1−γ+ε/8) ,
δ
3

)
= 0.

For the remaining cases, for any γ ∈ (0, 1], since every Pi ∈ Di(γ) has f?Pi ∈ C, and
every h ∈ C \ Ci has h(x) = −1 for every x ∈ Xi, and the all-negative function x 7→ −1
is contained in Ci, and Pi(Xi × Y) = 1, without loss we can take f?Pi ∈ Ci. Together with
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the definition of Di(γ), we have that Di(γ) is contained in the set of probability measures
Pi satisfying the Tsybakov noise condition with respect to the hypothesis class Ci, with
parameters a

γ1−α and α. Therefore, since the star number and VC dimension of C1 are both

d, Theorem 5 implies that for any γ ∈ (ε/4, 1],18

Λ1,γ−ε/8

(
ε

2(γ + ε/8)
,
δ

3

)
≤ Λ1,γ/2

(
ε

3γ
,
δ

3

)
.

(
a

γ1−α

)2 (γ
ε

)2−2α
d · polylog

(
d

εδ

)
= a2

(
1

ε

)2−2α

d · polylog

(
d

εδ

)
.

Similarly, since the star number of C2 is s− d and the VC dimension of C2 is 1, Theorem 5
implies that for any γ ∈ [0, 1− ε/4),

Λ2,1−γ−ε/8

(
ε

2(1− γ + ε/8)
,
δ

3

)
≤ Λ2,(1−γ)/2

(
ε

3(1− γ)
,
δ

3

)
.

(
a

(1− γ)1−α

)2(1− γ
ε

)2−2α

min

{
s− d, (1− γ)1/α(1− γ)

a1/αε

}2α−1

polylog

(
1

εδ

)
≤ a2

(
1

ε

)2−2α

min

{
s,

1

a1/αε

}2α−1

polylog

(
1

εδ

)
.

Plugging this into (68), we have that

ΛTN(a,α)(ε, δ) . a2

(
1

ε

)2−2α

max

{
min

{
s,

1

a1/αε

}2α−1

, d

}
polylog

(
d

εδ

)
.

As claimed, this is within logarithmic factors of the lower bound in Theorem 5 (for 1/2 <
α < 1, a ≥ 4, ε ∈ (0, 1/(24a1/α)), and δ ∈ (0, 1/24]), so that, combined with the tightness
(always) for the case 0 < α ≤ 1/2, we may conclude that the lower bounds in Theorem 5
are sometimes tight to within logarithmic factors.

D.2.4 Benign Noise

The case of benign noise proceeds analogously to the above. Since BE(0) = RE, tightness of
the lower bound for the case ν = 0 (up to constant factors) has already been addressed above
(supposing we include the lower bound from Theorem 3 as a lower bound on ΛBE(ν)(ε, δ) to
strengthen the lower bound in Theorem 7). For the remainder, we suppose ν ∈ (0, 1/2). For
γ ∈ [0, 1], let Di(γ) denote the set of all Pi ∈ BE(ν/(γ ∨ 2ν)) with Pi(Xi ×Y) = 1, for each
i ∈ {1, 2}. Again, for any P ∈ BE(ν), P (·) = P (X1×Y)P (·|X1×Y)+P (X2×Y)P (·|X2×Y),
and for any i ∈ {1, 2} with P (Xi × Y) > 0, P (· × Y|Xi × Y) is supported only in Xi, and
η(·;P (·|Xi×Y)) = η(·;P ) on Xi, so that we can take f?P (·|Xi×Y)(x) = f?P (x) for every x ∈ Xi;

18. Recall that, as mentioned in Section 5, the upper bounds on the label complexities stated in Section 5
hold without the stated restrictions on the values ε, δ ∈ (0, 1) and a.
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thus, there is a version of f?P (·|Xi×Y) contained in C. Furthermore,

erP (·|Xi×Y)(f
?
P (·|Xi×Y)) =

1

P (Xi × Y)
P ((x, y) : f?P (x) 6= y and x ∈ Xi)

≤ 1

P (Xi × Y)
P ((x, y) : f?P (x) 6= y) ≤ ν

P (Xi × Y)
.

Also, since every x ∈ Xi has f?P (·|Xi×Y)(x) = f?P (x) = sign(2η(x;P )−1) = sign(2η(x;P (·|Xi×
Y))−1), we have P ((x, y) : f?P (·|Xi×Y)(x) = y|x ∈ Xi) ≥ 1/2, so that erP (·|Xi×Y)(f

?
P (·|Xi×Y)) ≤

1/2. Together, these imply that P (·|Xi × Y) ∈ Di(P (Xi × Y)). We therefore have that
∀P ∈ BE(ν), P = γP1 + (1−γ)P2 for some γ ∈ [0, 1], P1 ∈ D1(γ), and P2 ∈ D2(1−γ): that
is, BE(ν) ⊆ D, for D as in Lemma 46 (with respect to these definitions of Di(·)). Therefore,
Lemma 46 implies that ∀ε, δ ∈ (0, 1),

ΛBE(ν)(ε, δ) ≤ ΛD(ε, δ)

. sup
γ∈[0,1]

max

{
Λ1,(γ−ε/8)∨0

(
ε

2(γ + ε/8)
,
δ

3

)
,Λ2,(1−γ−ε/8)∨0

(
ε

2(1− γ + ε/8)
,
δ

3

)}
. (69)

First note that, as above, for the case γ ≤ ε/4, we trivially have

Λ1,(γ−ε/8)∨0

(
ε

2(γ + ε/8)
,
δ

3

)
≤ Λ1,0

(
ε

2(γ + ε/4)
,
δ

3

)
≤ Λ1,0

(
1,
δ

3

)
= 0,

and similarly for the case γ ≥ 1− ε/4, we have Λ2,(1−γ−ε/8)∨0

(
ε

2(1−γ+ε/8) ,
δ
3

)
= 0.

For the remaining cases, for any γ ∈ (0, 1], since every Pi ∈ Di(γ) has f?Pi ∈ C, and
every h ∈ C \ Ci has h(x) = −1 for every x ∈ Xi, and the all-negative function x 7→ −1 is
contained in Ci, and Pi(Xi ×Y) = 1, without loss we can take f?Pi ∈ Ci. Together with the
definition of Di(γ), we have that Di(γ) is contained in the set of probability measures Pi
satisfying the benign noise condition with respect to the hypothesis class Ci, with parameter
ν
γ ∧

1
2 . Therefore, since the star number and VC dimension of C1 are both d, Theorem 7

implies that for any γ ∈ (ε/4, 1],19

Λ1,γ−ε/8

(
ε

2(γ + ε/8)
,
δ

3

)
≤ Λ1,γ/2

(
ε

3γ
,
δ

3

)
.

(
(ν/γ)2

(ε/γ)2
d+ d

)
polylog

(
d

εδ

)
.

(
ν2

ε2
∨ 1

)
d · polylog

(
d

εδ

)
.

Similarly, since the star number of C2 is s− d and the VC dimension of C2 is 1, Theorem 7
implies that for any γ ∈ [0, 1− ε/4),

Λ2,1−γ−ε/8

(
ε

2(1− γ + ε/8)
,
δ

3

)
≤ Λ2,(1−γ)/2

(
ε

3(1− γ)
,
δ

3

)
.

(
(ν/(1− γ))2

(ε/(1− γ))2
+ min

{
s− d, 1

ε

})
polylog

(
1

εδ

)
.

(
ν2

ε2
∨min

{
s,

1

ε

})
polylog

(
1

εδ

)
.

19. Again, as mentioned in Section 5, the restrictions on ε, δ stated in Theorem 7 are only required for the
lower bounds.

3596



Minimax Analysis of Active Learning

Plugging these into (69), we have that for ε ∈ (0, ν),

ΛBE(ν)(ε, δ) .

(
ν2

ε2
d+ min

{
s,

1

ε

})
polylog

(
d

εδ

)
.

Again, this is within logarithmic factors of the lower bound in Theorem 7 (for ε ∈ (0,
(1−2ν)/24) and δ ∈ (0, 1/24]), so that we may conclude that this lower bound is sometimes
tight to within logarithmic factors when ν is not near 0 (specifically, when ε < ν). For
ν ≤ ε, the above implies

ΛBE(ν)(ε, δ) . max

{
d,min

{
s,

1

ε

}}
polylog

(
d

εδ

)
,

which is within logarithmic factors of the lower bound in Theorem 3 (for ε ∈ (0, 1/9) and
δ ∈ (0, 1/3)). Since RE ⊆ BE(ν), this is also a lower bound on ΛBE(ν)(ε, δ). Thus, in this
case, we may conclude that this inherited lower bound on ΛBE(ν)(ε, δ) is sometimes tight to
within logarithmic factors, for ν near 0 (specifically, when ε ≥ ν).
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Institut de Mathématiques de Bourgogne, UMR CNRS 5584
9 Avenue Alain Savary, B.P. 47870
21078 Dijon, France

Bertrand Michel bertrand.michel@upmc.fr
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Abstract

Computational topology has recently seen an important development toward data analysis,
giving birth to the field of topological data analysis. Topological persistence, or persistent
homology, appears as a fundamental tool in this field. In this paper, we study topological
persistence in general metric spaces, with a statistical approach. We show that the use
of persistent homology can be naturally considered in general statistical frameworks and
that persistence diagrams can be used as statistics with interesting convergence properties.
Some numerical experiments are performed in various contexts to illustrate our results.

Keywords: persistent homology, convergence rates, topological data analysis

1. Introduction

During the last decades, the wide availability of measurement devices and simulation tools
has led to an explosion in the amount of available data in almost all domains of science,
industry, economy and even everyday life. Often these data come as point clouds sampled in
possibly high (or infinite) dimensional spaces. They are usually not uniformly distributed
in the embedding space but carry some geometric structure (manifold or more general
stratified space) which reflects important properties of the “systems” from which they have
been generated. Moreover, in many cases data are not embedded in Euclidean spaces and
come as (finite) sets of points with pairwise distance information. This often happens,
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e.g. with social network or sensor network data where each sensor may not know its own
position, but may evaluate its distance to the other sensors using the strength of the signal
received from them. In such cases, data are given as matrices of pairwise distances between
the observations, i.e. as (discrete) metric spaces. Again, although they come as abstract
spaces, these data often carry specific topological and geometric structures.

1.1 Topological Data Analysis

A large amount of research has been done on dimensionality reduction, manifold learning
and geometric inference for data embedded in Euclidean spaces and assumed to be concen-
trated around submanifolds; see for instance Wang (2012). However, the assumption that
data lies on a manifold may fail in many applications. In addition, the strategy of represent-
ing data by points in Euclidean spaces may introduce large metric distortions as the data
may lie in highly curved spaces. With the emergence of new geometric inference and alge-
braic topology tools, computational topology (Edelsbrunner and Harer, 2010) has recently
seen an important development toward data analysis, giving birth to the field of Topological
Data Analysis (TDA) (Carlsson, 2009) whose aim is to infer relevant, multiscale, qualita-
tive and quantitative topological structures directly from the data. Topological persistence,
more precisely persistent homology appears as a fundamental tool for TDA. Roughly, ho-
mology (with coefficient in a field such as, e.g., Z{2Z) associates to any topological space
M, a family of vector spaces (the so-called homology groups) HkpMq, k “ 0, 1, . . ., each of
them encoding topological features of M. The kth Betti number of M, denoted βk, is the
dimension of HkpMq and measures the number of k-dimensional features of M: for exam-
ple, β0 is the number of connected components of M, β1 the number of independent cycles
or “tunnels”, β2 the number of “voids”, etc. (see Hatcher, 2001). Persistent homology
provides a framework (Edelsbrunner et al., 2002; Zomorodian and Carlsson, 2005; Chazal
et al., 2012a) and efficient algorithms to encode the evolution of the homology of families
of nested topological spaces indexed by a set of real numbers that may often be seen as
scales, such as the sublevel sets of a function, the union of growing balls, etc. The obtained
multiscale topological information is then represented in a simple way as a barcode or per-
sistence diagram; see Figure 4 and Section 2.3.
In TDA, persistent homology has found applications in many fields, including neuroscience
(Singh et al., 2008), bioinformatics (Kasson et al., 2007), shape classification (Chazal et al.,
2009b), clustering (Chazal et al., 2013), sensor networks (De Silva and Ghrist, 2007) or sig-
nal processing (Bauer et al., 2014). It is usually computed for a filtered simplicial complex
built on top of the available data, i.e. a nested family of simplicial complexes whose vertex
set is the data set (see Section 2.3). The obtained persistence diagrams are then used as
“topological signatures” to exhibit and compare the topological structure underlying the
data; see Figure 1. The relevance of this approach relies on stability results ensuring that
close data sets, with respect to the Hausdorff or Gromov-Hausdorff distance, have close
persistence diagrams (Cohen-Steiner et al., 2007; Chazal et al., 2009a, 2012a,b). However
these results are not statistical and thus only provide heuristic or exploratory uses in data
analysis.

The goal of this paper is to show that, thanks to recent results by Chazal et al. (2012a,b)
that allow to consider persistence diagrams associated to infinite spaces, the use of persis-
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Figure 1: A classical pipeline for persistence in TDA.

tent homology in TDA can be naturally considered in general statistical frameworks and
persistence diagrams can be used as statistics with interesting convergence properties.

1.2 Contribution

In this paper we assume that the available data is the realization of a probability distribution
supported on an unknown compact metric space. We consider the persistent homology of
different filtered simplicial complexes built on top of the data. We study, with a minimax
approach, the rate of convergence of the associated persistence diagrams to some well-
defined persistence diagram associated to the support of the probability distribution. More
precisely, we assume that we observe a set of n points pXn “ tX1 . . . , Xnu in a metric space
pM, ρq, drawn i.i.d. from some unknown measure µ whose support is a compact set denoted
Xµ ĎM. We also assume that µ satisfies the so-called pa, bq-standard assumption for some
constants a, b ą 0: for any x P Xµ and any r ą 0, µpBpx, rqq ě minparb, 1q. The following
theorem illustrates the kind of results we obtain under such assumption.

Theorem (4 in Section 3): Let pM, ρq, a ą 0 and b ą 0 as above. Then for any
measure µ satisfying the pa, bq-standard assumption

E
”

dbpdgmpFiltpXµqq, dgmpFiltppXnqqq
ı

ď C

ˆ

lnn

n

˙1{b

where the constant C only depends on a and b (not on M). Assume moreover that there
exists a non isolated point x in M and consider any sequence pxnq P pMztxuqN such that

ρpx, xnq ď panq
´1{b. Then for any estimator ydgmn of dgmpFiltpXµqq:

lim inf
nÑ8

ρpx, xnq
´1E

”

dbpdgmpFiltpXµqq, ydgmnq

ı

ě C 1

where C 1 is an absolute constant.
Our approach relies on the general theory of persistence modules and our results follow

from two recently proven properties of persistence diagrams (Chazal et al., 2012b, 2009a,
2012a).
First, as Xµ can be any compact metric space (possibly infinite), the filtered complex
FiltpXµq is usually not finite or even countable and the existence of its persistence diagram
cannot be established from the “classical” persistence theory (Zomorodian and Carlsson,
2005; Edelsbrunner et al., 2002). In our setting, the existence of dgmpFiltpXµqq follows from
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the general persistence framework introduced by Chazal et al. (2009a, 2012a). Notice that
although this framework is rather abstract and theoretical, it does not have any practical
drawback as only persistence diagrams of complexes built on top of finite data are computed.
Second, a fundamental property of the persistence diagrams we are considering is their
stability proven by Chazal et al. (2012b): the bottleneck distance between dgmpFiltpXµqq
and dgmpFiltppXnqq is upper bounded by twice the Gromov-Hausdorff distance between Xµ
and pXn. This result establishes a strong connection between our persistence estimation
problem and support estimation problems. Upper bounds on the rate of convergence of
persistence diagrams are then easily obtained using the same arguments as the ones usually
used to obtain convergence results for support estimation with respect to the Hausdorff
metric. We take advantage of this general remark to find rates of convergence of persistence
diagrams in general metric spaces (Section 3) and also in the more classical case where
the measure is supported in Rd (Section 4). Using Le Cam’s lemma, we also compute
the corresponding lower bounds to check that the rates of convergence are optimal in the
minimax sense.

1.3 Related Works

Although it is attracting more and more interest, the use of persistent homology in data
analysis remains widely heuristic. There are relatively few papers establishing connections
between persistence and statistics and, despite a few promising results, the statistical anal-
ysis of homology, persistent homology and more general topological and geometric features
of data is still in its infancy.

One of the first statistical results about persistent homology has been given in a para-
metric setting, by Bubenik and Kim (2007). They show for instance that for data sampled
on an hypersphere according to a von-Mises Fisher distribution (among other distributions),
the persistence diagrams of the density can be estimated with the parametric rate n´1{2.
However assuming that both the support and the parametric family of the distribution are
known are strong assumptions which are hardly met in practice.

Closely related to our approach, statistical analysis of homology and of persistent homol-
ogy has also been proposed very recently by Balakrishnan et al. (2012); Fasy et al. (2014) in
the specific context of manifolds, i.e. when the geometric structure underlying the data is
assumed to be a smooth submanifold of an Euclidean space. In the first paper, the authors
exhibit minimax rates of convergence for the estimation of the Betti numbers of the under-
lying manifold under different models of noise. This approach is also strongly connected to
manifold estimation results obtained by Genovese et al. (2012b). Related lower bounds have
also been recently obtained by Weinberger (2014) in a different and more restrictive setting.
Our results are in the same spirit as Balakrishnan et al. (2012) but extend to persistent
homology and allow us to deal with general compact metric spaces. In the second paper,
the authors develop several methods to find confidence sets for persistence diagrams using
subsampling methods and kernel estimators among other approaches. Although they tackle
a different problem, it has some connections with the problem considered in the present
paper that we briefly mention in Section 3.4.

Both Fasy et al. (2014) and our work start from the observation that persistence diagram
inference is strongly connected to the better known problem of support estimation. As far
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as we know, only few results about support estimation in general metric spaces have been
given in the past. An interesting framework is proposed by De Vito et al. (2014): in this
paper the support estimation problem is tackled using kernel methods. On the other hand, a
large amount of literature is available for measure support estimation in Rd; see for instance
the review by Cuevas (2009) for more details. Note that many results on this topic are given
with respect to the volume of symmetric set difference (see for instance Biau et al., 2009, and
references therein) while in our topological estimation setting we need convergence results
for support estimation in Hausdorff metric.

The estimator pXn “ tX1, . . . Xnu and the Devroye and Wise (1980) estimator, Ŝn “
Ťn
i“1 B̄pXi, εnq, where B̄px, εq denotes the closed ball centered at x with radius ε, are

both natural estimators of the support. The use of Ŝn is particularly relevant when the
convergence of the measure of the symmetric set difference is considered but does not
provide better results than pXn in our Hausdorff distance setting. The convergence rate of
pXn to the support of the measure with respect to the Hausdorff distance is given by Cuevas
and Rodŕıguez-Casal (2004) in Rd. Support estimation in Rd has also been studied under
various additional assumptions such as convexity assumptions (Dümbgen and Walther, 1996;
Rodŕıguez-Casal, 2007; Cuevas et al., 2012) or through boundary fragments estimation
(Korostelëv and Tsybakov, 1993; Korostelëv et al., 1995) just to name a few. Another
classical assumption is that the measure has a density with respect to the Lebesgue measure.
In this context, plug-in methods based on non parametric estimators of the density have
been proposed by Cuevas and Fraiman (1997) and Tsybakov (1997). We consider persistence
diagram estimation in the density framework of Singh et al. (2009) in Section 4 and show
in this particular context that pXn allows us to define a persistence diagram estimator that
reaches optimal rates of convergence in the minimax sense.

A few different methods have also been proposed for topology estimation in non-determi-
nistic frameworks such as those based on deconvolution (Caillerie et al., 2011; Niyogi et al.,
2011). Several recent attempts have also been made, with completely different approaches,
to study persistence diagrams from a statistical point of view, such as Mileyko et al. (2011)
who study probability measures on the space of persistence diagrams or Bubenik (2012)
who introduces a functional representation of persistence diagrams, the so-called persistence
landscapes, allowing means and variance of persistence diagrams to be defined. Notice that
our results should easily extend to persistence landscapes.

The paper is organized as follows. Background notions and results on metric spaces,
filtered simplicial complexes, and persistent homology that are necessary to follow the pa-
per are presented in Section 2. The rates of convergence for the estimation of persistence
diagrams in general metric spaces are established in Section 3. We also study these con-
vergence rates in Rd for a few classical problems in Section 4. Some numerical experiments
illustrating our results are given in Section 5. All the technical proofs are given in Appendix.

2. Background

We first recall the required background about measured metric spaces and persistent ho-
mology.
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2.1 Metric Measure Spaces

Recall that a metric space is a pair pM, ρq where M is a set and ρ : M ˆ M Ñ R is a
nonnegative map such that for any x, y, z P M, ρpx, yq “ 0 if and only if x “ y, ρpx, yq “
ρpy, xq and ρpx, zq ď ρpx, yq`ρpy, zq. We denote by KpMq the set of all the compact subsets
of M. For a point x P M and a subset C P KpMq, the distance dpx,Cq of x to C is the
minimum over all y P C of dpx, yq. The Hausdorff distance dHpC1, C2q between two subsets
C1, C2 P KpMq is the maximum over all points in C1 of their distance to C2 and over all
points in C2 of their distance to C1 :

dHpC1, C2q “ maxt sup
xPC1

dpx,C2q, sup
yPC2

dpy, C1q u.

Note that pKpMq,dHq is a metric space and can be endowed with its Borel σ-algebra.
Two compact metric spaces pM1, ρ1q and pM2, ρ2q are isometric if there exists a bijection

Φ : M1 ÑM2 that preserves distances, namely: @x, y PM1, ρ2pΦpxq,Φpyqq “ ρ1px, yq. Such
a map Φ is called an isometry. One way to compare two metric spaces is to measure how
far these two metric spaces are from being isometric. The corresponding distance is called
the Gromov-Hausdorff distance (see for instance Burago et al., 2001). Intuitively, it is the
infimum of their Hausdorff distance over all possible isometric embeddings of these two
spaces into a common metric space.

Definition 1 Let pM1, ρ1q and pM2, ρ2q be two compact metric spaces. The Gromov-
Hausdorff distance dGH ppM1, ρ1q , pM2, ρ2qq is the infimum of the real numbers r ě 0 such
that there exist a metric space pM, ρq and subspaces C1 and C2 in KpMq which are iso-
metric to M1 and M2 respectively and such that dHpC1, C2q ă r. The Gromov-Hausdorff
distance dGH defines a metric on the space K of isometry classes of compact metric spaces
(see Burago et al., 2001, Theorem 7.3.30).

Notice that when M1 and M2 are subspaces of a same metric space pM, ρq then dGHpM1,M2q ď

dHpM1,M2q.

2.2 Measure

Let µ be a probability measure on pM, ρq equipped with its Borel algebra. Let Xµ denote
the support of the measure µ, namely the smallest closed set with probability one. In the
following of the paper, we will assume that Xµ is compact and thus Xµ P KpMq. Also note
that pXµ, ρq P K.

The main assumption we will need in the following of the paper provides a lower bound
on the measure µ. We say that µ satisfies the standard assumption if there exist a1 ą 0,
r0 ą 0 and b ą 0 such that

@x P Xµ, @r P p0, r0q, µpBpx, rqq ě a1rb (2.1)

where Bpx, rq denotes the open ball of center x and radius r in M. This assumption is
popular in the literature about set estimation (see for instance Cuevas, 2009) but it has
generally been considered with b “ d in Rd. Since Xµ is compact, reducing the constant a1

to a smaller constant a if necessary, we easily check that assumption (2.1) is equivalent to

@x P Xµ, @r ą 0, µpBpx, rqq ě 1^ arb (2.2)

3608



Convergence Rates for Persistence Diagram Estimation in TDA

Figure 2: From left to right: the α sublevelset of the distance function to a point set X in
R2, the α-complex, CechαpXq and Rips2αpXq. The last two include a tetrahedron.

where x ^ y denotes the minimum between x and y. We then say that µ satisfies the
pa, bq-standard assumption.

2.3 Simplicial Complexes on Metric Spaces

The geometric complexes we consider in this paper are built on top of metric spaces and
come as nested families indexed by a real parameter. Topological persistence is used to infer
and encode the evolution of the topology of theses families as the parameter grows. For a
complete definition of these geometric filtered complexes built on top of metric spaces and
their use in TDA, we refer to Chazal et al. (2012b), Section 4.2. Here we only give a brief
reminder and refer to Figure 2 for illustrations. A simplicial complex C is a set of simplexes
(points, segments, triangles, etc) such that any face from a simplex in C is also in C and the
intersection of any two simplices of C is a (possibly empty) face of these simplices. Notice
that we do not assume such simplicial complexes to be finite. The complexes we consider
in this paper can be seen as a generalization of neighborhood graphs in dimension larger
than 1.

Given a metric space X which will also serve as the vertex set, the Vietoris-Rips complex
RipsαpXq is the set of simplices rx0, . . . , xks such that dXpxi, xjq ď α for all pi, jq. The Čech
complex CechαpXq is similarly defined as the set of simplices rx0, . . . , xks such that the
k ` 1 closed balls Bpxi, αq have a non-empty intersection. Note that these two complexes
are related by RipsαpXq Ď CechαpXq Ď Rips2αpXq. Note also that these two families of
complexes only depend on the pairwise distances between the points of X.

When X is embedded in some larger metric space M, we can extend the definition of the
Čech complex to the set of simplices rx0, . . . , xks such that the k ` 1 closed balls Bpxi, αq
have a non-empty intersection in M (not just in X). We can also define the alpha-complex or
α-complex as the set of simplices rx0, . . . , xks such that, for some β ď α that depends on the
simplex, the k`1 closed balls Bpxi, βq and the complement of all the other balls Bpx, βq for
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H0 H1 H2

Figure 3: A torus T filtered by its z-coordinate: Filtα “ tP P T|Pz ď αu, its persistence
barcode, and its persistence diagram.

x P X have a non-empty intersection in M. In the particular case where M “ Rd, those two
complexes have the same homotopy type (they are equivalent for our purposes) as the union
of the balls Bpx, αq for x P X, as in Figure 2, and the α-complex only contains simplices
of dimension at most d. Note that the union of the balls Bpx, αq is also the α-sublevel set
of the distance to X function dp¨,Xq, and as a consequence, those filtrations thus provide a
convenient way to study the evolution of the topology of the union of growing balls or the
sublevel sets of dp¨,Xq (see Figure 2 and Section 5 for more examples).

There are several other families that we could also have considered, most notably witness
complexes (Chazal et al., 2012b). Extending our results to them is straightforward and
yields very similar results, so we will restrict to the families defined above in the rest of the
paper.

All these families of complexes have the fundamental property that they are non-
decreasing with α; for any α ď β, there is an inclusion of RipsαpXq in RipsβpXq, and

similarly for the Čech, and Alpha complexes. They are thus called filtrations. In the fol-
lowing, the notation FiltpXq :“ pFiltαpXqqαPA denotes one of the filtrations defined above.

2.4 Persistence Diagrams

An extensive presentation of persistence diagrams is available in Chazal et al. (2012a). We
recall a few definitions and results that are needed in this paper.

We first give the intuition behind persistence. Given a filtration as above, the topology of
FiltαpXq changes as α increases: new connected components can appear, existing connected
components can merge, cycles and cavities can appear and can be filled, etc. Persistent
homology is a tool that tracks these changes, identifies features and associates a lifetime to
them. For instance, a connected component is a feature that is born at the smallest α such
that the component is present in FiltαpXq, and dies when it merges with an older connected
component. Intuitively, the longer a feature persists, the more relevant it is.
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Figure 4: An α-complex filtration, the sublevelset filtration of the distance function, and
their common persistence barcode (they are homotopy equivalent).

We now formalize the presentation a bit. Given a filtration as above, we can con-
sider the Z2-homology groups 1 of the simplicial complexes and get a sequence of vec-
tor spaces pHpFiltαpXqqqαPA, where the inclusions FiltαpXq Ď FiltβpXq induce linear maps
HpFiltαpXqq Ñ HpFiltβpXqq. In many cases, this sequence can be decomposed as a direct
sum of intervals, where an interval is a sequence of the form

0 Ñ . . .Ñ 0 Ñ Z2 Ñ . . .Ñ Z2 Ñ 0 Ñ . . .Ñ 0

(the linear maps Z2 Ñ Z2 are all the identity). These intervals can be interpreted as
features of the (filtered) complex, such as a connected component or a loop, that appear
at parameter αbirth in the filtration and disappear at parameter αdeath. An interval is
determined uniquely by these two parameters. It can be represented as a segment whose
extremities have abscissae αbirth and αdeath; the set of these segments is called the barcode
of FiltpXq. An interval can also be represented as a point in the plane, where the x-
coordinate indicates the birth time and the y-coordinate the death time. The set of points
(with multiplicity) representing the intervals is called the persistence diagram dgmpFiltpXqq.
Note that the diagram is entirely contained in the half-plane above the diagonal ∆ defined
by y “ x, since death always occurs after birth. Chazal et al. (2012a) show that this
diagram is still well-defined even in cases where the sequence might not be decomposable
as a finite sum of intervals, and in particular dgmpFiltpXqq is well-defined for any compact
metric space X (Chazal et al., 2012b). Note that for technical reasons, the points of the
diagonal ∆ are considered as part of every persistence diagram, with infinite multiplicity.
The most persistent features (supposedly the most important) are those represented by
the longest bars in the barcode, i.e. the points furthest from the diagonal in the diagram,
whereas points close to the diagonal can be interpreted as noise.

1. The notion of (simplicial) homology is a classical concept in algebraic topology that provides powerful
tools to formalize and handle the notion of topological features of a simplicial complex in an algebraic
way. For example the 0-dimensional homology group H0 represents the 0-dimensional features, i.e. the
connected components of the complex, H1 represents the 1-dimensional features (cycles), H2 represents
the 2-dimensional features (cavities),... See Hatcher (2001) for an introduction to simplicial homology.
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ε ∆

Figure 5: Two diagrams at bottleneck distance ε.

The space of persistence diagrams is endowed with a metric called the bottleneck distance
db. Given two persistence diagrams, it is defined as the infimum, over all perfect matchings
of their points, of the largest L8-distance between two matched points, see Figure 5. The
presence of the diagonal in all diagrams means we can consider partial matchings of the off-
diagonal points, and the remaining points are matched to the diagonal. With more details,
given two diagrams dgm1 and dgm2, we can define a matching m as a subset of dgm1ˆdgm2

such that every point of dgm1z∆ and dgm2z∆ appears exactly once in m. The bottleneck
distance is then:

dbpdgm1, dgm2q “ inf
matching m

max
pp,qqPm

||q ´ p||8.

Note that points close to the diagonal ∆ are easily matched to the diagonal, which fits with
their interpretation as irrelevant noise.

A fundamental property of persistence diagrams, proved by Chazal et al. (2012a), is
their stability. If X and X̃ are two compact metric spaces then one has

db

´

dgmpFiltpXqq, dgmpFiltpX̃qq
¯

ď 2dGH

´

X, X̃
¯

. (2.3)

Moreover, if X and X̃ are embedded in the same metric space pM, ρq then one has

db

´

dgmpFiltpXqq, dgmpFiltpX̃qq
¯

ď 2dGH

´

X, X̃
¯

ď 2dH

´

X, X̃
¯

. (2.4)

Notice that these properties are only metric properties: they do not involve here any
probability measure on X and X̃.

3. Persistence Diagram Estimation in Metric Spaces

Let pM, ρq be a metric space. Assume that we observe n points X1 . . . , Xn in M drawn i.i.d.
from some unknown measure µ whose support is a compact set denoted Xµ.

3.1 From Support Estimation to Persistence Diagram Estimation

The Gromov-Hausdorff distance allows us to compare Xµ with compact metric spaces not
necessarily embedded in M. We thus consider pXµ, ρq as an element of K (rather than an
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element of KpMq). In the following, an estimator pX of Xµ is a function of X1 . . . , Xn that
takes values in K and which is measurable for the Borel algebra induced by dGH.

Let FiltpXµq and FiltppXq be filtrations defined on Xµ and pX. The statistical analysis of
persistence diagrams proposed above starts from the following key fact: according to (2.3),
for any ε ą 0:

P
´

db

´

dgmpFiltpXµqq, dgmpFiltppXqq
¯

ą ε
¯

ď P
´

dGHpXµ, pXq ą 2ε
¯

(3.1)

where the probability corresponds to the product measure µbn. Our strategy then consists
in finding an estimator of the support which is close to Xµ for the dGH distance. Note that
this general strategy of estimating Xµ in K is not only of theoretical interest. Indeed, as
mentioned in the introduction, in some cases the space M is unknown and the observations
X1 . . . , Xn are just known through their matrix of pairwise distances ρpXi, Xjq, i, j “
1, ¨ ¨ ¨ , n. The use of the Gromov-Hausdorff distance then allows us to consider this set of
observations as an abstract metric space of cardinality n independently of the way it is
embedded in M.

This general framework includes the more standard approach consisting in estimating
the support by restraining the values of pX to KpMq. According to (2.4), in this case, for
any ε ą 0:

P
´

db

´

dgmpFiltpXµqq, dgmpFiltppXqq
¯

ą ε
¯

ď P
´

dHpXµ, pXq ą 2ε
¯

. (3.2)

Using equations (3.1) and (3.2) the problem of persistence diagrams estimation reduces to
the better known problem of estimating the support of a measure.

Let pXn :“ tX1, . . . , Xnu be a set of independent observations sampled according to µ
endowed with the restriction of the distance ρ to this set. This finite metric space is a
natural estimator of the support Xµ. In several contexts discussed in the following, pXn
shows optimal rates of convergence for the estimation of Xµ with respect to the Hausdorff
and Gromov-Hausdorff distance. From (3.2) we will then obtain upper bounds on the
rate of convergence of FiltppXnq. We also obtain the corresponding lower bounds to prove
optimality.

In the next subsection, we tackle persistence diagram estimation in the general frame-
work of abstract metric spaces. We will consider more particular contexts later in the
paper.

3.2 Convergence of Persistence Diagrams

Cuevas and Rodŕıguez-Casal (2004) give the rate of convergence in Hausdorff distance of
pXn for some probability measure µ satisfying an pa, bq-standard assumption on Rd. In this
section, we consider the more general context where µ is a probability measure satisfying
an pa, bq-standard assumption on a metric space pM, ρq, with b ą 0. We give below the rate
of convergence of pXn in this context. The proof follows the lines of the proof of Cuevas and
Rodŕıguez-Casal (2004, Theorem 3).

Theorem 2 Assume that a probability measure µ on M satisfies the pa, bq-standard as-
sumption. Then, for any ε ą 0:

P
´

dHpXµ, pXnq ą 2ε
¯

ď
2b

aεb
expp´naεbq ^ 1.
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Moreover, there exist two constants C1 and C2 only depending on a and b such that

lim sup
nÑ8

ˆ

n

log n

˙1{b

dHpXµ, pXnq ď C1 almost surely,

and

lim
nÑ8

P

˜

dHpXµ, pXnq ď C2

ˆ

log n

n

˙1{b
¸

“ 1.

Since dGHpXµ, pXnq ď dHpXµ, pXnq the above theorem also holds when the Gromov dis-

tance is replaced by the Gromov-Hausdorff distance. In practice this allows to consider pXn
as an abstract metric space without taking care of the way it is embedded in the, possibly
unknown, metric space M.

Using (3.1) and (2.4), we then derive from the previous result the following corollary for
the convergence rate of the persistence diagram FiltppXnq toward FiltpXµq.

Corollary 3 Assume that the probability measure µ on M satisfies the pa, bq-standard as-
sumption, then for any ε ą 0:

P
´

db

´

dgmpFiltpXµqq, dgmpFiltppXnqq
¯

ą ε
¯

ď
2b

aεb
expp´naεbq ^ 1. (3.3)

Moreover,

lim sup
nÑ8

ˆ

n

log n

˙1{b

db

´

dgmpFiltpXµqq, dgmpFiltppXnqq
¯

ď C1 almost surely,

and

lim
nÑ8

P

˜

db

´

dgmpFiltpXµqq, dgmpFiltppXnqq
¯

ď C2

ˆ

log n

n

˙1{b
¸

“ 1

where C1 and C2 are the same constants as in Theorem 2.

3.3 Minimax Optimal Rate of Convergence

Let Ppa, b,Mq be the set of all the probability measures on the metric space pM, ρq satisfying
the pa, bq-standard assumption on M:

Ppa, b,Mq :“
!

µ on M | Xµ is compact and @x P Xµ, @r ą 0, µ pBpx, rqq ě 1^ arb
)

.

The next theorem gives upper and lower bounds for the rate of convergence of persistence
diagrams. The upper bound comes as a consequence of Corollary 3, while the lower bound
is established using the so-called Le Cam’s lemma (see Lemma 9 in Appendix).

Theorem 4 Let pM, ρq be a metric space and let a ą 0 and b ą 0. Then:

sup
µPPpa,b,Mq

E
”

dbpdgmpFiltpXµqq, dgmpFiltppXnqqq
ı

ď C

ˆ

log n

n

˙1{b

(3.4)
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where the constant C only depends on a and b (not on M). Assume moreover that there
exists a non isolated point x in M and consider any sequence pxnq P pMztxuqN such that

ρpx, xnq ď panq
´1{b. Then for any estimator ydgmn of dgmpFiltpXµqq:

lim inf
nÑ8

ρpx, xnq
´1 sup

µPPpa,b,Mq
E
”

dbpdgmpFiltpXµqq, ydgmnq

ı

ě C 1

where C 1 is an absolute constant.

Consequently, the estimator dgmpFiltppXnqq is minimax optimal on the space Ppa, b,Mq
up to a logarithmic term as soon as we can find a non-isolated point in M and a sequence
pxnq in M such that ρpxn, xq „ panq

´1{b. This is obviously the case for the Euclidean space
Rd.

One classical method to obtain tight lower bounds with sup norm metrics is applying a
Fano’s strategy based on several hypotheses (see for instance Tsybakov and Zaiats, 2009,
Chapter 2). Applying this method is more difficult than it seems in our context. Indeed,
the bottleneck distance makes tricky the construction of multiple hypotheses. However, in
specific cases, we can obtain the matching lower bound with a more direct proof.

Theorem 5 Consider p1
2 , 1q-standard measures on the unit segment r0, 1s. For any esti-

mator ydgmn of dgmpFiltpXµqq:

lim inf
nÑ8

sup
µPPp 1

2
,1,r0,1sq

n

log n
E
”

dbpdgmpFiltpXµqq, ydgmnq

ı

ě C

where C is an absolute constant.

It should be straightforward to extend this to measures on the cube r0, 1sb, as long as b is an
integer, with a lower-bound of Cbp

logn
n q1{b. Note that this bound applies to the homology

of dimension b. It is possible that lower-dimensional homology may be easier to estimate.

3.4 Confidence Sets for Persistence Diagrams

Corollary 3 can also be used to find confidence sets for persistence diagrams. Assume that
a and b are known and let Ψ : η Ñ expp´ηq{η. Then for α P p0, 1q,

Bdb

˜

dgmpFiltpXµqq,
„

1

na
Ψ´1

´ α

n2b

¯

1{b
¸

is a confidence region for dgm pRipspµpKqqq of level 1 ´ α. Nevertheless, in practice the
coefficients a and b can be unknown. In Rd, the coefficient b can be taken equal to the
ambient dimension d in many situations. Finding lower bounds on the coefficient a is
a tricky problem that is out of the scope of the paper. Alternative solutions have been
proposed recently by Fasy et al. (2014) and we refer the reader to this paper for more
details.
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4. Persistence Diagram Estimation in Rk

In this section, we study the convergence rates of persistence diagram estimators for data
embedded in Rk. In particular we study two situations of interest proposed respectively by
Singh et al. (2009) and Genovese et al. (2012b) in the context of measure support estimation.
In the first situation the measure has a density with respect to the Lebesgue measure on
Rd whose behavior is controlled near the boundary of its support. In the second case, the
measure is supported on a manifold. These two frameworks are complementary and provide
realistic frameworks for topological inference in Rd.

4.1 Minimax Optimal Persistence Diagram Estimation for Nonsingular
Measures on Rk

The paper by Singh et al. (2009) is a significant breakthrough for level set estimation
through density estimation. It presents a fully data-driven procedure, in the spirit of Lep-
ski’s method, that is adaptive to unknown local density regularity and achieves a Hausdorff
error control that is minimax optimal for a class of level sets with very general shapes. In
particular, the assumptions of Singh et al. (2009) describe the smoothness of the density
near the boundary of the support.

In this section, we propose to study persistence diagram inference in the framework of
Singh et al. (2009) since this framework is very intuitive and natural. Nevertheless, we do
not use the estimator of Singh et al. (2009) for this task since we only consider here the
support estimation problem (and not the more general level set issue as in Singh et al.,
2009). Indeed, we will see that the estimator X̂n has the optimal rate of convergence for
estimating the support according to dH, as well as for estimating the persistence diagram.
We now recall the framework of Singh et al. (2009, Section 4.3) corresponding to support
set estimation.

Let X1, . . . , Xn be i.i.d. observations drawn from an unknown probability measure µ
having density f with respect to the Lebesgue measure and defined on a compact set χ Ă Rk.
Let Xf denote the support of µ, and let G0 :“ tx P χ | fpxq ą 0u. The boundary of a set
G is denoted BG and for any ε ą 0, IεpGq :“

Ť

x | Bpx,εqĂGBpx, εq is the ε-inner of G. The
two main assumptions of Singh et al. (2009) are the following:

rAs: The density f is upper bounded by fmax ą 0 and there exist constants α, Ca, δa ą 0
such that for all x P G0 with fpxq ď δa, fpxq ě Ca dpx, BG0q

α.

rBs: There exist constants ε0 ą 0 and Cb ą 0 such that for all ε ď ε0, IεpG0q ‰ H and
dpx, IεpG0qq ď Cb ε for all x P BG0.

We denote by Fpαq the set composed of all the densities on χ satisfying assumptions rAs
and rBs, for a fixed set of positive constants Ca, Cb, δa, ε0, fmax, p and α.

Assumption rAs describes how fast the density increases in the neighborhood of the
boundary of the support: the smaller α, the easier the support may be possible to detect.
Assumption rBs prevents the boundary from having arbitrarily small features (as for cusps).
We refer to Singh et al. (2009) for more details and discussions about these two assumptions
and their connections with assumptions in other works.

For persistence diagram estimation, we are interested in estimating the support Xf
whereas the assumptions rAs and rBs involve the set G0. However, as stated in Lemma 11
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(given in Appendix B.4), these two sets are here almost identical in the sense that dHpG0,Xf q “
0. Moreover, it can be proved that under assumptions rAs and rBs, the measure µ also sat-
isfies the standard assumption with b “ α`k (see Lemma 11). According to Proposition 4,
the estimator dgmpFiltppXnqq thus converges in expectation to dgmpFiltpXf qq for db with a
rate upper bounded by plog n{nq1{pk`αq. We also show that this rate is minimax over the
sets Fpαq by adapting the ideas of the proof given by Singh et al. (2009) for the Hausdorff
lower bound.

Proposition 6 1. For all n ě 1,

supfPFpαqE
”

dbpdgmpFiltpXf qq, dgmpFiltppXnqq
ı

ď C

ˆ

n

log n

˙´1{pk`αq

where C is a constant depending only on Ca, Cb, δa, ε0, fmax, p and α.

2. There exists c ą 0 such that

inf
zdgmn

sup
fPFpαq

E
”

dbpdgmpFiltpXf qq, ydgmnq

ı

ě cn´1{pk`αq

for n large enough. The infimum is taken over all possible estimators ydgmn of
dgmpFiltpXf qq based on n observations.

Remark 7 The paper by Singh et al. (2009) is more generally about adaptive level set
estimation. For this problem, Singh et al. define an histogram based estimator. Let Aj

denote the collection of cells, in a regular partition of χ “ r0, 1sk into hypercubes of dyadic
side length 2´j. Their estimator f̂ is the histogram f̂pAq “ P̂ pAq{µpAq, where P̂ pAq “
ř

i“1...n 1XiPA. For estimating the level set Gγ :“ tx|fpxq ě γu, they consider the estimator

Ĝγ,j “
ď

APAj | f̂pAqąγ

A.

It is proved by Singh et al. (2009) that Ĝγ,ĵ achieves optimal rates of convergence for esti-

mating the level sets, with ĵ chosen in a data driven way. Concerning support estimation,
they also show that Ĝ0,j achieves optimal rates of convergence for estimating G0. We have
seen that in this context it is also the case for the estimator Xn. Since no knowledge of α is
required for this last estimator, we thus prefer to use this simpler estimator in this context.

4.2 Minimax Optimal Rates of Convergence of Persistence Diagram
Estimation for Singular Measures in RD

We now consider the case where the support of µ is a smooth submanifold of RD. As far
as we know, rates of convergence for manifold estimation, namely for the estimation of the
support of a singular probability measure supported on a Riemannian manifold of RD, have
only been studied recently by Genovese et al. (2012b,a). These papers assume several noise
models, which all could be considered in the context of persistence diagram estimation.
However, for the sake of simplicity, we only study here the problem where no additional
noise is observed, which is referred as the noiseless model in the first of these two papers.
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As before, upper bounds given by Genovese et al. (2012b) on the rates of convergence for
the support estimation in Hausdorff distance directly provide upper bounds on the rates of
convergence of the persistence diagram of the support. Before giving the rates of convergence
we first recall and discuss the assumptions of Genovese et al. (2012b).

For any r ą 0 and any set A Ă RD, let A‘ ε :“
Ť

aPABpa, rq. Let ∆pXµq be the largest
r such that each point in Xµ ‘ r has a unique projection onto Xµ, this quantity has been
introduced by Federer (1959), it is called reach or condition number in the literature.

For a fixed positive integer k ă D, for some fixed positive constants b, B, κ and for
a fixed compact domain χ in RD, Genovese et al. (2012b) define the set of probability
measures H :“ Hpd,A,B, κ, χq on χ satisfying the two following assumptions:

• rH1s The support of the measure µ is a compact Riemannian manifold Xµ (included
in χ) of dimension k whose reach satisfies

∆pXµq ě κ. (4.1)

• rH2s The measure µ is assumed to have a density g with respect to k-dimensional
volume measure volk on Xµ, such that

0 ă A ď inf
yPXµ

gpyq ď sup
yPXµ

gpyq ď B ă 8. (4.2)

These two assumptions can be easily connected to the standard assumption. Indeed,
according to Niyogi et al. (2008) and using rH1s, for all r ď κ there exists some constant
C ą 0 such that for any x P Xµ, we have

volk pBpx, rq X Xµq ě C

ˆ

1´
r2

4κ2

˙k{2

rk

ě C 1rk

and the same holds for µ according to rH2s. Under these two assumptions, µ satisfies the
standard assumption with b “ k. Thus, if we take X̂n for estimating the support Xµ in

this context, we obtain a rate of convergence upper bounded by p logn
n q1{k both for support

and persistence diagram estimation. Nevertheless, this rate is not minimax optimal for
estimating the support on the spaces H as shown by Genovese et al. (2012b, Theorem
2). The correct minimax rate is n´2{k and the same is true for the persistence diagram
estimation, as stated in the following proposition. However, the achievement of this optimal
rate relies on a “theoretical” estimator proposed by Genovese et al. (2012b) that can not
be computed in practice.

Proposition 8 Assume that we observe an n-sample under the previous assumptions, then
there exist two constants C and C 1 depending only on H such that

Cn´2{k ď inf
zdgmn

sup
µPH

E
”

dbpdgmpFiltpXµqq, ydgmnq

ı

ď C 1n´2{k (4.3)

where the infimum is taken over all the estimators of the persistence diagram.
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5. Experiments

A series of experiments were conducted in order to illustrate the behavior of the persistence
diagrams under sampling of metric spaces endowed with a probability measure and to com-
pare the convergence performance obtained in practice with the theoretical results obtained
in the previous sections.

5.1 Spaces and Data

We consider four different metric spaces, denoted M1, M2, M3 and M4 hereafter, that are
described below.

M1 (Lissajous curve in R2): the planar curve with the parametric equations xptq “
sinp3t ` π{2q, yptq “ sinp2tq, t P r0, 2πs (see Figure 6, left). Its metric is the restric-
tion of the Euclidean metric in R2 and it is endowed with the push forward by the
parametrization of the uniform measure on the interval r0, 2πs.

M2 (sphere in R3): the unit sphere in R3 (see Figure 6, center). Its metric is the
restriction of the Euclidean metric in R3 and it is endowed with the uniform area
measure on the sphere.

M3 (torus in R3): the torus of revolution in R3 with the parametric equations xpu, vq “
p5` cospuqq cospvq, ypu, vq “ p5` cospuqq sinpvq and zpu, vq “ sinpuq, pu, vq P r0, 2πs2

(see Figure 6, right). Its metric is the restriction of the Euclidean metric in R3 and it
is endowed with the push forward by the parametrization of the uniform measure on
the square r0, 2πs2.

M4 (rotating shape space): for this space we used a 3D character from the SCAPE
database (Anguelov et al., 2005) and considered all the images of this character from
a view rotating around it. We converted these images in gray color and resized these
images to 300 ˆ 400 “ 120, 000 pixels (see Figure 7). Each is then identified with a
point in R120,000 where the ith coordinate is the level of gray of the ith pixel. Moreover,
we normalized these images by projecting them on the unit sphere in R120,000. The
metric space M4 is the obtained subset of the unit sphere with the restriction of the
Euclidean metric in R120,000. As it is parametrized by a circular set of views, it is
endowed with the push forward of the uniform measure on the circle.

5.2 The Experiments

From each of the measured metric spaces M1, M2, M3 and M4 we sampled k sets of n
points for different values of n from which we computed persistence diagrams for different
geometric complexes (see Table 1). For M1, M2 and M3 we have computed the persistence
diagrams for the 1 or 2-dimensional homology of the α-complex built on top of the sampled
sets. As α-complexes have the same homotopy type as the corresponding union of balls,
these persistence diagrams are the ones of the distance function to the sampled point set
(Edelsbrunner, 1995). So, for each n we computed the average bottleneck distance between
the obtained diagrams and the persistence diagram of the distance to the metric space from
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Figure 6: The spaces M1, M2 and M3.

Figure 7: Images sampled from the space M4.
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which the points were sampled. For M4, as it is embedded in a very high dimensional space,
computing the α-complex is practically out of reach. So we have computed the persistence
diagrams for the 1-dimensional homology of the Vietoris-Rips complex built on top of the
sampled sets. The obtained results are described and discussed below.

• Results for M1: we approximated the 1-dimensional homology persistence diagram
of the distance function to the Lissajous curve dgmpM1q by sampling M1 with 500, 000
points and computing the persistence diagram of the corresponding α-complex. As the
Hausdorff distance between our sample and M1 was of order 10´5 we obtained a suf-
ficiently precise approximation of dgmpM1q for our purpose. dgmpM1q is represented
in blue on the left of Figure 8. For each n, the average bottleneck distance between
dgmpM1q and the persistence diagrams obtained for the k “ 300 randomly sampled

sets Xn of size n has been used as an estimate Ê of E
”

dbpdgmpCαpM1qq, dgmpCαppXnqqq
ı

where Cα denotes the α-complex filtration. On Figure 8, right, logpÊq is plotted as
a function of logplogpnq{nq. As expected, since the Lissajous curve is 1-dimensional,
the points are close to a line of slope 1.

• Results for M2 and M3: the persistence diagrams dgmpM2q and dgmpM2q of the
distance functions to M2 and M3 are known exactly and are represented in blue on
Figures 9 and 10, left, respectively. Notice that we considered the 2-dimensional
homology for M2 and 1-dimensional homology for M3. For i “ 2, 3 and for each
n, the average bottleneck distance between dgmpMiq and the persistence diagrams
obtained for the k “ 100 randomly sampled sets Xn of size n has been used as an

estimate Ê of E
”

dbpdgmpCαpMiqq, dgmpCαppXnqqq
ı

where Cα denotes the α-complex

filtration. logpÊq is plotted as a function of logplogpnq{nq on Figures 9 and 10, right.
As expected, since the sphere and the torus are 2-dimensional, the points are close to
a line of slope 1{2.

• Results for M4: As in that case we do not know the persistence diagram of the
Vietoris-Rips filtration built on top of M4, we only computed the 1-dimensional ho-
mology persistence diagrams of the Vietoris-Rips filtrations built on top of 20 sets
of 250 points each, randomly sampled on M4. All these diagrams have been plotted
on the same Figure 11, left. The right of Figure 11 represents a 2D embedding of
one of the 250 points sampled data set using the Multidimensional Scaling algorithm
(MDS). Since M4 is a set of images taken according a rotating point of view, it carries
a cycle structure. This structure is reflected in the persistence diagrams that all have
one point which is clearly off the diagonal. Notice also a second point off the diagonal
which is much closer to it and that probably corresponds to the pinching in M4 visible
at the bottom left of the MDS projection.

6. Discussion and Future Works

In previous works, the use of persistent homology in TDA has been mainly considered
with a deterministic approach. As a consequence persistence diagrams were usually used
as exploratory tools to analyze the topological structure of data. In this paper, we propose
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Space k (sampled sets for each n) n range Geometric complex

M1 300 r2100 : 100 : 3000s α-complex

M2 100 r12000 : 1000 : 21000s α-complex

M3 100 r4000 : 500 : 8500s α-complex

M4 20 250 Vietoris-Rips complex

Table 1: Sampling parameters and geometric complexes where rn1 : h : n2s denotes the set
of integers tn1, n1 ` h, n1 ` 2h, ¨ ¨ ¨n2u.

Figure 8: Convergence rate for the persistence diagram of the α-filtration built on top of
points sampled on M1. Left: in blue the persistence diagram dgmpM1q of the
distance to M1 (1-dimensional homology); in red a persistence diagram of the
α-filtration built on top of n “ 2100 points randomly sampled on M1. Right:
the x-axis is logplogpnq{nq where n is the number of points sampled on M1. The
y-axis is the log of the estimated expectation of the bottleneck distance between
the diagram obtained from an α-filtration built on top of n points sampled on
M1 and dgmpM1q.
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Figure 9: Convergence rate for the persistence diagram of the α-filtration built on top of
points sampled on M2. Left: in blue the persistence diagram dgmpM2q of the
distance to M2 (2-dimensional homology); in red a persistence diagram of the
α-filtration built on top of n “ 12000 points randomly sampled on M2. Right:
the x-axis is logplogpnq{nq where n is the number of points sampled on M2. The
y-axis is the log of the estimated expectation of the bottleneck distance between
the diagram obtained from an α-filtration built on top of n points sampled on
M2 and dgmpM2q.

Figure 10: Convergence rate for the persistence diagram of the α-filtration built on top of
points sampled on M3. Left: in blue the persistence diagram dgmpM3q of the
distance to M3 (1-dimensional homology); in red a persistence diagram of the
α-filtration built on top of n “ 14000 points randomly sampled on M3. Right:
the x-axis is logplogpnq{nq where n is the number of points sampled on M3. The
y-axis is the log of the estimated expectation of the bottleneck distance between
the diagram obtain from α-filtration built on top of n points sampled on M3 and
dgmpM3q.
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Figure 11: Left: on the same figure the 1-dimensional homology persistence diagrams of
the Vietoris-Rips filtration of 20 sets of 250 points sampled on M4. Right: the
plot of the embedding of M4 in R2 using MDS.

a rigorous framework to study the statistical properties of persistent homology and more
precisely we give a general approach to study the rates of convergence for the estimation of
persistence diagrams. The results we obtain open the door to a rigorous use of persistence
diagrams in statistical framework. Our approach, consisting in reducing persistence diagram
estimation to another more classical estimation problem (here support estimation) is based
upon recently proven stability results in persistence theory that are very general.

In this paper, the persistence diagram of interest is the one of the support of the measure
µ according which the data points are sampled. As a consequence, if the data points are
sampled according to some perturbated measure ν whose support is not close to the one of
µ then the estimator obviously non longer converges to the diagram of the support of µ. A
first solution to overcome this problem is to plug denoising methods for support estimation
(with respect to Hausdorff distance), such as deconvolution methods (Meister, 2009), to our
approach.

Building on ideas developed by Chazal et al. (2011) and Caillerie et al. (2011), more
satisfactory solutions have been recently proposed by Chazal et al. (2014a,b) that allow to
infer persistent homology information from data corrupted by different kind of noise.

In another direction, an interesting representation of persistence diagrams as elements
of a Hilbert space has recently been proposed by Bubenik (2012). Our results easily extend
to this representation of persistence diagrams called persistence landscapes. Following this
promising point of view, we also intend to adapt classical kernel-based methods with kernels
carrying topological information.
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Appendix A. Lecam’s Lemma

The version of Lecam’s Lemma given below is from Yu (1997) (see also Genovese et al.,
2012a). Recall that the total variation distance between two distributions P0 and P1 on a
measured space pX,Bq is defined by

TVpP0, P1q “ sup
BPB

|P0pBq ´ P1pBq|.

Moreover, if P0 and P1 have densities p0 and p1 for the same measure λ on X, then

TVpP0, P1q “
1

2
`1pp0, p1q :“

ż

X

|p0 ´ p1|dλ.

Lemma 9 Let P be a set of distributions. For P P P, let θpP q take values in a metric space
pX, ρq. Let P0 and P1 in P be any pair of distributions. Let X1, . . . , Xn be drawn i.i.d. from
some P P P. Let θ̂ “ θ̂pX1, . . . , Xnq be any estimator of θpP q, then

sup
PPP

EPnρpθ, θ̂q ě
1

8
ρ pθpP0q, θpP1qq r1´ TVpP0, P1qs

2n .

Appendix B. Proofs

All the proofs of the paper are given in this section.

B.1 Proof of Theorem 2

The proof follows the lines of the proof of Cuevas and Rodŕıguez-Casal (2004, Theorem 3).
The only point to be checked is that the covering number of Xµ under the pa, bq-standard
assumption can be controlled as when b “ d P N, the rest of the proof being unchanged.

The covering number cvpXµ, rq of Xµ is the minimum number of balls of radius r that
are necessary to cover Xµ:

cvpXµ, rq “ min

#

k P N˚ : Dpx1, . . . , xkq P pXµqk such that Xµ “
k
ď

i“1

BpXi, rq

+

.

The packing number pkpXµ, rq is the maximum number of balls of radius r that can be
packed in Xµ without overlap:

pkpXµ, rq “ max

"

k P N˚ : Dpx1, . . . , xkq P pXµqk such that Bpxi, rq Ă Xµ
and, @i ‰ j, Bpxi, rq XBpxj , rq “ H

*

The covering and packing numbers are related by the following inequalities (see for instance
Massart, 2007, p. 71):

pkpXµ, 2rq ď cvpXµ, 2rq ď pkpXµ, rq. (B.1)

Lemma 10 Assume that the probability µ satisfies a standard pa, bq-assumption. Then for
any r ą 0 we have

pkpXµ, rq ď
1

arb
_ 1 and cvpXµ, rq ď

2b

arb
_ 1.
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Proof The result is trivial for r ě a´1{b. Let r ă a´1{b and let p “ pkpXµ, rq, we choose
a maximal packing B1 “ Bpx1, rq, ¨ ¨ ¨ , Bp “ Bpxp, rq of Xµ. Since the balls of the packing
are pairwise disjoint and µ is a probability measure we have

řp
i“1 µpBiq ď 1. Using that

µpBiq ě arb we obtain that parb ď
řp
i“1 µpBiq ď 1 from which we get the upper bound on

pkpXµ, rq. Since from (B.1) we have cvpXµ, rq ď pkpXµ, r{2q we immediately deduce the
upper bound on cvpXµ, rq.

B.2 Proof of Proposition 4

We first prove the upper bound.

B.2.1 Upper Bound

According to Corollary 3, thanks to Fubini we have

E
”

dbpdgmpFiltpXµqq, dgmpFiltppXnqqq
ı

ď

ż

εą0
P
”

dbpdgmpFiltpXµqq, dgmpFiltppXnqqq ą ε
ı

dε

Let εn “ 4
´

logn
an

¯1{b
. By bounding the probability inside this integral by one on r0, εns, we

find that:

E
”

dbpdgmpFiltpXµqq, dgmpFiltppXnqqq
ı

ď εn `

ż

εąεn

8b

a
ε´b expp´naεb{4bqdε

ď εn `
4n2b

b
pnaq´1{b

ż

uělogn
u1{b´2 expp´uqdu.

Now, if b ě 1
2 then u1{b´2 ď plog nq1{b´2 for any u ě log n and then

E
”

dbpdgmpFiltpXµqq, dgmpFiltppXnqqq
ı

ď εn ` 4
2b

b

ˆ

log n

n

˙1{b

plog nq´2

ď C1pa, bq

ˆ

log n

n

˙1{b

(B.2)

where the constant C1pa, bq only depends on a and b. If 0 ă b ă 1
2 , let p :“ t1

b u and then

ż

uěun:“logn
u1{b´2 expp´uqdu “ u1{b´2

n exppunq ` p
1

b
´ 2qu1{b´3

n exppunq ` ¨ ¨ ¨ `

`

p
ź

i“2

ˆ

1

b
´ i

˙

u1{b´p
n exppunq `

ż

uělogn
u1{b´p´1 expp´uqdu

ď C2pa, bq
plog nq1{b´2

n

where C2pa, bq only depends on a and b. Thus (B.2) is also satisfied for b ă 1
2 and the upper

bound is proved.
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B.2.2 Lower Bound

To prove the lower bound, it will be sufficient to consider two Dirac distributions. We take
for P0,n “ Px the Dirac distribution on X0 :“ txu and it is clear that P0 P Ppa, b,Mq. Let
P1,n be the distribution 1

nδxn`p1´
1
nqP0. The support of P1,n is denoted X1,n :“ txuYtxnu.

Note that for any n ě 2 and any r ď ρpx, xnq:

P1,n pBpx, rqq “ 1´
1

n
ě

1

2
ě

1

2ρpx, xnqb
rb ě arb

and

P1,n pBpxn, rqq “
1

n
“

1

nρpx, xnqb
rb ě arb.

Moreover, for r ą ρpx, xnq, P1,n pBp0, rqq “ P1,n pBpxn, rqq “ 1. Thus for any r ą 0 and
any x P X1,n:

P1,n pBpx, rqq ě arb ^ 1

and P1,n also belongs to Ppa, b,Mq.
The probability measure P0 is absolutely continuous with respect to P1,n and the density

of P0 with respect to P1,n is p0,n :“ n
n´11txu. Then

TV pP0, P1,nq “

ż

M
|1´

n

n´ 1
1txu| dP1,n

“
2

n
.

Next, r1´ TV pP0, P1,nqs
2n
“ p1 ´ 2

nq
2n Ñ e´4 as n tends to infinity. It remains to com-

pute dbpdgmpFiltpX0qq, dgmpFiltpX1,nqqq. We only consider here the Rips case, the other
filtrations can be treated in a similar way. The barcode of FiltpX0q is composed of only one
segment p0,`8q for the 0-cycles. The barcode of FiltpX1,nq is composed of the segment of
FiltpX0q and one more 0-cycle : p0, ρpx, xnqq. Thus we have:

dbpdgmpFiltpX0qq, dgmpFiltpX1,nqqq “ d8 p∆, p0, ρpx, xnqqq

“
ρpx, xnq

2
.

The proof is then complete using Lecam’s Lemma (Lemma 9).

B.3 Proof of Theorem 5

Let A be the interval r0, 1s and c a positive constant to be chosen further. We consider
k “holes” Hi of length c logn

n each, distant enough from each other that we remain p1
2 , 1q-

standard when we remove any number of Hi from A, which is possible as long as k c logn
n ă 1

2 .
We denote Ai “ AzHi. For I Ă t1, . . . , ku, AI “

Ş

iPI Ai, B “ An, BI “ AnI . Denoting the

uniform measure on r0, 1s by λ, we have λbnpBIq “ p1´ |I|c
logn
n qn „ n´|I|c.

The main idea is that when sampling n points from A, most likely (at least) one of the
Hi contains no points. Without points in Hi, the estimator cannot distinguish A from Ai,
but since those two have diagrams at distance c logn

n , this gives a bound on the quality of
the estimator. The technical difficulty is that several Hi can be empty at the same time.
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For a given n, let ydgmn be an estimator of persistence diagram of the sampling distri-

bution support. Assume for the moment that ydgmn satisfies

sup
µPPp 1

2
,1,r0,1sq

E
”

db

´

dgmpFiltpXµqq, ydgmn

¯ı

ď
1

2

log n

n
. (B.3)

Under this assumption, our goal is to lower bound E
”

db

´

dgmpFiltpXµqq, ydgmn

¯ı

for µ

equal to λ the uniform distribution on r0, 1s. The estimator ydgmn can also be written as
ydgmn “ gpX1, . . . , Xnq where g is a measurable application from B into the set of persistence
diagrams. First we note that when the observations are sampled according to λ:

E
”

db

´

dgmpFiltpXλqq, ydgmn

¯ı

“

ż

B
db pdgmpAq, gpxqq dλ

bnpxq

ě

ż

Ť

1ďiďk Bi

db pdgmpAq, gpxqq dλ
bnpxq “: Rn

so it will be sufficient to bound this last integral. Applying Inequality B.3 to the uniform
distribution µI on the set AI , we find that

1

λbnpBIq

ż

BI

dB pdgmpAIq, gpxqq dλ
bnpxq ď

1

2

log n

n
.

Let MI :“
ş

BI
db pdgmpAq, gpxqq dλ

bnpxq. Knowing that dbpdgmpAq, dgmpAIqq “ c logn
n and

using the triangular inequality, we find that
ˇ

ˇ

ˇ

ˇ

MI

λbnpBIq
´ c

log n

n

ˇ

ˇ

ˇ

ˇ

ď
1

2

log n

n
. (B.4)

By applying the inclusion-exclusion principle for the union of the Bi’s, we find that Rn ě
R1,n ´R2,,n where R1,n “

ř

iMi and R2,n “
ř

iăjMti,ju. According to (B.4) we have

R1,n ě k

ˆ

c´
1

2

˙

log n

n

ˆ

1´ c
log n

n

˙n

and

R2,n ď
kpk ´ 1q

2

ˆ

c`
1

2

˙

log n

n

ˆ

1´ 2c
log n

n

˙n

.

We take c “ 3
4 . Then the lower bound of R1,n is equivalent to k

4
logn
n n´3{4 and

R2,n

R1,n
ď 5

k ´ 1

2

´

1´ 3
2

logn
n

¯n

´

1´ 3
4

logn
n

¯n „nÑ8 5
k ´ 1

2
n´

3
4 .

We take k “ kn :“
Q

n3{4

5

U

in order to have
R2,n

R1,n
tending to 1

2 as n tends to infinity. We thus

have

lim inf
n

n

log n
Rn ě

1

40
.
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Moreover, note that

knc
log n

n
„

3

20
n3{4 log n

n

which is smaller than 1
2 for n large enough so the p1

2 , 1q-standard assumption is verified for
n large enough.

To summarize, for any n and any estimator ydgmn: either ydgmn satisfies (B.3) and then

sup
µPPp 1

2
,1,r0,1sq

E
”

db

´

dgmpFiltpXµqq, ydgmn

¯ı

ě Rn,

or

sup
µPPp 1

2
,1,r0,1sq

E
”

db

´

dgmpFiltpXµqq, ydgmn

¯ı

ě
1

2

log n

n
.

Finally we have that for any estimator ydgmn:

lim inf
n

n

log n
sup

µPPp 1
2
,1,r0,1sq

E
”

db

´

dgmpFiltpXµqq, ydgmn

¯ı

ě min

ˆ

1

2
, lim inf

n

n

log n
Rn

˙

ě
1

40

and the theorem is proved.

B.4 Proofs for Section 4.1

Lemma 11 1. Under assumption rBs, we have dHpG0,Xf q “ 0.

2. Under Assumptions rAs and rBs, µ satisfies a standard assumption with b “ α ` k
and with a depending on Fpαq.

Proof First, note that we always have

˝

G0 Ă Xf Ă ĎG0. (B.5)

Indeed, if
˝

G0XpχzXf q is non empty, let x be in the intersection. Then there exists ε ą 0 such
that Bpx, εq Ă G0 and Bpx, εq Ă pχzXf q since Xf is assumed to be closed. The first inclusion
then gives that µpBpx, εqq ą 0 whereas the second inclusion gives that µpBpx, εqq “ 0. Thus
˝

G0 X pχzXf q is empty, the second inclusion in (B.5) is obvious since Xf is assumed to be
closed.

Then,

dHpXf , G0q “ maxp sup
xPXf

dpx,G0q, sup
xPG0

dpx,Xf qq

“ maxp sup
xPXf

dpx,ĎG0q, sup
xPĎG0

dpx,Xf qq

“ sup
xPĎG0

dpx,Xf q

“ sup
xPBG0

dpx,Xf q (B.6)
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where we use the continuity of the distance function for the second equality and (B.5) for

the two last ones. It follows from assumption rBs that for any x P BG0, dpx,
˝

G0q “ 0. Thus
dpx,Xf q “ 0 according to (B.5) and we have proved that (B.6) is equal to zero.

We now prove the second point of the Lemma. Let x P Ḡ0 and let r ą 0 such that

r

2

ˆ

1^
1

Cb

˙

ă ε0 ^

ˆ

δa
Ca

˙1{α

. (B.7)

According to Assumption rBs, for ε “ r
2

´

1^ 1
Cb

¯

, there exists y P IεpG0q such that

dpx, yq ď Cbε ď
r
2 . Then, there exists z P Iε such that y P Bpz, εq Ă Iε. Since ε ď r

2
we find that Bpz, εq Ă Bpx, rq XG0. Thus,

µ pBpx, rqq ě

ż

Bpz,εq
fpuq dλpuq

ě

ż

Bpz,εq
δa ^ Cadpu, BG0q

α dλpuq

ě Ca

ż

Bpz,εq
pε´ }u´ z}qα dλpuq

ě Cask´1

ż ε

0
pε´ rqα rk´1 dr

where sk´1 denotes the surface area of the unit k´ 1-sphere of Rk, and where we have used
Assumption rAs for the second inequality and the fact Caε

α ď δa for the third one. Finally
we find that for any r satisfying (B.7):

µ pBpx, rqq ě
Cask´1pk ´ 1q!

pα` 1q . . . pα` kq
εα`k

ě
Cask´1pk ´ 1q!p1^ 1

Cb
qα`k

2α`kpα` 1q . . . pα` kq
rα`k

and we obtain that µ satisfies that standard assumption with b “ α` k.

B.4.1 Proof of Proposition 6

The first point of the proposition is an immediate consequence of the first point of Theorem
4 together with Lemma 11. We now prove the lower bound by adapting some ideas from
the proof of Proposition 3 in Singh et al. (2009) about the Hausdorff lower bound. At the
price of loosing a logarithm term in the lower bound, we propose here a proof based on a
two-alternative analysis.

The function f0 is defined on χ as follows for r0 ą 0 small enough:

f0 “

$

’

’

&

’

’

%

Ca}x}
α if }x} ď r0

C0 if r0 ď }x} ď 2r0

Cap3r0 ´ }x}q
α if 2r0 ď }x} ď 3r0

0 elsewhere
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where

C0 “
1´ Cask´1r

k`α
0 p 1

k`α ` Iαq

sk´1r
k
0p2

k ´ 1q{k
with Iα “

ż 3

2
kk´1p3´ uqαdu.

For n ě 1 let εn :“ n´1{pk`αq, the function f1,n is defined on χ by

f1,n “

$

’

’

&

’

’

%

}x}α if εn ď }x} ď r0

C1,n if r0 ď }x} ď 2r0

Cap3r0 ´ }x}q
α if 2r0 ď }x} ď 3r0

0 elsewhere

where

C1,n “
1´ Cask´1

!

rk`α0 p 1
k`α ` Iαq ´

εk`αn
k`α

)

sk´1r
k
0p2

k ´ 1q{k

“ C0 `
kCaε

k`α
n

pk ` αqrk0p2
k ´ 1q

.

We assume that δa is small enough so that we can choose r0 such that δa ď C0 for n large
enough. Then f0 and f1,n are both densities and they both belong to Fpαq for n large
enough. The support of f0dλ is equal to X0 :“ B̄p0, 3r0q whereas the support of f1,ndλ is
equal to X1,n “ B̄p0, 3r0qzB̄p0, εnq. Next,

TVpf0 dλ, f1,n dλq “

ż

χ
|f0 ´ f1,n|dx

“ sk´1Ca

ż εn

0
rα`k´1 dr ` sk´1

ż 2r0

r0

pC1,n ´ C0qr
k´1dr

“
2sk´1Ca
k ` α

εk`αn

Note that p1 ´ TVpf0 dλ, f1,n dλqs
2n Ñ expp´

4sk´1Ca
k`α q as n tends to infinity. It remains

to compute dbpdgmpFiltpX0qq, dgmpFiltpX1,nqqq. We only consider here the Rips case, the
other filtrations can be treated in a similar way. The barcode of FiltpX0q is composed of
only one segment p0,`8q for the 0-cycles. The barcode of FiltpX1,nq is composed of the
segment of FiltpX0q and one more 1-cycle : p0, 2εnq. Thus we have:

dbpdgmpFiltpX0qq, dgmpFiltpX1,nqqq “ d8 p∆, p0, εqq

“ εn.

We then finish the proof using Lecam’s Lemma.

B.5 Proof of Proposition 8

We only need to prove the lower bound since the upper bound is a direct corollary of
Theorem 3 in Genovese et al. (2012b). To prove the lower bound, we may use the particular
manifolds defined in Genovese et al. (2012a) and also used by the same authors for the
proof of Theorem 2 in Genovese et al. (2012b). Without loss of generality, we assume that
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χ “ r´L,LsD and that κ ă L{2. For ` ď L, let M and M 1 be the two manifolds of χ
defined by

M “ r´`, `sD X tx P χ |xk`1 “ ¨ ¨ ¨ “ xD “ 0u and M 1 “ 2κek`1 `M

where ek`1 is the k ` 1-th vector of the canonical basis in RD. We assume that ` is chosen
so that b ă 2p2`q´k ă B. Let µ0 be the uniform measure on X0 :“ M YM 1 and then
µ0 P H.

According to Genovese et al. (2012a, Theorem 6), for 0 ă γ ă κ, we can define a
manifold Mγ which can be seen as a perturbation of M such that:

• ∆pMγq “ κ

• dHpMγ ,Mq “ γ and dHpMγ ,M
1q “ 2κ´ γ

• If A “ tx P Mγ |x R Mu then µ1pAq ď Cγk{2 where C ą 0 and where µ1 is the
uniform measure on X1 :“Mγ YM

1.

For small enough γ we see that µ1 satisfies rH2s and thus µ1 P H.
As before, we only consider here filtrations of Rips complexes. The persistence diagrams

of FiltpX0q and FiltpX1q are exactly the same except for the diagram of 0-cycles : the
first filtration has a barcode with a segment p0, 2κq whereas the corresponding barcode
for FiltpX1q is p0, 2κ ´ γq. Thus, dbpFiltpX0q,FiltpX1qq “ γ. Moreover, TVpµ0, µ1q ď

|µ0pAq ´µ1pAq| ď Cγk{2. Finally, we choose γ “ p1{nqk{2 as in the proof of Genovese et al.
(2012b, Theorem 2) and we conclude using Lecam’s Lemma.
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Abstract

This paper investigates the Euler’s elastica (EE) model for high-dimensional supervised
learning problems in a function approximation framework. In 1744 Euler introduced the
elastica energy for a 2D curve on modeling torsion-free thin elastic rods. Together with
its degenerate form of total variation (TV), Euler’s elastica has been successfully applied
to low-dimensional data processing such as image denoising and image inpainting in the
last two decades. Our motivation is to apply Euler’s elastica to high-dimensional super-
vised learning problems. To this end, a supervised learning problem is modeled as an
energy functional minimization under a new geometric regularization scheme, where the
energy is composed of a squared loss and an elastica penalty. The elastica penalty aims
at regularizing the approximated function by heavily penalizing large gradients and high
curvature values on all level curves. We take a computational PDE approach to minimize
the energy functional. By using variational principles, the energy minimization problem is
transformed into an Euler-Lagrange PDE. However, this PDE is usually high-dimensional
and can not be directly handled by common low-dimensional solvers. To circumvent this
difficulty, we use radial basis functions (RBF) to approximate the target function, which
reduces the optimization problem to finding the linear coefficients of these basis functions.
Some theoretical properties of this new model, including the existence and uniqueness of so-
lutions and universal consistency, are analyzed. Extensive experiments have demonstrated
the effectiveness of the proposed model for binary classification, multi-class classification,
and regression tasks.

Keywords: supervised learning, Euler’s elastica, total variation, geometric regularization,
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“Read Euler, read Euler, he is our master in everything”
— Pierre-Simon Laplace (1749–1827)

1. Introduction

Supervised learning (Murphy, 2012; Hastie et al., 2009; Bishop, 2006) aims at inferring a
function that maps inputs to desired outputs under the guidance of training data. Two main
tasks in supervised learning are classification and regression. Numerous supervised learn-
ing methods have been developed in several decades; Caruana and Niculescu-Mizil (2006)
gave a comprehensive empirical comparison of these methods. A most recent evaluation
of classification methods was conducted by Fernández-Delgado et al. (2014): 179 classifiers
arising from 17 families were compared on 121 data sets, showing that random forests, sup-
port vector machines (SVM), neural networks, and boosting are among the top methods
nowadays. Roughly speaking, existing methods can be divided into two main categories:
statistics based and function learning based. One advantage of function learning methods
is that powerful mathematical theories in functional analysis can be explored rather than
doing optimizations on discrete data points.

Most function learning methods can be derived from the energy regularization frame-
work, which minimizes a fitting loss term plus a smoothing penalty. It is arguable that
the most successful classification and regression method is the support vector machines
(SVM) (Vapnik, 1998; Cristianini and Shawe-Taylor, 2000; Schölkopf and Smola, 2002),
whose cost function is composed of a hinge loss and a RKHS norm penalty determined
by a kernel. There are several variants of SVM by combining different losses and different
penalties (Steinwart, 2005; Bartlett et al., March 2006; Huang et al., 2014). In particular,
when replacing the hinge loss by a squared loss, the modified algorithm is called Regular-
ized Least Squares (RLS) method (Rifkin, 2002). Instead of considering a variety of loss
terms, manifold regularization (Belkin et al., 2006) introduced a geometric regularizer of
squared gradient magnitude on a manifold. Its discrete version corresponds to graph Lapla-
cian regularization (Zhou and Schölkopf, 2005; Nadler et al., 2009). A most recent work
is the geometric level set (GLS) classifier (Varshney and Willsky, 2010), with an energy
functional composed of a margin-based loss and a geometric regularization term based on
the surface area of the decision boundary. The GLS classifier was motivated by the study of
minimal surfaces and its applications in image processing. Experiments showed that GLS
is competitive with SVM and other state-of-the-art classifiers.

Following the geometric regularization approach, in this paper we propose to use the
Euler’s elastica for supervised learning problems. The energy functional is composed of
a squared loss and an Euler’s elastica (EE in the sequel) regularizer. Briefly, an elastica
regularizer integrates two important geometric factors, gradients and curvatures, in a unified
manner. Particularly, its degenerate form is the well-known “total variation” (TV) if only
considering gradients and disregarding the influence of curvatures. Since both TV and EE
models have achieved great success in image denoising and image inpainting (Chan and
Shen, 2005; Aubert and Kornprobst, 2006), a natural question is whether the success of TV
and EE models on image processing applications can be transferred to high dimensional
data analysis such as supervised learning. This paper investigates the question by extending
TV and EE models to supervised learning settings, and evaluating their performance on
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(a) (b)

Figure 1: Results on two moon data by using the EE classifier. (a) Decision boundary
(in blue) that separates two classes of points (represented by red stars or green
circles); (b) learned target function illustrated as a surface in a 3D space.

benchmark data sets against state-of-the-art methods. Figure 1 shows the classification
result and the learned target function on the popular example of two moon dataset by
using the EE classifier. Note that three important factors considered in the EE classifier,
gradient, curvature, and margin between two classes, are depicted in different directions on
one data point of the produced decision boundary in Figure 1(b).

Although some researchers in the machine learning community may think that the super-
vised learning problems have been widely studied and several leading algorithms like SVM
(Vapnik, 1998; Cristianini and Shawe-Taylor, 2000; Schölkopf and Smola, 2002), boosting
(Schapire and Freund, 2012), and random forests (Breiman, 2001) have been available to
achieve superb classification performance, we argue that this work provides a new perspec-
tive on understanding supervised learning problems. Particularly, the contributions of this
paper are:

1. A proper balance of three important factors in supervised learning: margin, gradient,
and curvature. Here the term margin refers to the original geometric meaning used
in SVM for binary classification problems, namely, the perpendicular distance from
a data point to the decision boundary in the input space. The margin of a SVM
classifier sign(w ·h(x)) can be written as y(w ·h(x))/(‖w‖2‖h(x)‖2), where w denotes
the coefficients of the separating hyperplane, and h(x) is the high-dimensional feature
vector representation of a data point x. Similarly, the margin in boosting can be
defined as y(w · h(x))/(‖w‖1‖h(x)‖∞), or simply yf(x) if the combined classifier
f(x) has been properly normalized (see Schapire and Freund, 2012, chap. 5). Large
margins play a central role in developing several state-of-the-art classifiers. Following
the traditions in image processing, in this work the squared loss (y − f(x))2 is used
for easier derivative calculations on both classification and regression tasks. Note that
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the squared loss is equivalent to a margin-based loss (1−yf(x))2, called the quadratic
loss (Bartlett et al., March 2006, table 1), since y ∈ {−1,+1} in binary classifications.
On the other hand, the term gradient is related to the slope of function values in
a continuous setting, while the curvature measures the degree to which all the level
curves (including the decision boundary) is curved. Both gradients and curvatures are
geometric measurements that reflect the complexity of the output classifier. The trade-
off between the squared loss and the complexity involving gradients and curvatures in
this work is new to the machine learning community.

2. Euler-Lagrange PDEs that characterize the optimal solution for supervised learning
problems. Historically, PDEs have been used to describe a wide range of physical phe-
nomena such as sound, heat, fluid flow, electrostatics, electrodynamics, or elasticity.
Surprisingly, these seemingly distinct physical phenomena can be unified under a PDE
framework, which implies that they are essentially governed by same or similar na-
ture’s mechanism. A natural question is, can PDEs be applicable to high-dimensional
supervised learning problems? To the best of our knowledge, Varshney and Will-
sky (2010) were the first attempt to propose level set based PDEs for classification.
Following this research line, we propose the Euler-Lagrange PDEs derived from Eu-
ler’s elastica model and its degenerate total-variation model, for classification and
regression. These PDEs reveal equilibrium conditions of the desired fitting process
for supervised learning.

3. Two numerical algorithms for solving the elastica based supervised learning problem
in high dimensions. By using radial basis function approximation, we present two PDE
solvers: the gradient descent time marching method and the lagged linear equation
iteration method.

The remainder of this paper is organized as follows. In Section 2 we begin with a
brief review of TV and EE models used in image processing. The proposed models for
supervised learning are described in Section 3, followed by the corresponding numerical
solutions presented in Section 4. Some theoretical properties of the proposed models are
discussed in Section 5. Section 6 presents the experimental results, and Section 7 concludes
the paper.

2. Preliminaries

For better understanding the proposed method, we firstly review the notions of total vari-
ation and Euler’s elastica from an image processing perspective, and point out some con-
nections with prior work in the machine learning literature.

2.1 Total Variation (TV)

A function is said to have bounded variation (BV functions in the sequel) if its total variation
is finite. For simplicity we begin with the classical definition of total variation (TV) for a
function of one real variable. The total variation of a real-valued function f defined on an
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interval [a, b] ∈ R is the quantity

V a
b (f) = sup

P

nP−1∑
i=0

|f(xi+1)− f(xi)|, (1)

where the supremum runs over the set of all partitions P of the given interval [a, b], with nP
being the number of points in a specific partition P . If f is differentiable and its derivative
is Riemann-integrable, the total variation can be written as

V a
b (f) =

∫ b

a
|f ′(x)|dx.

Intuitively it measures the total distance along the direction of the y-axis, neglecting the
contribution of motion along x-axis, traveled by a point moving along the graph. Notice
that if f ′(x) > 0 for all x ∈ [a, b], it is simply equal to f(b) − f(a) by the fundamental
theorem of calculus.

The modern definition is based on the concept of distributional derivatives. Let Ω ⊂ R
be a bounded open interval. A function f ∈ L1(Ω) is said to be of bounded variation (BV)
if

sup
ϕ

{∫
Ω
f(x)ϕ′(x)dx : ϕ ∈ C1

c (Ω), ‖ϕ‖L∞(Ω) < 1
}
<∞, (2)

where C1
c (Ω) is the space of continuously differentiable functions with compact support

in Ω, and ‖ · ‖L∞(Ω) is the essential supremum norm. Note that this definition may have
some variants, e.g. imposing the test function that satisfies ϕ ∈ C∞c (Ω) and ‖ϕ‖C0(Ω) < 1
(Golubov and Vitushkin, 2001). An equivalent definition is that BV functions are functions
whose distributional derivative is a finite Radon measure. Also the two definitions (1) and
(2) are consistent. It is natural to generalize the definition (2) for functions of several
variables. For an open Ω ⊂ Rd, the total variation of f ∈ L1(Ω) is given by

sup
ϕ

{∫
Ω
f∇ · ϕ dx : ϕ = (ϕ1, ϕ2, · · · , ϕd) ∈ C1

c (Ω, Rd), ‖ϕ‖L∞(Ω) < 1
}
<∞, (3)

where ϕ is a vector-valued test function, ∇·ϕ =
∑
∂ϕi/∂xi is the divergence operator, and

all the components of ϕ has a L∞(Ω)-norm less than one. For more details of TV definitions
and the BV function space, one can refer to Chan and Shen (2005), Aubert and Kornprobst
(2006), Ambrosio et al. (2000), Giusti (1994), and Golubov and Vitushkin (2001).

By penalizing large gradients of the target functions, total variation has been widely
used for image processing tasks such as denoising and inpainting. The pioneering work is
Rudin, Osher, and Fatemi’s image denoising model (Rudin et al., 1992):

E[u] =

∫
Ω

(
(u− u0)2 + λ|∇u|

)
dx,

where u0 is the input image with noise, u is the desired output image, λ is a regulation
parameter that balances the two terms, ∇u is the gradient vector (∂u/∂x, ∂u/∂y) for a
function u(x, y), |∇u| is the l2-length of the gradient vector, and Ω denotes a 2D rectangular
image domain. The first fitting term measures the fidelity to the input, while the second
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is a p-Sobolev regularization term (p = 1) where the gradient ∇u is understood in the
distributional sense. The main benefit is to preserve significant image edges during the
denoising procedure (Chan and Shen, 2005; Aubert and Kornprobst, 2006), as image edges
are important features that should be faithfully retained in image processing. The common
downside of TV-based methods is that piecewise constant images with |∇u| = 0 almost
everywhere are favored over piecewise smooth images, which is the so-called staircasing
effect (Duan et al., 2013). Euler’s elastica model is one of high order approaches to overcome
this drawback, which is described in the next subsection.

In the machine learning literature, p-Sobolev regularizer can be found in the literature
of nonparametric smoothing splines, generalized additive models, and projection pursuit
regression models (Hastie et al., 2009). Specifically, Belkin et al. (2006) proposed the
manifold regularization term ∫

x∈M
|∇Mu|2dx,

for any smooth function u(x) on a manifold M . On the other hand, discrete graph Laplacian
regularization was discussed in Zhou and Schölkopf (2005) as∑

v∈V
|∇vu|p,

where v is a vertex from a vertex set V , and p is an arbitrary number. This penalty measures
the roughness of the discrete function u over a graph.

2.2 Euler’s Elastica (EE)

The elastica energy first appeared in Euler’s work in 1744 on modeling torsion-free thin
elastic rods (for the history see Levien, 2008; Fraser, 1991). Then Mumford (1994) rein-
troduced elastica into computer vision for measuring the quality of interpolating curves in
disocclusion. Later, elastica based image inpainting methods were developed in Masnou
and Morel (1998) and Chan et al. (2002).

A smooth curve γ is said to be Euler’s elastica if it is the equilibrium curve of the
elasticity energy:

E[γ] =

∫
γ
(a+ bκ2)ds, (4)

where a and b are two non-negative constant weights, κ denotes the scalar curvature (see
Appendix A for its definition), and ds is an infinitesimal arc length element. Euler obtained
the energy in studying the steady shape of a thin and torsion-free rod under external forces.
The curve implies the lowest elastica energy, thus getting its name. The ratio a/b (if b 6= 0)
indicates the relative importance of the total length versus total squared curvature (Chan
and Shen, 2005, chap. 2.1).

According to Mumford (1994), the key link between the elastica curves and image in-
painting relies on the the interpolation capability of elasticas. Elasticas were discovered to
comply to the connectivity principle (Chan and Shen, 2001; Kanizsa, 1979) in visual per-
ception better than total variation. This principle in vision psychology shows that humans
mostly prefer having two disjoint parts occluded by another object connected psychologi-
cally, even when they are far apart. Such kinds of “nonlinear splines”, like classical polyno-
mial splines, are natural tools for completing the missing or occluded edges. Besides, there
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is an interesting Bayesian rationale revealed by Mumford (1994) (see also Chan et al., 2002)
by considering the random walk of a drunk. Suppose the drunk starts from the origin of a
2-D ground and each step is straight. With some distribution assumptions on the step size
and the orientation of each step, the maximum likelihood estimation (MLE) of such discrete
random walk is approximately equivalent to the minimization of the elastica energy (4) in
a continuous fashion. This drunk walking model also sheds light on the choice of “2” for
the curvature power in (4). For any p > 1, one could consider the general p-elastica energy

Ep[γ] =

∫
γ
(a+ b|κ|p)ds.

Notice that the situation of p = 1 is less ideal since in this case the total curvature energy
permits sudden turns. Chan et al. (2002) pointed out that generic stationary points of the
p-elastica energy are forbidden when p ≥ 3, implying that p ∈ (1, 3) sounds to be a good
choice.

A common approach to bridge the gap between a prior energy model for curves and that
for images is using level sets (or called isophotes), pioneered by Osher and Sethian (1988).
By “lifting” a curve prior model into a 2D space, one can construct an image prior model
imposed on all the level curves of an image (corresponding to a 2D function). Formally, the
Euler’s elastica of all the level curves of an image u can be expressed as

E[u] =

∫ L

l=0

∫
γl:u=l

(a+ bκ2)dsdl, (5)

where γl is the level curve determined by u(x) = l, and the level value l varies in the image
range [0, L]. Let dt denote an infinitesimal length element along the normal direction n of
the level curve (or along the steepest ascent curve), then we have

dl

dt
= |∇u| or dl = |∇u|dt.

Thus by the co-area formula (Giusti, 1994), the integrated elastica energy (5) now passes
on to u by

E[u] =

∫ L

l=0

∫
γl:u=l

(a+ bκ2)|∇u|dtds =

∫
Ω

(a+ bκ2)|∇u|dx,

since dt and ds represent a couple of orthogonal length elements. Here Ω denotes the whole
rectangular image domain. Now the elastica energy of an image is completely expressed in
terms of u, when considering the well known curvature formula (Morel and Solimini, 1995)
for any level curve γl : u(x) = l

κ = ∇ ·N = ∇ ·
(
∇u
|∇u|

)
, (6)

where ∇· denotes the divergence operator, defined as

∇ ·V .
=
∂A

∂x
+
∂B

∂y
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for a vector V = (A,B), and N is the ascending unit normal field ∇u/|∇u|. See Appendix
A for a short derivation of (6). Of course this curvature expression makes sense only for
a certain class of smooth functions (such as C2(Ω)) and requires to be relaxed in order to
handle more general functions (like BV or L1 functions).

Given a small image region D to be inpainted in the whole image domain Ω, Chan and
Shen (2005) proposed an inpainting model based on Euler’s elastica

E =

∫
Ω\D

(u− u0)2dx+ λ

∫
Ω

(a+ bκ2)|∇u|dx, (7)

where λ is a trade-off parameter that balances the first fitting term and the second smoothing
term. Notice that the second term in (7) is an elastica regularizer that penalizes high elastica
energy on all the level curves of u(x), as expressed in (5). By using calculus of variation
(van Brunt, 2004), its minimization is reduced to a nonlinear Euler-Lagrange equation.
Its numerical method can be implemented by a finite difference scheme, and experimental
results show that this elastica based inpainting method performs better than TV based
approaches.

Note that total variation can be regarded as a degenerate form of Euler’s elastica if
setting a = 1 and b = 0 in (7). In fact, elastica is a combination of total variation that
suppresses oscillations in the gradient direction, and a curvature regularizer that penalizes
non-smooth level set curves (see Figure 1).

3. The Proposed Framework

We first set up the supervised learning problem, and then introduce three models, Laplacian,
total variation, and Euler’s elastica, in an increasing order of computational complexity.

3.1 Problem Setup

The general supervised learning problem can be described as follows:

• Given a training data set {(x1, y1), ...(xn, yn)} where each data point xi ∈ Ω ⊂ Rd is
a d-dimensional column vector and yi is the corresponding target variable, the goal is
to estimate an unknown function u(x) for predicting the desired y on a newly coming
point x.

The difference between classification and regression lies only in the corresponding target
values, with one discrete and the other continuous. For regression, we simply use u(x) to
approximate the target values; for binary classification, the decision boundaries are given
by the zero level set of u(x), or sign(u(x)). Most popular multi-class classifiers are based
on some types of reductions to binary classifications; we defer the discussion of multi-class
problems to the experiments section.

The widely used functional regularization framework for supervised learning can be
formulated as:

min
u
λS(u) +

n∑
i=1

L(yi, u(xi)), (8)
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where S(u) is a smoothing term or called a penalty and L(·) denotes a loss function. The
penalty term is used to control the complexity of the learned function, which has proven to
be essential in Statistical Learning Theory (Vapnik, 1998; Bousquet et al., 2004; Boucheron
et al., 2005; von Luxburg and Schölkopf, 2008). The misclassification risk corresponds to
the use of 0-1 loss: L0−1(y, u(x)) = 1[y 6= sign u(x)], where 1[α] denotes an indicator
function that is 1 if α holds true and 0 otherwise. Or we can slightly misuse the notation
to allow a margin based representation: L0−1(y, u(x)) = 1(yu(x)), where 1(α) is 1 if α ≤ 0
and 0 otherwise. It is well known that directly minimizing the 0-1 loss is computationally
intractable for many nontrivial classes of functions, and often some nonnegative convex
nondecreasing loss function are considered for computational efficiency. Another advantage
of such convex surrogates for 0-1 loss is that it is possible to demonstrate the Bayes-risk
consistency and to obtain uniform upper bounds on the generalization risk. See Bartlett
et al. (March 2006) and Boucheron et al. (2005, Section 4.2) for more discussions.

In the literature a variety of convex surrogate loss functions L(.) have been proposed
for binary classification where y ∈ {−1,+1}, such as:

1. hinge loss Lhinge(y, u(x)) = max{0, 1− yu(x)} for SVM;

2. squared loss Lsquared(y, u(x)) = (y − u(x))2 for RLS;

3. logistic loss Llogistic(y, u(x)) = log(1 + exp(−yu(x))) for logistic regression;

4. and exponential loss Lexponential(y, u(x)) = exp(−yu(x)) in boosting.

Except for the squared loss, other above losses are margin-based since the classification
margin yu(x) is explicitly used. When restricting the discussion on binary classification
where y ∈ {−1,+1}, the squared loss is actually equivalent to the quadratic loss (1−yu(x))2

which is then margin-based.
Throughout the paper, the squared loss is used in all our models due to several reasons:

(1) The derivative of a squared loss is very simple to calculate; (2) It can be applied to
both classification and regression, without any modification; (3) For classification, Rifkin
(2002) showed that the RLS method based on squared loss can offer comparable or slightly
better accuracies than hinge loss based SVM; (4) Using squared loss is consistent to the
related work in image processing area, leading to identical or similar PDEs; (5) We have
no intention to exhaustively try and compare different loss functions; instead our focus is
on the second term which is a new geometric regularization for supervised learning. For
more loss functions and penalties, one can refer to Steinwart (2005), Bartlett et al. (March
2006), and Huang et al. (2014).

Our goal is to explore how TV and EE can be applied to classification and regression
problems on high dimensional data sets. To this end, we prefer a continuous integral form
rather than the discrete summation form in (8). In contrast to discrete methods such
as SVM and graph Laplacian, the proposed framework operates in a continuous fashion
where powerful mathematical analysis tools can play a role. Specifically, the calculus of
variations plays a role in minimizing the energy functional, leading to the Euler-Lagrange
PDE. A typical procedure of this computational PDE approach has three steps: (1) Set
up the function learning problem under a continuous setting by designing a proper energy
functional; (2) Derive the Euler-Lagrange PDE via the calculus of variations; (3) Finally
solve the PDE numerically on discrete data points.
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3.2 Laplacian Regularization (LR)

A commonly used model with squared loss can be written as

min
u
λS(u) +

n∑
i=1

(
u(xi)− yi

)2
.

If the RKHS norm is used as the smoothing term S(u), the model is called regularized
least squares (RLS) (Rifkin, 2002). Another natural choice is the squared L2-norm of the
gradient: S(u) = |∇u|2, as proposed in Belkin et al. (2006). We need to move from the
discrete cost function to a continuous functional to leverage powerful mathematical tools.
Suppose Ω ∈ Rd is a regular region that contains all the given data points. Under a
continuous setting, we have the following Laplacian regularization (LR) model:

ELR[u] =

∫
Ω

(
λ|∇u|2 + (u− y)2

)
dx. (9)

This LR model has been widely used in the image processing literatures. By calculus of
variations (see Appendix B), the minimization is reduced to the following Euler-Lagrange
PDE with a natural boundary condition over the boundary ∂Ω:{

−λ∆u+ (u− y) = 0,
∂u
∂n |∂Ω = 0,

(10)

where ∆u is the Laplacian operator of u defined as

∆u
.
= ∇2u = ∇ · ∇u =

d∑
i=1

∂2u

∂(x(i))2
,

and n denotes the outer normal of ∂Ω. This PDE (10) is relatively simple and can be easily
solved using common methods in two and three dimensions. The next section provides a
function approximation method for solving the PDE in high dimensions.

One can observe that the PDE (10) is very similar to the Poisson’s equation −∆u = f in
mathematical physics, where f is a given function. Hence its behavior shares certain degrees
of similarity with Poisson’s equation. Particularly, if u fits y perfectly (satisfying u−y = 0)
in a small neighborhood of a particular point x, then by (10) we have ∆u = 0 and further by
u− y = 0 we also have ∆y = 0 in this neighborhood. On the contrary, if ∆y 6= 0 (implying
that y(x) is not a harmonic function), then we can not obtain u−y = 0; otherwise by (10) we
have ∆u = 0 and ∆y = 0, which is contradictive to our assumption ∆y 6= 0. Therefore, the
smoothness of the target variable y(x) determines the fitting degree for supervised learning.
The regularization parameter λ controls the strength of this connection.

Throughout the paper, the natural boundary condition is adopted for easier treatments.
It is well known that boundary conditions can play a significant role in traditional low-
dimensional PDE areas, where the shape of the domain boundary is explicitly determined.
In these situations, boundary conditions are given by the underlying real problems and
their physical meanings are clear. However, in our case of high dimensional spaces for
supervised learning, there is no need to specify the exact domain boundary as long as this
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domain contains all the data points. Often the input data is preprocessed by scaling each
attribute into the range [−1,+1] or [0, 1], and hence in practice we define the domain of
our TV/EE models as a d-dimensional hypercube. Scaling has been a very important step
for using neural networks and SVM, with some advantages discussed in Hsu et al. (2007).
Most of these considerations also apply to our algorithms. Recall that our focus is to learn
the target function u(x) on an “active” region that contains both the given training data
and the future test data, whereas this active region is usually far away from the boundary
of the hypercube domain in our settings. Hence boundary values in our high dimensional
models are not so important as in low dimensional spaces, and we use the natural boundary
condition purely from a computational aspect, just like the related work in image processing.
Note that in the GLS classifier (Varshney and Willsky, 2010), the issue of PDE boundary
conditions was treated in a similar way.

3.3 Total Variation (TV)

Similar to image denoising, the total variation (TV) model for supervised learning can be
formulated as

ETV [u] =

∫
Ω

(
λ|∇u|+ 1

2
(u− y)2

)
dx. (11)

The only difference between LR and TV is just on the p-Sobolev regularizer with p = 2
for LR and p = 1 for TV, respectively. Intuitively, LR penalizes gradients on edges too
much due to the squared gradient magnitude, while TV is rather milder to permit sharper
edges near the decision boundaries between two classes. Similarly, by calculus of variations
(see Appendix B) we get the following PDE, which is the exactly same to that in image
denoising area:

−λ∇ ·
(
∇u
|∇u|

)
+ (u− y) = 0. (12)

Note that by the same curvature notation (6) of the associated level hypersurfaces, (12) can
be compactly written as

−λκ+ (u− y) = 0. (13)

See Appendix A for this curvature notation in Rd, which amounts to the mean curvature
up to a constant factor 1/(d− 1). The PDE (13) implies that the mean curvature κ of all
level hypersurfaces with respect to the approximation function u(x) imposes an equilibrium
condition on the fitting process of u− y = 0.

3.4 Euler’s Elastica (EE)

The more complicated elastica model for supervised learning can be formulated as

EEE [u] =

∫
Ω

(
λ(a+ bκ2)|∇u|+ 1

2
(u− y)2

)
dx, (14)

where κ is given by (6). Due to the elastica regularizer, the final decision boundary and all
level sets of u(x) should have a low elastica energy. If setting a = 1 and b = 0, this model
degenerates to the total variance model. Therefore, a unified solution can be implemented
for both TV and EE models, as described in the next section.
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Using calculus of variations, we obtain the following PDE for the elastica model:

−λ∇ ·V(u) + (u− y) = 0, (15)

where the vector field V(u) is called the flux of the elastica energy related to u(x) and can
be expressed as a decomposition in a natural orthogonal frame (N,T):

V(u)
.
= f(κ)N− T

|∇u|
∂(f ′(κ)|∇u|)

∂T
(16)

= f(κ)N− 1

|∇u|

{
∇(f ′(κ)|∇u|)−N〈N,∇(f ′(κ)|∇u|)〉

}
= f(κ)N− 1

|∇u|
∇(f ′(κ)|∇u|) +

1

|∇u|3
∇u〈∇u,∇(f ′(κ)|∇u|)〉.

Here f(κ)
.
= 1 + bκ2 by fixing a = 1 for simplicity, and N, T are the normal and tangent

vectors given by:

N =
∇u
|∇u|

, T = N⊥.

The directional derivative along T for a function u is defined as the inner product of ∇u
and T:

∂u/∂T
.
= ∇u ·T = 〈∇u,T〉.

See Appendix B for the detailed derivations from (14) to (15), which originates from Chan
et al. (2002). When b = 0, (15) degenerates to (12) as f ′(κ) = 0 and κ = ∇ ·N. Again,
the PDE (15) indicates that the divergence of the flux vector field, namely the first term
∇ ·V(u), imposes an equilibrium condition on the fitting process of u− y = 0.

4. Numerical Algorithms

Due to the nonlinearity of the regularizer in TV and EE models, the corresponding PDEs in
(12) and (15) are too complicated to be efficiently solved in high dimensional space. Even
though the PDE in (10) associated with the LR model can be solved by Finite Difference
Method (FDM) or Finite Element Method (FEM) in 2-D or 3-D spaces, currently we have
no PDE tools to deal with such high dimensional problems. Therefore we take a function
approximation idea by using radial basis functions (RBF), similar to the treatment in GLS
(Varshney and Willsky, 2010). Then the computational PDE problems can be reduced to
finding the expanding coefficients.

In the literature of image denoising and inpainting, dynamic programming was firstly
employed to solve elastica related image processing problems in Masnou and Morel (1998).
The most widely used method is the computational PDE approach (Chan and Shen, 2005;
Aubert and Kornprobst, 2006), partially due to the following reasons:

1. The theory of PDEs is well established;

2. Many variational problems or their regularized approximations can often be effectively
computed from their Euler-Lagrange equations;
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3. As in classical mathematical physics, PDEs are powerful tools to describe, model, and
simulate many dynamic as well as equilibrium phenomena.

Later in Bae et al. (2011) and Komodakis and Paragios (2009), graph-cuts methods are
applied to elastica models. Several numerical solutions (Tai et al., 2011; Hahn et al., 2011;
Duan et al., 2013) are based on the operator splitting technique and the augmented La-
grangian method (ALM), which decomposes the original problem into a series of subprob-
lems. All subproblems are either linear which can be solved efficiently by iterative solvers, or
having closed-form solutions. Recently, Bredies et al. (2013) proposed a convex, lower semi-
continuous approximation of Euler’s elastica energy on image processing tasks via functional
lifting, which can be expressed as a linear program. However, it is still unclear whether these
newly developed numerical methods are applicable to high dimensional elastica problems.

4.1 Approximation by Radial Basis Functions

The function approximation idea relies on the fact that a function u(x) can be expressed
as a sum of weighted basis function {φi(x)}. For instance, a Taylor expansion represents a
function by using polynomials as basis functions. The Ritz method is a direct method for
solving problems in variational calculus by means of a linear combination of known basis
functions. In the literature of machine learning, the most widely used are the Gaussian
radial basis function (RBF) kernels, which are simple in expressions but have powerful
fitting ability. Hence we assume that the function u(x) to be learned has the following
representation

u(x) =

n∑
i=1

wiφi(x), (17)

where {φi(x)} are a set of Gaussian RBF kernels

φi(x)
.
= exp(−1

2
c||x− xi||2).

Here {xi} are the training samples in supervised learning, and c is a tunable parameter. Note
that the granularity of this representation is well-matched to the data size, as the number
of RBFs is equal to the number of training samples. By using the RBF approximation,
the problem is reduced to finding the coefficients {wi}. Hence our approach is similar to
kernel machines with the Gaussian RBF kernels since the decision function is formulated
as a linear combination of RBFs. The main difference is that our approach is based on
the Euler’s elastica regularization term, while kernel methods in the literature employs a
squared norm of reproducing kernel Hilbert space for regularization.

Though there are numerous basis functions (also known as kernels) being proposed
by researchers, four basic types are often considered in the SVM literature and related
books: linear, polynomial, sigmoid, and Gaussian RBFs. In Hsu et al. (2007) the Gaussian
RBF kernel is suggested to be a reasonable first choice for training SVMs due to several
reasons. Most of these considerations also apply to our algorithms, such as the number of
hyperparameters, and the difficulties in numerical computations. In addition, one might
consider other types of RBFs instead of Gaussians, like compactly supported RBFs used in
scattered data interpolation (Wendland, 1995; Floater and Iske, 1996). The main purpose of
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compactly supported RBFs is for reducing computational complexity. However, the usage
of compactly supported RBFs might lead to numerical difficulties in the following derivative
calculations in our algorithms.

Let H(u) denote the Hessian matrix of u, and I be an identity matrix with a proper
size. For short notations we also use φi for φi(x). Based on the RBF approximation (17),
the following are some analytical expressions and handy notations that will be frequently
used later. See Appendix C for some derivations of these expressions. Note that d is the
dimension of the feature space.

∇φi = −c(x− xi)φi,

∆φi = c(c|x− xi|2 − d)φi, (18)

H(φi) = −cφiI + c2(x− xi)(x− xi)
Tφi, (19)

∇u =
∑
i

wi∇φi = −c
∑
i

wi(x− xi)φi = −cg,

g
.
=

∑
i

wi(x− xi)φi, (20)

∆u =
∑
i

wi∆φi = c
∑
i

wi(c|x− xi|2 − d)φi,

H(u) = −c
(∑

i

wiφi

)
I + c2Φ, (21)

Φ
.
=

∑
i

wi(x− xi)(x− xi)
Tφi,

N
.
=

∇u
|∇u|

= − g

|g|
,

κ
.
= ∇ · ∇u

|∇u|
(22)

=
1

|∇u|

(
∆u− ∇u

TH(u)∇u
∇uT∇u

)
=

1

|g|

{∑
i

wi(c|x− xi|2 − d+ 1)φi − c
gTΦg

gTg

}
. (23)

4.2 Algorithm for LR

First, let us consider how to deal with the simplest LR model by solving the linear elliptic
PDE (10): −λ∆u + (u − y) = 0. By using the RBF approximation (17) and the linearity
of the Laplacian operator, the goal is reduced to finding a set of weights {wi}:∑

i

wi(φi − λ∆φi) = y.

Let w
.
= (w1, w2, ..., wn)T and y

.
= (y1, y2, ..., yn)T , where n is the number of training

samples. Then w can be solved by the system of linear equations:

Aw = y, Aij = φj(xi)− λ∆φj(xi).
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Numerically, the following regularized least squares solution is adopted in practice to avoid
ill-posed problems:

min
w
|Aw − y|2 + η|w|2.

The closed-form solution is simply given by w = (ATA + ηI)−1ATy with fast computa-
tional speed. It is interesting to see that both classification and regression problems can be
solved by fitting a set of linear equations. Naturally, the LR method can be regarded as
a generalization of linear regression Xw = y or ridge regression minw |Xw − y|2 + η|w|2
(Hastie et al., 2009, chap. 3), where the original data matrix X is replaced by a “new” data
matrix A(X) in the LR model.

4.3 Algorithm for TV and EE Models

As the TV model is one degenerate case of the EE model, we describe solutions for the
more complicated EE model in this section. Here two algorithms are developed to tackle
the nonlinearity in (15): (1) gradient descent time marching, and (2) lagged linear equation
iteration.

4.3.1 Gradient Descent Time Marching

A standard solution is the steepest gradient descent marching with an artificial time t:

∂u(x, t)

∂t
= −∂ETV

∂u
= λ∇ ·

( ∇u
|∇u|

)
− (u− y) (24)

for the total variation PDE (12) and

∂u(x, t)

∂t
= −∂EEE

∂u
= λ∇ ·V − (u− y) (25)

for the elastica PDE (15). Note that by setting ut = −Eu, the energy functional E should
decrease in the gradient direction as time marching. Here the partial derivative Eu can be
obtained from the first variation of E (see Appendix A).

For image processing tasks, these gradient descent flows can be processed on a natural
regular grid of the image domain. For high dimensional data space, such computational
process is prohibitive. With the function approximation (17), a more practical way is
handling the gradient descent flow about the weight vector w. Consider a matrix form of
the function approximation (17) on all training data points:

u
.
=

 u(x1)
...

u(xn)

 = Ψw, Ψij
.
= φj(xi).

Thus we have the gradient descent flow about w:

∂w

∂t
= Ψ−1∂u

∂t
= Ψ−1


∂u
∂t |x=x1

...
∂u
∂t |x=xn

 .
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Then in each iteration the weight vector w can be updated by

w(k+1) = w(k) + τΨ−1


∂u(k)

∂t |x=x1

...
∂u(k)

∂t |x=xn

 ,

where τ is a small time step. We first initialize the weight vector w as w(0) = (ΨTΨ +
ηI)−1ΨTy by solving the regularized least squares problem Ψw = y, with η a regularization
parameter. Then we get u(0) = Ψw(0), and run the iteration by computing w(k+1) and u(k+1)

alternately.

Here we give some details about the computation of the partial derivatives. Clearly the
partial ut in (24) can be obtained by (23). By omitting the third and higher order terms,
∇ ·V can be expanded into the following expression (see Appendix D):

∇ ·V = κ+ bκ3 − 2b(∆u)2

|∇u|5
α+ 6b

( ∆u

|∇u|7
− κ

|∇u|6
)
α2 +

6b

|∇u|7
αβ +

2b

|∇u|5
γ, (26)

where

α
.
= ∇uTH(u)∇u, β

.
= ∇uTH(u)2∇u, γ

.
= ∇uTH(u)3∇u.

We can see that if by setting b = 0, the expression of ∇ · V is degenerated to κ = ∇ ·
(∇u/|∇u|), which is exactly the same expression of the TV model.

The time complexity in each iteration is O(n2d), where n is the number of data points
and d is the dimension. There are 3 parameters in the algorithm: the RBF parameter c,
the regularization parameter λ, and the elastica weight parameter b. Note that we always
set a = 1 since a can be absorbed into λ.

4.3.2 Lagged Linear Equation Iteration

Following the spirit of the lagged diffusivity fixed-point iteration method (Chan and Shen,
2005), we develop the following lagged linear equation iteration method. Empirically, the
original lagged diffusivity fixed-point iteration often yields poor performance due to its
brute-force linearization on the nonlinear PDE.

For the simpler TV model, by expanding the curvature term with (23) we have

− λ

|∇u|

(
∆u− ∇u

TH(u)∇u
∇uT∇u

)
+ (u− y) = 0,

or equivalently by the RBF approximation

−λ
{∑

i

wi(1− d+ c|x− xi|2)φi − c
gTΦg

gTg

}
+ |g|

{(∑
i

wiφi

)
− y
}

= 0.

The above nonlinear equation about w is rather complex as g and Φ contain the unknown
w. To simplify this equation, we use an iteration method that computes w or g alternately
by fixing the other variables. First, w is initialized as a random vector. Then g can be
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computed according to (20). Now assuming that g is fixed, we have

gTΦg

gTg
=

gT [
∑

iwi(x− xi)(x− xi)
Tφi]g

gTg

=
∑
i

wiφi

(gT (x− xi)(x− xi)
Tg

gTg

)
.

Thus the original nonlinear equation about w becomes a linear equation∑
i

wi

( |g|
λ
− h
)
φi =

|g|
λ
y,

where

h
.
= 1− d+ c|x− xi|2 − c

gT (x− xi)(x− xi)
Tg

gTg
.

Using the lagged idea, we obtain the method of lagged linear equation iteration: (1) By
fixing g, solve the system of linear equations with respect to w to get a new w; (2) Compute
g with the updated w; (3) Iterate until convergence or reaching maximal iteration number.

For the more complicated EE model, we have to simplify the corresponding PDE greatly.
Following the lagged idea again, we first assume the term about curvature K

.
= a + bκ2

being fixed. Then K can be absorbed into λ, leading to the following linear equation in a
similar way: ∑

i

wi

( |g|
λK
− f

)
φi =

|g|
λK

y.

Similarly, a two-step lagged iteration procedure can be developed for the EE model: (1)
By fixing g and K, solve the linear system with respect to w; (2) Compute g and K
with the updated w; (3) Iterate until convergence or reaching maximal iteration number.
There are three parameters: c, λ, and the regularization parameter η (empirically chosen
in experiments) in the least squares problems.

5. Theoretical Properties

In this section, we explore some theoretical analysis for elastica based supervised learning
algorithms under the framework of statistical learning theory (SLT) (Vapnik, 1998; Bousquet
et al., 2004; Boucheron et al., 2005; von Luxburg and Schölkopf, 2008). First we present
the existence and uniqueness analysis of our TV/EE solutions. Then we prove that elastica
based classifiers are universally consistent, mainly based on the pioneering work of Steinwart
(2005) for SVM and other regularized kernel classifiers.

5.1 Existence and Uniqueness of TV

We first consider the TV model (11), which is a special yet useful case of the elastica model
(14). It is well-known that one can carry out the existence and uniqueness analysis for TV
model in image processing tasks. Thanks to the fact that most properties of a BV function
are independent of the data dimension, the following proof in Rd is a trivial but detailed
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extension of the overly simplified proof for the TV-based image denoising model in (Chan
and Shen, 2005, Theorem 4.14 in chap. 4).

Before giving the theorem on existence and uniqueness, we first review several major
properties of BV functions (Chan and Shen, 2005, Section 2.2.2) (Aubert and Kornprobst,
2006, Section 2.2.3) that are frequently used in the following proofs.

Theorem 1 (1) (Completeness) BV(Ω) ⊂ L1(Ω) is a Banach space under the BV norm

‖u‖BV
.
=

∫
Ω

(|u|+ |∇u|)dx.

(2) (Weak Compactness) Let {un} be a bounded sequence in BV(Ω) where Ω is a Lipschitz
domain. There must exist a subsequence which converges in L1(Ω).
(3) (L1-Lower Semicontinuity) Suppose a sequence {un} converges to u in L1(Ω). Then∫

Ω
|∇u|dx ≤ lim inf

n

∫
Ω
|∇un|dx.

In particular if {un} is a bounded sequence in BV(Ω), then u belongs to BV(Ω) as well.

Theorem 2 (Existence and Uniqueness of TV) Under the assumption that the given
target function y(x) ∈ L2(Ω) with x ∈ Rd, the minimization problem

ETV [u] =

∫
Ω

(1

2
(u− y)2 + λ|∇u|

)
dx

admits a unique solution û(x) ∈ BV(Ω).

Proof We first show the existence. ETV is finite for at least one BV function ū(x) ≡∫
Ω y(x)dx, which is a constant function over Ω with |∇ū| = 0. Thus there exist some BV

functions having finite ETV values. Clearly 0 is a lower bound of these ETV values. Hence
this nonempty number set of all ETV values with 0 as a lower bound must have an infimum
denoted as E0(≥ 0). Since E0 is an infimum, we can select a sequence of BV functions
{ui} with bounded ETV values such that their ETV values converges to E0. Note that such
sequence of {ui} must be bounded as well as in BV(Ω) in terms of the BV norm, since
the TV seminorm

∫
Ω |∇u|dx is contained in ETV and BV(Ω) ⊂ L1(Ω). According to the

weak compactness of the BV space, for the bounded sequence {ui} in BV(Ω), there must
exist a subsequence indexed by i(k), k = 1, 2, . . ., which converges in L1(Ω). Due to the
completeness of L1(Ω), let û ∈ L1(Ω) be its limit. By the L1-lower semicontinuity of the
TV seminorm, we have ∫

Ω
|∇û|dx ≤ lim inf

k

∫
Ω
|∇uik |dx

and also û ∈ BV(Ω) since {ui} is a bounded sequence in BV(Ω). Observe that ETV is lower
semicontinuous with respect to the L1(Ω) topology because both of its components, the L2

norm (the squared loss in ETV ) and the TV seminorm, are lower semicontinuous. That is,

ETV [û] ≤ lim inf
k

ETV [uik ] = inf
u∈BV(Ω)

ETV [u] = E0,
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indicating that there exists û ∈ BV(Ω) achieving the minimum point of ETV .
The uniqueness follows directly from the strict convexity of ETV . Thanks to the

Minkowski inequality ‖f + g‖Lp ≤ ‖f‖Lp + ‖g‖Lp , the TV seminorm is convex (but not
strictly convex) given by∫

Ω
|∇(αu+ (1− α)v)| =

∫
Ω
|α∇u+ (1− α)∇v| ≤ α

∫
Ω
|∇u|+ (1− α)

∫
Ω
|∇v|,

where α ∈ [0, 1]. Apparently the L2 norm
∫

Ω(u − y)2 is strictly convex. Hence combining
two components together, we have that ETV is strictly convex. Therefore as the minimum
point of ETV , û ∈ BV(Ω) is unique.

In the image processing literature, there are some variants of the existence and unique-
ness analysis for different TV models. Chan et al. (2002) discussed the existence of TV
inpainting models in the cases of noise free and having noise, but the uniqueness is ne-
glected. Aubert and Kornprobst (2006) present the existence and uniqueness analysis for
the TV-based image restoration problem

minETV [u] =

∫
Ω

(1

2
(Ru− y)2 + λφ(|∇u|)

)
dx,

where R is a linear blurring operator and φ is a strictly convex and nondecreasing cost
function.

5.2 Existence of EE

We now consider the more complicated elastica model. In Ambrosio and Masnou (2003),
the authors proved that a relaxed version of elastica-based image inpainting has at least one
solution in BV(Ω). Here we give the existence proof of a discrete elastica model for binary
classification, which is adapted from the elegant proof in Steinwart (2005) for SVMs and
other regularized kernel classifiers. The existence is the first step to fulfill the consistency
proof in the next subsection. But the solution to elastica model can be non-unique, due to
the lack of convexity for this energy functional.

We begin with some preliminary notations. In the following, let R = [−∞,+∞], R+ =

[0,+∞), and R+
= [0,+∞]. A binary classifier is a rule that assigns to every training set

T = {(x1, y1), . . . , (xn, yn)} ∈ (X × Y )n (Y = {−1,+1} for binary problems) a measurable
function f : X → R with the final decision given by signf(x). Similar to the gray scale
constraint in image processing tasks, we assume that f takes values in a bounded interval
(e.g. [−2, 2]) since f should approximate y ∈ {−1,+1} and the classification decision is
only rated with the sign of f . Sometimes we use a looser condition that f ∈ L∞(X). For a
given loss function L(y, f(x)), write a cost function C(α, t)

.
= αL(1, t)+(1−α)L(−1, t) for

α
.
= P (Y = 1|X = x) ∈ [0, 1] and t ∈ R. For a fixed α, define M(α) and the corresponding

tα such that M(α)
.
= C(α, tα)

.
= mintC(α, t). We then give the basic condition on the loss

function L in order to guarantee that the solution tα minimizing C(α, t) tends to have the
same sign as the Bayes decision rule.

Definition 3 A continuous function L(y, f(x)) is called an admissible loss function if for
every α ∈ [0, 1] and tα ∈ R we have tα < 0 if α < 1/2 and tα > 0 if α > 1/2.
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A similar concept called classification-calibrated can be found in Bartlett et al.
(March 2006), requiring that an incorrect sign of tα always leads to a strictly larger M(α).
The classification-calibrated condition generalizes the requirement of an admissible loss that
the minimizer of C(α, t) (if it exists) has the correct sign. The admissibility of L is neces-
sary in order to develop universally consistent classifiers (Steinwart, 2005). In particular,
the quadratic loss L(y, f(x)) = (1− yf(x))2 used in our classification models is admissible
and classification-calibrated; other examples can be found in Steinwart (2005) and Bartlett
et al. (March 2006). In the following we always assume that L(y, f(x)) is a margin-based
admissible loss function which is continuous with respect to the margin yf(x).

Definition 4 Let S(λ, t) : R+ × R+ → R+
be an increasing function with respect to λ and

t, which is continuous in 0 with respect to λ and unbounded with respect to t. Moreover,
for all λ > 0 there exists a t > 0 such that S(λ, t) <∞. We call S(λ, t) a regularization
function if for all λ > 0 and s ∈ R+ we have S(λ, 0) = S(0, s) = 0, and if for all

λ > 0, t ∈ R+
, and for all sequences {tn} ⊂ R+

with tn → t and S(λ, tn) < ∞, we have
S(λ, tn)→ S(λ, t).

In our TV/EE models, S(λ, t) = λt2 clearly satisfies the requirements of a regulariza-
tion function. This regularization function is a typical setting in several variants of SVMs
(Steinwart, 2005), leaving the differences of these variants mainly on the loss functions.

Definition 5 The (0-1) risk of a measurable function f : X → R is defined by

RP (f)
.
= P ({(x, y) : signf(x) 6= y})
= E(x,y)∼P 1(y f(x)).

The smallest achievable risk

RP
.
= inf{RP (f) : f : X → R measurable}

is called the Bayes risk of P .

Definition 6 Given an admissible loss function L and a probability measure P , the L-risk
of a measurable function f : X → R is defined by

RL,P (f)
.
= E(x,y)∼PL(y, f(x))

=

∫
(x,y)∼P

L(y, f(x))PX(dx)PY (dy)

=

∫
X
C(P (Y = 1|X = x), f(x))PX(dx).

The smallest possible L-risk is denoted by RL,P . Furthermore, given a regularization func-
tion S, the regularized L-risk is defined by

RregL,P,λ(f)
.
= S(λ, ‖f‖EE) +RL,P (f)

for all λ > 0. Here ‖f‖2EE
.
=
∫
X(1 + bκ2)|∇f |dx is the Euler’s elastica regularizer with a

misused norm notation, and κ = ∇·
(
∇f
|∇f |

)
. If overlooking the curvature term, it degenerates

to the TV seminorm ‖f‖2TV
.
=
∫
X |∇f |dx. If P is an empirical measure with respect to

T ∈ (X × Y )n, we write RL,T (f) and RregL,T,λ(f), respectively.
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Theorem 7 (Existence of EE) For all Borel probability measures P on X × Y and all
λ > 0, there always exists a function fP,λ ∈ BV(X) minimizing the regularized L-risk
RregL,P,λ(f). Moreover, for all such fP,λ ∈ BV(X) we have ‖fP,λ‖EE ≤ δλ where

δλ
.
= sup{t : S(λ, t) ≤ 2[L(1, 0) + L(−1, 0)]}.

Proof The following proof is adapted from Steinwart (2005, Lemma 3.1), and the difference
lies on RregL,P,λ(f) where the original RKHS norm ‖f‖H for SVM is replaced by the pseudo-
norm ‖f‖EE for EE. The proof consists of the following five steps.

A. Clearly RregL,P,λ(f) is finite for the BV function f̄(x) ≡ E(x,y)∼P y or f̄(x) ≡ 0, which

is a constant function over X with |∇f̄ | = 0. Thus there exist some BV functions having
finite RregL,P,λ(f) values. For all ε ∈ (0, L(1, 0) + L(−1, 0)], by the definition of an infimum

we can select an function fε ∈ L1(X) with

RregL,P,λ(fε) ≤ inf
f∈L1(X)

RregL,P,λ(f) + ε.

Now we have

inf
f∈L1(X)

RregL,P,λ(f) ≤ RregL,P,λ(f ≡ 0)

= S(λ, ‖f ≡ 0‖EE) +RL,P (f ≡ 0)

= 0 + E(x,y)∼PL(y, f(x) ≡ 0)

= P (y = 1|x)L(1, 0) + P (y = −1|x)L(−1, 0)

≤ L(1, 0) + L(−1, 0),

where S satisfies the condition S(λ, 0) = 0 in the second equality. Furthermore,

S(λ, ‖fε‖EE) ≤ S(λ, ‖fε‖EE) +RL,P (fε) = RregL,P,λ(fε)

≤ inf
f∈L1(X)

RregL,P,λ(f) + ε ≤ 2[L(1, 0) + L(−1, 0)].

As S(λ, t) is an increasing function with respect to t, we obtain the boundedness of ‖fε‖2EE .
Since ‖f‖2TV ≤ ‖f‖2EE , we also have the boundedness of ‖fε‖2TV and fε ∈ BV(X).

B. The Bolzano-Weierstrass theorem states that each bounded sequence in Rn has a
convergent subsequence. In functional analysis, the Eberlein-Smulian theorem (Conway,
1990, Theorem 13.1 in chap. 5) states that three different kinds of weak compactness are
equivalent in a Banach space. Particularly, we will use the sequential compactness property
of a subset A in a Banach space: Every sequence from A has a convergent subsequence
whose limit is in A in the weak sense. Recall that BV(X) is a Banach space. By the two
theorems, there exist fP,λ ∈ BV(X), a sequence {fεn} ∈ BV(X), and two finite number
c1, c2 ∈ R+ such that ‖fεn‖EE → c1, ‖fεn‖TV → c2, and fεn → fP,λ weakly. Note that the
weak convergence implies that fP,λ is uniquely determined, ‖fP,λ‖BV ≤ lim infn ‖fεn‖BV ,
and ‖fP,λ‖L1 ≤ lim infn ‖fεn‖L1 since BV(X) ⊂ L1(X) (Yosida, 1999, Theorem 5 and 9 in
Chapter V.1). In particular, by the weak compactness of the BV space, we further have that
{fεn} converges to fP,λ in L1(X). Thus yfεn(x) → yfP,λ(x) since the margin is a linear
functional of f . As L is continuous with respect the margin, we obtain L(y, fεn(x)) →
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L(y, fP,λ(x)) for all (x, y) ∈ X × Y . Recall that |L(y, fεn(x))| is uniformly bounded by the
boundedness assumption of |f | and the continuity of L. Therefore, the bounded convergence
theorem (as a special case of Lebesgue dominated convergence theorem) implies

RL,P (fεn(x)) =

∫
(x,y)∼P

L(y, fεn(x))PX(dx)PY (dy)

→
∫

(x,y)∼P
L(y, fP,λ(x))PX(dx)PY (dy)

= RL,P (fP,λ(x)).

C. By RL,P (fεn)→ RL,P (fP,λ), for a fixed ρ > 0, there exists an index n0 such that for
all n ≥ n0 we have both εn ≤ ρ and RL,P (fP,λ)−RL,P (fεn) ≤ ρ. In other words, we obtain
the following inequalities

S(λ, ‖fεn‖EE) +RL,P (fP,λ)− ρ ≤ S(λ, ‖fεn‖EE) +RL,P (fεn) = RregL,P,λ(fεn)

≤ inf
f∈L1(X)

RregL,P,λ(f) + εn

≤ RregL,P,λ(fP,λ) + εn

= S(λ, ‖fP,λ‖EE) +RL,P (fP,λ) + εn,

where the second inequality is based on the definition of fεn . It implies that

S(λ, ‖fεn‖EE) ≤ S(λ, ‖fP,λ‖EE) + εn + ρ ≤ S(λ, ‖fP,λ‖EE) + 2ρ.

On the other hand, we need to consider another inequality in the opposite direction.
By the weak convergence we already have ‖fP,λ‖BV ≤ lim infn ‖fεn‖BV and ‖fP,λ‖L1 ≤
lim infn ‖fεn‖L1 . However these two inequalities have nothing to do with ‖f‖EE . Thanks
to the lower semicontinuity of the mean curvature’s Lp norm, Leonardi and Masnou (2009,
Theorem 4.4) proved that

Fp(f) =

∫
X
|∇f |(1 + |∇ ·

(
∇f
|∇f |

)
|p)dx

is lower semicontinuous in the class of C2(Rd) functions whenever p ≥ 1 for d = 2 or p ≥ 2
for d ≥ 3. An earlier result (Ambrosio and Masnou, 2003, Theorem 6) required p > d−1 for
d ≥ 2. Of course the definition of Fp(f) is valid only for a certain class of smooth functions
and we use the following relaxed functional (Ambrosio and Masnou, 2003; Leonardi and
Masnou, 2009)

Fp(f) = inf{lim inf
h→∞

Fp(fh) : fh → f ∈ L1}

to extend to the whole space L1(Rd) (including BV (X)). We also have lower semicontinuity
of Fp(f) (Ambrosio and Masnou, 2003, Theorem 5) and Fp(f) = Fp(f) whenever f ∈
C2(X) (Leonardi and Masnou, 2009, Theorem 4.4). Immediately we obtain

‖fP,λ‖EE ≤ lim inf
n
‖fεn‖EE

and thus by the increasing property of S(λ, t),

S(λ, ‖fP,λ‖EE) ≤ lim
n→∞

S(λ, ‖fεn‖EE).
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Combining the inequalities in two directions together yields

lim
n→∞

S(λ, ‖fεn‖EE) = S(λ, ‖fP,λ‖EE).

D. Combining RL,P (fεn)→ RL,P (fP,λ) with S(λ, ‖fεn‖EE)→ S(λ, ‖fP,λ‖EE), we have

RregL,P,λ(fεn)→ RregL,P,λ(fP,λ).

Because the definition of {fεn} indicates

RregL,P,λ(fεn)→ inf
f∈L1(X)

RregL,P,λ(f),

we have found a fP,λ ∈ BV (X) ⊂ L1(X) such that

RregL,P,λ(fP,λ) = inf
f∈L1(X)

RregL,P,λ(f).

E. The second assertion ‖fP,λ‖EE ≤ δλ is obtained by the boundedness of fε in the first
step.

5.3 Binary Classification Consistency

In classical statistics, a statistic θ̂n is a consistent estimator of a parameter θ based on a
sample of size n if and only if for any ε > 0, limn→∞ P (|θ̂n − θ| > ε) = 0. In the same
spirit, it is natural to request that a learning algorithm should eventually “converge” to an
optimal solution when more and more training examples are presented. In the literature of
machine learning, there exists two different types of consistency depending on the optimal
solution that belongs to some particular function space or the space of all functions (von
Luxburg and Schölkopf, 2008). The latter is often called Bayes consistency if the risk of a
learned classifier converges to the risk of the Bayes optimal decision rule. It is well accepted
that a good learning algorithm should satisfy this asymptotic property of consistency when
the data size is sufficiently large.

The literature on the consistency analysis of learning algorithms can be roughly classified
into following categories: (1) binary classification (Zhang, 2004a; Bartlett et al., March
2006), in particular for SVM (Steinwart, 2005), for Boosting (Bartlett and Traskin, 2007),
and for random forests (Biau et al., 2008); (2) multi-class classification (Zhang, 2004b;
Tewari and Bartlett, 2007; Glasmachers, 2010); (3) regression (Zakai and Ritov, 2009); (4)
learning to rank (Cossock and Zhang, 2008; Xia et al., 2008; Duchi et al., 2010); (5) multi-
label learning (Gao and Zhou, 2013). The work by Biau et al. (2008) showed that some
popular classifiers, including Breiman’s random forest classifier, are not consistent.

We first formalize the definitions of several kinds of consistency used in this section,
following von Luxburg and Schölkopf (2008) and Steinwart (2005).

Definition 8 A classifier fn is said to be (Bayes) consistent with respect to a given prob-
ability measure P if the risk R(fn) converges in probability to the Bayes risk, that is for all
ε > 0,

P (R(fn)−R(f∗) > ε)→ 0 as n→∞
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where R(f)
.
= P ({(x, y) : signf(x) 6= y}) is the risk of a classifier f and f∗ denotes the

Bayes classifier. Furthermore, fn is said to be universally consistent if it is consistent
for all distributions P on X × Y . It is called strongly universally consistent if such
limiting property even holds almost surely (a.s.), that is

P ( lim
n→∞

R(fn) = R(f∗)) = 1.

Note that the Bayes risk is the minimum that we can achieve in the space of all measur-
able functions, so we always have R(fn) ≥ R(f∗) and there is no need to use the absolute
value as in classical statistics.

We also need the notion of simple functions to approximate any function from Lp(X).

Definition 9 A simple function is a function ψ : X → R of the form

ψ(x) =

n∑
i=1

ciχAi(x)

where χA is the indicator function of the set A and {ci} ⊂ R. Another description of a
simple function is a function that takes on finitely many values in its range.

Proposition 10 (From Regularized to Unregularized) For every Borel probability mea-
sure P on X × Y , we have

lim
λ→0

RregL,P,λ(fP,λ) = RL,P

where fP,λ ∈ BV(X) minimizes the regularized L-risk RregL,P,λ(f), and RL,P is the smallest
possible L-risk RL,P (f) achieved by any measurable function f : X → R.

Proof First by the definition of fP,λ we have

lim
λ→0

RregL,P,λ(fP,λ) = lim
λ→0

inf
f∈BV(X)

RregL,P,λ(f)

= lim
λ→0

inf
f∈BV(X)

{S(λ, ‖f‖EE) +RL,P (f)}

= inf
f∈BV(X)

{ lim
λ→0

S(λ, ‖f‖EE) +RL,P (f)}

= inf
f∈BV(X)

RL,P (f)

since S(λ, ·) is continuous in 0 with respect to λ and S(0, ·) = 0. Next we show that the
following identities hold true

inf
f∈BV(X)

RL,P (f) = inf
f∈L1(X)

RL,P (f) = RL,P

for a sequence of embedding spaces BV(X) ⊂ L1(X) ⊂ {f : X → R measurable}, which
suffices to prove the assertion.

We first check the first identity. Recall that the simple functions that belong to Lp(X)
are dense in Lp(X) for 1 ≤ p ≤ ∞ (Hunter, 2011, Theorem 7.8). Note that an integrable
simple function

ψ =
n∑
i=1

ciχAi
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belongs to Lp(X) for 1 ≤ p < ∞ if and only if µ(Ai) < ∞ for each Ai ⊂ X such that
ci 6= 0, meaning that its support has finite µ measure. On the other hand, each simple
function belongs to L∞. We restrict the discussion on bounded functions in Lp(X) since any
unbounded f ∈ Lp(X) can be replaced by a modified bounded f̃ ∈ Lp(X) to make the loss
L smaller. Hence the nice property of density indicates that for every bounded f ∈ Lp(X)
(1 ≤ p ≤ ∞), there exists a sequence of simple functions gn such that ‖f − gn‖Lp → 0 and
|gn(x)| ≤ |f(x)| pointwise. The strong convergence in Lp norm implies the weak convergence
in measure

PX({x ∈ X : |f − gn| ≥ ε})→ 0.

Since L(y, t) is uniformly continuous with respect to the second variable in the closed interval
[−|f(x)|, |f(x)|], for any fixed y we have

PX({x ∈ X : |L(y, f(x))− L(y, gn(x))| ≥ ε})→ 0.

By the previous assumption that L(y, f(x)) is a margin-based admissible loss function which
is continuous with respect to the margin yf(x), there exists a function L̂(yf(x)) ∈ L1(X)
such that

|L(y, gn(x))| ≤ L̂(yf(x)).

By the Lebesgue’s dominated convergence theorem, the expectation in RL,P (f) and the limit
can change order:

lim
n→∞

∫
(x,y)∼P

L(y, gn(x))PX(dx)PY (dy) =

∫
(x,y)∼P

L(y, f(x))PX(dx)PY (dy)

= E(x,y)∼PL(y, f(x))

= RL,P (f).

Thus by fixing p = 1 we have

inf{RL,P (f) : f simple} = inf
f∈L1(X)

RL,P (f).

Clearly such simple functions belong to BV(X), and also by the definition of BV functions
we have BV(X) ⊂ L1(X). Then the relation of embedding spaces implies that

inf{RL,P (f) : f simple} ≥ inf
f∈BV(X)

RL,P (f) ≥ inf
f∈L1(X)

RL,P (f).

Together with the previous identity between simple functions and L1(X) functions, the first
identity

inf
f∈BV(X)

RL,P (f) = inf
f∈L1(X)

RL,P (f)

follows.

The second identity comes from the fact

inf
f∈L∞(X)

RL,P (f) = RL,P
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with the proof given by Steinwart (2005, Proposition 3.2). On the other hand, the embed-
ding relationship L∞(X) ⊂ L1(X) ⊂ {f : X → R measurable} leads to

inf
f∈L∞(X)

RL,P (f) ≥ inf
f∈L1

RL,P (f) ≥ RL,P .

Therefore the second identity
inf
f∈L1

RL,P (f) = RL,P

holds true.

Following the framework of consistency proof in Steinwart (2005), we need the final
piece of the puzzle by showing that some suitable concentration inequalities hold true for
our proposed algorithms. These concentration inequalities bridge the gap between the
expected L-risk of fP,λ and the empirical L-risk of fP,λ. Steinwart’s framework is somehow
modular: each tuple of concentration inequality, loss function, and function space gives a
condition on {λn} ensuring |RL,P (fP,λ)−RL,T (fP,λ)| → 0, and each different combination of
this tuple leads to new consistency results. There exist several concentration inequalities in
Steinwart (2005) based on covering numbers, localized covering numbers, and algorithmic
stability. Among these three concentration inequalities, the algorithmic stability (Bousquet
and Elisseeff, 2002; Kutin and Niyogi, 2002; Poggio et al., 2004) is an elegant approach
that does not depend on any complexity measure of the underlying hypothesis space, but
rather depend on how the learning algorithm searches this space. However, stability based
concentration inequalities (Bousquet and Elisseeff, 2002) heavily rely on the reproducing
property of the RKHS space and often require that the regularization term is convex, while
these conditions do not hold for our elastica based learning algorithm. In the following we
give a concentration inequality based on covering numbers.

For a metric space (M,d) we define its covering number N ((M,d), ε) to be the minimal
l such that there exist l disks in M with radius ε covering M :

N ((M,d), ε)
.
= min

{
l ∈ N : {x1, . . . , xl} ⊂M, M ⊂

l⋃
i=1

B(xi, ε)
}
,

where B(x, ε) denotes the closed ball with center x and radius ε ≥ 0. We also have to
measure the continuity of a given loss function L. The modulus of continuity of L is defined
by

ω(L, δ)
.
= sup{|L(y, t)− L(y, t′)| : y ∈ Y, t, t′ ∈ R, |t− t′| ≤ δ}.

In addition we define the inverted modulus of continuity as

ω−1(L, ε)
.
= sup{δ > 0 : ω(L, δ) ≤ ε}.

Moreover, since only fP,λ ∈ BV(X) and fT,λ ∈ BV(X) are our focus considered in the
consistency results, we define the restricted loss function:

Lλ(·, ·) .
= L(y, f(x)) : y ∈ Y, f ∈ BV(X) ∩ L∞(X), ‖f‖TV ≤ δλ ,

where δλ given in Theorem 7 is a simple upper bound on the TV semi-norm of the solutions
of RregL,P,λ(f).
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Lemma 11 (Concentration) For all Borel probability measures P on X × Y , all ε > 0,
λ > 0, and all n ≥ 1 we have

P (|RL,T (fT,λ)−RL,P (fT,λ)| ≥ ε) ≤ 2N
(
δλI, ω

−1(Lλ, ε/3)
)

exp
(
− 2nε2

9‖Lλ‖2∞

)
,

where δλI
.
= {f ∈ BV(X)∩L∞(X) : ‖f‖TV ≤ δλ} is a metric space equipped with the ‖ · ‖∞

norm.

Proof Write the loss class as F .
= {L(·, f(·)) : f ∈ BV(X) ∩ L∞(X), ‖f‖TV ≤ δλ}. Note

that F is a subset of C(X × Y ) of nonnegative functions that are bounded by ‖Lλ‖∞. Let
l = N (F , ε/3) and consider f1, . . . , fl such that the disks Dj centered at fj and with radius
ε/3 cover F . Recall that Hoeffding’s inequality (Bousquet et al., 2004, Theorem 1) (see also
the book by Boucheron et al., 2013), perhaps the most elegant quantitative version of the
law of large numbers, states that for all ε > 0,

P
(∣∣∣ 1
n

n∑
i=1

f(Zi)− E[f(Z)]
∣∣∣ > ε

)
≤ 2 exp

(
− 2nε2

(b− a)2

)
,

where Z1, . . . , Zn be n i.i.d. random variables with f(Z) ∈ [a, b]. For each fixed fj , applying
Hoeffding’s inequality yields

P (|RL,T (fj)−RL,P (fj)| ≤ ε/3) ≥ 1− 2 exp
(
− 2n(ε/3)2

‖Lλ‖2∞

)
,

with RL,P (fj) = E(x,y)∼PL(y, fj(x)) and L(y, fj(x)) ∈ [0, ‖Lλ‖∞]. As the disks Dj are ε/3
cover of F , the following inequalities hold true

sup
f∈Dj

|RL,T (f)−RL,P (f)|

= sup
f∈Dj

|RL,T (f)−RL,T (fj) +RL,T (fj)−RL,P (fj) +RL,P (fj)−RL,P (f)|

≤ ε/3 + |RL,T (fj)−RL,P (fj)|+ ε/3

≤ ε ,

with probability at least 1− 2 exp (− 2nε2

9‖Lλ‖2∞
) over the random choice of the training set T .

Since ‖f‖EE ≤ δλ implies ‖f‖TV ≤ δλ, using the union bound we get

P ( sup
‖f‖EE≤δλ

|RL,T (f)−RL,P (f)| ≥ ε) ≤ 2N (F , ε/3) exp (− 2nε2

9‖Lλ‖2∞
).

By the definition of the modulus of continuity, every ε cover f1, . . . , fl with ‖fj‖TV ≤ δλ
defines an ω(Lλ, ε) cover L(·, f1(·)), . . . , L(·, fl(·)) of F with respect to the supremum norm.
Thus we have

N (F , ε/3) ≤ N (δλI, ω
−1(Lλ, ε/3)),

which immediately yields

P
(

sup
f∈δλI

|RL,T (f)−RL,P (f)| ≥ ε
)
≤ 2N (δλI, ω

−1(Lλ, ε/3)) exp
(
− 2nε2

9‖Lλ‖2∞

)
.
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Since Lemma 7 guarantees that ‖fP,λ‖TV ≤ δλ or ‖fT,λ‖TV ≤ δλ, the assertion follows.

Theorem 12 (Universal Consistency) The classifier fT,λn ∈ BV(X) minimizing the
regularized empirical L-risk RregL,T,λn(f) is universally consistent for a positive sequence {λn}
with λn → 0 and

1

n
‖Lλn‖2∞ lnN (δλnI, ω

−1(Lλn , ε))→ 0

for all ε > 0.

Proof The Proposition 3.3 of Steinwart (2005) states that for any Borel probability measure
P on X × Y and for all ε > 0, there exists a δ > 0 such that for all measurable f : X → R
with RL,P (f) ≤ RL,P + δ we have RP (f) ≤ RP + ε. Here L in RL,P (f) requires to be an
admissible loss function. Therefore, in order to prove the 0-1 risk RP (fT,λn) ≤ RP + ε, it
suffices to show the L-risk RL,P (fT,λn) ≤ RL,P + δ.

The outline is given as follows:

RL,P (fT,λn) ≤ S(λn, ‖fT,λn‖EE) +RL,P (fT,λn)

≤ S(λn, ‖fT,λn‖EE) +RL,T (fT,λn) + δ/3 (27)

≤ S(λn, ‖fP,λn‖EE) +RL,T (fP,λn) + δ/3 (28)

≤ S(λn, ‖fP,λn‖EE) +RL,P (fP,λn) + 2δ/3 (29)

= RregL,P,λn(fP,λn) + 2δ/3

≤ RL,P + δ. (30)

Among the above inequalities, (27) and (29) hold true by the empirical concentration in-
equality in Lemma 11 with probability at least

1− 2N
(
δλI, ω

−1(Lλ, ε/3)
)

exp
(
− 2nε2

9‖Lλ‖2∞

)
over the random choice of the training set T , while (28) is obtained by the fact that fT,λn
minimizes the regularized empirical L-risk RregL,T,λn(f). Proposition 10 with respect to λn →
0 immediately implies (30): there exists an integer n0 ≥ 1 such that for all n ≥ n0 we have

|RregL,P,λn(fP,λn)−RL,P | ≤ δ/3.

Note that the condition

1

n
‖Lλn‖2∞ lnN (δλnI, ω

−1(Lλn , ε))→ 0

assures that RL,P (fT,λn) ≤ RL,P + δ holds true with probability 1 nearly as n→∞. Then
the universal consistency follows by P (RP (fT,λn)−RP ≤ ε)→ 1 for all distributions P on
X × Y .
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Figure 2: Decision boundaries produced by SVM and EE with common parameters on two
moon data.

6. Experimental Results

The proposed two models (TV and EE) are compared with LR, SVM with RBF kernels
using the LIBSVM implementation (Chang and Lin, 2011), and Back-Propagation Neural
Networks (BPNN) in the Matlab neural network toolbox. Two implementations of our
methods are also compared: Gradient Descent method (GD) and Lagged Linear Equation
method (LAG). The maximum number of iterations in GD and LAG is empirically setting
as 40. Binary classification, multi-class classification, and regression tasks are tested on
synthetic and real-world data sets. We collected real data sets from the libsvm website
(Chang and Lin, 2011) and the UCI machine learning repository (Asuncion and Newman,
2013). Some attributes have been removed due to missing entries. Some data sets have a
huge number of instances, hence we use only 1000 instances in our experiments. All data
sets are scaled into [0,1] before training and testing.

6.1 Synthetic Data

We first compare our EE model and SVM for binary classification on two synthetic data
sets: the two moon data and one data set made by ourselves. Fig. 2 and Fig. 3 show the
decision boundaries produced by SVM and EE with common parameters. We can see that
SVM tends to yield curved or even wiggly decision boundaries to pursue low training errors.
In contrast, smooth or even straight decision boundaries with low curvature are favored by
EE, hence reducing the risk of overfitting.

One may argue that SVM can produce smooth and low curvature decision boundaries
by tuning the parameters. Fig. 4 shows the results of SVM with different combinations of
kernel parameter g and slack parameter C. For comparison, Fig. 5 displays the results of
EE with different combinations of regularization parameter λ and kernel parameter c. We
can see that most decision boundaries produced by EE have lower curvature values and are
smoother than the results by SVM. Actually the elastica term in EE may be interpreted
as the accumulated bending energy of all level lines, including the level line on the decision
boundary.
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Figure 3: Decision boundaries produced by SVM and EE with common parameters on our
synthetic data.

Figure 4: Decision boundaries produced by SVM with different parameter combinations on
two moon data.

6.2 Binary Classification

We use eleven data sets for binary classification. The optimal parameters for each algorithm
are selected by grid search using 5-fold cross-validation. To make the grid search more
practical, only two common parameters are searched for all methods except BPNN: (C,
g) for SVM, while (c, λ) for LR, TV, and EE. Empirically, the parameter η is set as
1 for LR, and the parameter b is fixed as 0.01 for EE. Then excluding BPNN, the two
common parameters are searched from −10 : 10 in logarithm with step 2. For each data
set, we randomly run the 5-fold cross validation ten times to reduce the influence of data
partitions.
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Figure 5: Decision boundaries produced by EE with different parameter combinations on
two moon data.

Table 1 gives the average classification accuracies (with standard deviations) for the five
methods. The results indicate that BPNN performs the worst, while the LAG version of EE
achieves the best accuracies on six data sets. LR and other implementations of TV and EE
are comparable with SVM. When comparing EE-LAG and SVM in a pairwise fashion, we
can see that EE-LAG achieves improvements over SVM on 10 datasets (though not much
statistically significant as the differences on two averaged accuracies is often less than one
standard deviation).

6.3 Multi-Class Classification

For multi-class tasks, we collected twelve data sets. For the 256-dimensional USPS data,
PCA is used as a preprocessing step to reduce the dimension to 30 and we randomly select
1000 samples for experiments. Same as the settings for binary problems, we use ten runs 5-
fold cross-validation to choose the optimal parameters for each method. All methods except
for BPNN have two common parameters which are searched from −10 : 10 in logarithm
with step 1.

Aside from BPNN that has a built-in ability for multi-class tasks, almost all function
learning approaches are originally designed for binary classification. In order to handle
multi-class situations, usually “one versus all” (OVA) or “one versus one” (OVO) strate-
gies can be adopted. If using OVA, one needs to learn M scoring functions to fulfill the
multi-class task, where M is the number of classes. The final decision is the label whose
scoring function achieves the largest value or confidence score. However, these scoring func-
tions are learned independently, often suffering to the so-called calibration problem (Mohri
et al., 2012, chap. 8). LIBSVM uses the OVO strategy, with some reasons and detailed
comparisons given in (Hsu and Lin, 2002). See also Mohri et al. (2012, chap. 8) for dis-
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Data Dim Num SVM BPNN LR
TV EE

GD LAG GD LAG

Australian 14 690 85.94 85.34 87.06 87.11 87.01 86.54 87.25
±2.70 ±1.97 ±2.45 ±2.06 ±2.46 ±2.31 ±2.01

Blood 4 748 79.01 79.08 79.32 79.55 79.42 79.73 79.73
transfusion ±3.01 ±3.36 ±3.74 ±2.38 ±2.60 ±2.18 ±2.03

Breast- 10 683 97.36 96.40 97.60 97.36 97.72 97.13 97.83
cancer ±1.59 ±1.14 ±1.27 ±1.28 ±1.43 ±1.37 ±1.29

Diabetes 8 768 77.73 76.85 77.96 77.83 77.81 78.23 78.10
±3.03 ±4.22 ±3.50 ±3.19 ±2.73 ±2.54 ±2.63

German. 24 1000 77.10 76.37 77.10 76.19 77.10 76.50 77.22
number ±1.61 ±1.61 ±1.36 ±1.47 ±1.29 ±1.59 ±1.30

Haberman’s 3 306 74.51 74.52 75.77 75.30 75.28 75.65 75.34
survival ±4.31 ±3.53 ±3.00 ±3.31 ±3.78 ±3.42 ±3.32

Heart 13 270 83.70 81.76 84.26 84.45 84.58 84.78 84.96
±2.72 ±3.16 ±2.22 ±2.82 ±2.73 ±2.69 ±2.79

Liver- 6 345 73.62 71.52 73.20 74.81 73.62 74.32 73.91
disorders ±5.72 ±4.44 ±2.95 ±2.49 ±2.65 ±2.29 ±2.83

Planning 12 182 73.63 67.62 72.22 71.67 71.67 72.22 71.67
relax ±4.41 ±4.93 ±4.46 ±4.93 ±4.08 ±4.25 ±4.79

Sonar 60 208 89.90 88.99 90.88 90.30 90.27 90.07 90.50
±4.41 ±4.79 ±3.83 ±4.47 ±4.72 ±3.27 ±3.37

Vertebral 6 310 85.81 85.16 84.52 84.55 84.75 85.83 85.92
column ±4.26 ±3.12 ±3.90 ±4.14 ±4.37 ±3.38 ±3.68

Table 1: Average accuracies (%) for binary classification with 5-fold cross-validation.

cussions between OVA and OVO. Recently in Varshney and Willsky (2010), an efficient
binary encoding strategy was proposed to represent the decision boundary by using only
m = dlog2Me functions. Empirically we compared the log2M strategy and the OVA strat-
egy for LR, TV and EE, and found that the in most cases the log2M strategy performs
slightly better. As the codewords for making decisions are represented as 0-1 bits of length
m, the log2M strategy may somehow “favor” those methods with good function approxi-
mation ability. In multi-class experiments, the log2M strategy is used for LR, TV and EE,
while LIBSVM runs with the OVO strategy.

The multi-class results of classification accuracies are shown in Table 2. The accuracy
results demonstrate that both SVM and EE-GD offer the best accuracies on four (different)
data sets, and both EE-LAG and TV-GD take the first place on two (different) data sets. If
we compare SVM and EE-GD in a pairwise fashion by excluding other competing methods,
the results show that SVM wins on only five data sets while EE-GD performs better on
the other seven data sets. Therefore on multi-class tasks, Table 2 implies that our EE-GD
version can offer competitive results, or can perform slightly better than SVM.

6.4 Regression

We use ten regression data sets to validate the proposed TV/EE methods compared with
SVM, BPNN, and LR. All data sets are scaled into [0,1]. The same experimental settings
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Data Cls Dim Num SVM BPNN LR
TV EE

GD LAG GD LAG

Balance 3 4 625 98.40 92.48 89.44 90.88 89.92 90.40 91.36
scale ±1.13 ±1.77 ±1.90 ±1.25 ±1.36 ±1.80 ±1.35

Flags 8 29 194 52.06 46.90 53.13 51.50 52.10 53.55 52.10
±7.57 ±7.25 ±7.34 ±7.29 ±7.10 ±6.39 ±7.22

Glass 6 9 214 73.83 63.99 73.81 75.59 76.19 75.82 75.71
±9.22 ±11.83 ±7.34 ±8.73 ±8.62 ±9.07 ±9.15

Hayes- 3 5 132 81.82 74.26 73.63 77.87 77.08 78.90 78.15
rath ±4.12 ±4.62 ±4.31 ±4.59 ±4.67 ±4.29 ±4.31

Iris 3 4 150 96.67 96.00 95.33 96.00 96.00 96.00 96.00
±3.65 ±3.37 ±3.42 ±3.50 ±3.27 ±3.33 ±3.10

Statlog 7 19 2310 97.27 96.74 97.31 97.31 97.21 97.45 97.44
imageseg ±0.91 ±1.12 ±0.95 ±0.93 ±0.88 ±0.81 ±0.83

Seeds 3 7 210 94.76 95.71 92.38 92.86 92.65 92.86 92.75
±1.78 ±1.56 ±1.85 ±1.74 ±1.62 ±1.93 ±1.87

Teaching 3 5 151 60.93 56.63 63.47 65.18 66.00 65.41 67.33
assist ±20.97 ±19.44 ±17.28 ±14.26 ±15.37 ±16.23 ±17.41

USPS 10 30 1000 94.10 89.72 94.90 94.40 94.80 94.40 95.00
±1.39 ±2.79 ±1.28 ±1.32 ±1.73 ±1.54 ±1.27

Vehicle 4 18 846 84.40 79.18 82.75 85.00 84.25 85.00 84.84
±0.70 ±1.41 ±1.33 ±0.82 ±0.93 ±0.78 ±0.90

Wine 3 13 178 98.88 97.78 99.44 99.44 99.43 99.44 98.86
±1.27 ±1.43 ±0.83 ±0.83 ±0.85 ±0.83 ±1.31

Yeast 10 8 1484 60.78 54.49 58.22 57.95 57.91 57.95 57.97
±3.26 ±4.57 ±3.79 ±3.34 ±3.27 ±3.64 ±3.52

Table 2: Average accuracies (%) for multi-class classification with 5-fold cross-validation.

are repeated by running ten times of 5-fold cross-validation for each data set. Table 3 shows
the regression results in mean square errors (MSE) with standard deviations.

Clearly, we can see that TV-LAG and two versions of EE achieve the best regression
results, with each winning three times on overall ten data sets. BPNN yields the lowest
errors on two data sets. Surprisingly SVM takes the first place on only one data set. If
we select SVM and LR in a pairwise fashion by excluding other methods, we find that LR
offers lower errors on seven data sets while SVM performs better on only other three data
sets. If we compare SVM and TV-GD separately by neglecting other methods, TV-GD
performs better on nine data sets. Note that TV-GD performs the worst among all versions
of TV/EE. These results demonstrate that compared with other competing methods, the
performance of SVM on regression tasks is rather unsatisfactory. The reason might be that
the original purpose of SVM is designed for classification, not for regression. In contrast,
our TV/EE methods exhibit excellent regression ability on these data sets.

6.5 Running Times

To compare the real performance in computational burdens, in Table 4 we list the running
times of the competing methods on five data sets for binary classification. The running times
are obtained for five-fold cross-validation in one single round, averaged by ten rounds. The
experiments are conducted on a PC Sever with two Intel Xeon 5620 cores and 8GB RAM.
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Data Dim Num SVM BPNN LR
TV EE

GD LAG GD LAG

Auto MPG 7 392 7.11 5.63 6.07 5.67 5.62 5.47 5.69
±0.56 ±0.57 ±0.55 ±0.56 ±0.53 ±0.51 ±0.56

Concrete 8 1030 6.42 4.88 6.02 5.98 5.43 5.83 5.24
comp. str. ±0.62 ±0.56 ±0.64 ±0.83 ±0.60 ±0.78 ±0.61

Concrete 9 103 4.48 14.30 5.01 1.86 1.61 1.76 1.61
slump test ±2.00 ±7.14 ±1.70 ±0.81 ±0.70 ±0.71 ±0.70

Forest 12 517 5.95 6.20 3.41 3.43 3.41 3.37 3.41
fires ±3.62 ±3.73 ±3.69 ±3.61 ±3.69 ±3.54 ±3.69

Housing 13 506 5.88 7.54 5.13 4.92 4.90 5.14 4.95
±2.28 ±2.41 ±2.36 ±2.47 ±2.29 ±2.39 ±2.33

Machine 6 209 3.32 5.18 1.78 2.37 1.91 1.75 1.75
CPU ±2.81 ±3.23 ±1.70 ±1.80 ±1.78 ±1.72 ±1.72

Pyrim 27 74 9.32 23.06 6.59 5.81 5.89 5.90 5.93
±9.75 ±9.97 ±6.22 ±5.17 ±5.85 ±6.09 ±6.12

Servo 4 167 9.93 5.62 7.29 8.81 8.34 8.87 7.86
±5.09 ±5.24 ±5.80 ±5.49 ±5.63 ±5.29 ±5.83

Triazines 60 186 19.24 41.90 20.73 19.67 20.32 19.63 19.95
±6.61 ±8.71 ±4.46 ±3.93 ±4.08 ±2.50 ±2.79

Yacht 6 308 4.52 3.70 7.75 2.33 1.45 2.07 1.45
hydrodynamics ±0.31 ±0.29 ±1.91 ±0.47 ±0.32 ±0.43 ±0.32

Table 3: Regression errors measured by MSE (10−3) with 5-fold cross-validation.

We can see that the computational burdens of TV/EE algorithms is similar to that of BPNN
in Matlab toolbox, but much slower than LIBSVM. The computational PDE approach of
our TV/EE models is implemented by gradient descent or lagged iteration, which often
requires a long time for assuring that the iterations converge. In each iteration, all the data
points participate in the computations of our methods within the current implementations.
In contrast, the solutions of SVM is essentially sparse, and recent several improvements
show that carefully selecting a small representative subset of the training data can further
greatly speed-up the optimization process of SVM (Nandan et al., 2014; Wang et al., 2014).

Our intention in this paper is not to develop a fully-fledged and highly optimized algo-
rithm for supervised learning problems. Instead, this work only serves as a starting point for
applying Euler’s elastica to classification and regression tasks. The above experiments have
demonstrated the excellent accuracies of our elastica based algorithms, though the numer-
ical solutions are rather slow. Hence there exists an opportunity to dramatically improve
the computational efficiency by considering the following techniques: (1) Some first order
numerical methods, like the augmented Lagrangian method (ALM). The operator splitting
method and ALM have been successfully implemented to solve Euler’s elastica model for
image applications (Tai et al., 2011; Hahn et al., 2011; Duan et al., 2013). The speed-up is
spectacular compared with prior approaches. Interestingly the ALM has been also applied
to optimize the primal SVM problem with linear computational cost (Nie et al., 2014). (2)
Imposing the sparsity constraint on the coefficients w. The sparsity property may enhance
the efficiency in each iteration. (3) Selecting a small representative subset of the training
data in a similar way proposed by Nandan et al. (2014) and Wang et al. (2014).
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Data Dim Num SVM BPNN LR
TV EE

GD LAG GD LAG

Australian 14 690 0.859 30.673 4.734 24.734 32.453 25.734 33.197

Blood transfusion 4 748 0.297 22.247 5.938 28.467 35.746 27.481 36.497

Breast-cancer 10 683 0.453 20.318 4.609 18.953 19.447 19.732 20.278

Diabetes 8 768 0.547 23.142 6.453 20.120 20.981 22.145 21.519

German.number 24 1000 1.266 31.452 14.156 29.266 32.145 34.497 31.876

Table 4: Running times (in seconds) for binary classification with 5-fold cross-validation in
one single round.

7. Conclusion

Regularization framework and function learning approaches have become very popular in
the recent machine learning literature. Due to the great success of total variation and
Euler’s elastica models in image processing area, we extend these two models for supervised
classification and regression on high dimensional data sets. The TV regularizer permits
steeper edges near the decision boundaries, while the elastica smoothing term penalizes
non-smooth level set hypersurfaces of the target function. Compared with SVM and BPNN,
our proposed methods have demonstrated the competitive performance on commonly used
benchmark data sets. Specifically, TV and EE offer superb results on binary classification
and regression tasks, and performs slightly better than SVM on multiclass problems. In
comparison, SVM often yields excellent accuracies for multi-class classification, but offer
poor results on regression problems.

Our future work is to explore other possibilities in using different basis functions and to
speedup the training time. Recently, several fast Augmented Lagrangian Methods (ALM)
(Tai et al., 2011; Duan et al., 2013) have been applied to solve Euler’s elastica models in im-
age denoising, inpainting, and zooming applications. Particularly in Duan et al. (2013), the
Euler’s elastica functional is reformulated as a serial of subproblems, which can be efficiently
solved by either closed-form solution or fast iteration method. Whether these methods can
be extended to high dimensional problems needs further investigations. Another interesting
direction is to extend the work of Zakai and Ritov (2009) on regression consistency to the
TV and EE models.
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Appendix A: Curvature

The following material comes from Aubert and Kornprobst (2006, chap. 2.4) with slightly
different notations. Readers are also referred to the classical geometry book of do Carmo
(1976).

Let c(p) = (x(p), y(p)) be a regular planar oriented curve onR2 with parameter p ∈ [0, 1].
Then T(p) = c′(p) = (x′(p), y′(p)) is the tangent vector, N(p) = (−y′(p), x′(p)) is the
normal vector, and

s(p) =

∫ p

0
|c′(q)|dq =

∫ p

0

√
(x′(p))2 + (y′(p))2dq

is the arc length. Due to the regularity condition c′(p) 6= 0, the arc length s is a differentiable
function of p and ds/dp = |c′(p)|. If we parametrize the regular curve c by s, then T(s) =
dc(s)/ds is the unit tangent vector satisfying |T(s)| = 1. The number κ(s)

.
= |dT(s)/ds|

is called the curvature at s, measuring the change rate of the angle which neighboring
tangents make. Since |T(s)| = 1, we have T(s) · dT(s)/ds = 0, indicating dT(s)/ds is
collinear to the unit normal vector N(s). That is, under the arc length parametrization,
dT(s)/ds = κ(s)N(s), or κ(s) = |T × dT/ds| = |c′(s) × c′′(s)| where × is the exterior
product. Back to the general parametrization c(p), we have

κ(p) =
|c′(p)× c′′(p)|
|c′(p)|3

=
x′y′′ − x′′y′

((x′)2 + (y′)2)3/2
. (31)

Now we derive the divergence expression (6) of the curvature on a level curve. Consider
the case where c(s) is the l-level curve of a function u : R2 → R, denoted by

c(s) = {(x(s), y(s)) : u(x(s), y(s)) = l}.

By differentiating the equality u(x(s), y(s)) = l with respect to s, we obtain

uxx
′(s) + uyy

′(s) = 0. (32)

Hence the vectors (x′(s), y′(s)) and (−uy, ux) are collinear, or equivalently for some λ we
have {

x′(s) = −λuy,
y′(s) = λux.

(33)

Note that since |c′(s)| = 1, from (33) we get λ = 1/|∇u| (supposing |∇u| 6= 0). If differen-
tiating again (32) with respect to s we obtain

uxx(x′(s))2 + uyy(y
′(s))2 + 2uxyx

′(s)y′(s) + uxx
′′(s) + uyy

′′(s) = 0.

Plugging (33) into the above equality leads to

λ2[uxx(uy)
2 + uyy(ux)2 − 2uxyuyux] +

1

λ
[y′(s)x′′(s)− x′(s)y′′(s)] = 0.

By (31) we can deduce the curvature expression as

κ(s) =
|c′(s)× c′′(s)|
|c′(s)|3

= x′(s)y′′(s)− x′′(s)y′(s) =
uxx(uy)

2 + uyy(ux)2 − 2uxyuyux
|∇u|3

.
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Denoting f
.
= |∇u| =

√
(ux)2 + (uy)2, we have

∇ ·
(
∇u
|∇u|

)
=

∂

∂x
(
1

f
ux) +

∂

∂y
(
1

f
uy)

=
∂

∂x
(
1

f
)ux +

1

f
uxx +

∂

∂y
(
1

f
)uy +

1

f
uyy

= − 1

f2
fxux −

1

f2
fyuy +

1

f
(uxx + uyy)

= − 1

f2

[ 1

f
(uxuxx + uyuyx)

]
ux −

1

f2

[ 1

f
(uxuxy + uyuyy)

]
uy +

1

f
(uxx + uyy)

= − 1

f3

{
(ux)2uxx + (uy)

2uyy + 2uxuyuxy −
[
(ux)2 + (uy)

2
]
(uxx + uyy)

}
=

uxx(uy)
2 + uyy(ux)2 − 2uxyuyux

|∇u|3
= κ(s),

thus getting the curvature expression (6).

Since the above derivations only consider the case of level curves for a 2D function
u(x, y), here we give some remarks on the curvature expression (6) in high dimensional
spaces. For a level surface defined in 3D space, the curvature expression (6) at point p
amounts to the mean curvature of this surface:

H =
1

2
∇ ·N,

where N is a unit normal of the surface (see Chan and Shen, 2005, chap. 2.1.2). Formally,
the mean curvature is defined as the average of the principal curvatures (Spivak, 1999,
vol. 3, chap. 2): H = (κ1 + κ2)/2, where κ1 and κ2 are two principal curvatures. In
this case, the Gaussian curvature is given by K = κ1 · κ2. More generally (Spivak, 1999,
vol. 4, chap. 7), for a (d − 1)-dimensional level hypersurface embedded in Rd the mean
curvature is given as H = (κ1 + · · · + κd−1)/(d − 1) in terms of principal curvatures.
More abstractly, the mean curvature is the trace of the second fundamental form divided
by d − 1 (or equivalently the shape operator or Weingarten map). The shape operator
s (Lee, 1997, chap. 8) is an extrinsic curvature, and the Gaussian curvature is given by
the determinant of s. Mean curvature is closely related to the first variation of surface
area, in particular a minimal surface such as a soap film, has mean curvature zero and a
soap bubble has constant mean curvature. Unlike Gauss curvature, the mean curvature is
extrinsic and depends on the embedding, for instance, a cylinder and a plane are locally
isometric but the mean curvature of a plane is zero while that of a cylinder is nonzero
(see http://en.wikipedia.org/wiki/Curvature). One can also refer to Ambrosio and Masnou
(2003) for the description of this high dimensional representation.

Appendix B: PDEs Derived by Calculus of Variations

We present the following derivations of the Euler-Lagrange PDEs by calculus of variations
(van Brunt, 2004). Note that the variation operator δ acts much like a differentiation
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operator. First we list some expressions about δ which are useful in the following derivations
(where F is a d-dimensional differentiable vector field):

δ(∇u) = ∇(δu),

δ(∇ · F) = δ
( d∑
i=1

∂F (i)

∂x(i)

)
=

d∑
i=1

δ
(∂F (i)

∂x(i)

)
=

d∑
i=1

∂(δF )(i)

∂x(i)
= ∇ · δF,

δ(|∇u|2) = δ
[ d∑
i=1

( ∂u

∂x(i)

)2]
=

d∑
i=1

2
∂u

∂x(i)
δ
( ∂u

∂x(i)

)
= 2〈∇u, δ∇u〉 = 2〈∇u,∇δu〉,

δ(|∇u|) = δ
{[ d∑

i=1

( ∂u

∂x(i)

)2]1/2}
=

1

2

[ d∑
i=1

( ∂u

∂x(i)

)2]−1/2
δ
[ d∑
i=1

( ∂u

∂x(i)

)2]
=

1

2

1

|∇u|
2〈∇u,∇δu〉 =

〈
∇u
|∇u|

,∇δu
〉
,

δ
( 1

|∇u|

)
= δ

{[ d∑
i=1

( ∂u

∂x(i)

)2]−1/2}
= −1

2

[ d∑
i=1

( ∂u

∂x(i)

)2]−3/2
δ
[ d∑
i=1

( ∂u

∂x(i)

)2]
= −1

2

1

|∇u|3
2〈∇u,∇δu〉 = − 1

|∇u|3
〈∇u,∇δu〉.

Proof of (9)⇒(10). Suppose u : Rd → R is a differentiable function. The first variation,
ELR → ELR + δELR, under u→ u+ δu is given by

δELR = δ
{∫

Ω

[
(u− y)2 + λ|∇u|2

]
dx
}

=

∫
Ω

{
δ
[
(u− y)2

]
+ λδ

(
|∇u|2

)}
dx

=

∫
Ω

[
2(u− y)δu+ 2λ〈∇u,∇δu〉

]
dx

= 2
[ ∫

Ω
(u− y)δudx +

∫
∂Ω
λ∇uδu · ndS −

∫
Ω
λ(∇ · ∇u)δudx

]
(34)

= 2
[ ∫

Ω
(u− y)δudx +

∫
∂Ω
λ
∂u

∂n
δudS −

∫
Ω
λ(∇ · ∇u)δudx

]
(35)

= 2

∫
Ω

[
(u− y)− λ∆u

]
δudx. (36)

Here ∇· is the divergence operator, ∆ is the Laplacian operator, and n denotes the outer
normal along the boundary ∂Ω. The equation (34) is obtained based on the Gauss-Green
divergence theorem in vector calculus (Spiegel and Lipschutz, 2009) (which is a special case
of the more general Stokes’ theorem):∫

V
(∇ · F)dV =

∫
S

(F · n)dS,

where V is a subset of Rd (in the case of d = 3, V represents a volume in 3D space) which
is compact and has a piecewise smooth boundary S (also indicated with ∂V = S), F is a
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continuously differentiable vector field, and n is the outward pointing unit normal field of
the boundary ∂V . In fact, we use the following corollary of the divergence theorem when
applied to the product of a scalar function g (that is δu in our context) and a vector field
F (∇u in our context): ∫

V
[F · (∇g) + g(∇ · F)]dV =

∫
S

(gF · n)dS.

Then integration by parts implies (34). The equation (35) is written with the directional
derivative notation ∂u/∂n

.
= ∇u · n = 〈∇u,n〉. The last equation (36) is due to the

assumption of natural boundary conditions

∂u

∂n
|∂Ω = 0.

According to the fundamental lemma of calculus of variations, the integrand part in paren-
theses is equal to zero because δu is an arbitrary function. Hence we obtain (10).

Proof of (11)⇒(12). The first variation, ETV → ETV +δETV , under u→ u+δu is given
by

δETV = δ
{∫

Ω

[1

2
(u− y)2 + λ|∇u|

]
dx
}

=

∫
Ω

{
(u− y)δu+ λδ(|∇u|)

}
dx

=

∫
Ω

[
(u− y)δu+ λ

〈 ∇u
|∇u|

,∇δu
〉]

dx

=

∫
Ω

(u− y)δudx +

∫
∂Ω
λ

1

|∇u|
∂u

∂n
δudS −

∫
Ω
λ
(
∇ · ∇u
|∇u|

)
δudx (37)

=

∫
Ω

[
(u− y)− λ∇ · ∇u

|∇u|

]
δudx. (38)

Again the integration term over the boundary ∂Ω in (37) can be removed by the natural
boundary conditions. By the fundamental lemma of calculus of variations, the integrand
part in parentheses of (38) must equal to zero. Thus we get (12).

Proof of (14)⇒(15). The original derivation comes from Chan et al. (2002). Let f(κ) =
a+ bκ2 and the elastica regularization term be

R(u) =

∫
Ω
f(κ)|∇u|dx.

We need to prove that the first variation, R(u)→ R(u) + δR(u), under u→ u+ δu is given
by

δR(u) =

∫
Ω
−∇ ·V(u)δudx,

where V(u) is a flux field defined as

V(u) = f(κ)N− T

|∇u|
∂(f ′(κ)|∇u|)

∂T
.
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Here N is the ascending normal field∇u/|∇u|, and T is the tangent field defined as T = N⊥.
Note that the exact orientation of T does not matter due to the coupling of T and ∂/∂T
in the expression. Since the curvature κ is a function of u, by variational rules we have

δR(u) = δ
{∫

Ω
f(κ)|∇u|dx

}
=

∫
Ω

{
|∇u|δ

[
f(κ)

]
+ f(κ)δ(|∇u|)

}
dx

=

∫
Ω

{
|∇u|f ′(κ)δκ+ f(κ)

〈 ∇u
|∇u|

,∇δu
〉}
dx

=

∫
Ω
|∇u|f ′(κ)δκdx +

∫
∂Ω

f(κ)

|∇u|
∂u

∂n
δudS −

∫
Ω
f(κ)

(
∇ · ∇u
|∇u|

)
δudx (39)

=

∫
Ω

{
|∇u|f ′(κ)δκ− f(κ)

(
∇ · ∇u
|∇u|

)
δu
}
dx

=

∫
Ω

{
|∇u|f ′(κ)δκ−

[
∇ · (f(κ)N)

]
δu
}
dx.

Here the integration term over the boundary ∂Ω in (39) can be removed by the natural
boundary conditions. The variation of curvature κ = ∇ ·N is a function of δu, which can
be further written as

δκ = δ(∇ ·N)

= ∇ · δN

= ∇ · δ
( ∇u
|∇u|

)
= ∇ ·

[ 1

|∇u|
δ(∇u) +∇uδ

( 1

|∇u|

)]
= ∇ ·

[ 1

|∇u|
∇(δu)−∇u

( 1

|∇u|3
〈∇u,∇(δu)〉

)]
= ∇ ·

[ 1

|∇u|
∇(δu)− 1

|∇u|
N〈N,∇(δu)〉

]
= ∇ ·

[ 1

|∇u|
(I−N⊗N)∇(δu)

]
= ∇ ·

[ 1

|∇u|
PT(∇(δu))

]
.

Here I denotes the identity transform, PN
.
= N ⊗N is the orthogonal projection onto the

ascending normal direction of u, and PT
.
= I−N⊗N = T⊗T is the orthogonal projection

onto the tangent direction of u. Therefore by the Gauss-Green divergence theorem we have∫
Ω
|∇u|f ′(κ)δκdx

=

∫
Ω
f ′(κ)|∇u|

{
∇ ·
[ 1

|∇u|
PT(∇(δu))

]}
dx

=

∫
∂Ω
f ′(κ)PT(∇(δu)) · ndS −

∫
Ω

〈
∇
[
f ′(κ)|∇u|

]
,

1

|∇u|
PT(∇(δu))

〉
dx
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= −
∫

Ω

〈
∇
[
f ′(κ)|∇u|

]
,

1

|∇u|
PT(∇(δu))

〉
dx

= −
∫

Ω

〈 1

|∇u|
PT

{
∇
[
f ′(κ)|∇u|

]}
,∇(δu)

〉
dx (40)

= −
∫
∂Ω

1

|∇u|
PT

{
∇
[
f ′(κ)|∇u|

]}
δu · ndS +

∫
Ω
∇ · 1

|∇u|
PT

{
∇
[
f ′(κ)|∇u|

]}
δudx

=

∫
Ω
∇ · 1

|∇u|
PT

{
∇
[
f ′(κ)|∇u|

]}
δudx,

where proper natural boundary conditions are imposed to remove the integrations over the
boundary ∂Ω, and the equation (40) is given by the symmetry property of the projection
operator PT in an inner product. Finally, using the definition of directional derivative
PT(∇f) = T(∂f/∂T), we complete the derivations of (14)⇒(15) by

δR(u) =

∫
Ω

{
|∇u|f ′(κ)δκ−

[
∇ · (f(κ)N)

]
δu
}
dx

=

∫
Ω

{
∇ · 1

|∇u|
PT

{
∇
[
f ′(κ)|∇u|

]}
−∇ · (f(κ)N)

}
δudx

= −
∫

Ω
∇ ·
{
f(κ)N− 1

|∇u|
PT

{
∇
[
f ′(κ)|∇u|

]}
δudx

= −
∫

Ω
∇ ·
{
f(κ)N− 1

|∇u|
∂(f ′(κ)|∇u|)

∂T
T
}
δudx

= −
∫

Ω
∇ ·Vδudx.

Appendix C: Expressions in Terms of RBF Approximations

The following gives some useful expressions about Laplacian, Hessian, and curvature of u(x)
in terms of RBF approximations u(x) =

∑n
i=1wiφi(x), where φi(x) = exp(−c|x− xi|2/2).

Proof of (18) for Laplacian:

∂2φk
∂x(i)∂x(i)

=
∂

∂x(i)

( ∂φk
∂x(i)

)
=

∂

∂x(i)

[
− c(x(i) − x(i)

k )φk

]
= −c(x(i) − x(i)

k )
∂φk
∂x(i)

− cφk
∂(x(i) − x(i)

k )

∂x(i)

= −c(x(i) − x(i)
k )[−c(x(i) − x(i)

k )φk]− cφk
= c[c(x(i) − x(i)

k )2 − 1]φk.

∆φk =
d∑
i=1

∂2φk
∂x(i)∂x(i)

= c(c|x− xk|2 − d)φk.

Proof of (19) for Hessian:

(for i 6= j)
∂2φk

∂x(i)∂x(j)
=

∂

∂x(j)
[−c(x(i) − x(i)

k )φk]
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= −c(x(i) − x(i)
k )[−c(x(j) − x(j)

k )φk]

= c2(x(i) − x(i)
k )(x(j) − x(j)

k )φk.

(for i = j)
∂2φk

∂x(i)∂x(j)
= c[c(x(i) − x(i)

k )2 − 1]φk.

H(φk) = c2(x− xk)(x− xk)
Tφk − cφkI.

Proof of (21) for Hessian in terms of notation Φ
.
=
∑n

i=1wi(x− xi)(x− xi)
Tφi:

H(u) =

n∑
i=1

wiH(φi)

=

n∑
i=1

wi[−cφiI + c2(x− xi)(x− xi)
Tφi]

= −c
n∑
i=1

wiφiI + c2
n∑
i=1

wi(x− xi)(x− xi)
Tφi

= −c
( n∑
i=1

wiφi

)
I + c2Φ.

To prove (23) and others derivations involving gradients in Appendix D, here we list some
useful expressions (notice that we do not distinguish H(u) from H(u)T due to symmetry):

∇(|∇u|2) = ∇
[ d∑
i=1

( ∂u

∂x(i)

)2]
=

d∑
i=1

2
∂u

∂x(i)
∇
( ∂u

∂x(i)

)

=
d∑
i=1

2
∂u

∂x(i)

 ∂2u
∂x(i)∂x(1)

. . .
∂2u

∂x(i)∂x(d)

 = 2H(u)∇u,

∇(|∇u|) = ∇
{[ d∑

i=1

( ∂u

∂x(i)

)2]1/2}
=

1

2

[ d∑
i=1

( ∂u

∂x(i)

)2]−1/2
∇
[ d∑
i=1

( ∂u

∂x(i)

)2]
=

1

2|∇u|
2H(u)∇u =

1

|∇u|
H(u)∇u,

∇
( 1

|∇u|

)
= ∇

{[ d∑
i=1

( ∂u

∂x(i)

)2]−1/2}
= −1

2

[ d∑
i=1

( ∂u

∂x(i)

)2]−3/2
∇
[ d∑
i=1

( ∂u

∂x(i)

)2]
= − 1

2|∇u|3
2H(u)∇u = − 1

|∇u|3
H(u)∇u,

∇
( 1

|∇u|3
)

= ∇
{[ d∑

i=1

( ∂u

∂x(i)

)2]−3/2}
= −3

2

[ d∑
i=1

( ∂u

∂x(i)

)2]−5/2
∇
[ d∑
i=1

( ∂u

∂x(i)

)2]
= − 3

2|∇u|5
2H(u)∇u = − 3

|∇u|5
H(u)∇u.

Proof of (23) for curvature:

κ
.
= ∇ ·

( ∇u
|∇u|

)
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=
1

|∇u|
∇ · ∇u+∇

( 1

|∇u|

)
· ∇u

=
1

|∇u|
∆u− 1

|∇u|3
H(u)∇u · ∇u

=
1

|∇u|

(
∆u− ∇u

TH(u)∇u
∇uT∇u

)
=

1

| − cg|

{
c
∑
i

wi(c|x− xi|2 − d)φi −
(−cg)T (c2Φ− c(

∑
iwiφi)I)(−cg)

(−cg)T (−cg)

}

=
1

|g|

{∑
i

wi(c|x− xi|2 − d)φi −
gT (cΦ− (

∑
iwiφi)I)g

gTg

}

=
1

|g|

{∑
i

wi(c|x− xi|2 − d+ 1)φi − c
gTΦg

gTg

}
.

Appendix D: Expansion of ∇ ·V in Gradient Descent Time Marching

Here we give the derivations of the expansion (26) of ∇ · V in Gradient Descent Time
Marching. For simpler notations we define

α
.
= ∇uTH(u)∇u, β

.
= ∇uTH(u)2∇u, γ

.
= ∇uTH(u)3∇u.

By definition (16)

V(u)
.
= f(κ)N− T

|∇u|
∂(f ′(κ)|∇u|)

∂T

= f(κ)N− 1

|∇u|
∇(f ′(κ)|∇u|) +

1

|∇u|3
∇u〈∇u,∇

(
f ′(κ)|∇u|

)
〉

= (1 + bκ2)N− 1

|∇u|
∇(2bκ|∇u|) +

1

|∇u|3
∇u〈∇u,∇ (2bκ|∇u|)〉,

we have

∇·V = ∇· [(1+bκ2)N]−2b∇·
[ 1

|∇u|
∇(κ|∇u|)

]
+2b∇·

{ 1

|∇u|3
∇u
[
∇uT∇(κ|∇u|)

]}
. (41)

Then we show the following derivations for the three parts on the right side of (41).

Part 1: The first term can be expanded as

∇ ·N + b∇ · (κ2N) = κ+ b[∇(κ2) ·N + κ2∇ ·N] = κ+ b(2κ∇κ ·N + κ3),

where ∇κ can be further written as

∇κ = ∇
[
∇ ·
( ∇u
|∇u|

)]
= ∇

[
∇
( 1

|∇u|

)
· ∇u+

1

|∇u|
∆u

]
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=
��

���
���

��
∇
[
∇
( 1

|∇u|

)]
· ∇u+∇(∇u) · ∇

( 1

|∇u|

)
+∇

( 1

|∇u|

)
∆u+

�
��

�
��1

|∇u|
∇(∆u)

≈ H(u)∇
( 1

|∇u|

)
+ ∆u∇

( 1

|∇u|

)
= − 1

|∇u|3
[H(u)2∇u+ ∆uH(u)∇u].

Here the third equality is obtained by the formula for the gradient of a dot product

∇(a · b) = (∇a) · b + (∇b) · a

=

 ∂a1
∂x1

. . . ∂ad
∂x1

. . . . . . . . .
∂a1
∂xd

. . . ∂ad
∂xd

b +

 ∂b1
∂x1

. . . ∂bd
∂x1

. . . . . . . . .
∂b1
∂xd

. . . ∂bd
∂xd

a,

and we omit the third order derivatives by notation �� for easier calculations. Therefore,
the first term on the right side of (41) can be written as

∇ · ((1 + bκ2)N) = κ+ bκ3 − 2bκ

|∇u|4
[∇uTH(u)2∇u+ ∆u∇uTH(u)∇u]

= κ+ bκ3 − 2bκ

|∇u|4
(α∆u+ β).

Part 2: The second term on the right side of (41) can be expanded as

∇ ·
[ 1

|∇u|
∇(κ|∇u|)

]
= ∇

( 1

|∇u|

)
· ∇(κ|∇u|) +

1

|∇u|
∇ ·
[
∇(κ|∇u|)

]
= − 1

|∇u|3
H(u)∇u ·

[
|∇u|∇κ+ κ∇(|∇u|)

]
+

1

|∇u|

{
∇ ·
[
|∇u|∇κ+ κ∇(|∇u|)

]}
= − 1

|∇u|2
∇uTH(u)∇κ− κ

|∇u|3
∇uTH(u)∇(|∇u|)

+
1

|∇u|

[
∇(|∇u|) · ∇κ+���

���|∇u|∇ · ∇κ+∇κ · ∇(|∇u|) +((((
(((κ∇ · ∇(|∇u|)

]
≈ − 1

|∇u|2
∇uTH(u)∇κ− κ

|∇u|3
∇uTH(u)

[ 1

|∇u|
H(u)∇u

]
+

2

|∇u|2
∇uTH(u)∇κ

=
1

|∇u|2
∇uTH(u)∇κ− κ

|∇u|4
∇uTH(u)2∇u

=
1

|∇u|2
∇uTH(u)

{
− 1

|∇u|3
[H(u)2∇u+ ∆uH(u)∇u]

}
− κ

|∇u|4
β

= −
( ∆u

|∇u|5
+

κ

|∇u|4
)
β − 1

|∇u|5
γ.

Part 3: Finally we consider the third term on the right side of (41). With notation
v
.
= ∇(κ|∇u|), we have

∇ ·
{ 1

|∇u|3
∇u
[
∇uT∇(κ|∇u|)

]}
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= ∇ ·
[ 1

|∇u|3
∇u(∇u · v)

]
= ∇

(∇u · v
|∇u|3

)
· ∇u+

(∇u · v
|∇u|3

)
∆u

=
[
∇
( 1

|∇u|3
)

(∇u · v) +
���

���
��1

|∇u|3
∇(∇u · v)

]
· ∇u+

(∇u · v
|∇u|3

)
∆u

≈
[
∇
( 1

|∇u|3
)
· ∇u+

∆u

|∇u|3
]
(∇u · v)

=
( ∆u

|∇u|3
− 3

|∇u|5
α
)

(∇u · v).

Because

∇u · v = ∇u · [∇(κ|∇u|)]
= ∇u · (|∇u|∇κ+ κ∇(|∇u|))
= |∇u|∇u · ∇κ+ κ∇u · ∇(|∇u|)

= |∇u|∇u ·
{
− 1

|∇u|3
[H(u)2∇u+ ∆uH(u)∇u]

}
+ κ∇u ·

( 1

|∇u|
H(u)∇u

)
=

( κ

|∇u|
− ∆u

|∇u|2
)
α− 1

|∇u|2
β,

we obtain the expansion of the third term on the right side of (41):

∇ ·
{ 1

|∇u|3
∇u
[
∇uT∇(κ|∇u|)

]}
=

( ∆u

|∇u|3
− 3

|∇u|5
α
)

(∇u · v)

=
( κ∆u

|∇u|4
− (∆u)2

|∇u|5
)
α+

( 3∆u

|∇u|7
− 3κ

|∇u|6
)
α2 − ∆u

|∇u|5
β +

3

|∇u|7
αβ

Putting all three parts together, we have the expansion of ∇ ·V as

∇ ·V = κ+ bκ3 − 2bκ

|∇u|4
(α∆u+ β) + 2b

{( ∆u

|∇u|5
+

κ

|∇u|4
)
β +

1

|∇u|5
γ
}

+2b
{( κ∆u

|∇u|4
− (∆u)2

|∇u|5
)
α+

( 3∆u

|∇u|7
− 3κ

|∇u|6
)
α2 − ∆u

|∇u|5
β +

3

|∇u|7
αβ
}

= κ+ bκ3 − 2b(∆u)2

|∇u|5
α+ 6b

( ∆u

|∇u|7
− κ

|∇u|6
)
α2 +

6b

|∇u|7
αβ +

2b

|∇u|5
γ.
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Abstract

This paper addresses the problem of inferring a regular expression from a given set of strings
that resembles, as closely as possible, the regular expression that a human expert would
have written to identify the language. This is motivated by our goal of automating the task
of postmasters who use regular expressions to describe and blacklist email spam campaigns.
Training data contains batches of messages and corresponding regular expressions that an
expert postmaster feels confident to blacklist. We model this task as a two-stage learning
problem with structured output spaces and appropriate loss functions. We derive decoders
and the resulting optimization problems which can be solved using standard cutting plane
methods. We report on a case study conducted with an email service provider.

Keywords: applications of machine learning, learning with structured output spaces,
supervised learning, regular expressions, email campaigns

1. Introduction

The problem setting introduced in this paper is motivated by the intuition of automatically
reverse engineering email spam campaigns. Email-spam generation tools allow users to im-
plement mailing campaigns by specifying simple grammars that serve as message templates.
A grammar is disseminated to nodes of a bot net; the nodes create messages by instantiating
the grammar at random. Email service providers can easily sample elements of new mailing
campaigns by collecting messages in spam traps or by tapping into known bot nets. When
messages from multiple campaigns are collected in a joint spam trap, clustering tools can
separate the campaigns reliably (Haider and Scheffer, 2009). However, probabilistic cluster
descriptions that use a bag-of-words representation incur the risk of false positives, and it is
difficult for a human to decide whether they in fact characterize the correct set of messages.
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Typically, mailing campaigns are quite specific. A specific, comprehensible regular ex-
pression written by an expert postmaster can be used to blacklist the bulk of emails of that
campaign at virtually no risk of covering any other messages. This, however, requires the
continuous involvement of a human postmaster.

From: alice@google.com
Date: 16.08.2013
I’m a cute russian lady.
I’m 21 years old, weigh 55
kilograms and am 172
centimeters tall.
Yours sincerely,
Alice Wright

From: king@yahoo.com
Date: 16.08.2013
I’m a lonely russian lady.
I’m 23 years old, weigh 47
kilograms and am 165
centimeters tall.
Yours sincerely,
Brigitte King

. . .

From: claire@gmail.com
Date: 16.08.2013
I’m a sweet russian girl.
I’m 22 years old, weigh 58
kilograms and am 171
centimeters tall.
Yours sincerely,
Claire Doe

regular expression that describes entire messages

ỹ = From: [a-z]+@[a-z]+.com Date: 16.08.2013 I’m a [a-z]+ russian
(girl|lady). I am 2[123] years old, weigh \d+ kilograms and am
1\d{2} centimeters tall. Yours sincerely, [A-Z][a-z]+ [A-Z][a-z]+

concise substring

ŷ = I’m a [a-z]+ russian (girl|lady). I am 2[123] years old, weigh
\d+ kilograms and am 1\d{2} centimeters tall.

Figure 1: Elements of a message spam campaign, a regular expression that describes the
entirety of the messages, and a concise regular expression that describes a char-
acteristic substring of the messages.

Regular expressions are a standard tool for specifying simple grammars. Widely avail-
able tools match strings against regular expressions efficiently and can be used conveniently
from scripting languages. A regular expression can be translated into a deterministic finite
automaton that accepts the language and has an execution time linear in the length of the
input string.

Language identification has a rich history in the algorithmic learning theory community,
see Section 6 for a brief review. Our problem setting reflects the process that we seek to
automate; it differs from the classical problem of language identification in the learner’s
exact goal, and in the available training data. Batches of strings and corresponding reg-
ular expressions are observable in the training data. These regular expressions have been
written by postmasters to blacklist mailing campaigns. The learner’s goal is to produce
a predictive model that maps batches of strings to regular expressions that resemble, as
closely as possible, the regular expressions which the postmaster would have written and
feels confident to blacklist. As an illustration of this problem, Figure 1 shows three messages
of a mailing campaign, a regular expression that describes the entirety of the messages, and
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a more concise regular expression that characterizes a characteristic substring, and that a
postmaster has selected to blacklist the corresponding email campaign.

This paper extends a conference publication (Prasse et al., 2012) that addresses this
problem setting with linear models and structured output spaces. In the decoding step,
a set of strings is given and the space of all regular expressions has to be searched for an
element that maximizes the decision function. Since this space is very large and difficult
to search, the approach of Prasse et al. (2012) is constrained to finding specializations of
an approximate maximal alignment of all strings. The maximal alignment is a regular
expression that contains all character sequences which occur in each of the strings, and uses
wildcards wherever there are differences between the strings.

The maximal alignment is extremely specific. By constraining the output to special-
izations of the alignment, the method keeps the risk that any message which is not part
of the same campaign is accidentally matched at a minimum. However, since all special-
izations of this alignment describe the entire length of the strings, the method produces
regular expressions that tend to be much longer than the more concise expressions that
postmasters prefer. Also, as a consequence of their greater length, the finite state automata
which correspond to these expressions tend to have more states, which limits the number of
regular expressions that can be matched in parallel against incoming new messages. This
paper therefore extends the method by including a mechanism which learns to select ex-
pressions that describe only the most characteristic part of the mailing campaign, using
regular expressions written by an expert postmaster as training data.

The rest of this paper is structured as follows. Section 2 reviews regular expressions
before Section 3 states the problem setting. Section 4 introduces the feature representations
and derives the decoders and the optimization problems. In Section 5, we discuss our
findings from a case study with an email service. Section 6 discusses related work and
Section 7 concludes.

2. Regular Expressions

Before we formulate the problem setting, let us briefly revisit the syntax and semantics
of regular expressions. Regular expressions are a popular syntactic convention for the
definition of regular languages. Syntactically, a regular expression y ∈ YΣ is either a
character from an alphabet Σ, or it is an expression in which an operator is applied to
one or several argument expressions. Basic operators are the concatenation (e.g., “abc”),
disjunction (e.g., “a|b”), and the Kleene star (“∗”), written in postfix notation (“(abc)∗”),
that accepts any number of repetitions of its preceding argument expression. Parentheses
define the syntactic structure of the expression. For better readability, several shorthands
are used, which can be defined in terms of the basic operators. For instance, the any
character symbol (“.”) abbreviates the disjunction of all characters in Σ, square brackets
accept the disjunction of all characters (e.g., “[abc]”) or ranges (e.g., “[a-z0-9]”) that are
included. For instance, the regular expression [a-z0-9] accepts all lower-case letters and
digits. The postfix operator “+” accepts an arbitrary, positive number of reiterations of the
preceding expression, while “{l, u}” accepts between l and u reiterations, where l ≤ u. We
include a set of popular macros—for instance “\d” for any digit or the macro “\e” for all
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characters, which can occur in a URL. A formal definition of the set of regular expressions
can be found in Definition 3 in the appendix.

The set of all regular expressions can be described by a context-free language. The
syntactic structure of a regular expression y is typically represented by its syntax tree Ty

syn =
(V y
syn, E

y
syn,Γ

y
syn,≤y

syn). Definition 4 in the appendix assigns one such tree to each regular
expression. Each node v ∈ V y

syn of this syntax tree is tagged by a labeling function Γy
syn :

V y
syn → YΣ with a subexpression Γy

syn(v) = yj . The edges (v, v′) ∈ Ey
syn indicate that node

v′ represents an argument expression of v. Relation ≤y
syn⊆ V y

syn × V y
syn defines an ordering

on the nodes and identifies the root node. Note that the root node is labeled with the entire
regular expression y.

A regular expression y defines a regular language L(y). Given the regular expression,
a deterministic finite state machine can decide whether a string x is in L(y) in time linear
in |x| (Dubé and Feeley, 2000). The trace of verification is typically represented as a parse
tree Ty,x

par = (V y,x
par , E

y,x
par ,Γ

y,x
par,≤y,x

par), describing how the string x can be derived from the
regular expression y. At least one parse tree exists if and only if the string is an element
of the language L(y); in this case, y is said to generate x. Multiple parse trees can exist
for one regular expression y and a string x. Nodes v ∈ V y

syn of the syntax tree generate
the nodes of the parse tree v′ ∈ V y,x

par , where nodes of the syntax tree may spawn none
(alternatives which are not used to generate a string), one, or several (“loopy” syntactic
elements such as “∗” or “+”) nodes in the parse tree. In analogy to the syntax trees, the
labeling function Γy,x

par : V y,x
par → YΣ assigns a subexpression to each node, and the relation

≤y,x
par⊆ V y,x

par × V y,x
par defines the ordering of sibling nodes. The set of all parse trees for a

regular expression y and a string x is denoted by T y,x
par . When multiple parse trees exist for

a regular expression and a string, a canonical parse tree can be selected by choosing the
left-most parse. Standard tools for regular expressions typically follow this convention and
generate the left-most parse tree. Definition 5 in the appendix gives a formal definition.

Γy
syn(v0) = [b0-9]{2}c(aa|b)∗

Γy
syn(v1) = [b0-9]{2}

Γy
syn(v2) = [b0-9]

Γy
syn(v3) = b Γy

syn(v4) = 0-9

Γy
syn(v5) = c Γy

syn(v6) = (aa|b)∗

Γy
syn(v7) = aa|b

Γy
syn(v8) = aa

Γy
syn(v9) = a Γy

syn(v10) = a

Γy
syn(v11) = b

(a) Syntax tree Ty
syn

Γy,x
par(v

′
0) = [b0-9]{2}c(aa|b)∗

Γy,x
par(v

′
1) = [b0-9]{2}

Γy,x
par(v

′
2) = [b0-9]

Γy,x
par(v

′
3) = 0-9

Γy,x
par(v

′
4) = 1

Γy,x
par(v

′
5) = [b0-9]

Γy,x
par(v

′
6) = b

Γy,x
par(v

′
7) = c Γy,x

par(v
′
8) = (aa|b)∗

Γy,x
par(v

′
9) = ǫ

(b) Parse tree Ty,x
par

Figure 2: Syntax tree (a) and a parse tree (b) for the regular expression y =
[b0-9]{2}c(aa|b)∗ and the string x = 1bc.

Leaf nodes of a parse tree Ty,x
par are labeled with elements of Σ∪{ε}, where ε denotes the

empty symbol; reading them from left to right gives the generated string x. Non-terminal
nodes correspond to subexpressions yj of y which generate substrings of x. To compare
different regular expressions with respect to a given string x, we define the set Ty,x

par |i of
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labels of nodes which are visited on the path from the root to the the i-th character of x in
the parse tree Ty,x

par .

Figure 2 (left) shows an example of a syntax tree Ty
syn for the regular expression y =

[b0-9]{2}c(aa|b)∗. One corresponding parse tree Ty,x
par for the string x = 1bc is illustrated in

Figure 2 (right). The set Ty,x
par |2 contains nodes v′0, v

′
1, v
′
5, and v′6.

Finally, we introduce the concept of a matching list. When a regular expression y
generates a set x of strings, and v ∈ V y

syn is an arbitrary node of the syntax tree of y, then
the matching list My,x(v) characterizes which substrings of the strings in x are generated
by the node v of the syntax tree, and thus generated by the subexpression Γy

syn(v). A node
v of the syntax tree generates a substring x′ of x ∈ x, if v generates a node v′ in the parse
tree Ty,x

par of x, and there is a path from v′ in that parse tree to every character in the
substring x′. In the above example, for the set of strings x = {12c, b4ca}, the matching
list for node v1 that represents subexpression Γy

syn(v1) = [b0-9]{2} is My,x(v2) = {12, b4}.
Definition 5 in the appendix introduces matching lists more formally.

3. Problem Setting

Having established the syntax and semantics of regular expressions, we now define our
problem setting. An unknown distribution p(x,y) generates regular expressions y ∈ YΣ

from the alphabet Σ and batches x of strings x ∈ x that are elements of the language L(y).
In our motivating application, the strings x are messages that belong to one particular
mailing campaign and have been sampled from a bot net, and the y are regular expressions
which an expert postmaster believes to identify the campaign template, and feels highly
confident to blacklist.

A w-parameterized predictive model fw : x × ŷ 7→ R maps a batch of strings and a
regular expression ŷ to a value of the decision function. We refer to the process of inferring
the ŷ that attains the highest score fw(x, ŷ) for a given batch of strings x as decoding; in
this step, a decision function is maximized over ŷ which generally involves a search over the
space of all regular expressions.

A loss function ∆(y, ŷ,x) quantifies the difference between the true and predicted ex-
pressions. While it would, in principle, be possible to use the zero-one loss ∆0/1(y, ŷ,x) =
Jy = ŷK, this loss function would treat nearly-identical expressions and very dissimilar ex-
pressions alike. We will later engineer a loss function whose gradient will guide the learner
towards expressions ŷ that are more similar to the correct expression y.

In the learning step, the ultimate goal is to identify parameters that minimize the risk—
the expected loss—under the unknown distribution p(x,y):

R[fw] =

∫∫
∆

(
y, arg max

ŷ∈YΣ

fw(x, ŷ),x

)
p(x,y)dx dy.

The underlying distribution p(x,y) is not known, and therefore this goal is unattain-
able. We resort to training data D = {(xi,yi)}mi=1 that consists of pairs of batches xi
and corresponding regular expressions yi, drawn according to p(x,y). In order to obtain
a convex optimization problem that can be evaluated using the training data, we approx-
imate the risk by the hinged upper bound of its maximum-likelihood estimate, following
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the margin-rescaling approach (Tsochantaridis et al., 2005), with added regularization term
Ω(w):

R̂[fw] =
1

m

m∑

i=1

max
ȳ
{fw(xi, ȳ)− fw(xi,yi) + ∆(y, ȳ,xi), 0}+ Ω(w). (1)

This problem setting differs fundamentally from traditional language identification settings.
In our setting, the actual identification of a language from example strings takes place in
the decoding step. In this step, the decoder searches the space of regular expressions. But
instead of retrieving an expression that generates all strings in x, it searches for an ex-
pression that maximizes the value of a w-parameterized decision function that receives the
strings and the candidate expression as arguments. In a separate learning step, the param-
eters w are optimized using batches of strings and corresponding regular expressions. The
training process has to optimize the model parameters w such that the expected deviation
between the decoder’s output and a regular expression written by a human postmaster is
minimized. Training data of this form, and an optimization criterion that measures the
expected discrepancy between the conjectured regular expressions and regular expressions
written by a human labeler, are not part of traditional language identification settings.

4. Identifying Regular Expressions

This section details our approach to identifying regular expressions based on generalized
linear models and structured output spaces.

4.1 Problem Decomposition

Without any approximations, the decoding problem—the problem of identifying the regular
expression y that maximizes the parametric decision function—is insurmountable. For any
string, an exponential number of matching regular expressions of up to the same length
can be constructed by substituting constant symbols for wildcards. In addition, constant
symbols can be replaced by disjunctions and “loopy” syntactic elements can be added to
create infinitely many longer regular expressions that also match the original string. Because
the space of regular expressions is discrete, it also does not lend itself well to approaches
based on gradient descent.

We decompose the problem into two more strongly constrained learning problems. We
decompose the parameters w = (u v)T and the loss function ∆ = ∆u + ∆v into parts
that are minimized sequentially. In the first step, u-parameterized model fu produces a
regular expression ỹ that is constrained to being a specialization of the maximal alignment
of the strings in x. Specializations of maximal alignments of the strings in x tend to be
long regular expressions that characterize the entirety of the strings in x. In a second step,
v-parameterized model fv therefore produces a concise substring ŷ of ỹ.

Definition 1 (Alignment, Maximal Alignment) The set of alignments Ax of a batch
of strings x contains all concatenations in which strings from Σ+ and the wildcard sym-
bol “(.∗)” alternate, and that generates all elements of x.The set of maximal alignments
A∗x ⊆ Ax contains all alignments of the strings in x which share the property that no other
alignment in Ax has more constant symbols.
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A specialization of an alignment is a string that has been derived from an alignment by
replacing one or several wildcard symbols by another regular expression. Figure 3 illustrates
the process of generating a maximal alignment, and the subsequent step of specializing it.

I’m a cute russian lady. I’m 21 years old.
I’m a lonely russian lady. I’m 23 years old.

..
.

I’m a sweet russian girl. I’m 22 years old.





elements of message campaign

maximal alignmentI’m a (.∗) russian (.∗). I’m 2(.∗) years old.





specializations of maximal alignment

I’m a [a-z]{4,6} russian (girl|lady). I’m 2[123] years old.
I’m a [a-z]+ russian [a-z]+. I’m 2[0-9] years old.

..
.

I’m a [a-z]∗ russian [adgilry]+. I’m 2[0-9]+ years old.

Figure 3: Examples of regular expressions, which are specializations of a maximal alignment
of strings.

The loss function for this step should measure the semantic and syntactic deviation
between the conjecture ỹ and the manually written y for batch x. We define a loss function
∆u(y, ỹ,x) that compares the set of parse trees in T y,x

par , for each string x ∈ x to the most

similar tree in T ỹ,x
par ; if no such parse tree exists, the summand is defined as 1

|x| (Equation

2). Similarly to a loss function for hierarchical classification (Cesa-Bianchi et al., 2006),
the difference of two parse trees for a given string x is quantified by a comparison of the
paths that lead to the characters of the string. Two paths are compared by means of the
intersection of their nodes (Equation 3). This loss is bounded between zero and one; it is
zero if and only if the two regular expressions ỹ and y are equal:

∆u(y, ỹ,x) =
1

|x|
∑

x∈x

{
∆tree(y, ỹ, x) if x ∈ L(ỹ)
1 otherwise

(2)

with ∆tree(y, ỹ, x) = 1− 1

|T y,x
par |

∑

t∈T y,x
par

max
t̃∈T ỹ,x

par

1

|x|

|x|∑

j=1

|t|j ∩ t̃|j |
max{|t|j |, |t̃|j |}

(3)

Figure 4 illustrates how the tree loss is calculated for a single string: for each symbol,
the corresponding paths of the syntax trees spawned by y and ỹ are compared. Each pair
of corresponding paths incurs a loss according to the proportion of nodes that are labeled
with differing subexpressions.

Because the regular expression created in this step is a specialization of a maximal align-
ment, it is not generally concise. In the second step, v-parameterized model fv produces
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y =ab(1|2)(1|3|4)∗cd(e|f|g)∗

a b 1|2

1

(1|3|4)∗

1|3|4

3

c d (e|f|g)∗

e|f|g

e

e|f|g

f

ỹ =ab(1|3|4)∗cd(e|f|g)+

a b (1|3|4)∗

1|3|4

1

1|3|4

3

c d (e|f|g)+

e|f|g

e

e|f|g

f

y =ab(1|2)(1|3|4)∗cd(e|f|g)∗ ỹ =ab(1|3|4)∗cd(e|f|g)+ x =ab13cdef

Loss: 1
2

1
2

1
3

3
4

1
2

1
2

2
4

2
4 ∆tree(y, ỹ, x) = 1− ( 4912 · 1

8 ) =
47
96





∈ T y,x
par





∈ T ỹ,x
par

Figure 4: Calculation of the tree loss ∆tree(y, ỹ, x) for a given string x and two regular
expressions y and ỹ.

a regular expression ŷ ∈ YΣ that is a subexpression of ỹ; that is, ỹ = ypreŷysuf with
ypre,ysuf ∈ YΣ. Loss function ∆v(y, ŷ) is based on the length of the longest common sub-
string lcs(y, ŷ) of y and ŷ. The loss—defined in Equation 4—is zero, if the longest common
substring of y and ŷ is equal to both y and ŷ. In this case, y = ŷ. Otherwise, it increases
as the longest common substring of y and ŷ decreases:

∆v(y, ŷ) =
1

2

[( |y| − |lcs(y, ŷ)|
|y|

)
+

(
|ŷ| − |lcs(y, ŷ)|

|ŷ|

)]
. (4)

In the following subsections, we derive decoders and optimization problems for these
two subproblems.

4.2 Learning to Generate Regular Expressions

We model fu as a linear discriminant function uTΨu(x,y) for a joint feature representation
of the input x and output y (Tsochantaridis et al., 2005):

ỹ = arg max
y∈YΣ

fu(x,y) = arg max
y∈YΣ

uTΨu(x,y).
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4.2.1 Joint Feature Representation for Generating Regular Expressions

The joint feature representation Ψu(x,y) captures structural properties of an expression y
and joint properties of input batch x and regular expression y.

It captures structural properties of a regular expression y by features that indicate
a specific nesting of regular expression operators—for instance, whether a concatenation
occurs within a disjunction. More formally, we first define a binary vector

Λu(y) =




Jy = y1 . . .ykK
Jy = y1| . . . |ykK
Jy = [y1 . . .yk]K

Jy = y∗
1K

Jy = y1?K
Jy = y+

1 K
Jy = y1{l}K

Jy = y1{l, u}K
Jy = r1K

...
Jy = rlK
Jy ∈ ΣK
Jy = εK




(5)

that encodes the top-level operator used in the regular expression y, where J·K is the
indicator function of its Boolean argument. In Equation 5, y1, . . . ,yk ∈ YΣ are regular
expressions, l, u ∈ N, and {r1, . . . , rl} is a set of ranges and popular macros. For our ap-
plication, we use the set {0-9, a-f, a-z,A-F,A-Z, \S, \e, \d, “.”} (see Table 6 in the appendix)
because these are frequently used by postmasters.

For any two nodes v′ and v′′ in the syntax tree of y that are connected by an edge—
indicating that y′′ = Γy

syn(v′′) is an argument subexpression of y′ = Γy
syn(v′)—the tensor

product Λu(y′)⊗Λu(y′′) defines a binary vector that encodes the specific nesting of operators
at node v′. Feature vector Ψu(x,y) will aggregate these vectors over all pairs of adjacent
nodes in the syntax tree of y.

Joint properties of an input batch x and a regular expression y are encoded in a similar
way as follows. Recall that for any node v′ in the syntax tree, My,x(v′) denotes the set
of substrings in x that are generated by the subexpression y′ = Γy

syn(v′) that v′ is labeled
with. We define a vector Φu(My,x(v′)) of attributes of this set. Any property may be
accounted for; for our application, we include the average string length, the inclusion of
the empty string, the proportion of capital letters, and many other attributes. The list of
attributes used in our experiments is included in the appendix in Table 3. A joint encoding
of properties of the subexpression y′ and the set of substrings generated by y′ is given by
the tensor product Φu(My,x(v′))⊗ Λu(y′).

The joint feature vector Ψu(x,y) is obtained by aggregating operator-nesting informa-
tion over all edges in the syntax tree, and joint properties of subexpressions y′ and the set
of substrings which they generate over all nodes in the syntax tree:

Ψu(x,y) =

( ∑
(v′,v′′)∈Ey

syn
Λu(Γy

syn(v′))⊗ Λu(Γy
syn(v′′))∑

v′∈V y
syn

Φu(My,x(v′))⊗ Λu(Γy
syn(v′))

)
. (6)

3695



Prasse, Sawade, Landwehr and Scheffer

4.2.2 Decoding Specializations of the Maximal Alignment

At application time, the highest-scoring regular expression ỹ according to model fu has to
be decoded. Model fu is constrained to producing specializations of the maximal alignment;
however, searching the space of all possible specializations of the maximal alignment is still
not feasible. The following observation illustrates that fu may not even have a maximum,
because there may always be a longer expression that attains a higher score.

Observation 1 Given a string a that contains at least one wildcard symbol “(.∗)”, let Ya
be the set of all specializations that replace wildcards in a by any regular expression in Y.
Then, there are parameters u such that for each y there is a y′ ∈ Ya with fu(y′) > fu(y).

Proof Joint feature vector Ψ from Equation 6 contains two parts. The first part contains
operator-nesting information over all edges in the syntax tree and the second part contains
joint properties of subexpressions and the set of substrings which they generate over all
nodes in the syntax tree. We construct u as follows: Let all weights in u be zero, except for
the entry which weights the count of alternatives within an alternative; this entry receives
any positive weight. For any string a that contains a wildcard symbol, by substituting the
wildcard for an alternative of a wildcard and arbitrarily many other subexpressions, one
can create a string a′ that contains a wildcard within an additional alternative. Repeated
application of this substitution creates arbitrarily many alternatives within alternatives
and the inner product of u and Ψu can therefore become arbitrarily large.

Observation 1 implies that exact decoding of arbitrary decision functions fu is not
possible. However, we can follow the under-generating principle (Finley and Joachims, 2008)
and employ a decoder that maximizes fu over a constrained subspace that has a maximum.
Observation 1 implies that the decision-function value of that maximum over the constrained
space may be arbitrarily much lower than the decision-function value of some elements of
the unconstrained space. But when it comes to formulating the optimization problem
in Subsection 4.2.3, we will require that, for each training example, the training regular
expression shall have a higher decision function value (by some margin) than the highest-
scoring incorrect regular expression that is actually found by the decoder. Hence, despite
Observation 1, the learning problem may produce parameters which let the constrained
decoder produce the desired output.

The search space is first constrained to specializations of a maximal alignment of the
input set of strings x; see Definition 1. A maximal alignment of two strings can be deter-
mined efficiently using Hirschberg’s algorithm (Hirschberg, 1975) which is an instance of
dynamic programming. By contrast, finding the maximal alignment of a set of strings is
NP-hard (Wang and Jiang, 1994); known algorithms are exponential in the number |x| of
strings in x. However, progressive alignment heuristics find an alignment of a set of strings
by incrementally aligning pairs of strings. Note that the set of specializations of a maximal
alignment is still generally infinitely large: each wildcard symbol can be replaced by every
possible regular expression YΣ. Therefore, our decoding algorithm starts by finding an ap-
proximately maximal alignment using the Hirschberg algorithm, and proceeds to construct
a more constrained search space in which each wildcard symbol can be replaced only by
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regular expressions over constant symbols that occur in the strings in x at the corresponding
positions.

The definition of the constrained search space is guided by an analysis of the syntactic
variants and maximum nesting depth observed in expressions written by postmasters—a
detailed record can be found in the appendix; see Tables 6, 7, and 8. The space contains
all specializations of the maximal alignment in which the j-th wildcard is replaced by any

element from ŶMj

D , which is constructed as follows. Firstly, ŶMj

D contains any subexpression
that occurs within any training regular expression, and that matches the substrings of
input x which the alignment procedure has substituted for the j-th wildcard. In addition,
the alternative of all substring aligned at the j-th wildcard symbol is added. For each
character-alternative expression in that set—e.g., [abc]—all possible iterators and range
generalizations used by postmasters are added.

Given an alignment ax = a0(.∗)a1 . . . (.
∗)an of all strings in x, the constrained search

space

Ŷx,D = {a0y1a1 . . .ynan|for all j : yj ∈ ŶMj

D } (7)

contains all specializations of ax in which the j-th wildcard symbol is replaced by any

element of a set ŶMj

D , where Mj is the matching list of the j-th node in T ax
syn that is labeled

with the wildcard symbol “(.∗)”. The sets ŶMj

D are constructed using Algorithm 1. Each

of the lines 7, 9, 10, 11, and 12 of Algorithm 1 adds at most one element to ŶMj

D and
thus Algorithm 1 generates a finite set of possible regular expressions—hence, the search
space of possible substitutions for each of the n wildcard symbols is linear in the number of
subexpressions that occur in the training sample.

We now turn towards the problem of determining the highest-scoring regular expres-
sion fw(x). Maximization over all regular expressions is approximated by maximization
over the space defined by Equation 7:

arg max
y∈YΣ

uTΨu(x,y) ≈ arg max
y∈Ŷx,D

uTΨu(x,y).

Due to the simple syntactic structure of the alignment and the definition of Ψu we can
state the following theorem:

Theorem 2 The maximization problem of finding the highest-scoring regular expres-
sion fu(x) can be decomposed into independent maximization problems for each of the yj
that replaces the j-th wildcard in the alignment ax, given the alignment and the definition
of Ψu:

arg max
y1,...,yn

fu(x, a0y1a1 . . .ynan) = a0y
∗
1a1 . . .y

∗
nan

with y∗j = arg max

yj∈Ŷ
Mj
D

uT
(
Ψu(yj ,Mj) + cyj

)
.

Proof By its definition, fu(x, a0y1a1 . . .ynan) = uTΨu(x, a0y1a1 . . .ynan). Decision
function Feature vector Ψu(x,y) decomposes linearly into a sum over the nodes and a
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Algorithm 1 Constructing the decoding space

1: Input: Subexpressions YD and alignment ax = a0(.∗)a1 . . . (.
∗)an of the strings in x.

2: let T ax
syn be the syntax tree of the alignment and v1, . . . , vn be the nodes labeled

Γax
syn(vj) = “(.∗)”.

3: for j = 1 . . . n do
4: let Mj = Max,x(vj).

5: Initialize ŶMj

D to {y ∈ YD|Mj ⊆ L(y)}
6: let x1, . . . , xm be the elements of Mj ; add (x1| . . . |xm) to ŶMj

D .
7: let u be the length of the longest string and l be the length of the shortest string in

Mj .

8: if [βy1 . . .yk] ∈ ŶMj

D , where β ∈ Σ∗ and y1 . . .yk are ranges or special macros (e.g.,

a-z, \e), then add [αy1 . . .yk] to ŶMj

D , where α ∈ Σ∗ is the longest string that satisfies
Mj ⊆ L([αy1 . . .yk]), if such an α exists.

9: for all [y] ∈ ŶMj

D do

10: add [y]∗ and [y]{l, u} to ŶMj

D .

11: if l = u, then add [y]{l} to ŶMj

D .

12: if u ≤ 1, then add [y]? to ŶMj

D .

13: if l > 0, then add [y]+ to ŶMj

D .
14: end for
15: end for
16: Output ŶM1

D , . . . , ŶMn
D .
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. . . . . .

. . . . . .

. . .

a0,1 . . . a0,|a0|y1 . . .ynan,1 . . . an,|an|

a0,1 a0,|a0| y1 yn an,1 an,|an|

Figure 5: Structure of a syntax tree for an element of Ŷx,D.

sum over pairs of adjacent nodes (see Equation 6). The syntax tree of an instantia-
tion y = a0y1a1 . . .ynan of the alignment ax consists of a root node labeled as an alternating
concatenation of constant strings aj and subexpressions yj (see Figure 5). This root node
is connected to a layer on which constant strings aj = aj,1 . . . aj,|aj | and subtrees T

yj
syn alter-

nate (blue area in Figure 5). However, the terms in Equation 8 that correspond to the root
node y and the aj are constant for all values of the yj (red area in Figure 5). Since no edges
connect multiple wildcards, the feature representation of these subtrees can be decomposed
into n independent summands as in Equation 9.

Ψu(x, a0y1a1 . . .ynan) (8)

=




n∑
j=1

Λu(y)⊗ Λu(yj) +
n∑
j=0

|aj |∑
q=1

Λu(y)⊗ Λu(aj,q)

Φu({x})⊗ Λc(y) +
n∑
j=0

|aj |∑
q=1

Φu({aj,q})⊗ Λu(aj,q)




+




n∑
j=1

∑

(v′,v′′)∈E
yj
syn

Λu(Γ
yj
syn(v′))⊗ Λu(Γ

yj
syn(v′′))

n∑
j=1

∑

v′∈V
yj
syn

Φu(Myj ,Mj (v′))⊗ Λu(Γ
yj
syn(v′))




=

(
0

Φu({x})⊗ Λu(y)

)
+

n∑

j=0

|ai|∑

q=1

(
Λu(y)⊗ Λu(aj,q)

Φu({aj,q})⊗ Λu(aj,q)

)

+

n∑

j=1

(
Ψu(yj ,Mj) +

(
Λu(y)⊗ Λu(yj)

0

))
(9)

Since the top-level operator of an alignment is a concatenation for any y ∈ Ŷx,D, we
can write Λu(y) as a constant Λ•, defined as the output feature vector (Equation 5) of a
concatenation.

Thus, the maximization over all y = a0y1a1 . . .ynan can be decomposed into n maxi-
mization problems over

y∗j = arg max

yj∈Ŷ
Mj
D

uT

(
Ψu(yj ,Mj) +

(
Λ• ⊗ Λu(yj)

0

))

which can be solved in O(n× |YD|).
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4.2.3 Optimization Problem for Specializations of a Maximal Alignment

We will now address the process of minimizing the portion of the regularized empirical
risk R̂[fw], defined in Equation 1, that depends on u for the `2 regularizer Ωc(u) = 1

2C ||u||2.
The decision function fw decomposes into fu and fv; loss function ∆w decomposes into ∆u

and ∆v. While loss function ∆u defined in Equation 2 is not convex itself, the hinged upper
bound used in Equation 1 is. Approximating a loss function by its hinged upper bound in
such a way is referred to as margin-rescaling (Tsochantaridis et al., 2005). We define slack
term ξi as this hinged loss for instance i:

ξi = max

{
max
ȳ 6=yi

{uT(Ψu(xi, ȳ)−Ψu(xi,yi)) + ∆u(yi, ȳ,x)}, 0
}
. (10)

The maximum in Equation 10 is over all ȳ ∈ YΣ \ {yi}. When the risk is rephrased as a
constrained optimization problem, the maximum produces one constraint per element of
ȳ ∈ YΣ \ {yi}. However, since the decoder searches only the set Ŷxi,D, it is sufficient to
enforce the constraints on this subset which leads to a finite search space.

When the loss is replaced by its upper bound—the slack variable ξ—and for Ωu(u) =
1

2Cu
||u||2, the minimization of the regularized empirical risk (Equation 1) is reduced to

Optimization Problem 1.

Optimization Problem 1 Over parameters u, find

u∗ = arg min
u,ξ

1

2
||u||2 +

Cu

m

m∑

i=1

ξi, such that (11)

∀i,∀ȳ ∈ Ŷxi,D\{yi} : uT(Ψu(xi,yi)−Ψu(xi, ȳ)) (12)

≥ ∆u(yi, ȳ,x)− ξi,

This optimization problem is convex, since the objective (Equation 11) is convex and
the constraints (Equation 12) are affine in u. Hence, the solution is unique and can be
found efficiently by cutting plane methods as Pegasos (Shalev-Shwartz et al., 2011) or
SVMstruct (Tsochantaridis et al., 2005).

These algorithms require to identify the constraint with highest slack variable ξi for a
given xi,

ȳ = arg max
y∈Ŷxi,D\{yi}

uTΨu(xi,y) + ∆u(yi,y,x),

in the optimization procedure, repeatedly.
Algorithm 1 constructs the constrained search space Ŷxi,D such that x ∈ L(y) for each

x ∈ xi and y ∈ Ŷxi,D. Hence, the “otherwise”-case in Equation 2 never applies within our
search space. Without this case, Equations 2 and 3 decompose linearly over the nodes of
the parse tree, and therefore the wildcards. Hence, ȳ can be identified by maximizing over
the variables ȳj independently in Step 5 of Algorithm 2. Algorithm 2 finds the constraint
that is violated most strongly within the constrained search space in O(n × |YD|). This
ensures a polynomial execution time of the optimization algorithm. We refer to this learning
procedure as REx-SVM .
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Algorithm 2 Most strongly violated constraint

1: Inout: batch x, model fu, correct output y.
2: Infer alignment ax = a0(.∗)a1 . . . (.

∗)an for x.
3: Let T ax

syn be the syntax tree of ax and let v1, . . . , vn be the nodes labeled Γax
syn(vj) =

“(.∗)”.
4: for all j = 1 . . . n do

5: Let Mj = Max,x(vj) and calculate the ŶMj

D using Algorithm 1.
6:

ȳj = arg max

y′
j∈Ŷ

Mj
D

uT

(
Ψu(y′j ,Mj) +

(
Λ• ⊗ Λu(y′j)

0

))
+

∆u(y, a0(.∗)a1 . . . (.
∗)aj−1y

′
jaj(.

∗)aj+1 . . . (.
∗)an,x)

7: end for
8: Let ȳ abbreviate a0ȳ1a1 . . . ȳnan
9: if ȳ = y then

10: Assign a value of ȳ′j ∈ Ŷ
Mj

D to one of the variables ȳj such that the smallest decrease
of fu(x, ȳ) + ∆tree(y, ȳ) is obtained but the constraint ȳ 6= y is enforced.

11: end if
12: Output: ȳ

4.3 Learning to Extract Concise Substrings

Model fu generates regular expressions that tend to be very specific because they are spe-
cializations of a maximal alignment of all strings in the input set x. Human postmasters,
by contrast, prefer to focus on only a characteristic part of the message for which they write
a specific regular expression. In order to allow the overall model fw to produce expressions
that characterize only a part of the strings, this section focuses on a second model, fv, that
selects a substring from its input string ỹ. We model fv as a linear discriminant function
with a joint feature representation Ψv of the input regular expression ỹ and the output
regular expression y; decision function fv is maximized over the set Π(ỹ) of all substrings
of ỹ that are themselves regular expressions:

ŷ = arg max
y∈Π(ỹ)

fv(ỹ,y) = arg max
y∈Π(ỹ)

vTΨv(ỹ,y), (13)

with Π(ỹ) = {yin ∈ YΣ|ỹ = ypreyinysuf and ypre,ysuf ∈ YΣ}.

4.3.1 Joint Feature Representation for Concise Substrings

The joint feature representation Ψv(ỹ,y) captures structural and semantic features
Φinput(ỹ) of the input regular expression ỹ, features Φoutput(y) of the output regular ex-
pression y and all combinations of properties of the input and output expression.

Vector Φinput(ỹ) of features of the input regular expression ỹ includes features that
indicates whether ỹ special mail specific content like a a subject line, a “From” line, or a
“Reply-To” line. A range of features test whether particular special characters are included
in ỹ; other features refer to the number of subexpressions that are entailed in ỹ. The list
of used features in our experiments is shown in Table 4 in the appendix.
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Feature vector Φoutput(y) of the output regular expression y stacks up features which
indicate how many subexpressions and how many words are included in the regular expres-
sion. In addition it contains features that test for special phrases that frequently occur in
email batches and features that test whether words with a high spam score are included
in the subject line. We identify this list of suspicious words by training a linear classifier
that separates spam from non-spam emails; the list contains the 150 words which have the
highest weights for the spam class. The list of features that we used in the experiments can
be found in Table 5 in the appendix.

The final joint feature representation Ψv(ỹ,y) is defined as vector that includes the
input features Φinput(ỹ) , the output features Φoutput(y), and all products of an input and
an output feature:

Ψv(ỹ,y) =




Φinput(ỹ)
Φoutput(y)

Φinput(ỹ)⊗ Φoutput(y)


 . (14)

4.3.2 Decoding a Concise Regular Expression

At application time, the highest-scoring regular expression ŷ according to Equation 13 has
to be identified. The search space Π(ỹ) contains all substrings of ỹ; since ỹ is typically a very
long string and calculating all features is an expensive operation, evaluating the decision
function for all substrings is infeasible. Again, we follow the under-generating principle
(Finley and Joachims, 2008) and constrain the search to the space Πs(ỹ) contains regular
expressions whose string length is at most s. Within this set, the decoder conducts an
exhaustive search. One can easily observe that when the highest-scoring regular expression’s
string length exceeds s, then the highest-scoring regular expression of size at most s can
have an arbitrarily much lower decision function value.

Observation 2 Let ŷ = arg maxy∈Π(ỹ) fv(ỹ,y) and ŷs = arg maxy∈Π(ỹ),|y|≤s fv(ỹ,y).
If |ŷ| > s, then for each number d, there is a parameter vector v such that fv(ỹ, ŷ) >
fv(ỹ, ŷs) + d.

Proof The output features of vector Ψv (Equation 14) include the number of constant
symbols and the number of non-constant subexpressions in output expression y. Let
v be all zero except for these two weights which we set to d + 1. Then fv(ỹ,y) is
maximized by output ŷ = ỹ. If |ŷs| < |ŷ|, then ŷs is missing at least one initial or
trailing constant or non-constant symbol. By the definition of v, decision function
fv(ỹ, ŷ) = vTΨv(ỹ,y) > vTΨv(ỹ,ys) + d = fv(ỹ, ŷs) + d.

Choosing too small a constant s can therefore lead to poor decoding results. In our
experiments, we choose s to be greater than the longest regular expressions seen in the
training data.

4.3.3 Optimization Problem for Concise Expressions

Training data D = {((xi,yi)}mi=1 for the overall learning problem consist of pairs of sets xi
of strings and corresponding regular expressions yi. Model fu—discussed in Section 4.2—
produces intermediate expressions ỹi that are specializations of a maximal alignment, before
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model fv(ỹi) gives the final predictions ŷi. Hence, training data for model fv naturally
consists of the pairs {(ỹi,yi)}mi=1.

We will now derive an optimization problem from the portions of Equation 1 that depend
on v. Decision function fw decomposes into fu + fv; loss function ∆w into ∆u and ∆v.
The regularizer decomposes, and we use the `2 regularizer for v as well, Ωs(v) = 1

2C ||v||2.
This leads to Optimization Problem 2.

Optimization Problem 2 Over parameters v, find

v∗ = arg min
v,ξ

1

2
||v||2 +

Cv

m

m∑

i=1

ξi, such that

∀i,∀ȳ ∈ Πs(yi)\{yi} : vT(Ψv(ỹi,yi)−Ψs(ỹi, ȳ))

≥ ∆v(ȳ,yi)− ξi,
∀i : ξi ≥ 0.

Optimization Problem 2 minimizes the regularized empirical risk under the assumption
that the decoder uses the restricted search space Πs(ỹ) for some fixed value of the maximal
string length s. We refer to the complete model

ŷ = arg max
y∈Π(ỹ)

vTΨv(ỹ,y),

with ỹ = a0y
∗
1a1 . . .y

∗
nan

and y∗j = arg max

yj∈Ŷ
Mj
D

uT
(
Ψu(yj ,Mj) +

(
Λ• ⊗ Λu(yj)

))

for predicting concise regular expressions as REx-SVMshort.

5. Case Study

We investigate whether postmasters accept the output of REx-SVM and REx-SVMshort for
blacklisting mailing campaigns during regular operations of a commercial email service. We
also evaluate how accurately REx-SVM and REx-SVMshort and their reference methods
identify the extensions of mailing campaigns.

In order to obtain training data for the model fu that generates a regular expression
from an input batch of strings, we apply the Bayesian clustering technique of Haider and
Scheffer (2009) to the stream of messages that arrive at an email service during its regular
operations; the method identifies 158 mailing campaigns with a total of 12,763 messages.
Postmasters of the email service write regular expressions for each batch in order to blacklist
the mailing campaign; these expressions serve as labels. We will refer to this data collection
as the ESP data set.

In order to obtain additional training data for the model fv that selects a concise
substring of a regular expression that is a specialization of the maximal alignment, we
observe another 478 pairs of regular expressions with their concise subexpressions that
postmasters write in order to blacklist mailing campaigns. We collected this data by using
the predicted regular expression ỹ = fu(x) for each batch of emails x as training observation
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and the postmaster-written expression y as the label. We train a first-stage model fu on the
158 labeled batches after tuning regularization parameter Cu with 10-fold cross validation.
We tune the regularization parameter Cv using leave-one-out cross validation and train a
global model fv that is used in the following experiments.

5.1 Evaluation by Postmasters

Please send the request to my email
(simon|george)@(gmail|yahoo).com

... This work takes [0-9-]+ hours per
week and requires absolutely no in-
vestment. The essence of this work
for incoming client requests in your ci-
ty. The starting salary is about [0-9]+

EUR per month + bonuses.
...
Please send the request to my email
[a-z]+@(gmail|yahoo).com and I will
answer you personally as soon as pos-
sible ...

Please send the request to my email
[a-z]+@(gmail|yahoo).com and I will
answer you personally as soon as pos-
sible

Email:wester (payin|pay)@yahoo.com
Yours sincerely,
Mr [A-Z][a-z]+ [A-Z][a-z]+

... agreed that the sum of US$[0-9, ]+

should be transferred to you out of the
funds that Federal Government of Nigeria
has set aside as a compensation to eve-
ryone who have by one way or the other
sent money to fraudsters in Nigeria.
...
Email:wester (payin|pay)@yahoo.com
Yours sincerely,
Mr [A-Za-z]+ [A-Za-z]+ ...

Email:wester (payin|pay)@yahoo.com
Yours sincerely, Mr [A-Za-z]+ [A-Za-z]+

(Reply-To|From):(mosk@aven|sevid@donald).com
Subject: GET YOUR MONEY

...
(Reply-To|From):(mosk@aven|sevid@donald).com
Subject: GET YOUR MONEY
...
I am Mr. Sopha Chum, An Auditing and accoun-
ting section staff in National Bank of Cambodia.
...

(Reply-To|From):(mosk@aven|sevid@donald).com
Subject: GET YOUR MONEY

P
os
tm

as
te
r

R
E
x
-S
V
M

R
E
x
-S
V
M

s
h
o
r
t

Campaign 1 Campaign 2 Campaign 3

Figure 6: Regular expressions created by a postmaster and corresponding output of REx-
SVM and REx-SVMshort.

The trained model fu is deployed; the user interface presents newly detected batches
together with the regular expressions fu(x) generated by REx-SVM and expressions fw(x)
generated by REx-SVMshort to the postmasters during regular operations of the email
service. The postmasters are charged with blacklisting the campaigns with a suitable regular
expression. We measure how frequently the postmasters copy the output of REx-SVMshort,
copy a substring from the output of REx-SVM , copy but edit an output, and how frequently
they choose to write an expression from scratch.

Over the course of this study, the postmasters write 153 regular expressions. They copy
the exact regular expressions generated by REx-SVMshort in 64.7% of the cases. Another
14.4% of the time, they copy a substring from the output of REx-SVM and use it without
changes. In 7.8% of the cases, the postmasters copy and edit a substring from REx-SVM ,
and in 13.1% of the cases they write an expression from scratch. Hence, tasked with
producing a regular expression that will block the mailing campaign during live operations,
the postmasters prefer working with the automatically generated output to writing an
expression from scratch 86.9% of the time.

To illustrate different cases, Figure 6 compares regular expressions selected by a post-
master to excerpts of regular expressions generated by REx-SVM , and regular expressions
generated by REx-SVMshort, respectively. In the first example, REx-SVM over-generalizes
the contact email address, and REx-SVMshort predicts a slightly longer expression than
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the postmaster prefers to select. Nevertheless, all three regular expressions characterize
the extension of the mailing campaign accurately. In the second example, REx-SVM finds
a slightly shorter but slightly more general expression for the closing signature (the term
“[A-Za-z]+” would allow for capital letters within the name while the term “[A-Z][a-z]+”
does not). The second-stage model fv has selected the same substring that the postmaster
prefers. In the third example, postmaster and REx-SVMshort agree perfectly.

The fact that postmasters are content to accept generated regular expression does not
imply that they would have written the exact same rules. We now want to explore how
frequently REx-SVMshort is able to produce the same regular expression that postmasters
would have written. We execute leave-one-out cross validation over the regular expressions
in the ESP data set. In each iteration, a new model fu is trained on all but one regular
expressions (model fv is only trained once on different data).

We compare the output of REx-SVMshort to the held-out expression. We find that in
59.49% (94) of the cases, REx-SVMshort generates the exact regular expression written by
the postmaster; in 11.39% (18) of the cases the held-out expression is a substring of the
regular expression created by REx-SVM but distinct to the extracted expression found by
REx-SVMshort. In 8.86% (14) of the cases the held-out regular expression can be obtained
by modifying a substring of the string created by REx-SVM . In 20.25% (32) of the cases,
generated and manually-written regular expression are distinct. These rates are consistent
with the acceptance rates of the postmasters. When manually written and automatically
generated regular expressions differ from each other, both expressions may still serve their
purpose of filtering a particular batch of emails. We will explore to which extent this is the
case in the next subsection.

5.2 Spam Filtering Performance

We evaluate the ability of REx-SVM , REx-SVMshort, and reference methods to identify the
exact extension of email spam campaigns. We use the approximately maximal alignment of
the strings determined by sequential alignment in a batch x as a reference method. Here,
the ReLIE method (Li et al., 2008) serves as an additional reference. ReLIE takes the
alignment as starting point of its search for a regular expression that matches the emails in
the input batch and does not match any of the additional negative examples by applying a
set of transformation rules. ReLIE receives an additional 10,000 emails that are not part
of any batch as negative data, which gives it a small data advantage over REx-SVM and
REx-SVMshort. REx0/1-SVM is a variant of the REx-SVM that uses the zero-one loss
instead of the loss function ∆u defined in Equation 2. An additional content-based filter
employed by the provider has been trained on several million spam and non-spam emails.

Our experiments are based on two evaluation data sets. The ESP data set consists of
the 158 batches of 12,763 emails and postmaster-written regular expressions; it is described
in Section 5. In addition, we collect another 42 large spam batches with a total of 17,197
emails for which we do not have postmaster-written regular expressions. In order to be able
to measure false-positive rates (the rate at which emails that are not part of a campaign
are erroneously included), we use an additional 135,000 non-spam emails, also from the
provider.
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Additionally, we use a public data set that consists of 100 batches of emails extracted
from the Bruce Guenther archive1, containing a total of 63,512 emails. To measure false-
positive rates on this public data set, we use 17,419 non-spam emails from the Enron corpus2

and 76,466 non-spam emails of the TREC corpus3. The public data set is available to other
researchers.

Experiments on the ESP data set are conducted as follows. We employ a constant model
of fv, trained on 478 pairs of predicted expressions ỹ and postmaster-written expressions
y. We first carry out a “leave-one-batch-out” cross-validation loop over the 158 labeled
batches of the ESP data set. In each iteration, 157 batches are reserved for training of
fu. On this training portion of the data, regularization parameter Cu is tuned in a nested
10-fold cross validation loop, then a model is trained on all 157 training batches. An inner
loop then iterates over the size of the input batch. For each size |x|, messages from the
held-out batch are drawn into x at random and a regular expression ŷ = fw(x) is generated.
The remaining elements of the held-out batch are used to to measure the true-positive rate
of ŷ, and the 135,000 non-spam emails are used to determine its false-positive rate. After
that, a model is trained on all 158 labeled batches, and the evaluation iterates over the
remaining 42 batches that are not labeled with a postmaster-written regular expression.
For each value of |x|, an input x is drawn, a prediction ŷ is generated, its true-positive rate
is measured on the remaining elements of the current batch and its false-positive rate on the
135,000 non-spam messages. Standard errors are computed based on all 200 observations.

For evaluation on the public data set, parameter Cu is tuned with 10-fold cross validation
and then a model is trained on all 158 labeled batches of the ESP data set. The evaluation
iterates over all 100 batches of the public data set and, in an inner loop, over values of
|x|. An input set x is drawn at random from the current batch, the true-positive rate of
ŷ = fw(x) is measured on the remaining elements of the current batch and the false-positive
rate of ŷ is measured on the Enron and TREC emails.

Figure 7 shows the true- and false-positive rates for all methods on both data sets. The
horizontal axis displays the number of emails in the input batch x. Error bars indicate the
standard error. The true-positive rate measures the proportion of a batch that is recognized
while the false-positive rate counts emails that match a regular expression although they are
not an element of the corresponding campaign. The alignment has the highest true-positive
rate and a high false-positive rate because it is the most general bound of the decoder’s
search space. ReLIE only has to carry out very few transformation steps until no negative
examples are covered—in some cases none at all. Consequently, it has similarly high true-
and false-positive rates. REx-SVM and REx-SVMshort attain a slightly lower true-positive
rate, and a substantially lower false-positive rate. The false-positive rates of REx-SVM ,
REx0/1-SVM , and REx-SVMshort lie more than an order of magnitude below the rate of
the commercial content-based spam filter employed by the email service provider. The
zero-one loss leads to comparable false-positive but lower true-positive rates, rendering the
loss function ∆u preferable to the zero-one loss. The true-positive rate of REx-SVMshort

is significantly higher than the true-positive rate of REx-SVM for small sizes of the input
batch; it requires only very few input strings in order to generate regular expressions which

1. http://untroubled.org/spam/
2. http://www.cs.cmu.edu/~enron/
3. http://trec.nist.gov/data/spam.html
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Figure 7: True-positive and false-positive rates over the number of used emails in the input
batch x for the public and ESP data sets.

can be used to describe nearly the entire extension of a batch at a very low false-positive
rate.

Finally, we determine the risk of the studied methods producing a regular expression
that causes at least one false-positive match of an email which does not belong to the
batch. REx-SVM ’s risk of producing a regular expression that incurs at least one false-
positive match is 2.5%; for REx-SVMshort, this risk is 3.7%; for alignment, the risk is 6.3%,
and for ReLIE, it is 5.1%.

5.3 Learning Curves, Execution Time

We study learning curves of the loss functions of REx-SVM and REx-SVMshort. Figure 8
(a) shows the average loss ∆u based on cross validation with one batch held out, as a
function of the number of training batches. The “minimum loss” baseline shows the smallest
possible loss within the constrained search space; it visualizes how much constraining the
search space contributes to the overall loss. This value is obtained by an altered search
procedure that minimizes the loss function between prediction and the postmaster-written
regular expression instead of the decision function. This loss-minimizing expression has a
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lower decision function value than the predicted regular expression; the difference between
minimum loss and the loss of REx-SVM and REx0/1-SVM , respectively, can be attributed
to imperfections of the model. Figure 8 (a) also shows the loss of the alignment. This loss
serves as an upper bound and visualizes how much the parameterized models contribute
to minimizing the error. For completeness, Figure 10 in the appendix shows the learning
curves on the training data.

Figure 8 (b) shows the average loss ∆v based on 10 fold cross validation and the average
loss on the training data. The impact of the regularization parameters Cu and Cv is shown
in Figure 11 in the appendix.
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Figure 8: (a) Loss ∆u of model fu on the test data (left Figure). (b) Loss ∆v of model fv
on the training and test data. Error bars indicate standard errors.

Table 5.3 measures how much REx-SVMshort reduces the length of the expressions
produced by REx-SVM . We can conclude that REx-SVMshort reduces the length of the
output of REx-SVM by an average of 92%.

Method mean standard error

REx-SVM 2141 2063

REx-SVMshort 95 92

Table 1: Number of characters in automatically-generated regular expressions.

The execution time for learning is consistent with prior findings of between linear and
quadratic for the SVM optimization process—see Figure 9(a). Figure 9 (b) shows the
execution time of the decoder that generates a regular expression for input batch x at
application time. ReLIE does not require training.

In order to use regular expressions to blacklist email spam, the email service provider’s
infrastructure has to continuously match all active regular expressions against the stream
of incoming emails. This acceptor is implemented as a deterministic finite-state automaton.
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Figure 9: Execution time for training a model (a) and decoding a regular expression at
application time (b).

The automaton has to be kept in main memory, and therefore the number of states deter-
mines the number of regular expressions that can be searched for in parallel. Table 2 shows
the average number of states of an acceptor, generated by the method of Dubé and Feeley
(2000) from the regular expressions of REx-SVM and REx-SVMshort. The average number
of states of regular expressions by REx-SVMshort is close to the average number of states
of expressions written by a human postmaster, while alignment, ReLIE, and REx-SVM
require impractically large accepting automata.

Method mean median standard error

alignment 5709 4059 389.1

REx-SVM 5473 2995 520.8

ReLIE 5632 3587 465.9

REx-SVMshort 72 69 1.8

postmaster 68 48 4.6

Table 2: Number of states of an accepting finite-state automaton.

6. Related Work

Gold (1967) shows that it is impossible to exactly identify any regular language from finitely
many positive examples. In his framework, a learner makes a conjecture after each new
positive example; only finitely many initial conjectures may be incorrect. Our notion of
minimizing an expected difference between conjecture and target language over a distribu-
tion of input strings reflects a more statistically-inspired notion of learning. Also, in our
problem setting the learner has access to pairs of sets of strings and corresponding regular
expressions.

Most work of identification of regular languages focuses on learning automata (Denis,
2001; Parekh and Honavar, 2001; Clark and Thollard, 2004). Since regular languages are
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accepted by finite automata, the problems of learning regular languages and learning finite
automata are tightly coupled. However, a compact regular language may have an accepting
automaton with a large number of states and, analogously, transforming compact automata
into regular expressions can lead to lengthy terms that do not lend themselves to human
comprehension (Fernau, 2009).

Positive learnability results can be obtained for restricted classes of deterministic finite
automata with positive examples (Angluin, 1978; Abe and Warmuth, 1990); for instance
expressions in which each symbol occurs at most k times (Bex et al., 2008), disjunction-free
expressions (Brāzma, 1993), and disjunctions of left-aligned disjunction-free expressions
(Fernau, 2009) have been studied. These approaches aim only at the identification of a
target language. By contrast, here the structural resemblance of the conjecture to a target
regular expression is integral part of the problem setting. This also makes it necessary to
account for the broader syntactic spectrum of regular expressions.

Xie et al. (2008) use regular expressions to detect URLs in spam batches and develop
a spam filter with low false-positive rate. The ReLIE-algorithm (Li et al., 2008) (used
as a reference method in our experiments) learns regular expressions from positive and
negative examples given an initial expression by applying a set of transformation rules
as long as this improves the separation of positive and negative examples. Brauer et al.
(2011) develop an algorithm that builds a data structure of commonalities of several aligned
strings and transforms these strings into a specific regular expression. Because of a high
data overhead, their algorithm works best for short strings, such as telephone numbers and
names of software products.

Structured output spaces are a flexible tool for a wide array of problem settings, includ-
ing sequence labeling, sequence alignment, and natural language parsing (Tsochantaridis
et al., 2005). In our problem setting we are interested in predicting a structured object, i.e. a
regular expression. To solve problems with structured output spaces an extension of the sup-
port vector machines (SVMs, Vapnik, 1998) can be used. Such structural SVMs were used
to solve a several number of prediction tasks ranging from classification with taxonomies,
label sequence learning, sequence alignment to natural language parsing (Tsochantaridis
et al., 2005). The problem of detecting message campaigns in the stream of emails has
been addressed with structured output spaces based on manually grouped training mes-
sages (Haider et al., 2007), and with graphical models without the need for labeled training
data (Haider and Scheffer, 2009).

Our problem setting and method differ from all prior work on learning regular expres-
sions in their objective criterion and training data. Unlike in prior work, the learner in our
setting has access to additional labeled data in the form of pairs of a set of strings and a
corresponding regular expressions. At the same time, the learner’s goal is not just to find
an expression that identifies an extension of strings, but to find the expression which the
process that has labeled the training data would most likely generate. This implies that
the learner has to model the labeler’s preference of using specific syntactic constructs in a
specific syntactic context and for specific matching substrings.
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7. Conclusions

Complementing the language-identification paradigm, we address the problem of learning
to map a set of strings to a concise regular expression that resembles an expression which
a human would have written. Training data consists of batches of strings and correspond-
ing regular expressions. We phrase this problem as a two-staged learning problem with
structured output spaces and engineer appropriate loss functions. We devise a first-stage
decoder that searches a space of specializations of a maximal alignment of the input strings.
We devise a second-stage decoder that searches for a substring of the first-stage result. We
derive optimization problems for both stages.

From our case study, we conclude that REx-SVMshort frequently predicts the exact
regular expression that a postmaster would have written. In other cases, it generates an
expression that postmasters accept without or with small modifications. Regarding their
accuracy for the problem of filtering email spam, we conclude that REx-SVM and REx-
SVMshort give a high true-positive rate at a false-positive rate that is an order of magni-
tude lower than that of a commercial content-based filter. REx-SVMshort attains a higher
true-positive rate, in particular for small input batches. REx-SVMshort generates regular
expressions that can be accepted by a finite-state automaton that has just slightly more
states than an accepting automaton for regular expressions written by a human postmaster.
REx-SVM and all reference methods, by contrast, can only be accepted by impractically
large finite-state automata. REx-SVMshort is being used by a commercial email service
provider and complements content-based and IP-address based filtering.
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A. Brāzma. Efficient identification of regular expressions from representative examples. In
Proceedings of the Annual Conference on Computational Learning Theory, pages 236–242,
1993.

N. Cesa-Bianchi, C. Gentile, and L. Zaniboni. Incremental algorithms for hierarchical
classification. Machine Learning, 7:31–54, 2006.

A. Clark and F. Thollard. PAC-learnability of probabilistic deterministic finite state au-
tomata. Journal of Machine Learning Research, 5:473–497, 2004.

F. Denis. Learning regular languages from simple positive examples. Machine Learning,
44:27–66, 2001.

D. Dubé and M. Feeley. Efficiently building a parse tree from a regular expression. Acta
Informatica, 37(2):121–144, 2000.

H. Fernau. Algorithms for learning regular expressions from positive data. Information and
Computation, 207(4):521–541, 2009.

T. Finley and T. Joachims. Training structural SVMs when exact inference is intractable.
In Proceedings of the International Conference on Machine Learning, 2008.

E. M. Gold. Language identification in the limit. Information and Control, 10:447–474,
1967.

P. Haider and T. Scheffer. Bayesian clustering for email campaign detection. In Proceedings
of the International Conference on Machine Learning, 2009.

P. Haider, U. Brefeld, and T. Scheffer. Supervised clustering of streaming data for email
batch detection. In Proceedings of the International Conference on Machine Learning,
2007.

D. Hirschberg. A linear space algorithm for computing maximal common subsequences.
Communications of the ACM, 18(6):341–343, 1975.

Y. Li, R. Krishnamurthy, S. Raghavan, S. Vaithyanathan, and H. V. Jagadish. Regular
expression learning for information extraction. In Proceedings of the Conference on Em-
pirical Methods in Natural Language Processing, pages 21–30, 2008.

R. Parekh and V. Honavar. Learning DFA from simple examples. Machine Learning, 44:
9–35, 2001.

P. Prasse, C. Sawade, N. Landwehr, and T. Scheffer. Learning to identify regular expressions
that describe email campaigns. In Proceedings of the International Conference on Machine
Learning, 2012.

S. Shalev-Shwartz, Y. Singer, N. Srebro, and A. Cotter. Pegasos: primal estimated sub-
gradient solver for SVM. Mathematical Programming, 127(1):1–28, 2011.

3712



Learning to Identify Concise Regular Expressions

I. Tsochantaridis, T. Joachims, T. Hofmann, and Y. Altun. Large margin methods for
structured and interdependent output variables. Journal of Machine Learning Research,
6:1453–1484, 2005.

V. Vapnik. Statistical Learning Theory. Wiley, 1998.

L. Wang and T. Jiang. On the complexity of multiple sequence alignment. Journal of
Computational Biology, 1(4):337–348, 1994.

Y. Xie, F. Yu, K. Achan, R. Panigrahy, G. Hulten, and I. Osipkov. Spamming botnets:
signatures and characteristics. In Proceedings of the ACM SIGCOMM Conference, pages
171–182, 2008.

3713



Prasse, Sawade, Landwehr and Scheffer

Appendix A

A.1 Syntax and Semantics of Regular Expressions

Definition 3 (Regular Expressions) The set YΣ of regular expressions over an ordered
alphabet Σ is recursively defined as follows.

• Every yj ∈ Σ ∪ {ε, ., \S, \e, \w, \d}, every range yj = lmin–lmax, where lmin, lmax ∈ Σ
and lmin < lmax, and their disjunction [y1 . . .yk] are regular expressions.

• If y1, . . . ,yk ∈ YΣ are regular expressions, so are the concatenation y = y1 . . .yk,
the disjunction y = y1| . . . |yk, y = y1?, y = (y1), and the repetitions y = y∗1, y =
y+

1 , y = y1{l}, and y = y1{l, u}, where l, u ∈ N and l ≤ u.

We now define the syntax tree, the parse tree, and the matching lists for a regular
expression y and a string x ∈ Σ∗. The shorthand (y → T1, . . . , Tk) denotes the tree T =
(V,E,Γ,≤) with root node v0 ∈ V labeled with Γ(v0) = y and subtrees T1, . . . , Tk. The
order ≤ maintains the subtree orderings ≤i and defines the root node as the minimum over
the set V and v′ ≤ v′′ for all v′ ∈ Vi and v′′ ∈ Vj , where i < j.

Definition 4 (Syntax Tree) The abstract syntax tree Ty
syn for a regular expression y is

recursively defined as follows. Let T
yj
syn = (V

yj
syn, E

yj
syn,Γ

yj
syn,≤yj

syn) be the syntax tree of the
subexpression yj .

• If y ∈ Σ ∪ {ε, ., \S, \e, \w, \d}, or if
y = lmin–lmax,

where lmin, lmax ∈ Σ, we define
Ty
syn = (y→ ∅).

• If y = (y1),
where y1 ∈ YΣ, we define

Ty
syn = Ty1

syn.

• If y = y∗1, y = y+
1 ,

y = y1{l, u}, or if y = y1{l},
where y1 ∈ YΣ, l, u ∈ N, and there exist no y′,y′′ ∈ YΣ such that y1 = y′|y′′ or

y1 = y′y′′, we define
Ty
syn = (y→ Ty1

syn).

• If y = y1 . . .yk,
where yj ∈ YΣ, and there exist no y′,y′′ ∈ YΣ such that yj = y′|y′′ or yj = y′y′′,

we define
Ty
syn = (y→ Ty1

syn, . . . , T
yk
syn).

• If y = y1| . . . |yk,
where yj ∈ YΣ, and there exist no y′,y′′ ∈ YΣ such that yj = y′|y′′, or if

y = [y1 . . .yk] and there exist no y′,y′′ ∈ YΣ such that yj = y′y′′, we define
Ty
syn = (y→ Ty1

syn, . . . , T
yk
syn).
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Definition 5 (Parse Tree and Matching List) Given a syntax tree Ty
syn =

(V y
syn, E

y
syn,Γ

y
syn,≤y

syn) of a regular expression y with nodes v ∈ V y
syn and a string x ∈ L(y),

a parse tree Ty,x
par and the matching lists My,x(v) for each v ∈ V y

syn are recursively de-
fined as follows. Let T

yj ,x
par = (V

yj ,x
par , E

yj ,x
par ,Γ

yj ,x
par ,≤yj ,x

par ) be the parse tree and T
yj
syn =

(V
yj
syn, E

yj
syn,Γ

yj
syn,≤yj

syn) the syntax tree of the subexpression yj .

• If y = x and x ∈ Σ ∪ {ε}, we define
My,x(v0) = {x} and
Ty,x
par = (y→ ∅).

• If y = . and x ∈ Σ,
y = lmin–lmax and lmin ≤ x ≤ lmax, or if
y ∈ {\S, \w, \e, \d} and x is either a non-whitespace character (everything but spaces,
tabs, and line breaks), a word character (letters, digits, and underscores), a character
in {.,−,#,+} or a word character, or a digit, respectively, we define
My,x(v) = {x} for all v ∈ V y

syn and
Ty,x
par = (y→ T x,xpar ).

• If y = (y1) and x ∈ Σ∗, we define
My,x(v) = My1,x(v) for all v ∈ V y

syn and
Ty,x
par = Ty1,x

par

• If y = y∗1, x = x1 . . . xk, and k ≥ 0, or if
y = y+

1 , and k > 0, or if
y = y1{l, u}, and l ≤ k ≤ u, or if
y = y1{l}, and k = l,

where xi ∈ Σ+, and there exist no y′,y′′ ∈ YΣ such that y1 = y′|y′′ or y1 = y′y′′,
we define

My,x(v) =

{
{x} , if v = v0⋃k
i=1M

y1,xi(v) , if v ∈ V y1
syn

, and

Ty,x
par = (y→ Ty1,x1

par , . . . , Ty1,xk
par ).

• If y = y1 . . .yk, x = x1 . . . xk,
where xi ∈ Σ∗, and there exist no y′,y′′ ∈ YΣ such that yj = y′|y′′ or yj = y′y′′,

we define

My,x(v) =

{
{x} , if v = v0

Myj ,xi(v) , if v ∈ V yj
syn

, and

Ty,x
par = (y→ Ty1,x1

par , . . . , Tyk,xk
par ).

• If y = y1| . . . |yk, x ∈ Σ∗

and there exist no y′,y′′ ∈ YΣ such that yj = y′ | y′′, or if
y = [y1 . . .yk], x ∈ Σ+

and there exist no y′,y′′ ∈ YΣ such that yj = y′ y′′, we define

My,x(v) =





{x} , if v = v0

Myj ,x(v) , if v ∈ V yj
syn

∅ , otherwise

, and

Ty,x
par = (y→ T

yj ,x
par ).
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If x 6∈ L(y), that is, no parse tree can be derived by the specification above, the empty
sets My,x(v) = ∅ for all v ∈ V y

syn and Ty,x
par = ∅ are returned. Otherwise, we denote the set

of all parse trees and the unions of all matching lists for each v ∈ V y
syn satisfying Definition 5

by T y,x
par andMy,x(v), respectively. Finally, the matching list My,x(v) for a set of strings x

for node v ∈ V y
syn is defined as My,x(v) =

⋃
x∈xMy,x(v).

A.2 Joint Feature Representations

The list of binary and continuous features Ψu used to train model fu is shown in Table 3.
The input and output features Ψv for model fv are shown in Table 4 and 5, respectively. The
set Sspam is defined as follows: We train a linear classifier that separates spam emails from
non-spam emails on the ESP data set, using a bag of words representation. We construct
the set Sspam as the 150 words that have the highest weights for the class spam.

Feature Description

Jε ∈MK Matching list contains the empty string?

J∀x ∈M : |x| = 1K All elements of the matching list have the length one?

J∃i ∈ N,∀x ∈M : |x| = iK All elements of the matching list have the same length?
|ΣM∩{A,...,Z}|

26 Portion of characters A–Z in the matching list
|ΣM∩{a,...,z}|

26 Portion of characters a–z in the matching list
|ΣM∩{0,...,9}|

10 Portion of characters 0–9 in the matching list
|ΣM∩{A,...,F}|

6 Portion of characters A–F in the matching list
|ΣM∩{a,...,f}|

6 Portion of characters a–f in the matching list
|ΣM∩{G,...,Z}|

20 Portion of characters G–Z in the matching list
|ΣM∩{g,...,z}|

20 Portion of characters g–z in the matching list

J∀x ∈ ΣM : x /∈ {A, . . . , Z} K No characters of A–Z in the matching list?

J∀x ∈ ΣM : x /∈ {a, . . . , z} K No characters of a–z in the matching list?

J∀x ∈ ΣM : x /∈ {0, . . . , 9} K No characters of 0–9 in the matching list?

J∀x ∈ ΣM : x /∈ {a, . . . , f} K No characters of a–f in the matching list?

J∀x ∈ ΣM : x /∈ {A, . . . , F} K No characters of A–F in the matching list?

J|ΣM ∩ {−, /, ?,=, .,@, :}| > 0K Matching list contains URL/Email characters?

J∀x ∈M : |x| ≥ 1 ∧ |x| ≤ 5K Length of strings in the matching list is between 1 and 5?

J∀x ∈M : |x| ≥ 6 ∧ |x| ≤ 10K Length of strings in the matching list is between 5 and 10?

J∀x ∈M : |x| ≥ 11 ∧ |x| ≤ 20K Length of strings in the matching list is between 10 and 20?

J∀x ∈M : |x| > 20K Length of strings in the matching list is higher than 20?

J|M | = 0K Matching list is empty?

Table 3: Features for model fu.

A.3 Additional Experimental Results

Figure 10 shows the average loss ∆u on the training data as a function of the sample size.
The corresponding loss on the test data can be seen in Figure 8 (a).
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Feature Description

J0 ≤ constant symbols in ỹ < 568K Number of constant symbols that are arguments
of the top-most concatenation is less than 568

J568 ≤ constant symbols in ỹ < 1032K . . . between 568 and 1031
J1032 ≤ constant symbols in ỹ < 1724K . . . between 1032 and 1723
J1724 ≤ constant symbols in ỹ < 2748K . . . between 1724 and 2747
J2748 ≤ constant symbols in ỹK . . . 2748 or higher
J0 ≤ non-constant arguments in ỹ < 48K Number of non-constant arguments of the

top-level concatenation is less than 48
J48 ≤ non-constant arguments in ỹ < 77K . . . between 48 and 76
J77 ≤ non-constant arguments in ỹ < 133K . . . between 77 and 132
J133 ≤ non-constant arguments in ỹ < 246K . . . between 133 and 245
J246 ≤ non-constant arguments in ỹK . . . 246 or higher
Jỹ contains Latin charactersK
Jỹ contains Greek charactersK
Jỹ contains Russian charactersK
Jỹ contains Asian charactersK
Jỹ contains “subject:”K Expression refers to a subject line
Jỹ contains “from:”K Refers to a sender address
Jỹ contains “to:”K Refers to recipient address
Jỹ contains “reply-to:”K Refers to a reply-to address
Jỹ contains attachmentK Expression refers to an attachment

Table 4: Input features that refer to properties of ỹ for model fv.
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Figure 10: Average loss ∆u on training data for a varying number of training batches. Error
bars indicate standard errors.

Figure 11 shows how the loss on the test data set changes when we varying the regular-
ization parameters Cu and Cv.
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Feature Description

Constant symbols in ŷ Number of constant symbols in the
top-most concatenation

Non-constant subexpressions in ŷ Number of non-constant arguments of
the top-most concatenation

Jŷ contains Latin charactersK
Jŷ contains Greek charactersK
Jŷ contains Russian charactersK
Jŷ contains Asian charactersK
Jŷ contains “subject:”K Expression refers to subject line
Jŷ contains “from:”K Expression contains a sender address
Jŷ contains “to:”K Contains a recipient address
Jŷ contains “reply-to:”K Contains a reply-to address
Jŷ contains attachmentK Expression refers to attachment
Jŷ starts with “subject:” and ends with \nK Expression only refers to subject line
Jŷ starts with “from:” and ends with \nK Expression only refers to sender address
Jŷ starts with “to:” and ends with \nK Expression only refers to recipient address
Jŷ starts with “reply-to:” and ends with \nK Only refers to reply-to address
Jŷ starts with “attachment:” and ends with \nK Contains only refers to attachment
Jŷ starts with “subject:”K Expression starts with a subject line
Jŷ starts with “from:”K Starts with a sender address
Jŷ starts with “to:”K Starts with a recipient address
Jŷ starts with “reply-to:”K Starts with a reply-to address
Jŷ starts with “attachment:”K Starts with a subject line
Jŷ ends with “subject:”K Ends with a subject line
Jŷ ends with “from:”K Ends with a sender address
Jŷ ends with “to:”K Ends with a recipient address
Jŷ ends with “reply-to:”K Ends with a reply-to address
Jŷ ends with “attachment:”K Ends with reference to attachment
number of newlines in ŷ Number of line breaks in the expression
Jŷ contains a URLK
Jŷ is only a URLK
Jŷ contains an email addressK
Jŷ is only an email addressK
Jŷ contains a phone numberK
Jŷ is only a phone numberK
Jŷ contains an IP addressK
Jŷ contains an attachment of type .exeK
Jŷ contains an attachment of type .jpgK
Jŷ contains an attachment of type .zipK
Jŷ contains an attachment of type .htmlK
Jŷ contains an attachment of type .docK
Jŷ contains substring ∈ SspamK Contains terms from the highest-scoring

bag-of-words features for spam

Table 5: Output features that refer to properties of ŷ for model fv.
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Figure 11: Average loss on test data for a varying regularization parameters Cu and Cv to
train a model fu (a) and a model fv, respectively. Error bars indicate standard
errors.

A.4 Syntax of Postmasters’ Regular Expressions

This section summarizes the syntactic constructs used by postmasters and their frequency.
These observations provide the rationale behind the definition of the constrained search
space of Algorithm 1. Table 6 shows the frequency at which macros occur in the ESP data
set. Table 7 shows which iterators (∗, +, ?, {x}, {x,y} for x, y ∈ N) postmasters use as a
suffix of the disjunction of characters (e.g., [abc]∗ or [0-9]+). Table 8 counts the frequency
of iterators in conjunction with an alternative of regular expressions (e.g., (girl|woman)?).

Macro Frequency

\d 97

\S 71

\e 16

A-Z 25

a-z 86

A-F 28

a-f 17

0-9 65

Table 6: Macros used in the postmasters’ expressions.

We measure the maximum nesting depth of alternatives of regular expression in the ESP
data set: We find that 95.6% have a nesting depth of at most one—that is, they contain
no layer of alternatives within the top-most alternative, such as a[a-z]+. Only 4.4% have
a greater nesting depth (e.g. a([a-z]+|01), having a nesting depth of two). Algorithm 1
constructs the set of possible specializations of the j-th wildcard, starting with all subex-
pressions of all expressions in the training data. Hence, the nesting depth of alternatives
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Iterator Frequency

[. . . ] 21

[. . . ]∗ 2

[. . . ]+ 73

[. . . ]? 0

[. . . ]{x} 49

[. . . ]{x, y} 39

Table 7: Iterators used in conjunction with a character disjunction—e.g., [abc0-9]∗.

Iterator Frequency

(. . . | . . . ) 166

(. . . | . . . )∗ 0

(. . . | . . . )+ 0

(. . . | . . . )? 2

(. . . | . . . ){x} 0

(. . . | . . . ){x, y} 0

Table 8: Iterators used in conjunction with alternatives—e.g., (viagra|cialis)+.

in the constrained search space is at least the nesting depth of the training data. In line 6,
the alternative of constant strings aligned at the j-th wildcard symbol is added; hence, the
constrained search space has a nesting depth of at least one, even if the training data have
a nesting depth of zero. For all character alternatives in the set of possible specializations,
all macros from Table 6 and all iterators shown in Tables 7 and 8 are added.
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Abstract

In this paper we consider a stochastic multiarmed bandit problem. It is known in this
problem that Deterministic Minimum Empirical Divergence (DMED) policy achieves the
asymptotic theoretical bound for the model where each reward distribution is supported
in a known bounded interval, say [0, 1]. However, the regret bound of DMED is described
in an asymptotic form and the performance in finite time has been unknown. We modify
this policy and derive a finite-time regret bound for the new policy, Indexed Minimum
Empirical Divergence (IMED), by refining large deviation probabilities to a simple non-
asymptotic form. Further, the refined analysis reveals that the finite-time regret bound is
valid even in the case that the reward is not bounded from below. Therefore, our finite-
time result applies to the case that the minimum reward (that is, the maximum loss) is
unknown or unbounded. We also present some simulation results which shows that IMED
much improves DMED and performs competitively to other state-of-the-art policies.

Keywords: stochastic bandit, finite-time regret, large deviation principle

1. Introduction

In the multiarmed bandit problem a gambler pulls arms of a slot machine sequentially so
that the total reward is maximized. There is a tradeoff between exploration and exploitation
since he cannot know the most profitable arm unless pulling all arms infinitely many times.

There are two main formulations for this problem: stochastic and nonstochastic bandits.
In the stochastic setting rewards of each arm follow an unknown distribution (Agrawal,
1995; Gittins, 1989; Vermorel and Mohri, 2005) whereas the rewards are determined by an
adversary in the nonstochastic setting (Auer et al., 2002b). In this paper we consider the
K-armed stochastic bandit, where rewards of arm i ∈ {1, 2, · · · ,K} are i.i.d. sequence from
unknown distribution Fi ∈ F with expectation µi for a model F known to the gambler. For
the maximum expectation µ∗ ≡ maxi µi, we call an arm i optimal if µi = µ∗ and suboptimal
otherwise. If the gambler knows each µi beforehand, it is best to choose optimal arms at
every round. A policy is a strategy of the gambler for choosing arms based on the past results

c©2015 Junya Honda and Akimichi Takemura.
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of plays. The performance of a policy is usually measured by pseudo-regret, or simply regret
in short. This is the gap of cumulative expectations between the optimal choice and the
actual choice, which is expressed as

R(n) ≡
∑

i:µi<µ∗

(µ∗ − µi)Ti(n) ,

where Ti(n) is the number of plays of arm i through the first n rounds.

1.1 Theoretical Bound and its Achievability

Robbins (1952) first considered this setting and Lai and Robbins (1985) gave a framework
for determining an optimal policy by establishing an asymptotic theoretical bound for the
regret. Later this theoretical bound was extended to multiparameter or nonparametric
models F by Burnetas and Katehakis (1996). It is proved in their paper that under a mild
regularity condition any policy satisfies

E[Ti(n)] ≥ log n

Dinf(Fi, µ∗;F)
− o(log n) (1)

for any suboptimal arm i, where Dinf(F, µ;F) is defined in terms of Kullback-Leibler diver-
gence D(·‖·) by

Dinf(F, µ;F) = inf
G∈F :EG[X]>µ

D(F‖G) .

The most popular model in the nonparametric setting is the family of distributions
with supports contained in a known bounded interval, say [0, 1]. For this model, which
we denote by A0, it is known that fine performance can be obtained by policies called
Upper Confidence Bound (UCB) (Auer et al., 2002a; Audibert et al., 2009; Cappé et al.,
2013). However, although some bounds for regrets of UCB policies have been obtained in
a non-asymptotic form, they do not necessarily achieve the asymptotic theoretical bound.

Recently Honda and Takemura (2010) proposed Deterministic Minimum Empirical Di-
vergence (DMED) policy, which chooses arms based on the value ofDinf(F̂i, µ;A0), or simply
written as Dinf(F̂i, µ), for empirical distribution F̂i of arm i. Whereas DMED achieves the
asymptotic theoretical bound, the evaluation heavily depends on an asymptotic analysis
and any finite-time regret bound has been unknown.

In this paper, we consider the family A of distributions on (−∞, 1] instead of the
bounded support model A0. We first show that Dinf(F, µ;A0) = Dinf(F, µ;A) for all
F ∈ A0. Thus, any asymptotically optimal policy for the model A is also asymptoti-
cally optimal for A0, even though the gambler has more candidates for the true distribution
of each arm in the model A than in A0.

We next propose a policy, the IMED (Indexed Minimum Empirical Divergence) algo-
rithm. This is an indexed version of DMED in the sense that IMED simply chooses an
arm which minimizes an index at each round whereas DMED requires to keep a list of
arms to be pulled. We derive a finite-time regret bound of IMED for any distribution in
A such that moment generating function E[eλX ] exists in some neighborhood of λ = 0.
The derived bound coincides with the asymptotic theoretical bound and therefore IMED is
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asymptotically optimal for both A and A0. Since nonstochastic bandits inevitably require
the boundedness of the support, we see that an advantage of assuming stochastic bandits
is that the semi-bounded rewards can be dealt with in this nonparametric setting. Further-
more, we show that the reminder term of the logarithmic regret of IMED is O(1), whereas
they are O((log n)a), 0 < a < 1, in previously known asymptotically optimal regret bounds.

Note that DMED policy can be implemented without knowledge of the lower bound of
the reward and achieves the asymptotic bound if the reward is only bounded from below by
some unknown value. In this sense it is intuitively not surprising that DMED or its variant
achieves the asymptotic the semi-bounded reward. However, the theoretical analysis for
DMED in Honda and Takemura (2010) heavily depends on the boundedness of the support
and its extension is not theoretically obvious.

There has also been some research for the nonparametric stochastic bandit with un-
bounded support distributions (Bubeck et al., 2012; Liu and Zhao, 2011). In particular,
it is shown in Bubeck et al. (2012) that a logarithmic regret can be achieved if, for some
ε > 0, EFi [|X|1+ε] is bounded by a value known to the gambler beforehand. Although our
assumption of the existence of the moment generating function EFi [e

λX ] is more restrictive
than the existence of the moment EFi [|X|1+ε], IMED does not require any knowledge on
the value of EFi [e

λX ] (or EFi [|X|1+ε]). Therefore our assumption is not comparable to that
in Bubeck et al. (2012).

1.2 Motivation for Semi-bounded Support Model

An example such that the lower bound of the reward is unknown or unbounded is the
minimization of the sum of the time-delays in some task such as network routing (Vermorel
and Mohri, 2005; Krishnamurthy et al., 2001), where the agent has many sources to obtain
the same data. In this case, it may take a long time to complete the task and it is natural
to consider that the reward (that is, negative of the time-delay) is not bounded from below.
One may wonder that if some time-limit is fixed then the problem becomes a bounded
bandit and a good finite-time regret has been already achieved by, for example, kl-UCB in
Cappé et al. (2013) (although the regret bound of kl-UCB is not asymptotically optimal for
distributions other than Bernoulli distributions). However, the time-limit (or the maximum
time-delay) is usually set “conservatively”, that is, set to a value much larger than time-
delays in usual tries. In such a case, policies based only on empirical means tend to work
poorly (see also Audibert et al., 2009). For example, kl-UCB achieves a regret near

∑
i:µi<µ∗

µ∗ − µi
D(B(µi)‖B(µ∗))

log n

for reward distributions on [0, 1], where B(µ) denotes the Bernoulli distribution with mean
µ. On the other hand, if the gambler conservatively estimates the lower bound of the reward
by a < 0 instead of 0, he applies the policy after the rescaling from [a, 1] to [0, 1] and the
regret becomes

∑
i:µi<µ∗

µ∗ − µi
D(B((µi − a)/(1− a))‖B((µ∗ − a)/(1− a)))

log n ,

3723



Honda and Takemura

which goes to infinity as a→ −∞. Audibert et al. (2009) overcame this problem by UCB-
V policy, which uses empirical variances as well as empirical means. However, in turn,
UCB-V does not necessarily perform well for usual Bernoulli distributions as reported in
Cappé et al. (2013). Therefore the IMED policy has an advantage since it always achieves
the optimal regret bound, which does not depend on whether the gambler knows the lower
bound of the reward or not.

1.3 Outline

This paper is organized as follows. In Sect. 2 we give definitions used throughout this paper
and propose the IMED policy as an indexed version of DMED. In Sect. 3, we give the main
results of this paper on the finite-time regret bound of IMED for distributions on (−∞, 1].
We discuss relation between IMED and other policies in Sect. 4 and give some simulation
results of these policies in Sect. 5. The remaining sections and appendices are devoted to
the proof of the main theorems. In Sect. 6, we analyze properties of the function Dinf for
our model. In Sect. 7, we derive a large deviation probability of an empirical distribution
F̂t measured with Dinf in a non-asymptotic form. By using this probability, we derive the
finite-time regret bound of IMED in Sect. 8. We conclude this paper with some discussion
on the regularity condition assumed throughout the paper in Sect. 9. We evaluate constants
used in the finite-time regret bound in Appendix A. We give a proof of a lemma analogous
to the bounded-support model in Appendix B. Finally we prove the asymptotic but refined
regret bound of IMED in Appendix C.

2. Preliminaries

In this section we introduce notation used throughout this paper and propose the IMED
policy.

2.1 Notation

Let Aa, a ∈ (−∞, 1), be the family of probability distributions on [a, 1]. We denote the
family of distributions on (−∞, 1] by A−∞ or simply A. For F ∈ A, the cumulative
distribution at a point x ∈ R is denoted by F̄ (x) ≡ F ((−∞, x]), where F (A), A ⊂ R,
denotes the measure of a set A. EF [·] denotes the expectation under F ∈ A. When we
write, for example, EF [u(X)] for a function u : R→ R, X denotes a random variable with
distribution F . The expectation of F is denoted by E(F ) ≡ EF [X].

Let J(n) ∈ {1, 2, · · · ,K} be the arm pulled at the n-th round. We define Ti(n) as the
number of times that arm i has been pulled through the first n rounds. Then, we have
Ti(n) =

∑n
l=1 11 [J(l) = i] where 11 [·] denotes the indicator function. F̂i,t and µ̂i,t denote the

empirical distribution and the mean of arm i when arm i is pulled t times. F̂i(n) ≡ F̂i,Ti(n)

and µ̂i(n) ≡ µ̂i,Ti(n) denote the empirical distribution and the mean of arm i at the n-th
round. The largest empirical mean after the first n rounds is denoted by µ̂∗(n) ≡ maxi µ̂i(n).

The function Dinf defined as

Dinf(F, µ;Aa) ≡ inf
G∈Aa:E(G)>µ

D(F‖G)
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Algorithm 1 IMED Policy

Initialization: Pull each arm once.
Loop: Choose an arm i minimizing

Ii(n) ≡ Ti(n)Dinf(F̂i(n), µ̂∗(n);A) + log Ti(n) ,

where the tie-breaking rule is arbitrary.

plays a central role in the DMED policy in Honda and Takemura (2010) and the IMED
policy defined below. Let

L(ν;F, µ) ≡ EF [log(1− (X − µ)ν)] ,

Lmax(F, µ) ≡ max
0≤ν≤ 1

1−µ

L(ν;F, µ) . (2)

Functions L and Lmax correspond to the Lagrangian function and the dual problem of
Dinf(F, µ;A), respectively. The following proposition shows that Dinf is equal to Lmax in
the case of the bounded support model A0. In Sect. 3 we prove that the same result holds
for the semi-bounded support model A.

Proposition 1 (Honda and Takemura, 2010, Theorem 5) For all F ∈ A0 and µ < 1
it holds that Dinf(F, µ;A0) = Lmax(F, µ).

2.2 IMED Policy

In the model A0, Honda and Takemura (2010) proposed an asymptotically optimal policy,
DMED, which maintains the list of arms satisfying

Ti(n)Dinf(F̂i(n), µ̂∗(n);A0) + log Ti(n) ≤ log n (3)

where The DMED policy pulls an arm from the list in some order.

In this paper, we use the left-hand side of (3) as the index Ii(n) for choosing an arm.
Our proposed policy, Indexed Minimum Empirical Divergence (IMED) policy, is described
as Algorithm 1. In the index Ii(n), the first term Ti(n)Dinf(F̂i(n), µ̂∗(n)) ≥ 0 corresponds to
the penalty for empirical distributions unlikely to occur from a distribution with expectation
larger than µ̂∗(n) and IMED usually chooses a currently optimal arm i since it satisfies
Dinf(F̂i(n), µ̂∗(n)) = 0. The second term log Ti(n) is the penalty for arms pulled too many
times and corresponds to the exploration function.

Note that here we say that IMED is an index policy in a weaker sense than other index
policies. Although both IMED and well known index policies such as Gittins index (Gittins,
1989) and UCB choose an arm which maximizes or minimizes its index at each round, the
values of Gittins index and UCB score of each arm can be determined only from samples of
the corresponding arm. On the other hand, the index of IMED also requires the maximum
empirical mean over all arms, which depends on statistics of other arms. It may seem
somewhat unnatural to use such an index for choosing an arm but IMED has an advantage
in the computational complexity for this property of the index as discussed in Sect. 4.1.
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3. Main Results

We now state the main results of this paper in Theorems 2, 3 and 5. In Theorem 2, we
show that the theoretical bound does not depend on knowledge of the lower bound of the
support. In Theorem 3, we give a non-asymptotic regret bound of IMED, which shows that
the theoretical bound can be achieved by IMED. We give an asymptotic but refined regret
bound of IMED in Theorem 5.

Theorem 2 Let a ∈ [−∞, 1) and F ∈ Aa be arbitrary. (i) Dinf(F, µ;Aa) = Dinf(F, µ;A).
(ii) If µ < 1 then

Dinf(F, µ;A) = Lmax(F, µ) .

We prove this theorem in Sect. 6. The part (i) of this theorem means that the theoretical
bound does not depend on whether the gambler knows lower bound of the support of
distributions or he has to consider the case that the support is not bounded from below.
Furthermore, from (ii), we can compute Dinf(F, µ;A) by using the expression Lmax(F, µ) as
in the case of A0. In view of this theorem we sometimes write Dinf(F, µ) instead of more
precise Dinf(F, µ;Aa) or Dinf(F, µ;A).

Define

ν∗i ≡ argmax
0≤ν≤ 1

1−µ∗

EFi [log(1− (X − µ∗)ν)] ,

λi,µ ≡ sup

{
λ ∈ R ∪ {∞} : EFi

[(
1−X
1− µ

)λ]
≤ 1

}
, (4)

where we show that ν∗i exists uniquely when E(Fi) < µ∗ in Sect. 6 and show λi,µ > 1 for
µ < µi in Sect. 7. We further define Fenchel-Legendre transforms of cumulant generating
functions of random variables X and log(1− (X − µ∗)ν∗i ) as

Λ∗i (x) ≡ sup
λ
{λx− log EFi [e

λX ]} , (5)

Λ̃∗i (x) ≡ sup
λ

{
λx− log EFi [(1− (X − µ∗)ν∗i )λ]

}
. (6)

Then, for1 ∆i ≡ µ∗ − µi and Iopt ≡ {j : µj = µ∗} ⊂ {1, · · · ,K}, the regret of IMED is
bounded as follows.

Theorem 3 Assume that µ∗ < 1 and EFj [e
λX ] < ∞ in some neighborhood of λ = 0 for

some j ∈ Iopt. Then, for any fixed 0 < δ < mini:µi<µ∗ ∆i/2, the expected number of pulls
of a suboptimal arm i /∈ Iopt is bounded as

E[Ti(n)] ≤ log n

Dinf(Fi, µ∗)− 2δ
1−µ∗

+
1

1− e
−Λ̃∗i (Dinf(Fi,µ∗)− δ

1−µ∗ ))

+ min
j∈Iopt

{
6e

(1− 1/λj,µ∗−δ)(1− e−(1−1/λj,µ∗−δ)Λ
∗
j (µ∗−δ))3

}
.

1. We often use the subscript i for a suboptimal arm and use j for an optimal arm.
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Consequently, the expected regret is bounded as

E[R(n)] ≤
∑
i:∆i>0

∆i

(
log n

Dinf(Fi, µ∗)− 2δ
1−µ∗

+
1

1− e
−Λ̃∗i (Dinf(Fi,µ∗)− δ

1−µ∗ ))

)

+

(
K∑
i=1

∆i

)
min
j∈Iopt

{
6e

(1− 1/λj,µ∗−δ)(1− e−(1−1/λj,µ∗−δ)Λ
∗
j (µ∗−δ))3

}
.

We prove Theorem 3 in Sect. 8 based on non-asymptotic large deviation probabilities for
Dinf(F̂i(n), µ̂∗(n)) given in Sect. 7. In Appendix A, we discuss simple representations of
(λj,µ, Λ∗i (x), Λ̃∗i (x)) and show that λj,µ∗−δ = 1+O(δ), Λ∗i (µ

∗−δ) = O(δ2) and Λ̃∗i (Dinf(Fi, µ
∗)

− δ/(1− µ∗)) = O(δ2). The following corollary is straightforward from this observation.

Corollary 4 Under the assumption of Theorem 3,

E[R(n)] =
∑

i:µi<µ∗

∆i log n

Dinf(Fi, µ∗)
+ O((log n)10/11) . (7)

Proof From 1− e−ε = O(ε) and the above observation on (λj,µ, Λ∗i (x), Λ̃∗i (x)),

E[R(n)] ≤
∑

i:µi<µ∗

∆i log n

Dinf(Fi, µ∗)
+ O(δ log n) + O(δ−2) + O(δ−10) .

We obtain (7) by letting δ = O((log n)−1/11).

From this corollary we see that IMED is asymptotically optimal in view of (1). How-
ever, the reminder term O((log n)10/11) is quite larger than those of known asymptotically
optimal policies for other models although our model, the semi-bounded support model,
is quite complicated. For example, it is shown in Cappé et al. (2013) that the KL-UCB
policy achieves the asymptotic bound with reminder term O(

√
log n) for a subclass of one-

dimensional exponential families and O((log n)4/5 log logn) for the finite support model.
The following theorem shows that the reminder term can be much improved in our model.

Theorem 5 (i) Assume that µ∗ < 1 and EFi [e
λX ] <∞ in some neighborhood of λ = 0 for

all i ∈ {1, 2, · · · ,K}. Then

E[R(n)] =
∑

i:µi<µ∗

∆i log n

Dinf(Fi, µ∗)
+ O(1) . (8)

(ii) Furthermore, if the distribution of each arm has a bounded support then the reminder
term O(1) in (8) can be replaced with −O(log log n), that is, there exists C > 0 such that
for all sufficiently large n

E [R(n)] ≤
∑

i:µi<µ∗

∆i log n

Dinf(Fi, µ∗)
− C log log n . (9)
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The proof of this theorem is much more complicated than that of Theorem 3 and given in
Appendix C.

Note that a policy asymptotically optimal for the semi-bounded support model is also
asymptotically optimal for the model of finite-support distributions (Honda and Takemura,
2011, Theorem 3). Therefore the regret bound (9) of IMED is asymptotically better than
that of KL-UCB in Cappé et al. (2013) for finite-support distributions, of which the reminder
term is O((log n)4/5 log log n).

To the best of the authors’ knowledge, this is the first result to show that the asymptotic
bound (1) is achievable with a reminder term O(1) instead of o(log n). The key to this
refined bound is to apply a technique for a stopping-time of a stochastic process, which we
evaluate in Lemma 18. The authors think that the regret bounds of other policies can also
be improved by using this novel technique.

4. Relation with Other Policies

In the previous sections we showed that IMED achieves the asymptotic bound for the semi-
bounded support model. In this section we compare IMED with other policies which achieve
a logarithmic regret for some models.

4.1 KL-UCB Policies

Burnetas and Katehakis (1996) proposed a UCB policy for a general class F which chooses
an arm maximizing the index

sup
{
µ : Ti(n)Dinf(F̂i(n), µ;F) ≤ f(n)

}
(10)

for some exploration function f(n). They gave a sufficient condition for the asymptotic
optimality of this policy for general model F and proved that the condition is satisfied
for the finite support model and the normal distribution model with known variances.
Furthermore Cappé et al. (2013) proved its asymptotic optimality with a finite-time regret
bound for the finite support model and a subclass of exponential families. They also proved
that this policy where Dinf(µ;F) is replaced with the Bernoulli divergence

Dinf(F̂i(n), µ;FBer) = µ̂i(n) log
µ̂i(n)

µ
+ (1− µ̂i(n)) log

1− µ̂i(n)

1− µ
(11)

achieves a logarithmic regret for general distributions with supports in [0, 1]. We refer
to this policy for general model F as KL-UCB and the policy with (11) for bounded-
support distributions as kl-UCB after Cappé et al. (2013). We can make the KL-UCB
policy computationally feasible by using Prop. 1 and Theorem 2 for the bounded support
model and the semi-bounded support model, respectively, but the asymptotic optimality
for these models has been currently unknown although the authors believe that it can be
proved as in IMED by using Theorem 2 and large deviation probabilities evaluated in the
next section.

Other than the theoretical guarantee of the asymptotic optimality, the IMED has an
advantage in the computational complexity. In the semi-bounded support model (or the
bounded support model), the computation of Dinf itself involves an optimization and a
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simple representation of (10) has not been known whereas Dinf can be represented as a
univariate convex optimization as shown in Theorem 2.

Furthermore, since Dinf(F, µ) = 0 for E(F ) = µ, IMED does not require the computation
of Dinf(F̂i(n), µ̂∗(n)) for currently optimal arms and the computation of these values for
currently suboptimal arms are sufficient. Since any suboptimal arm is pulled at most
O(log n) times in average, the size of the support of F̂i(n) is O(log n) and the average
complexity of IMED at each round becomes O(log n). On the other hand, KL-UCB also
require the computation of (10) for currently optimal arms and the complexity becomes
O(n) as discussed in Cappé et al. (2013, Sect. 6.2). This advantage of IMED justifies to
some extent the use of a somewhat unnatural index which depends on statistics of other
arms.

4.2 Bayesian Policies

There have also been some Bayesian policies which are known to achieve the asymptotic
bound for some model.

The Bayes-UCB policy (Kaufmann et al., 2012a) is a variant of UCB family obtained by
the replacement of Ti(n)Dinf(F̂i(n), µ) in (10) with a quantity associated with a posterior
probability on the true expectation of the arm. The asymptotic optimality of this policy is
proved for the Bernoulli model.

Another Bayesian policy is Thompson sampling (TS) originally proposed in Thompson
(1933), which is a randomized algorithm which chooses an arm according to the posterior
probability that the arm is optimal. TS is proved to be asymptotically optimal for general
one-dimensional exponential families including the Bernoulli model (Kaufmann et al., 2012b;
Agrawal and Goyal, 2013; Korda et al., 2013). It is also reported that TS is easily applicable
to many models with a state-of-the-art performance (Chapelle and Li, 2012; Russo and
Roy, 2013). On the other hand, TS requires random sampling from the posterior which
is difficult for models other than exponential families, particularly in the nonparametric
models. Although it may become tractable for the semi-bounded support model in non-
parametric Bayesian framework, it is not very simple compared to the computation of Dinf

and it remains unknown whether TS works practically for our model.

4.3 Achievability of Logarithmic Regret for Semi-bounded Support Model

Another question is whether or not there exists a simpler policy than IMED which achieves
a (possibly non-optimal) logarithmic regret for the semi-bounded support model. For the
bounded support model a logarithmic regret can be achieved by kl-UCB policy as described
above. The key property of KL-UCB is

D(B(E(F ))‖B(µ)) ≤ Dinf(F, µ)

for F ∈ A0, which means that the Bernoulli divergence can be used as a lower bound of
Dinf(F, µ) when the expectation (that is, the first-order moment) of F is specified. However,
in the derivation of this inequality a convex function on the support [0, 1] is bounded from
above and the lower and upper bounds of the support are explicitly required (see Sect. 6.1 of
Cappé et al. (2013) for detail), which makes difficult to bound Dinf(F, µ) for general F ∈ A.
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A natural idea to bound Dinf(F, µ) is to use higher-order moments of F . DMED-M
(Honda and Takemura, 2012) is a policy based on this idea and obtained by replacing
Dinf(F, µ) = Dinf(F, µ;Aa) for F ∈ Aa, a > −∞, with

D
(d)
inf (M (d), µ;Aa) ≡ inf

G∈Aa:EG[Xm]=EF [Xm],m=1,2,··· ,d
Dinf(G,µ;Aa) ,

where M (d) = (EF [X],EF [X2], · · · ,EF [Xd]). We can compute D
(d)
inf by solving algebraic

equations and it is expressed in an explicit form for d ≤ 4 from the theory of Tchebycheff

system (Karlin and Studden, 1966). The important point is that D
(d)
inf for even d does

not depend on the lower bound a of the support (Honda and Takemura, 2012, Theorem
3). This means that DMED-M for even d achieves a logarithmic regret bound without
knowledge on the lower bound a of the support whereas a policy using Bernoulli divergence

D
(1)
inf (E(F ), µ;Aa) becomes meaningless for a→ −∞ as discussed in Introduction. Therefore

we can expect that DMED-M, or other policies based on D
(d)
inf , also achieves a logarithmic

regret for the semi-bounded support model since the key technique, Tchebycheff system, is
extended to semi-bounded support distributions (Karlin and Studden, 1966, Chap. V).

5. Experiment

In this section we give some simulation results for IMED, DMED, Thompson sampling
(TS) and KL-UCB family. For the KL-UCB family, we use f(n) = log n as an exploration
function for (10) since the asymptotic optimality is shown in Burnetas and Katehakis (1996)
for some models and it is empirically recommended in Cappé et al. (2013) although the latter
paper uses f(n) = log n+ c log logn for some c > 0 in the proof of the optimality. The kl-
UCB+ and KL-UCB+ (Garivier and Cappé, 2011) are empirical improvements of kl-UCB
and KL-UCB, respectively, where f(n) = log n is replaced with f(n) = log(n/Ti(n)). The
optimality analysis of these policies has not been given but a similar version is discussed in
Kaufmann (2014, Proposition 2.4) for some models.

Each plot is an average over 10,000 trials. In the four figures given below, IMED and
KL-UCB+ performed almost the best. Whereas the complexity of IMED is smaller than
KL-UCB family as discussed in Sect. 4.1, the regret of IMED was slightly worse than that
of KL-UCB+.

First, Fig. 1 shows simulation results of IMED, DMED, TS, kl-UCB and kl-UCB+ for
ten-armed bandit with Bernoulli rewards with µ1 = 0.1, µ2 = µ3 = µ4 = 0.05, µ5 = µ6 =
µ7 = 0.02, µ8 = µ9 = µ10 = 0.01, which is the same setting as those in2 Kaufmann et al.
(2012b) and Cappé et al. (2013).

Next, we consider the case that the time-delay X ′i for some task by the i-th agent follows
an exponential distribution with density e−x/µ

′
i/µ′i, x ≥ 0, and the player tries to minimize

the cumulative delay. Since we modeled the reward as a random variable in (−∞, 1], we set

2. The simulation result for DMED in this paper is different from those in these references where DMED
is reported to perform much worse. This is because a policy where (3) is replaced with the condition

Ti(n)Dinf(F̂i(n), µ̂∗(n);A0) ≤ logn

is used as “DMED” in these references although the optimality proof of DMED is given for (3). This
replacement can be interpreted as that of KL-UCB+ with KL-UCB (see also Garivier and Cappé (2011)).
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Figure 1: Average regret for 10-armed
Bernoulli bandit.
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Figure 2: Average regret for 5-armed ban-
dit where the negative reward
follows an exponential distribu-
tion.

the reward asXi = 1−X ′i, that is, Xi has density e−(1−x)/µ′i/µ′i = e−(1−x)/(1−µi)/(1−µi), x ≤
1, with expectation µi = 1 − µ′i. Fig. 2 shows simulation results for 5-armed bandit with
µ′i = 1/5, 1/4, 1/3, 1/2, 1, that is, µi = 4/5, 3/4, 2/3, 1/2, 0. We used IMED, DMED,
KL-UCB, KL-UCB+ for A and KL-UCB for the (shifted) exponential distributions, which
we refer as kl-exp-UCB, where the KL divergence is written as

D(µ̂i‖µ) =
1− µ̂i
1− µ

− 1− log
1− µ̂i
1− µ

.

The kl-exp-UCB policy explicitly assumes the knowledge that 1−Xi follows an exponential
distribution (and under the same assumption TS can also be implemented) whereas the
other policies only uses the knowledge on the upper bound of the reward.

Since kl-exp-UCB is asymptotically optimal for exponential distributions, it is theoreti-
cally assured that it asymptotically outperforms other policies for this setting. Nevertheless,
it seems from the comparison of kl-exp-UCB and KL-UCB that the gap between theoretical
bounds for semi-bounded support model and for exponential distributions is not very large,
which supports the effectiveness of the nonparametric model.

Finally, Figs. 3 and 4 show results of IMED, DMED, KL-UCB and KL-UCB+ for trun-
cated normal distributions on [0, 1] and (−∞, 1], respectively, as examples of multiparameter
models. The cumulative distribution of each reward is given by

F̄i(x) =


0, x < a,
Φ((x−µ′i)/σi)−Φ((a−µ′i)/σi)
Φ((1−µ′i)/σi)−Φ((a−µ′i)/σi)

, a ≤ x < 1,

1, 1 ≤ x,

where a = 0 or −∞, and Φ is the cumulative distribution function of the standard normal
distribution. We also give results of kl-UCB and TS for the Bernoulli bandit for the setting

3731



Honda and Takemura

100 1000 10000

0
5

0
1

0
0

1
5

0
2

0
0

2
5

0

re
g

re
t

plays

IMED
DMED
KL−UCB
KL−UCB+
kl−UCB
Thompson sampling
asymptotic bound

Figure 3: Average regret for 5-armed ban-
dit with truncated normal distri-
butions on [0, 1].
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Figure 4: Average regret for 5-armed ban-
dit with truncated normal distri-
butions on (−∞, 1].

of Fig. 3 where the reward is bounded. For each experiment we set expectations and vari-
ances before truncation as µ′i = 0.6, 0.5, 0.5, 0.4, 0.4 and σi = 0.4, 0.2, 0.4, 0.2, 0.4. The
expectation of each arm after truncation is given by µi = 0.519, 0.5, 0.5, 0.465, 0.481 for
support [0, 1] and µi = 0.319, 0.390, 0.265, 0.320, 0.206 for support (−∞, 1]. We see from
Fig. 3 that the policies for the nonparametric model work much better than that for the
Bernoulli model.

6. Properties of Dinf in the Semi-bounded Support Model

In this section we extend some results on Dinf(F, µ;A0) in Honda and Takemura (2010) to
model A = A−∞ and prove Theorem 2.

The minimization function Dinf(F, µ;A) is expressed as

minimize:

∫ (
log

dF

dG

)
dF

subject to: G ∈ A is a positive finite measure on (−∞, 1],∫
dG = 1,

∫
xdG > µ ,

which has an infinite-dimensional variable and finite constraints. An optimization prob-
lem of this form is called a partially-finite convex optimization and many researches have
been conducted (Borwein and Lewis, 1993; Ito et al., 2000). We can prove the relation
Dinf(F, µ;A0) = Lmax(F, µ) in Prop. 1 in a generic way for this problem although it is
proved in a problem-specific way in Honda and Takemura (2010, Theorem 5). Nevertheless,
we were not able to find a result straightforwardly applicable to our target Dinf(F, µ;A) for
the reason below and we analyze this problem in a problem-specific way.
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The difficulty in the model A lies in the fact that A is not compact and the operator
x : A → R : G 7→

∫
xdG in the constraint is not continuous under the Lévy metric since

f(x) = x is not a bounded function on (−∞, a]. For this reason it is necessary to evaluate
the effect of tail weights of measures on expectations precisely.

First we consider the function L(ν;F, µ) = EF [log(1 − (X − µ))ν]. The integrand
l(x, ν) ≡ log(1− (x− µ)ν) is differentiable in ν ∈ (0, (1− µ)−1) for all x ∈ (−∞, 1] with

∂l(x, ν)

∂ν
= − x− µ

1− (x− µ)ν
=

1

ν

(
1− 1

1− (x− µ)ν

)
,

∂2l(x, ν)

∂ν2
= − (x− µ)2

(1− (x− µ)ν)2
.

Since they are bounded in x ∈ (−∞, 1], the integral L(ν;F, µ) is differentiable in ν with

L′(ν;F, µ) ≡ ∂L(ν;F, µ)

∂ν
=

1

ν

(
1− EF

[
1

1− (X − µ)ν

])
, (12)

L′′(ν;F, µ) ≡ ∂2L(ν;F, µ)

∂ν2
= −EF

[
(X − µ)2

(1− (X − µ)ν)2

]
. (13)

From these derivatives the optimal solution ν∗ = ν∗(F, µ) = argmax0≤ν≤(1−µ)−1 L(ν;F, µ)
of (2) exists uniquely except for the case X = µ (a.s.) and satisfies the properties in the
following lemmas.

Lemma 6 Assume that E(F ) < µ < 1 holds. If EF [(1 − µ)/(1 − X)] < 1 then ν∗ =
(1 − µ)−1 and therefore EF [1/(1 − (X − µ)ν∗)] < 1. Otherwise, ν∗ ∈ (0, (1 − µ)−1) and
EF [1/(1− (X − µ)ν∗)] = 1.

Lemma 7 Lmax(F, µ) is differentiable in µ < E(F ) with

dLmax(F, µ)

dµ
= ν∗(F, µ) ≤ 1

1− µ
.

Lemma 6 is straightforward from the derivatives (12) and (13). The proof of Lemma 7 is
completely analogous to the proof of Honda and Takemura (2011, Theorems 3 (iii)) where
the same results is derived for distributions on a finite support. We give the proof for
completeness in Appendix B.

Define F(a) ∈ Aa as the distribution obtained by transferring the probability of (−∞, a)
under F to x = a, that is, the cumulative distribution function of F(a) is defined as

F̄(a)(x) ≡

{
0 x < a ,

F̄ (x) x ≥ a .

Recall that Lmax(F, µ) = max0≤ν≤(1−µ)−1 L(ν;F, µ) = max0≤ν≤(1−µ)−1 EF [log(1− (X −
µ))ν]. Now we give the key to extension for the semi-bounded support in the following
lemma, which shows that the effect of the tail weight is bounded uniformly if the expectation
is bounded from below.
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Lemma 8 Fix arbitrary µ, µ̃ < 1 and ε > 0. Then there exists a(ε, µ, µ̃) such that |Lmax(F(a), µ)
− Lmax(F, µ)| ≤ ε for all a ≤ a(ε, µ, µ̃) and all F ∈ A such that E(F ) ≥ µ̃ .

Proof Take sufficiently small a < min{0, µ} and define A = (−∞, a), B = [a, 1]. Note that
F (A) + F (B) = 1. First we have

F (A) ≤ 1− µ̃
1− a

(14)∫
A
xdF (x) ≥ µ̃− 1 + F (A) (15)

from

E(F ) ≤ aF (A) + 1 · F (B) = 1− (1− a)F (A)

E(F ) ≤
∫
A
xdF (x) + 1 · F (B) ,

respectively. Next, Lmax(F, µ) can be written as

Lmax(F, µ) = max
0≤ν≤ 1

1−µ

EF [log(1− (X − µ)ν)]

= max
0≤ν≤ 1

1−µ

{∫
A

log
1− (x− µ)ν

1− (a− µ)ν
dF (x) +

∫
B

log(1− (x− µ)ν)dF(a)(x)

}
. (16)

Since (1− (x−µ)ν)/(1− (a−µ)ν) is increasing in ν for x ≤ a, substituting 0 and (1−µ)−1

into ν, we can bound the first term as

0 ≤
∫
A

log
1− (x− µ)ν

1− (a− µ)ν
dF (x)

≤
∫
A

log
1− x
1− a

dF (x)

≤ F (A)

∫
A

log(1− x)
dF (x)

F (A)
(by a ≤ 0)

≤ F (A) log

(∫
A

(1− x)
dF (x)

F (A)

)
(Jensen’s inequality)

≤ F (A) log
1− µ̃
F (A)

. (by (15))

From limx→0 x log x = 0 and (14), the first term of (16) converges to 0 as a → −∞. The
second term of (16) equals Lmax(F(a), µ) and the proof is completed.

Now we show Theorem 2 based on the preceding lemmas.

Proof of Theorem 2 (i) Recall that G(a) is the distribution such that the weight of G
on (−∞, a) is transported to the point a. Thus, if F ∈ Aa is absolutely continuous with
respect to G then dF/dG ≥ dF/dG(a) holds almost everywhere on the support of F and
we have D(F‖G) ≥ D(F‖G(a)). On the other hand if F is not absolutely continuous then
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D(F‖G) = ∞ and therefore D(F‖G) ≥ D(F‖G(a)) still holds for this case. Combining
them we have

inf
G∈A:E(G)>µ

D(F‖G) ≥ inf
G∈A:E(G)>µ

D(F‖G(a))

≥ inf
G∈A:E(G(a))>µ

D(F‖G(a))
(
by E(G) ≤ E(G(a))

)
= inf

G∈Aa:E(G)>µ
D(F‖G) .

On the other hand it holds from Aa ⊂ A that

inf
G∈A:E(G)>µ

D(F‖G) ≤ inf
G∈Aa:E(G)>µ

D(F‖G)

and we obtain infG∈A:E(G)>µD(F‖G) = infG∈Aa:E(G)>µD(F‖G).
(ii) We show Dinf(F, µ;A) ≤ Lmax(F, µ) and Dinf(F, µ;A) ≥ Lmax(F, µ) separately. To

prove the former inequality, let us consider a measure for any (measurable) set S ⊂ R

G∗(S) ≡

{∫
S

1−µ
1−xdF + (1− EF [ 1−µ

1−X ]) 11[1 ∈ S] , EF [ 1−µ
1−X ] ≤ 1 ,∫

S
1

1−(x−µ)ν∗dF , EF [ 1−µ
1−X ] > 1 .

We can see from Lemma 6 that G∗ is a probability measure such that E(G∗) = µ and
D(F‖G∗) = L(ν∗;F, µ) = Lmax(F, µ). Therefore the mixture distribution (1 − ε)G∗ + εδ1

satisfies E((1− ε)G∗ + εδ1) = (1− ε)µ+ ε > µ for any ε ∈ (0, 1) where δ1 is the point mass
measure at 1. As a result,

Dinf(F, µ;A) ≤ D(F‖(1− ε)G∗ + εδ1)

≤
∫

log
dF

d((1− ε)G∗)
dF

= D(F‖G∗)− log(1− ε)
= Lmax(F, µ)− log(1− ε)

and we obtain Dinf(F, µ;A) ≤ Lmax(F, µ) by letting ε ↓ 0.
Next we show the latter inequality. Let A = (−∞, a] and B = (a, 1], and define

FA and GA as probability measures such that FA(S) = F (S ∩ A)/F (A) and GA(S) =
G(S ∩A)/G(A). Then, for any probability measure G such that F is absolutely continuous
with respect to G, it holds that

D(F‖G) =

∫
A

log
dF

dG
dF +

∫
B

log
dF

dG
dF

= F (A)

∫
A

log
G(A)

F (A)

dFA
dGA

dFA +

∫
B

log
dF

dG
dF

= F (A)

∫
A

log
G(A)

F (A)
dFA + F (A)

∫
A

log
dFA
dGA

dFA +

∫
B

log
dF

dG
dF

= F (A) log
G(A)

F (A)
+ F (A)D(FA‖GA) +

∫
B

log
dF

dG
dF

≥ F (A) log
G(A)

F (A)
+

∫
B

log
dF

dG
dF

= D(F(a)‖G(a))
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and therefore,

inf
G∈A:E(G)>µ

D(F‖G) ≥ inf
G∈A:E(G)>µ

D(F(a)‖G(a))

≥ inf
G∈Aa:E(G(a))>µ

D(F(a)‖G(a)) (by E(G) ≤ E(G(a))) .

Let F ′(a) and G′(a) be the probability distributions of (X − a)/(1 − a) when X follows F(a)

and G(a), respectively. Then, letting ε > 0 be arbitrary and a < µ be sufficiently small, we
obtain from invariance of KL divergence under scale transformation that

inf
G∈A:E(G)>µ

D(F‖G) ≥ inf
G∈A:E(G(a))>µ

D(F(a)‖G(a))

= inf
G∈A:E(G′

(a)
)>µ−a

1−a

D(F ′(a)‖G
′
(a))

= Dinf

(
F ′(a),

µ− a
1− a

;A0

)
= Lmax

(
F ′(a),

µ− a
1− a

)
(by Prop. 1)

= Lmax

(
F(a), µ

)
(by expression of Lmax in (2))

≥ Lmax(F, µ)− ε (by Lemma 8)

and we complete the proof by letting ε ↓ 0.

7. Large Deviation Probabilities for Empirical Distributions Measured
with Dinf

It is essential for evaluation of IMED to derive large deviation probabilities on F̂i,t and µ̂i,t.
In this section we discuss probabilities on the empirical distribution and the mean from a
generic distribution F ∈ A, for which we write (F̂t, µ̂t) by dropping the subscript i from
(F̂i,t, µ̂i,t).

The key to the non-asymptotic evaluation lies in the fact that

Dinf(F̂t, µ) = max
0≤ν≤ 1

1−µ

EF̂t [log(1− (X − µ)ν)]

= max
0≤ν≤ 1

1−µ

{
1

t

t∑
l=1

log(1− (Xl − µ)ν)

}
,

where each Xl follows distribution F . Although it involves a maximization, it is essentially
an empirical mean of one-dimensional random variables log(1 − (Xl − µ)ν). By Cramér’s
theorem below, we can bound the large deviation probability for such an empirical mean in
a non-asymptotic form.

Proposition 9 (Dembo and Zeitouni, 1998, Eqs. (2.2.12) and (2.2.13)) Assume that
the moment generating function EF [eλX ] exists in some neighborhood of λ = 0. Then, for
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any x ∈ R

1

t
logPF [µ̂t ≥ x] ≤ − sup

λ≥0

{
λx− log EF [eλX ]

}
.

Also, if x < E(F ) then

1

t
logPF [µ̂t ≤ x] ≤ −Λ∗(x) (17)

and if x > E(F ) then

1

t
logPF [µ̂t ≥ x] ≤ −Λ∗(x) (18)

where Λ∗(x) = supλ{λx− log EF [eλX ]}.

We prove Props. 10–12 given below by Cramér’s theorem.

Proposition 10 For any F ∈ A,µ > E(F ) and u < Dinf(F, µ),

PF [Dinf(F̂t, µ) ≤ u] ≤ e−tΛ̃
∗(u) ,

where Λ̃∗(x) = supλ{λx − EF [(1 − (X − µ)ν∗)λ]} for ν∗ = argmax0≤ν≤(1−µ)−1 EF [log(1 −
(X − µ)ν)].

Proof For ν∗ = argmax0≤ν≤(1−µ)−1 EF [log(1− (X − µ)ν)] we have

PF [Dinf(F̂t, µ) ≤ u] = PF

[
max

0≤ν≤(1−µ)−1
EF̂t [log(1− (X − µ)ν)] ≤ u

]
≤ PF

[
EF̂t [log(1− (X − µ)ν∗)] ≤ u

]
.

For X1, X2, · · · following distribution F , we can regard EF̂t [log(1− (X − µ)ν∗)] as the em-
pirical mean of Yi = log(1 − (Xi − µ)ν∗), i = 1, · · · , t, which has expectation Dinf(F, µ).
Then the theorem follows immediately from (17) of Prop. 9.

Proposition 11 Fix any F ∈ A and µ < E(F ) and assume that the moment generating
function EF [eλX ] of F exists in some neighborhood of λ = 0. (i) For λµ = sup{λ ∈
R ∪ {+∞} : EF [((1−X)/(1− µ))λ] ≤ 1}, we have λµ > 1. (ii) For any u ∈ R,

PF [Dinf(F̂t, µ) ≥ u, µ̂t ≤ µ] ≤

{
e−tΛ

∗(µ), if u ≤ Λ∗(µ)/λµ ,

2e(1 + λµt)e
−tλµu, otherwise.

where Λ∗(x) = supλ{λx− log EF [eλX ]} and we define λe−λ = 0 for λ = +∞.
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Remark 1 Since Dinf(F̂t, µ) ≥ u implies

D(F̂t‖F ) ≥ Dinf(F̂t,E(F ))

≥ Dinf(F̂t, µ)

≥ u ,

it is easy to prove from Sanov’s theorem (Dembo and Zeitouni, 1998, Chap. 6.2) that

lim sup
t→∞

1

t
logPF [Dinf(F̂t, µ) ≥ u, µ̂t ≤ µ] ≤ −u ,

that is, PF [Dinf(F̂t, µ) ≥ u, µ̂t ≤ µ] is roughly bounded by e−tu. Prop. 11 shows that this
bound can be refined to e−tλµu for large u and its coefficient is explicitly bounded by a
polynomial 2e(1 + λµt).

Proof of Proposition 11 (i) Since we assume E[eλX ] < ∞ in some neighborhood of
λ = 0,

EF

[(
1−X
1− µ

)λ]
=

EF [(1−X)λ]

(1− µ)λ

is finite and continuous in λ ≥ 0. We obtain λµ > 1 from

EF

[(
1−X
1− µ

)1
]

=
1− E(F )

1− µ
< 1 .

(ii) Fix an arbitrary δ > 0 and let Mδ = d1/(2δ(1 − µ))e. Define ν(m) for m =
−Mδ,−Mδ + 1, · · · , 0, · · · ,Mδ by

ν(m) =
1 + m

Mδ

2(1− µ)
.

Then {[ν(m), ν(m+1)]}m=−Mδ,··· ,Mδ−1 partitions [0, (1 − µ)−1] into intervals with length at

most δ. Therefore the event {Dinf(F̂t, µ) ≥ u} can be expressed as

{Dinf(F̂t, µ) ≥ u} =
{
∃ν ∈

[
0, 1

1−µ
]
, L(ν; F̂t, µ) ≥ u

}
=

−1⋃
m=−Mδ

{
∃ν ∈

[
ν(m), ν(m+1)

]
, L(ν; F̂t, µ) ≥ u

}

∪
Mδ⋃
m=1

{
∃ν ∈

[
ν(m−1), ν(m)

]
, L(ν; F̂t, µ) ≥ u

}
. (19)

Since |ν(m+1) − ν(m)| ≤ δ and L(ν; F̂t, µ) is concave in ν, it holds for m ≤ −1 that{
∃ν ∈

[
ν(m), ν(m+1)

]
, L(ν; F̂t, µ) ≥ u

}
⊂
{
L(ν(m+1); F̂t, µ)− δmin{0, L′(ν(m+1); F̂t, µ)} ≥ u

}
⊂
{
L(ν(m+1); F̂t, µ)− δmin{0, L′(ν(0); F̂t, µ)} ≥ u

}
. (20)
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Similarly it holds for m ≥ 1 that{
∃ν ∈

[
ν(m−1), ν(m)

]
, L(ν; F̂t, µ) ≥ u

}
⊂
{
L(ν(m−1); F̂t, µ) + δmax{0, L′(ν(0); F̂t, µ)} ≥ u

}
. (21)

Here the derivative L′ is expressed from (12) as

L′(ν; F̂t, µ) =
1

ν
− 1

ν
EF̂t

[
1

1− (X − µ)ν

]
.

Since 1/(1− (x− µ)ν) is positive and increasing in x ≤ 1, it is bounded as

1

ν
≥ L′(ν; F̂t, µ) ≥ 1

ν
− 1

ν

1

1− (1− µ)ν
= − 1− µ

1− (1− µ)ν
.

Thus L′(ν(0); F̂t, µ) = L′(1/(2(1− µ)); F̂t, µ) is bounded as

2(1− µ) ≥ L′(ν(0); F̂t, µ) ≥ −2(1− µ) .

Combining this with (19), (20) and (21) we obtain

PF [Dinf(F̂t, µ) ≥ u] ≤
∑
m 6=0:

−Mδ≤m≤Mδ

PF

[
L(ν(m); F̂t, µ) ≥ u− 2(1− µ)δ

]
. (22)

Now recall that

λµ = sup

{
λ : EF

[(
1−X
1− µ

)λ]
≤ 1

}
> 1 .

Then, by Prop. 9,

PF

[
L(ν(m); F̂t, µ) ≥ u− 2(1− µ)δ

]
≤ exp

(
−t sup

λ≥0

{
λ(u− 2(1− µ)δ)− log EF [eλ log(1−(X−µ)ν(m))]

})

≤ exp

(
− t sup

λ≥1

{
λ(u− 2(1− µ)δ)

− log
(

EF [eλ log(1−(X−µ)·0)] ∨ EF [eλ log(1−(X−µ)·(1−µ)−1)]
)})

(23)

= exp

(
−t sup

λ≥1

{
λ(u− 2(1− µ)δ)− log

(
1 ∨ EF

[(
1−X
1− µ

)λ])})
≤ exp (−tλµ(u− 2(1− µ)δ)) , (24)

where (23) follows from 0 ≤ ν(m) ≤ (1 − µ)−1 and the convexity of EF [eλ log(1−(X−µ)ν)] in
ν ∈ [0, (1− µ)−1] for λ ≥ 1. Therefore we obtain from (22) and (24) that

PF [Dinf(F̂t, µ) ≥ u] ≤ 2Mδ exp (−tλµ(u− 2(1− µ)δ))

≤ 2

(
1 +

1

2(1− µ)δ

)
exp (−tλµ(u− 2(1− µ)δ))
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and we complete the proof by letting δ = 1/(2tλµ(1− µ)) and combining it with (17).

We prove Theorem 3 by the above two propositions. We also use the following proposition
on the large deviation probability of Dinf(F̂t, µ) under a more general setting for the proof
of Theorem 5.

Proposition 12 Fix any u, µ ∈ R and F ∈ A such that E(F ) < µ < 1. Then

PF [Dinf(F̂t, µ) ≥ u] ≤ 2e(1 + t) exp

(
−t
(
u− log

1− E(F )

1− µ

))
.

Proof Since (22) and (23) also hold for the case of this theorem, we obtain the theorem
by letting λ = 1 and δ = 1/(2t(1− µ)).

8. Regret Analysis for IMED

In this section we prove Theorem 3 by using a technique similar to that for UCB policies.
First we prove Lemma 13 below as a fundamental property of the IMED policy on the
minimum index I∗(l) ≡ mini∈{1,2,··· ,K} Ii(l).

Lemma 13 For any x > 0 and arm i,

∞∑
l=1

11 [I∗(l) ≤ x, J(l) = i] ≤ ex .

Proof This is straightforward from

∞∑
l=1

11 [I∗(l) ≤ x, J(l) = i] =
∞∑
t=1

∞∑
l=1

11 [I∗(l) ≤ x, J(l) = i, Ti(l) = t]

≤
∞∑
t=1

∞∑
l=1

11 [log t ≤ x, J(l) = i, Ti(l) = t]

(J(l) = i implies I∗(l) = Ii(l) ≥ log Ti(l))

=

bexc∑
t=1

∞∑
l=1

11 [J(l) = i, Ti(l) = t]

≤
bexc∑
t=1

1 ({J(l) = i, Ti(l) = t} occurs for at most one l)

≤ ex .

We prove Theorem 3 by Lemma 14 below.

Lemma 14 It holds for any µ < µ∗ and arm i that

E

[ ∞∑
l=1

11 [µ̂∗(l) ≤ µ, J(l) = i]

]
≤ inf

j∈Iopt

{
6e

(1− 1/λj,µ)(1− e−(1−1/λj,µ)Λ∗j (µ))3

}
.
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Proof Let j be any optimal arm, that is, j such that ∆j = 0. We will bound the RHS of

∞∑
l=1

11 [µ̂∗(l) ≤ µ, J(l) = i] =
∞∑
l=1

11 [µ̂j(l) ≤ µ̂∗(l) ≤ µ, J(l) = i]

≤
∞∑
t=1

∞∑
l=1

11 [µ̂j,t ≤ µ̂∗(l) ≤ µ, Tj(l) = t, J(l) = i] . (25)

Since {µ̂j,t ≤ µ̂∗(l) ≤ µ, Tj(l) = t} implies

I∗(l) = min
i
Ii(l)

≤ Ij(l)
= tDinf(F̂j,t, µ̂

∗(l)) + log t

≤ tDinf(F̂j,t, µ) + log t ,

we see from Lemma 13 that {µ̂j,t ≤ µ̂∗(l) ≤ µ, Tj(l) = t, J(l) = i} occurs for at most

tetDinf(F̂j,t,µ) rounds. Therefore from (25) we obtain

∞∑
l=1

11 [µ̂∗(l) ≤ µ, J(l) = i] ≤
∞∑
t=1

11 [µ̂j,t ≤ µ] tetDinf(F̂j,t,µ) . (26)

Let P (u) ≡ PFj [Dinf(F̂j,t, µ) > u, µ̂j,t ≤ µ]. Simply writing λj and Λ∗j for λj,µ and Λ∗j (µ)
in (4) and (5), respectively, we have from Prop. 11 that

E
[

11 [µ̂j,t ≤ µ] tetDinf(F̂j,t,µ)
]

=

∫ ∞
0

tetu(−dP (u))

=
[
tetu(−P (u))

]∞
0

+

∫ ∞
0

t2etuP (u)du (integration by parts)

≤ te−tΛ
∗
j +

∫ Λ∗j/λj

0
t2etu · e−tΛ

∗
jdu+

∫ ∞
Λ∗j/λj

t2etu · 2e(1 + λjt)e
−tλjudu

= te−tΛ
∗
j + t

[
et(u−Λ∗j )

]Λ∗j/λj

0
− 2et(1 + λjt)

[
e−t(λj−1)u

λj − 1

]∞
Λ∗j/λj

= te−t(1−1/λj)Λ
∗
j + 2et(1 + λjt)

e−t(1−1/λj)Λ
∗
j

λj − 1

=

(
1− 1/λj + 2e/λj

1− 1/λj

)
· te−t(1−1/λj)Λ

∗
j +

2e

1− 1/λj
· t2e−t(1−1/λj)Λ

∗
j . (27)

From (26), (27) and formulas

∞∑
t=1

te−rt ≤ 1

(1− e−r)2
≤ 1

(1− e−r)3

∞∑
t=1

t2e−rt ≤ 2

(1− e−r)3
,
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it holds that

E

[ ∞∑
l=1

11 [µ̂∗(l) ≤ µ, J(l) = i]

]
≤
(

1 + (2e− 1)/λj + 4e

1− 1/λj

)
1

(1− e−t(1−1/λj)Λ∗j )3

≤
(

1 + (2e− 1) + 4e

1− 1/λj

)
1

(1− e−t(1−1/λj)Λ∗j )3

=
6e

(1− 1/λj)(1− e−t(1−1/λj)Λ∗j )3
. (28)

We complete the proof by taking j which minimizes (28) over the optimal arms j ∈ Iopt.

Proof of Theorem 3 First we decompose Ti(n) as

Ti(n) =

n∑
l=1

11 [J(l) = i]

=

n∑
l=1

11 [J(l) = i, µ̂∗(l) ≤ µ∗ − δ] +

n∑
l=1

11 [J(l) = i, µ̂∗(l) ≥ µ∗ − δ] . (29)

The summation of the second term of (29) is bounded as

n∑
l=1

11 [J(l) = i, µ̂∗(l) ≥ µ∗ − δ] =
n∑
t=1

11

[
n⋃
l=1

{J(l) = i, Ti(l) = t, µ̂∗(l) ≥ µ∗ − δ}

]

≤
n∑
t=1

11

[
n⋃
l=1

{Ii(l) = I∗(l), Ti(l) = t, µ̂∗(l) ≥ µ∗ − δ}

]
.

Note that I∗(l) ≤ maxi:µ̂i(l)=µ̂∗(l) Ii(l) = maxi:µ̂i(l)=µ̂∗(l) log Ti(l) ≤ log n for all l ≤ n.
Then we have

E

[
n∑
l=1

11 [J(l) = i, µ̂∗(l) ≥ µ∗ − δ]

]

≤ E

[
n∑
t=1

11
[
tDinf(F̂i,t, µ

∗ − δ) ≤ log n
]]

(by I∗(l) = Ii(l) ≥ tDinf(F̂i(l), µ̂
∗(l)))

=
∞∑
t=1

PFi

[
tDinf(F̂i,t, µ

∗ − δ) ≤ log n
]

=
∞∑
t=1

PFi

[
t

(
Dinf(F̂i,t, µ

∗)−
∫ µ∗

µ∗−δ

dDinf(F̂i,t, µ)

dµ

∣∣∣∣
µ=u

du

)
≤ log n

]

≤
∞∑
t=1

PFi

[
t

(
Dinf(F̂i,t, µ

∗)−
∫ µ∗

µ∗−δ

du

1− u

)
≤ log n

]
(by Lemma 7)

≤
∞∑
t=1

PFi

[
t

(
Dinf(F̂i,t, µ

∗)− δ

1− µ∗

)
≤ log n

]
.
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By letting

M =

⌈
log n

Dinf(Fi, µ∗)− 2δ
1−µ∗

⌉
,

we have

E

[
n∑
l=1

11 [J(l) = i, µ̂∗(l) ≥ µ∗ − δ]

]

≤M − 1 +

∞∑
t=M

PFi

[
t

(
Dinf(F̂i,t, µ

∗)− δ

1− µ∗

)
≤ log n

]

≤M − 1 +
∞∑
t=M

PFi

[
M

(
Dinf(F̂i,t, µ

∗)− δ

1− µ∗

)
≤ log n

]

≤M − 1 +
∞∑
t=M

PFi

[
Dinf(F̂i,t, µ

∗) ≤ Dinf(Fi, µ
∗)− δ

1− µ∗

]

≤M − 1 +

∞∑
t=M

e
−tΛ̃(Dinf(Fi,µ

∗)− δ
1−µ∗ )

(by Prop. 10)

≤ log n

Dinf(Fi, µ∗)− 2δ
1−µ∗

+
1

1− e
−Λ̃∗i (Dinf(Fi,µ∗)− δ

1−µ )
.

On the other hand, we can bound the expectation of the first term of (29) by Lemma
14 with µ := µ∗ − δ, which completes the proof of the theorem.

9. Concluding Remarks and Discussion

We considered a nonparametric stochastic bandit where only the upper bound of the reward
is known. We proved that the theoretical bound does not depend on the knowledge of the
lower bound of the reward. We also showed that the bound can be achieved by the IMED
policy, an indexed version of the DMED policy.

A future work is to examine whether the assumption on existence of moment gen-
erating functions EFi [e

λX ] can be weakened to existence of moments EFi [X
m]. In the

analysis of IMED it is important to evaluate tail probabilities of µ̂i,t and Dinf(F̂i,t, µ) =
max0≤ν≤(1−µ)−1 EF̂i,t [log(1 − (X − µ)ν)]. Although the latter one is more essential in the

behavior of IMED, this only requires the existence of the moment E[eλ log(1−(X−µ)ν)] =
E[(1− (X −µ)ν)λ] and we assumed the existence of EFi [e

λX ] only for the evaluation of µ̂i,t.
Furthermore, in the most part of evaluations involving µ̂i,t it suffices to show that

∞∑
t=1

tp Pr[|µ̂i,t − µi| > δ] <∞ (30)

for some p ≥ 0, which we can assure to hold only by assuming EFi [X
2+p] < ∞ (Chow

and Lai, 1975). From these reasons we conjecture that the assumption E[eλX ] <∞ can be
weakened by using (30) but it remains as an open problem.
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Appendix A. Representations of Constants for Large Deviation
Probabilities

In Theorem 3, λi,µ, Λ∗i (x) and Λ̃∗i (x) in (4)–(6) are used in the constant term of the regret.
We discuss explicit representations of them in this appendix.

First we evaluate Λ∗i (x) and Λ̃∗i (x), which are Legendre-Fenchel transforms of cumulant
generating functions of random variables X and Y = log(1−(X−µ∗)ν∗i ), respectively, where
X follows Fi. If the support of Fi is bounded from below by a > −∞ then by Hoeffding’s
inequality (Hoeffding, 1963) we have

Λ∗i (µi + δ) ≥ 2δ2

(1 + a)2
.

Similarly, from Y ∈ [log(1− (1− µ∗)ν∗i ), log(1− (a− µ∗)ν∗i )]

Λ̃∗i (Dinf(Fi, µ
∗)− δ) ≥ 2δ2(

log
1−(a−µ∗)ν∗i
1−(1−µ∗)ν∗i

)2 .

Furthermore, we can evaluate Λ∗i (µi+δ) and Λ̃∗i (Dinf(Fi, µ
∗)−δ) for general cases including

a = −∞ by the following lemma.

Lemma 15 For sufficiently small δ > 0,

Λ∗i (µi + δ) ≥ δ2

2σ2
i

+ o(δ2) , (31)

Λ̃∗i (Dinf(Fi, µ
∗)− δ) ≥ (1− µ∗)δ2

4(1− µi)
+ o(δ2) , (32)

where σ2
i = EFi [(X − µi)2] is the variance of Fi.

Proof Since the cumulant generating function of Fi is expressed as

log EFi [e
λX ] = µiλ+

σ2
i λ

2

2
+ o(λ2) ,

we obtain (31) from

Λ∗i (µi + δ) = sup
λ

{
(µi + δ)λ− log EFi [e

λX ]
}

= sup
λ

{
δλ− σ2

i λ
2

2
+ o(λ2)

}
≥ δ2

2σ2
i

+ o(δ2) .
(
by letting λ := δ/σ2

i

)
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Similarly, from EFi [Y ] = Dinf(Fi, µ
∗) we have

Λ̃∗i (Dinf(Fi, µ
∗)− δ) = sup

λ

{
(Dinf(Fi, µ

∗)− δ)λ− log EFi [e
λY ]
}

≥ δ2

2σ̃2
i

+ o(δ2) , (33)

where σ̃2
i is the variance of Y = log(1 − (X − µ∗)ν∗i ). Since Y has expectation EFi [Y ] =

Dinf(Fi, µ
∗), the variance σ̃2

i is expressed as

σ̃2
i = EFi [(Y −Dinf(Fi, µ

∗))2]

= EFi

[(
log

eY

eDinf(Fi,µ∗)

)2
]
.

Note that (log z)2 is smaller than z−1 for z → +0 and smaller than z for z → ∞. Thus
there exists c0 > 0 such that (log z)2 ≤ c0(z + z−1) for all z > 0. In fact, this inequality
holds for c0 ≥ 0.533 (and thus, for c0 = 1). Therefore

σ̃2
i ≤ EFi

[
eY

eDinf(Fi,µ∗)
+

eDinf(Fi,µ
∗)

eY

]
≤ EFi [e

Y ] + eDinf(Fi,µ
∗)EFi [e

−Y ] (by Dinf(Fi, µ
∗) ≥ 0)

= EFi [e
Y ] + eEFi [Y ]EFi [e

−Y ]

≤ EFi [e
Y ] + EFi [e

Y ]EFi [e
−Y ] (by Jensen’s inequality)

= (1− (µi − µ∗)ν∗i ) ·
(

1 + EFi

[
1

1− (X − µ∗)ν∗i

])
≤
(

1− µi − µ∗

1− µ∗

)
· (1 + 1) (by Lemma 6)

=
2(1− µi)

1− µ∗
. (34)

We obtain (32) by combining (34) with (33).

Next we bound λi,µ with an explicit form in the following lemma and we see that
λi,µi−δ ≥ 1 + (1− µi)δ/σ2

i + o(δ).

Lemma 16 If µ < µi < 1 then

λi,µ ≥

{
1 + (1−µ)(µi−µ)

σ2
i−(1−µi)(µi−µ)

, if σ2
i ≥ (µi − µ)(2− µi − µ),

2, otherwise.
(35)
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Proof Since xλ is convex in λ, we have

λi,µ = sup

{
λ : EFi

[(
1−X
1− µ

)λ]
≤ 1

}

≥ sup

{
λ ∈ [1, 2] : EFi

[(
1−X
1− µ

)λ]
≤ 1

}

≥ sup

{
λ ∈ [1, 2] : EFi

[
(2− λ)

(
1−X
1− µ

)1

+ (λ− 1)

(
1−X
1− µ

)2
]
≤ 1

}

= sup

{
λ ∈ [1, 2] : (2− λ)

1− µi
1− µ

+ (λ− 1)
σ2
i + (1− µi)2

(1− µ)2
≤ 1

}
. (36)

If (σ2
i + (1− µi)2)(1− µ)−2 ≥ 1, that is, if σ2

i ≥ (µi − µ)(2− µi − µ) then λ satisfying

(2− λ)
1− µi
1− µ

+ (λ− 1)
σ2
i + (1− µi)2

(1− µ)2
= 1

is contained in [1, 2]. Therefore we obtain (35) for this case by solving this equality. In the
other case, the condition in (36) is satisfied by λ = 2 and we have λi,µ ≥ 2.

Appendix B. Proof of Lemma 7

We prove this lemma by the technique known as sensitivity analysis for optimization prob-
lems given below.

Proposition 17 (Fiacco, 1983, Corollary 3.4.3) For a function f(x, y) : Rm×Rn → R,
let f∗(y) be a local minimum of f(x, y) in some neighborhood of x. Assume that there exists
a point x∗ such that

• f(x, y) is twice continuously differentiable in some neighborhood of (x∗, 0),

• ∆xf(x, 0)|x=x∗ = 0, and

• ∆2
xf(x, 0)|x=x∗ is positive definite.

Then ∆yf
∗(y) = ∆yf(x, y)|x=x∗.

Proof From Lemma 6, for the case EF [(1 − µ)/(1 − X)] < 1 we have Lmax(F, µ) =
EF [log((1−X)/(1− µ))]. Therefore,

∂

∂µ
Lmax(F, ν) =

1

1− µ
= ν∗(F, µ)

for EF [(1− µ)/(1−X)] < 1 and

lim
ε↓0

Lmax(F, µ+ ε)− Lmax(F, µ)

ε
=

1

1− µ
= ν∗(F, µ)
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for EF [(1− µ)/(1−X)] = 1.
Now consider the case EF [(1−µ)/(1−X)] ≥ 1. In this case, Lmax(F, µ) = max0≤ν≤(1−µ)−1

L(ν;F, µ) = maxν L(ν;F, µ) from L′(0;F, µ) = 0, L′((1− µ)−1;F, µ) ≤ 0 and the convexity
of L(ν;F, µ). For this unconstrained optimization problem it holds from Prop. 17 that

d(maxν L(ν;F, µ))

dµ
=

dL(ν;F, µ)

dµ

∣∣∣∣
ν=ν∗

= ν∗(F, µ) .

Therefore, we obtain

∂

∂µ
Lmax(F, µ) = ν∗(F, µ)

for EF [(1− µ)/(1−X)] > 1 and

lim
ε↑0

Lmax(F, µ+ ε)− Lmax(F, µ)

ε
= ν∗(F, µ)

for EF [(1− µ)/(1−X)] = 1.

Appendix C. Proof of Theorem 5

In this appendix we show Theorem 5 on the refined (asymptotic) regret bound of IMED.
We prove the theorem by the following lemma on a stopping time of a stochastic process.

Lemma 18 Let {Yi}i=1,2,··· be i.i.d. random variables such that E[Y1] > 0 and E[eY1 ] <∞.
(i) For St =

∑t
i=1 Yi and sufficiently large M > 0, the stopping time τ = min{t : St > M}

satisfies

E[τ ] ≤ M + logM

E[Y1]
+ O(1) .

(ii) Furthermore, if ess supYi <∞, that is, the support of the distribution of Yi is bounded
from above then

E[τ ] ≤ M

E[Y1]
+ O(1) .

Proof (i) For any A > 0, define Y ′i = Yi ∧ A and S′t =
∑t

i=1 Y
′
i . For simplicity we also

define S′0 = S0 = 0. Since S′t ≤ St always holds, τ ′ = min{t : S′t > M} satisfies τ ≤ τ ′.
Since τ ′n = n ∧ τ ′ is a bounded stopping time, it holds from discrete Dynkin’s formula

(Meyn and Tweedie, 1992, Sect. 4.2) that

E[S′τ ′n ] = E[S′0] + E

 τ ′n∑
i=1

E[S′i|S′1, S′2, · · · , S′i−1]− S′i−1


= E

 τ ′n∑
i=1

E[Y ′i ]


= E[Y ′i ]E

[
τ ′n
]
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and therefore

E[τ ′n] =
E[S′τ ′n ]

E[Y ′1 ]
≤

E[S′τ ′n−1 +A]

E[Y ′1 ]
≤ M +A

E[Y ′1 ]
. (37)

By defining (x)+ = 0 ∨ x, we can bound E[Y ′1 ] by

E[Y ′1 ] = E[Y1 − (Y1 −A)+]

≥ E[Y1]− E[eY ]

eA+1
. (by (y −A)+ ≤ ey−(A+1)) (38)

Combining (37) with (38) and letting A = log((M + 1)E[eY1 ]/E[Y1])− 1, we have

E[τ ′n] ≤ M + 1

M

M + log
(

E[eY1 ]
E[Y1] (M + 1)

)
− 1

E[Y1]

=
M + logM

E[Y1]
+ O(1) .

Finally we complete the proof by

E[τ ] ≤ E[τ ′]

= E
[

lim
n→∞

τ ′n

]
= lim

n→∞
E[τ ′n] (by monotone convergence theorem)

=
M + logM

E[Y1]
+ O(1) .

(ii) In the case of ess supYi < ∞, we can directly evaluate τ instead of τ ′ and (37) is
replaced with

E[τ ] ≤ M + ess supYi
E[Y1]

=
M

E[Y1]
+ O(1) .

Proof of Theorem 5 For simplicity we consider the case K = 2 and assume µ∗ = µ1 > µ2.
We can prove the theorem for the case K > 2 in the same way (see Remark 2 below this
proof).

First we define three constants independent of n by

ξ ≡ 1

2 log 1−µ2
1−µ1

> 0 (39)

ρ ≡ Dinf(F2, µ1)

3
> 0

µ′ ≡ max

{
µ1 − ρ(1− µ1),

µ1 + µ2

2

}
∈ (µ2, µ1) . (40)
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We also define the following six events for sufficiently small δ > 0

Al ≡ {J(l) = 2, T2(l) ≥ ξ log n} ,

B
(1)
l ≡ {µ̂

∗(l) ≤ µ′} ,

B
(2)
l ≡ {µ

′ < µ̂∗(l) ≤ µ1 − δ} ,

B
(3)
l ≡ {µ1 − δ < µ̂∗(l)} ,
Cl ≡ {µ̂2(l) ≤ µ′} ,

Dl ≡
{
Dinf(F̂2(l), µ1) ≥ Dinf(F2, µ1)− ρ

}
.

Since the whole sample space is covered by

Ccl ∪ Dc
l ∪ B

(1)
l ∪ (B

(2)
l ∩ Cl ∩Dl) ∪ (B

(3)
l ∩ Cl) ,

we have

T2(n) =
n∑
l=1

11 [J(l) = 2]

≤ ξ log n+
n∑
l=1

11 [Al]

≤
n∑
l=1

11 [Al ∩ Ccl ] +
n∑
l=1

11 [Al ∩Dc
l ] +

n∑
l=1

11
[
Al ∩B

(1)
l

]
+

n∑
l=1

11
[
Al ∩B

(2)
l ∩ Cl ∩Dl

]
+

(
ξ log n+

n∑
l=1

11
[
Al ∩B

(3)
l ∩ Cl

])
. (41)

We bound expectations of these terms in the followings. The essential point is that the only

events involving B
(2)
l and B

(3)
l depend on the small constant δ and the number of rounds

of the other events can be bounded independently of δ. We can derive a tight bound for

events B
(2)
l and B

(3)
l with respect to δ by considering these events under Cl and Dl, that is,

under the condition that statistics µ̂2(l) and Dinf(F̂2(l), µ1) are not very far from the true
expectation.

First we have3

n∑
l=1

11 [Al ∩ Ccl ] ≤
∞∑

t=ξ logn

11

[
n⋃
l=1

{J(l) = 2, µ̂2,t > µ′, T2(l) = t}

]
(42)

3. The summation
∑∞
t=ξ logn in (42) should be

∑∞
t=dξ logne to be precise. However we omit the rounding

operations d·e and b·c in the proof of this theorem for simplicity since these do not affect the asymptotic
analysis.
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and therefore

E

[
n∑
l=1

11 [Al ∩ Ccl ]

]
≤

∞∑
t=ξ logn

PF2 [µ̂2,t > µ′]

≤
∞∑

t=ξ logn

e−tΛ
∗
2(µ′) (by (18) of Prop. 9)

=
e−(ξ logn)Λ∗2(µ′)

1− e−Λ∗2(µ′)

= O(e−O(logn))

= o(1) . (43)

Second, we have

n∑
l=1

11 [Al ∩Dc
l ] ≤

∞∑
t=ξ logn

11

[
n⋃
l=1

{
J(l) = 2, Dinf(F̂2,t, µ1) < Dinf(F2, µ1)− ρ, T2(l) = t

}]
.

From Prop. 10, its expectation is bounded as

E

 n∑
l=ξ logn

11 [Al ∩Dc
l ]

 ≤ ∞∑
t=ξ logn

e−tΛ̃
∗
2(Dinf(F2,µ1)−ρ)

=
e−(ξ logn)Λ̃∗2(Dinf(F2,µ1)−ρ)

1− e−Λ̃∗2(Dinf(F2,µ1)−ρ)

= o(1) . (44)

Third, we have

E

 n∑
l=ξ logn

11
[
Al ∩B

(1)
l

] = O(1) (45)

from Lemma 14 with µ := µ′ since µ′ is a constant independent of δ and n.
Fourth, we have

n∑
l=1

11
[
Al ∩B

(2)
l ∩ Cl ∩Dl

]
≤

∞∑
t2=ξ logn

∞∑
t1=1

11

[
n⋃
l=1

{J(l) = 2, T1(l) = t1, T2(l) = t2, B
(2)
l ∩ Cl ∩Dl}

]
.

Note that {T2(l) = t2, B
(2)
l ∩Dl} implies

I2(l) ≥ t2Dinf(F̂2(l), µ′)

≥ t2
(
Dinf(F̂2(l), µ1)− ρ

)
(by (40) and Lemma 7)

≥ t2 (Dinf(F2, µ1)− 2ρ) (by definition of Dl)

= t2ρ .
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Furthermore, J(l) = 2 implies I2(l) ≤ I1(l) and {T1(l) = t1, B
(2)
l ∩Cl} implies I1(l) = log t1.

Combining them, we have

n∑
l=1

11
[
Al ∩B

(2)
l ∩ Cl ∩Dl

]
≤

∞∑
t2=ξ logn

∞∑
t1=1

11 [ρt2 ≤ log t1, µ̂1,t1 ≤ µ1 − δ]

=
∞∑

t2=ξ logn

∞∑
t1=eρt2

11 [µ̂1,t1 ≤ µ1 − δ] (46)

and therefore

E

[
n∑
l=1

11
[
Al ∩B

(2)
l ∩ Cl ∩Dl

]]
≤

∞∑
t2=ξ logn

∞∑
t1=eρt2

PF1 [µ̂1,t1 ≤ µ1 − δ]

≤
∞∑

t2=ξ logn

e−eρt2Λ∗1(µ1−δ)

1− e−Λ∗1(µ1−δ)
(by (17) of Prop. 9)

≤
∞∑

t2=ξ logn

e−(
(ρt2)

3

3
+ρt2)Λ∗1(µ1−δ)

1− e−Λ∗1(µ1−δ)

(by ex ≥ x3

3 + x for x ≥ 0)

≤
∞∑

t2=ξ logn

e−(
(ρξ logn)3

3
+ρt2)Λ∗1(µ1−δ)

1− e−Λ∗1(µ1−δ)

=
e−(

(ρξ logn)3

3
+ρξ logn)Λ∗1(µ1−δ)

(1− e−Λ∗1(µ1−δ))(1− e−ρΛ∗1(µ1−δ))

=
e−O(δ2(logn)3)

O(δ4)
. (47)

Finally we evaluate two terms

ξ log n+
n∑
l=1

11
[
Al ∩B

(3)
l ∩ Cl

]
= ξ log n+

n∑
t=ξ logn

11

[
n⋃
l=1

{J(l) = 2, T2(l) = t, B
(3)
l ∩ Cl}

]

in (41). Here note that {T2(l) = t ≥ ξ log n, B
(3)
l } implies

I2(l) ≥ tDinf(F̂2, µ1 − δ) + log t

≥ t
(
Dinf(F̂2, µ1)− δ

1− µ1

)
+ log(ξ log n) (by Lemma 7)

and {J(l) = 2, B
(3)
l ∩ Cl} implies I2(l) ≤ I1(l) = log T1(l) ≤ log n. As a result, we have

ξ log n+
n∑
l=1

11
[
Al ∩B

(3)
l ∩ Cl

]

3751



Honda and Takemura

≤ ξ log n+

∞∑
t=ξ logn

11

[
t

(
Dinf(F̂2, µ1)− δ

1− µ1

)
≤ log n− log(ξ log n)

]

=
∞∑
t=1

11

[
t

(
Dinf(F̂2,t, µ1)− δ

1− µ1

)
≤ log n− log(ξ log n)

]

+

ξ logn∑
t=1

11

[
t

(
Dinf(F̂2,t, µ1)− δ

1− µ1

)
> log n− log(ξ log n)

]
. (48)

The expectation of the second term of (48) can be evaluated as

E

[
ξ logn∑
t=1

11

[
t

(
Dinf(F̂2,t, µ1)− δ

1− µ1

)
> log n− log(ξ log n)

]]

≤
ξ logn∑
t=1

PF2

[
Dinf(F̂2,t, µ1) >

log n− log(ξ log n)

ξ log n

]

=

ξ logn∑
t=1

PF2

[
Dinf(F̂2,t, µ1) >

1

ξ
− o(1)

]

=

ξ logn∑
t=1

PF2

[
Dinf(F̂2,t, µ1) > 2 log

1− µ2

1− µ1
− o(1)

]
(by (39))

= O(1) . (by Prop. 12) (49)

Putting (41) and (43)–(49) together, we have

E[T2(n)] ≤ E

[ ∞∑
t=1

11

[
t

(
Dinf(F̂2, µ1)− δ

1− µ1

)
≤ log n− log(ξ log n)

]]

+
e−O(δ2(logn)3)

O(δ4)
+ O(1) . (50)

Let Yt = log(1− (X2,t − µ1)ν∗2)− δ/(1− µ1) and define a stochastic process {St}t=1,2,···
by St =

∑t
l=1 Yl. For a stopping time τ = min{t : St > log n− log(ξ log n)}, the first term

of (50) is bounded by

E

[ ∞∑
t=1

11

[
t

(
Dinf(F̂2,t, µ1)− δ

1− µ1

)
≤ log n− log(ξ log n)

]]

≤ E

[ ∞∑
t=1

11 [St ≤ log n− log(ξ log n)]

]

= E

[
(τ − 1) +

n∑
m=τ+1

11

[
Sτ +

m∑
l=τ+1

Yl ≤ log n− log(ξ log n)

]]

≤ E[τ ] + E

[
n∑

m=τ+1

11

[
m∑

l=τ+1

Yl ≤ 0

]]
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= E[τ ] + E

[
E

[
n∑

m=τ+1

11

[
m∑

l=τ+1

Yl ≤ 0

] ∣∣∣∣∣τ
]]

= E[τ ] + E

[
n∑

m=τ+1

PF2

[
m∑

l=τ+1

Yl ≤ 0

∣∣∣∣∣τ
]]

. (51)

Note that E[Yt] = Dinf(F2, µ1)− δ/(1− µ1) and E[eYt ] = e−δ/(1−µ1)(1− (µ2 − µ1)ν∗i ) <∞.
Then we obtain from (i) of Lemma 18 that

E[τ ] ≤ log n− log(ξ log n) + log(log n− log(ξ log n))

Dinf(F2, µ1)− δ
1−µ1

+ O(1)

=
log n

Dinf(F2, µ1)− δ
1−µ1

+ O(1)

=
log n

Dinf(F2, µ1)
+ O(δ log n) + O(1) . (52)

On the other hand, from Cramér’s theorem we obtain

E

[
n∑

m=τ+1

PF2

[
m∑

l=τ+1

Yl ≤ 0

∣∣∣∣∣τ
]]

= E

[
n∑

m=τ+1

PF2

[
1

m− τ

m∑
l=τ+1

log(1− (X2,l − µ1)ν∗2) ≤ δ

1− µ1

∣∣∣∣∣τ
]]

≤ E

[
n∑

m=τ+1

e
−(m−τ)Λ̃∗2( δ

1−µ1
)

]
(by Prop. 9 and definition of Λ̃∗2 in (6))

≤ 1

1− e
−Λ̃∗2( δ

1−µ1
)

= O(1) . (by Lemma 15) (53)

By combining (51)–(53) with (50) we have

E[T2(n)] ≤ log n

Dinf(F2, µ1)
+ O(δ log n) +

e−O(δ2(logn)3)

O(δ4)
+ O(1) .

We obtain (i) of Theorem 5 by letting δ = O((log n)−1).
In the case that each arm has a bounded support we can apply (ii) of Lemma 18. As a

result, (52) is replaced with

E[τ ] ≤ log n− log(ξ log n)

Dinf(F2, µ1)− δ
1−µ1

+ O(1)

=
log n

Dinf(F2, µ1)
+ O(δ log n)−O(log log n)

and we obtain (ii) of Theorem 5 by this replacement.
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Remark 2 The proof for K > 2 is almost the same as the case K = 2. The only different
point is the evaluation around (46), wherein the pair (T1(l), T2(l)) is considered. For K > 3
we can proceed the evaluation in the same way by taking the summation over contributions
of all pairs (Tj(l), Ti(l)), j ∈ Iopt, i 6= j.
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Abstract

Having shown its good performance in many applications, variational Bayesian (VB) learn-
ing is known to be one of the best tractable approximations to Bayesian learning. However,
its performance was not well understood theoretically. In this paper, we clarify the behav-
ior of VB learning in probabilistic PCA (or fully-observed matrix factorization). More
specifically, we establish a necessary and sufficient condition for perfect dimensionality (or
rank) recovery in the large-scale limit when the matrix size goes to infinity. Our result
theoretically guarantees the performance of VB-PCA. At the same time, it also reveals
the conservative nature of VB learning—it offers a low false positive rate at the expense
of low sensitivity. By contrasting with an alternative dimensionality selection method, we
characterize VB learning in PCA. In our analysis, we obtain bounds of the noise variance
estimator, and a new and simple analytic-form solution for the other parameters, which
themselves are useful for implementation of VB-PCA.

Keywords: variational Bayesian learning, matrix factorization, principal component
analysis, automatic relevance determination, perfect dimensionality recovery

1. Introduction

Variational Bayesian (VB) learning (Attias, 1999; Bishop, 2006) was proposed as a compu-
tationally efficient approximation to Bayesian learning. The key idea is to find the closest
distribution to the Bayes posterior in a restricted function space, where the expectation—
an often intractable operation in Bayesian learning—can be easily performed. VB learning

∗This paper is an extended version of our earlier conference paper (Nakajima et al., 2012).

c©2015 Shinichi Nakajima, Ryota Tomioka, Masashi Sugiyama, and S. Derin Babacan.
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Figure 1: Dissimilarities between VB and rigorous Bayesian learning. (Left and Center)
The Bayes posterior and the VB posterior of the 1 × 1 MF model V = BA + E
with almost flat prior, when V = 1 is observed (E is Gaussian noise). VB approx-
imates the Bayes posterior having two modes by an origin-centered Gaussian,
which induces sparsity. (Right) Behavior of estimators of U = BA, given the
observation V . The VB estimator (the magenta solid curve) is zero when V ≤ 1,
which indicates exact sparsity. On the other hand, FB (fully-Bayesian or rigorous
Bayesian learning; blue crosses) shows no sign of sparsity. All graphs are quoted
from Nakajima and Sugiyama (2011).

has been applied to many applications, and its good performance has been experimentally
shown (Bishop, 1999a; Bishop and Tipping, 2000; Ghahramani and Beal, 2001; Jaakkola
and Jordan, 2000; Blei et al., 2003; Sato et al., 2004; Lim and Teh, 2007; Seeger, 2009; Ilin
and Raiko, 2010). Typically, the restriction is imposed as a factorized form of posterior,
under which a tractable iterative algorithm is derived.

Although the VB algorithm is simple and efficient, it solves a non-convex optimization
problem, which makes theoretical analysis difficult. An exceptional case is the matrix factor-
ization (MF) model (Bishop, 1999a; Lim and Teh, 2007; Ilin and Raiko, 2010; Salakhutdinov
and Mnih, 2008) with fully-observed matrices, in which the global VB solution has been
analytically obtained (Nakajima et al., 2013b), and some properties have been theoreti-
cally revealed (Nakajima and Sugiyama, 2011). These works also posed thought-provoking
relations between VB and rigorous Bayesian learning: The VB posterior is actually quite
different from the true Bayes posterior (compare the left and the middle graphs in Fig-
ure 1), and VB induces sparsity in its solution but such sparsity is hardly observed in
rigorous Bayesian learning (see the right graph in Fig. 1). Actually, Mackay (2001) has dis-
cussed the sparsity of VB as an artifact by showing inappropriate model pruning in mixture
models. These facts might deprive the justification of VB based solely on the fact that it is
one of the best tractable approximations to Bayesian learning.

The goal of this paper is to provide direct justification for VB learning. Focusing on
the probabilistic PCA (Tipping and Bishop, 1999; Roweis and Ghahramani, 1999; Bishop,
1999a), an instance of fully-observed MF, we give a theoretical guarantee for the perfor-
mance of VB learning. Our starting point is the global analytic solution derived by Nakajima
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et al. (2013b). After describing our formulation in Section 2, we conduct the following three
steps:

1. We derive a new and simple analytic-form of the global VB solution in Section 3.

The analytic-form solution derived in Nakajima et al. (2013b) is expressed with a
solution of a quartic equation, which obstructs further analysis. In this paper, we
derive an alternative form, which consists of simple algebra.

2. We obtain a simple form of the objective function for noise variance estimation in
Section 4.

The previous analyses in Nakajima and Sugiyama (2011) and in Nakajima et al.
(2013b) assumed that the noise variance is a given constant. In this paper, we assume
that the noise variance is also estimated from observation, and derive an objective
function, of which the minimizer gives the noise variance estimator. We also derive
bounds of the rank estimator and the noise variance estimator.

3. We establish a necessary and sufficient condition for perfect dimensionality recovery
in Section 5.

Combining the results obtained in the former two steps with random matrix theory
(Marčenko and Pastur, 1967; Wachter, 1978; Johnstone, 2001; Hoyle and Rattray,
2004; Baik and Silverstein, 2006), we establish a necessary and sufficient condition
that VB-PCA perfectly recovers the true dimensionality in the large-scale limit when
the matrix size goes to infinity.

To the best of our knowledge, this is the first theoretical result that guarantees the
performance of VB learning. To give more insight into practical situations, we also derive
a sufficient condition for perfect recovery, which approximately holds for moderate-sized
matrices. It is worth noting that, although the objective function minimized for noise
variance estimation is non-convex and possibly multimodal in general, only a local search
algorithm is required for perfect recovery.

Section 6 is devoted to discussion on a few topics. First, we propose a simple implemen-
tation of VB-PCA, based on the new analytic-form solution and the bounds of the noise
variance estimator, which are obtained in our analysis. After that, we consider the behav-
ior of VB learning in more detail. Our result theoretically guarantees the performance of
VB-PCA. At the same time, it also reveals the conservative nature of VB learning—it offers
a low false positive rate at the expense of low sensitivity, due to which VB-PCA does not
behave optimally in the large-scale limit. By contrasting with an alternative dimensional-
ity selection method, called the overlap (OL) method (Hoyle, 2008), we characterize VB
learning in PCA.

Section 7 concludes, and Appendix provides all technical details.

2. Formulation

In this section, we formulate variational Bayesian learning in the matrix factorization model.
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2.1 Probabilistic Matrix Factorization

Assume that we observed a matrix V ∈ RL×M , which is the sum of a target matrix U ∈
RL×M and a noise matrix E ∈ RL×M :

V = U + E.

In the matrix factorization (MF) model, the target matrix is assumed to be low rank, and
therefore can be factorized as

U = BA>,

where A ∈ RM×H , B ∈ RL×H for H ≤ min(L,M), and > denotes the transpose of a matrix
or vector. Here, the rank of U is upper-bounded by H.

In this paper, we consider the probabilistic MF model (Salakhutdinov and Mnih, 2008),
where the observation noise E and the priors of A and B are assumed to be Gaussian:

p(V |A,B) ∝ exp

(
− 1

2σ2
‖V −BA>‖2Fro

)
, (1)

p(A) ∝ exp

(
−1

2
tr
(
AC−1

A A>
))

, (2)

p(B) ∝ exp

(
−1

2
tr
(
BC−1

B B>
))

. (3)

Here, we denote by ‖·‖Fro the Frobenius norm, and by tr(·) the trace of a matrix. Through-
out the paper, we assume that

L ≤M. (4)

If L > M , we may simply re-define the transpose V > as V so that L ≤M holds. Therefore,
the assumption (4) does not impose any restriction. We assume that the prior covariance
matrices CA and CB are diagonal and positive definite, i.e.,

CA = diag(c2
a1 , . . . , c

2
aH

),

CB = diag(c2
b1 , . . . , c

2
bH

),

for cah , cbh > 0, h = 1, . . . ,H. Without loss of generality, we assume that the diagonal
entries of the product CACB are arranged in non-increasing order, i.e., cahcbh ≥ cah′ cbh′ for
any pair h < h′. We denote a column vector of a matrix by a bold lowercase letter, i.e.,

A = (a1, . . . ,aH) ∈ RM×H ,
B = (b1, . . . , bH) ∈ RL×H .

2.2 Variational Bayesian Approximation

The Bayes posterior is given by

p(A,B|V ) =
p(V |A,B)p(A)p(B)

p(V )
, (5)
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where p(V ) = 〈p(V |A,B)〉p(A)p(B). Here, 〈·〉p denotes the expectation over the distribu-
tion p. Since this expectation is intractable, we need to approximate the Bayes posterior.

Let r(A,B), or r for short, be a trial distribution. The following functional with respect
to r is called the free energy:

F (r) =

〈
log

r(A,B)

p(V |A,B)p(A)p(B)

〉

r(A,B)

(6)

=

〈
log

r(A,B)

p(A,B|V )

〉

r(A,B)

− log p(V ).

In the last equation, the first term is the Kullback-Leibler (KL) divergence from the trial
distribution to the Bayes posterior (5), and the second term is constant. Therefore, min-
imizing the free energy amounts to finding a distribution closest to the Bayes posterior in
the sense of the KL divergence. A general approach to Bayesian approximate inference is
to find the minimizer of the free energy (6) with respect to r in some restricted function
space.

In the VB approximation, the independence between the entangled parameter matrices
A and B is assumed:

r(A,B) = r(A)r(B). (7)

Under this constraint, an iterative algorithm for minimizing the free energy (6) was derived
(Bishop, 1999a; Lim and Teh, 2007). Let r̂ be the obtained minimizer. We define the MF
solution by the mean of the target matrix U :

Û =
〈
BA>

〉
r̂(A,B)

.

The MF model has hyperparameters (CA,CB) in the priors (2) and (3). By manu-
ally choosing them, we can control regularization and sparsity of the solution (e.g., the
PCA dimension in our setting). A popular way to set the hyperparameter in the Bayesian
framework is again based on the minimization of the free energy (6):

(ĈA, ĈB) = argmin
CA,CB

(
min
r
F (r;CA,CB|V )

)
.

We refer to this method as an empirical VB (EVB) method. When the noise variance σ2 is
unknown, it can also be estimated as

σ̂2 = argmin
σ2

(
min

r,CA,CB

F (r;CA,CB, σ
2|V )

)
.

3. Simple Analytic-Form Solution

Recently, an analytic-form of the global VB, as well as EVB, solution for MF has been
derived (Nakajima et al., 2013b), which enables us to reach the global solution easily.
However, the form involves a solution of a quartic equation, which obstructs further analysis.
In this section, we derive a simple alternative form of the global VB, as well as EVB, solution,
which facilitates subsequent analysis.
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3.1 VB Solution

Let

V =

H∑

h=1

γhωbhω
>
ah

be the singular value decomposition (SVD) of V , where γh (≥ 0) is the h-th largest singular
value, and ωah and ωbh are the associated right and left singular vectors. We denote by
Nd(·;µ,Σ) the d-dimensional Gaussian distribution with mean µ and covariance Σ, by Id
the d-dimensional identity matrix, and by R++ the set of the positive real numbers.

Under the independence assumption (7), it is easily shown that the VB posterior has
the Gaussian form:

r(A,B) ∝ exp


−

tr
(

(A− Â)Σ−1
A (A− Â)>

)

2


 exp


−

tr
(

(B − B̂)Σ−1
B (B − B̂)>

)

2




with the means Â, B̂ and the covariances ΣA,ΣB minimizing the free energy (6), which is
explicitly written as

2F = LM log(2πσ2) +

∥∥∥V − B̂Â>
∥∥∥

2

σ2
+M log

|CA|
|ΣA|

+ L log
|CB|
|ΣB|

− (L+M)H

+ tr
(
C−1
A

(
Â>Â+MΣA

))
+ tr

(
C−1
B

(
B̂>B̂ + LΣB

))

+
tr
(
−Â>ÂB̂>B̂ +

(
Â>Â+MΣA

)(
B̂>B̂ + LΣB

))

σ2
. (8)

Here | · | denotes the determinant of a matrix. The derivatives of the free energy (8) give
the following stationary condition, which is used for constructing an iterative local search
algorithm:

Â = V >B̂
ΣA

σ2
, ΣA = σ2

(
B̂>B̂ + LΣB + σ2C−1

A

)−1
, (9)

B̂ = V Â
ΣB

σ2
, ΣB = σ2

(
Â>Â+MΣA + σ2C−1

B

)−1
. (10)

In our previous work, we proved that finding the solution with diagonal covariances
is sufficient—any solution has an equivalent transform to the solution such that ΣA and
ΣB are diagonal (Theorem 1 in Nakajima et al. (2013b)). Under the focus on diagonal
covariances, the stationary condition (9) and (10) implies that Â>Â and B̂>B̂ are also
diagonal, meaning that the column vectors of Â, as well as B̂, are orthogonal to each other.
Then, we find that the column vectors of Â and B̂ only depend on the second term in
Eq.(8), which coincides with the objective for (truncated) SVD. Consequently, the mean
parameters are expressed as âh = âhωah and b̂h = b̂hωbh (Lemma 8 in Nakajima and
Sugiyama (2011)), and the following proposition thus holds:
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Proposition 1 (Nakajima et al., 2013b) The VB posterior can be written as

r(A,B) =

H∏

h=1

NM (ah; âhωah , σ
2
ah
IM )NL(bh; b̂hωbh , σ

2
bh
IL), (11)

where {âh, b̂h, σ2
ah
, σ2

bh
}Hh=1 are the solution of the following minimization problem:

Given σ2 ∈ R++, {c2
ah
, c2
bh
∈ R++}Hh=1,

min
{âh ,̂bh,σ2

ah
,σ2

bh
}Hh=1

2F, (12)

s.t. {âh, b̂h ∈ R, σ2
ah
, σ2

bh
∈ R++}Hh=1.

Here, F is the free energy (6), which can be written as

2F = LM log(2πσ2) +

∑L
h=1 γ

2
h

σ2
+

H∑

h=1

2Fh, (13)

where 2Fh = M log
c2
ah

σ2
ah

+ L log
c2
bh

σ2
bh

+
â2
h +Mσ2

ah

c2
ah

+
b̂2h + Lσ2

bh

c2
bh

− (L+M) +
−2âhb̂hγh +

(
â2
h +Mσ2

ah

) (
b̂2h + Lσ2

bh

)

σ2
. (14)

The minimization problem (12) has been analytically solved (Nakajima et al., 2013b),
which provides an analytic-form of the global VB solution (see Proposition 18 in Ap-
pendix A). However, the form involves a solution of a quartic equation, with which further
analysis is difficult. In this paper, finding a shortcut to an alternative quadratic equation,
we obtain the following theorem, which provides a new and simple analytic-form of the
global VB solution (the proof is given in Appendix A):

Theorem 2 The VB solution can be written as truncated shrinkage SVD as follows:

ÛVB =
H∑

h=1

γ̂VB
h ωbhω

>
ah
, where γ̂VB

h =

{
γ̆VB
h if γh ≥ γVB

h
,

0 otherwise.
(15)

Here, the truncation threshold and the shrinkage estimator are, respectively, given by

γVB
h

= σ

√√√√√(L+M)

2
+

σ2

2c2
ah
c2
bh

+

√√√√
(

(L+M)

2
+

σ2

2c2
ah
c2
bh

)2

− LM, (16)

γ̆VB
h = γh

(
1− σ2

2γ2
h

(
M + L+

√
(M − L)2 +

4γ2
h

c2
ah
c2
bh

))
. (17)

Our new form with the truncation threshold (16) and the shrinkage estimator (17) consisting
of simple algebra facilitates further analysis.

The VB posterior is also written in a simple form (the proof is given in Appendix A):

3763



Nakajima, Tomioka, Sugiyama, and Babacan

Corollary 3 The VB posterior is given by Eq.(11) with the following estimators: If γh >
γVB
h

,

âh = ±
√
γ̆VB
h δ̂VB

h , b̂h = ±
√
γ̆VB
h

δ̂VB
h

, σ2
ah

=
σ2δ̂VB

h

γh
, σ2

bh
=

σ2

γhδ̂
VB
h

, (18)

where δ̂VB
h

(
≡ âh

b̂h

)
=
c2
ah

σ2

(
γh − γ̆VB

h − Lσ2

γh

)
, (19)

and otherwise,

âh = 0, b̂h = 0, σ2
ah

= c2
ah

(
1− Lζ̂VB

h

σ2

)
, σ2

bh
= c2

bh

(
1− Mζ̂VB

h

σ2

)
, (20)

where ζ̂VB
h

(
≡ σ2

ah
σ2
bh

)
=

σ2

2LM


L+M +

σ2

c2
ah
c2
bh

−

√√√√
(
L+M +

σ2

c2
ah
c2
bh

)2

− 4LM


 .

(21)

3.2 EVB Solution

The empirical VB (EVB) learning, where the hyperparameters CA and CB are also esti-
mated from observation, solves the following problem:

Given σ2 ∈ R++,

min
{âh ,̂bh,σ2

ah
,σ2

bh
,c2ah

,c2bh
}Hh=1

2F,

s.t. {âh, b̂h ∈ R, σ2
ah
, σ2

bh
, c2
ah
, c2
bh
∈ R++}Hh=1.

This problem has also been analytically solved (Nakajima et al., 2013b), which enables effi-
cient computation of the global EVB solution (see Proposition 23 in Appendix B). However,
the form requires to solve a quartic equation, and also to evaluate the free energy (14) to
judge whether EVB discards each component. This again obstructs further analysis.

By substituting the VB solution, given by Theorem 2 and Corollary 3, we can derive
an explicit form of the free energy (13) as a function of {c2

ah
, c2
bh
}Hh=1 and σ2. Minimizing it

with respect to {c2
ah
, c2
bh
}Hh=1, we obtain the following theorem, which provides a new and

simple analytic-form of the global EVB solution (the proof is given in Appendix B):

Theorem 4 Let

α =
L

M
(0 < α ≤ 1), (22)

and let τ = τ(α) be the unique zero-cross point of the following decreasing function:

Ξ (τ ;α) = Φ (τ) + Φ
( τ
α

)
, where Φ(z) =

log(z + 1)

z
− 1

2
. (23)
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Then, the EVB solution can be written as truncated shrinkage SVD as follows:

ÛEVB =
H∑

h=1

γ̂EVB
h ωbhω

>
ah
, where γ̂EVB

h =

{
γ̆EVB
h if γh ≥ γEVB,

0 otherwise.
(24)

Here, the truncation threshold and the shrinkage estimator are, respectively, given by

γEVB = σ

√
M (1 + τ)

(
1 +

α

τ

)
, (25)

γ̆EVB
h =

γh
2


1− (M + L)σ2

γ2
h

+

√(
1− (M + L)σ2

γ2
h

)2

− 4LMσ4

γ4
h


 . (26)

The EVB threshold (25) involves τ , which needs to be numerically computed. However,
we can easily prepare a table of the values for 0 < α ≤ 1 beforehand, like the cumulative
Gaussian probability used in statistical tests. Alternatively, τ ≈ z√α is a good approxima-
tion, where z ≈ 2.5129 is the unique zero-cross point of Φ(z), as seen in Figure 2. We can
show that τ lies in the following range (see Appendix B for its proof):

√
α < τ ≤ z. (27)

We will see in Section 5 that τ is an important quantity in describing the behavior of the
EVB solution.

In the rest of this section, we summarize some intermediate results obtained in the proof
of Theorem 4, which are useful in the subsequent analysis (see Appendix B for their proof):

Corollary 5 The EVB shrinkage estimator (26) is a stationary point of the free energy
(14), which exists if and only if

γh ≥ γlocal−EVB ≡ (
√
L+
√
M)σ, (28)
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and satisfies the following equation:

(
γhγ̆

EVB
h + Lσ2

)(
1 +

Mσ2

γhγ̆
EVB
h

)
= γ2

h. (29)

It holds that

γhγ̆
EVB
h ≥

√
LMσ2. (30)

Corollary 6 The minimum free energy achieved under EVB is given by Eq.(13) with

2Fh =




M log

(
γhγ̆

EVB
h

Mσ2 + 1
)

+ L log
(
γhγ̆

EVB
h

Lσ2 + 1
)
− γhγ̆

EVB
h
σ2 if γh ≥ γEVB,

0 otherwise.
(31)

Corollary 5 together with Theorem 4 implies that, when

γlocal−EVB ≤ γh < γEVB,

a stationary point exists at Eq.(26), but it is not the global minimum. Actually, a local
minimum (called a null stationary point in Appendix B) with Fh = 0 always exists, and
the stationary point (26) (called a positive stationary point) is a non-global local minimum
when γlocal−EVB < γh < γEVB and the global minimum when γh ≥ γEVB (see Figure 8 and
its caption for details). This phase transition induces the free energy thresholding observed
in Corollary 6.

We define a local -EVB solution by

Û local−EVB =
H∑

h=1

γ̂local−EVB
h ωbhω

>
ah
, where γ̂local−EVB

h =

{
γ̆EVB
h if γh ≥ γlocal−EVB,

0 otherwise,

(32)

and call γlocal−EVB a local-EVB threshold. We will discuss an interesting relation between
the local -EVB solution and an alternative dimensionality selection method (Hoyle, 2008) in
Section 6.2.

Rescaling the quantities related to the squared singular value by Mσ2— to which the
contribution from noise (each eigenvalue of E>E) scales linearly—simplifies expressions.
Assume that the condition (28) holds, and define

xh =
γ2
h

Mσ2
, (33)

τh =
γhγ̆

EVB
h

Mσ2
, (34)

which are used as a rescaled observation and a rescaled EVB estimator, respectively.
Eqs.(29) and (26) specify the mutual relations between them:

xh ≡ x(τh;α) = (1 + τh)

(
1 +

α

τh

)
, (35)
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τh ≡ τ(xh;α) =
1

2

(
xh − (1 + α) +

√
(xh − (1 + α))2 − 4α

)
. (36)

With these rescaled variables, the condition (28), as well as (30), for the existence of the
positive local-EVB solution γ̆EVB

h is expressed as

xh ≥ xlocal =
(γlocal−EVB)2

Mσ2
= x(

√
α;α) = (1 +

√
α)2, (37)

τh ≥ τ local =
√
α. (38)

The EVB threshold (25) is expressed as

x =
(γEVB)2

Mσ2
= x(τ ;α) = (1 + τ)

(
1 +

α

τ

)
, (39)

and the free energy (31) is expressed as

Fh = Mτh ·min (0, Ξ (τh;α)) ,

where Ξ(τ ;α) is defined by Eq.(23).
The rescaled expressions above give an intuition of Theorem 4: The EVB solution γ̂EVB

h

is positive, if and only if the positive local-EVB solution γ̆EVB
h exists (i.e., xh ≥ xlocal), and

the free energy Ξ (τ(xh;α);α) at the local-EVB solution is non-positive (i.e., τ(xh;α) ≥ τ
or equivalently xh ≥ x ).

4. Objective Function for Noise Variance Estimation

In this section, we analyze EVB with noise variance estimation:

min
{âh ,̂bh,σ2

ah
,σ2

bh
,c2ah

,c2bh
}Hh=1,σ

2
2F,

s.t. {âh, b̂h ∈ R, σ2
ah
, σ2

bh
, c2
ah
, c2
bh
∈ R++}Hh=1, σ

2 ∈ R++.

Again, by substituting the EVB solution, given by Theorem 4, with the help of Corol-
lary 6, we can express the free energy (13) as a function of the noise variance σ2. With
the rescaled expressions (33)–(39), the free energy is written in a simple form (the proof is
given in Appendix C):

Theorem 7 The noise variance estimator σ̂2 EVB is the global minimizer of

Ω(σ−2)

(
≡ 2F (σ−2)

LM
+ const.

)
=

1

L

(
H∑

h=1

ψ

(
γ2
h

Mσ2

)
+

L∑

h=H+1

ψ0

(
γ2
h

Mσ2

))
, (40)

where ψ (x) = ψ0 (x) + θ (x > x)ψ1 (x) , (41)

ψ0 (x) = x− log x, (42)

ψ1 (x) = log (τ(x;α) + 1) + α log

(
τ(x;α)

α
+ 1

)
− τ(x;α), (43)

and θ(·) denotes an indicator function such that θ(condition) = 1 if the condition is true
and θ(condition) = 0 otherwise.
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The functions ψ0 (x) and ψ (x) are depicted in Figure 3. We can confirm the convexity of
ψ0 (x) and the quasi-convexity of ψ (x),1 which are useful properties in our analysis.

Let ĤEVB be the estimated rank by EVB, i.e., the rank of the EVB estimator ÛEVB,
such that γ̂EVB

h > 0 for h = 1, . . . , ĤEVB, and γ̂EVB
h = 0 for h = ĤEVB + 1, . . . ,H. By

bounding the minimizer of the objective (40), we obtain the following theorem (the proof
is given in Appendix D):

Theorem 8 ĤEVB is upper-bounded as

ĤEVB ≤ H = min

(⌈
L

1 + α

⌉
− 1, H

)
,

and the noise variance estimator σ̂2 EVB is bounded as follows:

max

(
σ2
H+1

,

∑L
h=H+1 γ

2
h

M
(
L−H

)
)
≤ σ̂2 EVB ≤ 1

LM

L∑

h=1

γ2
h, (44)

where σ2
h =





∞ for h = 0,
γ2h
Mx for h = 1, . . . , L,

0 for h = L+ 1.

(45)

Theorem 8 states that EVB discards the (L−dL/(1+α)e+1) smallest components, regardless
of the observed singular values {γh}Lh=1. For example, half of the components are always
discarded when the matrix is square (i.e., α = L/M = 1). The smallest singular value γL
is always discarded, and σ̂2 EVB ≥ γ2

L/M always holds.
Given the EVB estimators {γ̂EVB

h }Hh=1 for the singular values, the noise variance esti-
mator σ̂2 EVB is specified by the following corollary (the proof is also given in Appendix D):

Corollary 9 The EVB estimator for the noise variance satisfies the following equality:

σ̂2 EVB =
1

LM

(
L∑

l=1

γ2
l −

H∑

h=1

γhγ̂
EVB
h

)
. (46)

Theorem 8 and Corollary 9 are used for simple implementation of EVB-PCA in Section 6.1.

5. Performance Analysis

In this section, based on the results obtained in Section 3 and Section 4, we analyze the
behavior of EVB with noise variance estimation. We also rely on random matrix theory
(Marčenko and Pastur, 1967; Wachter, 1978; Johnstone, 2001; Hoyle and Rattray, 2004;
Baik and Silverstein, 2006), which describes the distribution of the singular values of random
matrices in the limit when the matrix size goes to infinity. We first introduce some results
obtained in random matrix theory, and then apply them to our analysis.

1 A function ψ : D → R is called quasi-convex if ψ(λx+(1−λ)y) ≤ max(ψ(x), ψ(y)), ∀x, y ∈ D, ∀λ ∈ [0, 1].
In other words, ψ(x) is quasi-convex if −ψ(x) is unimodal.
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5.1 Random Matrix Theory

Random matrix theory originates from nuclear physics (Wigner, 1957; Mehta, 2000), where
the eigenvalue distribution of (infinitely large) symmetric random matrices was investigated
to analyze the spectra of heavy atoms. In statistical applications, Wishart matrices play
an important role, of which the eigenvalue distribution (or equivalently, the singular value
distribution of random data matrices) was derived (Marčenko and Pastur, 1967; Wachter,
1978). Under appropriate scaling, those distributions typically have a finite support, which
enables us to clean noisy data and bound quantities related to randomness. Results from
random matrix theory have been used in many research fields, including financial risk anal-
ysis, where the observed covariance matrix is cleaned for stable prediction (Bouchaud and
Potters, 2003), information theory, where the capacity of noisy communication channel was
evaluated (Tulino and Verdu, 2004), and signal processing, where the restricted isometry
property of random projection was proved for guaranteeing the performance of compressed
sensing (Candès and Tao, 2006; Recht et al., 2010). Development of random matrix theory
is still actively on going, and new important results are being reported (Bai and Silverstein,
2010).

To analyze the performance of EVB-PCA, we assume that the observed matrix V is
generated from the spiked covariance model (Johnstone, 2001):

V = U∗ + E,

where U∗ ∈ RL×M is a true signal matrix with rank H∗ and singular values {γ∗h}H
∗

h=1, and
E ∈ RL×M is a random matrix such that each element is independently drawn from a
distribution with mean zero and variance σ∗2 (not necessarily Gaussian). As the observed
singular values {γh}Lh=1 of V , the true singular values {γ∗h}H

∗
h=1 are also assumed to be

arranged in the non-increasing order.

We define rescaled versions of the observed and the true singular values:

yh =
γ2
h

Mσ∗2
for h = 1, . . . , L,

ν∗h =
γ∗2h
Mσ∗2

for h = 1, . . . ,H∗.

In other words, {yh}Lh=1 are the eigenvalues of V V >/(Mσ∗2), and {ν∗h}H
∗

h=1 are the eigen-
values of U∗U∗>/(Mσ∗2). Note the difference between xh, defined by Eq.(33), and yh:
xh is the squared observed singular value rescaled with the model noise variance σ2 to be
estimated, while yh is the one rescaled with the true noise variance σ∗2.

Define the empirical distribution of the observed eigenvalues {yh}Lh=1 by

p(y) =
1

L

L∑

h=1

δ(y − yh),

where δ(y) denotes the Dirac delta function. When H∗ = 0, the observed matrix V = E
consists only of noise, and its singular value distribution in the large-scale limit is specified
by the following proposition:
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Proposition 10 (Marčenko and Pastur, 1967; Wachter, 1978) In the large-scale limit
when L and M go to infinity with its ratio α = L/M fixed, the empirical distribution
of the eigenvalue y of EE>/(Mσ∗2) converges almost surely to

p(y)→ pMP(y) ≡

√
(y − y)(y − y)

2παy
θ(y < y < y), (47)

where y = (1 +
√
α)2, y = (1−√α)2, (48)

and θ(·) is the indicator function, defined in Theorem 7.

Figure 4 shows Eq.(47), which we call the Marčenko-Pastur (MP) distribution, for α =
0.1, 1. The mean 〈y〉pMP(y) = 1 (which is constant for any 0 < α ≤ 1) and the upper-limits
y = y(α) of the support for α = 0.1, 1 are indicated by arrows. Proposition 10 states
that the probability mass is concentrated in the range between y ≤ y ≤ y. Note that
the MP distribution appears for a single sample matrix; different from standard “large-
sample” theories, Proposition 10 does not require to average over many sample matrices
(this property is called self-averaging). This single-sample property of the MP distribution
is highly useful in our analysis because we are working with a single observation matrix in
the PCA scenario.

When H∗ > 0, the true signal matrix U∗ affects the singular value distribution of V .
However, if H∗ � L, the distribution can be approximated by a mixture of spikes (delta
functions) and the MP distribution pMP(y). Let H∗∗ (≤ H∗) be the number of singular
values of U∗ greater than γ∗h > α1/4

√
Mσ∗, i.e.,

ν∗H∗∗ >
√
α and ν∗H∗∗+1 ≤

√
α.

Then, the following proposition holds:
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Proposition 11 (Baik and Silverstein, 2006) In the large-scale limit when L and M go to
infinity with finite α and H∗, it almost surely holds that

yh = ySig
h ≡ (1 + ν∗h)

(
1 +

α

ν∗h

)
for h = 1, . . . ,H∗∗, (49)

yH∗∗+1 = y, and yL = y.

Furthermore, Hoyle and Rattray (2004) argued that, when L and M are large (but finite)
and H∗ � L, the empirical distribution of the eigenvalue y of V V >/(Mσ∗2) is accurately
approximated by

p(y) ≈ pSC(y) ≡ 1

L

H∗∗∑

h=1

δ
(
y − ySig

h

)
+
L−H∗∗

L
pMP(y). (50)

Figure 5 shows Eq.(50), which we call the spiked covariance (SC) distribution, for α = 0.1,
H∗∗ = 3, and {ν∗h}H

∗∗
h=1 = {1.5, 1.0, 0.5}. The SC distribution is irrespective of {ν∗h}H

∗
h=H∗∗+1,

which satisfy 0 < ν∗h ≤
√
α by definition.

Proposition 11 states that, in the large-scale limit, the large signal components such that
ν∗h >

√
α appear outside the support of the MP distribution as spikes, while the other small

signals are indistinguishable from the MP distribution (note that ySig
h > y for ν∗h >

√
α).

This implies that any PCA method fails to recover the true dimensionality, unless

ν∗H∗ >
√
α. (51)

The condition (51) requires that U∗ has no small positive singular value such that 0 < ν∗h ≤√
α, and therefore H∗∗ = H∗.

The approximation (50) allows us to investigate more practical situations when the
matrix size is finite. Based on this approximation, Hoyle (2008) analyzed the performance of
the overlap method, an alternative dimensionality selection method which will be introduced
and discussed in Section 6.2. In Section 5.2, we provide two theorems: One is based on
Proposition 11, and guarantees the perfect dimensionality recovery of EVB in the large-
scale limit, and the other one relies on the approximation (50), and provides a more realistic
condition for perfect recovery.

5.2 Perfect Dimensionality Recovery Condition

Now, we are almost ready for clarifying the behavior of EVB-PCA. We assume that the
model rank is set to be large enough, i.e., H∗ ≤ H ≤ L, and all model parameters including
the noise variance are estimated from observation. The last proposition on which our
analysis relies is related to the property, called the strong unimodality,2 of the log-concave
distributions:

Proposition 12 (Ibragimov, 1956; Dharmadhikari and Joag-dev, 1988) The convolution

g(s) = 〈f(s+ t)〉p(t) =

∫
f(s+ t)p(t)dt

is quasi-convex, if p(t) is a log-concave distribution, and f(t) is a quasi-convex function.

2 A distribution p(t) is called strongly unimodal if the convolution of p(t) with any unimodal function
is unimodal.
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In the large-scale limit, the summation over h = 1, . . . , L in the objective Ω(σ−2), given
by Eq.(40), for noise variance estimation can be replaced with an expectation over the MP
distribution pMP(y). By scaling variables, the objective can be written as a convolution with
a scaled version of the MP distribution, which turns out to be log-concave. Accordingly,
we can use Proposition 12 to show that Ω(σ−2) is quasi-convex, and therefore, the noise
variance estimation by EVB is accurate. Combining this result with Proposition 11, we
obtain the following theorem (the proof is given in Appendix E):

Theorem 13 In the large-scale limit when L and M go to infinity with finite α and H∗,
EVB almost surely recovers the true rank, i.e., ĤEVB = H∗, if and only if

ν∗H∗ ≥ τ , (52)

where τ is defined in Theorem 4.

Furthermore, the following corollary completely describes the behavior of EVB in the large-
scale limit (the proof is also given in Appendix E):

Corollary 14 In the large-scale limit, the objective Ω(σ−2), defined by Eq.(40), for the
noise variance estimation converges to a quasi-convex function, and it almost surely holds
that

τ̂EVB
h

(
≡ γhγ̂

EVB
h

Mσ̂2 EVB

)
=

{
ν∗h if ν∗h ≥ τ ,
0 otherwise,

(53)

σ̂2 EVB = σ∗2.

One may get intuition of Eqs.(52) and (53) from comparing Eqs.(39) and (35) with
Eq.(49): The estimator τh has the same relation to the observation xh as the true signal
ν∗h, and hence is an unbiased estimator of the signal. However, Theorem 13 does not even
approximately hold in practical situations with moderate-sized matrices (see the numerical
simulation below). The following theorem, which relies on the approximation (50), provides
a more practical condition for perfect recovery (the proof is given in Appendix F):

Theorem 15 Let

ξ =
H∗

L

be the relevant rank (dimensionality) ratio, and assume that

p(y) = pSC(y). (54)

Then, EVB recovers the true rank, i.e., ĤEVB = H∗, if the following two inequalities hold:

ξ <
1

x
, (55)

ν∗H∗ >

(
x−1
1−xξ − α

)
+

√(
x−1
1−xξ − α

)2
− 4α

2
, (56)

where x is defined by Eq.(39).
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Note that, in the large-scale limit, ξ converges to zero, and the sufficient condition, (55)
and (56), in Theorem 15 is equivalent to the necessary and sufficient condition (52) in
Theorem 13.

Theorem 15 only requires that the SC distribution (50) well approximates the observed
singular value distribution. Accordingly, it well describes the dependency of the behavior
of EVB on ξ, as shown in the numerical simulation below. Theorem 15 states that, if the
true rank H∗ is small enough compared with L and the smallest signal ν∗H∗ is large enough,
EVB perfectly recovers the true dimensionality.

The following corollary also supports EVB (the proof is also given in Appendix F):

Corollary 16 Under the assumption (54) and the conditions (55) and (56), the objective
Ω(σ−2) for the noise variance estimation has no local minimum (no stationary point if
ξ > 0) that results in a wrong estimated rank ĤEVB 6= H∗.

This corollary states that, although the objective function (40) is non-convex and possibly
multimodal in general, any local minimum leads to the correct estimated rank. Therefore,
perfect recovery does not require global search, but only local search, for noise variance
estimation, if L and M are sufficiently large so that we can assume Eq.(54).

Figure 6 shows numerical simulation results for M = 200 and L = 20, 100, 200. E was
drawn from the independent Gaussian distribution with variance σ∗2 = 1, and true signal
singular values {γ∗h}H

∗
h=1 were drawn from the uniform distribution on [z

√
Mσ∗, 10

√
Mσ∗]

for different z, which is indicated by the horizontal axis. The vertical axis indicates the
success rate of dimensionality recovery, i.e., ĤEVB = H∗, over 100 trials. If the condition
(55) on ξ is violated, the corresponding curve is depicted with markers. Otherwise, the
condition (56) on ν∗H∗(= γ∗2H∗/(Mσ∗2)) is indicated by a vertical bar with the same color
and line style for each ξ. In other words, Theorem 15 states that the success rate should
be equal to one if z (> γ∗H∗/(

√
Mσ∗)) is larger than the value indicated by the vertical bar.

The solid cyan bar, which lies at the left-most in each graph, indicates the condition (52)
given by Theorem 13.

We see that Theorem 15 with the condition (56) approximately holds for these moderate-
sized matrices, while Theorem 13 with the condition (52), which does not depend on the
relevant rank ratio ξ, immediately breaks for positive ξ.

6. Discussion

In this section, we first propose a few implementations of EVB-PCA. After that, by con-
trasting with an alternative dimensionality selection method, we characterize the behavior
of EVB-PCA, and discuss the optimality in the large-scale limit.

6.1 Implementation

The analytic-form solution derived in Nakajima et al. (2013b) involves a solution of a quartic
equation. To implement EVB-PCA based on that form, we needed to use a highly compli-
cated analytic-form solution, derived by, e.g., Ferrari’s method, or rely on a numerical quar-
tic solver. Our new analytic-form solution can greatly simplify the implementation. Note
that, since our theory of performance guarantee assumes that the observed matrix has no
missing entry, its applicability is mostly limited to the standard use of PCA—dimensionality
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Figure 6: Success rate of dimensionality recovery in numerical simulation for M = 200.
The horizontal axis indicates the lower limit of the support of the simulated true
signal distribution, i.e., z ≈

√
ν∗H∗ . The recovery condition (56) for finite-sized

matrices is indicated by a vertical bar with the same color and line style for each
ξ. The recovery condition (52), which does not depend on ξ, for infinite-sized
matrices is also indicated by a solid cyan bar.

reduction for preprocessing (Bishop, 2006). However, our simple implementation introduced
below can be applied to more general cases where the global VB solver is used as a subrou-
tine, e.g., in non-conjugate matrix factorization with missing entries (Seeger and Bouchard,
2012), and in sparse additive matrix factorization (Nakajima et al., 2013a), an extension of
robust PCA.

A table of τ defined in Theorem 4 should be prepared beforehand (or use a simple
approximation τ ≈ z√α ≈ 2.5129

√
α). Given an observed matrix V , we perform SVD and

obtain the singular values {γh}Lh=1. After that, in our new implementation, we first directly
estimate the noise variance based on Theorem 7, using any 1-D local search algorithm with
the search range restricted by Theorem 8. Thus, we obtain the noise variance estimator
σ̂2 EVB. Discarding all the components such that σ2

h < σ̂2 EVB, where σ2
h is defined by
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Algorithm 1 Global EVB-PCA algorithm.

1: Transpose V → V > if L > M .
2: Refer to the table of τ(α) at α = L/M (or use a simple approximation τ ≈ 2.5129

√
α).

3: Set H (≤ L) to a sufficiently large value, and compute the SVD of V =
∑H

h=1 γhωbhω
>
ah

.
4: Locally search the minimizer σ̂2 EVB of Eq.(40), which lies in the range (44).
5: Discard the components such that σ2

h < σ̂2 EVB, where σ2
h is defined by Eq.(45).

Eq.(45), gives a dimensionality reduction result. Algorithm 1 describes a pseudo code.3 If
necessary, Theorem 4 gives the EVB estimator ÛEVB for σ2 = σ̂2 EVB. The EVB posterior
is also easily computed by using Corollary 3. In this way, we can easily perform EVB-
PCA equipped with the guaranteed automatic dimensionality selection functionality at
little expense—computation time of Algorithm 1 is dominated by SVD, which the plain
PCA also requires to perform.

Another implementation, which we refer to as EVB(Ite), is to iterate Eqs.(24) and (46)
in turn. Although it is not guaranteed, EVB(Ite) tends to converge to the global solution
if we initialize the noise variance σ̂2 EVB sufficiently small (see Section 6.2).

Finally, we introduce an iterative algorithm for the local-EVB solution, defined by
Eq.(32). This solution can be obtained by iterating Eq.(32) and

σ̂2 local−EVB =
1

LM

(
L∑

l=1

γ2
l −

H∑

h=1

γhγ̂
local−EVB
h

)
(57)

in turn. If we initialize the noise variance σ̂2 local−EVB sufficiently small, this algorithm can
be trapped at the positive stationary point for each h even if it is not the global minimum,
and tends to converge to the local-EVB solution.

6.2 Comparison with Laplace Approximation

Here, we compare EVB with the overlap method (Hoyle, 2008), an alternative dimen-
sionality selection method based on the Laplace approximation (LA). Consider the PCA
application, where D denotes the dimensionality of the observation space, and N denotes
the number of samples, i.e., in our MF notation to keep L ≤M ,

L = D,M = N if D ≤ N,
L = N,M = D if D > N.

Just after Tipping and Bishop (1999) proposed the probabilistic PCA, Bishop (1999b)
proposed to select the PCA dimension by maximizing the marginal likelihood:4

p(V ) = 〈p(V |A,B)〉p(A)p(B) . (58)

3 The MATLABR© code will be available at http://sites.google.com/site/shinnkj23/.
4 Tipping and Bishop (1999) adopted partially Bayesian (PB) learning, where A is marginalized out

and B is point-estimated. Although PB has some similarities to VB (Nakajima et al., 2011; Nakajima and
Sugiyama, 2014), it does not offer automatic dimensionality selection when all hyperparameters (CA,CB , σ

2)
are unknown.
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Since the marginal likelihood (58) is computationally intractable, he approximated it by LA,
and suggested Gibbs sampling and VB learning as alternatives. The VB variant, of which
the model is almost the same as ours (1)–(3), was proposed by himself (Bishop, 1999a).
A standard local search algorithm, where the means and the covariances of A and B are
iteratively updated, was used for inference.

The LA-based approach was polished in Minka (2001), by introducing a conjugate prior
on B to p(V |B) = 〈p(V |A,B)〉p(A), and ignoring the non-leading terms that do not grow
fast as the number N of samples goes to infinity. Hoyle (2008) pointed out that Minka’s
method is inaccurate when D � N , and proposed the overlap (OL) method, a further
polished variant of the LA-based approach. A notable difference of OL from most of the
LA-based methods is that OL applies LA to a more accurate estimator than the MAP
estimator, while the other methods apply LA simply to the MAP estimator. Thanks to the
use of an accurate estimator, OL behaves optimally in the large-scale limit when D and N
go to infinity, while Minka’s method does not. We will clarify the meaning of optimality,
and discuss it in more detail in Section 6.3.

OL minimizes an approximation to the negative log of the marginal likelihood (58),
which depends on estimators of λh = b2h + σ2 and σ2 computed by an iterative algorithm,
over the hypothetical model rank H = 1, . . . , L (see Appendix H for details). Figure 7 shows
numerical simulation results that compare EVB and OL: Figure 7(a) shows the success rate
for the no signal case ξ = 0 (H∗ = 0), while Figures 7(b)–7(f) show the success rate for
ξ = 0.05 and D = 20, 100, 200, 400, 1000, respectively.

We also show the performance of EVB(Ite) and local-EVB. As mentioned in Section 6.1,
EVB(Ite) gives almost the same results as EVB. Local-EVB behaves similarly to OL except
the case when D/N is small (Figure 7(b)). The reason of this similarity will be elucidated in
Section 6.3. For OL, EVB(Ite), and local-EVB, we initialized the noise variance estimator
to 10−4 ·∑L

h=1 γ
2
h/(LM).

Comparing EVB with OL, we observe the conservative nature of EVB: It exhibits almost
zero false positive rate at the expense of low sensitivity. Because of the low sensitivity, EVB
actually does not behave optimally in the large-scale limit, which is discussed in Section 6.3.

6.3 Optimality in Large-scale Limit

Consider the large-scale limit, i.e., L,M →∞, α = L/M , and assume that the model rank
H is set to be large enough but finite so that H ≥ H∗ and H/L→ 0. Then, OL is equivalent
to counting the number of components such that λ̂OL−limit

h > σ̂2 OL−limit, i.e.,

ĤOL−limit =
L∑

h=1

θ
(
λ̂OL−limit
h > σ̂2 OL−limit

)
, (59)

after the following updates converge:

λ̂OL−limit
h =

{
λ̆OL−limit
h if γh ≥ γlocal−EVB,

σ̂2 OL−limit otherwise,
for h = 1, . . . ,H, (60)

σ̂2 OL−limit =
1

(M −H)

(
L∑

l=1

γ2
l

L
−

H∑

h=1

λ̂OL−limit
h

)
, (61)
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Figure 7: Success rate of dimensionality recovery by EVB, EVB(Ite), local-EVB, and OL
for N = 200. Vertical bars indicate the recovery conditions, Eq.(52) for EVB and
EVB(Ite), and Eq.(63) for OL and local-EVB, in the large-scale limit.

where λ̆OL−limit
h =

γ2
h

2L

(
1− (M − L)σ̂2 OL−limit

γ2
h
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+

√(
1− (M − L)σ̂2 OL−limit

γ2
h

)2

− 4Lσ̂2 OL−limit

γ2
h

)
. (62)

OL evaluates its objective, which approximates the negative log of the marginal likelihood
(58), after the updates (60) and (61) converge for each hypothetical H, and adopts the
minimizer ĤOL−limit as the rank estimator. However, Hoyle (2008) proved that, in the
large-scale limit, the objective decreases as H increases, as long as Eq.(62) is a real number
(or equivalently γh ≥ γlocal−EVB holds) for all h = 1, . . . ,H at the convergence. Accordingly,
Eq.(59) suffices.

Interestingly, the threshold in Eq.(60) coincides with the local-EVB threshold (28).
Moreover, the updates (60) and (61) for OL are equivalent to the updates (32) and (57) for
local-EVB with the following correspondence:

λ̂OL−limit
h =

γhγ̂
local−EVB
h

L
+ σ̂2 local−EVB,

σ̂2 OL−limit = σ̂2 local−EVB.

Thus, the dimensionality selection by OL and local-EVB are equivalent in the large-scale
limit, i.e., ĤOL−limit = Ĥ local−EVB.

The optimality of OL in the large-scale limit was shown:

Proposition 17 (Hoyle, 2008) In the large-scale limit when L and M go to infinity with
finite α, H∗, and H (≥ H∗)5, OL almost surely recovers the true rank, i.e., ĤOL−limit = H∗,
if and only if

ν∗H∗ >
√
α. (63)

It almost surely holds that

λ̂OL−limit
h

σ̂2 OL−limit
− 1 = ν∗h,

σ̂2 OL−limit = σ∗2.

Note that the condition (63) coincides with the condition (51)—random matrix theory
states that any signal component violating this condition is indistinguishable from the noise
distribution, and therefore, any PCA method fails to recover the correct dimensionality if
such a signal component exists. In this sense, OL, as well as local-EVB, is optimal in the
large-scale limit.

On the other hand, Theorem 13 implies that (global) EVB is not optimal in the large-
scale limit, and more conservative (see the difference between τ and

√
α in Figure 2). In

Figure 7, the conditions for perfect dimensionality recovery in the large-scale limit are
indicated by vertical bars:

z =
√
τ for EVB and EVB(Ite), and z =

√
τ local = α1/4 for OL and local-EVB.

5 Unlike our analysis in Section 5, Hoyle (2008) assumes that H/L→ 0, which trivially guarantees that
the noise variance is accurately estimated.
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All methods accurately estimate the noise variance in the large-scale limit, i.e.,

σ̂2 EVB = σ̂2 OL−limit = σ̂2 local−EVB = σ∗2.

Taking this into account, we indicate the recovery conditions in Figure 5 by arrows at

y = x for EVB and EVB(Ite), and y = xlocal(= y) for OL and local-EVB,

respectively. Figure 5 implies that, in this particular case, EVB discards the third spike
coming from the third true signal ν∗3 = 0.5, while OL and local-EVB successfully capture
it as a signal.

When the matrix size is finite, the conservative nature of EVB is not always bad, since
it offers almost zero false positive rate, which makes Theorem 15 approximately hold for
finite cases, as seen in Figure 6 and Figure 7. However, the fact that not (global) EVB but
local-EVB is optimal in the large-scale limit should be a consequence of inaccurate approxi-
mation of VB learning under the independence assumption. We will further investigate the
difference between VB and Bayesian learning in our future work.

7. Conclusion

In this paper, we analyzed the variational Bayesian (VB) learning in probabilistic PCA.
More specifically, we considered empirical VB (EVB) learning with noise variance esti-
mation, i.e., all model parameters are estimated from observed data. We established a
necessary and sufficient condition for perfect dimensionality recovery by EVB-PCA, which
theoretically guarantees its performance. At the same time, our result also revealed the
conservative nature of EVB-PCA—it offers a low false positive rate at the expense of low
sensitivity, due to which EVB-PCA does not behave optimally in the large-scale limit.

By contrasting with an alternative dimensionality selection method, called the overlap
(OL) method, we characterized the behavior of EVB. We also pointed out the equivalence
between OL and local-EVB, a slight modification of EVB, in the large scale limit.

In our analysis, we derived bounds of the noise variance estimator, and a new and
simple analytic-form solution for the other parameters, with which we proposed a new
simple implementation of EVB-PCA.
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Appendix A. Proof of Theorem 2 and Corollary 3

The global VB solution is known:
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Proposition 18 (Nakajima et al., 2013b) The VB solution can be written as truncated
shrinkage SVD as follows:

ÛVB =

H∑

h=1

γ̂VB
h ωbhω

>
ah
, where γ̂VB

h =

{
γ̆VB
h if γh ≥ γVB

h
,

0 otherwise.

Here, the truncation threshold is given by

γVB
h

= σ

√√√√√(L+M)

2
+

σ2

2c2
ah
c2
bh

+

√√√√
(

(L+M)

2
+

σ2

2c2
ah
c2
bh

)2

− LM,

and the shrinkage estimator γ̆VB
h is the second largest real solution of a quartic equation.6

With Proposition 18, it is sufficient to obtain the new analytic-form (17) of the shrinkage
estimator for proving Theorem 2. However, we give a proof, starting not from Proposition 18
but from Proposition 1. Thanks to the new analytic-form of the shrinkage estimator, our
new proof is much more intuitive than the proof given in Nakajima and Sugiyama (2011) and
in Nakajima et al. (2013b), for example, in choosing the global solution from two stationary
points: the free energy is directly compared in the new proof, while it was shown that one of
the stationary points is a saddle point by evaluating the Hessian in Nakajima and Sugiyama
(2011).

Proposition 1 states that the VB estimator can be obtained by minimizing the free
energy (14) for each singular component separately. Clearly, Eq.(14) is differentiable, and
diverges to Fh → ∞ as any variable approaches to any point on the domain boundary.
Therefore, any minimizer is stationary point.

The stationary condition of Eq.(14) is given by

âh =
1

σ2
γhb̂hσ

2
ah
, (64)

σ2
ah

= σ2

(
b̂2h + Lσ2

bh
+
σ2

c2
ah

)−1

, (65)

b̂h =
1

σ2
γhâhσ

2
bh
, (66)

σ2
bh

= σ2

(
â2
h +Mσ2

ah
+
σ2

c2
bh

)−1

. (67)

By using Eqs.(65) and (67), the free energy (14) can be written as

Fh = M log
c2
ah

σ2
ah

+ L log
c2
bh

σ2
bh

+
σ2

σ2
ah
σ2
bh

− 2âhb̂hγh
σ2

−
(
L+M +

σ2

c2
ah
c2
bh

)
. (68)

The stationary condition, Eqs.(64)–(67), implies two possibilities of stationary points.

6 The quartic equation is omitted, since it is complicated and no longer important.
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A.1 Null Stationary Point

If âh = 0 or b̂h = 0, Eqs.(64) and (66) require that âh = 0 and b̂h = 0. In this case, Eqs.(65)
and (67) lead to

σ2
ah

= c2
ah

(
1−

Lσ2
ah
σ2
bh

σ2

)
, (69)

σ2
bh

= c2
bh

(
1−

Mσ2
ah
σ2
bh

σ2

)
. (70)

Multiplying Eqs.(69) and (70), we have

(
1−

Lσ2
ah
σ2
bh

σ2

)(
1−

Mσ2
ah
σ2
bh

σ2

)
=
σ2
ah
σ2
bh

c2
ah
c2
bh

, (71)

and therefore

LM

σ2
σ4
ah
σ4
bh
−
(
L+M +

σ2

c2
ah
c2
bh

)
σ2
ah
σ2
bh

+ σ2 = 0. (72)

Solving the quadratic equation (72) with respect to σ2
ah
σ2
bh

, and checking the signs of σ2
ah

and σ2
bh

, we have the following lemma (the proof is given in Appendix G.1):

Lemma 19 For any γh ≥ 0 and c2
ah
, c2
bh
, σ2 ∈ R++, the null stationary point given by

Eq.(20) exists with the following free energy:

FVB−Null
h = −M log

(
1− L

σ2
ζ̂VB
h

)
− L log

(
1− M

σ2
ζ̂VB
h

)
− LM

σ2
ζ̂VB
h , (73)

where ζ̂VB
h

(
≡ σ2

ah
σ2
bh

)
=

σ2

2LM


L+M +

σ2

c2
ah
c2
bh

−

√√√√
(
L+M +

σ2

c2
ah
c2
bh

)2

− 4LM


 .

(21)

A.2 Positive Stationary Point

Assume that âh, b̂h 6= 0. In this case, Eqs.(64) and (66) imply that âh and b̂h have the same
sign. Define

γ̂h = âhb̂h > 0,

δ̂h =
âh

b̂h
> 0.

From Eqs.(64) and (66), we have

σ2
ah

=
σ2

γh
δ̂h, (74)
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σ2
bh

=
σ2

γh
δ̂−1
h . (75)

Substituting Eqs.(74) and (75) into Eqs.(65) and (67) gives

δ̂h =
c2
ah

σ2

(
γh − γ̂h −

Lσ2

γh

)
, (76)

δ̂−1
h =

c2
bh

σ2

(
γh − γ̂h −

Mσ2

γh

)
. (77)

Multiplying Eqs.(76) and (77), we have

(
γh − γ̂h −

Lσ2

γh

)(
γh − γ̂h −

Mσ2

γh

)
=

σ4

c2
ah
c2
bh

, (78)

and therefore

γ̂2
h −

(
2γh −

(L+M)σ2

γh

)
γ̂h +

(
γh −

Lσ2

γh

)(
γh −

Mσ2

γh

)
− σ4

c2
ah
c2
bh

= 0. (79)

By solving the quadratic equation (79) with respect to γ̂h, and checking the signs of
γ̂h, δ̂h, σ

2
ah

and σ2
bh

, we have the following lemma (the proof is given in Appendix G.2):

Lemma 20 If and only if γh > γVB
h

, where

γVB
h

= σ

√√√√√(L+M)

2
+

σ2

2c2
ah
c2
bh

+

√√√√
(

(L+M)

2
+

σ2

2c2
ah
c2
bh

)2

− LM, (16)

the positive stationary point given by Eq.(18) exists with the following free energy:

FVB−Posi
h = −M log

(
1−

(
γ̆VB
h

γh
+
Lσ2

γ2
h

))
− L log

(
1−

(
γ̆VB
h

γh
+
Mσ2

γ2
h

))

− γ2
h

σ2

(
γ̆VB
h

γh
+
Lσ2

γ2
h

)(
γ̆VB
h

γh
+
Mσ2

γ2
h

)
, (80)

where γ̆VB
h = γh

(
1− σ2

2γ2
h

(
M + L+

√
(M − L)2 +

4γ2
h

c2
ah
c2
bh

))
. (17)

A.3 Useful Relations

Here, we summarize some useful relations between variables, which are used in the subse-
quent sections. ζ̂VB

h , γ̆VB
h , and γVB

h
, derived from Eqs.(71), (78), and the constant part of

Eq.(79), respectively, satisfy the following:

(
1− Lζ̂VB

h

σ2

)(
1− Mζ̂VB

h

σ2

)
− ζ̂VB

h

c2
ah
c2
bh

= 0, (81)
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(
γh − γ̆VB

h − Lσ2

γh

)(
γh − γ̆VB

h − Mσ2

γh

)
− σ4

c2
ah
c2
bh

= 0, (82)

(
γVB
h
− Lσ2

γVB
h

)(
γVB
h
− Mσ2

γVB
h

)
− σ4

c2
ah
c2
bh

= 0. (83)

From Eqs.(21) and (16), we find that

γVB
h

=

√√√√
(

(L+M)σ2 +
σ4

c2
ah
c2
bh

)
− LMζ̂VB

h , (84)

which is useful when comparing the free energies of the null and the positive stationary
points.

A.4 Free Energy Comparison

Lemma 19 and Lemma 20 imply that, when γh ≤ γVB
h

, the null stationary point is only the

stationary point, and therefore the global solution. When γh > γVB
h

, both of the null and
the positive stationary points exist, and therefore, identifying the global solution requires
to compare the free energies, given by Eqs.(73) and (80), at them.

Given the observed singular value γh ≥ 0, we view the free energy as a function of c2
ah
c2
bh

.

We also view the threshold γVB
h

as a function of c2
ah
c2
bh

. We find from Eq.(16) that γVB
h

is

decreasing and lower-bounded by γVB
h

>
√
Mσ. Therefore, when γh ≤

√
Mσ, γVB

h
never

gets smaller than γh for any c2
ah
c2
bh
> 0. When γh >

√
Mσ on the other hand, there is a

threshold c2
ah
c2
bh

such that γh > γVB
h

if c2
ah
c2
bh
> c2ahc

2
bh

. Eq.(83) implies that the threshold
is given by

c2
ah
c2
bh

=
σ4

γ2
h

(
1− Lσ2

γ2h

)(
1− Mσ2

γ2h

) .

We have the following lemma (the proof is given in Appendix G.3):

Lemma 21 For any γh ≥ 0 and c2
ah
c2
bh
> 0, the derivative of the free energy (73) at the

null stationary point with respect to c2
ah
c2
bh

is given by

∂FVB−Null
h

∂c2ahc
2
bh

=
LMζ̂VB

h

σ2c2
ah
c2
bh

. (85)

For γh > M/σ2 and c2
ah
c2
bh
> c2

ah
c2
bh

, the derivative of the free energy (80) at the positive

stationary point with respect to c2
ah
c2
bh

is given by

∂FVB−Posi
h

∂c2ahc
2
bh

=
γ2
h

σ2c2
ah
c2
bh

(
(γ̆VB
h )2

γ2
h

−
(

1− (L+M)σ2

γ2
h

)
γ̆VB
h

γh
+
LMσ4

γ4
h

)
. (86)

The derivative of the difference is negative, i.e.,

∂(FPosi
h − FNull

h )

∂c2ahc
2
bh

= − 1

σ2c2
ah
c2
bh

(
γh
(
γh − γ̆VB

h

)
− (γVB

h
)2
)
< 0. (87)

3783



Nakajima, Tomioka, Sugiyama, and Babacan

It is easy to show that the null stationary point (20) and the positive stationary point
(18) coincide with each other at c2

ah
c2
bh
→ c2

ah
c2
bh

+ 0. Therefore,

lim
c2ah

c2bh
→c2ahc

2
bh

+0

(
FVB−Posi
h − FVB−Null

h

)
= 0. (88)

Eqs.(87) and (88) together imply that

FVB−Posi
h − FVB−Null

h < 0 for c2
ah
c2
bh
> c2

ah
c2
bh
,

which results in the following lemma:

Lemma 22 The positive stationary point is the global solution (the global minimizer of the
free energy (14) for fixed cah and cbh) whenever it exists.

Figure 8 illustrates the behavior of the free energies.
Combining Lemma 19, Lemma 20, and Lemma 22 completes the proof of of Theorem 2

and Corollary 3.

Appendix B. Proof of Theorem 4, Corollary 5, and Corollary 6

The EVB solution was also previously obtained:

Proposition 23 (Nakajima et al., 2013b) The EVB solution is given by

γ̂EVB
h =

{
γ̆VB
h if γh > (

√
L+
√
M)σ and Fh ≤ 0,

0 otherwise,

where γ̆VB
h is the VB solution for c2

ah
c2
bh

= ĉ2
ah
ĉ2
bh

, and

ĉ2
ah
ĉ2
bh

=
1

2LM

(
γ2
h − (L+M)σ2 +

√(
γ2
h − (L+M)σ2

)2 − 4LMσ4

)
,

Fh = M log
( γh
Mσ2

γ̆VB
h + 1

)
+ L log

( γh
Lσ2

γ̆VB
h + 1

)
+
−2γhγ̆

VB
h + LMĉ2

ah
ĉ2
bh

σ2
.

However, Proposition 23 requires to solve a quartic equation for obtaining γ̆VB
h , and more-

over, to evaluate the free energy Fh at the obtained γ̆VB
h . This obstructs further analysis.

In this appendix, we prove Theorem 4, which provides explicit-forms, (25) and (26),
of the EVB threshold γEVB and the EVB shrinkage estimator γ̆EVB

h . Without relying on
Proposition 23, we can easily obtain Eq.(26) in an intuitive way, by using some of the
results obtained in Appendix A. After that, by expressing the free energy Fh with rescaled
observation and estimator, we derive Eq.(25).

B.1 EVB Shrinkage Estimator

Eqs.(73) and (80) imply that the free energy does not depend on the ratio cah/cbh between
the hyperparameters. Accordingly, we fix the ratio to cah/cbh = 1. Lemma 21 allows us to
minimize the free energy with respect to cahcbh in a straight-forward way.
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Figure 8: Behavior of the free energies (73) and (80) at the null and the positive stationary
points as functions of cahcbh , when L = M = H = 1 and σ2 = 1. The blue
curve shows the VB free energy Fh = min(FVB−Null

h , FVB−Posi
h ) at the global

solution, given cahcbh . If γh ≤
√
Mσ, only the null stationary point exists for any

cahcbh > 0. Otherwise, the positive stationary point exists for cahcbh > cahcbh ,
and it is the global minimum whenever it exists. In EVB where cahcbh is also
optimized, cahcbh → 0 (indicated by a green cross) is the unique local minimum
if γh ≤ (

√
L+
√
M)σ. Otherwise, a positive local minimum also exists (indicated

by a red cross), and it is the global minimum if and only if γh ≥ γEVB.

We see the free energies (73) and (80) at the null and the positive stationary points as
function of cahcbh (see Figure 8). We find from Eq.(85) that

∂FVB−Null
h

∂c2ahc
2
bh

> 0,

which implies that the free energy (73) at the null stationary point is increasing. Using
Lemma 19, we thus have the following lemma:
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Lemma 24 For any given γh ≥ 0 and σ2 > 0, the null EVB local solution given by

âh = 0, b̂h = 0, σ2
ah

=

√
ζ̂EVB, σ2

bh
=

√
ζ̂EVB, cahcbh =

√
ζ̂EVB,

where ζ̂EVB → +0,

exists with the free energy that converges to

FEVB−Null
h → +0. (89)

When γh ≥ (
√
L +

√
M)σ, the derivative (86) of the free energy (80) at the positive

stationary point can be further factorized as

∂FVB−Posi
h

∂c2ahc
2
bh

=
γh

σ2c2
ah
c2
bh

(
γ̆VB
h − γ́h

) (
γ̆VB
h − γ̆EVB

h

)
, (90)

where γ́h =
γh
2


1− (L+M)σ2

γ2
h

−
√(

1− (L+M)σ2

γ2
h

)2

− 4LMσ4

γ4
h


 , (91)

γ̆EVB
h =

γh
2


1− (L+M)σ2

γ2
h

+

√(
1− (L+M)σ2

γ2
h

)2

− 4LMσ4

γ4
h


 . (26)

The VB shrinkage estimator (17) is an increasing function of cahcbh ranging over

0 < γ̆VB
h < γh −

Mσ2

γh
,

and both of Eqs.(91) and (26) are in this range, i.e.,

0 < γ́h ≤ γ̆EVB
h < γh −

Mσ2

γh
.

Therefore Eq.(90) leads to the following lemma:

Lemma 25 If γh ≤ (
√
L+
√
M)σ, the free energy FVB−Posi

h at the positive stationary point
is monotonically increasing. Otherwise,

FVB−Posi
h is





increasing for γ̆VB
h < γ́h,

decreasing for γ́h < γ̆VB
h < γ̆EVB

h ,

increasing for γ̆VB
h > γ̆EVB

h ,

and therefore, minimized at γ̆VB
h = γ̆EVB

h .

We can see this behavior of the free energy in Figure 8.
The derivative (86) is zero when γ̆VB

h = γ̆EVB
h , which leads to

(
γ̆EVB
h +

Lσ2

γh

)(
γ̆EVB
h +

Mσ2

γh

)
= γhγ̆

EVB
h . (92)

Using Eq.(92), we obtain the following lemma (the proof is given in Appendix G.4):
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Lemma 26 If and only if

γh ≥ γlocal−EVB ≡ (
√
L+
√
M)σ, (28)

the positive EVB local solution given by

âh = ±
√
γ̆EVB
h δ̂EVB

h , b̂h = ±
√
γ̆EVB
h

δ̂EVB
h

, σ2
ah

=
σ2δ̂EVB

h

γh
, σ2

bh
=

σ2

γhδ̂
EVB
h

, (93)

cahcbh =

√
γhγ̆

EVB
h

LM
, where δ̂EVB

h =

√
Mγ̆EVB

h

Lγh

(
1 +

Lσ2

γhγ̆
EVB
h

)
, (94)

γ̆EVB
h =

γh
2


1− (M + L)σ2

γ2
h

+

√(
1− (M + L)σ2

γ2
h

)2

− 4LMσ4

γ4
h


 , (26)

exists with the following free energy:

FEVB−Posi
h = M log

(
γhγ̆

EVB
h

Mσ2
+ 1

)
+ L log

(
γhγ̆

EVB
h

Lσ2
+ 1

)
− γhγ̆

EVB
h

σ2
. (95)

In Figure 8, the positive EVB local solution at cahcbh =
√
γhγ̆

EVB
h /(LM) is indicated by a

red cross if it exists.

B.2 EVB Threshold

Lemma 24 and Lemma 26 state that, if γh ≤ γlocal−EVB, only the null EVB local solution

exists, and therefore it is the global EVB solution. Below, assuming that γh ≥ γlocal−EVB, we
compare the free energy (89) at the null EVB local solution and the free energy (95) at the
positive EVB local solution. Since FEVB−Null

h → +0, we simply clarify when FEVB−Posi
h ≤ 0.

Eq.(92) gives

(
γhγ̆

EVB
h + Lσ2

)(
1 +

Mσ2

γhγ̆
EVB
h

)
= γ2

h. (29)

By using Eqs.(26) and (28), we have

γhγ̆
EVB
h =

1

2

(
γ2
h −

(
γlocal−EVB

)2
+ 2
√
LMσ2

+

√(
γ2
h −

(
γlocal−EVB

)2)(
γ2
h −

(
γlocal−EVB

)2
+ 4
√
LMσ2

))

≥
√
LMσ2. (30)

Let

α =
L

M
(0 < α ≤ 1), (22)
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xh =
γ2
h

Mσ2
, (33)

τh =
γhγ̆

EVB
h

Mσ2
. (34)

Eqs.(29) and (26) imply the following mutual relations between xh and τh:

xh ≡ x(τh;α) = (1 + τh)

(
1 +

α

τh

)
, (35)

τh ≡ τ(xh;α) =
1

2

(
xh − (1 + α) +

√
(xh − (1 + α))2 − 4α

)
. (36)

Eqs.(28) and (30) lead to

xh ≥ xlocal =
(γlocal−EVB)2

Mσ2
= x(

√
α;α) = (1 +

√
α)2, (37)

τh ≥ τ local =
√
α. (38)

Then, using

Ξ (τ ;α) = Φ (τ) + Φ
( τ
α

)
, where Φ(z) =

log(z + 1)

z
− 1

2
, (23)

we can rewrite Eq.(95) as

FEVB−Posi
h = M log (τh + 1) + L log

(τh
α

+ 1
)
−Mτh

= MτhΞ (τ ;α) . (96)

The following holds for Φ(z) (the proof is given in Appendix G.5):

Lemma 27 Φ(z) is decreasing for z > 0.

Figure 9 shows Φ(z). Since Φ(z) is decreasing, Ξ(τ ;α) is also decreasing with respect to τ .
It holds that, for any 0 < α ≤ 1,

lim
τ→0

Ξ(τ ;α) = 1,

lim
τ→∞

Ξ(τ ;α) = −1.

Therefore, Ξ(τ ;α) has a unique zero-cross point τ , such that

Ξ(τ ;α) ≤ 0 if and only if τ ≥ τ . (97)

We can prove the following lemma (the proof is given in Appendix G.6):

Lemma 28 The unique zero-cross point τ of Ξ(τ ;α) lies in the following range:

√
α < τ ≤ z, (27)

where z ≈ 2.5129 is the unique zero-cross point of Φ(z).
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Figure 9: Φ(z) = log(z+1)
z − 1

2 . z ≈ 2.5129
is the unique zero cross point,
i.e., Φ(z) = 0.
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Figure 10: Estimators and thresh-
olds for L = M = H = 1
and σ2 = 1.

Since Eq.(35) is increasing with respect to τh (>
√
α), the thresholding condition τ ≥ τ

in Eq.(97) can be expressed in terms of x:

Ξ(τ(x);α) ≤ 0 if and only if x ≥ x,

where x ≡ x(τ ;α) = (1 + τ)

(
1 +

α

τ

)
. (39)

Using Eqs.(33) and (96), we have

FEVB−Posi
h ≤ 0 if and only if γh ≥ γEVB,

where γEVB = σ

√
M (1 + τ)

(
1 +

α

τ

)
. (25)

Thus, we have the following lemma:

Lemma 29 The positive EVB local solution is the global EVB solution if and only if γh ≥
γEVB.

Combining Lemma 24, Lemma 26, and Lemma 29 completes the proof of Theorem 4 and
Corollary 6. All formulas in Corollary 5 have already been derived.

Figure 10 shows estimators and thresholds for L = M = H = 1 and σ2 = 1. The
curves indicate the VB solution γ̂VB

h , given by Eq.(15), the EVB solution γ̂EVB
h , given by

Eq.(24), the EVB positive local minimizer γ̆EVB
h , given by Eq.(26), and the EVB positive

local maximizer γ́h, given by Eq.(91), respectively. The arrows indicate the VB threshold
γVB
h

, given by Eq.(16), the local-EVB threshold γlocal−EVB, given by Eq.(28), and the EVB

threshold γEVB, given by Eq.(25), respectively.
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Appendix C. Proof of Theorem 7

By using Lemma 24 and Lemma 26, the free energy (13) can be written as a function of σ2:

2F = LM log(2πσ2) +

∑L
h=1 γ

2
h

σ2
+

H∑

h=1

θ
(
γh > γEVB

)
FEVB−Posi
h , (98)

where FEVB−Posi
h = M log

(
γhγ̆

EVB
h

Mσ2
+ 1

)
+ L log

(
γhγ̆

EVB
h

Lσ2
+ 1

)
− γhγ̆

EVB
h

σ2
. (95)

By using Eqs.(34) and (36), Eq.(95) can be written as

FEVB−Posi
h = M log (τh + 1) + L log

(τh
α

+ 1
)
−Mτh

= Mψ1(xh). (99)

Therefore, Eq.(98) is written as

2F = M

{
L∑

h=1

log

(
2πγ2

h

M

)
+

L∑

h=1

(
log

(
Mσ2

γ2
h

)
+

γ2
h

Mσ2

)
+

H∑

h=1

θ
(
γh > γEVB

) FEVB−Posi
h

M

}

= M

{
L∑

h=1

log

(
2πγ2

h

M

)
+

L∑

h=1

ψ0(xh) +

H∑

h=1

θ (xh > x)ψ1(xh)

}
.

Note that the first term in the curly braces is constant with respect to σ2. By defining

Ω =
2F

LM
− 1

L

L∑

h=1

log

(
2πγ2

h

M

)
,

we obtain Eq.(40), which completes the proof of Theorem 7.

Appendix D. Proof of Theorem 8 and Corollary 9

First, we investigate properties of the following functions, which are depicted in Fig. 3:

ψ (x) = ψ0 (x) + θ (x > x)ψ1 (x) , (41)

ψ0 (x) = x− log x, (42)

where ψ1 (x) = log (τ(x;α) + 1) + α log

(
τ(x;α)

α
+ 1

)
− τ(x;α). (43)

They have nice properties (the proof is given in Appendix G.7):

Lemma 30 The following hold for x > 0: ψ0 (x) is differentiable and strictly convex; ψ (x)
is continuous and strictly quasi-convex; ψ (x) is differentiable except x = x, at which ψ (x)
has a discontinuously decreasing derivative, i.e., limx→x−0 ∂ψ/∂x > limx→x+0 ∂ψ/∂x; Both
of ψ0 (x) and ψ (x) are minimized at x = 1. For x > x, ψ1 (x) is negative and decreasing.
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Lemma 30 implies that our objective

Ω(σ−2) =
1

L

(
H∑

h=1

ψ

(
γ2
h

Mσ2

)
+

L∑

h=H+1

ψ0

(
γ2
h

Mσ2

))
(40)

is a sum of quasi-convex functions with respect to σ−2. Therefore, its minimizer can be
bounded by the smallest and the largest ones of the minimizers of each quasi-convex function
(the proof is given in Appendix G.8):

Lemma 31 Ω(σ−2) has at least one global minimizer, and any of its local minimizers is
bounded as

M

γ2
1

≤ σ̂−2 ≤ M

γ2
L

.

Ω(σ−2) has at most H non-differentiable points, which come from the non-differentiable
point x = x of ψ(x). The values

σ−2
h =





0 for h = 0,
Mx
γ2h

for h = 1, . . . , L,

∞ for h = L+ 1,

(100)

defined in Eq.(45), for h = 1, . . . ,H actually correspond to those points.
Lemma 30 states that, at x = x, ψ(x) has a discontinuously decreasing derivative and

neither ψ0(x) nor ψ(x) has discontinuously increasing derivative at any point. Therefore,
none of those non-differentiable points can be local minimum. Consequently, we have the
following lemma:

Lemma 32 Ω(σ−2) has no local minimizer at σ−2 = σ−2
h for h = 1, . . . ,H, and therefore,

any of its local minimizer is stationary point.

Then, Theorem 4 leads to the following lemma:

Lemma 33 The estimated rank is Ĥ = h, if and only if the inverse noise variance estimator
lies in the range

σ̂−2 ∈ Bh ≡
{
σ−2;σ−2

h < σ−2 < σ−2
h+1

}
.

Figure 11 shows quasi-convex functions {ψ(γ2
hσ
−2/M)}Hh=1 and their sum Ω(σ−2) in two

example cases for H = L. In the left case, the inverse noise variance estimator σ̂−2 is
smaller than the inverse threshold σ−2

1 for the largest singular value, and therefore, no EVB

estimator γ̂h is positive, i.e., Ĥ = 0. In the right case, it holds that σ−2
1 < σ̂−2 < σ−2

2 , and

therefore, γ̂1 is positive and the others are zero, i.e., Ĥ = 1.
We have the following lemma (the proof is given in Appendix G.9):

Lemma 34 The derivative of Ω(σ−2) is given by

Θ ≡ ∂Ω

∂σ−2
= −σ2 +

∑Ĥ
h=1 γh

(
γh − γ̆EVB

h

)
+
∑L

h=Ĥ+1
γ2
h

LM
, (101)
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Figure 11: {ψ(γ2
hσ
−2/M)}Hh=1 and Ω(σ−2) in two example cases for H = L. (Left) The

case when γ2
h/M = 4, 3, 2 for h = 1, 2, 3. (Right) The case when γ2

1/M = 30,
γ2
h/M = 6.0, 5.75, 5.5, . . . , 2.0 for h = 2, . . . , 18.

where Ĥ is a function of σ−2 defined by

Ĥ = Ĥ(σ−2) = h if σ−2 ∈ Bh. (102)

Note that Eq.(101) involves the shrinkage estimator γ̆EVB
h , which is a function of σ−2

(see Eq.(26)). For each hypothetical Ĥ, the solutions of the equation

Θ = 0 (103)

lying in σ−2 ∈ B
Ĥ

are stationary points, and hence candidates for the global minimum. If

we can solve Eq.(103) for all Ĥ = 1, . . . ,H, we can obtain the global solution by evaluating
the objective (40) at each obtained stationary points. However, solving Eq.(103) is difficult
unless Ĥ is small (it is easy to derive a closed-form solution for Ĥ = 0, 1). Based on
Lemma 34, we will obtain tighter bounds than Lemma 31.

Since
γh − γ̆EVB

h > 0,

Eq.(101) is upper-bounded by

Θ ≤ −σ2 +

L∑

h=1

γ2
h

LM
,

which leads to the upper-bound given in Eq.(44). Actually, if

(
L∑

h=1

γ2
h

LM

)−1

∈ B0,

then

Ĥ = 0,
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σ̂2 =
L∑

h=1

γ2
h

LM
,

is a local minimum.
The following lemma is easily obtained from Eq.(26) by using z1 <

√
z2

1 − z2
2 < z1 − z2

for z1 > z2 > 0:

Lemma 35 For γh ≥ γEVB, the EVB shrinkage estimator (26) can be bounded as follows:

γh −
(
√
M +

√
L)2σ2

γh
< γ̆EVB

h < γh −
(M + L)σ2

γh
.

This lemma is important for our analysis, because it allows us to bound the most compli-
cated part of Eq.(101) by terms independent of γh, i.e.,

(M + L)σ2 < γh
(
γh − γ̆EVB

h

)
< (
√
M +

√
L)2σ2. (104)

Using Eq.(104), we obtain the following lemma (the proof is given in Appendix G.10):

Lemma 36 Any local minimizer exists in σ−2 ∈ B
Ĥ

such that

Ĥ <
L

1 + α
,

and the following holds for any local minimizer lying in σ−2 ∈ B
Ĥ

:

σ̂2 ≥
∑L

h=Ĥ+1
γ2
h

LM − Ĥ(M + L)
.

It holds that
∑L

h=Ĥ+1
γ2
h

LM − Ĥ(M + L)
≥
∑L

h=Ĥ+1
γ2
h

M(L− Ĥ)
, (105)

of which the right-hand side is decreasing with respect to Ĥ. Combining Lemma 31,
Lemma 32, Lemma 33, Lemma 36, and Eq.(105) completes the proof of Theorem 8. Corol-
lary 9 is easily obtained from Lemma 32 and Lemma 34.

Appendix E. Proof of Theorem 13 and Corollary 14

In the large-scale limit, we can substitute the expectation 〈f(y)〉p(y) for the summation

L−1
∑L

h=1 f (yh). We can also substitute the MP distribution pMP(y) for p(y) in the expec-
tation, since the contribution from theH∗ signal components converges to zero. Accordingly,
our objective (40) converges to

Ω(σ−2)→ ΩLSL(σ−2) ≡
∫ y

κ
ψ
(
σ∗2σ−2y

)
pMP(y)dy +

∫ κ

y
ψ0

(
σ∗2σ−2y

)
pMP(y)dy
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= ΩLSL−Full(σ−2)−
∫ κ

max(xσ2/σ∗2,y)
ψ1

(
σ∗2σ−2y

)
pMP(y)dy, (106)

where ΩLSL−Full(σ−2) ≡
∫ y

y
ψ
(
σ∗2σ−2y

)
pMP(y)dy, (107)

and κ is a constant satisfying

H

L
=

∫ y

κ
pMP(y)dy (y ≤ κ ≤ y).

Note that x, y, and y are defined by Eqs.(39) and (48), and it holds that

x > y. (108)

We first investigate Eq.(107), which corresponds to the objective for the full-rank H = L
model. Let

s = log(σ−2),

t = log y
(
dt = 1

ydy
)
.

Then, Eq.(107) is written as a convolution:

Ω̃LSL−Full(s) ≡ ΩLSL−Full(es) =

∫
ψ
(
σ∗2es+t

)
etpMP(et)dt

=

∫
ψ̃(s+ t)pLSMP(t)dt,

where

ψ̃(s) = ψ(σ∗2es),

pLSMP(t) = etpMP(et)

=

√
(et − y)(y − et)

2πα
θ(y < et < y). (109)

Since Lemma 30 states that ψ(x) is quasi-convex, its composition ψ̃(s) with the non-
decreasing function σ∗2es is also quasi-convex.

The following holds for pLSMP(t), which we call a log-scaled MP (LSMP) distribution
(the proof is given in Appendix G.11):

Lemma 37 The LSMP distribution (109) is log-concave.

Lemma 37 and Proposition 12 imply that Ω̃LSL−Full(s) is quasi-convex, and therefore, its
composition ΩLSL−Full(σ−2) with the non-decreasing function log(σ−2) is quasi-convex. The
minimizer of ΩLSL−Full(σ−2) can be found by evaluating the derivative Θ, given by Eq.(101),
in the large-scale limit:

ΘFull → ΘLSL−Full = −σ2 + σ∗2
∫ y

y
y · pMP(y)dy −

∫ y

xσ2/σ∗2
τ(σ∗2σ−2y;α)pMP(y)dy. (110)
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Here, we used Eqs.(34) and (36). In the range

0 < σ−2 <
xσ∗−2

y

(
i.e.,

xσ2

σ∗2
> y

)
, (111)

the third term in Eq.(110) is zero. Therefore, Eq.(110) is increasing with respect to σ−2,
and zero when

σ2 = σ∗2
∫ y

y
y · pMP(y)dy = σ∗2.

Accordingly, ΩLSL−Full(σ−2) is strictly convex in the range (111). Eq.(108) implies that the
point σ−2 = σ∗−2 is contained in the region (111), and therefore, it is a local minimum
of ΩLSL−Full(σ−2). Combined with the quasi-convexity of ΩLSL−Full(σ−2), we have the
following lemma:

Lemma 38 The objective ΩLSL−Full(σ−2) for the full rank model H = L in the large-scale
limit is quasi-convex with its minimizer at σ−2 = σ∗−2. It is strictly convex in the range
(111).

For any κ (y < κ < y), the second term in Eq.(106) is zero in the range (111), which
includes its minimizer at σ−2 = σ∗−2. Since Lemma 30 states that ψ1(x) is decreasing for
x > x, the second term in Eq.(106) is non-decreasing in the region where

(
σ∗−2 <

) xσ∗−2

y
≤ σ−2 <∞.

Therefore, the quasi-convexity of ΩLSL−Full is inherited to ΩLSL:

Lemma 39 The objective ΩLSL(σ−2) for noise variance estimation in the large-scale limit
is quasi-convex with its minimizer at σ−2 = σ∗−2. ΩLSL(σ−2) is strictly convex in the range
(111).

Thus, we have proved that EVB accurately estimates the noise variance in the large-scale
limit:

σ̂2 EVB = σ∗2.

Assume that

ν∗H∗ >
√
α. (51)

Then, Proposition 11 guarantees that, in the large-scale limit, it holds that

γ2
H∗

Mσ∗2
≡ yH∗ = (1 + ν∗H∗)

(
1 +

α

ν∗H∗

)
, (112)

γ2
H∗+1

Mσ∗2
≡ yH∗+1 = y = (1 +

√
α)2. (113)
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The EVB threshold is given by

(γEVB)2

Mσ̂2 EVB
≡ x = (1 + τ)

(
1 +

α

τ

)
. (39)

Since Lemma 39 states that σ̂2 EVB = σ∗2, comparing Eqs.(112) and (113) with Eq.(39)
results in the following lemma:

Lemma 40 It almost surely holds that

γH∗ ≥ γEVB if and only if ν∗H∗ ≥ τ ,
γH∗+1 < γEVB for any {ν∗h}.

This completes the proof of Theorem 13. Comparing Eqs.(35) and (49) under Lemma 39
and Lemma 40 proves Corollary 14.

Appendix F. Proof of Theorem 15 and Corollary 16

We regroup the terms in Eq.(40) as follows:

Ω(σ−2) = Ω1(σ−2) +Ω0(σ−2), (114)

where

Ω1(σ−2) =
1

H∗

H∗∑

h=1

ψ

(
γ2
h

M
σ−2

)
, (115)

Ω0(σ−2) =
1

L−H∗

(
H∑

h=H∗+1

ψ

(
γ2
h

M
σ−2

)
+

L∑

h=H+1

ψ0

(
γ2
h

M
σ−2

))
. (116)

Below, assuming that

p(y) = pSC(y), (54)

and

yH∗ > y, (117)

we derive a sufficient condition for any local minimizer to lie only in σ−2 ∈ BH∗ , with which
Lemma 33 proves the theorem.

Under the assumption (54) and the condition (117), Ω0(σ−2), defined by Eq.(116), is
equivalent to the objective ΩLSL(σ−2) in the large-scale limit. Using Lemma 39, and noting
that

σ−2
H∗+1 =

Mx

γH∗+1

2

=
xσ∗−2

y
> σ∗−2, (118)

we have the following lemma:
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Lemma 41 Ω0(σ−2) is quasi-convex with its minimizer at

σ−2 = σ∗−2.

Ω0(σ−2) is strictly convex in the range

0 < σ−2 < σ−2
H∗+1.

Using Lemma 41 and the strict quasi-convexity of ψ(x), we can deduce the following
lemma (the proof is given in Appendix G.12):

Lemma 42 Ω(σ−2) is non-decreasing (increasing if ξ > 0) in the range σ2
H∗+1 < σ−2 <∞.

Using the bounds given by Eq.(104) and Lemma 41, we also obtain the following lemma
(the proof is given in Appendix G.13):

Lemma 43 Ω(σ−2) is increasing at σ−2 = σ2
H∗+1 − 0. It is decreasing at σ−2 = σ2

H∗ + 0
if the following hold:

ξ <
1

(1 +
√
α)2

, (119)

yH∗ >
x(1− ξ)

1− ξ(1 +
√
α)2

. (120)

Finally, we obtain the following lemma (the proof is given in Appendix G.14):

Lemma 44 Ω(σ−2) is decreasing in the range 0 < σ−2 < σ2
H∗ if the following hold:

ξ <
1

x
, (121)

yH∗ >
x(1− ξ)
1− xξ . (122)

Lemma 42, Lemma 43, and Lemma 44 together state that, if all the conditions (117),
(119)–(122) hold, at least one local minimum exists in the correct range σ−2 ∈ BH∗ , and no
local minimum (no stationary point if ξ > 0) exists outside the correct range. Therefore,
we can estimate the correct rank ĤEVB = H∗ by using a local search algorithm for noise
variance estimation. Choosing the tightest conditions, we have the following lemma:

Lemma 45 Ω(σ−2) has a global minimum in σ−2 ∈ BH∗, and no local minimum (no
stationary point if ξ > 0) outside BH∗, if the following hold:

ξ <
1

x
,

yH∗ =
γ2
H∗

Mσ∗2
>
x(1− ξ)
1− xξ . (123)
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Using Eq.(49), Eq.(123) can be written with the true signal amplitude as follows:

(1 + ν∗H∗)

(
1 +

α

ν∗H∗

)
− x(1− ξ)

1− xξ > 0.

The left-hand side can be factorized as follows:

1

ν∗H∗


ν
∗
H∗ −

(
x(1−ξ)
1−xξ − (1 + α)

)
+

√(
x(1−ξ)
1−xξ − (1 + α)

)2
− 4α

2




·


ν
∗
H∗ −

(
x(1−ξ)
1−xξ − (1 + α)

)
−
√(

x(1−ξ)
1−xξ − (1 + α)

)2
− 4α

2


 > 0. (124)

When Eq.(51) holds, the last factor in the left-hand side in Eq.(124) is positive. Therefore,
we have the following condition:

ν∗H∗ >

(
x(1−ξ)
1−xξ − (1 + α)

)
+

√(
x(1−ξ)
1−xξ − (1 + α)

)2
− 4α

2

=

(
x−1
1−xξ − α

)
+

√(
x−1
1−xξ − α

)2
− 4α

2
. (125)

Lemma 45 with the condition (123) replaced with the condition (125) leads to Theorem 15
and Corollary 16.

Appendix G. Proof of Lemmas

Here, we give proofs of the lemmas used in Appendices.

G.1 Proof of Lemma 19

Eq.(72) has two positive real solutions:

σ2
ah
σ2
bh

=
σ2

2LM


L+M +

σ2

c2
ah
c2
bh

±

√√√√
(
L+M +

σ2

c2
ah
c2
bh

)2

− 4LM


 .

The larger solution (with the plus sign) is decreasing with respect to c2
ah
c2
bh

, and lower-

bounded as σ2
ah
σ2
bh
> σ2/L. The smaller solution (with the minus sign) is increasing with

respect to c2
ah
c2
bh

, and upper-bounded as σ2
ah
σ2
bh
< σ2/M .

For σ2
ah

and σ2
bh

to be positive, Eqs.(69) and (70) require that

σ2
ah
σ2
bh
<
σ2

M
,
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which is violated by the larger solution, while satisfied by the smaller solution. With the
smaller solution (21), Eqs.(69) and (70) give the stationary point given by (20).

Using Eq.(72), we can easily derive Eq.(73) from Eq.(68), which completes the proof of
Lemma 19.

G.2 Proof of Lemma 20

Since δ̂ > 0, Eqs.(76) and (77) require that

γ̂h < γh −
Mσ2

γh
, (126)

and therefore, the positive stationary point exists only when

γh >
√
Mσ. (127)

Below, we assume that Eq.(127) holds.
Eq.(79) has two solutions:

γ̂h =
1

2

(
2γh −

(L+M)σ2

γh
±
√(

(M − L)σ2

γh

)2

+
4σ4

c2
ah
c2
bh

)
.

The larger solution with the plus sign is positive, decreasing with respect to c2
ah
c2
bh

, and

lower-bounded as γ̂h > γh − Lσ2/γh, which violates the condition (126).
The smaller solution, Eq.(17), with the minus sign is positive if the intercept of the

left-hand side in Eq.(79) is positive, i.e.,

(
γh −

Lσ2

γh

)(
γh −

Mσ2

γh

)
− σ4

c2
ah
c2
bh

> 0. (128)

From the condition (128), we obtain the threshold (16) for the existence of the positive
stationary point. Note that γVB

h
>
√
Mσ, and therefore, Eq.(127) holds whenever γh > γVB

h
.

Assume that γh > γVB
h

. Then, with the solution (17), δ̂h, given by Eq.(76), and σ2
ah

and

σ2
bh

, given by Eqs.(74) and (75), are all positive. Thus, we obtain the positive stationary
point (18).

Substituting Eqs.(74) and (75), and then Eqs.(76) and (77), into the free energy (68),
we have

FVB−Posi
h = −M log

(
1− γ̆VB

h

γh
− Lσ2

γ2
h

)
− L log

(
1− γ̆VB

h

γh
− Mσ2

γ2
h

)

+
−2γhγ̆

VB
h

σ2
+
γ2
h

σ2
−
(
L+M +

σ2

c2
ah
c2
bh

)
. (129)

Using Eq.(78), we can eliminate the direct dependency on c2
ah
c2
bh

, and express the free energy

(129) as a function of γ̆VB
h . This results in Eq.(80), and completes the proof of Lemma 20.
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G.3 Proof of Lemma 21

By differentiating Eqs.(73), (21), (80), and (17), we have

∂FVB−Null
h

∂ζ̂VB
h

=
LM

σ2
(

1− L
σ2 ζ̂

VB
h

) +
LM

σ2
(

1− M
σ2 ζ̂

VB
h

) − LM

σ2

=
LMc2

ah
c2
bh

(
1 +

√
LM
σ2 ζ̂VB

h

)(
1−

√
LM
σ2 ζ̂VB

h

)

σ2ζ̂VB
h

, (130)

∂ζ̂VB
h

∂c2ahc
2
bh

=
σ2

2LM



− σ2

c4
ah
c4
bh

+

2σ2

(
L+M + σ2

c2ah
c2bh

)

2c4
ah
c4
bh

√(
L+M + σ2

c2ah
c2bh

)2

− 4LM




=
1

c4
ah
c4
bh




(ζ̂VB
h )2

(
1−

√
LMζ̂VB

h
σ2

)(
1 +

√
LMζ̂VB

h
σ2

)


 , (131)

∂FVB−Posi
h

∂γ̆VB
h

=
M

γh

(
1−

(
γ̆VB
h
γh

+ Lσ2

γ2h

)) +
L

γh

(
1−

(
γ̆VB
h
γh

+ Mσ2

γ2h

)) − γh
σ2

(
2γ̆VB

h

γh
+

(L+M)σ2

γ2
h

)

=
2c2
ah
c2
bh
γ3
h

(
1−

(
γ̆VB
h
γh

+ (L+M)σ2

2γ2h

))(
(γ̆VB

h )2

γ2h
−
(

1− (L+M)σ2

γ2h

)
γ̆VB
h
γh

+ LMσ4

γ4h

)

σ6
,

(132)

∂γ̂h
∂c2ahc

2
bh

=
4γ2

hσ
2

4γhc4
ah
c4
bh

√
(M − L)2 +

4γ2h
c2ah

c2bh

=
σ4

2γhc4
ah
c4
bh

(
1−

(
γ̆VB
h
γh

+ (M+L)σ2

2γ2h

)) . (133)

Here, we used Eqs.(21) and (81) to obtain Eqs.(130) and (131), and Eqs.(17) and (82) to
obtain Eqs.(132) and (133), respectively. Eq.(85) is obtained by multiplying Eqs.(130) and
(131), while Eq.(86) is obtained by multiplying Eqs.(132) and (133).

Taking the difference between the derivatives (85) and (86), and then using Eqs.(82)
and (84), we have

∂(FPosi
h − FNull

h )

∂c2ahc
2
bh

=
∂FPosi

h

∂c2ahc
2
bh

− ∂FNull
h

∂c2ahc
2
bh

= − 1

σ2c2
ah
c2
bh

(
γh (γh − γ̂h)− (γVB

h
)2
)
. (134)

The following can be obtained from Eqs.(82) and (83), respectively:
(
γh(γh − γ̆VB

h )− (L+M)σ2

2

)2

=
(L+M)2σ4

4
− LMσ4 +

σ4

c2
ah
c2
bh

γ2
h, (135)
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(
(γVB
h

)2 − (L+M)σ2

2

)2

=
(L+M)2σ4

4
− LMσ4 +

σ4

c2
ah
c2
bh

(γVB
h

)2. (136)

Eqs.(135) and (136) imply that

γh(γh − γ̆VB
h ) > (γVB

h
)2 when γh > γVB

h
.

Therefore, Eq.(134) is negative, which completes the proof of Lemma 21.

G.4 Proof of Lemma 26

Lemma 25 immediately leads to the EVB shrinkage estimator (26). We can find the value
of cahcbh at the positive EVB local solution by combining the condition (82) for the VB
estimator and the condition (92) for the EVB estimator:

(
γh −

γhγ̆
EVB
h

γ̆EVB
h + Mσ2

γh

)(
γh −

γhγ̆
EVB
h

γ̆EVB
h + Lσ2

γh

)
=

σ4

c2
ah
c2
bh

LMσ4

γhγ̆
EVB
h

=
σ4

c2
ah
c2
bh

,

which gives the former equation in Eq.(94). Similarly, using Eqs.(19) and (92), we have

δ̂h =
c2
ah

σ2

(
γh −

γhγ̆
EVB
h

γ̆EVB
h + Mσ2

γh

)

=
c2
ah
M

γh

(
1 +

Lσ2

γhγ̆
EVB
h

)
.

Using the assumption that cah = cbh and therefore c2
ah

= cahcbh , we obtain the latter
equation in Eq.(94). The equations in Eq.(93) are simply obtained from Lemma 20.

Finally, applying Eq.(92) to the free energy (80), we have

FEVB−Posi
h = −M log

(
1− γhγ̆

EVB
h

γhγ̆
EVB
h +Mσ2

)
− L log

(
1− γhγ̆

EVB
h

γhγ̆
EVB
h + Lσ2

)
− γhγ̆

EVB
h

σ2
,

which leads to Eq.(95). This completes the proof of Lemma 26.

G.5 Proof of Lemma 27

The derivative is

∂Φ

∂z
=

1− 1
z+1 − log(z + 1)

z2
,

which is negative for z > 0 because

1

z + 1
+ log(z + 1) > 1.

This completes the proof of Lemma 27.
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G.6 Poof of Lemma 28

Since Φ(z) is decreasing, Ξ (τ ;α) is upper-bounded by

Ξ (τ ;α) = Φ (τ) + Φ
( τ
α

)
≤ 2Φ (τ) = Ξ (τ ; 1) .

Therefore, the unique zero-cross point τ of Ξ (τ ;α) is no greater than the unique zero-cross
point z of Φ(z):

τ ≤ z.

For obtaining the lower-bound τ >
√
α, it suffices to show that Ξ(

√
α;α) > 0. Below,

we prove that the following function is decreasing and positive for 0 < α ≤ 1:

g(α) ≡ Ξ (
√
α;α)√
α

.

From the definition (23) of Ξ (τ ;α), we have

g(α) =

(
1 +

1

α

)
log(
√
α+ 1)− log

√
α− 1√

α
.

The derivative is given by

∂g

∂
√
α

=

(
1 + 1

α

)
√
α+ 1

− 2

α3/2
log(
√
α+ 1)− 1√

α
+

1

α

= − 2

α3/2

(
log(
√
α+ 1) +

1√
α+ 1

− 1

)

< 0,

which implies that g(α) is decreasing. Since

g(1) = 2 log 2− 1 ≈ 0.3863 > 0,

g(α) is positive for 0 < α ≤ 1, which completes the proof of Lemma 28.

G.7 Proof of Lemma 30

Since

∂ψ0

∂x
= 1− 1

x
, (137)

∂2ψ0

∂x2
=

1

x2
> 0,

ψ0(x) is differentiable and strictly convex for x > 0 with its minimizer at x = 1. ψ1(x)
is continuous for x ≥ x, and Eq.(99) implies that ψ1(xh) ∝ FEVB−Posi

h . Accordingly,
ψ1(x) ≤ 0 for x ≥ x, where the equality holds when x = x. This equality implies that
ψ(x) is continuous. Since x > 1, ψ(x) shares the same minimizer with ψ0(x) at x = 1 (see
Figure 3).
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Hereafter, we investigate ψ1(x) and ψ(x) for x ≥ x. By differentiating Eqs.(43) and
(36), respectively, we have

∂ψ1

∂τ
= −

(
τ2

α − 1

(τ + 1)
(
τ
α + 1

)
)
< 0, (138)

∂τ

∂x
=

1

2


1 +

x− (1 + α)√
(x− (1 + α))2 − 4α


 > 0. (139)

Substituting

x = x(τ ;α) = (1 + τ)
(

1 +
α

τ

)
= 1 + α+ τ + ατ−1 (35)

into Eq.(139), we have

∂τ

∂x
=

τ2

α
(
τ2

α − 1
) . (140)

Multiplying Eqs.(138) and (140) gives

∂ψ1

∂x
=
∂ψ1

∂τ

∂τ

∂x
= −

(
τ2

α (τ + 1)
(
τ
α + 1

)
)

= −τ
x
< 0, (141)

which implies that ψ1(x) is decreasing for x > x.
Let us focus on the thresholding point of ψ(x) at x = x. Eq.(141) does not converge to

zero for x → x + 0 but stay negative. On the other hand, ψ0(x) is differentiable at x = x.
Consequently, ψ (x) has a discontinuously decreasing derivative, i.e., limx→x−0 ∂ψ/∂x >
limx→x+0 ∂ψ/∂x, at x = x.

Finally, we prove the strict quasi-convexity of ψ(x). Taking the sum of Eqs.(137) and
(141) gives

∂ψ

∂x
=
∂ψ0

∂x
+
∂ψ1

∂x
= 1− 1 + τ

x
= 1− 1 + τ

1 + τ + α+ ατ−1
> 0.

This means that ψ(x) is increasing for x > x. Since ψ0(x) is strictly convex and increasing
at x = x, and ψ(x) is continuous, ψ(x) is strictly quasi-convex. This completes the proof
of Lemma 30.

G.8 Proof of Lemma 31

The strict convexity of ψ0(x) and the strict quasi-convexity of ψ(x) also hold for
ψ0(γ2

hσ
−2/M) and ψ(γ2

hσ
−2/M) as functions of σ−2 (for γh > 0). Because of the differ-

ent scale factor γ2
h/M for each h = 1, . . . , L, each of ψ0(γ2

hσ
−2/M) and ψ(γ2

hσ
−2/M) has a

minimizer at a different position:

σ−2 =
M

γ2
h

.
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The strict quasi-convexity of ψ0 and ψ guarantees that Ω(σ−2) is decreasing for

0 < σ−2 <
M

γ2
1

,

and increasing for

M

γ2
L

< σ−2 <∞.

This proves Lemma 31.

G.9 Proof of Lemma 34

The derivative of Eq.(40) with respect to σ−2 is given by

∂Ω

∂σ−2
=

1

L

(
H∑

h=1

γ2
h

M

∂ψ

∂x
+

L∑

h=H+1

γ2
h

M

∂ψ0

∂x

)
. (142)

By using Eqs.(137) and (141), Eq.(142) can be written as

∂Ω

∂σ−2
=

1

L

(
L∑

h=1

γ2
h

M

∂ψ0

∂x
+

H∑

h=1

θ (xh ≥ x)
γ2
h

M

∂ψ1

∂x

)

=
1

L

(
L∑

h=1

γ2
h

M

(
1− 1

xh

)
−

H∑

h=1

θ (xh ≥ x)
γ2
hτh
Mxh

)

=

∑L
h=1 γ

2
h

LM
− σ2 − 1

L

H∑

h=1

θ (τh ≥ τ)σ2τh. (143)

Here, we also used the definition (33) of xh. Using Eq.(34), Eq.(143) can be written as

∂Ω

∂σ−2
=

∑L
h=1 γ

2
h

LM
− σ2 −

H∑

h=1

θ
(
γh ≥ γEVB

) γhγ̆EVB
h

LM

= −σ2 +

∑H
h=1 γh

(
γh − γ̂EVB

h

)
+
∑L

h=H+1 γ
2
h

LM
.

Here, we also used the definition (24) of γ̂EVB
h . Using the definition (102) and Lemma 33,

we can replace γ̂EVB
h and H with γ̆EVB

h and Ĥ, respectively, which completes the proof of
Lemma 34.

G.10 Proof of Lemma 36

By substituting the lower-bound in Eq.(104) into Eq.(101), we obtain

Θ ≥ −σ2 +
Ĥ(M + L)σ2 +

∑L
h=Ĥ+1

γ2
h

LM
.
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This implies that Θ > 0 unless the following hold:

Ĥ <
LM

M + L
=

L

1 + α
,

σ2 ≥
∑L

h=Ĥ+1
γ2
h

LM − Ĥ(M + L)
.

Therefore, no local minimum exists if either of these conditions is violated. This completes
the proof of Lemma 36.

G.11 Proof of Lemma 37

Focusing on the support

log y < t < log y

of the LSMP distribution (109), we define

f(t) ≡ 2 log pLSMP(t) = 2 log

√
(et − y)(y − et)

2πα
= log(−e2t + (y + y)et − yy) + const..

Let

u(t) ≡ (et − y)(y − et) = −e2t + (y + y)et − yy > 0,

and let

v(t) ≡ ∂u

∂t
= −2e2t + (y + y)et = u− e2t + yy,

w(t) ≡ ∂2u

∂t2
= −4e2t + (y + y)et = v − 2e2t,

be the first and the second derivatives of u.
Therefore, the first and the second derivatives of f(t) are given by

∂f

∂t
=
v

u
,

∂2f

∂t2
=
uw − v2

u2

= −
et
(
(y + y)e2t − 4yyet + (y + y)yy

)

u2

= −
et(y + y)

u2

((
et −

2yy

(y + y)

)2

+
yy
(
y − y

)2

(y + y)2

)

≤ 0.

This proves the log-concavity of the LSMP distribution pLSMP(t), and completes the proof
of Lemma 37.
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G.12 Proof of Lemma 42

Lemma 41 states that Ω0(σ−2), defined by Eq.(116), is quasi-convex with its minimizer at

σ−2 =

(∑L
h=H∗+1 γ

2
h

(L−H∗)M

)−1

= σ∗−2.

Since Ω1(σ−2), defined by Eq.(115), is a sum of strictly quasi-convex functions with their
minimizers at σ−2 = M/γ2

h < σ∗−2 for h = 1, . . . ,H∗, our objective Ω(σ−2), given by
Eq.(114), is non-decreasing (increasing if H∗ > 0) for

σ−2 ≥ σ∗−2.

Since Eq.(118) implies that σ−2
H∗+1 > σ∗−2, Ω(σ−2) is non-decreasing (increasing if ξ > 0)

for σ−2 > σ−2
H∗+1, which completes the proof of Lemma 42.

G.13 Proof of Lemma 43

Lemma 41 states that Ω0(σ−2) is strictly convex in the range 0 < σ−2 < σ2
H∗+1, and

minimized at σ−2 = σ∗−2. Since Eq.(118) implies that σ∗−2 < σ2
H∗+1, Ω0(σ−2) is increasing

at σ−2 = σ2
H∗+1 − 0. Since Ω1(σ−2) is a sum of strictly quasi-convex functions with their

minimizers at σ−2 = M/γ2
h < σ∗−2 for h = 1, . . . ,H∗, Ω(σ−2) is also increasing at σ−2 =

σ2
H∗+1 − 0.

Let us investigate the sign of the derivative Θ of Ω(σ−2) at σ−2 = σ2
H∗ + 0 ∈ BH∗ .

Substituting the upper-bound in Eq.(104) into Eq.(101), we have

Θ < −σ2 +
H∗(
√
M +

√
L)2σ2 +

∑L
h=H∗+1 γ

2
h

LM

= −σ2 +
H∗(
√
M +

√
L)2σ2 + (L−H∗)Mσ∗2

LM
. (144)

The right-hand side of Eq.(144) is negative if the following hold:

ξ =
H∗

L
<

M

(
√
M +

√
L)2

=
1

(1 +
√
α)2

, (145)

σ2 >
(L−H∗)Mσ∗2

LM −H∗(
√
M +

√
L)2

=
(1− ξ)σ∗2

1− ξ(1 +
√
α)2

. (146)

Assume that the first condition (145) holds. Then, the second condition (146) holds at
σ−2 = σ2

H∗ + 0, if

σ−2
H∗ <

1− ξ(1 +
√
α)2

(1− ξ) σ∗−2,

or equivalently,

yH∗ =
γ2
H∗

Mσ∗2
= x · σ

2
H∗

σ∗2
>

x(1− ξ)
1− ξ(1 +

√
α)2

,

which completes the proof of Lemma 43.
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G.14 Proof of Lemma 44

In the range 0 < σ−2 < σ2
H∗ , the estimated rank (102) is bounded as

0 ≤ Ĥ ≤ H∗ − 1.

Substituting the upper-bound in Eq.(104) into Eq.(101), we have

Θ < −σ2 +
Ĥ(
√
M +

√
L)2σ2 +

∑H∗

h=Ĥ+1
γ2
h +

∑L
h=H∗+1 γ

2
h

LM

= −σ2 +
Ĥ(
√
M +

√
L)2σ2 +

∑H∗

h=Ĥ+1
γ2
h + (L−H∗)Mσ∗2

LM
. (147)

The right-hand side of Eq.(147) is negative, if the following hold:

Ĥ

L
<

M

(
√
M +

√
L)2

=
1

(1 +
√
α)2

, (148)

σ2 >

∑H∗

h=Ĥ+1
γ2
h + (L−H∗)Mσ∗2

LM − Ĥ(
√
M +

√
L)2

. (149)

Assume that

ξ =
H∗

L
<

1

(1 +
√
α)2

.

Then, both of the conditions (148) and (149) hold anywhere in 0 < σ−2 < σ2
H∗ , if the

following holds

σ−2

Ĥ+1
<

LM − Ĥ(
√
M +

√
L)2

∑H∗

h=Ĥ+1
γ2
h + (L−H∗)Mσ∗2

for Ĥ = 0, . . . ,H∗ − 1. (150)

Since the sum
∑H∗

h=Ĥ+1
γ2
h in the right-hand side of Eq.(150) is upper-bounded as

H∗∑

h=Ĥ+1

γ2
h ≤ (H∗ − Ĥ)γ2

Ĥ+1
,

Eq.(150) holds if

σ−2

Ĥ+1
<

LM − Ĥ(
√
M +

√
L)2

(H∗ − Ĥ)γ2
Ĥ+1

+ (L−H∗)Mσ∗2

=
1− Ĥ

L (1 +
√
α)2

(ξ − Ĥ
L )

γ2
Ĥ+1

M + (1− ξ)σ∗2
for Ĥ = 0, . . . ,H∗ − 1. (151)

Using Eq.(100), the condition (151) is rewritten as

γ2
Ĥ+1

Mx
>

(ξ − Ĥ
L )

γ2
Ĥ+1

M + (1− ξ)σ∗2

1− Ĥ
L (1 +

√
α)2
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(
1− Ĥ

L
(1 +

√
α)2

)
γ2
Ĥ+1

Mσ∗2
> (ξx− Ĥ

L
x)
γ2
Ĥ+1

Mσ∗2
+ (1− ξ)x,

or equivalently

y
Ĥ+1

=
γ2
Ĥ+1

Mσ∗2
>

(1− ξ)x(
1− ξx+ Ĥ

L (x− (1 +
√
α)2)

) for Ĥ = 0, . . . ,H∗ − 1. (152)

Note that x > y = (1 +
√
α)2. Further bounding both sides, we have the following sufficient

condition for Eq.(152) to hold:

yH∗ >
(1− ξ)x

max (0, 1− ξx)
.

Thus, we obtain the conditions (121) and (122) for Θ to be negative anywhere in 0 < σ−2 <
σ2
H∗ , which completes the proof of Lemma 44.

Appendix H. Detailed Description of Overlap Method

The overlap (OL) method (Hoyle, 2008) minimizes the following approximation to the
negative log of the marginal likelihood (58) over the hypothetical model rank H = 1, . . . , L:7

2FOL ≈ −2 log p(V )

= (LM −H(L−H − 2)) log(2π) + L log π − 2
H∑

h=1

log

(
Γ ((M − h+ 1)/2)

Γ ((M − L− h+ 1)/2)

)

+H(M − L) (1− log (M − L)) +

H∑

h=1

L∑

l=H+1

log
(
γ2
h − γ2

l

)
+ (M − L)

H∑

h=1

log γ2
h

+ (M −H)

H∑

h=1

log

(
1

σ̂2 OL
− 1

λ̂OL
h

)
−

H∑

h=1

(
1

σ̂2 OL
− 1

λ̂OL
h

)
γ2
h

+ (L+ 2)

(
H∑

h=1

log λ̂OL
h + (M −H) log σ̂2 OL

)
+

L∑

l=1

γ2
l

σ̂2 OL
,

where Γ (·) denotes the Gamma function, and {λ̂OL
h } and σ̂2 OL are estimators for λh =

b2h + σ2 and σ2, computed by iterating the following equations until convergence:

λ̂OL
h =

γ2
h

2(L+ 2)

(
1− (M −H − (L+ 2))σ̂2 OL

γ2
h

+

√(
1− (M −H − (L+ 2))σ̂2 OL

γ2
h

)2

− 4(L+ 2)σ̂2 OL

γ2
h

)
, (153)

7 Our description is slightly different from Hoyle (2008), because our model (1) does not have the mean
parameter shared over the samples.
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σ̂2 OL =
1

(M −H)

(
L∑

l=1

γ2
l

L
−

H∑

h=1

λ̂OL
h

)
. (154)

When iterating Eqs.(153) and (154), λ̂OL
h can be a complex number. In such a case, the

hypothetical H is rejected. Otherwise, FOL is evaluated after convergence, and ĤOL that
minimizes FOL is chosen.

For the null hypothesis, the negative log likelihood is given by

2FOL = −2 logP (V ) = LM

(
log

(
2π

LM

L∑

l=1

γ2
l

)
+ 1

)
for H = 0.
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Abstract

Undirected graphical models, or Markov networks, are a popular class of statistical mod-
els, used in a wide variety of applications. Popular instances of this class include Gaussian
graphical models and Ising models. In many settings, however, it might not be clear which
subclass of graphical models to use, particularly for non-Gaussian and non-categorical data.
In this paper, we consider a general sub-class of graphical models where the node-wise con-
ditional distributions arise from exponential families. This allows us to derive multivariate
graphical model distributions from univariate exponential family distributions, such as the
Poisson, negative binomial, and exponential distributions. Our key contributions include
a class of M-estimators to fit these graphical model distributions; and rigorous statisti-
cal analysis showing that these M-estimators recover the true graphical model structure
exactly, with high probability. We provide examples of genomic and proteomic networks
learned via instances of our class of graphical models derived from Poisson and exponential
distributions.

Keywords: graphical models, model selection, sparse estimation

1. Introduction

Undirected graphical models, also known as Markov random fields, are an important class
of statistical models that have been extensively used in a wide variety of domains, includ-
ing statistical physics, natural language processing, image analysis, and medicine. The key
idea in this class of models is to represent the joint distribution as a product of clique-wise
compatibility functions. Given an underlying graph, each of these compatibility functions
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depends only on a subset of variables within any clique of the underlying graph. Popular
instances of such graphical models include Ising and Potts models (see references in Wain-
wright and Jordan (2008) for a varied set of applications in computer vision, text analytics,
and other areas with discrete variables), as well as Gaussian Markov Random Fields (GM-
RFs), which are popular in many scientific settings for modeling real-valued data. A key
modeling question that arises, however, is: how do we pick the clique-wise compatibility
functions, or alternatively, how do we pick the form or sub-class of the graphical model
distribution (e.g. Ising or Gaussian MRF)? For the case of discrete random variables, Ising
and Potts models are popular choices; but these are not best suited for count-valued vari-
ables, where the values taken by any variable could range over the entire set of positive
integers. Similarly, in the case of continuous variables, Gaussian Markov Random Fields
(GMRFs) are a popular choice; but the distributional assumptions imposed by GMRFs are
quite stringent. The marginal distribution of any variable would have to be Gaussian for
instance, which might not hold in instances when the random variables characterizing the
data are skewed (Liu et al., 2009). More generally, Gaussian random variables have thin
tails, which might not capture fat-tailed events and variables. For instance, in the finance
domain, the lack of modeling of fat-tailed events and probabilities has been suggested as
one of the causes of the 2008 financial crisis (Acemoglu, 2009).

To address this modeling question, some have recently proposed non-parametric exten-
sions of graphical models. Some, such as the non-paranormal (Liu et al., 2009; Lafferty
et al., 2012) and copula-based methods (Dobra and Lenkoski, 2011; Liu et al., 2012a), use
or learn transforms that Gaussianize the data, and then fit Gaussian MRFs to estimate
network structure. Others, use non-parametric approximations, such as rank-based esti-
mators, to the correlation matrix, and then fit a Gaussian MRF (Xue and Zou, 2012; Liu
et al., 2012b). More broadly, there could be non-parametric methods that either learn the
sufficient statistics functions, or learn transformations of the variables, and then fit standard
MRFs over the transformed variables. However, the sample complexity of such classes of
non-parametric methods is typically inferior to those that learn parametric models. Alter-
natively, and specifically for the case of multivariate count data, Lauritzen (1996); Bishop
et al. (2007) have suggested combinatorial approaches to fitting graphical models, mostly
in the context of contingency tables. These approaches, however, are computationally in-
tractable for even moderate numbers of variables.

Interestingly, for the case of univariate data, we have a good understanding of appropri-
ate statistical models to use. In particular, a count-valued random variable can be modeled
using a Poisson distribution; call-times, time spent on websites, diffusion processes, and
life-cycles can be modeled with an exponential distribution; other skewed variables can be
modeled with gamma or chi-squared distributions. Here, we ask if we can extend this mod-
eling toolkit from univariate distributions to multivariate graphical model distributions?
Interestingly, recent state of the art methods for learning Ising and Gaussian MRFs (Mein-
shausen and Bühlmann, 2006; Ravikumar et al., 2010; Jalali et al., 2011) suggest a natural
procedure deriving such multivariate graphical models from univariate distributions. The
key idea in these recent methods is to learn the MRF graph structure by estimating node-
neighborhoods, or by fitting node-conditional distributions of each node conditioned on the
rest of the nodes. Indeed, these node-wise fitting methods have been shown to have strong
computational as well as statistical guarantees. Here, we consider the general class of mod-
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els obtained by the following construction: suppose the node-conditional distributions of
each node conditioned on the rest of the nodes follows a univariate exponential family. By
the Hammersley-Clifford Theorem (Lauritzen, 1996), and some algebra as derived in Besag
(1974), these node-conditional distributions entail a global multivariate distribution that (a)
factors according to cliques defined by the graph obtained from the node-neighborhoods,
and (b) has a particular set of compatibility functions specified by the univariate exponen-
tial family. The resulting class of MRFs, which we call exponential family MRFs, broadens
the class of models available off the shelf, from the standard Ising, indicator-discrete, and
Gaussian MRFs.

Thus the class of exponential family MRFs provides a principled approach to model
multivariate distributions and network structures among a large number of variables; by
providing a natural way to “extend” univariate exponential families of distributions to the
multivariate case, in many cases where multivariate extensions did not exist in an analyt-
ical or computationally tractable form. Potential applications for these exponential family
graphical models abound. Networks of call-times, time spent on websites, diffusion pro-
cesses, and life-cycles can be modeled with exponential graphical models; other skewed
multivariate data can be modeled with gamma or chi-squared graphical models; while mul-
tivariate count data such as from website visits, user-ratings, crime and disease incident
reports, and bibliometrics could be modeled via Poisson graphical models. A key motivat-
ing application for our research is multivariate count data from next-generation genomic
sequencing technologies (Mortazavi et al., 2008). This technology produces read counts of
the number of short RNA fragments that have been mapped back to a particular gene; and
measures gene expression with less technical variation than, and is thus rapidly replacing,
microarrays (Marioni et al., 2008). Univariate count data is typically modeled using Pois-
son or negative binomial distributions (Li et al., 2011). As Gaussian graphical models have
been traditionally used to understand genomic relationships and estimate regulatory path-
ways from microarray data, Poisson and negative-binomial graphical models could thus be
used to analyze this next-generation sequencing data. Furthermore, there is a proliferation
of new technologies to measure high-throughput genomic variation in which the data is
not even approximately Gaussian (single nucleotide polymorphisms, copy number, methy-
lation, and micro-RNA and gene expression via next-generation sequencing). For this data,
a more general class of high-dimensional graphical models could thus lead to important
breakthroughs in understanding genomic relationships and disease networks.

The construction of the class of exponential family graphical models also suggests a
natural method for fitting such models: node-wise neighborhood estimation via sparsity
constrained node-conditional likelihood maximization. A main contribution of this paper
is to provide a sparsistency analysis (or analysis of variable selection consistency) for the
recovery of the underlying graph structure of this broad class of MRFs. We note that the
presence of non-linearities arising from the generalized linear models (GLM) posed subtle
technical issues not present in the linear case (Meinshausen and Bühlmann, 2006). Indeed,
for the specific cases of logistic, and multinomial respectively, Ravikumar et al. (2010); Jalali
et al. (2011) derive such a sparsistency analysis via fairly extensive arguments, but which
were tuned to the specific cases; for instance they used the fact that the variables were
bounded, and the specific structure of the corresponding GLMs. Here we generalize their
analysis to general GLMs, which required a subtler analysis as well as a slightly modified
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M-estimator. We note that this analysis might be of independent interest even outside the
context of modeling and recovering graphical models. In recent years, there has been a trend
towards unified statistical analyses that provide statistical guarantees for broad classes of
models via general theorems (Negahban et al., 2012). Our result is in this vein and provides
structure recovery for the class of sparsity constrained generalized linear models. We hope
that the techniques we introduce might be of use to address the outstanding question of
sparsity constrained M-estimation in its full generality.

There has been related work on the simple idea above of constructing joint distributions
via specifying node-conditional distributions. Varin and Vidoni (2005); Varin et al. (2011)
propose the class of composite likelihood models where the joint distribution is a function of
the conditional distributions of subsets of nodes conditioned on other subsets. Besag (1974)
discuss such joint distribution constructions in the context of node-conditional distributions
belonging to exponential families, but for special cases of joint distributions such as pairwise
models. In this paper, we consider the general case of higher-order graphical models for the
joint distributions, and univariate exponential families for the node-conditional distribu-
tions. Moreover, a key contribution of the paper is that we provide tractable M -estimators
with corresponding high-dimensional statistical guarantees and analysis for learning this
class of graphical models even under high-dimensional statistical regimes.

Additionally, we note that a preliminary abridged version of this paper appeared at
(Yang et al., 2012). In this manuscript, we provide a more in depth theoretical analysis
along with several novel developments. Particularly, we provide a novel analytic framework
on the sparsistency of our M -estimators that provide tighter finite-sample bounds, simpler
proofs, and less restrictive assumptions than that of (Yang et al., 2012); these innovations
are discussed further in Section 3.2. Further, we highlight and study several instances of
our framework, relating our work to the existing literature on Gaussian MRFs and Ising
models, as well as introducing two novel instances, the Poisson MRF and Exponential
MRF. For each of these cases, we provide specific corollaries on conditions necessary for
sparsistent recovery of the underlying graph structure. Finally, we also provide a greatly
expanded experimental analysis of our class of MRFs and their M -estimators compared to
that of (Yang et al., 2012). Focusing on two novel instances of our model, the Poisson and
Exponential MRF, we study the theoretical rates, graph structural recovery, and robustness
of our estimators through simulated examples. Further, we provide an additional case study
on protein signaling networks using the Exponential MRF in Section 4.2.2.

2. Exponential Family Graphical Models

Suppose X = (X1, . . . , Xp) is a random vector, with each variable Xi taking values in a
set X . Let G = (V,E) be an undirected graph over the set of nodes V := {1, . . . , p}
corresponding to the p variables {Xr}pr=1. The graphical model over X corresponding to G
is a set of distributions that satisfy Markov independence assumptions with respect to the
graph G (Lauritzen, 1996). By the Hammersley-Clifford theorem (Clifford, 1990), any such
distribution that is strictly positive over its domain also factors according to the graph in
the following way. Let C be a set of cliques (fully-connected subgraphs) of the graph G, and
let {φc(Xc)}c∈C be a set of clique-wise sufficient statistics. With this notation, any strictly
positive distribution of X within the graphical model family represented by the graph G
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takes the form:

P (X) ∝ exp

{∑
c∈C

θcφc(Xc)

}
(1)

where {θc} are weights over the sufficient statistics. An important special case is a pairwise
graphical model, where the set of cliques C consists of the set of nodes V and the set of
edges E, so that

P (X) ∝ exp

{∑
r∈V

θrφr(Xr) +
∑

(r,t)∈E

θrtφrt(Xr, Xt)

}
. (2)

As previously discussed, an important question is how to select the form of the graphical
model distribution, which under the above parametrization in (1), translates to the question
of selecting the class of sufficient statistics, φ. As discussed in the introduction, it is of
particular interest to derive such a graphical model distribution as a multivariate extension
of specified univariate parametric distributions such as negative binomial, Poisson, and
others. We next outline a subclass of graphical models that answer these questions via
the simple construction: set the node-conditional distributions of each node conditioned on
the rest of the nodes as following a univariate exponential family, and then derive the joint
distribution that is consistent with these node-conditional distributions. Then, in Section 3,
we will study how to learn the underlying graph structure, or the edge set E, for this general
class of “exponential family” graphical models. We provide a natural sparsity-encouraging
M -estimator, and sufficient conditions under which the M -estimator recovers the graph
structure with high probability.

2.1 The Form of Exponential Family Graphical Models

A popular class of univariate distributions is the exponential family, whose distribution for
a random variable Z is given by

P (Z) = exp
{
θ B(Z) + C(Z)−D(θ)

}
, (3)

with sufficient statistics B(Z), base measure C(Z), and log-normalization constant D(θ).
Such exponential family distributions include a wide variety of commonly used distributions
such as Gaussian, Bernoulli, multinomial, Poisson, exponential, gamma, chi-squared, beta,
and many others; any of which can be instantiated with particular choices of the functions
B(·), and C(·). Such exponential family distributions are thus used to model a wide variety
of data types including skewed continuous data and count data. Here, we ask if we can
leverage this ability to model univariate data to also model the multivariate case. Let X =
(X1, X2, . . . , Xp) be a p-dimensional random vector; and let G = (V,E) be an undirected
graph over p nodes corresponding to the p variables. Could we then derive a graphical
model distribution over X with underlying graph G, from a particular choice of univariate
exponential family distribution (3) above?

Consider the following construction. Set the distribution of Xr given the rest of nodes
XV \r to be given by the above univariate exponential family distribution (3), and where
the canonical exponential family parameter θ is set to a linear combination of k-th order
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products of univariate functions {B(Xt)}t∈N(r), where N(r) is the set of neighbors of node
r according to graph G. This gives the following conditional distribution:

P (Xr|XV \r) = exp

{
B(Xr)

(
θr +

∑
t∈N(r)

θrtB(Xt) +
∑

t2,t3∈N(r)

θr t2t3 B(Xt2)B(Xt3)

+ . . .+
∑

t2,...,tk∈N(r)

θr t2...tk

k∏
j=2

B(Xtj )
)

+ C(Xr)− D̄(XV \r)

}
, (4)

where C(Xr) is specified by the exponential family, and D̄(XV \r) is the log-normalization
constant. Notice that we use the notation D̄(·) in case when we express the log-partition
function in terms of random variables. That is, D̄(XV \r) := D

(
θ(XV \r)

)
where θ(XV \r) is

the canonical parameter θ derived from XV \r.
By the Hammersley-Clifford theorem, and some elementary calculation, this conditional

distribution can be shown to specify the following unique joint distribution P (X1, . . . , Xp):

Proposition 1 Suppose X = (X1, X2, . . . , Xp) is a p-dimensional random vector, and its
node-conditional distributions are specified by (4) given an undirected graph G. Then its
joint distribution P (X1, . . . , Xp) belongs to the graphical model represented by G, and is
given by

P (X) = exp

{∑
r∈V

θrB(Xr) +
∑
r∈V

∑
t∈N(r)

θrtB(Xr)B(Xt) + . . .

+
∑
r∈V

∑
t2,...,tk∈N(r)

θr...tk B(Xr)

k∏
j=2

B(Xtj ) +
∑
r∈V

C(Xr)−A(θ)

}
(5)

where A(θ) is the log-normalization constant.

Note that the function D(·) (and hence D̄(·)) in (4) is the log-partition function of the
node-conditional distribution, while the function A(·) in (5) in turn is the log-partition
function of the joint distribution. Proposition 1, thus, provides an answer to our earlier
question on selecting the form of a graphical model distribution given a univariate expo-
nential family distribution. When the node-conditional distributions follow a univariate
exponential family as in (4), there exists a unique graphical model distribution as specified
by (5). One question that remains, however, is whether the above construction, beginning
with (4), is the most general possible. In particular, note that the canonical parameter of
the node-conditional distribution in (4) is a tensor factorization of the univariate sufficient
statistic, which seems a bit stringent. Interestingly, by extending the argument from (Besag,
1974), which considers the special pairwise case, and the Hammersley-Clifford Theorem, we
can show that indeed (4) and (5) have the most general form.

Theorem 2 Suppose X = (X1, X2, . . . , Xp) is a p-dimensional random vector, and its
node-conditional distributions are specified by an exponential family,

P (Xr|XV \r) = exp
{
E(XV \r)B(Xr) + C(Xr)− D̄(XV \r)

}
, (6)
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where the function E(XV \r), the canonical parameter of exponential family, depends on the
rest of all random variables except Xr (and hence the log-normalization constant D̄(XV \r)).
Further, suppose the corresponding joint distribution factors according to the graph G, with
the factors over cliques of size at most k. Then, the conditional distribution in (6) neces-
sarily has the tensor-factorized form in (4), and the corresponding joint distribution has the
form in (5).

Theorem 2 thus tells us that under the general assumptions that:

(a) the joint distribution is a graphical model that factors according to a graph G, and has
clique-factors of size at most k, and

(b) its node-conditional distribution follows an exponential family,

it necessarily follows that the conditional and joint distributions are given by (4) and (5)
respectively.

An important special case is when the joint graphical model distribution has clique
factors of size at most two. From Theorem 2, the conditional distribution is given by

P (Xr|XV \r) = exp

{
θr B(Xr) +

∑
t∈N(r)

θrtB(Xr)B(Xt) + C(Xr)− D̄(XV \r)

}
, (7)

while the joint distribution is given as

P (X) = exp

{∑
r∈V

θrB(Xr) +
∑

(r,t)∈E

θrtB(Xr)B(Xt) +
∑
r∈V

C(Xr)−A(θ)

}
. (8)

For many classes of models (e.g. general Ising, discrete CRFs), the log-partition function
of the joint distribution, A(·), has no analytical form, and might even be intractable to
compute, while the function D(·) typically is more amenable, and available in analytical
form, since it is the log-partition function of a univariate exponential family distribution.

When the univariate sufficient statistic function B(·) is a linear function B(Xr) = Xr,
then the conditional distribution in (7) is precisely a generalized linear model (McCullagh
and Nelder, 1989) in canonical form,

P (Xr|XV \r) = exp

{
θrXr +

∑
t∈N(r)

θrtXrXt + C(Xr)− D̄(XV \r; θ)

}
, (9)

where the canonical parameter of GLMs becomes θr +
∑

t∈N(r) θrtXt. At the same time,
the joint distribution has the form:

P (X) = exp

{∑
r∈V

θrXr +
∑

(r,t)∈E

θrtXrXt +
∑
r∈V

C(Xr)−A(θ)

}
(10)

where the log-partition function A(·) in this case is defined as

A(θ) := log

∫
X

exp

{∑
r∈V

θrXr +
∑

(r,t)∈E

θrtXrXt +
∑
r∈V

C(Xr)

}
dX. (11)

3819



Yang, Ravikumar, Allen and Liu

We will now provide some examples of our general class of “exponential family” graphical
model distributions, focusing on the case in (10) with linear functions B(Xr) = Xr. For
each of these examples, we will also detail the domain, Θ := {θ : A(θ) < +∞}, of valid
parameters that ensure that the density is normalizable. Indeed, such constraints on valid
parameters are typically necessary for the distributions over countable discrete or continuous
valued variables.

2.2 Gaussian Graphical Models

The popular Gaussian graphical model (Speed and Kiiveri, 1986) can be derived as an
instance of the construction in Theorem 2, with the univariate Gaussian distribution as the
exponential family distribution. The univariate Gaussian distribution with known variance
σ2 is given by

P (Z) ∝ exp

{
µ

σ

Z

σ
− Z2

2σ2

}
where Z ∈ R, so that it can be seen to be an exponential family distribution of the form (3),

with sufficient statistic B(Z) = Z
σ , and base measure C(Z) = − Z2

2σ2 . Substituting these in
(10), we get the distribution:

P (X; θ) ∝ exp

{∑
r∈V

1

σr
θrXr +

∑
(r,t)∈E

1

σrσt
θrtXrXt −

∑
r∈V

X2
r

2σ2
r

}
, (12)

which can be seen to be the multivariate Gaussian distribution. Note that the set of
parameters {θrt}(r,t)∈E entails a precision matrix that needs to be positive definite for a
valid probability distribution.

2.3 Ising Models

The Ising model (Wainwright and Jordan, 2008) in turn can be derived from the construction
in Theorem 2 with the Bernoulli distribution as the univariate exponential family distri-
bution. The Bernoulli distribution is a member of the exponential family of the form (3),
with sufficient statistic B(X) = X, and base measure C(X) = 0, and with variables taking
values in the set X = {0, 1}. Substituting these in (10), we get the distribution:

P (X; θ) = exp

{ ∑
(r,t)∈E

θrtXrXt −A(θ)

}
(13)

where we have ignored the singleton term, i.e. set θr = 0 for simplicity. The form of the
multinomial graphical model, an extension of the Ising model, can also be represented by
(10) and has been previously studied in Jalali et al. (2011) and others. The Ising model
imposes no constraint on its parameters, {θrt}, for normalizability, since there are finitely
many configurations of the binary random vector X.

2.4 Poisson Graphical Models

Poisson graphical models are an interesting instance with the Poisson distribution as the
univariate exponential family distribution. The Poisson distribution is a member of the ex-
ponential family of the form (3), with sufficient statistic B(X) = X and C(X) = −log(X!),
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and with variables taking values in the set X = {0, 1, 2, ...}. Substituting these in (10), we
get the following Poisson graphical model distribution:

P (X; θ) = exp

{∑
r∈V

(
θrXr − log(Xr!)

)
+
∑

(r,t)∈E

θrtXrXt −A(θ)

}
. (14)

For this Poisson family, with some calculation, it can be seen that the normalizability
condition, A(θ) < +∞, entails θrt ≤ 0 ∀ r, t. In other words, the Poisson graphical model
can only capture negative conditional relationships between variables.

2.5 Exponential Graphical Models

Another interesting instance uses the exponential distribution as the univariate exponential
family distribution, with sufficient statistic B(X) = −X and C(X) = 0, and with variables
taking values in X = {0} ∪ R+. Such exponential distributions are typically used for data
describing inter-arrival times between events, among other applications. Substituting these
in (10), we get the following exponential graphical model distribution:

P (X; θ) = exp

{
−
∑
r∈V

θrXr −
∑

(r,t)∈E

θrtXrXt −A(θ)

}
. (15)

To ensure that the distribution is valid and normalizable, so that A(θ) < +∞, we then
require that θr > 0, θrt ≥ 0 ∀ r, t. Because of the negative sufficient statistic, this implies
that the exponential graphical model can only capture negative conditional relationships
between variables.

3. Statistical Guarantees on Learning Graphical Model Structures

In this section, we study the problem of learning the graph structure of an underlying
exponential family MRF, given i.i.d. samples. Specifically, we assume that we are given n
samples of random vector X1:n := {X(i)}ni=1, from a pairwise exponential family MRF,

P (X; θ∗) = exp

{∑
r∈V

θ∗rXr +
∑

(r,t)∈E∗
θ∗rtXrXt +

∑
r

C(Xr)−A(θ∗)

}
. (16)

The goal in graphical model structure recovery is to recover the edges E∗ of the underlying
graph G = (V,E∗). Following Meinshausen and Bühlmann (2006); Ravikumar et al. (2010);
Jalali et al. (2011), we will approach this problem via neighborhood estimation: where we
estimate the neighborhood of each node individually, and then stitch these together to
form the global graph estimate. Specifically, if we have an estimate N̂(r) for the true
neighborhood N∗(r), then we can estimate the overall graph structure as

Ê = ∪r∈V ∪t∈N̂(r)
{(r, t)}. (17)

Remark. Note that the node-neighborhood estimates N̂(r) might not be symmetric (i.e.
there may be a pair (r, s) ∈ V × V , with r ∈ N̂(s), but s 6∈ N̂(r)). The graph-structure
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estimate in (17) provides one way to reconcile these neighborhood estimates; see Mein-
shausen and Bühlmann (2006) for some other ways to do so (though as they note, these
different estimates have asymptotically identical sparsistency guarantees: given exponential
convergence in the probability of node-neighborhood recovery to one, the probability that
the node-neighborhood estimates are symmetric, and hence that the different “reconciling”
graph estimates would become identical, also converges to one.)

The problem of graph structure recovery can thus be reduced to the problem of recover-
ing the neighborhoods of all the nodes in the graph. In order to estimate the neighborhood
of any node in turn, we consider the sparsity constrained conditional MLE. Note that given
the joint distribution in (16), the conditional distribution of Xr given the rest of the nodes
is reduced to a GLM and given by

P (Xr|XV \r) = exp

{
Xr

(
θ∗r +

∑
t∈N∗(r)

θ∗rtXt

)
+ C(Xr)−D

(
θ∗r +

∑
t∈N∗(r)

θ∗rtXt

)}
. (18)

Let θ∗(r) be a set of parameters related to the node-conditional distribution of node Xr, i.e.
θ∗(r) = (θ∗r , θ

∗
\r) ∈ R × Rp−1 where θ∗\r = {θ∗rt}t∈V \r be a zero-padded vector, with entries

θ∗rt for t ∈ N∗(r) and θ∗rt = 0, for t 6∈ N∗(r). In order to infer the neighborhood structure
for each node Xr, we solve the `1 regularized conditional log-likelihood loss:

minimize
θ(r)∈Ω

{
`
(
θ(r);X1:n

)
+ λn‖θ\r‖1

}
(19)

where Ω is the parameter space in R × Rp−1, and `
(
θ(r);X1:n

)
is the conditional log-

likelihood of the distribution (18):

`
(
θ(r);X1:n

)
:= − 1

n
log

n∏
i=1

P
(
X(i)
r |X

(i)
V \r, θ(r)

)
=

1

n

n∑
i=1

{
−X(i)

r

(
θr + 〈θ\r, X

(i)
V \r〉

)
+D

(
θr + 〈θ\r, X

(i)
V \r〉

)}
.

Note that the parameter space Ω might be restricted, and strictly smaller than R × Rp−1;
for Poisson graphical models, θrt ≤ 0 for all r, t ∈ V for instance.

Given the solution θ̂(r) of the M -estimation problem above, we then estimate the node-
neighborhood of r as N̂(r) = {t ∈ V \r : θ̂rt 6= 0}. In what follows, when we focus on a
fixed node r ∈ V , we will overload notation, and use θ ∈ R×Rp−1 as the parameters of the
conditional distribution, suppressing dependence on the node r.

3.1 Conditions

A key quantity in the analysis is the Fisher information matrix, Q∗r = ∇2`
(
θ∗;X1:n

)
, which

is the Hessian of the node-conditional log-likelihood. In the following, we again will simply
use Q∗ instead of Q∗r where the reference node r should be understood implicitly. We also
use S = {(r, t) : t ∈ N∗(r)} to denote the true neighborhood of node r, and Sc to denote
its complement. We use Q∗SS to denote the d× d sub-matrix of Q∗ indexed by S where d is
the number of neighborhoods of node r again suppressing dependence on r. Our first two
conditions, mirroring those in Ravikumar et al. (2010), are as follows.
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(C1) (Dependency condition) There exists a constant ρmin > 0 such that λmin(Q∗SS) ≥
ρmin so that the sub-matrix of Fisher information matrix corresponding to true neighbor-
hood has bounded eigenvalues. Moreover, there exists a constant ρmax < ∞ such that

λmax( 1
n

∑n
i=1[X

(i)
V \r(X

(i)
V \r)

T ]) ≤ ρmax.

These condition can be understood as ensuring that variables do not become overly depen-
dent. We will also need an incoherence or irrepresentable condition on the Fisher informa-
tion matrix as in Ravikumar et al. (2010).

(C2) (Incoherence condition) There exists a constant α > 0, such that
maxt∈Sc ‖Q∗tS(Q∗SS)−1‖1 ≤ 1− α.

This condition, standard in high-dimensional analyses, can be understood as ensuring that
irrelevant variables do not exert an overly strong effect on the true neighboring variables.

A key technical facet of the linear, logistic, and multinomial models in Meinshausen
and Bühlmann (2006); Ravikumar et al. (2010); Jalali et al. (2011), used heavily in their
proofs, was that the random variables {Xr} there were bounded with high probability.
Unfortunately, in the general exponential family distribution in (18), we cannot assume
this explicitly. Nonetheless, we show that we can analyze the corresponding regularized
M-estimation problems under the following mild conditions on the log-partition functions
of the joint and node-conditional distributions.

(C3) (Bounded Moments) For all r ∈ V , the first and second moments are bounded, so
that

E[Xr] ≤ κm and E[X2
r ] ≤ κv,

for some constants κm, κv. Further, the log-partition function A(·) of the joint distribu-
tion (16) satisfies:

max
u:|u|≤1

∂2

∂θ2
r

A(θ∗ + uer) ≤ κh,

for some constant κh, and where er ∈ Rp2 is an indicator vector that is equal to one at the
index corresponding to θr, and zero everywhere else. Further, it holds that

max
η:|η|≤1

∂2

∂η2
Ār(η; θ∗) ≤ κh,

where Ār(η; θ∗) is a slight variant of (11):

Ār(η; θ) := log

∫
X

exp

{
ηX2

r +
∑
u∈V

θuXu +
∑

(u,t)∈V 2

θutXuXt +
∑
u∈V

C(Xu)

}
dX (20)

for some scalar variable η.
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(C4) For all r ∈ V , the log-partition function D(·) of the node-wise conditional distri-
bution (18) satisfies: there exist functions κ1(n, p) and κ2(n, p) (that depend on the ex-
ponential family) such that, for all θ ∈ Θ and X ∈ X , |D′′(a)| ≤ κ1(n, p) where a ∈[
b, b+4κ2(n, p) max{log n, log p}

]
for b := θr+〈θ\r, XV \r〉. Additionally, |D′′′(b)| ≤ κ3(n, p)

for all θ ∈ Θ and X ∈ X . Note that κ1(n, p),κ2(n, p) and κ3(n, p) are functions that might
be dependent on n and p, which affect our main theorem below.

Conditions (C3) and (C4) are the key technical components enabling us to generalize the
analyses in Meinshausen and Bühlmann (2006); Ravikumar et al. (2010); Jalali et al. (2011)
to the general exponential family case. It is also important to note that almost all expo-
nential family distributions including all our previous examples can satisfy (C4) with mild
functions κ1(n, p), κ2(n, p) and κ3(n, p), as we will explicitly show later in this section.
Comparing to the assumption in Yang et al. (2012) that requires ‖θ∗‖2 ≤ 1 for some ex-
ponential families, this will be much less restrictive condition on the minimum values of θ∗

permitted to achieve variable selection consistency.

3.2 Statement of the Sparsistency Result

Armed with the conditions above, we can show that the random vector X following a
exponential family MRF distribution in (16) is suitably well-behaved:

Proposition 3 Suppose X is a random vector with the distribution specified in (16). Then,
for ∀r ∈ V ,

P

(
1

n

n∑
i=1

(
X(i)
r

)2 ≥ δ) ≤ exp
(
−c n δ2

)
where δ ≤ min{2κv/3, κh + κv}, and c is a positive constant.

We recall the notation that the superscript indicates the sample and the subscript indicates

the node; so that X(i) is the i-th sample, while X
(i)
s is the s-th variable/node of this random

vector.

Proposition 4 Suppose X is a random vector with the distribution specified in (16). Then,
for ∀r ∈ V ,

P
(
|Xr| ≥ δ log η

)
≤ cη−δ

where δ is any positive real value, and c is a positive constant.

These propositions are key to the following sparsistency result for the general family of
pairwise exponential family MRFs (16).

Theorem 5 Consider a pairwise exponential family MRF distribution as specified in (16),
with true parameter θ∗ and associated edge set E∗ that satisfies Conditions (C1)-(C4). Sup-
pose that min(s,t)∈E∗ |θ∗rt| ≥ 10

ρmin

√
dλn, where d is the maximum neighborhood size. Suppose

also that the regularization parameter is chosen such that M1
(2−α)
α

√
κ1(n, p)

√
log p
n ≤ λn ≤
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M2
(2−α)
α κ1(n, p)κ2(n, p) for some constants M1,M2 > 0. Then, there exist positive con-

stants L, c1, c2 and c3 such that if n ≥ Ld2κ1(n, p)(κ3(n, p))2 log p(max{log n, log p})2,
then with probability at least 1 − c1(max{n, p})−2 − exp(−c2n) − exp(−c3n), the following
statements hold.

(a) (Unique Solution) For each node r ∈ V , the solution of the M-estimation problem in
(19) is unique, and

(b) (Correct Neighborhood Recovery) The M-estimate also recovers the true neighborhood
exactly, so that N̂(r) = N∗(r).

Note that if the neighborhood of each node is recovered with high probability, then by a
simple union bound, the estimate in (17), Ê = ∪r∈V ∪t∈N̂(r)

{(r, t)} is equal to the true

edge set E∗ with high-probability.
In the following subsections, we investigate the consequences of Theorem 5 for the

sparsistency of specific instances of our general exponential family MRFs.

3.3 Statistical Guarantees for Gaussian MRFs, Ising Models, Exponential
Graphical Models

In order to apply Theorem 5 to a specific instance of our general exponential family MRFs,
we need to specify the terms κ1(n, p), κ2(n, p) and κ3(n, p) defined in Condition (C4). It
turns out that we can specify these terms for the Gaussian graphical models, Ising models
and Exponential graphical model distributions, discussed in Section 2, in a similar manner,
since the node-conditional log-partition function D(·) for all these distributions can be upper
bounded by some constant independent of n and p. In particular, we can set κ1(n, p) := κ1,
κ2(n, p) := ∞ and κ1(n, p) := κ3 where κ1 and κ3 now become some constants depending
on the distributions.

(Gaussian MRFs) Recall that the node-conditional distribution for Gaussian MRFs follow
a univariate Gaussian distribution:

P (Xr|XV \r) ∝ exp

{
Xr

(
θr +

∑
t∈N(r)

θrtXt

)
− 1

2
X2
r −

1

2

(
θr +

∑
t∈N(r)

θrtXt

)2}
.

Note that following (Meinshausen and Bühlmann, 2006), we assume that σ2
r = 1 for all r ∈

V . The node-conditional log-partition function D(·) can thus be written as D(η) := −1
2η

2,
so that |D′′(η)| = 1 and D′′′(η) = 0. We can thus set κ1 = 1 and κ3 = 0.

(Ising Models) For Ising models, node-conditional distribution follows a Bernoulli distribu-
tion:

P (Xr|XV \r) = exp

{
Xr

( ∑
t∈N(r)

θrtXt

)
− log

(
1 + exp

( ∑
t∈N(r)

θrtXt

))}
.

The node-conditional log-partition function D(·) can thus be written as D(η) := log
(
1 +

exp(η)
)
, so that for any η, |D′′(η)| = exp(η)

(1+exp(η))2
≤ 1

4 and |D′′′(η)| =
∣∣ exp(η)(1−exp(η))

(1+exp(η))3

∣∣ < 1
4 .

Hence, we can set κ1 = κ3 = 1/4.
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(Exponential Graphical Models) Lastly, for exponential graphical models, we have

P (Xr|XV \r) = exp

{
−Xr

(
θr +

∑
t∈N(r)

θrtXt

)
+ log

(
θr +

∑
t∈N(r)

θrtXt

)}
.

The node-conditional log-partition function D(·) can thus be written as D(η) := − log η,
with η = θr +

∑
t∈N(r) θrtXt. Recall from Section 2.5 that the node parameters are strictly

positive θr > 0, and the edge-parameters are positive as well, θrt ≥ 0, as are the variables
themselves Xt ≥ 0. Thus, under the additional constraint that θr > a0 where a0 is a
constant smaller than θ∗r , we have that η := θr +

∑
t∈N(r) θrtXt ≥ a0. Consequently,

|D′′(η)| = 1
η2
≤ 1

a20
and |D′′′(η)| =

∣∣ 2
η3

∣∣ ≤ 2
a30

. We can thus set κ1 = 1
a20

and κ3 = 2
a30

.

Armed with these derivations, we recover the following result on the sparsistency of
Gaussian, Ising and Exponential graphical models, as a corollary of Theorem 5:

Corollary 6 Consider a Gaussian MRF (12) or Ising model (13) or Exponential graphi-
cal model (15) distribution with true parameter θ∗, and associated edge set E∗, and which
satisfies Conditions (C1)-(C3). Suppose that min(s,t)∈E∗ |θ∗rt| ≥ 10

ρmin

√
dλn. Suppose also

that the regularization parameter is set so that M (2−α)
α

√
κ1

√
log p
n ≤ λn for some con-

stant M > 0. Then, there exist positive constants L, c1, c2 and c3 such that if n ≥
Lκ1κ

2
3d

2 log p(max{log n, log p})2, then with probability at least 1−c1(max{n, p})−2−exp(−c2n)
− exp(−c3n), the statements on the uniqueness of the solution and correct neighborhood re-
covery, in Theorem 5 hold.

Remarks. As noted, our models and theorems are quite general, extending well beyond
the popular Ising and Gaussian graphical models. The graph structure recovery problem
for Gaussian models was studied in Meinshausen and Bühlmann (2006) especially for the
regime where the neighborhood sparsity index is sublinear, meaning that d/p→ 0. Besides
the sublinear scaling regime, Corollary 6 can be adapted to entirely different types of scaling,
such as the linear regime where d/p→ α for some α > 0 (see Wainwright (2009) for details
on adaptations to sublinear scaling regimes). Moreover, with κ1 and κ3 as defined above,
Corollary 6 exactly recovers the result in Ravikumar et al. (2010) for the Ising models as a
special case.

Also note that Corollary 6 provides tighter finite-sample bounds than the results of Yang
et al. (2012). In particular, a sample size complexity necessary on λn to achieve sparsistent

recovery here is O(
√

logp
n ), which is faster as compared to O(

√
logp
n1−κ ) in Yang et al. (2012).

3.4 Statistical Guarantees for Poisson Graphical Models

We now consider the Poisson graphical model. Again, to derive the corresponding corollary
of Theorem 5, we need to specify the terms κ1(n, p), κ2(n, p) and κ3(n, p) defined in Con-
dition (C4). Recall that the node-conditional distribution of Poisson graphical models has
the form:

P (Xr|XV \r) = exp

{
Xr

(
θr +

∑
t∈N(r)

θrtXt

)
− log(Xr!)− exp

(
θr +

∑
t∈N(r)

θrtXt

)}
.
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The node-conditional log-partition function D(·) can thus be written as D(η) := exp η, with
η = θr +

∑
t∈N(r) θrtXt. Noting that the variables {Xt} range over positive integers, and

that feasible parameters θrt are negative, we obtain

D′′(η) = D′′
(
θr + 〈θ\r, XV \r〉+ 4κ2(n, p) log p′

)
= exp

(
θr + 〈θ\r, XV \r〉+ 4κ2(n, p) log p′

)
≤ exp

(
θr + 4κ2(n, p) log p′

)
where p′ = max{n, p}. Suppose that we restrict our attention on the subfamily where
θr ≤ a0 for some positive constant a0. Then, if we choose κ2(n, p) := 1/(4 log p′), we then
obtain θr + 4κ2(n, p) log p′ ≤ a0 + 1, so that setting κ1(n, p) := exp(a0 + 1) would satisfy
Condition (C4). Similarly, we obtain D′′′

(
θr + 〈θ\r, XV \r〉

)
= exp

(
θr + 〈θ\r, XV \r〉

)
≤

exp(a0 + 1), so that we can set κ3(n, p) to exp(a0 + 1).
Armed with these settings, we recover the following corollary for Poisson graphical

models:

Corollary 7 Consider a Poisson graphical model distribution as specified in (14), with
true parameters θ∗, and associated edge set E∗, that satisfies Conditions (C1)-(C3). Sup-
pose that min(s,t)∈E∗ |θ∗rt| ≥ 10

ρmin

√
dλn. Suppose also that the regularization parameter

is chosen such that M1
(2−α)
α

√
κ1

√
log p
n ≤ λn ≤ M2κ1

(2−α)
α

1
max{logn,log p} for some con-

stants M1,M2 > 0. Then, there exist positive constants L, c1, c2 and c3 such that if
n ≥ Ld2κ1κ

2
3 log p(max{log n, log p})2, then with probability at least 1− c1(max{n, p})−2 −

exp(−c2n)−exp(−c3n), the statements on the uniqueness of the solution and correct neigh-
borhood recovery, in Theorem 5 hold.

4. Experiments

We evaluate our M-estimators for exponential family graphical models, specifically for the
Poisson and exponential distributions, through simulations and real data examples. Neigh-
borhood selection was performed for each M-estimator with an `1 penalty to induce sparsity
and non-negativity or non-positivity constraints to enforce appropriate restrictions on the
parameters. Optimization algorithms were implemented using projected gradient descent
(Daubechies et al., 2008; Beck and Teboulle, 2010), which since the objectives are con-
vex, is guaranteed to converge to the global optimum. Further details on the optimization
problems used for our M-estimators are given in the Appendix E.

4.1 Simulation Studies

We provide a small simulation study that corroborates our sparsistency results; specifically
Corollary 6 for the exponential graphical model, where node-conditional distributions follow
an exponential distribution, and Corollary 7 for the Poisson graphical model, where node-
conditional distributions follow a Poisson distribution. We instantiated the corresponding
exponential and Poisson graphical model distributions in (15) and (14) for 4 nearest neighbor
lattice graphs (d = 4), with varying number of nodes, p ∈ {64, 100, 169, 225}, and with
identical edge weights for all edges: for exponential MRF, θ∗r = 0.1 and θ∗rt = 1, and, for
Poisson MRF, θ∗r = 2 and θ∗rt = −0.1. We generated i.i.d. samples from these distributions
using Gibbs sampling, and solved our sparsity-constrained M -estimation problem by setting
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(a) Exponential Grid Structure
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(b) Poisson Grid Structure

Figure 1: Probabilities of successful support recovery for the (a) exponential MRF, grid
structure with parameters θ∗r = 0.1 and θ∗rt = 1, and the (b) Poisson MRF, grid
structure with parameters θ∗r = 2 and θ∗rt = −0.1. The empirical probability
of successful edge recovery over 50 replicates is shown versus the sample size n
(left), and verses the re-scaled sample size β = n/(log p) (right). The empirical
curves align for the latter, thus verifying the logarithmic dependence of n on p as
obtained in our sparsistency analysis.

λn = c
√

log p
n , following our corollaries; c = 3 for exponential MRF, and 15 for Poisson MRF.

We repeated each simulation 50 times and measured the empirical probability over the 50
trials that our penalized graph estimate in (17) successfully recovered all edges, that is,
P (Ê = E∗). The left panels of Figure 1(a) and Figure 1(b) show the empirical probability
of successful edge recovery. In the right panel, we plot the empirical probability against
a re-scaled sample size β = n/(log p). According to our corollaries, the sample size n
required for successful graph structure recovery scales logarithmically with the number of
nodes p. Thus, we would expect the empirical curves for different problem sizes to more
closely align with this re-scaled sample size on the horizontal axis, a result clearly seen in
the right panels of Figure 1. This small numerical study thus corroborates our theoretical
sparsistency results.
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Figure 2: Receiver-operator curves (ROC) computed by varying the regularization pa-
rameter, λn. High-dimensional data is generated according to (a) the Ex-
ponential MRF with (n, p) = (150, 225) and to (b) the Poisson MRF with
(n, p) = (100, 225). Results are compared for three M -estimators: that of the
Poisson, exponential, and Gaussian distributions.

We also evaluate the comparative performance of our M -estimators for recovering the
true edge structure from the different types of data. Specifically, we consider the three
typical examples in our unified neighborhood selection approach: the Poisson M -estimator,
the Exponential M -estimator, and the well-known Gaussian M -estimator by (Meinshausen
and Bühlmann, 2006). In order to extensively compare their performances, we compute
the receiver-operator-curves for the overall graph recovery by varying the regularization
parameter, λn. In Figure 2, the same graph structures for the exponential MRF (θ∗r = 0.1
and θ∗rt = 1) and the Poisson MRF (θ∗r = 2 and θ∗rt = −0.1) with 4 nearest neighbors,
are used as in the previous simulation. Moreover, we focus on the high-dimensional regime
where n < p. As shown in the figure, exponential and Poisson M -estimators outperform
and have significant advantage over Gaussian neighborhood selection approach if the data
is generated according to exponential or Poisson MRFs. One interesting phenomenon we
observe is that exponential and Poisson M -estimators perform similarly regardless of the
underlying graphical model distribution. This likely occurs as our estimator maximizes
the conditional likelihoods by fitting penalized GLMs. Note that GLMs assume that the
conditional mean of the regression model follows an exponential family distribution. As
both the Poisson distribution and the exponential distribution have the same mean, the
rate parameter, λ, we would expect GLM-based methods that fit conditional means to
perform similarly.

As discussed at end of Section 2, the exponential and Poisson graphical models are
able to capture only negative conditional dependencies between random variables, and our
corresponding M -estimators are computed under this constraint. In our last simulation,
we evaluate the impact of this restriction when the true graph contains both positive and
negative edge weights. As there does not exist a proper MRF related to the Poisson and
exponential distributions with both positive and negative dependencies, we resort to gen-
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erating data from via a copula transform. In particular, we first generate multivariate
Gaussian samples from N(0,Σ) where Θ = Σ−1 is the precision matrix corresponding to
the 4 nearest neighbor grid structure previously considered. Specifically, Θ has all ones
on the diagonal and θ∗rt = ±0.2 with equal probabilities. We then use a standard copula
transform to make the marginals of the generated data approximately Poisson. Figure 3
again present receiver operator curves (ROC) for the three different classes of M -estimators
on the copula transformed data, transformed to the Poisson distribution. In the left of
Figure 3, we consider signed support recovery where we define the true positive rate as

# of edges s.t. sign(θ∗rt) = sign(θ̂rt)

# of edges
. In the right, on the other hand, we ignore the posi-

tive edges so that true positive rate is now
# of edges s.t. sign(θ∗rt) = sign(θ̂rt) = −1

# of negative edges
. Note

that the false positive rate is also defined similarly. As expected, the results indicate that
our Poisson and exponential M -estimators fail to recover the edges with positive condi-
tional dependencies recovered by the Gaussian M -estimator. However, when attention is
restricted to negative conditional dependencies, our method outperforms the Gaussian M -
estimator. Notice also that for the exponential and Poisson M -estimators, the highest false
positive rate achieved is around 0.15. This likely occurs due to the constraints enforced by
our M -estimators that force the weights of potential positive conditional dependent edges
to be zero. Thus, while the restrictions on the edge weights may be severe, for the purpose
of estimating negative conditional dependencies with limited false positives, the Poisson
and exponential M -estimators have an advantage.
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Figure 3: Receiver-operator curves (ROC) computed by varying the regularization param-
eter, λn, for data, (n, p) = (200, 225), generated via Poisson copula transform
according to a network with both positive and negative conditional dependen-
cies. Left plot denotes results on overall edge recovery, while right plot denotes
recovery of the edges with negative weights corresponding to negative conditional
dependencies.
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4.2 Real Data Examples

To demonstrate the versatility of our family of graphical models, we also provide two
real data examples: a meta-miRNA inhibitory network estimated by the Poisson graph-
ical model, Figure 4, and a cell signaling network estimated by the exponential graphical
model, Figure 5.

When applying our family of graphical models, there is always a question of whether our
model is an appropriate fit for the observed data. Typically, one can assess model fit using
goodness-of-fit tests. For the Gaussian graphical model, this reduces to testing whether the
data follows a multivariate Gaussian distribution. For general exponential family graphical
models, testing for goodness-of-fit is more challenging. Some have proposed likelihood ratio
tests specifically for lattice systems with a fixed and known dependence structure (Besag,
1974). When the network structure is unknown, however, there are no such existing tests.
While we leave the development of an exact test to future work, we provide a heuristic that
can help us understand whether our model is appropriate for a given dataset.

Recall that our model assumes that conditional on its node-neighbors, each variable
is distributed according to an exponential family. Thus, if the neighborhood is known,
our conditional models are simply GLMs, for which the goodness-of-fit can be assessed
compared to a null model by a likelihood ratio test (McCullagh and Nelder, 1989). When
neighborhoods must be estimated, and specifically when estimated via an `1-norm penalty,
the resulting ratio of likelihoods no longer follow a chi-squared distribution (Bühlmann,
2011). Recently, for the `1 linear regression case, Lockhart et al. (2014) have shown that
the difference in the residual sums of squares follows an exponential distribution. Similar
results have not yet been extended to the penalized GLM case. In the absence of such tests,
we propose a simple heuristic: for each node, first estimate the node-neighborhood via our
proposed M-estimator. Next, assuming the neighborhood is fixed, fit a GLM and compare
the fit of this model to that of a null model (only an intercept term) via the likelihood ratio
test. One can then heuristically assess the overall goodness-of-fit by examining the fit of
a GLM to all the nodes. This procedure is clearly not an exact test, and following from
Lockhart et al. (2014), it is likely conservative. In the absence of an exact test, which we
leave for future work, this heuristic provides some assurances about the appropriateness of
our model for real data.

4.2.1 Poisson Graphical Model: Meta-miRNA Inhibitory Network

Gaussian graphical models have often been used to study high-throughput genomic net-
works estimated from microarray data (Pe’er et al., 2001; Friedman, 2004; Wei and Li,
2007). Many high-throughput technologies, however, do not produce even approximately
Gaussian data, so that our class of graphical models could be particularly important for
estimating genomic networks from such data. We demonstrate the applicability of our class
of models by estimating a meta-miRNA inhibitory network for breast cancer estimated by a
Poisson graphical model. Level III breast cancer miRNA expression (Cancer Genome Atlas
Research Network, 2012) as measured by next generation sequencing was downloaded from
the TCGA portal (http://tcga-data.nci.nih.gov/tcga/). MicroRNAs (miRNA) are short
RNA fragments that are thought to be post-transcriptional regulators, predominantly in-
hibiting translation. Measuring miRNA expression by high-throughput sequencing results
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in count data that is zero-inflated, highly skewed, and whose total count volume depends on
experimental conditions (Li et al., 2011). Data was processed to be approximately Poisson
by following the steps described in (Allen and Liu, 2013). In brief, the data was quantile
corrected to adjust for sequencing depth (Bullard et al., 2010); the miRNAs with little vari-
ation across the samples, the bottom 50%, were filtered out; and the data was adjusted for
possible over-dispersion using a power transform and a goodness of fit test (Li et al., 2011).
We also tested for batch effects in the resulting data matrix consisting of 544 subjects and
262 miRNAs: we fit a Poisson ANOVA model (Leek et al., 2010), and only found 4% of
miRNAs to be associated with batch labels; and thus no significant batch association was
detected. As several miRNAs likely target the same gene or genes in the same pathway, we
expect there to be strong positive dependencies among variables that cannot be captured
directly by our Poisson graphical model which only permits negative conditional relation-
ships. Thus, we will use our model to study inhibitory relationships between what we term
meta-miRNAs, or groups of miRNAs that are tightly positively correlated. To accomplish
this, we further processed our data to form clusters of positively correlated miRNAs using
hierarchical clustering with average linkage and one minus the correlation as the distance

Figure 4: Meta-miRNA inhibitory network for breast cancer estimated via Poisson graph-
ical models from miRNA-sequencing data. Level III data from TCGA was pro-
cessed into tightly correlated clusters, meta-miRNAs, with the driver miRNAs
identified for each cluster taken as the set of nodes for our network. The Poisson
network reveals major inhibitory relationships between three hub miRNAs, two
of which have been previously identified as tumor suppressors in breast cancer.
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metric. This resulted in 40 clusters of tightly positively correlated miRNAs. The nodes of
our meta-miRNA network were then taken as a the medoid, or median centroid defined as
the miRNA closest in Euclidean distance to the cluster centroid, in each group.

A Poisson graphical model was fit to the meta-miRNA data by performing neighbor-
hood selection with the sparsity of the graph determined by stability selection (Liu et al.,
2010). The heuristic previously discussed was used to assess goodness-of-fit for our model.
Out of the 40 node-neighborhoods tested via a likelihood ratio test, 36 exhibited p-values
less than 0.05, and 34 were less than 0.05/40, the Bonferroni-adjusted significance level.
These results show that the Poisson GLM is a significantly better fit for the majority of
node-neighborhoods than the null model, indicating that our Poisson graphical model is
appropriate for this data. The results of our estimated Poisson graphical model, Figure 4
(left), are consistent with the cancer genomics literature. First, the meta-miRNA inhibitory
network has three major hubs. Two of these, miR-519 and miR-520, are known to be breast
cancer tumor suppressors, suppressing growth by reducing HuR levels (Abdelmohsen et al.,
2010) and by targeting NF-KB and TGF-beta pathways (Keklikoglou et al., 2012) respec-
tively. The third major hub, miR-3156, is a miRNA of unknown function; from its major
role in our network, we hypothesize that miR-3156 is also associated with tumor suppres-
sion. Also interestingly, let-7, a well-known miRNA involved in tumor metastasis (Yu et al.,
2007), plays a central role in our network, sharing edges with the five largest hubs. This
suggests that our Poisson graphical model has recovered relevant negative relationships be-
tween miRNAs with the five major hubs acting as suppressors, and the central let-7 miRNA
and those connected to each of the major hubs acting as enhancers of tumor progression in
breast cancer.

4.2.2 Exponential Graphical Model: Inhibitory Cell-Signaling Network

We demonstrate our exponential graphical model, derived from the univariate exponential
distribution, using a protein signaling example (Sachs et al., 2005). Multi-florescent flow
cytometry was used to measure the presence of eleven proteins (p = 11) in n = 7462 cells.
This data set was first analyzed using Bayesian Networks in Sachs et al. (2005) and then
using the graphical lasso algorithm in Friedman et al. (2007). Measurements from flow-
cytometry data typically follow a left skewed distribution. Thus to model such data, these
measurements are typically normalized to be approximately Gaussian using a log transform
after shifting the data to be non-negative (Herzenberg et al., 2006). Here, we demonstrate
the applicability of our exponential graphical models to recover networks directly from
continuous skewed data, so that we learn the network directly from the flow-cytometry
data without any log or such transforms. Our pre-processing is limited to shifting the data
for each protein so that it consists of non-negative values. For comparison purposes, we
also fit a Gaussian graphical model to the log-transformed data.

We then learned an exponential and Gaussian graphical model from this flow cytom-
etry data using stability selection (Liu et al., 2010) to select the sparsity of the graphs.
The goodness-of-fit heuristic previously described was used to assess the appropriateness of
our model. Out of the eight connected node-neighborhoods, the likelihood ratio test was
statistically significant for seven neighborhoods, indicating that our exponential GLM is a
better fit than the null model. The estimated protein-signaling network is shown on the
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right in Figure 5 with that of the Gaussian graphical model fit to the log-transformed data
on the left. Estimated negative conditional dependencies are shown in red. Recall that
the exponential graphical model restricts the edge weights to be non-negative; because of
the negative inverse link, this implies that only negative conditional associations can be
estimated. Notice that our exponential graphical model finds that PKA, protein kinase A,
is a major protein inhibitor in cell signaling networks. This is consistent with the inhibitory
relationship of PKA as estimated by the Gaussian graphical model, right Figure 5, as well as
its hub status in the Bayesian network of (Sachs et al., 2005). Interestingly, our exponential
graphical model also finds a clique between PIP2, Mek, and P38, which was not found by
Gaussian graphical models.

5. Discussion

We study what we call the class of exponential family graphical models that arise when
we assume that node-wise conditional distributions follow exponential family distributions.
Our work broadens the class of off-the-shelf graphical models from classical instances such as
Ising and Gaussian graphical models. In particular, our class of graphical models provide
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Figure 5: Cell signaling network estimated from flow cytometry data via exponential graph-
ical models (left) and Gaussian graphical models (right). The exponential graph-
ical model was fit to un-transformed flow cytometry data measuring 11 proteins,
and the Gaussian graphical model to log-transformed data. Estimated negative
conditional dependencies are given in red. Both networks identify PKA (protein
kinase A) as a major inhibitor, consistent with previous results.
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closed form multivariate densities as extensions of several univariate exponential family
distributions (e.g. Poisson, exponential, negative binomial) where few currently exist; and
thus may be of further interest to the statistical community. Further, we provide simple
M-estimators for estimating any of these graphical models from data, by fitting node-wise
penalized conditional exponential family distributions, and show that these estimators enjoy
strong statistical guarantees. The statistical analyses of our M-estimators required subtle
techniques that may be of general interest in the analysis of sparse M-estimation.

There are many avenues of future work related to our proposed models. We assume
that all conditional distributions are members of an exponential family. To determine
whether this assumption is appropriate in practice for real data, a goodness-of-fit proce-
dure is needed. While we have proposed a heuristic to this effect, more work is needed
to determine a rigorous likelihood ratio test for testing model fit. For several instances of
our proposed class of models, specifically those with variables with infinite domains, severe
restrictions on the parameter space are sometimes needed. For instance, the Poisson and
exponential graphical models studied in Section 4, could only model negative conditional
dependencies, which may not always be desirable in practice. A key question for future
work is whether these restrictions can be relaxed for particular exponential family distri-
butions. Finally, while we have focused on single parameter exponential families, it would
be interesting to investigate the consequences of using multi-parameter exponential family
distributions. Overall, our work has opened avenues for learning Markov networks from a
broad class of univariate distributions, the properties and applications of which leave much
room for future research.
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Appendix A. Proof of Theorem 2

The proof follows the development in Besag (1974), where they consider the case with
k = 2. We define Q(X) as Q(X) := log(P (X)/P (0)), for any X = (X1, . . . , Xp) ∈ X p where
P (0)) denotes the probability that all random variables take 0. Given any X, also denote
Xr:0 := (X1, . . . , Xr−1, 0, Xr+1, . . . , Xp). Now, consider the following the most general form
for Q(X):

Q(X) =
∑

1≤r≤p
XrGr(Xr) + . . .+

∑
1≤r1<r2<...<rk≤p

Xr1 . . . XrkGr1...rk(Xr1 , . . . , Xrk), (21)

since the joint distribution has factors of at most size k. By the definition of Q and some
algebra (See Section 2 of Besag (1974) for details), it can then be seen that

exp(Q(X)−Q(Xr:0))

= P (Xr|X1, . . . , Xr−1, Xr+1, . . . , Xp)/P (0|X1, . . . , Xr−1, Xr+1, . . . , Xp). (22)
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Now, consider the simplifications of both sides of (22). For notational simplicity, we fix
r = 1 for a while. Given the form of Q(X) in (21), we have

Q(X)−Q(X1:0) = X1

(
G1(X1) +

∑
2≤t≤p

XtG1t(X1, Xt) + . . .

+
∑

2≤t2<t3<...<tk≤p
Xt2 . . . XtkG1t2...tk(X1, Xt2 . . . , Xtk)

)
. (23)

By given the exponential family form of the node-conditional distribution specified in the
statement, right-hand side of (22) become

log
P (X1|X2, . . . , Xp)

P (0|X2, . . . , Xp)
= E(XV \1)(B(X1)−B(0)) + (C(X1)− C(0)). (24)

Setting Xt = 0 for all t 6= 1 in (23) and (24), we obtain

X1G1(X1) = E(0)(B(X1)−B(0)) + (C(X1)− C(0)).

Setting Xt2 = 0 for all t2 6∈ {1, t},

X1G1(X1) +X1XtG1t(X1, Xt) = E(0, . . . , Xt, . . . , 0)(B(X1)−B(0)) + (C(X1)− C(0)).

Recovering the index 1 back to r yields

XrGr(Xr) = E(0)(B(Xr)−B(0)) + (C(Xr)− C(0)),

XrGr(Xr) +XrXtGrt(Xr, Xt) = E(0, . . . , Xt, . . . , 0)(B(Xr)−B(0)) + (C(Xr)− C(0)).

Similarly,

XtGt(Xt) +XrXtGrt(Xr, Xt) = E(0, . . . , Xr, . . . , 0)(B(Xt)−B(0)) + (C(Xt)− C(0)).
(25)

From the above three equations, we obtain

XrXtGrt(Xr, Xt) = θrt(B(Xr)−B(0))(B(Xt)−B(0)).

More generally, by considering non-zero triplets, and setting Xv = 0 for all v 6∈ {r, t, u}, we
obtain

XrGr(Xr) +XrXtGrt(Xr, Xt) +XrXuGru(Xr, Xu) +XrXtXuGrtu(Xr, Xt, Xu) =

E(0, . . . , Xt, . . . , Xu, . . . , 0)(B(Xr)−B(0)) + (C(Xr)− C(0)), (26)

so that by a similar reasoning we can obtain

XrXtXuGrtu(Xr, Xt, Xu) = θrtu(B(Xr)−B(0))(B(Xt)−B(0))(B(Xu)−B(0)).

More generally, we can show that

Xt1 . . . XtkGt1,...,tk(Xt1 , . . . , Xtk) = θt1,...,tk(B(Xt1)−B(0)) . . . (B(Xtk)−B(0)).

Thus, the k-th order factors in the joint distribution as specified in (21) are tensor products
of (B(Xr)−B(0)), thus proving the statement of the theorem.
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Appendix B. Proof of Proposition 3

By the definition of (20) with the following simple calculation, the moment generating
function of X2

r becomes

logE[exp(aX2
r )] = log

∫
X

exp
{
aX2

r +
∑
t∈V

θ∗tXt +
∑

(t,u)∈E

θ∗tuXtXu +
∑
t∈V

C(Xt)−A(θ∗)
}

= Ār(a; θ∗)− Ār(0; θ∗).

Suppose that a ≤ 1. Then, by a Taylor Series expansion, we have for some ν ∈ [0, 1]

Ār(a; θ∗)− Ār(0; θ∗) = a
∂

∂η
Ār(0; θ∗) +

1

2
a2 ∂

2

∂η2
Ār(νa; θ∗) ≤ κva+

1

2
κha

2,

where the inequality uses Condition (C3). Note that since the derivative of log-partition
function is the mean of the corresponding sufficient statistics and Ār(0; θ) = A(θ), ∂

∂η Ār(0; θ∗) =

E[X2
r ] ≤ κv by assumption. Thus, by the standard Chernoff bounding technique, for all

positive a ≤ 1,

P

(
1

n

n∑
i=1

(
X(i)
r

)2 ≥ δ) ≤ exp(−nδa+ nκva+
n

2
κha

2).

With the choice of a = δ−κv
κh
≤ 1, we obtain

P

(
1

n

n∑
i=1

(
X(i)
r

)2 ≥ δ) ≤ exp

(
− n(δ − κv)2

2κh

)
≤ exp

(
− n δ2

8κh

)
,

provided that δ ≤ 2κv/3, as in the statement.

Appendix C. Proof of Proposition 4

Let v̄ ∈ Rp+(p2) be the zero-padded parameter with only one non-zero coordinate, which is
1, for the sufficient statistics Xr so that ‖v̄‖2 = 1. A simple calculation shows that

logE[exp(Xr)] = A(θ∗ + v̄)−A(θ∗).

By a Taylor Series expansion and Condition (C3), we have for some ν ∈ [0, 1]

A(θ∗ + v̄)−A(θ∗) = ∇A(θ∗) · v̄ +
1

2
v̄T∇2A(θ∗ + νv̄)v̄

(i)

≤ E[Xr]‖v̄‖2 +
1

2

∂2

∂θ2
r

A(θ∗ + νv̄)‖v̄‖22 ≤ κm +
1

2
κh

where the inequality (i) uses the fact that v̄ has only nonzero element for the sufficient
statistics Xr. Thus, again by the standard Chernoff bounding technique, for any positive
constant a, P (Xr ≥ a) ≤ exp(−a+ κm + 1

2κh), and by setting a = δ log η we have

P (Xr ≥ δ log η) ≤ exp(−δ log η + κm +
1

2
κh) ≤ cη−δ

where c = exp(κm + 1
2κh), as claimed.
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Appendix D. Proof of Theorem 5

In this section, we sketch the proof of Theorem 5 following the primal-dual witness proof
technique in Wainwright (2009); Ravikumar et al. (2010). We first note that the optimality
condition of the convex program (19) can be written as

∇`(θ̂;X1:n) + λnẐ = 0 (27)

where Ẑ is a length p vector: Ẑ\r ∈ ∂‖θ̂\r‖1 is a length (p − 1) subgradient vector where

Ẑrt = sign(θ̂rt) if θ̂rt 6= 0, and |Ẑrt| ≤ 1 otherwise; while Ẑr, corresponding to θr, is set to 0
since the nodewise term θr is not penalized in the M -estimation problem (19).

Note that in a high-dimensional regime with p � n, the convex program (19) is not
necessarily strictly convex, so that it might have multiple optimal solutions. However,
the following lemma, adapted from Ravikumar et al. (2010), shows that nonetheless the
solutions share their support set under certain conditions. We first recall the notation
S = {(r, t) : t ∈ N∗(r)} to denote the true neighborhood of node r, and Sc to denote its
complement.

Lemma 8 Suppose that there exists a primal optimal solution θ̂ with associated subgradient
Ẑ such that ‖ẐSc‖∞ < 1. Then, any optimal solution θ̃ will satisfy θ̃Sc = 0. Moreover,
under the condition of ‖ẐSc‖∞ < 1, if Q∗SS is invertible, then θ̂ is the unique optimal
solution of (19).

Proof This lemma can be proved by the same reasoning developed for the special cases
Wainwright (2009); Ravikumar et al. (2010) in our framework; As in the previous works,
for any node-conditional distribution in the form of exponential family, we are solving the
convex objective with `1 regularizer (19). Therefore, the problem can be written as an
equivalent constrained optimization problem, and by the complementary slackness, for any
optimal solution θ̃, we have 〈Ẑ, θ̃〉 = ‖θ̃‖1. This simply implies that for all index j for which
|Ẑj | < 1, θ̃j = 0 (See Ravikumar et al. (2010) for details). Therefore, if there exists a primal

optimal solution θ̂ with associated subgradient Ẑ such that ‖ẐSc‖∞ < 1, then, any optimal
solution θ̃ will satisfy θ̃Sc = 0 as claimed.

Finally, we consider the restricted optimization problem subject to the constraint θSC =
0. For this restricted optimization problem, if the Hessian, Q∗SS , is positive definite as
assumed in the lemma, then, this restricted problem is strictly convex, and its solution is
unique. Moreover, since all primal optimal solutions of (19), θ̃, satisfy θ̃Sc = 0 as discussed,
the solution of the restricted problem is the unique solution of (19).

We use this lemma to prove the theorem following the primal-dual witness proof tech-
nique in Wainwright (2009); Ravikumar et al. (2010). Specifically, we explicitly construct a
pair (θ̂, Ẑ) as follows (denoting the true support set of the edge parameters by S):

(a) Recall that θ(r) = (θr, θ\r) ∈ R × Rp−1. We first fix θSc = 0 and solve the restricted

optimization problem: (θ̂r, θ̂S , 0) = arg minθr∈R, (θS ,0)∈Rp−1{`(θ;X1:n)+λn‖θS‖1}, and ẐS =

sign(θ̂S).

(b) We set θ̂Sc = 0.
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(c) We set ẐSc to satisfy the condition (27) with θ̂ and ẐS .

By construction, the support of θ̂ is included in the true support S of θ∗, so that we
would finish the proof of the theorem provided (a) θ̂ satisfies the stationary condition of
(19), as well as the condition ‖ẐSc‖∞ < 1 in Lemma 8 with high probability, so that by
Lemma 8, the primal solution θ̂ is guaranteed to be unique; and (b) the support of θ̂ is not
strictly within the true support S. We term these conditions strict dual feasibility, and sign
consistency respectively.

We will now rewrite the subgradient optimality condition (27) as

∇2`(θ∗;X1:n)(θ̂ − θ∗) = −λnẐ +Wn +Rn

where Wn := −∇`(θ∗;X1:n) is the sample score function (that we will show is small with
high probability), and Rn is the remainder term after coordinate-wise applications of the
mean value theorem; Rnj = [∇2`(θ∗;X1:n)−∇2`(θ̄(j);X1:n)]Tj (θ̂ − θ∗), for some θ̄(j) on the

line between θ̂ and θ∗, and with [·]Tj being the j-th row of a matrix.

Recalling the notation for the Fisher information matrix Q∗ := ∇2`(θ∗;X1:n), we then
have

Q∗(θ̂ − θ∗) = −λnẐ +Wn +Rn.

From now on, we provide lemmas that respectively control various terms in the above
expression: the score term Wn, the deviation θ̂− θ∗, and the remainder term Rn. The first
lemma controls the score term Wn:

Lemma 9 Suppose that we set λn to satisfy 8(2−α)
α

√
κ1(n, p)κ4

√
log p
n ≤ λn ≤ 4(2−α)

α

κ1(n, p)κ2(n, p)κ4 for some constant κ4 ≤ min{2κv/3, 2κh + κv}. Suppose also that n ≥
8κ2h
κ24

log p. Then, given a incoherence parameter α ∈ (0, 1],

P

(
2− α
λn
‖Wn‖∞ ≤

α

4

)
≥ 1− c1p

′−2 − exp(−c2n)− exp(−c3n)

where p′ := max{n, p}.

The next lemma controls the deviation θ̂ − θ∗.

Lemma 10 Suppose that λnd ≤
ρ2min

40ρmaxκ3(n,p) log p′ and ‖Wn‖∞ ≤ λn
4 . Then, we have

P

(
‖θ̂S − θ∗S‖2 ≤

5

ρmin

√
dλn

)
≥ 1− c1p

′−2, (28)

for some constant c1 > 0.

The last lemma controls the Taylor series remainder term Rn:

Lemma 11 If λnd ≤
ρ2min

400ρmaxκ3(n,p) log p′
α

2−α , and ‖Wn‖∞ ≤ λn
4 , then we have

P

(
‖Rn‖∞
λn

≤ α

4(2− α)

)
≥ 1− c1p

′−2, (29)

for some constant c1 > 0.
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The proof then follows from Lemmas 9, 10 and 11 in a straightforward fashion, fol-
lowing Ravikumar et al. (2010). Consider the choice of regularization parameter λn =
8(2−α)
α

√
κ1(n, p)κ4

√
log p
n . For a sample size greater n ≥ max{ 4

κ1(n,p)κ2(n,p)2κ4
,

8κ2h
κ24
} log p, the

conditions of Lemma 9 are satisfied, so that we may conclude that ‖Wn‖∞ ≤ α
1−α

λn
4 ≤

λn
4

with high probability. Moreover, with a sufficiently large sample size such that n ≥
L′
(

2−α
α

)4
d2κ1(n, p)κ3(n, p)2 log p(log p′)2 for some constant L′ > 0 depending only on ρmin,

ρmax, κ4 and α, it can be shown that the remaining condition of Lemma 11 (and hence the
milder condition in Lemma 10) in turn is satisfied. Therefore, the resulting statements (28)
and (29) of Lemmas 10 and 11 hold with high probability.

Strict dual feasibility. Following Ravikumar et al. (2010), we obtain

‖ẐSc‖∞ ≤ |||Q∗ScS(Q∗SS)−1|||∞
[‖Wn

S ‖∞
λn

+
‖RnS‖∞
λn

+ 1
]

+
‖Wn

Sc‖∞
λn

+
‖RnSc‖∞
λn

≤ (1− α) + (2− α)
[‖Wn‖∞

λn
+
‖Rn‖∞
λn

]
≤ (1− α) +

α

4
+
α

4
= 1− α

2
< 1.

Correct sign recovery. To guarantee that the support of θ̂ is not strictly within the true

support S, it suffices to show that ‖θ̂S − θ∗S‖∞ ≤
θ∗min

2 . From Lemma 10, we have ‖θ̂S −
θ∗S‖∞ ≤ ‖θ̂S − θ∗S‖2 ≤

5
ρmin

√
dλn ≤

θ∗min
2 as long as θ∗min ≥ 10

ρmin

√
dλn. This completes the

proof.

D.1 Proof of Lemma 9

For a fixed t ∈ V \r, we define V
(i)
t for notational convenience so that

Wn
t =

1

n

n∑
i=1

X(i)
r X

(i)
t −X

(i)
t D′(θ∗r + 〈θ∗\r, X

(i)
V \r〉) =

1

n

n∑
i=1

V
(i)
t

Consider the upper bound on the moment generating function of V
(i)
t , conditioned on X

(i)
V \r,

E[exp(aVt)|X(i)
V \r] =

∫
Xr

exp

{
a
[
XrX

(i)
t −X

(i)
t D′

(
θ∗r + 〈θ∗\r, X

(i)
V \r〉

)]
+
(
Xr

(
θ∗r + 〈θ∗\r, X

(i)
V \r〉

)
+ C(Xr)−D

(
θ∗r + 〈θ∗\r, X

(i)
V \r〉

))}
= exp

{
D
(
θ∗r + 〈θ∗\r, X

(i)
V \r〉+ aX

(i)
t

)
−D

(
θ∗r + 〈θ∗\r, X

(i)
V \r〉

)
− aX(i)

t D′
(
θ∗r + 〈θ∗\r, X

(i)
V \r〉

)}
= exp

{a2

2

(
X

(i)
t

)2
D′′
(
θ∗r + 〈θ∗\r, X

(i)
V \r〉+ νiaX

(i)
t

)}
for some νi ∈ [0, 1]

where the last equality holds by the second-order Taylor series expansion. Consequently,
we have

1

n

n∑
i=1

logE[exp(aV
(i)
t )|X(i)

V \r] ≤
1

n

n∑
i=1

a

2

(
X

(i)
t

)2
D′′
(
θ∗r + 〈θ∗\r, X

(i)
V \r〉+ νiaX

(i)
t

)
.
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First, we define the event: ξ1 :=
{

maxi,s |X(i)
r | ≤ 4 log p′

}
. Then, by Proposition 4, we

obtain P [ξc1] ≤ c1 npp
′−4 ≤ c1 p

′−2. Provided that a ≤ κ2(n, p), we can use Condition (C4)
to control the second-order derivative of log-partition function and we obtain

1

n

n∑
i=1

logE[exp(aV
(i)
t )|X(i)

V \r] ≤
κ1(n, p)a2

2

1

n

n∑
i=1

(
X

(i)
t

)2
for a ≤ κ2(n, p)

with probability at least 1 − c1p
′−2. Now, for each index t, the variables 1

n

∑n
i=1

(
X

(i)
t

)2
satisfy the tail bound in Proposition 3. Let us define the event ξ2 :=

{
max
t∈V

1
n

∑n
i=1

(
X

(i)
t

)2
≤ κ4

}
for some constant κ4 ≤ min{2κv/3, 2κh + κv}. Then, we can establish the upper

bound of probability P [ξc2] by a union bound:

P [ξc2] ≤ exp(− κ2
4

4κ2
h

n+ log p) ≤ exp(−c2n)

as long as n ≥ 8κ2h
κ24

log p. Therefore, conditioned on ξ1, ξ2, the moment generating function

is bounded as follows:

1

n

n∑
i=1

logE[exp(aV
(i)
t )|X(i)

V \r, ξ1, ξ2] ≤ κ1(n, p)κ4 a
2

2
for a ≤ κ2(n, p).

The standard Chernoff bound technique implies that for any δ > 0,

P
[∣∣ 1
n

n∑
i=1

V
(i)
t

∣∣ > δ | ξ1, ξ2

]
≤ 2 exp

(
n
(κ1(n, p)κ4 a

2

2
− aδ

))
for a ≤ κ2(n, p).

Setting a = δ
κ1(n,p)κ4

yields

P
[∣∣ 1
n

n∑
i=1

V
(i)
t

∣∣ > δ | ξ1, ξ2

]
≤ 2 exp

(
− nδ2

2κ1(n, p)κ4

)
for δ ≤ κ1(n, p)κ2(n, p)κ4.

Suppose that α
2−α

λn
4 ≤ κ1(n, p)κ2(n, p)κ4 for large enough n; thus setting δ = α

2−α
λn
4 :

P
[∣∣ 1
n

n∑
i=1

V
(i)
t

∣∣ > α

2− α
λn
4
| ξ1, ξ2

]
≤ 2 exp

(
− α2

(2− α)2

nλ2
n

32κ1(n, p)κ4

)
,

and by a union bound, we obtain

P
[
‖Wn‖∞ >

α

2− α
λn
4
| ξ1, ξ2

]
≤ 2 exp

(
− α2

(2− α)2

nλ2
n

32κ1(n, p)κ4
+ log p

)
.

Finally, provided that λn ≥ 8(2−α)
α

√
κ1(n, p)κ4

√
log p
n , we obtain

P
[
‖Wn‖∞ >

α

2− α
λn
4

]
≤ c1p

′−2 + exp(−c2n) + exp(−c3n)

where we use the fact that the probability of occurring event A is upper bounded by
P (A) ≤ P (ξc1) + P (ξc2) + P (A|ξ1, ξ2).
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D.2 Proof of Lemma 10

In order to establish the error bound ‖θ̂S − θ∗S‖2 ≤ B for some radius B, several works (e.g.
Negahban et al. (2012); Ravikumar et al. (2010)) proved that it suffices to show F (uS) > 0
for all uS := θS − θ∗S s.t. ‖uS‖2 = B where

F (uS) := `(θ∗S + uS ;X1:n)− `(θ∗S ;X1:n) + λn(‖θ∗S + uS‖1 − ‖θ∗S‖1).

Note that F (0) = 0, and for ûS := θ̂S − θ∗S , F (ûS) ≤ 0. From now on, we show that F (uS)
is strictly positive on the boundary of the ball with radius B = Mλn

√
d where M > 0 is a

parameter that we will choose later in this proof. Some algebra yields

F (uS) ≥ (λn
√
d)2
{
− 1

4
M + q∗M2 −M

}
(30)

where q∗ is the minimum eigenvalue of ∇2`(θ∗S + vuS ;X1:n) for some v ∈ [0, 1]. Moreover,

q∗ := Λmin

(
∇2`(θ∗S + vuS)

)
≥ min

v∈[0,1]
Λmin

(
∇2`(θ∗S + vuS)

)
≥ Λmin

[ 1

n

n∑
i=1

D′′(θ∗r + 〈θ∗S , X
(i)
S 〉)X

(i)
S

(
X

(i)
S

)T ]
− max
v∈[0,1]

||| 1
n

n∑
i=1

D′′′
(
θ∗r + 〈θ∗S , X

(i)
S 〉
)(
uTSX

(i)
S

)
X

(i)
S

(
X

(i)
S

)T |||2
≥ ρmin − max

v∈[0,1]
max
y

1

n

n∑
i=1

|D′′′
(
θ∗r + 〈θ∗S , X

(i)
S 〉
)
| |〈uS , X(i)

S 〉|
(
〈X(i)

S , y〉
)2

where y ∈ Rd s.t ‖y‖2 = 1. Similarly as in the previous proof, we consider the event ξ1

with probability at least 1 − c1p
′−2. Then, since all the elements in vector X

(i)
S is smaller

than 4 log p′, |〈uS , X(i)
S 〉| ≤ 4 log p′

√
d‖uS‖2 = 4 log p′Mλnd for all i. At the same time, by

Condition (C4), |D′′′((θ∗r + vuS) + 〈θ∗S + vuS , X
(i)
S 〉)| ≤ κ3(n, p). Note that θ∗S + vuS is a

convex combination of θ∗S and θ̂S , and as a result, we can directly apply the Condition (C4).
Hence, conditioned on ξ1, we have

q∗ ≥ ρmin − 4ρmaxMλndκ3(n, p) log p′.

As a result, assuming that λn ≤ ρmin

8ρmaxMdκ3(n,p) log p′ , q
∗ ≥ ρmin

2 . Finally, from (30), we obtain

F (uS) ≥ (λn
√
d)2
{
− 1

4
M +

ρmin

2
M2 −M

}
,

which is strictly positive for M = 5
ρmin

. Therefore, if λnd ≤ ρmin

8ρmaxMκ3(n,p) log p′

≤ ρ2min
40ρmaxκ3(n,p) log p′ , then

‖θ̂S − θ∗S‖2 ≤
5

ρmin

√
dλn,

which completes the proof.
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D.3 Proof of Lemma 11

In the proof, we are going to show that ‖Rn‖∞ ≤ 4κ3(n, p) log p′ρmax‖θ̂S − θ∗S‖22. Then,
since the conditions of Lemma 11 are stronger than those of Lemma 10, from the result of
Lemma 10, we can conclude that

‖Rn‖∞ ≤
100κ3(n, p)ρmax log p′

ρ2
min

λ2
nd,

as claimed in Lemma 11.

From the definition of Rn, for a fixed t ∈ V \r, Rnt can be written as

1

n

n∑
i=1

[
D′′
(
θ∗r + 〈θ∗\r, X

(i)
V \r〉

)
−D′′

(
θ̄s + 〈θ̄(t), X

(i)
V \r〉

)][
X

(i)
V \r
(
X

(i)
V \r
)T ]T

t
[θ̂\r − θ∗\r]

where θ̄
(t)
\r is some point in the line between θ̂\r and θ∗\r, i.e., θ̄

(t)
\r = vtθ̂\r + (1 − vt)θ∗\r for

vt ∈ [0, 1]. By another application of the mean value theorem, we have

Rnt = − 1

n

n∑
i=1

{
D′′′
( ¯̄θs + 〈 ¯̄θ(t)

\r , X
(i)
V \r〉

)
X

(i)
t

}{
vt[θ̂\r − θ∗\r]

TX
(i)
V \r
(
X

(i)
V \r
)T

[θ̂\r − θ∗\r]
}

for a some point ¯̄θ
(t)
\r between θ̄

(t)
\r and θ∗\r. Similarly in the previous proofs, conditioned on

the event ξ1, we obtain

|Rnt | ≤
4κ3(n, p) log p′

n

n∑
i=1

{
vt[θ̂\r − θ∗\r]

TX
(i)
V \r
(
X

(i)
V \r
)T

[θ̂\r − θ∗\r]
}
.

Performing some algebra yields

|Rnt | ≤ 4κ3(n, p)ρmax log p′ ‖θ̂S − θ∗S‖22, for all t ∈ V \r

with probability at least 1− c1p
′−2, which completes the proof.

Appendix E. Optimization Problems for Poisson and Exponential
Graphical Model Neighborhood Selection

We propose to fit our family of graphical models by performing neighborhood selection,
or maximizing the `1-penalized log-likelihood for each node conditional on all other nodes.
For several exponential families, however, further restrictions on the parameter space are
needed to ensure a proper Markov Random Field. When performing neighborhood selection,
these can be imposed by adding constraints to the penalized generalized linear models. We
illustrate this by providing the optimization problems solved by our Poisson graphical model
and exponential graphical model M-estimator that are used in Section 4.

Following from Section 3, the neighborhood selection problem for our family of models
maximizes the likelihood of a node, Xr, conditional on all other nodes, XV \r. This condi-
tional likelihood is regularized with an `1 penalty to induce sparsity in the edge weights,
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θ(r) a p− 1 dimensional vector, and constrained to enforce restrictions, θ(r) ∈ C, needed to
yield a proper MRF:

maximize
θ(r)

1

n

n∑
i=1

`
(
Xi,r|Xi,V \r; θ(r)

)
− λn‖θ(r)‖1 subject to θ(r) ∈ C,

where `
(
Xi,r|Xi,V \r; θ(r)

)
is the conditional log-likelihood for the exponential family. For

the Poisson graphical model, the edge weights are constrained to be non-positive. This
yields the following optimization problem:

maximize
θ(r)

1

n

n∑
i=1

[
Xr,iX

T
V \r,iθ(r)− exp

(
XT
V \r,iθ(r)

)]
− λn‖θ(r)‖1

subject to θ(r) ≤ 0.

Similarly, the edge weights of the exponential graphical are restricted to be non-negative
yielding

maximize
θ(r)

1

n

n∑
i=1

[
−Xr,iX

T
V \r,iθ(r) + log

(
XT
V \r,iθ(r)

)]
− λn‖θ(r)‖1

subject to θ(r) ≥ 0.

Note that we neglect the intercept term, assuming this to be zero as is common in other
proposed neighborhood selection methods (Meinshausen and Bühlmann, 2006; Ravikumar
et al., 2010; Jalali et al., 2011). Both of the neighborhood selection problems are concave
problems with a smooth log-likelihood and linear constraints. While there are a plethora
of optimization routines available to solve such problems, we have employed a projected
gradient descent scheme which is guaranteed to converge to a global optimum (Daubechies
et al., 2008; Beck and Teboulle, 2010).
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Abstract

Stacked denoising autoencoders (SDAs) have been successfully used to learn new representations
for domain adaptation. They have attained record accuracy on standard benchmark tasks of senti-
ment analysis across different text domains. SDAs learn robust data representations by reconstruc-
tion, recovering original features from data that are artificially corrupted with noise. In this paper,
we propose marginalized Stacked Linear Denoising Autoencoder (mSLDA) that addresses two
crucial limitations of SDAs: high computational cost and lack of scalability to high-dimensional
features. In contrast to SDAs, our approach of mSLDA marginalizes noise and thus does not re-
quire stochastic gradient descent or other optimization algorithms to learn parameters — in fact,
the linear formulation gives rise to a closed-form solution. Consequently, mSLDA, which can be
implemented in only 20 lines of MATLABTM, is about two orders of magnitude faster than a corre-
sponding SDA. Furthermore, the representations learnt by mSLDA are as effective as the traditional
SDAs, attaining almost identical accuracies in benchmark tasks.

Keywords: domain adaption, fast representation learning, noise marginalization, denoising au-
toencoders

1. Introduction

The goal of domain adaptation (Ben-David et al., 2010; Huang et al., 2006; Weinberger et al.,
2009; Xue et al., 2008) is to generalize a classifier that is trained on a source domain, for which
typically plenty of training data is available, to a target domain, for which data is scarce. Cross-
domain generalization is important in many application areas of machine learning, where such an
imbalance of training data may occur. Examples include computational biology (Liu et al., 2008),
natural language processing (Daume III, 2007; McClosky et al., 2006), computer vision (Saenko
et al., 2010) and web-search ranking (Chapelle et al., 2011).
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Adaptation is challenging, because the data in the two domains is not identically distributed and
a classifier trained on source can be expected to perform significantly worse on the target domain.
Recent work has investigated several techniques to reduce this adaptation error:

• instance re-weighting (Huang et al., 2006; Mansour et al., 2009) is an approach to re-weight
source inputs so that the distribution of the reweighed source data matches that of the target
domain; instance weighting strategies assume that the source and target distribution share
the same support and features. It tends to be less effective for tasks of high-dimensional,
sparse features such as text documents and where source and target distributions differ more
drastically.

• joint feature mapping (Blitzer et al., 2006; Gong et al., 2012; Xue et al., 2008; Glorot et al.,
2011) is an approach to learn a new shared representation for the source and target domains,
in which the two data distributions align. These algorithms are designed for highly divergent
domains, which can contain different features, and are more closely related to our work.

• parameter sharing (Daume III, 2007; Chapelle et al., 2011; Weinberger et al., 2009) is an ap-
proach to adapt machine learning classifiers to incorporate shared weights across the two do-
mains. This is arguably the most popular category of domain adaptation algorithms amongst
practitioners, mostly due to their appealing simplicity (Daume III, 2007).

One of the most successful domain adaptation algorithms was introduced by Glorot et al. (2011),
which falls into the second category. The authors use stacked denoising autoencoders (SDA) (Vin-
cent et al., 2008) to learn a joint feature representation that can be shared across multiple domains.
Denoising autoencoders are one-layer neural networks that are optimized to reconstruct input data
from partial and random corruption. These denoisers can be stacked into deep learning architec-
tures, which are then fine-tuned with back-propagation (Vincent et al., 2008). Glorot et al. (2011)
use the internal representation of the intermediate layers of the SDA as input features for linear clas-
sifiers, an idea pioneered by Lee et al. (2009) and Vincent et al. (2010). The authors demonstrate
in their work that such SDA-learned features are very effective for cross-domain generalization,
even with straight-forward linear Support Vector Machines (SVM) (Cortes and Vapnik, 1995). For
example, it yields record adaptation accuracies on the AmazonTM sentiment-analysis benchmark
tasks of predicting review sentiment across product domains (Blitzer et al., 2006).

Although the capabilities of SDAs are remarkable, they are limited by their high computational
cost. Compared with competing approaches (Blitzer et al., 2006; Xue et al., 2008; Chen et al.,
2011b), SDAs are significantly slower to train. This is primarily the case because of the large num-
ber of model parameters in the denoising autoencoders, which are learned with iterative algorithms
for numerical optimization. The challenge is further compounded by the dimensionality of the input
data and the need for computationally intensive model selection procedures to tune hyperparame-
ters. Consequently, even a highly optimized implementation (Bergstra et al., 2010) may require

hours (even days) of training time on the larger Amazon
TM

benchmark data sets.
In this paper, we introduce a variation of SDAs that addresses these shortcomings. The pro-

posed method, which we refer to as marginalized Stacked Linear Denoising Autoencoder (mSLDA),
adopts the greedy layer-by-layer training of SDAs. Similarly, at each layer we learn a denoiser to
recover input data from random corruption. However, a crucial difference is that we use linear de-
noisers as the basic building blocks. This restriction has two important advantages: 1. the random
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feature corruption can be marginalized out, which alleviates the need to iterate over many corrupted
versions of the data; 2. the weights of the linear denoisers can be computed in closed form, in
very little time (almost instantaneous). Conceptually, marginalizing the corruption is equivalent to
training the model over an infinite number of corrupted versions of the input data.

Although the restriction to only linear denoisers makes mSLDA less expressive than SDA, we
observe that for high dimensional data sets they are sufficient and mSLDA features match the orig-
inal SDA features in quality. This is particularly impressive, as the training of the mSLDA features
is several orders of magnitude faster (reducing training from up to 2 days for SDA to a few minutes
with mSLDA).

Two earlier short paper on this work (Chen et al., 2012; Xu et al., 2012), already introduce this
learning framework, but this longer version provides a significant amount of additional details. In
particular, we provide extensions to different corruption models, further and deeper analysis of the
mSLDA algorithm, additional experiments with different datasets (text documents and images), and
new experimental results in semi-supervised settings. The remaining parts of the paper is organized
as follows. In Section 2 we lay out the problem and review a couple of closely-related prior works.
In Section 3 we introduce the mSLDA framework for learning representations. In Section 4 we
discuss several input corruption models, which fit naturally into the mSLDA framework. In Sec-
tion 5 we propose an extension to scale up our learning framework to inputs of high dimensions. In
Section 7 we present an extensive set of results evaluating mSLDA on several text classification and
object recognition tasks. In Section 8 we provide further analysis of the results and discuss strengths
and limitations of mSLDA.

2. Background and Related Work

We assume that during training we are provided with labeled data from the source domain L =
{x1, . . . ,xm} ⊂ Rd with corresponding labels y1, . . . , ym ⊂ Y . Here, Y can consist of real valued
or categorical labels. We focus on the simple binary case with Y = {+1,−1} throughout this
manuscript, however we would like to emphasize that our proposed feature learning algorithm is
unsupervised and therefore agnostic to the label choice (which only affects the classifier trained on
the learned features). If labeled target data is available, it can be included into L, although in our
setting we do not assume this is the case. We are potentially also provided with unlabeled data
U = {xm+1 . . . ,xm+u} ⊂ Rd, which may be sampled from source, target or other (related) source
distributions. For notational simplicity we define n = m+ u. Although we do assume that any two
domains have some overlap in features, we do not assume that they have identical features. Instead,
we pad all input vectors with zeros to make them of matching dimensionality d. Given this mix of
labeled and unlabeled source and target data, our goal is to train a classifier that accurately predicts
the labels of instances from the target domain T .

In the following, we briefly review work that is most similar to ours, including Structural Cor-
respondence Learning (SCL) (Blitzer et al., 2006), Stacked Denoising Autoencoders (Glorot et al.,
2011) and learning with marginalized corruption (van der Maaten et al., 2013).

2.1 Structural Correspondence Learning

The leaning of joint source / target representations explicitly for domain adaptation was pioneered
by Blitzer et al. (2006) and their Structural Correspondence Learning (SCL) algorithm. SCL as-
sumes a known set of pivot features, which appear frequently in both domains (source and target)
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and behave similarly. These are used to put domain specific words in correspondence. The low-rank
representation learned with SCL essentially encodes the covariance between non-pivot features and
the pivot features. As described in detail in Section 3, the single-layer mSLDA also learns the cor-
relations between all the features. In this sense, the resulting feature space is similar to SCL, and
the computation time of SCL and mSLDA are comparable. However, mSLDA introduces recon-
struction from corruption and stacking of multiple denoising layers, which result in superior feature
quality. Further, mSLDA does not require any side information about a pivot features set, which can
be hard to identify (Blitzer et al., 2006).

2.2 Marginalized Corrupted Features

Recently, van der Maaten et al. (2013) proposed the Marginalized Corrupted Features (MCF) learn-
ing framework, which was inspired by our earlier publication of mSLDA (Chen et al., 2012).1 MCF
uses marginalized corruption to improve the generalization performance of linear classifiers, as an
alternative to L2 or L1 norm regularization. MCF is equivalent to first generating infinitely many
corrupted copies of the training data, with a pre-defined corruption distribution, and then training an
unregularized classifier on this (infinite) data set. Training on additional corrupted inputs leads to
substantially more robust classifiers, as has previously been shown by Burges and Schölkopf (1997).
MCF borrows the idea from mSLDA to marginalize out this corruption, which leads to substantial
improvements in speed and accuracy over explicitly corrupting only finitely many copies of the
training data. In a similar spirit, Wang and Manning (2013) introduce marginalized dropout (Hinton
et al., 2012) for logistic regression and show that the marginalized corruption can be interpreted as
active regularization.

2.3 Stacked Denoising Autoencoder

Our work is mostly inspired by Autoencoders. Various forms of autoencoders have been developed
in the machine learning community (Rumelhart et al., 1986; Baldi and Hornik, 1989; Kavukcuoglu
et al., 2009; Lee et al., 2009; Vincent et al., 2008; Rifai et al., 2011). In its simplest form, an autoen-
coder has two components, an encoder h(·) maps an input x ∈Rd to some hidden representation
h(x)∈Rdh , and a decoder g(·) maps this hidden representation back to a reconstructed version of
x, such that g(h(x))≈ x. The parameters of the autoencoders are learned to minimize the recon-
struction error, measured by some loss `(x, g(h(x))). Choices for the loss include squared error or
Kullback-Leibler divergence (when the feature values are in [0, 1].)

Denoising Autoencoders (DAs) incorporate a slight modification to this setup and corrupt the
inputs before mapping them into the hidden representation. They are trained to reconstruct (or
denoise) the original input x from its corrupted version x̃ by minimizing `(x, g(h(x̃))). Typical
choices of corruption include additive isotropic Gaussian noise or binary masking noise. As in Vin-
cent et al. (2008), we primarily use the latter and set a fraction of the features of each input to zero.
This is a natural choice for bag-of-word representations of text documents, where author specific
word preferences can influence the existence or absence of words in the source and target domains.

The stacked denoising autoencoder (SDA) of Vincent et al. (2008) stacks several DAs together
to create higher-level representations, by feeding the hidden representation of the tth DA as input
into the (t+ 1)th DA. The training is performed greedily, layer by layer.

1. In this earlier work we refer to mSLDA as simply marginalized Stacked Denoising Autoencoder (mSDA). Since then
we added the term “Linear” to avoid confusion.
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Feature Generation. Recently, Lee et al. (2009) and Glorot et al. (2011) have identified au-
toencoders as a powerful tool for automatic discovery and extraction of nonlinear features. For
example, Lee et al. (2009) demonstrate that the hidden representations computed by all or par-
tial layers of a convolutional deep belief network (CDBN) make excellent features for classification
with SVMs. The pre-processing with a CDBN improves the generalization by increasing robustness
against noise and label-invariant transformations.

Glorot et al. (2011) successfully apply SDAs to extract features for domain adaptation in doc-
ument sentiment analysis. The authors train an SDA to reconstruct the unlabeled input vectors on
the union of the source and target data. A classifier (e.g. a linear SVM) trained on the resulting
feature representation h(x) transfers significantly better from source to target than one trained on
x directly. Similar to CDBNs, SDAs also combine correlated input dimensions, as they reconstruct
removed feature values from the remaining uncorrupted ones. In fact, Glorot et al. (2011) show that
SDAs are able to disentangle hidden factors, which explain the variations in the input data, and au-
tomatically group features in accordance with their relatedness to these factors. This helps transfer
across domains as these generic concepts are invariant to domain-specific vocabularies.

As an intuitive example, imagine that we classify product reviews according to their sentiments.
The source data consists of book reviews, the target of kitchen appliances. A classifier trained on
the original bag-of-words source never encounters the bigram energy efficient during training and
therefore assigns zero weight to it. In the learned SDA representation, the bigram energy efficient
would tend to reconstruct, and be reconstructed by, co-occurring features, typically of similar senti-
ment (e.g. good or love). The SDA will preform the same reconstruction also on the source data, in
other words, it will “reconstruct” bigrams like energy efficient in book reviews that contain words
with positive sentiment. Thus, the source-trained classifier can assign weights even to features that
never occur in its original domain representation.

Although SDAs generate excellent features for domain adaptation, they have several drawbacks:
1) Training with (stochastic) gradient descent is slow and hard to parallelize, and SDAs take rela-
tively long to train—even with efficient GPU implementations (Bergstra et al., 2010) and recon-
struction sampling for sparse data (Dauphin et al., 2011); 2) There are several hyper-parameters
(learning rate, number of epochs, noise ratio, mini-batch size and network structure), which need
to be set by cross validation—this is particularly expensive as each individual run can take several
hours; 3) The optimization is inherently non-convex and dependent on its initialization.

3. Marginalized Stacked Linear Denoising Autoencoders

In this section we introduce a modified version of SDA, which we refer to as marginalized Stacked
Linear Denoising Autoencoder (mSLDA). In practice if a SDA is trained to learn features (rather
than predict a target label directly), linear autoencoders are typically sufficient. Our proposed algo-
rithm consists of stacked linear denoising autoencoders where the corruption is marginalized out in
closed form — effectively yielding orders of magnitude speedups during training time. In addition,
mSLDA has fewer hyper-parameters, allowing for much faster model-selection, and is layer-wise
convex.

3.1 Noise Model

Similar to SDA, mSLDA learns to reconstruct the original input from its corrupted version. There-
fore, we start by defining a corrupting distribution that specifies how training observations x are
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transformed into corrupted versions x̃. Throughout the paper, we assume a corrupting distribution
of the form:

p(x̃|x) =

d∏

α=1

pE(x̃α|xα; ηα). (1)

where ηd is the list of user-defined hyper-parameters for the corrupting distribution. That is, we
assume that 1) each dimension of the input x is corrupted independently; 2) the individual corrupt-
ing distributions have well-defined (finite) mean and variance, such as the Bernoulli, Poisson and
Gaussian distribution. As we are going to explain later, these two assumptions leads to very efficient
optimizations of our models.

For now, we are going to focus on the blank-out noise model (also often referred to as “mask-
out”), which randomly sets each feature to zero with probability pα ≥ 0. More precisely (with
ηα = pα),

pE(x̃α|xα; ηα) =

{
0 with probability pα
xα with probability 1− pα

. (2)

Although our model is more general, for simplification we will assume that the corruption proba-
bility is identical for all features, i.e. pα = p for all dimensions α. In Section 4, we will extend this
model to different corrupting distributions.

3.2 Single-layer Denoiser

The basic building block of mSLDA is a one-layer linear denoising autoencoder. We take the
unlabeled inputs x1, . . . ,xn from L∪U and corrupt them with the blank-out noise, which sets each
feature to 0 with probability p≥0. Let us denote the corrupted version of xi as x̃i. As opposed to
the two-level encoder and decoder in SDA, we reconstruct the corrupted inputs with a single linear
mapping W : Rd→Rd, that minimizes the squared reconstruction loss

1

2n

n∑

i=1

‖xi −Wx̃i‖2. (3)

To simplify notation, we assume that a constant feature is added to the input, xi = [xi; 1], and an
appropriate bias is incorporated within the mapping W = [W,b]. The constant feature is never
corrupted.

The solution to (3) depends on which features of each input are randomly corrupted. To lower
the variance, we perform t passes of corruption and reconstruction over the training set, each time
with new randomly chosen corruptions for each input. We solve for the matrix W that minimizes
the overall squared loss

Ltsq(W) =
1

2nt

n∑

i=1

t∑

j=1

‖xi −Wx̃i,j‖2, (4)

where x̃i,j represents the jth corrupted version of the original input xi.
Let us define the design matrix X = [x1, . . . ,xn] ∈ Rd×n and its t-times repeated version as

X= [X, . . . ,X]. Further, we denote the corrupted version of X as X̃. With this notation, the loss
in eq. (4) can be expressed in matrix form as

Ltsq(W)=
1

2nt
tr
[(

X−WX̃
)> (

X−WX̃
)]
. (5)
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Algorithm 1 mLDA (for blankout corruption) in MATLABTM.
function [W,h]=mLDA(X,p);
X=[X;ones(1,size(X,2))];
d=size(X,1);
q=[ones(d-1,1).*(1-p); 1];
S=X*X’;
Q=S.*(q*q’);
Q(1:d+1:end)=q.*diag(S);
P=S.*repmat(q’,d,1);
W=P(1:end-1,:)/(Q+1e-5*eye(d));
h=tanh(W*X);

Similar to ordinary least squares (Bishop, 2006), it is straight-forward to derive a closed-form solu-
tion to (5):

W = PQ−1 with Q = X̃X̃> and P = XX̃>. (6)

In practice (6) can be computed as a system of linear equations, without the costly matrix inversion.
(The worst-case complexity is still O(n3), but the average runtime is much accelerated.)

3.3 Marginalized Linear Denoising Autoencoder

The larger t is, the more corruptions we average over. Ideally we would like t→∞, effectively
using infinitely many copies of noisy data to compute the denoising transformation W. In this
scenario, as t→∞, the loss Lsq in (4) becomes the expected reconstruction loss under p(x̃i|x)

L∞sq(W) =
1

2n

n∑

i=1

Ep(x̃i|x)
[
‖xi −Wx̃i‖2

]
. (7)

We can expand this equation to obtain

L∞sq(W) =
1

2n

n∑

i=1

(
xix
>
i − 2xiE[x̃i]

>W> + WE[x̃ix̃
>
i ]W>

)
, (8)

and, by solving for W, the solution to (7) can then be expressed as

W = E[P]E[Q]−1 with E[Q] =

n∑

i=1

E
[
x̃ix̃
>
i

]
and E[P] =

n∑

i=1

xiE[x̃i]
>. (9)

We refer to this algorithm as marginalized Linear Denoising Autoencoder (mLDA).

3.3.1 BLANKOUT CORRUPTION

As an example, let us consider the blankout corruption,

pE(x̃α|xα; ηα) =

{
0 with probability pα
xα with probability 1− pα

. (10)
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For notational convenience, we define a vector q = [1 − p, . . . , 1 − p, 1]> ∈ Rd+1, where qα
represents the probability of a feature α “surviving” the corruption. (As the constant feature is
never corrupted, we have qd+1 = 1.) According to the blank-out noise model defined in (10), the
expected value of the corruption E[x̃i] can be computed as xi · q.2 We further define the scatter
matrix of the original uncorrupted input as S =

∑n
i=1 xix

>
i , and express the expectation E[P] as

E[P] =

n∑

i=1

xi(xi · q)> with E[P]αβ = Sαβqβ. (11)

Similarly, we can compute the expectation

E[Q] =
n∑

i=1

E
[
x̃ix̃
>
i

]
.

An off-diagonal entry in the matrix x̃ix̃
>
i with index (α, β) is uncorrupted if the two features α

and β both “survived” the corruption. This happens with probability (1 − p)2. For the diagonal
entries, this holds with probability 1− p (because it only requires the one corresponding feature to
“survived” the corruption). Thus, we can express the expectation of the matrix Q as

E[Q]α,β =

{
Sαβqαqβ if α 6= β
Sαβqα if α = β

. (12)

With the help of these matrix expectations, we can compute the reconstructive mapping W
directly in closed-form without ever explicitly constructing a single corrupted input x̃i. Algorithm 1
shows a 10-line MATLABTM implementation of mLDA with blankout corruption. The mLDA
has several advantages over traditional denoisers: 1) It requires only a single sweep through the
data to compute the matrices E[Q], E[P]; 2) Training is convex and a globally optimal solution is
guaranteed; 3) The optimization is performed in non-iterative closed-form.

3.4 Nonlinear feature generation and stacking

Arguably two of the key contributors to the success of the SDA are its nonlinearity and the stacking
of multiple layers of denoising autoencoders to create a “deep” learning architecture. Our frame-
work has the same capabilities.

In SDAs, the nonlinearity is injected through the nonlinear encoder function h(·), which is
learned together with the reconstruction weights W. Such an approach makes the training procedure
highly non-convex and requires iterative procedures to learn the model parameters. To preserve the
closed-form solution from the linear mapping in equation (5) we insert nonlinearity into our learned
representation after the weights W are computed. A nonlinear squashing-function is applied on the
output of each mLDA. Several choices are possible, including sigmoid, hyperbolic tangent, or the
rectifier function (Nair and Hinton, 2010). Throughout this work, we use the hyperbolic tangent
tanh() function and provide a detailed comparison of various squashing function in Figure 4 in
Section 7.1.2.

Inspired by the layer-wise stacking of SDA, we stack several mLDA layers by feeding the output
of the (t−1)th mLDA (after the squashing function) as the input into the tth mLDA. Let us denote the

2. Here, y = x · z denotes element-wise vector multiplication, i.e. yi = xizi.
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Algorithm 2 mSLDA in MATLABTM.
function [Ws,hs]=mSLDA(X,p,L);
[d,n]=size(X);
Ws=zeros(d,d+1,L);
hs=zeros(d,n,L+1);
hs(:,:,1)=X;
for t=1:L
[Ws(:,:,t), hs(:,:,t+1)]=mLDA(hs(:,:,t),p);

end;

output of the tth mLDA as ht and the original input as h0 =x. The training is performed greedily
layer by layer: each map Wt is learned (in closed-form) to reconstruct the previous mLDA output
ht−1 from all possible corruptions and the output of the tth layer becomes ht = tanh(Wtht−1). In
our experiments, as detailed in in Section 7.1.2, we found that even without the nonlinear squash-
ing function, stacking still improves the performance. However, the nonlinearity improves over the
linear stacking significantly. We refer to the stacked denoising algorithm as marginalized Stacked
Linear Denoising Autoencoders (mSLDA). Algorithm 2 shows a 8-lines MATLABTM implemen-
tation of mSLDA.

3.5 mSLDA for Domain Adaptation

We apply mSLDA to domain adaptation by first learning features in an unsupervised fashion on the
union of the source and target data sets. One observation reported in (Glorot et al., 2011) is that if
multiple domains are available, sharing the unsupervised pre-training of SDA across all domains is
beneficial compared to pre-training on the source and target only. We observe a similar trend with
our approach. The results reported in Section 7 are based on features learned on data from all avail-
able domains. Once a mSLDA is trained, the output of all layers, after squashing (tanh(Wtht−1))
combined with the original features h0, are concatenated and form the new representation. All in-
puts are transformed into the new feature space. A linear Support Vector Machine (SVM) (Chang
and Lin, 2011) is then trained on the transformed source inputs and tested on the target domain.
There are two sets of meta-parameters in mSLDA: the corruption parameters (e.g. p in the case
of blankout corruption) and the number of layers L. In our experiments, both are set with 5-fold
cross validation on the labeled data from the source domain. As the mSLDA training is almost
instantaneous, this grid search is almost entirely dominated by the SVM training time.

4. Corruption beyond blank-out

In the previous section, we introduced mSLDA under the blank-out corruption model and derived
the layer-wise closed form solution W = E[P]E[Q]−1. The derivation up to eq. (9) makes no
explicit assumption on the corruption distribution and holds for any member of the exponential
family with finite mean E[x̃i], and variance V[x̃i]. This can be made explicit by expanding the
terms E[P],E[Q] as

E[P] =
n∑

i=1

xiE[x̃i]
> and E[Q] =

n∑

i=1

E
[
x̃ix̃
>
i

]
=

n∑

i=1

(
E[x̃i]E[x̃i]

> + V[x̃i]
)
. (13)
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4.1 Poisson corruption

For discrete feature values (e.g. word counts in a document), one interesting example of a corruption
distribution is the Poisson distribution. Here, the corruption is defined as,

pE(x̃α|xα; ηα) =
xx̃αα e−xα

x̃α!
, α = 1, · · · , d (14)

where the arrival rate ηα is set to xα. In this case, we have E[x] = x, and V[x] = ∆(x).3 Note that
the off-diagonal entries of the variance matrix is zero since we assume that each dimension of the
input is corrupted independently. Plugging the definition (14) into eq. (13) results in

EPoi[P] =
n∑

i=1

xix
>
i = S and EPoi[Q] =

n∑

i=1

xix
>
i +

n∑

i=1

∆(xi) = S + ∆(
n∑

i=1

xi).

Comparing with the blank-out noise, where the corruption simulates the existence or completely
absence of words due to authors’ word preference, the Poisson corruption imitates different appear-
ing frequencies for each word. Since we set the arrival rate of the distribution to be xα, words with
higher frequency in the original input will have less chance to be complete removed. In other words,
we would expect the Poisson corruption to bring in less drastic change to the corrupted input x̃ than
the blank-out noise. As we can see in the experiments, the representations learned with Poisson
corruption is not as robust as those with blank-out noise for domain adaptation where we would
expect some words in the source domain to be completely removed from the target domain and vice
versa.

4.2 Feature dependent blank-out

In Section 3.2, we introduced mLDA under the blank-out corruption model with uniform corruption
rate for individual dimensions of the input. The definition of the corruption models in (1), however,
allows different features to have arbitrarily different corruption rate. This enables us to incorporate
prior knowledge of the corrupting distribution into our model flexibly and randomly blank-out fea-
tures of different dimensions at different rate. The derivation of the two expectations E[P] and E[Q]
is the same as in equation (11) and (12), except that a different corrupting vector q will be used,
where each entry qα can take a different value.

5. Extension to High Dimensional Data

Many data sets (e.g. bag-of-words text documents) are naturally high dimensional and sparse. As
the dimensionality increases, hill-climbing approaches used in SDAs can become prohibitively ex-
pensive. In practice, a work-around is to truncate the input data to the r� d most common fea-
tures (Glorot et al., 2011). Unfortunately, this prevents SDAs from utilizing important information
found in rarer features. (As we show in Section 7, including these rarer features leads to signif-
icantly better results.) High dimensionality also poses a challenge to mSLDA, as the system of
linear equations in (9) of complexity O(d3) becomes too costly. In this section we describe how to
approximate this calculation with a simple division into d

r sub-problems of O(r3).

3. Here, ∆(x) denotes a diagonal square matrix with x along its diagonal.
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We combine the concept of “pivot features” from Blitzer et al. (2006) and the use of most-
frequent features from Glorot et al. (2011). Instead of learning a single mapping W ∈ Rd×(d+1)

to reconstruct all corrupted features, we learn multiple mappings but only reconstruct the r � d
most frequent features (here, r = 5000). For an input xi we denote the shortened r-dimensional
vector consisting of the r most-frequent features as zi∈Rr. We divide the input features randomly
into S mutually exclusive sub-sets of (roughly) equal size and learn a mapping from each one of
these subsets to zi. Intuitively, this corresponds to “translating” rare features into common features
(this is particularly successful with text documents, where the meaning of infrequent terms can
often be approximated by a more frequent term.) Without loss of generality, we assume that the
feature-dimensions in the input space are in random order and divide up the input vectors as xi =[
x1
i
>
, . . . ,xSi

>
]>

. For each one of these sub-spaces we learn an independent mapping Ws which
minimizes

Ls(Ws) =
1

2n

n∑

i=1

S∑

s=1

‖zi −Wsx̃si‖2. (15)

Each mapping Ws can be solved in closed-form as in eq. (9), following the method described in
section 1. We define the output of the first layer in the resulting mSLDA as the average of all
reconstructions,

h1 = tanh

(
1

S

S∑

s=1

Wsxs

)
. (16)

Once the first layer of dimension r� d is learned no further dimensionality reduction is required
and we can stack subsequent layers using the regular mSLDA as described in Section 3.4 and Al-
gorithm 2. It is worth pointing out that, although features might be separated in different sub-sets
within the first layer, they can still be combined in subsequent layers of the mSLDA.

6. Alternative Formulation

In this section we want to provide the reader briefly with an alternative interpretation of mLDA with
unbiased blank-out noise. Slightly different from the blank-out noise we introduced in Section 3.1,
the unbiased version rescales the uncorrupted features to 1

1−p of their original values. More precisely
(with ηd = p),

pE(x̃α|xα; ηα) =

{
0 with probability p
1

1−pxα with probability 1− p . (17)

Under this specific corruption model, and in the case where all the features are normalized to have
norm 1 across inputs, i.e., ∀α ∈ {1, · · · , d},

∑n
i=1 x

2
iα = 1, we can then re-interpret mLDA recon-

struction in eq. (7) as auto-Ridge Regression,

min
W

1

2n

n∑

i=1

‖xi −Wxi‖2 + λ‖W‖22. (18)

with λ = p
2n(1−p) . In the extreme case of p = 0 and consequently λ = 0, the solution to (18) is

trivially W = I. However, as λ increases, the l2 regularization encourages weights within W to be
of comparable magnitude and reduces large diagonal entries. As p approaches 1 the regularization
trade-off λ becomes ill-defined—corresponding to the pathological case where all the features are
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removed in all examples, making it impossible to learn. This alternative interpretation illustrates
the effect of reconstruction from blank-out corruption. Features are reconstructed from themselves
and other co-occurring features and the hyper-parameter p regulates this trade-off. The effect of
applying the learned reconstruction matrix to the original input, i.e., Wx, is a smoothing of related
feature values to increase robustness of the representation. In the case of domain adaptation, this
facilitates some immunity over distribution drift between training and testing.

7. Experimental Results

In this section, we evaluate mSLDA on two real-world domain adaption tasks, as well as a semi-
supervised learning task, and compare it with competing algorithms.

7.1 Domain adaption on text data

First, we consider a domain adaptation task for sentiment analysis. We evaluate mSLDA on the
Amazon reviews benchmark data sets (Blitzer et al., 2006) together with several other algorithms for
representation learning and domain adaptation.

Dataset. The dataset contains more than 340, 000 reviews from 25 different types of products from
Amazon.com. For simplicity (and comparability), we follow the convention of (Chen et al., 2011a;
Glorot et al., 2011) and only consider the binary classification problem whether a review is positive
(higher than 3 stars) or negative (3 stars or lower). As mSLDA and SDA focus on feature learning,
we use the raw bag-of-words (bow) unigram/bigram features as their input. To be fair to other
algorithms that we compare to, we also pre-process with tf-idf (Salton and Buckley, 1988) and use
the transformed feature vectors as their input if that leads to better results. Finally, we remove five
domains which contain less than 1, 000 reviews.

Different domains in the complete set vary substantially in terms of number of instances and
class distribution. Some domains (books and music) have hundreds of thousands of reviews, while
others (food and outdoor) have only a few hundred. The proportion of negative examples in different
domains also differs greatly. There are a total of 380 possible transfer tasks (e.g. Apparel→Baby).
To counter the effect of class- and size-imbalance, a more controlled smaller dataset was created by
Blitzer et al. (2007), which contains reviews of four types of products: books, DVDs, electronics,
and kitchen appliances. Here, each domain consists of 2, 000 labeled inputs and approximately
4, 000 unlabeled ones (varying slightly between domains) and the two classes are exactly balanced.
Table 1 contains the statistics on the complete set as well as the control set. Almost all prior work
provides results only on this smaller set with its more manageable twelve transfer tasks. We focus
most of our comparative analysis on this smaller set but also provide results on the entire data for
completeness.

Methods. As baseline, we train a linear SVM on the raw bag-of-words representation of the la-
beled source and test it on target. We also include the results of the same setup with dense fea-
tures obtained by projecting the entire data set (labeled and unlabeled source+target) onto a low-
dimensional sub-space with PCA (we refer to this setting as PCA). Besides these two baselines, we
evaluate the efficacy of a linear SVM trained on features learned by mSLDA and two alternative
feature learning algorithms, Structural Correspondence Learning (SCL) (Blitzer et al., 2006) and
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DOMAIN LABELED UNLABELED (TEST) NEG. INPUTS

COMPLETE (LARGE) SET

APPAREL 4470 4470 14.52%
BABY 2046 2045 21.46%
BEAUTY 1314 1314 15.94%
BOOKS 27169 27168 12.09%
CAMERA 2652 2652 16.35%
DVDS 23044 23044 14.16%
ELECTRONICS 10197 10196 21.94%
FOOD 692 691 13.02%
GROCERY 1238 1238 13.57%
HEALTH 3254 3253 21.25%
JEWELRY 982 982 14.82%
KITCHEN 9233 9233 20.96%
MAGAZINES 1195 1195 22.64%
MUSIC 62181 62181 8.33%
OUTDOOR 729 729 20.71%
SOFTWARE 1033 1032 37.72%
SPORTS 2679 2679 18.78%
TOYS 6318 6318 19.67%
VIDEO 8695 8694 13.64%
VIDEOGAME 720 720 17.15%

CONTROLLED (SMALL) SET

BOOKS 2000 4465 50%
DVDS 2000 3586 50%
ELECTRONICS 2000 5681 50%
KITCHEN 2000 5945 50%

Table 1: Statistics of the large and small set of the Amazon review dataset (Blitzer et al., 2007).
.

1-layer4 SDA (Glorot et al., 2011). We also compare against CODA (Chen et al., 2011a), a state-
of-the-art domain adaptation algorithm which is based on sample- and feature-selection, applied to
tf-idf features. Finally, we also include a comparison with learning with Marginalized Corrupted
Features (MCF) (van der Maaten et al., 2013), which also uses data corruption as a tool to improve
generalization. For CODA, SDA, SCL and MCF, we use implementations provided by the authors.
All hyper-parameters are set by 5-fold cross validation on the source training set5.

Metrics. Following Glorot et al. (2011), we evaluate our results with the transfer error e(S, T )
and the in-domain error e(T, T ). The transfer error e(S, T ) denotes the classification error of a
classifier trained on the labeled source data and tested on the unlabeled target data. The in-domain

4. We were only able to obtain the 1-layer implementation from the authors. Anecdotally, multiple-layer SDA imple-
mentations only lead to small improvements on this benchmark set but increase the training time drastically. The
code we obtained from the authors implements the reconstruction sampling technique that was used to speed up the
training of SDA for sparse inputs. While the original raw bow inputs are sparse, the output of one-layer SDA is no
longer sparse, therefore, it becomes much more expensive to train.

5. We keep the default values of some of the parameters in SCL, e.g. the number of stop-words removed and stemming
parameters — as they were already tuned for this benchmark set by the authors.
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SCL (Blitzer et al., 2007)
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SDA (Glorot et al., 2011)
mSLDA (l=5)

Figure 1: Comparison of mSLDA and existing works across all twelve domain adaptation task in
the small Amazon review dataset.

error e(T, T ) denotes the classification error of a classifier that is trained on the labeled target data
and tested on the unlabeled target data. Similar to Glorot et al. (2011) we measure the performance
of a domain adaptation algorithm in terms of the transfer loss, defined as e(S, T )−eb(T, T ), where
eb(T, T ) defines the in-domain error of the baseline (trained on the raw bow inputs). In other words,
the transfer loss measures how much higher the error of an adapted classifier is in comparison to a
linear SVM that is trained on actual labeled target bow data.

The various domain-adaptation tasks vary substantially in difficulty, which is why we do not
average the transfer losses (which would be dominated by a few most difficult tasks). Instead, we
average the transfer ratio, e(S, T )/eb(T, T ), the ratio of the transfer error over the in-domain error.
As with the transfer loss, a lower transfer ratio implies better domain adaptation.
Timing. For timing purposes, we ignore the time of the SVM training and only report the mSLDA
or SDA training time.6 As both algorithms are unsupervised, we do not re-train for different transfer
tasks within a benchmark set — instead we learn one representation on the union of all domains.
CODA (Chen et al., 2011b) on the other hand does not take advantage of data besides source and
target. We report the average training time per transfer task.7 All experiments were conducted on
an off-the-shelf desktop with dual 6-core Intel i7 CPUs clocked at 2.66Ghz.

7.1.1 COMPARISON WITH RELATED WORK

In the first set of experiments, we use the setting from (Glorot et al., 2011) on the small Amazon
benchmark set. The input data is reduced to only the 5, 000 most frequent terms of unigrams and
bigrams as features.

6. As the SVM classifier is linear, we can use the extremely efficient LIBLINEAR (Fan et al., 2008) classifier, and the
training time is usually in the order of seconds.

7. In CODA, the feature splitting and classifier training are inseparable and we necessarily include both in our timing.
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Comparison per task. Figure 1 presents a detailed comparison of the transfer loss across the twelve
domain adaptation tasks using the various methods mentioned. The reviews are from the domains
Books, Kitchen appliances, Electronics, DVDs. Linear SVMs trained on the features generated by
SDA and mSLDA clearly outperform all the other methods. Although MCF has been shown to
be an effective approach for countering overfitting using noise corruption, it does not perform as
well under the domain adaptation setting. As it only makes use of the training data from the source
domain, it can not generalize to unseen words (terms) from the target domain. mSLDA and SDA
have the advantage over CODA and MCF algorithm that they can make use of the unlabeled data
from multiple source domains. For several tasks, the transfer loss becomes negative — in other
words, a SVM trained on the transformed source data has higher accuracy than one trained on the
original target data. (This is possible because there is more source data available. In particular,
mSLDA or SDA make use of the abundant unlabeled data from multiple source domains to learn a
more robust representation.) This is a strong indication that the learned new representation bridges
the gap between domains. It is worth pointing out that in ten out of the twelve tasks mSLDA quickly
achieves a lower transfer-loss than one-layer SDA.

Timing. Figure 2 (left) depicts the transfer ratio as a function of training time required for different
algorithms, averaged over 12 tasks. It compares the results of mSLDA with the baseline, PCA, SCL,
CODA and SDA. The time is plotted in log scale. We can make three observations: 1) SDA outper-
forms all other related work in terms of transfer-ratio, but is also the slowest to train. Note that the
code we used for training SDA already implements the reconstruction sampling technique (Dauphin
et al., 2011) that is specially designed to speed up the training of SDA on sparse inputs. However,
as shown in the figure, it still takes more than 5 hours of training time. 2) SCL and PCA are rela-
tively fast, but their features cannot compete in terms of transfer performance. 3) The training time
of mSLDA is two orders of magnitude faster than that of SDA (180× speedup), with comparable
transfer ratio. Training one layer of mLDA on all 27, 677 documents from the small set requires less
than 25 seconds. A 5-layer mSLDA requires less than 2 minutes to train, and the resulting feature
transformation achieves slightly better transfer ratio than a one-layer SDA.

Large scale results. To demonstrate the capabilities of mSLDA to scale to large data sets, we also
evaluate it on the complete set with n=340, 000 reviews from 20 domains and a total of 380 domain
adaptation tasks (see right plot in Figure 2). We compare mSLDA to SDA (1-layer). The large set is
more heterogeneous in terms of the number of domains, domain size and class distribution than the
small set. Nonetheless, a similar trend can be observed. Both the transfer error and transfer ratio are
averaged across 380 tasks. The transfer ratio reported in Figure 2 (right) corresponds to averaged
transfer errors of (baseline) 13.93%, (one-layer SDA) 10.50%, (mSLDA, l= 1) 11.50%, (mSLDA,
l= 3) 10.47%, (mSLDA, l= 5) 10.33%. With only one layer, mSLDA performs a little worse than
SDA but reduces the training time from over two days to about five minutes (700× speedup). With
three layers, mSLDA matches the transfer-error and transfer-ratio of one-layer SDA and still only
requires 14 minutes of training time (230× speedup).

7.1.2 FURTHER ANALYSIS

In addition to comparison with prior work, we also analyze various other aspects of mSLDA.

Word reconstruction As explained in Section 6, applying the learned reconstruction matrix to the
original input amounts to smooth-out related feature values, which in turn helps alleviate the shift

3863



CHEN, WEINBERGER, XU AND SHA

101 102 103 104 1051

1.1

1.2

1.3

1.4

1.5

 

 
Baseline
PCA
SCL (Blitzer et. al., 2007)
CODA (Chen et. al., 2011)
SDA (Glorot et. al., 2011)
mSLDA (l=1,2,3,4,5)

101 102 103 104 105 1061

1.05

1.1

1.15

1.2

1.25

1.3

1.35

 

 
Baseline
SDA (Glorot et. al., 2011)
mSLDA (l=1,2,3,4,5)

Amazon benchmark (small) Amazon benchmark (complete)
Tr

an
sf

er
 R

at
io

Training time in seconds (log) Training time in seconds (log)

Figure 2: Transfer ratio and training times on the small (left) and full (right) Amazon Benchmark
data. Results are averaged across the twelve and 380 domain adaptation tasks in the
respective data sets (5, 000 features).

between training and testing distributions. In this experiment, we apply the matrix W learned on
the Amazon review dataset, to new input documents of a single word x, and list the terms of the
largest feature values after the smoothing Wx. Each row of Table 2 shows an input document with
a single term, and the reconstructed terms in decreasing order of feature value. As an example (row
1), mLDA smooths out a feature vector with a single entry at the term “great” to a denser version
with values at “great for”, “works great”, “excellent”, etc. In other words, mLDA captures word-
level synonymy. The number in parentheses indicates the frequency of each word in the dataset. We
can see that less frequent terms of similar meaning are reconstructed from the more frequent ones,
and vice versa. As a result, a classifier trained on the smooth version of the feature vectors will be
more robust, especially on rarer terms, comparing to one trained on the original sparse input.

Low-frequency features. Prior work often limits the input data to the most frequent features (Glorot
et al., 2011). However there may be valuable signal in the less frequent features. We use the modi-
fication from section 5 to scale mSLDA (5-layers) up to high dimensions and include less-frequent
uni-grams and bi-grams in the input (small Amazon set). In the case of SDA we make the first
layer a dimensionality reducing transformation from d dimensions to 5000. The left plot in Figure 3
shows the performance of mSLDA and SDA as the input dimensionality increases (words are picked
in decreasing order of their frequency). The transfer ratio is computed relative to the baseline with
d=5000 feature. Clearly, both algorithms benefit from having more features up to 30, 000. mSLDA
matches the transfer-ratio of one-layer SDA consistently and, as the dimensionality increases, gains
even higher speed-up. With 30, 000 input features, SDA requires over one day and mSLDA only 3
minutes (458× speedup).

Effect of different squashing functions. Figure 4 shows the transfer ratio of mSLDA when different
squashing functions are used after applying the mapping W. We explored four different options,
linear (i.e., without applying any squashing function), rectifier squashing (i.e., x → max(0, x)),
upper bounded rectifier units (i.e., x → min(1,max(0, x))) and the hyperbolic tangent function

3864



MARGINALIZING STACKED LINEAR DENOISING AUTOENCODERS

great(7233) great for(484), works great(421), excellent(1697), awesome(457), easy to(1560), love it(517),
great product(318), great price(183), perfect(1252), fantastic(467)

bad(2347) horrible(511), worst(820), a bad(383), stupid(348), awful(353), terrible(593), acting(610),
movie is(654), waste(1189), lame(149)

poor(1144) poor quality(184), poorly(385), very disappointed(284), your money(637), terrible(593), very
difficult(111), save your(251), disappointing(444), returned(552), waste(1189)

return(800) returned(552), defective(263), refund(258), arrived(356), ordered(651), shipping(463), to
amazon(117), i returned(221), the item(185), received(855)

fantastic(467) love it(517), i love(1265), excellent(1697), great(7233), amazing(650), a must(364), highly
recommend(560), awesome(457), i highly(379), wonderful(975), love(3066)

is amazing(141) amazing(650), awesome(457), love it(517), a must(364), fantastic(467), great(7233), incred-
ible(264), a wonderful(294), well worth(234), excellent(1697)

well made(136) sturdy(314), handles(261), kitchen(784), easy to(1560), knife(314), looks great(128),
pleased(503), to clean(607), stainless(320), very nice(247)

informative(133) covers(252), an excellent(440), information(758), sections(126), helpful(368), valuable(145),
guide(268), provides(372), knowledge(288), book(5523)

awkward(119) awkward(119), to hold(309), is too(367), too small(129), disappointing(444), difficult
to(489), useless(398), desk(187), impossible to(238), way too(237)

Table 2: Term reconstruction from the Amazon review dataset. Each row shows a different input
term, along with terms reconstructed from this particular input in decreasing order of fea-
ture value (from left to right). The number in the parentheses indicates the frequency of
each word in the dataset.
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Figure 3: Left: Transfer ratio as a function of the input dimensionality (terms are picked in decreas-
ing order of their frequency). Right: Besides domain adaptation, mSLDA also helps in
domain recognition tasks.

(x → tanh(x)), which we have been using in all other experiments. The blank-out noise is used
in this experiment, with the corruption level cross-validated within [0.1, 0.9] of 0.1 interval. As
shown in the figure, the upper bounded rectifier performs similarly as the tanh() function. For the
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Figure 4: Transfer ratio with different squashing functions.

unbounded rectifier squashing, the performance first improves as we stack more layers, but deterio-
rates after three layers. The reason is that the function has no effect on large values after applying
the mapping. The loss at the deeper layers is dominated by a few more frequent features while
ignoring other features. One interesting observation is that even without any nonlinear squashing,
the performance of mSLDA still improves as we increase the depth, as shown by the black curve in
the figure.

Effect of the number of the “pivot” features. In this experiment, we investigate how the number of
the “pivot” features, r, in the high-dimensional extension from Section 5 affects the performance
of the algorithm. As we increase r, we would expect the transfer accuracy to be improved as well.
On the other hand, since the algorithm scale cubic in term of r, the time required to solve for the
mapping W will also increases. In the extreme case, when r = d, the extension reduces to our
original algorithm. Figure 5 shows the transfer ratio as a function of the training time as the size of
the “pivot” features increases. We do observe a reduction in transfer ratio as r increases, however,
the improvement becomes marginal when r is sufficiently large (i.e., 5,000). In this case, we can
still finish the training of the model relatively fast (i.e., within a couple of minutes).

Transfer distance. Ben-David et al. (2007) suggest the Proxy-A-distance (PAD) as a measure of
how different two domains are from each other. The metric is defined as 2(1 − 2ε), where ε is the
generalization error of a classifier (a linear SVM in our case) trained on the binary classification
problem to distinguish inputs between the two domains. The right plot in Figure 3 shows the PAD
before and after mSLDA is applied. Surprisingly, the distance increases in the new representation
— i.e. distinguishing between two domains becomes easier with the mSLDA features. We explain
this effect through the fact that mSLDA is unsupervised and learns a generally better representation
for the input data. This helps both tasks, distinguishing between domains and sentiment analysis
(e.g. in the electronic-domain mSLDA might interpolate the feature “dvd player” from “blue ray”,
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Figure 5: High dimensional extension with difference “pivot” feature size.

both are not particularly relevant for sentiment analysis but might help distinguish the review from
the book domain.). Glorot et al. (2011) observe a similar effect with the representations learned
with SDA.

Different noise model. We also apply mSLDA with the Poisson corruption model, and compare it
with the blank-out noise model on the Amazon reviews data set. As shown in Figure 6, the repre-
sentation learned using mSLDA with Poisson corruption also improves over the raw bag-of-word
representation. Intuitively, the Poisson corruption changes the word counts and simulates the case
where the same document was written with a slightly increased or decreased number occurrences
of a particular word. A nice property of this corruption model is that it introduces no additional
hyper-parameters. In comparison with blank-out corruption, the improvement of Poisson corrup-
tion is not as pronounced. While the Poisson corruption allows for small perturbation on the count
of different words employed in the review, the blank-out noise model enables more drastic change,
i.e., directly removing some words. The latter scenario may reflect more closely how documents
vary across domains, which results in a more robust representation. The experiment suggests that
we could explore our prior knowledge on the data to properly choose the corrupting distribution
used in mSLDA for better performance.

7.1.3 GENERAL TRENDS

In summary, we observe a few general trends across all experiments: 1) With one layer, mSLDA is
up to three orders of magnitudes faster but slightly less expressive than the original SDA. This can
be attributed to the fact that mSLDA has no hidden layer. 2) There is a clear trend that additional
“stacked” layers improve the results significantly (here, up to five layers). With additional layers the
mSLDA features reach (and surpass) the accuracy of 1-layer SDA and still obtain a several hundred-
fold speedup. 3) The mSLDA features help diverse classification tasks, domain classification and
sentiment analysis, and can be trained very efficiently on high-dimensional data.
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Figure 6: Comparison of mSLDA with different corruption noise in the small Amazon review
dataset.

7.2 Domain adaptation on images

In this section, we evaluate mSLDA on a dataset collected by Saenko et al. (2010) for studying
domain shifts in visual category recognition tasks, together with several other algorithms designed
for this dataset.

Dataset. The dataset contains a total of 4,652 images of 31 categories from three domains: images
from the web, images from a digital SLR camera, and images from a webcam. As shown in Fig-
ure 7, images from these domains are quite different visually. Images in the first domain are product
shots downloaded from Amazon.com. The images are of medium resolution typically taken in an
environment with studio lighting conditions and from a canonical viewpoint. Each category has
around 90 images, capturing large intra-class variation of these categories. Images from the second
domain are captured using a digital SLR camera in realistic environment with natural lighting con-
dition. Each category has 5 different objects, and on average 3 images are captured for each object
at different viewpoint. Images from the third domain are taken using a webcam. These images are
of low resolution, noisy and suffer from white balance artifacts. Similar as in the second domain, 5
objects for each category are captured from different viewpoints.

Several interesting domain shifts were captured in the datasets. First, it allows us to investigate
the possibility of adapting models learned on web images, which are much easier to obtain, to
images captured with expensive dSLR cameras or webcams (e.g. mounted on robotic platforms).
Second, since the same set of objects are recorded using both high-quality dSLR and the simple
webcam, it allows a controlled examination of the effect of visual shift caused by different sensors.

We used the same image representation as in Saenko et al. (2010). Local scale-invariant interest
points are extracted using SURF detector (Bay et al., 2006). Each image is then represented as a
bag-of-visual-word with a codebook of size d = 800.

Our evaluation also follows the same setup as in Saenko et al. (2010). For the source domain, 8
labels per category for webcam/dSLR and 20 for amazon are available, meanwhile only three labels
from the target domain are used in training as well. Five runs of experiments, each one with a set of
randomly selected labels, are carried out and we report the averaged accuracies.
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Adapting Visual Category Models to New Domains 9
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Fig. 4. New dataset for investigating domain shifts in visual category recognition tasks.
Images of objects from 31 categories are downloaded from the web as well as captured
by a high definition and a low definition camera.

popular way to acquire data, as it allows for easy access to large amounts of
data that lends itself to learning category models. These images are of products
shot at medium resolution typically taken in an environment with studio lighting
conditions. We collected two datasets: amazon contains 31 categories4 with an
average of 90 images each. The images capture the large intra-class variation of
these categories, but typically show the objects only from a canonical viewpoint.
amazonINS contains 17 object instances (e.g. can of Taster’s Choice instant
co↵ee) with an average of two images each.

Images from a digital SLR camera: The second domain consists of im-
ages that are captured with a digital SLR camera in realistic environments with
natural lighting conditions. The images have high resolution (4288x2848) and
low noise. We have recorded two datasets: dslr has images of the 31 object cat-

4 The 31 categories in the database are: backpack, bike, bike helmet, bookcase, bottle,
calculator, desk chair, desk lamp, computer, file cabinet, headphones, keyboard, lap-
top, letter tray, mobile phone, monitor, mouse, mug, notebook, pen, phone, printer,
projector, puncher, ring binder, ruler, scissors, speaker, stapler, tape, and trash can.

Figure 7: Sample images from the visual shift dataset. Images of objects from 31 categories are
downloaded from the web as well as captured by a high definition and a low definition
camera. (Saenko et al., 2010)

Methods. As baseline, we train a kNN model (with k = 1) on the raw bag-of-word representation
using the source labeled data and test it on target domain (knn(A)). The same model is also trained
on the combination of labeled examples from both source and target domains (knn(A+B)). We also
include the results of a metric learning algorithm using information-theoretic metric learning (Davis
et al., 2007). A kNN model is then trained in the projected feature space, either on all the labeled
data from both domains (ITML(A+B)), or only on B labels (ITML(B)). Besides these two baselines,
we also include the metric learning methods developed in Saenko et al. (2010) and its asymmetric
variant by Kulis et al. (2011). For mSLDA, we present results from training both a kNN model and
a linear SVM model after learning the new representation.

Table 3 summarizes the performance of these algorithms on the three domain adaptation tasks,
i.e., Webcam → dSLR, dSLR → Webcam and Amazon → Webcam. The table shows the
classification test-accuracies in the target domain using various domain adaptation techniques. As
we can see from comparing the two baseline algorithms, the shift between the two domains Dslr
and Webcam is moderate since the images display the same objects and the two domains only vary
in the camera resolution and lightning conditions. The adaptation between the Amazon domain
and Dslr/Webcam involves a more drastic change, and is more challenging. mSLDA performs on
par with the adapted knn methods which were especially designed on this dataset.
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BASELINE ITML CONSTRAINED ML MSLDA
SOURCE TARGET KNN(A) KNN(A+B) ITML(A+B) ITML(B) ASYMM SYMM KNN LINEARSVM
WEBCAM DSLR .10 0.19 0.13 0.24 0.23 0.25 0.20 0.23
DSLR WEBCAM .26 0.28 0.20 0.27 0.28 0.29 0.31 0.38
AMAZON WEBCAM 0.08 0.22 0.10 0.28 0.27 0.23 0.28 0.27

Table 3: Domain adaptation results (accuracy) for categories seen during training in the target do-
main.

7.3 Semi-supervised Learning on Text

Although mSLDA was first introduced particularly for domain adaptation, it also applies to semi-
supervised learning tasks. In other words, we can use mSLDA to learn more robust representations
on unlabeled data, and then train a classifier on this learned representation using labeled data only.

Dataset. We use the Reuters RCV1/RCV2 multilingual, multiview text categorization test col-
lection (Amini et al., 2010) for evaluation. The set contains documents written in five different
languages (English, French, German, Spanish and Italian) which share the same set of categories
(C15, CCAT, E21, ECAT, GCAT, M11). In our experiments, we only use the subset of document
that are written in English, which has 18,758 documents of vocabulary size 21,531.

Methods. As baselines, we train a linear SVM on the raw bag-of-words (BOW) and TF-IDF rep-
resentations of the labeled data (Sparck Jones, 1972). In addition, we also compare against Latent
semantic indexing (LSI) (Deerwester et al., 1990). The number of retained eigenvectors was chosen
by cross-validation. For both LSI and mSLDA, we learn a new representation using the full training
set (without labels), and then train a linear SVM classifier on a small subset of labeled examples
using that new representation.
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Figure 8: Semi-supervised learning results on the Reuters RCV1/RCV2 dataset.
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As shown in Figure 8, we gradually increase the size of the labeled subset. For each setting,
we average over 10 runs of each algorithm and report the mean accuracy as well as the variance.
mSLDA performs similarly to LSI, and significantly outperform the baseline methods that were
trained without unlabeled data. In summary, mSLDA learns a better representation for sparse BOW
text data — however the improvement is not as pronounced as for domain adaptation. Since learning
mSLDA features is cheap, it can be used as an alternative feature representation for text.

8. Discussion

In this paper we presented, mSLDA, an algorithm that marginalizes out corruption in SDA training.
A key step to making this marginalization tractable, is to limit all layers within the SDA to be linear.
One interesting question is to what degree this limits the expressiveness of mSLDA. As we show
in our empirical results, Section 7, if mSLDA is used for feature learning, this seems to hardly
matter (although more layers are necessary — something that is not really a problem as mSLDA
training is so much faster.) However, the original SDA can also be used for supervised training
(with fine-tuning), which is not possible with the mSLDA formulation. Maybe the fact that mSLDA
works so well for bag-of-words data tells us something about the features learned by SDA. Instead
of uncovering hidden concepts, as pointed out by Vincent et al. (2010), it may be more important
(or simply sufficient) to learn a common feature representation across domains. This representation
translates features from both domains into a joint space and because bag-of-words data is high
dimensional, a linear mapping may just be powerful enough. Recent studies by Chen et al. (2014)
seem to suggest that on more difficult image data sets the non-linear hidden representations are more
important and mSLDA cannot match the performance of the original SDA.

It is an interesting observation that stacking multiple mLDA layers helps to improve these rep-
resentations. One interpretation of mSLDA is to view it as a directed graph algorithm. The weight
matrix W represents the weights of the directed edges, i.e. the edge from feature d to feature b
has weight Wbd. The non-zero entries in the binary document vector x correspond to nodes in
this graph. The transformation Wx takes one step in this graph, starting from the terms in x, and
accumulates the edge weights for every other term/node that is reached with this step. Stacking
multiple mLDA layers is then equivalent to taking multiple consecutive steps in this fashion. Why
is this helpful? Imagine two words have similar meanings but rarely co-occur. For example the
terms Obama and Reagan both refer to presidents of the United States but probably rarely appear
in the same sentence. If we want to perform domain adaptation from articles written in the 1980s
to the 2010s, it would be good to learn that these two words refer to related entities. A single layer
mLDA would learn to reconstruct co-occurring words from the term Reagan, such as White House,
President, United States and it would “reconstruct” these words, but it would not reconstruct the
term Obama. It would however also learn, from the unlabeled target data, that these very same
words co-occur with the term Obama in more recent documents. So in the second layer it will re-
construct the word Obama from the terms it added in the first layer. In the graph view of mSLDA
this means that Reagan and Obama are not connected through heavily weighted direct edges, but
they are connected through heavily weighted two-step paths.

One interesting aspect of mSLDA is that there are only very few hyper parameters. Because
training is so fast, these can be set very efficiently with cross-validation. In contrast, setting the
hyper-parameters of SDA in an optimal fashion is much more time consuming. In our experiments
we did not take this into account, but it is another important factor, as it may make it significantly
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easier to actually find the optimal hyper-parameters for mSLDA in practice—something that will
improve testing accuracy and training time alike.

Finally, although in this manuscript we primarily focused on blank-out and Poisson corruption,
our proposed framework is decisively general. Different corruption distributions can be chosen
for different applications, in particular when side information is available. For example, if data
consists of unreliable sensor readings, then blank-out corruption could be used where the probability
of blank-out is fine-tuned for each specific feature —mimicking the actual drop out rate of that
particular sensor. As future work, it is also conceivable that the distribution could be learned with a
generative model from the data directly.
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Abstract
In a simulator-defined MDP, the Markovian dynamics and rewards are provided in the form of a
simulator from which samples can be drawn. This paper studies MDP planning algorithms that
attempt to minimize the number of simulator calls before terminating and outputting a policy that
is approximately optimal with high probability. The paper introduces two heuristics for efficient
exploration and an improved confidence interval that enables earlier termination with probabilis-
tic guarantees. We prove that the heuristics and the confidence interval are sound and produce
with high probability an approximately optimal policy in polynomial time. Experiments on two
benchmark problems and two instances of an invasive species management problem show that the
improved confidence intervals and the new search heuristics yield reductions of between 8% and
47% in the number of simulator calls required to reach near-optimal policies.
Keywords: invasive species management, Markov decision processes, MDP planning, Good-
Turing estimate, reinforcement learning

1. Introduction

The motivation for this paper is the area of ecosystem management in which a manager seeks to
maintain the healthy functioning of an ecosystem by taking actions that promote the persistence
and spread of endangered species or actions that fight the spread of invasive species, fires, and
disease. Most ecosystem management problems can be formulated as MDP (Markov Decision Pro-
cess) planning problems with separate planning and execution phases. During the planning phase,
the algorithm can invoke a simulator to obtain samples of the transitions and rewards. Simulators
in these problems typically model the system to high fidelity and, hence, are very expensive to ex-
ecute. Consequently, the time required to solve such MDPs is dominated by the number of calls to
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the simulator. A good MDP planning algorithm minimizes the number of calls to the simulator and
yet terminates with a policy that is approximately optimal with high probability. This is referred to
as being PAC-RL (Fiechter, 1994).

Because of the separation between the exploration phase (where the simulator is invoked and a
policy is computed) and the exploitation phase (where the policy is executed in the actual ecosys-
tem), we refer to these ecosystem management problems as problems of MDP Planning rather
than of Reinforcement Learning. In MDP planning, we do not need to resolve the exploration-
exploitation tradeoff.

Another aspect of these MDP planning problems that distinguishes them from reinforcement
learning is that the planning algorithm must decide when to terminate and output a PAC-optimal
policy. Many reinforcement learning algorithms, such as Sparse Sampling (Kearns et al., 1999),
FSSS (Walsh et al., 2010), MBIE (Strehl and Littman, 2008), and UCRL2 (Jaksch et al., 2010)
never terminate. Instead, their performance is measured in terms of the number of “significantly
non-optimal actions” (known as PAC-MDP, Kakade (2003)) or cumulative regret (Jaksch et al.,
2010).

A final aspect of algorithms for ecosystem management problems is that they must produce an
explicit policy in order to support discussions with stakeholders and managers to convince them to
adopt and execute the policy. Hence, receding horizon search methods, such as Sparse Sampling
and FSSS, are not appropriate because they do not compute an explicit policy.

A naive approach to solving simulator-defined MDP planning problems is to invoke the simu-
lator a sufficiently large number of times in every state-action pair and then apply standard MDP
planning algorithms to compute a PAC-optimal policy. While this is required in the worst case (c.f.,
Azar et al. (2012)), there are two sources of constraint that algorithms can exploit to reduce simu-
lator calls. First, the transition probabilities in the MDP may be sparse so that only a small fraction
of states are directly reachable from any given state. Second, in MDP planning problems, there is a
designated starting state s0, and the goal is to find an optimal policy for acting in that state and in all
states reachable from that state. In the case where the optimality criterion is cumulative discounted
reward, an additional constraint is that the algorithm only need to consider states that are reachable
within a fixed horizon, because rewards far in the future have no significant impact on the value of
the starting state.

It is interesting to note that the earliest PAC-optimal algorithm published in the reinforcement
learning community was in fact an MDP planning algorithm: the method of Fiechter (1994) ad-
dresses exactly the problem of making a polynomial number of calls to the simulator and then
outputting a policy that is approximately correct with high probability. Fiechter’s method works by
exploring a series of trajectories, each of which begins at the start state and continues to a fixed-
depth horizon. By exploring along trajectories, this algorithm ensures that only reachable states are
explored. And by terminating the exploration at a fixed horizon, it exploits discounting.

Our understanding of reinforcement learning has advanced considerably since Fiechter’s work.
This paper can be viewed as applying these advances to develop “modern” MDP planning algo-
rithms. Specifically, we introduce the following five improvements:

1. Instead of exploring along trajectories, we take advantage of the fact that our simulators can
be invoked for any state-action pair in any order. Hence, our algorithms perform fine-grained
exploration where they iteratively select the state-action pair that they believe will be most
informative.
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2. By not exploring along trajectories (rooted at the start state), we could potentially lose the
guarantee that the algorithm only explores states that are reachable from the start state. We
address this by maintaining an estimate of the discounted state occupancy measure. This
measure is non-zero only for states reachable from the start state. We also use the occupancy
measure in our exploration heuristics.

3. We adopt an extension to the termination condition introduced by Even-Dar et al. (2002,
2006), which is the width of a confidence interval over the optimal value of the start state. We
halt when the width of the confidence interval is less than ε , the desired accuracy bound.

4. We replace the Hoeffding-bound confidence intervals employed by Fiechter (and others) with
the multinomial confidence intervals of Weissman, Ordentlich, Seroussi, Verdu, and Wein-
berger (2003) employed in the MBIE algorithm of Strehl and Littman (2008).

5. To take advantage of sparse transition functions, we incorporate an additional confidence
interval for the Good-Turing estimate of the “missing mass” (the total probability of all un-
observed outcomes for a given state-action pair). This confidence interval can be easily com-
bined with the Weissman et al. interval.

This paper is organized as follows. Section 2 introduces our notation. Section 3 describes a
particular ecosystem management problem—control of the invasive plant tamarisk—and its formu-
lation as an MDP. Section 4 reviews previous work on sample-efficient MDP planning and describes
in detail the algorithms against which we will evaluate our new methods. Section 5 presents the
technical contributions of the paper. It introduces our improved confidence intervals, proves their
soundness, and presents experimental evidence that they enable earlier termination than existing
methods. It then describes two new exploration heuristics, proves that they achieve polynomial
sample size, and presents experimental evidence that they are more effective than previous heuris-
tics. Section 6 concludes the paper.

2. Definitions

We employ the standard formulation of an infinite horizon discounted Markov Decision Process
(MDP; Bellman 1957; Puterman 1994) with a designated start state distribution. Let the MDP be
defined by M = 〈S,A,P,R,γ,P0〉, where S is a finite set of (discrete) states of the world; A is a
finite set of possible actions that can be taken in each state; P : S×A×S 7→ [0,1] is the conditional
probability of entering state s′ when action a is executed in state s; R(s,a) is the (deterministic)
reward received after performing action a in state s; γ ∈ (0,1) is the discount factor, and P0 is the
distribution over starting states. It is convenient to define a special starting state s0 and action a0
and define P(s|s0,a0) = P0(s) and R(s0,a0) = 0. We assume that 0 ≤ R(s,a) ≤ Rmax for all s,a.
Generalization of our methods to (bounded) stochastic rewards is straightforward.

A strong simulator (also called a generative model) is a function F : S×A 7→ S×ℜ that given
(s,a) returns (s′,r) where s′ is sampled according to P(s′|s,a) and r = R(s,a).

A (deterministic) policy is a function from states to actions, π : S 7→ A. The value of a pol-
icy π at the starting state is defined as V π(s0) = E[∑∞

t=0 γ tR(st ,π(st))], where the expectation is
taken with respect to the stochastic transitions. The maximum possible V π(s0) is denoted Vmax =
Rmax/(1− γ). An optimal policy π∗ maximizes V π(s0), and the corresponding value is denoted by
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V ∗(s0). The action-value of state s and action a under policy π is defined as Qπ(s,a) = R(s,a)+
γ ∑s′ P(s′|s,a)V π(s′). The optimal action-value is denoted Q∗(s,a).

Define pred(s) to be the set of states s− such that P(s|s−,a) > 0 for at least one action a and
succ(s,a) to be the set of states s′ such that P(s′|s,a)> 0.

Definition 1 Fiechter (1994). A learning algorithm is PAC-RL1 if for any discounted MDP defined
by 〈S,A,P,R,γ,P0〉, ε > 0, 1 > δ > 0, and 0 ≤ γ < 1, the algorithm halts and outputs a policy π

such that
P[|V ∗(s0)−V π(s0)| ≤ ε]≥ 1−δ ,

in time polynomial in |S|, |A|, 1/ε , 1/δ , 1/(1− γ), and Rmax.

As a learning algorithm explores the MDP, it collects the following statistics. Let N(s,a) be
the number of times the simulator has been called with state-action pair (s,a). Let N(s,a,s′) be the
number of times that s′ has been observed as the result. Let R(s,a) be the observed reward.

3. Managing Tamarisk Invasions in River Networks

The tamarisk plant (Tamarix spp.) is a native of the Middle East. It has become an invasive plant
in the dryland rivers and streams of the western US (DiTomaso and Bell, 1996; Stenquist, 1996). It
out-competes native vegetation primarily by producing large numbers of seeds. Given an ongoing
tamarisk invasion, a manager must repeatedly decide how and where to fight the invasion (e.g.,
eradicate tamarisk plants? plant native plants? upstream? downstream?).

A stylized version of the tamarisk management problem can be formulated as an MDP as fol-
lows. The state of the MDP consists of a tree-structured river network in which water flows from the
leaf nodes toward the root (see Figure 1).

Edge (E)

Slot (H)

Figure 1: Tamarisk structure

The network contains E edges. Each edge in turn has H slots at
which a plant can grow. Each slot can be in one of three states:
empty, occupied by a tamarisk plant, or occupied by a native plant.
In this stylized model, because the exact physical layout of the H
slots within each edge is unimportant, the state of the edge can be
represented using only the number of slots that are occupied by
tamarisk plants and the number of slots occupied by native plants.
The number of empty slots can be inferred by subtracting these
counts from H. Hence, each edge can be in one of (H+1)(H+2)/2
states. Consequently, the total number of states in the MDP is
E(H+1)(H+2)/2.

The dynamics are defined as follows. In each time step, each plant (tamarisk or native) dies with
probability 0.2. The remaining plants each produce 100 seeds. The seeds then disperse according to
a spatial process such that downstream spread is much more likely than upstream spread. We employ
the dispersal model of Muneepeerakul et al. (2007, Appendix B) with an upstream parameter of 0.1
and a downstream parameter of 0.5. An important aspect of the dispersal model is that there is a

1. In retrospect, it would have been better if Fiechter had called this PAC-MDP, because he is doing MDP planning.
In turn, PAC-MDP has come to refer to reinforcement learning algorithms with polynomial time or regret bounds,
which would be more appropriately called PAC-RL algorithms. At some point, the field should swap the meaning of
these two terms.
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non-zero probability for a propagule to travel from any edge to any other edge. Each propagule that
arrives at an edge lands in a slot chosen uniformly at random. Hence, after dispersal, each propagule
has landed in one of the slots in the river network. The seeds that arrive at an occupied slot die and
have no effect. The seeds that arrive at an empty slot compete stochastically to determine which one
will occupy the site and grow. In the MDPs studied in this paper, this competition is very simple:
one of the arriving seeds is chosen uniformly at random to occupy the slot.

Many variations of the model are possible. For example, we can allow the tamarisk plants to be
more fecund (i.e., produce more seeds) than the native plants. The seeds can have differential com-
petitive advantage. The plants can have differential mortality, and so on. One variation that we will
employ in one of our experiments is to include “exogenous arrivals” of tamarisk seeds. This mod-
els the process by which new seeds are introduced to the river network from some external source
(e.g., fishermen transporting seeds on their clothes or equipment). Specifically, in the exogenous
arrivals condition, in addition to the seeds that arrive at an edge via dispersal, up to 10 additional
seeds of each species arrive in each edge. These are sampled by taking 10 draws from a Bernoulli
distribution for each species. For tamarisk, the Bernoulli parameter is 0.1; for the native seeds, the
Bernoulli parameter is 0.4.

The dynamics can be represented as a very complex dynamic Bayesian network (DBN). How-
ever, inference in this DBN is intractable, because the induced tree width is immense. One might
hope that methods from the factored MDP literature could be applied, but the competition be-
tween the seeds that arrive at a given slot means that every slot is a parent of every other slot,
so there is no sparseness to be exploited. An additional advantage of taking a simulation ap-
proach is that our methods can be applied to any simulator-defined MDP. We have therefore con-
structed a simulator that draws samples from the DBN. Code for the simulator can be obtained from
http://2013.rl-competition.org/domains/invasive-species.

The actions for the management MDP are defined as follows. At each time step, one action
can be taken in each edge. The available actions are “do nothing”, “eradicate” (attempt to kill all
tamarisk plants in all slots in the edge), and “restore” (attempt to kill all tamarisk plants in all slots
in the edge and then plant native plants in every empty slot). The effects are controlled by two
parameters: the probability that killing a tamarisk plant succeeds (χ = 0.85) and the probability that
planting a native plant in an empty slot succeeds (β = 0.65). Taken together, the probability that
the “restore” action will change a slot from being occupied by a tamarisk plant to being occupied
by a native plant is the product χ ×β = 0.5525. Because these actions can be taken in each edge,
the total number of actions for the MDP is 3E . However, we will often include a budget constraint
that makes it impossible to treat more than one edge per time step.

The reward function assigns costs as follows. There is a cost of 1.0 for each edge that is invaded
(i.e., that has at least one slot occupied by a tamarisk plant) plus a cost of 0.1 for each slot occupied
by a tamarisk plant. The cost of applying an action to an edge is 0.0 for “do nothing”, 0.5 for
“eradicate”, and 0.9 for “restore”.

The optimization objective is to minimize the infinite horizon discounted sum of costs. However,
for notational consistency we will describe our algorithms in terms of maximizing the discounted
sum of rewards throughout the paper.

It is important to note that in real applications, all of the parameters of the cost function and tran-
sition dynamics may be only approximately known, so another motivation for developing sample-
efficient algorithms is to permit experimental analysis of the sensitivity of the optimal policy to the
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values of these parameters. The techniques employed in this paper are closely-related to those used
to compute policies that are robust to these uncertainties (Mannor et al., 2012; Tamar et al., 2014).

Now that we have described our motivating application problem, we turn our attention to devel-
oping efficient MDP planning algorithms. We start by summarizing previous research.

4. Previous Work on Sample-Efficient MDP Planning

Fiechter (1994) first introduced the notion of PAC reinforcement learning in Definition 1 and pre-
sented the PAC-RL algorithm shown in Figure 1. Fiechter’s algorithm defines a measure of un-
certainty d̃π

h (s), which with high probability is an upper bound on the difference |V ∗h (s)−V π
h (s)|

between the value of optimal policy and the value of the “maximum likelihood” policy that would
be computed by value iteration using the current transition probability estimates. The subscript
h indicates the depth of state s from the starting state. Fiechter avoids dealing with loops in the
MDP by computing a separate transition probability estimate for each combination of state, action
and depth (s,a,h) up to h≤ H, where H is the maximum depth (“horizon”) at which estimates are
needed. Hence, the algorithm maintains separate counts Nh(s,a,s′) and Nh(s,a) to record the results
of exploration for each depth h. To apply this algorithm in practice, Fiechter (1997) modifies the
algorithm to drop the dependency of the related statistics on h.

Fiechter’s algorithm explores along a sequence of trajectories. Each trajectory starts at state s0
and depth 0 and follows an exploration policy πe until reaching depth H. The exploration policy
is the optimal policy for an “exploration MDP” whose transition function is Ph(s′|s,a) but whose
reward function for visiting state s at depth h is equal to

Rh(s,a) =
6
ε

Vmax

1−δ

√
2ln4H|S||A|−2lnδ

Nh(s,a)
.

This reward is derived via an argument based on the Hoeffding bound. The transition probabilities
Ph(s′|s,a) are computed from the observed counts.

The quantity dπe
(s) is the value function corresponding to πe. Because the MDP is stratified by

depth, πe and dπe can be computed in a single sweep starting at depth H and working backward to
depth 0. The algorithm alternates between exploring along a single trajectory and recomputing πe

and dπe
. It halts when dπe

0 (s0) ≤ 2/(1− γ). By exploring along πe, the algorithm seeks to visit a
sequence of states whose total uncertainty is maximized in expectation.

A second important inspiration for our work is the Model-Based Action Elimination (MBAE)
algorithm of Even-Dar et al. (2002, 2006). Their algorithm maintains confidence intervals Q(s,a) ∈
[Qlower(s,a),Qupper(s,a)] on the action-values for all state-action pairs in the MDP. These confi-
dence intervals are computed via “extended value iteration” that includes an additional term derived
from the Hoeffding bounds:

Qupper(s,a) = R(s,a)+ γ ∑
s′

P̂(s′|s,a)Vupper(s′)+Vmax

√
lnct2|S||A|− lnδ

|N(s,a)|
(1)

Vupper(s) = max
a

Qupper(s,a) (2)

Qlower(s,a) = R(s,a)+ γ ∑
s′

P̂(s′|s,a)Vlower(s′)−Vmax

√
lnct2|S||A|− lnδ

|N(s,a)|
(3)

Vlower(s) = max
a

Qlower(s,a). (4)
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Algorithm 1: Fiechter(s0,γ,F,ε,δ )
Input: s0: start state; γ: discount rate; F : a simulator
Initialization:

H =
⌈

1
1−γ

(
lnVmax + ln 6

ε

)⌉
// horizon depth

for s,s′ ∈ S,a ∈ A(s),h = 0, . . . ,H−1 do
Nh(s,a) = 0
Nh(s,a,s′) = 0
Rh(s,a,s′) = 0
πe

h(s) = a1

Exploration:
while dπe

0 (s0)> 2/(1− γ) do
reset h = 0 and s = s0
while h < H do

a = πe
h(s)

(r,s′)∼ F(s,a) // draw sample
update Nh(s,a), Nh(s,a,s′), and Rh(s,a,s′)
h = h+1
s = s′

Compute new policy πe (and values dπe
) using the following dynamic program

dmax = (12Vmax)/(ε(1− γ))
Ph(s′|s,a) = Nh(s,a,s′)/Nh(s,a)
dπe

H (s) = 0, ∀s ∈ S
for h = H−1, . . . ,0 do

eπe

h (s,a) = min
{

dmax,
6
ε

Vmax
1−δ

√
2ln4H|S||A|−2lnδ

Nh(s,a)
+ γ ∑s′∈succ(s,a) Ph(s′|s,a)dπe

h+1(s
′)
}

πe
h(s) = argmaxa∈A(s) eπe

h (s,a)
dπe

h (s) = eπe

h (s,πe
h(s))

Compute policy π , and return it.

In these equations, t is a counter of the number of times that the confidence intervals have been
computed and c is an (unspecified) constant. Even-Dar et al. prove that the confidence intervals
are sound. Specifically, they show that with probability at least 1− δ , Qlower(s,a) ≤ Q∗(s,a) ≤
Qupper(s,a) for all s, a, and iterations t.

Their MBAE algorithm does not provide a specific exploration policy. Instead, the primary
contribution of their work is to demonstrate that these confidence intervals can be applied as a
termination rule. Specifically, if for all (s,a), |Qupper(s,a)−Qlower(s,a)| < ε(1−γ)

2 , then the policy
that chooses actions to minimize Qlower(s,a) is ε-optimal with probability at least 1−δ . Note that
the iteration over s′ in these equations only needs to consider the observed transitions, as P̂(s′|s,a) =
0 for all transitions where N(s,a,s′) = 0.

An additional benefit of the confidence intervals is that any action a′ can be eliminated from
consideration in state s if Qupper(s,a′) < Qlower(s,a). Even-Dar et al. demonstrate experimentally
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that this can lead to faster learning than standard Q learning (with either uniform random action
selection or ε-greedy exploration).

The third important source of ideas for our work is the Model-Based Interval Estimation (MBIE)
algorithm of Strehl and Littman (2008). MBIE maintains an upper confidence bound on the action-
value function, but unlike Fiechter and Even-Dar et al., this bound is based on a confidence region
for the multinomial distribution developed by Weissman et al. (2003).

Let P̂(s′|s,a) = N(s,a,s′)/N(s,a) be the maximum likelihood estimate for P(s′|s,a), and let P̂
and P̃ denote P̂(·|s,a) and P̃(·|s,a). Define the confidence set CI as

CI(P̂|N(s,a),δ ) =
{

P̃
∣∣ ‖P̃− P̂‖1 ≤ ω(N(s,a),δ )

}
, (5)

where ‖ · ‖1 is the L1 norm and ω(N(s,a),δ ) =
√

2[ln(2|S|−2)−lnδ ]
N(s,a) . The confidence interval is an

L1 “ball” of radius ω(N(s,a),δ ) around the maximum likelihood estimate for P. Weissman et al.
(2003) prove that with probability 1−δ , P(·|s,a) ∈CI(P̂(·|s,a)|N(s,a),δ ).

Given confidence intervals for all visited (s,a), MBIE computes an upper confidence bound on
Q and V as follows. For any state where N(s,a) = 0, define Qupper(s,a) = Vmax. Then iterate the
following dynamic programming equations to convergence:

Qupper(s,a) = R(s,a)+ max
P̃(s,a)∈CI(P(s,a),δ1)

γ ∑
s′

P̃(s′|s,a)max
a′

Qupper(s′,a′) ∀s,a (6)

At convergence, define Vupper(s) = maxa Qupper(s,a). Strehl and Littman (2008) prove that this
converges.

Strehl and Littman provide Algorithm UPPERP (Algorithm 2) for solving the optimization over
CI(P(s,a),δ1) in (6) efficiently. If the radius of the confidence interval is ω , then we can solve
for P̃ by shifting ∆ω = ω/2 of the probability mass from outcomes s′ for which Vupper(s′) =
maxa′ Qupper(s′,a′) is low (“donor states”) to outcomes for which it is maximum (“recipient states”).
This will result in creating a P̃ distribution that is at L1 distance ω from P̂. The algorithm repeatedly
finds a pair of successor states s and s and shifts probability from one to the other until it has shifted
∆ω . Note that in most cases, s will be a state for which N(s,a,s) = 0—that is, a state we have never
visited. In such cases, Vupper(s) =Vmax.

As with MBAE, UPPERP only requires time proportional to the number of transitions that have
been observed to have non-zero probability.

The MBIE algorithm works as follows. Given the upper bound Qupper, MBIE defines an ex-
ploration policy based on the optimism principle (Buşoniu and Munos, 2012). Specifically, at each
state s, it selects the action a that maximizes Qupper(s,a). It then performs that action in the MDP
simulator to obtain the immediate reward r and the resulting state s′. It then updates its statistics
N(s,a,s′), R(s,a), and N(s,a) and recomputes Qupper.

MBIE never terminates. However, it does compute a constant m such that if N(s,a) > m, then
it does not draw a new sample from the MDP simulator for (s,a). Instead, it samples a next state
according to its transition probability estimate P̂(s′|s,a). Hence, in an ergodic2 or unichain3 MDP, it
will eventually stop drawing new samples, because it will have invoked the simulator on all actions
a in all non-transient states s at least m times.

2. An ergodic MDP is an MDP where every state can be accessed in a finite number of steps from any other state
3. In unichain MDP, every policy in an MDP result in a single ergodic class
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Algorithm 2: UPPERP(s,a,δ ,M0)
Input: s,a
δ : Confidence parameter
M0: missing mass limit
Lines marked by GT: are for the Good-Turing extension
N(s,a) := ∑s′ N(s,a,s′)
P̂(s′|s,a) := N(s,a,s′)/N(s,a) for all s′

P̃(s′|s,a) := P̂(s′|s,a) for all s′

∆ω := ω(N(s,a),δ )/2
GT: N0(s,a) := {s′|N(s,a,s′) = 0}
GT: ∆ω := min

(
ω(N(s,a),δ/2)/2,(1+

√
2)
√

ln(2/δ )
N(s,a)

)
while ∆ω > 0 do

S′ := {s′ : P̂(s′|s,a)< 1} recipient states
GT: if M0 = 0 then S′ := S′ \N0(s,a)

s := argmins′:P̃(s′|s,a)>0Vupper(s′) donor state
s := argmaxs′∈S′,P̃(s′|s,a)<1Vupper(s′) recipient state
ξ := min{1− P̃(s|s,a), P̃(s|s,a),∆ω}
P̃(s|s,a) := P̃(s|s,a)−ξ

P̃(s|s,a) := P̃(s|s,a)+ξ

∆ω := ∆ω−ξ

GT: if s ∈ N0(s,a) then M0 := M0−ξ

return P̃

Because MBIE does not terminate, it cannot be applied directly to MDP planning. However, we
can develop an MDP planning version by using the horizon time H computed by Fiechter’s method
and forcing MBIE to jump back to s0 each time it has traveled H steps away from the start state.
Algorithm 3 provides the pseudo-code for this variant of MBIE, which we call MBIE-reset.

Now that we have described the application goal and previous research, we present the novel
contributions of this paper.

5. Improved Model-Based MDP Planning

We propose a new algorithm, which we call DDV. Algorithm 4 presents the general schema for
the algorithm. For each state-action (s,a) pair that has been explored, DDV maintains upper and
lower confidence limits on Q(s,a) such that Qlower(s,a) ≤ Q∗(s,a) ≤ Qupper(s,a) with high prob-
ability. From these, we compute a confidence interval on the value of the start state s0 according
to Vlower(s0) = maxa Qlower(s0,a) and Vupper(s0) = maxa Qupper(s0,a). Consequently, Vlower(s0) ≤
V ∗(s0) ≤ Vupper(s0) with high probability. The algorithm terminates when the width of this confi-
dence interval, which we denote by ∆V (s0) =Vupper(s0)−Vlower(s0), is less than ε .

The confidence intervals for Qlower and Qupper are based on an extension of the Weissman, et
al. confidence interval of Equation (5), which we will refer to as CIGT (P(s,a),δ1) (which will be
described below). The confidence intervals are computed by iterating the following equations to
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Algorithm 3: MBIE-reset(s0,γ,F,H,ε,δ )
Input: s0:start state, γ: discount rate, F : a simulator, H : horizon,ε,δ : accuracy and

confidence parameters
N(s,a,s′) = 0 for all (s,a,s′)

m = c
[

|S|
ε2(1−γ)4 +

1
ε2(1−γ)4 ln |S||A|

ε(1−γ)δ

]
repeat forever

s = s0
h = 1
while h≤ H do

update Qupper and Vupper by iterating equation 6 to convergence
a = argmaxa Qupper(s)
if N(s,a)< m then

(r,s′)∼ F(s,a) // draw sample
update N(s,a,s′),N(s,a), and R(s,a)

else
s′ ∼ P̂(s′|s,a)
r = R(s,a)

h = h+1

convergence:

Qlower(s,a) = R(s,a)+ min
P̃(s,a)∈CIGT (P(s,a),δ1)

γ ∑
s′

P̃(s′|s,a)max
a′

Qlower(s′,a′) ∀s,a. (7)

Qupper(s,a) = R(s,a)+ max
P̃(s,a)∈CIGT (P(s,a),δ1)

γ ∑
s′

P̃(s′|s,a)max
a′

Qupper(s′,a′) ∀s,a. (8)

The Q values are initialized as follows: Qlower(s,a) = 0 and Qupper(s,a) = Vmax. At convergence,
define Vlower(s) = maxa Qlower(s,a) and Vupper(s) = maxa Qupper(s,a).

Lemma 2 If δ1 = δ/(|S||A|), then with probability 1−δ , Qlower(s,a)≤ Q∗(s,a)≤ Qupper(s,a) for
all (s,a) and Vlower(s)≤V ∗(s)≤Vupper for all s.

Proof Strehl and Littman (2008) prove this for Qupper and Vupper by showing that it is true at the
point of initialization and that Equation (8) is a contraction. Hence, it remains true by induction on
the number of iterations of value iteration. The proof for Qlower and Vlower is analogous.

The exploration heuristic for DDV is based on exploring the state-action pair (s,a) that maxi-
mizes the expected decrease in ∆V (s0). We write this quantity as ∆∆V (s0|s,a), because it is a change
(∆) in the confidence interval width ∆V (s0|s,a). Below, we will describe two different heuristics
that are based on two different approximations to ∆∆V (s0|s,a).

We now present the improved confidence interval, CIGT , and evaluate its effectiveness exper-
imentally. Then we introduce our two search heuristics, analyze them, and present experimental
evidence that they improve over previous heuristics.
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Algorithm 4: DDV (s0,γ,F,ε,δ )
Input: s0:start state
γ: discount rate
F : a simulator
ε,δ : accuracy and confidence parameters
m = c

[
|S|

ε2(1−γ)4 +
1

ε2(1−γ)4 ln |S||A|
ε(1−γ)δ

]
δ ′ = δ/(|S||A|m)
S̃ = {s0} // observed and/or explored states
N(s,a,s′) = 0 for all (s,a,s′)
repeat forever

update Qupper,Qlower,Vupper,Vlower by iterating equations 7 and 8 using δ ′ to compute
the confidence intervals
if Vupper(s0)−Vlower(s0)≤ ε then

// compute a good policy and terminate
πlower(s) = argmaxa Qlower(s,a)
return πlower

forall the explored or observed states s do
forall the actions a do

compute ∆∆V (s0|s,a)

compute (s,a) := argmax(s,a) ∆∆V (s0|s,a)
(r,s′)∼ F(s,a) // draw sample
S̃ := S̃∪{s′} // update the set of discovered states
update N(s,a,s′),N(s,a), and R(s,a)

5.1 Tighter Statistical Analysis for Earlier Stopping

The first contribution of this paper is to improve the confidence intervals employed in equation (6).
In many real-world MDPs, the transition probability distributions are sparse in the sense that there
are only a few states s′ such that P(s′|s,a) > 0. A drawback of the Weissman et al. confidence
interval is that ω(N,δ ) scales as O(

√
|S|/N), so the intervals are very wide for large state spaces.

We would like a tighter confidence interval for sparse distributions.
Our approach is to intersect the Weissman et al. confidence interval with a confidence interval

based on the Good-Turing estimate of the missing mass (Good, 1953).

Definition 3 For a given state-action pair (s,a), let Nk(s,a) = {s′|N(s,a,s′) = k} be the set of all
result states s′ that have been observed exactly k times. We seek to bound the total probability
of those states that have never been observed: M0(s,a) = ∑s′∈N0(s,a) P(s′|s,a). The Good-Turing
estimate of M0(s,a) is

M̂0(s,a) =
|N1(s,a)|
N(s,a)

.

In words, Good and Turing count the number of successor states that have been observed exactly
once and divide by the number of samples. The following lemma follows directly from Kearns and
Saul (1998), McAllester and Schapire (2000), and McAllester and Ortiz (2003).
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Lemma 4 With probability 1−δ ,

M0(s,a)≤ M̂0(s,a)+(1+
√

2)

√
ln(1/δ )

N(s,a)
. (9)

Proof Let S(M0(s,a),x) be the Chernoff “entropy”, defined as

S(M0(s,a),x) = sup
β

xβ − lnZ(M0(s,a),β ),

where Z(M0(s,a),β ) = E[eβM0(s,a)]. McAllester and Ortiz (2003, Theorem 16) prove that

S(M0(s,a),E[M0(s,a)]+ ε)≥ N(s,a)ε2.

From Lemmas 12 and 13 of McAllester and Schapire (2000),

E[M0(s,a)]≤ M̂0(s,a)+

√
2log1/δ

N(s,a)
.

Combining these results yields

S

(
M0(s,a),M̂0(s,a)+

√
2log1/δ

N(s,a)
+ ε

)
≥ N(s,a)ε2. (10)

Chernoff (1952) proves that
P(M0(s,a)≥ x)≤ e−S(M0(s,a),x).

Plugging in (10) gives

P

(
M0(s,a)≥ M̂0(s,a)+

√
2log1/δ

N(s,a)
+ ε

)
≤ e−N(s,a)ε2

. (11)

Setting δ = e−N(s,a)ε2
and solving for ε gives ε =

√
(log1/δ )/N(s,a). Plugging this into (11) and

simplifying gives the result.

Define CIGT (P̂|N(s,a),δ ) to be the set of all distributions P̃ ∈ CI(P̂|N(s,a),δ/2) such that

∑s′∈N0(s,a) P̃(s′|s,a)< M̂0(s,a)+(1+
√

2)
√

ln(2/δ )
N(s,a) . This intersects the Weissman and Good-Turing

intervals. Note that since we are intersecting two confidence intervals, we must compute both (5)
and (9) using δ/2 so that they will simultaneously hold with probability 1−δ .

We can incorporate the bound from (9) into UPPERP by adding the lines prefixed by “GT:”
in Algorithm 2. These limit the amount of probability that can be shifted to unobserved states
according to (9). The modified algorithm still only requires time proportional to the number of
states s′ where N(s,a,s′)> 0.
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5.1.1 EXPERIMENTAL EVALUATION OF THE IMPROVED CONFIDENCE BOUND

To test the effectiveness of this Good-Turing improvement, we ran MBIE-reset and compared its
performance with and without the improved confidence interval.

We experimented with four MDPs. The first is a Combination Lock MDP with 500 states. In
each state i, there are two possible actions. The first action makes a deterministic transition to state
i+ 1 with reward 0 except for state 500, which is a terminal state with a reward of 1. The second
action makes a transition (uniformly) to one of the states 1, . . . , i− 1 with reward 0. The optimal
policy is to choose the first action in every state, even though it doesn’t provide a reward until the
final state.

The remaining three MDPs are different versions of the tamarisk management MDP. The spe-
cific network configurations that we employed in this experiment were the following:

• E = 3,H = 2 with the budget constraint that in each time step we can only choose one edge
in which to perform a non-“do nothing” action. This gives a total of 7 actions.

• E = 3,H = 3 with the same constraints as for E = 3,H = 2.

• E = 7,H = 1 with the budget constraint that in each time step we can only choose one edge
in which to perform a non-“do nothing” action. The only such action is “restore”. This gives
a total of 8 actions.

5.1.2 RESULTS

Figure 2 shows the upper and lower confidence bounds, Vupper(s0) and Vlower(s0), on the value of
the starting state s0 as a function of the number of simulator calls. The confidence bounds for the
Weissman et al. interval are labeled “V(CI)”, whereas the bounds for this interval combined with
the Good-Turing interval are labeled “V(CI-GT)”.

5.1.3 DISCUSSION

The results show that the Good-Turing interval provides a substantial reduction in the number of
required simulator calls. On the combination lock problem, the CI-GT interval after 2× 105 calls
is already better than the CI interval after 106 calls, for a more than five-fold speedup. On the
E = 3,H = 2 tamarisk problem, the speedup is more than a factor of three. On the E = 3,H = 3
version, the speedup is more than five-fold. And on the E = 7,H = 1 problem, the CI interval does
not show any progress toward convergence, whereas the CI-GT interval has begun to make progress.

5.2 Improved Exploration Heuristics for MDP Planning

The second contribution of this paper is to define two new exploration heuristics for MDP planning
and compare them to existing algorithms. As with previous work, we wish to exploit reachability
and discounting to avoid exploring unnecessarily. However, we want to take advantage of the fact
that our simulators are “strong” in the sense that we can explore any desired state-action pair in any
order.

As discussed above, our termination condition is to stop when the width of the confidence
interval ∆V (s0) = Vupper(s0)−Vlower(s0) is less than ε . Our heuristics are based on computing the
state-action pair (s,a) that will lead to the largest (one step) reduction in ∆V (s0). Formally, let
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(b) Tamarisk with E = 3 and H = 2
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(c) Tamarisk with E = 3 and H = 3
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Figure 2: Plots of Vupper(s0) and Vlower(s0) for MBIE-reset on V (s0) with and without incorporating
Good-Turing confidence intervals. Values are the mean of 15 independent trials. Error
bars (which are barely visible) show 95% confidence intervals computed from the 15
trials.

∆∆V (s0|s,a) = E[∆V (s0)−∆V ′(s0)|(s,a)] be the expected change in ∆V (s0) if we draw one more
sample from (s,a). Here the prime in ∆V ′(s0) denotes the value of ∆V (s0) after exploring (s,a).
The expectation is taken with respect to two sources of uncertainty: uncertainty about the reward
R(s,a) and uncertainty about the resulting state s′ ∼ P(s′|s,a).

Suppose we are considering exploring (s,a). We approximate ∆∆V (s0|s,a) in two steps. First,
we consider the reduction in our uncertainty about Q(s,a) if we explore (s,a). Let ∆Q(s,a) =
Qupper(s,a)−Qlower(s,a) and ∆∆Q(s,a) = E[∆Q(s,a)−∆Q′(s,a)|(s,a)]. Second, we consider the
impact that reducing ∆Q(s,a) will have on ∆V (s0).

We compute ∆∆Q(s,a) as follows.
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Case 1: N(s,a) = 0. In this case, our current bounds are Qlower(s,a) = 0 and Qupper(s,a) =Vmax.
After we sample (r,s′)∼ F(s,a), we will observe the actual reward R(s,a) = r and we will observe
one of the possible successor states s′. For purposes of deriving our heuristic, we will assume a
uniform4 prior on R(s,a) so that the expected value of R is R = Rmax/2. We will assume that s′ will
be a “new” state that we have never observed before, and hence Vupper(s′) =Vmax and Vlower(s′) = 0.
This gives us

Q′upper(s,a) = R(s,a)+ γRmax/(1− γ) (12a)

Q′lower(s,a) = R(s,a), (12b)

If a more informed prior is known for R(s,a), then it could be employed to derive a more informed
exploration heuristic.

Case 2: N(s,a) > 0. In this case, we have already observed R(s,a), so it is no longer a random
variable. Hence, the expectation is only over s′. For purposes of deriving our exploration heuristic,
we will assume that s′ will be drawn according to our current maximum likelihood estimate P̂(s′|s,a)
but that N1(s,a) will not change. Consequently, the Good-Turing estimate will not change. Under
this assumption, the expected value of Q will not change, M0(s,a) will not change, so the only
change to Qupper and Qlower will result from replacing ω(N(s,a),δ ) by ω(N(s,a) + 1,δ ) in the
Weissman et al. confidence interval.

Note that DDV may explore a state-action pair (s,a) even if a is not currently the optimal action
in s. That is, even if Qupper(s,a) < Qupper(s,a′) for some a′ 6= a. An alternative rule would be to
only explore (s,a) if it would reduce the expected value of ∆V (s) =Vupper(s)−Vlower(s). However,
if there are two actions a and a′ such that Qupper(s,a) = Qupper(s,a′), then exploring only one of
them will not change ∆V (s). Our heuristic avoids this problem. We have studied another variant in
which we defined Vupper(s) = softmaxa(τ) Qupper(s,a) (the softmax with temperature τ). This gave
slightly better results, but it requires that we tune τ , which is a nuisance.

The second component of our heuristic is to estimate the impact of ∆∆Q(s0|s,a) on ∆∆V (s0|s,a).
To do this, we appeal to the concept of an occupancy measure.

Definition 5 The occupancy measure µπ(s) is the expected discounted number of times that policy
π visits state s,

µ
π(s) = E

[
∞

∑
t=1

γ
tI[st = s]

∣∣∣∣∣ s0,π

]
, (13)

where I[·] is the indicator function and the expectation taken is with respect to the transition distri-
bution.

This can be computed via dynamic programming on the Bellman flow equation (Syed et al., 2008):

µ
π(s) := P0(s)+ γ ∑

s−
µ

π(s−)P(s|s−,π(s−)).

This says that the (discounted) probability of visiting state s is equal to the sum of the probability of
starting in state s (as specified by the starting state distribution P0(s)) and the probability of reaching
s by first visiting state s− and then executing an action that leads to state s.

4. Any symmetric prior centered on Rmax/2 would suffice.
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The intuition behind using an occupancy measure is that if we knew that the optimal policy
would visit s with measure µ∗(s) and if exploring (s,a) would reduce our uncertainty at state
s by approximately ∆∆Q(s0|s,a), then a reasonable estimate of the impact on ∆V (s0) would be
µ∗(s)∆∆Q(s0|s,a). Unfortunately, we don’t know µ∗ because we don’t know the optimal policy.
We consider two other occupancy measures instead: µOUU and µ .

The first measure, µOUU is computed based on the principle of optimism under uncertainty.
Specifically, define πOUU(s) := maxa Qupper(s,a) to be the policy that chooses the action that maxi-
mizes the upper confidence bound on the Q function. This is the policy followed by MBIE and most
other upper-confidence bound methods. This gives us the DDV-OUU heuristic.

Definition 6 The DDV-OUU heuristic explores the state action pair (s,a) that maximizes

µ
OUU(s)∆∆Q(s0|s,a).

The second measure µ is computed based on an upper bound of the occupancy measure over all
possible policies. It gives us the DDV-UPPER heuristic.

Definition 7 The DDV-UPPER heuristic explores the state action pair (s,a) that maximizes

µ(s)∆∆Q(s0|s,a).

The next section defines µ and proves a property that may be of independent interest.

5.2.1 AN UPPER BOUND ON THE OCCUPANCY MEASURE

The purpose of this section is to introduce µ , which is an upper bound on the occupancy measure of
any optimal policy for a restricted set of MDPs M̃ . This section defines this measure and presents a
dynamic programming algorithm to compute it. The attractive aspect of µ is that it can be computed
without knowing the optimal policy. In this sense, it is analogous to the value function, which value
iteration computes in a policy-independent way.

To define µ , we must first define the set M̃ of MDPs. At each point during the execution
of DDV, the states S of the unknown MDP can be partitioned into three sets: (a) the unob-
served states s (i.e., N(s−,a−,s) = 0 for all s−,a−); (b) the observed but unexplored states s (i.e.,
∃(s−,a−)N(s−,a−,s) > 0 but N(s,a) = 0 for all a), and (c) the (partially) explored states s (i.e.,
N(s,a,s′)> 0 for some a). Consider the set M̃ = 〈S̃, Ã, T̃ , R̃,s0〉 of MDPs satisfying the following
properties:

• S̃ consists of all states s that have been either observed or explored,

• Ã = A, the set of actions in the unknown MDP,

• T̃ consists of any transition function T such that for explored states s and all actions a,
T (s,a, ·) ∈ CIGT (P̂(s,a),δ ). For all observed but not explored states s, T (s,a,s) = 1 for
all a, so they enter self-loops.

• R̃: For explored (s,a) pairs, R̃(s,a) = R(s,a). For unexplored (s,a) pairs, R̃(s,a) ∈ [0,Rmax].

• s0 is the artificial start state.
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The set M̃ contains all MDPs consistent with the observations with the following restrictions. First,
the MDPs do not contain any of the unobserved states. Second, the unexplored states contain self-
loops and hence do not transition to any other states.

Define Pupper(s′|s,a) as follows:

Pupper(s′|s,a) = max
P̃(s,a)∈CIGT (P,δ )

P̃(s′|s,a).

Define µ as the solution to the following dynamic program. For all states s,

µ(s) = ∑
s−∈pred(s)

max
a−

γPupper(s|s−,a−)µ(s−). (14)

The intuition is that we allow each predecessor s− of s to choose the action a− that would send the
most probability mass to s and hence give the biggest value of µ(s). These action choices a− are
not required to be consistent for multiple successors of s−. We fix µ(s0) = µ(s0) = 1. (Recall, that
s0 is an artificial start state. It is not reachable from any other state—including itself—so µ(s0) = 1
for all policies.)

Lemma 8 For all MDPs M̃ ∈ M̃ , µ(s)≥ µπ∗(M̃)(s), where π∗(M̃) is any optimal policy of M̃.

Proof By construction, Pupper(s′|s,a) is the maximum over all transition distributions in M̃ of the
probability of (s,a)→ s′. According to (14), the probability flowing to s is the maximum possible
over all policies executed in the predecessor states {s−}. Finally, all probability reaching a state s
must come from its known predecessors pred(s), because all observed but unexplored states only
have self-transitions and hence cannot reach s or any of its predecessors.

In earlier work, Smith and Simmons (2006) employed a less general path-specific bound on µ

as a heuristic for focusing Real-Time Dynamic Programming (a method that assumes a full model
of the MDP is available).

5.2.2 SOUNDNESS OF DDV-OUU AND DDV-UPPER

We now show that DDV, using either of these heuristics, produces an ε-optimal policy with prob-
ability at least 1− δ after making only polynomially-many simulator calls. The steps in this proof
closely follow previous proofs by Strehl and Littman (2008) and Even-Dar et al. (2006).

Theorem 9 (DDV is PAC-RL) There exists a sample size m polynomial in |S|, |A|, 1/ε , 1/δ ,
1/(1−γ),Rmax, such that DDV(s0,F,ε,δ/(m|S||A|)) with either the DDV-OUU or the DDV-UPPER
heuristic terminates after no more than m|S||A| calls on the simulator and returns a policy π such
that |V π(s0)−V ∗(s0)|< ε with probability 1−δ .

Proof First, note that every sample drawn by DDV will shrink the confidence interval for some
Q(s,a). Hence, these intervals will eventually become tight enough to make the termination condi-
tion true. To establish a rough bound on sample complexity, let us suppose that each state must be
sampled enough so that ∆Q(s,a) = Qupper(s,a)−Qlower(s,a)≤ ε .

This will cause termination. Consider state s0 and let aupper = argmaxa Qupper(s0,a) be the
action chosen by the OUU policy. Then the upper bound on s is Vupper(s) = Qupper(s,aupper), and
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the lower bound on S is Vlower(s0) = maxa Qlower(s0,a) ≥ Qlower(s0,aupper). Hence, the difference
Vupper(s0)−Vlower(s0)≤ ε .

How many samples are required to ensure that ∆Q(s,a) ≤ ε for all (s,a)? We can bound
Qupper(s,a)−Qlower(s,a) as follows.

Qupper(s,a)−Qlower(s,a) = R(s,a)+ γ max
P̃∈CI(P̂(s,a),δ ′)

∑
s′

P̃(s′|s,a)Vupper(s′)

−R(s,a)− γ min
P̃∈CI(P̂(s,a),δ ′)

∑
s′

P̃(s′|s,a)Vlower(s′)

Let Pupper be the P̃ chosen in the max and Plower be the P̃ chosen in the min. At termination, we
know that in every state Vupper ≤Vlower + ε . Substituting these and simplifying gives

Qupper(s,a)−Qlower(s,a)≤ γ ∑
s′
[Pupper(s′|s,a)−Plower(s′|s,a)]Vlower(s′)+ γε.

We make two approximations: Pupper(s′|s,a)−Plower(s′|s,a) ≤ |Pupper(s′|s,a)−Plower(s′|s,a)| and
Vlower(s′)≤ Rmax

1−γ
. This yields

Qupper(s,a)−Qlower(s,a)≤ γ
Rmax

1− γ
∑
s′
|Pupper(s′|s,a)−Plower(s′|s,a)|+ γε.

We know that ‖Pupper(·|s,a)−Plower(·|s,a)‖1 ≤ 2ω , because both distributions belong to the L1 ball
of radius ω around the maximum likelihood estimate P̂.

Qupper(s,a)−Qlower(s,a)≤ γ
Rmax

1− γ
2ω + γε.

Setting this less than or equal to ε and solving for ω gives

ω ≤ ε(1− γ)2

2γRmax
.

We know that

ω =

√
2[ln(2|S|−2)− lnδ ′]

N
.

To set δ ′, we must divide δ by the maximum number of confidence intervals computed by the
algorithm. This will be 2|S||A|N, because we compute two intervals (upper and lower) for ever
(s,a). Plugging the value for δ ′ in and simplifying gives the following equation:

N ≥ γ28R2
max[ln(2

|S|−2)− lnδ + ln2|S||A|+ lnN]

ε2(1− γ)4 .

This has no closed form solution. However, as Strehl and Littman note, there exists a constant C
such that if N ≥ 2C lnC then N ≥ C lnN. Hence, the lnN term on the right-hand side will only
require a small increase in N. Hence

N = O
(

γ2R2
max|S|+ ln |S||A|/δ

ε2(1− γ)4

)
.
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In the worst case, we must draw N samples for every state-action pair, so

m = O
(
|S|2|A|γ

2R2
max + ln |S||A|/δ

ε2(1− γ)4

)
,

which is polynomial in all of the relevant parameters.
To prove that the policy output by DDV is within ε of optimal with probability 1−δ , note that

the following relationships hold:

Vupper(s0)≥V ∗(s0)≥V πlower(s0)≥Vlower(s0).

The inequalities Vupper(s0) ≥ V ∗(s0) ≥ Vlower(s0) hold (with probability 1−δ ) by the admissi-
bility of the confidence intervals. The inequality V ∗(s0) ≥ V πlower(s0) holds, because the true value
of any policy is no larger than the value of the optimal policy. The last inequality, V πlower(s0) ≥
Vlower(s0), holds because extended value iteration estimates the value of πlower by backing up the
values Vlower of the successor states. At termination, Vupper(s0)−Vlower(s0) ≤ ε . Hence, V ∗(s0)−
V πlower(s0)≤ ε .

5.3 Experimental Evaluation on Exploration Heuristics

We conducted an experimental study to assess the effectiveness of DDV-OUU and DDV-UPPER
and compare them to the exploration heuristics of MBIE (with reset) and Fiechter’s algorithm.

5.3.1 METHODS

We conducted two experiments. The goal of both experiments was to compare the number of
simulator calls required by each algorithm to achieve a target value ε for the width of the confidence
interval, ∆V (s0), on the value of the optimal policy in the starting state s0. For problems where the
value V ∗(s0) of the optimal policy is known, we define ε = αV ∗(s0) and plot the required sample
size as a function of α . For the tamarisk problems, where V ∗(s0) is not known, we define ε = αRmax

and again plot the required sample size as a function of α . This is a natural way for the user to define
the required accuracy ε .

In the first experiment, we employed four MDPs: the RiverSwim and SixArms benchmarks,
which have been studied by Strehl and Littman (2004, 2008), and two instances of our tamarisk
management MDPs (E = 3, H = 1) and (E = 3, H = 2). Each of the tamarisk MDPs implemented
a budget constraint that permits a non-“do nothing” action in only one edge in each time step. In
the E = 3,H = 2 MDP, we included exogenous arrivals using the parameters described in Section 3
(up to 10 seeds per species per edge; Bernoulli parameters are 0.1 for tamarisk and 0.4 for native
plants). The E = 3,H = 1 tamarisk MDP has 7 actions and 27 states, and the E = 3,H = 2 MDP
has 7 actions and 216 states. The discount factor was set to 0.9 in all four MDPs.

Each algorithm was executed for one million simulator calls. Instead of performing dynamic
programming updates (for extended value iteration and occupancy measure computation) after ev-
ery simulator call, we computed them on the following schedule. For MBIE-reset, we performed
dynamic programming after each complete trajectory. For DDV-OUU and DDV-UPPER, we per-
formed dynamic programming after every 10 simulator calls. Extended value iteration gives us
the confidence limits Vlower(s0) and Vupper(s0) for the starting state from which we also computed
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Figure 3: RiverSwim results: (a) Number of samples required by MBIE-reset, Fiechter, DDV-
UPPER, and DDV-OUU to achieve various target confidence interval widths ∆V (s0). (b)
Speedup of DDV-OUU over the algorithms.

∆V (s0) = Vupper(s0)−Vlower(s0). The experiment was repeated 15 times, and the average value of
∆V (s0) was computed. For each MDP, we defined a range of target values for ∆V (s0) and com-
puted the average number of samples m required by each algorithm to achieve each target value. By
plotting these values, we can see how the sample size increases as we seek smaller target values for
∆V (s0). We also computed the speedup of DDV-OUU over each of the other algorithms, according
to the formula malg/mDDV-OUU, and plotted the result for each MDP.

We also measured the total amount of CPU time required by each algorithm to complete the
one million simulator calls. Because the simulators in these four MDPs are very efficient, the CPU
time primarily measures the cost of the various dynamic programming computations. For Fiechter,
these involve setting up and solving the exploration MDP. For MBIE-reset, the primary cost is
performing extended value iteration to update Vupper and πOUU . For the DDV methods, the cost
involves extended value iteration for both Vupper and Vlower as well as the dynamic program for µ .

In the second experiment, we ran all four algorithms on the RiverSwim and SixArms problems
until either 40 million calls had been made to the simulator or until ∆V (s0)≤ αRmax, where α = 0.1
and Rmax = 10000 (for RiverSwim) and Rmax = 6000 (for SixArms).

5.3.2 RESULTS

Figures 3, 4, 5, and 6 show the results for the first experiment. In each figure, the left plot shows how
the required sample size increases as the target width for ∆V (s0) is made smaller. In each figure,
the right plot shows the corresponding speedup of DDV-OUU over each of the other algorithms.
In all cases, DDV-OUU generally requires the fewest number of samples to reach the target width,
and DDV-UPPER generally requires the most. The poor behavior of DDV-UPPER suggests that the
policy-free occupancy measure µ is too loose to provide a competitive heuristic.
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Figure 4: SixArms results: (a) Number of samples required by MBIE-reset, Fiechter, DDV-UPPER,
and DDV-OUU to achieve various target confidence interval widths ∆V (s0). (b) Speedup
of DDV-OUU over the other algorithms.
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Figure 5: Tamarisk with E = 3 and H = 1 results: (a) Number of samples required by MBIE-
reset, Fiechter, DDV-UPPER, and DDV-OUU to achieve various target confidence inter-
val widths ∆V (s0). (b) Speedup of DDV-OUU over the other algorithms.

The relative performance of MBIE-reset and Fiechter’s algorithm varies dramatically across the
four MDPs. On RiverSwim, Fiechter’s method is almost as good as DDV-OUU: DDV-OUU shows
a speedup of at most 1.23 (23%) over Fiechter. In contrast, MBIE-reset performs much worse. But
on SixArms, it is MBIE-reset that is the closest competitor to DDV-OUU. In fact, MBIE-reset is
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Figure 6: Tamarisk with E = 3 and H = 2 results: (a) Number of samples required by MBIE-
reset, Fiechter, DDV-UPPER, and DDV-OUU to achieve various target confidence inter-
val widths ∆V (s0). (b) Speedup of DDV-OUU over the other algorithms.

MDP Algorithm

DDV-UPPER DDV-OUU MBIE-reset Fiechter
(ms/call) (ms/call) (ms/call) (ms/call)

RiverSwim 9.59 9.92 3.73 3.29
SixArms 15.54 48.97 10.53 4.87

Tamarisk (E=3 and H=1) 11.93 8.13 4.81 4.68
Tamarisk (E=3 and H=2) 187.30 166.79 12.63 18.79

Table 1: RiverSwim clock time per simulator call.

Quantity Algorithm

DDV-UPPER DDV-OUU MBIE-reset Fiechter Optimal

Vupper(s0) 2967.2 2936.6 3001.5 2952.6 2203
Vlower(s0) 1967.2 1936.6 2001.5 1952.6 2203

∆V (s0) 1000 1000 1000 1000

Simulator Calls (×106) 2.31 1.44 4.05 1.76

Table 2: RiverSwim confidence intervals and required sample size to achieve target ∆V (s0) = 1000.
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Quantity Algorithm

DDV-UPPER DDV-OUU MBIE-reset Fiechter Optimal

Vupper(s0) 5576.7 5203.9 5242.4 5672.8 4954
Vlower(s0) 4140.4 4603.9 4642.4 3997.7 4954

∆V (s0) 1436.3 600 600 1675.1

Simulator Calls (×106) 40.0 14.5 19.3 40.0

Table 3: SixArms confidence intervals and required sample size to achieve the target ∆V (s0) = 600.

actually better than DDV-OUU for target values larger than 2.1, but as the target width for ∆V (s0)
is made smaller, DDV-OUU scales much better. On the tamarisk R = 3 H = 1 problem, MBIE-reset
is again almost as good as DDV-OUU. The maximum speedup produced by DDV-OUU is 1.11.
Finally, on the tamarisk R = 3 H = 2 problem, DDV-OUU is definitely superior to MBIE-reset
and achieves speedups in the 1.9 to 2.3 range. Surprisingly, on this problem, Fiechter’s method is
sometimes worse than DDV-UPPER.

The CPU time consumed per simulator call by each algorithm on each problem is reported in
Table 1. Not surprisingly, MBIE-reset and Fiechter have much lower cost than the DDV methods.
All of these methods are designed for problems where the simulator is extremely expensive. For
example, in the work of Houtman et al. (2013) on wildfire management, one call to the simulator
can take several minutes. In such problems, the overhead of complex algorithms such as DDV more
than pays for itself by reducing the number of simulator calls.

Tables 2 and 3 report the results of the second experiment. The results are consistent with
those of the first experiment. DDV-OUU reaches the target ∆V (s0) with the smallest number of
simulator calls on both problems. On RiverSwim, Fiechter’s method is second best, whereas on
SixArms, MBIE-reset is second best. On SixArms, DDV-UPPER and Fiechter did not reach the
target accuracy within the limit of 40 million simulator calls.

5.3.3 DISCUSSION

The experiments show that DDV-OUU is the most effective of the four algorithms and that it
achieves substantial speedups over the other three algorithms (maximum speedups of 2.73 to 7.42
across the four problems).

These results contrast with our previous work (Dietterich, Alkaee Taleghan, and Crowley, 2013)
in which we showed that DDV-UPPER is better than MBIE. The key difference is that in the present
paper, we are comparing against MBIE with reset, whereas in the previous work, we compared
against MBIE without reset. Without resetting, MBIE can spend most of its time in regions of the
MDP that are far from the start state, so it can fail to find a good policy for s0. This behavior also
explains the poor performance of Q-learning reported in Dietterich et al. (2013).

6. Summary and Conclusions

This paper has addressed the problem of MDP planning when the MDP is defined by an expensive
simulator. In this setting, the planning phase is separate from the execution phase, so there is no
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tradeoff between exploration and exploitation. Instead, the goal is to compute a PAC-optimal policy
while minimizing the number of calls to the simulator. The policy is designed to optimize the
cumulative discounted reward starting in the current real-world state s0. Unlike in most published
RL papers, which typically assume that the MDP is ergodic, the starting state of our ecosystem
management problems is typically a transient state.

The paper makes two contributions. First, it shows how to combine the Good-Turing estimate
with the L1-confidence region of Weissman et al. (2003) to obtain tighter confidence intervals (and
hence, earlier termination) in sparse MDPs. Second, it shows how to use occupancy measures to
create better exploration heuristics. The paper introduced a new policy-independent upper bound
µ on the occupancy measure of the optimal policy and applied this to define the DDV-UPPER
algorithm. The paper also employed an occupancy measure µOUU based on the “optimism under
uncertainty” principle to define the DDV-OUU algorithm.

The µ measure is potentially of independent interest. Like the value function computed during
value iteration, it does not quantify the behavior of any particular policy. This means that it can
be computed without needing to have a specific policy to evaluate. However, the DDV-UPPER
exploration heuristic did not perform very well. We have two possible explanations for this. First,
µ can be a very loose upper bound on the optimal occupancy measure µ∗. Perhaps this leads DDV-
UPPER to place too much weight on unfruitful state-action pairs. Second, it is possible that while
DDV-UPPER is optimizing the one-step gain in ∆∆V (s0) (as it is designed to do), DDV-OUU does a
better job of optimizing gains over the longer term. Further experimentation is needed to determine
which of these explanations is correct.

Our DDV-OUU method gave the best performance in all of our experiments. This is yet another
confirmation of the power of the “Optimism Principle” (Buşoniu and Munos, 2012) in exploration.
Hence, we recommend it for solving simulator-defined MDP planning problems. We are applying it
to solve moderate-sized instances of our tamarisk MDPs. However, additional algorithm innovations
will be required to solve much larger tamarisk instances.

Three promising directions for future research are (a) exploiting tighter confidence interval
methods, such as the Empirical Bernstein Bound (Audibert et al., 2009; Szita and Szepesvári, 2010)
or improvements on the Good-Turing estimate (Orlitsky et al., 2003; Valiant and Valiant, 2013), (b)
explicitly formulating the MDP planning problem in terms of sequential inference (Wald, 1945),
which would remove the independence assumption in the union bound for partitioning δ , and (c)
studying exploration methods based on posterior sampling (Thompson, 1933).
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Achim Zeileis Achim.Zeileis@R-project.org

Institut für Statistik, Universität Innsbruck

Editor: Cheng Soon Ong

Abstract
The R package partykit provides a flexible toolkit for learning, representing, summarizing, and
visualizing a wide range of tree-structured regression and classification models. The functionality
encompasses: (a) basic infrastructure for representing trees (inferred by any algorithm) so that
unified print/plot/predict methods are available; (b) dedicated methods for trees with constant
fits in the leaves (or terminal nodes) along with suitable coercion functions to create such trees
(e.g., by rpart, RWeka, PMML); (c) a reimplementation of conditional inference trees (ctree, orig-
inally provided in the party package); (d) an extended reimplementation of model-based recursive
partitioning (mob, also originally in party) along with dedicated methods for trees with parametric
models in the leaves. Here, a brief overview of the package and its design is given while more
detailed discussions of items (a)–(d) are available in vignettes accompanying the package.

Keywords: recursive partitioning, regression trees, classification trees, statistical learning, R

1. Overview

In the more than fifty years since Morgan and Sonquist (1963) published their seminal paper on “au-
tomatic interaction detection”, a wide range of methods has been suggested that is usually termed
“recursive partitioning” or “decision trees” or “tree(-structured) models” etc. The particularly in-
fluential algorithms include CART (classification and regression trees, Breiman et al., 1984), C4.5
(Quinlan, 1993), QUEST/GUIDE (Loh and Shih, 1997; Loh, 2002), and CTree (Hothorn et al.,
2006) among many others (see Loh, 2014, for a recent overview). Reflecting the heterogeneity of
conceptual algorithms, a wide range of computational implementations in various software systems
emerged: Typically the original authors of an algorithm also provide accompanying software but
many software systems, including Weka (Witten and Frank, 2005) or R (R Core Team, 2014), also
provide collections of various types of trees. Within R the list of prominent packages includes rpart
(Therneau and Atkinson, 1997, implementing CART), RWeka (Hornik et al., 2009, with interfaces
to J4.8, M5’, LMT from Weka), and party (Hothorn et al., 2015, implementing CTree and MOB)
among many others. See the CRAN task view “Machine Learning” (Hothorn, 2014) for an overview.

All of these algorithms and software implementations have to deal with similar challenges. How-
ever, due to the fragmentation of the communities in which they are published – ranging from
statistics over machine learning to various applied fields – many discussions of the algorithms do not
reuse established theoretical results and terminology. Similarly, there is no common “language” for
the software implementations and different solutions are provided by different packages (even within
R) with relatively little reuse of code. The partykit aims at mitigating the latter issue by providing
a common unified infrastructure for recursive partytioning in the R system for statistical comput-
ing. In particular, partykit provides tools for representing, printing, plotting trees and computing
predictions. The design principles are:
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• One ‘agnostic’ base class (‘party’) encompassing a very wide range of different tree types.

• Subclasses for important types of trees, e.g., trees with constant fits (‘constparty’) or with
parametric models (‘modelparty’) in each terminal node (or leaf).

• Nodes are recursive objects, i.e., a node can contain child nodes.

• Keep the (learning) data out of the recursive node and split structure.

• Basic printing, plotting, and predicting for raw node structure.

• Customization via suitable panel or panel-generating functions.

• Coercion from existing object classes in R (rpart, J48, etc.) to the new class.

• Usage of simple/fast S3 classes and methods.

In addition to all of this generic infrastructure, two specific tree algorithms are implemented in
partykit as well: ctree for conditional inference trees (Hothorn et al., 2006) and mob for model-
based recursive partitioning (Zeileis et al., 2008).

2. Installation and Documentation

The partykit package is an add-on package for the R system for statistical computing. It is available
from the Comprehensive R Archive Network (CRAN) at http://CRAN.R-project.org/package=

partykit and can be installed from within R, e.g., using install.packages. It depends on R
(at least 2.15.0) as well as the base packages graphics, grid, stats, and the recommended sur-
vival. Furthermore, various suggested packages are needed for certain special functionalities in
the package. To install all of these required and suggested packages in one go, the command in-

stall.packages("partykit", dependencies = TRUE) can be used.
In addition to the stable release version on CRAN, the current development release can be

installed from R-Forge (Theußl and Zeileis, 2009). In addition to source and binary packages the
entire version history is available through R-Forge’s Subversion source code management system.

Along with the package extensive documentation with examples is shipped. The manual pages
provide basic technical information on all functions while much more detailed descriptions along
with hands-on examples are provided in the four package vignettes. First, the vignette "partykit"

introduces the basic ‘party’ class and associated infrastructure while three further vignettes discuss
the tools built on top of it: "constparty" covers the eponymous class (as well as the simplified
‘simpleparty’ class) for constant-fit trees along with suitable coercion functions, and "ctree" and
"mob" discuss the new ctree and mob implementations, respectively. Each of the vignettes can be
viewed within R via vignette(“name”, package = "partykit") and the underlying source code
(in R with LATEX text) is also available in the source package.

3. User Interface

The partykit package provides functionality at different levels. First, there is basic infrastructure
for representing, modifying, and displaying trees and recursive partitions – these tools are mostly
intended for developers and described in the next section. Second, there are tools for inferring trees
from data or for importing trees inferred by other software into partykit.

While originally an important goal for the development of partykit was to provide infrastructure
for the authors’ own tree induction algorithms CTree and MOB, the design was very careful to
separate as much functionality as possible into more general classes that are useful for a far broader
class of trees. In particular, to be able to print/plot/predict different trees in a unified way, there
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Algorithm Software implementation Object class Original reference
CART/RPart rpart::rpart + as.party constparty Breiman et al. (1984)
C4.5/J4.8 Weka/RWeka::J48 + as.party constparty Quinlan (1993)
QUEST SPSS/AnswerTree + pmmlTreeModel simpleparty Loh and Shih (1997)
CTree ctree constparty Hothorn et al. (2006)
MOB mob, lmtree, glmtree, . . . modelparty Zeileis et al. (2008)
EvTree evtree::evtree constparty Grubinger et al. (2014)

Table 1: Selected implementations of tree algorithms that can be interfaced through partykit. The
second column lists external software, R functions from other packages (with :: syntax)
and from partykit.

Gender

1

Male Female

Age

2

Adult Child

Node 3 (n = 1667)

N
o

Ye
s

0

0.2

0.4

0.6

0.8

1

Class

4

3rd 1st, 2nd

Node 5 (n = 48)

N
o

Ye
s

0

0.2

0.4

0.6

0.8

1
Node 6 (n = 16)

N
o

Ye
s

0

0.2

0.4

0.6

0.8

1

Class

7

3rd 1st, 2nd, Crew

Node 8 (n = 196)

N
o

Ye
s

0

0.2

0.4

0.6

0.8

1
Node 9 (n = 274)

N
o

Ye
s

0

0.2

0.4

0.6

0.8

1

Class
p < 0.001

1

3rd 1st, 2nd, Crew

Node 2 (n = 706)

Normal
Male&Adult

Preferential
Female|Child

Ye
s

N
o

0

0.2

0.4

0.6

0.8

1

●

●

Class
p < 0.001

3

2nd 1st, Crew

Node 4 (n = 285)

Normal
Male&Adult

Preferential
Female|Child

Ye
s

N
o

0

0.2

0.4

0.6

0.8

1

●

●

Node 5 (n = 1210)

Normal
Male&Adult

Preferential
Female|Child

Ye
s

N
o

0

0.2

0.4

0.6

0.8

1

●

●

Figure 1: Tree visualizations of survival on Titanic: ‘rpart’ tree converted with as.party and
visualized by partykit (left); and logistic-regression-based tree fitted by glmtree (right).

are so-called coercion functions for transforming trees learned in other software packages (inside
and outside of R) to the classes provided by partykit. Specifically, tree objects learned by rpart

(Therneau and Atkinson, 1997, implementing CART, Breiman et al., 1984) and by J48 from RWeka
(Hornik et al., 2009, interfacing Weka’s J4.8 algorithm for C4.5, Quinlan, 1993) can be coerced
by as.party to the same object class ‘constparty’. This is a general class that can in principle
represent all the major classical tree types with constant fits in the terminal nodes. Also, the same
class is employed for conditional inference trees (CTree) that can be learned with the ctree function
directly within partykit or evolutionary trees from package evtree (Grubinger et al., 2014).

Not only trees learned within R can be transformed to the proposed infrastructure but also trees
from other software packages. Either a dedicated interface has to be created using the building blocks
described in the next section (e.g., as done for the J4.8 tree in RWeka) or PMML (Predictive Model
Markup Language) can be used as an intermediate exchange format. This is an XML standard
created by an international consortium (Data Mining Group, 2014) that includes a <TreeModel> tag
with support for constant-fit classification and regression trees. The function pmmlTreeModel allows
to read these files and represents them as ‘simpleparty’ objects in partykit. The reason for not
using the ‘constparty’ class as above is that the PMML format only stores point predictions (e.g.,
a mean or proportion) rather than all observations from the learning sample. So far, the PMML
interface has been tested with output from the R package pmml and SPSS’s AnswerTree model. The
latter includes an implementation of the QUEST algorithm (Loh and Shih, 1997).

3907



Hothorn and Zeileis

Finally, the partykit function mob implements model-based recursive partitioning (MOB) along
with “mobster” interfaces for certain models (e.g., lmtree, glmtree). These return objects of class
‘modelparty’ where nodes are associated with statistical models (as opposed to simple constant fits).
In principle, this may also be adapted to other model trees (such as GUIDE, LMT, or M5’) but no
such interface is currently available.

All of these different trees (see Table 1 for an overview) use the same infrastructure at the core
but possibly with different options enabled. In all cases, the functions print, plot, and predict can
be used to create textual and graphical displays of the tree and for computing predictions on new
data, respectively. As an example for the visualizations, Figure 1 shows two different trees fitted to
the well-known data on survival of passengers on the ill-fated maiden voyage of the RMS Titanic:
The left panel shows a CART tree with constant fits learned by rpart and converted to partykit. The
right panel shows a MOB tree learned with partykit with a logistic regression for treatment effects in
the terminal nodes. Additionally, the are further utility functions, e.g., nodeapply can be employed
to access further information stored in the nodes of a tree and nodeprune can prune selected nodes.

4. Developer Infrastructure

The unified infrastructure at the core of partykit is especially appealing for developers who either
want to implement new tree algorithms or represent trees learned in other systems.

Here, we briefly outline the most important classes and refer to the vignettes for more details:

‘partysplit’: Split with integer ID for the splitting variable, breakpoint(s), indexes for the kids.

‘partynode’: Node specification with integer ID, a ‘partysplit’, and a list of kids (if any) that are
‘partynode’ objects again.

‘party’: Tree with a recursive ‘partynode’ and a ‘data.frame’ (optionally empty), potentially plus
information about fitted values and ‘terms’ allowing to preprocess new data for predictions.

All classes have an additional slot for storing arbitrary information at any level of the tree. This
is exploited by ‘constparty’, ‘simpleparty’, and ‘modelparty’ which store the observed response,
point predictions, and fitted parametrics models, respectively.

5. Discussion and Outlook

Package partykit provides a toolkit for trees in R that gives emphasis to flexibility and extensibility.
The infrastructure is easily accessible and accompanied by detailed manual pages and package vi-
gnettes. The package facilitates the implementation of new algorithms or interfacing other software
by providing common building blocks for computing on trees (representation, printing, plotting,
predictions, etc.). Using these building blocks developers of tree software can focus on implement-
ing the learning algorithm (selection of variables and split points, stopping criteria, pruning, etc.).
The package also provides functions for inferring trees where the computationally intensive parts
are either in C (ctree) or employ R’s fitting functions (mob). The simple and lean base classes
that separate data and tree structure are also appealing for storing forests – a first proof-of-concept
reimplementation of cforest is in the package with further extension planned. Users and developers
that have questions or comments about the package can either contact the maintainers or use the
forum on R-Forge at https://R-Forge.R-project.org/forum/forum.php?forum_id=852.
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